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Preface

Nonsmooth optimization (NSO) refers to the general problem of minimizing (or
maximizing) functions that are typically not differentiable at their minimizers (max-
imizers). This kind of functions can be found in many applications, for instance, in
image denoising, optimal control, data mining, economics, computational chem-
istry, mechanics, engineering, biology, and physics. Since the classical optimization
theory presumes certain differentiability and strong regularity assumptions for the
functions to be optimized, it cannot be directly utilized, nor can the methods
developed for smooth problems.

The aim of this book is to give a survey of different numerical methods for
solving NSO problems and to summarize the most recent developments in the field.
The book covers both traditional methods and the methods developed to utilize
special structures of the NSO problems.

The book opens with an introductory chapter where the main notations, notions,
and concepts—used throughout the book—are described. In Chap. 2: “Advances
in Low-Memory Subgradient Optimization” by P.E. Dvurechensky, A.V. Gasnikov,
E.A. Nurminski, and F.S. Stonyaking, the authors give some survey on the sub-
gradient method from historical perspective, present results on complexity of the
method for smooth and nonsmooth convex and quasiconvex problems, and discuss
recent advances in low-memory subgradient methods. Some applications of the
subgradient method are also discussed. Chapter 3: “Standard Bundle Methods:
Untrusted Models and Duality” by A. Frangioni provides the review of the basic
of the bundle methods at three different axes: form of the stabilization, form of the
model, and approximate evaluation of the function.

In Chap. 4: “A Second-Order Bundle Algorithm for Nonsmooth, Noncon-
vex Optimization Problems,” the authors, H. Schichl and H. Fendl, extend the
SQP-approach of the well-known bundle-Newton method for solving nonsmooth
unconstrained minimization and the second-order bundle method to the general
nonlinearly constrained case. Large-scale NSO methods, such as the limited mem-
ory bundle, the diagonal bundle, and the splitting metrics diagonal bundle methods,
are discussed in Chap. 5: “Limited Memory Bundle Method and Its Variations for
Large-Scale Nonsmooth Optimization” by N. Karmitsa.

v



vi Preface

The gradient sampling method is presented in Chap. 6: “Gradient Sampling
Methods for Nonsmooth Optimization” by J.V. Burke, F.E. Curtis, A.S. Lewis,
M.L. Overton, and L.E.A. Simões. The authors provide an overview of various
enhancements that have been proposed to improve practical performance, as well as
an overview of several extensions of the GS method to solve constrained problems.

Chapter 7: “Local Search for Nonsmooth DC Optimization with DC Equality
and Inequality Constraints” by A.S. Strekalovsky addresses the NSO problems
with the objective, equality, and inequality constraints given by DC functions.
Using the exact penalty function, this problem is reduced to an unconstrained DC
minimization problem and a local search method is designed to solve it. In Chap. 8:
“Bundle Methods for Nonsmooth DC Optimization” by K. Joki and A.M. Bagirov
provides a survey of bundle methods for solving nonsmooth DC optimization
problems including their comparison using numerical results.

The main ideas and concepts related to the VU-decomposition approach are
discussed in Chap. 9: “Beyond First Order: VU-Decomposition Methods” by
Sh. Liu and C. Sagastizábal. It is shown that nonsmoothness often appears in a
structured manner, and this fact can be exploited to design algorithms having super-
linear convergence. In Chap. 10: “Beyond the Oracle: Opportunities of Piecewise
Differentiation” by A. Griewank and A. Walther using the abs-linearization of a
piecewise smooth objective in abs-normal form it is shown how directionally active
generalized gradients can be calculated.

Numerical methods for solving generalized minimax problems are studied in
Chap. 11: “Numerical Solution of Generalized Minimax Problems” by L. Lukšan,
C. Matonoha, and J. Vlćek. Such problems include nonsmooth functions which are
compositions of special smooth convex functions with maxima of smooth functions
and in particular, functions which are represented as the sums of maxima of smooth
functions. NSO problems with the objective and/or constraint functions that are
assessed through “noisy” oracles are discussed in Chap. 12: “Bundle Methods for
Inexact Data” by W. de Oliveira and M. Solodov. The approaches for solving such
problems are demonstrated using different types of optimization problems.

In Chap. 13: “New Multiobjective Proximal Bundle Method with Scaled
Improvement Function” by M.M. Mäkelä and O. Montonen, the authors describe
how to use the improvement functions both for constraint handling and scalarization
of multiple objectives. Since the standard improvement functions are sensitive to
scaling their scaled versions are investigated. Application of the double bundle
method for solving multiobjective optimization problems is studied in Chap. 14:
“Multiobjective Double Bundle Method for DC Optimization” by O. Montonen
and K. Joki. The improvement function is used to deal with the constrained
multiobjective DC optimization problems. It is proved that under the mild
assumptions the method converges to a weakly Pareto stationary point.

Chapter 15: “Mixed-Integer Linear Programming: Primal–Dual Relations and
Dual Subgradient and Cutting-Plane Methods” by A.-B. Strömberg, T. Larsson,
and M. Patriksson presents theory and methodology for solving mixed binary
linear optimization problems by means of Lagrangian duals, subgradient meth-
ods, a cutting-plane model, and recovery of primal solutions. In Chap. 16: “On
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Mixed Integer Nonsmooth Optimization” by V.-P. Eronen, T. Westerlund, and
M.M. Mäkelä deterministic methods for solving convex mixed-integer NSO prob-
lems is reviewed. These methods include branch and bound, outer approximation,
extended cutting-plane, extended supporting hyperplane and extended level bundle
methods. Lagrangian relaxation methodology for solving integer programming
problems and its various applications such as assignment problems, network
optimization, wireless sensor networks, and machine learning are discussed in
Chap. 17: “A View of Lagrangian Relaxation and Its Applications” by M. Gaudioso.

In Chap. 18: “Discrete Gradient Methods” by A.M. Bagirov, S. Taheri, and
N. Karmitsa, two different semi-derivative-free methods are described. The dis-
crete gradients are used to approximate subdifferentials of a class of nonsmooth
functions. Some illustrative examples to demonstrate the performance of these
methods are also given. Finally, Chap. 19: “Model-Based Methods in Derivative-
Free Nonsmooth Optimization” by Ch. Audet and W. Hare presents a survey on
the progress of model-based nonsmooth derivative-free optimization. Methods for
constructing models of smooth functions, their accuracy, and frameworks for model-
based nonsmooth derivative-free optimization are also discussed.

We hope that this book will demonstrate the significant progress that has occurred
in numerical NSO in recent years and that the developments reported will motivate
further research in NSO and its diverse applications.
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Chapter 1
Introduction

Adil M. Bagirov, Manlio Gaudioso, Napsu Karmitsa, Marko M. Mäkelä,
and Sona Taheri

Nonsmooth optimization (NSO) is among the most challenging tasks in the field
of mathematical programming. It addresses optimization problems where objective
and/or constraint functions have discontinuous gradients. NSO problems arise in
many real life applications. Moreover, some smooth optimization techniques like
different decomposition methods, dual formulations and exact penalty methods may
lead us to solve NSO problems being either smaller in dimension or simpler in
structure. In addition, some optimization problems may be analytically smooth but
numerically nonsmooth. This is the case, for instance, with noisy input data and so-
called stiff problems, which are numerically unstable and behave like nonsmooth
problems.

The history of NSO methods dates back to the 1960s when the very first NSO
method—the subgradient method was developed. In the 1960s and early 1970s,
NSO was mainly applied to solve minimax problems as well as large linear problems
using their decompositions. The most important developments in NSO start with
the introduction of the bundle methods in mid-1970s being inspired by the classical
cutting-plane method. In its original form, the bundle method was introduced to

A. M. Bagirov · S. Taheri
School of Science, Engineering and Information Technology, Federation University, Ballarat,
VIC, Australia
e-mail: a.bagirov@federation.edu.au; s.taheri@federation.edu.au

M. Gaudioso
Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della
Calabria, Rende, Italy
e-mail: manlio.gaudioso@unical.it

N. Karmitsa · M. M. Mäkelä (�)
University of Turku, Department of Mathematics and Statistics, Turku, Finland
e-mail: napsu@karmitsa.fi; makela@utu.fi

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al. (eds.), Numerical Nonsmooth Optimization,
https://doi.org/10.1007/978-3-030-34910-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34910-3_1&domain=pdf
mailto:a.bagirov@federation.edu.au
mailto:s.taheri@federation.edu.au
mailto:manlio.gaudioso@unical.it
mailto:napsu@karmitsa.fi
mailto:makela@utu.fi
https://doi.org/10.1007/978-3-030-34910-3_1


2 A. M. Bagirov et al.

solve nonsmooth convex problems, but the usage of the Clarke subdifferential
allowed to extend bundle methods also to solve nonconvex problems in the 1980s.

Since the early 1990s, a significant progress has been made in numerical NSO.
Especially different versions of bundle methods including the proximal bundle,
trust-region, level bundle, variable metric, bundle-Newton and spectral methods
have been introduced. In addition, outside of the traditional subgradient and bundle
framework, some new derivative-free and gradient sampling techniques have gained
ground. Recently, methods exploiting some special structure of the problems, like
DC or VU-decompositions have been a subject of the growing interest. Furthermore,
NSO has extended its territory outside the single objective continuous optimization
to the fields of multiobjective and discrete optimization.

Next we will give some notations and definitions to be used in the forthcoming
parts, as well as short overviews of the basic subgradient and bundle methods.

1.1 Notations

Throughout this book we use the following notations. All the vectors x are
considered as column vectors and, correspondingly, all the transposed vectors xT

are considered as row vectors. We denote either by xT y or by 〈x, y〉 the usual inner
product and by ‖x‖ the norm in the n-dimensional real Euclidean space Rn. In other
words,

xT y = 〈x, y〉 =
n∑

i=1

xiyi and ‖x‖ =
(
xT x

) 1
2 = 〈x, x〉 1

2 ,

where x, y ∈ R
n and xi, yi ∈ R are the i-th components of the vectors x and y,

respectively.
We denote by [x, y] the closed line-segment joining x and y, that is,

[x, y] = {
z ∈ R

n | z = λx + (1− λ)y for 0 ≤ λ ≤ 1
}
,

and by (x, y) the corresponding open line-segment.
An open ball and closed ball with the center x ∈ R

n and the radius r > 0 are
denoted by B(x; r) and B̄(x; r), respectively:

B(x; r) = {y ∈ R
n | ‖y − x‖ < r} and

B̄(x; r) = {y ∈ R
n | ‖y − x‖ ≤ r}.

We also denote by S1 the sphere of the unit ball as follows:

S1 = {y ∈ R
n | ‖y‖ = 1}.

The closure, interior, boundary, and convex hull of the set S ⊂ R
n are denoted by

cl S, intS, bd S, and convS, respectively.
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1.2 Definitions and Basic Results

We consider an optimization problem of the form

{
minimize f (x)

subject to x ∈ S, (1.1)

where the objective function f and the feasible region S ⊂ R
n will meet different

assumptions and different structures depending on a problem.
A function f : Rn → R is said to be convex if

f (λx + (1− λ)y) ≤ λf (x)+ (1− λ)f (y), for all x, y ∈ Rn and λ ∈ [0, 1].

Most commonly we are operating with Lipschitz functions.

Definition 1.1 A function f : Rn → R is locally Lipschitz continuous (LLC) at a
point x ∈ R

n if there exists a Lipschitz constant K > 0 and ε > 0 such that

|f (y)− f (z)| ≤ K‖y − z‖ for all y, z ∈ B(x; ε).

Definition 1.2 A function f : Rn → R is said to be LLC on a set U ⊆ R
n if it

is LLC at every point belonging to the set U . Note that, if U = R
n the function is

called LLC.

A convex function f : Rn → R is always LLC.

Definition 1.3 A function f : Rn → R is said to be Lipschitz continuous on a set
U ⊆ R

n if there exists a Lipschitz constant K > 0 such that

|f (y)− f (z)| ≤ K‖y − z‖ for all y, z ∈ U.

If U = R
n, then f is said to be Lipschitz continuous.

Definition 1.4 The limit

f ′(x; d) = lim
t↓0

f (x + td)− f (x)

t

(if it exists) is called the directional derivative of f at x ∈ R
n in the direction

d ∈ R
n.

Definition 1.5 (Clarke) Let f : Rn → R be a LLC function at x ∈ R
n. The

generalized directional derivative of f at x in the direction d ∈ R
n is defined by

f ◦(x; d) = lim sup
y→x

t↓0

f (y + td)− f (y)

t
.
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Definition 1.6 A function f : Rn → R is said to be subdifferentially regular at
x ∈ R

n if it is LLC at x, the directional derivative f ′(x; d) exists in every direction
d ∈ R

n and we have

f ◦(x; d) = f ′(x; d), for all d ∈ R
n.

Convex and continuously differentiable functions are examples of subdifferen-
tially regular functions.

Definition 1.7 The subdifferential of a convex function f : Rn → R at x ∈ R
n is

the set ∂cf (x) of vectors ξ ∈ R
n such that

∂cf (x) =
{

ξ ∈ R
n | f (y) ≥ f (x)+ ξT (y − x) for all y ∈ R

n
}
.

Each vector ξ ∈ ∂cf (x) is called a subgradient of f at x.

Definition 1.8 (Clarke) Let f : R
n → R be LLC at x ∈ R

n. Then the
subdifferential of f at x is the set ∂f (x) defined as

∂f (x) = { ξ ∈ R
n | f ◦(x; d) ≥ ξT d for all d ∈ R

n }.

The subdifferential ∂f (x) is a nonempty, convex and compact set.

Theorem 1.1 Let f : Rn → R be LLC at x ∈ R
n. Then

f ◦(x; d) = max
ξ∈∂f (x)

ξT d for all d ∈ R
n.

Theorem 1.2 Let f : Rn → R be LLC at x ∈ R
n. Then

∂f (x) = conv { ξ ∈ R
n | there exists {xi} ⊂ R

n \Ωf

such that xi → x and ∇f (xi )→ ξ }.

Here, Ωf denotes the set of points in which f fails to be differentiable.

Note that if f is convex, then ∂f (x) = ∂cf (x) and if f is continuously
differentiable, then ∂f (x) = {∇f (x)}.
Definition 1.9 For any ε ≥ 0, the ε-subdifferential of a convex function f : Rn →
R at x ∈ R

n is the set

∂εf (x) =
{

ξ ∈ R
n | f (y) ≥ f (x)+ ξT (y − x)− ε for all y ∈ R

n
}
.

Theorem 1.3 Let f : Rn → R be a convex function with a Lipschitz constant
K > 0 at a point x ∈ R

n. Then for any ε ≥ 0, we have

∂cf (y) ⊂ ∂εf (x) for all y ∈ B (
x; ε

2K

)
.
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Definition 1.10 Let a function f : Rn → R be LLC at x ∈ R
n and let ε ≥ 0. Then

the Goldstein ε-subdifferential of f is the set

∂Gε f (x) = cl conv { ∂f (y) | y ∈ B(x; ε) }.

Note that if f is convex, then for all ε ≥ 0 we have

∂Gε f (x) ⊆ ∂2Kεf (x), (1.2)

where K > 0 is the Lipschitz constant of f at x.

Definition 1.11 A function f : R
n → R is called semismooth or weakly

semismooth at x ∈ R
n if the limit

lim
ξ∈∂f (x+hd′),

d′→d, h↓0

ξT d ′, (1.3)

or

lim
ξ∈∂f (x+hd),

h↓0

ξT d (1.4)

exists for every d ∈ R
n, respectively.

Evidently, semismoothness implies weak semismoothness. The class of semis-
mooth functions is fairly wide and it contains, for instance, convex, concave,
max- and min-type functions. The weakly semismooth function f is directionally
differentiable and

f ′(x; d) = lim
ξ∈∂f (x+hd),

h↓0

ξT d. (1.5)

Next we give two classical but useful results in NSO.

Theorem 1.4 (Weierstrass) If S ⊂ R
n is a nonempty compact set and f : Rn →

R is continuous, then f attains its minimum and maximum over S.

Theorem 1.5 (Rademacher) Let S ⊂ R
n be an open set. A function f : S → R

that is LLC on S is differentiable almost everywhere on S.

Definition 1.12 The contingent cone of a set S ⊂ R
n at a point x is given by

KS(x) =
{
d ∈ R

n | there exist ti ↓ 0 and d i → d with x + tid i ∈ S
}
,
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and the tangent cone by

TS(x) = {d ∈ R
n | for all ti ↓ 0 and xi → x with xi ∈ S

there exist di → d with xi + tidi ∈ S}.

Note that TS(x) ⊆ KS(x) and if S is convex, then we have TS(x) = KS(x).

Definition 1.13 The polar cone of a set S ⊂ R
n is given by the formula

S≤ = {d ∈ R
n | sT d ≤ 0 for all s ∈ S}.

The normal cone of a set S ⊂ R
n at a point x is defined as the polar cone of the

tangent cone, that is

NS(x) = TS(x)
≤ = {z ∈ R

n | zT d ≤ 0 for all d ∈ TS(x)}.

Finally, we formulate necessary and sufficient optimality conditions for the prob-
lem (1.1).

Theorem 1.6 Let x∗ be the local optimum of the problem (1.1), where f : Rn → R

is LLC at x∗ ∈ S. Then

000 ∈ ∂f (x∗)+NS(x
∗). (1.6)

If, in addition, f is a convex function and S is a convex set, then the condition (1.6)
implies that x∗ is a global optimum of (1.1).

In this book, unconstrained optimization problems are considered in most of the
chapters, in other words S = R

n in the problem (1.1). Since NRn(xk) = {000} the
optimality condition (1.6) reduces to

000 ∈ ∂f (x∗). (1.7)

A point x∗ is called Clarke stationary if it satisfies the optimality condition (1.7).

1.3 Nonsmooth vs. Smooth Optimization

Next we consider the solution process of the problem (1.1). For simplicity we
assume that S = R

n, thus we have an unconstrained optimization problem. Most
iterative optimization methods are so-called descent methods in the sense that from
the current iteration point xk their aim is to find a descent direction dk ∈ S1 such
that for some δ > 0, we have

f (xk + tdk) < f (xk) for all t ∈ (0, δ]. (1.8)
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Suppose that xk is not yet an optimal solution of (1.1). It follows from Theorem 1.6
that 000 /∈ ∂f (xk) and thus, due to Definition 1.8, there must be at least one dk ∈ S1
such that f ◦(xk; dk) < 0. This implies that the condition (1.8) is valid and thus,
there exists a descent direction.

A greedy algorithm tries to find the steepest descent direction by solving the
problem

min
d∈S1

f ◦(xk; d) (1.9)

or, due to Theorem 1.1, equivalently

min
d∈S1

max
ξ∈∂f (xk)

ξT d.

Since S1 and ∂f (xk) are compact sets and ∂f (xk) is convex “von Neumann’s
minimax” Theorem allows us to change the optimization order and we get

max
ξ∈∂f (xk)

min
d∈S1

ξT d = max
ξ∈∂f (xk)

ξT (−ξ/‖ξ‖) = − min
ξ∈∂f (xk)

‖ξ‖.

Thus, the steepest descent direction for a LLC function f at xk is derived by

dk = − argmin
ξ∈∂f (xk)

‖ξ‖. (1.10)

Notice that if f is smooth (i.e. continuously differentiable), we have ∂f (xk) =
{∇f (xk)} and (1.10) reduces to the standard steepest descent direction

dk = −∇f (xk).

Since we have found a descent search direction we can perform a line search in
order to specify the optimal step size by

tk = argmin
t>0

f (xk + tdk). (1.11)

Now we are ready to update the current iteration point by

xk+1 := xk + tkdk

and according to (1.9) and (1.11) we obtain a descent step, in other words
f (xk+1) < f (xk). Furthermore, the iteration can be stopped if dk = 000. Namely, in
that case (1.10) implies that 000 ∈ ∂f (xk) and due to Theorem 1.6 this is the necessary
optimality condition for xk to be a local optimum for the problem (1.1). In addition,
if f is convex we have found a global optimum. Thus, in practice we can stop our
algorithm whenever

‖dk‖ < εs
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for a predefined optimality tolerance εs > 0. Note that in the smooth case this
corresponds to the classical stopping criterion

‖∇f (xk)‖ < εs.

Now we summarize our simple algorithm.

Algorithm 1.1: Generalized steepest descent method

Data: A final optimality tolerance εs > 0.
Step 1. (Initialization) Select a starting point x1 ∈ R

n and set k := 1.
Step 2. (Direction finding) Calculate the search direction dk by (1.10).
Step 3. (Stopping criterion) If ‖dk‖ < εs , then stop.
Step 4. (Line search) Calculate the step size tk > 0 by (1.11).
Step 5. (Updating) Set xk+1 := xk + tkdk and k := k + 1. Go to Step 2.

The next example shows how this algorithm works in practice.

Example 1.1 Suppose, that we want to minimize the convex function f :
R

2 → R defined by

f (x) = max {|x1|, |x2|} = max {x1,−x1, x2,−x2}

from the starting point x1 = (1, 1)T . By Theorem 1.2 we have

∂f (x1) = conv {(1, 0)T , (0, 1)T }

and thus in Step 2 of Algorithm 1.1 we get

d1 = − argmin
ξ∈∂f (x1)

‖ξ‖ = (− 1
2 ,− 1

2 )
T .

Note that

f ◦(x1; d1) = f ′(x1; d1) = lim
t↓0

f (x1 + td1)− f (x1)

t

= lim
t↓0

f ((1− 1
2 t, 1− 1

2 t)
T )− f ((1, 1)T )

t

= lim
t↓0

|1− 1
2 t| − 1

t
= − 1

2 < 0,
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meaning that d1 is a descent direction. In Step 4 we specify the step size by

t1 = argmin
t>0

f (x1 + td1) = argmin
t>0

|1− 1
2 t| = 2

and thus in Step 5 we get

x2 = x1 + t1d1 = (1, 1)T + 2(− 1
2 ,− 1

2 )
T = (0, 0)T .

Now we have

∂f (x2) = conv {(1, 0)T , (−1, 0)T , (0, 1)T , (0,−1)T }

and we get

d2 = − argmin
ξ∈∂f (x2)

‖ξ‖ = (0, 0)T .

Then in Step 3 the stopping criterion

‖d2‖ = 0 < εs

is valid for any optimality tolerance εs > 0. Since 000 ∈ ∂f (x2) and f is convex,
Theorem (1.6) implies that x2 = (0, 0)T is a global minimum.

To conclude, via subgradients and subdifferentials, we can completely generalize
the classical optimization theory. Thus, in principle, we do not need special NSO
methods since we could use Algorithm 1.1, and for LLC functions the gradient
could be replaced by the minimum norm subgradient. However, this necessitates
the knowledge of the whole subdifferetial ∂f (x) at every point x ∈ R

n which is a
big requirement in practice and in most cases we have to content with the fact that
we can only calculate

• one arbitrary subgradient ξ from the subdifferential ∂f (x). (1.12)

This impairment involves several drawbacks to the above procedure:

1. The opposite direction of an arbitrary subgradient is not necessarily a descent
direction. For instance, if in Example 1.1 we choose ξ1 = (1, 0)T ∈ ∂f (x1) we
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have d1 = −ξ1 and

f ◦(x1; d1) = lim
t↓0

f (x1 + td1)− f (x1)

t

= lim
t↓0

f ((1− t, 1)T )− f ((1, 1)T )

t

= lim
t↓0

1− 1

t
= 0 ≮ 0,

meaning that d1 is not a descent direction.
2. The line search operation of Step 4 becomes unrealistic since the search direction

is not necessarily a descent one.
3. The stopping criterion of Step 3 is not applicable anymore since the norm of an

arbitrary subgradient ‖ξ k‖ need not to be small even if 000 ∈ ∂f (xk).

1.4 Subgradient Methods

The idea behind the subgradient methods is to follow Algorithm 1.1 by taking into
account the restriction (1.12) and its consequences 1–3 listed above. Since we have
only one arbitrary subgradient ξ k ∈ ∂f (xk) instead of the whole subdifferential
∂f (xk) the search direction problem (1.10) reduces to

dk = −ξ k,

leading to the scheme

xk+1 := xk + tkdk, (1.13)

where the step size tk has to be chosen a priori due to the lack of implementable line
search operation. The following lemma gives a hint how to choose the step size.

Lemma 1.1 Suppose that x∗ is an optimal solution of the problem (1.1), where
S = R

n and f : Rn → R is convex. If xk is not yet optimal, we have

‖xk+1 − x∗‖ < ‖xk − x∗‖,

whenever

0 < tk < 2[f (xk)− f (x∗)]/‖ξ k‖2.
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Although we can not guarantee anymore that xk+1 is better than xk when
comparing the objective function values, it is closer to the optimal point x∗ if the
step size is positive and small enough. This advices us to choose tk such that

tk > 0 and lim
k→∞ tk = 0. (1.14)

On the other hand, due to the triangle inequality we have

‖x1 − xk+1‖ ≤
k∑

j=1

tj .

Thus, in order to guarantee the global convergence of the method the sequence of
the step sizes should diverge, in other words

∞∑

j=1

tj = ∞. (1.15)

Furthermore, in order to improve the convergence properties, the sequence of the
squared step sizes should convergent, that is

∞∑

j=1

t2j <∞. (1.16)

Due to the fact that we do not have any reliable (sub)gradient-based stopping
criterion, the number of iterations kmax has also to be fixed a priori.

Now we are ready to present the basic subgradient algorithm.

Algorithm 1.2: Subgradient method

Data: A final optimality tolerance εs > 0, maximum number of iterations
kmax > 0 and the sequence of step sizes tk satisfying the
requirements (1.14)–(1.16).

Step 1. (Initialization) Select a starting point x1 ∈ R
n, set xbest = x1,

calculate ξ1 ∈ ∂f (x1) and set k := 1.
Step 2. (Direction finding) Set the search direction dk = −ξk .
Step 3. (Stopping criterion) If ‖dk‖ < εs or k + 1 > kmax, then stop.
Step 4. (Updating) Set xk+1 := xk + tkdk , calculate ξ k+1 ∈ ∂f (xk+1) and

set k := k + 1. If f (xk) < f (xbest), set xbest = xk . Go to Step 2.
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Let us next apply the subgradient method to the same problem as in Example 1.1.

Example 1.2 As in Example 1.1 consider the minimization of the convex
function f : R2 → R

f (x) = max {|x1|, |x2|} = max {x1,−x1, x2,−x2}

from the starting point x1 = (1, 1)T . If we choose ξ1 = (1, 0)T ∈ ∂f (x1) =
conv {(1, 0)T , (0, 1)T }, then d1 = −ξ1 is not a descent direction as showed
above. Since f (x1) = 1, ‖ξ 1‖ = 1, x∗ = (0, 0)T and f (x∗) = 0 we have

2[f (x1)− f (x∗)]/‖ξ1‖2 = 2, (1.17)

meaning by Lemma 1.1 that if we choose the step size t1 such that 0 < t1 < 2
we have

‖x2 − x∗‖ = ‖x1 + t1d1‖
= ‖(1− t1, 1)T ‖ =

√
(1− t1)2 + 1 <

√
2 = ‖x1 − x∗‖.

This is still a rather wide range and the calculation of the upper limit (1.17)
necessitates the knowledge of the optimal value f (x∗). Furthermore, the choice
of the step size clearly affects the operation of the method being one of its
weaknesses. The best choice (which the method does not know!) would be
t1 = 1 leading to the next iteration point x2 = (0, 1)T . Then ∂f (x2) = (0, 1)T

and thus the next search direction d2 = (0,−1)T points into the origin. The
range for the step size remains to be 0 < t2 < 2 and the feasible choice t2 = 1
would give x3 = (0, 0)T = x∗.

What comes to the convergence properties of the basic subgradient algorithm, if
f is convex and the step sizes satisfy the conditions (1.14) and (1.15) we can prove
that

lim
k→∞ f (xk) = f (x∗),

meaning that the objective values of the iterates converge to the optimal objective
value of (1.1). If, in addition, the condition (1.16) is fulfilled it holds that

lim
k→∞ xk = x∗,

in other words, the subgradient method is globally convergent.
Due to their simple structure subgradient methods are very popular and widely

used in NSO. They are applicable especially for large scale problems because of
their low storage requirements. Nevertheless, the convergence speed of the standard



1 Introduction 13

subgradient method may be slow (not even linear). To overcome this drawback
some ideas from the conjugate gradient and the variable metric methods have been
adopted to the subgradient context, for instance in Shor’s space dilation methods.

1.5 Bundle Methods

The basic idea of bundle methods is to approximate the whole subdifferential of the
objective function instead of using only one arbitrary subgradient at each point.
In practice, this is done by gathering subgradients from the previous iterations
into a bundle. Suppose that at the k-th iteration of the algorithm we have the
current iteration point xk and some trial points yj ∈ R

n (from past iterations) and
subgradients ξ j ∈ ∂f (yj ) for j ∈ Jk , where the index set Jk is a nonempty subset
of {1, . . . , k}. Then at every trial point yj we can linearize the objective function f
by

f̄j (x) = f (yj )+ ξTj (x − yj ).

Then the linearization error

αkj = f (xk)− f̄j (xk)

tells, how well f̄j approximates f at the current iteration point xk . Note that the
convexity of f implies that for all x ∈ R

n and j ∈ Jk we have

f (x) ≥ f̄j (x) and αkj ≥ 0. (1.18)

Then for some εk > 0 the bundle

Bεk f (xk) =
⎧
⎨

⎩
ξ ∈ R

n | ξ =
∑

j∈Jk

λj ξ j ,
∑

j∈Jk

λj = 1, λj ≥ 0 and
∑

j∈Jk

λj α
k
j ≤ εk

⎫
⎬

⎭

is a convex hull of ξ j ∈ ∂f (yj ) emphasizing good subgradients, in other words,
those having small linearization errors αkj . Thus we have

Bεkf (xk) ⊆ cl conv { ξ j | j ∈ Jk}. (1.19)

Lemma 1.2 If f : Rn → R is convex and εk ≥ 0, then Bεkf (xk) is a convex and
compact set such that

Bεkf (xk) ⊆ ∂εkf (xk). (1.20)
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Due to (1.20) and the fact that ∂εkf (xk) converges to ∂0f (xk) = ∂f (xk) whenever
εk ↓ 0, we replace the subdifferental by the bundle in the search direction
problem (1.10) and

dk = − argmin
ξ∈Bεk

f (xk)

‖ξ‖. (1.21)

Taking into account the structure of the bundle we can rewrite this problem as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize 1
2‖

∑

j∈Jk

λj ξ j‖2

subject to
∑

j∈Jk

λjα
k
j ≤ εk,

∑

j∈Jk

λj = 1,

λj ≥ 0 for all j ∈ Jk.

(1.22)

Applying Lagrangian relaxation and dualization, the problem (1.22) is equivalent to

{
minimize v + 1

2uk‖d‖2

subject to −αkj + ξTj d ≤ v for all j ∈ Jk,
(1.23)

where uk is a Lagrange multiplier of the first constraint of the problem (1.22). Note
that by defining the so-called cutting-plane model

f̂k(x) = max
j∈Jk

f̄j (x), (1.24)

the problem (1.23) can be written in the form

dk = argmin
d∈Rn

{f̂ (xk + d)+ 1
2uk‖d‖2}. (1.25)

If f is convex, it follows from (1.18) and (1.24) that the cutting-plane model f̂k
underestimates f everywhere. However, if f is nonconvex, then the cutting-plane
model is not guaranteed to be an underestimate of the objective even locally and the
linearization error may be negative.

One possibility is to replace the linearization error αkj by so-called subgradient
locality measure defined by

βkj = max {|αkj | , γ ‖xk − yj‖2}, (1.26)

where γ ≥ 0. If f is convex, we can set γ = 0 and the subgradient locality
measure reverts to the linearization error. Then, again (1.19) is valid and instead
of Lemma 1.2 we get the following result.
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Lemma 1.3 If f : Rn → R is LLC and εk ≥ 0, then Bεkf (xk) is a convex and
compact set such that

Bεkf (xk) ⊆ ∂Gδkf (xk), (1.27)

where

δk =
√

εk

γ λk
and λk = argmin

λj>0
λj .

Since the objective function in the problem (1.23) is strictly convex it is easy to
prove that if dk �= 000, then dk is a descent direction to the model f̂k . However, it
is not necessarily descent for the original objective f or, at least, the decrease in
function values may not be sufficient. For this reason, we have to use the following
line search procedure.

Assume thatmL ∈ (0, 1
2 ),mR ∈ (mL, 1) and t̄ ∈ (0, 1] are some fixed line search

parameters. We first search for the largest number tLk ∈ [0, 1] such that tLk ≥ t̄ and

f (xk + tLk dk) ≤ f (xk)+mLt
L
k vk, (1.28)

where vk is the predicted amount of descent

vk = f̂k(xk + dk)− f (xk) < 0. (1.29)

If such a parameter exists we take a long serious step

xk+1 = xk + tLk dk and yk+1 = xk+1.

Otherwise, if (1.28) holds but 0 < tLk < t̄ , we take a short serious step

xk+1 = xk + tLk dk and yk+1 = xk + tRk dk

and, if tLk = 0, we take a null step

xk+1 = xk and yk+1 = xk + tRk dk,

where tRk > tkL is such that

− βk+1
k+1 + ξTk+1dk ≥ mRvk. (1.30)

In short serious steps and null steps, there exists discontinuity in the gradient1 of f .
Then the requirement (1.30) ensures that xk and yk+1 lie on the opposite sides of
this discontinuity and the new subgradient ξ k+1 ∈ ∂f (yk+1) will force a remarkable
modification of the next search direction finding problem.

1Existing almost everywhere due to Rademacher’s Theorem 1.5.
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The iteration is terminated if we can not find any descent direction to the model
f̂k , in other words if dk ≈ 000 and the model is a good enough approximation of the
original objective meaning that f̂k(xk) ≈ f (xk). Thus due to (1.29) we can stop
our algorithm whenever

‖dk‖ + |vk| < εs.

Now we can summarize our standard bundle method.

Algorithm 1.3: Proximal bundle method

Data: A final optimality tolerance εs > 0, an initial weight u1 > 0, line
search parameters mL ∈ (0, 1

2 ), mR ∈ (mL, 1) and t̄ ∈ (0, 1], and distance
measure parameter γ ≥ 0.

Step 1. (Initialization) Select a starting point x1 ∈ R
n, set y1 := x1 and

J1 = {1}, calculate ξ1 ∈ ∂f (y1) and set k := 1.
Step 2. (Direction finding) Calculate the search direction dk by (1.25).
Step 3. (Stopping criterion) If ‖dk‖ + |vk| < εs , then stop.
Step 4. (Line search) Find the step sizes tLk ∈ [0, 1] and tRk ∈ [tLk , 1]

fulfilling (1.28) or (1.30) to take either a null step (tLk = 0) or a
serious step (tLk > 0).

Step 5. (Updating) Set

xk+1 = xk + tLk dk and yk+1 = xk + tRk dk,

calculate ξ k+1 ∈ ∂f (yk+1), choose Jk+1 ⊆ {1, . . . , k + 1}, update the
weight uk+1 and set k := k + 1. Go to Step 2.

If the objective function is LLC and the weakly semismoothness assumption
(Definition 1.11) is valid, Algorithm 1.3 can be proved to converge globally to a
Clarke stationary point x∗ meaning that 000 ∈ ∂f (x∗). Due to Theorem 1.6 this is the
necessary optimality condition for x∗ to be a local optimum for the problem (1.1).
Moreover, if f is convex we have found a global optimum.

1.6 Forthcoming Chapters

The aim of this book is to survey different class of numerical methods developed
for NSO and to give an overview to the most recent developments in the area. The
book contains four parts, where the first one considers general methods. The next
two parts are devoted to methods exploiting a special structure of a problem and
the methods for special problems, respectively. The last part consists of the latest
advancements in derivative-free NSO.
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and Fedor S. Stonyakin

Abstract This chapter is devoted to the blackbox subgradient algorithms with the
minimal requirements for the storage of auxiliary results, which are necessary to
execute these algorithms. To provide historical perspective this survey starts with
the original result of Shor which opened this field with the application to the
classical transportation problem. The theoretical complexity bounds for smooth and
nonsmooth convex and quasiconvex optimization problems are briefly exposed in
what follows to introduce the relevant fundamentals of nonsmooth optimization.
Special attention in this section is given to the adaptive step size policy which aims
to attain lowest complexity bounds. Nondifferentiability of objective function in
convex optimization significantly slows down the rate of convergence in subgradient
optimization compared to the smooth case, but there are different modern techniques
that allow to solve nonsmooth convex optimization problems faster than dictate
theoretical lower complexity bounds. In this work the particular attention is given to
Nesterov smoothing technique, Nesterov universal approach, and Legendre (saddle
point) representation approach. The new results on universal mirror prox algorithms
represent the original parts of the survey. To demonstrate application of nonsmooth
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convex optimization algorithms to solution of huge-scale extremal problems we
consider convex optimization problems with nonsmooth functional constraints and
propose two adaptive mirror descent methods. The first method is of primal-
dual variety and proved to be optimal in terms of lower oracle bounds for the
class of Lipschitz continuous convex objectives and constraints. The advantages of
application of this method to the sparse truss topology design problem are discussed
in essential details. The second method can be used for solution of convex and
quasiconvex optimization problems and it is optimal in terms of complexity bounds.
The conclusion part of the survey contains the important references that characterize
recent developments of nonsmooth convex optimization.

2.1 Introduction

We consider a finite-dimensional nondifferentiable convex optimization problem
(COP)

{
minimize f (x) = f� = f (x�)

subject to x ∈ E, x� ∈ X�,
(COP)

where E denotes a finite-dimensional space of primal variables and f : E → R is
a finite convex function, not necessarily differentiable.

One of the main goals in the development of nonsmooth optimization (NSO) is
to cope with high dimensional problems by decomposition, duality or Lagrangian
relaxation which greatly reduces the number of variables at the cost of worsening
differentiability of objective or constraints. Small or medium dimensionality of
resulting nonsmooth problems allows to use bundle-type algorithms to achieve
higher rates of convergence and obtain higher accuracy, which of course comes at
the cost of additional memory requirements, typically of the order of n2, where n is
the number of variables of the nonsmooth problem.

However, with the rapid development of more and more sophisticated models in
industry, economy, finance, et all such memory requirements are becoming too hard
to satisfy. It raised the interest in subgradient-based low-memory algorithms and
later developments in this area significantly improved over their early variants still
preserving O(n) memory requirements.

These algorithms are considered as blackbox methods which use subgradients
oracles only to provide information about objective function f in (COP). For a given
point x the subgradient oracle returns value of objective function at that point f (x)
and subgradient g ∈ ∂f (x). We do not make any assumption about the choice of g

from ∂f (x). As we are interested in computational issues related to solving (COP)
mainly we assume that this problem is solvable and has nonempty and bounded set
of solutions X�.
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This problem enjoys a considerable popularity due to its important theoretical
properties and numerous applications in large-scale structured optimization, discrete
optimization, exact penalization in constrained optimization, and others. NSO the-
ory made it possible to solve in an efficient way classical discrete min-max problems
[21], L1-approximation and others, at the same time opening new approaches in
bilevel, monotropic programming, two-stage stochastic optimization, to name a few.

To provide historical perspective this survey starts with the original result of
Shor (see [71] for the overview and references to earliest works) which opened
this field with the application to the classical n suppliers—m customers trans-
portation problem. By using Lagrange relaxation it is possible to switch from nm

flow variables to n + m dual variables but with nondifferentiable objective and
simple subgradient oracle. The pioneering work by Shor gave the first subgradient
algorithm for approximate solution of (COP) but without estimates of the rate of
convergence or, equivalently, complexity bounds.

The theoretical complexity bounds for smooth and nonsmooth convex and
quasiconvex optimization problems are briefly exposed in what follows to introduce
the relevant fundamentals of NSO. Special attention in this section is given to
the adaptive step size policy which aims to attain lowest complexity bounds.
Nondifferentiability of objective function in convex optimization greatly slows
down the rate of convergence in blackbox subgradient optimization compared to
the smooth case. However there are different modern techniques that allow to solve
certain nonsmooth convex optimization problems faster then dictate theoretical
lower complexity bounds. In this work the particular attention is given to Nesterov
smoothing technique, applicable to convex functions with special structure. The
equivalent problem was considered by Nemirovski and his mirror prox method
allowed to attain about the same complexity bound. We also considered Nesterov
universal approach, and Legendre (saddle point) representation approach.

New results on universal mirror prox algorithms represent the original parts of the
survey. To demonstrate application of nonsmooth convex optimization algorithms
to solution of huge-scale extremal problems we consider convex optimization
problems with nonsmooth functional constraints and propose two adaptive mirror
descent methods. The first method is of primal-dual variety and proved to be
optimal in terms of lower oracle bounds for the class of Lipschitz continuous
convex objectives and constraints. The advantages of application of this method
to the sparse truss topology design problem are discussed in essential details. The
second method can be used for solution of convex and quasiconvex optimization
problems and is optimal in terms of complexity bounds. The conclusion part of the
survey contains the important references that characterize recent developments of
nonsmooth convex optimization.
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2.2 Example Application: Transportation Problem and First
Subgradient Algorithm

From utilitarian point of view the development of nonsmooth (convex) optimization
started with the classical transportation problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
m∑

i=1

n∑

j=1
cij xij

subject to
m∑

i=1
xij = aj , j = 1, 2, . . . , n,

n∑

j=1
xij = bi, i = 1, 2, . . . ,m,

xij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

(2.1)

which is widely used in many applications.
By dualizing this problem with respect to balancing constrains we can con-

vert (2.1) into the dual problem of the kind

max Φ(u, v), (2.2)

where u = (ui , i = 1, 2, . . . ,m); v = (vj , j = 1, 2, . . . , n) are dual variables
associated with the balancing constraints in (2.1) and Φ(u, v) is the dual function
defined as

Φ(u, v) = inf
x≥0

L(x,u, v) (2.3)

and L(x,u, v) is the Lagrange function of the problem:

L(x,u, v) =
m∑

i=1

n∑

j=1

cij xij +
n∑

j=1

uj (

m∑

i=1

xij − aj )+
m∑

i=1

vi(

n∑

j=1

xij − bi).

By rearranging terms in this expression we can obtain the following expression for
the dual function

Φ(u, v) = −
n∑

j=1

ujaj −
m∑

i=1

vibi +
m∑

i=1

n∑

j=1

inf
x≥0

xij {cij + uj + vi}

= −
n∑

j=1

ujaj −
m∑

i=1

vibi − IndD(u, v), (2.4)
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where

IndD(u, v) =
{

0, when cij + ui + vj ≥ 0,
∞, otherwise

is the indicator function of the set D = {u, v : cij + uj + vi ≥ 0, i =
1, 2, . . . ,m; j = 1, 2, . . . , n} which is the feasible set of the dual problem.

Of course, by explicitely writing feasibility constraints for (2.2) we obtain the
linear dual transportation problem with a fewer variables but with much higher
number of constraints. This is bad news for textbook simplex method so many
specialized algorithms were developed, one of them was simple-minded method
of generalized gradient which started the development of NSO.

This method relies on subgradient of concave function Φ(u, v) which we can
transform into convex just by changing signs and replacing inf with sup

Φ(u, v) =
n∑

j=1

ujaj +
m∑

i=1

vibi +
m∑

i=1

n∑

j=1

sup
x≥0

xij {cij + uj + vi}

=
n∑

j=1

ujaj +
m∑

i=1

vibi + IndD(u, v),

and ask for its minimization.
According to convex analysis [64] the subdifferential ∂cΦ(u, v) exists for any

v,u ∈ int dom(IndD), and in this case just equals to the (constant) vector gL =
(gu,gv) = (a, b) of a linear objective in the interior of D. The situation becomes
more complicated when u, v happens to be at the boundary of D, the subdifferential
set ceases to be a singleton and becomes even unbounded, roughly speaking certain
linear manifolds are added to gL but we will not go into details here. The difficulty
is that if we mimic gradient method of the kind

uk+1 = uk − λguL = uk − λa,

vk+1 = vk − λgvL = vk − λb, k = 0, 1, . . .

with a certain step size λ > 0, we inevitably violate the dual feasibility constraints
as a, b > 0. Than the dual function (2.4) becomes undefined and correspondently
the subdifferential set becomes undefined as well.

There are at least two simple ways to overcome this difficulty. One is to
incorporate in the gradient method certain operations which restore feasibility and
the appropriate candidate for it is the orthogonal projection operation where one
can make use of the special structure of constraints and sparsity. However it will
still require computing projection operator of the kind BT (BBT )−1B for basis
matrices B with rather uncertain number of iterations and of matrices of the size
around (n+m)× (n+m). Neither computers speed nor memory sizes at that time
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where not up to demands to solve problems of n+m ≈ 104 which was required by
GOSPLAN!1

The second ingenious way was to take into account that if
∑n

j=1 aj =
∑m

i=1 bi =
V , which is required anyway for solvability of the transportation problem in a closed
form. The flow variables are uniformly bounded by V and the dual function can be
redefined as

ΦV (u, v) =
n∑

j=1

ujaj +
m∑

i=1

vibi −
m∑

i=1

n∑

j=1

max
0≤x≤V xij {cij + uj + vi}

=
n∑

j=1

ujaj +
m∑

i=1

vibi + PV (u, v)

where the penalty function PV (u, v) is easily computed by component-wise
maximization:

PV (u, v) =
m∑

i=1

n∑

j=1

max
xij∈[0,V ]

xij {cij + uj + vi}

=
m∑

i=1

n∑

j=1

V {cij + uj + vi}+

where {·}+ = max{0, ·}. Than the dual objective function becomes finite, the
optimization problem—unconstrained and we can use simple subgradient method
with very low requirements for memory and computations.

Actually even tighter bounds xij ≤ min(ai, bj ) can be imposed on the flow
variables which may be advantageous for computational reasons.

In both cases there is a fundamental problem of recovering optimal n × m

primal solution from n + m dual. This problem was studied by many authors and
recent advances in this area can be studied from the excellent paper by Nedić and
Ozdoglar [44]. Theoretically speaking, nonzero positive values of cij + u�j + v�i ,
where u�, v� are the exact optimal solutions of the dual problem (2.2) signal that the
corresponding optimal primal flow x�ij is equal to zero. Hopefully after excluding
these variables we obtain nondegenerate basis and can compute the remaining
variables by simple and efficient linear algebra, especially taking into account the
unimodularity of basis.

However the theoretical gap between zeros and nonzeros is exponentially small
even for modest length integer data therefore we need an accuracy unattainable
by modern 64–128 bits hardware. Also the real-life computations are always

1The highest planning authority in USSR responsible for resource allocation and production
planning.



2 Advances in Low-Memory Subgradient Optimization 25

accompanied by numerical noise and we face the hard choice in fact guessing which
dual constraints are active and which are not.

To connect the transportation problem with NSO notice that the penalty function
PV (u, v) is finite with the subdifferential ∂cPV (u, v) which can be represented as a
set of n×m matrices

gij =
⎧
⎨

⎩

V, if cij + uj + vi > 0,
000, if cij + uj + vi < 0,
cone(000, V ), if cij + uj + vi = 0,

so the subdifferential set is a convex hull of up to 2(n+m) extreme points—enormous
number even for a modest size transportation problem. Nevertheless it is easy to
get at least single member of subdifferential and consider the simplest version of
subgradient method:

xk+1 = xk − λḡk, k = 0, 1, . . .

where x0 is a given starting point, λ > 0—fixed step size and ḡk = gk/‖gk‖ is a
normalized subgradient gk ∈ ∂f (xk). Of course we assume that gk �= 000, otherwise,
xk is already a solution.

Of course, there is no hope of classical convergence result such that xk → x� ∈
X�, but the remarkable theorem of Shor [68] establishes that this simplest algorithm
determines at least an approximate solution. As a major step in the development
of different algorithmic ideas we can start with the subgradient algorithm due to
Shor (see [71] for the overview and references to earliest works). Of course, there
is no hope of classical convergence result such that xk → x� ∈ X�, but the
remarkable theorem of Shor [68] establishes that this very simple algorithm provides
an approximate solution of (COP) at least theoretically.

Theorem 2.1 Let f is a finite convex function with a subdifferential ∂f and the
sequence {xk} is obtained by the recursive rule

xk+1 = xk − λgkν, k = 0, 1, . . .

with λ > 0 and gkν = gk/‖gk‖,gk ∈ ∂f (xk), gk �= 000 is a normalized subgradient
at the point xk . Then for any ε > 0 there is an infinite set Zε ⊂ Z such that for any
k ∈ Zε

f (x̃k) = f (xk) and dist(x̃k,X�) ≤ λ(1+ ε)/2.

The statement of the theorem is illustrated on Fig. 2.1 together with the idea of the
proof. The detailed proof of the theorem goes like following: Let x� ∈ X� and
estimate

‖xk+1 − x�‖2 = ‖xk − x� − λgkν‖2 = ‖xk − x�‖2 + λ2 − 2λḡk(xk − x�).
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Fig. 2.1 The statement and
the idea of the proof of Shor
theorem ḡk

xk{x : f(
x)

= f(x
k )}

x�

δk

μk

x̃k

The last term in fact equals

min
z∈Hk

‖x� − z‖2 = ‖x� − zk‖2 = δk,

where Hk = {z : zgkν = xkgkν} is a hyperplane, orthogonal to gkν and passing
through the point xk , so

‖xk+1 − x�‖2 = ‖xk − x�‖2 + λ2 − 2λδk, k = 0, 1, 2, . . .

If λ2 − 2λδk ≤ −λ2ε for any k ∈ Z then

‖xk+1 − x�‖2 ≤ ‖xk − x�‖2 − λ2ε, k = 0, 1, 2, . . . ,

therefore

0 ≤ ‖xk+1 − x�‖2 ≤ ‖x0 − x�‖2 ≤ −kλ2ε→ −∞ (2.5)

when k→∞. This contradiction proves that there is k0 such that

λ2 − 2λδk0 > −λ2ε or δk0 < λ(1 + ε)/2.

To complete the proof notice that by convexity f (zk0) ≥ f (xk0) and therefore

min
z:f (z)=f (xk0 )

‖x� − z‖2 = ‖x� − z̄k0‖2

= min
z:f (z)≥f (xk0 )

‖x� − z‖2

≤ ‖x� − zk0‖2 = δk0 .

By setting x̃0 = zk0 we obtain ‖x� − x̃0‖2 < λ(1+ ε)/2.
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By replacing x0 in (2.5) by x̃0 and repeating the reasoning above we obtain x̃1

such that ‖x�− x̃1‖2 < λ(1+ ε)/2, then in the same manner x̃2, x̃3 and so on with
‖x� − x̃k‖2 < λ(1 + ε)/2, k = 2, 3, . . . which complete the proof. ��

2.3 Complexity Results for Convex Optimization

At this section we describe the complexity results for nonsmooth convex opti-
mization problems. Most of the results mentioned below can be found in books
[9, 13, 48, 58, 63]. We start with the “small dimensional problems”, when

N ≥ n = dim x,

where N is a number of oracle calls (number of subgradient calculations or/and
calculations of separation hyperplane to some simple set at a given point).

Let’s consider the convex optimization problem

{
minimize f (x)

subject to x ∈ Q, (2.6)

where Q is a compact and simple set (it’s significant here!). Based on at least N
subgradient calculations (in general, oracle calls) we would like to find such a point
xN that

f
(
xN

)
− f∗ ≤ ε,

where f∗ = f (x∗) is an optimal value of function in (2.6), x∗ is the solution
of (2.6). The lower and the upper bounds for the oracle complexity is (up to a
multiplier, which has logarithmic dependence on some characteristic of the set Q)

N ∼ n ln
(
Δf

/
ε
)
,

where

Δf = sup
x,y∈Q

{f (y)− f (x)} .

The center of gravity method [43, 60] converges according to this estimate. The
center of gravity method for n = 1 is a simple binary search method [12], but
for n > 1 this method is hard to implement. The complexity of iteration is too
high, because we require the center-of-gravity oracle [13]. Well known ellipsoid
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method [48, 69] requires2 N = Õ
(
n2 ln

(
Δf

/
ε
))

oracle calls and O
(
n2

)
iteration

complexity. In [13, 76] a special version of cutting plane method was proposed.
This method (Vayda’s method) requires N = Õ

(
n ln

(
Δf

/
ε
))

oracle calls and has

iteration complexity Õ
(
n2.37

)
. In the work [42] there proposed a method with N =

Õ
(
n ln

(
Δf

/
ε
))

oracle calls and iteration complexity Õ
(
n2

)
. Unfortunately, for

the moment it’s not obvious that this method is very practical one due to the large
log-factors in Õ.

Based on ellipsoid method in the late 70th Khachiyan showed [38] that LP is in
P in byte complexity. Let us shortly explain the idea. The main question is whether
Ax ≤ b is solvable or not, where n = dim x, m = dim b and all elements of A
and b are integers. We would like also to find one of the exact solutions x∗. This
problem up to a logarithmic factor in complexity is equivalent to the problem to find
the exact solution of LP problem

{
minimize 〈c, x〉
subject to Ax ≤ b

with integer A, b and c. We consider only inequality constraints as it is known that
to find the exact solution of Ax = b one can use polynomial Gauss elimination
algorithm with O

(
n3

)
arithmetic operations (a.o.) complexity.

Let us introduce

Λ =
m,n∑

i,j=1,1

log2

∣
∣aij

∣
∣+

m∑

i=1

log2 |bi | + log2 (mn)+ 1.

If Ax ≤ b is compatible, then there exists such x∗ that ‖x∗‖∞ ≤ 2Λ, Ax∗ ≤ b

otherwise

min
x
‖(Ax − b)+‖∞ ≥ 2−(Λ−1).

Thus, the question of compatibility of Ax ≤ b is equivalent to the problem of
finding minimum of the following nonsmooth convex optimization problem

{
minimize ‖(Ax − b)+‖∞
subject to ‖x∗‖∞ ≤ 2Λ.

The approach of [38] is to apply ellipsoid method for this problem with ε = 2−Λ.
From the complexity of this method, it follows that in O (nΛ)-bit arithmetic with
Õ

(
mn+ n2

)
cost of PC memory one can find x∗ (if it exists) in Õ

(
n3

(
n2 +m

)
Λ

)

a.o.

2Here and below for all (large) n: Õ(g(n)) ≤ C · (ln n)rg(n) with some constants C > 0 and
r ≥ 0. Typically, r = 1. If r = 0, then Õ(·) = O(·).
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Table 2.1 Optimal estimates for the number of oracle calls

N ≤ n |f (y)− f (x)| ‖∇f (y)−∇f (x)‖∗
≤ M ‖y− x‖ ≤ L ‖y− x‖

f (x) convex O
(
M2R2

ε2

)
O

(√
LR2

ε

)

f (x) is μ− strongly

convex in ‖·‖-norm Õ
(
M2

με

)
Õ

(√
L
μ

⌈
ln

(
μR2

ε

)⌉)
(∀ N)

Note, that in the ideal arithmetic with real numbers it is still an open question
[10] whether it is possible to find the exact solution of LP an problem (with the data
given by real numbers) in polynomial time in the ideal arithmetic (π · e—costs
O (1)).

Now let us consider “large dimensional problems”

N ≤ n = dim x.

Table 2.1 describes (for more details see [9, 13, 58]) optimal estimates for the
number of oracle calls for the convex optimization problem (2.6) in the case when
N ≤ n. Now Q is not necessarily compact set.

Here R is a “distance” (up to a ln n-factor) between starting point and the nearest
solution

R = Õ
(∥
∥
∥x0 − x∗

∥
∥
∥
)
.

Let’s describe optimal method in the most simple case: Q = R
n, ‖·‖ = ‖·‖2 [52,

63]. The main iterative process is (for simplicity we’ll denote arbitrary element of
∂f (x) as ∇f (x))

xk+1= xk − h∇f
(
xk

)
. (2.7)

Assume that under x ∈ B̄
(
x∗;

√
2R

)

‖∇f (x)‖ ≤M, (2.8)

where R = ∥∥x0 − x∗
∥∥.

Hence, from (2.7), (2.8) we have

∥
∥
∥x − xk+1

∥
∥
∥

2 =
∥
∥
∥x − xk + h∇f

(
xk

)∥
∥
∥

2

=
∥
∥
∥x − xk

∥
∥
∥

2 + 2h
〈
∇f

(
xk

)
, x − xk

〉
+ h2

∥
∥
∥∇f

(
xk

)∥
∥
∥

2

≤
∥
∥∥x − xk

∥
∥∥

2 + 2h
〈
∇f

(
xk

)
, x − xk

〉
+ h2M2. (2.9)
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Here we choose x = x∗ (if x∗ isn’t unique, we choose the nearest x∗ to x0)

f

(
1

N

N−1∑

k=0

xk

)

− f∗ ≤ 1

N

N−1∑

k=0

f
(
xk

)
− f (x∗)

≤ 1

N

N−1∑

k=0

〈
∇f

(
xk

)
, xk − x∗

〉

≤ 1

2hN

N−1∑

k=0

{∥
∥
∥x∗ − xk

∥
∥
∥

2 −
∥
∥
∥x∗ − xk+1

∥
∥
∥

2
}
+ hM2

2

= 1

2hN

(∥
∥
∥x∗ − x0

∥
∥
∥

2 −
∥
∥
∥x∗ − xN

∥
∥
∥

2
)
+ hM2

2
.

If

h = R

M
√
N
, x̄N = 1

N

N−1∑

k=0

xk, (2.10)

then

f
(
x̄N

)
− f∗ ≤ MR√

N
. (2.11)

Note that the precise lower bound for fixed steps first-order methods for the class of
convex optimization problems with (2.8) [23]

f
(
xN

)
− f∗ ≥ MR√

N + 1
.

Inequality (2.11) means that (see also Table 2.1)

N = M2R2

ε2 , h = ε

M2 .

So, one can mention that if we will use in (2.7)

xk+1= xk − hk∇f
(
xk

)
, hk = ε

∥
∥∇f (

xk
)∥∥2 , (2.12)

the result (2.11) holds with [52]

x̄N = 1
∑N−1

k=0 hk

N−1∑

k=0

hkx
k.
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If we put in (2.12),

hk = R
∥
∥∇f (

xk
)∥∥√N ,

like in (2.10), the result similar to (2.11) also holds

min
k=0,...,N−1

f
(
xk

)
− f∗ ≤ MR√

N

not only for the convex functions, but also for quasiconvex functions [50, 62]:

f (αx + (1− α)y) ≤ max {f (x), f (y)} for all x, y ∈ Q, α ∈ [0, 1].

Note that

0 ≤ 1

2hk

(∥
∥
∥x∗ − x0

∥
∥
∥

2 −
∥
∥
∥x∗ − xk

∥
∥
∥

2
)
+ hM2

2
.

Hence, for all k = 0, . . . , N ,

∥
∥
∥x∗ − xk

∥
∥
∥

2 ≤
∥
∥
∥x∗ − x0

∥
∥
∥

2 + h2M2k ≤ 2
∥
∥
∥x∗ − x0

∥
∥
∥

2
,

therefore
∥
∥
∥xk − x∗

∥
∥
∥ ≤

√
2
∥
∥
∥x0 − x∗

∥
∥
∥ , k = 0, . . . , N. (2.13)

The inequality (2.13) justifies that we need the assumption (2.8) holds only with

x ∈ B̄
(
x∗;

√
2R

)
.

For the general (constrained) case (2.6) we introduce a norm ‖·‖ and some prox-
function d (x) ≥ 0, which is continuous and 1-strongly convex with respect to ‖·‖,
i.e. d(y)− d(x)−〈d(x), y − x〉 ≥ 1

2‖x − y‖2, for all x, y ∈ Q. We also introduce
Bregman’s divergence [9]

V [x](y) = d (y)− d (x)− 〈∇d (x) , y − x〉 .

We set R2 = V [x0](x∗), where x∗—is solution of (2.6) (if x∗ isn’t unique then
we assume that x∗ is minimized V [x0](x∗). The natural generalization of iteration
process (2.7) is the mirror descent algorithm [9, 46] which iterates as

xk+1 = Mirrxk
(
h∇f

(
xk

))
,
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where

Mirrxk (v) = argmin
x∈Q

{〈
v, x − xk

〉
+ V [xk] (x)

}
.

For this iteration process instead of (2.9) we have

2V [xk+1] (x) ≤ 2V [xk] (x)+ 2h
〈
∇f

(
xk

)
, x − xk

〉
+ h2M2,

where ‖∇f (x)‖∗ ≤ M for all x : V [x](x∗) ≤ 2V [x0](x∗)= 2R2, see also
Sect. 2.5.

Analogues of formulas (2.10), (2.11), and (2.13) are also valid

f
(
x̄N

)
− f∗ ≤

√
2MR√
N

,

where

x̄N = 1

N

N−1∑

k=0

xk, h = ε

M2

and
∥∥
∥xk − x∗

∥∥
∥ ≤ 2R, k = 0, . . . , N.

In [9] authors discuss how to choose d(x) for different simple convex sets Q. One
of these examples (unit simplex) will be considered below. Note, that in all these
examples one can guarantee that [9]:

R ≤ C
√

lnn ·
∥
∥
∥x∗ − x0

∥
∥
∥ .

Note, that if Q = R
n,‖·‖ = ‖·‖ then d(x) = 1

2‖x‖2, V [x](y) = 1
2‖y − x‖2,

xk+1 = Mirrxk
(
h∇f

(
xk

))

= argmin
x∈Rn

{
h
〈
∇f

(
xk

)
, x − xk

〉
+ 1

2
‖x − xk‖2

}

= xk − h∇f
(
xk

)
,

that corresponds to the standard gradient-type iteration process (2.7).
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Example 2.1 (Unit Simplex) We have

Q = Sn (1) =
{

x ∈ R
n+ :

n∑

i=1

xi = 1

}

, ‖∇f (x)‖∞ ≤M∞, x ∈ Q,

‖·‖ = ‖·‖1, d (x) = ln n+
n∑

i=1

xi ln xi , h = M−1∞
√

2 lnn
/
N,

x0
i = 1

/
n, i = 1, . . . , n.

For k = 0, . . . , N − 1, i = 1, . . . , n

xk+1
i =

exp

(
−h

k∑

r=1
∇if (xr )

)

n∑

l=1
exp

(
−h

k∑

r=1
∇lf (xr )

) = xki exp
(−h∇if

(
xk

))

n∑

l=1
xkl exp

(−h∇lf
(
xk

)) .

The main result here is

f
(
x̄N

)
− f∗ ≤ M∞

√
2 lnn

N
, x̄N = 1

N

N−1∑

k=0

xk.

Note, that if we use ‖·‖2-norm and d (x) = 1
2

∥
∥x − x0

∥
∥2

here, we will have
higher iteration complexity (2-norm projections on unit simplex) and

f
(
x̄N

)
− f∗ ≤ M2√

N
, ‖∇f (x)‖ ≤ M2, x ∈ Q.

Since typically M2 = O
(√

nM∞
)
, it is worth to use ‖·‖1-norm.

Assume now that f (x) in (2.6) is additionally μ-strongly convex in ‖·‖2 norm:

f (y) ≥ f (x)+ 〈∇f (x), y − x〉 + μ

2
‖y − x‖2 for all x, y ∈ Q.

Let

xk+1 = Mirrxk
(
hk∇f

(
xk

))

= argmin
x∈Q

{
hk

〈
∇f

(
xk

)
, x − xk

〉
+ 1

2

∥
∥
∥x − xk

∥
∥
∥

2
}
,
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where

hk = 2

μ · (k + 1)
, d (x) = 1

2

∥∥
∥x − x0

∥∥
∥

2
, ‖∇f (x)‖ ≤M, x ∈ Q.

Then [66]

f

(
N∑

k=1

2k

k (k + 1)
xk

)

− f∗ ≤ 2M2

μ · (k + 1)
.

Hence (see also Table 2.1),

N  2M2

με
.

This bound is also unimprovable up to a constant factor [48, 58].

2.4 Looking into the Blackbox

In this section we consider how the special structure of objective function can be

used to solve NSO problems with the convergence rate O
(

1
k

)
, which is faster than

the lower bound O
(

1√
k

)
for general class of nonsmooth convex problems [48].

Nevertheless, there is no contradiction as additional structure is used and we are
looking inside the blackbox.

2.4.1 Nesterov Smoothing

In this subsection, following [51], we consider the problem

⎧
⎨

⎩

minimize f (x) = h(x)+ max
u∈Q2⊂E2

{〈Ax,u〉 − φ(u)}
subject to x ∈ Q1 ⊂ E1,

(2.14)

where A : E1 → E∗2 is a linear operator, φ(u) is a continuous convex function
on Q2, Q1,Q2 are convex compacts, h is convex function with Lh-Lipschitz
continuous gradient.

Let us consider an example of f (x) = ‖Ax − b‖∞ with A ∈ R
m×n. Then

f (x) = max
u∈Rm

{〈u, Ax − b〉 : ‖u‖1 ≤ 1} ,

h = 0, E2 = R
m, φ(u) = 〈u, b〉 and Q2 is the ball in L1-norm.
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x

fμ(x)

f(x)

Fig. 2.2 Function fμ(x) is a smooth approximation to nonsmooth function f (x)

The main idea of Nesterov is to add regularization inside the definition of f
in (2.14). More precisely, a prox-function d2(u) (see definition in Sect. 2.3) is
introduced for the set Q2 and a smoothed counterpart fμ(x) for f (See Fig. 2.2)
is defined as

fμ(x) = h(x)+ max
u∈Q2

{〈Ax,u〉 − φ(u)− μd2(u)}

and uμ(x) is the optimal solution of this maximization problem.

Theorem 2.2 ([51]) The function fμ(x) is well defined, convex and continuously
differentiable at any x ∈ E1 with ∇fμ(x) = ∇h(x)+A∗uμ(x). Moreover, ∇fμ(x)
is Lipschitz continuous with constant

Lμ = Lh +
‖A‖2

1,2

μ
.

Here the adjoint operator A∗ is defined by equality 〈Ax,u〉 = 〈A∗u, x〉, x ∈
E1,u ∈ E2 and the norm of the operator ‖A‖1,2 is defined by ‖A‖1,2 =
maxx,u{〈Ax,u〉 : ‖x‖E1 = 1, ‖u‖E2 = 1}.

Since Q2 is bounded, fμ(x) is a uniform approximation for the function f ,
namely, for all x ∈ Q1,

fμ(x) ≤ f (x) ≤ fμ(x)+ μD2, (2.15)

where D2 = max{d2(u) : u ∈ Q2}.
Then, the idea is to choose μ sufficiently small and apply accelerated gradient

method to minimize fμ(x) onQ1. We use accelerated gradient method from [29, 30]
which is different from the original method of [51].
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Algorithm 2.1: Accelerated gradient method
Data: Objective f (x), feasible set Q, Lipschitz constant L of the ∇f (x),

starting point x0 ∈ Q, prox-setup: d(x)—1-strongly convex w.r.t.
‖ · ‖E1 , V [z](x) := d(x)− d(z)− 〈∇d(z), x − z〉, parameter
εL ∈ (0, 1/2).

Result: The point yk+1.
1 Set k = 0, C0 = α0 = 0, y0 = z0 = x0.
2 for k = 0, 1, . . . do
3 Find αk+1 as the largest root of the equation

Ck+1 := Ck + αk+1 = Lα2
k+1. (2.16)

4 Calculate

xk+1 = αk+1z
k + Cky

k

Ck+1
; (2.17)

5

zk+1 = argmin
x∈Q

{V [zk](x)+ αk+1(f (x
k+1)+ 〈∇f (xk+1), x − xk+1〉)};

(2.18)
6

yk+1 = αk+1z
k+1 + Cky

k

Ck+1
. (2.19)

7 Set k = k + 1.

Theorem 2.3 ([29, 30]) Let the sequences {xk, yk, zk, αk, Ck}, k ≥ 0 be generated
by Algorithm 2.1. Then, for all k ≥ 0, it holds that

f (yk)− f ∗ ≤ 4LV [z0](x�)
(k + 1)2

. (2.20)

Following the same steps as in the proof of Theorem 3 in [51], we obtain

Theorem 2.4 Let Algorithm 2.1 be applied to minimize fμ(x) on Q1 with μ =
2‖A‖1,2
N+1

√
D1
D2

, where D1 = max{d1(x) : x ∈ Q1}. Then, after N iterations, we have

0 ≤ f (yN)− f� ≤ 4‖A‖1,2
√
D1D2

N + 1
+ 4LhD1

(N + 1)2
. (2.21)
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Proof Applying Theorem 2.3 to fμ, and using (2.15), we obtain

0 ≤ f (yN)− f�

≤ fμ(y
N)+ μD2 − fμ(x

�
μ)

≤ μD2 + 4LμD1

(N + 1)2
+ 4LhD1

(N + 1)2

= μD2 +
4‖A‖2

1,2D1

μ(N + 1)2
+ 4LhD1

(N + 1)2
.

Substituting the value of μ from the theorem statement, we finish the proof. ��
A generalization of the smoothing technique for the case of noncompact sets

Q1,Q2, which is especially interesting when dealing with problems dual to prob-
lems with linear constraints, can be found in [72]. Ubiquitous entropic regularization
of optimal transport [18] can be seen as a particular case of the application of
smoothing technique, especially in the context of Wasserstein barycenters [19, 31,
75].

2.4.2 Nemirovski Mirror Prox

In his paper [45], Nemirovski considers the problem (2.14) in the following form

⎧
⎨

⎩

minimize f (x) = h(x)+ max
u∈Q2⊂E2

{〈Ax,u〉 + 〈b,u〉}
subject to x ∈ Q1 ⊂ E1

(2.22)

pointing to the fact that this problem is as general as (2.14). Indeed, the change of
variables u ← (u, t) and the feasible set Q2 ← {(u, t) : minu′∈Q2 φ(u

′) ≤ t ≤
φ(u)} allows to make φ linear. His idea is to consider the problem (2.22) directly as
a convex-concave saddle point problem and associated weak variational inequality
(VI).

Find z� = (x�,u�) ∈ Q1 ×Q2 (2.23)

such that 〈Φ(z), z� − z〉 ≤ 0 for all z ∈ Q1 ×Q2,

where the operator

Φ(z) =
(∇h(x)+ A∗u

−Ax − b

)
(2.24)
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is monotone, i.e. 〈Φ(z1) − Φ(z2), z1 − z2〉 ≥ 0, and Lipschitz continuous, i.e.
‖Φ(z1)−Φ(z2)‖∗ ≤ L‖z1− z2‖. With the appropriate choice of norm on E1×E2
and prox-function for Q1 × Q2, see [45, Section 5], the Lipschitz constant for Φ
can be estimated as L = 2‖A‖1,2

√
D1D2 + LhD1.

Algorithm 2.2: Mirror prox
Data: General VI on a set Q ⊂ E with operator Φ(z), Lipschitz constant L of

Φ(z), prox-setup: d(z), V [z](w).
Result: ŵk = 1

k

∑k−1
i=0 wi .

1 Set k = 0, z0 = argminz∈Q d(z).
2 for k = 0, 1, . . . do
3 Calculate

wk = argmin
z∈Q

{
〈Φ(zk), z〉 + LV [zk](z)

}
; (2.25)

4

zk+1 = argmin
z∈Q

{
〈Φ(wk), z〉 + LV [zk](z)

}
. (2.26)

5 Set k = k + 1.

Theorem 2.5 ([45]) Assume that Φ(z) is monotone and LLC. Then, for any k ≥ 1
and any u ∈ Q,

max
z∈Q 〈Φ(z), ŵ

k − z〉 ≤ L

k
max
z∈Q V [z0](z). (2.27)

Moreover, if the VI is associated with a convex-concave saddle point problem, i.e.

• E = E1 × E2;
• Q = Q1 ×Q2 with convex compact sets Q1 ⊂ E1, Q2 ⊂ E2;

• Φ(z) = Φ(x,u) =
( ∇xf (x,u)

−∇uf (x,u)

)
for a continuously differentiable function

f (x,u) which is convex in x ∈ Q1 and concave in u ∈ Q2;

then

[max
u∈Q2

f (̂xk,u)− min
x∈Q1

max
u∈Q2

f (x,u)] + [min
x∈Q1

max
u∈Q2

f (x,u)− min
x∈Q1

f (x, ûk)]

≤ L

k
max
z∈Q V [z0](z). (2.28)

Choosing appropriately the norm in the space E1 × E2 and applying the mirror
prox algorithm to solve the problem (2.22) as a saddle point problem, we obtain that
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the saddle point error in the left hand side of (2.28) decays as 2‖A‖1,2
√
D1D2+LhD1
k

.
This is slightly worse than the rate in (2.20) since the accelerated gradient method
allows the faster decay for the smooth part h(x). An accelerated mirror prox method
with the same rate as in (2.20) can be found in [16].

2.5 NSO in Large Dimensions

The optimization of nonsmooth functionals with constraints attracts widespread
interest in large-scale optimization and its applications [8, 59]. Subgradient meth-
ods for NSO have a long history starting with the method for deterministic
unconstrained problems and Euclidean setting in [70] and the generalization for
constrained problems in [61], where the idea of steps switching between the
direction of subgradient of the objective and the direction of subgradient of the
constraint was suggested. A non-Euclidean extension, usually referred to as the
mirror descent, originated in [46, 48] and was later analyzed in [5]. An extension for
constrained problems was proposed in [48], see also recent version in [7]. To prove
faster convergence rate of the mirror descent for strongly convex objective in an
unconstrained case, the restart technique [47–49] was used in [35]. Usually, the step
size and stopping rule for the mirror descent requires to know the Lipschitz constant
of the objective function and constraint, if any. Adaptive step sizes, which do not
require this information, are considered in [46] for problems without inequality
constraints, and in [7] for constrained problems.

Formally speaking, we consider the following convex constrained minimization
problem

⎧
⎪⎪⎨

⎪⎪⎩

minimize f (x)

subject to q(x) ≤ 0,

x ∈ X ⊂ E,

(2.29)

where X is a convex closed subset of a finite-dimensional real vector space E, f :
X→ R, q : E→ R are convex functions.

We assume q to be a nonsmooth Lipschitz continuous function and the prob-
lem (2.3) to be regular. The last means that there exists a point x̄ in relative interior
of the set X, such that q(x̄) < 0.

Note that, despite the problem (2.29) contains only one inequality constraint,
considered algorithms allow to solve more general problems with a number of
constraints given as {qi(x) ≤ 0, i = 1, . . . ,m}. The reason is that these constraints
can be aggregated and represented as an equivalent constraint given by {q(x) ≤ 0},
where q(x) = maxi=1,...,m qi(x).

We consider two adaptive mirror descent methods [4] for the problem (2.29).

Both considered methods have complexity O
(

1
ε2

)
and optimal.
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We consider algorithms, which are based on the mirror descent method. Thus,
we start with the description of proximal setup and basic properties of the mirror
descent step. Let E be a finite-dimensional real vector space and E∗ be its dual. We
denote the value of a linear function q ∈ E∗ at x ∈ E by 〈q, x〉. Let ‖ · ‖E be some
norm on E, ‖ · ‖E,∗ be its dual, defined by ‖q‖E,∗ = max

x

{〈q, x〉, ‖x‖E ≤ 1
}
. We

use ∇f (x) to denote any subgradient of a function f at a point x ∈ domf .
Given a vector x ∈ X0, and a vector p ∈ E∗, the mirror descent step is defined

as

x+ = Mirr[x](p) : = argmin
z∈X

{〈p, z〉 + V [x](z)}

= argmin
z∈X

{〈p, z〉 + d(z)− 〈∇d(x), z〉}. (2.30)

We make the simplicity assumption, which means that Mirr[x](p) is easily com-
putable.

The following lemma [9] describes the main property of the mirror descent step.

Lemma 2.1 Let f be some convex function over a set X, h > 0 be a step size,
x ∈ X0. Let the point x+ be defined by x+ = Mirr[x](h(∇f (x))). Then, for any
z ∈ X,

h
(
f (x)− f (z)

) ≤ h〈∇f (x), x − z〉

≤ h2

2
‖∇f (x)‖2 + V [x](z)− V [x+](z). (2.31)

The following analog of Lemma 2.1 for δ-subgradient ∇δf holds.

Lemma 2.2 Let f be some convex function over a set X, h > 0 be a step size,
x ∈ X0. Let the point x+ be defined by x+ = Mirr[x](h · (∇δf (x))). Then, for any
z ∈ X,

h · (f (x)− f (z)
) ≤ h · 〈∇δf (x), x − z〉 + h · δ

≤ h2

2
‖∇δf (x)‖ + h · δ + V [x](z)− V [x+](z). (2.32)

We consider the problem (2.29) in two different settings, namely, nonsmooth
Lipschitz continuous objective function f and general objective function f , which
is not necessarily Lipschitz continuous, e.g. a quadratic function. In both cases, we
assume that q is nonsmooth and Lipschitz continuous

|q(x)− q(y)| ≤Mq‖x − y‖E, x, y ∈ X. (2.33)

Let x∗ be a solution to (2.29). We say that a point x̃ ∈ X is an ε-solution to (2.29) if

f (x̃)− f (x∗) ≤ ε, q(x̃) ≤ ε. (2.34)
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All methods considered in this section (Algorithms 2.3 and 2.4) are applicable in
the case of using δ-subgradient instead of usual subgradient. For this case we can
get an ε-solution x̃ ∈ X:

f (x̃)− f (x∗) ≤ ε +O(δ), q(x̃) ≤ ε +O(δ). (2.35)

The methods we describe are based on the of Polyak’s switching subgradient method
[61] for constrained convex problems, also analyzed in [53], and the mirror descent
method originated in [48]; see also [46].

2.5.1 Convex Nonsmooth Objective Function

In this subsection, we assume that f is a nonsmooth Lipschitz continuous function

|f (x)− f (y)| ≤Mf ‖x − y‖E, x, y ∈ X. (2.36)

Let x∗ be a solution to (2.29) and assume that we know a constant Θ0 > 0 such that

d(x∗) ≤ Θ2
0 . (2.37)

For example, if X is a compact set, one can choose Θ2
0 = maxx∈X d(x).

Algorithm 2.3: Adaptive mirror descent (nonsmooth objective)

Data: Accuracy ε > 0, Θ0 s.t. d(x∗) ≤ Θ2
0 .

Result: x̄k :=
∑

i∈I hixi∑
i∈I hi

.

1 x0 = argminx∈X d(x).
2 Initialize the set I as empty set.
3 Set k = 0.

4 while
∑k−1

j=0
1
M2
j

<
2Θ2

0
ε2 do

5 if q(xk) ≤ ε, then
6 Mk = ‖∇f (xk)‖E,∗;
7 hk = ε

M2
k

;

8 xk+1 = Mirr[xk](hk∇f (xk)) (“productive step”);
9 Add k to I .

10 else
11 Mk = ‖∇q(xk)‖E,∗;
12 hk = ε

M2
k

;

13 xk+1 = Mirr[xk](hk∇q(xk)) (“non-productive step”).

14 Set k = k + 1.
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Theorem 2.6 Assume that inequalities (2.33) and (2.36) hold and a known constant
Θ0 > 0 is such that d(x∗) ≤ Θ2

0 . Then, Algorithm 2.3 stops after not more than

k =
⌈

2 max{M2
f ,M

2
q }Θ2

0

ε2

⌉

(2.38)

iterations and x̄k is an ε-solution to (2.29) in the sense of (2.34).

Let us now show that Algorithm 2.3 allows to reconstruct an approximate
solution to the problem, which is dual to (2.29). We consider a special type of
problem (2.29) with q given by

q(x) = max
i∈{1,...,m}

{
qi(x)

}
. (2.39)

Then, the dual problem to (2.29) is

{
maximize ϕ(λ)

subject to λi ≥ 0, i = 1, . . . ,m,
(2.40)

where ϕ(λ) = min
x∈X

{
f (x)+∑m

i=1 λiqi(x)
}

and λi ≥ 0, i = 1, . . . ,m are Lagrange

multipliers.
We slightly modify the assumption (2.37) and assume that the set X is bounded

and that we know a constant Θ0 > 0 such that

max
x∈X d(x) ≤ Θ2

0 .

As before, denote [k] = {j ∈ {0, . . . , k − 1}}, J = [k] \ I . Let j ∈ J .
Then a subgradient of q(x) is used to make the j -th step of Algorithm 2.3.
To find this subgradient, it is natural to find an active constraint i ∈ 1, . . . ,m
such that q(xj ) = qi(x

j ) and use ∇q(xj ) = ∇qi(xj ) to make a step. Denote
i(j) ∈ 1, . . . ,m the number of active constraint, whose subgradient is used to make
a non-productive step at iteration j ∈ J . In other words, q(xj ) = qi(j)(x

j ) and
∇q(xj ) = ∇qi(j)(xj ). We define an approximate dual solution on a step k ≥ 0 as

λ̄ki =
1

∑

j∈I
hj

∑

j∈J,i(j)=i
hj , i ∈ {1, . . . ,m}, (2.41)

and modify Algorithm 2.3 to return a pair (x̄k, λ̄
k
).

Theorem 2.7 Assume that the set X is bounded, the inequalities (2.33) and (2.36)
hold and a known constant Θ0 > 0 is such that d(x∗) ≤ Θ2

0 . Then, modified
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Algorithm 2.3 stops after not more than

k =
⌈

2 max{M2
f ,M

2
q }Θ2

0

ε2

⌉

iterations and the pair (x̄k, λ̄
k
) returned by this algorithm satisfies

f (x̄k)− ϕ(λ̄
k
) ≤ ε, q(x̄k) ≤ ε. (2.42)

Now we consider an interesting example of huge-scale problem [55, 59] with a
sparse structure. We would like to illustrate two important ideas. Firstly, consider-
ation of the dual problem can simplify the solution, if it is possible to reconstruct
the solution of the primal problem by solving the dual problem. Secondly, for a
special sparse nonsmooth piecewise linear functions we suggest a very efficient
implementation of one subgradient iteration [55]. In such cases simple subgradient
methods (for example, Algorithm 2.3) can be useful due to the relatively inexpensive
cost of iterations.

Recall (see e.g. [59]) that the truss topology design problem consists in finding
the best mechanical structure resisting to an external force with an upper bound for
the total weight of construction. Its mathematical formulation looks as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize 〈f , z〉
subject to A(w)z = f ,

〈e,w〉 = T ,

w ∈ Rm+,

(2.43)

where f is a vector of external forces, z ∈ R
2n is a vector of virtual displacements

of n nodes in R
2, w is a vector of m bars, and T is the total weight of construction

(e = (1, 1, ..., 1)). The compliance matrix A(w) has the following form:

A(w) =
m∑

i=1

wiaia
T
i ,

where ai ∈ R
2n are the vectors describing the interactions of two nodes connected

by an arc. These vectors are very sparse: for 2D-model they have at most 4 nonzero
elements.

Let us rewrite the problem (2.43) as a linear programming problem.

min
z,w
{〈f , z〉 : A(w)z = f , w ≥ 0, 〈e,w〉 = T }

= min
w
{〈f , A−1(w)f 〉 : w ∈ "(T ) = {w ≥ 0, 〈e,w〉 = T }}

= min
w∈"(T )max

z
{2〈f , z〉 − 〈A(w)z, z〉}
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≥ max
z

min
w∈"(T ){2〈f , z〉 − 〈A(w)z, z〉} (2.44)

= max
z
{2〈f , z〉 − T max

1≤i≤m〈ai , z〉
2}

= max
λ,y
{2λ〈f , y〉 − λ2T max

1≤i≤m〈ai , y〉
2}

= max
y

〈f , y〉2
T max

1≤i≤m〈ai , y〉
2

= 1

T

(
max

y
{〈f , y〉 : max

1≤i≤m
|〈ai , y〉| ≤ 1}

)2

.

Note that for the inequality in the forth line we do not need any assumption.
Denote by y∗ the optimal solution of the optimization problem in the brackets.

Then there exist multipliers x∗ ∈ R
m+ such that

f =
∑

i∈J+
aix

∗
i −

∑

i∈J−
aix

∗
i , x∗i = 0, i �∈ J+

⋂
J−, (2.45)

where J+ = {i : 〈ai , y∗〉 = 1}, and J− = {i : 〈ai , y∗〉 = −1}. Multiplying the first
equation in (2.45) by y∗, we get

〈f , y∗〉 = 〈e, x∗〉. (2.46)

Note that the first equation in (2.45) can be written as

f = A(x∗)y∗. (2.47)

Let us reconstruct now the solution of the primal problem. Denote

w∗ = T

〈e, x∗〉 · x
∗, z∗ = 〈e, x∗〉

T
· y∗. (2.48)

Then, in view of (2.47) we have f = A(w∗)z∗, and w∗ ∈ "(T ). Thus, the
pair (2.48) is feasible for the primal problem. On the other hand,

〈f , z∗〉 = 〈f , 〈e, x
∗〉

T
· y∗〉 = 1

T
· 〈e, x∗〉 · 〈f , y∗〉 = 1

T
· 〈f , y∗〉2.

Thus, the duality gap in the chain (2.44) is zero, and the pair (w∗, z∗), defined
by (2.48) is the optimal solution of the primal problem.
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The above discussion allows us to concentrate on the following (dual) linear
programming problem:

⎧
⎪⎪⎨

⎪⎪⎩

maximize 〈f̄ , y〉
subject to max

1≤i≤m〈±ai , y〉 ≤ 1

y ∈ X,
(2.49)

which we can solve by the primal-dual Algorithm 2.3.
Assume that we have local truss: each node is connected only with few

neighbors. It allows to apply the property of sparsity for vectors ai (1 ≤ i ≤ m). In
this case the computational cost of each iteration grows as O(log2 m) [55, 59].

In [55] a special class of huge-scale problems with sparse subgradient was
considered. According to [55] for smooth functions this is a very rare feature.
For example, for quadratic function f (y) = 1

2 〈Ay, y〉 the gradient ∇f (y) = Ay

usually is dense even for a sparse matrix A.
However, the subgradient of nonsmooth function f (y) = max1≤i≤m〈ai , y〉

(see (2.49) above) are sparse provided that all vectors ai share this property.
This fact is based on the following observation. For the function f (y) =
max1≤i≤m〈ai , y〉 with sparse matrix A = [a1, a2, . . . , am] the vector ∇f (y) =
ai(y) is a subgradient at point y. Then the standard subgradient step

y+ = y − h · ∇f (y)

changes only a few entries of vector y and the vector z+ = AT y+ differs from
z = AT y also in a few positions only. Thus, the function value f (y+) can be easily
updated provided that we have an efficient procedure for recomputing the maximum
of m values.

Note the objective functional in (2.49) is linear and the costs of iteration
of Algorithm 2.3 and considered in [55] switching simple subgradient scheme
is comparable. At the same time, the step productivity condition is simpler for
Algorithm 2.3 as considered in [55] switching subgradient scheme. Therefore main
observations for [55] are correct for Algorithm 2.3.

2.5.2 General Convex and Quasiconvex Objectives

In this subsection, we assume that the objective function f in (2.29) might not
satisfy (2.36) and, hence, its subgradient could be unbounded. One of the examples
is a quadratic function. We also assume that inequality (2.37) holds.

We further consider ideas in [53, 57] and adapt them for the problem (2.29), in
a way that our algorithm allows to use non-Euclidean proximal setup, as does the
mirror descent, and does not require to know the constantMq . Following [53], given
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a function f for each subgradient ∇f (x) at a point y ∈ X, we define

vf [y](x) =

⎧
⎪⎨

⎪⎩

〈 ∇f (x)
‖∇f (x)‖E,∗ , x − y

〉
, ∇f (x) �= 0

0, ∇f (x) = 0

, x ∈ X. (2.50)

The following result gives complexity estimate for Algorithm 2.4 in terms of
vf [x∗](x). Below we use this theorem to establish complexity result for smooth
objective f .

Theorem 2.8 Assume that inequality (2.33) holds and a known constant Θ0 > 0 is
such that d(x∗) ≤ Θ2

0 . Then, Algorithm 2.4 stops after not more than

k =
⌈

2 max{1,M2
q }Θ2

0

ε2

⌉

(2.51)

iterations and it holds that mini∈I vf [x∗](xi ) ≤ ε and q(x̄k) ≤ ε.

Algorithm 2.4: Adaptive mirror descent (general convex objective)

Data: Accuracy ε > 0, Θ0 s.t. d(x∗) ≤ Θ2
0 .

Result: x̄k := argminxj ,j∈I f (xj ).
1 x0 = argminx∈X d(x).
2 Initialize the set I as empty set.
3 Set k = 0.

4 while |I | +∑
j∈J 1

‖∇q(xj )‖2
E,∗

<
2Θ2

0
ε2 do

5 if q(xk) ≤ ε, then
6 hk = ε

‖∇f (xk)‖E,∗ ;

7 xk+1 = Mirr[xk](hk∇f (xk)) (“productive step”);
8 Add k to I .
9 else

10 hk = ε

‖∇q(xk)‖2
E,∗

;

11 xk+1 = Mirr[xk](hk∇q(xk)) (“non-productive step”).

12 Set k = k + 1.

To obtain the complexity of our algorithm in terms of the values of the objective
function f , we define nondecreasing function

ω(τ) =
⎧
⎨

⎩

max
x∈X{f (x)− f (x∗) : ‖x − x∗‖E ≤ τ }, τ ≥ 0,

0, τ < 0.
(2.52)

and use the following lemma from [53].
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Lemma 2.3 Assume that f is a convex function. Then, for any x ∈ X,

f (x)− f (x∗) � ω(vf [x∗](x)). (2.53)

Corollary 2.1 Assume that the objective function f in (2.29) is given as f (x) =
maxi∈{1,...,m} fi(x), where fi(x), i = 1, . . . ,m are differentiable with Lipschitz
continuous gradient

‖∇fi(x)−∇fi(y)‖E,∗ ≤ Li‖x − y‖E for all x, y ∈ X, i ∈ {1, . . . ,m}.
(2.54)

Then x̄k is ε̃-solution to (2.29) in the sense of (2.34), where

ε̃ = max{ε, ε max
i=1,...,m

‖∇fi(x∗)‖E,∗ + ε2 max
i=1,...,m

Li/2}.

Remark 2.1 According to [50, 58] the main lemma 2.3 holds for quasiconvex
objective functions [62] too:

f (αx + (1− α) y) ≤ max {f (x) , f (y)} for all x, y, α ∈ [0, 1].
This means that results of this subsection are valid for quasiconvex objectives.

Remark 2.2 In view of the Lipschitzness and, generally speaking, nonsmoothness
of functional limitations, the obtained estimate for the number of iterations means
that the proposed method is optimal from the point of view of oracle evaluations:

O
(

1
ε2

)
iterations are sufficient for achieving the required accuracy ε of solving the

problem for the class of target functionals considered in this section of the article.
Note also that the considered Algorithm 2.3 applies to the considered classes of
problems with constraints with convex objective functionals of different smoothness
levels. However, the non-fulfillment, generally speaking, of the Lipschitz condition
for the objective functional f does not allow one to substantiate the optimality of
Algorithm 2.3 in the general situation (for example, with a Lipschitz continuous
gradient). More precisely, situations are possible when the productive steps of
the norm (sub)gradients of the objective functional ‖∇f (xk)‖∗ are large enough
and this will interfere with the speedy achievement of the stopping criterion of
Algorithm 2.3.

2.6 Universal Methods

In this section we consider the problem
{

minimize f (x)

subject to x ∈ Q ⊆ E,
(2.55)
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where Q is a convex set and f is a convex function with Hölder continuous
subgradient

‖∇f (x1)− ∇f (x2)‖∗ ≤ Lν‖x1 − x2‖ν (2.56)

with ν ∈ [0, 1]. The case ν = 0 corresponds to NSO and the case ν = 1
corresponds to smooth optimization. The goal of this section is to present the
universal accelerated gradient method first proposed by Nesterov [56]. This method
is a blackbox method which does not require the knowledge of constants ν,Lν and
works in accordance with the lower complexity bound

O

⎛

⎝
(
LνR

1+ν

ε

) 2
1+3ν

⎞

⎠

obtained in [48].
The main idea is based on the observation that a nonsmooth convex function

can be upper bounded by a quadratic objective function slightly shifted above (See
Fig. 2.3). More precisely, for any x, y ∈ Q,

f (y) ≤ f (x)+ 〈∇f (x), y − x〉 + Lν

1+ ν
‖y − x‖1+ν

≤ f (x)+ 〈∇f (x), y − x〉 + L(δ)

2
‖y − x‖2 + δ, (2.57)

where

L(δ) =
(

1− ν

1+ ν

1

δ

) 1−ν
1+ν

L
2

1+ν
ν .

y
x

f(x) + 〈∇f(x),y − x〉 + L(δ)
2 ‖y − x‖2 + δ

f(y)

δ

Fig. 2.3 Quadratic majorant of a nonsmooth function f (x)
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The next idea is to apply an accelerated gradient method with backtracking
procedure to adapt for the unknown L(δ) with appropriately chosen δ. The method
we present is based on accelerated gradient method from [29, 30] and, thus is
different from the original method of [56].

Algorithm 2.5: Universal accelerated gradient method

Data: Accuracy ε, starting point x0 ∈ Q, initial guess L0 > 0, prox-setup:
d(x)—1-strongly convex w.r.t. ‖ · ‖E , V [z](x) := d(x)− d(z)

− 〈∇d(z), x − z〉.
Result: The point yk+1.

1 Set k = 0, C0 = α0 = 0, y0 = z0 = x0.
2 for k = 0, 1, . . . do
3 Set Mk = Lk/2.
4 while

f (yk+1) > f (xk+1)+ 〈∇f (xk+1), yk+1 − xk+1〉

+ Mk

2
‖yk+1 − xk+1‖2 + αk+1ε

2Ck+1
(2.58)

do
5 Set Mk = 2Mk , find αk+1 as the largest root of the equation

Ck+1 := Ck + αk+1 = Mkα
2
k+1. (2.59)

6 Calculate

xk+1 = αk+1z
k + Cky

k

Ck+1
; (2.60)

7

zk+1 = argmin
x∈Q

{V [zk](x)+ αk+1(f (x
k+1)

+ 〈∇f (xk+1), x − xk+1〉)}; (2.61)

8

yk+1 = αk+1z
k+1 + Cky

k

Ck+1
. (2.62)

9 Set Lk+1 = Mk/2, k = k + 1.
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Inequality (2.57) guarantees that the backtracking procedure in the inner cycle is
finite.

Theorem 2.9 ([56]) Let f satisfy (2.56). Then,

f (yk+1)− f� ≤
(

22+4νL2
ν

ε1−νk1+3ν

) 1
1+ν

V [x0](x�)+ ε

2
. (2.63)

Moreover, the number of oracle calls is bounded by

4(k + 1)+ 2 log2

⎛

⎝(2V [x0](x�)) 1−ν
1+3ν

(
1

ε

) 3(1−ν)
1+3ν

L
4

1+3ν
ν

⎞

⎠ .

Translating this rate of convergence to the language of complexity, we obtain that to
obtain a solution with an accuracy ε the number of iterations is no more than

O

(

inf
ν∈[0,1]

(
Lν

ε

) 2
1+3ν (

V [x0](x�)
) 1+ν

1+3ν

)

,

i.e. is optimal.
In his paper, Nesterov considers a more general composite optimization problem

{
minimize f (x)+ h(x)

subject to x ∈ Q ⊆ E,
(2.64)

where h is a simple convex function, and obtains the same complexity guarantees.
Universal methods were extended for the case of strongly convex problems by a
restart technique in [65], for nonconvex optimization in [33] and for the case of
nonconvex optimization with inexact oracle in [26]. As we can see from (2.57),
universal accelerated gradient method is connected to smooth problems with inexact
oracle. The study of accelerated gradient methods with inexact oracle was first
proposed in [20] and was very well developed in [11, 22, 26, 27] including stochastic
optimization problems and strongly convex problems. A universal method with
inexact oracle can be found in [28]. Experiments show [56] that universal method

accelerates to O
(

1
k

)
rate for nonsmooth problems with a special “smoothing

friendly” (see Sect. 2.4) structure. This is especially interesting for traffic flow
modeling problems, which possess such structure [3].

Now we consider universal analog of Nemirovski’s proximal mirror method
for variational inequalities with a Hölder continuous operator. More precisely, we
consider universal extension of Algorithm 2.2 which allows to solve smooth and
nonsmooth variational inequalities without the prior knowledge of the smoothness.
Main idea of the this method is the adaptive choice of constants and level of
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smoothness in minimized prox-mappings at each iteration. These constants are
related to the Hölder constant of the operator and this method allows to find a
suitable constant at each iteration.

Algorithm 2.6: Universal mirror prox
Data: General VI on a set Q ⊂ E with operator Φ(z), accuracy ε > 0, initial

guess M−1 > 0, prox-setup: d(z), V [z](w).
Result: ŵk = 1

k

∑k−1
i=0 wi .

1 Set k = 0, z0 = argminz∈Q d(z).
2 for k = 0, 1, . . . do
3 Set ik = 0.
4 while

〈Φ(wk)− Φ(zk),wk − zk+1〉 > Mk

2

(
‖wk − zk‖2 + ‖wk − zk+1‖2

)
+ ε

2
(2.65)

do
5 Set Mk = 2ik−1Mk−1.
6 Calculate

wk = argmin
z∈Q

{
〈Φ(zk), z〉 +MkV [zk](z)

}
; (2.66)

7

zk+1 = argmin
z∈Q

{
〈Φ(wk), z〉 +MkV [zk](z)

}
. (2.67)

8 ik = ik + 1.

9 Set k = k + 1.

Theorem 2.10 ([32]) For any k ≥ 1 and any z ∈ Q,

1
∑k−1

i=0 M
−1
i

k−1∑

i=0

M−1
i 〈Φ(wi ),wi − z〉 ≤ 1

∑k−1
i=0 M

−1
i

(V [z0](z)− V [zk](z))+ ε

2
.

(2.68)

Note that if maxz∈Q V [z0](z) ≤ D, we can construct the following adaptive
stopping criterion for our algorithm

D
∑k−1

i=0 M
−1
i

≤ ε

2
.
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Next, we consider the case of Hölder continuous operator Φ and show that
Algorithm 2.6 is universal. Assume for some ν ∈ [0, 1] and Lν ≥ 0

‖Φ(x)−Φ(y)‖∗ ≤ Lν‖x − y‖ν, x, y ∈ Q

holds. The following inequality is a generalization of (2.57) for VI. For any x, y, z ∈
Q and δ > 0,

〈Φ(y)− Φ(x), y − z〉 ≤ ‖Φ(y)−Φ(x)‖∗‖y − z‖
≤ Lν‖x − y‖ν‖y − z‖

≤ 1

2

(
1

δ

) 1−ν
1+ν

L
2

1+ν
ν

(
‖x − y‖2 + ‖y − z‖2

)
+ δ

2
,

where

L(δ) =
(

1

δ

) 1−ν
1+ν

L
2

1+ν
ν . (2.69)

So, we have

〈Φ(y)−Φ(x), y − z〉 ≤ L(δ)

2

(
‖y − x‖2 + ‖y − z‖2

)
+ δ. (2.70)

Let us consider estimates of the necessary number of iterations are obtained to
achieve a given quality of the variational inequality solution.

Corollary 2.2 (Universal Method for VI) Assume that the operator Φ is Hölder

continuous with constant Lν for some ν ∈ [0, 1] and M−1 ≤
(

2
ε

) 1−ν
1+ν

L
2

1+ν
ν . Also

assume that the set Q is bounded. Then, for all k ≥ 0, we have

max
z∈Q 〈Φ(z), ŵk − z〉 ≤ (2Lν)

2
1+ν

kε
1−ν
1+ν

max
z∈Q V [z0](z)+ ε

2
(2.71)

As it follows from (2.70), if Mk ≥ L( ε2 ), (2.65) holds. Thus, for all i =
0, . . . , k − 1, we have Mi ≤ 2 · L( ε2 ) and

1
∑k−1

i=0 M
−1
i

≤ 2L( ε2 )

k
≤ (2Lν)

2
1+ν

kε
1−ν
1+ν

,

Equation (2.71) holds. Here L(·) is defined in (2.69). ��
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Let us add some remarks.

Remark 2.3 Since the algorithm does not use the values of parameters ν and Lν ,
we obtain the following iteration complexity bound

2 inf
ν∈[0,1]

(
2Lν
ε

) 2
1+ν ·max

z∈Q V [z0](z)

to achieve

max
z∈Q 〈Φ(z), ŵk − z〉 ≤ ε.

Using the same reasoning as in [56], we estimate the number of oracle calls for
Algorithm 2.6. The number of oracle calls on each iteration k is equal to 2ik. At
the same time, Mk = 2ik−2Mk−1 and, hence, ik = 2 + log2

Mk

Mk−1
. Thus, the total

number of oracle calls is

k−1∑

j=0

ij = 4k+2
k−1∑

i=0

log2
Mj

Mj−1
< 4k+2 log2

(
2L

(ε
2

))
−2 log2(M−1), (2.72)

where we used that Mk ≤ 2L( ε2 ).
Thus, the number of oracle calls of the Algorithm 2.6 does not exceed:

4 inf
ν∈[0,1]

(
2 · Lν
ε

) 2
1+ν ·max

u∈Q V [z0](u)

+ 2 inf
ν∈[0,1] log2 2

((
2

ε

) 1−ν
1+ν

L
2

1+ν
ν

)

− 2 log2(M−1).

Remark 2.4 We can apply this method to convex-concave saddle problems of the
form

⎧
⎨

⎩

minimize max
y∈Q2

f (x, y)

subject to x ∈ Q1,

(2.73)

where Q1,2 are convex compacts in R
n, f is convex in x and concave in y, there is

ν ∈ [0, 1] and constants L11,ν, L12,ν, L21,ν , L22,ν < +∞:

‖∇xf (x +Δx, y +Δy)−∇xf (x, y)‖1,∗ ≤ L11,ν‖Δx‖ν1 + L12,ν‖Δy‖ν2,

‖∇yf (x +Δx, y +Δy)−∇yf (x, y)‖2,∗ ≤ L21,ν‖Δx‖ν1 + L22,ν‖Δy‖ν2
for all x, x +Δx ∈ Q1, y, y +Δy ∈ Q2.
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It is possible to achieve an acceptable approximation (̂x, ŷ) ∈ Q1×Q2 such that

max
y∈Q2

f (̂x, y)− min
x∈Q1

f (x, ŷ) ≤ ε (2.74)

for the saddle point (x∗, y∗) ∈ Q1 ×Q2 of (2.73) in no more than

O

((
1

ε

) 2
1+ν

)

iterations, which indicates the optimality of the proposed method, at least for ν = 0
and ν = 1. However, in practice experiments show that (2.74) can be achieved much
faster due to the adaptability of the method.

2.7 Concluding Remarks

Modern numerical methods for nonsmooth convex optimization problems are
typically based on the structure of the problem. We start with one of the most
powerful example of such type. For the geometric median search problem there
exists efficient method that significantly outperform described above lower com-
plexity bounds [17]. In machine learning we typically meet the problems with
hidden affine structure and small effective dimension (SVM) that allow us to
use different smoothing techniques [1]. Description of one of these techniques
(Nesterov’s smoothing technique) one can find in this survey. The other popular
technique is based on averaging of the function around the small ball with the
center at the point in consideration [25]. A huge amount of data since applications
lead to composite optimization problems with nonsmooth composite (LASSO). For
this class of problems accelerated (fast) gradient methods are typically applied
[6, 39, 54]. This approach (composite optimization) have been recently expanded
for more general class of problems [73]. In different image processing applications
one can find a lot of nonsmooth problems formulations with saddle point structure.
That is the goal function has Legendre representation. In this case one can apply
special versions of accelerated (primal-dual) methods [14, 15, 41]. Universal mirror
prox method described above demonstrates the alternative approach which can be
applied in rather general context. Unfortunately, the most of these tricks have proven
to be beyond the scope of this survey. But we include in the survey the description of
the universal accelerated gradient descent algorithm [73] which in the general case
can also be applied to a wide variety of problems.

Another important direction in nonsmooth convex optimization is huge-scale
optimization for sparse problems [55]. The basic idea that reduce huge dimension
to nonsmoothness is as follows:

〈ak, x〉 − bk ≤ 0, k = 1, . . .m, m# 1
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is equivalent to the single nonsmooth constraint:

max
k=1,...m

{〈ak, x〉 − bk} ≤ 0.

We demonstrated this idea above on truss topology design example.
One should note that we concentrate in this survey only on deterministic convex

optimization problems, but the most beautiful things in NSO is that stochasticity [24,
36, 37, 48] and online context [34] in general doesn’t change (up to a logarithmic
factor in the strongly convex case) anything in complexity estimates. As an example,
of stochastic (randomized) approach one can mentioned the work [2] where one can
find reformulation of Google problem as a nonsmooth convex optimization problem.
Special randomized mirror descent algorithm allows to solve this problem almost
independently on the number of vertexes.

Finally, let’s note that in the decentralized distributed nonsmooth (stochastic)
convex optimization for the last few years there appear optimal methods [40, 67, 74].
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Chapter 3
Standard Bundle Methods: Untrusted
Models and Duality

Antonio Frangioni

Abstract We review the basic ideas underlying the vast family of algorithms for
nonsmooth convex optimization known as “bundle methods”. In a nutshell, these
approaches are based on constructing models of the function, but lack of continuity
of first-order information implies that these models cannot be trusted, not even close
to an optimum. Therefore, many different forms of stabilization have been proposed
to try to avoid being led to areas where the model is so inaccurate as to result in
almost useless steps. In the development of these methods, duality arguments are
useful, if not outright necessary, to better analyze the behaviour of the algorithms.
In addition, in many relevant applications the function at hand is itself a dual one,
so that duality allows to map back algorithmic concepts and results into a “primal
space” where they can be exploited; in turn, structure in that space can be exploited
to improve the algorithms’ behaviour, e.g. by developing better models. We present
an updated picture of the many developments around the basic idea along at least
three different axes: form of the stabilization, form of the model, and approximate
evaluation of the function.

3.1 Introduction

We will describe the general ideas behind a large class of algorithms for the convex
minimization problem

f∗ =
{

minimize f (x)

subject to x ∈ X, (3.1)

where f : R
n → R is proper and convex but possibly nondifferentiable. The

problem (3.1) is quite general because of the “minimal” assumptions on how f
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is provided: any computational procedure (an oracle) that, given x, returns the
value f (x) and information about the first-order behaviour of f at x under the
form of a subgradient z ∈ ∂f (x) (both can actually be approximated, cf. Sect. 3.5).
As far as the feasible set X is concerned, the usual assumption is that, roughly
speaking, it is not making the problem significantly more complex than what the
unconstrained version would be; details are given in Sect. 3.4.3, but on first reading
one may imagine X as defined by a “small” set of explicitly known linear/conic
constraints. To simplify the notation, for most of the chapter we will take X = R

n;
the modifications required to extend the ideas to the constrained case are, usually,
simple enough as to be better introduced separately from the main analysis. We
immediately remark, however, that allowing for constraints is important in that it
makes it possible to deal with extended-valued f , i.e., dom f ⊂ R

n. In the simplest
case, if only feasible iterates are produced and, say, X ⊂ int dom f , then f is
just never evaluated at points x where f (x) = ∞. It is actually possible to allow
this to happen, but the oracle for f then has to provide appropriate information. In
other words, we can view (3.1) as the unconstrained minimization of the essential
objective fX = f + ıX, where ıX is the indicator function of X; then, besides an
oracle for the finite-valued f , we will need a—necessarily, somewhat different—
oracle for the extended-valued ıX. For most of the chapter f will be therefore
intended as finite-valued, with the other case discussed in Sect. 3.4.3.

The basic idea behind all bundle methods (BM) is that, being them iterative
algorithms, they will construct a sequence { xi } of iterates, hopefully converging
towards some optimum x∗ of (3.1). The oracle will be called at the points xi ,
producing the corresponding sequence of pairs { ( f (xi ) , zi ∈ ∂f (xi ) ) }. Unlike
algorithms for smooth optimization, that can work keeping information about a very
restricted set of iterates—possibly even only the last one—BM have to resort to
ideally collect and store all the previously generated information to work, although
compression and selection procedures can usually be implemented (cf. Sect. 3.3.2).
For a number of reasons to become apparent in due time, one customarily replaces
f (xi ) with αi = 〈zi , xi〉 − f (xi ) to define the (lower) bundle B = { ( zi , αi ) }.
Then, the cutting-plane model

f̌B(x) = max
{
〈zb, x〉 − αb : b ∈ B

}
(3.2)

(with the useful shorthand “b ∈ B” for “( zb , αb ) ∈ B”) is a global lower model
for f , i.e., f̌B ≤ f . Upon first reading one may assume b = i; however, in general
not all pairs in B are directly related with an iterate, as we shall see, whence the
different index. In addition, since B changes at each iteration it must be denoted as
Bi which, if nothing else, justifies using a different index for its elements; we will
try to simplify notation as much as possible by using, e.g., f̌ i in place of f̌Bi . Note
that (3.2) does not use (and hence B does not need to store) the original iterates xi ,
which is already a sufficient rationale for introducing the αb; however, f̌B is not the
only possible (lower) model of f , and some of them actually do require storing the
iterates (cf. Sect. 3.4.4). It is in general useful to avoid as much as possible to detail
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which (lower) model one uses, so that different ones can be employed (cf. Sect. 3.4);
we will therefore generically indicate the model as fB, although fB = f̌B is by far
the most common choice.

With fB at hand, the obvious idea is to directly use it to guide the selection of
the new iterate. That is, the iterative scheme

xi ∈ argmin
{
f i(x) : x ∈ X

}
, (3.3)

reminiscent of the most successful algorithms for nonlinear optimization, imme-
diately springs to mind. Of course, the new pair ( zi , αi = 〈zi , xi〉 − f (xi ) ) is
then added to Bi ; on first reading one may assume that no information is ever
removed from Bi . With f i = f̌ i this is the cutting-plane method (CPM) [60],
whose attractive feature is that (3.3) can be written as

( xi , vi ) ∈ argmin
{
v : v ≥ 〈zb, x〉 − αb b ∈ Bi , x ∈ X

}
, (3.4)

i.e., an LP if X is a polyhedron and in general a problem that looks “easy enough”
to solve, at least if |Bi| is “not too large”. The formulation also highlights how the
natural space for the master problem (MP) (3.3)/(3.4) is the epigraphical space of
f , with the extra variable v accounting for f -values (and vi = f i(xi )). It is not
surprising that the CPM is globally convergent, given that any convex function is
the supremum of all its affine minorants; the proof, however, is short and instructive
enough to be worth reporting.

In the following, we will denote by levg(v) = x ∈ R
n : g(x) ≤ v the level set

of a generic function g for the level v ∈ R.

Theorem 3.1 If the level sets of the initial model f̌ 1 are bounded, then { xi } in the
CPM (weakly) converges to an optimal solution x∗ of (3.1).

Proof As Bi+1 ⊇ Bi , f̌ i is monotonically nondecreasing in i, hence so are its
level sets. Thus, them being bounded for i = 1 means they are always so, which
makes (3.3) always well defined. Since f̌ i ≤ f , this means that f∗ ≥ vi > −∞,
and { vi } is clearly nondecreasing as well. Then, the nonincreasing record value
f irec = min{ f (xj ) : j = 1, . . . , i } can be used to define the nonincreasing gap
gi = f irec − vi ≥ 0. The aim is proving that gi → 0, which, via f irec ≥ f∗ ≥ vi ,
immediately implies f irec → f∗, and therefore that, extracting subsequences if
necessary, { xi } → x∗: in fact, f 1 ≥ f i

rec ≥ vi , i.e., xi ∈ levvi f
i ⊆ levv1 f 1,

hence { xi } is a bounded sequence. This implies that { zi } is also bounded, as
the image of a compact set under the subdifferential mapping is compact [57,
Proposition XI.4.1.2]. Hence, assume gi ≥ ε > 0: for each j < i, f (xj ) ≥ f irec
and f̌ i(xi ) ≥ f (xj )+ 〈zj , x i − xj 〉, which gives 0 > −ε ≥ 〈zj , xi − xj 〉. Taking
a subsequence if necessary ‖xi − xj‖ → 0; since ‖zj‖ is bounded the right-hand
side has to converge to zero, yielding the desired contradiction. ��

A nice feature of the above proof is that constraints x ∈ X do not even need to be
mentioned; a compact X is actually advantageous, in that compactness of lev(·) f̌ 1
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is clearly no longer required (lev(·)(f̌ 1+ıX) are surely compact). But for this aspect,
even a cursory glance at the proof immediately suggest that the prototypical CPM
is fraught with computational issues. First, it requires B to start “large enough” so
that the model f̌B is bounded below and (3.3) is well-defined, which is not trivial
unless X is compact. Furthermore, there is no apparent way to control the size of Bi

by removing “outdated” information. Already keeping compactness of the level sets
while removing elements from Bi is nontrivial. Even worse, there seem to be no way
to detect whether an iterate xi belongs or not to the convergent subsequence crucial
in the argument. Indeed, it is easy to prove that “apparently reasonable” removals
can lead to cycling, as the following example shows.

Example 3.1 Consider Fig. 3.1, where f is the pointwise maximum of the
three linear functions (a), (b) and (c), to be minimized over X = [ xa , xb ]
(compact). With B1 = { (c) }, assume (3.3) returns x1 = xa , yielding B2 =
{ (a) , (c) }. Now assume (3.3) returns x2 = xb, so that (b) is added to B2. In
this moment it would seem harmless to delete (a) from B1: the linearization
has been obtained in xa , hence “very far” from the current x2, and it is not
active (it does not contribute to defining f̌ 2(x2)). However, doing so opens the
possibility that subsequently x3 = xa with (b) being removed fromB3, yielding
a cycle. The example may seem to hinge on the fact that the linearization
(c) belongs to B without having been produced by the oracle, and therefore
without having produced the corresponding function value which contributes
to the record value. This may actually happen (cf. Sect. 3.5), but one may
easily extend the example by adding another dimension and having (c) as the
intersection of two linearizations, computed (exactly) at different points.

Besides illustrating the difficulty in managing B, the previous example also shows
what is perhaps the most damning characteristic of the CPM: the approach is
inherently unstable, with subsequent iterates possibly “very far” from each other.
This is known to cause slow convergence, as clearly illustrated by the following
experiment. A problem is solved by the CPM, with arbitrary initial iterate (x1 = 000)
and B1 = ∅, and the optimal solution x∗ is recorded. Then, the problem is solved
again, this time with x1 = x∗ and adding to the MP in (3.3) the constraint
‖x − x∗‖∞ ≤ δ for some δ, but still taking B1 = ∅. The results are reported in
Table 3.1, where “r.it.” is the ratio between the number of iterations required by the
CPM with the added constraint, for the given value of δ, and these of the initial

Fig. 3.1 Example of the
CPM cycling

f

xxa xb

(a) (b)

(c)
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Table 3.1 A conceptual
experiment illustrating
instability of the CPM

δ 104 102 1.0 10−2 10−4 10−5 10−6

r.it. 1.07 1.12 0.86 0.77 0.56 0.19 0.04

CPM. To avoid unboundedness problems at early iterations, and for extra fairness,
the MP of the CPM is actually solved with an extra constraint ‖x‖∞ ≤ 104; since
‖x∗‖∞ ≈ 1, this does not impact the correctness of the CPM.

Although these results are for a specific instance (the Lagrangian dual of a
small-scale randomly generated nonempty and bounded LP), they are quite typical.
Knowledge of x∗, when only used to choose x1 = x∗, is basically useless: the CPM
will not perform significantly less iterations, and may easily do more. Restricting
the search in a box around x∗ can improve convergence, but only if the box is small
enough. With a very small box, improvements of about two orders of magnitude
are not unusual. All this starkly contrast with efficient algorithms for smooth
optimization; ran with a starting point close to x∗, these would converge extremely
fast due to the use of second-order models having very good approximations of
the curvature information at the optimum. A piecewise linear fB such as f̌B has
no inherent curvature information, and therefore has to construct it piecemeal by
accruing first-order information in B. It is possible to add “poorman’s” second-order
information to fB (cf. Sect. 3.4.4), but this has not so far improved performances in
general. BM with reliable second-order-type models have been proposed, but they
require considerably more sophisticated theory [77–79]; besides, they are implicitly
based on the assumption that some second-order information exists that can be
extracted, which may not be the case in all applications (f , not only fB, can well be
polyhedral, cf. Sect. 3.3.3). Therefore, we will concentrate here on the case where
fB is an “unstable” model like f̌B can be expected to be, with the corresponding
unwelcome consequences: iterates do not have any locality properties and can
“swing wildly” across the search space, meaning that often the new pair ( zi , αi ),
when added to Bi , conveys little useful information, failing to effectively drive xi+1

towards x∗. As a consequence, overall convergence of the CPM can be rather slow
(although possibly with a surprising twist towards the end, cf. Sect. 3.2.1). This
is why the CPM is more or less heavily modified, yielding the large family of
(standard) BM described in this chapter.

The structure of the chapter is as follows. In Sect. 3.2 we discuss different
forms of stabilization, all using the “primal” view of the problem (3.1), which
try to address the issues illustrated above. Each time that a MP is formulated,
a dual problem is implicitly defined; making it explicit is often quite useful for
understanding the nuances of the approaches and improving their implementation,
besides suggesting even different forms of stabilization, as discussed in Sect. 3.3.
Section 3.4 presents the other, orthogonal approach that can significantly improve
the practical convergence rate of a BM: exploiting specific structures in f to develop
specialized models. Finally, since the cost of computing f can be considerable
in some applications, another way of improving the practical efficiency of BM is
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allowing to perform this computation only approximately, which is discussed in
Sect. 3.5. Section 3.6 briefly reviews a number of issues that have not been addressed
in the chapter and draws some conclusions.

3.2 Stabilization

The previous discussion has illustrated the need for stabilizing the CPM, i.e.,
ensuring that the iterates do not stray too far from a properly chosen point. However,
in general the “right” point—ideally x∗—is unknown, and therefore has to be
estimated and revised iteratively. Hence, together with the sequence { xi } of iterates
one has to consider the sequence { x̄i } of stability centers which, as we shall see,
is actually the one that matters most in terms of convergence properties of the
algorithm. It is quite natural (although not strictly necessary [3]) to assume that
the stability centers are chosen among the iterates, i.e., { x̄i } ⊆ { xi }; a convenient
consequence is that typically f i(x̄i ) = f (x̄i ). Several different variants of BM

correspond to different ways of ensuring that xi is “near enough” to x̄i . As the
example has illustrated, having a “good” x̄i is not, by itself, enough: one also have
to properly estimate “how near” xi has to be kept. While one can expect the answer
“as near as possible” to be correct when x̄i = x∗, in general this is not so, and an
excessive stabilization is as detrimental as an insufficient one (cf. Fig. 3.2). Hence,
each BM will also have some stabilization parameters controlling this aspect, again
with a different meaning for each different variant.

3.2.1 Trust-Region Stabilization

A simple approach closely mimics our conceptual example by solving the stabilized
MP

xi ∈ argmin
{
f i(x) : ‖x − x̄i‖ ≤ δi

}
, (3.5)

where the iterate is kept in a trust region (TR) around the current stability center; the
(single, as in most cases) stabilization parameter is δi , the radius of the TR. Usually
the norm in (3.5) is the L∞ one, because then the natural “explicit form” of (3.5)

( xi , vi ) ∈ argmin
{
v : v ≥ 〈zb, x〉 − αb b ∈ Bi , ‖x − x̄i‖ ≤ δi

}
(3.6)

is an LP; this justifies the “BOXSTEP” name originally given to the trust-region BM
(TRBM) [76], although the exact form of the TR is largely immaterial. Of course,
rules to update x̄i and δi need be defined. For the latter, a simple boundedness
condition 0 < δ ≤ δi ≤ δ̄ < ∞ is sufficient. The former can be done in a natural
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way with an Armijo-type condition:

f (xi ) ≤ f (x̄i )+m( f i(xi )− f (x̄i ) ) ≡ Δf i ≤ mΔi (3.7)

where m ∈ (0, 1) is fixed and Δi = f i(xi ) − f (x̄i ) = vi − f (x̄i ) < 0, Δf i =
f (xi ) − f (x̄i ) are, respectively, the improvement estimated by the model and the
actual one due to moving from x̄i to xi . If Δi = 0, then x̄i is optimal for (3.1):
in fact, x̄i is then optimal for the MP (although this does not necessarily mean
that x̄i = xi , as the MP can have multiple optimal solutions, cf. Example 3.1).
Hence, x̄i , which is in the interior of the TR, is also optimal for (3.3) where the
TR constraint is removed, which immediately implies the result. As a consequence,
Δi ≤ ε is a convenient approximate stopping condition for the method, although one
has to be careful that a small δi necessarily implies a smallΔi . Whenever (3.7) holds
the, tentative point xi is “substantially better” than x̄i , and one may reasonably
set x̄i+1 = xi ; this is usually called a serious step . Leaving the stability center
unchanged, i.e., x̄i+1 = x̄i , is instead called a null step. Clearly, (3.7) ensures that
{ f (x̄i ) } is a decreasing sequence, and in fact one typically uses f (x̄i ) in place of
f irec (although the latter may be slightly better). The role of the null step is instead to
ensure that f i is improved “in the neighborhood of x̄i”, with the aim to ultimately
attaining an accurate enough model so as to achieve descent. All in all, the method
can be easily proven to be convergent.

Theorem 3.2 If the level sets of f are bounded, then { f (x̄i ) } → f∗.

Proof Clearly { x̄i } ⊂ levf (x̄1) f and therefore by the boundedness assumption it
admits at least an accumulation point x̄∞; we want to prove that f∞ = f (x̄∞) =
f∗. The proof is divided into two distinct parts, according to the fact that { x̄i } is or
not a finite sequence.

Assume that the sequence is finite: there is a last serious step, after which only
null steps are done with the fixed stability center x̄∞. Then, because δi ≤ δ̄ < ∞,
one is actually applying the CPM to (3.1) with the compact set X := X∩{ x ∈ R

n :
‖x − x̄∞‖ ≤ δ̄ }. Therefore, by Theorem 3.1 (extracting subsequences if necessary)
{ xi } → xδ , with xδ an optimal solution to that problem. If f (xδ) = f (x̄∞), then
x̄∞ is an optimal solution as well, and reasoning as before therefore an optimal
solution of (3.1). Assume by contradiction that f (xδ)−f (x̄∞) = Δ∞ < 0 instead.
From the proof of Theorem 3.1, gi = f i

rec − vi → 0; since f i
rec → f (xδ), vi →

f (xδ) as well. Hence, both Δi = vi −f (x̄∞)→ Δ∞ and f (xi )−f (x∞)→ Δ∞:
since m < 1, this contradicts the fact that (3.7) never holds.

Let us now turn to the case where { x̄i } is an infinite sequence, converging
(extracting subsequences if necessary) to x̄∞. Clearly, (3.7) then implies that Δi →
0. For all i and any fixed optimal solution x∗ to (3.1) define Γ i = f∗ − f (x̄i ) ≤ 0,
and assume that Γ∞ = f∗ − f (x̄∞) < 0. As Γ i ≤ Γ∞ < 0, clearly, ‖x̄i − x∗‖ ≥ ε

for all i and some ε > 0. Define xi (α) = αx∗ + (1 − α)x̄ i : by convexity,
f (xi (α)) ≤ f (x̄i ) + αΓ i . Also, let ᾱi = max{ α : ‖xi (α) − x̄i‖ ≤ δi }: since
δi ≥ δ > 0 and ‖x̄i − x∗‖ is bounded away from 0, then ᾱi is also bounded away
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from 0. But since xi (ᾱi ) is feasible for (3.5), for which xi is the optimal solution,
and f i ≤ f , one has f i(xi ) ≤ f i(xi (ᾱi )) ≤ f (xi (ᾱi )) ≤ f (x̄i ) + ᾱiΓ i . Hence,

Δi = f i(xi ) − f (x̄i ) ≤ ᾱiΓ i ; the right-hand side is bounded away from zero,

contradicting Δi → 0. ��
The above proof purposely used direct and elementary arguments and is obtained

under unnecessarily strict conditions. For instance, boundedness of the level sets is
incompatible with f∗ = −∞, which instead happens in applications. Also, one may
want more freedom about the size of the TR, say allowing δi → 0 as x̄i → x∗.
These extensions are possible, and the proof can be simplified in the process,
using appropriate tools (cf. Sect. 3.3.4). Yet, the proof already clearly illustrates the
basic machinery underlying many of BM convergence arguments. In particular, it
is subdivided into two almost entirely distinct cases: that of finitely many serious
steps, and that of infinitely many ones. In the former case, the algorithm becomes a
standard CPM on the restricted feasible region and converges to an optimal solution
of this problem: this has to be a global optimum, for otherwise at some point the
descent condition (3.7) is triggered. In the latter case, the algorithm (restricted to
the serious step subsequence) is a standard descent one, and it has to converge
because whenever x̄i is “far” from x∗, the descentΔi predicted by the model cannot
vanish. This almost complete separation is also apparent from the fact that the two
conditions on δi are separately required: 0 < δ ≤ δi is needed for serious step
to ensure that xi − x̄i does not vanish, impairing global convergence of the { x̄i }
sequence, whereas δi ≤ δ̄ <∞ is needed to ensure that { xi } during a sequence of
consecutive null steps actually remains inside a finite TR around the stability center.
In some sense the separation is positive: for instance, it tells that one may entirely
reset Bi after any serious step, as accumulation of information is only required to
make sequences of consecutive null steps to work (not that this is a good idea in
practice, cf. Sect. 3.3.2). However, in general this disconnect makes it harder to
prove properties of the method, such as global efficiency estimates.

Of course, practitioners would be more interested in the practical effect of
stabilization. An illustration is given in Fig. 3.2 for two specific problems. The
figure compares how the distance from the optimal solution and the relative gap
evolve during the CPM (INF) and the TRBM with three different (fixed) values of δ
(103, 104, and 105).

The plots have several notable features, starting from the rather peculiar
behaviour of the CPM. For the vast majority of the iterations, the algorithm seems
to be making no progress: many of the first iterates xi are far worse than the initial
one x1, and there seems to be little, if any, sign of progress towards an optimum.
However, information is indeed accrued during these iterations, and suddenly a
tipping point is reached where the convergence behaviour drastically changes,
becoming surprisingly quick at the end. Stabilizing may avoid the initial worsening
of the iterations; even if it does not (right, δ = 105), it typically results in the
“quick tail” ensuing sooner. Stronger stabilization may (left) or not (right) result
in better performances: a weaker stabilization may result in worse iterates at first,
but a faster convergence overall. Indeed, it is clearly possible to over-stabilize
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(δ = 103): the algorithm has then a much smoother convergence profile, but
ultimately requires many more iterations. This is not surprising, in that a small
TR intuitively corresponds to the fact that the algorithm behaves basically as a
pure descent method (cf. Sect. 3.3.1): excessive stabilization does not allow to
exploit the fact that the model fB is “global” instead of “local”, and therefore
potentially—provided that B contains enough information—capable of leading the
iterate towards the global optimum, which is what happens in the “quick tail”. All
in all, the plots clearly show that “the right amount of stabilization” can have a
positive impact; unfortunately, in general little can be said a-priori about how much
stabilization is the right amount. This also depends on which stabilization device is
employed, of which the TR is but one.

3.2.2 Proximal Stabilization

The proximal BM (PBM) replaces the TR with a penalty, as in

xi = argmin

{
f i(x)+ μi

2
‖x − x̄i‖2

2

}
, (3.8)

where the stabilization parameter is now μi . The penalty term also ensures that
xi will not be “too far” from x̄i , although the radius of the TR is only indirectly
determined. Indeed, (3.8) could be viewed as the Lagrangian relaxation of (3.5)
with respect to the TR constraint if the L2-norm were used in the latter, and in
principle given a δi one could always choose μi such that the two MP give the
same solution, and vice-versa [57, Proposition XV.2.2.3]. The equivalence is only
theoretical, since finding the value of μi equivalent to a given δi (or vice-versa) is
not straightforward; not that there would be any reason for wanting to, since finding
the “right” values of the two stabilization parameters in practice is roughly equally
difficult. It is not entirely surprising, however, that in practice the PBM is sometimes
found to be more efficient than the TRBM (e.g., [12, 41]). Indeed, the quadratic
penalty term acts as a “poorman’s Hessian”, adding some (admittedly, very rough)
second-order information to the piecewise f̌B; an in-depth computational evaluation
of the practical behaviour of the PBM can be found e.g. in [15]. However, (3.8) is a
QP, which may be more costly than the LP (3.5), potentially negating the advantage
due to a faster convergence speed [40]. Yet, this can be partly counterbalanced
(or even reversed [41]) by developing specialized QP algorithms that exploit the
structure of the MP and its typical usage pattern [34].

An advantage of the stabilizing term is that it makes it easier to answer to an
interesting question, i.e., “what would the master problem achieve if the model fB
were exact?” That is, consider the Moreau-Yosida regularization φμ of f , perhaps
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better written in terms of the displacement d from x̄:

φμ(x̄) = min
{
f (x̄ + d)+ μ

2
‖d‖2

2

}
. (3.9)

This is an interesting object with useful properties, starting from φμ ≤ f (trivial
since d = 000 is feasible in (3.9)). The unique optimal solution d∗ of (3.9) satisfies

000 ∈ ∂[ f (x̄+·)+μ

2
‖·‖2

2 ](d∗) ⇐⇒ −μd∗ ∈ ∂f (x) with x = x̄+d∗ (3.10)

(note that we ignore the dependence of d∗ and x on both x̄ and μ for notational
simplicity); in other words, z∗ = −μd∗ is a (very specific) subgradient at x, and x

itself is obtained by starting at x̄ and moving of a step 1/μ along −z∗. Therefore,
x might appear to be produced by a subgradient-type approach, were it not that z∗
is a subgradient at the destination x rather than at the starting point x̄. Yet, it turns
out that moving from x̄ to x actually is a step of a gradient method: indeed, [57,
Corollary XI.3.4.1] shows that φμ is differentiable, with∇φμ(x̄) = z∗ [57, Theorem
XV.4.1.4]. Note that this depends on smoothness of the stabilizing term rather than,
as one may guess, its strong coercivity, i.e., uniqueness of d∗. Hence, d∗ = 000 implies
that x̄ is both a minimum of f and of φμ: indeed, minimizing φμ is equivalent
to (3.1) [57, Theorem XV.4.1.7], with the obvious advantage that φμ is smooth.
Thus, if (3.9) were efficiently solvable—which it isn’t, as computing just one d∗
for given x̄ and μ is as difficult as solving (3.1)—then one may run a proximal
point algorithm (PPA), simply obtained by always setting x̄i+1 = x̄i + d i∗ = xi .
With only minor requirements on μi—it must not to grow too fast, which would
be analogous to δi → 0 very fast in the TRBM—and some technical conditions,
the PPA can be shown to be a convergent algorithm. We will not go into the
details of the convergence proof, which can be found e.g. in [57, Section XV.4.2],
besides noting that the fact that one can always take the pre-determined step 1/μi

in a gradient method and still converge is not surprising considering that ∇φμ
is Lipschitz continuous with constant μ (cf. again [57, Theorem XV.4.1.4]). Said
otherwise, by necessity φμ(x) < φμ(x̄) (or d∗ = 0 and the algorithm terminates),
hence the step is surely a descent one; the devious trick here is that the step size μ is
chosen beforehand, and the function φμ changes to reflect the choice, i.e., in such a
way that ∇φμ(x̄) provides the desired descent. However, all this is only conceptual,
in that φμ is not readily available. What is relevant is rather the interpretation of
the PBM in terms of a PPA: basically, if “the model were perfect”, i.e., fB = f ,
then each iteration would result in a serious step. In other words, the PBM can be
seen as an approximated—but implementable, as opposed to conceptual—variant
of the PPA, where sequences of consecutive null steps aim at computing ∇φμ(x̄)
“accurately enough”, so that finally a serious step can be performed. This ties in well
with the standard structure of convergence proofs, where sequences of consecutive
null steps and the sequence of serious steps are analysed separately.

Besides being aesthetically pleasing, these results are also the basis of practical
algorithmic developments, comprised some related to the real crux of the (P)BM,
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which is appropriately (and dynamically) choosing the stabilization parameter.
These are based on the idea that (3.9) could be generalized to

φH (x̄) = min

{
f (x̄ + d)+ 1

2
dT Hd

}
(3.11)

depending on a whole matrix parameter H  0, the standard Moreau–Yosida
regularization then being just the special case for H = μI . Clearly it would be
attractive to have H providing a better depiction of the second-order behaviour
of f at x̄ that what the “poorman’s matrix” μI can do. Of course, the Hessian
cannot be used, but one may nonetheless consider quasi-Newton formulae. Say,
with z̄i ∈ ∂f (x̄i ) and zi ∈ ∂f (xi ), it would be natural to select Hi+1 so that the
standard quasi-Newton equation

Hi+1Δxi = Δzi (3.12)

is satisfied with Δxi = xi − x̄i and Δzi = zi − z̄i , which is what one would
do if f were differentiable; which it isn’t, and this entirely breaks the theory upon
which (3.12) relies. Yet, φi = φHi is differentiable, and therefore (3.12) would make
sense withΔzi = ∇φi(xi )−∇φi(x̄i ), were it not for the fact that exactly computing
gradients of φi requires solving a problem as difficult as the original (3.1). Here,
however, one can cleverly exploit (3.10), immediately generalized as ∇φH (x̄) =
−Hd∗ ∈ ∂f (x), to find d∗—and therefore x̄—given z ∈ ∂f (x). Indeed,−Hd∗ = z

gives (x̄−x) = H−1z, i.e., z = ∇φH (x+H−1z). In plain words, once a subgradient
of f is known at any point x, one can easily compute the point x̄H(z) such that
z = ∇φH (x̄H(z)). This reversal operation [70] suggests to use (3.12) indeed with
Δzi = zi − z̄i = ∇φi(x̄i (zi ))−∇φi(x̄i (z̄i )), but also with Δxi = x̄i (zi )− x̄i (z̄i )

(with the obvious notation). This may give rise to various quasi-Newton approaches
depending on the way in which (3.12) is approached, say with typical rank-one
updates. We will not delve in these details, to be found in [70] and references therein,
except for the specific case where H is constrained to have the “poorman’s” form
μI . This means that there is no hope that (3.12) be satisfied except in a least-squares
sense, which yields

μi+1 = ‖Δzi‖2
2 / 〈Δzi , Δxi〉. (3.13)

Of course, for (3.13) to make sense one must ensure that 〈Δzi , Δxi〉 > 0,
which can be done by an appropriate curved search, i.e., solving the MP with
iteratively changing μ until the condition is attained [70]; this a natural enough
approach for BM, already proposed e.g. in [88]. Under rather strong conditions
(f differentiable or strongly convex), fast convergence (respectively, superlinear or
two-step-superlinear) can be proven. Perhaps more importantly, the approach seems
to improve practical performances with respect to other proposed strategies [61].
Also, the idea can be extended to making use of other available information for
even better managing μ [85].
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Yet, this does not imply that effective μ-management is completely understood.
Formula (3.13) requires a specific care to ensure that 〈Δzi , Δxi〉 > 0, and the theory
is developed under the assumption that μ is only updated at serious step, whereas
intuitively being able to increase μ after a few unsuccessful null steps could also be
useful. Furthermore, all these approaches [61, 70, 85] are based on “local” behaviour
of f , i.e., they do not explicitly depend on how “far” x̄i is from x∗ (f (x̄i ) from
f∗), which may lead to sequences of “short” steps that slow down convergence
(cf. δ = 103 in Fig. 3.2). Although more “global” strategies can be devised [38],
other stabilization approaches seem to be inherently better suited in this respect, as
discussed next.

3.2.3 Level Stabilization

The idea of level stabilization is in some sense opposite to that of the previous
approaches. In general, the issue is that fB is “too optimistic” a model of f , in that
it dramatically underestimates the true value of f in a large part of the space. This
lures the MP to points xi such that fB(x

i )) f (x̄), often “unreasonably so”, while

f (xi )# f (x̄). The TRBM tries to set the TR in such a way as to exclude the points
where fB(x)) f (x̄), while the PBM tries to limit their appeal by penalizing them
on the basis of the distance from x̄. In these cases, the amount of descent that the
model will estimate for the next iteration, as measured by Δi = f i(xi )− f (x̄i ) <

0, is a complex function of the stabilization parameters (δi and μi). A different
approach is to fix beforehand how much descent the model should attain, which
clearly has an intuitive appeal in the context of a descent method, i.e., to work in
the level set levl fB for some given level parameter l < f (x̄). Such a set, however,
may well be “large” (even unbounded), and therefore there has to be some way pick
a specific point in there. In the spirit of BM, the intuitive idea is just that of keeping
“close” to the stability center, which leads to the MP

xi = argmin
{
‖x − x̄i‖ : f i(x) ≤ li

}
. (3.14)

An advantage of the resulting proximal level BM (PLBM) approach is that the
stabilization parameter, li , has the scale of function values, which may make it easier
to choose. For instance, if the optimal value f∗ is known, then obviously li has to
belong to the interval [ f (x̄i ) , f∗ ] (actually, [ f i

rec , f∗ ]). The simple strategy of
fixing any λ ∈ (0, 1] and choosing li = λf (x̄i ) + (1 − λ)f∗ then works even with
very relaxed assumptions on the choice of x̄i , such as by always doing serious step
(x̄i+1 = xi) even if (3.7) does not hold, and even keeping x̄i (possibly, /∈ X) fixed
[72]. The proof is somewhat technical and is not repeated here; what is relevant
is that knowledge of f∗ is not really required, as it can be replaced by its lower
bound vi obtained by solving the original unstabilized MP (3.3) (assumed finite).
Solving the MP of the CPM but not directly using its optimal solution as the next
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iterate is an interesting algorithmic concept, of which we will see other applications
(cf. Sect. 3.2.5); here, it is rather the optimal value vi that is used to compute the
value of li , after which (3.14) provides xi . Of course, the disadvantage is having to
solve two (related but different) MPs, which is not appealing in the case where they
are rather costly (e.g., [97]). However, in some applications the cost of computing
f far outweighs the MP cost, and therefore this approach may be competitive in
that it provides a clear and principled way to choose the stabilization parameter, as
opposed to the heuristic ones common for the TRBM and PBM, possibly resulting
in better practical convergence.

In case one is not willing to compute vi , or unable to do so (say, because (3.3) is
unbounded below), the alternative is to choose li arbitrarily. The possible troubling
consequence is that (3.14) may be empty, but this is actually not an issue; since
f i ≤ f , this means that li < f∗. Hence, if this happens the algorithm has found a

provably correct lower bound on f∗, which can then be used in place of f∗/vi to set
the next target; clearly, then li+1 > li , hopefully making (3.14) feasible. This is one
of the specific traits of the PLBM, i.e., that it can provide valid lower approximations
to f∗; in some cases this can be helpful. Actually, also TRBM and PBM may do this,
since their next iterate xi may in fact coincide with the optimal solution of (3.3),
which is easy to detect; for instance, for TRBM this happens if xi is in the interior
of the TR. However, in these methods the occurrence is incidental and does not
impact on the algorithm, while in the PLBM it is a crucial aspect. Hence, together
with null step and serious step, the convergence analysis for the PLBM has to cater
for these level steps; yet, this is easy. In fact, if, say, li+1 = λf (x̄i ) + (1 − λ)li

whenever a level step happens, infinitely many level steps result in li → f (x̄i ),
which means that f (x̄i )→ f∗. Once this case is dealt with, the remaining analysis
is analogous to the case where f∗/vi are available, and not dissimilar from those of
the TRBM and PBM.

Indeed, an interesting recent development is the doubly stabilized BM (DSBM)
of [25], which has both proximal and level stabilization, i.e., MP

xi = argmin
{
f i(x)+ μi‖x − x̄i‖2

2 : f i(x) ≤ li
}
. (3.15)

Two stabilization parameters are not necessarily more difficult to tune than one;
actually, the converse may happen. Indeed, at any given iteration one among μi and
li is “irrelevant”: the obtained xi is either that of (3.8) (a proximal iteration), or
that of (3.14) (a level iteration), and it is easy (cf. (3.34)) to tell which of the two
it is. Hence, the somewhat “more principled” level parameter li , which can exploit
information about f∗, can be used to select the desired amount of descent, while
μi can be used to select a “good” xi in the (possibly, large) set levli fB; the results
of [25] are encouraging. Convergence theory is hardly much different from that of
PBM: once the case of infinitely many level steps is ruled out, the algorithm is
(almost, barring some fine details) exactly a PBM.

One may, however, argue that there is actually no need for the level stabilization
in order to tune μi exploiting information about f∗. Firstly, any known guaranteed
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lower bound l ≤ f∗—such as vi from (3.3), or directly obtained by the problem,
cf. Sect. 3.3—can be directly incorporated into fB under the form of the “flat”
linearization (000 , l ) ∈ B. This incurs in hardly any MP cost and it means that
xi will automatically exploit this information, which is indeed useful in practice;
for instance, surely vi ≥ l. Furthermore, one might design μ-updating strategies
that take into account this information and, say, try to ensure that f i(xi ) ≤ li =
λf (x̄i )+(1−λ)l exactly as in the DSBM. Somewhat different, but related, strategies
can use information about the fact that xi is, or not, “close” to a minimizer of f i

to properly increase or decrease μi (cf. e.g. [35]). Current consensus is that the l-
updating strategies of PLBM are more robust, in particular in the constrained case
(X �= R

n), while the PBM may be more efficient, especially in the unconstrained
case; thus, the DSBM makes sense, as would any μ-updating strategy “simulating”
it. All this highlights how proper tuning of the proximal parameters is still quite
an open issue, and an area of active research. This also justifies why there is,
among practitioners, a latent distrust of stabilization techniques, partly justifying
the development of the alternative approaches of Sect. 3.2.5.

3.2.4 Center-Based Approaches

Another class of BM are based on the idea that, instead of aiming for the “extreme”
point xi minimizing fB , one should target the “center” of a localization set

L(g, l) = { ( x , v ) : g(x) ≤ v ≤ l } ⊂ R
n+1, which is the epigraphical version of

the level set, for appropriately chosen g and l. For instance, the polyhedron

Li = L(f̌ i, f i
rec) =

{
( x , v ) : 〈zb, x〉 − αb ≤ v ≤ f irec b ∈ Bi

}

(cf. (3.4)) is clearly the best possible outer approximation—with the known data—
of the epigraphical extension of the set of the optimal solutions L∗ = L(f, f∗) =
{ ( x , v ) : f (x) = v = f∗ }; it is defined by the linearizations in Bi , plus the
hat cut v ≤ f i

rec. This is obviously related with level-based BM, whose MP has
feasible set is L(f i, li ) (identical but for the hat cut). Each time the oracle is called

at some x in (the projection of) Li , the generated information can be used to cut
away some part of Li , obtaining a smaller Li+1. Indeed, if f (x) > f i(x) then the

corresponding new linearization will at least cut away the point ( x , f i(x) ) ∈ Li ,

while if f (x) < f irec then the hat cut will be lowered; barring blatantly obvious bad
choices of x, at least one of the conditions must happen, and both potentially can.
The idea is then to select x so that as “much as possible” of Li is cut away at each
iteration; intuitively, this corresponds to choosing xi in “the center” of Li . Among
the possible definitions of center of a polyhedron, a widely used one is the analytic
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center (AC): the minimum of the logarithmic barrier function

( xi , vi ) = argmin

⎧
⎨

⎩
− log( f irec − v )−

∑

b∈Bi

log( v − 〈zb, x〉 − αb )

⎫
⎬

⎭
(3.16)

upon which interior point (IP) methods are based. It can be alternatively defined as
the point ( xi , vi ) ∈ Li that maximizes the product of the slacks of the constraints;
using it as the next iterate gives the analytic center CPM (ACCPM). Clearly, this
means that Li must have a nonempty interior and must be bounded; the latter is in
general nontrivial, exactly as in the CPM. Due to the relationships with IP methods,
the (approximate) computation of the AC can be performed by means of extremely
well-understood and efficient methods. Also, the known methods can be adapted
to efficiently update ( xi , vi ) to ( xi+1 , vi+1 ) when a new linearization enters Bi

and/or the hat cut changes, a nontrivial feat because the former is typically no longer
feasible, even less interior [49]. The upshot is that the ACCPM has favourable worst-
case complexity estimates, and usually a regular convergence profile.

As other methods explicitly constructed to optimize the worst-case, however,
the ACCPM is not always very fast in practice. One issue is that, as discussed in
Sect. 3.2.1, when enough information has been accrued fi can be quite accurate
a model (especially if f itself is polyhedral), and therefore its optimum can be
a promising point where to call the oracle; the ACCPM not using it may lead to
missing out on the “fast tail” of the CPM. There are also some specific issues due to
the fact that the AC of a polyhedron depends from its algebraic representation rather
than from its true geometry. For instance, if a linearization ( zb , αb ) is generated
multiple times (which happens in applications), this skews the AC to be “farther”
from that. Conversely, the hat cut v ≤ f i

rec is the only inequality limiting v from
above; as |Bi| grows the influence of the many cuts “pushing up v from below” may
overwhelm that of the hat cut, which therefore tends to become almost active. Both
cases may slow down the convergence, which is based on keeping ( xi , vi ) firmly
in the interior of Li , but specific adaptations can be devised to counter these effects
[30]. Also, the issue of compactness of Li can be faced by the proximal ACCPM
(PACCPM), a “doubly stabilized” version [4] where a standard proximal term a-
la (3.8) (thus introducing a proximal center x̄ and a proximal parameter μ) is added
to (3.16), which is claimed to further improve the performances of the approach.
Anyway, the ACCPM has not been widely adopted; this is likely due, above and
beyond any other reason, to the need of specific sophisticated implementations for
efficiently solving (3.16), which cannot therefore benefit from the regular advances
of general-purpose LP/QP solvers.

It is possible to avoid the need of specialized approaches to solve the MP by
using the Chebychev center (CC) instead, i.e., the center of the largest ball inside
Li . For a generic polyhedron P = { y ∈ R

k : 〈ah, y〉 ≤ bh, h ∈ H }, the CC is
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the optimal solution of the LP

( y , σ ) = argmax { σ : 〈ah, y〉 + ‖ah‖σ ≤ bh h ∈ H } (3.17)

(assuming it has any, which obviously requires P to be compact). When applied to
Li , y = ( x , v ) (Rk = R

n+1) and the hat cut v ≤ f i
rec gives rise to a constraint

of the form v + σ ≤ f i
rec, which is necessarily active in the optimal solution [81,

Proposition 2.1]; this allows to substitute away v for f i
rec − σ , which together with

ν = −σ yields

( xi , νi ) ∈ argmin
{
ν : ν ≥ 〈z

b, x〉 − αb − f irec

1+√‖zb‖2 + 1
b ∈ Bi

}
. (3.18)

The notation is chosen to highlight the similarity with the MP (3.4) of the CPM:
besides translating the right-hand side by f i

rec (which is routinely done, cf. (3.21)),
each constraint is just scaled by a factor depending only on ‖zb‖. Using xi

from (3.18), which already can have a stabilization effect as in the ACCPM, gives
the Chebychev center CPM (C3PM) [58]. The modern take to the approach [81]
views (3.18) as the finitely sampled version of the Elzinga-Moore-Ouorou function

Ψ ( l ) = inf
{
ν : ν ≥ 〈z, x − y〉 + f (y)− l

1+√‖z‖2 + 1
, y ∈ R

n, z ∈ ∂f (y)
}
. (3.19)

Note that in (3.19) x and ν are the variables upon which the minimization is
performed (as in (3.18)), whereas y and z serve to index the infinitely many linear
constraints. The function Ψ ( l ) gives the negative of the radius of the largest sphere
inscribed into L(f, l), and therefore is a merit function for (3.1): Ψ ( l ) ≤ 0, and
Ψ ( l ) = 0 if and only if l = f∗. Therefore, (3.1) is equivalent to finding l such
that Ψ ( l ) = 0. One can then make Ψ a multivariate function by just setting
Ψ (x) = Ψ (f (x)); this could be seen as awkward, were it not that it makes it
possible to add a proximal term, yielding the MP

min
{
ν + μi

2
‖x − x̄i‖2

2 : ν ≥
〈zb, x〉 − αb − f (x̄i )

1+√‖zb‖2 + 1
b ∈ Bi

}
, (3.20)

which has the usual advantage to have a finite solution even if L(f i, f (x̄i )) is

unbounded. Clearly, this is for the C3PM what the PBM is for the CPM; in
other words, (3.20) with an “infinitely large” Bi a-la (3.19) defines the Elzinga-
Moore-Moreau-Yosida regularization, which is to Ψ (x) what the Moreau-Yosida
regularization φμ (cf. (3.9)) is to f . Such a function has minima where Ψ (x) = 0,
and therefore minimizing it is equivalent to (3.1) [81]. It is not surprising, then, that
the proximal C3PM (PC3PM) algorithm that minimizes it is very close to the PBM,
down to the fine details of the solution of the MP (which is indeed identical save
for the scaling factor 1 + √‖zb‖2 + 1), and whose convergence analysis proceeds
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in the same way. Interestingly, a variant of the approach [81, Section 5] exists where
a second LP is solved to compute the current maximum radius of the sphere, and
this is used for tuning the proximal parameter μi , analogously to how the PLBM
solves (3.3) to tune li . This is not incidental: that target radius method can be
interpreted as a PLBM with a specific rule to define li [23].

Hence, both centers-based approaches, like the PLBM, benefit from adding a
second proximal stabilizing device. While double stabilization has been reported to
be superior to the (singly-stabilized) PBM in some cases [25, 81], this is not yet
firmly established for all relevant applications.

3.2.5 Approximate CPM Approaches

All previous stabilization approaches are based on modifying the MP of the
CPM, although in some cases that is also solved to help tuning the stabilization
parameter(s). Another take is to keep the MP unchanged, but deal with its solution
differently.

A first idea is solving (3.3) only approximately, a simple way of doing this
being to employ a subgradient-type method (a “poorman’s version” of the PBM,
cf. Sect. 3.3.1), whose slow convergence and lack of effective stopping criteria
mean that it is typically ran with a fixed number of iterations, reaching only an
approximately optimal solution. This is actually natural enough when (3.1) itself is
the dual of the problem one is actually interested in solving; as this is discussed in
Sect. 3.3.3 we refrain from further delving into the subject now, pointing e.g. to
[90] for details. Perhaps more interesting is the recent resurgence of ACCPM-
type methods under the moniker of “primal-dual column generation technique”
(PDCGT) [51]. The idea is again that of stopping “way before” the optimal solution
of (3.3) is achieved, except doing this with an IP approach rather than with a
subgradient-type one. This exploits the fact that IP methods approximately follow
the central path of the polyhedron, which starts from the AC—exactly xi of (3.16),
if the hat cut is included in the formulation—and goes to the xi of (3.3). Hence,
by construction they produce a sequence of “well centred” iterates in Li , except
in the v-dimension (that is minimized); thus, by stopping the IP method early on—
which is also convenient computationally, as IP iterations are costly—one can obtain
well-centred solution “in between” the AC and the CPM iterate. Since (feasible)
primal-dual IP methods (unlike, say, subgradient-type methods) allow to measure
the quality of the current iterate, the stabilization parameter can just be the gap ε

below which the MP computation is terminated. A large ε produces iterates close to
the AC, while a small ε produces iterates close to that of the standard CPM, which
can be beneficial in the “fast tail” of the CPM when Bi is a “good” model. As in
the ACCPM, however, for efficiency reasons nontrivial warm-starting strategies are
needed each time the IP method is re-started after a new linearization is included in
Bi[50].
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The PDCGT tracks the iterative solution, via an IP method, of the MP from the
AC of Li to the CPM iterate xi of (3.3), and “stops somewhere in the middle”.
The in-out approach (IOA) [11] takes a similar stance in a simpler way, using the
previous iterate—which doubles as a stability center x̄i—in lieu of the AC. That is,
the optimal solution xi of (3.3) is obtained (which does not depend on x̄i), and then
f is computed at x̄i+1 = (1 − λi)x̄i + λixi for some λi ∈ (0, 1]. The “in-out”
moniker derives from the fact that ( x̄i , f (x̄i ) ) is inside epi f , whereas ( xi , vi )
belongs to Li which is an outer approximation, and therefore it is very likely outside
epi f (if not, the algorithm terminates). By taking only a partial step towards xi

from x̄i , the IOA tries to remain inside the epigraph. If this actually happens, then
f (x̄i+1) ≤ f (x̄i )+λiΔi , where as usual Δi = vi−f (x̄i ) < 0; hence, a significant
decrease of f is attained, a-la (3.7). Otherwise, the newly obtained linearization
( zi , αi ) cuts away a part of Li . Clearly, the CPM is the special case where λi = 1
uniformly, and therefore convergence can be proven similarly to the CPM whenever
λi does not become too small; the simple condition λi ≥ λ > 0 is used in [11].
As most other stabilization approaches, the IOA requires ways to dynamically tune
the stabilization parameter λi . The recent large computational study in [83] deals
with these aspects and proposes further variants where the next iterate is chosen
along the deflected direction (xi − x̄i )+βizi , where zi is the subgradient at x̄i . The
IOA method is shown to be competitive with ones using piecewise linear penalty
terms/trust regions (cf. Sect. 3.3.4).

It is worth remarking that the IOA is also related with the version of the PLBM
where the MP of the CPM is solved, prior to (3.14), to compute the lower bound vi

out of which li is obtained. Indeed, the PLBM would obtain the same xi as the IOA
if it was using the (upper, cf. 3.5.2) model f i such that f i(x) = (1−λ)f (x̄i )+λvi
if x = (1−λ)x̄i+λxi , and f i(x) = ∞ otherwise, instead as the cutting-plane one,
in (3.14). To the best of our knowledge, this connection has never been explicitly
made before.

A significant perceived benefit of both the PDCGT and the IOA for practitioners
is that there is no need to modify the MP of the CPM; this may (or may not)
also make them more efficient, since, say, an LP is solved instead of a QP
like (3.8)/(3.14), and the LP does not have the extra bounds of (3.5). Of course,
the approaches also share the issue of the CPM of requiring (3.3) to have a solution
in the first place (e.g., X compact). Hybridizing them with a proximal/trust region
approach, a-la [4], could solve this issue, but would do away with the benefit of
working with an unsullied MP. Yet, in particular for the IP method used by PDCGT,
the addition of a simple quadratic term in the objective function may not make it
any significantly more difficult to solve, and conceivably even less so (cf. e.g. [17]).
To the best of our knowledge, this has not been tested yet.

While the above recount summarizes many of the (simple) BM approaches in
the literature, the discussion is purposely limited to the “primal” description of the
problem. In many relevant applications (and, in fact, in general) the “dual” aspect is
as much, if not more, important. Indeed, (3.1) itself can be a dual problem, whose
aim is to help solving a primal one. Furthermore, the dual description is also useful
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to understand and implement the approaches themselves; this is the subject of the
next section.

3.3 Duality

As everywhere in convex analysis, duality is inescapable: even if one were trying
to purposely avoid it, as we did in the previous section, it would still be there. In
our case, this starts from the fact that every BM solves one (or more) MP, which
is a convex program and therefore it has a dual. Most often, MPs are LPs or QPs,
and therefore their duals are also straightforward to compute. Doing so is actually
beneficial, both because the dual may be simpler to solve, and because it reveals
details of the method that can be important to understand and improve it. Also, in
some applications (3.1) is itself the dual of the problem one is actually interested to
solve, and therefore the dual of the MP (and of (3.1)) is related to it. This section
is devoted to discussing all these issues and their main conceptual and algorithmic
consequences.

3.3.1 Dual Forms of the Master Problem

For discussing the dual forms of the MP, it is useful to introduce the translated
model fB,x(d) = fB(x+d)−f (x) with respect to a point x (typically, the stability
center x̄). This is a model of the translated function fx̄(d) = f (x̄+d)−f (x̄) such
that fx̄(000) = 0, with fB,x̄(000) = 0 if any pair having xb = x̄ belongs to B, as it
usually (but not always) happens. A displacement (cf. (3.9)) d such as fB,x̄(d) < 0
indicates a point x = x̄ + d where fB(x) < f (x̄), a crucial property throughout
all of Sect. 3.2 (e.g., (3.7) and (3.20)). The effect of translation on B is trivial: it
only amounts at replacing the αb—the intercepts of the linearizations in the “default
stability center” 000—with the linearization errors

αb(x̄) = f (x̄)− [ f (xb)+ 〈zb, x̄ − xb〉 ] = αb − 〈zb, x̄〉 + f (x̄) (3.21)

(just apply the definition to fx̄ ). By convexity, αb(x̄) ≥ 0, and

zb ∈ ∂αb(x̄)f (x̄), (3.22)

where the ε-subdifferential ∂εf (x̄) contains all ε-subgradients of f at x̄, i.e., z ∈ R
n

such that f (x) ≥ f (x̄)+〈z, x−x̄〉−ε for all x ∈ R
n. Therefore, αb(x̄) is a measure

of “how close” zb is to be a subgradient of f at x̄. Although the definition (3.21)
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uses the original iterates xb, it is not necessary to store them to re-compute the
linearization errors when x̄ changes to any other x, since they can be updated using
the information transport property

αb(x) = 〈zb, x̄ − x〉 + αb(x̄)+ ( f (x)− f (x̄) ) (3.23)

( just write (3.21) for x and x̄ and simplify out common terms). Since usually x̄

is clear from the context, for the sake of notational simplicity we will use αb as
much as possible. Doing so, the MP of the CPM using the translated model fB,x̄ is
formally identical to (3.4), save that its optimal value need be increased by f (x̄),
to account for the translation in f /fB, to recover the original objective value. This
provides a neat interpretation for its (linear) dual, i.e.,

[−] min

⎧
⎨

⎩

∑

b∈Bi

αbθb :
∑

b∈Bi

zbθb = 000,
∑

b∈Bi

θb = 1, θb ≥ 0 b ∈ Bi

⎫
⎬

⎭
[−f (x̄i )].

(3.24)

Note that ordinarily (3.24) would be a maximization one with coefficients−αb in
the objective function; the change of sign reveals the problem as that of constructing
000 as convex combination of the zb using “as much accurate as possible” information
with respect to the point x̄ (although the latter actually changes nothing in this
problem), also accounting for the fact that the offset has to be changed in sign, too.
This intuitive interpretation can be stated exactly. It is crucial that the dual variables
θb are convex combinators; since this will be quite common, we will denote by Θ
the unitary simplex of appropriate dimension. The fact that θ ∈ Θ implies that

∑

b∈B
zbθb = z(θ) ∈ ∂fα(θ)(x̄), where α(θ) =

∑

b∈B
αbθb. (3.25)

This can be obtained combining ∂εfB(x̄) ⊆ ∂εf (x̄) (use [57, Proposition

XI.1.3.1.(vii)] together with f i ≤ f and f i(x̄) = f (x̄)) and

∂εf
i(x̄) =

⎧
⎨

⎩
z =

∑

b∈Bi

zbθb : θ ∈ Θ,
∑

b∈Bi

αbθb ≤ ε

⎫
⎬

⎭

(see [57, Example XI.5.3]). The dual (3.24) can therefore be described in plain
words as the problem of finding the smallest ε such that 000 ∈ ∂εf i(x̄).



82 A. Frangioni

This interpretation carries over to the PBM: the explicit, translated form of (3.8)
and its (quadratic) dual are, respectively,

( d i , vi ) = argmin

{
v + μi

2
‖d‖2

2 : v ≥ 〈zb, d〉 − αb b ∈ Bi

}
[+f (x̄i )]

(3.26)

θ i = argmin

⎧
⎨

⎩
1

2μi
‖

∑

b∈Bi

zbθb‖2
2 +

∑

b∈Bi

αbθb : θ ∈ Θ
⎫
⎬

⎭
[−f (x̄i )] .

(3.27)

The dual optimal solution θ i gives, via (3.25), the aggregated linearization
(z̄i = z(θ i ) , ᾱi = α(θ i ) ) such that z̄i ∈ ∂ᾱi f (x̄

i ); the complementary slackness
conditions tie that to the optimal solution of (3.26) as

d i = −(1/μi)z̄i , vi = 〈z̄i , d i〉 − ᾱi = −(1/μi)‖z̄i‖2
2 − ᾱi . (3.28)

Thus, the dual problem requires finding an ε-subgradient z̄i , obtained as a convex
combination of previously obtained ones, which has both a small norm and a small
ε, with the relative weight of the two objective functions dictated by μi . In other
words, (3.27) is the augmented Lagrangian of (3.24) with respect to the constraint
requiring zi to be 000; it is therefore not surprising, then, that the former always have
a(n unique) solution, whereas the latter can be empty. Furthermore, the next iterate
is then xi = x̄i + di = x̄i − (1/μi)z̄i , i.e., is obtained by doing a step 1/μi along
the approximated subgradient; this strongly links the PBM with (approximated,
deflected) subgradient-type methods, cf. Sect. 3.3.2 and [19].

The fact that z̄i ∈ ∂ᾱi f (x̄
i ) has several useful consequences. For instance, it

immediately candidates it at being used as an alternative source of approximated
subgradients of f to be used in (3.13) [85]. More importantly, however, it provides
the stopping criterion of the method: z̄i = 000 and ᾱi = 0 imply that x̄i is optimal. In
practice one therefore stops when ‖z̄i‖ and ᾱi are both “small”. One can either use
two distinct thresholds for the two quantities, or join both in a single criterion

‖z̄i‖2
2/μ̄+ ᾱi ≤ ε, (3.29)

where μ̄ is a scaling factor and ε is the final (absolute) accuracy required. This still
requires to properly chose μ̄, but at least μ̄ and μi should be related; this means
that (3.29) can be exploited to on-line tune μi , as discussed below.

However, what the above development mainly reveals is that BM have to properly
balance two contrasting objectives: getting a “small” ‖z̄i‖, and getting a “small” ᾱi .
The CPM goes all the way towards the first, which basically means completely
ignoring the “quality” of the first-order information with respect to x̄i , with the
known negative practical consequences. The opposite approach is well represented
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by the following variant of MP [57, Section XI.2.4]:

min

{

‖
∑

b∈B
zbθb‖2

2 :
∑

b∈B
αbθb ≤ εi , θ ∈ Θ

}

. (3.30)

One can see (3.27) as the Lagrangian relaxation of (3.30) having 1/μi as Lagrangian
multiplier, and therefore this would yield a BM with basically the same relationship
to the PBM as the LBM has, except in the dual. In principle, for any given
εi one could find a μi giving the same solution. The effect of a small εi

in (3.30)—equivalently, a small μi in (3.30)—is therefore to discard all the first-
order information with “large” αb, so that the new iterate only takes into account
information that is “quite accurate” at x̄i . Indeed, (3.30) can be seen as a minor
variant of the MP of ε-descent methods [57, Chapter IX], where Bi is exclusively
used to construct an inner approximation of ∂εi f (x̄

i ); then, (3.30) becomes the
problem of finding the steepest ε-descent direction for the model, i.e., the least-
norm vector in ∂εi f

i(x̄). Choosing the right value of the stabilization parameter

εi—similarly to δi , μi , li , λi , . . . —is crucial, since pure steepest descent methods
have a rather bad practical behaviour even in the smooth case.

The issue with all BM is therefore to find the right value of the stabilization
parameter(s) so as on one hand to include as much as possible non-local information
to avoid the pitfalls of the steepest descent direction, and on the other hand not to
trust the model too far beyond the region where it actually provides a reasonable
depiction of the function’s behaviour. For the PBM, this can be described in terms
of finding the right point along the proximal trajectory, the family of solutions
of (3.8) as a function of μi , which is a piecewise linear function, easily computed
incrementally by solving a sequence of linear programs [45] or by sensitivity
analysis techniques [34]. Exploring the proximal trajectory allows one to figure out
how ‖zi‖ and αi change as μi does, and therefore can be the basis for handling μi .

Although similar relationship between the stabilization parameter and the local-
ity of the used information should hold for other forms of BM, the different shape of
the MP makes them less obvious to see. For reasons to become apparent in due time
we postpone the discussion on the TRBM on Sect. 3.3.4. For the LBM, the explicit
form of (3.14) and its dual are, respectively:

d i ∈ argmin
{
‖d‖2

2/2 : l ≥ 〈zb, d〉 − αb b ∈ Bi
}
, (3.31)

θ i ∈ argmin

⎧
⎨

⎩
‖

∑

b∈Bi

zbθb‖2
2/2+

∑

b∈Bi

(l + αb)θb : θ ≥ 000

⎫
⎬

⎭
, (3.32)

(where αb has to be intended as αb(x̄)). Here again d i = −z(θ i ) holds as in (3.25),
but θ i does not necessarily belong to Θ . Yet, the fact that necessarily d i �= 000 implies
that θ i �= 000 as well; thus, θ i/〈θ i ,u〉 ∈ Θ (u being the vector of all ones). In other
words, d i is still a scaled multiple of a convex combination of the zb, although the
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step size is no longer clearly related to the stabilization parameter. With a “small”
li , (3.32) will have an incentive to only use zb with “small” αb (locally accurate
information), whereas with a “large” li the role of the αb becomes marginal. Also,
note that, despite being a QP, (3.32) can be unbounded below as the objective
function is not necessarily strictly convex (in fact, (3.31) can be empty). Similarly,
the explicit form of the MP (3.15) of the DSBM and its dual are

( d i , vi ) =min

{
v + μi

2
‖d‖2

2 : v ≥ 〈zb, d〉 − αb b ∈ Bi, li ≥ v

}
(3.33)

( θ i , ρi ) ∈ argmin{ 1

2μi
‖

∑

b∈Bi

zbθb‖2
2 +

∑

b∈Bi

αbθb + liρ :
∑

b∈Bi

θb − ρ = 1,

ρ ≥ 0, θb ≥ 0 b ∈ Bi }. (3.34)

By complementary slackness, ρi > 0 implies vi = li : in this case, (3.34)
coincides with (3.32), in that ρi = 〈θ i ,u〉 and therefore the objective function is
identical, save for a constant term and the scaling factorμi on the quadratic term. If,
instead, vi < li then ρi = 0 and (3.34) coincides with (3.27). Thus, ρi can be used
to devise strategies to adjust li and/or μi [25]; this is but one of the many important
uses of dual information, as discussed in the next section.

3.3.2 Algorithmic Uses of Duality

The dual concepts introduced in the previous section have many uses in the
definition and analysis of BM. In particular, if θ i ∈ Θ then the aggregated pair
( z̄i = z(θ i ) , ᾱi = α(θ i ) ) satisfies z̄i ∈ ∂ᾱi f (x̄

i ), and therefore can be inserted
into Bi . This is free for the PBM and the DSBM when ρi = 0; for the LBM, or the
DSBM when ρi > 0, a simple scaling is needed, and an analogous technique can
be used for PC3PM.

The aggregated pair ( z̄i , ᾱi ) has not been obtained at any iterate xi , but this
is not an issue; ᾱi = ᾱi (x̄i ) can be updated via (3.23) when x̄i changes as all the
other ones in Bi . The important result is that ( z̄i , ᾱi ) can actually substitute all
other information: if one were to set Bi+1 = { ( z̄i , ᾱi ) }, then ( d i+1 , vi+1 ) =
( d i , vi ) in (3.26). Of course, one does not really want the solution to remain the
same, in particular if a null step is being performed; this is not so because of the
new information ( zi , αi ) computed by evaluating f (xi ). It is easy to prove that
even if one takes the minimal stance Bi+1 = B̄i = { ( z̄i , ᾱi ) , ( zi , αi ) }—called
the poorman’s bundle—the PBM is still convergent; that is, an infinite sequence of
consecutive null steps will result in ‖z̄i‖ → 0 and ᾱi → 0. The proof is simple and
instructive enough to be worth reporting: it is based on the fact that (3.27) with B̄i
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is the simple problem

min

{
hi(θ) = 1

2μi
‖θ z̄i + (1− θ)zi‖2

2 + θᾱi + (1− θ)αi : θ ∈ [0, 1]
}
,

(3.35)

whose optimal solution has the following closed-form expression:

θ i∗ = min
{

1 , max
{

0 ,
αi − ᾱi − 〈zi , z̄i − zi〉/μi

‖z̄i − zi‖2
2/μ

i

} }
. (3.36)

Since hi(1) is the optimal value of (3.27) at iteration i, one only has to show that
hi(1)− hi(θ i∗) decreases enough. This hinges on the fact that (3.7) not holding can
be rewritten, by means of some simple algebra (cf. (3.28))

Δf i > −mvi = −m
(
−(1/μi)‖z̄i‖2

2 − ᾱi
)
≥ −mhi(1), (3.37)

from which it is easy to derive

hi(1)− hi(θ i∗) ≥
(1−m)hi(1)

2
min

{
1 ,

(1−m)hi(1)

‖z̄i − zi‖2
2/μ

i

}
. (3.38)

By (3.38), the optimal value of (3.27) is decreasing, and it must necessarily converge
to zero during an infinite sequence of consecutive null steps (at least if μi is not
dramatically mishandled, e.g. just kept bounded away from 0).

Thus, the PBM is convergent provided that ( z̄i , ᾱi ) is still a feasible solution
of (3.34) (in the (z, α)-space) at iteration i + 1, and, of course, ( zi , αi ) ∈ Bi+1.
This immediately suggests the two standard forms of bundle management:

1. (compression) ensure that ( z̄i , ᾱi ) ∈ Bi+1;
2. (selection) ensure that b ∈ Bi+1 for all the b ∈ Bi such that θ i,b > 0.

Note that, by Carathéodory’s theorem, there always exist a θ i with at most
n + 1 positive variables; hence, both strategies yield a finite bound over the size
of B, a significant advantage—at least in theory—over the non-stabilized CPM.
Not unexpectedly, the practical side of bundle management is considerably more
nuanced. For once, (3.38) only refers to the “tail” of the algorithm, where x̄i has
reached (very close to) some optimal x∗ and the PBM “only” have to prove this
by driving both ‖z̄i‖ and ᾱi to 0. This all but ignores the “cruise” phase where xi

is closing in to x∗. For that, (3.7) would imply a reasonably fast convergence in
the number of serious steps, with of course the issue of how many null steps occur
between two consecutive serious steps. Even ignoring this, the rate of convergence
implied by (3.38) is sublinear, i.e., rather slow. This is one of the main reasons why
iteration complexity of the PBM is O(1/ε3) [3, 64], even worse than the O(1/ε2)

that any black-box algorithm of this type necessarily has to have. This is so bad
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a convergence rate as to make it completely impractical to obtain anything more
than moderately accurate solutions. Indeed, the PBM with “extreme” aggregation
Bi+1 = B̄i is a minor variant of a deflected subgradient-type method [22]; in
particular, it is closely related [7] with the so-called volume algorithm [8], that
had spurred considerable interest in combinatorial optimization circles at the turn
of the millenium. It had actually been known already [1] that these subgradient-
type methods have—in theory—a working stopping criterion, which is important in
some applications. However, (3.38) reveals how the advantage is only theoretical:
in practice, convergence of subgradient methods is so slow that the only feasible
stopping criterion is a limit on the number of iterations. Although they can still be
attractive in some applications, this is only true under very mild requirements on the
required accuracy (say, 10−3 to 10−4 relative) [44].

It is revealing to contrast this behaviour with that of the CPM as numerically
illustrated in Sect. 3.2.1. There, although the algorithm has an erratic behaviour in
the “cruise” phase (apparently failing to exhibit any convergence at all), the “tail” of
the process is pleasingly fast. This is due to the fact that once enough information
is accrued in B to make fB a good enough model at some optimal solution, the
algorithm can efficiently close in to that. Such accumulation of information in B
is essentially destroyed by extreme aggregation Bi+1 = B̄i: although the process
remains generally convergent, the speed can be as abysmal in practice as (3.38)
predicts. In other words, extreme aggregation can hurt a BM precisely in what could
otherwise be a strong point of its. Similarly, discarding a pair ( zb , αb ) as soon as
θ i,b = 0 may considerably hurt performances; more appropriate (heuristic) rules are
to discard it after that the multiplier has been zero for some (say, 20) consecutive
iterations. In some tests, the “fast tail phase” has proven rather delicate, being
impaired by even mildly aggressive selection rules or by imposing even seemingly
loose limits on the maximum size of B [41]. Hence, at least in some applications it
is better to shoulder the substantial burden of solving MP with a large B than trying
to keep the latter small, as any reduction in MP cost is largely outweighed by the
corresponding decrease of convergence speed.

Unfortunately, all these aspects are only characterized experimentally; all con-
vergence arguments—and efficiency estimates—on PBM hinge on extreme aggre-
gation. The complexity estimate can actually be improved to—the still sublinear—
O(log(1/ε)(1/ε)) with further assumptions on f (in particular, strong coercivity
at the unique optimum) [28], but still the same bound holds for B̄i and for any
arbitrarily large Bi; hence, the theoretical worst-case analysis seems unable to
capture some important aspects of the practical behaviour of BM, (fortunately)
substantially underestimating convergence speed. This is not helped by the fact
that convergence arguments, as discussed in Sect. 3.2.1, deal with the sequence
of serious steps and with sub-sequences of consecutive null steps between two
serious steps as two loosely related processes; after a serious step is declared
the algorithm can basically be restarted from scratch, as the arguments allow to
completely change B then. One recent effort to devise a convergence analysis of
the PBM as an unique process is based on (in principle) avoiding the dichotomic
distinction between serious step and null step [3]. This hinges on the introduction
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of the—apparently weird—merit function ζμ(x) = 2f (x) − φμ(x), with φμ the
Moreau–Yosida regularization (3.9). The only nice properties of ζμ are that ζμ ≥ f

and ζμ(x) = f (x) ⇐⇒ x is optimal for (3.1); otherwise, the function is
nondifferentiable and nonconvex. However, its upper approximation ζB,μ ≥ ζμ
obtained by replacing f with fB in (3.8) is precisely computed by solving (3.27),
comprised the constant term “−f (x̄)” that is usually ignored in the analysis of the
PBM. Once xi is produced by the MP and f (xi ) and zi are computed by the oracle,
it is possible to define the problem of minimizing ζB,μ(x) for x ∈ [x̄i , xi]. Actually,
doing so would require knowing the value of f at all points of the interval; this can
be replaced by an upper model of f on the interval, typically λf (x̄i )+ (1−λ)f (xi )
for x = x(λ) = λx̄i+(1−λ)xi . This allows to define a further upper approximation
of ζB,μ, and x̄i+1 can be easily chosen as the minima of this function on the interval
[x̄i , xi]; doing so one can prove that eventually ζμ(x̄i ) − f (x̄i ) → 0, i.e., global
convergence. This is potentially interesting in that x̄i+1 can be chosen “in between”
x̄i and xi , thereby generalizing the PBM at least insomuch as f (x̄i+1) > f (x̄i ) can
happen. Unfortunately, the approach—at least with the natural upper model—turns
out to actually only do either serious step or null step. Also, the efficiency analysis
still uses arguments very close to (3.36), and therefore it does not seem of being
any better able of properly evaluating the effect of information accrual. Besides, the
practical efficiency of the method does not seem to be much different from that of
the original PBM.

All in all, it can be argued that the currently available convergence and efficiency
analyses fail to properly capture some aspects of the BM that are important
in practice. Yet, the dual viewpoint is crucial for the understanding and the
implementation of BM; this is even more so in the case where (3.1) is itself a dual
problem, as discussed next.

3.3.3 Duality in the Original Problem

One important motivation for (3.1) is the case where

f (x) = 〈x, b〉 +max { 〈c − xA,u〉 : u ∈ U } , (3.39)

i.e., f is the Lagrangian function of the problem

max { 〈c,u〉 : Au = b, u ∈ U } , (3.40)

with respect to the explicit constraints. Customarily U is assumed compact, so that
f is finite-valued; this is mainly to save on details, with extensions discussed in
Sect. 3.4.3. Similarly, linearity of objective function and constraints can be relaxed
with most of the results carrying over, albeit at the cost of considerably more
cumbersome notation [71].



88 A. Frangioni

Evaluating f at some iterate xi requires solving the Lagrangian relaxation (3.39)
of (3.40). Any of its optimal solutions ui gives f (xi ) = 〈c−xiA,ui〉+ 〈xi , b〉 and
zi = b − Aui ; note that this yields αi = 〈zi , x i〉 − f (xi ) = −〈c,ui〉, a suggestive
enough result. Indeed, the dual (3.24) of the MP of the CPM then (heavily exploiting
linearity) becomes

max

⎧
⎨

⎩
c

⎛

⎝
∑

b∈Bi

ubθb

⎞

⎠ : A
⎛

⎝
∑

b∈Bi

ubθb

⎞

⎠ = b, θ ∈ Θ
⎫
⎬

⎭
. (3.41)

Hence, one is in fact considering the convex set UB = conv( {ub : b ∈ B } ), which
would be an inner approximation ofU if the latter were convex, and is solving (3.40)
with U replaced by UB. Clearly, “with an infinitely large B” one would be solving
the convexified relaxation of (3.40)

max { 〈c,u〉 : Au = b, u ∈ conv(U) } , (3.42)

equivalent to (3.40) if U is convex, and in some sense its best possible convex
relaxation otherwise. Then, (3.41) is the inner approximation (a restriction) of (3.42)
corresponding to the finite subset of solutions collected so far. The optimal value
of (3.41) is thus a lower bound on that of (3.42), just as that of (3.3) is a lower
bound on f∗; indeed, the Lagrangian dual (LD) (3.1) of (3.40) is equivalent
to its convexified relaxation (3.42), a celebrated result [71] with many useful
consequences [37]. This allows to give interesting interpretations to the results
of Sect. 3.3.1, starting with the fact that the linearization error (3.21) becomes
αb(x̄) = 〈c − x̄A,u(x̄)〉 − 〈c − x̄A,ub〉, where u(x̄) is (any one of) the optimal
solution of (3.39) with x = x̄; basically, how much sub-optimal is the solution ub

with respect to the optimal one u(x̄) with the Lagrangian costs (sometimes called
reduced costs) c − x̄A corresponding to the current point x̄.

Hence, the LD (3.1) of (3.42)/(3.40)—which is the same, as the LD cannot distin-
guish a problem from its convexified relaxation—provides a way to solve (3.42) by
iteratively accumulating solutions ui ∈ U and explicitly constructing (the relevant
part of) its feasible region. If, say, U is a finite set, then conv(U) is a polyhedron
and only the finite set of its extreme points is required to fully represent it; hence,
the LP (3.41) with a (possibly, very) large B is actually equivalent to (3.42). This
is known as the Dantzig–Wolfe reformulation of (3.42), and it is well known that
solving the LD by the CPM is equivalent to solving (3.42) by the Dantzig–Wolfe
decomposition algorithm [37]. The Dantzig–Wolfe reformulation has “few” (n+ 1)
constraints, but in principle exponentially many variables (columns in the LP);
thus the Dantzig–Wolfe decomposition algorithm is also referred to as column
generation (although the latter concept is in some sense slightly more general) [27].
Stabilizing the CPM is therefore also known as stabilizing the column generation
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[11, 12]. For instance, for the PBM one can rewrite (3.27) as

max

⎧
⎨

⎩

∑

b∈Bi

(cub)θb + 〈x̄, z〉 − 1

2μi
|| z ||22 : A

⎛

⎝
∑

b∈Bi

ubθb

⎞

⎠− b = z, θ ∈ Θ
⎫
⎬

⎭
,

or, even more tellingly, as

max

{
〈c,u〉 + 〈x̄, b − Au〉 − 1

2μi
||Au− b ||22 : u ∈ Ui

}
. (3.43)

(with Ui = UBi ). Thus, the PBM can be read from the viewpoint of (3.42) as an
augmented Lagrangian combined with an inner linearization approach where U is
substituted by its approximationUi . The aggregated pair ( z̄i , ᾱi ) is then associated
with the point

ūi = u(θ i ) ∈ conv(U) with u(θ) =
∑

b∈B
ubθb (3.44)

by z̄i = b−Aūi and ᾱi = 〈c− x̄A,u(x̄)〉− 〈c− x̄A, ūi〉; convergence of the PBM
can be read as the fact that { ūi} → u∗, with the latter optimal to (3.42) (an easy but
instructive connection to formally prove).

It is, however, useful to delve a bit further into the equivalence between (3.1)
and (3.42)—with the f of (3.39)—as doing so requires to introduce useful concepts,
primarily the Fenchel’s conjugate f ∗(z) = supx{ 〈z, x〉−f (x) } of f . The function
f ∗ is convex by definition, even if f is not, and closed under very mild assumptions
on f . The bi-conjugate f ∗∗ is the (closed) convex envelope of f , i.e., the smallest
(in set-inclusion sense) closed convex function g such that epi g ⊇ epi f ; clearly,
if f is closed convex then f ∗∗ = f . Geometrically, f ∗ characterizes all the affine
functions supporting epi f , i.e., basically its (approximate) subgradients; indeed, a
fundamental property of f ∗ is

z ∈ ∂εf (x)⇐⇒ x ∈ ∂εf ∗(z)⇐⇒ f (x)+ f ∗(z) ≤ 〈z, x〉 + ε (3.45)

for each ε ≥ 0 [57, Proposition XI.1.2.1]. Coupled with Fenchel’s inequality
〈z, x〉 ≤ f (x) + f ∗(z) for all z, x, this gives 〈z, x〉 = f (x) + f ∗(z) ⇐⇒
z ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∗(z); the immediate consequence is that αb =
〈zb, xb〉 − f (xb) = f ∗(zb) (= −〈c,ub〉 for (3.39)). Also, since (f (· + x̄))∗(z) =
f ∗(z)− 〈z, x̄〉 and (f (·)− v)∗(z) = f ∗(z)+ v, one has for the translated function
fx̄(d) = f (x̄ + d)− f (x̄) that f ∗̄x (z) = f ∗(z)− 〈z, x〉 + f (x̄) (≥ 0 by Fenchel’s
inequality). Hence, αb(x̄) = αb − 〈zb, x̄〉 + f (x̄) = f ∗̄x (zb) (cf. (3.21)). Thus,
clearly all dual problems of Sect. 3.3.1 are dealing with f ∗/f ∗̄x , but when f is (3.39)
they are also dealing with (3.42). The link is made explicit by the (opposite of the)
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value function of (3.42)

ν(z) = −max { 〈c,u〉 : b − Au = z, u ∈ conv(U) } , (3.46)

in fact

ν∗(x) = max { 〈z, x〉 +max { 〈c,u〉 : b − Au = z, u ∈ conv(U) }}
= max { 〈c,u〉 + 〈x, b − Au〉 : u ∈ conv(U) } = f (x).

With the obvious f ∗(000) = −f∗, this confirms that the LD (3.1) of (3.40) is
equivalent to its convexified relaxation (3.42): ν(000) = −f∗, with the change in sign
only due to the insistence on minimization typical of convex optimization. Linearity
of the objective function is by no means a crucial ingredient: with a generic objective
function c(u) in (3.40), the LD (3.1) is equivalent to max { c̃(u) : Au = b }, where
c̃ = (c + ıU)∗∗. The result easily extends to inequality constraints Au ≤ b,
yielding sign constraints x ≥ 0 in (3.1); the generic nonlinear case A(u) ≤ b

requires considerably more complex notation, even in the convex case, although the
results are in the same vein [71].

Thus, the conjugate f ∗ allows to express in a general way primal/dual relation-
ships that would seem to be specific of the Lagrangian case (3.39). In particular, one
can consider the (apparently weird) problem

min{ f ∗(z) : z = 000 } (3.47)

as the dual of (3.1). This is quite a reasonable dual: its optimal value is (−) f∗, and
it deals with dual objects, as z ∈ domf ∗ if and only if z ∈ ∂f (x) for some point
x (cf. (3.45)). Furthermore, the Lagrangian relaxation of (3.47) with respect to the
constraints “z = 000”, using x̄ as Lagrangian multipliers, is

inf{ f ∗(z)− 〈z, x̄〉 } = (f ∗)∗(x̄) = f (x̄). (3.48)

Thus, the minimization in (3.48) is the equivalent to the maximization in (3.39):
a Lagrangian relaxation that has to be solved to find the optimum z (respectively
u), which is (provides) the subgradient. All interpretation of, say, the PBM as an
inner linearization approach, where the computation of f (xi ) provides a new point
ui that enlarges UB, can be recast in terms of generating an inner approximation
of epif ∗, without a need for any special structure in f . This is described in some
detail in the next section, in which conjugacy arguments—in particular Fenchel’s
duality—are used to devise more general stabilization devices than the proximal and
TR ones. Yet, it is clear that the dual interpretation of BM is particularly useful for
their applications to Lagrangian optimization (cf. [5, 6, 11, 12, 15, 16, 20, 31, 33, 38–
41, 43, 46, 56, 67, 73, 83, 89, 91, 95] among the many others), because then generated
dual information has a direct and crucial algorithmic use (e.g., [8, 9, 14, 21, 29, 32,
37, 42]).
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3.3.4 Generalized Stabilization

As the previous section showed, devising and analysing BM requires—or at least
significantly benefits from—considering the dual aspects of all involved concepts,
starting from the MP. This would seem to make it harder to use less simple
stabilizing terms, like TR constraints in any norm that is notL1,L2 orL∞ or penalty
functions that are not either piecewise linear or convex quadratic, just because then
the dual of the MP cannot be obtained with familiar LP or QP duality. Yet, it is
intuitively clear that these should in principle work as well (if not better) than the
simple ones. Furthermore, there can be good reasons for wanting to use different
stabilizing terms, which requires being able to express dual relationships beyond
LP and QP. Being this a convex setting Lagrangian duality would seem to be the
natural recourse, but its max/min form is more cumbersome than closed-form duals
with only dual variables. The alternative is Fenchel’s duality, mirably expressed by

inf
x
{ f1(x)+ f2(x) } = − inf

z
{ f ∗1 (z)+ f ∗2 (−z) }, (3.49)

which holds under mild assumptions (f1 and f2 closed convex and the intersection
of their domains nonempty). Note the “−z”, which comes from the standard form
of the conjugate of a sum

( f1(·)+ f2(·) )∗(000) = inf
z1,z2

{ f ∗1 (z1)+ f ∗2 (−z2) : z1 + z2 = 000 }

and that could not be noticed in Sect. 3.3.1 because the stabilizing terms are radially
symmetric (‖z‖ = ‖−z‖). Thus, one may consider the generalized BM (GBM) with
a generalized stabilization term Dμ [36], i.e., the MP

d i ∈ argmin
{
f i(x̄ + d)+Dμi (d)

}
, (3.50)

and immediately derive its (Fenchel’s) dual

z̄i ∈ argmin
{
(f i)∗(z)+ 〈z, x̄〉 +D∗

μi
(−z)

}
. (3.51)

This becomes more familiar when using fB = f̌B , as for (3.2) one has

f̌ ∗B(z) = min

{
∑

b∈B
αbθb :

∑

b∈B
zbθb = z, θ ∈ Θ

}

(3.52)

which, with (say) Dμ(d) = μ‖d‖2
2/2 ≡ D∗μ(z) = ‖z‖2

2/(2μ) immediately
reproduces (3.27). For the Lagrangian case (3.39), (3.51) becomes (cf. (3.43))

ūi ∈ argmin
{
〈c,u〉 + 〈x̄, b − Au〉 −D∗

μi
( Au− b ) : u ∈ Ui

}
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(again, note the change of sign in z = b − Au), or, in “explicit form”

min

⎧
⎨

⎩

∑

b∈Bi

(cub)θb + 〈x̄, z〉 +D∗
μi
(−z ) : A

⎛

⎝
∑

b∈Bi

ubθb

⎞

⎠− b = z, θ ∈ Θ
⎫
⎬

⎭
;

a generalized augmented Lagrangian of (3.42), with D∗μ in the second-order term.
Conjugacy arguments allow to derive primal-dual relationships that do not depend
on the choice of Dμ (or fB, for that matter), such as

−z̄i ∈ ∂Dμi (d
i ) and d i ∈ ∂D∗

μi
(−z̄i );

z̄i ∈ ∂f i(x̄ + d i ) and x̄ + d i ∈ ∂(f i)∗(z̄i );
f i(x̄ + d i )+ (f i)∗(z̄i ) = 〈z̄i , x̄ + d i〉 and Dμi (d

i )+D∗
μi
(−z̄i ) = −〈z̄i , d i〉.

These generalize most of the relationships that are needed to prove convergence of
a PRB; for instance, one can prove the suggestive

Δi = f i(x̄ + d i )− f (x̄) = (f i)∗(z̄i )− f ∗(zi )+ 〈zi − z̄i , x̄ + d i〉

(with zi ∈ ∂f (xi = x̄ + d i )), which gives a dual interpretation to the serious
step condition (3.7). Note, however, that not all the relevant relationships of the
PBM generalize; most notably, d i = −z̄i/μi is not true in general, which prevents
using some important arguments (basically, a GBM is not necessarily a subgradient-
type method in the same was as the PBM is). Yet, convergence can still be proven,
provided of course thatDμ has the right properties; those proposed in [36] are nicely
symmetric with respect to the conjugacy operation:

1. for all μ > 0, Dμ(000) = 0 and 000 ∈ ∂Dμ(000) ≡ D∗μ(000) = 0 and 000 ∈ ∂D∗μ(000);
2. for all μ > 0 and ε > 0, levε Dμ is compact and 0 ∈ int levε Dμ ≡

levε D∗μ is compact and 0 ∈ int levε D∗μ;
3. for all μ′ ≥ μ > 0, Dμ ≤ Dμ′ ≡ D∗μ ≥ D∗

μ′ ;
4. limμ→0 Dμ(d) = 0 for all d ≡ for all ε > 0, limμ→0 inf{D∗μ(z) : ‖z‖ ≥

ε} = +∞.

That is, both Dμ and D∗μ must be non-negative and have bounded level sets with
nonempty interior. Of course, some properties are only symmetric insomuch as it
is allowed by conjugacy: Dμ has to be increasing in μ and converge pointwise to
the constant zero function as μ → 0, which means that D∗μ has to be decreasing
in μ and converge “uniformly” to the indicator function of {000 } as μ → 0.
That is, Dμ becomes less and less stabilizing as μ → 0: (3.50) becomes more
and more like (3.3), hence (3.51) becomes more and more like (3.24) (z̄i is
constrained to remain closer and closer to 000). It is easy to see that these properties
are respected both by the proximal and by the TR stabilization; in particular
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Dμ(d) = ı{ d : ‖d‖1≤1/μ } ≡ D∗μ(z) = ‖z‖∞/μ and Dμ(d) = ı{ d : ‖d‖∞≤1/μ } ≡
D∗μ(z) = ‖z‖1/μ (if a norm ‖·‖ is used in the primal, then its dual norm ‖·‖∗
appears in the dual). Thus, (3.50)/(3.51) cover both the TRBM and the PBM, as
well as with stabilizing terms that behave both as a distance and as the indicator
of a ball. Also, one can have a TR in the dual, such as D∗μ(z) = ı{ z : ‖z‖∞≤μ } ≡
Dμ(d) = μ‖z‖1, a setting not really considered so far.

The above properties are the basic ones, but other assumptions are required
to closely reproduce the convergence properties of the PBM. For instance, Dμ

strongly coercive (lim‖d‖→∞Dμ(d)/‖d‖ = +∞), which is equivalent D∗μ finite
everywhere, ensures that (3.50) is always bounded below/(3.51) is nonempty. The
assumption can be avoided if boundedness is guaranteed in other ways, the simplest
one being that a lower bound f ≤ f∗ is known and explicitly inserted in Bi via

the pair (000 , f (x̄i ) − f ); in the case of (3.39) this is equivalent to inserting in

Bi a u ∈ conv(U) such that Au = b. Also, smoothness in 000 is important for the
properties of the algorithm, although not symmetrically between Dμ and D∗μ. In
particular, ∇Dμ(000) = 000 (which is equivalent to strict convexity of D∗μ in 000) ensures

that di = 000 implies that x̄ is optimal for (3.1); if Dμ is not differentiable in 000
the algorithm is not guaranteed to converge to an optimum of the problem, and
this has to be ensured by forcing μi → 0 along iterations. Instead, smoothness of
D∗μ in 000 (which is equivalent to strict convexity of Dμ in 000) is crucial for proving
convergence under “extreme aggregation”, directly generalizing (3.36); the results
can actually be strengthened somewhat by requiring that the dependency on μ is
“simple”, i.e., that Dμ = μD ≡ D∗μ = D∗/μ for some fixed D/D∗ with the above
properties. With a nonsmoothD∗μ, in principle information cannot be discarded from
B like for the CPM. Practical approaches to discard some information exist—it is
always possible to entirely reset B at each serious step—but no finite bound on |B|
can be established (which may not be too much of an issue in practice due to the
possibly dire consequences of too aggressive removals, cf. Sect. 3.3.1).

All in all, (more or less strong) convergence results are available for many choices
of Dμ/D∗μ, potentially allowing to adapt stabilization to the application at hand. For
instance, piecewise linear stabilizing terms with “few” pieces can be used to try to
obtain a stabilization effect close to that of the PBM without paying the price of a
quadratic MP [12]. Often the computational results show that the PBM has better
practical convergence behaviour, and therefore is preferable [46]; however, the cost
of making the MP a QP can be so high that piecewise linear functions result in better
running times [40, 41]. Arguably, Fenchel’s duality would not have been necessary
to use piecewise linear functions, as the corresponding MP are LP ones; however,
other forms of nonlinear stabilization have been proposed. For instance, Bregman
functions [18] with the formDx̄(d) = ψ(x̄+d)−ψ(x̄)−〈∇ψ(x̄), d〉with ψ fixed,
strictly convex, differentiable and with compact level sets, can be used to implicitly
express the set X via a barrier-like approach, thus possibly making the MP easier
to solve [63]. Also, other stabilization terms have been proposed in the context of
solving (3.42) that could be adapted for GBM, such as the smooth approximations
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of ‖·‖1 [84] (below, left) and of ‖·‖∞/μ [52] (below, right, for z ≥ 0)

D∗μ(z) =
∑

i

{
z2
i /(2μ), if − μ ≤ zi ≤ μ

|zi | − μ
2 , otherwise

, D∗μ(z) = ln
∑

i

ezi/μ.

Thus, quite a variety of stabilization terms can be employed, offering a vast trade-
off between the theoretical/practical convergence properties of the BM and the cost
of the MP. We also mention that a somehow more general approach is proposed in
[80], where BM are interpreted, a-la (3.47), as the problem of computing f ∗(000).
The information provided by the oracle is used to construct the epigraph of f ∗B , an
inner approximation of the epigraph of f ∗ (cf. (3.52)), and a MP is solved that finds
the closest point of epif ∗B to (000 , 0 ) under a general norm ‖ · ‖. The GBM can
be interpreted as an instance of this process where the norm is separable between
the subgradient component and the linearization error component, i.e., ‖( z , α )‖ =
D∗( z ) + | α |, whereas the approach of [80] does not require this assumption. On
the other hand, several important practical aspects of the method are not extensively
discussed, and there is no computational indication that using more complex norms
can significantly improve performances.

We finish this section mentioning that a generalized DSBM (cf. Sect. 3.2.3)
should be possible with

min
{
f i(x̄ + d)+Dμi (d) : f i(x̄ + d) ≤ li

}
. (3.53)

Somewhat surprisingly, to derive a meaningful dual it is simpler to start with
Lagrangian duality (as opposed to Fenchel’s)

max
ρ≥0

{−ρli +min
{ {

(1+ ρ)f i(x̄ + d)+Dμi (d)
} }

= [−] min
ρ≥0

{
ρli + (1+ ρ)(f i)∗(z/(1+ ρ))+ 〈z, x̄〉 +D∗

μi
(−z)

}
,

although in the second step one does apply (3.50)/(3.51) (together with standard
properties of the conjugate, among which (γf (·))∗(z) = γf ∗(z/γ ) for γ > 0).
Then, using (3.2)/(3.52) for fB = f̌B one gets

min{ρli + (1+ ρ)
∑

b∈B
αbθb + 〈z, x̄〉 +D∗

μi
(−z) :

∑

b∈B
zbθb = z/(1+ ρ),

θ ∈ Θ, λ ≥ 0},
that via the (nonlinear) rescaling θ ← (1+ ρ)θ finally becomes

min {ρli +
∑

b∈B
αbθb + 〈

∑

b∈B
zbθb, x̄〉 +D∗

μi
(−

∑

b∈B
zbθb ) :

∑

b∈B
θb = 1+ ρ,

θ ≥ 000, ρ ≥ 0},
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readily generalizing (3.34). To the best of our knowledge, this derivation is new;
convergence of the GDSBM has not yet been firmly established, although it should
follow easily enough by combining [36] with [25].

One property of all the stabilizing approaches discussed so far is that they
are completely independent on the specific choice of f , comprised the fact that
is has, or not, the form (3.39). While this is some sense an advantage, it also
means that the stabilizing terms are not, on the outset, capable of exploiting any
available information about the form of f . However, besides the stabilizing term
Dμ, (3.50)/(3.51) also depend on the model fB. So far we have mostly assumed

the use of the cutting-plane model f̌B, but most of the convergence arguments only
require very few specific properties from fB [36]. Indeed, the model can be chosen
to exploit specific properties of f , as discussed in the next section.

3.4 Alternative Models

This section is devoted to improvements of the BM that pertain to using “better
models” of f . Since all these are, in essence, orthogonal to the details of the
stabilization, we will only present them in the context of the standard PBM (which is
where, actually, they have for the most part been discussed), with the understanding
that they could be applied to the other forms with some (possibly not entirely trivial)
adjustment of the convergence analysis.

3.4.1 Quadratic Models

Following well-established approaches in nonlinear optimization, the first idea that
would likely spring to mind is to use quadratic models of f , in order to capture its
second-order behaviour. As already remarked, this is possible using sophisticated
tools that are beyond the scope of this treatment (cf. e.g. (3.11)). Yet, some attempts
have used simpler techniques that are based on the concept that fB should not

“deviate too much” from f̌B .
One such model is the piecewise quadratic [2]

f̆B = max
{
qb(x) = f (xb)+ 〈zb, x − xb〉 + εb‖x − xb‖2

2/2 : b ∈ B
}
,

i.e., the pointwise maximum of the quadratic expansions qb of f generated at each
xb; note that, unlike for f̌ , this clearly requires keeping the xb in B. This is in
general not a valid lower model of f , unless all εb = 0 in which case it falls back
to f̌B; yet, it is easy to compute “small enough” εb such that f̆B(xb) ≤ f (xb) for
all xb, i.e., the model never knowingly overestimates f . Actually, it is sufficient to
guarantee the property only for a subset of the previous iterates, possibly only the
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current stability center x̄. The model can be translated with respect to x̄, although
this now requires

ᾰb = αb − εb‖x̄ − xb‖2
2/2 and z̆b = zv + εb(x̄ − xb),

which allows to define the “doubly stabilized” MP

min
{
v + μi‖d‖2

2/2 : v ≥ εb‖d‖2/2+ 〈z̆b, d〉 − ᾰb b ∈ Bi, γ i‖d‖2
2 ≤ 2

}

having both a proximal term weighted with μi and a TR one governed by γ i . The
rationale for the TR in theL2-norm is that the problem is a quadratically constrained
QP anyway, so there is no significant penalty in an extra quadratic constraint. The
MP is actually a second-order cone program (SOCP); this is more easily seen
computing its dual

min
{ ‖∑b∈Bi z̆

bθb‖2
2

2(μi + ρ +∑
b∈Bi θbεb)

+
∑

b∈Bi

ᾰbθb + ρ

γ i
: θ ∈ Θ , ρ ≥ 0

}
,

where the apparently nasty fractional term in the objective function can be trans-
formed into a rotated SOCP constraint with a well-known reformulation trick.
Hence, the MP can be solved with off-the-shelf IP methods, at a cost comparable
with a convex QP of the same size. All this allows to define a convergent BM,
whose two stability parameters can be quite freely managed: indeed, as soon as at
least one εb is strictly positive, one can even take μi = ρi = 0, as the quadratic
model is “self stabilizing”. The convergence arguments follow the standard pattern
of BM; the only nontrivial step is aggregation, as together with z̄i and ᾱi one must
also compute a x̄i to match, which requires some appropriate but overall simple
computation. While the results seemed to show that this model was in fact capable
of improving practical performances with respect to a standard PBM, this happened
only with functions f that had the same piecewise quadratic nature as f̆B .

Another recent take on the approach [56] is different in two key aspects:

1. it insists in having only one quadratic term by modifying the proximal term
in (3.26) into dT H id , a-la (3.11);

2. it insists on not underestimating the cutting-plane model too much.

The basic formula can be written in a “poorman’s” setting (cf. Sect. 3.3.2),
where one has the aggregated linearization ( z̄i , ᾱi ) and just one other linearization
( zi , αi ); then,

〈z̄i , d〉 − ᾱi + 1
2dT Hd ≥ 〈zi , d〉 − αi − ε for all d ∈ R

n ≡
H , 1

2(αi−ᾱi+ε) ( z̄
i − zi )( z̄i − zi )T . (3.54)
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Note that ᾱi ≤ αi + ε must hold for (3.54) to have any chance to hold (set d = 000),
i.e., the scaling term must be positive; apart from that ε is “free” and can serve as
a stabilization parameter. One can then build a semidefinite program (SDP) with as
many semidefinite constraints of the form (3.54) as there are elements in B to find
the least-curvature H that ensures that 〈z̄i , d〉 − ᾱi + 1

2dT Hd ≥ f̌ i (d) − ε; this
can be shown in simple cases (f convex quadratic) to be reasonably related with the
Hessian. Because solving the SDP at each step would be too costly, an approximate
solution can be obtained by computing the singular value decomposition of an
appropriate matrix (think that with z̄i − zb as columns) and taking “a few” of
the columns corresponding to the largest singular values. This has been shown to
be quite successful in improving practical convergence speed of the BM in one
application.

Albeit interesting in their own right, the previous two models are “general-
purpose”: they do not make any assumption on f , and therefore arguably cannot
exploit any of its specific properties. In the next sections we will instead describe
models that exploit different forms of structure in f .

3.4.2 Disaggregate Models

Perhaps the most frequent structure in f is the sum one, i.e., f (x) = ∑
k∈K fk(x)

where K is a finite index set. A prolific source of this kind of problems is the
Lagrangian one, in which U in (3.40)—or, for that matter, conv(U) in (3.42)—is
a Cartesian product: U =⊕

k∈K Uk , so that

max

{
∑

k∈K
〈ck,uk〉 :

∑

k∈K
Akuk = b, uk ∈ Uk k ∈ K

}

(3.55)

for u = [uk ]k∈K, and therefore

f (x) = 〈x, b〉 +
∑

k∈K
[ fk(x) = max { 〈ck − xAk,uk〉 : uk ∈ Uk } ] . (3.56)

For each k ∈ K, any optimal solution uk(x) of (3.56) provides the individual
function value fk(x) = 〈ck − xAk,uk(x)〉 and the individual subgradient zk =
−Akuk(x) ∈ ∂fk(x). We immediately remark that there is a small (and intended)
inconsistency between (3.56) and the original definition, in that in the former there
actually are |K|+1 components of the sum, comprised the linear one 〈x, b〉; clearly
such a term can (and should) be dealt with in a specific way, as discussed in details in
Sect. 3.4.3. Disregarding this point for the time being, one could obviously define the
aggregated function value and subgradient out of the individual fk(x) and zk , and
then fall back to the previously developed theory. However, there is clearly another
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alternative: defining individual models for each component, say the cutting-plane
ones

f̌ ik (x) = max
{
〈zbk, x〉 − αbk : b ∈ Bi

k

}
≤ fk(x) (3.57)

depending on individual bundles Bi
k = { (zbk, αbk ) = 〈zbk, xb〉 − fk(x

b) = f ∗k (zbk) }.
We can still refer to B = [Bk ]k∈K as “the bundle”, and still avoid to distinguish
between the untranslated αbk and the linearization errors αbk (x̄) = αbk − 〈zbk, x̄〉 +
fk(x̄) (cf. (3.21)) unless strictly necessary. It is then immediate to define the
disaggregate master problem

min

{

〈b, d〉 +
∑

k∈K
vk + μi

2
‖d‖2

2 : vk ≥ 〈zbk, d〉 − αbk , b ∈ Bi
k k ∈ K

}

(3.58)

using the disaggregate model instead of the original (aggregated) one. It is quite
obvious that, for the same set of information produced by evaluating f (all the
fk), (3.58) provides a better representation of f than (3.26). This is clearer when
comparing the dual of (3.58)

min

⎧
⎪⎨

⎪⎩

1

2μi
‖b +

∑

k∈K

∑

b∈Bi
k

zbkθ
b
k ‖2

2 +
∑

k∈K

∑

b∈Bi
k

αbk θ
b
k : θk ∈ Θk k ∈ K

⎫
⎪⎬

⎪⎭
(3.59)

with (3.27): in fact, its is obvious that the latter is the restriction of the former
obtained by imposing that all the multipliers θbk corresponding to all the individual
subgradients attained at the same iterate b have the same value. Intuitively, “gluing
together” the individual zbk into one aggregated zb just because they have happened
to have been produced at the same iteration is rather arbitrary, as they are in
fact independent information about independent functions. Analogously, individual
aggregated pairs ( z̄ik , ᾱ

i
k ) can be obtained out of the solutions θ ik of (3.59), and

independently inserted in each Bi
k; despite all them having been obtained with

multipliers corresponding to one specific MP solution, there is no reason why two
different pairs should be later on constrained to each other. Nowhere this is clearer
than in the Lagrangian case (3.56): in this case (3.59) is equivalent to

[〈x̄, b〉+ ] (3.60)

max

{
∑

k∈K
〈ck − x̄Ak,uk〉 − 1

2μi
‖
∑

k∈K
Akuk − b‖2

2 : uk ∈ Ui
k k ∈ K

}

.

In other words, the feasible region of (3.60) is a Cartesian product of convex hulls,
whereas that of the aggregated (3.43) is the convex hull of a Cartesian product: it is
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very easy to see that the former set (for, ideally, the same Bi
k) is much larger than the

latter one. All this justifies why disaggregate BM using (3.57) typically converge
much faster than aggregated ones, all the rest being equal [6, 14, 41]; indeed,
convergence happens when enough information has been accrued that allows to
express the optimal solution, and disaggregate BM make much better use of the
gathered information.

Of course, there is a negative aspect in using disaggregate models: the master
problems are larger (roughly, “by a factor of |K|”), and therefore potentially
(much) more costly to solve. Therefore, the trade-off between aggregated and
disaggregate BM strongly depends on the relative weight of the MP cost and of the
fk computation cost. Often, the increase in convergence speed obtained by using
a disaggregate model is worth the extra MP cost. Indeed, by converging much
faster the disaggregate BM can actually end up collecting less information that
the aggregated one (while making much better use of it), so that the disaggregate
MP simply does not have the time to become too large. However, if the subprob-
lems (3.56) are easy but “many”, the cost of the disaggregate MP can become by far
the computational bottleneck of the algorithm.

In order to face this issue, an intuitively promising approach is partial aggrega-
tion. That is, one may partition K = K1 ∪ K2 ∪ . . . ∪ Kh into h disjoint subsets,
and then define the corresponding partly aggregated functions, subgradients and
linearization errors. This is clearly possible, with the size of the MP now increasing
“only” of a factor of h, at the cost of some (but less than in the fully aggregated
case) arbitrary information aggregation. It is still unclear how to choose h, and
how to distribute the different components across the partition. Some experiments
[82, Chapter 2] seemed to show a potential for the approach, in that a small h
was sufficient to significantly increases convergence speed with respect to the fully
aggregated case, becoming comparable to that of the fully disaggregate case as a
fraction of the latter’s MP cost. However, even within the same class of problems
the trade-off was very dependent on the specific type of instance, and it seemed
hard to devise dependable guidelines. In this line of approach, it might be useful
if the partition could be dynamic; this is indeed possible, as advocated in [96]. By
arbitrarily choosing any Z ⊆ K one may insert in (3.58) partly aggregated cuts

∑

k∈Z
vk ≥ 〈

∑

k∈Z
zik, d〉 −

∑

k∈Z
αik. (3.61)

Recent results [56] indicate that such an approach may be promising, in particular by
using disaggregate cuts for a small set of “critical” components (whose subgradients
seem to vary rapidly, thus exhibiting nondifferentiable behaviour), while all the
remaining ones are aggregated into one component. A specific application where
this technique makes especially sense is two-stage stochastic programs, since there
a partly aggregated cut has a clear meaning in terms of sub-sampled estimate of the
true subgradient (cf. Sect. 3.5.2). It is not surprising, then, that good results have
been reported, e.g. with a level-type BM [101]. For problems with fixed recourse,
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aggregation rules can be defined that benefit from information about the function
and exploit ideas already presented in the stochastic programming community, again
with a significant practical effect [98]. Yet, the implementation details required to
achieve good results seem to be rather dependent on the specific application; this
therefore remains an interesting, but still wide open, research line.

3.4.3 Constraints and Easy Components

The sum-funcion structure paves the way for further exploiting the specific structure
of some of the components. We have actually already seen this happening: the func-
tion (3.56) has the linear component f0(x) = 〈x, b〉, which in the MP (3.58)/(3.60)
is not treated like the other fk , but rather “directly inserted in the model”. The
principle is readily applicable each time one of the components has the appropriate
structure. That is, assume for simplicity that K = { 0 , 1}, where f1 is produced by
a standard oracle, whereas f0 is “easy” in the sense that it can be directly written
into the MP:

min

{
f0(x̄ + d)+ v1 + μi

2
‖d‖2

2 : v1 ≥ 〈zb1, d〉 − αb1 b ∈ Bi
1

}
. (3.62)

This is how f0(x) = 〈b, x〉 was dealt with in (3.58), and it is also the standard
treatment of constraints in BM: with f 0 = ıX, this amounts to adding the constraints
“x̄ + d ∈ X” to (3.8). Obviously, the general assumption is that (3.62) is not much
more costly to solve than (3.58), which happens e.g. whenX is defined by a “small”
set of “simple” (say, linear or conic) constraints, as in the original (3.3). Clearly,
a BM using (3.62) necessarily has to work if a BM using (3.58) was: the MP has
better (indeed, “perfect”) knowledge of f0. Extension to any number of “easy” and
“standard” component is immediate.

It is now appropriate to remark that constraints can be dealt with dynamically,
so that a polyhedron X represented by a very large (say, exponential) number
of constraints can still be used under the standard assumption that an efficient
separation algorithm exist. A revealing case is that of a Lagrangian component over
a non-compact polyhedron, i.e.,

f0(x) = max{ 〈c0 − xA0,u0〉 : Ū0u0 ≤ ū0 } (3.63)

with Ū0/ū0 matrix/vector of appropriate dimension, for which f0(x
i ) = +∞ can

happen. This means that one ray ωi of the polyhedron exists (and is identified by
whatever LP solver is used to compute f0) that is also an ascent direction, i.e.,
Ū0ω

i ≤ 0 and 〈c0 − xiA0, ω
i〉 > 0. Obviously, the very same ray will prove

unboundedness for any other x such that 〈c0 − xA0, ω
i〉 > 0; in other words, ωi

defines the constraint 〈c0, ω
i〉 ≤ 〈x, A0ω

i〉 that must be satisfied by all points
in the domain of f0. Thus, each time f0(x

i ) = +∞ a new constraint can be
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added to the MP that “cuts away” xi , thereby necessarily changing its solution.
Constraints are in fact a slightly different form of linearization describing epi f0,
which we can call “vertical” since the coefficient of v0 is 0, and can be added to Bi

0
instead of the standard ones; this only means that the corresponding dual variables
θb in (3.27) do not participate to (have 0 coefficient in) the simplex constraint.
Assuming that the oracle only reports a finite set of rays (say, the extreme ones)
and that vertical linearizations are never removed from B0, then f0(x

i ) = +∞
can only happen a finite number of times, and the BM is still provably convergent.
Similarly, constraints describing any polyhedronX for which a separation algorithm
is available can be dynamically added to the MP whenever xi /∈ X.

However, vertical linearizations/constraints are in some sense “more delicate”:
removing or aggregating them is not as easy as with subgradients. Removal is
possible with the usual rules—as soon as a serious step is performed, Bi can be
entirely reset of either type of linearization—but no finite bound on |B| can be
established. Furthermore, all this only works under the assumption that the set of
constraints is finite in the first place. It is easy to see where the catch is by thinking
to (3.1) in which f is “simple” (say, linear) and X is given by a separation oracle
only reporting vertical linearizations. If X is not a polyhedron, the CPM would
still work—actually, this is the very setting in which it has been defined [60]—but
it is completely possible that f (xi ) = ∞ for all iterates xi . While this is not a
problem for the CPM, it is typically so for a BM, which is based on tests like (3.7)
to manage the stabilization center. Hence, either some mechanism is required that
ensures that the BM obtains f (xi ) < ∞ “frequently enough”, or some alternative
test has to be employed. Customarily, BM dealing with “complicated” constraints
assume X = { x ∈ R

n : c(x) ≤ 0 }, where both f and c are finite-valued; hence
this does not exactly cover the previous example. Note that c(·) can w.l.o.g. be taken
as a scalar function, since any finite set of convex constraints can be turned into one
by taking their maximum, which is still convex (but nondifferentiable). Finiteness of
c(·) is crucial to implement infeasible BM, which can make good use of unfeasible
iterates c(xi ) > 0; the required theoretical tool is the improvement function hx̄(x) =
max{ f (x)−f (x̄) , c(x) } such that x̄ solves the constrained (3.1) if and only if it is
an unconstrained minimizer of hx̄ , the optimal value then being hx̄(x̄) = 0 [87].
Basically, a standard unconstrained BM—allowing, in particular, aggregation—
can then be used to minimize hx̄ ; subgradients of both f and c computed at
previous iterates are separately kept, analogously to (3.58), and transformed into
subgradients of hx̄ by simple formulæ. If an appropriate improvement in the value
of hx̄ is attained, the stability center is changed; this also changes the objective
function, but again existing information—comprised aggregated one—can be used
to compute valid approximate subgradients to the new hx̄ , allowing the method to
continuously accrue information as in the standard case. The algorithm can then
be shown to converge; furthermore, if a feasible iterate is ever produced, then all
subsequent iterates remain feasible. Alternatively, filter techniques can be used [59].
Under stronger assumptions on X, feasible BM can be constructed: for instance,
[68] requires knowledge (and hence, a fortiori, existence) of a Slater point xint
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such that c(xint ) < 0. Hence, whenever an unfeasible iterate xi is obtained, an
interpolated point can be defined—not unlike in the IOA (cf. Sect. 3.2.5)—in the
segment [ xint , xi ] that is feasible, and therefore whose objective function value
can be used in the descent test. A similar approach has been used in [94] in
the context of chance constrained optimization; the specific advantage is that the
computation of the chance constraint requires a costly numerical procedure that can
be ill-conditioned for “extreme” xi with very high or low probability, whereas it
is more reliable and efficient for points “in the middle”. Yet, for some applications
experiments have shown that infeasible starts can actually be beneficial [91, 93].

Returning to the original subject of this paragraph, it is clear that inserting f0
in the MP is not limited to linear or indicator functions, but can be done whenever
the MP remains “reasonably easy”. This is often the case of Lagrangian functions,
where the underlying Lagrangian subproblems can have special structures that make
their dual function manageable without resorting to linearizations. An interesting
example are nonlinear multicommodity network design problems with congestion
costs, if only because they have been tackled twice, once with an ACCPM [5] and
once with a PBM [73]. In the problem, the objective function is nonlinear because
of many single-variable terms of the form k(t) = t/(c − t), where t is the total
flow on an arc of the underlying network and c is its capacity; this is the widely
used Kleinrock’s delay function. Once the linking constraints are relaxed, one is
typically left with many single-variable optimization problems of the form f (x) =
min{ t/(c− t)− xt : 0 ≤ t < c } (the original problem being a minimization one),
each one depending on one single Lagrangian multiplier x; this immediately reveals
itself as the opposite of the conjugate of Kleinrock’s delay function,−k∗(x). Due to
its simple form this can be computed with a closed formula: k∗(x) = 1+cx−2

√
cx

whenever x ≥ 1/c. Hence, f0 in (3.62) is a sum of those terms. Directly inserting
these in the MP results in a problem that is no longer a QP; to address this issue, in
[73] f0 is replaced with its second-order approximation around the current stability
center x̄i , resulting in a hybrid BM/Newton’s method. Only relatively minor changes
are required in the convergence analysis, all using well-understood techniques
from smooth optimization (basically, an appropriate line search); furthermore, the
Newton’s term directly stabilizes the approach, removing the need for the “artificial”
proximal stabilization ‖d‖2

2. This is even less of an issue for the ACCPM, whose
MP (3.16) is already not a QP: adding the terms corresponding to f0 in the KKT
system of the IP method (itself again basically Newton’s method) is easy. In both
cases, inserting “exact” information about one (many) component(s) of f in the MP
is shown to significantly improve performances in practice.

The approach does not even require the conjugate being easy to compute: as
advocated in [41], any Lagrangian function whose form is “not more complex than
that of the MP” lends itself to the treatment. That is, consider

max
{ 〈c0,u0〉 + 〈c1,u1〉 : Ū0u0 ≤ ū0 , u1 ∈ U1 , A0u0 + A1u1 = b

}
,
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where f0 is again (3.63). The key is, again, duality: while the dual of (3.62)

min

⎧
⎪⎨

⎪⎩

1

2μi
‖b − z0 −

∑

b∈Bi
1

zb1θ
b
1 ‖2

2 +
∑

b∈Bi
1

αb1θ
b
1 − x̄z0 + (f0)

∗(z0) : θ1 ∈ Θ1

⎫
⎪⎬

⎪⎭

may at first look intimidating, f ∗0 is, basically, nothing else than the original
Lagrangian subproblem: in other words, the above can be rewritten as

max{〈c0,u0〉 +
∑

b∈Bi
1

αb1θ
b
1 + 〈x̄, z〉 −

1

2μi
‖z‖2

2 : z = b −
∑

b∈Bi
1

zb1θ
b
1 − A0u0,

Ū0u0 ≤ ū0, θ1 ∈ Θ1}. (3.64)

The idea is therefore straightforward when seen in the dual MP: for the “standard”
component the usual linearization is employed, whereas the “easy” one is basically
inserted unchanged in the (dual) MP. This can be done beyond LPs; for instance,
if the objective function c0(u0) were convex quadratic, then (3.64) would still
be a convex QP, hence roughly as hard to solve as the original MP. Again, any
BM working with an approximated model f

0
will a fortiori work if the “true”

f0 is used, once a few minor details are taken care of. Of course, trade-offs
reveal themselves in practice: (3.64) may be more costly to solve, especially at the
beginning, but the part concerning f0 will never grow in size, as opposed to the part
concerning f1. Furthermore, by having an “exact” model for one component one
can expect faster convergence, often quite significantly so, as repeatedly reported in
applications as diverse as multicommodity network design problems [41], stochastic
unit commitment problems [89], chance constrained optimization [99] and SDP
relaxations for hard combinatorial problems [46].

3.4.4 Specialized Dynamic Models

Most (but not all) specialized models of Sect. 3.4.3 are “static”, in that all the
information corresponding to f0 is known at the beginning of the solution process.
This is clearly not necessary, as the present section will show.

A specialized model is the basis of the spectral BM (SBM) [54] for solving SDP.
This starts with the fact that the dual of the standard SDP

max { 〈C,U〉 : AU = b, U , 0 }

under mild assumptions can be recast as the eigenvalue optimization problem

min { f (x) = 〈b, x〉 + λmax(C − xA) } ,
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with λmax(·) indicating the maximum eigenvalue of a matrix, a convex nondifferen-
tiable function. Each time f (x) is computed, by standard linear algebra techniques,
any eigenvector w associated with the maximal eigenvalue produces a subgradient
z = b − A(wwT ); that is, ∂f (x) is spanned by all possible such eigenvectors, and
therefore f is differentiable only if the maximum eigenvalue has multiplicity one.
Rather than the standard f̌ , the SBM uses

fB(x) = max { 〈b, x〉 + 〈C − xA,W 〉 : W ∈ WB } ,

with WB = {W = θW̄B + PBVPT
B : θ + tr(V ) = 1, V , 0 }. At first read, one

can take the columns of the matrix PB as being the (orthogonalized) eigenvectors
wb computed at previous iterations, and W̄B as corresponding to the aggregated
subgradient z̄i , although updating PB and W̄B at each iteration requires some care.
All in all, minimizing fB is a SDP, and a small-scale one if the size of PB is kept in
check; hence, it can be efficiently solved by IP methods. Clearly, adding a quadratic
stabilizing term (or a TR in the L2-norm, for that matter) does not significantly
change the computational cost of the MP. However, note that the efficiency of the
MP solution is strictly related to the fact that the main matrix variable V has small
size; this, for instance, may change if constraints x ∈ X (even simple bounds) are
present, requiring the use of nontrivial techniques [55]. Not surprisingly, using the
specialized model is much more efficient than using f̌B , and it can be competitive
with IP methods in particular for solving sparse large-scale SDP.

In the somewhat different context of Lagrangian functions of structured prob-
lems, a quite general class of models has been proposed. The idea is that the standard
Dantzig–Wolfe reformulation of conv(U), which gives rise to the standard cutting-
plane model (cf. Sect. 3.3.3), is not the only possible formulation that lends itself to
dynamic generation. Motivated by results on 0-1 reformulations of multicommodity
network design problems [39], general requirements have been defined for any other
“large” formulation of conv(U) = { u = Cθ : Γ θ ≤ γ } that can be “constructed
piecemeal” [40]. In this setting, the bundle is B = (Bc,Br ), where Bc is a subset of
the variables θ (columns of Γ and C), and Br is a subset of the constraints (rows in
Γ ) which impact at least one variable in Bc; this immediately defines the restrictions
θB, ΓB, γB and CB of the formulation. The first requirement is that any partial
solution can always be completed with zeroes, i.e., ΓB θ̄B ≤ γ B and θ = [ θ̄B , 000 ]
.⇒ Γ θ ≤ γ ; this immediately implies that

UB =
{
ν = CBθB : ΓBθB ≤ γB

} ⊆ conv(U),

and therefore that

fB(x) = 〈x, b〉 +max
{ 〈c − xA,CBθB〉 : ΓBθB ≤ γ B

}
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is an alternative lower model of f . Hence, the MP can be defined that uses this
model; again, this is more easily seen in the dual, which is just (with the obvious
notation)

max

{
〈c,u〉 + 〈x̄, b − Au〉 − 1

2μi
||Au− b ||22 : u = CiθBi : Γ iθBi ≤ γ i

}

(cf. (3.43)). The other necessary assumption is that, once the oracle is called in xi

and a new ui is obtained, it can be efficiently used to update Bi . This can be stated
(intentionally vaguely) as follows: if ū ∈ conv(U)\UB , it must be easy to update B
to a set B′ ⊃ B such that there exists B′′ ⊇ B′ with ū ∈ UB′′ . In plain words, one has
to be able to see what are the missing variables and constraints in the formulation,
and add at least some of them; this is basically a “dynamic version of the easy
components approach”. It is then possible to develop a BM using this approach,
which generalizes the Dantzig–Wolfe decomposition/column generation; this has
been proven efficient in several applications [39, 86, 89].

3.4.5 Diminishing the MP Cost

Many of the ideas discussed in the last sections lead to “large” MP; solving them
can therefore easily become the computational bottleneck. Although the increased
convergence speed may still make these large MP worthwhile, it is clear that
techniques for lessening this computational cost could be crucial; some notable
developments are discussed here.

The first have to do with the fact that x can be a “very long” vector. For instance,
in the Lagrangian case (3.39), the constraints Au = b can be exponentially many
(of course, with an attached efficient separation routine), or anyway a very large
number. Especially if the constraints are inequalities, though, one can expect only
a small fraction of them actually being active at optimality, which means that only
a small fraction of the components of x will be different from 0 at any optimal
solution. One can then define a dynamic BM (DBM)—be it a PBM [10, 38, 42],
a SBM [53], an ACCPM [5] or any other, even with specialized models [41], and
comprised subgradient-type methods [44]—that has, basically, a simple active-set
strategy on x. At the beginning, only a small subset of the variables (constraints in
the dual) is actually defined in the MP, which is therefore smaller and cheaper. An
arbitrary number of iterations can be performed with x restricted to the active set;
then, occasionally—but surely if convergence in the current subspace is detected—
one has to check the entire subgradient to see if some components need to be added
to the active set. In the Lagrangian case, this simply amounts at verifying which
of the constraints (say) Au ≤ b are violated by the aggregated primal solution
ūi (cf. (3.44)). If no components are ever removed from the active set the DBM
is trivially convergent: after a finite number of updates the active set is the full
space, and “true convergence” begins. Careful removal is also possible with mild
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assumptions on the separation process [10], although in practice the technique
works well even without them. This has been shown to considerably improve
performances, especially when the cost of the f computation is low [38, 41, 42, 44].

The approach of [67] rather deals with approximately solving MPs for sum-
structured f (cf. Sect. 3.4.2). The idea is (again and again) quite simple when seen
from the dual viewpoint: each of the (for simplicity) two components has distinct
dual variables, say θ0 and θ1. It is then easy to implement a block descent approach,
where θ0 is kept fixed to some (feasible) value and θ1 is optimized, and then the
roles are reversed. This may also work when the θk are not convex multipliers, say
as in (3.64), and potentially when there are more than two, although to the best of
our knowledge this has never been studied. From the primal viewpoint, this means
that one of the two models f

0
and f

1
, in turn, is substituted with its aggregated

linearization ( z̄ih , ᾱ
i
h ). This may allow to use specialized solvers that exploit the

individual structure of the two separate subproblems. For instance, f
0

may be the
indicator function of a “simple” set X, say a box, whereas f

1
may be the standard

cutting-plane model; then, the first subproblem is the optimization of a linear
function on a box, whereas for the second specialized algorithms exist that are more
efficient in the unconstrained case [34] (although the latter algorithm specifically
deals with box constraints with a technique that is not entirely uncorrelated with the
one we are discussing). A very small number of iterations, down to only one, may be
sufficient to construct a direction di that allows to continue the BM, thus potentially
reducing the MP cost. The approach may applied many different structures, see
e.g. again [55].

Finally, it is clearly always possible to specialise well-known approaches to the
specific structure of the MP. This is the case of [34] for active-set methods and
of [74] for structure-exploiting IP methods applied to the parallel solution of the
disaggregate MP (3.58)/(3.59).

3.5 Inexact and Incremental Approaches

Overall, the computational cost of the BM depends on both the number of iterations
and their cost, in turn the sum of the MP cost and of the oracle cost. Clearly,
reducing the number of iterations (improving convergence speed) is of paramount
importance to reduce the total cost, and it has been therefore the focus of basically
all the discussion so far. Indeed, often paying a larger MP cost to reduce the number
of iteration is worth, although of course the cost of the MP must also be kept in
check (cf. Sects. 3.3.2, 3.4.2, 3.4.4, and 3.4.5). What has not been discussed so far
are methods to decrease the oracle cost. These would hardly seem to be subject
of a general treatment in BM, since they clearly depend on the specific application
giving rise to (3.1); however, general concepts of approximate oracle can be defined,
whereby one loosens the requirement that f (x) be computed exactly, and that
z ∈ ∂f (x). This can be clearly beneficial, if only in the Lagrangian case (3.39)
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where the oracle is an optimization problem (but then again, any (3.1) can be
considered a dual problem, cf. (3.47)); allowing to solve it approximately should
reasonably decrease its cost. This is the subject of the present section.

3.5.1 Inexact Approaches

The Lagrangian case is indeed a good one to inform the discussion: an approximate
oracle for (3.39) (with x = xi) might just compute any feasible solution ui ∈ U ,
hopefully a “good” one. Using ui instead of the optimal solution ui yields a lower
bound li = 〈c − xiA,ui〉 + 〈xi , b〉 ≤ f (xi ), together with zi = b− Aui such that
zi ∈ ∂εi f (x

i ) for the error εi = f (xi ) − li ≥ 0. That is, such an approximated
oracle delivers ε-subgradients rather than subgradients, and lower approximations
to the function value. Crucially, the (say) cutting-plane model constructed with this
information is still is a valid lower model, which makes it surprisingly easy to
define an inexact BM (IxBM). In fact, assuming that εi → 0 “naturally” along
the iterations, there is basically nothing to do [62]. In other words, as in the case
of subgradient-type methods [22], what really counts for BM is the asymptotic
maximum error ε∞ = lim supi→∞ εi : any “large” error εi # ε∞ occurring in the
early iterations can be automatically corrected as the algorithm proceeds towards the
optimum. This is an attractive feature in that, intuitively, it should not be required
that the function be computed with high accuracy at the beginning of the algorithm,
while the error reasonably need be reduced when approaching the optimal solution.
However, such an asymptotically exact oracle is not necessary: a BM can converge
under the quite minimal condition that εi ≤ ε̄ <∞, with ε̄ fixed but not necessarily
known. Of course, in this case one can expect nothing better than a ε̄-optimal
solution [22, Observation 2.7].

In order to ensure convergence, though, some modifications are necessary. This
stems from the fact that defining the linearization errors as αb(x̄) = li − [ lb +
〈zb, x̄ − xb〉 ], i.e., using the lower estimates in place of the function values f (x̄i )
and f (xb), may lead to αb < 0. Indeed, zb is a (αb+εb)-subgradient of f at x̄, with
αb + ε̄ ≥ αb + εb ≥ 0; yet, ε̄ and εb are unknown. In turn, when put e.g. in (3.28)
this may lead to vi > 0, i.e., di not being a descent direction. The point is that x̄i

has been chosen as the stability center on the basis of li , implicitly assuming it to
be a reasonable approximation of the function value; yet, later on other information
inserted in Bi reveals that in fact li ) f (x̄i ). A possible solution, originally due
to [66], is to exploit the fact that any BM has one (or more) proximal parameter(s),
that can be almost freely adjusted. The idea is that whenever vi > 0 the proximal
parameter is adjusted so that the MP becomes less stabilized—say, μi is reduced in
the PBM—so that vi+1 < vi , hopefully becoming negative (enough). This is called
a noise reduction (or noise attenuation) step, because the “noise” in the function
computation is higher than the “signal” corresponding to vi ; by increasing vi (in
absolute value), the signal-to-noise ratio also increases (being the error bounded).
With minimal care, a finite number of noise reduction steps leads to two possible
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outcomes. The first is that the solution xi of the MP becomes a solution of (3.3),
i.e., a global minimum of the model f i ; in this case, x̄ is ε̄-optimal and the BM can

stop (it actually has to, as there is no other recourse). Otherwise, vi will eventually
become “sufficiently negative”, and the normal course of the BM can resume. This
approach has been shown to work for the PBM under even looser assumptions on
the oracle, i.e., li may not even be a guaranteed lower bound on f (xi ) and zi may
not even be a guaranteed ε-subgradient at xi , provided that the errors are suitably
bounded [26, 93]. The PLBM has some different technicalities [24], in particular
in the constrained case [92]; interestingly, the DSBM does not require a noise
reduction step at all, since the level constraint always ensures that vi < 0 [25,
Section 4].

The previous analysis assumed no control on the oracle error, but this is not the
only possible case. There have been different definitions of controllable inexact
oracles [24, 26, 75, 92], but perhaps the most complete is that of the inexact
informative, cooperative oracle of [96]. This takes in input, besides x, three
parameters −∞ ≤ τ ≤ τ ≤ ∞ (the lower and upper targets, with τ > −∞
and τ <∞), and 0 ≤ ε ≤ ∞ (the accuracy), and provides

(i) function value information: two values f and f̄ such that

−∞ ≤ f ≤ f (x) ≤ f̄ ≤ ∞, f̄ − f ≤ ε, and

at least one between f̄ ≤ τ and f ≥ τ holds;
(ii) first-order information: if f > −∞, a z

such that f (·) ≥ f + 〈z, · − x〉.

(3.65)

It is always possible to attain (3.65), possibly at the cost of computing f (x) with
high accuracy, but the many parameters “allow to stop computation earlier”. In
particular, if f̄ ≤ τ then it is possible to return f = −∞, and hence no linearization
z at all. This is motivated by the Lagrangian case in which (3.39) is hard, say a
mixed-integer linear problem (MILP), whose solution process actually amounts at
three different parts:

1. finding a feasible solution u ∈ U (hence f and z) by appropriate heuristics;

2. producing an upper bound f̄ by the exact solution of some relaxation of (3.39),
or a feasible solution of an appropriate dual problem;

3. if f and f̄ are not “close enough”, performing an arbitrary amount of branching
and/or cutting and running 1. and 2. again.

The three parameters have different roles in stopping the process, and are not
redundant. If ε = ∞, the thresholds τ /τ may allow to stop after that step 2./1.
above (respectively) have been ran, possibly without even running the other one
(and therefore, in the case of τ , not even producing z). If, instead, a finite ε is given,
stopping requires both bounds, but is independent from which of the two thresholds
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is satisfied. It is possible to set “minimal” values for the parameters (τ and ε as
large as possible, τ as small as possible) that ensure convergence of a IxBM, thereby
hopefully reducing the computational cost of (3.39) as much as possible. It has to
be remarked, though, that doing so may potentially impact convergence speed, a
trade-off that has not been well enough investigated in practice yet.

Oracle (3.65) is collaborative in that it must in principle be able to compute
the function with arbitrary accuracy, although the BM can strive to keep the
requirements at a minimum. Not in all cases it is possible, or reasonable, to do
so: some oracles (problems) may only be solvable up to some specific accuracy ε̄.
Actually, there are three different ways in which this can happen. The first is that ε̄ is
explicitly known beforehand. Otherwise, the oracle may stop with ε < f̄ − f ≤ ε̄,
but still produce correct upper and lower estimate. Finally, the oracle can “cheat”
by (say) reporting f̄ = f , thus formally respecting f̄ − f ≤ ε, but doing so at
the cost of returning incorrect information. It turns out [96, Section 4] that each of
the three cases corresponds to an entirely different noise reduction step, where μi is
decreased in response to a different condition; in all these cases, convergence of the
IxBM to a ε̄-optimal solution can be proven.

3.5.2 Incremental Approaches

Another (albeit strictly related) way in which the oracle cost can be reduced is
specific to sum-functions (cf. Sect. 3.4.2). There, “the oracle” is actually a set of
separate oracles, one for each k ∈ K: in alternative/addition to allowing approximate
computation in each of them separately, a rather drastic way of saving computation
time is to completely avoid to call some of them. Hence, at each iteration one has
(possibly, approximate) f -values and subgradients only for some subset Z ⊆ K
of the components, out of which the estimates fZ (xi ) =

∑
k∈Z fk(x

i ) and zZ =∑
k∈Z zk are obtained. A BM doing so is called incremental (IcBM) by analogy

with incremental subgradient-type methods [13, 44, 65]. The latter are in turn closely
related with stochastic subgradient methods for stochastic optimization and mini-
batch approaches in machine learning; there, each fk is a specific realization of
a stochastic process or sample of a process to learn, again ideally drawn at random
from an infinite set. Thus, for a randomZ , there can be hope that zZ be a reasonable
estimate of the true (stochastic) subgradient, and hence a rationale for using it to
define the step. In fact, convergence for these methods is perhaps more naturally
proven in a probabilistic sense; deterministic results require to compute the “full” f
(Z = K)—a batch iteration in ML parlance—often enough. This kind of analysis
is not well suited for BM.

However, at least with the disaggregate model (cf. Sect. 3.4.2) it is easy enough
to construct a IcBM by, basically, considering it a IxBM. Indeed, for each k /∈ Z
one can pretend that the model information at xi , say f i

k
(xi ) and z̄i , is the output

of an approximate oracle; thus, it is possible to analyse IcBM using, say, the very
general results of [26], as done in [31]. However, the IcBM— at least, with exact
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individual sub-oracles—corresponds to a controllable oracle, in that by evaluating
more and more components it is possible to arbitrarily reduce the error; hence, one
would expect to be able to do without any noise reduction step. What is actually
easy is declaring a null step by only evaluating a subset of all the components. In
fact, since f i

k
(xi ) ≤ fk(x

i ), clearly Δf i = ∑
k∈K(Δf i

k = fk(x
i ) − f i

k
(xi )) ≥

Δf iZ = ∑
k∈Z Δf ik . Hence, if Δf iZ > −mvi implies that a fortiori (3.37) holds,

and therefore (3.38) does. Declaring a serious step is instead trickier, as any un-
evaluated component may counterbalance the descent of all the evaluated ones with
a very steep ascent. One possible strategy is to only perform incremental null step,
while requiring a “full” iteration (Z = K) to declare a serious step, analogously to
what incremental subgradients do. A different approach has been proposed in [96],
under the assumption that all the fk are Lipschitz continuous with known constant
Lk . This allows to perform incremental serious step as well by using the upper
model

f̂ k
P (x) =min

⎧
⎨

⎩

∑

p∈Pk

f
p
k θ

p
k + Lk‖sk‖2 :

∑

p∈Pk

xpθ
p
k + sk = x , θk ∈ Θk

⎫
⎬

⎭
,

where Pk is the upper bundle formed of pairs ( xp , f pk = fk(x
p) ). The upper

bundle can be compressed similarly to the ordinary (lower) one Bk , with its poor-
man’s version containing only x̄, thus making the computation of f̂ kP potentially
inexpensive. With this expedient, an IcBM that need not necessarily compute all
the components neither at null step nor at serious step can be defined, and its
convergence analysed with quite standard results, basically those of [19]. It is also
easy to combine the two techniques by only computing a subset of the components
and do that only approximately, e.g. with oracle (3.65).

An even stronger version of IcBM requires that the MP is not solved, as usual,
for all components together, but component-wise, somehow more in the spirit of
incremental subgradient methods; this entails some complications [47]. Here one
could, however, employ the approach of [67] discussed in Sect. 3.4.5, whereby only
the dual variables of the currently “active” component are allowed to vary whereas
all the others are kept fixed, so that all components but one are represented by one
fixed linearization.

All in all, IcBM have already been shown to improve performances in practice
[31, 48], but more work is required to characterize the many trade-offs they entail.

We finish this section with an apparently different, but in fact strongly related,
way to decrease the function computation time: exploiting the fact that the oracles
fk are independent, and therefore can be computed in parallel. This can be
done in the obvious master-slave fashion, which has obvious drawbacks. First,
the MP is a sequential bottleneck, which by Amdahl’s law limits the maximum
achievable speedup [16], requiring specific efforts to decrease the MP cost (with
the corresponding nontrivial trade-offs). Furthermore, subdividing the components
between different processors so that the computation takes roughly the same time
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can be reasonably easy if all components are alike, but in many applications some of
them require considerably more effort than others. Thus, a truly asynchronous BM
would be required. A proposal in this sense is [33], which however is tailored to the
case where |K| is large, but each component actually depends on only a few of the
variables x. A general purpose asynchronous BM should be possible, in particular
using the results of [96], but several theoretical and practical issues still have to be
ironed out.

3.6 Conclusion

Bundle-type methods have now a quite long history, spanning over 40 years from
[69, 76, 100], and almost 60 from the seminal [60]. This chapter shows that this time
has not been wasted: motivated by the ever increasing requirements of applications,
many variants have been proposed and analysed that can provide significant
performance benefits. As a very quick summary, investigation has focussed on:

1. different forms of stabilization, with different trade-offs between the cost of the
corresponding MP and the theoretical and practical convergence speed;

2. different forms of (lower, and recently also upper) models that better exploit the
properties of the function at hand;

3. solution methods for the MP that provide trade-offs between the accuracy of the
solution and the computational cost;

4. a detailed characterization of the accuracy with which (the different components
of) f has (have) to be computed in order to be able to proceed with optimization.

Yet, several theoretical and practical issues still remain open. The understanding
of efficiency of standard BM is still rather partial, with the only available results
depicting the almost hopelessly slow method corresponding to full aggregation—
basically, a subgradient-type one—and therefore completely failing to capture facets
of the practical convergence like the “fast tail”. Furthermore, almost all efficiency
estimate treat null step and serious step as almost entirely unrelated processes,
whereas intuitively the practical efficiency of BM precisely hinges on the fact that
they are not. In general, dealing with the stabilization parameter(s) remains more
of an art than a science, thereby making BM rather susceptible to breaking down
due to mismanagement of the algorithmic parameters; this limits their application
potential, due to the difficulty of providing a “black-box” implementation that can
be used by an inexperienced user without knowledge of its inner working and a
significant parameter tuning phase. Besides the stabilization and related algorithmic
parameters, this also applies to the fact that there are many variants of BM regarding
to the stabilization technique, the model and the computation of the function; finding
the right one for one’s application, and capturing the proper trade-offs between all
these aspects, is a rather complex process currently requiring specific knowledge
and skills. It is therefore perhaps not surprising that there are not many available
BM software packages, and that their practical use in applications is rather limited
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in comparison to more “stable” algorithmic techniques like simplex and IP methods
for linear/quadratic/conic programming. Admittedly, this also has to do with the
inherent complexity of choosing, say, the right Lagrangian relaxation of one’s
problem, as opposed to just writing the model and using standard tools, a more
general issue having more to do with the currently available modelling tools and
solvers than with the specific characteristics of BM in particular.

Also, this chapter only deals with “standard” BM for convex problems. Signifi-
cant research, often motivated by specific application like Machine Learning, has
been poured into BM for nonconvex problems, or “nonstandard” ones trying to
make better use of whatever available second-order information may be (if any).
Thus, our treatment does not cover many other important facets of research in BM.
Yet, we have hopefully shown that “standard” BM for convex optimization are a
vast, diverse, and interesting class of algorithms with many relevant applications,
and therefore a worthy research subject.
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Chapter 4
A Second Order Bundle Algorithm
for Nonsmooth, Nonconvex Optimization
Problems

Hermann Schichl and Hannes Fendl

Abstract In this chapter we extend the SQP-approach of the well-known bundle-
Newton method for nonsmooth unconstrained minimization and the second order
bundle method by Fendl and Schichl (A feasible second order bundle algorithm
for nonsmooth, nonconvex optimization problems with inequality constraints: I.
derivation and convergence. arXiv:1506.07937, 2015, preprint) to the general
nonlinearly constrained case. Instead of using a penalty function or a filter or an
improvement function to deal with the presence of constraints, the search direction
is determined by solving a convex quadratically constrained quadratic program to
obtain good iteration points. Furthermore, global convergence of the method is
shown under certain mild assumptions.

4.1 Introduction

We assume in this chapter that the optimization problem (1.1) takes the following
form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize f (x)

subject to Fi(x) ≤ 0 for all i = 1, . . . ,m,

Gj(x) = 0 for all j = 1, . . . , k,

x ∈ R
n,

(4.1)

where f, Fi,Gj : Rn → R are locally Lipschitz continuous (LLC). Since Fi(x) ≤
0 for all i = 1, . . . ,m and Gj(x) = 0 for all j = 1, . . . , k if and only if
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F(x) := max
i=1,...,m

ciFi(x) ≤ 0, G(x) :=
k∑

j=1

c̃j |Gj(x)| = 0,

with constants ci > 0 and c̃j > 0, and F and G are still LLC [55, pp.
969, Theorem 6(a)], we can reformulate (4.1) equivalently as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize f (x)

subject to F(x) ≤ 0,

G(x) = 0,

x ∈ R
n.

(4.2)

Since LLC functions are differentiable almost everywhere, both f and F may
have kinks and therefore already the attempt to solve an unconstrained nonsmooth
optimization (NSO) problem by a smooth solver (e.g., by a line search algorithm
or by a trust region method) by just replacing the gradient by a subgradient, fails
in general [73, pp. 461–462]. The fact that equality constraints are involved in
addition poses the problem that, in general, no interior points of the feasible set
exist. Therefore, the usual approach, as taken in [16] and [15], to construct a descent
sequence of strictly feasible points fails as well.

To provide a short overview, methods other than bundle algorithms that are able
to solve NSO problems include the R-algorithm [67], proximal point methods [63],
or stochastic algorithms that try to approximate the subdifferential. In the following
we will present a few implementations of these methods.

A few support at most linear constraints, e.g., the algorithm PMIN [43, 45],
solves linearly constrained minimax optimization problems, i.e., the objective
function must be maximum of twice continuously differentiable functions. The
robust gradient sampling algorithm for nonsmooth nonconvex optimization [11]
approximates the whole subdifferential at each iteration [10] and does not make
null steps. The MATLAB code HANSO [61] combines ideas from BFGS algorithms
[42] and from the gradient sampling algorithm for solving nonsmooth unconstrained
optimization problems. The derivative-free bundle method (DFBM) [1], where
“derivate-free” means that no derivate information is used explicitly, can solve lin-
early constrained nonsmooth problems. The subgradients are approximated by finite
differences in this algorithm [2]. DFBM is an essential part of the programming
library for global and nonsmooth optimization GANSO [4]. The discrete gradient
method DGM for nonsmooth nonconvex unconstrained optimization [5] is a bundle-
like method that does not compute subgradients, but approximates them by discrete
gradients. The quasisecant method QSM for minimizing nonsmooth nonconvex
functions [3] combines ideas both from bundle methods and from the gradient
sampling method [11].
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The oracle based optimization engine OBOE [70] is based on the analytic center
cutting-plane method [58], which is an interior point framework.

There exist only a few algorithms that can also handle nonconvex constraints. The
robust sequential quadratic programming algorithm extends the gradient sampling
algorithm [13] for nonconvex, nonsmooth constrained optimization. SolvOpt [29]
and ralg [40] (only in Python) are implementations of the R-algorithm [67].
SolvOpt handles the constraints by automatically adapting the penalty parameter,
while ralg uses a filter technique.

In [35] a brief, excellent description of the main ideas of many of the mentioned
methods are given. For further information visit the online decision tree for NSO
software [31].

The proximal point methods [14, 62, 63] were initially developed for convex
problems. However, efficient methods for nonconvex problems have emerged
recently, e.g. [8]. They construct sequences by iteratively applying the proximal
point operator from nonsmooth analysis, and they are very efficient in situations
where the proximal points can be calculated analytically. In other situations they are
hardly applicable.

Among the subgradient based algorithms, the bundle algorithms are the most
successful for solving general nonsmooth problems. They are iterative methods that
only need to compute one element g of the subdifferential ∂f (x) (and possible
∂F (x)) per iteration, which in practice often is readily computable by algorithmic
differentiation [20]. For computing the search direction, they collect information
about the function (e.g., subgradients) from previous iterations. This collected
information is referred to as “the bundle”.

Bundle methods were originally developed for convex problems. A good intro-
duction to NSO which treats the convex, unconstrained case in great detail is [6, pp.
106]. Very detailed standard references for nonsmooth nonconvex optimization are
[36] and [50], which both in particular discuss constrained problems extensively.

We next summarize the most prominent bundle algorithms. The multiobjective
proximal bundle method for nonconvex NSO (MPBNGC) [49] is a first order
method that uses the improvement functionhxk (x) := max{f (x)−f (xk), F (x)} for
the handling of the constraints [50]. The algorithms in [54–56] support a nonconvex
objective function as well as nonconvex constraints. NOA [39] is a NSO algorithm
that handles nonconvex constraints by using a penalty function or an improvement
function, while in the special case of convex constraints it offers an alternative
treatment by the constraint linearization technique of [37]. The limited memory
bundle algorithm for inequality constrained nondifferentiable optimization [34]
combines LMBM [21] with the feasible directions interior point technique [24, 25]
for dealing with the constraints. The search direction is determined by solving a
linear system. Special bundle methods for DC functions [26, 27] have recently
shown promising results.

In addition a few bundle algorithms can only handle convex constraints. The
bundle trust algorithm [65, 66], which also supports a nonconvex objective function,
handles the constraints by using the constraint linearization technique of [37]. The
bundle filter algorithm [17] is only applicable to convex optimization problems
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and it computes the search direction by solving an LP. The bundle-filter method
for nonsmooth convex constrained optimization [30] is based on an improvement
function, while the infeasible bundle method for nonsmooth convex constrained
optimization [64] is also based on an improvement function, but it uses neither a
penalty function nor a filter.

In addition, there are some bundle algorithms that support nonconvex objective
functions but at most linear constraints, e.g., the variable metric bundle method
PVAR [47, 72], PBUN [44, 48, 71], and the proximal bundle method [38]. The
focus of the limited memory bundle method LMBM [21–23] is the solution of large-
scale nonsmooth nonconvex unconstrained optimization problems. This is done
by combining ideas from the variable metric bundle method [47, 72] and limited
memory variable metric methods [12]. For a bound constrained version see [32, 33].

All the algorithms above make use first order information of the objective
function and the constraints only. Nevertheless, there are some bundle methods
that use second order information, since they are Newton-like methods (at least
in some sense) and which only support the handling of linear constraints. The
quasi-Newton bundle-type method for nondifferentiable convex optimization [57]
generalizes the idea of quasi-Newton methods to NSO and it converges superlinearly
for strongly convex functions (under some additional technical assumptions). The
bundle-Newton method for nonsmooth unconstrained minimization [46] supports
a nonconvex objective function and is based on an SQP–approach, and it is
the only method for solving NSO problems that are known to us which uses
Hessian information. Furthermore, its rate of convergence is superlinear for strongly
convex, twice continuously differentiable functions. Moreover, a description of the
implementation PNEW of the bundle-Newton method can be found in [44]). For the
solution of eigenvalue problems a second order bundle method has been developed
in [60].

In this work we extend the bundle-Newton method to a second order bundle
algorithm for the problem (4.1) by using additional second order information of
the objective function and the constraints. Furthermore, we use an extension of the
SQP–approach of the bundle-Newton method for computing the search direction
for the constrained case and combine it with the idea of quadratic constraint
approximation, as it is used, e.g., in the sequential quadratically constrained
quadratic programming method by [68] (this method is not a bundle method), in
the hope to obtain good feasible iterates. Therefore, we have to solve a strictly
feasible convex quadratically constrained quadratic problem (QCQP) for computing
the search direction. Using such a QCQP for computing the search direction yields a
line search condition for accepting infeasible points as trial points (which is different
to that in, e.g., [56]). One of the most important properties of the convex QP (that is
used to determine the search direction) with respect to a bundle method is its strong
duality (e.g., for a meaningful termination criterion, for global convergence, etc.)
which is also true in the case of strictly feasible convex QCQPs (cf. Sect. 4.4.2).

The chapter is organized as follows. In Sect. 4.2 we recall the basics of an SQP-
method which is a common technique in smooth optimization and we summarize
the most important facts about NSO theory. In Sect. 4.3 we give the theoretical
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foundation of our second order bundle algorithm and afterwards we present the
algorithm and the line search in detail. Finally, we show the convergence of the line
search and the global convergence of the algorithm in Sect. 4.4.

Throughout the chapter we use the following notation. We denote the nonnega-
tive real numbers byR≥0 := {x ∈ R : x ≥ 0}. We denote the space of all symmetric
n×n-matrices by R

n×n
sym . For x ∈ R

n we denote the Euclidean norm of x by ‖x‖, and
for A ∈ R

n×n
sym we denote the spectral norm of A by ‖A‖. Furthermore, we denote

the smallest resp. the largest eigenvalue of a positive definite matrix A ∈ R
n×n by

λmin(A) resp. λmax(A).

4.2 Optimization Theory

The idea of the second order bundle method is to build a special nonsmooth
piecewise quadratic local model similar to the smooth quadratic model employed in
SQP–methods. Therefore, we will summarize in the following section some well-
known facts and the basics of an SQP-method. Afterwards, we present the most
important facts about NSO theory.

4.2.1 Smooth Optimality Conditions and SQP

Theorem 4.1 ([51]) Let f, Fi,Gj : R
n → R (with i = 1, . . . ,m and j =

1, . . . , k) be continuously differentiable and x̂ ∈ R
n be a solution of the smooth

optimization problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize f (x)

subjectto Fi(x) ≤ 0 for all i = 1, . . . ,m,

Gj(x) = 0 for all j = 1, . . . , k,

x ∈ R
n.

(4.3)

Then there exist κ ≥ 0, λ ≥ 000, and μ with

κ∇f (x̂)T +∇F(x̂)T λ+∇G(x̂)Tμ = 000,

λiFi(x̂) = 0, for all i = 1, . . . ,m,

κ = 1 or (κ = 0, (λ,μ) �= 000).

(4.4)

An SQP–method for finding a solution of the optimization problem (4.3)
minimizes the quadratic approximation of the Lagrangian L : Rn × R

m≥0 → R

given by L(x,λ,μ) := f (x) + λT F (x) + μT G(x), subject to linearizations of
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the constraints and then it uses the obtained minimizer as the new iteration point
(or it performs a line search between the current iteration point and the obtained
minimizer to determine the new iteration point). Since quadratic information is
necessary for this approach, we demand f, Fi ,Gj : Rn → R (with i = 1, . . . ,m
and j = 1, . . . , k) to be C2 in this subsection.

Proposition 4.1 Let the Mangasarian–Fromowitz constraint qualifications [51] be
satisfied, and let the Hessian of the Lagrangian with respect to the x-components
∇2

xxL(x,λ) = ∇2f (x) + ∑m
i=1 ∇2Fi(x)λi be positive definite on the tangent

space of the constraints [59, pp. 531, Assumption 18.1]. Then the SQP-step for
optimization problem (4.3) is given by the solution of the QP

f (x) + min
d
∇f (x)d + 1

2dT∇2
xxL(x,λ)d

subject to Fi(x)+ ∇Fi(x)d ≤ 0 for all i = 1, . . . ,m,

Gj(x)+∇Gj(x)d = 0 for all j = 1, . . . , k.

(4.5)

Remark 4.1 A difficulty of an infeasible SQP-method (e.g., SNOPT [19])—
i.e. infeasible iteration points xk may occur—is that the linear constraints of the
QP (4.5) can be infeasible [59, pp. 535, 18.3 Algorithmic development]. Note that
this difficulty does not arise for a feasible SQP–method (e.g., FSQP by [41])—
i.e. only feasible iteration points xk are accepted—as then d = 000 is always feasible
for the QP (4.5). Nevertheless, in this case it can be difficult to obtain feasible
points that make good progress towards a solution (cf. Remark 4.3). In the presence
of nonlinear equality constraints, however, a feasible SQP–method cannot be
employed.

4.2.2 Nonsmooth Optimality Conditions

We gather information on the optimality conditions of the NSO problem (4.1) with
LLC functions f, Fi ,Gj : Rn → R for i = 1, . . . ,m and j = 1, . . . , k. In addition
to the subdifferential ∂f as introduced in Definition 1.8, we define the set ∂2f (x) ⊆
R
n×n
sym of the substitutes for the Hessian of f at x by

∂2f (x) :=
{
{G}, if the Hessian G of f at x exists,
R
n×n
sym , otherwise.

(4.6)

We summarize the most important properties of the Clarke directional derivative
and the subdifferential. The following result is taken from [7].

Proposition 4.2 The subdifferential ∂f (x) is nonempty, convex and compact.
Furthermore, ∂f : Rn → P(Rn), where P(Rn) denotes the power set of Rn, is
locally bounded and upper semicontinuous.
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From [28] we get

Theorem 4.2 (First Order Nonsmooth Optimality Conditions) Let x̂ be a local
minimizer of (4.1) and f, Fi,Gj : Rn → R (with i = 1, . . . ,m and j = 1, . . . , k)
be Lipschitz continuous in a neighborhood of x̂. Then there exist κ ≥ 0, λ ≥ 000, and
μ with

000 ∈ κ∂f (x̂)+
m∑

i=1

λi∂Fi(x̂)+
k∑

j=1

μj∂Gj (x̂),

λiFi(x̂) = 0 for all i = 1, . . . ,m,

κ = 1 or (κ = 0, (λ,μ) �= 000).

Furthermore, if the (nonsmooth) constraint qualification

for all (y, z) ∈ N(F(x̂))×R
k : 000 /∈

m∑

i=1

yi∂Fi(x̂)+
k∑

j=1

zj ∂Gj (x̂) (4.7)

is satisfied, then we can always set κ = 1. Here

N(u) := {x ∈ R
m
≥0 | xT u = 0}.

Corollary 4.1 Let the constraint qualification (4.7) be satisfied for (4.1), then
the necessary optimality condition for the equivalent reformulation (4.2) reads as
follows: there exist λ ≥ 0 and μ with

000 ∈ ∂f (x̂)+λ∂F(x̂)+μ∂G(x̂), λF(x̂) = 0, F(x̂) ≤ 0, G(x̂) = 0. (4.8)

Proof Inserting into Theorem 4.2 with m = 1 and k = 1. ��
Remark 4.2 The algorithms in [54–56] (for solving nonlinearly constrained NSO
problems) use a fixed point theorem about certain upper semicontinuous point to set
mappings by Merrill [53] as optimality condition which is different to an approach
with the optimality conditions in Theorem 4.2 or Corollary 4.1.

4.3 Derivation of the Method

In this section we discuss the theoretical basics of our second order bundle algorithm
and we give a detailed presentation of the algorithm and the line search.
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4.3.1 Theoretical Basics

We assume in this section that the functions f, F,G : Rn → R are LLC, gj ∈
∂f (yj ), ĝj ∈ ∂F (yj ), ǧj ∈ ∂G(yj ), and let Gj , Ĝj , and Ǧj be approximations of
elements in ∂2f (yj ), ∂

2F(yj ), and ∂2G(yj ) (cf. (4.6)), respectively.
The algorithm searches for a point that satisfies the first order optimality

conditions (4.8). We propose an infeasible point version of the second order bundle
method in [15, 16]. If we are at the iteration point xk ∈ R

n (with iteration index k),
we want to compute the next trial point (i.e. the search direction) by approximating
the objective function f and the constraints F and G at xk by piecewise quadratic
functions and then perform a single SQP-step, as defined in Proposition 4.1.

Definition 4.1 Let Jk ⊆ {1, . . . , k}. We define quadratic approximations of f , F ,
and G in yj ∈ R

n with damping parameters ρj , ρ̂j , and ρ̌j ∈ [0, 1] for j ∈ Jk by

f
�
j (x) := f (yj )+ gTj (x − yj )+ 1

2ρj (x − yj )
T Gj (x − yj ),

F
�
j (x) := F(yj )+ ĝ

T
j (x − yj )+ 1

2 ρ̂j (x − yj )
T Ĝj (x − yj ),

G
�
j (x) := G(yj )+ ǧ

T
j (x − yj )+ 1

2 ρ̌j (x − yj )
T Ǧj (x − yj ),

(4.9)

and the corresponding gradients by

g
�
j (x) := ∇f �

j (x)
T = gj + ρjGj (x − yj ),

ĝ
�
j (x) := ∇F�

j (x)
T = ĝj + ρ̂j Ĝj (x − yj ),

ǧ
�
j (x) := ∇G�

j (x)
T = ǧj + ρ̌j Ǧj (x − yj ).

(4.10)

We define the piecewise quadratic approximations of f , F , and G in xk ∈ R
n by

f�
k (x) := max

j∈Jk
f
�
j (x), F�

k (x) := max
j∈Jk

F
�
j (x), G�

k (x) := max
j∈Jk

G
�
j (x). (4.11)

Hence we approximate the objective function f at xk by f�
k and the constraints F

and G at xk by F�
k and G�

k , respectively, in the optimization problem (4.2) and
then we perform a single SQP-step to the resulting optimization problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize f�
k (x)

subject to F�
k (x) ≤ 0,

G�
k (x) = 0,

x ∈ R
n.

(4.12)
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It is important to observe here that the local model for the nonsmooth problem (4.2)
is the piecewise quadratic nonsmooth problem (4.12). This problem in turn can,
however, since G(x) ≥ 0 be written as a smooth QCQP.

Proposition 4.3 The SQP-step (d, v̂) ∈ R
n+1 for (4.12) is given by the solution of

the QP

f (xk) + min
d,v̂

(
v̂ + 1

2dT Wkd
)

subject to − (
f (xk)− f k

j

)+ dT gkj ≤ v̂ for all j ∈ Jk ,

F(xk)−
(
F(xk)− Fk

j

)+ dT ĝ
k
j ≤ 0 for all j ∈ Jk ,

G(xk)−
(
G(xk)−Gk

j

)+ dT ǧ
k
j ≤ 0 for all j ∈ Jk ,

(4.13)

where

f kj := f
�
j (xk), gkj := g

�
j (xk)

(4.10)= gj + ρjGj (xk − yj ),

F k
j := F

�
j (xk), ĝ

k
j := ĝ

�
j (xk)

(4.10)= ĝj + ρ̂j Ĝj (xk − yj ),

Gk
j := G

�
j (xk), ǧ

k
j := ǧ

�
j (xk)

(4.10)= ǧj + ρ̌j Ǧj (xk − yj ),

Wk :=
∑

j∈Jk−1

λk−1
j ρjGj +

∑

j∈Jk−1

μk−1
j ρ̂j Ĝj +

∑

j∈Jk−1

νk−1
j ρ̌j Ǧj ,

(4.14)

and λk−1
j , μk−1

j , and νk−1
j denote the Lagrange multipliers with respect to f , F ,

and G, respectively, at iteration k − 1 for j ∈ Jk−1.

Proof We rewrite (4.12) as a smooth optimization problem by using (4.11), relaxing
the equality constraint using the parameter σk . If we are at the iteration point
(xk, uk) ∈ R

n+1 with uk := f (xk) in this smooth reformulation, then, according
to (4.5) as well as using (4.14), the SQP-step for this problem is given by the solution
of the QP (4.13). ��

The problem in solving this SQP-step problem lies in the inequality constraint
for G which might render the quadratic program infeasible, so it is useful to relax
the constraint using a parameter σk ∈ [0, 1].
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Definition 4.2 The SQP-step (d, v̂) ∈ R
n+1 for fixed parameter σk ∈ [0, 1] of

(4.12) is given by the solution of the QP

f (xk) + min
d,v̂

(
v̂ + 1

2dT Wkd
)

subject to − (
f (xk)− f kj

)+ dT gkj ≤ (1− σk)v̂ for all j ∈ Jk ,

F(xk)−
(
F(xk)− Fkj

)+ dT ĝkj ≤ 0 for all j ∈ Jk ,

G(xk)−
(
G(xk)−Gk

j

)+ dT ǧkj ≤ G(xk)+ σkv̂ for all j ∈ Jk ,

(4.15)

where f k
j , gkj , Fk

j , ĝ
k
j , Gk

j , ǧ
k
j , Wk , λk−1

j , μk−1
j , and νk−1

j are as in Proposition 4.3.

Since f �
j , F�

j , and G�
j are only global underestimators for convex f , F , and G,

respectively, and ρj = ρ̂j = ρ̌ = 0 and since f�
k , F�

k , and G�
k approximate f , F ,

and G, respectively, only well for trial points close to xk , we decrease the activity
of non local information (e.g., non local subgradients) by the following definition.

Definition 4.3 We define the localized approximation errors of f resp. F and G by

αkj := max{|f (xk)− f k
j |, γ1(s

k
j )
ω1},

Ak
j := max{|F(xk)− Fk

j |, γ2(s
k
j )
ω2}, (4.16)

Bk
j := max{|G(xk)−Gk

j |, γ3(s
k
j )
ω3},

where

skj := ‖yj − xj‖ +
k−1∑

i=j
‖xi+1 − xi‖ (4.17)

denotes a locality measure for j = 1, . . . , k with fixed parameters γi > 0 and
ωi ≥ 1 for i = 1, 2, 3.

Straightforward calculations show

Proposition 4.4 The locality measure skj has the following properties

skj + ‖xk+1 − xk‖ = sk+1
j , skj ≥ ‖yj − xk‖ for all j = 1, . . . , k. (4.18)

Like the bundle-Newton method by [46], our algorithm uses a convex search
direction problem and therefore we modify (4.15) in the following sense.

Proposition 4.5 If we generalize (4.15) by using the localized approximation errors
(4.16) and replacing Wk by a positive definite modification Wk

p (e.g., the Gill-
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Murray factorization by [18]), then the generalized version of (4.15) reads

f (xk) + min
d,v̂

v̂ + 1
2dT Wk

pd

subject to − αkj + dT gkj ≤ (1− σk)v̂ for all j ∈ Jk ,

F(xk)− Ak
j + dT ĝ

k
j ≤ 0 for all j ∈ Jk ,

G(xk)− Bk
j + dT ǧ

k
j ≤ G(xk)+ σkv̂ for all j ∈ Jk .

(4.19)

Remark 4.3 The standard SQP approach for smooth optimization problems suffers
from the Maratos effect [52], which, in general, prevents infeasible SQP-methods
from getting a descent in the merit function and feasible SQP-methods from finding
(good) feasible points [69, pp. 1003]. The way we have chosen to avoid the Maratos
effect is by quadratic approximation of the constraints [68].

Remark 4.3 leads to the following idea. Let Gk
j , Ĝ

k
j , Ǧ

k
j ∈ R

n×n
sym be positive definite

(e.g., positive definite modifications of Gj ∈ ∂2f (yj ), Ĝj ∈ ∂2F(yj ), and Ǧj ∈
∂2F(yj ), respectively; also cf. Remark 4.9). Then we can try to determine the search
direction by solving the convex QCQP

f (xk) + min
d,v̂

v̂ + 1
2dT Wk

pd

subject to − αkj + dT gkj + 1
2dT Gk

jd ≤ (1− σk)v̂ for all j ∈ Jk ,

F(xk)− Ak
j + dT ĝ

k
j + 1

2dT Ĝk
jd ≤ 0 for all j ∈ Jk ,

− Bk
j + dT ǧ

k
j + 1

2dT Ǧk
jd ≤ σkv̂ for all j ∈ Jk

(4.20)

instead of the QP (4.19), i.e. instead of just demanding that the first order
approximations are feasible, we demand that the first order approximations must
be the more feasible, the more we move away from xk .

Example 4.1 We consider the optimization problem (4.2) with f (x) := x2, and
F(x) := max{min{F1(x), F2(x)}, F3(x)}, where F1(x) := x2

1 + x2
2 , F2(x) :=

−x1 + x2
2 , and F3(x) := x1 − 2, and we assume that we are at the iteration

point xk := 000.
Since F̂ (x) := max{F2(x), F3(x)} is convex, and since an easy examination

yields that F(x) ≤ 0 ⇐⇒ F̂ (x) ≤ 0, the feasible set of our optimization prob-
lem (4.2) is convex. Therefore, the linearity of f implies that our optimization
problem has the unique minimizer x̂ := (2,−√2).

The quadratic approximation of F with respect to xk in the QCQP (4.20)
reads F1(xk+d) ≤ 0, i.e. d = 000 is the only feasible point for the QCQP (4.20)
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and therefore its solution, although xk = 000 is not a stationary point for our
optimization problem (for this consider f ), resp. much less a minimizer (since
x̂ is the unique minimizer of our optimization problem). As it can be seen, e.g.,
from considering the restriction of F to x2 = 0, the reason for the occurrence
of d = 000 at xk is the nonconvexity of F (which is a result of the presence of
the min-function in F ), although the feasible set is convex.

Notice that if we substitute F by F̂ in the constraint of our optimization
problem, which yields the same feasible set, the difficulty which we described
above does not occur.

Remark 4.4 If F(xk) ≤ 0, ((4.19) as well as) (4.20) is always feasible and therefore
we do not have to deal with infeasible search direction problems as they occur
in infeasible SQP–methods (cf. Remark 4.1). Nevertheless, we have to demand
F(xk) < 0, since otherwise it can happen that dk = 000 is the only feasible point
and therefore the solution of (4.20), but xk is not stationary for (4.2) as Example 4.1
showed. This is similar to difficulties arising in smooth problems at saddle points of
the constraints. If no strictly feasible point can be found for Fi then it is advisable to
treat it like the constraints arising from the equality constraints. There, the positive
right hand side (for σk > 0) removes the problem.

Now we state the dual search direction problem which plays an important role for
proving the global convergence of the method (cf. Sect. 4.4.2).

Proposition 4.6 The dual problem of the QCQP (4.20) is given by

f (xk) − min
λ,μ,ν

1
2

∥
∥
∥Hk(λ,μ, ν)

( ∑

j∈Jk
λjg

k
j + μj ĝ

k
j + νj ǧ

k
j

)∥
∥
∥

2

+
∑

j∈Jk
λjα

k
j + μjA

k
j + νjB

k
j −

( ∑

j∈Jk
μj

)
F(xk)

subject to λj ≥ 0, μj ≥ 0, νj ≥ 0 for all j ∈ Jk ,
∑

j∈Jk
(1− σk)λj + σkνj = 1,

(4.21)

where Hk(λ,μ, ν) :=
(
Wk
p +

∑
j∈Jk λjG

k
j + μjĜ

k
j + νj Ǧ

k
j

)− 1
2 . If F(xk) < 0,

then the duality gap is zero, and, furthermore, if we denote the minimizer of the dual
problem (4.21) by (λk,μk, νk), then the minimizer (dk, v̂k) of the primal QCQP
(4.20) satisfies

dk = −(Wk
p +

∑

j∈Jk
λkjG

k
j + μkj Ĝ

k
j + νkj Ǧ

k
j )
−1( ∑

j∈Jk
λkjg

k
j + μkj ĝ

k
j + νkj ǧ

k
j

)
,

v̂k =
( ∑

j∈Jk
λkjg

k
j

)T
dk −

∑

j∈Jk
λkj α

k
j + 1

2dTk
( ∑

j∈Jk
λkjG

k
j

)
dk
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= −dTk W
k
pdk − 1

2dTk
( ∑

j∈Jk
λkjG

k
j + μkj Ĝ

k
j + νkj Ǧ

k
j

)
dk

−
∑

j∈Jk

(
λkjα

k
j + μkjA

k
j + νkj B

k
j

)− ( ∑

j∈Jk
μkj

)(− F(xk)
)

≤ 0.

Proof The Lagrangian of (4.20) is given by L(d, v̂,λ,μ, ν) := v̂ + 1
2dT Wk

pd +
∑

j∈Jk λjF
1
j (d, v̂) +

∑
j∈Jk μjF

2
j (d, v̂) +

∑
j∈Jk νjF

3
j (d, v̂), where F 1

j (d, v̂) :=
−αkj+dT gkj+ 1

2dT Gk
jd−(1−σk)v̂,F 2

j (d, v̂) := F(xk)−Ak
j+dT ĝ

k
j+ 1

2dT Ĝk
jd , and

F 3
j (d, v̂) := −Bk

j + dT ǧ
k
j + 1

2dT Ǧk
jd − σkv̂. Consequently, the equality constraint

of the dual problem reads
(
Wk
p +

∑

j∈Jk
λjG

k
j + μjĜ

k
j + νj Ǧ

k
j

)
d +

∑

j∈Jk
λjg

k
j + μj ĝ

k
j + νj ǧ

k
j = 0,

∑

j∈Jk
(1− σk)λj + σkνj = 1.

(4.22)

Rewriting 1
2dT Wk

pd = − 1
2dT Wk

pd + dT Wk
pd in L, scooping d in the latter

summand and v̂, these terms vanish according to (4.22). Now, expressing d in (4.22)
and inserting it into L yield the desired form of the dual objective function.

Since the primal problem is convex and (because of the assumption F(xk) < 0)
strictly feasible, strong duality holds due to [9, Subsection 5.2.3]. Therefore the
optimal primal and dual objective function values coincide and we can express v̂k
using this equality. Using (4.22), the optimality conditions for the QCQP (4.20) and
straightforward calculations yield the desired formulas for v̂k . ��

4.3.2 The Bundle Algorithm

The method described in Algorithm 4.1 below works according to the following
scheme. After choosing a starting point x1 ∈ R

n that is strictly feasible with respect
to the F -constraint and σ1 ∈ (0, 1) and after setting up a few positive definite
matrices, we compute the localized approximation errors. Then we solve a convex
QCQP to determine the search direction, where the quadratic constraints of the
QCQP serve to obtain preferably feasible points that yield a good descent and a
good approximation of the equality constraint. After computing the aggregated data
and the predicted descent as well as testing the termination criterion, we perform
a line search (see Algorithm 4.2) on the ray given by the search direction. This
yields a trial point yk+1 that has the following property: either yk+1 is strictly
feasible with respect to F and the objective function and constraint violation in
G achieve sufficient descent (serious step) or yk+1 is strictly feasible and the model
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of the objective function changes sufficiently (null step with respect to the objective
function) or yk+1 is not strictly feasible and the model of the constraints changes
sufficiently (null step with respect to the constraint). Afterwards we update the
iteration point xk+1 and the information stored in the bundle. Now, we repeat this
procedure until the termination criterion is satisfied.

The initial parameters for the algorithm are given in Table 4.1.

Table 4.1 Initial parameters

General Default Description

x1 ∈ R
n strictly feasible initial point

y1 = x1 initial trial point

ε ≥ 0 final optimality tolerance

M ≥ 2 M = n+ 3 maximal bundle dimension

t0 ∈ (0, 1) t0 = 0.001 initial lower bound for step size

of serious step in line search

t̂0 ∈ (0, 1) t̂0 = 0.001 scaling parameter for t0
mL ∈ (0, 1

2 ) mL = 0.01 descent parameters for serious step

�L ∈ (0, 1
2 ) �L = mL in line search

mR ∈ (mL, 1) mR = 0.5

mf ∈ [0, 1] mf = 0.01 parameter for change of model of

objective function for short serious

and null steps in line search

mF ,mG ∈ (0, 1) mF = 0.01 parameters for change of models of

mG = mF constraints for short serious and null

steps in line search

ζ ∈ (0, 1
2 ) ζ = 0.01 coefficient for interpolation in line search

ϑ ≥ 1 ϑ = 1 exponent for interpolation in line search

σ1 ∈ (0, 1] σ1 = 0.9 initial weight for the equality constraint

τ0 ∈ [0, 1) τ0 = 0.5 minimal update parameter for σk
τ1 ∈ (τ0, 1) τ1 = 0.90 minimal improvement factor for σk
CS > 0 CS = 1050 upper bound of the distance between

xk and yk
CG, ĈG, ČG > 0 CG = 1050 upper bound of the norm of the damped

ĈG = ČG = CG matrices {ρjGj } (|ρjGj | ≤ CG) resp.

{ρ̂j Ĝj } and {ρ̌j Ǧj }
C̄G,

¯̂
CG,

¯̌
CG > 0 C̄G = CG upper bound of the norm of the matrices

¯̂
CG = ¯̌

CG = C̄G {Ḡk
j } and {Ḡk} (max (|Ḡk

j |, |Ḡk |) ≤ C̄G)

resp. { ¯̂Gk
j }, { ¯̂Gk} and { ¯̌Gk

j }, { ¯̌Gj }
iρ ≥ 0 iρ = 3 selection parameter for ρk+1 (Remark 4.5)

il , im, ir ≥ 0 line search selection, matrix selection, and

bundle reset parameters (Remark 4.5)

γ1, γ2, γ3 > 0 γ1 = γ2 = γ3 = 1 coefficients for locality measures

ω1, ω2, ω3 ≥ 1 ω1 = ω2 = ω3 = 2 exponents for locality measures
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Algorithm 4.1: Second order bundle method

Data: Choose the initial parameters, which will not be changed during the
algorithm, according to Table 4.1.

Step 0. (Initialization) Set the initial values of the data which gets changed
during the algorithm:

in = 0 (# subsequent null and short steps),

is = 0 (# subsequent serious steps),

id = 0 (# subsequent steps without equality improvement),

J1 = {1} (set of bundle indices).

Compute the following information at the initial trial point

f 1
p = f 1

1 = f (y1), (4.23)

g1
p = g1

1 = g(y1) ∈ ∂f (y1), (4.24)

G1
p = G1 approximatingG(y1) ∈ ∂2f (y1), (4.25)

F 1
p = F 1

1 = F(y1) < 0 (y1 strictly feasible according to assumption),
(4.26)

ĝ
1
p = ĝ

1
1 = ĝ(y1) ∈ ∂F (y1), (4.27)

Ĝ1
p = Ĝ1 approximating Ĝ(y1) ∈ ∂2F(y1), (4.28)

G1
p = G1

1 = G(y1), (4.29)

ǧ
1
p = ǧ

1
1 = ǧ(y1) ∈ ∂G(y1), (4.30)

Ǧ1
p = Ǧ1 approximating Ǧ(y1) ∈ ∂2G(y1), (4.31)

and set

š1
p = ŝ1

p = s1
p = s1

1 = 0 (locality measure), (4.32)

ρ̌1 = ρ̂1 = ρ1 = 1 (damping parameter),

ν̄1 = κ̄1 = 1 (Lagrange multiplier for optimality condition),

k = 1 (iterator).
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Step 1. (Determination of the matrices for the QCQP)
if (step k − 1 and k − 2 were serious steps) ∧ (λk−1

k−1 = 1 ∨ is > ir︸ ︷︷ ︸
bundle reset

) then

W = Gk + κ̄kĜk + ν̄kǦk, (4.33)

else

W = Gk
p + κ̄kĜk

p + ν̄kǦk
p, (4.34)

end

if in ≤ im + il then
Wk
p = “positive definite modification of W”,

else

Wk
p = Wk−1

p , (4.35)

end

if in < im + il (i.e. # of subsequent null and short steps < the fixed number
im + il) then

(Gk, Ĝk, Ǧk) = “positive definite modification of (Gk
p, Ĝ

k
p, Ǧ

k
p)”, (4.36)

(Gk
j , Ĝ

k
j , Ǧ

k
j ) = “positive definite modification of (Gj , Ĝj , Ǧj )” for all j ∈ Jk,

else if in = im + il then

(Gk, Ĝk, Ǧk) = “positive definite modification of (Gk
p, Ĝ

k
p, Ǧ

k
p)”,

(Gk
j , Ĝ

k
j , Ǧ

k
j ) = (Gk, Ĝk, Ǧk) for all j ∈ Jk,

(4.37)

else (i.e. at least im + il subsequent null and short steps were executed)

(Gk, Ĝk, Ǧk) = (Gk−1, Ĝk−1, Ǧk−1),

(Gk
j , Ĝ

k
j , Ǧ

k
j ) = (Gk−1, Ĝk−1, Ǧk−1) for all j ∈ Jk.

(4.38)

end
Step 2. (Computation of the localized approximation errors)

αkj := max{|f (xk)− f kj |, γ1(s
k
j )
ω1},

αkp := max{|f (xk)− f kp |, γ1(s
k
p)

ω1}, (4.39)
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Ak
j := max{|F(xk)− Fk

j |, γ2(s
k
j )
ω2},

Ak
p := max{|F(xk)− Fk

p |, γ2(ŝ
k
p)

ω2}, (4.40)

Bk
j := max{|G(xk)−Gk

j |, γ3(s
k
j )
ω3},

Bk
p := max{|G(xk)−Gk

p|, γ3(š
k
p)

ω3}. (4.41)

Step 3. (Determination of the search direction) Compute the solution
(dk, v̂k) ∈ R

n+1 of the (convex) QCQP

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
d,v̂

v̂ + 1
2dT Wk

pd

subject to −αkj + dT gkj + 1
2dT Gk

jd ≤ (1− σk)v̂ for j ∈ Jk ,

−αkp + dT gkp + 1
2dT Gkd ≤ (1− σk)v̂ if is ≤ ir ,

F(xk)− Ak
j + dT ĝ

k
j + 1

2dT Ĝk
jd ≤ 0 for j ∈ Jk ,

F(xk)− Ak
p + dT ĝ

k
p + 1

2dT Ĝkd ≤ 0 if is ≤ ir ,

−Bk
j + dT ǧ

k
j + 1

2dT Ǧk
jd ≤ σkv̂ for j ∈ Jk ,

−Bk
p + dT ǧ

k
p + 1

2dT Ǧkd ≤ σkv̂ if is ≤ ir ,

(4.42)

and its corresponding multiplier (λk, λkp, μ
k, μkp, ν

k, νkp) ∈ R
3(|Jk|+1)
≥0 , i.e.

dk = −H 2
k

( ∑

j∈Jk
λkjg

k
j + μkj ĝ

k
j + νkj ǧ

k
j + λkpgkp + μkpĝ

k
p + νkpǧ

k
p

)
,

(4.43)

v̂k = −dTk W
k
pdk

− 1
2dTk

( ∑

j∈Jk
λkjG

k
j + μkj Ĝ

k
j + νkj Ǧ

k
j + λkpG

k + μkpĜ
k + νkpǦ

k
)
dk

−
∑

j∈Jk
(λkj α

k
j + μkjA

k
j + νkj B

k
j )− λkpα

k
p − μkpA

k
p − νkpB

k
p

− ( ∑

j∈Jk
μkj + μkp

)(− F(xk)
)
, (4.44)

where

Hk :=
(
Wk
p +

∑

j∈Jk
λkjG

k
j + μkj Ĝ

k
j + νkj Ǧ

k
j + λkpG

k + μkpĜ
k + νkpǦ

k
)− 1

2 .

(4.45)
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Set

λ̄k+1 :=
∑

j∈Jk
λkj + λkp , (ζ kj , ζ

k
p) :=

{
(λkj ,λ

k
p)

λ̄k+1 , for λ̄k+1 > 0,

0, for λ̄k+1 = 0,
(4.46)

κ̄k+1 :=
∑

j∈Jk
μkj + μkp, (κkj , κ

k
p) :=

{
(μkj ,μ

k
p)

κ̄k+1 , for κ̄k+1 > 0,
0, for κ̄k+1 = 0,

(4.47)

ν̄k+1 :=
∑

j∈Jk
νkj + νkp, (ηkj , η

k
p) :=

{
(νkj ,ν

k
p)

ν̄k+1 , for ν̄k+1 > 0,
0, for ν̄k+1 = 0,

(4.48)

if is > ir then
is = 0 (bundle reset).

end
Step 4. (Aggregation) We set for the aggregation of information of the objec-

tive function

(g̃kp, f̃
k
p ,G

k+1
p , s̃kp) =

∑

j∈Jk
ζ kj (g

k
j , f

k
j , ρjGj , s

k
j )+ ζ kp(g

k
p, f

k
p ,G

k
p, s

k
p),

(4.49)

α̃kp = max
(|f (xk)− f̃ kp |, γ1(s̃

k
p)

ω1
)
, (4.50)

and for the aggregation of information of the constraints

( ˜̂gkp, F̃ k
p , Ĝ

k+1
p , ˜̂skp) =

∑

j∈Jk
κkj (ĝ

k
j , F

k
j , ρ̂j Ĝj , ŝ

k
j )+ κkp(ĝ

k
p, F

k
p , Ĝ

k
p, ŝ

k
p),

(4.51)

Ãk
p = max{|F(xk)− F̃ k

p |, γ2( ˜̂skp)ω2}, (4.52)

( ˜̌gkp, G̃k
p, Ǧ

k+1
p , ˜̌skp) =

∑

j∈Jk
ηkj (ǧ

k
j ,G

k
j , ρ̌j Ǧj , š

k
j )+ ηkp(ǧ

k
p,G

k
p, Ǧ

k
p, š

k
p),

(4.53)

B̃k
p = max{|G(xk)− G̃k

p|, γ3( ˜̌skp)ω3}, (4.54)

and we set

vk = −dTk
(
Wk
p + 1

2

∑

j∈Jk
λkjG

k
j + μkj Ĝ

k
j + νkj Ǧ

k
j + λkpG

k + μkpĜ
k + νkpǦ

k
)
dk

− λ̄k+1α̃kp − κ̄k+1(Ãk
p − F(xk)

)− ν̄k+1B̃k
p, (4.55)
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wk = 1
2‖Hk(λ̄

k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp)‖2 + λ̄k+1α̃kp

+ κ̄k+1(Ãk
p − F(xk)

)+ ν̄k+1B̃k
p. (4.56)

Step 5. (Termination criterion)
if max(wk, σk,G(xk)) ≤ ε or id > im then

stop.
end

Step 6. (Line search) We compute step sizes 0 ≤ tkL ≤ tkR ≤ 1 and tk0 ∈ (0, t0]
by using the line search described in Algorithm 4.2 and we set

xk+1 = xk + tkLdk (strictly feasible with respect to F by the line search),
(4.57)

yk+1 = xk + tkRdk , (4.58)

fk+1 = f (yk+1),

gk+1 = g(yk+1) ∈ ∂f (yk+1),

Gk+1 approximatingG(yk+1) ∈ ∂2f (yk+1),

Fk+1 = F(yk+1),

ĝk+1 = ĝ(yk+1) ∈ ∂F (yk+1), (4.59)

Ĝk+1 approximating Ĝ(yk+1) ∈ ∂2F(yk+1),

Go
k+1 = G(yk+1),

ǧk+1 = ǧ(yk+1) ∈ ∂G(yk+1),

Ǧk+1 approximating Ǧ(yk+1) ∈ ∂2G(yk+1).

Step 7. (Update)
if in ≤ iρ then

ρk+1 = min{1, CG|Gk+1| }, (4.60)

else

ρk+1 = 0.

end
We set

ρ̂k+1 = min{1, ĈG

|Ĝk+1| },

ρ̌k+1 = min{1, ČG

|Ǧk+1| },
(4.61)
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if tkL ≥ tk0 (serious step) then

in = 0,

is = is + 1,

if |Go
k+1/G

o
k−id−in | ≤ τ1 then

σk+1 = max{τ0, |Go
k+1/G

o
k−id−in |}σk,

id = 0,
(4.62)

else

σk+1 = σk,

id = id + 1,
(4.63)

end
else (no serious step, i.e. null or short step)

σk+1 = σk,

in = in + 1.
(4.64)

end

Compute the updates of the locality measure

sk+1
j = skj + ‖xk+1 − xk‖ for j ∈ Jk, (4.65)

sk+1
k+1 = ‖xk+1 − yk+1‖, (4.66)

sk+1
p = s̃kp + ‖xk+1 − xk‖, (4.67)

ŝk+1
p = ˜̂skp + ‖xk+1 − xk‖, (4.68)

šk+1
p = ˜̌skp + ‖xk+1 − xk‖. (4.69)

Compute the updates for the objective function approximation, for j ∈ Jk,

f k+1
j = f k

j + gk Tj (xk+1 − xk)+ 1
2ρj (xk+1 − xk)

T Gj (xk+1 − xk),

f k+1
k+1 = fk+1 + gTk+1(xk+1 − yk+1),

+ 1
2ρk+1(xk+1 − yk+1)

T Gk+1(xk+1 − yk+1), (4.70)

f k+1
p = f̃ k

p + g̃k Tp (xk+1 − xk)+ 1
2 (xk+1 − xk)

T Gk+1
p (xk+1 − xk),

(4.71)
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and for the constraints, for j ∈ Jk
F k+1
j = Fk

j + ĝ
k T
j (xk+1 − xk)+ 1

2 ρ̂j (xk+1 − xk)
T Ĝj (xk+1 − xk),

F k+1
k+1 = Fk+1 + ĝ

T
k+1(xk+1 − yk+1)

+ 1
2 ρ̂k+1(xk+1 − yk+1)

T Ĝk+1(xk+1 − yk+1), (4.72)

Fk+1
p = F̃ k

p + ˜̂gk Tp (xk+1 − xk)+ 1
2 (xk+1 − xk)

T Ĝk+1
p (xk+1 − xk),

(4.73)

Gk+1
j = Gk

j + ǧ
k T
j (xk+1 − xk)+ 1

2 ρ̌j (xk+1 − xk)
T Ǧj (xk+1 − xk),

Gk+1
k+1 = Go

k+1 + ǧ
T
k+1(xk+1 − yk+1)

+ 1
2 ρ̌k+1(xk+1 − yk+1)

T Ǧk+1(xk+1 − yk+1), (4.74)

Gk+1
p = G̃k

p + ˜̌gk Tp (xk+1 − xk)+ 1
2 (xk+1 − xk)

T Ǧk+1
p (xk+1 − xk).

(4.75)

Compute the updates for the subgradient of the objective function approxima-
tion

gk+1
j = gkj + ρjGj (xk+1 − xk) for j ∈ Jk,

gk+1
k+1 = gk+1 + ρk+1Gk+1(xk+1 − yk+1), (4.76)

gk+1
p = g̃kp +Gk+1

p (xk+1 − xk), (4.77)

and for the constraints

ĝ
k+1
j = ĝ

k
j + ρ̂j Ĝj (xk+1 − xk) for j ∈ Jk, (4.78)

ĝ
k+1
k+1 = ĝk+1 + ρ̂k+1Ĝk+1(xk+1 − yk+1), (4.79)

ĝ
k+1
p = ˜̂gkp + Ĝk+1

p (xk+1 − xk), (4.80)

ǧ
k+1
j = ǧ

k
j + ρ̌j Ǧj (xk+1 − xk) for j ∈ Jk, (4.81)

ǧ
k+1
k+1 = ǧk+1 + ρ̌k+1Ǧk+1(xk+1 − yk+1), (4.82)

ǧ
k+1
p = ˜̌gkp + Ǧk+1

p (xk+1 − xk). (4.83)

Choose Jk+1 ⊆ {k −M + 2, . . . , k + 1} ∩ {1, 2, . . . } with k + 1 ∈ Jk+1.
Set k = k + 1 and go to Step 1.
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Remark 4.5 As in [16], the approximation of elements in ∂2f (y), ∂2F(y), and
∂2G(y) only need to satisfy mild conditions for convergence. However, the speed
of convergence will be influenced. Also, the parameters im and ir as well as
the additional parameter il are only needed for proving convergence. Since in
practice we usually terminate an algorithm, if a maximal number of iterations
Nit_max is exceeded, we always choose im = in = il = Nit_max + 1 in
our implementation. The case distinction for the choice of W according to (4.33)
resp. (4.34) is only necessary for showing superlinear convergence for strongly
convex, twice continuously differentiable functions. The choice iρ = 3 is due to

empirical observations. A numerically meaningful choice of the matrices Gk
j , Ĝk

j ,

Ĝk , Ǧk
j and Ǧk , that occur in (4.36) is discussed in [16].

Proposition 4.7 We have for all k ≥ 0

‖Hk(λ̄
k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp)‖2 = dTk

(
Wk
p +

∑

j∈Jk
λkjG

k
j + μkj Ĝ

k
j + νkj Ǧ

k
j

+ λkpG
k + μkpĜ

k + νkpǦ
k
)
dk,

(4.84)

wk = − 1
2dTk W

k
pdk − vk . (4.85)

Proof Because of

H−2
k = Wk

p +
∑

j∈Jk
λkjG

k
j + μkj Ĝ

k
j + νkj Ǧ

k
j + λkpG

k + μkpĜ
k + νkpǦ

k

due to (4.45) and

dk = −H 2
k (λ̄

k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp)

due to (4.43), (4.46)–(4.49), (4.51), and, (4.53), easy calculations yield (4.84).
Furthermore, (4.85) holds due to (4.84), (4.55) and (4.56). ��
Remark 4.6 If we consider a nonsmooth inequality constrained optimization prob-
lem (i.e. we drop the constraint G(x) = 0 in optimization the problem (4.2)), then
our formula for vk from (4.55) reduces to the formula for vk in [16].

4.3.3 The Line Search

We extend the line search of [16] to the equality constrained case in the line
search described in Algorithm 4.2. For obtaining a clear arrangement of the
line search, we compute data concerning the objective function and the con-
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straints in ComputeObjectiveData, and ComputeConstraintDataF and
ComputeConstraintDataG, respectively. Before formulating the line search
in detail, we give a brief overview of its functionality.

Starting with the step size t = 1, we check if the point xk+ tdk is strictly feasible
with respect to F . If so and if additionally the objective function and the constraint
violation in G decrease sufficiently in this point and t is not too small, then we take
xk + tdk as new iteration point in Algorithm 4.1 (serious step). Otherwise, if the
point xk + tdk is strictly feasible with respect to F , the constraint violation in G

decreases sufficiently, and the model of the objective function changes sufficiently,
we take xk + tdk as new trial point (short/null step with respect to the objective
function). If xk + tdk is not strictly feasible or the constraint violation in G does
not decrease sufficiently, but the model of the constraints changes sufficiently (in
particular here the quadratic approximation of the constraints comes into play), we
take xk+ tdk as new trial point (short/null step with respect to the constraint). After
choosing a new step size t ∈ [0, 1] by interpolation, we iterate this procedure.

Algorithm 4.2: Line search

Step 0. (Initialization) Choose ζ ∈ (0, 1
2 ) as well as ϑ ≥ 1 and set tL = 0 as

well as t = tU = 1.
Step 1. (Modification of either tL or tU )

ifF(xk + tdk) < 0 then
if f (xk + tdk) ≤ f (xk)+mL(1− σk)vkt

and G(xk + tdk) ≤ G(xk)+ �Lσkvkt then
tL = t,

else
tU = t,

end
else

tU = t,

t0 = t̂0tU , (4.86)

end
if tL ≥ t0 then

tR = tL,

return (serious step).

end

Step 2. (Decision of return)

if in < il then
ifF(xk + tdk) < 0 then

[g,G, . . . ] = ComputeObjectiveData(t,...),
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ifZ = true then
tR = t,

return (short/null step: change of model of the objective,

function),

else

[ǧ, Ǧ, . . . ] = ComputeConstraintDataG(t,...),

if Ž = true then
tR = t,

return (short/null step: change of model of the equality

constraint),

end
end

else

[ĝ, Ĝ, . . . ] = ComputeConstraintDataF(t,...),

if Ẑ = true then
tR = t,

return (short/null step: change of model of the inequality

constraint),

end
end

elseif in ≥ il then
[g,G, . . . ] = ComputeObjectiveData(t,...),

ifZ = false then

[ǧ, Ǧ, . . . ] = ComputeConstraintDataG(t,...),

end

ifF(xk + tdk) < 0 and (Z or Ž) = true then
tR = t,

return (short/null step: change of model of obj. or eq.const.).

end
end

Step 3. (Interpolation) Choose t ∈ [tL + ζ(tU − tL)
ϑ , tU − ζ(tU − tL)

ϑ ].
Step 4. (Loop) Go to Step 1.

function [g,G, . . . ] =ComputeObjectiveData(t,...)

g = g(xk + tdk) ∈ ∂f (xk + tdk),

G = approximation of G(xk + tdk) ∈ ∂2f (xk + tdk),
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ρ =
{

min{1, CG‖G‖ }, for in ≤ 3,

0, else,

f = f (xk + tdk)+ (tL − t)gT dk + 1
2ρ(tL − t)2dTk Gdk, (4.87)

β = max{|f (xk + tLdk)− f |, γ1|tL − t|ω1‖dk‖ω1}, (4.88)

G = “positive definite modification of G”, (4.89)

Z = −β + dTk
(
g + ρ(tL − t)Gdk

) ≥ mRvk +mf · (− 1
2dTk Gdk),

and (t − tL)‖dk‖ ≤ CS. (4.90)

function [ĝ, Ĝ, . . . ] =ComputeConstraintDataF(t,...)

ĝ = g(xk + tdk) ∈ ∂F (xk + tdk),

Ĝ = approximation of Ĝ(xk + tdk) ∈ ∂2F(xk + tdk),

ρ̂ = min{1, ĈG

‖Ĝ‖ },
F = F(xk + tdk)+ (tL − t)ĝ

T
dk + 1

2 ρ̂(tL − t)2dTk Ĝdk, (4.91)

β̂ = max{|F(xk + tLdk)− F |, γ2|tL − t|ω2‖dk‖ω2}, (4.92)

Ĝ = “positive definite modification of Ĝ”, (4.93)

Ẑ = F(xk + tLdk)− β̂ + dTk
(
ĝ + ρ̂(tL − t)Ĝdk

) ≥ mF · (− 1
2dTk Ĝdk),

and (t − tL)‖dk‖ ≤ CS. (4.94)

function [ǧ, Ǧ, . . . ] =ComputeConstraintDataG(t,...)

ǧ = ǧ(xk + tdk) ∈ ∂G(xk + tdk),

Ǧ = approximation of Ǧ(xk + tdk) ∈ ∂2G(xk + tdk),

ρ̌ = min{1, ČG

‖Ǧ‖ },
G = G(xk + tdk)+ (tL − t)ǧ

T
dk + 1

2 ρ̌(tL − t)2dTk Ǧdk, (4.95)

β̌ = max{|G(xk + tLdk)−G|, γ3|tL − t|ω3‖dk‖ω3}, (4.96)

Ǧ = “positive definite modification of Ǧ”, (4.97)

Ž = G(xk + tLdk)− β̌ + dTk
(
ǧ + ρ̌(tL − t)Ǧdk

) ≥ mG · (− 1
2dTk Ǧdk),

and (t − tL)‖dk‖ ≤ CS. (4.98)
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Remark 4.7 The parameter il is only necessary for proving global convergence of
Algorithm 4.1 (to be more precise, it is only needed to show that a short or null step
which changes the model of the objective function is executed in Lemma 4.17). If
we choose il = 0, then only a change of the model of the objective function yields a
short or null step. In fact we have il steps in Algorithm 4.1 in which we can use any
meaningful criterion for terminating the line search, and (4.86) is like in [16].

The step sizes returned by the line search correspond to the points xk+1 = xk +
tkLdk and yk+1 = xk + tdk = xk + tkRdk .

Only iteration points that are strictly feasible with respect to F are accepted in
the line search

F(xk + tkLdk) < 0. (4.99)

Nevertheless, trial points may be infeasible with respect to F (if in < il).

Proposition 4.8 Let

α̂kp :=
∑

j∈Jk
ζ kj α

k
j + ζ kpα

k
p ,

Âk
p :=

∑

j∈Jk
κkj A

k
j + κkpA

k
p, B̂k

p :=
∑

j∈Jk
ηkjB

k
j + ηkpB

k
p, (4.100)

ŵk := 1
2‖Hk(λ̄

k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp)‖2 + λ̄k+1α̂kp + κ̄k+1(Âk
p − F(xk)

)

+ ν̄k+1B̂k
p, (4.101)

(Note: ŵk is the optimal function value of the dual problem (4.21)). Then we have
at iteration k of Algorithm 4.1

v̂k ≤ vk ≤ 0 ≤ wk ≤ ŵk . (4.102)

Proof For γ > 0 and ω ≥ 1 the functions ξ 2→ γ |ξ |ω and (ξ1, ξ2) 2→
max{ξ1, ξ2} are convex and thus we have γ

(∑k
i=1 ti‖xi‖

)ω ≤ ∑k
i=1 ti(γ ‖xi‖ω)

and max{∑k
i=1 tixi ,

∑k
i=1 tiyi} ≤

∑k
i=1 ti max{xi , yi}. For λ̄k+1 > 0 we have

that
∑

j∈Jk ζ
k
j + ζ kp = 1 and ζ kj ≥ 0 for j ∈ Jk and ζ kp ≥ 0 holds by (4.46) for

the solution of the dual problem (4.21) of the QCQP (4.42). This implies f (xk) =∑
j∈Jk ζ

k
j f (xk)+ ζ kpf (xk), and hence α̃kp ≤ α̂kp follows from (4.50), (4.49), (4.39)

and (4.100). If λ̄k+1 = 0 this fact is trivial. Similar arguments prove Ãk
p ≤ Âk

p and

B̃k
p ≤ B̂k

p. Consequently, we get 0 ≤ λ̄k+1α̃kp + κ̄k+1Ãk
p + ν̄k+1B̃k

p ≤ λ̄k+1α̂kp +
κ̄k+1Âk

p+λ̄k+1B̂k
p. Now, we obtain thewk-estimate of (4.102) due to (4.56), (4.101)

and (4.46)–(4.48). Because of (4.100) and (4.46)–(4.48) we have 0 ≥ −λ̄k+1α̃kp −
κ̄k+1Ãk

p − ν̄k+1B̃k
p ≥ −

∑
j∈Jk (λ

k
j α

k
j + μkjA

k
j + νkj B

k
j )− λkpα

k
p − μkpA

k
p − νkpB

k
p ,

and, therefore, we obtain the vk-estimate of (4.102) by using (4.55), (4.46)–
(4.48), (4.44), (4.85), the positive definiteness of Wk

p and (4.102). ��
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Like in [15, Proposition 9] we conclude that vk < 0 if the line search is performed
at iteration k of Algorithm 4.1, and that

− 1
2dTk Ĝxk+tdkdk < 0 (4.103)

if there occurs a step size t with F(xk + tdk) ≥ 0 in the line search.
Analogous to [15, Proposition 10] we can also prove that, provided the line search

Algorithm 4.2 terminates with conditions (4.90), (4.94), or (4.98), the old search
direction dk of iteration k is sufficiently infeasible for the new QCQP (4.42) at
iteration k + 1.

4.4 Convergence

In the following section we give an outline of the proof of the convergence of the
line search and the global convergence of the bundle algorithm.

4.4.1 Convergence of the Line Search

For convergence we will need to assume an additional property that is somewhat
weaker than semismoothness (see Definition 1.11) and was given in [54].

Definition 4.4 Let h : Rn → R
m be Lipschitz on a ball around x ∈ R

n. We call h
weakly upper semismooth at x, if for all d ∈ R

n and all sequences {tk} with tk ↓ 0
and {gk} with gk ∈ ∂h(x + tkd)

lim inf
k→∞ gTk d ≥ lim sup

t↓0

h(x + td)− h(x)

t
.

Proposition 4.9 Let f and G be weakly upper semismooth, then the line search
(Algorithm 4.2) terminates after finitely many steps with tkL = tL, tkR = t and tk0 > 0.

Proof If F(xk + tdk) < 0 for all t ∈ [0, 1], then we can prove analogously to
[46, pp. 379, Proof of Lemma 2.3] indirectly by assuming that infinitely many steps
are taken. So in every step i we have f (xk + tidk) − f (xk) > mLti(1 − σk)vk
or G(xk + tidk) − G(xk) > mLtiσkvk . Hence, at least one of these conditions is
satisfied infinitely often. For this condition weak upper semismoothness then leads
to a contradiction.

Otherwise, since F is continuous and F(xk) < 0, there exists a largest t̃ > 0 with
F(xk + t̃dk) = 0 and F(xk + sdk) < 0 for all s < t̃ . Therefore, after sufficiently
many iterations in the line search (Algorithm 4.2) (Note that the interval [tL, tU ] is
shrinking at each iteration of the line search), there only occur tL, t0, tU with 0 ≤
tL < tU < t̃ and 0 < t0 < tU < t̃ (i.e. from now on all xk + tdk with t ∈ {tL, tU }
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are feasible with respect to F ) and consequently t0 (where xk+ t0dk is also feasible
with respect to F ) does not change anymore (cf. (4.86)). Hence, here we also have
exactly the same situation as in the proof [46, Proof of Lemma 2.3], where the only
difference is the following additional argument to obtain the inequality at the bottom
of [46, pp. 379]. Since mf ∈ [0, 1] due to the initialization of Algorithm 4.1 and
since G is positive definite due to (4.89), the negation of the condition in (4.90)
that corresponds to the change of the model of the objective function yields −β +
dTk

(
g+ρ(tL− t)Gdk

)
< mR(1−σk)vk +mf · (− 1

2dTk Gdk) ≤ mR(1−σk)vk . ��
Remark 4.8 The proof of Proposition 4.9 only relies on f and G being weakly
upper semismooth, the continuity of F and the strict feasibility of xk with respect
to F . In particular, F does not need to be weakly upper semismooth.

4.4.2 Global Convergence

For investigating the global convergence of Algorithm 4.1 we will closely follow
the global convergence proof of the second order bundle method in [15] with
modifications which concern the equality constrained case. We assume

ε = 0, λkj = 0, μkj = 0, νkj = 0 for all j �∈ Jk . (4.104)

We give a brief overview of the main steps of the proof. In Proposition 4.10
we express the p-tilde data (as, e.g., g̃kp, ˜̂gkp, ˜̌gkp, . . . ) as convex combinations

in which no p-data (as, e.g., gkp, ĝ
k
p, ǧ

k
p, . . . ) occurs. In Theorem 4.3 we show

that if Algorithm 4.1 stops at iteration k, then the current iteration point xk is
stationary for the optimization problem (4.2). From then on we assume that the
algorithm does not terminate (cf. (4.114)). Next, we deduce bounds for {(Wk

p)
−1}

and {Wk
p+ λ̄k+1Gk+ κ̄k+1Ĝk+ μ̄k+1Ǧk} in Corollary 4.11, which will be essential

in the following. Then, in Proposition 4.12, we show that if some boundedness
assumptions are satisfied and the limit inferior of the sequence {max{wk, σk, ‖xk −
x̄‖}} is zero, where x̄ denotes any accumulation point of the sequence of iteration
points {xk}, then x̄ is stationary for the optimization problem (4.2), where the
proof relies on Carathéodory’s theorem as well as on the local boundedness and
the upper semicontinuity of the subdifferentials ∂f , ∂F , and ∂G. Due to the
negativity of vk , which holds due to (4.102), we obtain the statement tkLvk → 0
in Proposition 4.13. In Proposition 4.14 we show some properties of the shifted
sequences {xk+i}, {wk+i} and {tk+iL }, where we have to take care of the dependence
of (λk, λkp,μ

k, μkp, ν
k, νkp), which we noticed before, in the proof. Finally, we

prove that under some additional boundedness assumptions the limit inferior of
the sequence {max{wk, ‖xk − x̄‖}} is always zero and therefore Proposition 4.12
yields Theorem 4.4, which states that each accumulation point x̄ of the sequence
of iteration points {xk} is stationary for the optimization problem (4.2), under the
assumption that the sequence {σk} tends to zero.
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Proposition 4.10 Assume that Algorithm 4.1 has not stopped before iteration k

with k ≥ 1. Then

(1− σk)λ̄
k+1 + σkν̄

k+1 = 1. (4.105)

If λ̄k+1 > 0, then there exist ζ̂ kj ∈ R for j = 1, . . . , k with

ζ̂ kj ≥ 0,
k∑

j=1

ζ̂ kj = 1, (Gk+1
p , g̃kp, s̃

k
p) =

k∑

j=1

ζ̂ kj (ρjGj ,g
k
j , s

k
j ). (4.106)

If λ̄k+1 = 0, then the last equation in (4.106) holds with

ζ̂ kj := 0 for all j = 1, . . . , k. (4.107)

If κ̄k+1 > 0, then there exist κ̂kj ∈ R for j = 1, . . . , k with

κ̂kj ≥ 0,
k∑

j=1

κ̂kj = 1, (Ĝk+1
p , ˜̂gkp, ˜̂skp) =

k∑

j=1

κ̂kj (ρ̂j Ĝj , ĝ
k
j , s

k
j ). (4.108)

If κ̄k+1 = 0, then the last equation in (4.108) holds with

κ̂kj := 0 for all j = 1, . . . , k. (4.109)

If ν̄k+1 > 0, then there exists η̂kj ∈ R for j = 1, . . . , k with

η̂kj ≥ 0,
k∑

j=1

η̂kj = 1, (Ǧk+1
p , ˜̌gkp, ˜̌skp) =

k∑

j=1

η̂kj (ρ̌j Ǧj , ǧ
k
j , s

k
j ). (4.110)

If ν̄k+1 = 0, then the last equation in (4.110) holds with

η̂kj := 0 for all j = 1, . . . , k. (4.111)

Proof We get (4.105) from the equality condition of the dual QCQP (4.21).
Equations (4.108) and (4.109) can be proved by a simple extension of the proof
by induction in [15, Proposition 12]. The remaining claims follow with direct
calculations from the definitions (4.46)–(4.48), (4.49), (4.53), (4.59), (4.60), and
(4.61). ��
Theorem 4.3 If Algorithm 4.1 stops at iteration k with λ̄k+1 > 0 and id ≤ im,

then there exist κ̄k+1, ν̄k+1 ≥ 0 such that (4.8) holds for (xk,
κ̄k+1

λ̄k+1 ,
ν̄k+1

λ̄k+1 ), i.e. xk is
stationary for the optimization problem (4.2).
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Proof Since Algorithm 4.1 stops at iteration k, step 5 of the algorithm with id ≤
im, (4.104) and (4.102) imply wk = 0 which is equivalent to

1
2‖Hk(λ̄

k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp)‖2 = 0,

∧ λ̄k+1α̃kp = 0 ∧ κ̄k+1Ãk
p = 0 ∧ ν̄k+1B̃k

p = 0

∧ κ̄k+1(− F(xk)
) = 0,

(4.112)

due to (4.56), (4.50), κ̄k+1 ≥ 0 and F(xk) ≤ 0. Using the regularity of Hk , (4.50)
and (4.49), we obtain from (4.112)

λ̄k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp = 000, s̃kp = 0. (4.113)

Furthermore, for κ̄k+1 > 0 we obtain from (4.112), (4.52) and (4.51) that ˜̂skp = 0

and hence we have either κ̄k+1 = 0 or κ̄k+1 > 0 ∧ ˜̂skp = 0. In addition, for

ν̄k+1 > 0 we get from (4.112), (4.54) and (4.53) that ˜̌skp = 0 and hence we have

either ν̄k+1 = 0 or ν̄k+1 > 0 ∧ ˜̌skp = 0.

We set x̄ := xk , L := k, ȳj := yj , s̄j := skj . Then for Gj := ρjGj , ḡj := gj ,

λ̄j := λ̄k+1ζ̂ kj , and q̄ := λ̄k+1g̃kp resp. for κ̄k+1 > 0, G′j := ρ̂j Ĝj , ḡ′j := ĝj , λ̄′j :=
κ̂kj , and q̄ ′ := ˜̂gkp, resp. for ν̄k+1 > 0, G′′j := ρ̌j Ǧj , ḡ′′j := ǧj , λ̄′′j := η̂kj , and q̄ ′′ :=
˜̌gkp the assumptions of [15, Proposition 13] are satisfied (by using Proposition 4.10),

and therefore we obtain g̃kp ∈ ∂f (xk), ˜̂gkp ∈ ∂F (xk), and ˜̌gkp ∈ ∂G(xk). Now,
using (4.113) we calculate

000 ∈ ∂f (xk)+ κ̄k+1

λ̄k+1
∂F (xk)+ ν̄k+1

λ̄k+1
∂G(xk).

In addition, since σk = 0, there must be τ0 = 0, and Go
� = 0 for some � ≤

k, and since all vi ≤ 0 by (4.62) and the construction of the line search, we get
G(xk) = 0. ��
From now on, we demand that we have for all k

wk > 0. (4.114)

Proposition 4.11 If {(Wk
p)
− 1

2 } is bounded, then {(Wk
p)
−1} and {Hk} are bounded

for all k ≥ 1 with some positive constant C0 > 0

‖(Wk
p)
−1‖ ≤ C0. (4.115)
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If {κ̄k+1} and {ν̄k+1} are bounded and {(Wk
p)
− 1

2 } is uniformly positive definite,

then {H−1
k } is bounded and

‖Wk
p + λ̄k+1Gk + κ̄k+1Ĝk + ν̄k+1Ǧk‖ ≤ C1, (4.116)

for all k ≥ 1 with some positive constant C1 > 0.

Proof Since (Wk
p)
− 1

2 = (
(Wk

p)
−1

) 1
2 is bounded due to assumption, {(Wk

p)
−1} is

bounded due to [15, Proposition 15] and therefore (4.115) holds with some positive
constant C0 > 0, which is equivalent to the uniform positive definiteness of {Wk

p}
again due to [15, Proposition 15]. Since H−2

k − Wk
p is positive definite for all

(λk,μk, νk) ≥ 000 with (1 − σk)
(∑

j∈Jk λ
k
j + λkp

) + σk
(∑

j∈Jk ν
k
j + νkp

) = 1 due

to (4.45), we obtain ‖H 2
k ‖ ≤ C0, which is equivalent to {Hk} being bounded, due

to (4.115) and [15, Propositions 14 and 15].
Since {κ̄k+1} and {ν̄k+1} are bounded due to assumption, there exists a positive

constant χ0 > 0 with κ̄k+1, ν̄k+1 ≤ χ0 for all k ≥ 1. Since {(Wk
p)
− 1

2 } is uniformly

positive definite due to assumption, {(Wk
p)

1
2 } is bounded, which is equivalent to

{Wk
p} being bounded, due to [15, Proposition 15], i.e. ‖Wk

p‖ ≤ χ1 for some positive
constant χ1 > 0 and for all k ≥ 1. Therefore, we obtain the boundedness of

‖H−2
k ‖ ≤ χ1 + C̄G + χ0(

¯̂
CG + ¯̌

CG) due to (4.45), (4.47) and the initialization of
Algorithm 4.1, which is equivalent to {H−1

k } being bounded due to [15, Proposition

15]. Furthermore, settingC1 := χ1+C̄G+χ0(
¯̂
CG+ ¯̌CG) yields (4.116) due to (4.47)

and the initialization of Algorithm 4.1 ��
From now on let the following assumption be satisfied.

Assumption 4.1 Let (4.114) be satisfied. Furthermore, let {(xk, κ̄k+1, ν̄k+1)} be
bounded, σk → 0, and assume there exists x̄ ∈ R

N with σ(x̄) = 0, where σ :
R
N → R

σ(x) := lim inf
k→∞ max{wk, ‖xk − x‖}. (4.117)

Moreover, let {(Wk
p)
− 1

2 } be uniformly positive definite.

Next, we present Lemmas 4.1–4.7, which we need for proving Proposition 4.13.

Lemma 4.1 (Convergence of Basic Sequences) There exist an infinite set K ′ ⊂
{1, 2, . . . , } and 0 ≤ κ̄, ν̄ ∈ R such that

λ̄k+1 K ′−→ 1, κ̄k+1 K ′−→ κ̄, ν̄k+1 K ′−→ ν̄, (4.118)

xk
K ′−→ x̄, wk

K ′−→ 0. (4.119)
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Proof Since we have 0 = σ(x̄) = lim infk→∞ max{wk, ‖xk − x̄‖} due to
assumption and (4.117) and since wk ≥ 0, due to (4.102), and due to boundedness
of the sequences considered, there exist convergent subsequences satisfying (4.119)
and (4.118). Since 0 ≥ κ̄k+1, ν̄k+1 for all k we see that the limits are nonnegative, as
well. Because of (4.105) we conclude from the boundedness of {νk+1} and σk → 0
that λ̄k+1 is bounded as well. Taking subsequences again, let λ̄ be the limit of the
λ̄k+1. Taking limits in (4.105) proves λ̄ = 1. ��
Lemma 4.2 (Lagrange Multipliers) Let I := {1, 2, . . . , N +2} (Note: |I | = N +
2), S := {(gkj , skj ) : j = 1, . . . , k} ⊆ R

n+1, Ŝ := {(ĝkj , skj ) : j = 1, . . . , k} ⊆
R
n+1, and Š := {(ǧkj , skj ) : j = 1, . . . , k} ⊆ R

n+1. Then for i ∈ I and k ≥ 1 there

exist ζ k,i, κk,i , ηk,i ∈ R and (gk,i , sk,i ) ∈ S, (ĝk,i , ŝk,i) ∈ Ŝ, (ǧk,i , šk,i ) ∈ Š such
that

g̃kp =
∑

i∈I
ζ k,igk,i , s̃kp =

∑

i∈I
ζ k,isk,i , 1 =

∑

i∈I
ζ k,i , ζ k,i ≥ 0, (4.120)

˜̂gkp =
∑

i∈I
κk,iĝ

k,i , ˜̂skp =
∑

i∈I
κk,i ŝk,i ,

(1 =
∑

i∈I
κk,i ∧ κk,i ≥ 0) or (κk,i = 0 for all i ∈ I), (4.121)

˜̌gkp =
∑

i∈I
ηk,i ǧ

k,i , ˜̂skp =
∑

i∈I
ηk,i šk,i ,

(1 =
∑

i∈I
ηk,i ∧ ηk,i ≥ 0) or (ηk,i = 0 for all i ∈ I). (4.122)

In particular, we have

∑

i∈I
κk,i =

{
1, if κ̄k+1 > 0,
0, if κ̄k+1 = 0,

∑

i∈I
ηk,i =

{
1, if ν̄k+1 > 0,
0, if ν̄k+1 = 0.

(4.123)

Proof We have (g̃kp, s̃
k
p) ∈ convS due to (4.114) and (4.106). Due to the theorem

of Carathéodory for i ∈ I and k ≥ 1 there exist (gk,i , sk,i ) ∈ S and ζ k,i ∈ R

such that (4.120) holds. Furthermore, we have ( ˜̂gkp, ˜̂skp) ∈ conv Ŝ for κ̄k+1 > 0

and ( ˜̂gkp, ˜̂skp) = 000 for κ̄k+1 = 0 due to (4.114) and (4.108). In the case κ̄k+1 > 0

there exist (ĝk,i , ŝk,i ) ∈ Ŝ, κk,i ∈ R for i ∈ I with 1 = ∑
i∈I κk,i , κk,i ≥ 0 and

( ˜̂gkp, ˜̂skp) =
∑

i∈I κk,i(ĝ
k,i
, ŝk,i ) due to Carathéodory’s theorem. In the case κ̄k+1 =

0 choosing κk,i := 0 for all i ∈ I yields ( ˜̂gkp, ˜̂skp) = 000 = ∑
i∈I κk,i(ĝ

k,i
, ŝk,i ).

Hence, (4.121) holds, which immediately implies the right equation in (4.123).
Showing (4.122) and the right equation in (4.123) is done analogously. ��
Lemma 4.3 (Equality Condition) We have G(xk)→ 0.
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Proof From (4.62) we get for every k where σk changes that σk+1/σk ≥
|G(xk+1)/G(xk)|. For the other k we also find that inequality, since by construction
of the line search the sequence G(xk) is monontone decreasing. This implies that
σk/σ0 ≥ |G(xk)/G(x0)|. Since σk → 0 we conclude that G(xk)→ 0. ��
Lemma 4.4 (Assignment) There exists j (k, i) ∈ {1, . . . , k} (i.e. a function j :
{k ∈ N : k ≥ 1}×I → {1, . . . , k}) with gk,i = gkj (k,i), s

k,i = skj (k,i), ĝ
k,i = ĝ

k
j (k,i),

ŝk,i = ŝkj (k,i), ǧ
k,i = ǧ

k
j (k,i), and šk,i = škj (k,i).

Proof Use (gk,i , sk,i ) ∈ S, (ĝk,i , ŝk,i ) ∈ Ŝ, and (ǧk,i , šk,i) ∈ Š for i ∈ I and k ≥ 1
from Lemma 4.2. ��
Lemma 4.5 (Trial Point Convergence and Implications) For all i ∈ I there exist
ȳi ∈ R

N and (an infinite set) K ⊂ K ′ with

yj (k,i)
K−→ ȳi , (4.124)

(gj (k,i), ĝj (k,i), ǧj (k,i))
K−→ (ḡi ,

¯̂gi , ¯̌gi ) ∈ ∂f (ȳi )× ∂F (ȳi )× ∂G(ȳi ),

(4.125)

(ρj (k,i)Gj(k,i), ζ
k,i)

K−→ (Gi, λ̄i ),

(ρ̂j (k,i)Ĝj (k,i), κ
k,i)

K−→ (Ĝi, κ̄i ), (4.126)

(ρ̌j (k,i)Ǧj (k,i), η
k,i)

K−→ (Ǧi, ν̄i ).

Proof Since ‖yj (k,i)‖ ≤ ‖xj (k,i)‖ + CS holds for all i ∈ I and for all k ≥ 1, the
assumption of the boundedness of {xk} yields that {yj (k,i)}k≥1,i∈I is bounded, hence
has a convergent subsequence. Furthermore, the local boundedness of ∂f , ∂F , and
∂G (cf. Proposition 4.2) implies that the sets

B1 := {g ∈ ∂f (yj (k,i)) : yj (k,i) ∈ R
N, k ≥ 1, k ∈ K1, i ∈ I },

B2 := {ĝ ∈ ∂F (yj (k,i)) : yj (k,i) ∈ R
N, k ≥ 1, k ∈ K1, i ∈ I },

B3 := {ǧ ∈ ∂G(yj (k,i)) : yj (k,i) ∈ R
N, k ≥ 1, k ∈ K1, i ∈ I }

are bounded. Therefore, B1 × B2 × B3 is bounded and consequently there exists
a convergent subsequence {gj (k,i), ĝj (k,i), ǧj (k,i)} ∈ ∂f (yj (k,i)) × ∂F (yj (k,i)) ×
∂G(yj (k,i)). The upper semicontinuity of ∂f, ∂F , and ∂G (cf. Proposition 4.2)
and (4.124) imply that for all i ∈ I (4.125) holds.

Since ρj(k,i), ρ̂j (k,i), ρ̌j (k,i) ∈ (0, 1] due to (4.60), (4.61) and CG, ĈG, ČG > 0,
we obtain ρj(k,i)‖Gj(k,i)‖ ≤ CG, ρ̂j (k,i)‖Ĝj (k,i)‖ ≤ ĈG, and ρ̌j (k,i)‖Ǧj (k,i)‖ ≤
ČG, which yields that all the sequences {ρj(k,i)‖Gj(k,i)‖}, {ρ̂j (k,i)‖Ĝj (k,i)‖}, and
{ρ̌j (k,i)‖Ǧj (k,i)‖} are bounded. Due to (4.120), (4.121), and (4.122) the sequences
{ζ k,i}, {κk,i}, and {ηk,i} are bounded.
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Consequently, there exist convergent subsequences such that (4.126) holds. ��
Lemma 4.6 (Complementarity Condition) We have

∑

i∈I
λ̄i

(
ḡi +Gi(x̄ − ȳi )

)+ κ̄
∑

i∈I
κ̄i

( ¯̂gi + Ĝi(x̄ − ȳi )
)

+ ν̄
∑

i∈I
ν̄i

( ¯̌gi + Ǧi(x̄ − ȳi )
) = 000, (4.127)

ζ k,isk,i
K−→ 0, (4.128)

κk,i ŝk,i
K−→ 0, if κ̄ > 0, (4.129)

ηk,i šk,i
K−→ 0, if ν̄ > 0. (4.130)

Furthermore, the complementarity condition κ̄F (x̄) = 0 holds.

Proof We calculate g̃kp
K−→ ∑

i∈I λ̄i
(
ḡi + Gi(x̄ − ȳi )

)
, ˜̂gkp K−→ ∑

i∈I κ̄i
( ¯̂gi +

Ĝi(x̄ − ȳi )
)
, and ˜̌gkp K−→ ∑

i∈I ν̄i
( ¯̌gi + Ǧi(x̄ − ȳi )

)
by using (4.120)–(4.122),

Lemma 4.4, (4.14), (4.119), (4.124), (4.125), and (4.126). Since {κ̄k+1} and {ν̄k+1}
are bounded and {(Wk

p)
− 1

2 } is uniformly positive definite (both due to assumption),

Corollary 4.11 implies the boundedness of {H−1
k }. Because of (4.119), (4.56)

and (4.102), we have ‖Hk(λ̄
k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp)‖ K−→ 0, which

implies (4.127) due to the regularity ofHk , (4.118) and the uniqueness of a limit and

α̃kp
K−→ 0, which implies (4.128) due to (4.50), (4.120), Lemma 4.4, and (4.17), as

well as κ̄k+1F(xk)
K−→ 0, which implies 0 = κ̄F (x̄) due to (4.118), the continuity of

F and (4.119), as well as κ̄k+1Ãk
p

K−→ 0 which implies for κ̄ > 0 that (4.129) holds

due to (4.118), (4.52), (4.121), Lemma 4.4, (4.121) and (4.17). Also ν̄k+1B̃k
p

K−→ 0
and G(x̄) = 0 due to Lemma 4.3. Now (4.130) follows analogously to before. ��
Lemma 4.7 (Subdifferential Elements) We have

∑

i∈I
λ̄i

(
ḡi +Gi(x̄ − ȳi )

) ∈ ∂f (x̄),
⎧
⎨

⎩

∑

i∈I
κ̄i

( ¯̂gi + Ĝi(x̄ − ȳi )
) ∈ ∂F (x̄), if κ̄ > 0,

{000} = κ̄∂F (x̄), if κ̄ = 0,
⎧
⎨

⎩

∑

i∈I
ν̄i

( ¯̌gi + Ǧi(x̄ − ȳi )
) ∈ ∂G(x̄), if ν̄ > 0,

{000} = ν̄∂G(x̄), if ν̄ = 0.

Proof Since (4.120) holds for all k ∈ K , (4.126) implies
∑

i∈I λ̄i = 1. Due
to (4.126), we have limK

∑
i∈I κk,i =

∑
i∈I κ̄i . If κ̄ > 0, then—because of (4.118)
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and since K is an infinite set—there exists k̂ ∈ K such that |κ̄k+1 − κ̄ | < κ̄
2 ,

which implies 0 < κ̄
2 < κ̄k+1 for all k ∈ K̂ , where K̂ :=

{
k ∈ K : k ≥ k̂

}
is

an infinite set. Therefore, we obtain
∑

i∈I κk,i = 1 for all k ∈ K̂ due to (4.123),
i.e. {∑i∈I κk,i}k∈K̂ is constant on K̂ and hence we have lim

K̂

∑
i∈I κk,i = 1, hence

the sequence {∑i∈I κk,i}k∈K converges to 1, as well, since we already know that it
is convergent. Consequently,

∑
i∈I κ̄i = 1.

Due to (4.128) the sequence {ζ k,isk,i}k∈K is convergent and therefore necessarily
bounded, i.e. there exists C > 0 with 0 ≤ sk,i ≤ C

ζk,i
due to Lemma 4.4 as well

as (4.17) and therefore {sk,i}k∈K is bounded due to (4.126) for λ̄i �= 0, where at least
one such λ̄i exists because

∑
i∈I λ̄i = 1. Since the locality measure is monotone due

to (4.18), {sk,i}k∈K is monotone. Consequently, {sk,i}k∈K is convergent for λ̄i �= 0,
i.e. there exists si := limK sk,i . Therefore, (4.128), (4.126) and λ̄i �= 0 implies si =
0. Hence, we obtain for λ̄i �= 0 that ‖x̄− ȳi‖ = 0 due to Lemma 4.4, (4.18), (4.124)
and (4.119). For κ̄ > 0 and ν̄ > 0 similar proofs using (4.129) and (4.130) show
that ‖x̄ − ȳi‖ = 0 for κ̄i �= 0 or ν̄i �= 0.

If we set

q̄ :=
∑

i∈I
λ̄i

(
ḡi +Gi(x̄ − ȳi )

)
, s̄i :=

{‖x̄ − ȳi‖ for λ̄i = 0
0 for λ̄i �= 0

}
,

q̄ ′ :=
∑

i∈I
κ̄i

( ¯̂gi + Ĝi(x̄ − ȳi )
)
, s̄′i :=

{‖x̄ − ȳi‖ for κ̄i = 0
0 for κ̄i �= 0

}
,

and analogously

q̄ ′′ :=
∑

i∈I
ν̄i

( ¯̌gi + Ǧi(x̄ − ȳi )
)
, s̄′′i :=

{‖x̄ − ȳi‖ for ν̄i = 0
0 for ν̄i �= 0

}
,

then the assumptions of [15, Proposition 13] are satisfied and therefore we obtain the
first two desired results. Since F and G are LLC, ∂F (x̄) and ∂G(x̄) are in particular
bounded due to Proposition 4.2, and consequently we obtain κ̄∂F (x̄) = {000} in the
case κ̄ = 0 and ν̄∂G(x̄) = {000} if ν̄ = 0. ��
Proposition 4.12 Let Assumption 4.1 be satisfied. Then there exist κ̄, ν̄ ∈ R≥0 such
that (4.8) holds for (x̄, κ̄, ν̄), i.e. if the sequence of iteration points and Lagrange
multipliers is bounded, the sequence σk tends to zero, and the sequence of iteration
points has an accumulation point with σ(x̄) = 0, then this accumulation point is
stationary for the optimization problem (4.2).

Proof Due to (4.99), the continuity of F and (4.119), we obtain F(x̄) ≤ 0. Due
to Lemma 4.6, the complementarity condition κ̄F (x̄) = 0 holds. Using (4.127)
and Lemma 4.7, we calculate 000 ∈ ∂f (x̄) + κ̄∂F (x̄) + ν̄∂G(x̄). G(x̄) = 0 by
Lemma 4.3. ��
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Proposition 4.13 Let (4.114) be satisfied. If there exist x̄ ∈ R
N and K ⊂

{1, 2, . . . } with x
K−→ x̄, then

tkLvk
K−→ 0. (4.131)

Proof [46, Proof of Lemma 3.5(ii)]. ��
Proposition 4.14 Let (4.114) be satisfied, let the sequence of (symmetric, positive
definite matrices) {Hk} be bounded and assume that there exists an infinite subset
K ⊂ {1, 2, . . . } and x̄ ∈ R

N with

xk
K−→ x̄. (4.132)

Then we have for all i ≥ 0

xk+i
k
K−→∞−−−−→ x̄. (4.133)

If additionally σ(x̄) > 0 holds, then we have for all i ≥ 0

tk+iL

k
K−→∞−−−−→ 0, (4.134)

and for fixed ε0 > 0 and for all fixed r ≥ 0 there exists k̃ ≥ 0 such that

wk+i ≥ σ(x̄)
2 , tk+iL < ε0 (4.135)

for all k > k̃, k ∈ K and 0 ≤ i ≤ r .

Proof We show (4.133) by induction: the base case holds for i = 0 due to
assumption (4.132). Now, let the induction hypothesis be satisfied for i ≥ 0. We
have

dk+i = H 2
k+i (g̃

k+i
p + κ̄k+i+1 ˜̂gk+ip + ν̄k+i+1 ˜̌gk+ip ) (4.136)

due to (4.43), (4.47), (4.49) and (4.51) as well as

1
2‖Hk+i (g̃k+ip + κ̄k+i+1 ˜̂gk+ip + ν̄k+i+1 ˜̌gk+ip )‖2

≤ dTk+iWk+i
p dk+i + 1

2dTk+i
( ∑

j∈Jk+i
λk+ij Gk+i

j + λk+ip Gk+i (4.137)

+ μk+ij Ĝk+i
j + μk+ip Ĝk+i + νk+ij Ǧk+i

j + νk+ip Ǧk+i)dk+i
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due to (4.84) and the positive definiteness of Wk+i
p as well as

αk+ip + κ̄k+i+1Ak+i
p + κ̄k+i+1(− F(xk+i )

)+ ν̄k+i+1Bk+i
p ≥ 0 (4.138)

due to (4.50), (4.47), (4.52) and (4.99). Now, using (4.57), (4.136), (4.137),
adding (4.138), using (4.55), the boundedness of {Hk} (by assumption), tk+iL ∈ [0, 1]
and (4.131) yields ‖xk+(i+1) − xk+i‖ K−→ 0, and therefore ‖xk+(i+1) − x̄‖ K−→ 0
follows from the induction hypothesis.

We show (4.134) by contradiction: suppose that (4.134) is false, i.e. there exists

i ≥ 0, t̄ > 0, K̄ ⊂ K: tk+iL ≥ t̄ for all k ∈ K̄ . Since 0 ≤ t̄wk+i ≤ −tk+iL vk+i
K̄−→ 0

due to (4.102), (4.56), (4.84), tk+iL ∈ [0, 1], (4.55) and (4.131), we have wk+i
K̄−→

0 and therefore we obtain σ(x̄) = 0 due to (4.117) and (4.133), which is a
contradiction to the assumption σ(x̄) > 0.

We show (4.135). Let r ≥ 0 be fixed and 0 ≤ i ≤ r . Since we have
σ(x̄)

2 < limK wk+i due to the assumption σ(x̄) > 0, (4.117) and (4.133), because
of (4.134) and because ε0 > 0 is a fixed number by assumption, there exist ki ≥ 0
with σ(x̄)

2 ≤ wk+i and tk+iL < ε0 for all k > ki with k ∈ K . Now, setting
k̃ := max {ki : 0 ≤ i ≤ r} yields (4.135). ��
Proposition 4.15 Let {κ̄k+1} and {ν̄k+1} be bounded and let {(Wk

p)
− 1

2 } be bounded

and uniformly positive definite. For k ≥ 1 we define Zk : R3
≥0 → R

N×N

Zk(r, s, t) :=
(
Wk
p + rGk + sĜk + tǦk

)− 1
2 . (4.139)

Then we have for all k ≥ 1

‖Zk(λ̄k+2, κ̄k+2, ν̄k+2)− Zk(λ̄
k+1, κ̄k+1, ν̄k+1)‖

≤ C(|λ̄k+2 − λ̄k+1| + |κ̄k+2 − κ̄k+1| + |ν̄k+2 − ν̄k+1|),
(4.140)

for some positive constant C.

Proof We define for all k ≥ 1

Yk(r, s, t) :=
(
Wk
p + rGk + sĜk + tǦk

)−1
, (4.141)

and therefore we have ‖Yk(λ̄k+1, κ̄k+1, ν̄k+1)−1‖ ≤ C1 for all k ≥ 1 (4.141)
and (4.116), which is equivalent to {Yk(λ̄k+1, κ̄k+1, ν̄k+1)} being uniformly
positive definite due to [15, Proposition 15], i.e. there exists C̃2 > 0 with
λmin(Yk(λ̄

k+1, κ̄k+1, ν̄k+1)) ≥ C̃2. Consequently, we obtain for all k ≥ 1

1

(λmin(Yk(λ̄k+2, κ̄k+2, ν̄k+2)))
1
2 + (λmin(Yk(λ̄k+1, κ̄k+1, ν̄k+1)))

1
2

≤ 1
2 C̃

− 1
2

2
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and hence we estimate for all k ≥ 1

‖Yk(λ̄k+2, κ̄k+2, ν̄k+2)
1
2 − Yk(λ̄

k+1, κ̄k+1, ν̄k+1)
1
2 ‖

≤ C2‖Yk(λ̄k+2, κ̄k+2, ν̄k+2)− Yk(λ̄
k+1, κ̄k+1, ν̄k+1)‖,

(4.142)

due to [15, Proposition 14], where we set C2 := 1
2 C̃

− 1
2

2 > 0.
Defining

Xk(r, s, t) := Wk
p + rGk + sĜ+ tǦ, (4.143)

thenXk is continuously differentiable, andWk
p 3 Xk(r, s, t). Therefore, we estimate

for all k ≥ 1 and for all s ≥ 0

‖Yk(r, s, t)‖ ≤ C0 (4.144)

due to (4.141), (4.143), (4.115), and [15, Propositions 14, 20, and 21].
Straightforward calculations show that Yk(r, s, t) is continuously differentiable

with bounded derivative, hence Lipschitz continuous with some positive Lipschitz
constant C′.

Now, we estimate for all k ≥ 1

‖Zk(λ̄k+2, κ̄k+2, ν̄k+2)− Zk(λ̄
k+1, κ̄k+1, ν̄k+1)‖

≤ C(|λ̄k+2 − λ̄k+1| + |κ̄k+2 − κ̄k+1| + |ν̄k+2 − ν̄k+1|)
due to (4.139), (4.141), and (4.142). ��
From now on let the following assumption be satisfied.

Assumption 4.2 Let (4.114) be satisfied. Furthermore, let us assume that the
sequence {(xk, κ̄k+1, ν̄k+1)} is bounded, let the sequence (of symmetric, positive

definite matrices) {(Wk
p)
− 1

2 } be bounded and uniformly positive definite, and let
x̄ ∈ R

n be any accumulation point of {xk}, i.e. there exists (an infinite set)
K ⊂ {1, 2, . . . } with

xk
K−→ x̄, (4.145)

and demand

κ̄k+2 − κ̄k+1 K−→ 0,

ν̄k+2 − ν̄k+1 K−→ 0,
(4.146)

as well as σk → 0 and

t inf
0 := inf

k≥0
tk0 > 0 (4.147)

(cf. Remark 4.7). Let, furthermore, be id ≤ im in all iterations of the algorithm.
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The following Lemmas 4.8–4.19, are tantamount for proving Theorem 4.4.

Lemma 4.8 (Bounded Basic Sequences) The following boundedness statements
hold:

{yk}, {ρkGk}, {ρ̂kĜk}, {ρ̌kǦk} and {gk} are bounded, (4.148)

{Hk} is bounded, (4.149)

{gkk}, {Hkg
k
k} and {αkk } are bounded. (4.150)

Proof (4.148) holds as this statement was shown in the proof of Lemma 4.5,

where only the assumption of the boundedness of {xk} was used. Since {(Wk
p)
− 1

2 }
is bounded by assumption, (4.149) holds due to Corollary 4.11. Due to (4.76),
the boundedness of {xk} and (4.148) resp. ‖Hkg

k
k‖ ≤ ‖Hk‖ · ‖gkk‖ and (4.149)

resp. (4.39), (4.70), (4.66), (4.59), the Cauchy–Schwarz inequality and the fact that
f is continuous on (the whole) Rn, we obtain (4.150). ��
Lemma 4.9 (Bounded Aggregate Sequences) We define

τk := λ̄k+1α̃kp + κ̄k+1(Ãk
p − F(xk)

)+ ν̄k+1B̃k
p ≥ 0, (4.151)

then

{wk}, {g̃kp}, { ˜̂gkp}, { ˜̌gkp}, {α̃kp}, {κ̄k+1Ãk
p}, {ν̄k+1B̃k

p},
{Hk(λ̄

k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp)}, and {τk} are bounded.
(4.152)

Proof Since (λ, λp,μ, μp, ν, νp) ∈ R
3(|Jk|+1) with

λj :=
{

1
1−σk , for j = k

0, for j ∈ Jk \ {k}

}

, μj , νj := 0 for all j ∈ Jk, λp, μp, νp := 0

(4.153)

is feasible for the (dual) problem (4.21) for k ≥ 1 (Note: since σk → 0 we can
assume w.l.o.g. (1 − σk) > 0), we obtain (note: ŵk is the optimal function value
of (4.21)) due to (4.101), (4.49), (4.100), (4.51), (4.47) and inserting the feasible
point from (4.153) that ŵk ≤ 1

2‖Hkg
k
k‖2+αkk . Hence, due to (4.56) and (4.102), we

estimate

0 ≤ 1
2‖Hk(λ̄

k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp)‖2

+ λ̄k+1α̃kp + κ̄k+1(Ãk
p − F(xk)

)+ ν̄k+1B̃k
p

≤ 1
2‖Hkg

k
k‖2 + αkk ,
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and therefore (4.150) as well as the nonnegativity of α̃kp , κ̄k+1, Ãk
p − F(xk), and

B̃k
p due (4.50), (4.46)–(4.48), (4.52), (4.54) resp. (4.99) imply that {wk}, {λ̄k+1α̃kp},
{κ̄k+1Ãk

p}, {ν̄k+1B̃k
p}, {Hk(λ̄

k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp)} and {τk} are bounded.
Now, consider the proof of Lemma 4.6. There we only used the first consequence

xk
K−→ x̄ of (4.119) (and this property is also satisfied here due to (4.145)) of

the assumption σ(x̄) = 0 for showing the convergence of g̃kp, ˜̂gkp, and ˜̌gkp on a

subsequence. Consequently, g̃kp, ˜̂gkp, and ˜̌gkp are also bounded here. ��
Lemma 4.10 (σ is Finite) σ(x̄) is finite.

Proof This is true due to (4.117), the assumption of the boundedness of {xk}
and (4.152). ��
Lemma 4.11 (Cauchy Sequences) We have

sk+1
p − s̃kp

K−→ 0, ŝk+1
p − ˜̂skp K−→ 0, šk+1

p − ˜̌skp K−→ 0,
(4.154)

f (xk+1)− f (xk)
K−→ 0, F (xk+1)− F(xk)

K−→ 0, G(xk+1)−G(xk)
K−→ 0,
(4.155)

f k+1
p − f̃ k

p

K−→ 0, F k+1
p − F̃ k

p

K−→ 0, Gk+1
p − G̃k

p

K−→ 0,
(4.156)

Δk
K−→ 0, (4.157)

where

Δk := Hk+1
(
(λ̄k+1gk+1

p + κ̄k+1ĝ
k+1
p + ν̄k+1ǧ

k+1
p )

− (λ̄k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp)
)
.

(4.158)

Proof Since the assumptions of Proposition 4.14 for applying (4.133) are

satisfied—xk
K−→ x̄ holds due to (4.145), σ(x̄) > 0 holds due to Lemma 4.10—

applying (4.133) for i = 1 and i = 0 yields xk+1 − xk
K−→ 0. Due

to (4.67) and (4.68), we obtain (4.154). Because of Lemma 4.3, (4.145)
and the continuity of f , F , and G, we obtain (4.155). Due to (4.114)
the assumptions of Proposition 4.10 are satisfied and therefore we estimate
using (4.106), (4.148), (4.60), (4.108), (4.109), (4.110), (4.111), (4.148), and (4.61)
that ‖Gk+1

p ‖ ≤ CG, ‖Ĝk+1
p ‖ ≤ ĈG, ‖Ǧk+1

p ‖ ≤ ČG. Due to (4.71),
the Cauchy–Schwarz inequality and (4.152) resp. (4.73), the Cauchy–Schwarz
inequality and (4.152) resp. (4.158), (4.77), (4.83), (4.46)–(4.48), (4.149) and the
boundedness of {κ̄k+1} and {ν̄k+1} (by assumption) and of {λ̄k+1} (by implication),
we obtain (4.156). ��
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Lemma 4.12 (Zero Sequence) We have

∣
∣λ̄k+1(αk+1

p − α̃kp
)+ κ̄k+1(Ak+1

p − Ãk
p + F(xk)− F(xk+1)

)

+ ν̄k+1(Bk+1
p − B̃k

p

)∣∣ K−→ 0.

Proof Because of 0 ≤ s̃kp ≤
(
α̃kp
γ1

) 1
ω1 due to (4.49) and (4.50) and because of the

boundedness of {α̃kp} due to (4.152), s̃kp is bounded. Since the function ξ 2→ ξω1

with ω1 ≥ 1 is Lipschitz continuous on every bounded subset of R+ there exists
cL > 0 with

|(sk+1
p )ω1 − (s̃kp)

ω1 | ≤ cL|sk+1
p − s̃kp|. (4.159)

In the case κ̄k+1 = 0, we have κ̄k+1 ˜̂skp = 0 due to (4.47) and (4.51). Now

consider the case κ̄k+1 > 0. Because of 0 ≤ κ̄k+1 ˜̂skp ≤ (κ̄k+1)ω2

(
κk+1Ãkp

γ2

) 1
ω2 due

to (4.51) and (4.52) and because of the boundedness of {κ̄k+1} due to assumption
and the boundedness of {κ̄k+1Ãk

p} due to (4.152), κ̄k+1 ˜̂skp is bounded. Therefore,

{κ̄k+1 ˜̂skp} is bounded for all κ̄k+1 ≥ 0. Since the function ξ 2→ ξω2 with ω2 ≥ 1
is Lipschitz continuous on every bounded subset of R+ there exists c̄L > 0
with |(κ̄k+1ŝk+1

p )ω2 − (κ̄k+1 ˜̂skp)ω2 | ≤ c̄Lκ̄
k+1|ŝk+1

p − ˜̂skp| and hence, using the

assumption of the boundedness of {κ̄k+1} and ω2 ≥ 1 as well as setting ĉL :=
c̄L supk≥1 (κ̄

k+1)
1+ 1

ω2 <∞, we obtain

κ̄k+1|(ŝk+1
p )ω2 − ( ˜̂skp)ω2 | ≤ ĉL|ŝk+1

p − ˜̂skp|. (4.160)

Therefore, we have |αk+1
p − α̃kp| K−→ 0 due to (4.39), (4.50), (4.159), (4.156), (4.155)

and (4.154). Furthermore, due to (4.41) and (4.52), we obtain

|Ak+1
p − Ãk

p| ≤ |Fk+1
p − F̃ k

p | + |F(xk)− F(xk+1)| + γ2|(ŝk+1
p )ω2 − ( ˜̂skp)ω2 |.

Multiplying this last inequality with κ̄k+1 ≥ 0 (due to (4.47)) and using (4.160), the

boundedness of {κ̄k+1}, (4.156), (4.155) and (4.154) yields κ̄k+1|Ak+1
p − Ãk

p| K−→ 0

and κ̄k+1|F(xk) − F(xk+1)| K−→ 0. Therefore, using (4.47), we obtain the desired
result.

Completely analogously we prove that

|Bk+1
p − B̃k

p| ≤ |Gk+1
p − G̃k

p| + |G(xk)−G(xk+1)| + γ2|(šk+1
p )ω3 − ( ˜̌skp)ω3 |

and this yields ν̄k+1|Bk+1
p − B̃k

p| K−→ 0. ��



158 H. Schichl and H. Fendl

Lemma 4.13 (Estimates for Zero Sequences) Assume σ(x̄) > 0. Then the
constants

c := sup
k≥1

(
‖Hkg

k+1
k+1‖, ‖Hk(λ̄

k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp)‖,
√
τk

)
, δ := σ(x̄)

2 ,

c̃ := sup
k≥1

(‖gk+1
k+1‖ + ‖λ̄k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp‖), c̄ := δ 1−mR

4c ,

Ĉ := c̃C max{2c, 1, 1
2 c̃C}

(4.161)
are finite and there exists k̄ ≥ 0 such that

1
2 c̄

2 > 4c‖Δk‖ + ‖Δk‖2

2 + ∣
∣κ̄k+1(Ak+1

p − Ãk
p + F(xk)− F(xk+1)

)

+ λ̄k+1(αk+1
p − α̃kp)+ ν̄k+1(Bk+1

p − B̃k
p

)∣∣,

1
2 c̄

2 > Ĉ(|λ̄k+2 − λ̄k+1| + |κ̄k+2 − κ̄k+1| + ‖Δk‖ · |κ̄k+2 − κ̄k+1|
+ |κ̄k+2 − κ̄k+1|2 + |ν̄k+2 − ν̄k+1| + ‖Δk‖ · |ν̄k+2 − ν̄k+1|
+ |ν̄k+2 − ν̄k+1|2)

(4.162)

hold for all k > k̄.

Proof We have that c is finite due to (4.161), (4.149), (4.150) and (4.152). Further-
more, we have c > 0 (If we had c = 0, then using (4.161), (4.151) and (4.56) would
imply wk = 0 for all k ≥ 1, which is a contradiction to assumption (4.114)). Due
to (4.161), σ(x̄) > 0 and 1 − mR > 0 (cf. the initialization of Algorithm 4.1, we
have c̄ = σ(x̄)

2 · 1−mR

4c , where σ(x̄) > 0 implies c̄ > 0, and Lemma 4.10 implies
c̄ < ∞. Due to (4.161), (4.150), (4.152) and the assumption of the boundedness
of {κ̄k+1}, {ν̄k+1}, and c̃ ≥ 0 is bounded. Therefore, (4.161) and (4.140) imply

0 ≤ Ĉ. Since 4c‖Δk‖+ ‖Δk‖2

2 + ∣
∣λ̄k+1(αk+1

p − α̃kp)+ κ̄k+1
(
Ak+1
p − Ãk

p +F(xk)−
F(xk+1)

) + ν̄k+1
(
Bk+1
p − B̃k

p

)∣∣ K−→ 0 due to (4.156) and Lemma 4.12 and since

Ĉ(|λ̄k+2 − λ̄k+1| + |κ̄k+2 − κ̄k+1| + ‖Δk‖ · |κ̄k+2 − κ̄k+1| + |κ̄k+2 − κ̄k+1|2 +
|ν̄k+2 − ν̄k+1| + ‖Δk‖ · |ν̄k+2 − ν̄k+1| + |ν̄k+2 − ν̄k+1|2)| K−→ 0 due to (4.146)
and (4.105) there exists k̄ ≥ 0 such that (4.162) holds for all k > k̄. ��
Lemma 4.14 (Estimate with Error Term) We define for k ≥ 1

qk := Hkg
k+1
k+1,

pk := Hk(λ̄
k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp),

ek := (2c + ‖Δk‖)c̃‖Ek‖ + 1
2 c̃

2‖Ek‖2,

Ek := Hk+1 −Hk.

(4.163)
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Then we have for all ξ ∈ [0, 1] and for all k ≥ 1

1
2‖ξHk+1g

k+1
k+1+(1− ξ)Hk+1(λ̄

k+1gk+1
p + κ̄k+1ĝ

k+1
p + ν̄k+1ǧ

k+1
p )‖2

≤ 1
2‖ξqk + (1− ξ)(pk +Δk)‖2 + ek. (4.164)

Proof Setting zk := Ekg
k+1
k+1, we obtain Hk+1g

k+1
k+1 = qk + zk due to (4.163).

Setting ẑk := Ek(λ̄
k+1g̃kp + κ̄k+1 ˜̂gkp + ν̄k+1 ˜̌gkp), we obtain Hk+1(λ̄

k+1gk+1
p +

κ̄k+1ĝ
k+1
p + ν̄k+1ǧ

k+1
p ) = pk +Δk + ẑk due to (4.158) and (4.163). Furthermore,

we estimate for all ξ ∈ [0, 1]
(
ξqk + (1− ξ)(pk +Δk)

)T (
ξzk + (1− ξ)ẑk

) ≤ (2c+ ‖Δk‖)|ξzk + (1− ξ)ẑk|

due to the Cauchy–Schwarz inequality, (4.163) and (4.161) as well as ‖ξzk + (1 −
ξ)ẑk‖ ≤ c̃‖Ek‖ due to (4.161). Hence we obtain (4.164) due to (4.163). ��
Lemma 4.15 (Index Construction) Assume σ(x̄) > 0 and define

r̂ := 3
2 · c

2

c̄2 + im, r := il + r̂. (4.165)

Then there exists a finite index k0 ∈ K such that

wk ≥ δ, tkL < tk0 , (4.166)

in > il + im (4.167)

hold for k := k0 + il + i with i ∈ [im, r̂] ∩ {0, 1, . . . }.
Proof Completely analogous to the proof of [15, Lemma 14]. ��
Lemma 4.16 (Error Estimate) For k defined in Lemma 4.15 we have ek < 1

2 c̄
2.

Proof Since in > il + im due to (4.167) and since in increases at most by one
at each iteration due to (4.64) we have at iteration k at least in ≥ il + im and
hence either the case (4.37) or (4.38) occurs (at iteration k). Furthermore, since in >
il + im due to (4.167) the cases (4.35) and (4.38) occur at iteration k+ 1. Therefore,
combining these facts yields Ek = Zk(λ̄

k+2, κ̄k+2, ν̄k+2) − Zk(λ̄
k+1, κ̄k+1, ν̄k+1)

due to (4.163), (4.45), (4.47), the fact that
∑

j∈Jk ζ
k
j + ζ kp = 1 = ∑

j∈Jk+1
ζ k+1
j +

ζ k+1
p and

∑
j∈Jk η

k
j+ηkp = 1 =∑

j∈Jk+1
ηk+1
j +ηk+1

p , and (4.139). Since {κ̄k+1} and

{ν̄k+1} are bounded and {(Wk
p)
− 1

2 } is bounded as well as uniformly positive definite
(by assumption), we can make use of Proposition 4.15 and hence we obtain ‖Ek‖ ≤
C(|λ̄k+2 − λ̄k+1| + |κ̄k+2 − κ̄k+1| + |ν̄k+2 − ν̄k+1|) due to (4.140). Consequently,
we obtain the desired estimate due to (4.163), (4.161) and (4.162). ��



160 H. Schichl and H. Fendl

Lemma 4.17 (Termination Criterion Estimate) For k defined in Lemma 4.15 a
short or null step which changes the model of the objective function is executed and

wk+1 ≤
∣
∣λ̄k+1(αk+1

p − α̃kp)+ κ̄k+1(Ak+1
p − Ãk

p + F(xk)− F(xk+1)
)

+ ν̄k+1(Bk+1
p − B̃k

p

)∣∣+ ek + min
ξ∈[0,1]

1
2‖ξqk + (1− ξ)(pk +Δk)‖2

+ ξαk+1
k+1 + (1− ξ)τk + ξσk(Hk

˜̌gkp + Bk+1
p )).

Proof Combining (4.166) with step 6 (line search) of Algorithm 4.1 and consider-
ing the case in > il + im ≥ il due to (4.167) in the line search (Algorithm 4.2),
we obtain that at iteration k a short or null step which changes the model of the
objective function is executed. Furthermore, is is unchanged (since no serious step
is executed), i.e. is ≤ ir (no bundle reset) still holds (If is > ir , then we would have
had a serious step at iteration k, as a bundle reset can only occur after a serious step).
Therefore, (λ, λp,μ, μp, ν, νp) ∈ R

3(|Jk+1|+1) with

λj :=
{
ξ, for j = k + 1,
0, for j ∈ Jk+1 \ {k + 1} ,

νp := ν̄k+1 , λp := 1− ξ, νj := μj := 0 for all j ∈ Jk+1, (4.168)

μp := (1− ξ)κ̄k+1,

where ξ ∈ [0, 1], is feasible for the (k+1)st (dual) problem (4.21) (note: This prob-
lem is written as a minimization problem) and, hence, due to (4.102), (4.101), (4.49),
(4.51),(4.100), (4.47), inserting the feasible point from (4.168), (4.151), taking into
account that ξ ∈ [0, 1] and (4.164), we estimate (note: ŵk+1 in (4.101) is the optimal
function value of (4.21))

wk+1 ≤ 1
2‖ξqk + (1− ξ)(pk +Δk)‖2 + ek + ξαk+1

k+1 + (1− ξ)τk

+ ξσk(Hk
˜̌gkp + Bk+1

p )

+ ∣
∣λ̄k+1(αk+1

p − α̃kp)+ κ̄k+1(Ak+1
p − Ãk

p + F(xk)− F(xk+1)
)

+ ν̄k+1(Bk+1
p − B̃k

p

)∣∣

and consequently, since ξ ∈ [0, 1] is arbitrary we obtain the desired estimate. ��
Lemma 4.18 (Termination Criterion is Shrinking) For k defined in Lemma 4.15
we have wk+1 < wk − c̄2.

Proof Since for p := pk , g := qk , Δ := Δk , v := vk − 1
2dTk

( ∑
j∈Jk λ

k
jG

k
j +

λkpG
k + μkj Ĝ

k
j + μkpĜ

k + νkj Ǧ
k
j + νkpǦ

k
)
dk , w := wk , β := αk+1

k+1, m := mR

and α := τk the assumptions of [15, Proposition 19] are satisfied and since we

have δ2 (1−mR)
2

8c2 = 2c̄2 due to (4.161) now applying [15, Proposition 19] yields the
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desired estimate due to Lemma 4.17, (4.162), Lemmas 4.16 and (4.166), also using
σk+1 ≤ σk . ��
Lemma 4.19 (Contradiction) For k0 from Lemma 4.15 we have

wk0+n+1 < 0.

Proof Set n := maxz≤r̂,z∈{0,1,... } z (note that r̂ > 0 due to (4.165)), then we have
n + 1 > r̂ and hence (4.165) implies −c̄2(n + 1 − im) < − 3

2c
2. Now, applying

Lemma 4.18 (n− im)+ 1 times as well as using (4.56), (4.151) and (4.161) yields

wk0+n+1 < wk0+im − (n+ 1− im)c̄
2 < wk0+im − 3

2c
2 ≤ 1

2c
2 + c2 − 3

2c
2 = 0.

��
Theorem 4.4 Let Assumption 4.2 be satisfied. Then there exist κ̄, ν̄ ∈ R≥0 such that
(4.8) holds for (x̄, κ̄, ν̄), i.e. each accumulation point of the sequence of iteration
points {xk} is stationary for the optimization problem (4.2).

Proof (By Contradiction) Since {(xk, κ̄k+1, ν̄k+1)} is bounded and {(Wk
p)
− 1

2 } is
uniformly positive definite (both due to assumption) the statement follows from
Proposition 4.12, if we can show σ(x̄) = 0. We suppose this is false, i.e. we have
due to (4.117) σ(x̄) > 0 or σ(x̄) = ∞. Due to Assumption 4.2, we can make use
of Lemmas 4.8–4.10, which implies that only the case σ(x̄) > 0 occurs. Therefore,
we can use Lemmas 4.11–4.19, which yields a contradiction to the nonnegativity of
wk for all k ≥ 1 due to (4.102). ��
Remark 4.9 In examples that do not satisfy the nonsmooth constraint qualifica-
tion (4.7), κ̄k+1 or ν̄k+1 became very large in Algorithm 4.1 (note that Theorem 4.4
has in particular the assumption that (κ̄k+1, ν̄k+1) is bounded).

The assumption (4.146) of Theorem 4.4 was satisfied in all numerical examples
in [16] in which the termination criterion of Algorithm 4.1 was satisfied.

If tk0 is only modified in, e.g., finitely many iterations of Algorithm 4.1,
then (4.147) is satisfied (cf. Remark 4.7).

If we demand that all assumptions in the proof of convergence, which we
imposed on Wk

p , are satisfied for
∑

j∈Jk λ
k
jG

k
j + λkpG

k , then the convergence result

also holds in the case Wk
p = 000. This is important, since first numerical results in

the unconstrained case showed a better performance for the choice Wk
p = 000, which

is due to the fact that otherwise for a smooth, convex objective function f the
Hessian information in the QCQP (4.20) is distorted—this can be seen by putting
the constraints of the QCQP (4.20) into its objective function, which is then given by

max
j∈Jk

(− αkj + dT gkj + 1
2dT Gk

jd
)+ 1

2dT Wk
pd

= max
j∈Jk

(− αkj + dT gkj + 1
2dT (Gk

j +Wk
p)d

)
.
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The assumption id ≤ im throughout the algorithm excludes the case that
the algorithm converges towards a local minimum in the constraint infeasibilty.
This happens, e.g., when the feasible set is empty. A similar assumption was not
necessary in [15], because the feasible second order bundle method assumes the
existence of a strictly feasible starting point.

If the algorithm takes infinitely many steps with id ≤ im, an infinite number of
updates of σk is performed. Since every such update multiplies σk by a number in
[τ0, τ1] ⊆ (0, 1) in that case σk → 0 automatically.

4.5 Conclusion

In this chapter we investigated the possibility of extending the second order bundle
method developed in [15, 16] to nonsmooth nonlinearly constrained optimization
problems, where we did not use a penalty function or a filter or an improvement
function to handle the constraints. Instead we computed the search direction by
solving a convex QCQP in the hope to obtain preferably feasible points that yield a
good descent. Since the duality gap for such problems is zero, if the iteration point is
strictly feasible, we were able to establish a global convergence result under certain
assumptions. Furthermore, we discussed the presence of tk0 in the line search, we
explained why this should not be a problem when we use the solution of the QCQP
as the search direction, and we refer to [16] that this turns out to be true in practice
for at least many examples.
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Chapter 5
Limited Memory Bundle Method
and Its Variations for Large-Scale
Nonsmooth Optimization

Napsu Karmitsa

Abstract There exist a vast variety of practical problems involving nonsmooth
functions with large dimensions and nonconvex characteristics. Nevertheless, most
nonsmooth solution methods have been designed to solve only small- or medium
scale problems and they are heavily based on the convexity of the problem. In this
chapter we describe three numerical methods for solving large-scale nonconvex
NSO problems. Namely, the limited memory bundle algorithm (LMBM), the
diagonal bundle method (D-BUNDLE), and the splitting metrics diagonal bundle
method (SMDB). We also recall the convergence properties of these algorithms.
To demonstrate the usability of the methods in large-scale settings, numerical
experiments have been made using academic NSO problems with up to million
variables.

5.1 Introduction

Nonsmooth optimization (NSO) problems arise in many application areas: for
instance, in economics [33], mechanics [32], engineering [31], control theory [10],
optimal shape design [16], machine learning [17], and data mining [3, 7] including
cluster analysis [5, 11, 19, 20] and classification [1, 2, 6, 9]. Most of these problems
are large-scale and nonconvex.

In this chapter, we consider solving the unconstrained NSO problem

{
minimize f (x)

subject to x ∈ R
n,

(5.1)
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where the objective function f : Rn → R is locally Lipschitz continuous (LLC)
and the number of variables n is large. Neither differentiability nor convexity
assumptions for the problem (5.1) are made.

The complexity of an optimization problem depends not only on the number
of variables but also on the nature of the problem. That is, linearity, convexity,
relaxation properties, possible structure etc. The most of the methods considered
in this book are designed for small/medium-scale and/or convex problems: for
example, in standard bundle methods (see Chap. 3) the computational demand often
expands already with relatively small problems. One reason for this is that these
methods need relatively large bundles (the number of stored subgradients∼ n) and,
therefore, the size of the quadratic direction finding subproblem increases together
with the number of variables. On the other hand, the basic subgradient methods
(see Chap. 2) are guaranteed to work only in convex settings and they may converge
slowly in larger cases. Gradient sampling methods (see Chap. 6) may have some
potential but neither they have yet really proved themselves in large-scale settings.

In this chapter we recall three numerical methods for solving large-scale
nonconvex NSO problems. Namely, the limited memory bundle algorithm (LMBM)
[12–14], the diagonal bundle method (D-BUNDLE) [18], and the splitting metrics
diagonal bundle method (SMDB) [23]. These methods and their slight modifications
have been successfully applied in many practical problems, for example, clustering
in large data sets [19, 20], regression analysis [22], missing data imputation
[27], image denoising [30], and (coupled) data assimilation [15, 34]. In addition,
constrained problems can be solved either by using the bound constrained [24, 25]
or the inequality constrained [26] version of LMBM, or simply by using any of the
methods with the exact penalty.

The LMBM is a crosbreed of the variable metric bundle methods [29, 35] and
the limited memory variable metric methods (see e.g. [8]). Here, the variable metric
bundle methods have been developed for small- and medium-scale NSO while
the limited memory variable metric methods are designed for smooth large-scale
optimization. Combining these two yields the LMBM for large-scale NSO. In its
turn, the basic idea of the D-BUNDLE is to combine the LMBM with sparse matrix
updating. Here the aim is to obtain a method for solving the problem (5.1) with the
large number of variables, where the Hessian of the problem—if it exists—is sparse.
The third variant, the SMDB, is a successor of the D-BUNDLE better capable of
handling nonconvexity of problems.

All the methods considered in this chapter are characterized by the use of
null steps together with the aggregation of subgradients. Moreover, the search
direction is calculated using either the limited memory or the diagonal variable
metric updates. Thus, the methods avoid solving the time-consuming quadratic
direction finding subproblem appearing in the standard bundle methods as well
as storing and manipulating large matrices as is the case in the variable metric
bundle methods. Using null steps gives sufficient information about the nonsmooth
objective function when the current search direction is not good enough and enables
nonincreasing iterates as opposed to the standard subgradient methods. Finally,
a simple aggregation procedure that uses only three subgradients guarantees the
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convergence of the aggregate subgradients to zero and makes it possible to evaluate
a termination criterion. These improvements make the LMBM and its successors
suitable for large-scale NSO. Particularly, the number of operations needed for
the calculation of the search direction and the aggregate values is only linearly
dependent on the number of variables while, for example, with the variable metric
bundle methods this dependence is quadratic.

This chapter is organized as follows. In Sects. 5.2, 5.3 and 5.4, we discuss
the basic ideas of the LMBM, D-BUNDLE, and SMDB, respectively, and recall
their convergence properties. In Sect. 5.5, we give the results of the numerical
experiments and conclude the chapter.

Our notations are fairly standard: in addition, to standard Euclidean norm ‖·‖ and
inner product 〈·, ·〉, we denote by ‖A‖F the Frobenius norm of the matrixA ∈ R

n×n
defined as

‖A‖F =
√√
√
√

n∑

i=1

n∑

j=1

A2
i,j .

Further, we denote by diag(a), for a ∈ R
n, the diagonal matrix such that

diag(a)i,i = ai .

5.2 Limited Memory Bundle Method

In this section, we describe the LMBM for solving general, possibly nonconvex,
large-scale NSO problems. To use the LMBM it is assumed that the objective
function is LLC (see Definition 1.2) and at every point x both the value of the
objective function f (x) and one arbitrary subgradient ξ from the subdifferential
∂f (x) can be evaluated (see Definition 1.8 and Theorem 1.2). Now, we first describe
in more detail the different components of the method—that is, the direction finding,
serious and null steps, aggregation, matrix updating, and termination procedures—
and then introduce the entire algorithm.

Direction Finding, Serious and Null Steps In the LMBM the search direction
dk is calculated using the classical limited memory variable metric scheme.
Nevertheless, since the gradient does not need to exist for nonsmooth objective,
the search direction is computed using (an aggregate) subgradient ξ̃ k instead of the
usual gradient. That is,

dk = −Dk ξ̃ k, (5.2)

where Dk is the limited memory variable metric update which, in the smooth case,
would represent the approximation of the inverse of the Hessian matrix. The matrix
Dk is not formed explicitly but the search direction is calculated using the limited
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memory approach (to be described later). The role of matrix Dk is to accumulate
information about previous subgradients.

In NSO the search direction computed using a subgradient is not necessarily a
descent one. Using so-called null steps gives more information about the nonsmooth
objective if the current search direction is not “good enough”. In order to determine
a new step into the search direction dk , we use the two steps line search procedure
(see Appendix for more details): a new iteration point xk+1 and a new auxiliary
point yk+1 are produced such that

xk+1 = xk + tkLdk and (5.3)

yk+1 = xk + tkRdk, for k ≥ 1

with y1 = x1, where tkR ∈ (0, tmax] and tkL ∈ [0, tkR] are step sizes, and tmax > 1 is
the upper bound for the step size.

A necessary condition for a serious step to be taken is to have

tkR = tkL > 0 and f (yk+1) ≤ f (xk)− εkLt
k
Rwk, (5.4)

where εkL ∈ (0, 1/2) is a line search parameter, and wk > 0 represents the desirable
amount of descent of f at xk . If the condition (5.4) is satisfied, we set xk+1 = yk+1
and a serious step is taken.

If condition (5.4) is not satisfied, a null step occurs. In null steps, we have

tkR > tkL = 0 and − βk+1 + 〈dk, ξ k+1〉 ≥ −εkRwk, (5.5)

where εkR ∈ (εkL, 1/2) is a line search parameter, ξk+1 ∈ ∂f (yk+1), and βk+1 is the
subgradient locality measure

βk+1= max{|f (xk)− f (yk+1)+ 〈(yk+1 − xk), ξ k+1〉|, γ ‖yk+1 − xk‖2}.
(5.6)

Here γ ≥ 0 is a distance measure parameter supplied by the user (γ > 0 when f
is nonconvex). In the case of a null step, we set xk+1 = xk but information about
the objective function is increased because we store the auxiliary point yk+1 and the
corresponding auxiliary subgradient ξk+1 ∈ ∂f (yk+1) and we use them to compute
new aggregate values and the limited memory update matrix.

Under the semismoothness assumptions (see Definition 1.11) the line search
procedure is guaranteed to find the step sizes tkL and tkR such that exactly one of
the two possibilities—a serious step or a null step—occurs.

Aggregation The aggregation procedure used in the LMBM differs significantly
from that usually used in bundle methods (see, e.g., [28]). Instead we use the
procedure similar to the variable metric bundle methods [35], where only three
subgradients and two locality measures are needed. The procedure is carried out by
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determining multipliers λki satisfying λki ≥ 0 for all i ∈ {1, 2, 3}, and
∑3

i=1 λ
k
i = 1

that minimize the function

ϕ(λ1, λ2, λ3) = 〈λ1ξm + λ2ξ k+1 + λ3ξ̃ k ,Dk[λ1ξm + λ2ξ k+1 + λ3 ξ̃k ]〉 (5.7)

+ 2(λ2βk+1 + λ3β̃k).

Here ξm ∈ ∂f (xk) is the current subgradient (m denotes the index of the iteration
after the latest serious step, i.e. xk = xm), ξk+1 ∈ ∂f (yk+1) is the auxiliary
subgradient, and ξ̃ k is the current aggregate subgradient from the previous iteration
(ξ̃1 = ξ1). In addition, βk+1 is the current subgradient locality measure and β̃k is
the current aggregate subgradient locality measure (β̃1 = 0). The optimal values λki ,
i ∈ {1, 2, 3} are easy to calculate (see [35]).

The resulting aggregate subgradient ξ̃ k+1 and aggregate subgradient locality
measure β̃k+1 are computed by the formulae

ξ̃k+1 = λk1ξm + λk2ξk+1 + λk3ξ̃ k and β̃k+1 = λk2βk+1 + λk3β̃k. (5.8)

The aggregation procedure gives us a possibility to retain the global convergence
without solving the rather complicated quadratic direction finding subproblem
appearing in standard bundle methods. Moreover, only one trial point yk+1 and
the corresponding subgradient ξk+1 ∈ ∂f (yk+1) need to be stored instead of n + 3
subgradients typically stored in standard bundle methods. Finally, it is worth of
noting that the aggregate values need to be computed only if the last step was a null
step. Otherwise, we just set ξ̃ k+1 = ξ k+1 and β̃k+1 = 0.

Matrix Updating The idea in limited memory matrix updating is that instead of
storing and manipulating large n× n matrices Dk , one stores a small number of the
so-called correction vectors obtained at the previous iterations of the algorithm, and
uses these vectors to implicitly define the variable metric matrices. In the LMBM
we use at most m̂c correction vectors to compute updates for the matrix Dk . These
correction vectors are slightly modified from those in classical limited memory
variable metric methods for smooth optimization. That is, the correction vectors
are given by sk = yk+1 − xk and uk = ξ k+1 − ξm. Due to usage of null steps
we may have xk+1 = xk and thus, we use here the auxiliary point yk+1 instead of
xk+1. In addition, since the gradient needs not to exist for nonsmooth objective, the
correction vectors uk are computed using subgradients.

Let us denote by m̂c the user-specified maximum number of stored correction
vectors (3 ≤ m̂c) and by m̂k = min { k − 1, m̂c } the current number of stored
correction vectors. Then the n× m̂k dimensional correction matrices Sk and Uk are
defined by

Sk =
[
sk−m̂k

. . . sk−1
]

and (5.9)

Uk =
[
uk−m̂k

. . . uk−1
]
.



172 N. Karmitsa

In the LMBM both the limited memory BFGS (L-BFGS) and the limited
memory SR1 (L-SR1) update formulae [8] are used in calculations of the search
direction and the aggregate values. In the case of a null step, the LMBM uses the L-
SR1 update formula, since this formula allows us to preserve the boundedness and
some other properties of generated matrices which guarantee the global convergence
of the method. The inverse L-SR1 update is defined by

Dk = ϑkI − (ϑkUk − Sk)(ϑkUk
T Uk − Rk − RT

k + Ck)
−1(ϑkUk − Sk)

T ,

where Rk is an upper triangular matrix of order m̂k given by

(Rk)ij =
{
〈sk−m̂k−1+i ,uk−m̂k−1+j 〉, if i ≤ j,

0, otherwise,

Ck is a diagonal matrix of order m̂k such that

Ck = diag [〈sk−m̂k
,uk−m̂k

〉, . . . , 〈sk−1,uk−1〉],
and ϑk is a positive scaling parameter.

Otherwise, since these additional properties are not required after a serious step,
the more efficient L-BFGS update is employed. The inverse L-BFGS update is
defined by the formula

Dk = ϑkI +
[
Sk ϑkUk

]
[
(R−1

k )T Ck + ϑkU
T
k UkR

−1
k −(R−1

k )T

−R−1
k 0

] [
Sk

T

ϑkU
T
k

]
.

Note that we never compute the matrixDk but only the productDkv where v is equal
to ξm, ξ k+1 or ξ̃ k. This way the number of operations needed for the calculation
of the search direction and the aggregate values is only linearly dependent on the
number of variables and we do not need to store large n× n matrices.

Stopping Criterion For smooth functions, a necessary condition for a local
minimum is that the gradient has to be zero. By continuity a norm of the gradient
becomes small when we are close to an optimal point providing a good stopping
criterion for algorithms. This is no longer true when we replace the gradient with an
arbitrary subgradient. In the LMBM the aggregate subgradient ξ̃ k provides a better
approximation to the gradient but the direct test ‖ξ̃ k‖ < ε, for some ε > 0, is still
too uncertain as a stopping criterion. Therefore, the term 〈ξ̃ k,Dk ξ̃ k〉 = −〈ξ̃ k, dk〉
and the aggregate subgradient locality measure β̃k are used to improve the accuracy
of the sole norm ‖ξ̃ k‖. The stopping parameter wk at iteration k is defined by

wk = −〈ξ̃ k, dk〉 + 2β̃k (5.10)

and the algorithm stops if wk ≤ ε for a user specified tolerance ε > 0. In addition,
the parameter wk is used during the line search procedure to represent the desirable
amount of descent.
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Algorithm Now we present the algorithm for the LMBM.

Algorithm 5.1: LMBM

Data: The final accuracy tolerance ε > 0, initial line search parameters εIL ∈
(0, 1/2) and εIR ∈ (εIL, 1/2), lower and upper bounds tmin ∈ (0, 1) and tmax > 1
for serious steps, the distance measure parameter γ ≥ 0 (with γ = 0 if f is
convex), a control parameter C > 0 for the length of the direction vector, a
correction parameter $ ∈ (0, 1/2), and the number of stored corrections m̂c ≥ 3.

Step 0. (Initialization) Choose a starting point x1 ∈ R
n. Set y1 = x1 and β1 = 0.

Compute f1 = f (x1) and ξ1 ∈ ∂f (x1). Set iC = 0 (a correction indicator) and
k = 1.

Step 1. (Serious step initialization.) Set ξ̃ k = ξ k and β̃k = 0. Set iCN = 0 (a
correction indicator for consecutive null steps) and m = k.

Step 2. (Direction finding) Compute

dk = −Dk ξ̃k

by the L-BFGS update if m = k (use at most m̂c correction vectors in Uk and Sk)
and by the L-SR1 update, otherwise. If k = 1, set d1 = −ξ1.

Step 3. (Correction) If −〈ξ̃ k, dk〉 < $‖ξ̃ k‖2 or iCN = 1, set

dk = dk − $ξ̃ k, (5.11)

(i.e., Dk = Dk + $I ) and iC = 1. Otherwise, set iC = 0.
If iC = 1 and m < k, then set iCN = 1.

Step 4. (Stopping criterion) Compute wk by (5.10). If wk < ε, then stop with xk
as the final solution.

Step 5. (Line search) Set the scaling parameter for the length of the direction
vector and for the line search

θk = min { 1, C/‖dk‖ }.

Determine the step sizes tkR ∈ (0, tmax] and tkL ∈ [0, tkR]. Set the corresponding
values

xk+1 = xk + tkLθkdk,

yk+1 = xk + tkRθkdk,

fk+1 = f (xk+1), and

ξ k+1 ∈ ∂f (yk+1).

Set uk = ξ k+1 − ξm and sk = yk+1 − xk = tkRθkdk and append these values to
Uk and Sk , respectively. If condition (5.4) is valid (i.e., we take a serious step),
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then set βk+1 = 0, k = k + 1, and go to Step 1. Otherwise, calculate the locality
measure βk+1 by (5.6).

Step 6. (Aggregation.) Determine multipliers λki ≥ 0 for all i ∈ {1, 2, 3},
∑3

i=1 λ
k
i = 1 that minimize the function (5.7) where Dk is calculated by the

same updating formula as in Step 2 and Dk = Dk +$I if iC = 1. Compute ξ̃ k+1

and β̃k+1 as in (5.8). Set k = k + 1 and go to Step 2.

Remark 5.1 The boundedness of the matrices D−1
i is required to guarantee the

global convergence of the LMBM. We say that a matrix is bounded if its eigen-
values lie in the compact interval that does not contain zero. The utilization of
correction (5.11) is equivalent to adding a positive definite matrix $I to the matrix
Dk .

Remark 5.2 In order to guarantee the global convergence of the LMBM, the
sequence {wk} (see (5.10)) has to be nonincreasing in consecutive null steps. That
is, wk ≤ wk−1 if inull = k −m > 1. Therefore, the condition

〈ξ̃ k, (Dk −Dk−1)ξ̃ k〉 ≤ 0 (5.12)

has to be satisfied each time there occurs more than one consecutive null step. In
addition, the condition

−〈d i ,ui〉 − 〈ξ̃ i , si〉 < 0 for all i = 1, . . . , k − 1 (5.13)

assures the positive definiteness of the matrices obtained (both L-SR1 and L-BFGS).
In the LMBM, the individual updates that would violate either condition (5.12) or
condition (5.13) are skipped.

Global Convergence of LMBM We now recall the convergence properties of the
LMBM. But first, we give the assumptions needed.

Assumption 5.1 The objective function f : Rn → R is LLC (see Definition 1.2).

Assumption 5.2 The objective function f : Rn → R is upper semismooth (see
Definition 1.11).

Assumption 5.3 The level set { x ∈ R
n | f (x) ≤ f (x1) } is bounded for every

starting point x1 ∈ R
n.

Lemma 5.1 Each execution of the line search procedure is finite.

Proof See [35]. ��
The optimality condition 000 ∈ ∂f (x) is sufficient if f is convex. Since the

convexity of the function f is not assumed, we can only prove that the LMBM
converges to a stationary point. We start by proving that if the LMBM terminates
after a finite number of iterations, say at iteration k, then the point xk is a stationary
point of the problem (5.1). Then we prove that for an infinite sequence {xk} every
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accumulation point x̄ generated by the LMBM is a stationary point of the objective
function. In order to do this, we assume that the final accuracy tolerance ε is equal
to zero.

Remark 5.3 The sequence {xk} generated by Algorithm 5.1 is bounded by assump-
tion and the monotonicity of the sequence {fk} which, in turn, is obtained due to
the condition (5.4) being satisfied for serious steps and the fact that xk+1 = xk for
null steps. The sequence {yk} is also bounded, since xk+1 = yk+1 for serious steps
and ‖yk+1 − xk+1‖ ≤ tmaxC for null steps by (5.3), and due to the fact that we
use the scaled direction vector θkdk with θk = min { 1, C/‖dk‖ } and predefined
C > 0 in the line search. By the local boundedness and the upper semi-continuity
of the subdifferential, we obtain the boundedness of subgradients ξ k as well as their
convex combinations.

Lemma 5.2 At the k-th iteration of Algorithm 5.1, we have

wk = 〈ξ̃ k,Dk ξ̃ k〉 + 2β̃k, wk ≥ 2β̃k, wk ≥ $‖ξ̃ k‖2, (5.14)

and

βk+1 ≥ γ ‖yk+1 − xk+1‖2. (5.15)

Proof We have β̃k ≥ 0 for all k by (5.6), (5.8), and Step 1 in Algorithm 5.1.
Thus, relations in (5.14) follow immediately from (5.2), (5.10), and (5.11). If the
correction (5.11) is used, we have Dk = Dk + $I and, thus, the result is valid also
in this case.

By (5.6) and since we have xk+1 = xk for null steps, and, on the other hand,
we have βk+1 = 0 and ‖yk+1 − xk+1‖ = 0 for serious steps, the condition (5.15)
always holds for some γ ≥ 0. ��
Lemma 5.3 If condition (5.13) is valid for k = k + 1, then

〈uk,Dkuk − sk〉 > 0. (5.16)

Proof If condition (5.13) is valid for k replaced with k+1, then ξ̃ k �= 000. Otherwise,
we would have −〈dk,uk〉 − 〈ξ̃ k, sk〉 = 0 that violates the condition. Furthermore,
we have

〈dk,uk〉 > −〈ξ̃ k, sk〉 = tkRθk〈ξ̃ k,Dk ξ̃ k〉, (5.17)

with tkR > 0 and θk ∈ (0, 1]. Using Cauchy’s inequality and the positiveness of
〈uk, sk〉 (provided by the positive definiteness of Dk in (5.17) and the fact that
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sk = tkRθkdk) we obtain

〈uk, sk〉2 = (tkRθk〈ξ̃ k,Dkuk〉)2

≤ (tkRθk)
2〈ξ̃ k,Dk ξ̃ k〉〈uk,Dkuk〉

= tkRθk〈uk,Dkuk〉〈−sk, ξ̃ k〉
< tkRθk〈uk,Dkuk〉〈dk,uk〉 = 〈uk,Dkuk〉〈uk, sk〉.

Therefore, we have 〈uk, sk〉 < 〈uk,Dkuk〉. ��
Lemma 5.4 Suppose that Algorithm 5.1 is not terminated before the k-th iteration.
Then, there exist numbers λk,j ≥ 0 for j = 1, . . . , k and σ̃k ≥ 0 such that

(ξ̃k, σ̃k) =
k∑

j=1

λk,j (ξ j , ‖yj − xk‖),
k∑

j=1

λk,j = 1, and β̃k ≥ γ σ̃ 2
k .

Proof ([35]) Let m be an index of the iteration after the latest serious step defined
at Step 1 of Algorithm 5.1 (that is, xj = xm for all j = m, . . . , k). First we prove
that there exist numbers λk,j ≥ 0 for j = m, . . . , k, such that

(ξ̃ k, β̃k) =
k∑

j=m
λk,j (ξ j , βj ),

k∑

j=m
λk,j = 1. (5.18)

We prove this by induction. Suppose that k = m. Then we set λm,m = 1, since
ξ̃m = ξm and β̃m = 0 at Step 1 of Algorithm 5.1 and we have set βm = 0 at Step 5
at the previous iteration (β1 = 0 due to initialization). Thus, the base case is valid.
Now, suppose that k > m, let i ∈ {m, . . . , k−1}, and assume that (5.18) is valid for
k replaced with i. We define

λi+1,m = λi1 + λi3λ
i,m,

λi+1,j = λi3λ
i,j for j = m+ 1, . . . , i, and

λi+1,i+1 = λi2,

where λil ≥ 0 for all l ∈ {1, 2, 3} are obtained at Step 6 of Algorithm 5.1. Now, we
have λi+1,j ≥ 0 for all j = m, . . . , i + 1, and

i+1∑

j=m
λi+1,j = λi1 + λi3

⎛

⎝λi,m +
i∑

j=m+1

λi,j

⎞

⎠+ λi2 = 1,
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since
∑i

j=m λi,j = 1 due to the assumption and
∑3

l=1 λ
i
l = 1 (see Step 6 of

Algorithm 5.1). Using relations in (5.8), the result given above and the fact that
βm = 0, we obtain

(ξ̃ i+1, β̃i+1) = λi1(ξm, 0)+ λi2(ξ i+1, βi+1)+
i∑

j=m
λi3λ

i,j (ξ j , βj )

=
i+1∑

j=m
λi+1,j (ξ j , βj ),

and, thus, the condition (5.18) is valid for i + 1. We define

λk,j = 0 for j = 1, . . . ,m− 1, and σ̃k =
k∑

j=1

λk,j‖yj − xk‖.

Since xj = xk for j = m, . . . , k, we obtain

σ̃k =
k∑

j=m
λk,j‖yj − xj‖,

and, thus, by (5.18), Lemma 5.2, and the convexity of the function g→ γg2 on R+
for γ ≥ 0, we have

γ σ̃ 2
k = γ

⎛

⎝
k∑

j=m
λk,j‖yj − xj‖

⎞

⎠

2

≤
k∑

j=m
λk,j γ ‖yj − xj‖2 ≤

k∑

j=m
λk,jβj = β̃k.

��
Lemma 5.5 Let x̄ ∈ R

n be given and suppose that there exist vectors ḡ, ξ̄ i , ȳi , and
numbers λ̄i ≥ 0 for i = 1, . . . , l, l ≥ 1, such that

(ḡ, 0) =
l∑

i=1

λ̄i (ξ̄ i , ‖ȳi − x̄‖),

ξ̄ i ∈ ∂f (ȳi ), i = 1, . . . , l, and (5.19)

l∑

i=1

λ̄i = 1.

Then ḡ ∈ ∂f (x̄).
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Proof ([35]) Let I = { i | 1 ≤ i ≤ l, λ̄i > 0 }. By (5.19) we have ȳi = x̄ and
ξ̄ i ∈ ∂f (x̄) for all i ∈ I. Therefore,

ḡ =
∑

i∈I
λ̄i ξ̄ i ,

λ̄i > 0, for i ∈ I, and
∑

i∈I
λ̄i = 1,

and ḡ ∈ ∂f (x̄) by the convexity of ∂f (x̄). ��
Theorem 5.1 If Algorithm 5.1 terminates at the k-th iteration, then the point xk is
stationary for f .

Proof If Algorithm 5.1 terminates at Step 4, then the fact ε = 0 implies thatwk = 0.
Thus, ξ̃ k = 000 and β̃k = σ̃k = 0 by Lemma 5.2 and Lemma 5.4. Now, by Lemma 5.4
and using Lemma 5.5 with

x̄ = xk, l = k, ḡ = ξ̃ k,

ξ̄ i = ξ i , ȳi = yi , λ̄i = λk,i for i ≤ k,

we obtain 000 = ξ̃ k ∈ ∂f (xk) and, thus, xk is stationary for f . ��
From now on, we suppose that Algorithm 5.1 does not terminate, that is, wk > 0

for all k.

Lemma 5.6 If there exist a point x̄ ∈ R
n and an infinite set K ⊂ {1, 2, . . .} such

that {xk}k∈K → x̄ and {wk}k∈K → 0, then 000 ∈ ∂f (x̄).
Proof ([35].) Let I = {1, . . . , n+2}. Using the fact that ξ k ∈ ∂f (yk) for all k ≥ 1,
Lemma 5.4, and Carathéodory’s theorem, we deduce that there exist vectors yk,i ,
ξ k,i , and numbers λk,i ≥ 0 and σ̃k for i ∈ I and k ≥ 1, such that

(ξ̃ k, σ̃k) =
∑

i∈I
λk,i(ξ k,i , ‖yk,i − xk‖),

ξ k,i ∈ ∂f (yk,i), and (5.20)
∑

i∈I
λk,i = 1,

with (yk,i , ξ k,i) ∈ {(yj , ξ j ) | j = 1, . . . , k}. From the boundedness of {yk} (see
Remark 5.3), we obtain the existence of points y∗i (i ∈ I), and an infinite set K0 ⊂
K satisfying {yk,i}k∈K0 → y∗i for i ∈ I. The boundedness of {ξk} and {λk,i} gives
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us the existence of vectors ξ∗i ∈ ∂f (y∗i ), numbers λ∗i for i ∈ I, and an infinite set
K1 ⊂ K0 satisfying {ξk,i}k∈K1 → ξ∗i and {λk,i}k∈K1 → λ∗i for i ∈ I.

It can be seen from (5.20) that

λ∗i ≥ 0 for i ∈ I, and
∑

i∈I
λ∗i = 1.

Since {wk}k∈K → 0, Lemmas 5.2 and 5.4 imply that

{ξ̃k}k∈K → 000, {β̃k}k∈K → 0, and {σ̃k}k∈K → 0.

By letting k ∈ K1 approach infinity in (5.20) and using Lemma 5.5 with

ξ̄ i = ξ∗i , ȳi = y∗i , ḡ = 000,

l = n+ 2, and λ̄i = λ∗i ,

we obtain 000 ∈ ∂f (x̄). ��
Lemma 5.7 Suppose that the number of serious steps is finite, and the last serious
step occurs at the iteration m − 1 of Algorithm 5.1. Then there exists a number
k∗ ≥ m, such that

〈ξ̃ k+1,Dk+1 ξ̃k+1〉 ≤ 〈ξ̃ k+1,Dk ξ̃ k+1〉 and (5.21)

tr(Dk) <
3

2
n (5.22)

for all k ≥ k∗, where tr(Dk) denotes the trace of the matrix Dk .

Proof First, we point out that since we are considering null steps the matrix Dk+1
is computed using L-SR1 formula. Suppose that iCN = 0 for all k ≥ m, that is, the
correction $I (see Algorithm 5.1, Step 3) is not added to any matrixDk with k ≥ m.
If we skip the update (e.g., if the positive definiteness would be violated otherwise,
see Remark 5.2), we have Dk+1 = Dk , and the condition (5.21) is trivially satisfied
with equalities. Otherwise, if m̂k < m̂c, the L-SR1 update is equal to the standard
SR1 update and we have

Dk+1 = Dk − (Dkuk − sk)(Dkuk − sk)
T

〈uk,Dkuk − sk〉 ,

where the denominator is greater than zero by Lemma 5.3 and the numerator is
positive (semi)definite matrix. Thus, condition (5.21) is again valid. Finally, if m̂k =
m̂c, we update the matrix only if ξ̃ k+1

T (Dk+1 − Dk)ξ̃ k+1 ≤ 0 (see Remark 5.2).
Since iCN = 0 for all k ≥ m, the correction $I is not added to the new matrix Dk+1
and, thus, the condition (5.21) will be valid. Furthermore, in each case we have

tr(Dk)− 3

2
n = tr(Dk)− tr(I)− 1

2
n = tr(Dk − I)− 1

2
n < 0
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for k ≥ m, since the matrixDk−I is negative (semi)definite due to condition (5.13).
Therefore, if iCN = 0 for all k ≥ m, conditions (5.21) and (5.22) are valid if we set
k∗ = m.

If iCN = 0 does not hold for all k ≥ m, then the correction $I , with $ ∈ (0, 1/2),
is added to all matrices Dk with k ≥ k̄ (see Algorithm 5.1, Step 3). Here k̄ denotes
the index k ≥ m of the iteration when iCN = 1 occurred for the first time. Let us
denote by D̂k the matrix formed with the L-SR1 update and by Dk the corrected
matrix, that is, Dk = D̂k + $I for all k ≥ k̄ (since we suppose iCN = 1). Then,
all the results given above are valid for D̂k and D̂k+1. Since for all k ≥ k̄, we have
Dk = D̂k + $I and we set Dk+1 = D̂k+1 + $I , the condition (5.21) is valid for all
k ≥ k∗ = k̄. In addition, in each case we have

tr(Dk)− 3

2
n = tr(D̂k + $I)− tr(I)− 1

2
n

= tr(D̂k − I)+ tr($I)− 1

2
n

< tr(D̂k − I)+ 1

2
n− 1

2
n ≤ 0

for k ≥ k̄, since the matrix D̂k − I is negative (semi)definite and $ ∈ (0, 1/2).
Therefore, conditions (5.21) and (5.22) are valid for all k ≥ k∗ with

k∗ = max{k̄, m},

where k̄ = 1 if iCN = 0. ��
Lemma 5.8 Suppose that the number of serious steps is finite, and the last serious
step occurs at the iteration m− 1. Then, the point xm is stationary for f .

Proof From (5.7), (5.8), Lemmas 5.2 and 5.7 we obtain

wk+1 = 〈ξ̃ k+1,Dk+1 ξ̃ k+1〉 + 2β̃k+1

≤ 〈ξ̃ k+1,Dk ξ̃ k+1〉 + 2β̃k+1

= ϕ(λk1, λ
k
2, λ

k
3) (5.23)

≤ ϕ(0, 0, 1)

= 〈ξ̃ k,Dk ξ̃ k〉 + 2β̃k

= wk

for k ≥ k∗ with k∗ defined in Lemma 5.7.
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Let us denote by Dk = Wk
TWk . Then, the function ϕ (see (5.7)) can be given in

the form

ϕ(λk1, λ
k
2, λ

k
3) = ‖λk1Wkξm + λk2Wkξk+1 + λk3Wk ξ̃k‖2 + 2(λk2βk+1 + λk3β̃k).

From (5.23) we obtain the boundedness of the sequences {wk}, {Wk ξ̃k}, and
{β̃k}. Furthermore, Lemma 5.7 assures the boundedness of {Dk} and {Wk} while
Remark 5.3, shows us the boundedness of {yk}, {ξk}, and {Wkξ k+1}.

Now, by noticing that we use the scaled direction vector θkdk (with θk =
min { 1, C/‖dk‖ } and the predefined C > 0) and the scaled line search parameter
εkR = θkε

I
R in the line search (see Algorithm 5.1 Step 5 and Algorithm 5.4) the last

part of the proof proceeds similar to the proof (part (ii)) of [35, Lemma 3.6]. ��
Theorem 5.2 Every accumulation point x̄ generated by Algorithm 5.1 is stationary
for f .

Proof Let x̄ be an accumulation point of {xk}, and let K ⊂ {1, 2, . . .} be an infinite
set such that {xk}k∈K → x̄. In view of Lemma 5.8, we can restrict our consideration
to the case where the number of serious steps (with tkL > 0) is infinite. We denote

K′ = {k | tkL > 0, there exists i ∈ K, i ≤ k such that xi = xk}.
Obviously, K′ is infinite and {xk}k∈K′ → x̄. The continuity of f implies that
{fk}k∈K′ → f (x̄) and, thus, fk ↓ f (x̄) by the monotonicity of the sequence {fk}
obtained due to the serious descent criterion (5.43) (see Appendix). Using the fact
that tkL ≥ 0 for all k ≥ 1 and the condition (5.43), we obtain

0 ≤ εkLt
k
Lwk ≤ fk − fk+1 → 0 for k ≥ 1. (5.24)

If the set K1 = {k ∈ K′ | tkL ≥ tmin} is infinite, then {wk}k∈K1 → 0 and {xk}k∈K1 →
x̄ by (5.24) and, thus, by Lemma 5.6 we have 000 ∈ ∂f (x̄).

If the set K1 is finite, then the set K2 = {k ∈ K′ | βk+1 > εkAwk} has to be
infinite (see Appendix, Algorithm 5.4, Step 2). To the contrary, let us assume that

wk ≥ δ > 0 for all k ∈ K2.

From (5.24), we have {tkL}k∈K2 → 0 and Step 5 in Algorithm 5.1 implies

‖xk+1 − xk‖ = tkLθk‖dk‖ ≤ tkLC

for all k ≥ 1. Thus, we have {‖xk+1 − xk‖}k∈K2 → 0. By (5.6), (5.24), and
the boundedness of {ξk}, and since yk+1 = xk+1 for serious steps, we obtain
{βk+1}k∈K2 → 0, which is in contradiction with

εkAδ ≤ εkAwk < βk+1 k ∈ K2.



182 N. Karmitsa

Therefore, there exists an infinite set K3 ⊂ K2 such that {wk}k∈K3 → 0,
{xk}k∈K3 → x̄, and 000 ∈ ∂f (x̄) by Lemma 5.6. ��
Remark 5.4 The LMBM terminates in a finite number of steps if we choose ε > 0.

5.3 Diagonal Bundle Method

The classical variable metric techniques for nonlinear optimization construct a dense
n×n -matrix to approximate the Hessian of the function. Then these techniques are
required to store and manipulate this dense matrix, which becomes unmanageable
in large-scale settings. In the limited memory variable metric methods the storage
of this large matrix can be avoided, but still the formed approximation of the
Hessian is dense. This is also true for the LMBM described in the previous section.
Nevertheless, in many large-scale problems the real Hessian (if it exists) is sparse.
In this section, we describe the diagonal bundle method (D-BUNDLE) that combines
the LMBM with sparse matrix updating. We first describe in more details the
different components of the method and then introduce the entire algorithm. As
with the LMBM we assume that the objective function f : Rn → R is LLC and
we can compute f (x) and ξ ∈ ∂f (x) at every x ∈ R

n.

Matrix Updating and Direction Finding The D-BUNDLE applies the diagonal
update formula to compute the diagonal variable metric updates. Similarly to the
LMBM, the D-BUNDLE uses no more than m̂c most recent correction vectors to
compute the updates for the matrices. These vectors and matrices are defined as
in (5.9). The diagonal approximation of the Hessian Bk+1 is then defined by solving
a problem

⎧
⎪⎪⎨

⎪⎪⎩

minimize ‖Bk+1Sk − Uk‖2
F

subject to (Bk+1)i,j = 0 for i �= j,

(Bk+1)i,i ≥ μ for i = 1, 2, . . . , n

(5.25)

for some μ > 0. Note that the check of positive definiteness is included as a
constraint into the problem. The problem (5.25) has a solution

(Bk+1)i,i =
{
bi/Qi,i , if bi/Qi,i > μ,

μ, otherwise,

where b = 2
∑k−1

i=k−m̂k
diag(si )ui and Q = 2

∑k−1
i=k−m̂k

[diag(si )]2.
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In the D-BUNDLE we use directly the inverse of this matrix, that is, Dk =
(Bk)

−1, where the diagonal components of Dk are given by

(Dk+1)i,i =

⎧
⎪⎪⎨

⎪⎪⎩

μmin, if Qi,i/bi < μmin,

Qi,i /bi, if Qi,i/bi > μmin and Qi,i/bi < μmax,

μmax, otherwise.

(5.26)

Note that in addition to the upper bound μmax = 1
μ

, we also use the lower bound
μmin (0 < μmin < μmax) for the components of the matrix. These bounds trivially
guarantee the boundedness of matricesDk (k = 1, 2, . . .) needed in the convergence
proof. The search direction is computed by the formula

dk = −Dk ξ̃ k, (5.27)

where ξ̃ k is (an aggregate) subgradient. To ensure the global convergence of the
D-BUNDLE, the condition (cf. (5.12))

〈ξ̃ k,Dk ξ̃ k〉 ≤ 〈ξ̃ k,Dk−1ξ̃ k〉 (5.28)

has to be satisfied each time there occurs more than one consecutive null step. In the
D-BUNDLE this is guaranteed simply by skipping the updates in consecutive null
steps. That is, after a null step we set Dk+1 = Dk , but the new aggregate values are
computed.

Aggregation, Line Search and Stopping Criterion In order to guarantee the con-
vergence of the method and to avoid the unbounded storage, the D-BUNDLE uses
the aggregation procedure similar to the LMBM. That is, the convex combination
of at most three subgradients is used to form a new aggregate subgradient ξ̃ k+1 and
a new aggregate subgradient locality measure β̃k+1 (cf. (5.7) and (5.8)). Naturally,
the diagonal update matrix Dk is used in Eq. (5.7) instead of the limited memory
update.

In addition, the D-BUNDLE uses the same line search procedure than the LMBM
to determine new iteration and auxiliary points xk+1 and yk+1. That is, the step
sizes tkR ∈ (0, tmax] and tkL ∈ [0, tkR] with tmax > 1 are computed such that either
condition (5.4) for serious steps or condition (5.5) for null steps is satisfied.

Finally, the stopping criterion of the D-BUNDLE algorithm is similar to that
of the LMBM (cf. (5.10)) and similarly to this method, the parameter wk is used
also during the line search procedure to represent the desirable amount of descent
(cf. (5.4) and (5.5)).
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Algorithm The algorithm for the D-BUNDLE proceeds as follows.

Algorithm 5.2: D-BUNDLE

Data: The final accuracy tolerance ε > 0, initial line search parameters εIL ∈
(0, 1/2) and εIR ∈ (εIL, 1/2), lower and upper bounds tmin ∈ (0, 1) and tmax > 1
for serious steps, the distance measure parameter γ ≥ 0 (with γ = 0 if f is
convex), a safeguard parameterμmax > μmin > 0, a control parameterC > 0 for
the length of the direction vector, and the number of stored corrections m̂c ≥ 1.

Step 0. (Initialization) Choose a starting point x1 ∈ R
n. Set D1 = I , β1 = 0 and

y1 = x1. Compute f1 = f (x1) and ξ1 ∈ ∂f (x1). Set k = 1 and m̂k = 0.
Step 1. (Serious Step Initialization) Set ξ̃k = ξ k , β̃k = 0, and m = k.
Step 2. (Direction finding) Compute dk = −Dk ξ̃k .
Step 4. (Stopping criterion) Compute wk by (5.10). If wk < ε, then stop with xk

as the final solution.
Step 5. (Line search) Set the scaling parameter for the length of the direction

vector and for the line search

θk = min { 1, C/‖dk‖ }.

Determine the step sizes tkR ∈ (0, tmax] and tkL ∈ [0, tkR]. Set the corresponding
values

xk+1 = xk + tkLθkdk,

yk+1 = xk + tkRθkdk,

fk+1 = f (xk+1), and

ξ k+1 ∈ ∂f (yk+1).

Set uk = ξ k+1 − ξm and sk = yk+1 − xk = tkRθkdk and append these values to
Uk and Sk , respectively. Set m̂k = min{k, m̂c}. If the condition (5.4) is valid (i.e.,
we take a serious step), then compute a new diagonal matrix Dk+1 by (5.26), set
βk+1 = 0, k = k+ 1, and go to Step 1. Otherwise, calculate the locality measure
βk+1 by (5.6).

Step 6. (Aggregation) Determine multipliers λki ≥ 0 for all i ∈ {1, 2, 3},
∑3

i=1 λ
k
i = 1 that minimize the function (5.7) with the diagonal Dk . Compute

ξ̃ k+1 and β̃k+1 as in (5.8). Set Dk+1 = Dk , k = k + 1 and go to Step 2.

Global Convergence of D-BUNDLE We now recall the convergence properties of
the D-BUNDLE. The assumptions needed are the same as those with the LMBM,
that is, Assumptions 5.1–5.3. Under these assumptions, Lemma 5.1 is valid and
Remark 5.3 holds for sequences generated by Algorithm 5.2. In addition, we want
to remark that all the matrices generated by D-BUNDLE are bounded.
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Remark 5.5 The diagonal matrix Dk is bounded for all k ≥ 1 due to the fact that all
its components are in the closed interval [μmin, μmax] (see (5.26)).

The convergence analysis of the D-BUNDLE is very similar to that of the LMBM.
In fact, all the results in the previous section are valid also for the D-BUNDLE

except that, for the D-BUNDLE, we do not have—nor we need—the property
〈uk, (Dkuk − sk)〉 > 0 given in Lemma 5.3. With the LMBM this property is used
to guarantee that the condition (5.12) is valid in the case of consecutive null steps.
However, with the D-BUNDLE the similar condition (5.28) is valid due to skipping
of updates and, thus, the above mentioned property is not required. In addition, due
to the safeguarded diagonal matrix updating we do not need the correction $I (see
Algorithm 5.1, Step 3) and, thus, Lemma 5.2 takes the following form.

Lemma 5.9 At the k-th iteration of Algorithm 5.2, we have

wk = 〈ξ̃ k,Dk ξ̃ k〉 + 2β̃k, wk ≥ 2β̃k, wk ≥ μmin‖ξ̃ k‖2,

and

βk+1 ≥ γ ‖yk+1 − xk+1‖2.

Proof The proof is similar to the proof of Lemma 5.2 but the relation wk ≥
μmin‖ξ̃ k‖2 that follows immediately from the lower bound μmin used for the
matrices (see (5.26)). ��

To prove the convergence of the D-BUNDLE, we assume ε = 0.

Theorem 5.3 If Algorithm 5.2 terminates at the k-th iteration, then the point xk is
stationary for f .

Proof The proof is similar to the proof of Theorem 5.1 if we replace Lemma 5.2
with Lemma 5.9. ��

From now on, we suppose that Algorithm 5.2 does not terminate, that is, wk > 0
for all k. Next we give a result that sharpens some parts of Lemmata 5.7 and 5.8.

Lemma 5.10 Suppose that the number of serious steps is finite, and the last serious
step occurs at the iteration m− 1. Then

〈ξ̃ k+1,Dk+1ξ̃ k+1〉 = 〈ξ̃ k+1,Dk ξ̃ k+1〉 and (5.29)

tr(Dk) ≤ μmaxn (5.30)

for all k > m. In addition, we have wk+1 ≤ wk .
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Proof For all k > m we have Dk+1 = Dk due to skipping of updates in
consecutive null steps (see Algorithm 5.2 Step 6). Thus, the condition (5.29) is valid.
Furthermore, we have

tr(Dk)− μmaxn = tr(Dk)− μmax tr(I)

= tr(Dk)− tr(μmaxI)

= tr(Dk − μmaxI) ≤ 0

for all k, since Dk is a diagonal matrix with the largest diagonal element less than
or equal to μmax. Therefore, the condition (5.30) is valid for all k > m.

Combining (5.29) with (5.7), (5.8), (5.10), and (5.27), we obtain

wk+1 = 〈ξ̃ k+1,Dk+1 ξ̃ k+1〉 + 2β̃k+1

= 〈ξ̃ k+1,Dk ξ̃ k+1〉 + 2β̃k+1

= ϕ(λk1, λ
k
2, λ

k
3)

≤ ϕ(0, 0, 1)

= 〈ξ̃ k,Dk ξ̃ k〉 + 2β̃k = wk

for all k > m. ��
The convergence result of the D-BUNDLE is given in the next theorem.

Theorem 5.4 Every accumulation point of an infinite sequence of solutions gener-
ated by Algorithm 5.2 is a stationary point of f .

Proof The D-BUNDLE algorithm is essentially similar to the LMBM with
the diagonal matrix updating instead of the limited memory matrix updating. If
Algorithm 5.2 generates an infinite sequence of solutions, then we can replace
Lemma 5.7 and the first part of the proof of Lemma 5.8 by Lemma 5.10 and all
the remaining results of the previous section are valid also for the D-BUNDLE. ��

To conclude, similarly to the LMBM, the D-BUNDLE either terminates at a
stationary point of the objective function f or generates an infinite sequence {xk}
for which accumulation points are stationary for f . Moreover, if we choose ε > 0,
the D-BUNDLE terminates in a finite number of steps.

5.4 Splitting Metrics Diagonal Bundle Method

NSO is traditionally based on convex analysis and most solution methods rely
strongly on the convexity of the problem. After all, the convex model of the objective
function is usually reasonably good for nonconvex problems as well, except in
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some areas where there exists the so-called concave behaviour in the objective.
In these cases the linearization error, used as a measure of the goodness of the
current piecewise linear model, has negative values and the model is no longer
an underestimate of the objective. The common way to deal with this difficulty is
to do some downward shifting (e.g. to use the subgradient locality measures (5.6)
instead of linearization errors), but the amount of this shifting may be more or less
arbitrary. This is also the case in the LMBM and D-BUNDLE described in the
previous sections. In this section we represent the splitting metrics diagonal bundle
algorithm SMDB that combines the ideas of the D-BUNDLE to different usage
of metrics depending on the convex or concave behaviour of the objective at the
current iteration point. The usage of different metrics gives us a possibility to better
deal with the nonconvexity of the problem than the sole downward shifting of the
piecewise linear model does.

First we describe in more details the different components of the method and
then introduce the entire algorithm. As before, we assume that the objective function
f : Rn → R is LLC and at every point x ∈ R

n we can evaluate f (x) and ξ ∈ ∂f (x).
Linearization Error The SMDB uses the sign of the linearization error to detect
the “convex” or “concave” behaviour of the objective. The linearization error αk+1
associated with the point yk+1 is given by

αk+1 = f (xk)− f (yk+1)+ 〈ξ k+1, dk〉,

where xk is the current iteration point, yk+1 = xk + dk is a new auxiliary point,
dk is the current search direction and ξ k+1 ∈ ∂f (yk+1). Note that differently from
previous sections no line search is used when generating yk+1.

Matrix Updating and Splitting of Data The diagonal update formula for updating
the matrices is used in the SMDB, since for diagonal matrices it is easy to check and
guarantee the positive (negative) definiteness. Moreover, using diagonal matrices
requires minimum amount of the storage space and computations.

The correction vectors used in the SMDB are quite similar to those used in
previous sections. However, instead of just one couple of correction matrices Sk and
Uk used in the LMBM and D-BUNDLE (see (5.9)), we now use different corrections
matrices depending on the sign of the linearization error. That is, we append sk and
uk to S+k and U+k if αk ≥ 0 and to S−k and U−k , otherwise. This means that the
maximum number of correction vectors is 2mc and in each matrix S+k (U+k ) and S−k
(U−k ) we have (at most) mc correction vectors s

î
(u

î
) with indices î ∈ {1, 2, . . . , k}.

In addition, no î can be in both S+k (U+k ) and S−k (U−k ). For simplicity, we denote

these indices by î ∈ {1̂, . . . , m̂c} from now on. Note that m̂c may be smaller than
mc and m̂c may be different for S+k (U+k ) and S−k (U−k ).
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The approximation of the HessianB+k+1 (B−k+1) is a diagonal matrix and the check
of the positive (negative) definiteness is included as a constraint into the problem.
Thus, the update matrix B+k+1 is defined by (cf. (5.25))

⎧
⎪⎪⎨

⎪⎪⎩

minimize ‖B+k+1S
+
k − U+k ‖2

F

subject to (B+k+1)i,j = 0 for i �= j,

(B+k+1)i,i ≥ μ, i = 1, 2, . . . , n,

(5.31)

for some μ > 0, with a solution

(
B+k+1

)
i,i
=

{
bi/Qi,i , if bi/Qi,i > μ,

μ, otherwise.

Here b = 2
∑m̂c

i=1̂
diag(si )ui and Q = 2

∑m̂c

i=1̂
[diag(si )]2 with si ∈ S+k and ui ∈

U+k . In our computations, we use the inverse of this matrix D+k =
(
B+k

)−1
and we

call it the “convex approximation” of the Hessian. The diagonal components of D+k
are given by

(
D+k+1

)
i,i
=

⎧
⎪⎪⎨

⎪⎪⎩

μmin, if Qi,i/bi < μmin,

Qi,i/bi, if Qi,i/bi > μmin and Qi,i/bi < μmax,

μmax, otherwise.

Note that similarly to D-BUNDLE we use both the upper bound μmax = 1
μ

, and
the lower bound μmin (0 < μmin < μmax) for the components of the matrix. The
computation of the “concave approximation” D−k is analogous.

Direction Finding, Serious and Null Steps The SMDB uses the above mentioned
diagonal approximations to compute the search direction. If the linearization error
αk is nonnegative or if the previous step was a serious step, we use the “convex
approximation” . That is, we compute

dk = −D+k ξ̃ k, (5.32)

where, as before, ξ̃ k is an aggregate subgradient of the objective. Otherwise, we first
compute the convex combination of the “convex and concave approximations” such
that the combination still remains positive definite and then use this combination to
compute the search direction. In other words, we compute the smallest pk ∈ [0, 1]
such that pkD

+
k + (1 − pk)D

−
k is positive definite. Note that, the computation of

this value is very easy since both matrices D+k and D−k are diagonal. The search
direction is then computed by the formula

dk = −(pkD+k + (1− pk)D
−
k )ξ̃k. (5.33)
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When the search direction is computed, we calculate a new auxiliary point:
yk+1 = xk + dk . A necessary condition for a serious step to be taken is to have
(cf. (5.4))

f (yk+1) ≤ f (xk)− εLwk, (5.34)

where εL ∈ (0, 1/2) is a given descent parameter and wk > 0 is a stopping
parameter given by (cf. (5.10))

wk = 〈ξ̃ k,D+k ξ̃ k〉 + 2β̃k. (5.35)

If (5.34) is satisfied, we take a serious step by setting xk+1 = yk+1. In addition, we
consider the current “convex approximation” to be good enough and continue with
this metric even if the linearization error was negative.

If (5.34) is not satisfied, we first set t = 1 and check if ξ tk+1 ∈ ∂f (xk + tdk)

satisfies the null step condition (cf. (5.5))

−βtk+1 + 〈dk, ξ tk+1〉 ≥ −εRwk, (5.36)

where εR ∈ (εL, 1) is a given parameter and βtk+1 is the subgradient locality
measure similar to that in the previous sections (cf. (5.6)). That is,

βtk+1 = max
{
|f (xk)− f (xk + tdk)+ t〈ξ tk+1, dk〉|, γ ‖tdk‖2

}
. (5.37)

The condition (5.36) needs not to hold for t = 1. In that case we use the line search
quite similar to the LMBM and D-BUNDLE (see Appendix for the line search
algorithm). That is, we search for a step size t ∈ (0, 1) such that either we have a
descent condition

f (xk + tdk) ≤ f (xk)− εLtwk (5.38)

fulfilled or ξ tk+1 ∈ ∂f (xk + tdk) satisfies the null step condition (5.36). When-
ever (5.36) holds we perform a null step by setting xk+1 = xk , but information
about the objective function is increased because we utilize the auxiliary point
ytk+1 = xk + tdk and the corresponding auxiliary subgradient ξ tk+1 ∈ ∂f (y tk+1)

in the computation of the next aggregate value. On the other hand, the fulfilment of
condition (5.38) during the line search leads to a serious step with xk+1 = xk + tdk
as the new iteration point. For simplicity of the presentation we drop out the index t
from ytk , ξ tk , and βtk even if t �= 1, unless needed for the clarity.

Aggregation and Convergence Conditions The aggregation procedure used in
the SMDB is similar to that of the LMBM with the limited memory update Dk

replaced with the convex diagonal approximationD+k . More precisely, we determine
multipliers λki ≥ 0, i = 1, 2, 3, that minimize the function (5.7) with D+k , and we
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set ξ̃ k+1 and β̃k+1 as in (5.8). In addition, the condition (cf. (5.12) and (5.28) )

〈ξ̃ k,D+k ξ̃ k〉 ≤ 〈ξ̃ k,D+k−1 ξ̃k〉 (5.39)

has to be satisfied each time there occurs more than one consecutive null step. In the
SMDB this is guaranteed simply by skipping the convex updates if more than one
consecutive null step occurs.

Algorithm The SMDB algorithm is as follows:

Algorithm 5.3: SMDB

Data: The final accuracy tolerance ε > 0, line search parameters εL ∈ (0, 1/2)
and εR ∈ (εL, 1), the initial step size tI ∈ [0.5, 1), the distance measure
parameter γ ≥ 0, safeguard parameters μmax > μmin > 0, and the number
of stored corrections m̂c ≥ 1.

Step 0. (Initialization) Choose a starting point x1 ∈ R
n. Set D+1 = I , α1 = 0,

β1 = 0 and y1 = x1. Compute f (x1) and ξ1 ∈ ∂f (x1). Set k = 1.
Step 1. (Serious step initialization) Set ξ̃ k = ξ k , β̃k = 0, and m = k.
Step 2. (Convex direction) Compute dk = −D+k ξ̃ k.

Step 3. (Stopping criterion) Compute wk by (5.35). If wk < ε, then stop with xk
as the final solution.

Step 4. (Auxiliary step) Evaluate

yk+1 = xk + dk,

ξ k+1 ∈ ∂f (yk+1), and

αk+1 = f (xk)− f (yk+1)+ 〈ξ k+1, dk〉.

Set uk = ξ k+1 − ξm and sk = dk . If αk+1 ≥ 0 append these values to U+k and
S+k , respectively. Otherwise, append them to S−k and U−k .

Step 5. (Serious step without line search) If (5.34) holds, computeD+k+1 using S+k
and U+k , set xk+1 = yk+1, f (xk+1) = f (yk+1), αk+1 = 0, βk+1 = 0, k = k+1,
and go to Step 1.

Step 6. (Null step test without line search) Set t = 1 and compute βk+1 as
in (5.37). If (5.36) holds, go to Step 8.

Step 7. (Line search) Find t ∈ (0, tI ] for which either the null step condi-
tion (5.36) or the serious step condition (5.38) is valid. Set the corresponding
values

yk+1 = xk + tdk, and ξk+1 ∈ ∂f (yk+1).

In the case of a serious step, compute D+k+1 using S+k and U+k , set xk+1 = yk+1,
f (xk+1) = f (yk+1), αk+1 = 0, βk+1 = 0, k = k + 1, and go to Step 1.
Otherwise, compute βk+1 as in (5.37).
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Step 8. (Aggregation) Determine multipliers λki ≥ 0 for all i ∈ {1, 2, 3},
∑3

i=1 λ
k
i = 1 that minimize the function (5.7) with the convex diagonal

approximationD+k . Compute ξ̃ k+1 and β̃k+1 as in (5.8).
Step 9. (Null step) Three cases can occur:

a) (First convex null step) If αk+1 ≥ 0 and m = k, compute D+k+1 using S+k and
U+k . Set xk+1 = xk, k = k + 1 and go to Step 2.

b) (Consecutive convex null step) If αk+1 ≥ 0 and m < k, set D+k+1 = D+k ,
xk+1 = xk , and k = k + 1 and go to Step 2.

c) (Concave null step) If αk+1 < 0, compute D−k+1 using S−k and U−k and set
D+k+1 = D+k . Set xk+1 = xk , k = k + 1 and go to Step 10.

Step 10. (Concave direction) Compute the smallest p ∈ (0, 1) such that the
matrix pD+k + (1− p)D−k remains positive definite. Compute

dk = −
(
pD+k + (1− p)D−k

)
ξ̃ k

and go to Step 3.

Global Convergence of SMDB We now recall the convergence properties of
the SMDB. The assumptions needed are the same as with the LMBM: that is,
Assumptions 5.1–5.3. As before, we drop out the index t from ytk , ξ tk and βtk even if
t �= 1.

Remark 5.6 The semismoothness assumption (Assumption 5.2) ensures

f ′(x, d) = lim
t↓0
〈ξ (x + td), d〉

with ξ (x + td) ∈ ∂f (x + td). This guarantees that Step 7 is well posed, that is for
small values of t one of the two conditions (5.36) and (5.38) is satisfied.

Remark 5.7 The sequence {xk} generated by Algorithm 5.3 is bounded by Assump-
tion 5.3 and the monotonicity of the sequence {fk}. The monotonicity of {fk} is
guaranteed since either we have the condition (5.34) or the condition (5.38) satisfied
for serious steps, while xk+1 = xk for null steps.

By the local boundedness and the upper semi-continuity of the subdifferential,
we obtain the boundedness of subgradients ξk and their convex combinations. The
matrix D+k (D−k ) is bounded for all k since all its components are in the closed
interval [μmin, μmax] ([−μmax,−μmin]). Thus, the set of the search directions dk
and the sequence {yk} are also bounded.

Lemma 5.11 At the k-th iteration of Algorithm 5.3, we have

wk = 〈ξ̃ k,D+k ξ̃ k〉 + 2β̃k, wk ≥ 2β̃k, wk ≥ μmin‖ξ̃ k‖2,
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and

βk+1 ≥ γ ‖yk+1 − xk+1‖2.

Proof The proof is similar to the proof of Lemma 5.9. ��
In the following theorems and lemmata, we assume ε = 0.

Theorem 5.5 If Algorithm 5.3 terminates at the k-th iteration, then the point xk is
stationary for f .

Proof The proof is similar to the proof of Theorem 5.1 if we replace Lemma 5.2
with Lemma 5.11. ��

From now on, we suppose that Algorithm 5.3 does not terminate. Next we give a
result that corresponds to Lemma 5.10.

Lemma 5.12 Suppose that the number of serious steps is finite, and the last serious
step occurs at the iteration m− 1. Then

〈ξ̃ k+1,D
+
k+1ξ̃ k+1〉 = 〈ξ̃ k+1,D

+
k ξ̃ k+1〉 and (5.40)

tr(D+k ) ≤ μmaxn

for all k > m. In addition, we have wk+1 ≤ wk .

Proof For all k > m we have D+k+1 = D+k due to the fact that we use either Step
9b or Step 9c of Algorithm 5.3 at null steps. Thus, the condition (5.40) is valid. The
rest of the proof is similar to the proof of Lemma 5.10. ��
Theorem 5.6 Every accumulation point of an infinite sequence of solutions gener-
ated by Algorithm 5.3 is stationary for f .

Proof Let x̄ be an accumulation point of {xk}, and let K ⊂ {1, 2, . . .} be an
infinite set such that {xk}k∈K → x̄. In view of the previous lemma combined
with Lemma 5.8, we can restrict our consideration to the case where the number
of serious steps is infinite. We denote

K′ = { k | xk+1 = xk + tdk with t > 0and

there exists i ∈ K, i ≤ k such that xi = xk}.

Obviously, K′ is infinite and {xk}k∈K′ → x̄. The continuity of f implies that
{f (xk)}k∈K′ → f (x̄), thus, f (xk) ↓ f (x̄) by the monotonicity of the sequence
{f (xk)} obtained due to the descent step conditions (5.34) and (5.38). Using these
conditions and the fact that xk+1 = xk in null steps, we obtain

0 ≤ tεLwk ≤ f (xk)− f (xk+1)→ 0 for k ≥ 1. (5.41)
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Thus, if the set K1 = { k ∈ K′ | t ≥ tmin} is infinite for some bound tmin > 0
then (wk)k∈K′ → 0 and (xk)k∈K′ → x̄ by (5.41). Hence, by Lemma 5.6 we have
000 ∈ ∂f (x̄).

In the other case, where the set K1 is finite, the result is obtained the same way
as in the proof of Theorem 5.2. ��

Similarly to the LMBM and D-BUNDLE, Algorithm 5.3 terminates in a finite
number of steps if we choose ε > 0.

5.5 Numerical Experiments and Discussion

To give an idea how the different methods described in this chapter work in practice
we have tested them using large-scale nonsmooth minimization problems first
introduced in [13]. These problems can be formulated with any number of variables.
We have used here 1000, 10,000, 100,000 and one million variables. Problems
numbered 1–5 are convex while problems 6–10 are nonconvex. Other numerical
experiments comparing different NSO solvers including the LMBM, D-BUNDLE

and SMDB can be found for instance in [4, 18, 21, 23].

Solvers and Parameters We now give a brief description of each software, the
parameters used, and the references from which the code can be downloaded. The
experiments were performed on an IntelR© Core

TM
i5, 1.60 GHz. To compile the

codes, we used gfortran, the GNU Fortran compiler.

LMBM is a Fortran77 implementation of the LMBM with the adaptive number of
stored correction pairs (see [24] for the adaptive version of the code). The initial
and maximum number of stored correction pairs used in our experiments were set to
seven and 15, respectively. Otherwise, the default parameters of the code were used.
The source code and the mex-driver (for MatLab users) are available for download
at http://napsu.karmitsa.fi/lmbm/. In addition, the bound constrained version of the
code [24, 25] is available.
D-Bundle and SMDB are a Fortran 95 implementations of the D-BUNDLE and
SMDB, respectively. In both cases the maximum number of stored correction pairs
was set to seven and for all the other parameters we used the default settings of
the codes. The source codes of the methods are available for downloading at http://
napsu.karmitsa.fi/dbundle/ and http://napsu.karmitsa.fi/smdb/.

In our previous experiments the line search was never needed with SMDB but the
step size t = 1 was always accepted either as a serious or a null step. However, a
simple acceptance or rejection of steps sometimes led to quite a large number of
function and subgradient evaluations. Thus, we here use the version, which uses the
nonmonotone Armijo-type line search. The idea is to seek for a suitable step size
such that a serious step would occur. That is, we use at most ten previous function
values obtained at serious steps to test the modified serious step condition

f (yk+1) ≤ max
i∈M f (xi )− εLwk, (5.42)

http://napsu.karmitsa.fi/lmbm/
http://napsu.karmitsa.fi/dbundle/
http://napsu.karmitsa.fi/dbundle/
http://napsu.karmitsa.fi/smdb/
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where M ⊆ {l | xl+1 = xl + tld l} such that M contains at most ten greatest indices
l. The maximum number of Armijo step size searches within one iteration is set to
20. Only if none of Armijo step sizes satisfies (5.42) we do a null step. Note that no
theoretical guarantee of the satisfaction of the null step condition (5.36) after this
Armijo-type line search is given but, in our numerical experiments it was always
satisfied.

We say that a solver finds the solution with respect to a tolerance ε > 0 if

fbest − fopt

1+ |fopt| ≤ ε,

where fbest is a solution obtained with the solver and fopt is the best known (or
optimal) solution. We have accepted the results with respect to the tolerance ε =
10−3. In addition, we say that the result is inaccurate, if a solver finds the solution
with respect to a tolerance ε = 10−2. Otherwise, we say that a solver fails. With
the nonconvex problems it is not always easy to say whether the solution obtained
is a local solution (or a stationary point) or not. Thus, we have only accepted the
results that converge to the global minimum. Naturally, this leads us to report more
“failures” than what really happens. In addition to the usual stopping criteria of the
solvers, we terminated the experiments if the elapsed CPU time exceeded 2 h.

Results The results are summarized in Table 5.1. We have compared the efficiency
of the solvers both in terms of the computational time (cpu) and the number of
function and subgradient evaluations (nfg, evaluations for short). We have used
bold-face text to emphasize the best results. An asterisk after a result means that the
result obtained is inaccurate.

The overall performances of LMBM, D-Bundle and SMDB are quite similar,
although, D-Bundle works best in convex settings while LMBM and SMDB solve
nonconvex problems more efficiently. Note that LMBM and SMDB succeed in
solving different nonconvex problems, but there are no such differences in the
structures of these problems that explains this. In addition, D-Bundle and SMDB
succeed better in solving Problem 1, in which LMBM is known to have difficulties
due to the sparse structure of the problem and the dense approximation of Hessian
used in LMBM. In the current settings none of the solvers could solve the piecewise
linear problem 2. Nonetheless, Problem 2 is known to be very difficult to be solved
by most NSO algorithms already in rather small dimensions [4] and we use here
very large dimensions.

With one million variables the solvers succeed in solving only five or six
problems out of 10. One could say that solving only about 50 or 60% of problems
is not very convincing, but it is better than most nonsmooth algorithms can do
[4, 18, 21]. Moreover, the solvers converged to the same (stationary) point also in
Problem 6 and with all the solvers, some of the failures and inefficiencies could have
been avoided if suitable parameters would have been chosen. However, we ran all
our test cases with the same sets of parameters.
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Table 5.1 Summary of the results

1 000 variables

P LMBM D-Bundle SMDB

nfg cpu nfg cpu nfg cpu

1 37 728∗ 0.97∗ 6 136 0.09 5 999 0.06
2 fail – fail – fail –

3 3 292 0.03 3 751 0.03 918 0.02
4 3 450 0.04 6 917 0.08 627 0.02
5 326 0.01 1 388 0.01 719 0.03

6 1 138 0.01 1 075 0.02 983 0.04

7 5 690 0.45 13 319 0.84 1225 0.14
8 6 020 0.05 7 617 0.05 192 513 2.74

9 1 128 0.01 1 106 0.01 fail –

10 11 282 0.10 17 377 0.11 1 302 0.04

10 000 variables

P LMBM D-Bundle SMDB

nfg cpu nfg cpu nfg cpu

1 fail – 179 502 26.41 60 003 6.40
2 fail – fail – fail –

3 6 082 0.52 3 669 0.27 1 059 0.30
4 7 080 0.81 5 144 0.58 9 007 2.68

5 244 0.04 307 0.04 792 0.27

6 10 108 1.55 10 104 2.03 1 175 0.31
7 8 888 6.26 49 823 32.95 895 1.14
8 6 232 0.61 11 261 0.88 361 347 48.87

9 fail – 474∗ 0.06∗ fail –

10 fail – fail – 1 197 0.39

100 000 variables

P LMBM D-Bundle SMDB

nfg cpu nfg cpu nfg cpu

1 fail – fail – 396 980 578.91
2 fail – fail – fail –

3 5 796 5.59 144 0.13 1 270 3.58

4 10 424 12.77 584 0.82 5 125 16.35

5 438 1.09 816 0.84 772 2.71

6 100 142 166.46 100 100 237.49 fail –

7 fail – 53 905 339.49 2 251 25.18
8 2 100 4.05 5 141 5.18 779 804 1 059.88

9 1 400 3.87 1 086∗ 2.30∗ fail –

10 34 630∗ 34.55∗ fail – 1 757 5.78

(continued)
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Table 5.1 (continued)

One million variables

P LMBM D-Bundle SMDB

nfg cpu nfg cpu nfg cpu

1 fail – fail – fail –

2 fail – fail – fail –

3 1 698 25.42 367 4.67 103 873 1 666.90

4 14 302 216.11 28 099 349.38 3 698 64.92
5 1 580 45.39 772 9.08 11 204 141.74

6 fail – fail – fail –

7 fail – fail – 2 789 313.38
8 2 632 93.27 19 727 195.34 119 455 1 765.93

9 2748 107.13 3 569∗ 79.64∗ fail –

10 fail – 14 521∗ 173.89∗ 349 915 7 200.22

Acknowledgements The work was financially supported by the Academy of Finland (Project No.
289500).

Appendix

Line Search We now present a line search algorithm, which is used to determine
the step sizes tkL and tkR in the LMBM, D-BUNDLE, and (if needed) in the SMDB.
The line search procedure originates from [35]. However, in order to guarantee the
global convergence of the LMBM, we use scaled line search parameters εkL, εkR, εkA,
and εkT instead of fixed ones (scaled parameters are not needed with the D-BUNDLE

and SMDB). Furthermore, in order to avoid many consecutive null steps, we have
added an additional interpolation step (Step 3 in Algorithm 5.4). That is, we look for
more suitable step sizes tkL and tkR by using an extra interpolation loop if necessary.

The additional interpolation step has no influence on the convergence properties
but it has a significant effect on the efficiency of the method. The choice of
the interpolation procedure (see Step 5 in Algorithm 5.4) has no effect on the
convergence properties, either. We combine here the quadratic interpolation with
the bisection procedure.

Algorithm 5.4: Line search

Data: Iteration point xk , search direction dk , scaling parameter θk ∈ (0, 1],
initial line search parameters εIL ∈ (0, 1/2), εIR ∈ (εIL, 1/2), εIA ∈ (0, εIR − εIL),
and εIT ∈ (εIL, εIR − εIA), lower and upper bounds for serious steps tmin ∈ (0, 1)
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and tmax > 1, initial step size tkI ∈ [tmin, tmax), distance measure parameter γ ≥
0, desirable amount of descentwk , maximum number of additional interpolations
imax , and the number of consecutive null steps inull ≥ 0.

Step 0. (Initialization) Set tA = 0, t = tU = tkI , and iI = 0. Calculate the scaled
line search parameters

εkL = θkε
I
L, εkR = θkε

I
R, εkA = θkε

I
A, and εkT = θkε

I
T

and the interpolation parameter

κ = 1− 1

2(1− εkT )
.

Step 1. (New values) Compute f (xk + tθkdk), ξ ∈ ∂f (xk + tθkdk), and

β = max { |f (xk)− f (xk + tθkdk)+ tθk〈dk, ξ 〉|, γ (tθk‖dk‖)2 }.

If f (xk + tθkdk) ≤ f (xk)− εkT twk , then set tA = t . Otherwise, set tU = t .
Step 2. (Serious step) If

f (xk + tθkdk) ≤ f (xk)− εkLtwk,

and either

t ≥ tmin or β > εkAwk,

then set tkR = tkL = t and stop with a serious step.
Step 3. (Test for additional interpolation) If f (xk + tθkdk) > f (xk), inull > 0,

and iI < imax , then set iI = iI + 1 and go to Step 5.
Step 4. (Null step) If

−β + θk〈dk, ξ 〉 ≥ −εkRwk,

then set tkR = t , tkL = 0 and stop with a null step.
Step 5. (Interpolation) If tA = 0, then set

t = max

{

κtU ,
− 1

2 t
2
Uwk

f (xk)− f (xk + tθkdk)− tUwk

}

.

Otherwise, set t = 1
2 (tA + tU ). Go to Step 1.
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Under the semismoothness assumptions (see Definition 1.11) Algorithm 5.4
is guaranteed to find the step sizes tkL and tkR such that exactly one of the two
possibilities—a serious step or a null step—occurs [35]. In addition, on the output
of Algorithm 5.4 (see Steps 2 and 4), the step sizes tkL and tkR satisfy the serious
descent criterion

f (xk+1)− f (xk) ≤ −εkLtkLwk (5.43)

and, in case of tkL = 0 (null step), also the condition (5.5).
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Chapter 6
Gradient Sampling Methods for
Nonsmooth Optimization
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Dedicated to Krzysztof Kiwiel, in recognition of his fundamental
work on algorithms for nonsmooth optimization

Abstract This article reviews the gradient sampling methodology for solving non-
smooth, nonconvex optimization problems. We state an intuitively straightforward
gradient sampling algorithm and summarize its convergence properties. Throughout
this discussion, we emphasize the simplicity of gradient sampling as an extension
of the steepest descent method for minimizing smooth objectives. We provide an
overview of various enhancements that have been proposed to improve practical
performance, as well as an overview of several extensions that have been proposed
in the literature, such as to solve constrained problems. We also clarify certain
technical aspects of the analysis of gradient sampling algorithms, most notably
related to the assumptions one needs to make about the set of points at which the
objective is continuously differentiable. Finally, we discuss possible future research
directions.

J. V. Burke
Department of Mathematics, University of Washington, Seattle, WA, USA

F. E. Curtis
Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA
e-mail: frank.e.curtis@lehigh.edu

A. S. Lewis
School of Operations Research and Information Engineering, Cornell University, Ithaca, NY,
USA
e-mail: adrian.lewis@cornell.edu

M. L. Overton (�)
Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
e-mail: mo1@nyu.edu

L. E. A. Simões
Department of Applied Mathematics, University of Campinas, Campinas, Brazil

© Springer Nature Switzerland AG 2020
A. M. Bagirov et al. (eds.), Numerical Nonsmooth Optimization,
https://doi.org/10.1007/978-3-030-34910-3_6

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34910-3_6&domain=pdf
mailto:frank.e.curtis@lehigh.edu
mailto:adrian.lewis@cornell.edu
mailto:mo1@nyu.edu
https://doi.org/10.1007/978-3-030-34910-3_6


202 J. V. Burke et al.

6.1 Introduction

The gradient sampling (GS) algorithm is a conceptually simple descent method for
solving nonsmooth, nonconvex optimization problems, yet it is one that possesses
a solid theoretical foundation and has been employed to substantial success in a
wide variety of applications. Since the appearance of the fundamental algorithm
and its analysis little over a dozen years ago, GS has matured into a comprehensive
methodology. Various enhancements have been proposed that make it a competitive
approach in many NSO contexts, and it has been extended in various interesting
ways, such as for NSO on manifolds and for solving constrained problems. The
purpose of this work is to provide background and motivation for the development
of the GS method, discuss its theoretical guarantees, and provide an overview of
the enhancements and extensions that have been the subject of research over recent
years.

The underlying philosophy of GS is that virtually any nonsmooth objective
function of interest is differentiable almost everywhere; in particular, this is true if
the objective f : Rn → R is either LLC (see Theorem 1.5) or semialgebraic. In such
cases, when f is evaluated at a randomly generated point x ∈ R

n, it is differentiable
there with probability one. This means that an algorithm can rely on an ability to
obtain the objective function value f (x) and gradient ∇f (x), as when f is smooth,
rather than require an oracle to compute a subgradient. In most interesting settings,
f is not differentiable at its local minimizers, but, under reasonable assumptions, the
carefully crafted mechanisms of the GS algorithm generate a sequence of iterates—
at which f is differentiable—converging to stationarity.

At the heart of GS is a stabilized steepest descent approach. When f is
differentiable at x, the negative gradient −∇f (x) is, of course, the traditional
steepest descent direction for f at x in the 2-norm in that

− ∇f (x)
‖∇f (x)‖ = argmin

‖d‖≤1
∇f (x)T d. (6.1)

However, when x is near a point where f is not differentiable, it may be necessary to
take a very short step along−∇f (x) to obtain decrease in f . It is for this reason that
the traditional steepest descent method may converge to nonstationary points when
f is nonsmooth.1 The GS algorithm stabilizes the choice of the search direction to
avoid this issue. In each iteration, a descent direction from the current iterate xk

is obtained by supplementing the information provided by ∇f (xk) with gradients
evaluated at randomly generated points {xk,1, . . . , xk,m} ⊂ B̄(xk; εk), which are
near xk , and then computing the minimum-norm vector gk in the convex hull of

1Although this fact has been known for decades, most of the examples that appear in the literature
are rather artificial since they were designed with exact line searches in mind. Analyses showing
that the steepest descent method with inexact line searches converges to nonstationary points of
some simple convex nonsmooth functions have appeared recently in [1, 22].
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these gradients. This choice can be motivated by the goal, using the ε-subdifferential
∂Gε f (x) given in Definition 1.10, that

− gk

‖gk‖ ≈ argmin
‖d‖≤1

max
g∈∂Gε f (x)

gT d; (6.2)

i.e.,−gk can essentially be viewed as a steepest descent direction for f from xk in a
more “robust” sense. A line search is then used to find a positive stepsize tk yielding
decrease in f , i.e., f (xk − tkg

k) < f (xk). The sampling radius εk that determines
the meaning of “near xk” may either be fixed or adjusted dynamically.

A specific instance of the GS algorithm is presented in Sect. 6.2. Its convergence
guarantees are summarized in Sect. 6.3. We then present various enhancements
and extensions of the approach in Sects. 6.4 and 6.5, respectively, followed by a
discussion of some successful applications of the GS methodology in Sect. 6.6.
Throughout this work, our goal is to emphasize the simplicity of the fundamental
GS strategy. We believe that this, in addition to its strong convergence properties
for locally Lipschitz optimization, makes it an attractive choice when attempting to
solve difficult types of NSO problems.

Although the first convergence analysis of a GS algorithm was given by Burke,
Lewis, and Overton in [8], an earlier version of the method was presented by these
authors in [7]. That algorithm, originally called a “gradient bundle” method, was
applied to a function that was not only nonconvex and nonsmooth, but also non-
locally-Lipschitz, namely, the spectral abscissa—i.e., the largest of the real parts
of the eigenvalues—of a linear matrix function A mapping a parameter vector
x to the space of nonsymmetric square matrices. The spectral abscissa is not
locally Lipschitz at a matrix X̄ when an eigenvalue of X̄ with largest real part
has multiplicity two or more [5], but it is semialgebraic and, hence, differentiable
almost everywhere, so a GS algorithm was applicable. The method was surprisingly
effective. As anticipated, in most cases the apparent local minimizers that were
approximated had the property that the eigenvalues of A with largest real part
had multiplicity two or more. An illustration that appeared in [7] is reproduced
in Fig. 6.1; the extremely “steep” contours of the objective function indicate its
non-Lipschitzness. Obtaining theoretical results for a GS algorithm applied to
solve non-locally-Lipschitz problems seems very challenging; we discuss this issue
further in Sect. 6.3.3, after describing the substantial body of theory that has been
developed for the locally Lipschitz case in Sects. 6.3.1 and 6.3.2.

6.2 Algorithm GS

We now state a specific variant of the GS algorithm. We start by assuming only
that the objective function f is locally Lipschitz over R

n, which implies, by
Rademacher’s theorem (see Theorem 1.5), that f is differentiable almost every-
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Fig. 6.1 Contours of the spectral abscissa of an affine matrix family given in [7]. Iterates of the
ordinary gradient (“steepest descent”) method with a line search are shown (small circles) along
with those of the GS (“gradient bundle”) algorithm (asterisks). Both start at (−1,−1)

where. As previously mentioned, at the heart of the algorithm is the computation
of a descent direction by finding the minimum norm element of the convex hull of
gradients obtained about each iterate. The remaining procedures relate to the line
search to obtain decrease in f and the selection of a subsequent iterate so that f is
differentiable at all elements of {xk}.

While the essence of the methods from [7] and [8] remains intact, Algorithm GS
differs in subtle yet important ways from the methods presented in these papers, as
we now explain.

1. Algorithm GS incorporates a key modification proposed by Kiwiel in [28,
Algorithm 2.1], namely, the second inequality in (6.4); the version in [8] used
εk instead of min{tk, εk}. As Kiwiel explained, this minor change allowed him
to drop the assumption in [8] that the level set {x : f (x) ≤ f (x0)} is compact,
strengthening the convergence results for the algorithm.

2. A second change suggested in [28, Algorithm 2.1] is the introduction of the
termination tolerances νopt and εopt. These were used in the computational
experiments in [8], but not in the algorithm statement or analysis. Note that if
εopt is set to zero, then Algorithm GS never terminates since εk can never be
zero, though it may happen that one obtains ‖gk‖ = 0.

3. A third change, also suggested by Kiwiel, is the usage of the nonnormalized
search direction −gk (originally used in [7]) instead of the normalized search
direction−gk/‖gk‖ (used in [8]). The resulting inequalities in (6.3) and (6.4) are
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taken from [28, Section 4.1]. This choice does not affect the main conclusions
of the convergence theory as in both cases it is established [8, 28] that the
stepsize tk can be determined by a finite process. However, since Theorem 6.1
below shows that a subsequence of {gk} converges to zero under reasonable
conditions, one expects that fewer function evaluations should be required by
the line search asymptotically when using the nonnormalized search direction,
whereas using the normalized direction may result in the number of function
evaluations growing arbitrarily large [28, Section 4.1]. Our practical experience
is consistent with this viewpoint.

4. Another aspect of Algorithm GS that is different in both [8] and [28] concerns
the randomization procedure in Step 2. In the variants given in those papers, it
was stated that the algorithm terminates if f is not continuously differentiable
at the randomly sampled points {xk,1, . . . , xk,m}. In the theorem stated in the
next section, we require only that f is differentiable at the sampled points. Since
by Rademacher’s theorem and countable additivity of probabilities this holds
for every sampled point with probability one, we do not include a termination
condition here.

5. Finally, Steps 11–14 in Algorithm GS do require explicit checks that ensure
that f is differentiable at xk+1, but unlike in the variants in [8] and [28], it is
not required that f be continuously differentiable at xk+1. This differentiability
requirement is included since it is not the case that f is differentiable at xk−tkgk
with probability one, as is shown via an example in [24], discussed further in
Sect. 6.4.2. For a precise procedure for implementing Step 14, see [28].

The computation in Step 3 of Algorithm GS requires solving a strongly convex
quadratic optimization problem (QP) to compute the minimum-norm element of
the convex hull of the current and sampled gradients, or, equivalently, to compute
the 2-norm projection of the origin onto this convex hull. It is essentially the same
operation required in every iteration of a bundle method. To see this, observe that
solving the QP in Step 3 can be expressed, with

Gk :=
[∇f (xk) ∇f (xk,1) · · · ∇f (xk,m)] ,

as computing (zk, dk,λk) ∈ R×R
n×R

m+1 as the primal-dual solution of the QPs

⎧
⎪⎪⎨

⎪⎪⎩

minimize z + 1
2‖d‖2

subject to GT
k d ≤ z1,

(z, d) ∈ R× R
n,

and

⎧
⎪⎪⎨

⎪⎪⎩

minimize 1
2‖Gkλ‖2

subject to 1T λ = 1, λ ≥ 000,

λ ∈ R
m+1.

(6.5)

The latter problem, yielding Gkλ
k = gk , can easily be seen to be equivalent

to solving the subproblem ming∈Gk
1
2‖g‖2 stated in Step 3, whereas the former

problem, yielding dk = −gk , can be seen to have the same form as the subproblems
arising in bundle methods.
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Algorithm GS: Gradient sampling

Data: initial point x0 at which f is differentiable, initial sampling radius
ε0 ∈ (0,∞), initial stationarity target ν0 ∈ [0,∞), sample size
m ≥ n+ 1, line search parameters (β, γ ) ∈ (0, 1)× (0, 1), termination
tolerances (εopt, νopt) ∈ [0,∞)× [0,∞), and reduction factors
(θε, θν) ∈ (0, 1] × (0, 1];

1 for k ∈ N do
2 independently sample {xk,1, . . . , xk,m} uniformly from B̄(xk; εk)
3 compute gk as the solution of ming∈Gk

1
2‖g‖2, where

Gk := conv{∇f (xk),∇f (xk,1), . . . ,∇f (xk,m)};

4 if ‖gk‖ ≤ νopt and εk ≤ εopt, then
5 terminate;
6 else
7 if ‖gk‖ ≤ νk, then
8 set νk+1 ← θννk , εk+1 ← θεεk , and tk ← 0;
9 else

10 set νk+1 ← νk , εk+1 ← εk , and

tk ← max
{
t ∈ {1, γ , γ 2, . . . } :

f (xk − tgk) < f (xk)− βt‖gk‖2
}
; (6.3)

11 if f is differentiable at xk − tkg
k, then

12 set xk+1 ← xk − tkg
k;

13 else
14 set xk+1 randomly as any point where f is differentiable such that

f (xk+1) < f (xk)− βtk‖gk‖2

and ‖xk − tkg
k − xk+1‖ ≤ min{tk, εk}‖gk‖; (6.4)

Normally, the initial stationarity target ν0 is chosen to be positive and the
reduction factors θν and θε are chosen to be less than one so that the stationarity
target and sampling radius are reduced every time the condition ‖gk‖ ≤ νk is
satisfied. However, it is also interesting to consider the variant with ν0 = 0 and
θε = 1, forcing the algorithm to run forever with ε fixed unless it terminates with
gk = 000 for some k ∈ N. We consider both of these variants in the global convergence
theory given in the next section.
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6.3 Convergence Theory for Algorithm GS

Any NSO method seeks to find a point x that is Clarke stationary (such that 000 ∈
∂f (x); see (1.7), Definition 1.8 and Theorem 1.2) or at least ε-stationary (such that
000 ∈ ∂Gε f (x); see Definition 1.10). For all practical purposes, one cannot generally
evaluate ∂f (or ∂Gε f ) at (or near) any point where f is not differentiable. That said,
Algorithm GS is based on the idea that one can approximate the minimum norm
element in ∂Gε f (x

k) through random sampling of gradients in the ball B̄(xk; ε).
To a large extent this idea is motivated by [6] which investigates how well the
entire Clarke subdifferential ∂f (x) can be approximated through random sampling.
However, the results in [6] cannot be directly exploited in the analysis of the GS
algorithm because the gradients are sampled only at a finite number of points near
any given iterate.

One might wonder why Algorithm GS involves the use ofm ≥ n+1 gradients at
randomly sampled points in addition to the gradient at the current iterate. Loosely
speaking, this lower bound on the number of gradients is required in the analysis to
ensure that one can use Carathéodory’s theorem to argue that there is a sufficiently
good chance that −gk either (1) is a sufficiently good search direction from xk , or
(2) is small enough to indicate that the current iterate is approximately εk-stationary.
In the latter case, the analysis actually involves checking for εk-stationarity of a
point near xk , not of xk itself, which explains why n + 1 gradients are needed
in addition to ∇f (xk). It remains an open question whether it would suffice to
sample gradients at just n randomly sampled points in addition to the gradient at xk;
however, such a possibility is not of much consequence, especially if one employs
the adaptive sampling enhancement discussed in Sect. 6.4.3.

6.3.1 Global Convergence Guarantees

A critical aspect of theoretical convergence guarantees for Algorithm GS concerns
the set of points where f is continuously differentiable, which we denote by D.
Consideration of D played a crucial role in the analysis in both [8] and [28], but
there were some oversights concerning both the requirements of the algorithm with
respect toD and the assumptions onD. Regarding the requirements of the algorithm
with respect to D, there is actually no need, from a theoretical point of view, for
either the iterates {xk} or the randomly generated sampled points {xk,j } to lie in D;
all that is needed is that f is differentiable at these points. Most implementations
of GS algorithms do not attempt to check any form of differentiability in any
case, but if one were to attempt to implement such a check, it is certainly more
tractable to check for differentiability than continuous differentiability. Regarding
the assumptions on D, in the theorems that we state below, we assume that D is
an open set with full measure in R

n. In contrast, the relevant assumption stated in
[8, 28] is weaker, namely, that D is an open dense subset of Rn. However, the proofs
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of convergence actually require the full measure assumption on D that we include
below.2

There are three types of global convergence guarantees of interest for Algo-
rithm GS: one when the input parameters ensure that {εk} ↓ 0, one when εk is
repeatedly reduced but a positive stopping tolerance prevents it from converging to
zero, and one when εk = ε > 0 for all k. These lead to different properties for
the iterate sequence. The first theorem below relates to cases when the stationarity
tolerance and sampling radius tolerance are both set to zero so that the algorithm
can never terminate.

Theorem 6.1 Suppose that f is locally Lipschitz on R
n and continuously differen-

tiable on an open set D with full measure in R
n. Suppose further that Algorithm GS

is run with ν0 > 0, νopt = εopt = 0, and strict reduction factors θν < 1 and
θε < 1. Then, with probability one, Algorithm GS is well defined in the sense that
the gradients in Step 3 exist in every iteration, the algorithm does not terminate, and
either

(i) f (xk) ↓ −∞; or
(ii) νk ↓ 0, εk ↓ 0, and every cluster point of {xk} is Clarke stationary for f .

Theorem 6.1 is essentially the same as [28, Theorem 3.3] (with the modifications
given in [28, Section 4.1] for nonnormalized directions), except for two aspects:

1. The proof given in [28] implicitly assumes that D is an open set with full
measure, as does the proof of [8, Theorem 3.4] on which Kiwiel’s proof is based,
although the relevant assumption on D in both papers is the weaker condition
that D is an open dense set. Details are given in Appendix 1.

2. In the algorithms analyzed in [28] and [8], the iterates {xk} and the randomly
sampled points {xk,j } were enforced to lie in the set D where f is continuously
differentiable. We show in Appendix 2 that the theorem still holds when this
requirement is relaxed to ensure only that f is differentiable at these points.

As Kiwiel argues, Theorem 6.1 is essentially the best result that could be
expected. Furthermore, as pointed out in [28, Remark 3.7(ii)], it leads immediately
to the following corollary.

Corollary 6.1 Suppose that f is locally Lipschitz on R
n and continuously differen-

tiable on an open set D with full measure in R
n. Suppose further that Algorithm GS

is run with ν0 > νopt > 0, ε0 > εopt > 0, and strict reduction factors θν < 1 and
θε < 1. Then, with probability one, Algorithm GS is well defined in the sense that
the gradients in Step 3 exist at every iteration, and either

(i) f (xk) ↓ −∞; or
(ii) Algorithm GS terminates by the stopping criteria in Step 4.

2This oversight went unnoticed for 12 years until J. Portegies and T. Mitchell brought it to our
attention recently.
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The final result that we state concerns the case when the sampling radius is fixed.
A proof of this result is essentially given by that of [28, Theorem 3.5], again taking
into account the comments in the Appendices.

Theorem 6.2 Suppose that f is locally Lipschitz on R
n and continuously differen-

tiable on an open set D with full measure in R
n. Suppose further that Algorithm GS

is run with ν0 = νopt = 0, ε0 = εopt = ε > 0, and θε = 1. Then, with probability
one, Algorithm GS is well defined in the sense that the gradients in Step 3 exist at
every iteration, and one of the following occurs:

(a) f (xk) ↓ −∞; or
(b) Algorithm GS terminates for some k ∈ N with gk = 000; or
(c) there exists K ⊆ N with {gk}k∈K → 000 and every cluster point of {xk}k∈K is

ε-stationary for f .

Of the five open questions regarding the convergence analysis for GS raised
in [8], three were answered explicitly by Kiwiel in [28]. Another open question
was: “Under what conditions can one guarantee that the GS algorithm terminates
finitely?” This was posed in the context of a fixed sampling radius and therefore asks
how one might know whether outcome (b) or (c) occurs in Theorem 6.2, assuming
f is bounded below. This remains open, but Kiwiel’s introduction of the termination
tolerances in the GS algorithm statement led to Corollary 6.1 which guarantees that
when the sampling radius is reduced dynamically and the tolerances are nonzero,
Algorithm GS must terminate if f is bounded below. The only other open question
concerns extending the convergence analysis to the non-Lipschitz case.

Overall, Algorithm GS has a very satisfactory convergence theory in the locally
Lipschitz case. Its main weakness is its per-iteration cost, most notably due
to the need to compute m ≥ n + 1 gradients in every iteration and solve a
corresponding QP. However, enhancements to the algorithm have been proposed
that can vastly reduce this per-iteration cost while maintaining these guarantees. We
discuss these and other enhancements in Sect. 6.4.

6.3.2 A Local Linear Convergence Result

Given the relationship between GS and a traditional steepest descent approach, one
might ask if there are scenarios in which Algorithm GS can attain a linear rate of
local convergence. The study in [25] answers this in the affirmative, at least in a
certain probabilistic sense. If (1) the set of sampled points is good in a certain sense
described in [25], (2) the objective function f belongs to a class of functions defined
by the maximum of a finite number of smooth functions (“finite-max” functions),
and (3) the input parameters are set appropriately, then Algorithm GS will produce
a step yielding a reduction in f that is significant. This analysis involves VU-
decomposition ideas [31, 32, 36], where in particular it is shown that the reduction
in f is comparable to that achieved by a steepest descent method restricted to the



210 J. V. Burke et al.

smooth U-space of f . This means that a linear rate of local convergence can be
attained over any infinite subsequence of iterations in which the sets of sampled
points are good.

6.3.3 The Non-Lipschitz Case

In the non-locally-Lipschitz case, the Clarke subdifferential ∂f is defined in [6, p.
573]; unlike in the Lipschitz case, this set may be unbounded, presenting obvious
difficulties for approximating it through random sampling of gradients. In fact, more
than half of [6] is devoted to investigating this issue, relying heavily on modern
variational analysis as expounded in [41]. Some positive results were obtained,
specifically in the case that f is “directionally Lipschitz” at x̄, which means that
the “horizon cone” [6, p. 572] of f at x̄ is pointed, that is, it does not contain a line.
For example, this excludes the function on R defined by f (x) = |x|1/2 at x̄ = 0, but
it applies to the case f (x) = (max{0, x})1/2 even at x̄ = 0. The discussion of the
directionally Lipschitz case culminates with Corollary 6.1, which establishes that
the Clarke subdifferential can indeed be approximated by convex hulls of gradients.
On the more negative side, Example 7.2 shows that this approximation can fail
badly in the general Lipschitz case. Motivated by these results, Burke and Lin have
recently extended the GS convergence theory to the directionally Lipschitz case
[4, 34]. However, it would seem difficult to extend these results to the more general
non-Lipschitz case.

Suppose f : Rn×n → R is defined by

f (X) = max{Reλ : det(λI −X) = 0},

the spectral abscissa (maximum of the real parts of the eigenvalues) of X. Assume
that X̄ has the property that its only eigenvalues whose real parts coincide with
f make up a zero eigenvalue with multiplicity q associated with a single Jordan
block (the generic case). In this case the results in [5] tell us that the horizon cone
of f is pointed at X̄ if and only if the multiplicity q ≤ 2; on the other hand f is
locally Lipschitz at X if and only if q = 1. In the light of the previous paragraph,
one might expect much greater practical success in applying GS to minimize the
spectral abscissa of a parameterized matrix if the optimal multiplicities are limited
to 1 or 2. However, this seems not to be the case. The results reported in [7] for
unconstrained spectral abscissa minimization, as well as results for applying the
algorithm of [12] (see Sect. 6.5.2 below) for constrained nonsmooth, nonconvex
optimization to problems with spectral radius objective and constraints, as reported
in [15, Section 4.2 and Appendix A.1], do not show any marked deterioration as
the optimal multiplicities increase from 2 or 3, although certainly the problems are
much more challenging for larger multiplicities. We view understanding the rather
remarkably good behavior of the GS algorithm on such examples as a potentially
rewarding, though certainly challenging, line of investigation.
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6.4 Enhancements

As explained above, the statement of Algorithm GS differs in several ways from
the algorithms stated in [7, 8], and [28]. Other variants of the strategy have also
been proposed in recent years, in some cases to pose new solutions to theoretical
obstacles (such as the need, in theory, to check for differentiability of f at each new
iterate), and in others to enhance the practical performance of the approach. In this
section, we discuss a few of these enhancements.

6.4.1 Restricting the Line Search to Within a Trust Region

Since the gradient information about f is obtained only within the ball B̄(xk; εk) for
all k ∈ N, and since one might expect that smaller steps should be made when the
sampling radius is small, an argument can be made that the algorithm might benefit
by restricting the line search to within the ball B̄(xk; εk) for all k ∈ N. In [28,
Section 4.2], such a variant is proposed where in place of −gk the search direction
is set as −εkgk/‖gk‖. With minor corresponding changes to conditions (6.3) and
(6.4), all of the theoretical convergence guarantees of the algorithm are maintained.
Such a variant with the trust region radius defined as a positive multiple of the
sampling radius εk for all k ∈ N would have similar properties. This variant might
perform well in practice, especially in situations when otherwise setting the search
direction as −gk would lead to significant effort being spent in the line search.

6.4.2 Avoiding the Differentiability Check

The largest distraction from the fundamentally simple nature of Algorithm GS is
the procedure for choosing a perturbed subsequent iterate if f is not differentiable
at xk − tkg

k; see Steps 11–14. This procedure is necessary for the algorithm to
be well defined since, to ensure that −gk is a descent direction for all k ∈ N, the
algorithm relies on the existence of and ability to compute −∇f (xk) for all k ∈ N.
One might hope that this procedure, while necessary for theoretical convergence
guarantees, could be ignored in practice. However, due to the deterministic nature
of the line search, situations exist in which landing on a point of nondifferentiability
of f occurs with positive probability.

Example 6.1 Consider the function f : R2 → R given by

f (w, z) = max{0.5w2 + 0.1z,w + 0.1z+ 1,−w + 0.1z+ 1,−0.05z− 50};



212 J. V. Burke et al.

see Fig. 6.2. As shown by Helou, Santos, and Simões in [24], if Algorithm GS
is initialized at x0 = (w0, z0) chosen anywhere in the unit ball centered at
(10, 10), then there is a positive probability that the function f will not be
differentiable at x0− t0g0. This can be explained as follows. At any point in the
unit ball centered at (10, 10), the function f is continuously differentiable and
∇f (x0) = (w0, 0.1). Moreover, there is a positive probability that the sampled
points obtained at this first iteration will yield g0 = ∇f (x0). Therefore, given a
reasonable value for the parameter β that appears in (6.3) (e.g., β = 10−4), the
sufficient decrease of the function value is attained with t0 = 1. This guarantees
that the function f will not be differentiable at the next iterate, since the first
coordinate of x1 = (w1, z1) will be zero.

The authors of [24] propose two strategies to avoid the issues highlighted by
this example. The first is that, rather than perturb the iterate after the line search,
one could perturb the search direction before the line search. It is shown that if the
random perturbation of the search direction is sufficiently small such that, for one
thing, the resulting direction is still one of descent for f , then f will be differentiable
at all iterates with probability one. Their second proposed strategy involves the use
of a nonmonotone line search. In particular, it is shown that if a strictly positive value
Δk is added on the right-hand side of the sufficient decrease condition in (6.3) such
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Fig. 6.2 Contours of a function illustrating the necessity of the differentiability check in Algo-
rithm GS. Initialized uniformly within the illustrated ball, there is a positive probability that
x0 − t0g
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that {Δk} is summable, then one can remove ∇f (xk) from the set Gk for all k ∈ N

and maintain convergence guarantees even when f is not differentiable at {xk}. This
can be shown by noticing that, due to the positive term Δk, the line search procedure
continues to be well defined even if −gk is not a descent direction for f at xk

(which may happen since ∇f (xk) is no longer involved in the computation of gk).
However, the summability of {Δk} implies that the possible increases in f will be
finite and, when the sampled points are good enough to describe the local behavior
of f around the current iterate, the function value will necessarily decrease if the
method has not reached (approximate) stationarity. Overall, the sufficient reductions
in f achieved in certain iterations will ultimately exceed any increases.

Another proposal for avoiding the need to have f differentiable at xk for all
k ∈ N is given in [28, Section 4.3], wherein a technique is proposed for using
a limited line search, potentially causing the algorithm to take null steps in some
iterations. In fact, this idea of using a limited line search can also be used to avoid
the need to sample a new set of m ≥ n+ 1 gradients in each iteration, as we discuss
next.

6.4.3 Adaptive Sampling

As previously mentioned, the main weakness of Algorithm GS is the cost of
computing m ≥ n + 1 gradients in every iteration and solving a corresponding
QP. Indeed, in many situations in practice, the sampling of such a large number of
gradients in each iteration can lead to a significant amount of wasted computational
effort; e.g., this is the case if a productive step would have been produced if fewer
gradients were computed and used in the step computation. To take advantage
of such situations, one can instead sample adaptively, attempting to search along
directions computed using fewer gradients and proceeding as long as a sufficient
reduction is attained.

In [13], Curtis and Que show how such an adaptive sampling strategy can be
employed so that the convergence guarantees of Algorithm GS are maintained while
only a constant number (independent of n) of gradients need to be sampled in
each iteration. A key aspect that allows one to maintain these guarantees is the
employment of a limited line search, as first proposed in [28], potentially leading
to a null step when fewer than n + 1 gradients are currently in hand and when the
line search is not successful after a prescribed finite number of function evaluations.
See also [14] for further development of these ideas, where it is shown that one
might not need to sample any gradients as long as a sufficient reduction is attained.

The work in [13] also introduces the idea that, when adaptive sampling is
employed, the algorithm can exploit a practical feature commonly used in bundle
methods. This idea relates to warm-starting the algorithm for solving the QP
subproblems. In particular, suppose that one has solved the primal-dual pair of QPs
in (6.5) for some m ∈ N to obtain (zk, dk,λk), yielding gk = −dk . If one were to
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subsequently aim to solve the pair of QPs corresponding to the augmented matrix
of gradients

Gk =
[
Gk ∇f (xk,m+1) · · · ∇f (xk,m+p)] ,

then one obtains a viable feasible starting point for the latter QP in (6.5) by
augmenting the vector λk with p zeros. This can be exploited, e.g., in an active-
set method for solving this QP; see [27].

As a further practical enhancement, the work in [13, 14] also proposes the natural
idea that, after moving to a new iterate xk , gradients computed in previous iterations
can be “reused” if they correspond to points that lie within B̄(xk; εk). This may
further reduce the number of sampled points needed in practice.

6.4.4 Second Order-Type Variants

The solution vector dk of the QP in (6.5) can be viewed as the minimizer of the
model of f at xk given by

qk(d) = f (xk)+ max
g∈Gk

gT d + 1
2dT Hkd

with Hk = I , the identity matrix. As in other second order-type methods for
nonlinear optimization, one might also consider algorithm variants where Hk is
set to some other symmetric positive definite matrix. Ideas of this type have been
explored in the literature. For example, in [13], two techniques are proposed: one in
which Hk is set using a quasi-Newton updating strategy and one in which the matrix
is set in an attempt to ensure that the model qk represents an upper bounding model
for f . The idea of employing a quasi-Newton approach, inspired by the success
of quasi-Newton methods in practice for NSO (see [33]), has also been explored
further in [14, 16].

Another approach, motivated by the encouraging results obtained when employ-
ing spectral gradient methods to solve smooth [3, 21] and nonsmooth [11] optimiza-
tion problems, has been to employ a Barzilai-Borwein (BB) strategy for computing
initial stepsizes in a GS approach; see [35] and the background in [2, 38, 39]. Using
a BB strategy can be viewed as choosing Hk = αkI for all k ∈ N where the scalar
αk is set according to iterate and gradient displacements in the latest iteration.

In all of these second order-type approaches, one is able to maintain convergence
guarantees of the algorithm as long as the procedure for setting the matrix Hk is
safeguarded during the optimization process. For example, one way to maintain
guarantees is to restrict each Hk to the set of symmetric matrices whose eigenvalues
are contained within a fixed positive interval. One might also attempt to exploit the
self-correcting properties of BFGS updating; see [16].
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6.5 Extensions

In this section, we discuss extensions to the GS methodology to solve classes of
problems beyond unconstrained optimization on R

n.

6.5.1 Riemannian GS for Optimization on Manifolds

Hosseini and Uschmajew in [26] have extended the GS methodology for minimizing
a locally Lipschitz f over a set M, where M is a complete Riemannian manifold
of dimension n. The main idea of this extension is to employ the convex hull of
gradients from tangent spaces at randomly sampled points transported to the tangent
space of the current iterate. In this manner, the algorithm can be characterized
as a generalization of the Riemannian steepest descent method just as GS is a
generalization of traditional steepest descent. Assuming that the vector transport
satisfies certain assumptions, including a locking condition, the algorithm attains
convergence guarantees on par with those for Algorithm GS.

6.5.2 SQP-GS for Constrained Optimization

Curtis and Overton in [12] proposed a combination sequential quadratic pro-
gramming (SQP) and GS method for solving constrained optimization problems
involving potentially nonsmooth constraint functions, i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

minimize f (x)

subject to c(x) ≤ 000,

x ∈ R
n,

(6.6)

where f : R
n → R and c : R

n → R
nc are locally Lipschitz. A key aspect

of the proposed SQP-GS approach is that sampled points for the objective and
each individual constraint function are generated independently. With this important
feature, it is shown that the algorithm, which follows a penalty-SQP strategy
(e.g., see [20]), attains convergence guarantees for minimizing an exact penalty
function that are similar to those in Sect. 6.3.1. Moreover, with the algorithm’s
penalty parameter updating strategy, it is shown that either the penalty function
is driven to −∞, the penalty parameter settles at a finite value and any limit
point will be feasible for the constraints and stationary for the penalty function,
or the penalty parameter will be driven to zero and any limit point of the algorithm
will be stationary for a constraint violation measure. As for other exact penalty
function methods for nonlinear optimization, one can translate between guarantees
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for minimizing the exact penalty function and solving the constrained problem (6.6);
in particular, if the problem is calm [10, 40], then at any local minimizer x∗ of (6.6)
there exists a threshold for the penalty parameter beyond which x∗ will be a local
minimizer of the penalty function.

Tang, Liu, Jian, and Li have also proposed in [42] a feasible variant of the SQP-
GS method in which the iterates are forced to remain feasible for the constraints
and the objective function is monotonically decreasing throughout the optimization
process. This opens the door to employing a two-phase approach common for
solving some optimization problems, where phase 1 is responsible for attaining a
feasible point and phase 2 seeks optimality while maintaining feasibility.

6.5.3 Derivative-Free Optimization

Given its simple nature, GS has proved to be an attractive basis for the design of new
algorithms even when gradient information cannot be computed explicitly. Indeed,
there have been a few variants of derivative-free algorithms that have been inspired
by GS.

The first algorithm for derivative-free optimization inspired by GS was proposed
by Kiwiel in [29]. In short, in place of the gradients appearing in Algorithm GS, this
approach employs Gupal’s estimates of gradients of the Steklov averages of f . In
this manner, function values only—specifically, O(mn) per iteration—are required
for convergence guarantees. A less expensive incremental version is also proposed.

Another derivative-free variant of GS, proposed by Hare and Nutini in [23], is
specifically designed for minimizing finite-max functions. This approach exploits
knowledge about which of these functions are almost active—in terms of having
value close to the objective function—at a particular point. In so doing, rather
than attempt to approximate gradients at nearby points, as in done in [29], this
approach only attempts to approximate gradients of almost active functions. The
convergence guarantees proved for the algorithm are similar to those for GS
methods, though the practical performance is improved by the algorithm’s tailored
gradient approximation strategy.

Finally, we mention the manifold sampling algorithm, proposed by Larson,
Menickelly, and Wild in [30], for solving nonconvex problems where the objective
function is the L1-norm of a smooth vector function F : Rn → R

r . While this
approach does not employ a straightforward GS methodology in that it does not
randomly sample points, it does employ a GS-type approach in the way that the
gradient of a model of the objective function is constructed by solving a QP of
the type in (6.5). Random sampling can be avoided in this construction since the
algorithm can exploit knowledge of the signs of the elements of F (x) at any x ∈ R

n

along with knowledge of ∂‖ · ‖1.
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6.6 Applications

We mentioned in the introduction that the original GS paper [7] reported results for
spectral abscissa optimization problems that had not been solved previously. The
second GS paper [8] reported results for many more applications that again had not
been solved previously: these included Chebyshev approximation by exponential
sums, eigenvalue product minimization for symmetric matrices, spectral and pseu-
dospectral abscissa minimization, maximization of the “distance to instability”, and
fixed order controller design by static output feedback.

Subsequently, the GS algorithm played a key role in the HANSO (hybrid
algorithm for nonsmooth optimization)3 and HIFOO (H-infinity fixed order opti-
mization)4 toolboxes. The former is a stand-alone code for unconstrained NSO
while the latter is a more specialized code used for the design of low order
controllers for linear dynamical systems with input and output, computing fixed
order controllers by optimizing stability measures that are generally nonsmooth at
local minimizers [9]. HIFOO calls HANSO to carry out the optimization. The use of
“hybrid” in the expansion of the HANSO acronym indicated that, from its inception,
HANSO combined the use of both a quasi-Newton algorithm (BFGS) and GS.
The quasi-Newton method was used in an initial phase which, rather surprisingly,
typically worked very effectively even in the presence of nonsmoothness, very
often providing a fast way to approximate a local minimizer. This was followed
by a GS phase to refine the approximation, typically verifying a loose measure
of local optimality. The HIFOO toolbox has been used successfully in a wide
variety of applications, including synchronization of heterogeneous multi-agent
systems and networks, design of motorized gimbals that stabilize an angular motion
of an optical payload around an axis, flight control via static output feedback,
robust observer-based fault detection and isolation, influence of tire damping on
control of quarter-car suspensions, flexible aircraft lateral flight dynamic control,
optimal control of aircraft with a blended wing body, vibration control of a
fluid/plate system, controller design of a nose landing gear steering system, bilateral
teleoperation for minimally invasive surgery, design of an aircraft controller for
improved gust alleviation and passenger comfort, robust controller design for a
proton exchange membrane fuel cell system, design of power systems controllers,
and design of winding systems for elastic web materials—for a full list of references,
see [15].

The successful use of BFGS in HANSO and HIFOO led to papers on the use
of quasi-Newton methods in the nonsmooth context, both for unconstrained [33]
and constrained [15] optimization. The latter paper introduced a new BFGS-SQP
method for nonsmooth constrained optimization and compared it with the SQP-
GS method discussed in Sect. 6.5.2 on a suite of challenging static output feedback

3www.cs.nyu.edu/overton/software/hanso/.
4www.cs.nyu.edu/overton/software/hifoo/.

www.cs.nyu.edu/overton/software/hanso/
www.cs.nyu.edu/overton/software/hifoo/
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controller design problems, half of them non-Lipschitz (spectral radius minimiza-
tion) and half of them locally Lipschitz (pseudospectral radius minimization). It
was found that although the BFGS-SQP method was much faster than SQP-GS,
nonetheless, if the latter method based on GS was allowed sufficient running time,
it frequently found better approximate solutions than the former method based on
BFGS in a well defined sense, evaluated using “relative minimization profiles”.
Interestingly, this was particularly pronounced on the non-Lipschitz problems,
despite the fact that the GS convergence theory does not extend to this domain.
See Sect. 6.3.3 for further discussion of this issue.

Finally, we mention an interesting application of GS to robot path planning
[43]. This work is based on the observation that shortest paths generated through
gradient descent on a value function have a tendency to chatter and/or require an
unreasonable number of steps to synthesize. The authors demonstrate that the GS
algorithm can largely alleviate this problem. For systems subject to state uncertainty
whose state estimate is tracked using a particle filter, they proposed the GS with
particle filter (GSPF) algorithm, which uses the particles as the locations in which
to sample the gradient. At each step, the GSPF efficiently finds a consensus direction
suitable for all particles or identifies the type of stationary point on which it is stuck.
If the stationary point is a minimum, the system has reached its goal (to within the
limits of the state uncertainty) and the algorithm terminates; otherwise, the authors
propose two approaches to find a suitable descent direction. They illustrated the
effectiveness of the GSPF on several examples using well known robot simulation
environments. This work was recently extended and modified in [19], where the
practical effectiveness of both the GSPF algorithm and the new modification was
demonstrated on a Segway robotic mobility platform.

6.7 Conclusion and Future Directions

Gradient sampling is a conceptually straightforward approximate steepest descent
method. With a solid convergence theory, the method has blossomed into a powerful
methodology for solving nonsmooth minimization problems. The theme of our
treatment of GS in this work has been to emphasize the fact that, even though the
basic algorithm has been enhanced and extended in various ways, the foundation of
the approach is fundamentally simple in nature.

We have also corrected an oversight in the original GS theory (i.e., that the
convergence results depend on assuming that the set of points over which the
Lipschitz function f is continuously differentiable has full measure, although we do
not have a counterexample to convergence of GS in the absence of this assumption).
At the same time we have loosened the requirements of the algorithm (showing that
f need only be differentiable at the iterates and sampled points). An open question
that still remains is whether one can extend the GS theory to broader function
classes, such as the case where f is assumed to be semi-algebraic but not necessarily
locally Lipschitz or directionally Lipschitz.
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Opportunities for extending GS theory for broader function classes may include
connecting the algorithm to other randomized/stochastic optimization methods.
For example, one might view the algorithm as a stochastic-gradient-like method
applied to a smoothed objective. (A similar philosophy underlies the analysis by
Nesterov and Spokoiny in [37]). More precisely, given a locally Lipschitz objective
f , consider a smoothing fε whose value at any point x is given by the mean value
of f over the ball B̄(x; ε). The GS algorithm uses gradients of f at uniformly
distributed random points in this ball. Notice that each such gradient can also
be viewed as a stochastic gradient for the smoothing fε in the sense that its
expectation is the gradient of fε at x. Thus, one might hope to prove convergence
results for a GS algorithm (with predetermined stepsizes rather than line searches)
that parallel convergence theory for stochastic gradient methods. Recent work by
Davis, Drusvyatskiy, Kakade and Lee [18] gives convergence results for stochastic
subgradient methods on a broad class of problems.

Another potentially interesting connection is with the work of Davis and
Drusvyatskiy [17] on stochastic model-based optimization. Consider a GS variant
that successively minimizes stochastic models of the objective function f , where we
assume for simplicity that f is a globally Lipschitz convex function. In this variant,
rather than moving along the direction −gk , consider instead the construction of
a cutting plane approximation of f from its affine minorants at the current iterate
xk and the sampled points {xk,i}, augmented by the proximal term βk‖x − xk‖2,
where {βk} is a predetermined sequence. Suppose that the next iterate is chosen as
the minimizer of this model; for a given k and with βk = 1, by Eq. (6.5), this scheme
and GS produce similar descent directions as the sampling radius tends to zero. It
follows from the results of [17] that the expected norm of the gradient of the Moreau
envelope [17, p. 6] is reduced below ε in O(ε−4) iterations. In fact, the assumptions
on f in [17] are substantially weaker than convexity, and do not require any property
of the set on which f is continuously differentiable.

Connecting the convergence theory for GS to stochastic methods as suggested
in the previous two paragraphs could be enlightening. However, while stochastic
methods are often designed for settings in which it is intractable to compute function
values exactly—a feature reflected in the fact that the analyses for such methods
are based on using predetermined stepsize sequences—the GS methodology has so
far been motivated by problems for which functions and gradients are tractable to
compute. In such settings, the line search in Algorithm GS is an ingredient that is
crucial to its practical success.
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Appendix 1

This appendix is devoted to justifying the requirement that D, the set of points on
which the locally Lipschitz function f is continuously differentiable, must be an
open full-measure subset of R

n, instead of the original assumption in [8] that D
should be an open and dense set in R

n.
There are two ways in which the analyses in [8, 28] actually depend on D having

full measure:

1. The most obvious is that both papers require that the points sampled in each
iteration should lie in D, and a statement is made in both papers that this occurs
with probability one, but this is not the case if D is assumed only to be an open
dense subset ofRn. However, as already noted earlier and justified in Appendix 2,
this requirement can be relaxed, as in Algorithm GS given in Sect. 6.2, to require
only that f be differentiable at the sampled points.

2. The set D must have full measure for Property 6.1, stated below, to hold. The
proofs in [8, 28] depend critically on this property, which follows from [6,
Eq. (1.2)] (where it was stated without proof). For completeness we give a proof
here, followed by an example that demonstrates the necessity of the full measure
assumption.

Property 6.1 Assume that D has full measure and let

Gε(x) := cl conv∇f (
B̄(x; ε) ∩D)

.

For all ε > 0 and all x ∈ R
n, one has ∂f (x) ⊆ Gε(x), where ∂f is the Clarke

subdifferential set presented in Definition 1.8.

Proof of Property 6.1 Let x ∈ R
n and v ∈ ∂f (x). We have from [10, Theorem

2.5.1] that Theorem 1.2 can be stated in a more general manner. Indeed, for any set
S with zero measure, and considering Ωf to be the set of points at which f fails to
be differentiable, the following holds:

∂f (x) = conv

{
lim
j
∇f (yj ) : yj → x where yj /∈ S ∪Ωf for all j ∈ N

}
.

In particular, since D has full measure and f is differentiable on D, it follows that

∂f (x) = conv

{
lim
j
∇f (yj ) : yj → x with yj ∈ D for all j ∈ N

}
.

Considering this last relation and Carathéodory’s theorem, it follows that v ∈
conv

{
ξ1, . . . , ξn+1

}
, where, for all i ∈ {1, . . . , n + 1}, one has ξ i = lim

j
∇f (yj,i )
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for some sequence {yj,i}j∈N ⊂ D converging to x. Hence, there must exist a
sufficiently large ji ∈ N such that, for all j ≥ ji , one obtains

yj,i ∈ B̄(x; ε) ∩D .⇒ ∇f (yj,i ) ∈ ∇f (
B̄(x; ε) ∩D) ⊆ conv∇f (

B̄(x; ε) ∩D)
.

Recalling that Gε(x) is the closure of conv∇f (
B̄(x; ε) ∩D)

, it follows that ξ i ∈
Gε(x) for all i ∈ {1, . . . , n + 1}. Moreover, since Gε(x) is convex, we have v ∈
Gε(x). The result follows since x ∈ R

n and v ∈ ∂f (x) were arbitrarily chosen. �
With the assumption that D has full measure, Property 6.1 holds and hence the

proofs of the results in [8, 28] are all valid. In particular, the proof of (ii) in [28,
Lemma 3.2], which borrows from [8, Lemma 3.2], depends on Property 6.1. See
also [8, the top of p. 762].

The following example shows that Property 6.1 might not hold if D is assumed
only to be an open dense set, not necessarily of full measure.

Example 6.2 Let δ ∈ (0, 1) and {qk}k∈N be the enumeration of the rational
numbers in (0, 1). Define

D :=
∞⋃

k=1

Qk , where Qk :=
(
qk − δ

2k+1 , qk +
δ

2k+1

)
.

Clearly, its Lebesgue measure satisfies 0 < λ(D) ≤ δ. Moreover, the set D
is an open dense subset of [0, 1]. Now, let iD : [0, 1] → R be the indicator
function of the set D,

iD(x) =
{

1, if x ∈ D,
0, if x /∈ D.

Then, considering the Lebesgue integral, we define the function f : [0, 1] →
R,

f (x) =
∫

[0,x]
iDdλ.

Let us prove that f is a Lipschitz continuous function on (0, 1). To see this,
note that given any a, b ∈ (0, 1) with b > a, it follows that

|f (b)− f (a)| =
∣∣
∣
∣

∫

[0,b]
iDdλ−

∫

[0,a]
iDdλ

∣∣
∣
∣ =

∣∣
∣
∣

∫

(a,b]
iDdλ

∣∣
∣
∣ ≤

∫

(a,b]
1dλ = b − a,

which ensures that f is a Lipschitz continuous function on (0, 1). Conse-
quently, the Clarke subdifferential set of f at any point in (0, 1) is well defined.
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Moreover, we claim that, for all k ∈ N, f is continuously differentiable at any
point q ∈ Qk and the following holds

f ′(q) = iD(q) = 1. (6.7)

Indeed, given any q ∈ Qk , we have

f (q + t)− f (q) =
∫

[0,q+t ]
iDdλ−

∫

[0,q]
iDdλ =

∫

(q,q+t ]
iDdλ, for t > 0.

Since Qk is an open set, we can find t > 0 such that [q, q + t] ⊂ Qk ⊂ D, for
all t ≤ t . Hence, given any t ∈ (0, t], it follows that

f (q + t)− f (q) =
∫

(q,q+t ]
1dλ = t .⇒ lim

t↓0

f (q + t)− f (q)

t
= 1 = iD(q).

The same reasoning can be used to see that the left derivative of f at q exists
and it is equal to iD(q). Consequently, we have f ′(q) = iD(q) = 1 for all
q ∈ Qk, which yields that f is continuously differentiable on D.

By the Lebesgue differentiation theorem, we know that f ′(x) = iD(x)

almost everywhere. Since the set [0, 1] \ D does not have measure zero, this
means that there must exist z ∈ [0, 1]\D such that f ′(z) = iD(z) = 0. Defining
ε := min{z, 1− z}/2, we see, by (6.7), that the set

Gε(z) := cl conv∇f ([z− ε, z + ε] ∩D)

is a singletonGε(z) = {1}. However, since f ′(z) = 0, it follows that 0 ∈ ∂f (z),
which implies ∂f (z) �⊂ Gε(z).

Note that it is stated on [8, p. 754] and [28, p. 381] that the following holds: for
all 0 ≤ ε1 < ε2 and all x ∈ R

n, one has ∂̄ε1f (x) ⊆ Gε2(x). Property 6.1 is a special
case of this statement with ε1 = 0, and hence this statement too holds only under
the full measure assumption.

Finally, it is worth mentioning that in practice, the full measure assumption on
D usually holds. In particular, whenever a real-valued function is semi-algebraic
(or, more generally, “tame”)—in other words, for all practical purposes virtually
always—it is continuously differentiable on an open set of full measure. Hence, the
original proofs hold in such contexts.
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Appendix 2

In this appendix, we summarize why it is not necessary that the iterates and sampled
points of the algorithm lie in the set D in which f is continuously differentiable,
and that rather it is sufficient to ensure that f is differentiable at these points, as in
Algorithm GS. We do this by outlining how to modify the proofs in [28] to extend
to this case.

1. That the gradients at the sampled points {xk,j } exist follows with probability one
from Rademacher’s theorem, while the existence of the gradients at the iterates
{xk} is ensured by the statement of Algorithm GS. Notice that the proof of part
(ii) of [28, Theorem 3.3] still holds in our setting with the statement that the
components of the sampled points are “sampled independently and uniformly
from B̄(xk; ε) ∩D” replaced with “sampled independently and uniformly from
B̄(xk; ε)”.

2. One needs to verify that f being differentiable at xk is enough to ensure
that the line search procedure presented in (6.3) terminates finitely. This is
straightforward. Since ∇f (xk) exists, it follows that the directional derivative
along any vector d ∈ R

n \ {0} is given by f ′(xk; d) = ∇f (xk)T d . Furthermore,
since −∇f (xk)T gk ≤ −‖gk‖2 (see [8, p. 756]), it follows, for any β ∈ (0, 1),
that there exists t > 0 such that

f (xk − tgk) < f (xk)− tβ‖gk‖2 for any t ∈ (0, t).

This shows that the line search is well defined.
3. The only place where we actually need to modify the proof in [28] concerns item

(ii) in Lemma 3.2, where it is stated that ∇f (xk) ∈ Gε(x̄) (for a particular point
x̄) because xk ∈ B̄(x̄; ε/3) ∩D; the latter is not true if xk �∈ D. However, using
Property 6.1, we have

∇f (xk) ∈ ∂f (xk) ⊂ Gε/3(x
k) ⊂ Gε(x̄) when xk ∈ B̄(x̄; ε/3),

and therefore, ∇f (xk) ∈ Gε(x̄) even when xk �∈ D.

Finally, although it was convenient in Appendix 1 to state Property 1 in terms
of D, it actually holds if D is replaced by any full measure set on which f is
differentiable. Nonetheless, it is important to note that the proofs of the results in
[8, 28] do require that f be continuously differentiable on D. This assumption is
used in the proof of (i) in [28, Lemma 3.2].
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Chapter 7
Local Search for Nonsmooth
DC Optimization with DC Equality
and Inequality Constraints

Alexander S. Strekalovsky

Abstract The chapter addresses the nonsmooth optimization problem with the
objective function and equality and inequality constraints given by DC functions.
First, the original problem is reduced to a problem without constraints by the
exact penalization theory, so that the reduced (penalized) problem is also a DC
minimization problem. Then, we develop a local search (LS) scheme which is
based, first, on the linearization of the basic nonconvexity of the penalized problem
and, second, on consecutive solutions of linearized (convex) problems. Convergence
properties of the LS scheme are also investigated, which, in particular, yield that the
sequence produced by LSM converges to a solution of the problem linearized at the
limit point just. Moreover, the cluster point of the sequence is the KKT point for the
original problem with the Lagrange multipliers provided by an auxiliary linearized
problem. Finally, on the base of the developed theory several new stopping criteria
are elaborated, which allow to transform the local search scheme into a local search
algorithm.

7.1 Introduction

It is well-known in the optimization society that most of real-life problems are non-
convex. According to the renown authors (see, for instance, [39]), the challenges of
the twenty-first century, such as hierarchical optimization problems and the search
for equilibriums in competitions (conflict’s situations and various games), generally
lead to optimization problems with hidden nonconvexities. As a consequence, we
can even say that nonconvexity itself is a challenge of the twenty-first century.

Furthermore, the specialists decided to split the optimization problems into
two classes: convex and nonconvex problems. This is due to the fact that convex
problems are computationally tractable under minimal computability assumptions
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[2, 9, 25, 38, 57]. It means that the computational efforts required to solve the
problem to a given accuracy grow moderately with the dimension of the problem.
In contrast, real-life nonconvex problems might have a huge number of local pitfalls
and stationary vectors which are rather far from a global solution, and this makes
numerical solution quite difficult [16, 17, 24, 26, 40, 56].

In addition, the classical optimization methods (conjugate gradients, Newton
and quasi-Newton’s methods, sequential quadratic programming, trust region and
interior point methods etc.) turn out inoperative when it comes to finding a global
solution to a nonconvex problem [2, 9, 14, 16, 17, 25, 26, 38, 56, 57], and too
often cannot provide even a stationary (KKT) point [4, 35–37]. Besides, specialists
in applied problems often do not take into account that it is incorrect to directly
apply classical optimization methods [2, 9, 25, 38, 57] to nonconvex problems.
Moreover, they interpret the numerical results only in the content aspect, i.e. in
engineering, biology or economic etc. sense forgetting at the same time, that
all classical optimization methods converge to a global solution only in convex
problems [2, 38, 57].

On the other hand, we can observe the emergence of widespread and very popular
approaches that completely neglect the classical optimization theory and methods
[2, 7–10, 15, 25, 38, 43, 44, 57], and employ, for example, the B&B and cut’s
methodology. Recall that the latter algorithms usually suffer the so-called curse
of dimensionality, when the volume of computations grows exponentially as the
dimension of the problem increases.

Also, recall that application of the Lagrange duality theory and corresponding
methods do not exactly provide a desirable result, since the theory is faulty and
there exists a duality gap [2, 25, 38, 57] in nonconvex optimization with integer and
mixed variables [2, 17, 26, 40, 45, 53], which can be represented in a continuous
form [16, 17, 26, 31, 32, 45, 53, 56].

Thus, the current situation is not very promising or optimistic, even though
now there is available a whole range of new powerful mathematical tools, such
as convex analysis and variational analysis, [2, 7, 8, 10, 25, 42, 44, 57], the exact
penalization theory [1–3, 5–8, 11–13, 15, 22, 25, 27, 28, 41, 59], developed by the
great scientists, among which are R.T. Rockafellar, R.B. Wets, J.-B. Hiriart-Urruty,
I.I. Eremin, W. Zangwill, J. Borwein. Nonetheless, the development of nonconvex
optimization was continued due to the works, first of all, Tuy and Hiriart-Urruty
[14, 23, 24, 56] and Toland [53–55]. In addition, the considerable contributions to
nonconvex optimization by Le Thi Hoai An and Pham Dinh Tao, who develop the
DC approach proposed by H. Tuy, are also widespread and well-known [29–34] and
have many real-life applications.

We develop the part of nonconvex optimization founded on the global optimality
conditions (GOCs) and numerical methods for nonconvex optimization related to
the GOCs.

This chapter has three key objectives.

• First, we will develop a new version of the special local search method (LSM)
for the general DC optimization problem with the objective function and equality
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and inequality constraints given by DC functions, which are nonsmooth. This
statement generalizes the smooth data of the problems considered in [18–21, 45–
47, 49–56].

• Second, it seems to be necessary to combine the exact penalization theory with
the technique of consecutive solutions of the convex problems linearized with
respect to the basic nonconvexity of the original problem (P).

• Finally, we will obtain convergency results that help us to construct new stopping
criteria that would guarantee Stop at the iteration k ≥ 1, when the iterate, for
example, xk (or xk+1) is close to a KKT point of the original problem (P).

Thus, the chapter consists of the following sections: Sect. 7.2 presents the statement
of the original problem (P) while Sect. 7.3 introduces the penalty function W(x),
defined by (7.1), along with the penalized problem (Pσ ). Furthermore, we prove
that the goal function Θσ (·) of (Pσ ) is a DC function, whence it follows that the
problem (Pσ ) is a DC minimization problem over the convex and closed set S ⊂ R

n.
In Sect. 7.4, we develop a local search scheme based on the linearization of the
basic nonconvexity of the penalized problem (Pσ ), consider linearized problems
(PσL(v)), (PLk(σ)), (PkL), (P∗k L), and (APWLk) and consecutive solutions of
the linearized problems, as well as the penalty parameter update procedure.

Section 7.5 is devoted to investigation of some convergency properties of the
proposed numerical Scheme 1 (Algorithm 7.1). In particular, in Proposition 7.1 we
establish the convergence of the number sequence {Θk(x

k)} of the values of the
goal function Θk(·) at the iterate xk , which immediately entails the convergence of
the sequence {xk} under the assumption of strong convexity of a part of the data. In
addition, the convergence proof of the dual (to {xk} in the Toland’s sense) sequence
{yk} is also briefly presented. Employing these convergence results, we prove the
principal result of the section, which states that the limit point x∗ of the sequence
{xk} produced by Scheme 1 turns out to be a solution to the “limit” linearized
problem (PL∗).

In Sect. 7.6 we move on to numerical solution of the problem (Pσ ) and study
supplementary convergency properties of the cluster point x∗ of the sequence {xk},
using some reduction theorem to replace linearized nonsmooth problems by other
linearized convex problems with supplementary number parameters and only the
inequality constraints. First, we perform this reduction for the “limit” linearized
convex problem (PL∗) and obtain a rather unexpected result that the limit point
x∗ of the sequence {xk} is not only a solution to the linearized problem (PL∗),
but a KKT-point to the original problem (P). However, our most unexpected
discovery is the fact that the Lagrange multipliers λi of x∗ are completely defined by
the corresponding Lagrange multipliers (μ, η, ν) of the linearized problem (7.45),
equivalent to (PL∗). Moreover, the latter Lagrange multipliers (μ, η, ν) together
with the limit penalty parameter σ∗ > 0 satisfy some equations, so that all the
parameters of computational process defined by Scheme 1 fulfill some shared
constraints. Furthermore, repeating the similar reasonings for the approximate
solution to the current linearized problem (PLk(γ, t)), we get the same conclusions,
and also some stopping criterions (7.64)–(7.69). Finally, we propose a modification
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of Scheme 1 using the combination of the developed stopping criteria and advertise
the properties of the point produced by Scheme 2.

7.2 Problem’s Statement

In this chapter we consider the following optimization problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize f0(x) := g0(x)− h0(x)

subject to fi(x) := gi(x)− hi(x) ≤ 0, i ∈ I = {1, . . . ,m},
fj (x) := gj (x)− hj (x) = 0, j ∈ E = {m+ 1, . . . , l},
x ∈ S,

(P)

where the functions gi(·), hi(·), i ∈ {0} ∪ I ∪ E , are convex and finite on R
n,

so that the functions fi(·) are the DC functions represented as a difference of two
convex functions [25, 38, 42, 44, 57]. One can address a more general problem where
gi, hi : Rn → R ∪ {+∞} are proper convex functions such that

∅ �= S ⊂ int(domgi) ∩ int(domhi), i ∈ {0} ∪ I ∪ E .

Below, we assume that the set S ⊂ R
n is convex and closed, while the functions

fi(·), i ∈ {0} ∪ I ∪ E , are nonsmooth on R
n, as well as the functions gi(·), hi(·).

Finally, suppose that the feasible set

F := {x ∈ S : fi(x) ≤ 0, i ∈ I, fj (x) = 0, j ∈ E}

of the problem (P) is nonempty, and the optimal value of the problem (P) is finite:

V(P) := inf(f0,F) := inf
x
{f0(x)| x ∈ F} > −∞.

7.3 The Penalized Problem

Introduce the penalty function as follows

W(x) := max{0, f1(x), . . . , fm(x)} +
∑

j∈E
|fj (x)|, (7.1)



7 Local Search for Nonsmooth DC Optimization with DC Constraints 233

and together with (P) consider the penalized problem without equality and inequal-
ity constraints

{
minimize Θσ (x)

subject to x ∈ S, (Pσ )

where σ ≥ 0, and the function

Θσ (x) := f0(x)+ σW(x) (7.2)

is the cost function of the problem (Pσ ).
Let us look at the relations between problems (P) and (Pσ ). As well-known, if

z ∈ Sol(Pσ ) and z is feasible in (P), z ∈ F , then z ∈ Sol(P). Unfortunately, the
inverse implication does not hold, in general.

Our approach is based on theory of exact penalization (EP) [1–3, 11–13, 22,
27, 28, 41, 58], which implies that for the penalty parameter σ ≥ 0 there exists
a threshold value σ∗ ≥ 0 such that for all σ > σ∗ problems (P) and (Pσ ) are
equivalent in the sense that Sol(P) = Sol(Pσ ) and their optimal values coincide.
On the other hand, the existence of the threshold value σ∗ ≥ 0 of the penalty
parameter allows us to solve a single unconstrained problem instead of solving a
sequence of unconstrained problems when the penalty parameter tends to infinity
(σk ↑ ∞).

Since this chapter addresses only local search methods which provide, in general,
only local solutions or even stationary (KKT) vectors, one can employ the well-
known and widespread results on the existence of the threshold value σ∗ ≥ 0 of
penalty parameters for a nonsmooth case [1–3, 11–13, 22, 27, 28, 41, 59]. When
talking about this subject, we should highlight the results of Demyanov and his
school [8], Kruger [27, 28], and Zaslavski [59], Burke [3], Clarke [7], Di Pillo et.al.
[11–13] and many others as well.

Furthermore, let us demonstrate that the auxiliary problem (Pσ ) is also a
DC optimization problem, more precisely, the goal functionΘσ (x) is a DC function
[23, 24, 26, 56]. Indeed, since for f (·) = g(·) − h(·), where g(·), h(·) are convex
functions, we have [23, 45, 56]

|f (x)| = max{g(x)− h(x), h(x)− g(x)} ± [g(x)+ h(x)]
= 2 max{g(x), h(x)} − [g(x)+ h(x)],

and we can readily see that

Θσ (x) � f0(x)+ σ max{0, fi(x), i ∈ I} +
∑

j∈E
|fj (x)|

= Gσ (x)−Hσ (x), (7.3)
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where

Hσ (x) := h0(x)+ σ [
∑

i∈I
hi(x)+

∑

j∈E
(gj (x)+ hj (x))], (7.4)

Gσ (x) := Θσ (x)+Hσ (x)

= g0(x)+ σ max{
∑

p∈I
hp(x), [gi(x)+

∑

p∈I
p �=i

hp(x)], i ∈ I} (7.5)

+ 2σ
∑

j∈E
max{gj (x), hj (x)}.

It can be readily seen that both functions Gσ (·) and Hσ (·) are convex [8, 9, 25],
so that the goal function Θσ (·) turns out to be a DC function. As a result, when
we address the penalized problem (Pσ ), we should be aware that we deal with a
DC minimization problem [16, 17, 23, 26, 56].

7.4 Local Search Method

In this section for the penalized problem (Pσ ) we develop a numerical scheme,
some convergence features of which are in question. For this purpose, consider the
linearized problem as follows (v ∈ R

n)

{
minimize Φv(x) := Gσ (x)− 〈H ′

σ (v), x〉
subject to x ∈ S, (PσL(v))

where H ′
σ (v) is a subgradient (in the classical sense of the convex analysis) [7–

9, 25, 38, 42, 44, 57] of the convex function Hσ (·) at the point v ∈ R
n, H ′

σ (v) ∈
∂cHσ (v). Due to (7.4) and in virtue of Moreau-Rockafellar theorem [25, 42], H ′

σ (v)

has the following form

H ′
σ (v) = h′0(v)+ σ

[∑

i∈I
h′i (v)+

∑

j∈E
(g′j (v)+ h′j (v))

]
, (7.6)

where h′i (v) ∈ ∂chi(v), i ∈ {0} ∪I ∪ E, g′j (v) ∈ ∂cgj (v), j ∈ E , are subgradients
of the corresponding functions.

It is worth noting that the problem (PσL(v)) is convex, and, therefore, can
be solved by suitable classical optimization methods [2, 9, 38, 57] (for the case
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when all the functions defining Gσ (·) are all smooth, see the next section) and
optimization software packages (CPLEX, Xpress-MP, Gurobi, etc), since in the
convex optimization any local ε-solution or τ -stationary (KKT) point turns out
to be a global approximate solution [2, 8, 9, 25, 38, 57]. Besides, it is clear
that the linearization is applied to the function Hσ (·) which accumulates all the
nonconvexities of the problems (P) and (Pσ ).

Furthermore, let there be given a starting point x0 ∈ S, an initial value σ0 > 0 of
the penalty parameter σ , a current iterate xk ∈ S and a current value σk ≥ σ0 of
the penalty parameter σ ≥ 0. Introduce the following notations

Hk(·) := Hσk(·), Gk(·) := Gσk(·), y ∈ ∂cHk(x
k), (7.7)

where, on account of (7.6), y has the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(σ ) = y(σ, xk) := h′0k + σ [∑
i∈I

h′ik +
∑

j∈E
(g′jk + h′jk)] ∈ ∂cHσ (x

k),

h′ik := h′i (xk) ∈ ∂chi(xk), i ∈ {0} ∪ I ∪ E,
g′jk = g′j (xk) ∈ ∂cgj (xk), j ∈ E .

(7.8)

Now consider the following linearized problem

{
minimize Φσ (x) := Gσ(x)− 〈y(σ ), x〉
subject to x ∈ S, (PLk(σ))

which, due to (PσL(v)), is convex, and hence, can be solved by modern optimiza-
tion methods and software [2, 8, 9, 25, 38, 57].

As a particular case of (PLk(σ)), consider the following linearized problem
(PkL) = (PLk(σk))

{
minimize Φk(x) := Gk(x)− 〈yk, x〉
subject to x ∈ S. (PkL)

The choice of yk will be described below.
Since problems (PLk(σ)) and (PkL) are convex, then the necessary and suffi-

cient conditions for x(σ ) ∈ Sol(PLk(σ)) and xk ∈ Sol(PkL) are, correspondingly,
the inclusions

y(σ ) ∈ ∂cGσ (x(σ ))+NS(x(σ )), yk ∈ ∂cGk(x
k)+NS(x

k), (7.9)
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or, which is the same [2, 23, 24, 42],

x(σ ) ∈ ∂c[Gσ + XS]∗(y(σ )), xk ∈ ∂c[Gk + XS]∗(yk). (7.10)

Here NS(x) and XS(x) are the normal cone to the set S at the point x

NS(x) = {y ∈ R
n : 〈y, x′ − x〉 ≤ 0 for all x′ ∈ S},

and the indicator function of the set S, respectively,

XS(x) =
{

0, if x ∈ S
+∞, if x �∈ S.

Besides, ∂cXs (x) = NS(x), x ∈ S [23–25, 42]. Thus, we have the following
equalities

Gσ (x(σ ))−〈y(σ ), x(σ )〉 = V(σ ) := inf
x
{Gσ (x)−〈y(σ ), x〉 : x ∈ S}, (7.11)

where V(σ ) is the optimal value of the problem (PLk(σ)).
Finally, [Gσ + XS]∗(·) is the conjugate function to the function [Gσ + XS](·).

Recall that, if ψ : Rn → R ∪ {+∞}, then [23–25, 42, 44] by definition

ψ∗(y) := sup
x
{〈y, x〉 − ψ(x) : x ∈ R

n}.

Together with problems (PLk(σ)) and (PkL) consider the following dual
problem

{
minimize ϕk(y) := H ∗

k (y)− 〈xk, y〉
subject to y ∈ R

n,
(P∗k L)

where H ∗
k (·) is the conjugate of the function Hk(·), as above.

Since the problem (P∗k L) is also convex, one can find its solution yk ∈
Sol(P∗k L), which satisfies the necessary and sufficient condition as follows

xk ∈ ∂cH ∗
k (y

k) or yk ∈ ∂cHk(x
k), (7.12)

if Hk(·) is convex and closed (i.e. lower semicontinuous), which is the case under
assumptions of Sect. 7.3. Besides, we have

H ∗
k (y

k)− 〈xk, yk〉 = inf
y
{ϕk(y) : y ∈ R

n}.

Thus, if we know xk ∈ S, we can find yk ∈ ∂cHk(xk) by solving the dual problem
(P∗k L).
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Furthermore, it can be readily seen (see (7.3)–(7.5)) that the penalty function
W(x) is also a DC function, since it has the DC representation as follows W(x) =
GW(x)−HW(x), where (cf. (7.3)–(7.5))

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

GW(x) := σ−1[Gσ (x)− g0(x)] = 2
∑

j∈E
max{gj (x), hj (x)}

+max{∑
p∈I

hp(x), [g(x)+ ∑

p∈I
p �=i

hp(x)], i ∈ I},

HW(x) := σ−1[Hσ (x)− h0(x)] = ∑

i∈I
hi(x)+ ∑

j∈E
[gj (x)+ hj (x)].

(7.13)

In addition, it can be easily shown that (see (7.6) and (7.8)) if y(σ ) ∈ ∂cHσ (x
k),

then we have

ykW := σ−1[y(σ )− h′0k] =
∑

i∈I
h′ik(xk)+

∑

j∈E
(g′jk(xk)+ h′jk(xk)) (7.14)

=: H ′
W(x

k) ∈ ∂cHW(x
k).

Now introduce the following auxiliary linearized problem

{
minimize ΦW(x) := GW(x)− 〈ykW , x〉
subject to x ∈ S, (APWLk)

which is obviously convex, as (PLk(σ)), (PkL) and (P∗k L), and hence, can be
solved by modern optimization methods and software [2, 25, 38, 57].

On the other hand, it is clear, that (APWLk) is related to the minimization of the
penalty function W(x), i.e. to the following nonconvex problem

{
minimize W(x) � GW(x)−HW(x)

subject to x ∈ S. (PW )

More precisely, the problem (APWLk) turns out to be the linearized (with respect
to the function HW(·)) problem generated by the problem (PW).

Now we are going to present a local search scheme for the problem (P), which
incorporates a penalty parameter update procedure. Let there be given a starting
point x0 ∈ S, an initial value σ 0 > 0 of the penalty parameter σ ≥ 0 together
with two parameters η1, η2 ∈]0, 1[ of the scheme. Then the first LS Scheme can be
described as follows.
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Algorithm 7.1: Scheme 1

Step 0. Set k := 0, xk := x0, σk := σ 0.

Step 1. Solve the dual subproblem (P∗k L) to obtain yk ∈ ∂cHk(x
k)

(see (7.12)).
Step 2. Solve the subproblem (PkL) to get x(σk) ∈ Sol(PkL) (see (7.9)–

(7.11)) with y(σk) = yk .
Step 3. If W(x(σk)) = 0, then set σ+ := σk, x(σ+) := x(σk), and go to

Step 8.
Step 4. (Else, W(x(σk)) > 0). By solving the linearized problems

{
minimize ϕσk (y) := H ∗

k (y)− 〈x(σk), y〉
subject to y ∈ R

n,
(PL∗(σk))

and (APWLk) find ŷ
k ∈ ∂Hk(x(σk)), ŷ

k ∈ Sol(PL∗(σk)) and xkW ∈
Sol(APWLk) respectively. Further, set xk := x(σk), yk := ŷ

k .
Step 5. If W(xkW ) = 0, then, starting at xkW , and by consecutively (by

increasing, if necessary, the value σ > 0 of penalty parameter
σ > σk) solving a few problems (PLk(σ)), with y(σ ) := h′0k +
σykW ∈ ∂cHσ (x

k) (see (7.14)), find σ+ > σk such that W(x(σ+)) =
0, x(σ+) ∈ Sol(PLk(σ+)), and go to Step 8.

Step 6. If W(xkW ) > 0, or if a feasible σ+ > σk , such that W(x(σ+)) = 0, is
not found (on Step 5), find σ+ > σk satisfying the inequality

W(xk)−W(x(σ+)) ≥ η1[W(xk)−W(xkW )]. (7.15)

Step 7. Increase σ+, if necessary, to fulfil the inequality

Φk(x
k)−Φσ+(x(σ+)) ≥ η2σ+[W(xk)−W(x(σ+))]. (7.16)

Step 8. Set k := k + 1, σk+1 := σ+, xk+1 := x(σ+) and go to Step 1.

7.5 Convergence Properties of Scheme 1

It is clear that the above scheme is not yet to become a proper algorithm, because,
in particular, convergence properties of the scheme have not been investigated.
Therefore, it is impossible to propose any stopping criterion. In order to handle
these issues, let us give a few preliminary remarks.

Case 1 On Step 3 of Scheme 1, when W(x(σk)) = 0, we go to Step 8 and set
σk+1 := σ+ = σk, xk+1 := x(σk), besides, y(σ+) := y(σk) = yk, yk ∈ ∂cHk(x

k)
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and x(σk) �= xk , in general. Then, with the help of (7.11), we have

0 = inf
x
{Gk(x)−Gk(x(σk))+ 〈yk, x(σk)− x〉 : x ∈ S}

≤ Gk(x
k)−Gk(x(σk))+ 〈yk, x(σk)− xk〉 = Φk(x

k)− Φk(x(σk)).

Now, due to convexity of Hk(·) � Hσk(·) and because yk ∈ ∂cHk(x
k), xk+1 =

x(σk), we derive

0 ≤ Gk(x
k)−Gk(x(σk))+Hk(x(σk))−Hk(x

k)

= Θk(x
k)−Θk(x

k+1) (7.17)

i.e.

Θk(x
k+1) ≤ Θk(x

k). (7.18)

Θk+1(x
k+1) � f0(x

k+1)+ σk+1W(xk+1)

= f0(x
k+1)+ σkW(xk+1) � Θk(x

k+1)

and, in the same manner, we obtain

Θk(x
k) = f0(x

k)+ σkW(xk) = f0(x
k)+ σk+1W(xk) = Θk+1(x

k).

The two last chains and (7.18) then yield

Θk+1(x
k+1) ≤ Θk+1(x

k). (7.19)

Case 2 On Step 5 one finds a sufficiently large σ+ > σk , such that W(x(σ+)) =
0, where x(σ+) ∈ Sol(PLk(σ+)) and y(σ+) = h′0k + σ+ykW ∈ ∂cHσ+(x

k),
y(σk+1) := y(σ+). After that, we set σk+1 := σ+, xk+1 := x(σ+) and, as above,
according to (7.11), we obtain

0 ≤ Gk+1(x
k)−Gk+1(x

k+1)+ 〈y(σk+1), x
k+1 − xk〉 (7.20a)

= Φk+1(x
k)−Φk+1(x

k+1). (7.20b)

Further, with the help of convexity of Hk+1(·) and the inclusion y(σk+1) ∈
∂cHk+1(x

k) we derive, as above, that

0 ≤ Gk+1(x
k)−Gk+1(x

k+1)+Hk+1(x
k+1)−Hk+1(x

k) (7.20c)

= Θk+1(x
k)−Θk+1(x

k+1), (7.20d)

whence, the inequality (7.19) again follows.
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Case 3 On Steps 6 and 7 we find σ+ ≥ σk to satisfy the inequalities (7.15)
and (7.16) consecutively. Finally, on Step 8 we set σk+1 := σ+, xk+1 :=
x(σ+), y(σk+1) := y(σ+) = h′0k+σ+ykW . It can be readily seen that, as before, we
obtain the chains (7.20a) and (7.20c), and, hence, the inequality (7.19). Thus, one
can conclude that in all cases Scheme 1 produces the sequence {xk} ⊂ S satisfying
the inequality (7.19). Furthermore, with the help of the obvious chain of equalities

Θk+1(x
k) = Θk(x

k)+ [Θk+1(x
k)−Θk(x

k)]
= Θk(x

k)+ (σk+1 − σk)W(xk) = Θk(x
k)+ ξk, and (7.21)

ξk : = (σk+1 − σk)W(xk), k = 0, 1, 2, . . . . (7.22)

The inequality (7.19) can be transformed into the following one

Θk+1(x
k+1) ≤ Θk(x

k)+ ξk, k = 0, 1, 2, . . . . (7.23)

Using the denotation ϑk := Θk(x
k), we rewrite (7.23) as

ϑk+1 ≤ ϑk + ξk, k = 0, 1, 2, . . . .

Introduce now the following assumption:

(a)

∞∑

k=0

ξk �
∞∑

k=0

(σk+1 − σk)W(xk) < +∞,

(b) ξk � (σk+1 − σk)W(xk) ≥ 0, k = 0, 1, 2, . . . .

(HW )

It follows from (HW )(b) that

σk+1 ≥ σk ≥ 0. (7.24)

Then the number sequence {ϑk = Θk(x
k)} produced by Scheme 1, (PLk(σ))–

(APWLk) turns out to be (almost) descreasing (see (7.23)), and hence converging
in virtue of the following result from [57, Lemma 2, pp. 105].

Lemma 7.1 Let a number sequence {ak} satisfy the conditions

ak+1 ≤ ak + εk, εk ≥ 0, k = 0, 1, . . . ,
∞∑

k=0

εk <∞.

Then, there exists lim
k→∞ ak < +∞. If, in addition, {ak} is bounded from below, then

lim
k→∞ ak is finite.
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Henceforth, assume that the function f0(·) is lower bounded over S, such that

inf
x
{f0(x) : x ∈ S} > −∞. (H0)

Then it can be readily seen, that the goal function Θσ (·) of the problem (Pσ ) also
satisfies the same condition

inf{Θσ (x) : x ∈ S} > −∞,

due to the obvious inequalities:

σ ≥ 0, W(x) ≥ 0, f0(x) ≤ f0(x)+ σW(x) � Θσ (x).

The next result provides the first convergence properties of Scheme 1.

Proposition 7.1 Let the assumptions (HW), (H0) be fulfilled. Then, the sequence
{xk} ⊂ S produced by the local search Scheme 1 satisfies the following conditions.
The number sequences {ϑk � Θk(x

k)} and {ΔΦk+1}, whereΔΦk+1 := Φk+1(x
k)−

Φk+1(x
k+1) � Gk+1(x

k)−Gk+1(x
k+1)+ 〈y(σk+1), x

k+1 − xk〉, converge so that

(i) lim
k→∞ϑk = lim

k→∞Θk(x
k) =: Θ∗ > −∞; and (7.25)

(ii) lim
k→∞ΔΦk+1 = 0. (7.26)

Proof (i) As it has been shown above, in all situations which can happen (Cases
1, 2, 3) the inequality (7.23) holds with ξk defined in (7.22). In addition, under the
assumptions (HW) and (H0) the sequences {ξk}, {ϑk} satisfy all the conditions of
Lemma 7.1. Hence, there exists a finite limit

Θ∗ = lim
k→∞Θk(x

k) = lim
k→∞ϑk > −∞,

and (7.25) is proven.
(ii) From (7.20a) and (7.20c) and (7.21), it follows

0 ≤ ΔΦk+1 � Φk+1(x
k)−Φk+1(x

k+1) (7.27)

≤ Θk+1(x
k)−Θk+1(x

k+1) = [Θk(x
k)−Θk+1(x

k+1)] + ξk.

The right-hand side of this chain, due to (HW ) and (7.24), tends to zero and
therefore, (7.26) is also proven. ��

Recall now that a function H(·) on R
n is said to be strongly convex on S, if for

any y ∈ ∂cH(x0) we have

H(x)−H(x0) ≥ 〈y, x − x0〉 + ρ

2
||x − x0||2 for all x, x0 ∈ S, (7.28)

where ρ > 0 is a constant of strong convexity of H(·).
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It can be readily seen that, if the following assumption holds

at least one of the functions hi(·), i ∈ I ∪ E, gj (·), j ∈ E, is

strongly convex,
(Hstr)

then the functions Hσ (·), Hk(·), Hk+1(·), HW(·) turn out to be strongly convex.
Moreover, it is well-known [7, 23–26, 56] that in a DC representation f (x) =
g(x) − h(x) of an arbitrary DC function f (·), the convex components g(·) and
h(·) can be always constructed to be strongly convex.

Proposition 7.2 Let Assumption (Hstr ) be satisfied. Then, the sequence {xk}
produced by Scheme 1, (PLk(σ))–(APWLk), is the Cauchy sequence, i.e.

lim
k→∞||x

k − xk+1|| = 0. (7.29)

Proof Applying the inequality (7.28) with H(·) := Hk+1(·) and y = y(σk+1) to
the right-hand side of (7.20a), we obtain

ρ

2
||xk − xk+1||2 ≤ Θk+1(x

k)−Θk+1(x
k+1)

= [Θk(x
k)−Θk+1(x

k+1)] + ξk (7.30)

whence, in virtue of (7.25) and (HW), (7.29) follows. ��
It obviously follows from (7.29) that there exists some x∗ ∈ R

n, such that

lim
k→∞ xk = x∗.

Remark 7.1 Recall that by construction (see (PLk(σ))–(APWLk)) and according
to Scheme 1, we have

y(σk+1) = y(σ+) = h′0k + σ+ykW ∈ ∂cHσ+(x
k),

meanwhile, yk+1 ∈ ∂cHk+1(x
k+1), yk ∈ ∂cHk(x

k), so that the sequences {yk} and
{y(σk+1)} are different, in general.

Let us now look at convergence properties of the sequence {yk} produced by
Scheme 1. First, recall that, due to (HW )(b), we have σk+1 ≥ σk (see (7.24)).
Suppose now that the following assumption holds

there exists σup ∈ R : σup ≥ σk, k = 0, 1, 2, . . . . (Hσ )

It is clear that from the practical viewpoint (Hσ ) looks too natural, and, on the
other hand, it is related to existence of the threshold value σ∗ ≥ 0 of the penalty
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parameter σ ≥ 0, i.e. to the exact penalty theory [2, 3, 11, 15, 22, 59]. Furthermore,
using (7.24) and (Hσ ), we derive that there exists σ∗ > 0, such that

lim
k→∞ σk = σ∗. (7.31)

On the other hand, by construction we have

y(σk+1) = y(σ+) ∈ ∂cHk+1(x
k), yk ∈ ∂cHk(x

k),

yk = h′0k + σky
k
W , y(σk+1) = h′0k + σk+1y

k
W ,

ykW =
∑

i∈I
h′ik +

∑

j∈E
(g′jk + h′jk) ∈ ∂cHW(x

k).

Therefore, we obtain (y+ := y(σ+) = y(σk+1))

||y+ − yk|| = ||y(σk+1)− yk|| = (σk+1 − σk)||ykW ||. (7.32)

In addition, since ykW ∈ ∂cHW(x
k), the set-value mapping x → ∂cHW(x) is

bounded [7, 9, 25, 42, 44], besides, xk → x∗ (so that {xk} is a bounded set) we
conclude that ||ykW || ≤ CW , 0 < CW < +∞.

Then, it follows from (7.31) and (7.32) that

||y(σk+1)− yk|| ≤ (σk+1 − σk)CW ↓ 0 (k→∞).

Hence,

lim
k→∞||y(σk+1)− yk|| = 0. (7.33)

Our next objective is the result below.

Proposition 7.3 Let the assumptions of Propositions 7.1 and 7.2 and Assumption
(Hσ ) hold. Then

lim
k→∞ ||y

k+1 − yk|| = 0. (7.34)

Proof We have to prove only the relation

lim
k→∞ ||y

k+1 − y(σk+1)|| = 0, (7.35)

since then, applying the triangle inequality

||yk+1 − yk|| ≤ ||yk+1 − y(σk+1)|| + ||y(σk+1)− yk||,
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we get (7.34), as has been claimed.
Indeed, recall that, according to Scheme 1, xk+1 := x(σ+) ∈ Sol(PLk(σ+)),

where

{
minimize Gk+1(x)− 〈y(σk+1), x〉
subject to x ∈ S, (PLk(σ+))

so that y+ := y(σk+1) ∈ ∂c[Gk+1 + Xs ](xk+1), i.e. xk+1 ∈ ∂c[Gk+1 + Xs]∗(y+),
which, in particular, implies

[Gk+1 + Xs ]∗(yk+1)− [Gk+1 + Xs ]∗(y+) ≥ 〈xk+1, yk+1 − y+〉. (7.36a)

Furthermore, yk+1 is the solution of (P∗k+1L) with xk+1, so that xk+1 ∈
∂cH

∗
k+1(y

k+1), i.e.

H ∗
k+1(y+)−H ∗

k+1(y
k+1) ≥ 〈xk+1, y+ − yk+1〉 + ρ

2
||yk+1 − y+||2, (7.36b)

due to the strong convexity of Hk+1(·), and, as a consequence, of H ∗
k+1(·), ρ > 0.

By adding (7.36a) and (7.36b), we obtain

Fk+1(y+)− Fk+1(y
k+1) ≥ ρ

2
||yk+1 − y+||2 > 0, (7.37)

where

Fk+1(y) := H ∗
k+1(y)− [Gk+1 + Xs ]∗(y), y ∈ R

n. (7.38)

It is worth noting that the problem

{
minimize Fk+1(y)

subject to y ∈ R
n

(P∗k+1)

is dual to the problem (Pk+1) = (P(σk+1)), where Gk+1 := Gσk+1, Hk+1 :=
Hσk+1 , and

{
minimize Gk+1(x)−Hk+1(x)

subject to x ∈ S, (Pk+1)

in the Toland’s sense [53–55], which implies, in particular, V(P∗k+1) =
V(Pk+1) > −∞. Moreover, since (see (7.37))

Fk+1(y
k+1) < Fk+1(y+) = Fk+1(y(σk+1)),



7 Local Search for Nonsmooth DC Optimization with DC Constraints 245

one can show (as it has been proven above in Proposition 7.1) that the number
sequence {Fk(vk)} also converges, where vk := y(σk+1) =: y+, vk+1 :=
yk+1, k = 0, 1, 2, . . . Then, in virtue of (7.37), the equality (7.35) holds, which
completes the proof. ��

Further, it obviously follows from (7.34) that there exists a limit point y∗ ∈ R
n,

such that

lim
k→∞ yk = y∗. (7.39)

Moreover, it can be readily seen that

lim
k→∞||y(σk+1)− y∗|| = 0.

On the other hand, since yk ∈ ∂cHk(x
k), xk → x∗, yk → y∗, Hk(x) = h0(x)+

σkHW(x) and lim
k→∞ σk = σ∗, the set-valued mapping ∂cHk(·) is compact and convex

valued, as well as upper semicontinuous (u.s.c.), we obtain (see [25, Chapter VI,
Propositions 6.2.1, 6.2.2 and Theorems 6.2.4, 6.2.7, pp. 282–284])

y∗ ∈ ∂cH∗(x∗), (7.40)

where H∗(x) = h0(x)+ σ∗HW(x), y∗ = h′0(x∗)+ σ∗H ′
W(x∗).

Remark 7.2 Note that the relations between problems (P) and (P∗), as well as
between (PLk) and (P∗Lk) were initially studied in the works of Hiriart-Urruty
[23, 24], Pham Dinh Tao and Le Thi Hoai An [29–34], and Toland [53–55]. Besides,
the successful development of the so-called DCA and its generalizations for the
presence of inequality constraints and a number of applied problems was carried
out in [29–34].

Furthermore, employing the convergence of the sequences {xk} and {yk}, one
immediately gets the following result.

Theorem 7.1 Let the assumptions (HW), (H0), (Hstr) and (Hσ ) be fulfilled. Then,
the limit point x∗ of the sequence {xk} produced by Scheme 1 is a solution to the

following convex problem with G∗(x) := Gσ∗(x)
"= g0(x) + σ∗GW(x) and σ∗ =

lim
k→∞ σk :

{
minimize Φ∗(x) := G∗(x)− 〈y∗, x〉
subject to x ∈ S. (PL∗)
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Proof By construction, due to Scheme 1, we have

V(PLk(σk+1))
"= inf

x
{Gk+1(x)− 〈y(σk+1), x〉 : x ∈ S}

= Gk+1(x
k+1)− 〈y(σk+1), x

k+1〉 ≤ Gk+1(x)− 〈y(σk+1), x〉

for all x ∈ S and Gk+1(x) = g0(x)+ σk+1GW(x).

When k → ∞, we have xk+1 → x∗, y(σk+1) → y∗, and Gk+1(x) −
〈y(σk+1), x〉 tends to G∗(x)−〈y∗, x〉 for each x ∈ S. Hence, in virtue of continuity
of g0(·), GW(·) and the inner product 〈·, ·〉, we obtain

G∗(x∗)− 〈y∗, x∗〉 ≤ G∗(x)− 〈y∗, x〉 for all x ∈ S,

which completes the proof. ��
Remark 7.3 Let now point out that the assumptions (HW), (Hσ ) on the sequence
{σk} of the penalty parameter are neither restrictive nor artificial and excessive.
Indeed, from the formal view-point, Assumption (HW ) together with (7.23) has
the objective to satisfy the conditions of Lemma 7.1 [57] by setting ak :=
Θk(x

k), εk := ξk, k = 0, 1, 2, . . . . Since εk ≥ 0,
∑

εk < +∞, then
Assumption (HW ) follows. But, from the point of view of the sequence {σk} of
the penalty parameter, we obtain (7.24) σk+1 ≥ σk ≥ 0 that completely corresponds
to the ideology and the methodology of the penalty parameter. In addition, it fits
the description of Scheme 1, where we have to increase the value σk > 0 of the
penalty parameter, if, for example, W(xk) > 0. Besides, it can be readily seen
that together with Assumption (Hσ ) it leads us to the convergence of {σk} (see
(7.31)) which, in turn, produces the existence (in fact) σ∗ > 0, which can be viewed
as some analogue of the exact penalty parameter value, for the objectives of the
local search. Therefore, Theorem 7.1 states that x∗ is a solution to the linearized
problem (PL∗) = (PL(x∗, σ∗)) with σ∗ > 0.

Remark 7.4 According to Theorem 7.1, any cluster point x∗ of the sequence {xk}
generated by Scheme 1 is a solution to the linearized problem (PL∗) (linearized just
by y∗ ∈ ∂cH∗(x∗) at the point x∗ just with the limit value σ∗ = limk→∞ σk of the
corresponding sequence {σk} of the penalty parameter). Since (PL∗) is obviously
convex, the vector x∗ ∈ S satisfies the optimality conditions

y∗ ∈ ∂cG∗(x∗)+ NS(x∗) = ∂c[G∗ + XS](x∗). (7.41)

In what follows, we will get back to the relations with classical optimization theory
and properties of the sequences {xk} and {yk}.

However, note that the point x∗ is not only a stationary point to the problem (P)
(see (7.40) and (7.41)) but, in addition, is a solution to the linearized problem (PL∗).
Without doubts, this supplementary property improves our abilities to find a global
solution to (P).



7 Local Search for Nonsmooth DC Optimization with DC Constraints 247

Remark 7.5 (Stopping criteria) With the help of the chains (7.20a), (7.20c)), and
(7.23), we can conclude that the following inequalities

Θk+1(x
k)−Θk+1(x

k+1) ≤ τ, (7.42)

Θk(x
k)+ ξk −Θk+1(x

k+1) ≤ τ, (7.43)

Φk+1(x
k)−Φk+1(x

k+1) ≤ τ, (7.44)

can be used as stopping criteria for the LSM described by Scheme 1 and (PLk(σ))–
(APWLk). For instance, with the help of (7.11), (7.20a), (7.23) and (7.44) we obtain

Gk+1(x
k)− 〈y(σk+1), x

k〉 ≤ τ +Gk+1(x
k+1)− 〈y(σk+1), x

k+1〉
= V(PLk(σk+1))+ τ.

Hence, xk turns out to be a τ -solution to (PLk(σk+1)), which is quite satisfactory
for a local search method in the problem (P). However, we will get back to this
question in the next section.

7.6 Exact Penalty and Lagrange Multipliers

It has been shown above that the limit point x∗ of the sequence {xk} produced by
Scheme 1 is a solution to the linearized problem (PL∗) and satisfies the optimality
conditions (7.41). One can easily point out the drawback of (7.41), where the
function G∗(·) is not smooth (see (7.5)), even when the entries of (P) can be
differentiable.

In order to avoid the difficulties produced by nonsmoothness, apply [48,
Lemma 4.1] (see also [2, 24, 38]), which states the equivalence of the problem
(PL∗) and the following problem with parameters (γ, tm+1, . . . , tl):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize g0(x)− 〈y∗, x〉 + σ∗γ + 2σ∗
∑

j∈E
tj

subject to gi(x)+ ∑

j∈I
j �=i

hj (x) ≤ γ, i ∈ I; ∑

j∈I
hj (x) ≤ γ,

gp(x) ≤ tp, hp(x) ≤ tp, p ∈ E,
x ∈ S, γ ∈ R, t = (tm+1, . . . , tl)

T ∈ R
l−m.

(7.45)

It can be readily seen that the problem (7.45) is a convex optimization problem with
the variables (x, γ , t) ∈ R

n+1 × R
l−m, and, in contrast to the problem (P), it has

only (m+1)+2(l−m) of inequalities, whereas (P) includes equality and inequality
constraints. On the other hand, if the entries of the problem (P) are smooth, the
problem (7.45) also stays smooth.
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In addition, it is not difficult to show that in (7.45) Slater’s condition holds.
Indeed, if we look at the feasible set of (7.45), it is easy to understand, that for
every x ∈ S we can find a number γ = γ (x) ∈ R and a vector t = t(x) =
(tm+1, . . . , tl )

T ∈ R
l−m such that the inequality constraints in (7.45) are strongly

fulfilled (in particular, gp(x) < tp(x), hp(x) < tp(x), p ∈ E). That is what was
claimed.

Hence, we have μ0 = 1 in the corresponding to (7.45) Lagrange function.
Moreover, the KKT-conditions for (7.45) become necessary and sufficient for a
triple (x∗, γ∗, t∗) to belong to Sol(7.45), since x∗ is the solution to (PL∗). For
the sake of simplicity of presentation, let us consider the case when S = R

n, and
the Lagrange function for the problem (7.45) can be written as follows [42]

L(x, γ , t;μ1, . . . , μm,μm+1; ηm+1, . . . , ηl , νm+1, . . . , νl)

= g0(x)− 〈y∗, x〉 + σ∗γ + 2σ∗
∑

p∈E
tp +

∑

i∈I
μi[gi(x)+

∑

j∈I
j �=i

hj (x)− γ ]

+ μm+1[
∑

j∈E
hj (x)− γ ] +

∑

p∈E
{ηp[gp(x)− tp] + νp[hp(x)− tp]}.

(7.46)

Hence, the KKT system for (x∗, γ∗, t∗) ∈ Sol(7.45) with (see [48, Lemma 4.1])

⎧
⎪⎪⎨

⎪⎪⎩

γ∗ = max{∑
j∈I

hj (x∗), [gi(x∗)+ ∑

j∈I
j �=i

hj (x∗)], i ∈ I},

tp∗ = max{gp(x∗), hp(x∗)}, p ∈ E,
(7.47)

can be represented in the following form.
There exists a vector (μ1, . . . , μm,μm+1, ηm+1, . . . , ηl, νm+1, . . . , νl) ∈

R
m+1+ × R

2(l−m)
+ , such that, first, the linear complementarity conditions hold:

(a) μi [gi(x∗)+
∑

j∈I
j �=i

hj (x∗)− γ∗] = 0, μi ≥ 0, i ∈ I;

(b) μm+1[
∑

j∈I
hj (x∗)− γ∗] = 0, μm+1 ≥ 0;

(c) ηp[gp(x∗)− tk∗] = 0 = νp[hp(x∗)− tp∗], ηp, νp ≥ 0, p ∈ E .
(7.48)
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In addition, the KKT equations with respect to γ and tp take place

∂L(x∗, γ∗, t∗)
∂γ

= σ∗ − μm+1 −
∑

i∈I
μi = 0, i.e. μm+1 +

∑

i∈I
μi = σ∗, (7.49)

∂L(x∗, γ∗, t∗)
∂tp

= 2σ∗ − ηp − νp = 0, i.e. ηp + νp = 2σ∗, p ∈ E . (7.50)

Besides, in virtue of the theorem of Moreau-Rockafellar, it follows from the
inclusion 000 ∈ ∂xL(x∗, γ∗, t∗) that

g′0(x∗)− y∗ + μm+1

∑

i∈I
h′i (x∗)+

∑

i∈I
μi[g′i (x∗)+

∑

j∈I
j �=i

h′j (x∗)]

+
∑

p∈E
[ηpg′p(x∗)+ νph

′
p(x∗)] = 000 ∈ R

n. (7.51)

for some collection of subgradients g′i (x∗) ∈ ∂cgi(x∗), h′i (x∗) ∈ ∂chi(x∗), i ∈
{0}∪I∪E, of the corresponding functions gi(·), hi(·) at the point x∗. Furthermore,
from the inclusion (7.40) with the help of the theorem of Moreau-Rockafellar, we
derive that

∂cH∗(x∗) 5 y∗ = h′0(x∗)+ σ∗

⎡

⎣
∑

i∈I
h′i (x∗)+

∑

p∈E

(
g′p(x∗)+ h′p(x∗)

)
⎤

⎦ .

(7.52)
Then, on account of (7.52), the equality (7.51) yields

000 = g′0(x∗)− h′0(x∗)+ (μm+1 − σ∗)
∑

i∈I
h′i (x∗)±

∑

i∈I
μi

∑

j∈I
h′j (x∗)

+
∑

i∈I
μi

⎡

⎣g′i (x∗)+
∑

j∈I
j �=i

h′j (x∗)

⎤

⎦+
∑

p∈E
[ηpg′p(x∗)+ νph

′
p(x∗)]

− σ∗
∑

p∈E
[g′p(x∗)+ h′p(x∗)]. (7.53)

For our local goals, let us introduce the difference [g′(x) − h′(x)] of two
subgradients g′(x) ∈ ∂cg(x) and h′(x) ∈ ∂ch(x), which will be referred to as
the DC subgradient of the DC function f (x) = g(x) − h(x) at the point x.
Besides, denote f ′(x) := g′(x) − h′(x). It is clear that, in the smooth case, the
definition of DC subgradient of f (·) entails the classical relation with the gradients
∇f (x) = ∇g(x) − ∇h(x), so that the new definition perfectly fits the classical
analysis.
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With these new notations f ′i (x∗) = g′i (x∗) − h′i (x∗), i ∈ {0} ∪ I ∪ E, the
equality (7.51) on account of (7.49) and (7.50), νp = 2σ∗ − ηp, p ∈ E , takes the
following form

000 = f ′0(x∗)+ (μm+1 +
∑

i∈I
μi − σ∗)

∑

i∈I
h′i (x∗)+

∑

i∈I
μi[g′i (x∗)− h′i (x∗)]

+
∑

p∈E
[(ηp − σ∗)g′p(x∗)+ (σ∗ − ηp)h

′
p(x∗)].

Finally, due to (7.49), the latter equality amounts to the following one

000 = f ′0(x∗)+
∑

i∈I
μif

′
i (x∗)+

∑

p∈E
[(ηp − σ∗)f ′p(x∗)]. (7.54)

Clearly, it is the principal equation of the KKT system for the original problem (P)
at the point x∗ with the Lagrange multipliers λ0 = 1, and λi, i ∈ I ∪ E , satisfying
the conditions

λi = μi ≥ 0, i ∈ I, λp = ηp − σ∗, ηp ≥ 0, p ∈ E . (7.55)

It is worth noting that for the smooth problem (P), the KKT equation (7.54)
naturally takes the classical form [2, 15, 25, 38, 57], where f ′i (x∗) = ∇fi(x∗), i ∈
{0} ∪ I ∪ E . Furthermore, it can be readily shown that, if the vector x∗ is feasible
in the problem (P), i.e. W(x∗) = 0, then the complementarity conditions in the
problem (P) are also fulfilled with λi ≥ 0, i ∈ I, defined in (7.55). Indeed, on
account of (7.47) and (7.48), we obtain

μi

[
gi(x∗)+

∑

j∈I
j �=i

hj (x∗)−max
{∑

s∈I
hs(x∗),

[
gp(x∗)+

∑

j∈I
j �=p

hj (x∗)
]
, p ∈ I

}]

= 0, i ∈ I,

which obviously amounts to μi
[
fi(x∗)−max

{
0, fp(x∗), p ∈ I

}] = 0, i ∈ I.
Because of the assumption that W(x∗) = 0, i.e. fp(x∗) ≤ 0, p ∈ I, it follows

from the latter equalities that

μifi(x∗) = 0, i ∈ I, (7.56)

as was claimed above.
Thus, the Lagrange multipliers at the limit point x∗ of the sequence {xk}

produced by Scheme 1 are completely defined by the Lagrange multipliers
(μ1, . . . , μm,μm+1, ηm+1, . . . , ηl, νm+1, . . . , νl ) of the auxiliary convex problem
(7.45) at the point x∗ and the penalty parameter σ∗ > 0.
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Besides, it turns out that the feasibility of the cluster point x∗ can be proven under
now natural conditions of Proposition 7.1.

Proposition 7.4 Let Assumption (HW) and the following condition hold

If W(xk) > 0, then σk+1 ≥ σk + %, % > 0. (Hσ2)

Then, the limit point x∗ of sequence {xk} produced by Scheme 1, is feasible in the
problem (P), i.e. W(x∗) = 0.

Proof Let, by contradiction, W(x∗) = 2C > 0. Then, in virtue of continuity of
W(·) and the fact that xk → x∗, there exists an integer K > 0, such that for every
k ≥ K we have W(xk) ≥ C > 0.

Then, according to Scheme 1 and (Hσ2) we obtain for all k ≥ K

ξk � (σk+1 − σk)W(xk) ≥ %C > 0.

The latter implies that the series
∑∞

k=0 ξk does not converge, because the number
sequence {Sm} of the partial sums Sm =∑m

k=0 ξk does not converge. Hence, we fall
in contradiction with Assumption (HW)(a). ��

It can be readily seen that Assumption (Hσ2) is neither restrictive nor artificial,
but it is a natural, minimal, and practical assumption, suggested by Scheme 1.

But, we should not forgot that we just proved the following result.

Theorem 7.2 The limit point x∗ of the sequence {xk}, produced by Scheme 1, turns
out to be a KKT-vector for the original problem (P) with the Lagrange multipliers
λ0 = 1, λi ≥ 0, i ∈ I, and λj ∈ R, j ∈ E , which are completely defined by the

Lagrange multipliers (μ, ν, η) ∈ R
m+1+ × R

2(l−m)
+ of the problem (7.45) and the

penalty parameter σ∗ > 0, all satisfying the conditions (7.49), (7.50), (7.55), and
(7.57).

It is worth noting that we now have the supplementary information on the
relations between the Lagrange multipliers λ = (λ1, . . . , λl)

T ∈ R
l , (μ, ν, η) ∈

R
m+1+ × R

2(l−m)
+ , and the limit penalty parameter σ∗ > 0 (see (7.49), (7.50), and

(7.55))

∑

i∈I
λi ≤ μm+1 +

∑

i∈I
μi = σ∗, ηp + νp = 2σ∗, p ∈ E . (7.57)

It is clear that (7.55) and (7.57) is rather informative and helpful for computational
treatment of problems (P), (Pσ ), (PkL), (PLk(σ)) etc. and (7.45).

Remark 7.6 Thus, the cluster point x∗ produced by Scheme 1, (PLk(σ))–
(APWLk), is critical (i.e. the limit vector of the sequence {xk}) and also is the
solution to the convex problem (PL∗) (at the same time being feasible in (P), i.e.
x∗ ∈ F ) with the limit penalty parameter σ∗ > 0.



252 A. S. Strekalovsky

In addition, due to Theorem 7.2 it is also the KKT-point to the original problem
(P) (our principal objective). Hence, the vector x∗ is considerably stronger and
better than the usual stationary (KKT-) points provided by classical optimization
methods [2, 25, 38, 57].

Furthermore, from the computational point of view we are interested to modify
Scheme 1 so that one can perform a finite number of iterations to obtain at the final
step (say) a suitable approximate solution to (PkL) or (PLk(σk+1)), which is the
approximate KKT-point in the problem (P).

According to Scheme 1, at the iteration k ∈ N, we have the point xk ∈ S and
the penalty parameter σk ≥ 0 (k = 0, 1, 2, . . .). Suppose, for the sake of simplicity,
that S = R

n. Further, using the function Hk(x) = Hσk(x) defined in (7.4), we find
yk ∈ ∂cHk(x

k) by solving (P∗Lk).
After that, we have to solve the following convex optimization problem (see

(7.45)), which is equivalent to the linearized problem (PLk(σ+))
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize g0(x)− 〈y(σ+), x〉 + σ+γ + 2σ+
∑

j∈E
tj

subject to gi(x)+ ∑

j∈I
j �=i

hj (x) ≤ γ, i ∈ I,
∑

j∈I
hj (x) ≤ γ,

gp(x) ≤ tp, hp(x) ≤ tp, p ∈ E,
x ∈ S, γ ∈ R, t = (tm+1, . . . , tl)

T ∈ R
l−m,

(PLk(γ, t))

where

y(σ+) = y+ = h′0k + σ+H ′
W(x

k) ∈ ∂cHσ+(x
k).

Note, that the feasible set of (PLk(γ, t)) is the same for every k ≥ 0, which makes
the computing easier. Moreover, it coincides with the feasible set of the problem
(7.45). The difference resides only in the objective. Hence, Slater’s condition holds
and μ0 = 1. Recall that, since the problem (PLk(γ, t)) is convex, the KKT-system
is a necessary and sufficient condition for (x+, γ+, t+)(= (xk+1, γk+1, t

k+1)) to be
a solution to (PLk(γ, t)) with

⎧
⎪⎪⎨

⎪⎪⎩

γ+ = max{∑
p∈I

hp(x+),
[
gi(x+)+ ∑

j∈I
j �=i

hj (x+)
]
, i ∈ I},

t+p = max{gp(x+), hp(x+)}, p ∈ E .
(7.58)
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Besides, the Lagrange function has the form

L+(x, γ , t;μ1, . . . , μm+1, ηm+1, . . . , ηl , νm+1, . . . , νl)

= g0(x)− 〈y(σ+), x〉 + σ+γ + 2σ+
∑

p∈E
tp +

∑

i∈I
μi

[
gi(x)+

∑

j∈I
j �=i

hj (x)− γ
]

+ μm+1

[∑

j∈I
hj (x)− γ

]
+

∑

p∈E

{
ηp[gp(x)− tp] + νp[hp(x)− tp]

}
.

(7.59)

It is easy to show that the linear complementarity conditions (7.48) do not change
(apart from x+ replacing x∗), and the conditions (7.49) and (7.50) are also similar.
I.e.,

(a)
∑

i∈I
μi + μm+1 = σ+,

(b) ηj + νj = 2σ+, p ∈ E .
(7.60)

In addition, as it was proven in (7.51), we obtain (denote x+ := x(σ+) for the sake
of simplicity of denotations)

g′0(x+)− y(σ+)+ μm+1

∑

i∈I
h′i (x+)+

∑

i∈I
μi

[
g′i (x+)+

∑

j∈I
j �=i

h′j (x+)
]

+
∑

p∈E
[ηpg′p(x+)+ νph

′
p(x+)] = 000 ∈ R

n, (7.61)

for some collection of subgradients g′i (x+) ∈ ∂cgi(x+), h′i (x+) ∈ ∂chi(x+) of the
corresponding functions gi(·), hi(·), i ∈ {0} ∪ I ∪ E at the point x+.

On the other hand, since by construction (see (7.6), (7.8), and (7.14))

y(σ+) = h′0k + σ+ykW = h′0k + σ+H ′
W(x

k) ∈ ∂cHk+1(x
k),

where Hk+1(x) = h0(x)+ σ+HW(x), we derive from (7.61) (compare with (7.51))

0 = g′0(x+)− h′0(xk)− σ+H ′
W(x

k)± h′0(x+)

+
∑

i∈I
μi

[
g′i (x+)+

∑

j∈I
j �=i

h′j (x+)
]
±

∑

i∈I
μi

[∑

j∈I
h′j (x+)

]
± σ+

∑

i∈I
h′i (x+)

+ μm+1

∑

i∈I
h′i (x+)+

∑

p∈E

[
ηpg

′
p(x+)+ νph

′
p(x+)

]

± σ+
∑

i∈I

[
g′p(x+)+ h′p(x+)

]
.
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Further, we will use the denotations f ′i (x) introduced above for DC subgradients of
the DC function fi(x) = gi(x)− hi(x) (see (7.51), (7.53), and (7.54)).

Then, the latter equality yields

000 = f ′0(x+)− σ+H ′
W(x

k)+ [h′0(x+)− h′0(xk)]
+

∑

i∈I
μi[g′i (x+)− h′i (x+)] +

∑

i∈I
μi

[∑

j∈I
h′j (x+)

]

+
∑

i∈I
h′i (x+)[μm+1 − σ+] + σ+

∑

i∈I
h′i (x+)

+
∑

p∈E

[
(ηp − σ+)g′p(x+)+ (2σ+ − ηp − σ+)h′p(x+)

]

+ σ+
∑

p∈E
[g′p(x+)+ h′p(x+)]

= f ′0(x+)+
∑

i∈I
μif

′
i (x+)+

∑

j∈E
(ηj − σ+)f ′j (x+)+Δk, (7.62)

where

Δk = h′0(x+)− h′0(xk)− σ+H ′
W(x

k)+
(∑

i∈I
μi + μm+1 − σ+

)∑

i∈I
h′i (x+)

+ σ+
[∑

i∈I
h′i (x+)+

∑

j∈E

(
h′j (x+)+ h′j (x+)

)]

= h′0(x+)+ σ+H ′
W(x+)− h′0(xk)− σ+H ′

W(x
k)

= H ′
k+1(x+)−H ′

k+1(x
k). (7.63)

The latter equality takes place in virtue of (7.60)(a), while the equality (7.62) holds
due to (7.60)(b).

Let us now get back to xk+1 instead of x+ and to σk+1 instead of σ+, respectively.
Then, Eqs. (7.62) and (7.63) suggest the new stopping criteria for the iterate xk+1 =
x+ to be an approximate KKT-point (in the sense of (7.54) and (7.56)) in the original
problem (P):

‖f ′0(xk+1)+
∑

i∈I
μif

′
i (x

k+1)+
∑

j∈E
(ηj − σk+1)f

′
j (x

k+1)‖ ≤ τ

2
, (7.64)

and

‖Δk‖ = ‖H ′
k+1(x

k+1)−H ′
k+1(x

k)‖ ≤ τ

2
. (7.65)
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Indeed, if (7.64) and (7.65) are satisfied, then we obtain the estimation, as follows.
There exists a (convex) subgradient L′x(xk+1) of the convex Lagrange function
L(x, γ , t;μ, η, ν) defined in (7.51), such that

‖L′x(xk+1)‖ ≤ τ. (7.66)

It means, that xk+1 can be considered as an approximate solution to the linearized
(convex) problem (PLk(σk+1)), which is rather suitable and satisfactory for the
local search Scheme 1.

On the other hand, the inequality (7.64) yields that the iterate xk+1 is the
approximate KKT-point in the nonconvex original problem (P), when xk+1 is
feasible in (P).

In other words, the feasibility of xk+1 in (P), i.e.W(xk+1) = 0, together with the
complementarity conditions (7.48)(a) at xk+1, and the satisfaction of (7.64) imply
that the iterate xk+1 is an approximate KKT-point in the original problem (P) with
the Lagrange multipliers

λ = (λi = μi, i ∈ I, λj = ηj − σk+1, ηj ≥ 0, j ∈ E) (7.67)

defined by the Lagrange multipliers (μ, η, ν) of the convex problem (PLk(γ, t))
with y(σk+1) � y(σ+) = h′0k + σk+1H

′
W(x

k) and the current value σk+1 of penalty
parameter. Thus, we just proved the following result.

Theorem 7.3 Suppose that the solution xk+1 of the linearized problem
(PLk(σk+1)) (i.e. (xk+1, γk+1, t

k+1) is a solution to the problem (PLk(γ, t))
with σ+ = σk+1 and (γk+1, t

k+1) satisfying (7.59) is feasible in the problem (P),
W(xk+1) = 0. Let, in addition, the criteria (7.64) and (7.65) be satisfied. Then,
the vector xk+1 turns out to be an approximate KKT-point for the original problem
(P) with the Lagrange multipliers λ0 = 1, λi , i ∈ I ∪ E , completely defined by
the equalities (7.67) with the Lagrange multipliers (μ, η, ν) of the convex problem
(PLk(γ, t)) with σ+ = σk+1 at the point (xk+1, γk+1, t

k+1).

7.7 About Stopping Criteria

It is well-known that the choice of a stopping criterion is a rather difficult task that
influences results of computational experiments as well as the solution accuracy of
an applied problem. However, this issue is even more challenging in new applied
areas or new research directions, such as the nonconvex optimization, where we
do not have many mathematical tools and theoretical results that would allow us to
assess an approximation to a desired objective provided by several iterations of a
new method.

Only profound mathematical investigations can help evaluate the properties of
the final results of the computational process. In this regard, it would be reasonable
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to propose a few combinations of different stopping criteria for Scheme 1 of local
search on the base of Theorems 7.1–7.3 and Propositions 7.1–7.4. To this end, we
will use the criterions (7.42), (7.43), (7.44), and (7.64)–(7.65) and well-known and
obvious condition as follows (x+ := x(σ+))

W(x+) = 0 (or W(x+) ≤ ε), (7.68)

and

‖x+ − xk‖ ≤ ε. (7.69)

To begin with, let us briefly discuss various properties of those criteria.
When it comes to the criterion (7.68), which has partially been always included

to Scheme 1, it is quite obvious that if (7.68) is fulfilled, it only means that x+ is
feasible in the problem (P) and nothing else can be added to that fact. However, it
does not suite our objectives. On the other hand, the inequality (7.69) implies that
the process of convergence: ‖xk−x+‖ ↓ 0 described in (7.29),might be closed to or
situated at the terminal stage. We should keep in mind that this is only a hypothesis,
which might not be accomplished.

Therefore, it is clear that a single criterion cannot provide grounds for a
conclusion about the properties of the iterates xk or xk+1 in question. The similar
things can be said about the inequalities (7.42), (7.43), and (7.44).

In addition, it can be readily seen, that it is rather difficult to compute the values
of Θk+1(x

k) and Θk+1(x
k+1), because of the formulas (7.3), (7.4), (7.5), (7.17),

(7.20c), and (7.21) etc. Besides, it is obvious that those computations of the values of
Θk+1(x

k) andΘk+1(x
k+1) are additional efforts, which are not implemented within

Scheme 1. Meanwhile, the inequality (7.44) is more feasible in this sense, because,
firstly, one computes Φk+1(x(σ+)) = Gk+1(x(σ+))− 〈y(σ+), x(σ+)〉 at Step 5 of
Scheme 1 by solving (PLk(σ+)). Second,Φk+1(x) is apparently easier to compute,
than, for instance, Θk+1(x). Hence, the inequality (7.44) can be considered as a
member of a stopping criteria system that provides some desirable properties for the
iterate. In what follows, we denote x+ = x(σ+) denoted earlier by xk+1.

Furthermore, as it has been said above, the inequalities (7.64) and (7.65) entail
the validity of (7.66), which guarantees that xk+1 is an approximate solution to the
problem (PLk(σk+1)), because of convexity of the latter one.

At the same time, the inequality (7.64), separately, is very important, since,
together with the feasibility of x+ in (P) and the complementarity conditions
(7.48)(a) (satisfied at x+ instead of x∗), it entails that the vector x+ is an
approximate KKT-point to the original problem (P) with the Lagrange multipliers
λ0 = 1, λi, i ∈ I ∪ E , satisfying (7.55).

On the other hand, the inequality (7.65) seems to be rather far from the logic
of Scheme 1, it rather appears to be, in a sense, an auxiliary tool leading to
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(7.66), which is very useful and important (see above). Nevertheless, due to the
presentations (x+ := x(σ+))

H ′
k+1(x+)−H ′

k+1(x
k) = h′0(x+)− h′0(xk)+ σ+

[
H ′
W(x+)−H ′

W(x
k)

]

= H ′
k+1(x+)− y(σ+),

where H ′
k+1(x+) ∈ ∂cHk+1(x+), x+ ∈ ∂cH

∗
k+1(y

k+1), i.e. yk+1 ∈ ∂cHk+1(x+),
one might conjecture that the inequality (7.65) is closed to (see Proposition 7.3)
‖yk+1 − y(σ+)‖ ≤ τ

2 (although there is a number of counter-examples[2, 7–10, 42,
44, 57]) which testifies to the end of the computational process of Scheme 1.

To summarize, one can propose to finish Scheme 1 with replacing Step 8 by the
following step:

Step 8’. Denote x+ := x(σ+). If

(a) W(x+) = 0, (or W(x+) ≤ τ ),

(b) Φk+1(x
k)−Φk+1(x+) ≤ τ,

(c) ‖f ′0(x+)+
∑

i∈I
μif

′
i (x+)+

∑

j∈E
[(ηj − σ+)f ′j (x+)‖ ≤

τ

2
,

(d) ‖Δk‖ =‖ H ′
k+1(x+)−H ′

k+1(x
k)‖ ≤ τ

2
,

(7.70)

then stop, x+ = x(σ+) is the point elaborated by Scheme 1. Here the Lagrange
multipliers (μ, η, ν) are produced by solving the problem (PLk(σ+)) (more
precisely (PLk(γ, t))with y(σ+) and f ′i (x+) = g′i (x+)−h′i(x+), i ∈ {0}∪I∪E .
Otherwise, set k := k+1, σk+1 := σ+, xk+1 := x(σ+) = x+ and go to Step 1.

Let us point out that, as a result, the modified Scheme 1 (i.e. with the stopping
criteria (7.70) (a), (b), (c), (d)) produces the point x+, which is

(a) a feasible point in the original problem (P);
(b) an approximate solution to the linearized problem (PLk(σ+)), i.e. the trial

(x+, γ+, t+) is a solution to the convex problem (PLk(γ, t)) with σ+ > 0
and the Lagrange multipliers (μ, η, ν) satisfying (7.60) and (7.67);

(c) an approximate KKT-point in the original problem (P) with the Lagrange
multipliers λ0 = 1, λi, i ∈ I ∪ E , completely defined by the equalities

λi = μi, i ∈ I, λj = ηj − σ+, ηj ≥ 0, j ∈ E, (7.71)

with the Lagrange multipliers (μ, η, ν) of the convex problem (PLk(γ, t)) and
the value σ+ > 0 of the penalty parameter σ , defining the problem (PLk(γ, t)).
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Summing up, the modified Scheme 1 yields a rather strong vector x+, which
is not only an approximate solution to the linearized problem (PLk(σ+)), but an
approximate KKT-point (and, off-causes, feasible) in the original problem (P) with
the Lagrange multipliers provided, in fact, by (PLk(γ, t)) with σ+ > 0 according
to (7.71).

7.8 Conclusion

In this chapter we considered probably the most difficult nonsmooth optimization
problem (P) with the DC data, where the cost function f0(·) and the equality and
inequality constraints fi(x) ≤ 0, i ∈ I, fj (x) = 0, j ∈ E , are given by
DC functions. It is worth noting that any optimization problem of the kind with
continuous data can be approximated by the problem (P) with DC data at any
desirable accuracy.

Furthermore, by applying the technique of the exact penalization theory [2, 3, 7,
8, 11, 22, 58, 59], the original problem (P) is reduced to a penalized problem (Pσ )

with the penalty parameter σ > 0 and the penalty function W(·) combining the L∞
and L1 reducing for the inequality and equality systems, respectively.

Let us now highlight several novelties and new results presented in the chapter.

1. The problem statement not only has the objective function and inequality
constraints given by DC functions, but, in addition, includes a finite number of
DC equality constraints.

2. We managed to represent the cost function Θσ (·) of the penalized problem (Pσ )

and the penalty function W(·), as well as the d.c. functions.
3. The new splitting procedures allow us to separate the convex and “anticonvex”

parts in the penalized problem (Pσ ) and, besides to apply the linearization with
respect to the “anticonvex” part of (Pσ ). In other words, we can reduce the
solution of the original problem (P) to a study of a family of convex (linearized)
problems. After that, the idea of a consecutive solution of linearized (at every
iteration) problems becomes obvious, which leads us to the new local search
(LS) Scheme 1 with the updating of the penalty parameter value σ > 0.

4. The convergence properties of the developed LS Scheme 1 become the priority
of the investigations. They produce Propositions 7.1–7.3 on the convergence of
the number sequences {Θk(x

k)} and {ΔΦk(x
k)}, as well as the vector sequences

{xk} and {yk} generated by Scheme 1. These convergence results allow us to
prove Theorem 7.1, which states that any limit point x∗ of the sequence {xk}
turns out to be a solution to the convex (linearized at x∗ just) problem (PL∗)
with the limit value σ∗ = limk→∞ σk of the corresponding sequence {σk} of the
penalty parameter. We cannot find a similar result in the available references on
nonconvex optimization (see [2, 4, 5, 15–17, 25, 27–38, 45, 50, 56–58] and the
references therein). Thus, a cluster vector x∗ of the sequence {xk} produced by
the LS Scheme 1 turns out to be obviously stronger than an usual stationary point
of the problem (Pσ ).
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5. In order to avoid the difficulties related to the nonsmoothness of the linearized
problem (PL∗), we introduced the convex auxiliary problem (7.45) equivalent to
(PL∗) with (l−m+1) supplementary parameters that can be used for numerical
solution of problems (P) and (Pσ ). By applying the KKT-theorem to (7.45), we
obtained the most unexpected and new results about the properties of the limit
point x∗ of the sequence {xk} produced by the LS Scheme 1. It turned out that
x∗ is a KKT-vector for the original problem (P) with the Lagrange multipliers
which are completely defined by the Lagrange multipliers of the convex auxiliary
problem (7.45) and the limit value σ∗ > 0 of the sequence {σk} of the penalty
parameter σk > 0, k = 0, 1, 2, . . ., all satisfying the conditions (7.49), (7.50),
(7.55), and (7.57). Additionally, the principal KKT equation (7.54) is satisfied
with d.c. subgradients f ′i (x∗) � g′i (x∗) − h′i (x∗) of the DC functions fi(·), so
that g′i (x∗) ∈ ∂cgi(x∗), h′i (x∗) ∈ ∂chi(x∗), i ∈ {0} ∪ I ∪ E .

Using the same approach at the iterate xk, k ∈ IN, we obtained the new
stopping criteria (7.64) and (7.65) (whence (7.66) follows) , which guarantee that
the iterate xk+1 ∈ S will be an approximate KKT-vector in the original problem
(P) with the Lagrange multipliers provided by the auxiliary problem (7.45) and
the corresponding value σk+1 of penalty parameter. Besides, the principal KKT
equation (7.62) is fulfilled with the d.c. subgradients f ′i (xk+1) � g′i (xk+1) −
h′i (xk+1) of the functions fi(·), where g′i (xk+1), h′i (xk+1) are the subgradients
of the convex functions gi(·), hi(·) at the point xk+1 ∈ S, i ∈ {0} ∪ I ∪ E .

6. Finally, after a discussion of the properties of various stopping criteria it was
revealed that the system of four inequalities (7.70) (a), (b), (c), (d) guarantees that
the iterate x+, satisfying this system, to be rather strong and competitive with
respect to any other vectors provided by any local search methods or classical
optimization methods.
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Chapter 8
Bundle Methods for Nonsmooth DC
Optimization

Kaisa Joki and Adil M. Bagirov

Abstract This chapter is devoted to algorithms for solving nonsmooth uncon-
strained difference of convex optimization problems. Different types of stationarity
conditions are discussed and the relationship between sets of different stationary
points (critical, Clarke stationary and inf-stationary) is established. Bundle methods
are developed based on a nonconvex piecewise linear model of the objective
function and the convergence of these methods is studied. Numerical results are
presented to demonstrate the performance of the methods.

8.1 Introduction

Nonsmooth functions represented as a difference of two convex (DC) functions
constitute an important subclass of nonsmooth functions. DC functions preserve
some important properties of convex functions. Many practical problems such as
supervised data classification and clustering problems in machine learning [6],
clusterwise linear regression [4], piecewise linear regression [7], image restoration
problems in artificial intelligence [26, 27] and statistical estimation problems [9]
can be formulated as an unconstrained or constrained DC optimization problem.

The first important problem when dealing with DC optimization is how to
represent a given function as a DC function. In many situations, it is easy to find
such representations without using any special techniques. For example, in all above
mentioned application areas the objective functions can be represented as a DC
function using simple operations. For some other cases, like polynomials, special
algorithms have been developed to find DC representations (see e.g. [1, 11, 12]).
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Traditionally, over the long period since 1980s, DC optimization has been
considered as a branch of global optimization and various algorithms have been
developed to globally solve these problems [37]. The first local search method, the
DCA (DC Algorithm), for solving DC optimization problems was introduced in
1985 [33].

Over the recent years DC optimization problems, especially nonsmooth DC
optimization problems, have attracted a significant attention. Several methods have
been developed [2, 3, 16, 21, 23, 31, 32, 35]. Most successful among these methods
are those based on the extension of the bundle method for minimizing convex
functions. In this chapter, we present two versions of the bundle method for solving
unconstrained DC optimization problems. The convergence properties of these
methods are studied and they are tested using some academic test problems. In
addition, we briefly discuss the relation between these methods and another bundle
method for DC optimization.

The rest of the chapter is organized as follows. In Sect. 8.2, the unconstrained DC
optimization problem is formulated and optimality conditions are discussed. The
cutting plane model of convex functions is studied in Sect. 8.3. The proximal bundle
method for DC optimization is presented in Sect. 8.4 and the double bundle method
is given in Sect. 8.5. The piecewise concave bundle method is briefly discussed
in Sect. 8.6. Numerical results are reported in Sect. 8.7. Section 8.8 concludes the
chapter.

8.2 Optimality Conditions in DC Optimization

In this chapter, the interest is in unconstrained DC optimization. Therefore, we start
with formally defining DC functions.

Definition 8.1 A function f : Rn → R is a DC function if it can be represented in
the form

f (x) = f1(x)− f2(x),

where functions f1, f2 : Rn → R are convex and finite valued.

In this definition, the convex functions f1 and f2, used to define a DC function
f , are called DC components whereas f1 − f2 is a DC decomposition of f . DC
functions, defined on R

n, are locally Lipschitz continuous (LLC) and they can be
nonsmooth. From Definition 8.1, we notice that, even though DC functions are
typically nonconvex, they have a structure separating their convex and concave
behaviour.
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The unconstrained DC optimization problem is of the form

{
minimize f (x)

subject to x ∈ R
n,

(8.1)

where the objective function f : Rn → R is a DC function.

Definition 8.2 For the problem (8.1), a point x∗ ∈ R
n is a local minimizer if f (x∗)

is finite and there exists ε > 0 such that

f (x∗) ≤ f (x), for all x ∈ B(x∗; ε).

Below we summarize commonly used necessary optimality conditions in DC
optimization. More conditions are presented, for example, in [18, 26, 33].

Theorem 8.1 ([8, 18, 26, 36]) Let functions f1, f2 : Rn → R be convex. If a point
x∗ ∈ R

n is a local minimizer of a DC function f = f1 − f2, then the following
conditions hold:

∂f2(x
∗) ⊆ ∂f1(x

∗), (8.2)

000 ∈ ∂f (x∗) and (8.3)

∂f1(x
∗) ∩ ∂f2(x

∗) �= ∅. (8.4)

From Theorem 8.1, we obtain definitions of three types of stationary points.
First, the points satisfying the condition (8.2) are called inf-stationary points.
Second, if a point fulfils the condition (8.3) then it is Clarke stationary. Finally,
the condition (8.4) gives a definition for a critical point. The next proposition
presents relationships between the sets of different stationary points, which are also
illustrated in Fig. 8.1.

Proposition 8.1 ([16]) Let Sinf be a set of inf-stationary points, Scl be a set of
Clarke stationary points and Scr be a set of critical points of the DC function
f = f1 − f2 with convex DC components f1, f2 : Rn → R. Then

(i) Sinf ⊆ Scl ⊆ Scr;
(ii) if f1 is differentiable in R

n, then Scl = Scr;
(iii) if f2 is differentiable in R

n, then Sinf = Scl = Scr.

Proposition 8.1 shows that inf-stationarity is the strongest condition among those
presented in Theorem 8.1. Furthermore, this condition guarantees local optimality
if the second DC component f2 is a polyhedral convex function of the form

f2(x) = max
i=1,...,m

{aTi x + bi}, (8.5)
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Inf-stationarity:
∂f2(x

∗) ⊆ ∂f1(x
∗)

Clarke stationarity:
0 ∈ ∂f(x∗)

f2 differentiable

f 1
or

f 2
di
ffe
re
nt
ia
bl
e

f
2
differentiable

Criticality:
∂f1(x

∗) ∩ ∂f2(x
∗) �= ∅

Fig. 8.1 Relationships between different stationary points

where ai ∈ R
n, bi ∈ R and m ∈ N. Therefore, it would be worthwhile to use

inf-stationarity as a stopping condition to design algorithms. Unfortunately, this
condition is hard to verify in practice as it requires the whole subdifferentials of
DC components to be known. This is a strong requirement since the calculation of
the whole subdifferential, in general, may be time consuming and in some cases
even impossible. Most methods of nonsmooth optimization (NSO) typically require
that only one arbitrary subgradient of an objective function can be calculated at any
x ∈ R

n. In this chapter, this assumption appears in the form that at x ∈ R
n at

most one arbitrary subgradient for both DC components can be calculated and this
information may not be sufficient to validate inf-stationarity.

Proposition 8.1 implies that Clarke stationarity is stronger than criticality. The
former condition is widely used in algorithms for minimizing nonsmooth nonconvex
functions. In the convex case, this condition is also sufficient and guarantees global
optimality. Even though this condition is often utilized, it can be hard to verify
for a DC function using subgradients of DC components. This follows from the
subdifferential calculus rule yielding [5]

∂f (x) ⊆ ∂f1(x)− ∂f2(x). (8.6)

Thus, the difference of the subdifferentials of DC components is an estimate for
the subdifferential of f . If f1 or f2 is differentiable then the equality holds in (8.6)
and the estimate coincides with the subdifferential of f . However, by selecting the
DC decomposition in a special way this estimate can always be made as rough as
desired [17]. Thus, subgradients of DC components cannot be used to verify Clarke
stationarity without some extra assumptions.
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The condition (8.4) defining criticality is a relaxation of inf-stationarity. Criti-
cality is commonly used as a stopping condition in DC optimization. Unlike the
conditions (8.2) and (8.3) it is quite easy to verify and it typically provides good
solutions. However, one major drawback of a critical point is that it does not need
to be a local optimizer or even a saddle point. In the worst case, the algorithm may
stop in a point, where the original DC function f is differentiable and the direction
opposite to the gradient of f would provide a descent direction decreasing the value
of f [23].

As already said, inf-stationarity is the strongest condition presented in Theo-
rem 8.1 and it always implies Clarke stationarity and criticality. In addition, a
Clarke stationary point always satisfies the criticality condition. However, inverse
relationships between these necessary conditions are not obtained in a general case.
This means that criticality is the weakest condition. In the following, we provide
examples, where the inverse relationships do not hold. We start with three examples
showing that not all critical points of DC functions are Clarke stationary points. The
final example gives an illustration of the case, where a Clarke stationary point is not
inf-stationary.

Example 8.1 ([23]) Consider a linear function f (x) = x, x ∈ R for which
one possible DC decomposition f = f1 − f2 can be stated by selecting

f1(x) = max{−x, 2x} and f2(x) = max{−2x, x}.

The subdifferentials of DC components at a point x∗ = 0 are ∂f1(0) = [−1, 2]
and ∂f2(0) = [−2, 1]. From this we obtain ∂f1(0) ∩ ∂f2(0) = [−1, 1] �= ∅.
This implies that the point x∗ is a critical point. However, the function f is
differentiable at x∗ = 0 and ∂f (0) = {1}. Therefore, the point x∗ is not a
Clarke stationary point and does not provide any interesting feature for the
function f .

Example 8.2 Consider the function f (x) = f1(x)− f2(x), x ∈ R, where

f1(x) = max{0, x} and f2(x) = max{0,−2x}.

It is obvious that f (x) = x if x ≥ 0 and f (x) = 2x if x < 0. Due to this the
subdifferential of the function f at x∗ = 0 is ∂f (0) = [1, 2]. This means that
the point x∗ = 0 is not Clarke stationary as 0 �∈ ∂f (0). On the other hand, the
subdifferentials of the DC components f1 and f2 at x∗ = 0 are ∂f1(0) = [0, 1]
and ∂f2(0) = [−2, 0]. Since ∂f1(0) ∩ ∂f2(0) = {0} �= ∅, the point x∗ = 0 is a
critical point. However, it is not Clarke stationary.
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Example 8.3 ([23]) Consider the function f (x) = f1(x) − f2(x), x ∈ R,
where DC components are selected to be

f1(x) = max{x2, x} and f2(x) = max{0.5x2,−x}.

At the point x∗ = 0, the DC components are not differentiable and their
subdifferentials are ∂f1(0) = [0, 1] and ∂f2(0) = [−1, 0]. Since ∂f1(0) ∩
∂f2(0) = {0} �= ∅ the point x∗ = 0 is a critical point. However, the original DC
function f is differentiable at x∗ and ∂f (0) = {1}. This shows that x∗ is not
Clarke stationary.

Example 8.4 Consider the function

f (x1, x2) = f1(x1, x2)− f2(x1, x2),

where f1(x1, x2) = |x1| and f2(x1, x2) = |x2|. The subdifferentials of the DC
components at x∗ = 000 are

∂f1(000) = conv{(1, 0)T , (−1, 0)T } and ∂f2(000) = conv{(0, 1)T , (0,−1)T }.

However, the subdifferential of the function f at x∗ = 000 is

∂f (000) = conv{(1, 1)T , (−1, 1)T , (1,−1)T , (−1,−1)T }.

From this we easily deduce that ∂f2(000) �⊂ ∂f1(000). However, 000 ∈ ∂f (000) meaning
that the point x∗ = 000 is Clarke stationary, but not inf-stationary.

It is worth noting, that instead of criticality it is also possible to test its
generalization, the so-called ε-criticality, requiring that at a point x∗ ∈ R

n the
condition

∂εf1(x
∗) ∩ ∂εf2(x

∗) �= ∅

holds for ε ≥ 0. The smaller the parameter ε > 0 is, the more accurate
approximation of criticality is obtained. Naturally, ε-criticality coincides with
criticality with the selection ε = 0.

Using ε-subdifferentials of DC components one can get the following necessary
and sufficient condition for global optimality.

Theorem 8.2 ([18]) Let functions f1, f2 : Rn → R be convex. A point x∗ ∈ R
n is

a global minimizer of a DC function f = f1 − f2, if and only if

∂εf2(x
∗) ⊆ ∂εf1(x

∗) for all ε ≥ 0.
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Unfortunately, this condition is hard to utilize in practise, since it requires avail-
ability of the entire ε-subdifferentials of the DC components for all ε ≥ 0. The
calculation of the ε-subdifferential is a challenging task even for not very complex
nonsmooth functions.

8.3 Convex Cutting Plane Model of a DC Component

Before presenting bundle methods for nonsmooth DC optimization, we introduce a
classical convex cutting plane model used in bundle methods (see, e.g., [19, 24, 28,
30, 34]). This model serves as a basic tool for building an approximation of a DC
function by treating DC components separately. This enables us to utilize explicitly
the DC structure and to capture knowledge about both the convexity and concavity
of the objective.

We require that at any point x ∈ R
n one can calculate the values of the DC

components f1 and f2. In addition, as already said, we assume that whenever
necessary we can compute arbitrary subgradients ξ1 ∈ ∂f1(x) and ξ2 ∈ ∂f2(x)

for both DC components or just for one of them.
In bundle methods, the basic idea is to approximate the subdifferential of the

objective function by storing subgradients from the previous iterations into a bundle.
We utilize a similar idea, but instead of one bundle, we construct separate bundles
for both DC components at the current iteration point xk ∈ R

n, namely, Bk
1 and Bk

2.
More precisely, these sets are defined in the form

Bk
i =

{
(yj , fi(yj ), ξ i,j ) | j ∈ J ki

}
for i = 1, 2,

where yj ∈ R
n is an auxiliary point from a previous iteration, ξ i,j ∈ ∂fi(yj ) is

an arbitrary subgradient and J ki is a nonempty set of indices. In general, the index
sets J k1 and J k2 need not to be the same, but the current iteration point xk has to be
always included in both of them.

Elements of Bk
1 and Bk

2 can be used to linearize the DC components f1 and f2,
respectively. The classical cutting plane model for the function fi, i = 1, 2 at the
point xk ∈ R

n is given by

f̂ k
i (x) = max

j∈J ki

{
fi(yj )+ ξTi,j (x − yj )

}
for x ∈ R

n. (8.7)

By introducing the variable d = x − xk , defining the linearization error

αki,j = fi(xk)− fi(yj )− ξTi,j (xk − yj ) for all j ∈ J ki (8.8)
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and denoting by

Δk
i (d) = max

j∈J ki

{
ξTi,jd − αki,j

}
, (8.9)

the model (8.7) can be rewritten as

f̂ ki (xk + d) = max
j∈J ki

{
fi(xk)+ ξTi,jd − αki,j

}
= fi(xk)+Δk

i (d). (8.10)

The important properties of the cutting plane model are presented in the next
proposition.

Proposition 8.2 Let fi : Rn → R be a convex function. Then for any d ∈ R
n and

j ∈ J ki the following properties hold:

(i) f̂ k
i (xk + d) ≤ fi(xk + d);

(ii) Δk
i (d) ≤ fi(xk + d)− fi(xk);

(iii) f̂ k
i (yj ) = fi(yj ) and αki,j ≥ 0;

(iv) f̂ k
i is convex.

Proof The properties (i) and (iii) follow directly from Definition 1.7 of the
subdifferential of fi . By combining the property (i) with (8.10) we obtain the
property (ii). It is obvious that a function represented as a maximum of finitely
many linear functions is convex which implies convexity of the function f̂ k

i . ��
From the reformulation (8.10) of the cutting plane model, we see that the main

ingredients to build the model are the subgradients and linearization errors. In
addition, whenever a new point xk+1 differing from the current iteration point xk
is produced, linearization errors need to be updated. Such update can be performed
easily using the formula

αk+1
i,j = αki,j + fi(xk+1)− fi(xk)− ξTi,j (xk+1 − xk)

requiring no knowledge about the auxiliary points yj and function values fi(yj )
and it is sufficient to store only subgradients and linearization errors. Therefore the
bundle Bk

i is presented in the form

Bk
i =

{
(ξ i,j , α

k
i,j ) | j ∈ J ki

}
for i = 1, 2.

8.4 Proximal Bundle Method PBDC

In this section, we describe the proximal bundle method for unconstrained nons-
mooth DC optimization (PBDC) originally introduced in [21] and also presented in
[20]. This method guarantees approximate ε-criticality for the obtained solution.
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The idea in the model construction is to build the convex cutting plane model
for both DC components. Due to this, the original DC function is approximated
with a nonconvex DC cutting plane model obtained by combining the separate
approximations of the DC components. This way the model takes explicitly into
account the DC structure of the objective and incorporates both the convex and
concave behaviour.

Model and Direction Finding We start with introducing the model of the DC
function f , where the idea is to substitute both DC components with their convex
cutting plane models (8.7). Therefore, the nonconvex DC cutting plane model of f
at the current iteration point xk ∈ R

n is given by

f̃ k(x) = f̂ k1 (x)− f̂ k2 (x). (8.11)

Even though this approximation is nonconvex, it is piecewise linear and models both
convex and concave behaviour of the objective. Using the variable d = x − xk and
applying (8.10) we get

f̃ k(xk + d) = f (xk)+Δk
1(d)−Δk

2(d).

One illustration of the model is given in Example 8.5.

Example 8.5 Consider the DC function f (x) = f1(x)− f2(x), x ∈ R with

f1(x) = max{0.85x2 + x + 2,−x + 4.5} and

f2(x) = max{0.5x2, x + 1.5}.

The convex cutting plane models of the DC components are constructed using
the function values and subgradients of the DC components at x = −6,−2 and
2 and depicted in Fig. 8.2. The overall approximation of f is given in Fig. 8.3.

The model is used to determine a search direction. A quadratic stabilizing term
is added into the model to keep it local enough and to guarantee the existence of the
solution [28]. This leads to the following global optimization problem

{
minimize Pk(d) = Δk

1(d)−Δk
2(d)+ 1

2t ‖d‖2

subject to d ∈ R
n,

(8.12)

where t > 0 is a proximity parameter. The solution to this problem is denoted by
dkt ∈ R

n.
From Proposition 8.2(ii), we obtain that the terms Δk

1(d
k
t ) and Δk

2(d
k
t ) estimate

the changes in the values of f1 and f2, respectively. In addition, we show in the next
lemma that the term Δk

1(d
k
t ) − Δk

2(d
k
t ) is always nonpositive and, thus, it can be

seen as a predicted descent for the actual decrease in the objective function value.
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Fig. 8.3 The nonconvex DC cutting plane model f̃ k(x) of the objective function f (x)

Lemma 8.1 For any t > 0, we obtain Δk
1(d

k
t )−Δk

2(d
k
t ) ≤ −

1

2t
‖dkt ‖2 ≤ 0.

Proof The direction d ′ = 000 is a feasible solution for the problem (8.12). Since both
bundles Bk

1 and Bk
2 contain a subgradient calculated at xk it follows that among

nonnegative linearization errors there is at least one whose value is zero. Thus, we
get

Pk
(
d ′

) = Δk
1(000)−Δk

2(000)+
1

2t
‖000‖2 = max

j∈J k1

{
−αk1,j

}
−max

j∈J k2

{
−αk2,j

}
= 0,
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which implies that the global solution dkt of the problem (8.12) satisfies

Pk
(
dkt

) = Δk
1

(
dkt

)−Δk
2

(
dkt

)+ 1

2t
‖dkt ‖2 ≤ P

(
d ′

) = 0.

This proves the claim. ��
Another useful property is that the search direction dkt is always bounded.

Lemma 8.2 For any t > 0, it holds that

‖dkt ‖ ≤ 2t
(‖ξ1(xk)‖ + ‖ξ2,max‖

)
,

where ξ1(xk) ∈ ∂f1(xk) and ‖ξ2,max‖ = max
j∈J k2

{‖ξ2,j‖}.

Proof Using the Eq. (8.9), we deduce the following inequalities:

Δk
2(d) ≤ max

j∈J k2
ξT2,jd ≤ ‖ξ2,max‖‖d‖ for all d ∈ R

n

and

Δk
1(d) ≥ ξT1,jd − αk1,j for all j ∈ J k1 .

By combining them and taking into account that the bundle Bk
1 contains the element(

ξ1(xk), 0
)
, where ξ1(xk) ∈ ∂f1(xk), we obtain

Δk
1(d)−Δk

2(d) ≥ ξ1(xk)
T d − ‖ξ2,max‖‖d‖ ≥ −(‖ξ1(xk)‖ + ‖ξ2,max‖)‖d‖

for all d ∈ R
n. Then Lemma 8.1 implies that

− 1

2t
‖dkt ‖2 ≥ Δk

1(d
k
t )−Δk

2(d
k
t ) ≥ −(‖ξ1(xk)‖ + ‖ξ2,max‖)‖dkt ‖.

This completes the proof. ��
The problem (8.12) is nonconvex when |J k2 | ≥ 2 and it is not straightforward to

distinguish its global solution among the local ones. However, the objective function
Pk is still DC with the DC components Δk

1(d)+ 1
2t ‖d‖2 and Δk

2(d) and the second
DC component is polyhedral convex. This enables us to use a specific approach
utilized in [25, 26, 33] to find the global solution.

The main observation in the approach is that the objective Pk can be rewritten in
the form

Pk(d) = min
i∈J k2

{
Pk
i (d) = Δk

1(d)− ξT2,id + αk2,i +
1

2t
‖d‖2

}
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and, thus, we obtain

min
d∈Rn

min
i∈J k2

{
Pk
i (d)

}
= min

i∈J k2
min
d∈Rn

{
Pk
i (d)

}

showing that the original nonconvex problem can be replaced by a collection of
convex subproblems. Due to this, for each i ∈ J k2 we solve a convex nonsmooth
subproblem

{
minimize Pk

i (d) = Δk
1(d)− ξT2,id + αk2,i + 1

2t ‖d‖2

subject to d ∈ R
n,

(8.13)

whose solution is denoted by dkt (i) and the global solution dkt of the problem (8.12)
is obtained by setting

dkt = dkt (i
∗), where i∗ = arg min

i∈J k2

{
Pk
i

(
dkt (i)

)}
.

This means that to solve the problem (8.12) one needs to solve |J k2 | subproblems
and select the best solution. The bigger the size of the bundle Bk

2 is, the more time-
consuming it is to obtain the search direction. In practice, the computational burden
can be controlled by restricting the size of Bk

2, since the only requirement is that
|J k2 | ≥ 1.

For each i ∈ J k2 the subproblem (8.13) can be reformulated as a quadratic
programming problem

⎧
⎪⎪⎨

⎪⎪⎩

minimize v + 1
2t ‖d‖2

subject to (ξ1,j − ξ2,i)
T d − (αk1,j − αk2,i) ≤ v, j ∈ J k1 ,

v ∈ R, d ∈ R
n.

(8.14)

Therefore, the global solution dkt can be obtained by solving only smooth subprob-
lems (8.14) or their dual counterparts

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minimize 1
2 t‖

∑

j∈J k1
λj ξ1,j − ξ2,i‖2 + ∑

j∈J k1
λjα

k
1,j − αk2,i

subject to
∑

j∈J k1
λj = 1,

λj ≥ 0, j ∈ J k1 .

(8.15)
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The relationship between the optimal solutions (vkt (i), dkt (i)) and (λkt,j (i), j ∈ J k1 )
to the primal problem (8.14) and the dual problem (8.15), respectively, is given as
[21]:

dkt (i) = −t
( ∑

j∈J k1
λkt,j (i)ξ1,j − ξ2,i

)
, (8.16)

vkt (i) = −
1

t
‖dkt (i)‖2 −

∑

j∈J k1
λkt,j (i)α

k
1,j + αk2,i . (8.17)

Algorithm The PBDC method for unconstrained DC optimization is presented in
Algorithm 8.1 and its basic structure contains all the characteristic steps used in
standard bundle methods including the direction finding, descent test, serious steps
and null steps.

To guarantee ε-criticality, two different stopping criteria are used. The first
criterion is tested in Step 1 after each serious step and it is formulated using the
difference of subgradients of DC components. If this difference is small enough,
then the current iteration point xk satisfies approximate criticality. The second
stopping criterion in Step 4 compares the approximations of the ε-subdifferentials of
the DC components and, if the difference between ε-subgradients is small enough,
then approximate ε-criticality is achieved.

Algorithm 8.1: PBDC

Data: The stopping tolerance δ ∈ (0, 1), the proximity measure ε > 0, the
decrease parameters r, c ∈ (0, 1), the increase parameter R > 1, the
descent parameter m ∈ (0, 1) and the (overestimated) Lipschitz constants
L1 > 0 and L2 > 0 of f1 and f2, respectively.

Step 0. (Initialization) Select x0 ∈ R
n and set θ = ε/max{2L1, 2L2, 1}.

Calculate ξ1(x0) ∈ ∂f1(x0) and ξ2(x0) ∈ ∂f2(x0). Initialize B0
1 =

{(ξ1(x0), 0)} and B0
2 = {(ξ2(x0), 0)}, ξ2,max = 000, and k = 0.

Step 1. (Criticality) If ‖ξ1(xk) − ξ2(xk)‖ < δ, then stop with x∗ = xk as the
final solution.

Step 2. (Proximity parameter) If ‖ξ2(xk)‖ > ‖ξ2,max‖, then ξ2,max = ξ2(xk).
Set

tmin = rθ

2(‖ξ1(xk)‖ + ‖ξ2,max‖)
, (8.18)

tmax = Rtmin and η = r tmin δ. Choose t ∈ [tmin, tmax].
Step 3. (Search direction) Calculate the search direction dkt as a solution of (8.12).
Step 4. (ε-criticality) If ‖dkt ‖ < η, then set

J k1 = J k1 \ {j ∈ J k1 | αk1,j > ε}, J k2 = J k2 \ {j ∈ J k2 | αk2,j > ε}
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and calculate values ξ∗1 and ξ∗2 such that

‖ξ∗1 − ξ∗2‖ =

⎧
⎪⎪⎨

⎪⎪⎩

minimize ‖ξ1 − ξ2‖
subject to ξ1 ∈ conv{ξ1,j | j ∈ J k1 },

ξ2 ∈ conv{ξ2,j | j ∈ J k2 }.
(8.19)

If ‖ξ∗1 − ξ∗2‖ < δ, then stop with x∗ = xk as the final solution. Otherwise
set tmax = tmax − r (tmax − tmin), select the value t ∈ [tmin, tmax] and go
back to Step 3.

Step 5. (Descent test) Set y = xk + dkt . If

f (y)− f (xk) ≤ m
(
Δk

1(d
k
t )−Δk

2(d
k
t )

)
, (8.20)

then set xk+1 = y and go to Step 8.
Step 6. (Parameter update) If f (y) > f (x0) and ‖dkt ‖ > θ , then set t = t −

r(t − tmin) and go to Step 3.
Step 7. (Bundle update) If

f (y)− f (xk) ≥ −m
(
Δk

1(d
k
t )−Δk

2(d
k
t )

)
,

then set t = t − c(t − tmin). Calculate ξ1 ∈ ∂f1(y) and ξ2 ∈ ∂f2(y)

together with α1 = f1(xk)− f1(y)+ ξT1 dkt and α2 = f2(xk)− f2(y)+
ξT2 dkt . Update the bundle Bk

1 = Bk
1∪{(ξ1, α1)}. IfΔk

2(d
k
t ) ≤ 0 then update

the bundleBk
2 = Bk

2∪{(ξ2, α2)} and test if ‖ξ2‖ > ‖ξ2,max‖ in which case
set ξ2,max = ξ2, update tmin using (8.18) and set η = rtminδ. Go to Step
3.

Step 8. (Serious step) Select Bk+1
1 ⊆ Bk

1 and Bk+1
2 ⊆ Bk

2 and update the
linearization errors in Bk+1

1 and Bk+1
2 . Calculate ξ1(xk+1) ∈ ∂f1(xk+1)

and ξ2(xk+1) ∈ ∂f2(xk+1). Set Bk+1
1 = Bk+1

1 ∪ {(ξ1(xk+1), 0)} and
Bk+1

2 = Bk+1
2 ∪ {(ξ2(xk+1), 0)}. Update k = k + 1 and go to Step 1.

Remark 8.1 In Algorithm 8.1, we first define the enlargement parameter θ > 0
depending on the (overestimated) Lipschitz constantsL1 > 0 and L2 > 0 of the DC
components f1 and f2 on the set Fε = {x ∈ R

n | d(x,F0) ≤ ε}, respectively. Here
F0 = {x ∈ R

n | f (x) ≤ f (x0)}, d(x,F0) = inf{ ‖x − s‖ | s ∈ F0} and x0 ∈ R
n is

a starting point. The local parameter, the so-called local proximity measure η > 0,
is updated each time Step 2 is entered and possibly also in Step 7. In addition, the
proximity parameter t ∈ [tmin, tmax] is selected anew after each serious step and
decreased during null steps (Steps 4, 6 and 7) to improve the model. Overall, the
parameter selections together with parameter updates are inspired by [13–15].

As we have already seen in the previous subsection, the size of the bundle Bk
2

affects the complexity of the search direction problem (8.12). Therefore, the size
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of Bk
2 needs to be kept limited. The only requirement is that the current iteration

point needs to always belong to this bundle. Thus, the size of Bk
2 should satisfy

the condition |J k2 | ≥ 1. In addition, in Step 8 of Algorithm 8.1 the bundles Bk
1

and Bk
2 can be chosen independently. This means that we can also decide to omit

the previous information and continue with empty bundles. This is possible since
before going back to Step 1 we always insert the element calculated at the new
iteration point into both bundles.

Convergence Analysis Next, we prove the finite convergence of the PBDC method
to a point satisfying the approximate ε-criticality. To show this the following
assumptions are needed:

Assumption 8.1 The set F0 = {x ∈ R
n | f (x) ≤ f (x0)} is compact.

Assumption 8.2 Lipschitz constants of f1 and f2 or their overestimates are known
on the set Fε = {x ∈ R

n | d(x,F0) ≤ ε}, where ε > 0 is the proximity measure.
These constants are denoted by L1 > 0 and L2 > 0, respectively.

First, we prove the following two useful lemmas.

Lemma 8.3 If the condition (8.20) in Step 5 of Algorithm 8.1 is not satisfied, then
the new element (ξ1, α1) of Bk

1 computed in Step 7 satisfies

ξT1 dkt − α1 > mΔk
1(d

k
t )+ (1−m)Δk

2(d
k
t ).

Proof Whenever the condition (8.20) is not satisfied, we obtain

f1(y)− f1(xk) > m
(
Δ1(d

k
t )−Δ2(d

k
t )

)
+

(
f2(y)− f2(xk)

)

≥ mΔk
1(d

k
t )+ (1−m)Δk

2(d
k
t ),

where the second inequality follows from Proposition 8.2(ii). The result can be
obtained from this by noticing that f1(y)−f1(xk) = ξT1 dkt −α1, where ξ1 ∈ ∂f1(y)

and α1 = f1(xk)− f1(y)+ ξT1 dkt . ��
Lemma 8.4 Let Assumption 8.1 be valid. During each iteration k of Algorithm 8.1

(i) xk ∈ Fε and yj ∈ Fε for all j ∈ J k1 ∪ J k2 ;

(ii) there exists K > 0 such that ‖xk − yj‖ ≤ K for all j ∈ J k1 ∪ J k2 ;

(iii) ξ i,j ∈ ∂fi(yj ) and αki,j for all j ∈ J ki and i = 1, 2 are bounded;
(iv) tmin is monotonically decreasing and bounded from below with a positive

threshold;
(v) tmax is bounded from above.

Proof

(i) Since each new iteration point decreases the value of the objective it follows
that points xk belong to the set Fε. In addition, Step 6 of Algorithm 8.1
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guarantees that each point yj inserted into the bundles Bk
1 and Bk

2 belongs
to Fε .

(ii) The claim follows from (i), since Assumption 8.1 ensures that the set Fε is
compact.

(iii) Since a DC component fi is convex on R
n it is LLC and has a Lipschitz

constant Li > 0 on a compact set. By taking into account (i), this yields that
‖ξ i,j‖ ≤ Li for each j ∈ J ki and i = 1, 2. This together with the property (ii)
shows the boundedness of linearization errors, since

|αki,j | ≤ |fi(xk)− fi(yj )| + ‖ξ i,j‖‖xk − yj‖ ≤ Li‖xk − yj‖ + LiK ≤ 2LiK

for each j ∈ J ki and i = 1, 2.
(iv) During the iteration k of Algorithm 8.1, parameter tmin is either decreased or

kept the same and this shows the first property. From the proof of the property
(iii) we can obtain that

tmin ≥ t̄min = rθ

2L1 + 2L2
> 0 (8.21)

yielding the positive lower bound.
(v) Whenever tmax is set in Step 2 of Algorithm 8.1, the stopping condition in Step

1 cannot hold. Therefore, we have that

‖ξ1(xk)‖ + ‖ξ2,max‖ ≥ ‖ξ1(xk)‖ + ‖ξ2(xk)‖ ≥ ‖ξ1(xk)− ξ2(xk)‖ ≥ δ.

From this we can deduce that

tmax ≤ t̄max = Rrθ

2δ
(8.22)

which proves the claim. ��
In order to prove the finite convergence of Algorithm 8.1, we need to show that

there does not exist any infinite loop. Therefore, we start with showing that it is
impossible to execute an infinite sequence of consecutive null steps during one
iteration.

Proposition 8.3 Let Assumptions 8.1 and 8.2 be valid. At any iteration k, for any
δ > 0 and ε > 0, Algorithm 8.1 can pass through Steps 3–7 only finitely many times
before entering Step 8 or fulfilling the stopping condition in Step 4.

Proof To prove the proposition we show that there does not exist an infinite
sequence of consecutive null steps, containing Steps from 3 to 7, during the k-th
iteration of Algorithm 8.1. We index by i ∈ I all the quantities obtained during the
i-th null step. Next, we consider separately all cases, which could possibly generate
the infinite sequence.



8 Bundle Methods for Nonsmooth DC Optimization 279

Case 1 Step 4 cannot be performed infinitely many times. Indeed, in this case
according to Lemma 8.4(iv) the safeguard parameter tmax will be decreased
infinitely many times and as a result will become arbitrarily close to tmin. Thus,
the proximity parameter t becomes arbitrarily close to tmin, since t ∈ [tmin, tmax],
meaning that asymptotically t falls below the threshold

ρ = θ

2(‖ξ1(xk)‖ + ‖ξ2,max‖)
. (8.23)

This together with Lemma 8.2 yields that from some point on we always have
‖dkt ‖ ≤ θ . Therefore, if Step 6 of Algorithm 8.1 is entered, it is not executed and
we move to Step 7, where the obtained subgradients ξ1 and ξ2 belong to ∂εf1(xk)

and ∂εf2(xk), respectively. This is due to the selection θ = ε/max{2L1, 2L2, 1}
and Theorem 1.3. Altogether, the above considerations mean that there exists an
iteration after which the bundles Bk

1 and Bk
2 contain only ε-subgradients when Step

4 is entered. Therefore, no subgradients are removed from the bundles in Step 4. In
addition, according to (8.16) the solution d t of the problem (8.12) is always of the
form

dkt = −t
( ∑

j∈J k1
λkt,j (i

∗)ξ1,j − ξ2,i∗

)
,

where i∗ ∈ J k2 and
∑

j∈J k1 λ
k
t,j (i

∗) = 1. Thus, dkt /t is a feasible solution of the
problem (8.19) and

1

t
‖dkt ‖ <

η

t
= tmin

t
rδ < δ

since ‖dkt ‖ < η whenever Step 4 is executed. Therefore, Step 4 cannot be called
infinitely many times.

Case 2 Step 6 cannot be executed infinitely many times. The proximity param-
eter t decreases at each execution of Step 6. Thus, t converges to tmin due to
Lemma 8.4(iv). This means that after a finite number of steps t falls below the
threshold ρ given in (8.23). According to Lemma 8.2, ‖dkt ‖ < θ when t < ρ. Thus,
Step 6 can be executed only finitely many times.

Case 3 Step 7 cannot be performed infinitely many times. To simplify the notation
let {d it }, {ti} and {ηi} be the sequences obtained during null steps i ∈ I. First, {ti}
and {ηi} converge to positive limits t̂ > 0 and η̂ > 0, since by Lemma 8.4(iv) both
sequences are nonincreasing and bounded from below with a positive threshold.
Second, Lemma 8.2 and Lemma 8.4(iii) imply that {d it } is bounded and, thus, it has
a convergent subsequence for i ∈ I ′ ⊆ I converging to a limit d̂ . In addition, we get
that the sequences {Δk

1(d
i
t )} and {Δk

2(d
i
t )} are bounded. Therefore, they also have

convergent subsequences for i ∈ I ′′ ⊆ I ′ and these limits are denoted by Δ̂k
1 and
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Δ̂k
2. As a consequence of Lemma 8.1 and ‖d it‖ > ηi , we get the inequality

Δk
1

(
d it

)−Δk
2

(
d it

) ≤ − 1

2ti
‖d it‖2 ≤ − η2

i

2ti
< 0 for all i ∈ I (8.24)

implying

Δ̂k
1 − Δ̂k

2 ≤ −
η̂2

2t̂
< 0. (8.25)

Next, consider two successive indices r, s ∈ I ′′. During the null step r we obtain
a new element (ξ r1, α

r
1) for the DC component f1 and according to Lemma 8.1

it satisfies (ξ r1)
T drt − αr1 > mΔk

1

(
drt

) + (1 − m)Δk
2

(
drt

)
. In addition, it follows

from (8.9) thatΔk
1

(
dst

) ≥ (ξ r1)
T dst −αr1, which together with the previous inequality

gives

Δk
1

(
dst

)−mΔk
1

(
drt

)+ (m− 1)Δk
2

(
drt

)
> (ξ r1)

T (dst − drt ).

Passing to the limit yields (1 − m)(Δ̂k
1 − Δ̂k

2) > 0 and as m ∈ (0, 1), this
contradicts (8.25). Thus, Step 7 cannot be entered infinitely many times. ��

Now, we are ready to prove the finite convergence of the PBDC method which
means that serious steps cannot be repeated infinitely many times.

Theorem 8.3 Let Assumptions 8.1 and 8.2 be valid. For any δ > 0 and ε > 0,
Algorithm 8.1 terminates after a finite number of iterations at a point x∗ satisfying
the approximate ε-criticality condition

‖ξ∗1 − ξ∗2‖ ≤ δ with ξ∗1 ∈ ∂εf1(x
∗) and ξ∗2 ∈ ∂εf2(x

∗).

Proof Algorithm 8.1 terminates when the stopping criteria either in Step 1 or in
Step 4 are satisfied. Both conditions guarantee approximate ε-criticality. Assume
the contrary, that is Algorithm 8.1 never terminates. Then, we have an infinite
sequence {xk} and due to Proposition 8.3 each iteration point xk is obtained after
a finite number of null steps. In addition, at each iteration the sufficient descent
condition (8.20) is satisfied guaranteeing that

f (xk+1)− f (xk) ≤ m
(
Δk

1(d
k
t )−Δk

2(d
k
t )

)
.

By combining this with (8.24) and taking into account the bounds (8.21) and (8.22)
we obtain

f (xk+1)− f (xk) ≤ −mη
2
k

2tk
≤ −m(rt̄minδ)

2

2t̄max
< 0.
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By summing up the first k of the above inequalities we get

f (xk)− f (x0) ≤ −kσ,

where σ = m(rt̄minδ)
2/(2t̄max) > 0. Therefore, we can conclude

lim
k→∞ f (xk)− f (x0) ≤ −∞.

This is a contradiction since local Lipschitz continuity of f and Assumption 8.1
guarantee that the objective f is bounded from below. ��

8.5 Double Bundle Method DBDC

The PBDC method, described above, terminates at solutions satisfying the approx-
imate ε-criticality condition. This condition is easily tested by utilizing the DC
structure, but as we have already demonstrated critical points have some drawbacks.
Therefore, the PBDC method may terminate at a point which is not a local
minimizer or even a saddle point. To avoid this undesirable feature, we now recall
the double bundle method for unconstrained DC optimization (DBDC) introduced
in [23] and presented also in [20].

The DBDC method is the successor of the PBDC method. It is based on the
same DC cutting plane model that is used in the PBDC and the main structure of
the DBDC method resembles to that of the PBDC. A significant difference between
these two methods is that the DBDC method involves a special escape procedure to
find descent directions at critical points which are not Clarke stationary. The use of
such a procedure allows one to get stronger convergence results than those obtained
for the PBDC method.

Calculating a Subgradient of a DC Function When the DC structure is available,
we typically want to use it through the whole algorithm. However, to guarantee
Clarke stationarity we need to calculate subgradients of the original DC function.
It follows from (8.6) that, in general, the subdifferentials of the DC components
cannot be used for this purpose and, therefore, subgradients of the DC components
cannot be utilized to verify Clarke stationarity. However, the careful selection of the
subgradients of the DC components enables us to bypass this difficulty and to obtain
subgradients of the DC function.

Finite valued convex functions defined on R
n are directionally differentiable.

Under this assumption the DC function is also directionally differentiable. For a
convex DC component fi , the directional derivative at x ∈ R

n in the direction
d ∈ R

n can be given in the form (see, e.g., [5])

f ′i (x; d) = max
{
ξT d | ξ ∈ ∂fi(x)

}
for i = 1, 2.
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For any d ∈ R
n, d �= 000, we define the set

Gi(x; d) =
{
ξ ∈ ∂fi(x) | ξT d = f ′i (x; d)

}
for i = 1, 2,

which consists of subgradients yielding the directional derivative of fi . Since the
directional derivative of a finite valued convex function defined on R

n is LLC it is
differentiable almost everywhere. Then at a point x ∈ R

n there exists a set TDC(x)
of full measure such that both sets G1(x; d) and G2(x; d) are singletons for all
d ∈ TDC(x). Next, we show that directions d ∈ TDC(x) have a central role when
the DC components are used to determine a subgradient of the DC function at a
point x.

Theorem 8.4 Let f = f1−f2 be a DC function, x ∈ R
n, d ∈ TDC(x),G1(x; d) =

{ξ1} and G2(x; d) = {ξ2}. Then

ξ1 − ξ2 ∈ ∂f (x).

Proof We start with defining the set

Ui(x; d) = {ξ ∈ R
n | there exists {vk} and {tk}, vk ∈ ∂fi(x + tkd),

vk → ξ and tk ↓ 0 as k→∞}

for i = 1, 2. Since both f1 and f2 are convex they are weakly semismooth. Then
applying Definition 1.11 we get

Ui(x; d) ⊆ Gi(x; d) for i = 1, 2.

By combining this with the definition of Ui(x; d) we obtain that for any ε > 0 there
exists t0 > 0 such that

∂fi(x + td) ⊂ Ui(x; d)+ B(000; ε) ⊆ Gi(x; d)+ B(000; ε) = {ξ i} + B(000; ε)

for i = 1, 2 and any t ∈ (0, t0). This implies that

‖v − ξ1‖ < ε and ‖w − ξ2‖ < ε (8.26)

for all v ∈ ∂f1(x+td), w ∈ ∂f2(x+td) and t ∈ (0, t0). In addition, any ξ t ∈ ∂f (x+
td) can be expressed as ξ t = vt−wt where vt ∈ ∂f1(x+ td) and wt ∈ ∂f2(x+ td).
Therefore, by taking into account inequalities (8.26) we obtain

‖ξ t − (ξ1 − ξ2)‖ ≤ ‖vt − ξ1‖ + ‖wt − ξ2‖ < 2ε

for all ξ t ∈ ∂f (x + td) and t ∈ (0, t0). This shows that

ξ1 − ξ2 ∈ ∂f (x + td)+ B(000; 2ε) for all t ∈ (0, t0). (8.27)
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On the other hand, upper semicontinuity of ∂f [8] means that for any ε > 0 there
exists t1 > 0 such that

∂f (x + td) ⊂ ∂f (x)+ B(000; ε) for all t ∈ (0, t1) (8.28)

which together with (8.27) implies that for any ε > 0

ξ1 − ξ2 ∈ ∂f (x)+ B(000; 3ε).

This proves that ξ1 − ξ2 ∈ ∂f (x). ��
Theorem 8.4 shows that if the direction is selected with care, then a subgradient

of the DC function can be obtained by using the subgradients of the DC components.
The difficulty in applying Theorem 8.4 is that its claim does not necessarily hold for
an arbitrary direction. Next, we show that at a point x ∈ R

n for any direction d ∈ R
n

one can construct a direction d̄ ∈ TDC(x) which is sufficiently close to d .

Theorem 8.5 Let x ∈ R
n and d ∈ R

n be any direction such that d �= 000, and
assume that for a DC function f = f1 − f2 the subdifferentials ∂f1(x) and ∂f2(x)

are polytopes. Then for a given ḡ ∈ V = {g ∈ R
n |g = (g1, . . . , gn), |gi | =

1, for all i}, there exists α0 ∈ (0, 1] such that for all α ∈ (0, α0]:
(i) d̄(α) = d + en(α) ∈ TDC(x), where en(α) = (αḡ1, α

2ḡ2, . . . , α
nḡn);

(ii) G1(x; d̄(α)) ⊆ G1(x; d) and G2(x; d̄(α)) ⊆ G2(x; d);
(iii) f ′(x; d) = (ξ1 − ξ2)

T d for ξ1 ∈ G1(x; d̄(α)) and ξ2 ∈ G2(x; d̄(α));
(iv) ξ1 − ξ2 ∈ ∂f (x) for ξ1 ∈ G1(x; d̄(α)) and ξ2 ∈ G2(x; d̄(α)).
Proof The proof of (i) and (ii) is technical and it is given in [23]. To prove the
case (iii) notice that f ′1(x; d) = ξT1 d for ξ1 ∈ G1(x; d̄(α)), f ′2(x; d) = ξT2 d for
ξ2 ∈ G1(x; d̄(α)) and f ′(x; d) = f ′1(x; d)−f ′2(x; d). The property (iv) is obtained
directly from Theorem 8.4 by taking into account (i). ��
The above theorem shows that at a point x ∈ R

n we can always make a small
controlled change into any direction d to obtain d̄ ∈ TDC(x). Moreover, if for the
altered direction d̄ the sets G1(x; d̄) and G2(x; d̄) are singletons, then the elements
in those sets can be used to define a subgradient of f . In addition, the property (iii)
of Theorem 8.5 guarantees that the calculated subgradients of the DC components
define also the directional derivative of the DC function in the direction d . Thus,
the altered direction d̄ is sufficiently close to d . We also notice that the previous
theorem requires that at a point x ∈ R

n the subdifferentials ∂f1(x) and ∂f2(x) of
the DC components are polytopes. This is not a very restrictive assumption and in
practical applications it is nearly always fulfilled.

Algorithm The DBDC method is described in Algorithm 8.3 and this method
resembles the PBDC method (Algorithm 8.1). The significant difference is the
stopping condition, since whenever a candidate solution is obtained, we execute the
escape procedure. This procedure either guarantees Clarke stationarity or produces
a descent direction yielding a sufficient decrease in the value of the objective. Thus,
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whenever necessary we are able to escape from non-Clarke stationary points of a
DC function.

In the escape procedure, the goal is to identify whether the point x ∈ R
n is

Clarke stationary or not. For this reason, we need to approximate the Goldstein ε-
subdifferential ∂Gε f (x) of f (see Definition 1.10) for some small ε > 0. Moreover,
the smaller the parameter ε is, the more accurate approximation of ∂f (x) is
obtained. Let Uk denote this approximation during iteration k and we have that
Uk ⊆ ∂Gε f (x) for all k ≥ 1. In order to detect Clarke stationarity, we need to solve
the problem

{
minimize 1

2‖u‖2

subject to u ∈ Uk,
(8.29)

providing the solution uk . If the norm of uk is smaller than the stopping tolerance
δ > 0, then the point x satisfies approximate Clarke stationarity. Otherwise, we
need to continue the verification procedure. In addition, if the point x is non-Clarke
stationary then the final solution x+ provided by Algorithm 8.2 decreases the value
of f .

Algorithm 8.2: Escape procedure

Data: The point x ∈ R
n under consideration, the stopping tolerance δ > 0, the

proximity measure ε > 0 and the descent parameter m̂ ∈ (0, 1).

Step 0. (Initialization) Select a direction d1 ∈ {d ∈ R
n | ‖d‖ = 1}. Set x̃ = x,

U0 = ∅ and k = 1.
Step 1. (New subgradient) Find d̄k(α) ∈ TDC(x̃) using dk. Compute subgradi-

ents ξ1,k ∈ ∂f1(x̃) and ξ2,k ∈ ∂f2(x̃) such that ξ1,k ∈ G1(x̃; d̄k(α)) and
ξ2,k ∈ G2(x̃; d̄k(α)). Set ξk = ξ1,k−ξ2,k andUk = conv

{
Uk−1

⋃ {ξ k}
}
.

Step 2. (Clarke stationarity) Compute uk by solving the problem (8.29). If

‖uk‖ ≤ δ, (8.30)

then stop with x+ = x.
Step 3. (Search direction) Compute the search direction dk+1 = −uk/ ‖uk‖.
Step 4. (Descent test) If

f ′(x; dk+1) > −m̂‖uk‖, (8.31)

then set x̃ = x and k = k + 1 and go to Step 1.
Step 5. (Step-length) Calculate the step-length

β∗ = arg max
{
β > 0 | f (x + βdk+1)− f (x) ≤ −m̂β‖uk‖

}
.

(8.32)

If β∗ ≥ ε, then stop with x+ = x + β∗dk+1. Otherwise, set x̃ = x +
β∗dk+1 and k = k + 1 and go to Step 1.
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Algorithm 8.3: DBDC

Data: The stopping tolerance δ ∈ (0, 1), the proximity measure ε > 0, the
enlargement parameter θ > 0, the decrease parameters r, c ∈ (0, 1), the
increase parameter R > 1 and the descent parameters m, m̂ ∈ (0, 1).

Step 0. (Initialization) Select x0 ∈ R
n. Calculate ξ1(x0) ∈ ∂f1(x0) and ξ2(x0) ∈

∂f2(x0). Initialize B0
1 = {(ξ1(x0), 0)} and B0

2 = {(ξ2(x0), 0)}, ξ2,max =
000, and k = 0.

Step 1. (Criticality) If ‖ξ1(xk)− ξ2(xk)‖ < δ, then dkt = 000 and go to Step 4.
Step 2. (Proximity parameter) If ‖ξ2(xk)‖ > ‖ξ2,max‖, then ξ2,max = ξ2(xk).

Set

tmin = rθ

2(‖ξ1(xk)‖ + ‖ξ2,max‖)
(8.33)

and tmax = Rtmin. Choose t ∈ [tmin, tmax].
Step 3. (Search direction) Calculate the search direction dkt as a solution of (8.12).
Step 4. (Escape procedure) If ‖dkt ‖ < δ, then execute the escape procedure

Algorithm 8.2 for the point xk to obtain x+. Set xk+1 = x+ and go to
Step 8.

Step 5. (Descent test) Set y = xk + dkt . If

f (y)− f (xk) ≤ m
(
Δ1(d

k
t )−Δ2(d

k
t )

)
, (8.34)

then set xk+1 = y and go to Step 8.
Step 6. (Parameter update) If f (y) > f (x0) and ‖dkt ‖ > θ , then set t = t −

r(t − tmin). Go to Step 3.
Step 7. (Bundle update) If

f (y)− f (xk) ≥ −m
(
Δ1(d

k
t )−Δ2(d

k
t )

)
,

then set t = t − c(t − tmin). Calculate ξ1 ∈ ∂f1(y) and ξ2 ∈ ∂f2(y)

together with α1 = f1(xk)− f1(y)+ ξT1 dkt and α2 = f2(xk)− f2(y)+
ξT2 dkt . Update the bundle Bk

1 = Bk
1∪{(ξ1, α1)}. IfΔ2(d

k
t ) ≤ 0 then update

the bundleBk
2 = Bk

2∪{(ξ2, α2)} and test if ‖ξ2‖ > ‖ξ2,max‖ in which case
set ξ2,max = ξ2 and update tmin using (8.33). Go to Step 3.

Step 8. (Clarke stationarity) If xk+1 = xk , then Clarke stationarity is achieved:
stop with x∗ = xk as the final solution.

Step 9. (Serious step) Select Bk+1
1 ⊆ Bk

1 and Bk+1
2 ⊆ Bk

2 and update the
linearization errors in the selected sets. Calculate ξ1(xk+1) ∈ ∂f1(xk+1)

and ξ2(xk+1) ∈ ∂f2(xk+1). Set Bk+1
1 = Bk+1

1 ∪ {(ξ1(xk+1), 0)}, Bk+1
2 =

Bk+1
2 ∪ {(ξ2(xk+1), 0)} and k = k + 1. Go to Step 1.
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Convergence Analysis Next, we prove that the DBDC method terminates after a
finite number of steps at a point satisfying the approximate Clarke stationarity. In
order to show this, we need Assumption 8.1 and also the following assumption:

Assumption 8.3 The subdifferentials ∂f1(x) and ∂f2(x) of the DC components f1
and f2 are polytopes at any x ∈ R

n.

First, we show that the escape procedure in Algorithm 8.2 has a finite conver-
gence. We start with the following useful auxiliary result.

Lemma 8.5 Let Assumption 8.3 be valid and assume that the level set Fx = {y ∈
R
n | f (y) ≤ f (x)} is compact for x ∈ R

n. If at the k-th iteration Algorithm 8.2
does not terminate in Step 5, then

f ′(x + β∗dk+1; dk+1) > −m̄‖uk‖ for all m̄ > m̂.

Proof The compactness of the set Fx guarantees that the formula (8.32) for finding
the step-length is well-defined and β∗ <∞. If Algorithm 8.2 does not terminate in
Step 5, then β∗ < ε and

f (x + β∗dk+1)− f (x) ≤ −m̂β∗‖uk‖. (8.35)

In addition, no β > β∗ can satisfy the inequality in (8.32). Assume the contrary,
that is

f ′(x + β∗dk+1; dk+1) ≤ −m̄‖uk‖ for some m̄ > m̂.

This inequality can be rewritten as

lim
t↓0

f (x + (β∗ + t)dk+1)− f (x + β∗dk+1)

t
≤ −m̄‖uk‖.

By Definition 1.4 of the directional derivative this means that for any ρ > 0 there
exits t∗ > 0 such that

f (x + (β∗ + t∗)dk+1)− f (x + β∗dk+1)

t∗
≤ −m̄‖uk‖ + ρ.

Since m̄ > m̂, we can select ρ = (m̄− m̂)‖uk‖ > 0. Then we obtain

f (x + (β∗ + t∗)dk+1)− f (x + β∗dk+1) ≤ −m̂t∗‖uk‖.

This together with (8.35) yields

f (x + (β∗ + t∗)dk+1)− f (x) ≤ −m̂(β∗ + t∗)‖uk‖
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showing that the inequality in (8.32) holds for β = β∗ + t∗. This is a contradiction
since β∗ + t∗ > β∗. ��
Theorem 8.6 Let Assumption 8.3 be valid and assume that the level set Fx = {y ∈
R
n | f (y) ≤ f (x)} is compact for x ∈ R

n. For any δ > 0 and ε > 0, Algorithm 8.2
terminates after at most

Nmax =
⎡

⎢⎢
⎢

ln(δ2/L2)

ln
(

1− (1−m̂)2δ2

8L2

)

⎤

⎥⎥
⎥
+ 1

iterations, where 6·7 is a ceiling of a number, m̂ ∈ (0, 1) and L > δ is the Lipschitz
constant of f at x ∈ R

n.

Proof Algorithm 8.2 terminates if a new better iteration point is found in Step 5
or the stopping condition (8.30) is fulfilled. Therefore, to prove the theorem it is
sufficient to show that one of these two stopping criteria will be satisfied after a
finite number of steps.

Assume that the escape procedure does not terminate at the k-th iteration. This
means that we end up calculating a new subgradient ξ k+1 in Step 1 at the start of
the (k + 1)-th iteration. Next, we show that this subgradient does not belong to
Uk ⊂ ∂Gε f (x) and, therefore, in this case the approximation of the Goldstein ε-
subdifferential is improved. The necessary and sufficient condition for the quadratic
problem (8.29) implies that uTk u ≥ ‖uk‖2 for all u ∈ Uk which yields that

uT dk+1 ≤ −‖uk‖ for all u ∈ Uk. (8.36)

Now the new point x̃, where the subgradient ξk+1 is calculated, is either x or x +
β∗dk+1. If the first case occurs, then x̃ = x and the condition (8.31) is satisfied
providing that

f ′(x̃; dk+1) = f ′(x; dk+1) > −m̂‖uk‖ > −m̄‖ūk‖ (8.37)

for m̄ ∈ (m̂, 1). In the latter case, x̃ = x + β∗dk+1 for β∗ < ε and, thus this
point can also be used to calculate a subgradient from the set ∂Gε f (x). Furthermore,
Lemma 8.5 guarantees that

f ′(x̃; dk+1) = f ′(x + β∗dk+1; dk+1) > −m̄‖uk‖ (8.38)

for m̄ ∈ (m̂, 1). The inequalities (8.37), (8.38) and Theorem 8.5(iii), (iv) imply that

ξTk+1dk+1 > −m̄‖uk‖ for all m̄ ∈ (m̂, 1). (8.39)

This means that (8.36) cannot hold for ξ k+1. Thus, the approximation of ∂Gε f (x) is
significantly improved, since ξk+1 /∈ Uk.
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Next, we show that the stopping condition (8.30) is always fulfilled after a finite
number of steps if a new better iteration point is never found. This proves the finite
termination of Algorithm 8.2. First, we notice that tξ k+1 + (1 − t)uk ∈ Uk+1 for
any t ∈ (0, 1) meaning that

‖uk+1‖2 ≤ ‖tξ k+1 + (1− t)uk‖2 = ‖uk + t (ξ k+1 − uk)‖2

= ‖uk‖2 + 2tuTk (ξ k+1 − uk)+ t2‖ξ k+1 − ūk‖2.

In addition, local Lipschitz continuity of a DC function guarantees that the Goldstein
ε-subdifferential ∂Gε f (x) is bounded at x with a Lipschitz constant L > δ

determined at that point and thus ‖ξ‖ ≤ L for all ξ ∈ ∂Gε f (x). On the other hand,
the inequality (8.39) yields that ξTk+1uk < m̄‖ūk‖2 and we obtain

‖uk+1‖2 ≤ ‖uk‖2 + 2tuTk (ξ k+1 − uk)+ 4t2L2

< ‖ūk‖2 − 2t (1− m̄)‖uk‖2 + 4t2L2

for each m̄ ∈ (m̂, 1). Since t ∈ (0, 1), we can select t = (1−m̄)‖uk‖2

4L2 and this gives
the approximation

‖uk+1‖2 < ‖uk‖2
(

1− (1− m̄)2‖uk‖2

4L2

)
for all m̄ ∈ (m̂, 1).

In addition, there exists m̄ ∈ (m̂, 1) such that 2(1− m̄)2 > (1− m̂)2. Therefore, by
selecting such m̄ and taking into account that ‖uk‖ > δ for each k > 0 we get

‖uk+1‖2 < ‖uk‖2
(

1− (1− m̂)2δ2

8L2

)
.

From this and ‖u1‖ ≤ L we can conclude that

‖uk‖2 < ‖u1‖2
(

1− (1− m̂)2δ2

8L2

)k−1

≤ L2
(

1− (1− m̂)2δ2

8L2

)k−1

showing that when

k ≥
⎡

⎢
⎢
⎢

ln(δ2/L2)

ln
(

1− (1−m̂)2δ2

8L2

)

⎤

⎥
⎥
⎥
+ 1

the stopping criterion ‖uk‖ ≤ δ is satisfied. ��
Next, similar to the PBDC method, we show that during one iteration of the

DBDC method the number of null steps is finite.
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Proposition 8.4 Let Assumption 8.1 be valid. At any iteration k, for any δ > 0,
Algorithm 8.3 can pass through Steps 3–7 only finitely many times before entering
Step 8 or the escape procedure in Step 4.

Proof The proof is similar to that of Proposition 8.3. Nevertheless, we do not need
to consider Case 1, since the execution of Step 4 terminates the iteration k. Thus, we
consider only Cases 2 and 3. Furthermore, in Case 3 we do not have the sequence
{ηi}, since ηi is replaced everywhere with the parameter δ > 0. This means that η̂ is
also replaced with this parameter. ��

The final result establishes the finite convergence of the DBDC method.

Theorem 8.7 Let Assumptions 8.1 and 8.3 be valid. For any δ > 0 and ε > 0,
Algorithm 8.3 terminates after a finite number of iterations at a point x∗ satisfying
the approximate Clarke stationarity condition

‖ξ∗‖ ≤ δ with ξ∗ ∈ ∂Gε f (x∗).

Proof Algorithm 8.3 terminates when the stopping condition in Step 8 is satisfied
and this condition guarantees approximate Clarke stationarity. Similarly to the proof
of Theorem 8.3 we next show that if the DBDC method never terminates then the
objective function f is not bounded from below. This is a contradiction, since the
boundedness of f follows from LLC and Assumption 8.1.

First, notice that if the stopping condition is never fulfilled then Algorithm 8.3
generates an infinite sequence {xk}. Proposition 8.4 and Theorem 8.6 guarantee
that a new iteration point xk+1 is always found after a finite number of null steps.
Moreover, a new point is obtained either from Step 4 or Step 5. In the first case,
Algorithm 8.2 produces this point and therefore the inequality

f (xk+1)− f (xk) ≤ −m̂εδ < 0

is always satisfied. In the latter case, the descent condition (8.34) holds and similarly
to the proof of Theorem 8.3 we can show that

f (xk+1)− f (xk) ≤ − mδ2

2t̄max
,

by taking into account (8.22) and the fact that the parameter ηi is replaced
everywhere with δ > 0. Thus, after each iteration of the DBDC method f (xk+1)−
f (xk) ≤ −σ < 0, where σ = min{m̂εδ,mδ2/(2t̄max)}. This enables us to write

f (xk)− f (x0) ≤ −kσ

and a contradiction follows by passing to the limit. ��
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8.6 Piecewise Concave Bundle Method DCPCA

In this section, we briefly describe the main idea of the piecewise concave bundle
method for unconstrained DC optimization (DCPCA), which terminates at points
satisfying approximate ε-criticality. We also compare the model of the DCPCA with
the one used in the PBDC and DBDC methods. For details of the DCPCA, we refer
to [16].

The idea in the model construction is to substitute the DC components with their
convex cutting plane models (8.7). Thus, the nonconvex DC cutting plane model of
a DC function f is given by

f̃ k(x) = f̂ k
1 (x)− f̂ k

2 (x)

and in this general form the model is the same as the one used in the PBDC
and DBDC methods. However, the bundles of the DC components used in the
DCPCA differ from the ones used in the previous methods. In the PBDC and DBDC
methods, both bundles of the DC components refer to a global model, since the
points included into the bundles are collected from the current and past iterations.
Nevertheless, in the DCPCA the bundle of the first DC component f1 only contains
information from points which are close to the current iteration point xk , while the
bundle of f2 refers to the global model. Thus, during each iteration we maintain a
local approximation for the DC component f1.

In order to obtain a search direction in the DCPCA method, the nonconvex
cutting plane model is rewritten as

f̃ k(x) = max
j∈J k1

{
f (xk)+ ξT1,jd − αk1,j −Δk

2(d)
}
. (8.40)

Therefore, the model can be seen as a pointwise maximum of concave piecewise
affine functions. Different from the previous bundle methods, the search direction
problem constructed from the nonconvex model (8.40) is not solved exactly, but
instead it is locally approximated with an auxiliary convex quadratic problem. In
addition, DCPCA utilizes a supplementary convex quadratic problem to improve
the search direction at points which are far away from the current iteration point xk .

After the search direction is obtained, a line search procedure is executed in the
DCPCA method to decide whether a serious step or a null step is performed. If
a null step occurs the current iteration point does not change and only the bundle
Bk

1 of the DC component f1 is updated with a new bundle element improving the
model. However, if a serious step occurs a new better iteration point xk+1 is obtained
and both bundles are updated. Therefore, the bundle Bk

2 needs to be updated only
whenever a serious step is done. On the other hand, the bundle Bk

1 is updated in
every step. However, in every serious step we are able to reduce the bundle Bk

1,
since for the DC component f1 we maintain a local approximation, and thus each
bundle element of Bk

1 far away from xk+1 can be removed at a serious step.
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8.7 Numerical Results

In this section, we illustrate the performance of the PBDC and DBDC methods with
nonsmooth DC test problems. We start with demonstration of the main difference
between these two methods using an illustrative example. Then, we compare the
performance of the PBDC and DBDC methods with that of the proximal bundle
method MPBNGC (see Chap. 13) which is designed for a general nonsmooth
objective function. With this comparison the goal is to justify the usage of the DC
bundle methods when the DC structure of the problem is available.

Illustrative Example The PBDC method converges to a critical point and due to
this the obtained solution may be located in an unfavourable place being unable
to describe an interesting feature for the objective. However, this disadvantage is
overcome in the DBDC method with the escape procedure which is illustrated in
the following example.

Example 8.6 Consider the functions f and their DC components f1 and f2
from Examples 8.1–8.3. Note that in each of these examples the point x∗ = 0
is a critical point but not Clarke stationary. Due to this, the PBDC method can
stop at this critical point. On the other hand, in the DBDC method the fulfilment
of the criticality condition at x∗ leads to the escape procedure presented in
Algorithm 8.2.

The escape procedure starts by calculating a subgardient ξ of f at x∗ = 0
by using either a direction d1 = 1 or d1 = −1. In Examples 8.1 and 8.3, we
always obtain ξ = 1 regardless of the selection of d1 whereas in Example 8.2
the result is either ξ = 1 or ξ = 2 depending on whether we use d1 = 1
or d1 = −1, respectively. However, both ξ = 1 and ξ = 2 yield the search
direction d2 = −1. Furthermore, in each example we obtain the same value
of the directional derivative of f , that is, f ′(x∗; d2) = f (0; −1) = −1. Thus,
with the selection of m̂ ∈ (0, 1/2) the condition (8.31) is not satisfied, since for
both ξ = 1 and ξ = 2 we deduce that

f ′(x∗; d2) = −1 ≤ −m̂‖ξ‖.

This shows that in all three examples d2 is the descent direction. Thus, the
DBDC is able to generate a better iteration point and bypass the problematic
critical point x∗.

Numerical Experiments The numerical experiments were carried out using 53
instances of 16 academic DC test problems from [23]. More specifically, Problems
1–10 are introduced in [21] whereas Problems 11–16 can be found from [22]. The
selection of the input parameters of the PBDC and DBDC is shown in Table 8.1. In
addition, in both DC bundle methods the size of B1 is set to min{n + 5, 1000} and
the size of B2 is three. In Algorithm 8.2, the size of the set Uk is restricted to 2n.
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Table 8.1 The input parameters of the PBDC and DBDC methods

PBDC DBDC

δ =

⎧
⎪⎨

⎪⎩

0.005n, if n < 150,

0.015n, if 150 ≤ n ≤ 200,

0.05n, if n > 200,

δ =
{

10−5, if n ≤ 200,

10−4, if n > 200,

ε = 0.1, ε =
{

10−6, if n ≤ 50,

10−5, if n > 50,

L1 = 1000, m̂ = 0.01,

L2 = 1000, θ = 5 · 10−5,

The same input parameters in both methods

r =

⎧
⎪⎨

⎪⎩

0.75, if n < 10,

the first two decimals of n/(n + 5), if 10 ≤ n < 300

0.99, if n ≥ 300,

R = 107,

c = 0.1,

m = 0.2.

Furthermore, in MPBNGC the bundle size is fixed to min{n+3, 1000} and the final
accuracy is set to 10−10. Other input parameters of the MPBNGC are selected as
default values [29].

Both PBDC and DBDC methdos are implemented using double precision Fortran
95 whereas the MPBNGC is implemented in double precision Fortran 77. The
numerical tests are performed on an Intel� CoreTM i5-2400 CPU (3.10 GHz,
3.10 GHz) running under Windows 7 and gfortran is used as a compiler.

To illustrate the numerical results we use performance profiles [10] which are
presented in Figs. 8.4, 8.5, 8.6, and 8.7. Figure 8.4 contains the performance profiles
with all three solvers and Figs. 8.5, 8.6, and 8.7 present pairwise comparisons. In all
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Fig. 8.4 The performance profiles for the PBDC, DBDC and MPBNGC with 45 instances. (a)
function eval. (b) subgrad. eval. (c) CPU time
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Fig. 8.5 The performance profiles for the PBDC and DBDC with 51 instances. (a) function eval.
(b) subgrad. eval. (c) CPU time
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Fig. 8.6 The performance profiles for the PBDC and MPBNGC with 45 instances. (a) function
eval. (b) subgrad. eval. (c) CPU time
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Fig. 8.7 The performance profiles for the DBDC and MPBNGC with 45 instances. (a) function
eval. (b) subgrad. eval. (c) CPU time

cases the number of function evaluations, the number of subgradient evaluations and
CPU time are used to draw performance profiles. Furthermore, in each performance
profile we include from 53 instances of the test problems only those where the
compared methods yield the same (local) solution. That is, 45 instances of the test
problems were used for the performance profiles in Figs. 8.4, 8.6, and 8.7 whereas
51 instances were used in Fig. 8.5.

Results show that both the DC bundle methods PBDC and DBDC outperform
the MPBNGC method in the sense of the number of function and subgradient
evaluations. However, the pairwise comparison of the PBDC and DBDC methods,
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presented in Fig. 8.5a, b, does not clearly show superiority of either of them.
Figure 8.4c shows that the DBDC method performs slightly better than the other
two methods in the sense of required CPU time. If we restrict our consideration to
the pairwise comparison of the PBDC and DBDC methods (see Fig. 8.5c) then the
differences in CPU time are not so significant. Furthermore, Fig. 8.6c demonstrates
that the MPBNGC method is slightly better than the PBDC method in terms of CPU
time.

One interesting feature of the DC bundle methods PBDC and DBDC is that they
often find the global or best known solution for test problems, even though these
methods are only local search methods. For example, in 48 out of 53 instances of
the test problems both DC bundle methods find the best known solutions whereas
the bundle method MPBNGC obtains the best known solutions only in 44 instances.
This indicates that the DC cutting plane model of the DC objective function is able
to capture some relevant information about the objective in order to avoid local
optimizers.

8.8 Conclusions

In this chapter, we concentrate on the problem of unconstrained minimization
of nonsmooth functions represented as the difference of two convex functions.
Necessary and sufficient optimality conditions for such problems are presented
and the relationship between sets of different stationary points are discussed in
detail. Two different bundle methods are presented to solve DC problems together
with their convergence analysis. In addition, the cutting plane model used in these
methods is compared to a different DC model. The performance of the methods
are demonstrated using nonsmooth test problems with DC objective functions. The
results clearly show that the use of DC structure in NSO leads to the design of
efficient and accurate methods in comparison with general purposed NSO methods.
Furthermore, DC optimization methods based on the extension of the bundle
methods for convex optimization are highly successful in finding global solutions to
DC optimization problems.
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Chapter 9
Beyond First Order: VU -Decomposition
Methods

Shuai Liu and Claudia Sagastizábal

Abstract When minimizing a nonsmooth convex function bundle methods are well
known by their robustness and reliability. While such features are related to global
convergence properties of the algorithm, speed of convergence is a different matter,
as fast rates cannot be expected if the objective function lacks smoothness.

In the typical bundle dichotomy that splits iterates between null and serious steps,
the latter subsequence converges with R-linear speed. Moving from the first-order
method realm to the world of superlinear speed is possible when realizing that
nonsmoothness often appears in a structured manner. This is the basis of the VU-
decomposition approach presented in this chapter. Thanks to this decomposition,
it is possible to make a Newton-like move in certain U-subspace, where all the
function “smoothness” concentrates at least locally. On its orthogonal complement,
the “sharp” V-subspace, an intermediate iterate is defined such that the overall
convergence is driven by the U-step. As a result, the serious-step subsequence
converges with superlinear speed.

By focusing on the proximal variants of bundle methods, this chapter intro-
duces gradually the VU-theory and the ingredients needed to build superlinearly
convergent algorithms in nonsmooth optimization. For functions whose proximal
points are easy to compute, as in machine learning, an implementable quasi-Newton
VU-algorithm is given. The bundle machinery is incorporated for functions whose
proximal points are not readily available. In this case, superlinear speed can be
achieved by solving two quadratic programming problems per iteration.

9.1 Introduction

This book deals with methods for solving optimization problems of the form (1.1).
In this chapter we focus on fast variants for unconstrained convex problems, that
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is, when in (1.1) the objective function is convex and the feasible set is the whole
space, that is, G = R

n.
Classical forms of bundle algorithms, presented in Chap. 3, belong to the family

of first-order methods. These are convergent algorithms defining a subsequence of
iterates (the so-called serious steps) that eventually lead to a minimizer. Making an
analogy with nonlinear programming, that deals with smooth functions, the serious
step subsequence in bundle methods corresponds to iterates in gradient or steepest
descent schemes. It is only natural that their speed of convergence is linear at best;
we recall this result, due to [25], in Sect. 9.2.

Since the advent of quasi-Newton methods for nonlinear programming in the
1980s the nonsmooth optimization (NSO) community struggled to replicate those
techniques and obtain convergence rates that are faster than linear. The quest was
not an easy one, considering that passing from the concept of a gradient (a singleton)
to a subgradient (a set) is already hard. When it comes to second-order objects the
situation worsens, as one needs to deal with a set of matrices, instead of just one
Hessian.

As explained in [21] (see also [27]), increasing convergence speed of NSO
methods was a recurrent concern. For more than 20 years, the superlinearly
convergent approach [9], a one-dimensional forerunner of the VU-decomposition,
enjoyed the rare status of unique (and perfect) specimen. For higher dimensions, that
is for n > 1, a breakthrough was the variable metric proximal bundle method [2, 10],
which exploited the variable metric of the Moreau-Yosida regularization of f and
interpreted the subsequence of serious iterates as if generated by a preconditioned
gradient scheme. The works [3, 16, 22, 24] explore further the equivalence between
minimizing a function or its regularization (keeping in mind that computing the later
at one point can prove as difficult a task as minimizing the former; see Remark 9.1).

The appeal of resorting to the Moreau-Yosida detour is that, having a Lipschitzian
gradient, the regularization is prone to having some kind of Hessian that could be
approximated by a quasi-Newton scheme and yield rapid convergence. However, in
[12] it was shown that for the regularization to have a Hessian everywhere, the
original function must be of class C2. From the NSO perspective, the situation
looked not too promising; fortunately [12] also points out the existence of a special
second-order object, provided the nonsmooth function f is restricted to certain
subspace. The bivariate function

f (x) = f 1(x1)+ f 2(x2) = |x1| + a

2
x2

2 ,

depending on a positive parameter a and considered in Example 9.1, illustrates
well the situation. Even though f fails to be differentiable when x1 = 0, when
restricted to the manifold M := {x = (0, x2) : x2 ∈ R} the function coincides with
a
2x

2
2 , looks smooth, and has a (one-dimensional) Hessian equal to a. As a result,

performing a Newton move on f |M drives the variable x2 to zero. In the VU-jargon,
this corresponds to the U-step. The V-step acts on the first component, projecting
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the iterate onto the subspace of smoothness. For this simple function, the minimizer
is found by taking only one U-step followed by one V-step.

For a general convex function the situation is not as straightforward, because
several approximations need to be suitably done. In particular, identifying the V-
subspace, that is, gathering at a given point all the nonsmoothness of f , proves to
be a difficult task. Thanks to [18, Theorem 5.1] this can be done by computing
the proximal point operator. This interpretation is a key to approximate the V-
step, as a bundle mechanism ending successive null steps with a serious step gives
an implementable algorithm to approximate proximal points, [1, 4, 6]. The same
mechanism provides a good approximation for the U-Newton direction that drives
the convergence speed of the serious subsequence in a superlinear manner.

This chapter is organized to introduce step by step the various layers of
approximations needed to put in place an implementable VU-bundle method that
is superlinearly convergent. Throughout the presentation the emphasis is put on
transmitting the main ideas and concepts, illustrating with simple examples all
the presented material. Section 9.2 revises proximal bundle methods, seen from
the perspective [4] related to the proximal point operator. A result by [25] stating
R-linear convergence for the method is given in this section. The main elements
of the VU-theory are recalled and illustrated with examples in Sect. 9.3. This
section revises the important notion of fast track, over which a partial second-
order expansion for the function exists when parameterized in the U-subspace.
The superlinearly convergent, yet conceptual, VU-algorithm [13] is the topic
of Sect. 9.4. This scheme is made implementable gradually, in the subsequent
sections. Section 9.5 links the V-step with the proximal operator and explains
how to make a dynamic approximation of the desired V and U-subspaces. The
new objects, depending on the VU-decomposition around the current iterate should
asymptotically make a good guess of the VU-objects at the considered minimizer.
An implementable quasi-Newton VU algorithm with exact prox-calculations is
given in Sect. 9.6. The method is superlinearly convergent and fully implementable,
for functions whose proximal points can be computed exactly without much effort
as in many applications in machine learning. For functions whose proximal points
are difficult to compute, the bundling machinery is incorporated in Sect. 9.7. In this
case, the price to pay for the gain in accuracy provided by the superlinear speed is in
the need of solving two quadratic programming problems per iteration. The chapter
ends with final remarks given in Sect. 9.8.

9.2 Linear Convergence of Proximal Bundle Methods

The proximal point mapping of a function f is defined by

pμf (·) := argmin
y∈Rn

f (y)+ μ

2
‖y − ·‖2,
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where μ is a positive parameter. Generally, computing the proximal points of
the objective function is very difficult. Proximal bundle methods compute the
proximal points of some simpler model of the objective function which makes the
computations much easier. For example, for piecewise linear models the proximal
bundle method needs to solve only a quadratic programming problem. After
checking if the function value at the proximal point is sufficiently smaller than the
current best functional value, these methods update the model through the manner
of bundle methods, that is, by adding and/or deleting some affine planes from the
bundle of information to improve the approximation of the model. Typical proximal
bundle methods follow the structure in Algorithm 9.1 (cf. [4, Algorithm 4.1]).

Algorithm 9.1: Proximal bundle method

Data: starting point x0, a parameter m ∈ (0, 1), a positive sequence μk.
1 Set k← 0, iteration index for serious steps.
2 for � = 0, 1, . . . do
3 Choose a convex model function ϕ� : Rn → R.
4 Compute p� := pμkϕ

�
(
xk

)
and g� := μk

(
xk − p�

)
.

5 if f
(
xk

)− f
(
p�

) ≥ m
[
f

(
xk

)− ϕ�
(
p�

)]
, then

6 set xk+1 ← p� and k← k + 1.

In Algorithm 9.1, the inequality in line 5 is the descent test. It checks if the
difference of the function values is at least a portion of that of the model values.
Here, note that the model ϕ� is a lower approximation of f (thus f

(
xk

) ≥ ϕ�
(
xk

)
)

and ϕ�
(
xk

) ≥ ϕ�
(
p�

)
by definition of proximal point. If line 6 is executed then the

iteration is called a serious step or descent step. Otherwise, it is called a null step.
Originally the convex function ϕ� was chosen as the cutting-plane model of f . The
authors of [4] show that the convergence of this algorithm can be obtained for any
sequence of models

{
ϕ�

}
satisfying the following conditions:

ϕ� ≤ f for � = 0, 1, . . . , (9.1)

ϕ�
(
p�

)
+

〈
g�, · − p�

〉
≤ ϕ�+1

f
(
p�

)
+

〈
s�, · − p�

〉
≤ ϕ�+1

⎫
⎪⎬

⎪⎭
if the �-th iteration is a null step,

where s� ∈ ∂f (
p�

)
.
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Example 9.1 Consider the simple function in Fig. 9.1, defined by

f (x) = f 1(x1)+ f 2(x2) = |x1| + a

2
x2

2 .

Set x0 = (−1, 1) and compute a cutting plane at x0: f
(
x0

) + 〈
s0, x − x0

〉 =
−x1 + ax2 − a

2 , where s0 ∈ ∂f
(
x0

) = {(−1, a)}. This cutting plane will be
the first model ϕ0. Simple calculations yield that

pμϕ
0 (x) = x − 1

μ
(−1, a) =

(
x1 + 1

μ
, x2 − a

μ

)
.

It will be interesting to know how close the proximal mapping of the model
approximates that of the objective function. To give a basic idea, in this example
we calculate the proximal mapping of f :

pμf (x) =
(
pμf

1 (x1) , pμf
2 (x2)

)

with pμf
1 (x1) = x1 − PT (x1) and pμf

2 (x2) = μ

a + μ
x2,

where PT (x1) is the projection of x1 onto the interval T =
[
− 1

μ
, 1
μ

]
. Due to

the separability of pμϕ
0 and pμf we can compare their graphs. From Fig. 9.2

we can see that in the first component, the graphs of pμϕ
0 and pμf coincide

locally around the point x0
1 = −1 and have a small error around x0

2 = 1.

The global convergence of proximal bundle methods was shown in the early stage
of their developments; see for example [4, Theorem 4.4]. The local convergence,
stating the speed of converge, is shown for the serious step subsequence by
interpreting iterates as if generated by an epsilon-subgradient method for which
R-linearly convergence is proven.

To see this interpretation, consider only the serious steps with sequences ϕk ,
pk = xk+1, and gk = μk

(
xk − xk+1

)
. The properties of the proximal point

mapping entail that pk = xk − 1
μk

gk and gk ∈ ∂ϕk
(
pk

)
. In view of (9.1), we

have for all z ∈ R
n that

f (z) ≥ ϕk (z) ≥ ϕk
(
pk

)
+

〈
gk, z− pk

〉
= f

(
xk

)
+

〈
gk, z − xk

〉
− εk,

where

εk = f
(
xk

)
− ϕk

(
pk

)
−

〈
gk, xk − pk

〉
(9.2)
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Fig. 9.1 Graph of function f in Example 9.1
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is always nonnegative because gk ∈ ∂ϕk
(
pk

)
. Consequently, gk ∈ ∂εkf

(
xk

)
. It

follows that in Algorithm 9.1 the serious iterates satisfy the relation

xk+1 = pk = xk − 1

μk
gk, gk ∈ ∂εkf

(
xk

)
. (9.3)

This is actually an epsilon-subgradient method with step size 1
μk

. In [25] it is showed

that the sequence {xk} produced by (9.3) converges at least R-linearly to a minimum
point of f (if such a minimum exists), under the following conditions.
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Assumption 9.1 (Conditions for R-Linear Convergence) Consider the problem
of minimizing a convex function f with the formula (9.3). Suppose the following
conditions hold:

(i) the stepsize 1
μk

is bounded away from 0 and from∞;
(ii) there is a constant m ∈ (0, 1] such that the inequality

f
(
xk+1

)
≤ f

(
xk

)
+m

(〈
gk, xk+1 − xk

〉
− εk

)

holds for each k;
(iii) the inverse growth condition with modulus α > 0 holds for f .

A convex function f on R
n is said to satisfy the inverse growth condition if there

exist a neighborhood N of the origin in R
n and a constant α such that for each

s ∈ N , ∂f ∗(s) ⊂ ∂f ∗(000) + α‖s‖B̄(000; 1), where f ∗ is the conjugate of f and
B̄(000; 1) is the unit Euclidean ball. With respect to f , the inverse growth condition
means that locally f grows faster than a linear function when moving away from
its minimum point. As a result, a convex function with non-empty set of minimizers
X∗ satisfies the inverse growth condition if and only if there exist c ≥ 0 and δ > 0
such that

f (x) ≥ inf f + cd (x,X∗) , for any x ∈ X∗ + δB̄(000; 1), (9.4)

where d (x,X∗) denotes the distance function of x to X∗ (cf. [29, Theorem 4.3]).
For the function f in Example 9.1, the inverse growth condition holds because (9.4)

can be satisfied with any c ∈ (
0, a2

]
and δ =

√
2
c

.
In order to show the R-linear convergence, we can apply the Brøndsted-

Rockafellar Theorem (see [25, Theorem 2]) on xk and gk . Assumption 9.1 (iii),
of inverse growth condition for a sequence uk ∈ ∂f ∗(000) = X∗, gives an upper
bound for the quantity ‖xk − uk‖ depending on gk and εk . Combining this with
the fact that gk ∈ ∂εkf

(
xk

)
and Assumption 9.1 (ii), we deduce f (xk) − inf f =

f (xk) − f (uk) ≤ κθ2n for some constants κ > 0 and θ > 0. Based on this, then
we utilize (9.4) to get an upper bound for ‖xk − uk‖: ‖xk − uk‖ ≤ λθk for some
constant λ > 0 and an upper bound for ‖x∗ −uk‖, where x∗ is the limit point of the
sequence {xk}, ‖x∗ − uk‖ ≤ τθk for some constant τ > 0. Finally, putting together
the different bounds, the desired inequality ‖xk − x∗‖ ≤ ‖xk −uk‖+ ‖x∗ −uk‖ ≤
(λ+ τ ) θk holds.

Regarding Algorithm 9.1, the update of prox-parameters at serious steps can
be done so that Assumption 9.1 (i) is satisfied. The descent test ensures that
Assumption 9.1 (ii) holds for such subsequence, using (9.2) and recalling that at
serious steps f

(
xk

) − f
(
xk+1

) ≥ m
[
f

(
xk

)− ϕk
(
xk+1

)]
. It follows that, under

the inverse growth condition, proximal bundle methods are R-linearly convergent
on the serious step subsequence.
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Remark 9.1 (Exact Proximal Point Method) For some simple functions, the proxi-
mal point operator can be computed easily without resorting to a bundle mechanism
and a model. This is the case for the L1-norm, whose proximal mapping is called
soft-thresholding operator.

The proximal point algorithm defines

xk+1 = pμkf (x
k) = xk − 1

μk
gk for gk ∈ ∂f (xk+1). (9.5)

By following a reasoning similar to the one in (9.3), the relation gk ∈ ∂εkf (x
k)

holds now for an error

εk = f
(
xk

)
− f

(
xk+1

)
−

〈
gk, xk − xk+1

〉

instead of (9.2). Therefore, Assumption 9.1 (ii) is in fact an equality, which holds
with m = 1. As long as the prox-parameter sequence is kept bounded, the proximal
point method is also R-linear convergent for functions satisfying the inverse growth
condition.

An additional property of the proximal point operator is its relation with the
Moreau-Yosida regularization of f :

Fμ(·) := min
y∈Rn

f (y)+ μ

2
‖y − ·‖2,

whose Lipschitzian gradient is given by ∇Fμ(x) = μ
(
x − pμf (x)

)
. Since

minimizing f is equivalent to minimizing Fμ, the proximal iteration (9.5) can be
interpreted as a preconditioned gradient step to minimize the regularization:

xk+1 = xk − 1

μk
∇Fμk (xk).

This interpretation sheds light on the role of the proximal parameter in terms
of convergence speed. For the method to be more rapid, 1/μk should contain
information on F ’s “curvature” and approximate the Moreau-Yosida Hessian. For
this to happen, the Hessian should exist. For Example 9.1 there is no curvature in
the first component whenever μ|x1| ≤ 1, as

∇Fμ(x) =
⎛

⎝
0

aμ

a + μ
x2

⎞

⎠ .

By contrast, on the second component a second-order object that could be exploited

algorithmically does exists, namely
aμ

a + μ
.
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As illustrated by Example 9.1, it is possible to decompose the space into components
along which some kind of second-order object can be defined. This is the basis of
the VU-decomposition, introduced below.

9.3 Introduction of VU-Analysis

The pursuit of superlinear convergent methods leads us to the study of second-order
differentiability of a convex function, such as the second-order expansion used in
Newton method forC2 functions. In the nonsmooth case, we often find convex func-
tions that, when restricted to a special trajectory, admit a second-order expansion
at a certain point x in the trajectory. Consider again the function in Example 9.1.
Restricted to its only ridge of nondifferentiability M := {x ∈ R

n : x1 = 0}, the
function is quadratic: f |M = a

2x
2
2 . The function looks smooth along the manifold

M.
The trajectory of “apparent smoothness” is parametrized by a variable u in a

subspace U of Rn associated with x. If such trajectory exists for f then it is called a
fast track of f and the underlying second-order expansion is a partial second-order
expansion of f . For the function f in Example 9.1, the fast track is just M and its
partial second-order expansion is just f |M = a

2x
2
2 .

In this section we give a basic introduction of VU-analysis. We illustrate by
examples that some convex nonsmooth functions have fast tracks over which a
partial second-order expansion exists. We use the following notations:

affC the affine hull of the set C ⊂ R
n;

riC the relative interior of C;
xS the projection of a point x ∈ R

n onto a subspace S ⊂ R
n;

ND(z) the normal cone to the convex set D at z ∈ D;
TD(z) the tangent cone to the convex set D at z ∈ D;
S⊥ the orthogonal complement of the linear subspace S;
PS (C) the projection of the points in set C onto set S;
‖·‖S the Euclidean norm of the linear subspace S induced by R

n;
〈·, ·〉S the inner product of the linear subspace S induced by R

n.

We first give formal definitions of the notions in VU-analysis.

Definition 9.1 (VU-Objects) Given a convex function f : Rn → R and a point
x̄ ∈ R

n, let g be any subgradient in ∂f (x).

• The VU-decomposition [13] of Rn at x̄ is defined by two orthogonal subspaces
such that Rn = U (x)⊕ V (x) where

V (x) = span(∂f (x)− g) = aff(∂f (x̄))− g, U (x) = V (x̄)⊥ . (9.6)

Unless specified, we will use U and V to denote U (x) and V (x), respectively.
Accordingly, each x ∈ R

n can be decomposed into x = xU ⊕ xV .
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• The U-Lagrangian of f depending on the V-component gV is defined by

U 5 u 2→ LU
(
u;gV

) := inf
v∈V

{
f (x̄ + u⊕ v)− 〈

gV , v
〉
V
}
,

and the associated set of V-space minimizers is

W
(
u;gV

) := {
v ∈ V : LU

(
u;gV

) = f (x̄ + u⊕ v)− 〈
gV , v

〉
V
}
.

From the definition, we see that the subspace V is vacuous wherever f is
differentiable. When f is not differentiable, it is often smooth or “U-shaped” in
x + U , and “V-shaped” in x +V . This can be seen from the graph of the function in
Example 9.1. At any point x = (0, b) we have ∂f (x) = [−1, 1]× {ab} and we can
calculate easily V = R × 000 with U = 000 × R. From Fig. 9.1, we see indeed that in
the v-axis f is “V-shaped” and in the u-axis it is “U-shaped”.

The next example, from [11], has a more complicated and interesting structure.

Example 9.2 Consider the bivariate function

f (x) = max {f1(x), f2(x)} = max

{
1

2
‖x‖2 − α 〈e, x〉 , 〈e, x〉

}
,

where e = (0, 1)
T

, α is a nonnegative parameter and whose graph is shown in
Fig. 9.3. The subdifferential at x = (0, 0) is the segment [−αe, e], and thus f
is minimized at x. From the definition of the VU-decomposition it is easy to
calculate here

V (x) = 000×R and U (x) = R× 000.

Actually, we can calculate the subspaces V(x) and U(x) for all x ∈ R
2.

Note that V(x) is the 0 subspace if f is differentiable at x, in which case
U(x) = R

2. If x is such that f1(x) = f2(x), then ∂f (x) is just the line segment
[∇f1(x),∇f2(x)] = [x − αe, e]. By definition, the subspace V(x) is the line
spanned by the point (k, 1) where k = x1

x2−α−1 is the slope of the line segment.
The subspace U(x) is therefore the line perpendicular to V(x), that is, the line

spanned by
(
− 1

k
, 1

)
.

Definition 9.2 (Fast Track) Given g ∈ ri ∂f (x), we say that the set

F := {
x + u⊕ v

(
u;gV

) : u ∈ B (000; τ ) ∩ U
}
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Fig. 9.3 Graph of function f in Example 9.2

is a fast track of f leading to a point x associated with g, if there exist τ > 0 and a
function v : U 2→ V such that

(i) v
(
u;gV

) |B(000;τ )∩U is a C2-function;
(ii) v

(
u;gV

) |B(000;τ )∩U satisfies v
(
u;gV

) |B(000;τ )∩U ∈ W
(
u;gV

)
;

(iii) LU
(
u;gV

) |B(000;τ )∩U is a C2-function.

Remark 9.2 The fast track definition above is different from that in [17, Defini-
tion 2.1] where the fast track is associated with a minimizer of f and is called
a fast track leading to a minimizer. We remove this requirement and allow x to
be any point, because typically instead of a minimizer, one has an iterate, say xk .
For the same reason, differently from [17], in condition (ii) the subgradient can be
any, not just g = 000. Another important difference is that in [17] the function v is
independent of gV , as it is supposed to be in the intersection of W

(
u;gV

)
for all

g ∈ ri ∂f (x). The analysis below is developed without assuming such a restrictive
condition which is hard to satisfy even for functions having second-order objects
along a subspace. This is shown by the following example.

Example 9.3 Consider the bivariate function

f (v, u) = max
{
f 1(v), f 2(u)

}
= max

{
|v|, a

2
u2

}
,

where a is a positive scalar. This function is differentiable everywhere except
on the locus of the equation |v| = a

2u
2. The set defined by that locus is curved

and not linear as the manifold M in Example 9.1.
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The unique minimizer of our function is x = (0, 0), where the subdiffer-
ential is ∂f (x) = [−1, 1] × {000}. From Fig. 9.4 we see that the graph of f is
“U-shaped” along the u-axis and “V-shaped” along the v-axis.

Consider the two subspaces V = R × 000 and U = 000× R. We now construct
a trajectory called fast track, over which f admits a second-order expansion
parametrized by u ∈ U . Let γ be the V-component of any element in ri ∂f (x).
Then as ri ∂f (x) = (−1, 1) × 000 we have γ ∈ (−1, 1). Working out the
calculations of three cases, we get

W (u; γ ) =

⎧
⎪⎪⎨

⎪⎪⎩

{
a
2u

2
}
, if γ ∈ (0, 1),

{
v : |v| ≤ a

2u
2
}
, if γ = 0,

{− a
2u

2
}
, if γ ∈ (−1, 0).

(9.7)

Note that when it is clear that a point is in R× 000, we omit the 0 component. In
view of the relationship between W and LU we readily obtain

LU (u; γ ) = (1− |γ |) a
2
u2. (9.8)

Fix any |γ | < 1. We define a function v : U 2→ V as

v (u; γ ) = a

2
sign (γ ) u2, (9.9)

which belongs to the set W (u; γ ). Since both v (u; γ ) and LU (u; γ ) are C2-
functions, we have constructed the following fast-track for f ,

Fγ = {x + (v (u; γ ) , u) : u ∈ U}
= {χ (u; γ ) : u ∈ U} ,

where χ (u; γ ) := (
a
2 sign (γ ) u2, u

)
. We call the set Fγ a fast track because

f can be expanded up to second order along it:

f (χ (u; γ )) = a

2
u2, ∇Uf (χ (u; γ )) = au, and ∇2

Uf (χ (u; γ )) = a.

Notice that if we were to follow the definition of a fast track in [17, Defini-
tion 2.1], then the fast track for f would shrink to only

{
(0, 0)T

}
, the minimizer

itself. Thus the new definition of a fast track, parametrized by gV , generalizing
the original notion.
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Fig. 9.4 Some objects of the function f in Example 9.3

Remark 9.3 A concept closely related to a fast track is partial smoothness [14,
Definition 2.7]. A convex function h is said to be partly smooth at x relative to
a set M, if M is a manifold around x and the following three properties hold:

(i) (restricted smoothness) the restriction h|M is smooth around x;
(ii) (normals parallel to subdifferential) NM(x) = V(x);

(iii) (subgradient continuity) the subdifferential ∂h is continuous at x relative to
M.

The second property above is equivalent to TM(x) = U(x). As an exercise, the
readers can verify that the function f in Example 9.3 is partly smooth at any point
in M := {

(v, u) : v = a
2u

2
}

relative to M itself.

The VU-decomposition and the U-Lagrangian satisfy the following properties
which are crucial for the development of VU-algorithms.

Proposition 9.1 (VU-Relations) Given any g ∈ ri ∂f (x), the subspaces U and V
and the U-Lagrangian satisfy

U = {
w ∈ R

n : f ′(x̄; −w) = −f ′ (x̄;w)} = N∂f (x)(g), (9.10)

V = T∂f (x)(g),

W
(
u;gV

) �= ∅, W (
000;gV

) = {000} , LU
(
000;gV

) = f (x) , (9.11)
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∂LU
(
u;gV

) = {
g′U : g′U ⊕ gV ∈ ∂f (x + u⊕ w)

}
, w ∈ W (

u;gV
)
, (9.12)

LU is convex and is differentiable at 000,with ∇LU
(
000;gV

) = gU , (9.13)

W
(
u;gV

) = o (‖u‖U ) , for all g ∈ ri ∂f (x) , (9.14)

the projection PU (∂f (x)) is a singleton, (9.15)

W
(
(x − x)U ;gV

) = T
(
x;gV

)+ {(x − x)V } , (9.16)

∂LU
(
(x − x)U ;gV

) = {
g′U : g′U ⊕ gV ∈ ∂f

(
x + 000⊕ v∗

)}
, (9.17)

where W
(
u;gV

) = o (‖u‖U ) is a short hand for

∀ ε > 0 ∃ δ > 0 : ‖u‖U ≤ δ ⇒ ‖w‖V ≤ ε‖u‖U for any w ∈ W (
u;gV

)
,

v∗ ∈ T (
x;gV

)
and

T
(
x;gV

) := argmin
v∈V

{
f (x + 000⊕ v)− 〈

gV , v
〉}
. (9.18)

Proof Properties (9.10)–(9.14) are from Proposition 2.2, Theorems 3.2 and 3.3, and
Corollary 3.5 of [13]. To see (9.15), observe from (9.6) that ∂f (x) ⊂ V + g and
the orthogonality of V and U gives PU (∂f (x)) ⊂ gU . To show (9.16), shorten the
notation to W := W

(
(x − x)U ;gV

)
write from its definition

W = argmin
v′∈V

{
f

(
x + (x − x)U ⊕ v′

)− 〈
gV , v

′〉}

= argmin
v′∈V

{
f

(
x + 000⊕ (

v′ + (x − x)V
))− 〈

gV , v
′〉}

= argmin
v′∈V

{
f

(
x + 000⊕ (

v′ + (x − x)V
))

(9.19)

− 〈
gV , v

′ + (x − x)V
〉+ 〈

gV , (x − x)V
〉}

= argmin
v∈V

{
f (x + 000⊕ v)− 〈

gV , v
〉}+ {(x − x)V } .

By (9.19), combined with (9.12), we immediately get (9.17). ��
In order to verify that (9.16) holds for the function f in Example 9.3, we

decompose x into xU⊕xV = (ux, vx) and find the expression for the set T (x; γ ) =
argminv

{
max

{|vx + v|, a2u2
x

}− γ v
}
. Simple calculations yield

T (x; γ ) =

⎧
⎪⎪⎨

⎪⎪⎩

{
a
2u

2
x − vx

}
, if γ ∈ (0, 1),

{
v : |v + vx | ≤ a

2u
2
x

}
, if γ = 0,

{− a
2u

2
x − vx

}
, if γ ∈ (−1, 0).
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Omitting the 0 component, (x − x)V = vx and thus, by (9.7),

T (x; γ )+ (x − x)V = T (ux; γ ) .

Finally, in view of (9.11) and (9.13),

LU
(
u;gV

) = f (x)+ 〈
gU ,u

〉+ o (‖u‖) .

Essentially, the U-Lagrangian can be considered as a first-order expansion of f in
the U subspace. If f is minimized at x then 000 ∈ ∂f (x). In view of (9.11) and (9.15),
we get that LU is minimized at 000. Moreover, the third equation of (9.11), implies
that LU has the same optimal value with f .

A convex function ϕ is said to have a generalized Hessian Hϕ (x0) at a point
x0 if the gradient ∇ϕ (x0) exists and there exists a symmetric positive semidefinite
operator Hϕ (x0) such that

∂ϕ (x0 + d) ⊂ ∇ϕ (x0)+Hϕ (x0) d + B (000; o (‖d‖)) .

If LU
(·,gV

)
has a generalized Hessian at 000, then the Hessian is called a U-Hessian

of f at x associated with gV , and denoted by HgV
U f (x). Consequently, the existence

of a U-Hessian HgV
U f (x) implies

∂LU
(
u;gV

) ⊂ gU + HgV
U f (x)u+ B (000; o (‖u‖U )) . (9.20)

In the case of Example 9.3, from (9.8) we see that ∇LU (u; γ ) = (1− |γ |) au
and ∇2LU (u; γ ) = (1− |γ |) a. Note that here Hγ

Uf (x) is a 2× 2 matrix with all
elements 0 except the lower-right corner which equals (1− |γ |) a.

9.4 A Conceptual VU-Algorithm

Based on the second-order information of a function in the U subspace, a conceptual
VU-algorithm with superlinear convergence can be constructed [13]. Such an
algorithm minimizes the U-Lagrangian via utilizing the U-Hessian so that a Newton
step in the U subspace is possible.

Assumption 9.2 (On the U-Hessian) For a minimum point x of f , 000 ∈ ri ∂f (x)
and there exists g ∈ ri ∂f (x) such that the U-Hessian HgV

U f (x) exists and is
positive definite in U .

Under Assumption 9.2, the relation (9.15), combined with (9.13) and (9.20), implies
that, for any minimum point x and any g ∈ ri ∂f (x),

∂LU
(
u;gV

) ⊂ HgV
U f (x)u+ B (000; o (‖u‖)) . (9.21)
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This condition implies a critical property useful for the convergence analysis. Fix
any g ∈ ri ∂f (x). If there are two sequences gkU and uk in U satisfying gkU ∈
∂LU

(
uk;gV

)
then

gkU = HgV
U f (x)uk + o (‖uk‖) . (9.22)

For the function f in Example 9.3, this corresponds to the identity

(1− |γ |) auk =
[

0 0
0 (1− |γ |) a

]
uk.

The conceptual algorithm in [13], given below, exploits these relations, assuming
perfect knowledge of the VU-decomposition and the U-Hessian at a minimizer.

Algorithm 9.2: Algorithm 4.5 of [13] with any fixed g ∈ ri ∂f (x)

Data: starting point x0, the subspaces U and V ; the V-gradient component gV
and the U-Hessian HgV

U f (x) are known, where x is a minimum point
of f .

1 V-Step. At iteration point xk , find an element

v∗k ∈ T
(
xk;gV

)
= argmin

v∈V

{
f

(
xk + 000⊕ v

)
− 〈

gV , v
〉}

(9.23)

(cf. (9.18)). Set pk := xk + 000⊕ v∗k .
2 U-Step. Take gk ∈ ∂f (

pk
)

such that gkV = gV so that gkU ∈ ∂LU((
pk − x

)
U ;gV

)
. Make a Newton step in pk + U : compute the solution u∗k of

HgV
U f (x)u = −gkU . (9.24)

3 Update. Set xk+1 ← pk + u∗ ⊕ 000 = xk + u∗k ⊕ v∗k . Set k← k + 1 and go to
line 1.

The idea behind this algorithm is that first the V-step generates some descent of
f in V fixing the position of the iteration point in U . Then the algorithm applies a
Newton step as the U-step on the U-Lagrangian of f to produce a direction in U .
The next iteration point is a sum of the two steps.

Let us consider the function f in Example 9.3 and take x0 = (2, 3)T , a = 2
and gV = 0.5. Then we can calculate v∗0 = 7, p0 = (9, 3)T , g0

U = 3, u∗0 = −3,
x1 = (9, 0)T , v∗1 = −9 and p1 = (0, 0)T . Notice that after the first V-step, p0

falls into the fast track
{
χ (u; 0.5) : χ (u; 0.5) = (

a
2u

2, u
)
, u ∈ U

}
. As illustrated

by Fig. 9.5, once in the fast track, only oneU-step is needed to find the U-component
of the minimizer, because the U-Lagrangian is quadratic along the fast track.
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Fig. 9.5 Trajectory of the iterations of Algorithm 9.2 for f in Example 9.3 with a = 2 and
gγ = 0.5

The original algorithm in [13] requires the subgradient g to be 000. It turns out that
this is not necessary, due to the property (9.21), any fixed g ∈ ri ∂f (x) can be used.
This additional flexibility may have some importance when performing numerical
results. The following theorem revises [13, Theorem 4.7] to take into account such
modification.

Theorem 9.1 (Superlinear Convergence of Conceptual VU-Scheme) Under
Assumption 9.2, the sequence xk constructed by Algorithm 9.2 satisfies ‖xk+1 −
x‖ = o

(‖xk − x‖).

Proof Denote uk =
(
xk − x

)
U = (

pk − x
)
U . From line 3 of Algorithm 9.2

and (9.16), the next iterate V-component satisfies the inclusion

(
xk+1 − x

)

V
= v∗k +

(
xk − x

)

V
∈ W (

uk;gV
)

and (9.14) gives in the limit, limk→∞
‖(xk+1−x

)
V‖‖uk‖U = 0. Since

0 ≤ ‖
(
xk+1 − x

)
V‖

‖xk − x‖ ≤ ‖
(
xk+1 − x

)
V‖

‖uk‖U → 0,

it holds that

‖
(
xk+1 − x

)

V
‖V = o (‖uk‖U ) = o

(
‖xk − x‖

)
. (9.25)

Combining (9.17) and line 2 of Algorithm 9.2 gives (9.22), because the inclusion

∂LU
(
uk;gV

) 5 gkU
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holds. Replacing u in (9.24) with u∗k , yields that

HgV
U f (x)u∗k = −gkU ,

which, in view of (9.22), implies that

HgV
U f (x)

(
uk + u∗k

) = o (‖uk‖U ) .

The positive definiteness of HgV
U f (x) yields ‖uk + u∗k‖U = o (‖uk‖U ). By line 3

of Algorithm 9.2, the next iterate U-component is
(
xk+1 − x

)
U = uk + u∗k .

Consequently, ‖(xk+1 − x
)
U‖U = o (‖uk‖U ) = o

(‖xk − x‖). This together
with (9.25) verifies the conclusion. ��

The conceptual scheme shows a mechanism to obtain the desired superlinear
convergence speed in nonsmooth optimization. The difficult question of how to pass
from the conceptual algorithm to an implementable one is addressed in the next
sections.

9.5 Towards Implementation

An obvious difficulty of implementing Algorithm 9.2 is in computing the required
dataU , V , and HUf (x) as they all depend on a minimum point x that is unknown. In
practice, those objects need to be properly approximated. For approximating the U-
Hessian, it is possible to use a quasi-Newton approach, which requires some second-
order objects associated with the iterate xk . To be aligned with this approach, as we
shall discuss later, the approximation of U and V also needs to be localized, that
is, instead of U and V , we need to use U

(
xk

)
and V

(
xk

)
, the subspaces associated

with xk .
Another major difficulty of implementing Algorithm 9.2 is the V-step, that is,

solving (9.23). In this section, we discuss in detail strategies for overcoming these
difficulties.

9.5.1 Replacing the V-Step by a Prox-Step

For implementation purposes, in Algorithm 9.2 the choice of a suitable element g

is crucial.

• Regarding the V-step, line 1 requires a solution v∗ ∈ T (
x;gV

)
, or, equivalently,

solving the optimality condition of (9.23), 000 ∈ PV (∂f (x + 000⊕ v∗)) − gV .
Together with line 1 of Algorithm 9.2, this means that the output of the V-step is
a point p such that gV ∈ PV (∂f (p)). A closer scrutiny suggests that the output
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p is designed to fall on a trajectory approximating a fast track, namely
{
x + u(x)⊕ v

(
u(x);gV

) : u(x) = (x − x)U , x → x
}
,

where v
(
u(x);gV

) = v∗ + (x − x)V ∈ W
(
u(x);gV

)
satisfies (9.14). To see

this, apply (9.16) to the expression

p = x + (x − x)U ⊕ (x − x)V + 000⊕ v∗
= x + (x − x)U ⊕ (v∗ + (x − x)V ) .

In the relations above, the fact that v
(
u(x);gV

) ∈ W
(
u(x);gV

)
satisfies

v
(
u(x);gV

) = o (‖u(x)‖) is fundamental (see Theorem 9.1 and (9.25)).
• Considering its usage in the U-step, finding a proper gV is also of great

significance. In [20, Theorem 4] it is shown that if a fast track leading to a
minimizer x of f exists, then proximal points of f at points close to x fall on
the fast track (see also [17, Theorem 5.2]). Under Assumption 9.2, one can take
g = 000. Even so, a point p such that 000 ∈ PV (∂f (p)) is difficult to obtain.

To overcome these difficulties, the authors of the implementable VU-algorithm
[20] employed a special bundle subroutine that involves solving two quadratic
programming (QP) subproblems in each iteration and approximates a pair of
trajectories called primal-dual tracks. We will briefly discuss the approaches used
in [20] in Sect. 9.7. Here we focus on strategies that do not require any bundle-type
routines, by establishing an equivalence between the V-step and the proximal point
operator. The proposition below also establishes the connection with the fast track.

Proposition 9.2 (Proximal Points Are on the Fast Track) Let x be a minimizer
of f . For the proximal point of f at an arbitrary x consider the VU-components

uμ(x) :=
(
pμ(x)− x

)
U and vpμ

(x) := (
pμ(x)− x

)
V .

Let g be an arbitrary element in ri ∂f (x), and v
(·;gV

) ∈ W (·;gV
)

be an arbitrary
singleton selection from U to V . The following statements are equivalent

(i) pμ(x) = x + uμ(x)⊕ v
(
uμ(x);gV

) ;
(ii) gV ∈ PV

(
∂f

(
pμ(x)

)) ; and
(iii) 000 ∈ T (

pμ(x);gV
)
.

Proof It is clear that pμ(x) = x + uμ(x) ⊕ v
(
uμ(x);gV

)
if and only if

v
(
uμ(x);gV

) = vpμ(x). The equivalence between the three assertions result from
applying (9.16) with pμ(x) replacing x. Since

W
(
uμ(x);gV

) = T
(
pμ(x);gV

)+ {
vpμ(x)

}

it suffices to show that 000 ∈ T
(
pμ(x);gV

)
. In turn, this is equivalent to gV ∈

PV
(
∂f

(
pμ(x)

))
because of the optimality condition of convex functions, and the

result follows. ��
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In view of Proposition 9.2, let us consider the following scenario. Suppose an
algorithm for minimizing f generates a sequence of iteration points xk and proximal
points pk := pμkf

(
xk

)
with the bounded parameterμk . If both xk and pk converge

to x, then uμk
(
xk

) → 000 (see Proposition 9.2 for the definition of uμk ) and (9.14)
gives

v
(
uμk

(
xk

)
;gV

)
= o

(
‖uμk

(
xk

)
‖
)

(9.26)

for any fixed g ∈ ri ∂f (x). Consequently, the proximal point pk will fall on the
following track:

{
x + uμk

(
xk

)
⊕ v

(
uμk

(
xk

)
;gV

)
: k is sufficiently large

}

provided that g satisfies

gV ∈ PV
(
∂f

(
pk

))
for all sufficiently large k. (9.27)

However, finding such g ∈ ri ∂f (x) can be very difficult and it may not exist at all.
Consider the function in Example 9.1. We have shown that its V = R × 000 and thus
PV (∂f (x)) = {1}, {−1}, or [−1, 1]. Let k > N a large integer so that

{
pk

}
k>N

is
sufficiently close to the minimizer. The element gV ∈ PV (ri ∂f (x)) = (−1, 1) such
that gV ∈ ∩k>NPV

(
∂f

(
pk

))
does not exist because ∩k>NPV

(
∂f

(
pk

)) = {1},
{−1} or ∅.

In view of Assumption 9.2, a more sensible approach is to use a subgradient
sequence {gk} such that gkV → 000. The definition of V implies that for any such
sequence, gkV ∈ PV (∂f (x)) for all sufficiently large k, because 000 ∈ ri ∂f (x).
Additionally, for rapid convergence, the condition (9.27) should hold, that is, the
VU-algorithm should define subgradients such that

gkV ∈ PV
(
∂f

(
pk

))
with gkV → 000 .

At this point, it is useful to recall Remark 9.1: minimizing the Moreau-Yosida
regularization is equivalent to minimizing the function. As the gradient of the former
is μ(x−pμf (x)), this means that a minimizer x̄ coincides with its proximal point.
Since it also holds that μk

(
xk − pk

) ∈ ∂f
(
pk

)
, in order to satisfy the conditions

above, a natural choice for the subgradients is to take

gk := μk
(
xk − pk

)
∈ ∂f

(
pk

)
.

(In the next section, we’ll see that this choice can be helpful in the implementation of
U-step too.) However, this subgradient choice prevents a direct application of (9.14),
because of the varying gk . Instead, we assume that

v
(
uμk

(
xk

)
;gkV

)
= o

(
‖uμk

(
xk

)
‖
)
. (9.28)
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Note that contrary to (9.26), the V-element in (9.28) has a varying parameter gk .
We can verify that the function f in Example 9.3 satisfies (9.28) because of (9.9).
To see this write from (9.9), ‖v(u;γ )‖‖u‖ = a

2 sign(γ )‖u‖. For any sequence uk → 000

with γ k ∈ (0, 1), we have limk→∞
‖v(

k;γ k
)‖

‖uk‖ = 0.
In summary, we do not assume the existence of a fast track (as is the case in [20]).

Instead, we require (9.28) to hold for

gk := μk
(
xk − pk

)
.

In this way, our V-step will calculate the proximal point pk , which falls on the
following track:

{
x + uμk

(
xk

)
⊕ v

(
uμk

(
xk

)
;gkV

)
: k is sufficiently large

}
.

9.5.2 A Quasi-Newton U-Step

After obtaining a proximal point pk and a subgradient gk = μk
(
xk − pk

)
, we

continue from the U-step in line 2 of Algorithm 9.2. Next, we see that in the U-
step of Algorithm 9.2 there is a specific requirement: gkU ∈ ∂LU

(
uk;gV

)
where

uk =
(
pk − x

)
U . This condition together with (9.21) is used to show (9.22), which

holds for any fixed g ∈ ri ∂f (x) as long as HgV
U f (x) exists. In our case, we have

chosen pk and gk such that they satisfy gk ∈ ∂f (
pk

)
and

gkU ∈ ∂LU
(
uk;gkV

)
. (9.29)

However, due to the varying gk , we may not be able to have the important
condition (9.22) as it depends on a fixed g. In order to use the property of the U-
Hessian in the convergence proof, we need to assume the following condition

gkU = H
gkV
U f (x)uk + o (‖uk‖U ) . (9.30)

Compared with (9.22), the new assumption (9.30) requires the existence of U-
Hessians associated with gkV for all k sufficiently large. Note that gkV must be in
PV (ri ∂f (x)) for k sufficiently large, which can be guaranteed as long as gk → 000
and 000 ∈ ri ∂f (x). One condition that yields (9.30) is

∂LU
(
uk;gkV

)
⊂ H

gkV
U f (x)uk + B (000; o (‖uk‖U )) .

Notice the similarity of this condition with (9.21).
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For the function f in Example 9.3 and k sufficiently large, gkV corresponds to
some γ k sufficiently close to 0. In view of (9.8) and (9.29),

gkU = μk
(
xk − pk

)

U
=

(
1− |γ k|

)
auk.

Consequently, assumption (9.30) holds, since it amounts to the identity

(
1− |γ k|

)
auk =

[
0 0
0 (1− |γ |) a

]
uk.

Now, we can start constructing an implementable quasi-Newton step in our
context. The subspaces U and V in general are difficult to compute because they
are defined at x, a minimizer of f . To be aligned with the quasi-Newton approach
and be able to use some localized second-order information of f , we need to use
subspaces defined at iteration points xk , that is, Uk := U

(
xk

)
and Vk := V

(
xk

)
. In

this way, gkU will not be used directly in the algorithm. Instead, it is approximated

by gkUk , which can be calculated by multiplying gk on the left by the matrix U
T

k ,
whose columns approximate an orthonormal basis of Uk . The dimension of Uk is
n× nk if the dimension of Uk is nk .

To approximate the inverse U-Hessian, we use a sequence of nk × nk symmetric
positive semidefinite matrices Qk . Consequently, the output of our quasi-Newton
step will be a vector in R

nk , defined by

u∗k := −QkU
T

k gk. (9.31)

Recall that the superlinear convergence of quasi-Newton methods for minimizing
C2 functions in general requires the Dennis-Moré condition:

(
Q′k −∇2f

(
xk

)−1
)
∇f

(
xk

)
= o

(
‖∇f

(
xk

)
‖
)
, (9.32)

where Q′k ∈ R
n×n is symmetric positive semidefinite. For the U-Lagrangian,

Eq. (9.32) is satisfied in a sense to be made precise below. We have gk satisfy-
ing (9.29) and (9.30). In order to use the inverse of the U-Hessian, we rewrite the
U-Lagrangian in the following form.

LU
(
·;V T

gk
)
:= inf

v∈Rn−m

{
f (x + U · +V v)−

〈
V

T

gk, v
〉}
, (9.33)

where U is an orthonormal basis matrix for U , V is a basis matrix for V , and m is

the dimension of U . Let ∇2LU
(
000;V T

gk
)

be the Hessian of the function defined in

(9.33) at 000. As we do not assume the existence of the Hessian at uk , the condition
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corresponding to (9.32) becomes

[
UkQkU

T

k − U∇2LU
(
000;V T

gk
)−1

U
T

]
gk = o

(
‖UT

gk‖
)
. (9.34)

Note also that (9.34) requires the Hessian ∇2LU
(

000;V T
gk

)
to be positive definite

for all k sufficiently large. For Example 9.3 we have V T = [1 0] and UT = [0 1].
For k sufficiently large, V

T
gk corresponds to some γ k sufficiently close to 0 and

∇2LU
(

000;V T
gk

)
= (

1− |γ k|a) is positive definite.

In summary, the U-step generates a direction u∗k as in (9.31) and requires (9.30)
and (9.34). In practice, the matrices Qk are updated using quasi-Newton formulas,
making sure that dimensions of Uk and Qk are consistent (see Remark 9.5). A
variety of methods can be used to calculate Uk , some of which are discussed in
Sect. 9.7.

9.6 An Implementable Algorithm with Exact
Prox-Calculation

The previous section primarily laid the background for implementing the original
V-step with a prox-step and the original U-step with a quasi-Newton U-step. In the
machine learning literature there is no shortage of functions whose proximal points
can be computed exactly. In addition, nowadays various techniques can be applied
to the quasi-Newton methods to reduce their computational cost. The resulting prox-
quasi-Newton VU-algorithm is given below.

Algorithm 9.3: The prox-quasi-Newton VU-algorithm

Data: starting point x0, a tolerance ε for termination, exact computation of the
prox operator for f with rules of updating parameter μ, a sequence of
n× nk matrices Uk approximating the basis of the subspace Uk with
dimension nk , and a sequence of nk × nk symmetric positive
semidefinite matrices Qk .

1 repeat
2 V-Step. Given xk , compute pk and gk .
3 U-Step. Make a quasi-Newton step in pk + Uk approximately: compute the

direction

u∗k := −QkU
T

k gk .

4 Update. Set xk+1 ← pk + Uku
∗
k and set k← k + 1.

5 until ‖gk‖ ≤ ε;
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Fig. 9.6 Trajectory of the first 3 iterations of Algorithm 9.3 for function f in Example 9.3 with
a = 2, μ = 1 and x0 = (2, 3)T

Figure 9.6 shows the trajectory of the first 3 iterations of Algorithm 9.3 for the
function f in Example 9.3. Notice that the first and third V-steps produce proximal
points on the fast track. The second iteration skips U-step because f (x1) =
f 1(x1

1) > f 2(x1
2) resulting a first null matrix, Q1 = 0, while Q0 and Q2 are set to[

0 0
0 1

a

]
.

Remark 9.4 One iteration of Algorithm 9.3 can be shortened as

xk+1 = pk + μkUkQkU
T

k

(
pk − xk

)
, (9.35)

a writing that puts in evidence the correction to the proximal step, incorporated to
speed up the algorithm.

Under some conditions, Algorithm 9.3 has global convergence in the sense that
every accumulation point the iteration sequence xk is a minimizer of f . In addition,
with the Dennis-Moré-type condition (9.34) the superlinear rate of convergence can
be shown assuming convergence of the whole sequence of xk to a minimizer of f .
Here, we only give the main ideas of the convergence proof.

Consider the n×n matrix Ûk whose first nk columns are Uk and whose elements
in other positions are all zero. The boundedness and convergence of Uk can be
defined as that of Ûk via the Frobenius norm. The boundedness and convergence
of Qk can be defined in a similar way. The convergence of Algorithm 9.3 requires
the boundedness of Uk and Qk . Additionally, the parameter sequence {μk} needs
to be bounded (in agreement Assumption 9.1, condition (i), needed for R-linear
convergence, given in Sect. 9.2).

Assumption 9.3 (Bounded Prox-Parameter) The parameter μk in the prox-
operator satisfies

μmax ≥ μk ≥ μmin > 0, ∀ k.



9 Beyond First Order: VU-Decomposition Methods 321

We have the following convergence theorem for Algorithm 9.3.

Theorem 9.2 (Global Convergence of Prox-Quasi-Newton VU-Scheme) Let f be
convex. Suppose the matrices Uk and Qk used in Algorithm 9.3 are bounded. If
Assumption 9.3 holds then every accumulation point of the sequence {xk} generated
by Algorithm 9.3 is a minimizer of f .

To show this, take a convergent subsequence of xk . Due to the boundedness of the
objects in (9.35), there exists a common subsequence such that the limit of (9.35)
holds as x′ = p′ +μ′U ′QU ′T (

p′ − x′
)

where the convergence of pk follows from
[26, Theorem 2.26] due to the boundedness of μk . Then we can use the positive
definiteness of the matrix I + μ′U ′QU ′T to derive that p′ = x′, validating the
theorem.

The superlinear rate of convergence can be shown under the two extra conditions
discussed in Sect. 9.5, Eqs. (9.28) and (9.30).

Theorem 9.3 (Superlinear Convergence of Prox-Quasi-Newton VU-Scheme)
Suppose that the sequence {xk} generated by Algorithm 9.3 converges to x, 000 ∈
ri ∂f (x) and Assumption If conditions (9.28), (9.30) and (9.34) are satisfied, then

lim
k→∞

‖xk+1 − x‖
‖xk − x‖ = 0 .

The proof can be divided into three parts. First, show that Proposition 9.2 can be
applied on pk , xk and gk for k sufficiently large. This together with (9.28) yields

lim
k→∞

‖(pk − x
)
V‖

‖(pk − x
)
U‖

= 0 .

Second, define uk = U
T (

pk − x
)

and multiply (9.30) by U
T

to obtain

U
T

gkU = ∇2LU
(
000;gkV

)
uk + U

T

o (‖Uuk‖) . (9.36)

Combine (9.36) and (9.34) to get

xk+1 − x = xk+1 − pk + pk − x = o
(
‖gkU‖

)
+ o (‖Uuk‖) . (9.37)

Finally, use the properties of the proximal mapping that ‖xk − x‖ ≥ ‖xk − pk‖ ≥
‖(xk − pk

)
U‖ and ‖xk − x‖ ≥ ‖pk − x‖ ≥ ‖(pk − x

)
U‖ and show together

with (9.37) that the quotient ‖x
k+1−x‖
‖xk−x‖ goes to 0.

Remark 9.5 Algorithm 9.3 relies on two sequences of matrices: {Uk} and {Qk}.
Although theoretically Uk is meant to approximate a basis of Uk and Qk some
second-order information of the Lagrangian, the convergence of Algorithm 9.3 only
requires those objects to satisfy two conditions: first, they have to be bounded;
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second, they have to satisfy the Dennis-Moré condition (9.34). Consequently, there
is plenty of flexibility in their constructions. To have a U-quasi-Newton method,
one can choose Qk+1 in a way that it is close to Qk and satisfies the secant
equation (9.38)

Qk+1U
T

k+1

(
pk+1 − pk

)
= U

T

k+1

(
gk+1 − gk

)
. (9.38)

Note that the underlying function of the U-quasi-Newton method is the U-
lagrangian, LU (not f ) and the associated point is uk (not xk).

We note that in our context the Dennis-Moré condition (9.34) is different from
its original form. First, Qk and ∇2LU

(
000;gkV

)−1
have to be accompanied by the

associated basis matrices. Second, each Qk not only corresponds to a point uk
(cf. (9.36)) but also the underlying Uk-Lagrangian.

Finally, compared with the convergence proof in [20], here the existence of a
primal-dual track is no longer needed. The readers can verify that the function f in
Example 9.3 satisfy conditions (9.28) and (9.30).

9.7 Practical Information

In this section, we discuss some practical aspects of implementing VU algorithms
including constructions of the matrixUk and dealing with functions whose proximal
points are difficult to compute, thus requiring the bundling mechanism to be
incorporated in the process.

9.7.1 Calculating Uk

For some functions, a basis of Uk can be computed exactly, although Uk does not
need to be a basis. Generally, a basis matrix for the subspace Uk can be constructed
this way: find the maximum number of linearly independent vectors in ∂f

(
xk

)−sk ,
for any sk ∈ ∂f (

xk
)

and take the columns of the matrix

Vk, as a basis for Vk.

The columns of the matrix Uk form an orthonormal basis for the null-space of Vk .
Such operations can be carried out if the full subdifferential is known, as it is the
case for the PDG structured functions [18], a generalization of max-functions that
includes maximum eigenvalue functions; see also [5].
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Example 9.4 Consider a function of the form h(x) = q(x) + f (x), where
q is smooth and f is the L1-norm. The definition of the VU-decomposition
reveals that Vh(x) = V(x) and Uh(x) = U(x), where Vh(x) and Uh(x) are the
subspaces associated with the function h.

This means that the canonical basis
{
ej : xj �= 0

}
, where ej is a vector in

R
n whose j -th component is 1 and other components are 0, can be used for

minimizing an arbitrary nonsmooth function in the form of h. We now explain
how to construct the bases.

Consider the L1-norm f (x) = ‖x‖1 in R
n. It can be shown that ∂f (x) ={

s ∈ R
n : |s1| ≤ 1,

∑n
i=1 sixi =

∑n
i=1|xi |

} = convS(x), where

S(x) : =
{
s ∈ R

n : si = ±1,
∑

(si − sign(xi)) xi = 0
}

= {
s ∈ R

n : si = ±1, si = sign(xi), if xi �= 0
}
.

Take sx ∈ R
n to be such that sxi = 1, if xi = 0 and otherwise sxi = sign(xi).

Then sx ∈ ∂f (x) and V(x) = span (S(x)− sx). For each j such that xj = 0,
define

sj ∈ R
n be such that sji =

⎧
⎪⎪⎨

⎪⎪⎩

−1, if i = j,

1, if i �= j and xi = 0,

sign(xi), otherwise.

We can verify that sj ∈ S(x) and sj − sx = −2ej .
Define B(x) := {

sj − sx : xj = 0
}

then we have B(x) ⊂ Sε(x) − sx . It
follows that the vectors in B(x) are linearly independent. Now we show that
B(x) is a basis matrix of V(x) by verifying that each vector in S(x) − sx is a
linear combination of B(x). Take arbitrary s ∈ S(x) then the definitions of sx

and S(x) yield that (s − sx)i = −2, if xi = 0 and si = −1; otherwise, 0. The
vector s − sx can have more than one non-null element, being −2. From the
definition of sj we see that such vector can be a linear combination of vectors
in B(x). Consequently, respective bases for V(x) and U(x) are

−1

2
B(x) =

{
ej : xj = 0

}
and

{
ej : xj �= 0

}
.

Some other functions of which the associated basis for U is easy to calculate
include functions as in Example 9.1, that are partly smooth at a point x relative to
a manifold M which is equal to U itself. More precisely, by the second property
in the definition of partial smoothness given in Remark 9.3, when M itself is a
linear subspace, the basis of U can be computed by exploiting the structure of the
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manifold. A list of functions that satisfy M = U can be found in [28, Section 3.1].
For example, the L∞-norm is partly smooth at any point x relative to the subspace

M := {x : xI = k sign(xI ), k ∈ R} , where I = {i : |xi | = ‖x‖∞} .

With this information, it is not difficult to deduce that a basis of U can just be{
ej : |xj | < ‖x‖∞

} ∪ e, where ej has the same definition as in Example 9.4 and e

is a vector such that ei = sign (xi) if i ∈ I and 0 otherwise.
To conclude this section, we discuss how to incorporate a bundle routine in

the prox-quasi-Newton VU-algorithm 9.3, so that it can be employed without
computing exactly the proximal point operator at each iteration.

9.7.2 Incorporating a Bundle Routine

Since computing exact proximal points is not possible except for specific functions,
developing an inexact prox-step in Algorithm 9.3 is desirable. A mechanism suitable
for this purpose can be drawn from the proximal bundle method sketched in
Sect. 9.2. In Algorithm 9.1 therein, successive null steps ending in a serious step
are interpreted as improving the inexact proximal point calculation until a sufficient
level of accuracy is achieved, measured in terms of the descent step 5.

The authors of [20] introduced a primal-dual trajectory called primal-dual track.
A primal track is a fast track such that its Jacobian is a basis matrix for the U-
subspace while a dual track is the collection of the minimum norm subgradient of
f at points in the primal track. The idea of introducing a dual track stems from a
strategy different from the one presented in this text. Rather than varying the choice
of the parameter gV in LU as in Sect. 9.5.1, the subgradient remains fixed at 000, so
that the original V-step produces a point p such that 000 ∈ PV (∂f (p)). Then the
U-step would need a subgradient g′ ∈ ∂f (p) with null V-component: g′V = gV =
000. The natural candidate to approximate such subgradient is the minimum norm
element of the proximal point subdifferential, that is, an element of the dual track.

The algorithm developed in [20] utilizes a proximal bundle routine composed by
two QPs. A similar feature is present in the second-order bundle method to minimize
the maximum eigenvalue functions introduced in [23].

Solving two successive quadratic programming problems per iteration is the price
to pay to achieve superlinear convergence. As in the proximal bundle methods, the
first QP problem computes the proximal point of a cutting-plane model. Specifically,
given a model ϕ, and a prox-center x, the associated proximal problem is

min
p∈Rn

ϕ(p)+ μ

2
‖p − x‖2. (9.39)
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The model ϕ can be expressed by

ϕ(p) = max
i∈I

{
f (yi )+

〈
si ,p − yi

〉}

= f (x)+max
i∈I

{−ei + 〈si ,p − x〉} ,

where I is some index set containing an index j such that yj = x and the
linearization error is defined as ei := e

(
x, yi

) := f (x) − f (yi ) −
〈
si , x − yi

〉

for i ∈ I . The problem (9.39) can be solved equivalently through the following
quadratic programming subproblem

min
{
r + μ

2
‖p − x‖2 : (r,p) ∈ R

n+1, r ≥ f (x)− ei + 〈si ,p − x〉 , i ∈ I
}
.

Its (unique) optimal solution
(
r̂ , p̂

)
satisfies r̂ = ϕ(p̂). Here p̂ = pμϕ(x)

approximates pμf (x). Afterwards, at p̂ a new cutting-plane is generated and
indexed by i+, that is, yi+ := p̂ with si+ ∈ ∂f (p̂).

The second QP problem has the following form

min

{
r + 1

2
‖p − x‖2 : (r,p) ∈ R

n+1, r ≥ 〈si ,p − x〉 , i ∈ Î
}
, (9.40)

where Î := {
i ∈ I : r̂ = f (x)− ei +

〈
si , p̂ − x

〉} ∪ {i+}. Its dual problem is

min

⎧
⎨

⎩
1

2
‖
∑

i∈Î
αisi‖2 : α ≥ 0,

∑

i∈Î
αi = 1

⎫
⎬

⎭
, (9.41)

hence showing that the second QP solution provides an element with minimum
norm among all the available subgradients.

The respective solutions of (9.40) and (9.41) are (r,p) and α, satisfying

p − x = −ŝ, where ŝ :=
∑

i∈Î
αisi . (9.42)

It can be shown [20, Lemma 5] that {si}i∈Î ⊂ ∂ε̂f (p̂), where

ε̂ = f (p̂)− r̂ .

The second QP produces ŝ, the minimum norm element of conv {si}i∈Î . As p̂

approximates pμf (x), ŝ approximates the minimum norm element in ∂f
(
pμf (x)

)
.

If there exists a primal-dual track, then pμf (x) is on the primal track and hence, ŝ

approximates a point in the dual track.
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A very important by-product of this bundle routine is a basis matrix
[
Û V̂

]

for R
n such that Û has orthonormal columns and V̂

T
ŝ = 000. (Recall that in

[20], the parameter gV in the U-Lagrangian is fixed to be 000.) The construction
is done by defining the active index set of (9.41) at its optimal solution, that is,

I :=
{
i ∈ Î : r = 〈si ,p − x〉

}
. Then it follows from (9.42) that r = − 〈

si , ŝ
〉

for all

i ∈ I and thus

〈
si − s l, ŝ

〉 = 0 (9.43)

for all such i and for a fixed l ∈ I . Collect the largest number of vectors si − ŝ

satisfying (9.43) such that they are linearly independent and let them form the
columns of the matrix V̂ . Then Û can be defined to be a matrix whose columns
form an orthonormal basis for the null-space of V̂

T
with Û being the identity matrix

if V̂ is vacuous.
For the function in Example 9.2 and in a semilogarithmic scale, Fig. 9.7 shows

the functional error at serious iterates computed with the inexact prox-quasi-Newton
VU-algorithm in [20] in red. The blue line corresponds to the output of N1CV2 an
implementation of the proximal bundle method [12].

In addition to displaying graphically the superlinear rate of convergence of the
VU-algorithm, the figure also corroborates the degree of accuracy that can be
achieved using a Newtonian method. For the example, the VU-algorithm gives 10
digits, against 5 obtained by N1CV2. If high precision is a requirement for the
nonsmooth problem, the extra computational work of solving two QPs instead of
one can eventually pay off.

1 2 3 4 5 6 7 8 9 10 11
Serious iterations

10 -10

10 -5

10 0

Fig. 9.7 Superlinear (red crosses) and linear (blue dots) convergence rate of the VU and bundle
methods for the function in Example 9.2
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9.8 Further Notes

For all the algorithms presented so far, the U-step requires a matrix Uk approximat-
ing a basis of Uk , a subspace associated with the iteration point xk . One may ask
how precise this approximation has to be. Notice that the superlinear convergence
needs the Dennis-Moré condition (9.34), which the sequence Uk has to satisfy.
Actually, a proper construction of Uk helps the convergence and, in view of (9.34),
it is desirable that

lim
k→∞UkQkUk = U∇2LU

(
000;V T

gk
)−1

U
T

,

where U is an orthonormal basis matrix for U . Although this condition does
not necessarily require that Uk converges to U (when considered as equivalent
n × n matrices), it will be interesting to find some functions that can satisfy such
condition. Essentially this boils down to the question of continuity of the underlying
subspaces associated with Uk , as approximation of Uk . The VU-subspace definition
is based on the subdifferential, which is not continuous as a set-valued function.
By contrast, the well-known epsilon-subdifferential in convex analysis, enlarging
the subdifferential, is continuous. This remark poses the question of studying the
continuity of subspaces defined by enlargements. This point is considered in [15],
a work where certain subspaces Vε and Uε, among which those generated using
∂εf (x̄), are studied. The corresponding approximations of V and U are shown to be
continuous set-valued functions for several types of functions, including finite-max
functions.

So far the VU-algorithms are designed for convex functions only. Generalizations
to the nonconvex case can be made for functions with sufficient structure, for
example the strongly transversal PDG-structure in [19]; see also [18]. All of the
VU-objects in the convex context can be constructed for these types of nonconvex
functions. Additionally, a primal-dual track exists for these functions and proximal
points are indeed on the primal track provided that the functions are prox-regular.
A suitable bundling mechanism, like the one in [7], could then be employed to
approximate the proximal point and, therefore, make implementable the V-step; see
also [8].
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Chapter 10
Beyond the Oracle: Opportunities
of Piecewise Differentiation

Andreas Griewank and Andrea Walther

Abstract For more than 30 years much of the research and development in
nonsmooth optimization has been predicated on the assumption that the user
provides an oracle that evaluates at any given x ∈ R

n the objective function
value ϕ(x) and a generalized gradient g ∈ ∂ϕ(x) in the sense of Clarke. We will
argue here that, if there is a realistic possibility of computing a vector g that is
guaranteed to be a generalized gradient, then one must know so much about the
way ϕ : Rn → R is calculated that more information about the behavior of ϕ in
a neighborhood of the evaluation point can be extracted. Moreover, the latter can
be achieved with reasonable effort and in a stable manner so that the derivative
information provided varies Lipschitz continuously with respect to x. In particular
we describe the calculation of directionally active generalized gradients, generalized
ε-gradients and the checking of first and second order optimality conditions. All
this is based on the abs-linearization of a piecewise smooth objective in abs-
normal form.

10.1 Motivation and Introduction

It is well understood that the convex set ∂ϕ(x) of generalized gradients is highly
volatile with respect to variations in x, never mind that it is by definition outer
semicontinuous as a set-valued mapping ∂ϕ : R

n ⇒ R
n. Moreover, due to

Rademacher’s theorem (see Theorem 1.5) for Lipschitzian functions on a Euclidean
space, we can expect that almost everywhere we get a singleton ∂ϕ(x) = {∂ϕ(x)}
so that the users effort to somehow code up a guaranteed generalized gradient will
rarely ever pay off during an optimization run. In fact in the paper [30], it is simply
assumed that this exceptional event will never happen, so that at the iterates the
actually generated g will always be a classical Fréchet gradient. However, it must
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be noted that even when this optimistic assumption holds, nonsmooth functions
may be poorly approximated by their tangent plane, because there can be a kink
nearby about which the local gradient knows nothing. Fortunately, one can generate
a local piecewise linear model that reflects such close-by derivative discontinuities,
so that whatever algorithm one uses has a chance to deal with the nonsmoothness
appropriately. In other words, we suggest to handle (possibly multiple and deflected)
kinks at the level of the piecewise linearization.

This chapter is organized as follows. In the second section, we introduce the
basic notation and discuss the relation between the oracle paradigm and piecewise
differentiability. In Sect. 10.3, we discuss the framework of objective functions
in abs-normal form and in Sect. 10.4 our approach to generate a local piecewise
linear model. In Sect. 10.5, we show how one can get information about the
gradients that are active in a neighborhood, in particular the gradients and ε-
gradients. While these only allow the checking of stationarity and ε-stationarity,
we discuss in Sect. 10.6 the issue of testing for criticality. In the same section, we
introduce briefly an algorithm that actually allows to reach a stationary point. The
various concepts discussed in this chapter are illustrated in Sect. 10.7 by means
of the Crescent example. Section 10.8 discusses several ways of generating abs-
linear approximations of functions including the Euclidean norm and compare their
efficiency on a paradigmatic example. Finally, we give a summary and a conclusion
in Sect. 10.9. Throughout we will consider only the unconstrained case, but most
arguments and results carry over to constrained optimization.

10.2 The Oracle and Piecewise Differentiation

Throughout this chapter we assume that the objective ϕ : D 2→ R is locally
Lipschitz on an open domain D ⊂ R

n. Moreover, we will use the notation and
terminology

Fréchet gradient: ∇ϕ(x) ≡ ∂ϕ(x)
∂x

: D 2→ R
n ∪ ∅;

Limiting differential: ∂Lϕ(̊x) ≡ limx→x̊∇ϕ(x) : D ⇒ R
n;

Clarke differential: ∂ϕ(x) ≡ conv(∂Lϕ(x)) : D ⇒ R
n.

where conv denotes the convex hull. The individual elements of the limiting and
the Clarke differential will be called limiting gradients and generalized gradients,
respectively. The limiting differential is the outer semicontinuous limit of the
Fréchet gradient in the Kuratowski-Painlevé sense [35, Section 4.B] so that we have
more precisely

∂Lϕ(x) ≡
{

lim
i→∞∇ϕ(xi ) : xi → x,D 5 xi �∈ S

}
.
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Here S denotes the set of exceptional points, where ϕ(x) is not Fréchet differ-
entiable. In the literature the limiting differential is often called the Bouligand
differential or derivative.

Definition 10.1 (Oracle Paradigm) The locally Lipschitz continuous (LLC) func-
tion ϕ : Rn 2→ R is said to satisfy the oracle paradigm if at any x ∈ R

n not only
the function value ϕ(x) but also at least one generalized gradient g ∈ ∂ϕ(x) can be
made available to the optimization algorithm.

At first the task required by the oracle paradigm does not appear that hard in the
piecewise differentiable case.

Definition 10.2 (Piecewise Differentiability) The LLC function ϕ : D ⊂ R
n 2→

R is said to be d > 0 times piecewise differentiable if at any x ∈ D there exists a
selection function ϕσ (x) ∈ Cd(D) such that ϕ(x) = ϕσ (x). Here the signature σ
belongs to some finite index set E labeling the selection functions ϕσ .

In the literature the elements of E are usually chosen as natural numbers, but we
will give ourselves a little more freedom and later define them as tuples of a certain
kind.

Definition 10.3 (Active Selections) The selection function ϕσ is said to be active
at x̊ ∈ D if the coincidence set Mσ = {x ∈ D : ϕ(x) = ϕσ (x)} contains x̊.
Moreover ϕσ is called essentially active if x̊ belongs to the closure of the interior
of Mσ . Finally, it is called conically active if the tangent cone of Mσ at x̊ has a
nonempty interior, The index sets of the correspondingly active selection function
indexes will be denoted by the chain E ⊃ Ea(̊x) ⊃ Ee(̊x) ⊃ Ec(̊x).

The inclusion relations at the end of the last definition are easily verified. They
become intuitively clear if one looks at the drawings in Fig. 10.1.

Lemma 10.1 (Scholtes [36]) In the piecewise smooth case the limiting differential
is the span of the essentially active gradients, i.e.,

∂Lϕ(̊x) =
⋃

σ∈Ee(x)

{∇ϕσ (̊x)
}

whose convex hull is of course the Clarke differential.

x

Mσ

x

Mσ

x

Mσ

Fig. 10.1 Different coincidence sets with tangential cones
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To realize the oracle here one would have to find a signature that is not only
active but essentially active, which does not seem quite so simple. For our class it
turns out to be easier to get the under- and overestimations

∅ �= ∂Kϕ(̊x) ≡
⋃

σ∈Ec(x)

{∇ϕσ (̊x)
} ⊂ ∂Lϕ(̊x) ⊂

⋃

σ∈Ea(x)

{∇ϕσ (̊x)
}
.

The first set on the left will be called the conic differential, as it contains only
gradients ∇ϕσ (̊x) of selection functions that are conically active at x̊. As we will
see ∂Kϕ(̊x) is never empty and we will be able to compute one or even all of its
finitely many elements for objectives in abs-normal form. It might be reasonably
claimed that only the conically active gradients are relevant for optimizing ϕ in the
vicinity of x̊.

The last set on the right can be a gross-overestimation which might come about
if one applies the generalized differentiation rules forward in a naive way. To avoid
this overestimation one has to detect all selection functions that are active but
not essentially active, a rather daunting task for a set of nonlinear ϕσ (x) as the
coincidence sets Mσ may be very complicated even if all ϕσ (x) are assumed to be
polynomial. Then realizing the oracle paradigm must be considered rather difficult.

A challenging question is how we can evaluate the multifunctions

Ea : x ∈ D ⇒ E, Ee : x ∈ D ⇒ E, Ec : x ∈ D ⇒ E .

The first one appears easy except that testing equality in floating point arithmetic
is always a little dicey. A popular format used in some software packages is that
the coincidence sets are defined by |E | different systems of linear (or nonlinear)
inequalities like

σ ∈ Ea(x) ⇐⇒ Aσx ≤ bσ for Aσ ∈ R
mσ×n, bσ ∈ R

mσ .

The difficulty with this representation is that it suffers from three related draw-
backs:

• likely exponential size of data structure;
• redundancy because pieces must fit together;
• numerical perturbations or typos destroy consistency.

Of course, everything is much worse in the nonlinear case. We view the repre-
sentation by pieces as one of the main reasons why piecewise linear or smooth
functions have not been used very much in scientific computing. Let us look at a
small example.
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Fig. 10.2 Half pipe function with a priori five smooth pieces

The Half Pipe Example Firstly we consider the definition by pieces

ϕ : R2 2→ R, ϕ(x1, x2) =
⎧
⎨

⎩

ϕ−1,1(x1, x2) = x2
2 , if x1 ≤ 0,

ϕ1,−1(x1, x2) = x2
2 − x1, if 0 ≤ x1 ≤ x2

2 ,

ϕ1,1(x1, x2) = 0, if 0 ≤ x2
2 ≤ x1.

The graph of this function is given by Fig. 10.2.
The double indexing of the functions will become clearer later. The corresponding
coincidence sets S−1,1, S1,−1, S1,1 are all essentially active at the origin, but the
double cusp shaped one in the middle is not conically active. The corresponding
gradients are

∇ϕ−1,1(0, 0) = (0, 0) = ∇ϕ1,1(0, 0) and ∇ϕ1,−1(0, 0) = (−1, 0).

Hence we get the differentials

{∇ϕ(0, 0)} = {(0, 0)} = ∂Kϕ(0, 0) � ∂Lϕ(0, 0) = {(0, 0), (−1, 0)}.

As we see the function is actually differentiable at the origin, which is reflected in
the conic differential being a singleton containing only the Fréchet gradient (0, 0). In
contrast the limiting differential picks up the gradient (−1, 0) from the double cusp
S1,−1, which is not conically active. Of course the Clarke differential as the convex
hull of the limiting differential is simply the line segment ∂ϕ(0, 0) = {(α, 0) :
α ∈ [−1, 0]}. To highlight the role of nonessentially active selection functions let us
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introduce the function ϕ0,1(x1, x2) = x2
2 +x1 with the coincidence set S0,1 = {0}×

R. This selection function is active at the origin but its gradient∇ϕ0,1(0, 0) = (0, 1)
does and may not belong to the Clarke differential [−1, 0] × 0. Hence it would be a
failure for the oracle to return the gradient (0, 1) of an active selection function as a
generalized let alone limiting gradient.

Generally this difficulty arises because generalized differentiation rules are
mostly only inclusions. Only the operations that are guaranteed to maintain con-
vexity with respect to x, namely conic combinations and pointwise maximization,
i.e.,

v(x) =
m∑

i=1

αiui(x) and v(x) = max
i=1,...,m

{αiui(x)} with

αi ≥ 0 for i = 1, . . . ,m,

also propagate the corresponding generalized gradients as identities, see [7], such
that

∂v(x) =
m∑

i=1

αi∂ui(x) and ∂v(x) = conv {αi∂ui(x) : ui(x) = v(x)} ,

respectively. All other elementary operations, in particular subtraction and multipli-
cation propagate generalized derivatives only as inclusions, i.e., we have

∂(u−w) ⊂ conv{∂u− ∂w} and ∂(u · w) ⊂ conv{w ∂u+ u ∂w},

where we have left off the argument x for notational simplicity. The same is true
for the absolute value function v = abs(x) so that one can never be sure to obtain
true generalized gradients when propagating such vectors forward through a chain
of operations.

At a higher level, compositions of vector functions propagate generalized
derivatives by the chain rule also as an inclusion, with identity holding only
when one of the factors involved is smooth or at least subdifferentially regular [3,
Definition 3.5]. The verification of this frequently assumed property was shown
to be co-NP complete in [39] on the class of piecewise smooth functions Cd

abs(D)
defined below. It actually amounts to local convexity of the piecewise linearization
or equivalently the directional derivative ϕ′(x; ·) and is thus a rather strong and
complex assumption. Finally, we note that for approximating generalized gradients
by divided differences, see [3, Chapter 6], one has to rely on this convex set being
finitely generated and thus polyhedral, which comes pretty close to assuming abs-
normality as defined in the next section. We will see, that assumption allows in fact
the exact calculation of the conical differential ∂Kϕ(x)which is an always nonempty
subset of the limiting differential ∂Lϕ(x).
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10.3 Abs-Normal Objectives

For the half pipe example, one may consider several formulations. Firstly, what one
might consider the “original” formulation in terms of max

ϕ(x1, x2) = max{x2
2 −max{x1, 0}, 0}.

Here the Lipschitz continuity is immediately apparent. Alternatively, rewriting max
in terms of abs we get after some mechanical manipulations

ϕ(x1, x2) = 1
2

(
x2

2 − 1
2 (x1 + |x1|)+

∣
∣∣x2

2 − 1
2 (x1 + |x1|)

∣
∣∣
)
.

Now we have a formulation where all nonsmoothness is cast in terms of the absolute
value function, which occurs at the two arguments x1 and x2

2 − 1
2 (x1 + |x1|).

Wherever these quantities change their sign we will have a kink in the function
value. Therefore we name them switching variables and define them as

(z1, z2) = F(x1, x2, z1) =
(
x1, x

2
2 − 1

2 (x1 + |z1|)
)
. (10.1)

Substituting them into the original expression we get

ϕ(x1, x2) = f (x, |z|) = 1
2

(
x2

2 − 1
2 (x1 + |z1|)+ |z2|

)
. (10.2)

Now we have two Eqs. (10.1) and (10.2) that define the half pipe function in a
nonredundant and stable way. Any of the coefficients, which are mostly 1 can
be perturbed with the resulting function still being well defined and Lipschitz
continuous. Moreover, we can label the various smooth function pieces by the vector
σ = (sign(z1), sign(z2)) ∈ {−1, 0, 1}2, which is consistent with the labeling we
used in the previous section.

More generally, we will consider the class of objective functions that are defined
as compositions of smooth elemental functions and the absolute value function
abs(x) = |x|. Hence they may also include max{x, y},min{x, y}, and the positive
part function pos(x) ≡ max{x, 0}, which can all be easily cast in terms of
an absolute value. By successively numbering all arguments of absolute value
evaluations as switching variables zi for i = 1 . . . s, we obtain a piecewise smooth
representation of y = ϕ(x) in the abs-normal form

z = F(x, |z|), (10.3)

y = f (x, |z|), (10.4)

where for D ⊂ R
n open, F : D × Rs+ 2→ R

s and f : D × Rs+ 2→ R with
D × Rs+ ⊂ R

n+s . Here, zj can only influence zi if j < i so that when interpreting



338 A. Griewank and A. Walther

F as a function of |z|, its Jacobian with respect to |z| is strictly lower triangular.
Consequently, we can evaluate for any x the unique, piecewise smooth value z(x).
In other words, we state the calculation of all switching variables as equality
constraints and handle the vector of the absolute values of the switching variables
as extra argument of the then smooth target function f . Sometimes, we write

ϕ(x) ≡ f (x, |z(x)|)

to denote the objective directly in terms of the argument vector x only. In this
chapter, we are mostly interested in the case where the nonlinear elementals are
all once or twice continuously differentiable. The resulting function class was first
considered in [12] and is specified as follows:

Definition 10.4 For any d ∈ N and D ⊂ R
n, the set of functions ϕ : D 2→ R

defined by an abs-normal form (10.3)–(10.4) with f, F ∈ Cd(D × Rs+) is denoted
by Cd

abs(D).

Recall that Cd(Ω) is the set of functions that possess continuous d-th derivatives
in the open set Ω that can be continuously extended to the boundary ∂Ω = Ω\Ω .
In the usual case, where F and f are themselves compositions of smooth elemental
functions ϕi these are assumed to be Cd(Di ) functions on their respective domains
Di reachable from x ∈ D. The combinatorial structure of the nonsmooth function
ϕ can be described by the signature vector and matrix

σ = σ (x) ≡ sign(z(x)) ∈ {−1, 0,+1}s and

Σ ≡ Σ(x) = diag(σ (x)) ∈ R
s×s .

For fixed σ and the correspondingΣ we can locally solve Eq. (10.3) using |z(x)| =
Σz(x) for z(x) and thus have the implicitly defined selection function

ϕσ (x) ≡ f (x,Σz(x)) such that z(x) = F(x,Σz(x)). (10.5)

Again due to the assumed triangularity, the system of equations is locally solvable
for z(x) by the implicit function theorem. Hence, the functions in Cd

abs(D) are
certainly piecewise smooth as defined in Definition 10.2. In our scenario E is a
subset of {−1, 0, 1}s by definition of σ . Generally in the literature, it remains a
little mysterious how a suitable index σ is chosen as a function of x such that the
resulting function is continuous. In our function model the determination of the
σ (x) is intertwined with the computation of the numerical values.

Related Piecewise Linear Functions The class Cd
abs(D) covers many piecewise

smooth functions but certainly not all. For example, on a given triangulation of the
plane or space, somebody may have spliced together different local models such that
they fit continuously across the triangle edges or tetrahedron faces. In this situation it
seems impossible to deduce from the properties of the function within one triangle
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or tetrahedron anything about what is happening in the neighboring triangles or
tetrahedrons, let alone further afield.

In contrast, in some sense the functions belonging toCd
abs(D) allow extrapolation

from one polyhedron to its neighbors. We even harbor the hope that there might be
reasonably efficient methods to globally optimize piecewise linear functions using
their abs-linear form. That representation always exists but may be not so easy to
construct.

On the other hand, we must admit that in the spliced situation the oracle paradigm
appears quite natural with each limiting differential being just the gradient of the
adjacent patches, i.e., one of the selection functions. However, except on triangular
or quadrilateral grids it may again not be easy to decide which selection function
is essentially active as defined in Definition 10.3. Of course any statement of
stationarity or optimality will only apply to the patch and nothing can be said about
the behavior of the piecewise smooth function in an open neighborhood, no matter
how small.

Another class of possibly even linear piecewise smooth functions that does not
fit within the Cd

abs(D) framework are solution operators like

ϕ(x) = max{ 1
2yTQy + cT y : Ay ≤ Bx + c} with Q = QT  0.

Here we may use a finite solver to compute the mathematically well defined
piecewise linear function ϕ(x) : R

n 2→ R but the number of steps may
vary depending on the argument x. Moreover, there may be degeneracies whose
numerical resolution requires if-statements and other program branches. As shown
in [4], for implicitly defined functions like G(x, y(x)) = 0 with G in abs-normal
form, one can compute its abs-linear approximation Δy(̊x,Δx) by a generalized
version of the implicit function theorem. Albeit with some nontrivial effort, this
could be integrated into the extended algorithmic differentiation (AD) software,
which has not been done.

In the penultimate section of the paper we will consider the extension of Cd
abs(D)

to its superset Cd
euc(D), which consists of all functions that can be evaluated as

compositions ofCd elementals and the Euclidean norm ‖·‖ = ‖·‖2. These Lipschitz
continuous functions are no longer piecewise smooth, but one can still construct
abs-linear approximations that appear to be useful for optimization purposes.

It has recently been observed [21] that minimizing a function in abs-normal form
is equivalent to solving the equality constrained MPEC

⎧
⎪⎪⎨

⎪⎪⎩

minimize ϕ = f (x,u+ v)

subject to 0 ≤ u ⊥ v ≥ 0,

u− v = F(x,u+ v).

Here, MPEC means mathematical programming with equilibrium constraints [31].
Notice that in general, i.e., without the triangularity of F with respect to |z| = u+v,
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the MPEC may be quite hard to solve, if only because one cannot easily compute a
feasible z = u − v for any given x. Nevertheless, it was shown in [21] that in the
triangular case the constraint qualification MPEC-LICQ is equivalent to the linear
independent kink qualification (LIKQ) introduced in [15] for abs-normal objectives.

10.4 The Abs-Linear Approximation

All abs-normal objectives are strongly semismooth as defined in [8, Chapter 7]
and thus their generalized gradients satisfy for fixed x̊ the backward approximation
property [22]

ϕ(x)− ϕ(̊x)− gT(x − x̊) = O(‖x − x̊‖2) for all g ∈ ∂ϕ(x).

While the vector version of this relation forms the basis of the semismooth Newton
method it is not clear how it can be exploited for the purposes of unconstrained local
optimization. Instead we aim for a generalization of the classical first order Taylor
expansion, which is in some sense forward, from the reference point x̊ with the
corresponding z̊ = z(̊x) and ẙ = y(̊x) to a trail point x ≈ x̊ and the corresponding
z = z(x) and y = y(x). From Eqs. (10.3) and (10.4), one obtains the smooth Taylor
expansion

[
z−z̊

y − ẙ

]
=

[
Z L

aT bT

] [
x−x̊

|z|−|̊z|
]
+ O

( [‖x−x̊‖2

‖z−z̊‖2

])

as abs-linear approximation of y = ϕ(x). Here the matrices

L ≡ ∂

∂|z|F(x, |z|) ∈ R
s×s, Z ≡ ∂

∂x
F(x, |z|) ∈ R

s×n (10.6)

and the vectors

a = ∂

∂x
f (x, |z|) ∈ R

n, b = ∂

∂|z|f (x, |z|) ∈ R
s (10.7)

are evaluated at the reference point (̊x, z̊). Due to the triangularity of F and thus L
one can easily check by induction that ‖z − z̊‖ = O(‖x − x̊‖). Hence we obtain
with Δx ≡ x − x̊ and

z̃ ≡ c + ZΔx + L|z̃| ≡ (̊z − L|̊z|)+ ZΔx + L|z̃|, (10.8)
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the incremental approximation

Δϕ(̊x;Δx) ≡ aTΔx + bT(|z̃| − |̊z|) = y − ẙ +O(‖Δx‖2), (10.9)

or equivalently

ϕ(̊x +Δx)− ϕ(̊x) = Δϕ(̊x;Δx)+O(‖Δx‖2). (10.10)

In other words, we have a generalized Taylor approximation with uniform error
term O(‖Δx‖2), which is in contrast to directional differentiation completely
independent of the directionΔx/‖Δx‖. This is possible becauseΔϕ(̊x;Δx) is with
respect to Δx piecewise linear but in contrast to the directional derivative ϕ′(̊x;Δx)

not homogeneous. That means, it “knows” about nearby kinks, which is exactly the
kind of information that any kind of strictly local generalized differentiation can
not pick up. In previous papers [13, 18] we have derived the relation (10.10) by
induction on the intermediate quantities occurring in the evaluation procedure of
the overall ϕ(x). This approach then directly yields the partial elemental derivatives,
from which the “global” matrices and vectors [L,Z, a, b, c] can be accumulated by
suitable variants of the chain rule.

For example let us consider the half pipe example in the abs-normal form (10.1)
and (10.2). Then, we get by differentiation at any x̊

L =
[

0 0
− 1

2 0

]
and b =

[−0.25
0.5

]

and in dependence on the reference point x̊ = (̊x1, x̊2) with z̊ = z(̊x)

Z =
[

1 0
− 1

2 2 x̊2

]
and a =

[−0.25
x̊2

]
.

The original function and the resulting abs-linearization at x̊ = (−1, 1) are
illustrated in Fig. 10.3. At x̊ we have z̊ = (−1, 1) and thus σ̊ = (−1, 1) which
means that the function is locally completely smooth at x̊ but the abs-linearization
still has an idea where there are kinks. Notice that Z has the determinant 2x2
which means that at the origin where both switching variables are active the linear
independence kink qualification, as introduced in [15] is not satisfied.

Evaluating Δϕ(̊x;Δx) via Eqs. (10.8) and (10.9) is quite cheap, provided the
matrices and vectors (Z,L, a, b, c), which constitute the abs-linear approximation
are known. They are all first derivatives of smooth, composite functions, so they
can be obtained by algorithmic or automatic differentiation. In fact the well known
AD tools ADOL-C [38], CPP-AD [5] and Tapenade [20] have been extended to
generate abs-linear approximations. Of course, just like in the smooth case, where
the evaluation of the full Jacobian can be avoided through iterative methods that
are based exclusively on tangents in the sense of Jacobian×vector products and co-
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Fig. 10.3 The half pipe function and its abs-linearisation at x̊ = (−1, 1)

tangents or adjoints in the sense of row-vector×Jacobian products, such a matrix
free approach can also be pursued for the abs-linear approximation. However, for
notational simplicity we will assume in this chapter that the matrices Z and L

are completely accumulated. As defined via Eqs. (10.8) and (10.9) for fixed x̊ the
function Δϕ(̊x;Δx) is just an abs-normal function, where all operations other than
the absolute value are linear or more precisely affine.

10.5 Checking Gradient Activity

Now the question arises what information about ϕ(x) near the reference point x̊ we
can gain from the analysis of its abs-linear approximationΔϕ(̊x;Δx) nearΔx = 0.
For notational simplicity we set x̊ = 0, replace Δx by x and z̃ by z as well as
ignoring constant shifts in the objective function. Then we have simply the abs-
linear minimization problem

{
minimize Δy(x) ≡ aTx + bT|z|
subject to z ≡ c + Zx + L|z|. (10.11)

Due to the strict lower triangularity of L there is a unique piecewise linear z = z(x)

for all x ∈ R
n, which is a special case of the piecewise smooth z(x) considered

before for the abs-normal ϕ itself. However, on the abs-linear level we have a much
better chance of dealing with the nonsmoothness represented by the kinks explicitly.
Then the full domain R

n is decomposed into polyhedra, which can be identified by
the signature vector and matrix

σ = σ (x) ≡ sign(z(x)) ∈ {−1, 0,+1}s and

Σ ≡ Σ(x) = diag(σ (x)) ∈ R
s×s
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now as a function of the piecewise linear z(x). The inverse images

Pσ ≡ {x ∈ R
n : σ (x) = σ } (10.12)

are pairwise disjoint, relatively open polyhedra. Using the partial order of the
signatures given by

σ̃ ≺ σ ⇐⇒ σ̃iσi ≤ σ 2
i for i = 1 . . . s,

we can define the essential closures

P̄σ ≡ {x ∈ R
n : σ (x) ≺ σ },

which are no longer disjoint and whose inclusion ordering corresponds exactly to
the partial ordering≺ of the signatures such that

P̄σ ⊂ P̄σ̃ ⇐⇒ σ ≺ σ̃ .

Hence, we see that x̊ = 0 with σ̊ = σ (̊x) belongs exactly to the essential closures
P̄σ for which σ  σ̊ . Consequently, we find for some open ball B(̊x; ρ)

B(̊x; ρ) =
{

⋃

σσ̊

Pσ

}

∩ B(̊x; ρ).

Here, the σ on the right hand side can be restricted to be definite, i.e., only have
nonzero components σi = ±1, which will be denoted by σ �5 0. Within each Pσ ,
we have |z| = Σz so that one can solve the equality constraint on the right hand
side of Eq. (10.11) for z to obtain the affine function

z(x) = (I − LΣ)−1(c + Zx) for x ∈ P̄σ . (10.13)

Note that due to the strict lower triangularity of L the unit lower triangular matrix
(I −LΣ)−1 is for any σ well defined and its elements are polynomial in the entries
of L. For definite signatures σ �5 0 the elements x ∈ P̄σ are exactly characterized
as solutions of the system of inequalities

Σ(I − LΣ)−1(c + Zx) = (Σ − L)−1(c + Zx) ≥ 0.

If there is an x ∈ P̄σ with definite signature σ (x) �5 0 then the polyhedron Pσ has
a nonempty interior. The converse needs not be true in the presence of degeneracy.
From duality theory it is known that either, P̄σ has a nonempty interior, in which
case we call it full-dimensional, or the rows of (Σ−L)−1Z have a vanishing convex
combination such that

λT(Σ − L)−1Z = 0 with 0 ≤ λ �= 0.
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Obviously this can be checked by standard linear optimization techniques. One can
also check whether dim(P̄σ ) = n in which case we have the gradient

gσ = aT + bT Σ(I − LΣ)−1Z = aT + bT (Σ − L)−1Z, (10.14)

where the last equality relies on definiteness, i.e., σ �5 0, so that det(Σ) = ±1.
Hence we obtain for the abs-linear approximation the nonempty set of limiting

gradients

∂LΔxΔϕ(̊x;Δx)

∣
∣
∣
Δx=0

=
⋃

0 �5σσ̊

{aT + bTΣ(I − LΣ)−1Z}. (10.15)

Conic Activity Now, let ϕ be again a general nonlinearCd
abs function. It was shown

in [13] and [27] that

∅ �= ∂Kx ϕ(x)

∣
∣∣
x=x̊

≡ ∂LΔxΔϕ(̊x,Δx)

∣
∣∣
Δx=0

⊂ ∂Lx ϕ(x)

∣
∣∣
x=x̊

,

which immediately implies the corresponding inclusion for the Clarke differential
as convex hull of the limiting differential. The limiting gradients gσ ∈ ∂Kϕ(̊x)

are conic gradients of ϕ as defined in Definition 10.3. Then we have in fact
gσ = ∂ϕσ (̊x) for some σ ∈ Ec(̊x). The limiting gradient ∂Lϕ(̊x) may contain
other gradients ∂ϕσ̃ (̊x) of selection functions ϕσ̃ that are essentially active so that
σ̃ ∈ Ee(̊x) \ Ec(̊x). If ϕ happens to be differentiable, but not necessarily strictly
differentiable at x̊ we have simply ∂Kϕ(x) = {∂ϕ(x)}, which must be the case at
almost all points in R

n by Rademacher’s theorem. This applies also to functions like
ϕ(x) = |1 − sin2(x) − cos2(x)| where a conventional chain rule oriented “Are we
differentiable at this point?” test, whose use is for example suggested in [6] would
naturally always respond “no”.

Back to the Oracle Obviously, the observations above also hold for generalized
Jacobians of vector-valued functions, so abs-linearization also provides a practical
procedure for implementing the semismooth Newton method [23, 28]. Then, only
one element of ∂Lϕ(̊x) ⊂ ∂ϕ(̊x) is required. The same holds true for the subgradient
as well as the bundle methods. If checking the openness of the interiors of the
candidate P̄σ appears too laborious, one can employ the technique of polynomial
escape in a given preferred direction d1 ∈ R

n. After complementing it with (n− 1)
directions d i for i = 2 . . . n such that det(d1 . . . dn) �= 0 one knows that for some σ

and all small 0 < t ≈ 0

x(t) = x̊ +
n∑

i=1

t id i ∈ Pσ

with Pσ being open. This corresponding σ and the corresponding gradient gσ can
be calculated independently of the parameter t using the function firstsign
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as described in [13]. It is a version of lexicographic differentiation introduced by
Nesterov [34] and generalized to the case of composite functions by Khan and
Barton [26]. The resulting gσ is active in the direction d1 in that for some t̄ > 0

gTσ d1t = Δϕ(̊x; t d1) = ϕ(̊x + td1)− ϕ(̊x)+O(t2) for 0 ≤ t ≤ t̄ .

The procedure for computing directionally active generalized gradients is actually
matrix free and can be implemented efficiently using the so-called reverse mode of
AD [14] except in the most degenerate cases. In those bad situations the complexity
might equal that of the forward mode of AD, namely n times the complexity of
evaluating the function ϕ(x) itself, see also [25].
In the scenario ϕ ∈ Cd

abs(D) the directionally active gradient represents a little
bit more then just any generalized gradient. The so-called critical multiplier gives
important information about the nonsmoothness of ϕ from x̊ in the direction d1.
Moreover, if t̄ < ∞ we can also provide a gradient g+ (̊x, d1) that is active in the
direction d1 on the abs-linearization Δϕ(̊x,Δx) at the point t̄d1. The difference
g+(̊x, d1) − g(̊x, d1) will then be a normal of the hyperplane separating the
polyhedron before and beyond the kink location t̄d1. This situation is depicted in
Fig. 10.4, where the dashed lines represent the kinks. Of course we can expect that
on the underlying nonlinear function the situation is similar up to perturbations of
O(‖t̄d1‖2). This should provide a lot of useful information for any kind of method
based on generalized gradients.

Provided the complementing of d1 by (n − 1) linearly independent directions is
continuous, the mapping

(̊x, d1) ∈ R
n+n 2→ (g, t̄ ) ∈ R

n × (0,∞)

has the following property: The multiplier t̄ is continuous in the sense of extended
real valued functions. The gradient g itself may have jumps and reduces to the
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Fréchet gradient, wherever that exists. The second gradient g+(x; d1) will be in
many cases an ε-gradient at x̊, but obviously one of them will generally not be
enough to model ϕ locally even in the convex case. Of course, bundle methods
could collect several of them, picking up several hyperplanes at a time.

ε−Activity Since the limiting and Clarke generalized differentials are not inner
semicontinuous [35], the minimal norm of their elements gives no indication of
the distance to any stationary point, in particular stopping criteria can not be based
on it. Therefore, nonsmooth analysis has partly abandoned the strictly local point
of view and introduced ε−differentials, which take note of the objective function
behavior nearby. In our notation the definition of the Goldstein ε-differential (see
Definition 1.10) reads

∂Gε ϕ(̊x) ≡ conv
{⋃

∂Lϕ(x) : x ∈ B̄(̊x; ε)
}
.

By definition the Goldstein ε-differential is inner semicontinuous. Obviously, we
have ∂ϕ(̊x) = ∂G0 ϕ(̊x). The natural question is how the Goldstein ε-differential
∂Gε ϕ(̊x) can actually be computed. Of course, looking at all points x in a spherical
neighborhood of the reference point x̊ and computing the convex hull of the union
of the limiting subdifferentials ∂Lϕ(x) appears practically impossible.

In the case of limiting gradients as in Eq. (10.15) we only looked at signatures
σ and their gradients gσ of which we were certain that they are active for the abs-
linearization and thus the function itself at x̊. For all these neighboring signatures σ

we know that σ  σ̊ which is equivalent to Σ z̊ ≥ 0. That means when z̊i �= 0 the σi
must have the same sign as σ̊i and where z̊i = 0 we may choose freely σi ∈ {−1, 1}.
In order to get a larger set of gradients we may relax the condition on σ and only
require that Σ z̊ > −ε e for the given ε > 0 and e = (1, 1, . . . , 1). Then we define
the corresponding limiting ε-differential

∂Lεϕ(̊x) =
{
a + bT(Σ − L)−1Z : Σ z̊ > −ε e

}
⊃ ∂L0ϕ(̊x) ⊃ ∂Lϕ(̊x),

(10.16)

and correspondingly “our” ε−differential simply as

∂εϕ(̊x) = conv(∂Lεϕ(̊x)).

Now we establish the desirable inner semicontinuity of both.

Lemma 10.2 For fixed ε > 0 the multi-function x ⇒ ∂Lε ϕ(x) ⊂ R
n and its convex

hull x ⇒ ∂εϕ(x) = conv{∂Lεϕ(x)} ⊂ R
n are inner semicontinuous.

Proof First let us consider any g̊ ∈ ∂Lε ϕ(̊x) and its correspondingΣ satisfying

g̊ = åT + b̊
T
(Σ − L̊)−1Z̊ and Σ z̊ > −ε e
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with σ definite and thus | det(Σ)| = 1 without loss of generality. Moreover consider
any sequence xk → x̊ and the corresponding zk → z̊. Then we must have by
continuity also Σzk → Σ z̊ > −ε e so that already Σzk > −ε e for all large k.
Thus the corresponding gk = ak + bTk(Σ − Lk)

−1Zk belong to ∂Lε ϕ(xk) and
of course their limit is g̊. Thus every element of ∂Lε ϕ(̊x) is the limit of limiting ε-
gradients at any sequence converging to x̊. Any g̊ ∈ ∂εϕ(̊x) is a convex combination
of at most n + 1 elements of ∂Lε ϕ(̊x). As we have shown above each one of them
is the limit of elements of ∂Lεϕ(xk) for any given sequence xk → x̊. Their convex
combinations with the same coefficients belong to ∂εϕ(xk), which completes the
proof. ��
The lemma implies in particular that if any sequence xk converges to a point
x that is ε-stationary, the smallest elements short(∂εϕ(xk)) of ∂εϕ(xk) with
respect to the Euclidean norm must converge to 0. Hence any stopping criterion
‖ short(∂Gε ϕ(xk))‖ < δ for some positive δ must eventually be satisfied. Let us look
at the situation in case of the half pipe function as defined in Eq. (10.1) at origin
x̊ = 0, where we have

∂Kϕ(0, 0) = {(0, 0)} ⊂ ∂Lϕ(0, 0) = {(−1, 0), (0, 0)}
⊂ lim inf

ε→0
∂Gε ϕ(0, 0) = lim inf

ε→0
conv {(−1, 0), (0, 2 x2) : |x2| < ε} .

Here, the Goldstein ε-subdifferential can be computed exactly but that is a very
special situation. From now on we only consider our limiting ε-differential at a
particular convergent sequence.

If we had a sequence xk that converges to 0 ∈ R
2 all the time staying in the

quadratic crescent S1,1 where 0 < xk,1 and x2
k,2 > xk,1 then we have for all k the

singleton

∂Lε ϕ(xk) = {(−1, 2 xk,2)} = ∂Gε ϕ(xk) = short(∂Gε ϕ(xk)).

Then the length of short(∂Gε ϕ(xk)) would stay constantly greater than 1 despite
the convergence to the Clarke stationary and even critical point x̊ = 0. On the
other hand since zk → 0, the condition Σzk > −ε e is eventually satisfied for all
σ ∈ {−1, 1}2 so that the late ∂Lε ϕ(xk) are given by

∂Lεϕ(xk) =
{

ak + bT
[
σ1 0
1
2 σ2

]−1 [
1 0

− 1
2 2xk,2

]∣
∣∣
∣
∣
σ ∈ {−1, 1}2

}

=
{
ak + bT

[
σ1 0

− 1
2σ1σ2 σ2

] [
1 0

− 1
2 2xk,2

]∣∣
∣
∣ σ ∈ {−1, 1}2

}

=
{
ak + bT

[
σ1 0

− 1
2σ2(σ1 + 1) 2 xk,2σ2

]∣
∣
∣
∣ σ ∈ {−1, 1}2

}
.
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These are actually four different generalized gradients. However as we let xk,2 tend
to zero we get

lim
k→∞ ∂Lε ϕ(xk) =

(−0.25 0) +
{

(−0.25 0.5)

[
1 0
−1 0

]

, (−0.25, 0.5)

[
1 0
1 0

]

, (−0.25, 0.5)

[
−1 0

0 0

]}

,

so that we get only the two generalized gradients

(−0.25, 0)+ (−0.75, 0) = (−1, 0) and (−0.25, 0)+ (0.25, 0) = (0, 0).

Hence, in this case we have that the limiting differential is indeed contained and
thus equal to the inner limit of our limiting ε-differential as a sequence of points
converging to the limit x̊. The same relation applies to their convex hulls, which we
simply call ε-differentials.

Beyond Mere Gradient Activity The property 0 ∈ conv{∂Kϕ(̊x)} of conic
stationarity is considerably more restrictive than that of Clarke stationarity, i.e.,
0 ∈ conv{∂Lϕ(̊x)}, which in turn is more restrictive than 0 ∈ ∂Gε ϕ(̊x). However,
all are merely depending on which gradients are active at some arbitrary points near
the reference point x̊. The relative positions do not matter, which is why |x| and
−|x| have the same limiting gradient {−1,+1} and generalized gradient as well as ε-
differential, namely [−1, 1], respectively. In this case, there is no difference between
the conic, Clarke and Goldstein ε-differential. Obviously that is not very useful in
the context of optimization, where one wants to distinguish between minimizers and
maximizers. To do that one must look at a proper local model function.

10.6 Checking Criticality and Second Order Optimality

It is immediately clear from Eq. (10.10) that x∗ = x̊ can only be a local minimizer of
ϕ if it is a local minimizer of Δϕ(̊x;Δx) with respect to Δx ≈ 0. We call that first
order minimality (FOM). It is not difficult to see that on the function class Cd

abs(D)
this property is equivalent to criticality as defined in [1] and [2], where 0 ∈ R

n

must be a Fréchet subgradient. The term “criticality” insinuates that critical points
of ϕ should also be critical points of −ϕ, which is decidedly not the case. By the
sign change first order minimal points turn into first order maximal points, which
unfortunately yields the same acronym FOM. So the proper terminology remains to
be decided upon.

In general, i.e., for functions outside Cd
abs(D) we know of no practical procedure

to check a candidate point x̊ for local minimality. Inside Cd
abs(D) that can be done

by a simple analysis of the abs-linear approximation data Z,L, a, b, c with c = ẙ

obtained from an extended AD tool in the following way. For simplicity, we assume
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that for a given point x∗ one has zi(x∗) = 0 for i = 1 . . . s. This condition can
be relaxed which requires technical reformulations [15]. For this reason we just
concentrate on the simple case of full activity also called the localized case. Then
one could first check, whetherZ has full rank yielding LIKQ. As proven in the same
paper, then first order optimality requires that for such a given point x∗, there exists
a Lagrange multiplier vector λ∗ ∈ R

s such that

aT(x∗, 0)+ λT∗Z(x∗, 0) = 0 Tangential Stationarity (TS); (10.17)

F(x∗, 0) = 0 Full kink activity; and (10.18)

bT(x∗, 0)+ λT∗L(x∗, 0) ≥ |λ∗|T Normal Growth (NG) (10.19)

holds. Similar results apply if x∗ is not localized in that some of the zi are nonzero.
It is important to note that these optimality conditions can be verified in polynomial
time. If they do not hold, it is possible to construct a descent direction from the
available derivative information Z,L, a, b, c as described in [15]. If all component
inequalities hold strictly we say that Eq. (10.19) represents strict normal growth.

First order minimality can be ensured for cluster points of the so-called proximal
iteration

xk+1 = xk + argmin
Δx

{
ϕ(xk +Δx)+ q

2
‖Δx‖2

}
. (10.20)

Here, q can be any positive constant or vary within some interval. The practical
challenge for the proximal point concept is that the inner problem of minimizing
the right hand side seems almost as hard as the direct minimization of ϕ.

Before we develop an approximate version where ϕ(xk + Δx) is replaced by
the more tractable Δϕ(xk;Δx) let us briefly look at second order necessary and
sufficiency conditions.

Second Order Piecewise Differentiation and Conditions Here, we assume that
ϕ ∈ Cd

abs(D) with d ≥ 2 so that all second order derivatives of F and f are
continuous on the respective domains. These derivatives are conventional except
that they are only valid on certain subspaces in certain polyhedral domains. We
therefore talk of second order piecewise differentiation. Abs-linearization is a form
of first order piecewise differentiation but it is more powerful in that it works
out the polyhedral decomposition at the same time, which is then relevant for
higher order piecewise differentiation. As of now we believe that differentiation
on nonpolyhedral domains is impractical. The equalities in our first order condition
represent n+ s equations in the unknowns (x∗,λ∗) whose Jacobian is given by the
saddle point matrix

[
H ZT

Z 0

]
∈ R

(n+s)×(n+s) (10.21)



350 A. Griewank and A. Walther

with

H = H(x∗,λ∗) ≡ f (x∗, 0)xx +
(
λT F (x∗, 0)

)

xx
∈ R

n×n.

Obviously the Hessian H is the second derivative of the Lagrangian

L(x, 0,λ) = f (x, 0)+ λT F (x, 0) (10.22)

with respect to x. The saddle point Jacobian (10.21) is nonsingular provided
we have second order sufficiency in that UTHU  0, where the columns of
U ∈ R

n×(n−s) span the null space of Z. Then we have a sufficient optimality
condition in combination with tangential stationarity and strict normal growth. If
det(UTHU) = 0, but the projected Hessian is still positive semidefinite we have a
second order necessary condition of optimality. Wherever LIKQ holds the function
ϕ will be smooth within Pσ but may have kinks (upward or downward) along certain
normal directions. As was proven in [15] this geometry corresponds to the VU-
decomposition of Mifflin and Sagastizábal [33] and Lewis [29], where the kinks are
restricted to point upward. Here we can define at a point x the pair of orthogonal
subspaces

U(x) ≡ range (U(x)) and V(x) ≡ U(x)T .

It should be noted that the VU-decomposition exists for some functions outside
Cd

abs(D), for example again the Euclidean norm in two variables or more.

Reaching Criticality Based on the abs-linearisation described at the end of
Sect. 10.3, the following iterative optimization algorithm was proposed in [13]

xk+1 = xk + argmin
Δx

{
ϕ(xk)+Δϕ(xk;Δx)+ q

2 ‖Δx‖2
}
. (10.23)

We call this approach SALMIN for successive abs-linear minimization. The penalty
factor q of the quadratic term is an estimated bound on the discrepancy between ϕ
and its local abs-linear model given by

ϕ(xk)+Δϕ(xk;Δx).

This method was shown in [13] to generate a sequence of iterates {xk}k∈N ⊂ R
n

whose cluster points are first order minimal. If the inner problem of minimizing the
regularized piecewise linear model is not solved exactly, but increments Δx that
are merely Clarke stationary for Δϕ are accepted also, then the cluster points are
guaranteed to be also Clarke stationary as shown in [9].

The SALMIN algorithm as stated in Eq. (10.23) can be interpreted also as a
quadratic overestimation method, where the error between the model and the real
function is bounded by a power of the distance, see, e.g., [11, 17]. This approach is in
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some sense related to a proximal point method as stated in Eq. (10.20). However, in
Eq. (10.23) the local abs-linear model of the function to be minimized at the current
iterate xk is used instead of the original function. This makes the solution of the
inner optimization problem considerably easier in comparison to the proximal point
method. Moreover, without looking at generalized gradients or ε−subdifferentials
SALMIN has a very simple stopping criterion. The outer iteration terminates as soon
as the objective function reduction promised by the solution of the inner problem
falls below a user supplied tolerance.

One possible strategy to solve the inner problem, i.e., determine the minimizer
of

argmin
Δx

{
ϕ(xk)+Δϕ(xk;Δx)+ q

2‖Δx‖2
}
,

exploits the polyhedral domain decomposition defined by Eq. (10.12). Starting with
an arbitrary initial point and the corresponding polyhedron, one can derive an
adapted QOP solver by exploiting the local first order optimality condition from
[15] as stated for the localized case (10.18) in Eqs. (10.17) and (10.19). This strategy
is based on the computation of stationary points by successively activating and
dropping kinks appropriately as described in detail in [16].

10.7 Demonstration on Crescent

The various quantities that we promised as benefits of piecewise differentiation
and the convergence behavior of SALMIN are illustrated on the two dimensional
Crescent example [3, Nr. 21 in Section 9.1], namely

y = f (x1, x2) = max{x2
1 + (x2 − 1)2 + x2 − 1,−x2

1 − (x2 − 1)2 + x2 + 1}

with the starting point (−1.5, 2). In abs-normal form we can write

z1 = F(x1, x2) = x2
1 + (x2 − 1)2 − 1

and

y = f (x1, x2, |z1|) = x2 + |z1|.

The new form was achieved by replacing max{u,w}with the equivalent value 1
2 [u+

w+ abs(w− u)] and then canceling various terms, which can of course be done by
computer algebra or an AD package. Here one sees immediately that the set of kink
locations is formed by the shifted unit circle x2

1 + (x2 − 1)2 = 1.

Abs-Linear Approximation With respect to the abs-linear form we note that since
there is only one switching variable we must have the trivial strictly lower triangular
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matrix L = 0 ∈ R
1×1. The remaining parts of the abs-linear form at a point x̊ are

given by

Z = ∂xz1 = 2(̊x1, x̊2 − 1), a = (0, 1)T, b = 1 and

c = z̊ = x̊2
1 + (̊x2 − 1)2 − 1.

The matrix Z has full rank except at the center (0, 1) of the circle. Hence, LIKQ is
satisfied everywhere on the kink circle.

Looking for Optimal Points To test for optimality we first look at tangential
stationarity, which requires that

0 = (0, 1)+ λ 2(x1, x2 − 1) and z1 = 0.

This system of equations has the two solutions solution (x1, x2) = (0, 0) with
λ = 1

2 and (x1, x2) = (0, 2) with λ = − 1
2 . The normal growth requires that

b = ∂y/∂|z1| ≡ 1 ≥ |λ| = 1
2 which is satisfied as strict inequality at both points.

Thus we have at both points first order optimality, which is also known as criticality.
Finally, at x = (0, 2) the null-space of Z = (0, 2) is spanned by U = (1, 0)T so
that the Hessian of the Lagrangian at the first order optimal point x = (0, 2) with
λ = − 1

2

− 1
2 (1, 0)

[
2 0
0 2

](
1
0

)
= −1 < 0.

Here we have used that f is linear and hence its second derivatives vanish
completely. Thus, the first order optimal point (0, 2) does not satisfy the second
order necessary condition and cannot be a minimizer. At the only other point
satisfying tangential stationarity, namely the origin, we have Z = (0,−2) so that
with U = (1, 0)T and the positive Lagrange multiplier one obtains

1
2 (1, 0)

[
2 0
0 2

](
1
0

)
= 1 > 0.

This projected Hessian is positive definite and the origin is therefore a strict local
minimizer and thus in fact the one and only global minimizer. Notice that the VU-
decomposition is well defined all around the kink circle with V being the radial
direction, i.e., the normal of z1 = 0 and U the tangential direction. Everywhere the
kink is pointed upwards, although that need not be valid in general.

Let us go back and calculate the other goodies at some general point x̊, say the
usual starting point x̊ = (̊x1, x̊2) = (−1.5, 2). There we have z̊ = 9

4 and thus

σ̊ = 1 = Σ . Moreover, Z̊ = (−3, 2) so that independently of any preferred
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Fig. 10.5 Iterates and function values of SALMIN on Crescent example

direction differentiation yields the gradient

g̊ = aT + b(Σ − L)−1Z = (0, 1)+ 1 · (−3, 2) = (−3, 3) .⇒ −g̊ = (3,−3).

With respect to the limiting ε-subdifferential, according to Eq. (10.16) for ε > 0
we are admitting σ ∈ {−1, 1} that satisfy σ 9

4 > −ε. Hence, σ = −1 and the
corresponding

gσ = (0, 1)+ (1)(−1)(−3, 2) = (3, −1)

will only be an ε-gradient when ε > 9
4 . Obviously that is a strong condition but then

the reference point (−1.5, 2) is quite some distance away from the next kink.
Finally, let us consider the performance of our SALMIN approach from the

standard starting point with q = 3 constant. As one can see on the right hand side of
Fig. 10.5 the convergence rate is clearly linear. It can not be better because no effort
is made by SALMIN to approximate the curvature term that defines the circular
valley.

We have applied earlier versions of SALMIN to most of the academic problems
listed in [3]. The results in [9] are quite competitive with a generalization of BFGS
[30] and the bundle method [24]. In fact the number of outer iterations is usually
significantly smaller and a thorough comparison of the runtime cost of solving
the inner problem remains to be done. In any case the inner loop of SALMIN
is still undergoing rapid development, especially in view of larger dimensional
applications. Another generalization that is under way is the extension to problems
with constraints, which may be of complementarity type.
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10.8 Covering the Euclidean Norm

In the context of geometric modeling, see, e.g., [32], one may easily think of
optimization problems or systems of constraints that involve for u ∈ R

k the
Euclidean norm

||u|| =
(

k∑

i=1

u2
i

) 1
2

= ‖(u1, ‖(u2, u3, . . . , uk)‖)‖. (10.24)

The identity on the right shows that the Euclidean norm in k > 2 variables can
be expressed recursively in terms of the binary Euclidean norm ‖(u1, u2)‖ =√
u2

1 + u2
2. This elemental function is of course a generalization of our beloved

unary absolute value ‖u‖ = |u| for u ∈ R. Already the binary Euclidean norm
is no longer piecewise differentiable, because at the origin one would need more
than finitely many C1 selection functions to represent it. However it is Lipschitz
continuous with constant 1 and almost everywhere differentiable, which one can
see directly without referring to Rademacher. As we already foreshadowed at the
end of Sect. 10.3 we now consider the extension of Cd

abs(D) obtained by allowing
not only the univariate abs(·) but its multivariate generalization ‖ · ‖.
Problems inCd

euc(D) As main example we consider the simplest so-called location
problem [19], which goes back to Fermat in the planar case. Given m distinct client
points yj ∈ R

k for j = 1, . . . ,m we are looking for a supply point x that minimizes
the sum of the Euclidean distances to the clients.

minϕm(x) ≡
m∑

j=1

‖x − yj‖ ∈ C∞euc(R
n,R).

The problem is convex, coercive and Lipschitz continuous so that it must have a
nonempty compact and convex solution set. Moreover ϕm(x) is also differentiable
except where x = yj for some 1 ≤ j ≤ m.

When m = 3 and thus w.l.o.g n = 2 we have the classical Fermat problem,
whose solution was be constructed geometrically with a pair of compasses and ruler
by Toricelli. Now suppose one has solved the problem in the horizontal plane, i.e.,
for three points and their geometric median

y1 = (y1,1, y1,2, 0), y2 = (y2,1, y2,2, 0), y3 = (y3,1, y3,2, 0), w = (w1, w2, 0).

The minimizer w is the only stationary point of ϕ3(.) so that one has

∇ϕ3(w) = 0 and ϕ3(x) = ϕ3(w)+O(‖x − w‖2).



10 Beyond the Oracle: Opportunities of Piecewise Differentiation 355

Now let us add a forth data point y4 = (y4,1, y4,2, y4,3) that is reasonable close to
w. Then we will have for the new ϕ4(.) that

ϕ4(x) = ϕ3(x)+ ‖x − y4‖ = ϕ3(w)+ ‖x − y4‖ +O(‖x − w‖2)

and in particular when y4 = w

ϕ4(x) = ϕ3(w)+ ‖x − w‖ +O(‖x − w‖2)

with x = w as the nonsmooth (global) minimizer of ϕ4(.). Moreover, since for
x �= y4

∇ϕ4(x) = ∇ϕ3(x)+ (x − y4)/‖x − y4‖

the same will be true for all y4 with ‖∇ϕ3(y4)‖ < 1 and even ‖∇ϕ3(y4)‖ = 1 since
ϕ4(.) is convex. For each of these y4 we have a convex test problem with the global
minimizer x = y4, at which ϕ4(x) is dominated by the Euclidean norm and thus
not differentiable.

A very similar situation arises in compressive sensing [10] where the distance
‖x − y4‖ of the variable vector x to a base point (often y4 = 0) is added to a
smooth residual, here ϕ3(x). Then the base point is the sparse global minimizer
as long as the smooth part is comparatively stationary. Only when the smooth
part is as steep as the flanks of the norm term the minimizer can be pulled away
from the reference points. Now the question arises how this type of problem can
be minimized algorithmically. The simplest possible test problem in two variables
would be

ϕ(x1, x2) =
√
x2

1 + x2
2 + (λ, 0)T x with |λ| ≤ 1.

We have expressed the Euclidean norm implicitly and assume at first that it will not
be recognizable to the optimization algorithm. Lewis and Overton [30] have called
this problem the tilted norm function, which happens to be the only situation for
which they can prove and not only observe the convergence of their BFGS method
with a special line search. From a starting point with x2 = 0, steepest descent with
any kind of line search will behave exactly as on the univariate problem |x| + λx.
In our experience steepest descent with a Armijo type line-search stalls completely
in the vicinity of the optimizer. Lewis and Overton have shown theoretically that
in combination with their specially for nonsmooth problems adapted Armijo line-
search, steepest descent exhibits a sublinear convergence rate in terms of the number
of function evaluations.

In the one dimensional case with abs(x) = | · | identified as such, our SALMIN
approach would of course yield convergence from any initial point in one step.
On the two dimensional problem without any hint of nonsmooth elementals it
would behave like steepest descent with the coefficient q being incremented several
times in each line search. Theoretically the fact of convergence can be deduced
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by contradiction as follows. If there was a ball about y4 which was not reached
by anyone of the iterates one could modify the convex function ϕ4(.) inside such
that the cone singularity is smoothened out. Then our standard convergence theory
would ensure convergence into the ball yielding a contradiction. Note that the other
three points of nondifferentiability have a much higher function value and can
therefore not be approached if the iteration is started below. Also, notice that we
have assumed throughout like in [30] that the single point of nondifferentiability,
i.e., the global minimizer itself is never reached exactly by any iterate. Of course
a small fixed stepsize as is popular in machine learning will ultimately lead to
oscillations back and forth across the base point. One might argue that the solution
error may then be quite small during this chattering, but the whole purpose of these
terms is to drive them exactly to zero and thus to achieve data sparsity.

So, en passant, we reach the tentative conclusion that on machine learning
problems similar to Lasso [37] steepest descent converges sublinearly with line-
search and does not converge at all for a fixed stepsize. Obviously, some thing needs
to be done to overcome this impasse.

Clipped Root Linearization We have seen in the previous section that approxi-
mating the Euclidean norm by its tangent plane (and equivalently the square root by
its tangent line) does not yield good results on the kind of optimization problems
in Cd

euc(D). As it turns out the two approximation tasks are intimately related and
by simply making a small modification to the root linearization we obtain a desired
effect for the Euclidean root. Therefor we will go backward and start with the root,
whose normal incremental linearization is given by

v = √u .⇒ v +Δv = v + 0.5Δu/v ⇐⇒ Δv = 0.5Δu/v
(10.25)

with the tacit assumption that u and thus v are not exactly equal to zero. This
propagation happens automatically under the rug when piecewise linearization
is applied to a function evaluation procedure y = ϕ(x). The value u and the
incrementΔu of the right hand side are computed from x and Δx via the preceding
intermediate operations and Δv is the resulting increment of the left hand side.
In other words the root is treated like any other differentiable univariate function,
namely replaced by its tangent line. In contrast to the root itself, which is undefined
for negative values, the linearization reaches arbitrarily large negative values.
Therefore, one might argue that the user should be alerted in some way to the
qualitative change for negative increments Δu much bigger than u > 0. The simple
idea of taking the absolute value of the linear prediction leads to:

Definition 10.5 (Clipped Linearization) The clipped linearization of the root is
given by

v = abs(
√
u) .⇒ v +Δv = |v + 0.5Δu/v|

⇐⇒ Δv = |v + 0.5Δu/v| − v. (10.26)
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Fig. 10.6 Two different linearizations for the square root at x̊ = 0.75

Furthermore, we will call this technique of maintaining non-negativity or other
bounds of the original elemental by its piecewise linearization as clipping.

Of course, while maintaining characteristic properties of the original elemental we
have introduced an extra kink and thus made the piecewise linear model a bit more
complicated. However, we will assume that there are lots of kinks anyhow so that a
few more do not make a significant difference. The linear and clipped approximation
of the square root are depicted in Fig. 10.6.
The straight tangent line has been replace by a V-shaped line touching the horizontal
axis at Δu = −2v. The nice thing here is that one does not have to change anything
in the evaluation procedure except extending all

√
u to abs(

√
u), which is of course

equivalent as far as the values themselves (but not the increments) are concerned.
The piecewise linearization process by ADOL-C or some other abs-extended AD
tool can then proceed as usual. Now the question is what that mechanism does to
the Euclidean norm. The usual differentiation of the Euclidean norm of u ∈ R

k in
the composite form (10.24) gives the linear approximation

v = ||u|| .⇒ v +Δv = (u+Δu)T u/‖u‖ ⇐⇒ Δv = ΔuT u/‖u‖

again tacitly assuming that u �= 0 and equivalently v �= 0. Now if again we extend
‖u‖ to abs(‖u‖) we get after some manipulations

v = abs(‖u‖) .⇒ v +Δv = |(u+Δu)T u|/‖u‖
⇐⇒ Δv = |(u+Δu)T u|/‖u‖ − v. (10.27)

This approximation of the Euclidean norm is a V-shaped valley whose bottom line
is orthogonal to the reference point u as illustrated in Fig. 10.7 Again there is no
need for any substantial recoding but simply one has to extend all v = ||u|| to
v = abs(‖u‖) or even simpler use the expression (10.24) and extend

√
u to |√u| as

suggested above.
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Fig. 10.7 The Euclidean norm ‖u‖ and its clipped linearization at ů = (−1, 1)
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Fig. 10.8 Results of SALMIN with clipped square root for the Weber problem

We glossed a little bit about possible overflows when the scalar u or the vector
u are small. Moreover, there is one important aspect that we have not mentioned.
Namely the valley linearization of the Euclidean norm is not of second order and
hence the generalized Taylor property (10.10) does no longer hold for the over-all
abs-linearization. Of course, one might hope that does not stop whatever algorithm
one is using from converging, albeit at a possibly reduced rate. Specifically applying
the current version of SALMIN without any modifications to the location problem
also called Weber problem [40] as described above we get the linear convergence
behavior displayed in Fig. 10.8. The minimizer of ϕ3(.) with y1 = (1, 1), y2 =
(−1,−1) and y3 = (−1, 1) is w = (−0.577, 0.577, 0). Notice that the iteration
appears to alternate between a step that barely reduces the distance to the solution,
presumably moving along the bottom of the valley approximation and one that
reduced the distance by a about a quarter. These numerical results appear quite
satisfactory in view of the observation that normal descent methods are almost
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certain to have a sublinear rate, which in the presence of rounding errors means
stalling not all that close to a solution. To the best of our knowledge the clipped
versions (10.26) and (10.27) of the piecewise linearization of root and Euclidean
norm have not yet appeared in the literature.

10.9 Summary and Conclusion

As indicated by the title we tried to sow some doubts regarding the plausibility
of the popular “oracle” scenario, i.e., the availability of the function value and
one generalized gradient. The key claim is that, if there is a way to compute a
vector that is guaranteed to be a generalized gradient then one can apply piecewise
differentiation and obtains lots of other goodies, like directionally active gradients,
critical multipliers, approximating separating planes, conically active generalized
gradients, active ε−gradients and the whole local abs-linear approximation in the
form of two matrices and three vectors. That full local model naturally leads to
the SALMIN method for which there is now an extensive theory [9] and [16]. The
ε−active gradients defined by (10.16) were firstly introduced in this paper and their
relation to the classical ε−differential of Goldstein deserves further exploration.
They certainly have the advantage of practical computability with polynomial effort.
Also the clipped linearisation as defined in Definition 10.5 for the root is proposed
here for the first time.

It remains to be seen, which class of problems are efficiently treatable by piece-
wise differentiation or not. In the penultimate section we looked at the extension of
Cd

abs(D) to Cd
euc(D) by generalization of the absolute value to the Euclidean norm

in two and thus arbitrary many variables. It is found that the piecewise linearization
of the norm by a V-shaped valley rather than just its tangent plane appears very
useful for avoiding the sublinear convergence of classical descent methods. The
concept of abs-linearization is also extendable to reflexive Banach spaces and thus
the optimization under PDE constraints. Finally let us remark that the abs-linear
approximation can also be exploited for other fundamental numerical tasks like the
solution of nonlinear systems and the integration of Lipschitz continuous dynamical
systems.

References

1. Absil, P.A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for
analytic cost functions. SIAM J. Optim. 16(2), 531–547 (2005)

2. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions
involving analytic features. Math. Program. 116(1–2, Ser. B), 5–16 (2009)

3. Bagirov, A., Karmitsa, N., Mäkelä, M.: Introduction to Nonsmooth Optimization: Theory,
Practice and Software. Springer, Berlin (2014)



360 A. Griewank and A. Walther

4. Barton, P., Khan, K., Stechlinski, P., Watson, H.: Computationally relevant generalized
derivatives: theory, evaluation and applications. Optim. Methods Softw. 33(4–6), 1030–1072
(2018)

5. Bell, B.: CppAD. https://www.coin-or.org/CppAD/
6. Burke, J., Henrion, D., Lewis, A., Overton, M.: Stabilization via nonsmooth, nonconvex

optimization. IEEE Trans. Autom. Control 51(11), 1760–1769 (2006)
7. Clarke, F.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)
8. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity

Problems, vol. II. Springer, Berlin (2003)
9. Fiege, S., Walther, A., Griewank, A.: An algorithm for nonsmooth optimization by successive

piecewise linearization. Math. Program. Ser. A (2018). https://doi.org/10.1007/s10107-018-
1273-5

10. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing.
Birkhäuser/Springer, Basel (2013)

11. Griewank, A.: The modification of Newton’s method for unconstrained optimization by
bounding cubic terms. Technical Report NA/12, University of Cambridge (1981)

12. Griewank, A.: Automatic directional differentiation of nonsmooth composite functions. In:
Recent Developments in Optimization. 7th French-German Conference on Optimization,
Dijon, June 27–July 2, 1994, pp. 155–169. Springer, Berlin (1995)

13. Griewank, A.: On stable piecewise linearization and generalized algorithmic differentiation.
Optim. Methods Softw. 28(6), 1139–1178 (2013)

14. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM, Philadelphia (2008)

15. Griewank, A., Walther, A.: First and second order optimality conditions for piecewise smooth
objective functions. Optim. Methods Softw. 31(5), 904–930 (2016)

16. Griewank, A., Walther, A.: Finite convergence of an active signature method to local minima
of piecewise linear functions. Optim. Methods Softw. 34, 1035–1055 (2018). https://doi.org/
10.1080/10556788.2018.1546856

17. Griewank, A., Fischer, J., Bosse, T.: Cubic overestimation and secant updating for uncon-
strained optimization of C2,1 functions. Optim. Methods Softw. 29(5), 1075–1089 (2014)

18. Griewank, A., Streubel, T., Lehmann, L., Radons, M., Hasenfelder, R.: Piecewise linear secant
approximation via algorithmic piecewise differentiation. Optim. Methods Softw. 33(4–6),
1108–1126 (2018)

19. Hamacher, H., Nickel, S.: Classification of location models. Locat. Sci. 6(1–4), 229–242 (1998)
20. Hascoët, L., Pascual, V.: The Tapenade automatic differentiation tool: principles, model, and

specification. ACM Trans. Math. Softw. 39(3), 20:1–20:43 (2013)
21. Hegerhorst-Schultchen, L., Kirches, C., Steinbach, M.: On the relation between mpecs and

optimization problems in abs-normal form. Technical Report, Universität Hannover (2018).
Available at optimization-online

22. Hintermüller, M.: Semismooth newton methods and applications. Technical Report, Depart-
ment of Mathematics, Humboldt-University Berlin (2010)

23. Hintermüller, M., Stadler, G.: A semi-smooth Newton method for constrained linear-quadratic
control problems. ZAMM. Z. Angew. Math. Mech. 83(4), 219–237 (2003)

24. Karmitsa, N., Mäkelä, M.: Limited memory bundle method for large bound constrained
nonsmooth optimization: convergence analysis. Optim. Methods Softw. 25(6), 895–916 (2010)

25. Khan, K.: Branch-locking ad techniques for nonsmooth composite functions and nonsmooth
implicit functions. Optim. Methods Softw. (2017). https://doi.org/10.1080/10556788.2017.
1341506

26. Khan, K., Barton, P.: Evaluating an element of the Clarke generalized Jacobian of a composite
piecewise differentiable function. ACM Trans. Math. Softw. 39(4), 28 (2013)

27. Khan, K., Barton, P.: A vector forward mode of automatic differentiation for generalized
derivative evaluation. Optim. Methods Softw. 30(6), 1185–1212 (2015)

28. Klatte, D., Kummer, B.: Nonsmooth equations in optimization. In: Regularity, Calculus,
Methods and Applications. Kluwer Academic Publishers, Amsterdam (2002)

https://www.coin-or.org/CppAD/
https://doi.org/10.1007/s10107-018-1273-5
https://doi.org/10.1007/s10107-018-1273-5
https://doi.org/10.1080/10556788.2018.1546856
https://doi.org/10.1080/10556788.2018.1546856
https://doi.org/10.1080/10556788.2017.1341506
https://doi.org/10.1080/10556788.2017.1341506


10 Beyond the Oracle: Opportunities of Piecewise Differentiation 361

29. Lewis, A.: Active sets, nonsmoothness, and sensitivity. SIAM J. Optim. 13(3), 702–725 (2002)
30. Lewis, A., Overton, M.: Nonsmooth optimization via quasi-Newton methods. Math. Program.

141(1–2, Ser. A), 135–163 (2013)
31. Leyffer, S.: Mathematical programs with complementarity constraints. SIAG/OPTViews-and-

News 14(1), 15–18 (2003)
32. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applica-

tions. SIAM Rev. 56(1), 3–69 (2014)
33. Mifflin, R., Sagastizábal, C.: A science fiction story in nonsmooth optimization originating at

IIASA. Doc. Math. Extra Vol, 291–300 (2012)
34. Nesterov, Y.: Lexicographic differentiation of nonsmooth functions. Math. Program. 104(2–3,

Ser. A), 669–700 (2005)
35. Rockafellar, R., Wets, R.B.: Variational Analysis. Springer, Berlin (1998)
36. Scholtes, S.: Introduction to Piecewise Differentiable Functions. Springer, Berlin (2012)
37. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B 58(1),

267–288 (1996)
38. Walther, A., Griewank, A.: Combinatorial Scientific Computing, Chapter Getting Started with

ADOL-C, pp. 181–202. Chapman-Hall CRC Computational Science, Boca Raton (2012)
39. Walther, A., Griewank, A.: Characterizing and testing subdifferential regularity for piecewise

smooth objective functions. SIAM J. Optim. 29(2), 1473–1501 (2019)
40. Weber, A.: Über den Standort der Industrien. J.C.B. Mohr (Paul Siebeck), Tübingen (1922)



Chapter 11
Numerical Solution of Generalized
Minimax Problems

Ladislav Lukšan, Ctirad Matonoha, and Jan Vlček

Abstract This contribution contains the description and investigation of three
numerical methods for solving generalized minimax problems. These problems con-
sists in the minimization of nonsmooth functions which are compositions of special
smooth convex functions with maxima of smooth functions. The most important
functions of this type are the sums of maxima of smooth functions. Section 11.2 is
devoted to primal interior point methods which use solutions of nonlinear equations
for obtaining minimax vectors. Section 11.3 contains investigation of smoothing
methods, based on using exponential smoothing terms. Section 11.4 contains
short description of primal-dual interior point methods based on transformation of
generalized minimax problems to general nonlinear programming problems. Finally
the last section contains results of numerical experiments.

11.1 Generalized Minimax Problems

In many practical problems we need to minimize functions that contain absolute
values or pointwise maxima of smooth functions. Such functions are nonsmooth
but they often have a special structure enabling the use of special methods that
are more efficient than methods for minimization of general nonsmooth functions.
The classical minimax problem, where F(x) = max1≤k≤m fk(x), or problems
where the function to be minimized is a nonsmooth norm, e.g. F(x) = ‖f (x)‖∞,
F(x) = ‖f+(x)‖∞, F(x) = ‖f (x)‖1, F(x) = ‖f+(x)‖1 with f (x) =
[f1(x), . . . , fm(x)]T and f+(x) = [max{f1(x), 0}, . . . ,max{fm(x), 0}]T , are
typical examples. Such functions can be considered as special cases of more
general functions, so it is possible to formulate more general theories and construct
more general numerical methods. One possibility for generalization of the classical
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minimax problem consists in the use of the function

F(x) = max
1≤k≤k

pT
k f (x), (11.1)

where pk ∈ R
m, 1 ≤ k ≤ k, and f : Rn → R

m is a smooth mapping. This function
is a special case of composite nonsmooth functions of the form F(x) = f0(x) +
max1≤k≤k(pT

k f (x) + bk), where f0 : Rn → R is a continuously differentiable
function [8, Section 14.1].

Remark 11.1 We can express all above mentioned minimax problems and nons-
mooth norms in form (11.1).

(a) Setting pk = ek , where ek is the k-th column of an identity matrix and k = m,
we obtain F(x) = max1≤k≤m fk(x) (the classical minimax).

(b) Setting pk = ek , pm+k = −ek and k = 2m, we obtain
F(x) = max1≤k≤m max{fk(x),−fk(x)} = ‖f (x)‖∞.

(c) Setting pk = ek , pm+1 = 0 and k = m+ 1, we obtain
F(x) = max{max1≤k≤m fk(x), 0} = ‖f (x)+‖∞.

(d) If k = 2m and pk , 1 ≤ k ≤ 2m, are mutually different vectors whose elements
are either 1 or −1, we obtain
F(x) =∑m

k=1 max{fk(x),−fk(x)} = ‖f (x)‖1.
(e) If k = 2m and pk , 1 ≤ k ≤ 2m, are mutually different vectors whose elements

are either 1 or 0, we obtain F(x) =∑m
k=1 max{fk(x), 0} = ‖f+(x)‖1.

Remark 11.2 Since the mapping f (x) is continuously differentiable, the func-
tion (11.1) is Lipschitz. Thus, if the point x ∈ R

n is a local minimum of F(x),
then 0 ∈ ∂F (x) [25, Theorem 3.2.5] holds. According to [25, Theorem 3.2.13], one
has

∂F (x) = (∇f (x))T conv
{
pk : k ∈ Ī(x)

}
,

where Ī(x) = {k ∈ {1, . . . , k} : pT
k f (x) = F(x)}. Thus, if the point x ∈ R

n is
a local minimum of F(x), then multipliers λk ≥ 0, 1 ≤ k ≤ k, exist, such that
λk(p

T
k f (x)− F(x)) = 0, 1 ≤ k ≤ k,

k∑

k=1

λk = 1 and
k∑

k=1

λkJ
T (x)pk = 0,

where J (x) is a Jacobian matrix of the mapping f (x).

Remark 11.3 It is clear that a minimum of function (11.1) is a solution of a
nonlinear programming problem consisting in minimization of a function F̃ :
R
n+1 → R, where F̃ (x, z) = z, on the set

C = {(x, z) ∈ R
n+1 : pT

k f (x) ≤ z, 1 ≤ k ≤ k}.



11 Numerical Solution of Generalized Minimax Problems 365

Denoting ck(x, z) = pT
k f (x)− z and ak = ∇ck(x, z), 1 ≤ k ≤ k, we obtain ak =

[pT
k J (x),−1]T and g = ∇F̃ (x, z) = [0T , 1]T , so the necessary KKT conditions

can be written in the form

[
0
1

]
+

k∑

k=1

[
J T (x)pk

−1

]
λk = 0,

λk(p
T
k f (x) − z) = 0, where λk ≥ 0, 1 ≤ k ≤ k, are the Lagrange multipliers and

z = F(x). Thus, we obtain the same necessary conditions for an extremum as in
Remark 11.2.

From the examples given in Remark 11.1 it follows that composite nondifferen-
tiable functions are not suitable for representation of the functionsF(x) = ‖f (x)‖1
and F(x) = ‖f+(x)‖1 because in this case the expression on the right-hand side
of (11.1) contains 2m elements with vectors pk , 1 ≤ k ≤ 2m. In the subsequent
considerations, we will choose a somewhat different approach. We will consider
generalized minimax functions established in [5] and [23].

Definition 11.1 We say that F : Rn → R is a generalized minimax function if

F(x) = h(F1(x), . . . , Fm(x)), Fk(x) = max
1≤l≤mk

fkl(x), 1 ≤ k ≤ m,

(11.2)

where h : Rm → R and fkl : Rn → R, 1 ≤ k ≤ m, 1 ≤ l ≤ mk , are smooth
functions satisfying the following assumptions.

Assumption 11.1 Functions fkl , 1 ≤ k ≤ m, 1 ≤ l ≤ mk, are bounded from below
on R

n, so that there exists a constant F ∈ R such that fkl(x) ≥ F , 1 ≤ k ≤ m,
1 ≤ l ≤ mk , for all x ∈ R

n.

Assumption 11.2 Functions Fk , 1 ≤ k ≤ m, are bounded from below on R
n, so

that there exist constants Fk ∈ R such that Fk(x) ≥ Fk , 1 ≤ k ≤ m, for all x ∈ R
n.

Assumption 11.3 The function h is twice continuously differentiable and convex
satisfying

0 < hk ≤
∂

∂zk
h(z) ≤ hk, 1 ≤ k ≤ m, (11.3)

for every z ∈ Z = {z ∈ R
m : zk ≥ Fk, 1 ≤ k ≤ m} (vector z ∈ R

m is called the
minimax vector).
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Assumption 11.4 Functions fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk, are twice
continuously differentiable on the convex hull of the level set

DF (F ) = {x ∈ R
n : Fk(x) ≤ F, 1 ≤ k ≤ m}

for a sufficiently large upper bound F and subsequently, constants g and G exist
such that ‖gkl(x)‖ ≤ g and ‖Gkl(x)‖ ≤ G for all 1 ≤ k ≤ m, 1 ≤ l ≤ mk , and
x ∈ convDF (F ), where gkl(x) = ∇fkl(x) and Gkl(x) = ∇2fkl(x).

Remark 11.4 The conditions imposed on the function h(z) are relatively strong but
many important nonsmooth functions satisfy them.

(1) Let h : R → R be an identity mapping, so h(z) = z and h′(z) = 1 > 0. Then
setting k = 1, m1 = l and

F(x) = h(F1(x)) = F1(x) = max
1≤l≤l

pT
l f (x)

(since f1l = pT
l f (x)), we obtain the composite nonsmooth function (11.1) and

therefore the functions F(x) = max1≤k≤m fk(x), F(x) = ‖f (x)‖∞, F(x) =
‖f+(x)‖∞.

(2) Let h : Rm → R, where h(z) = z1+· · ·+zm, so ∂
∂zk

h(z) = 1 > 0, 1 ≤ k ≤ m.
Then function (11.2) has the form

F(x) =
m∑

k=1

Fk(x) =
m∑

k=1

max
1≤l≤mk

fkl(x) (11.4)

(the sum of maxima). If mk = 2 and Fk(x) = max{fk(x),−fk(x)}, we obtain
the function F(x) = ‖f (x)‖1. If mk = 2 and Fk(x) = max{fk(x), 0},
we obtain the function F(x) = ‖f+(x)‖1. It follows that the expression
of functions F(x) = ‖f (x)‖1 and F(x) = ‖f+(x)‖1 by (11.2) contains
only m summands and each summand is a maximum of two function values.
Thus, this approach is much more economic than the use of formulas stated in
Remark 11.1(d)–(e).

Remark 11.5 Since the functions Fk(x), 1 ≤ k ≤ m, are regular [25, Theo-
rem 3.2.13], the function h(z) is continuously differentiable, and hk = ∂

∂zk
h(z) > 0,

one can write [25, Theorem 3.2.9]

∂F (x) = conv
m∑

k=1

hk∂Fk(x) =
m∑

k=1

hk∂Fk(x)

=
m∑

k=1

hk conv{gkl(x) : l ∈ Īk(x)},
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where Īk(x) = {l : 1 ≤ l ≤ mk, fkl(x) = Fk(x)}. Thus, one has

∂F (x) =
m∑

k=1

hk

mk∑

l=1

λklgkl(x),

where for 1 ≤ k ≤ m it holds λkl ≥ 0, λkl(Fk(x) − fkl(x)) = 0, 1 ≤ l ≤ mk , and∑mk

l=1 λkl = 1. Setting ukl = hkλkl , 1 ≤ k ≤ m, 1 ≤ l ≤ mk, we can write

∂F (x) =
m∑

k=1

mk∑

l=1

uklgkl(x),

where for 1 ≤ k ≤ m it holds ukl ≥ 0, ukl(Fk(x) − fkl(x)) = 0, 1 ≤ l ≤ mk ,
and

∑mk

l=1 ukl = hk . If a point x ∈ R
n is a minimum of a function F(x), then

0 ∈ ∂F (x), so there exist multipliers ukl , 1 ≤ k ≤ m, 1 ≤ l ≤ mk , such that

m∑

k=1

mk∑

l=1

gkl(x)ukl = 0,
mk∑

l=1

ukl = hk, hk = ∂

∂zk
h(z), (11.5)

ukl ≥ 0, Fk(x)− fkl(x) ≥ 0, ukl(Fk(x)− fkl(x)) = 0. (11.6)

Remark 11.6 Unconstrained minimization of function (11.2) is equivalent to the
nonlinear programming problem

{
minimize F̃ (x, z) = h(z)

subject to fkl(x) ≤ zk, 1 ≤ k ≤ m, 1 ≤ l ≤ mk.
(11.7)

The condition (11.3) is sufficient for satisfying equalities zk = Fk(x), 1 ≤ k ≤ m,
at the minimum point. Denoting ckl(x, z) = fkl(x)−zk and akl(x, z) = ∇ckl(x, z),
1 ≤ k ≤ m, 1 ≤ l ≤ mk , we obtain akl(x, z) = [gTkl(x),−eTk ]T , where gkl(x) is
a gradient of fkl(x) in x and ek is the k-th column of the unit matrix of order m.
Thus, the necessary first-order (KKT) conditions have the form

g(x,u) =
m∑

k=1

mk∑

l=1

gkl(x)ukl = 0,
mk∑

l=1

ukl = hk, hk = ∂

∂zk
h(z), (11.8)

ukl ≥ 0, zk − fkl(x) ≥ 0, ukl(zk − fkl(x)) = 0, (11.9)

where ukl , 1 ≤ k ≤ m, 1 ≤ l ≤ mk , are Lagrange multipliers and zk = Fk(x). So
we obtain the same necessary conditions for an extremum as in Remark 11.5.
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Remark 11.7 A classical minimax problem

F(x) = max
1≤k≤mfk(x) (11.10)

can be replaced with an equivalent nonlinear programming problem

{
minimize F̃ (x, z) = z

subject to fk(x) ≤ z, 1 ≤ k ≤ m,
(11.11)

and the necessary KKT conditions have the form

m∑

k=1

gk(x)uk = 0,
m∑

k=1

uk = 1, (11.12)

uk ≥ 0, z− fk(x) ≥ 0, uk(z− fk(x)) = 0, 1 ≤ k ≤ m. (11.13)

Remark 11.8 Minimization of the sum of absolute values

F(x) =
m∑

k=1

|fk(x)| =
m∑

k=1

max{f+k (x), f−k (x)}, (11.14)

where

f+k (x) = fk(x), f−k (x) = −fk(x)

can be replaced with an equivalent nonlinear programming problem

⎧
⎪⎨

⎪⎩

minimize F̃ (x, z) =
m∑

k=1
zk

subject to −zk ≤ fk(x) ≤ zk,

(11.15)

(there are two constraints c−k (x) = zk − fk(x) ≥ 0 and c+k (x) = zk + fk(x) ≥ 0
for each index 1 ≤ k ≤ m) and the necessary KKT conditions have the form

m∑

k=1

gk(x)(u
+
k − u−k ) = 0, u+k + u−k = 1, (11.16)

u+k ≥ 0, zk − fk(x) ≥ 0, u+k (zk − fk(x)) = 0, (11.17)

u−k ≥ 0, zk + fk(x) ≥ 0, u−k (zk + fk(x)) = 0, (11.18)
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where 1 ≤ k ≤ m. If we set uk = u+k − u−k and use the equality u+k + u−k = 1, we
obtain u+k = (1 + uk)/2, u−k = (1 − uk)/2. From conditions u+k ≥ 0, u−k ≥ 0 the
inequalities −1 ≤ uk ≤ 1, or |uk| ≤ 1, follow. The condition u+k + u−k = 1 implies
that the numbers u+k , u−k cannot be simultaneously zero, so either zk = fk(x) or
zk = −fk(x), that is zk = |fk(x)|. If fk(x) �= 0, it cannot simultaneously hold
zk = fk(x) and zk = −fk(x), so the numbers u+k , u−k cannot be simultaneously
nonzero. Then either uk = u+k = 1 and zk = fk(x) or uk = −u−k = −1 and
zk = −fk(x), that is uk = fk(x)/|fk(x)|. Thus, the necessary KKT conditions
have the form

m∑

k=1

gk(x)uk = 0, zk = |fk(x)|,

|uk| ≤ 1, uk = fk(x)

|fk(x)| , if |fk(x)| > 0. (11.19)

Remark 11.9 Minimization of the sum of absolute values can also be reformulated
so that more slack variables are used. We obtain the problem

⎧
⎪⎨

⎪⎩

minimize F̃ (x, z) =
m∑

k=1
(z+k + z−k )

subject to fk(x) = z+k − z−k , z+k ≥ 0, z−k ≥ 0,
(11.20)

where 1 ≤ k ≤ m. This problem contains m general equality constraints and 2m
simple bounds for 2m slack variables.

In the subsequent considerations, we will restrict ourselves to functions of the
form (11.4), the sums of maxima that include most cases important for applications.
In this case, it holds

h(z) =
m∑

k=1

zk, ∇h(z) = ẽ, ∇2h(z) = 0, (11.21)

where ẽ ∈ R
m is a vector with unit elements. The case when h(z) is a general

function satisfying Assumption 11.3 is studied in [23].

11.2 Primal Interior Point Methods

11.2.1 Barriers and Barrier Functions

Primal interior point methods for equality constraint minimization problems are
based on adding a barrier term containing constraint functions to the minimized
function. A resulting barrier function, depending on a barrier parameter 0 < μ ≤
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μ < ∞, is successively minimized on R
n (without any constraints), where μ ↓ 0.

Applying this approach on the problem (11.7), we obtain a barrier function

Bμ(x, z) = h(z)+ μ

m∑

k=1

mk∑

l=1

ϕ(zk − fkl(x)), 0 < μ ≤ μ, (11.22)

where ϕ : (0,∞)→ R is a barrier which satisfies the following assumption.

Assumption 11.5 Function ϕ(t), t ∈ (0,∞), is twice continuously differentiable,
decreasing, and strictly convex, with limt↓0 ϕ(t) = ∞. Function ϕ′(t) is increasing
and strictly concave such that limt↑∞ ϕ′(t) = 0. For t ∈ (0,∞) it holds −tϕ′(t) ≤
1, t2ϕ′′(t) ≤ 1. There exist numbers τ > 0 and c > 0 such that for t < τ it holds

− tϕ′(t) ≥ c (11.23)

and

ϕ′(t)ϕ′′′(t)− ϕ′′(t)2 > 0. (11.24)

Remark 11.10 A logarithmic barrier function

ϕ(t) = log t−1 = − log t, (11.25)

is most frequently used. It satisfies Assumption 11.5 with c = 1 and τ = ∞ but
it is not bounded from below since log t ↑ ∞ for t ↑ ∞. For that reason, barriers
bounded from below are sometimes used, e.g. a function

ϕ(t) = log(t−1 + τ−1) = − log
tτ

t + τ
, (11.26)

which is bounded from below by number ϕ = − log τ , or a function

ϕ(t) = − log t, 0 < t ≤ τ, ϕ(t) = at−2 + bt−1 + c, t ≥ τ, (11.27)

which is bounded from below by number ϕ = c = − log τ − 3/2, or a function

ϕ(t) = − log t, 0 < t ≤ τ, ϕ(t) = at−1 + bt−1/2 + c, t ≥ τ, (11.28)

which is bounded from below by number ϕ = c = − log τ − 3. Coefficients a,
b, c are chosen so that function ϕ(t) as well as its first and second derivatives are
continuous in t = τ . All these barriers satisfy Assumption 11.5 [23] (the proof of
this statement is trivial for logarithmic barrier (11.25)).

Even if bounded from below barriers (11.26)–(11.28) have more advantageous
theoretical properties (Assumption 11.1 can be replaced with a weaker Assump-
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tion 11.2 and the proof of Lemma 11.2 below is much simpler, see [23]), algorithms
using logarithmic barrier (11.26) are usually more efficient. Therefore, we will only
deal with methods using the logarithmic barrier ϕ(t) = − log t in the subsequent
considerations.

11.2.2 Iterative Determination of a Minimax Vector

Suppose the function h(z) is of form (11.21). Using the logarithmic barrier ϕ(t) =
− log t , function (11.22) can be written as

Bμ(x, z) =
m∑

k=1

zk − μ

m∑

k=1

mk∑

l=1

log(zk − fkl(x)), 0 < μ ≤ μ. (11.29)

Further, we will denote gkl(x) and Gkl(x) gradients and Hessian matrices of
functions fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk , and set

ukl(x, z) = μ

zk − fkl(x)
≥ 0,

vkl(x, z) = μ

(zk − fkl(x))2
= 1

μ
u2
kl(x, z) ≥ 0, (11.30)

and

uk(x, z) =
⎡

⎢
⎣

uk1(x, z)
...

ukmk (x, z)

⎤

⎥
⎦ , vk(x, z) =

⎡

⎢
⎣

vk1(x, z)
...

vkmk (x, z)

⎤

⎥
⎦ , ẽk =

⎡

⎢
⎣

1
...

1

⎤

⎥
⎦ .

Denoting by g(x, z) the gradient of the function Bμ(x, z) and γk(x, z) =
∂
∂zk

Bμ(x, z), the necessary conditions for an extremum of the barrier func-
tion (11.22) can be written in the form

g(x, z) =
m∑

k=1

mk∑

l=1

gkl(x)ukl(x, z) =
m∑

k=1

Ak(x)uk(x, z) = 0, (11.31)

γk(x, z) = 1−
mk∑

l=1

ukl(x, z) = 1− ẽTk uk(x, z) = 0, 1 ≤ k ≤ m, (11.32)

where Ak(x) = [gk1(x), . . . ,gkmk
(x)], which is a system of n + m nonlinear

equations for unknown vectors x and z. These equations can be solved by the
Newton method. In this case, the second derivatives of the Lagrange function (which
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are the first derivatives of expressions (11.31) and (11.32)) are computed. Denoting

G(x, z) =
m∑

k=1

mk∑

l=1

Gkl(x)ukl(x, z), (11.33)

the Hessian matrix of the Lagrange function and setting

Uk(x, z) = diag[uk1(x, z), . . . , ukmk (x, z)],

Vk(x, z) = diag[vk1(x, z), . . . , vkmk (x, z)] =
1

μ
U2
k (x, z),

we can write

∂

∂x
g(x, z) =

m∑

k=1

mk∑

l=1

Gkl(x)ukl(x, z)+
m∑

k=1

mk∑

l=1

gkl(x)vkl(x, z)g
T
kl(x)

= G(x, z)+
m∑

k=1

Ak(x)Vk(x, z)A
T
k (x), (11.34)

∂

∂zk
g(x, z) = −

mk∑

l=1

gkl(x)vkl(x, z) = −Ak(x)vk(x, z), (11.35)

∂

∂x
γk(x, z) = −

mk∑

l=1

vkl(x, z)g
T
kl(x) = −vTk (x, z)A

T
k (x), (11.36)

∂

∂zk
γk(x, z) =

mk∑

l=1

vkl(x, z) = ẽTk vk(x, z). (11.37)

Using these formulas we obtain a system of linear equations describing a step of the
Newton method

⎡

⎢
⎢
⎢
⎣

W(x, z) −A1(x)v1(x, z) · · · −Am(x)vm(x, z)

−vT1 (x, z)A
T
1 (x) ẽT1 v1(x, z) · · · 0

...
...

. . .
...

−vTm(x, z)A
T
m(x) 0 · · · ẽTmvm(x, z)

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

Δx

Δz1
...

Δzm

⎤

⎥
⎥
⎥
⎦

(11.38)

= −

⎡

⎢⎢
⎢
⎣

g(x, z)

γ1(x, z)
...

γm(x, z)

⎤

⎥⎥
⎥
⎦
,
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where

W(x, z) = G(x, z)+
m∑

k=1

Ak(x)Vk(x, z)A
T
k (x). (11.39)

Setting

C(x, z) = [A1(x)v1(x, z), . . . , Am(x)vm(x, z)],
D(x, z) = diag[ẽT1 v1(x, z), . . . , ẽ

T
mvm(x, z)]

and γ (x, z) = [γ1(x, z), . . . , γm(x, z)]T , a step of the Newton method can be
written in the form

[
W(x, z) −C(x, z)
−CT (x, z) D(x, z)

] [
Δx

Δz

]
= −

[
g(x, z)

γ (x, z)

]
. (11.40)

The diagonal matrix D(x, z) is positive definite since it has positive diagonal
elements.

During iterative determination of a minimax vector we know a value of the
parameter μ and vectors x ∈ R

n, z ∈ R
m such that zk > Fk(x), 1 ≤ k ≤ m.

Using formula (11.40) we determine direction vectors Δx, Δz. Then, we choose a
step length α so that

Bμ(x + αΔx, z + αΔz) < Bμ(x, z) (11.41)

and zk + αΔzk > Fk(x + αΔx), 1 ≤ k ≤ m. Finally, we set x+ = x + αΔx,
z+ = z + αΔz and determine a new value μ+ < μ. If the matrix of system of
equations (11.40) is positive definite, inequality (11.41) is satisfied for a sufficiently
small value of the step length α.

Theorem 11.1 Let the matrix G(x, z) given by (11.33) be positive definite. Then
the matrix of system of equations (11.40) is positive definite.

Proof The matrix of system of equations (11.40) is positive definite if and only
if the matrix D and its Schur complement W − CD−1CT are positive definite [7,
Theorem 2.5.6]. The matrix D is positive definite since it has positive diagonal
elements. Further, it holds

W − CD−1CT = G+
m∑

k=1

(
AkVkA

T
k − AkVk ẽk(ẽ

T
k Vk ẽk)

−1(AkVk ẽk)
T
)
,

matrices AkVkA
T
k − AkVk ẽk(ẽ

T
k Vk ẽk)

−1(AkVk ẽk)
T , 1 ≤ k ≤ m, are positive

semidefinite due to the Schwarz inequality and the matrix G is positive definite
by the assumption. ��
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11.2.3 Direct Determination of a Minimax Vector

Now we will show how to solve system of equations (11.31)–(11.32) by direct
determination of a minimax vector using two-level optimization

z(x;μ) = argmin
z∈Rm

Bμ(x, z), (11.42)

and

x∗ = argmin
x∈Rn

B̂(x;μ), B̂(x;μ) Δ= Bμ(x, z(x;μ)). (11.43)

The problem (11.42) serves for determination of an optimal vector z(x;μ) ∈ R
m.

Let B̃μ(z) = Bμ(x, z) for a fixed chosen vector x ∈ R
n. The function B̃μ(z)

is strictly convex (as a function of a vector z), since it is a sum of convex
function (11.21) and strictly convex functions −μ log(zk − fkl(x)), 1 ≤ k ≤ m,
1 ≤ l ≤ mk. A minimum of the function B̃μ(z) is its stationary point, so it is
a solution of system of equations (11.32) with Lagrange multipliers (11.30). The
following theorem shows that this solution exists and is unique.

Theorem 11.2 The function B̃μ(z) : (F (x),∞) → R has a unique stationary
point which is its global minimum. This stationary point is characterized by a system
of equations γ (x, z) = 0, or

1− ẽTk uk = 1−
mk∑

l=1

μ

zk − fkl(x)
= 0, 1 ≤ k ≤ m, (11.44)

which has a unique solution z(x;μ) ∈ Z ⊂ R
m such that

Fk(x) < Fk(x)+ μ < zk(x;μ) < Fk(x)+mkμ (11.45)

for 1 ≤ k ≤ m.

Proof Definition 11.1 implies fkl(x) ≤ Fk(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk , where the
equality occurs for at least one index l.

(a) If (11.44) holds, then we can write

1 =
mk∑

l=1

μ

zk − fkl(x)
>

μ

zk − Fk(x)
⇔ zk − Fk(x) > μ,

1 =
mk∑

l=1

μ

zk − fkl(x)
<

mkμ

zk − Fk(x)
⇔ zk − Fk(x) < mkμ,

which proves inequalities (11.45).



11 Numerical Solution of Generalized Minimax Problems 375

(b) Since

γk(x, F + μ) = 1−
mk∑

l=1

μ

μ+ Fk(x)− fkl(x)
< 1− μ

μ
= 0,

γk(x, F +mkμ) = 1−
mk∑

l=1

μ

mkμ+ Fk(x)− fkl(x)
> 1− mkμ

mkμ
= 0,

and the function γk(x, zk) is continuous and decreasing in Fk(x) + μ <

zk(x;μ) < Fk(x) + mk by (11.37), the equation γk(x, zk) = 0 has a unique
solution in this interval. Since the function B̃μ(z) is convex this solution
corresponds to its global minimum.

��
System (11.44) is a system of m scalar equations with localization inequali-
ties (11.45). These scalar equations can be efficiently solved by robust methods
described e.g. in [14] and [15] (details are stated in [22]). Suppose that z = z(x;μ)
and denote

B̂(x;μ) =
m∑

k=1

zk(x;μ)− μ

m∑

k=1

mk∑

l=1

log(zk(x;μ)− fkl(x)). (11.46)

To find a minimum of Bμ(x, z) in R
n+m, it suffices to minimize B̂(x;μ) in R

n.

Theorem 11.3 Consider the barrier function (11.46). Then

∇B̂(x;μ) =
m∑

k=1

Ak(x)uk(x;μ), (11.47)

∇2B̂(x;μ) = W(x;μ)− C(x;μ)D−1(x;μ)CT (x;μ)

= G(x;μ)+
m∑

k=1

Ak(x)Vk(x;μ)AT
k (x)

−
m∑

k=1

Ak(x)Vk(x;μ)ẽk ẽTk Vk(x;μ)AT
k (x)

ẽTk Vk(x;μ)ẽk
, (11.48)

where G(x;μ) = G(x, z(x;μ)) and W(x;μ), C(x;μ), D(x;μ), Uk(x;μ),
Vk(x;μ) = U2

k (x;μ)/μ, 1 ≤ k ≤ m, are obtained by the same substitution. A
solution of equation

∇2B̂(x;μ)Δx = −∇B̂(x;μ) (11.49)
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is identical withΔx given by (11.40), where z = z(x;μ) (so γ (x, z(x;μ)) = 0).

Proof Differentiating the barrier function (11.46) and using (11.32) we obtain

∇B̂(x;μ) =
m∑

k=1

∂

∂x
zk(x;μ)−

m∑

k=1

mk∑

l=1

ukl(x;μ)
(
∂

∂x
zk(x;μ)− ∂

∂x
fkl(x)

)

=
m∑

k=1

∂

∂x
zk(x;μ)

(

1−
mk∑

l=1

ukl(x;μ)
)

+
m∑

k=1

mk∑

l=1

ukl(x;μ) ∂
∂x

fkl(x)

=
m∑

k=1

mk∑

l=1

gkl(x)ukl(x;μ) =
m∑

k=1

Ak(x)uk(x;μ),

where

ukl(x;μ) = μ

zk(x;μ)− fkl(x)
, 1 ≤ k ≤ m, 1 ≤ l ≤ mk. (11.50)

Formula (11.48) can be obtained by additional differentiation of relations (11.32)
and (11.47) using (11.50). A simpler way is based on using (11.40). Since (11.32)
implies γ (x, z(x;μ)) = 0, we can substitute γ = 0 into (11.40), which yields the
equation

(
W(x, z)− C(x, z)D−1(x, z)CT (x, z)

)
Δx = −g(x, z),

where z = z(x;μ), that confirms validity of formulas (11.48) and (11.49) (details
can be found in [22]). ��
Remark 11.11 To determine an inverse of the Hessian matrix, one can use a
Woodbury formula [7, Theorem 12.1.4] which gives

(∇2B̂(x;μ))−1 = W−1(x;μ)−W−1(x;μ)C(x;μ)
(
CT (x;μ)W−1(x;μ)C(x;μ)−D(x;μ)

)−1

CT (x;μ)W−1(x;μ). (11.51)

If the matrix ∇2B̂(x;μ) is not positive definite, it can be replaced by a matrix
LLT = ∇2B̂(x;μ) + E, obtained by the Gill–Murray decomposition [10]. Note
that it is more advantageous to use system of linear equations (11.40) instead
of (11.49) for determination of a direction vector Δx because the system of
nonlinear equations (11.44) is solved with prescribed finite precision, and thus a
vector γ (x, z), defined by (11.32), need not be zero.
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From

Vk(x;μ) = 1

μ
U2
k (x;μ), uk(x;μ) ≥ 0, ẽTk uk(x;μ) = 1, 1 ≤ k ≤ m,

it follows that ‖Vk(x;μ)‖ ↑ ∞ if μ ↓ 0, so Hessian matrix (11.48) may be ill-
conditioned if the value μ is very small. From this reason, we use a lower bound
μ > 0 for μ.

Theorem 11.4 Let Assumption 11.4 be satisfied and μ ≥ μ > 0. If G(x;μ) is

uniformly positive definite (if a constant G exists such that vT G(x;μ)v ≥ G‖v‖2),
then there is a number κ ≥ 1 such that κ(∇2B̂(x;μ)) ≤ κ .

Proof

(a) Using (11.30), (11.48), and Assumption 11.4, we obtain

‖∇2B̂(x;μ)‖ ≤
∥
∥
∥
∥∥
G(x;μ)+

m∑

k=1

Ak(x)Vk(x;μ)AT
k (x)

∥
∥
∥
∥∥

≤
m∑

k=1

mk∑

l=1

(
|Gkl(x)ukl(x, μ)| + 1

μ

∣
∣
∣u2
kl(x;μ)gkl(x)gTkl(x)

∣
∣
∣
)

≤ m

μ

(
μG+ g2

)
Δ= c

μ
≤ c

μ
, (11.52)

because 0 ≤ ukl(x;μ) ≤ ẽTk uk(x;μ) = 1, 1 ≤ k ≤ m, 1 ≤ l ≤ mk, by (11.44).
(b) From the proof of Theorem 11.1 it follows that the matrix∇2B̂(x;μ)−G(x;μ)

is positive semidefinite. Therefore,

λ(∇2B̂(x;μ)) ≥ λ(G(x;μ)) ≥ G.

(c) Since (a) implies λ(∇2B̂(x;μ)) = ‖∇2B̂(x;μ)‖ ≤ c/μ, using (b) we can write

κ(∇2B̂(x;μ)) = λ(∇2B̂(x;μ))
λ(∇2B̂(x;μ)) ≤

c

μG

Δ= κ. (11.53)

��
Remark 11.12 If there exists a number κ > 0 such that κ(∇2B̂(xi;μi)) ≤ κ , i ∈ N,
the direction vectorΔxi , given by solving a system of equations∇2B̂(xi;μi)Δxi =
−∇B̂(xi;μi), satisfies the condition

(Δxi )
T g(xi;μi) ≤ −ε0‖Δxi‖‖g(xi;μi)‖, i ∈ N, (11.54)

where ε0 = 1/
√
κ and g(x;μ) = ∇B̂(x;μ). Then, for arbitrary numbers 0 < ε1 ≤

ε2 < 1 one can find a step length parameter αi > 0 such that for xi+1 = xi+αiΔxi
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it holds

ε1 ≤ B̂(xi+1;μi)− B̂(xi;μi)
αi(Δxi )T g(xi;μi) ≤ ε2, (11.55)

so there exists a number c > 0 such that (see [26, Section 3.2])

B̂(xi+1;μi)− B̂(xi;μi) ≤ −c‖g(xi;μi)‖2, i ∈ N. (11.56)

If Assumption 11.4 is not satisfied, then only (Δxi )
T g(xi;μi) < 0 holds (because

the matrix ∇2B̂(x;μ) is positive definite by Theorem 11.1) and

B̂(xi+1;μi)− B̂(xi;μi) ≤ 0, i ∈ N. (11.57)

11.2.4 Implementation

Remark 11.13 In (11.39), it is assumed that G(x, z) is the Hessian matrix of the
Lagrange function. Direct computation of the matrix G(x;μ) = G(x, z(x;μ)) is
usually difficult (one can use automatic differentiation as described in [13]). Thus,
various approximationsG ≈ G(x;μ) are mostly used.

• The matrix G ≈ G(x;μ) can be determined using differences

Gwj = 1

δ

(
m∑

k=1

Ak(x + δwj )uk(x;μ)−
m∑

k=1

A(x)uk(x;μ)
)

.

The vectors wj , 1 ≤ j ≤ k, are chosen so that the number of them is as small as
possible [4, 27].

• The matrix G ≈ G(x;μ) can be determined using the variable metric methods
[17]. The vectors

d = x+ − x, y =
m∑

k=1

Ak(x+)uk(x+;μ)−
m∑

k=1

Ak(x)uk(x+;μ)

are used for an update of G.
• If the problem is separable (i.e. fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk , are functions of

a small number nkl = O(1) of variables), one can set as in [12]

G =
m∑

k=1

mk∑

l=1

ZklĜklZ
T
klukl(x, z),
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where the reduced Hessian matrices Ĝkl are updated using the reduced vectors
d̂kl = ZT

kl(x+ − x) and ŷkl = Zkl(gkl(x+)− gkl(x)).

Remark 11.14 The matrix G ≈ G(x;μ) obtained by the approach stated in
Remark 11.13 can be ill-conditioned so condition (11.54) (with a chosen value
ε0 > 0) may not be satisfied. In this case it is possible to restart the iteration
process and set G = I . Then G = 1 and G = 1 in (11.52) and (11.53), so it is
a higher probability of fulfilment of condition (11.54). If the choice G = I does not
satisfy (11.54), we set Δx = −g(x;μ) (a steepest descent direction).

An update of μ is an important part of interior point methods. Above all, μ ↓ 0
must hold, which is a main property of interior point methods. Moreover, rounding
errors may cause that zk(x;μ) = Fk(x)when the valueμ is small (becauseFk(x) <
zk(x;μ) ≤ Fk(x) + mkμ and Fk(x) + mkμ → Fk(x) if μ ↓ 0), which leads to
a breakdown (division by zk(x;μ) − Fk(x) = 0) when computing 1/(zk(x;μ) −
Fk(x)). Therefore, we need to use a lower bound μ for a barrier parameter (e.g.

μ = 10−8 when computing in double precision).
The efficiency of interior point methods also depends on the way of decreasing

the value of a barrier parameter. The following heuristic procedures proved success-
ful in practice, where g is a suitable constant.

Procedure A

Phase 1. If ‖g(xi;μi)‖ ≥ g, then μi+1 = μi (the value of a barrier parameter is
unchanged).

Phase 2. If ‖g(xi;μi)‖ < g, then

μi+1 = max
{
μ̃i+1, μ, 10 εM|F(xi+1)|

}
, (11.58)

where F(xi+1) = F1(xi+1)+ · · · + Fm(xi+1), εM is a machine precision, and

μ̃i+1 = min
{

max{λμi, μi/(σμi + 1)},max{‖g(xi;μi)‖2, 10−2k}
}
.

(11.59)

The values μ = 10−8, λ = 0.85, and σ = 100 are usually used.

Procedure B

Phase 1. If ‖g(xi;μi)‖2 ≥ ϑμi , thenμi+1 = μi (the value of a barrier parameter
is unchanged).

Phase 2. If ‖g(xi;μi)‖2 < ϑμi , then

μi+1 = max{μ, ‖gi (xi;μi)‖2}. (11.60)

The values μ = 10−8 and ϑ = 0.1 are usually used.
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The choice of g in Procedure A is not critical. We can set g = ∞ but a lower
value is sometimes more advantageous. Formula (11.59) requires several comments.
The first argument of the minimum controls the decreasing speed of the value of a
barrier parameter which is linear (a geometric sequence) for small i (the term λμi )
and sublinear (a harmonic sequence) for large i (the term μi/(σμi + 1)). Thus, the
second argument ensuring that the value μ is small in a neighborhood of a desired
solution is mainly important for large i. This situation may appear if the gradient
norm ‖g(xi;μi)‖ is small even if xi is far from a solution. The idea of Procedure B
proceeds from the fact that a barrier function B̂(x;μ) should be minimized with a
sufficient precision for a given value of a parameter μ.

The considerations up to now are summarized in Algorithm 11.1 introduced in
the Appendix. This algorithm supposes that the matrix A(x) is sparse. If it is dense,
the algorithm is simplified because there is no symbolic decomposition.

11.2.5 Global Convergence

Now we prove the global convergence of the method realized by Algorithm 11.1.

Lemma 11.1 Let numbers zk(x;μ), 1 ≤ k ≤ m, be solutions of Eq. (11.44). Then

∂

∂μ
zk(x;μ) > 0, 1 ≤ k ≤ m,

∂

∂μ
B̂(x;μ) = −

m∑

k=1

mk∑

l=1

log(zk(x;μ)− fkl(x)).

Proof Differentiating (11.44) with respect to μ, one can write for 1 ≤ k ≤ m

−
mk∑

l=1

1

zk(x;μ)− fkl(x)
+

mk∑

l=1

μ

(zk(x;μ)− fkl(x))2
∂

∂μ
zk(x;μ) = 0,

which after multiplication of μ together with (11.30) and (11.44) gives

∂

∂μ
zk(x;μ) =

(
mk∑

l=1

μ2

(zk(x;μ)− fkl(x))2

)−1

=
(

mk∑

l=1

u2
kl(x;μ)

)−1

> 0.

Differentiating the function

B̂(x;μ) =
m∑

k=1

zk(x;μ)− μ

m∑

k=1

mk∑

l=1

log(zk(x;μ)− fkl(x)) (11.61)
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and using (11.44) we obtain

∂

∂μ
B̂(x;μ) =

m∑

k=1

∂

∂μ
zk(x;μ)−

m∑

k=1

mk∑

l=1

log(zk(x;μ)− fkl(x))

−
m∑

k=1

mk∑

l=1

μ

zk(x;μ)− fkl(x)

∂

∂μ
zk(x;μ)

= ∂

∂μ
zk(x;μ)

m∑

k=1

(

1−
mk∑

l=1

μ

zk(x;μ)− fkl(x)

)

−
m∑

k=1

mk∑

l=1

log(zk(x;μ)− fkl(x))

= −
m∑

k=1

mk∑

l=1

log(zk(x;μ)− fkl(x)).

��
Lemma 11.2 Let Assumption 11.1 be satisfied. Let {xi} and {μi}, i ∈ N, be
the sequences generated by Algorithm 11.1. Then the sequences {B̂(xi;μi)},
{z(xi;μi)}, and {F(xi )}, i ∈ N, are bounded. Moreover, there exists a constant
L ≥ 0 such that for i ∈ N it holds

B̂(xi+1;μi+1) ≤ B̂(xi+1;μi)+ L(μi − μi+1). (11.62)

Proof

(a) We first prove boundedness from below. Using (11.61) and Assumption 11.1,
one can write

B̂(x;μ)− F =
m∑

k=1

zk(x;μ)− F − μ

m∑

k=1

mk∑

l=1

log(zk(x;μ)− fkl(x))

≥
m∑

k=1

(
zk(x;μ)− F −mkμ log(zk(x;μ)− F )

)
.

A convex function ψ(t) = t − mμ log(t) has a unique minimum at the point
t = mμ because ψ ′(mμ) = 1−mμ/mμ = 0. Thus, it holds

B̂(x;μ) ≥ F +
m∑

k=1

(mkμ−mkμ log(mkμ))
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≥ F +
m∑

k=1

min{0, mkμ(1− log(mkμ)}

≥ F +
m∑

k=1

min{0, mkμ(1− log(2mkμ)} Δ= B.

Boundedness from below of sequences {z(xi;μi)} and {F(xi )}, i ∈ N, follows
from inequalities (11.45) and Assumption 11.1.

(b) Now we prove boundedness from above. Similarly as in (a) we can write

B̂(x;μ)− F ≥
m∑

k=1

zk(x;μ)− F

2

+
m∑

k=1

(
zk(x;μ)− F

2
−mkμ log(zk(x;μ)− F)

)
.

A convex function t/2−mμ log(t) has a unique minimum at the point t = 2mμ.
Thus, it holds

B̂(x;μ) ≥
m∑

k=1

zk(x;μ)− F

2
+ F +

m∑

k=1

min{0, mμ(1− log(2mkμ))}

=
m∑

k=1

zk(x;μ)− F

2
+ B

or

m∑

k=1

(zk(x;μ)− F) ≤ 2(B̂(x;μ)− B). (11.63)

Using the mean value theorem and Lemma 11.1, we obtain

B̂(xi+1;μi+1)− B̂(xi+1;μi)

=
m∑

k=1

mk∑

l=1

log(zk(xi+1; μ̃i)− fkl(xi+1))(μi − μi+1)

≤
m∑

k=1

mk∑

l=1

log(zk(xi+1;μi)− fkl(xi+1))(μi − μi+1)

≤
m∑

k=1

mk log(zk(xi+1;μi)− F)(μi − μi+1), (11.64)
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where 0 < μi+1 ≤ μ̃i ≤ μi . Since log(t) ≤ t/e (where e = exp(1)) for t > 0,
we can write using inequalities (11.63), (11.64), and (11.45)

B̂(xi+1;μi+1)− B ≤ B̂(xi+1;μi)− B

+
m∑

k=1

mk log(zk(xi+1;μi)− F)(μi − μi+1)

≤ B̂(xi+1;μi)− B

+ e−1
m∑

k=1

mk(zk(xi+1;μi)− F)(μi − μi+1)

≤ B̂(xi+1;μi)− B

+ 2e−1m(B̂(xi+1;μi)− B)(μi − μi+1)

= (1+ λδi)(B̂(xi+1;μi)− B)

≤ (1+ λδi)(B̂(xi;μi)− B),

where λ = 2m/e and δi = μi − μi+1. Therefore,

B̂(xi+1;μi+1)− B ≤
i∏

j=1

(1+ λδj )(B̂(x1;μ1)− B)

≤
∞∏

i=1

(1+ λδi)(B̂(x1;μ1)− B) (11.65)

and since

∞∑

i=1

λδi = λ

∞∑

i=1

(μi − μi+1) = λ(μ− lim
i↑∞μi) ≤ λμ

the expression on the right-hand side of (11.65) is finite. Thus, the sequence
{B̂(xi;μi)}, i ∈ N, is bounded from above and the sequences {z(xi;μi)} and
{F(xi )}, i ∈ N, are bounded from above as well by (11.63) and (11.45).

(c) Finally, we prove formula (11.62). Using (11.64) and (11.45) we obtain

B̂(xi+1;μi+1)− B̂(xi+1;μi)

≤
m∑

k=1

mk log(zk(xi+1;μi)− F)(μi − μi+1)
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≤
m∑

k=1

mk log(Fk(xi+1)+mkμi − F)(μi − μi+1)

≤
m∑

k=1

mk log(F +mkμ− F)(μi − μi+1)

Δ= L(μi − μi+1)

(the existence of a constant F follows from boundedness of a sequence {F(xi )},
i ∈ N), which together with (11.57) gives B̂(xi+1;μi+1) ≤ B̂(xi;μi)+L(μi−
μi+1), i ∈ N. Thus, it holds

B̂(xi;μi) ≤ B̂(x1;μ1)+ L(μ1 − μi) ≤ B̂(x1;μ1)+ Lμ
Δ= B, i ∈ N.

(11.66)
��

The upper bounds g andG are not used in Lemma 11.2, so Assumption 11.4 may
not be satisfied. Thus, there exists an upper bound F (independent of g and G) such
that F(xi ) ≤ F for all i ∈ N. This upper bound can be used in definition of a set
DF (F ) in Assumption 11.4.

Lemma 11.3 Let Assumption 11.4 and the assumptions of Lemma 11.2 be satisfied.
Then, if we use Procedure A or Procedure B for an update of parameterμ, the values
{μi}, i ∈ N, form a non-decreasing sequence such that μi ↓ 0.

Proof The value of parameter μ is unchanged in the first phase of Procedure A
or Procedure B. Since a function B̂(x;μ) is continuous, bounded from below by
Lemma 11.2, and since inequality (11.56) is satisfied (with μi = μ), it holds
‖g(xi;μ)‖ ↓ 0 if phase 1 contains an infinite number of subsequent iterative steps
[26, Section 3.2]. Thus, there exists a step (with index i) belonging to the first
phase such that either ‖g(xi;μ)‖ < g in Procedure A or ‖g(xi;μ)‖2 < ϑμ in
Procedure B. However, this is in contradiction with the definition of the first phase.
Thus, there exists an infinite number of steps belonging to the second phase, where
the value of parameter μ is decreased so that μi ↓ 0. ��
Theorem 11.5 Let assumptions of Lemma 11.3 be satisfied. Consider a sequence
{xi}, i ∈ N, generated by Algorithm 11.1, where δ = ε = μ = 0. Then

lim
i↑∞

m∑

k=1

mk∑

l=1

gkl(xi )ukl(xi;μi) = 0,
mk∑

l=1

ukl(xi;μi) = 1,

zk(xi;μi)− fkl(xi ) ≥ 0, ukl(xi;μi) ≥ 0,

lim
i↑∞ukl(xi;μi)(zk(xi;μi)− fkl(xi )) = 0

for 1 ≤ k ≤ m and 1 ≤ l ≤ mk .
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Proof

(a) Equalities ẽTk uk(xi;μi) = 1, 1 ≤ k ≤ m, are satisfied by (11.44) because
δ = 0. Inequalities zk(xi;μi) − fkl(xi ) ≥ 0 and ukl(xi;μi) ≥ 0 follow from
formulas (11.45) and statement (11.50).

(b) Relations (11.56) and (11.62) yield

B̂(xi+1;μi+1)− B̂(xi;μi) = (B̂(xi+1;μi+1)− B̂(xi+1;μi))
+(B̂(xi+1;μi)− B̂(xi;μi))

≤ L (μi − μi+1)− c ‖g(xi;μi)‖2

and since limi↑∞ μi = 0 (Lemma 11.3), we can write by (11.66) that

B ≤ lim
i↑∞ B̂(xi+1;μi+1)

≤ B̂(x1;μ1)+ L

∞∑

i=1

(μi − μi+1)− c

∞∑

i=1

‖g(xi;μi)‖2

≤ B̂(x1;μ1)+ Lμ− c

∞∑

i=1

‖g(xi;μi)‖2 = B − c

∞∑

i=1

‖g(xi;μi)‖2.

Thus, it holds

∞∑

i=1

‖g(xi;μi)‖2 ≤ 1

c
(B − B) <∞,

which gives g(xi;μi) =∑m
k=1

∑mk

l=1 gkl(xi )ukl(xi;μi) ↓ 0.
(c) Let indices 1 ≤ k ≤ m and 1 ≤ l ≤ mk are chosen arbitrarily. Using (11.50)

and Lemma 11.3 we obtain

ukl(xi;μi)(zk(xi;μi)− fkl(xi )) = μi(zk(xi;μi)− fkl(xi ))

zk(xi;μi)− fkl(xi )
= μi ↓ 0.

��
Corollary 11.1 Let the assumptions of Theorem 11.5 be satisfied. Then, every
cluster point x ∈ R

n of a sequence {xi}, i ∈ N, satisfies necessary KKT
conditions (11.8)–(11.9) where z and u (with elements zk and ukl , 1 ≤ k ≤ m,
1 ≤ l ≤ mk) are cluster points of sequences {z(xi;μi)} and {u(xi;μi)}, i ∈ N.

Now we will suppose that the values δ, ε, and μ are nonzero and show how
a precise solution of the system of KKT equations will be after termination of
computation.

Theorem 11.6 Let the assumptions of Lemma 11.3 be satisfied. Consider a
sequence {xi}, i ∈ N, generated by Algorithm 11.1. Then, if the values δ > 0,
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ε > 0, and μ > 0 are chosen arbitrarily, there exists an index i ≥ 1 such that

‖g(xi;μi)‖ ≤ ε,

∣
∣
∣
∣∣
1−

mk∑

l=1

ukl(xi;μi)
∣
∣
∣
∣∣
≤ δ,

zk(xi;μi)− fkl(xi ) ≥ 0, ukl(xi;μi) ≥ 0,

ukl(xi;μi)(zk(xi;μi)− fkl(xi )) ≤ μ,

for 1 ≤ k ≤ m and 1 ≤ l ≤ mk .

Proof Inequality |1− ẽTk uk(xi;μi)| ≤ δ follows immediately from the fact that the
equation ẽTk uk(xi;μi) = 1, 1 ≤ k ≤ m, is solved with precision δ. Inequalities
zk(xi;μi) − fkl(xi ) ≥ 0, ukl(xi;μi) ≥ 0 follow from formulas (11.45) and
statement (11.50) as in the proof of Theorem 11.5. Since μi ↓ 0 and g(xi;μi) ↓ 0
by Lemma 11.3 and Theorem 11.5, there exists an index i ≥ 1 such that μi ≤ μ

and ‖g(xi;μi)‖ ≤ ε. Using (11.50) we obtain

ukl(xi;μi)(zk(xi;μi)− fkl(xi )) = μi(zk(xi;μi)− fkl(xi ))

zk(xi;μi)− fkl(xi )
= μi ≤ μ.

��
Theorem 11.5 is a standard global convergence result. If the stopping parameters

δ, ε, μ are zero, the sequence of generated points converges to the point satisfying
the KKT conditions for the equivalent nonlinear programming problem. Theo-
rem 11.6 determines a precision of the obtained solution if the stopping parameters
are nonzero.

11.2.6 Special Cases

Both the simplest and most widely considered generalized minimax problem is the
classical minimax problem (11.10), when m = 1 in (11.4) (in this case we write
m, z, u, v, U , V , A instead of m1, z1, u1, v1, U1, V1, A1). For solving a classical
minimax problem one can use Algorithm 11.1, where a major part of computation
is very simplified. System of equations (11.38) is of order n+ 1 and has the form

[
G(x, z)+ A(x)V (x, z)AT (x) −A(x)V (x, z)ẽ

−ẽT V (x, z)AT (x) ẽT V (x, z)ẽ

] [
Δx

Δz

]
= −

[
g(x, z)

γ (x, z)

]
,

(11.67)

where g(x, z) = A(x)u(x, z), γ (x, z) = 1 − ẽT u(x, z), V (x, z) = U2(x, z)/μ =
diag[u2

1(x, z), . . . , u
2
m(x, z)]/μ, and uk(x, z) = μ/(z−fk(x)), 1 ≤ k ≤ m. System
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of equations (11.44) is reduced to one nonlinear equation

1− ẽT u(x, z) = 1−
m∑

k=1

μ

z − fk(x)
= 0, (11.68)

whose solution z(x;μ) lies in the interval F(x) + μ ≤ z(x;μ) ≤ F(x) +mμ. To
find this solution by robust methods from [14, 15] is not difficult. A barrier function
has the form

B̂(x;μ) = z(x;μ)− μ

m∑

k=1

log(z(x;μ)− fk(x)) (11.69)

with ∇B̂(x;μ) = A(x)u(x;μ) and

∇2B̂(x;μ) = G(x;μ)+ A(x)V (x;μ)AT (x)− A(x)V (x;μ)ẽẽT V (x;μ)AT (x)

ẽT V (x;μ)ẽ .

If we write system (11.67) in the form

[
W(x, z) −c(x, z)

−cT (x, z) δ(x, z)

] [
Δx

Δz

]
= −

[
g(x, z)

γ (x, z)

]
,

where W(x, z) = G(x, z) + A(x)V (x, z)AT (x), c(x, z) = A(x)V (x, z)ẽ and
δ(x, z) = ẽT V (x, z)ẽ, then

∇2B̂(x;μ) = W(x;μ)− c(x;μ)cT (x;μ)
δ(x;μ) .

Since

[
W −c

−cT δ

]−1

=
[
W−1 −W−1cω−1cT H−1 −W−1cω−1

−ω−1cT W−1 −ω−1

]
,

where ω = cT W−1c − δ, we can write

[
Δx

Δz

]
= −

[
W −c

−cT δ

]−1 [
g

γ

]
=

[
W−1(cΔz− g)

Δz

]
,

where

Δz = ω−1(cT W−1g + γ ).
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The matrix W is sparse if the matrix A(x) has sparse columns. If the matrix W is
not positive definite, we can use the Gill–Murray decomposition

W + E = LLT , (11.70)

where E is a positive semidefinite diagonal matrix. Then we solve equations

LLT p = g, LLT q = c (11.71)

and set

Δz = cT p + γ

cT q − δ
, Δx = q Δz− p. (11.72)

If we solve the classical minimax problem, Algorithm 11.1 must be somewhat
modified. In Step 2, we solve only Eq. (11.68) instead of the system of equa-
tions (11.44). In Step 4, we determine a vector Δx by solving Eq. (11.71) and
using relations (11.72). In Step 4, we use the barrier function (11.69) (the nonlinear
equation (11.68) must be solved at the point x + αΔx).

Minimization of a sum of absolute values, i.e., minimization of the func-
tion (11.14) is another important generalized minimax problem. In this case, a
barrier function has the form

Bμ(x, z) =
m∑

k=1

zk − μ

m∑

k=1

log(zk − fk(x))− μ

m∑

k=1

log(zk + fk(x))

=
m∑

k=1

zk − μ

m∑

k=1

log(z2
k − f 2

k (x)), (11.73)

where zk > |fk(x)|, 1 ≤ k ≤ m. Differentiating Bμ(x, z) with respect to x and z

we obtain the necessary conditions for an extremum

m∑

k=1

2μfk(x)

z2
k − f 2

k (x)
gk(x) =

m∑

k=1

uk(x, zk)gk(x) = 0,

uk(x, zk) = 2μfk(x)

z2
k − f 2

k (x)

(11.74)

and

1− 2μzk
z2
k − f 2

k (x)
= 1−uk(x, zk) zk

fk(x)
= 0 ⇒ uk(x, zk) = fk(x)

zk
, (11.75)
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where gk(x) = ∇fk(x), 1 ≤ k ≤ m, which corresponds to (11.31)–(11.32).
Equations in (11.44) are quadratic of the form

2μzk(x;μ)
z2
k(x;μ)− f 2

k (x)
= 1 ⇔ z2

k(x;μ)− f 2
k (x) = 2μzk(x;μ), (11.76)

where 1 ≤ k ≤ m, and their solutions is given by

zk(x;μ) = μ+
√
μ2 + f 2

k (x), 1 ≤ k ≤ m, (11.77)

(the second solutions of quadratic equations (11.76) do not satisfy the condition
zk > |fk(x)|, so the obtained vector z does not belong to a domain of B̃μ(z)).
Using (11.75) and (11.77) we obtain

uk(x;μ) = uk(x, zk(x;μ)) = fk(x)

zk(x;μ) =
fk(x)

μ+
√
μ2 + f 2

k (x)

(11.78)

for 1 ≤ k ≤ m and

B̂(x;μ) = B(x, z(x;μ)) =
m∑

k=1

zk(x;μ)− μ

m∑

k=1

log(z2
k(x;μ)− f 2

k (x))

=
m∑

k=1

zk(x;μ)− μ

m∑

k=1

log(2μzk(x;μ))

=
m∑

k=1

[
zk(x;μ)− μ log(zk(x;μ))

]− μm log(2μ). (11.79)

Using these expressions, we can write formulas (11.47) and (11.48) in the form

∇B̂(x;μ) =
m∑

k=1

gk(x)uk(x;μ) (11.80)

and

∇2B̂(x;μ) = W(x;μ) =
m∑

k=1

Gk(x)uk(x;μ)+
m∑

k=1

gk(x)vk(x;μ)gTk (x),
(11.81)
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where

Gk(x) = ∇2fk(x), vk(x;μ) = 2μ

z2
k(x;μ)+ f 2

k (x)
, 1 ≤ k ≤ m. (11.82)

A vector Δx ∈ R
n is determined by solving the equation

∇2B̂(x;μ)Δx = −g(x;μ), (11.83)

where g(x;μ) = ∇B̂(x;μ) �= 0. From (11.83) and (11.81) it follows

(Δx)T g(x;μ) = −(Δx)T∇2B̂(x;μ)Δx ≤ −(Δx)T G(x;μ)Δx,

so if a matrix G(x;μ) is positive definite, a matrix ∇B̂(x;μ) is positive definite
as well (since a diagonal matrix V (x;μ) is positive definite by (11.82)) and
(Δx)T g(x;μ) < 0 holds (a direction vector Δx is descent for a function B̂(x;μ)).

If we minimize a sum of absolute values, Algorithm 11.1 needs to be somewhat
modified. In Step 2, we solve quadratic equations (11.76) whose solutions are given
by (11.77). In Step 4, we determine a vector Δx by solving Eq. (11.83), where
matrix∇2B̂(x;μ) is given by (11.83). In Step 4, we use the barrier function (11.79).

11.3 Smoothing Methods

11.3.1 Basic Properties

Similarly as in Sect. 11.2.1 we will restrict ourselves to sums of maxima, where a
mapping h : Rn → R

m is a sum of its arguments, so (11.4) holds. Smoothing meth-
ods for minimization of sums of maxima replace function (11.4) by a smoothing
function

S(x;μ) =
m∑

k=1

Sk(x;μ), (11.84)

where

Sk(x;μ) = μ log
mk∑

l=1

exp

(
fkl(x)

μ

)

= Fk(x)+ μ log
mk∑

l=1

exp

(
fkl(x)− Fk(x)

μ

)
, (11.85)
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depending on a smoothing parameter 0 < μ ≤ μ, which is successively minimized
on R

n with μ ↓ 0. Since fkl(x) ≤ Fk(x), 1 ≤ l ≤ mk , and the equality arises for at
least one index, at least one exponential function on the right-hand side of (11.85)
has the value 1, so the logarithm is positive. Thus Fk(x) ≤ Sk(x;μ) ≤ Fk(x) +
μ log mk , 1 ≤ k ≤ m, hold. Therefore

F(x) ≤ S(x;μ) ≤ F(x)+ μ

m∑

k=1

log mk, (11.86)

so S(x;μ)→ F(x) if μ ↓ 0.

Remark 11.15 Similarly as in Sect. 11.2.2 we will denote gkl(x) and Gkl(x) the
gradients and Hessian matrices of functions fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk, and

uk(x;μ) =
⎡

⎢
⎣

uk1(x;μ)
...

ukmk (x;μ)

⎤

⎥
⎦ , ẽk =

⎡

⎢
⎣

1
...

1

⎤

⎥
⎦ ,

where

ukl(x;μ) = exp(fkl(x)/μ)∑mk

l=1 exp(fkl(x)/μ)
= exp((fkl(x)− Fk(x))/μ)∑mk

l=1 exp((fkl(x)− Fk(x))/μ)
. (11.87)

Thus, it holds ukl(x;μ) ≥ 0, 1 ≤ k ≤ m, 1 ≤ l ≤ mk , and

ẽTk uk(x;μ) =
mk∑

l=1

ukl(x;μ) = 1. (11.88)

Further, we denote Ak(x) = J Tk (x) = [gk1(x), . . . ,gkmk
(x)] and Uk(x;μ) =

diag[uk1(x;μ), . . . , ukmk (x;μ)] for 1 ≤ k ≤ m.

Theorem 11.7 Consider the smoothing function (11.84). Then

∇S(x;μ) = g(x;μ) (11.89)

and

∇2S(x;μ) = G(x;μ)+ 1

μ

m∑

k=1

Ak(x)Uk(x;μ)AT
k (x)

− 1

μ

m∑

k=1

Ak(x)uk(x;μ)(Ak(x)uk(x;μ))T

= G(x;μ)+ 1

μ
A(x)U(x;μ)AT (x)− 1

μ
C(x;μ)C(x;μ)T

(11.90)
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where g(x;μ) =∑m
k=1 Ak(x)uk(x;μ) = A(x)u(x) and

G(x;μ) =
m∑

k=1

Gk(x)uk(x;μ), A(x) = [A1(x), . . . , Am(x)],

U(x;μ) = diag[U1(x;μ), . . . , Um(x;μ)],
C(x;μ) = [A1(x)u1(x;μ), . . . , Am(x)um(x;μ)].

Proof Obviously,

∇S(x;μ) =
m∑

k=1

∇Sk(x;μ), ∇2S(x;μ) =
m∑

k=1

∇2Sk(x;μ).

Differentiating functions (11.85) and using (11.87) we obtain

∇Sk(x;μ) = μ
∑mk

l=1 exp(fkl(x)/μ)

mk∑

l=1

1

μ
exp(fkl(x)/μ)gkl(x)

=
mk∑

l=1

gkl(x)ukl(x;μ) = Ak(x)uk(x;μ). (11.91)

Adding up these expressions yields (11.89). Further, it holds

∇ukl(x;μ) = 1

μ

exp(fkl(x)/μ)∑mk

l=1 exp(fkl(x)/μ)
gkl(x)

− exp(fkl(x)/μ)
(∑mk

l=1 exp(fkl(x)/μ)
)2

mk∑

l=1

1

μ
exp(fkl(x)/μ)gkl(x)

= 1

μ
ukl(x;μ)gkl(x)−

1

μ
ukl(x;μ)

mk∑

l=1

ukl(x;μ)gkl(x). (11.92)

Differentiating (11.91) and using (11.92) we obtain

∇2Sk(x;μ) =
mk∑

l=1

Gkl(x)ukl(x;μ)+
mk∑

l=1

gkl(x)∇ukl(x;μ)

= Gk(x;μ)+ 1

μ

mk∑

l=1

gkl(x)ukl(x;μ)gTkl(x)
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− 1

μ

mk∑

l=1

gkl(x)ukl(x;μ)
(

mk∑

l=1

gkl(x)ukl(x;μ)
)T

= Gk(x;μ)+ 1

μ
Ak(x)Uk(x;μ)AT

k (x)

− 1

μ
Ak(x)uk(x;μ)(Ak(x)uk(x;μ))T ,

where Gk(x;μ) = ∑mk

l=1 Gkl(x)ukl(x;μ). Adding up these expressions
yields (11.90). ��
Remark 11.16 Note that using (11.90) and the Schwarz inequality we obtain

vT∇2S(x;μ)v = vT G(x;μ)v

+ 1

μ

m∑

k=1

(

vT Ak(x)Uk(x;μ)AT
k (x)v −

(vT Ak(x)Uk(x;μ)ẽk)2
ẽTk Uk(x;μ)ẽk

)

≥ vT G(x;μ)v,

because ẽTk Uk(x;μ)ẽk = ẽTk uk(x;μ) = 1, so the Hessian matrix ∇2S(x;μ) is
positive definite if the matrix G(x;μ) is positive definite.

Using Theorem 11.7, a step of the Newton method can be written in the form
x+ = x + αΔx where

∇2S(x;μ)Δx = −∇S(x;μ),
or

(
W(x;μ)− 1

μ
C(x;μ)CT (x;μ)

)
Δx = −g(x;μ), (11.93)

where

W(x;μ) = G(x;μ)+ 1

μ
A(x)U(x;μ)AT (x), g(x;μ) = A(x)u(x;μ).

(11.94)

A matrix W in (11.94) has the same structure as a matrix W in (11.48) and, by
Theorem 11.7, smoothing function (11.84) has similar properties as the barrier
function (11.46). Thus, one can use an algorithm that is analogous to Algorithm 11.1
and considerations stated in Remark 11.12, where S(x;μ) and ∇2S(x;μ) are used
instead of B̂(x;μ) and ∇2B̂(x;μ). It means that

S(x i+1;μi)− S(x i;μi) ≤ −c‖g(xi;μi)‖2 for all i ∈ N, (11.95)
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if Assumption 11.4 is satisfied and

S(x i+1;μi)− S(x i;μi) ≤ 0 for all i ∈ N (11.96)

in remaining cases.
The considerations up to now are summarized in Algorithm 11.2 introduced

in the Appendix. This algorithm differs from Algorithm 11.1 in that a nonlinear
equation ẽT u(x;μ) = 1 need not be solved in Step 2 (because (11.88) follows
from (11.87)), Eq. (11.93)–(11.94) instead of (11.71)–(11.72)are used in Step 4, and
a barrier function B̂(x;μ) is replaced with a smoothing function S(x;μ) in Step 6.
Note that the parameter μ in (11.84) has different meaning than the same parameter
in (11.46), so we could use another procedure for its update in Step 7. However, it is
becoming apparent that using Procedure A or Procedure B is very efficient. On the
other hand, it must be noted that using exponential functions in Algorithm 11.2 has
certain disadvantages. Computation of the values of exponential functions is more
time consuming than performing standard arithmetic operations and underflow may
also happen (i.e. replacing nonzero values by zero values) if the value of a parameter
μ is very small.

11.3.2 Global Convergence

Now we prove the global convergence of the smoothing method realized by
Algorithm 11.2.

Lemma 11.4 Choose a fixed vector x ∈ R
n. Then Sk(x;μ) : (0,∞) → R, 1 ≤

k ≤ m, are nondecreasing convex functions of μ > 0 and

0 ≤ logmk ≤
∂

∂μ
Sk(x;μ) ≤ logmk, (11.97)

where mk is a number of active functions (for which fkl(x) = Fk(x)) and

∂

∂μ
Sk(x;μ) = log

mk∑

l=1

exp

(
fkl(x)− Fk(x)

μ

)
−

mk∑

l=1

(
fkl(x)− Fk(x)

μ

)
ukl(x;μ).

(11.98)

Proof Denoting ϕkl(x;μ) = (fkl(x)− Fk(x))/μ ≤ 0, 1 ≤ k ≤ m, so

ϕ′kl(x;μ) Δ= ∂

∂μ
ϕkl(x;μ) = −ϕkl(x;μ)

μ
≥ 0,
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we can write by (11.85) that

Sk(x;μ) = Fk(x)+ μ log
mk∑

l=1

expϕkl(x;μ)

and

∂

∂μ
Sk(x;μ) = log

mk∑

l=1

expϕkl(x;μ)+ μ

∑mk

l=1 ϕ
′
kl(x;μ) expϕkl(x;μ)

∑mk

l=1 expϕkl(x;μ)

= log
mk∑

l=1

expϕkl(x;μ)−
mk∑

l=1

ϕkl(x;μ)ukl(x;μ) ≥ 0, (11.99)

because ϕkl(x;μ) ≤ 0, ukl(x;μ) ≥ 0, 1 ≤ k ≤ m, and ϕkl(x;μ) = 0 holds
for at least one index. Thus, functions Sk(x;μ), 1 ≤ k ≤ m, are nondecreasing.
Differentiating (11.87) with respect to μ we obtain

∂

∂μ
ukl(x;μ) = − 1

μ

ϕkl(x;μ) expϕkl(x;μ)∑mk

l=1 expϕkl(x;μ)

+ 1

μ

expϕkl(x;μ)∑
k

l=1 m expϕkl(x;μ)
∑mk

l=1 ϕkl(x;μ) expϕkl(x;μ)
∑mk

l=1 expϕkl(x;μ)

= 1

μ
ukl(x;μ)

(

−ϕkl(x;μ)+
mk∑

l=1

ϕkl(x;μ)ukl(x;μ)
)

.

(11.100)

Differentiating (11.99) with respect to μ and using Eqs. (11.88) and (11.100) we
can write

∂2

∂μ2
Sk(x;μ) = − 1

μ

mk∑

l=1

ϕkl(x;μ)ukl(x;μ)

+ 1

μ

mk∑

l=1

ϕkl(x;μ)ukl(x;μ)− 1

μ

mk∑

l=1

ϕkl(x;μ) ∂
∂μ

ukl(x;μ)

= − 1

μ

mk∑

l=1

ϕkl(x;μ) ∂
∂μ

ukl(x;μ)

= 1

μ2

(
mk∑

l=1

ϕ2
kl(x;μ)ukl(x;μ)

)(
mk∑

l=1

ukl(x;μ)
)

− 1

μ2

(
mk∑

l=1

ϕkl(x;μ)ukl(x;μ)
)2

≥ 0,
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because

(
mk∑

l=1

ϕkl(x;μ)ukl(x;μ)
)2

=
(

mk∑

l=1

ϕkl(x;μ)
√
ukl(x;μ)

√
ukl(x;μ)

)2

≤
mk∑

l=1

ϕ2
kl(x;μ)ukl(x;μ)

mk∑

l=1

ukl(x;μ)

holds by the Schwarz inequality. Thus, functions Sk(x;μ), 1 ≤ k ≤ m, are convex,
so their derivatives ∂

∂μ
Sk(x;μ) are nondecreasing. Obviously, it holds

lim
μ↓0

∂

∂μ
Sk(x;μ) = lim

μ↓0
log

mk∑

l=1

expϕkl(x;μ)− lim
μ↓0

mk∑

l=1

ϕkl(x;μ)ukl(x;μ)

= logmk −
1

mk

lim
μ↓0

mk∑

l=1

ϕkl(x;μ) expϕkl(x;μ) = logmk,

because ϕkl(x;μ) = 0 if fkl(x) = Fk(x) and limμ↓0 ϕkl(x;μ) = −∞,
limμ↓0 ϕkl(x;μ) expϕkl(x;μ) = 0 if fkl(x) < Fk(x). Similarly, it holds

lim
μ↑∞

∂

∂μ
Sk(x;μ) = lim

μ↑∞ log
mk∑

l=1

expϕkl(x;μ)− lim
μ↑∞

mk∑

l=1

ϕkl(x;μ)ukl(x;μ)

= logm,

because limμ↑∞ ϕkl(x;μ) = 0 and limμ↑∞ |ukl(x;μ)| ≤ 1 for 1 ≤ k ≤ m. ��
Lemma 11.5 Let Assumptions 11.2 and 11.4 be satisfied. Then the values μi , i ∈
N, generated by Algorithm 11.2, create a nonincreasing sequence such that μi ↓ 0.

Proof Lemma 11.5 is a direct consequence of Lemma 11.3 because the same
procedures for an update of a parameter μ are used and (11.95) holds. ��
Theorem 11.8 Let the assumptions of Lemma 11.5 be satisfied. Consider a
sequence {xi} i ∈ N, generated by Algorithm 11.2, where ε = μ = 0. Then

lim
i↑∞

m∑

k=1

mk∑

l=1

ukl(xi;μi)gkl(xi ) = 0,
mk∑

l=1

ukl(xi;μi) = 1

and

Fk(xi )− fkl(xi ) ≥ 0, ukl(xi;μi) ≥ 0, lim
i↑∞ ukl(xi;μi)(Fk(xi )− fkl(xi )) = 0
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for 1 ≤ k ≤ m and 1 ≤ l ≤ mk .

Proof

(a) Equations ẽTk uk(xi;μi) = 1 for 1 ≤ k ≤ m follow from (11.88). Inequalities
Fk(xi ) − fkl(xi ) ≥ 0 and ukl(xi;μi) ≥ 0 for 1 ≤ k ≤ m and 1 ≤ l ≤ mk

follow from (11.4) and (11.87).
(b) Since Sk(x;μ) are nondecreasing functions of the parameter μ by Lemma 11.4

and (11.95) holds, we can write

F ≤
m∑

k=1

Fk(xi+1) ≤ S(x i+1;μi+1) ≤ S(xi+1;μi)

≤ S(xi;μi)− c‖g(xi;μi)‖2 ≤ S(x1;μ1)− c

i∑

j=1

‖g(xj ;μj)‖2,

where F = ∑m
k=1 Fk and Fk , 1 ≤ k ≤ m, are lower bounds from

Assumption 11.2. Thus, it holds

F ≤ lim
i↑∞ S(x i+1;μi+1) ≤ S(x1;μ1)− c

∞∑

i=1

‖g(xi;μi)‖2,

or

∞∑

i=1

‖g(xi;μi)‖2 ≤ 1

c
(S(x1;μ1)− F),

so ‖g(xi;μi)‖ ↓ 0, which together with inequalities 0 ≤ ukl(xi;μi) ≤ 1,
1 ≤ k ≤ m, 1 ≤ l ≤ mk , gives limi↑∞ ukl(xi;μi)gkl(xi ) = 0.

(c) Let indices 1 ≤ k ≤ m and 1 ≤ l ≤ mk be chosen arbitrarily. Using (11.87) we
get

0 ≤ ukl(xi;μi)(Fk(xi )− fkl(xi )) = −μi ϕkl(xi;μi) expϕkl(xi;μi)∑mk

l=1 expϕkl(xi;μi)
≤ −μiϕkl(xi;μi) expϕkl(xi;μi) ≤ μi

e
,

where ϕkl(xi;μi), 1 ≤ k ≤ m, 1 ≤ l ≤ mk , are functions used in the proof of
Lemma 11.4, because

mk∑

l=1

expϕkl(xi;μi) ≥ 1
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and the function t exp t attains its minimal value −1/e at the point t = −1.
Since μi ↓ 0, we obtain ukl(xi;μi)(Fk(xi )− fkl(xi )) ↓ 0.

��
Corollary 11.2 Let the assumptions of Theorem 11.8 be satisfied. Then every
cluster point x ∈ R

n of a sequence {xi}, i ∈ N, satisfies the necessary KKT
conditions (11.5) and (11.6), where u (with elements uk , 1 ≤ k ≤ m) is a cluster
point of a sequence {u(xi;μi)}, i ∈ N.

Now we will suppose that the values ε and μ are nonzero and show how a precise
solution of the system of KKT equations will be after termination of computation
of Algorithm 11.2.

Theorem 11.9 Let the assumptions of Theorem 11.5 be satisfied and let {xi}, i ∈ N,
be a sequence generated by Algorithm 11.2. Then, if the values ε > 0 and μ > 0
are chosen arbitrarily, there exists an index i ≥ 1 such that

‖g(xi;μi)‖ ≤ ε, ẽTk uk(xi;μi) = 1, 1 ≤ k ≤ m,

and

Fk(xi )− fkl(xi ) ≥ 0, ukl(xi;μi) ≥ 0, ukl(xi;μi)(Fk(xi )− fkl(xi )) ≤
μ

e

for all 1 ≤ k ≤ m and 1 ≤ l ≤ mk .

Proof Equalities ẽTk uk(xi;μi) = 1, 1 ≤ k ≤ m, follow from (11.88). Inequalities
Fk(xi ) − fkl(xi ) ≥ 0 and ukl(xi;μi) ≥ 0, 1 ≤ k ≤ m, 1 ≤ l ≤ mk , follow
from (11.10) and (11.87). Since μi ↓ 0 holds by Lemma 11.5 and ‖g(xi;μi)‖ ↓ 0
holds by Theorem 11.8, there exists an index i ≥ 1 such that μi ≤ μ and
‖g(xi;μi)‖ ≤ ε. By (11.87), as in the proof of Theorem 11.8, one can write

ukl(xi;μi)(Fk(xi )− fkl(xi )) ≤ −μiϕkl(xi;μi) expϕkl(xi;μi) ≤ μi

e
≤ μ

e

for 1 ≤ k ≤ m and 1 ≤ l ≤ mk. ��
Theorems 11.8 and 11.9 have the same meaning as Theorems 11.5 and 11.6

introduced in Sect. 11.2.5.

11.3.3 Special Cases

Both the simplest and most widely considered generalized minimax problem is the
classical minimax problem (11.10), when m = 1 in (11.4) (in this case we write m
and z instead of m1 and z1). For solving a classical minimax problem one can use
Algorithm 11.2, where a major part of computation is very simplified. A step of the
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Newton method can be written in the form x+ = x + αΔx where

∇2S(x;μ)Δx = −∇S(x;μ),
or

(
W(x;μ)− 1

μ
g(x;μ)gT (x;μ)

)
Δx = −g(x;μ), (11.101)

where

W(x;μ) = G(x;μ)+ 1

μ
A(x)U(x;μ)AT (x), g(x;μ) = A(x)u(x;μ).

(11.102)

Since
(
W − 1

μ
ggT

)−1

= W−1 + W−1ggT W−1

μ− gT W−1g

holds by the Sherman–Morrison formula, the solution of system of equa-
tions (11.101) can be written in the form

Δx = μ

gT W−1g − μ
W−1g. (11.103)

If a matrixW is not positive definite, it may be replaced with a matrixLLT = W+E
obtained by the Gill–Murray decomposition described in [10]. Then, we solve an
equation

LLT p = g, (11.104)

and set

Δx = μ

gT p − μ
p. (11.105)

Minimization of a sum of absolute values, i.e., minimization of the func-
tion (11.14) is another important generalized minimax problem. In this case, a
smoothing function has the form

S(x;μ) = F(x)

+ μ

m∑

k=1

log

(

exp

(

−|fk(x)| − f+k (x)
μ

)

+ exp

(

−|fk(x)| − f−k (x)
μ

))

=
m∑

k=1

|fk(x)| + μ

m∑

k=1

log

(
1+ exp

(
−2|fk(x)|

μ

))
,
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because f+k (x) = |fk(x)| if fk(x) ≥ 0 and f−k (x) = |fk(x)| if fk(x) ≤ 0, and
by Theorem 11.7 we have

∇S(x;μ) =
m∑

k=1

(g+k u
+
k + g−k u

−
k ) =

m∑

k=1

gk(u
+
k − u−k ) =

m∑

k=1

gkuk = g(x;μ),

∇2S(x;μ) =
m∑

k=1

Gk(u
+
k − u−k )+

1

μ

m∑

k=1

gkg
T
k (u

+
k + u−k )

− 1

μ

m∑

k=1

gkg
T
k (u

+
k − u−k )

2 = G(x;μ)+ 1

μ

m∑

k=1

gkg
T
k (1− u2

k),

(because u+k + u−k = 1), where gk = gk(x),

uk = u+k − u−k =
exp

(
−|fk(x)|−f

+
k (x)

μ

)
− exp

(
−|fk(x)|−f

−
k (x)

μ

)

exp

(
−|fk(x)|−f

+
k (x)

μ

)
+ exp

(
−|fk(x)|−f

−
k (x)

μ

)

=
1− exp

(
− 2|fk(x)|

μ

)

1+ exp
(
− 2|fk(x)|

μ

) sign(fk(x)),

and

1− u2
k =

4 exp
(
− 2|fk(x)|

μ

)

(
1+ exp

(
− 2|fk(x)|

μ

))2 ,

and where sign(fk(x)) is a sign of a function fk(x).

11.4 Primal-Dual Interior Point Methods

11.4.1 Basic Properties

Primal interior point methods for solving nonlinear programming problems profit
from the simplicity of obtaining and keeping a point in the interior of the feasible
set (for generalized minimax problems, it suffices to set zk > Fk(x), 1 ≤ k ≤ m).
Minimization of a barrier function without constraints and a direct computation of
multipliers ukl , 1 ≤ k ≤ m, 1 ≤ l ≤ mk , are basic features of these methods. Primal-
dual interior point methods are intended for solving general nonlinear programming
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problems, where it is usually impossible to assure validity of constraints. These
methods guarantee feasibility of points by adding slack variables, which appear
in a barrier term added to the objective function. Positivity of the slack variables
is assured algorithmically (by a step length selection). Minimization of a barrier
function with equality constraints and an iterative computation of the Lagrange
multipliers (dual variables) are the main features of primal-dual interior point
methods.

Consider function (11.4). As is mentioned in the introduction, minimization of
this function is equivalent to the nonlinear programming problem

⎧
⎪⎨

⎪⎩

minimize
m∑

k=1
zk

subject to fkl(x) ≤ zk, 1 ≤ k ≤ m, 1 ≤ l ≤ mk.

(11.106)

Using slack variables skl > 0, 1 ≤ k ≤ m, 1 ≤ l ≤ mk , and a barrier function

Bμ(x, z, s) =
m∑

k=1

zk − μ

m∑

k=1

mk∑

l=1

log(skl), (11.107)

a solving of the problem (11.106) can be transformed to a successive solving of
problems

{
minimize Bμ(x, z, s)

subject to fkl(x)+ skl − zk = 0, 1 ≤ k ≤ m, 1 ≤ l ≤ mk,
(11.108)

where μ ↓ 0. Necessary conditions for an extremum of the problem (11.108) have
the form

g(x,u) =
m∑

k=1

mk∑

l=1

gkl(x)ukl = 0,

1−
mk∑

l=1

ukl = 0, 1 ≤ k ≤ m,

uklskl − μ = 0, 1 ≤ k ≤ m, 1 ≤ l ≤ mk,

fkl(x)+ skl − zk = 0, 1 ≤ k ≤ m, 1 ≤ l ≤ mk,

which is n + m + 2m̄ equations for n + m + 2m̄ unknowns (vectors x, z = [zk],
s = [skl], u = [ukl], 1 ≤ k ≤ m, 1 ≤ l ≤ mk), where m̄ = m1 + · · · +mm. Denote
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A(x) = [A1(x), . . . , Am(x)], f = [fkl], S = diag[skl], U = diag[ukl], 1 ≤ k ≤ m,
1 ≤ l ≤ mk , and

E =

⎡

⎢
⎢
⎢
⎣

ẽ1 0 · · · 0
0 ẽ2 · · · 0
...

...
. . .

...

0 0 · · · ẽm

⎤

⎥
⎥
⎥
⎦
, ẽ =

⎡

⎢
⎢
⎢
⎣

ẽ1

ẽ2
...

ẽm

⎤

⎥
⎥
⎥
⎦
, z =

⎡

⎢
⎢
⎢
⎣

z1

z2
...

zm

⎤

⎥
⎥
⎥
⎦

(matrices Ak(x), vectors ẽk , and numbers zk , 1 ≤ k ≤ m, are defined in
Sect. 11.2.2). Applying the Newton method to this system of nonlinear equations,
we obtain a system of linear equations for increments (direction vectors) Δx, Δz,
Δs, Δu. After arrangement and elimination

Δs = −U−1S(u+Δu)+ μS−1ẽ, (11.109)

this system has the form

⎡

⎣
G(x,u) 0 A(x)

0 0 −ET

AT (x) −E −U−1S

⎤

⎦

⎡

⎣
Δx

Δz

Δu

⎤

⎦ = −
⎡

⎣
g(x,u)

ẽ − ET u

f (x)− Ez + μU−1ẽ

⎤

⎦ , (11.110)

where G(x,u) = ∑m
k=1

∑mk

l=1 Gkl(x)ukl . Vector ẽ in the equation ẽ − ET u = 0
has unit elements, but its dimension is different from the dimension of a vector ẽ

in (11.109).
For solving this linear system, we cannot advantageously use the structure

of a generalized minimax problem (because substituting zk = Fk(x) =
max1≤l≤mk fkl(x) we would obtain a nonsmooth problem whose solution is
much more difficult). Therefore, we need to deal with a general nonlinear
programming problem. To simplify subsequent considerations, we use the notation
x̃ = [xT , zT ]T ,

g̃(x̃,u) =
[

g(x,u)

ẽ − ET u

]
, G̃(x̃,u) =

[
G(x,u) 0

0 0

]
, Ã(x̃) =

[
A(x)

−ET

]
,

(11.111)

and write (11.110) in the form

[
G̃(x̃,u) Ã(x̃)

ÃT (x̃) −U−1S

] [
Δx̃

Δu

]
= −

[
g̃(x̃,u)

c(x̃)+ μU−1ẽ

]
, (11.112)

where c(x̃) = f (x) − Ez. This system of equations is more advantageous against
systems (11.49) and (11.93) in that its matrix does not depend on the barrier
parameter μ, so it is not necessary to use a lower bound μ. On the other hand,
system (11.112) has a dimension n + m + m̄, while systems (11.49) and (11.93)
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have dimensions n. It would be possible to eliminate the vector Δu, so the resulting
system

(G̃(x̃,u)+ Ã(x̃)M−1ÃT (x̃))Δx̃ = −g̃(x̃,u)− Ã(x̃)(M−1c(x̃)+ μS−1ẽ),

(11.113)

where M = U−1S, would have dimension n+m (i.e., n+ 1 for classical minimax
problems). Nevertheless, as follows from the equation uklskl = μ, either ukl ↓
0 or skl ↓ 0 if μ ↓ 0, so some elements of a matrix M−1 may tend to infinity,
which increases the condition number of system (11.113). Conversely, the solution
of Eq. (11.112) is easier if the elements of a matrixM are small (ifM = 0, we obtain
the saddle point system, which can be solved by efficient iterative methods [1, 18]).
Therefore, it is advantageous to split the constraints to active with skl ≤ ε̃ukl (we
denote active quantities by ĉ(x̃), Â(x̃), ŝ,Δŝ, Ŝ, û,Δû, Û , M̂ = Û−1Ŝ) and inactive
with skl > ε̃ukl (we denote inactive quantities by č(x̃), Ǎ(x̃), š, Δš, Š, ǔ, Δǔ, Ǔ ,
M̌ = Ǔ−1Š). Eliminating inactive equations from (11.112) we obtain

Δǔ = M̌−1(č(x̃)+ Ǎ(x̃)T Δx̃)+ μŠ−1ẽ (11.114)

and

[
Ĝ(x̃,u) Â(x̃)

ÂT (x̃) −M̂
] [

Δx̃

Δû

]
= −

[
ĝ(x̃,u)

ĉ(x̃)+ μÛ−1ẽ

]
, (11.115)

where

Ĝ(x̃,u) = G(x̃,u)+ Ǎ(x̃)M̌−1ǍT (x̃),

ĝ(x̃,u) = g(x̃,u)+ Ǎ(x̃)(M̌−1č(x̃)+ μŠ−1ẽ),

and M̂ = Û−1Ŝ is a diagonal matrix of order m̂, where 0 ≤ m̂ ≤ m̄ is the number
of active constraints. Substituting (11.114) into (11.109) we can write

Δŝ = −M̂(û+Δû)+ μÛ−1ẽ, Δš = −(č + ǍT Δx̃ + š). (11.116)

The matrix of the linear system (11.115) is symmetric, but indefinite, so its Choleski
decomposition cannot be determined. In this case, we use either dense [3] or
sparse [6] Bunch–Parlett decomposition for solving this system. System (11.115)
(especially if it is large and sparse) can be efficiently solved by iterative conjugate
gradient method with indefinite preconditioner [20]. If the vectors Δx̃ and Δû are
solutions of system (11.115), we determine vector Δǔ by (11.114) and vectors Δŝ,
Δš by (11.116).

Having vectors Δx̃, Δs, Δu, we need to determine a step length α > 0 and set

x̃+ = x̃ + αΔx̃, s+ = s(α), u+ = u(α), (11.117)
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where s(α) and u(α) are vector functions such that s(α) > 0, s′(0) = Δs and
u(α) > 0, u′(0) = Δu. This step is not trivial, because we need to decrease both
the value of the barrier function B̃μ(x̃, s) = Bμ(x, z, s) and the norm of constraints
‖c(x̃)‖, and also to assure positivity of vectors s and u. We can do this in several
different ways: using either the augmented Lagrange function [20, 21] or a bi-
criterial filter [9, 29] or a special algorithm [11, 16]. In this section, we confine our
attention to the augmented Lagrange function which has (for the problem (11.106))
the form

P(α) = B̃μ(x̃ + αΔx̃, s(α)) + (u+Δu)T (c(x̃ + αΔx̃)+ s(α))

+ σ

2
‖c(x̃ + αΔx̃)+ s(α)‖2, (11.118)

where σ ≥ 0 is a penalty parameter. The following theorem, whose proof is given
in [20], holds.

Theorem 11.10 Let s > 0, u > 0 and let vectorsΔx̃, Δû be solutions of the linear
system

[
Ĝ(x̃,u) Â(x̃)

ÂT (x̃) −M̂
] [

Δx̃

Δû

]
+

[
ĝ(x̃,u)

ĉ(x̃)+ μÛ−1ẽ

]
=

[
r

r̂

]
, (11.119)

where r and r̂ are residual vectors, and let vectors Δǔ and Δs be determined
by (11.114) and (11.116). Then

P ′(0) = −(Δx̃)T G̃(x̃,u)Δx̃ − (Δs)TM−1Δs − σ‖c(x̃)+ s‖2

+ (Δx̃)T r + σ(ĉ(x̃)+ ŝ)T r̂. (11.120)

If

σ > − (Δx̃)T G̃(x̃,u)Δx̃ + (Δs)TM−1Δs

‖c(x̃)+ s‖2
(11.121)

and if system (11.115) is solved in such a way that

(Δx̃)T r+σ(ĉ(x̃)+ ŝ)T r̂ < (Δx̃)T G̃(x̃,u)Δx̃ + (Δs)TM−1Δs+σ(‖c(x̃)+s‖2),

(11.122)

then P ′(0) < 0.

Inequality (11.122) is significant only if linear system (11.115) is solved
iteratively and residual vectors r and r̂ are nonzero. If these vectors are zero,
then (11.122) follows immediately from (11.121). Inequality (11.121) serves for
determination of a penalty parameter, which should be as small as possible. If
the matrix G̃(x̃,u) is positive semidefinite, then the right-hand side of (11.121)
is negative and we can choose σ = 0.
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11.4.2 Implementation

The algorithm of the primal-dual interior point method consists of four basic
parts: determination of the matrix G(x,u) or its approximation, solving linear
system (11.115), a step length selection, and an update of the barrier parameter
μ. The matrix G(x,u) has form (11.33), so its approximation can be determined in
the one of the ways introduced in Remark 11.13.

The linear system (11.115), obtained by determination and subsequent elimina-
tion of inactive constraints in the way described in the previous subsection, is solved
either directly using the Bunch–Parlett decomposition or iteratively by the conjugate
gradient method with the indefinite preconditioner

C =
[

D̂ Â(x̃)

ÂT (x̃) −M̂
]
, (11.123)

where D̂ is a positive definite diagonal matrix that approximates matrix Ĝ(x̃,u).
An iterative process is terminated if residual vectors satisfy conditions (11.122) and

‖r‖ ≤ ω‖g̃(x̃,u)‖, ‖r̂‖ ≤ ωmin{‖ĉ(x̃)+ μÛ−1ẽ‖, ‖ĉ(x̃)+ ŝ‖},
where 0 < ω < 1 is a prescribed precision. The directional derivative P ′(0) given
by (11.118) should be negative. There are two possibilities how this requirement can
be achieved. We either determine the value σ ≥ 0 satisfying inequality (11.121),
which implies P ′(0) < 0 if (11.122) holds (Theorem 11.10), or set σ = 0 and
ignore inequality (11.122). If P ′(0) ≥ 0, we determine a diagonal matrix D̃ with
elements

⎧
⎪⎪⎨

⎪⎪⎩

D̃jj = Γ , if ‖g̃‖
10 |G̃jj | < Γ ,

D̃jj = ‖g̃‖
10 |G̃jj |, if Γ ≤ ‖g̃‖

10 |G̃jj | ≤ Γ ,

D̃jj = Γ , if Γ <
‖g̃‖
10 |G̃jj |,

(11.124)

for 1 ≤ j ≤ n + m, where g̃ = g̃(x̃,u) and 0 < Γ < Γ , set G̃(x̃,u) = D̃ and
restart the iterative process by solving new linear system (11.115).

We use functions s(α) = [skl(α)], u(α) = [ukl(α)], where skl(α) = skl +
αsklΔskl , ukl(α) = ukl + αuklΔukl and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αskl = α, if Δskl ≥ 0,

αskl = min{α,−γ skl
Δskl

}, if Δskl < 0,

αukl = α, if Δukl ≥ 0,

αukl = min{α,−γ ukl
Δukl

}, if Δukl < 0

when choosing a step length using the augmented Lagrange function. A parameter
0 < γ < 1 (usually γ = 0.99) assures the positivity of vectors s+ and u+
in (11.117). A parameter α > 0 is chosen to satisfy the inequality P(α) − P(0) ≤
ε1αP

′(0), which is possible because P ′(0) < 0 and a function P(α) is continuous.
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After finishing the iterative step, a barrier parameter μ should be updated.
There exist several heuristic procedures for this purpose. The following procedure
proposed in [28] seems to be very efficient.

Procedure C

Compute the centrality measure

$ = m̄ minkl{sklukl}
sT u

,

where m̄ = m1 + · · · +mm and 1 ≤ k ≤ m, 1 ≤ l ≤ mk . Compute the value

λ = 0.1 min

{
0.05

1− $

$
, 2

}3

and set μ = λsT u/m̄.

The considerations up to now are summarized in Algorithm 11.3 introduced in
the Appendix.

11.5 Numerical Experiments

The methods studied in this contribution were tested by using two collections of test
problems TEST14 and TEST15 described in [19], which are the parts of the UFO
system [24] and can be downloaded from the web-page www.cs.cas.cz/luksan/test.
html. Both these collections contain 22 problems with functions fk(x), 1 ≤ k ≤ m,
x ∈ R

n, where n is an input parameter and m ≥ n depends on n (we have used
the values n = 100 and n = 1000 for numerical experiments). Functions fk(x),
1 ≤ k ≤ m, have a sparse structure (the Jacobian matrix of a mapping f (x) is
sparse), so sparse matrix decompositions can be used for solving linear equation
systems.

The tested methods, whose results are reported in Tables 11.1, 11.2, 11.3, 11.4,
and 11.5 introduced in the Appendix, are denoted by five letters. The first pair of
letters gives the problem type: either a classical minimax MX (when a function
F(x) has form (11.10) or F(x) = ‖f (x)‖∞ holds) or a sum of absolute values SA
(when F(x) = ‖f (x)‖1 holds). Further two letters specify the method used:

PI –the primal interior point method (Sect. 11.2),
SM –the smoothing method (Sect. 11.3),
DI –the primal-dual interior point method (Sect. 11.4).

The last letter denotes the procedure for updating a barrier parameter μ (pro-
cedures A and B are described in Sect. 11.2.4 and procedure C is described in
Sect. 11.4.2).

www.cs.cas.cz/luksan/test.html
www.cs.cas.cz/luksan/test.html
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Table 11.1 TEST14 (minimization of maxima) — 22 problems

Newton methods: n=100 Variable metric methods: n=100

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

MXPI-A 2232 7265 11575 0.74 4 - 2849 5078 2821 0.32 2 -

MXPI-B 2184 5262 9570 0.60 1 - 1567 2899 1589 0.24 1 -

MXSM-A 3454 11682 21398 1.29 5 - 4444 12505 4465 1.03 - -

MXSM-B 10241 36891 56399 4.15 3 - 8861 32056 8881 2.21 1 1

MXDI-C 1386 2847 14578 0.90 2 - 2627 5373 2627 0.96 3 -

Newton methods: n=1000 Variable metric methods: n=1000

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

MXPI-A 1386 3735 7488 5.58 4 - 3237 12929 3258 5.91 6 -

MXPI-B 3153 6885 12989 9.03 4 - 1522 3287 1544 2.68 5 -

MXSM-A 10284 30783 82334 54.38 7 - 4221 9519 4242 8.00 8 -

MXSM-B 18279 61180 142767 87.76 6 - 13618 54655 13639 45.10 9 1

MXDI-C 3796 6677 48204 49.95 6 - 2371 5548 2371 18.89 3 -

Table 11.2 TEST14 (L∞-approximation) — 22 problems

Newton methods: n=100 Variable metric methods: n=100

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

MXPI-A 2194 5789 10553 0.67 3 - 2890 5049 2912 0.48 1 -

MXPI-B 6767 17901 39544 3.79 4 - 1764 3914 1786 0.37 2 -

MXSM-A 3500 9926 23568 1.79 7 - 8455 23644 8476 4.69 4 -

MXSM-B 15858 48313 92486 8.33 5 - 9546 34376 9566 2.59 9 1

MXDI-C 1371 2901 11580 1.12 8 - 2467 5130 2467 1.59 3 -

Newton methods: n=1000 Variable metric methods: n=1000

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

MXPI-A 4110 14633 20299 18.89 4 - 1549 2636 1571 2.51 3 -

MXPI-B 6711 31618 29939 30.73 7 - 1992 6403 2013 4.96 4 -

MXSM-A 9994 24333 88481 67.45 11 - 6164 15545 6185 29.37 8 -

MXSM-B 23948 84127 182604 149.63 8 - 24027 92477 24048 132.08 8 1

MXDI-C 3528 9084 26206 49.78 12 - 1932 2845 1932 18.73 5 -

The columns of all tables correspond to two classes of methods. The Newton
methods use approximations of the Hessian matrices of the Lagrange function
obtained by gradient differences [4] and variable metric methods update approxi-
mations of the Hessian matrices of the partial functions by the methods belonging
to the Broyden family [12] (Remark 11.13).
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Table 11.3 TEST15 (L∞-approximation) — 22 problems

Newton methods: n=100 Variable metric methods: n=100

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

MXPI-A 15525 20272 55506 4.41 1 - 6497 8204 6518 1.37 3 -

MXPI-B 7483 17999 27934 3.27 5 - 1764 7598 2488 0.74 2 -

MXSM-A 17574 29780 105531 11.09 4 - 9879 15305 9900 5.95 - -

MXSM-B 13446 29249 81938 6.80 9 1 9546 34376 9566 2.59 3 -

MXDI-C 980 1402 7356 0.79 1 - 1179 1837 1179 1.06 2 -

Newton methods: n=1000 Variable metric methods: n=1000

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

MXPI-A 10325 15139 32422 39.30 6 - 6484 9904 6502 13.77 2 -

MXPI-B 14836 30724 46864 68.70 10 - 7388 15875 7409 19.98 3 -

MXSM-A 11722 24882 69643 61.65 10 - 6659 12824 6681 41.55 8 -

MXSM-B 13994 31404 86335 78.45 9 1 15125 25984 15147 61.62 10 -

MXDI-C 1408 2406 10121 15.63 6 - 2228 3505 2228 35.13 10 -

Table 11.4 TEST14 (L1-approximation) — 22 problems

Newton methods: n=100 Variable metric methods: n=100

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

SAPI-A 1647 5545 8795 0.63 5 - 12265 23579 12287 1.37 2 1

SAPI-B 1957 7779 10121 0.67 6 - 4695 6217 10608 0.67 3 -

SASM-A 1677 4505 16079 0.74 3 - 20025 27369 20047 2.83 4 -

SASM-B 2389 8085 23366 1.18 4 - 5656 11637 5678 1.02 2 -

SADI-C 4704 13012 33937 4.16 7 1 6547 7012 6547 9.18 8 -

Newton methods: n=1000 Variable metric methods: n=1000

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

SAPI-A 7592 19621 46100 15.39 4 - 22277 36610 22298 19.09 7 1

SAPI-B 9067 35463 56292 19.14 6 - 16650 35262 16672 14.47 6 1

SASM-A 5696 13534 41347 15.28 4 - 20020 30736 20042 23.05 5 1

SASM-B 8517 30736 57878 23.60 6 - 18664 28886 18686 18.65 5 1

SADI-C 6758 11011 47960 94.78 11 1 13123 14610 13124 295.46 8 2

The tables contain total numbers of iterations NIT, function evaluations NFV,
gradient evaluations NFG, and also the total computational time, the number of
problems with the value Δ decreased and the number of failures (the number of
unsolved problems). The decrease of the maximum step length Δ is used for three
reasons. First, too large steps may lead to overflows if arguments of functions (roots,
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Table 11.5 TEST15 (L1-approximation) — 22 problems

Newton methods: n=100 Variable metric methods: n=100

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

SAPI-A 15760 21846 58082 4.24 8 - 39469 58157 39486 6.28 4 1

SAPI-B 4592 17050 17778 1.46 5 - 5932 25035 5952 1.48 6 1

SASM-A 10098 14801 610511 3.54 5 - 9162 28421 9184 3.65 6 1

SASM-B 4528 14477 290379 2.94 8 - 3507 9036 3528 1.27 6 -

SADI-C 877 1373 6026 0.84 3 - 15528 15712 15529 14.49 5 1

Newton methods: n=1000 Variable metric methods: n=1000

Method NIT NFV NFG Time Δ Fail NIT NFV NFG Time Δ Fail

SAPI-A 18519 39319 70951 61.04 5 - 27308 44808 27327 36.64 4 1

SAPI-B 12405 57969 43189 55.06 7 - 12712 32179 12731 21.48 8 1

SASM-A 19317 32966 113121 62.65 8 - 22264 42908 22284 62.46 7 1

SASM-B 14331 33572 86739 57.56 6 - 12898 42479 12919 47.05 7 1

SADI-C 2093 3681 12616 20.01 3 1 23957 28000 23960 186.92 5 3

logarithms, exponentials) lie outside of their definition domain. Second, the change
of Δ can affect the finding of a suitable (usually global) minimum. Finally, it can
prevent from achieving a domain in which the objective function has bad behavior
leading to a loss of convergence. The number of times the step length has decreased
is in some sense a symptom of robustness (a lower number corresponds to higher
robustness).

Several conclusions can be done from the results stated in these tables.

• The smoothing methods are less efficient than the primal interior point methods.
For testing the smoothing methods, we had to use the value μ = 10−6, while the
primal interior methods work well with the smaller value μ = 10−8, which gives
more precise results.

• The primal-dual interior point methods are slower than the primal interior point
methods, especially for the reason that system of equations (11.115) is indefinite,
so we cannot use the Choleski (or the Gill–Murray [10]) decomposition. If the
matrix of linear system (11.115) is large and sparse, we can use the Bunch–
Parlett decomposition [6]. In this case, a large fill-in of new nonzero elements
(and thus to overflow of the operational memory or large extension of the
computational time) may appear. In this case, we can also use the iterative
conjugate gradient method with an indefinite preconditioner [18], however, the
ill-conditioned systems can require a large number of iterations and thus a large
computational time.

• It cannot be uniquely decided whether Procedure A is better than Procedure B.
The Newton methods usually work better with Procedure A while the variable
metric methods are more efficient with Procedure B.
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• The variable metric methods are usually faster because it is not necessary to
determine the elements of the Hessian matrix of the Lagrange function by
gradient differences. The Newton methods seem to be more robust (especially
in case of L1-approximation).

Appendix

Algorithm 11.1: Primal interior point method
Data: A tolerance for the gradient norm of the Lagrange function ε > 0. A

precision for determination of a minimax vector δ > 0. Bounds for a barrier
parameter 0 < μ < μ. Coefficients for decrease of a barrier parameter
0 < λ < 1, σ > 1 (or 0 < ϑ < 1). A tolerance for a uniform descent
ε0 > 0. A tolerance for a step length selection ε1 > 0. A maximum step
length Δ > 0.

Input. A sparsity pattern of the matrix A(x) = [A1(x), . . . , Am(x)].
A starting point x ∈ R

n.
Step 1. (Initiation) Choose μ ≤ μ. Determine a sparse structure of the

matrix W = W(x;μ) from the sparse structure of the matrix A(x) and
perform a symbolic decomposition of the matrix W (described in [2,
Section 1.7.4]). Compute values fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk , values
Fk(x) = max1≤l≤mk fkl(x), 1 ≤ k ≤ m, and the value of objective function
(11.4). Set r = 0 (restart indicator).

Step 2. (Termination) Solve nonlinear equations (11.44) with precision δ

to obtain a minimax vector z(x;μ) and a vector of Lagrange multipliers
u(x;μ). Determine a matrix A = A(x) and a vector g = g(x;μ) =
A(x)u(x;μ). If μ ≤ μ and ‖g‖ ≤ ε, terminate the computation.

Step 3. (Hessian matrix approximation) Set G = G(x;μ) or compute an
approximation G of the Hessian matrix G(x;μ) using gradient differences
or using quasi-Newton updates (Remark 11.13).

Step 4. (Direction determination) Determine a matrix ∇2B̂(x;μ) by (11.48)
and a vector Δx by solving Eq. (11.49) with the right-hand side defined
by (11.47).

Step 5. (Restart) If r = 0 and (11.54) does not hold, set G = I , r = 1 and
go to Step 4. If r = 1 and (11.54) does not hold, set Δx = −g. Set r = 0.

Step 6. (Step length selection) Determine a step length α > 0 satisfying
inequalities (11.55) (for a barrier function B̂(x;μ) defined by (11.46)) and
α ≤ Δ/‖Δx‖. Note that nonlinear equations (11.44) are solved at the point
x + αΔx. Set x := x + αΔx. Compute values fkl(x), 1 ≤ k ≤ m, 1 ≤
l ≤ mk , values Fk(x) = max1≤l≤mk fkl(x), 1 ≤ k ≤ m, and the value of
objective function (11.4).

Step 7. (Barrier parameter update) Determine a new value of a barrier
parameter μ ≥ μ using Procedure A or Procedure B. Go to Step 2.
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The values ε = 10−6, δ = 10−6,μ = 10−8,μ = 1, λ = 0.85, σ = 100, ϑ = 0.1,

ε0 = 10−8, ε1 = 10−4, and Δ = 1000 were used in our numerical experiments.

Algorithm 11.2: Smoothing method
Data: A tolerance for the gradient norm of the smoothing function ε > 0.

Bounds for a smoothing parameter 0 < μ < μ. Coefficients for decrease of
a smoothing parameter 0 < λ < 1, σ > 1 (or 0 < ϑ < 1). A tolerance for
a uniform descent ε0 > 0. A tolerance for a step length selection ε1 > 0. A
maximum step length Δ > 0.

Input. A sparsity pattern of the matrix A(x) = [A1(x), . . . , Am(x)].
A starting point x ∈ R

n.
Step 1. (Initiation) Choose μ ≤ μ. Determine a sparse structure of the

matrix W = W(x;μ) from the sparse structure of the matrix A(x) and
perform a symbolic decomposition of the matrix W (described in [2,
Section 1.7.4]). Compute values fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk ,
values Fk(x) = max1≤l≤mk fkl(x), 1 ≤ k ≤ m, and the value of objective
function (11.4). Set r = 0 (restart indicator).

Step 2. (Termination) Determine a vector of smoothing multipliers u(x;μ)
by (11.87). Determine a matrix A = A(x) and a vector g = g(x;μ) =
A(x)u(x;μ). If μ ≤ μ and ‖g‖ ≤ ε, terminate the computation.

Step 3. (Hessian matrix approximation) Set G = G(x;μ) or compute an
approximation G of the Hessian matrix G(x;μ) using gradient differences
or using quasi-Newton updates (Remark 11.13).

Step 4. (Direction determination) Determine the matrix W by (11.94) and
the vector Δx by (11.93) using the Gill–Murray decomposition of the
matrix W .

Step 5. (Restart) If r = 0 and (11.54) does not hold, set G = I , r = 1 and
go to Step 4. If r = 1 and (11.54) does not hold, set Δx = −g. Set r = 0.

Step 6. (Step length selection) Determine a step length α > 0 satisfying
inequalities (11.55) (for a smoothing function S(x;μ)) and α = Δ/‖Δx‖.
Set x := x+αΔx. Compute values fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk , values
Fk(x) = max1≤l≤mk fkl(x), 1 ≤ k ≤ m, and the value of the objective
function (11.4).

Step 7. (Smoothing parameter update) Determine a new value of the smooth-
ing parameter μ ≥ μ using Procedure A or Procedure B. Go to Step 2.

The values ε = 10−6, μ = 10−6, μ = 1, λ = 0.85, σ = 100, ϑ = 0.1,

ε0 = 10−8, ε1 = 10−4, and Δ = 1000 were used in our numerical experiments.
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Algorithm 11.3: Primal-dual interior point method
Data: A tolerance for the gradient norm ε > 0. A parameter for determina-

tion of active constraints ε̃ > 0. A parameter for initiation of slack variables
and Lagrange multipliers δ > 0. An initial value of the barrier parameter
μ > 0. A precision for the direction determination 0 ≤ ω < 1. A parameter
for the step length selection 0 < γ < 1. A tolerance for the step length
selection ε1 > 0. Maximum step length Δ > 0.

Input. A sparsity pattern of the matrix A(x) = [A1(x), . . . , Am(x)].
A starting point x ∈ R

n.
Step 1. (Initialization) Compute values fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk ,

and set Fk(x) = max1≤l≤mk fkl(x), zk = Fk(x)+ δ, 1 ≤ k ≤ m. Compute
values ckl(x̃) = fkl(x)− zk , and set skl = −ckl(x̃), ukl = δ. Set μ = μ and
compute the value of the barrier function B̃μ(x̃, s).

Step 2. (Termination) Determine a matrix Ã(x̃) and a vector g̃(x̃,u) =
Ã(x̃)u by (11.111). If the KKT conditions ‖g̃(x̃,u)‖ ≤ ε, ‖c(x̃)+ s‖ ≤ ε,
and sT u ≤ ε are satisfied, terminate the computation.

Step 3. (Hessian matrix approximation) Set G = G(x,u) or compute an
approximation G of the Hessian matrix G(x,u) using gradient differences
or utilizing quasi-Newton updates (Remark 11.13). Determine a parameter
σ ≥ 0 by (11.121) or set σ = 0. Split the constraints into active if ŝkl ≤ ε̃ûkl
and inactive if škl > ε̃ǔkl .

Step 4. (Direction determination) Determine the matrix G̃ = G̃(x̃,u)

by (11.111) (where the Hessian matrix G(x,u) is replaced with its
approximation G). Determine vectors Δx̃ and Δû by solving linear sys-
tem (11.115), a vector Δǔ by (11.114), and a vector Δs by (11.116). Linear
system (11.115) is solved either directly using the Bunch–Parlett decom-
position (we carry out both the symbolic and the numeric decompositions
in this step) or iteratively by the conjugate gradient method with indefinite
preconditioner (11.123). Compute the derivative of the augmented Lagrange
function by formula (11.120).

Step 5. (Restart) If P ′(0) ≥ 0, determine a diagonal matrix D̃ by (11.124),
set G̃ = D̃, σ = 0, and go to Step 4.

Step 6. (Step length selection) Determine a step length parameter α > 0
satisfying inequalities P(α) − P(0) ≤ ε1αP

′(0) and α ≤ Δ/‖Δx‖.
Determine new vectors x̃ := x̃ + αΔx̃, s := s(α), u := u(α) by (11.117).
Compute values fkl(x), 1 ≤ k ≤ m, 1 ≤ l ≤ mk, and set ckl(x̃) =
fkl(x) − zk , 1 ≤ k ≤ m, 1 ≤ l ≤ mk . Compute the value of the barrier
function B̃μ(x̃, s).

Step 7. (Barrier parameter update) Determine a new value of the barrier
parameter μ ≥ μ using Procedure C. Go to Step 2.

The values ε = 10−6, ε̃ = 0.1, δ = 0.1, ω = 0.9, γ = 0.99, μ = 1, ε1 = 10−4,
and Δ = 1000 were used in our numerical experiments.
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Part III
Methods for Special Problems



Chapter 12
Bundle Methods for Inexact Data

Welington de Oliveira and Mikhail Solodov

Abstract Many applications of optimization to real-life problems lead to non-
smooth objective and/or constraint functions that are assessed through “noisy”
oracles. In particular, only some approximations to the function and/or subgradient
values are available, while exact values are not. For example, this is the typical
case in Lagrangian relaxation of large-scale (possibly mixed-integer) optimization
problems, in stochastic programming, and in robust optimization, where the oracles
perform some numerical procedure to evaluate functions and subgradients, such
as solving one or more optimization subproblems, multidimensional integration,
or simulation. As a consequence, one cannot expect such oracles to provide exact
data on the function values and/or subgradients. We review algorithms based on the
bundle methodology, mostly developed quite recently, that have the ability to handle
inexact data. We adopt an approach which, although not exaustive, covers various
classes of bundle methods and various types of inexact oracles, for unconstrained
and convexly constrained problems (with both convex and nonconvex objective
functions), as well as nonsmooth mixed-integer optimization.

12.1 Introduction

Nonsmooth optimization (NSO) appears often in connection with real-life problems
that are too difficult to solve directly and need to be decomposed: instead of dealing
directly with the difficult problem one may choose (or even have to choose) to solve
a sequence of simpler problems (subproblems); see, e.g., [15, 66–68]. For example,
this is a common strategy in stochastic programming [66], in Lagrangian relaxation
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[8, 50], and in Benders’ decomposition [7, Chapter 11]. Lagrangian relaxation leads
to nonsmooth convex problems. (Generalized) Benders’ decomposition may give
rise to constrained nonsmooth and nonconvex optimization problems [25, 61]. In
any case, the resulting nonsmooth functions can only be evaluated by an oracle
solving (inner) optimization (sub)problems. Solving those subproblems exactly,
along many iterations, is at the very least impractical, and is usually not even
possible anyway. Similar situations arise when simulation or other numerical
procedures are required.

In the NSO setting, the oracle information comes in the form of a functional value
and one subgradient (i.e., the full subdifferential is not available). As is well known,
bundle methods, dating back to 1975 (in particular, [49] and [82]), are nowadays
among the most efficient algorithms for NSO. Further developments have been in
several directions: algorithms with limited memory [42], methods for nonlinearly
constrained problems [44, 69], bilevel problems [12, 71], nonmonotone versions
[3, 19], second-order methods [58], nonconvex objective functions [27, 33, 41, 57,
63, 76], DC programming [13, 19, 28, 40], convex multiobjetive optimization [60],
algorithms for combinatorial and mixed-integer optimization [11, 81], semidefinite
programming [24, 35], distributed optimization [39], among others. The original
proximal variant of bundle methods has been generalized in [26]. Moreover, other
(than proximal) stabilizations have been developed: the level bundle methods
proposed in [51], the trust-region variant in [38], the proximal Chebychev center
algorithm in [64], and the doubly stabilized bundle method in [18].

Since their invention, and for about 20 years, convergence theory of bundle
methods could only handle exact oracles, i.e., the exact value of the function
and a true subgradient were required, at every point of evaluation. Inexactness
was first introduced in [45]; however, approximations of both the function and its
subgradients were required to be asymptotically exact, i.e., the noise/perturbations
had to vanish in the limit. In the context of Lagrangian relaxation, for example,
this presumes that we can solve the optimization subproblems with an arbitrarily
high precision. While this can be accepted as realistic in some cases, it is certainly
not so in general. Next, inexact oracles were considered in [22] for level bundle
methods, in [36] for proximal bundle, and in [59] in a special bundle method for
the maximal-eigenvalue function. In [22] and [59], the oracle is still asymptotically
exact, as in [45]. In [36] it is assumed that the exact value of the function is available,
while the subgradient can be computed approximately. The attractive feature of
the analysis in [36] is that, unlike in any previous work on bundle methods, the
perturbation in subgradient evaluations need not vanish in the limit. On the other
hand, the exact value of the function is still needed, and so this setting is not
suitable for some important applications of bundle methods and, in particular, for
the Lagrangian relaxation. This is because in that case, evaluating the function
and its subgradient is the same task, which amounts to computing a solution of
the subproblem (exactly). Nonvanishing perturbations in both the function and
subgradient values were introduced in [70]. The next advance, including the idea
of noise attenuation is [47]. On the side of level bundle variants, [22] was extended
in [16, 54, 75].
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The more recent developments in handling inexact data made the new variants
of bundle methods even more suitable for various real-life applications; see, e.g.,
[15]. Works such as [16, 20, 34, 77, 81] provide different ways inexact data
can be handled by bundle methods, allowing solution of difficult NSO problems
(sometimes even exactly, or at least with the desired accuracy, depending on the
oracle’s assumptions).

In what follows, we discuss various bundle algorithms for variants of the
optimization problem

{
minimize f (x)

subject to x ∈ G and h(x) ≤ 0,
(12.1)

where G ⊂ R
n and the functions f, h : Rn → R are assessed through inexact

oracles. Note that in the nonsmooth setting, there is no loss of generality in
considering a scalar constraint function h, as it can be defined as the maximum of all
the constraint functions. Usually, but not always, f , h and G would be assumed to
be convex, and not necessarily all of them would be present in the problem. Specific
assumptions would be stated as needed.

The rest of this chapter is organized as follows. We start in Sect. 12.2 with
defining different types of inexact oracles and presenting some examples of how
inexact data appears naturally in applications. By assuming convexity of the
involved functions, Sect. 12.3 reviews a family of inexact level bundle methods for
the problem (12.1) with either convex or nonconvex bounded set G. In Sect. 12.4
we consider inexact proximal bundle methods for unconstrained and linearly
constrained convex problems. A recent algorithm combining level and proximal
ideas is given in Sect. 12.5. An inexact proximal bundle method for nonconvex
objective functions is discussed in Sect. 12.6. Finally, Sect. 12.7 contains some
concluding remarks and research perspectives.

12.2 Inexact Oracles: The Main Assumptions and Examples

Let the functions f and h in (12.1) be convex, and assessed via inexact oracles.
Specifically, for each given x ∈ R

n an upper oracle delivers inexact information on
f , namely

(i) fx = f (x)− ηvx; and

(ii) ξx ∈ R
n : f (·) ≥ fx + 〈ξx, · − x〉 − ηsx, η

v
x ≤ η, ηsx ≤ η for all x ∈ R

n,

(12.2)

and, for the function h, a lower oracle provides

(i) hx = h(x)− εx; and

(ii) ζ x ∈ R
n : h(·) ≥ hx + 〈ζ x, · − x〉, εx ≤ ε for all x ∈ R

n. (12.3)
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In the above, the oracles’ output is (fx , ξx) and (hx , ζ x), respectively. The
subscripts v and s on the errors in (12.2) make the distinction between function
value and subgradient errors. The bounds η, ε ≥ 0 on the unknown errors ηvx , ηsx
and εx , are possibly unknown as well. However, there are also important situations
in which these bounds can actually be chosen by the user and sent, together with x,
to the oracles (see Example 12.2 below).

The exact oracles for f and h correspond to taking η ≡ ε ≡ 0, and compute
fx = f (x), hx = h(x), together with their true subgradients. The important
subclass of lower oracles returns lower linearizations: h(x) − εx = hx � h(x)

and h(·) � hx + 〈ζ x, · − x〉. Upper oracles, by contrast, can overestimate function
values: in (12.2) ηvx can be negative and ηsx can be positive. We assume the h-oracle
to be of lower type for simplicity: as shown in [75, Subsection 5.3], dealing with
upper oracles for the constraint function is possible, but requires extra steps in the
(level) bundle algorithm. We omit such extra steps to avoid technicalities that may
obscure presentation of the main ideas. Interested readers are referred to [75, 78]
for a comprehensive treatment of upper oracles for both objective and constraint
functions.

We next show how lower and upper oracles appear naturally in practice.

12.2.1 Examples of Inexact Oracles

We start with an application which is perhaps the main motivation for investigating
algorithms for nonsmooth optimization with inexact data.

Example 12.1 (Lagrangian Relaxation: Inexact Oracle) Consider the follow-
ing problem:

{
maximize ϕ(u)

subject to u ∈ U and c(u) = 000 ∈ R
n,

where ϕ : Rm → R and c : Rm → R
n are continuous functions, and U ⊂ R

m

is a nonempty compact set. For a Lagrange multiplier x ∈ R
n, the dual function

of the above problem is given by f (x) := maxu∈U L(u, x) with L(u, x) :=
ϕ(u)+ 〈x, c(u)〉. Notice that L(u, ·) is convex for any u ∈ U fixed.

Given x0, the oracle (solver) computes a point u0 ∈ U which (approxi-
mately) maximizes the function L(·, x0) over U , and returns fx0 := L(u0, x0)

and ξx0
= c(u0) ∈ ∂xL(u0, x0). Convexity of L(u0, ·) and the definition of

f (·) yield that

f (x) ≥ L(u0, x) ≥ L(u0, x0)+ 〈ξ x0
, x − x0〉 = fx0 + 〈ξx0

, x − x0〉 .
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Therefore, fx0 = L(u0, x0) and ξx0
= c(u0) satisfy the two first lines

in (12.2) with ηvx0
= f (x0) − L(u0, x0) ≥ 0 (unknown) and ηsx0

≡ 0,
i.e., this is a lower oracle for f . The boundedness assumption ηx0 ≤ η is
satisfied if the considered solver is ensured to compute an η-solution u0 to
the subproblem maxu∈U L(u, x0), i.e., a point u0 ∈ U satisfying the condition
maxu∈U L(u, x0) ≤ L(u0, x0)+ η.

More versatile oracles can be obtained if one has control over the solver
employed to compute approximate solutions of maxu∈U L(u, x). This interesting
setting is discussed in the next example.

Example 12.2 (Lagrangian Relaxation: On-Demand Accuracy) In some prac-
tical situations (e.g., when maxu∈U L(u, x0) is a combinatorial problem), the
error bound η can be chosen and sent to the solver, so that some η-solution
u0 is returned. In other words, the decision-maker can decide to request
more or less accuracy from the oracle. Note that requesting high accuracy at
unpromising candidate solutions can be a waste of time. More specifically,
along the iterative process of minimizing f , the decision-maker may have
access to the best estimation f tar = fxj of the optimal value. Then, if a new
point xi �= xj is identified to be a poor solution candidate, the process of
computing f (xi ), i.e., of solving maxu∈U L(u, xi ), can be interrupted early
(at some point ui ∈ U ). The oracle delivers the inexact data fxi = L(ui , xi )

and ξ i = c(ui ) without satisfying the requested tolerance η. This is the case if
the inequality L(ui , xi ) > f tar is verified when computing f (xi ). It is worth
mentioning that this kind of test is available in solvers such as Gurobi (www.
gurobi.com) and CPLEX (www.cplex.com), for example.

An inexact oracle equipped with such procedures is called oracle with on-
demand accuracy, introduced in [16] and further investigated in [23] and [77].

Another example of how inexact data can arise naturally comes from stochastic
programming.

Example 12.3 (Two-Stage Stochastic Programs) Consider a stochastic pro-
gram with decision variables organized in two levels, denoted by x and y for
the first and second stages, respectively. Let Ω ⊂ R

m be a set containing
finitely many elements (scenarios). If ω ∈ Ω represents uncertainty, for a
convex function ϕ : Rn → R, vectors q(ω) and matrices T (ω) and W , the
corresponding two-stage program with fixed recourse is

⎧
⎪⎪⎨

⎪⎪⎩

minimize ϕ(x)+ E[〈q(ω), y〉]
subject to T (ω)x +Wy = b(ω) for all ω ∈ Ω ,

x ∈ G, y � 0 ,

www.gurobi.com
www.gurobi.com
www.cplex.com
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where E[·] stands for the expected value with respect to the probability measure
on the set Ω . For fixed x and ω, the recourse function

Q(x;ω) :=
{

minimize 〈q(ω), y〉
subject to y � 0 ,Wy = b(ω)− T (ω)

gives in (12.1) an objective of the form f (x) := ϕ(x)+ E[Q(x;ω)], which is
finite-valued when the recourse is relatively complete.

For each fixed x and a given realization ω, the evaluation of the recourse
function can be done by solving the dual linear program

{
maximize 〈b(ω)− T (ω),u〉
subject to WT u ≤ q(ω) .

If, to speed up calculations, instead of performing the maximization for the
considered ω we just take a feasible point ux,ω (satisfying WT ux,ω � q(ω)),
then an oracle giving fx := ϕ(x)+E[〈b(ω)−T (ω),ux,ω〉], and ξx := ∇ϕ(x)−
E[T (ω)T ux,ω] is of lower type and fits (12.2) with ηsx ≡ 0.

Alternatively, if we select a (much smaller) subset Ωk ⊂ Ω of scenarios
to perform the subproblem optimization, an upper oracle can be obtained by
setting fx and ξx as above but with E replaced by Ek , the expected value with
respect to the probability of (fewer) scenarios in Ωk. See [17] for more details.

Nonlinearly constrained variants of stochastic programs arise naturally when one
needs to handle risk measures.

Example 12.4 (CVaR Two-Stage Stochastic Programs) With the notation of the
previous example, consider the following nonlinearly constrained two-stage
stochastic program with parameters β ∈ (0, 1] and ρ ∈ R:

{
minimize ϕ(x)+ E[Q(x;ω)]
subject to x ∈ G, CVaRβ [Q(x;ω)] ≤ ρ ,

where CVaRβ is the conditional value at risk. Let P(ω) be the probability
associated to the scenario ω ∈ Ω . It can be seen [23] that the convex constraint
CVaRβ can be evaluated as the optimal value of the following LP (for x fixed):

CVaRβ [Q(x;ω)] :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

maximize
∑

ω∈Ω
πωQ(x;ω)

subject to 0 ≤ πω ≤ P(ω) for all ω ∈ Ω,
∑

ω∈Ω
πω = β ,
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whose solution can be easily computed by sorting the costs Q(x;ω), ω ∈ Ω ,
and assigning as much as possible weights πω to the highest costs.

By performing inexact optimization to compute the recourse functions
Q(x;ω), one is inexactly evaluating the functions f (x) := ϕ(x)+E[Q(x;ω)]
and h(x) := CVaRβ [Q(x;ω)] − ρ. In [23] it is shown how to design efficient
inexact oracles for these functions.

There are applications where the source of inexactness is not in solving optimiza-
tion subproblems, but is associated to simulation and numerical integration.

Example 12.5 (Probability Maximization Problem) Let (ω,Ω,P) be a proba-
bility space and c : Rn → R

m be a concave mapping. A variant of the so-called
probability maximization problem is

{
maximize P[c(x) ≥ ω]
subject to x ∈ G .

Problems of this form can be seen as reformulation of chance-constrained
optimization problems. They arise, for example, in cascaded-reservoir man-
agement [15, 79], financial risk management, and some other areas [9]. If
the continuous probability distribution of ω is log-concave, then the function
f (x) := − log(P[c(x) ≥ ω]) is convex (and can be nonsmooth, depending
on P and the covariance matrix of ω). Since a multidimensional integral
needs to be numerically computed to evaluate the function, an exact oracle
for f is impossible in practice. Inexact values can also be computed by
using Monte-Carlo simulation and variance reduction techniques [29]. Such
processes induce, in general, upper oracles. Lower estimations of f are possible
in some particular cases (for instance when ω follows a multivariate Gaussian
probability distribution) [2]. It should be noted though that an error bound
η > 0 in (12.2) can be expected, but cannot be fully guaranteed, as there is
always some nonzero probability of a large error showing up (see [78, Lemma
5.1] for details).

If the distribution of ω is not log-concave, then f is not convex, and
algorithms for nonconvex optimization need to be employed.

The above examples show how inexact oracles arise in connection with practical
problems. In the remaining of this chapter, we review several bundle algorithms that
are able to handle inexact data.
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12.3 Inexact Level Bundle Methods

Throughout this section we make the assumption that f and h in (12.1) are convex
functions, and that inexact oracles satisfying (12.2) and (12.3) are available. We also
assume that G is a compact set, but not necessary a convex one.

A versatile family of bundle algorithms, called level bundle methods, was
introduced in [45, 51]. As will be seen in what follows, simple level bundle variants
can handle both exact and inexact data in the same fashion, without any special
treatment or modifications in the case of inexact oracles. This is different from
proximal bundle methods, which require modifications in the inexact setting.

12.3.1 Models, Localizer Sets, and Optimality Certificate

Observe that the two first lines in (12.2) and (12.3) yield

f (·) ≥ f (x)+ 〈ξx, · − x〉 − (ηvx + ηsx) , (12.4)

h(·) ≥ h(x)+ 〈ζ x, · − x〉 − εx ,

from which, evaluating at x we deduce that ηvx + ηsx ≥ 0 (regardless of the signs of
the individual error terms) and εx ≥ 0. As a result,

ξx ∈ ∂(ηvx+ηsx)f (x) with ηvx + ηsx ≥ 0 for all x ∈ R
n , (12.5)

and

ζ x ∈ ∂(εx)f (x) with εx ≥ 0 for all x ∈ R
n . (12.6)

Even if in (12.2) and (12.3) the values of the bounds for errors η and ε are unknown,
the inequalities above imply that η ≥ ηvx ≥ −ηsx ≥ −η and ε ≥ εx ≥ 0. Thus,
oracle errors are bounded from below (by −η and 0, respectively).

Let k be the index of the current iteration. Having called the oracle at previous
iterates xj , bundle algorithms accumulate linearizations of the functions to construct
their cutting-plane models:

f̂k(·) := max
j∈Jk

{fxj + 〈ξxj
, · − xj 〉} ≤ f (·)+ η, (12.7)

ĥk(·) := max
j∈Jk

{hxj + 〈ζ xj
, · − xj 〉} ≤ h(·), (12.8)

where Jk is an index set (typically Jk ⊂ {1, . . . , k}), and the inequalities follow
from the second lines in (12.2) and (12.3). With these models and an additional
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parameter f lev
k ∈ R, we can define the following localizer set:

Lk := {x ∈ G : f̂k(x) ≤ f lev
k , ĥk(x) ≤ 0} . (12.9)

When the constraint function h is not present, the localizer set becomes the level
set of the cutting-model f̂k , justifying thus the name “level bundle methods”. The
following is a simple but useful result that will allow to determine approximate
lower bounds for the optimal value f ∗ of the problem (12.1).

Lemma 12.1 If Lk = ∅, then f levk ≤ f ∗ + η.

Proof It follows from (12.7) and (12.8) that Lk approximates the level set of f over
the feasible set in the following sense:

{x ∈ G : f (x) ≤ f lev
k − η, h(x) � 0} ⊂ Lk .

Hence, if Lk is an empty set, then so is {x ∈ G : f (x) ≤ f levk − η, h(x) � 0}.
The feasible set {x ∈ G : h(x) � 0} is nonempty, by the standing assumption. As a
result, f levk − η must be a lower bound for f ∗. ��

Let f low
0 be a given lower bound for the optimal value f ∗. A handy manner to

update such a bound along the iterative process is to set f low
k+1 := f levk if Lk = ∅, and

f lowk+1 := f low
k otherwise. With this rule, Lemma 12.1 ensures that f lowk ≤ f ∗ + η

for all k. We can thus define the useful improvement function

Fj (f
low
k ) := max{fxj − f low

k , hxj } and Δk := min
j≤k Fj (f

low
k ) . (12.10)

Remark 12.1 (Approximate Optimality Test) Note that if Fj (f lowk ) ≤ δtol for some
index j ≤ k and the given tolerance δtol ≥ 0 (which is the case when Δk ≤ δtol),
then hxj ≤ δtol and fxj ≤ f low

k + δtol. By using the oracles’ assumptions we get
h(xj )− ε ≤ hxj ≤ δtol and f (xj )− η ≤ fxj ≤ f low

k + δtol ≤ f ∗ + η + δtol, i.e.,

h(xj ) ≤ ε + δtol and f (xj ) ≤ f ∗ + 2η + δtol .

In other words, xj is a (max{2η, ε} + δtol)-solution to the problem (12.1). We
can thus employ the value Δk as an (approximate) optimality certificate: if it holds
that Δk ≤ δtol, then xbest := xj for j yielding the minimum in (12.10) is an
approximate solution in the given sense. ��
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12.3.2 An Algorithmic Pattern

We now present an inexact level bundle method for the class of problems in the form
(12.1), having convex functions f and h, and a compact set G.

Algorithm 12.1: Inexact level bundle method: an algorithmic pattern

Data: Parameters γ ∈ (0, 1), δtol ≥ 0, and a lower bound f low0 for (12.1).
Step 0. (Initialization) Choose a starting point x0 ∈ G and call the oracles

to compute (fx0 , ξx0
) and (hx0 , ζ x0

). Set J0 := {0} and k := 0.
Step 1. (Stopping test) Compute Δk as in (12.10). If Δk ≤ δtol, then stop

and return xbest := xj for j yielding the minimum in (12.10).
Step 2. (Next iterate) Set f lev

k := f lowk + γΔk and define the localizer set
Lk as in (12.9). If Lk = ∅, then define f lowk+1 := f lev

k and go to Step 4.
Otherwise, set f lowk+1 := f low

k and choose xk+1 ∈ Lk .
Step 3. (Oracle call) Compute the data (fxk+1, ξ xk+1

) and (hxk+1, ζ xk+1
).

Step 4. (Bundle management) Set Jk+1 := Jk ∪ {k + 1} if xk+1 is available
and Jk+1 := Jk otherwise. Set k := k + 1 and go back to Step 1.

Algorithm 12.1 is a simplistic version of [75, Algorithm 1]: it does not provide
either an implementable rule to define xk+1 ∈ Lk nor a scheme for keeping the size
of the bundle Jk bounded (limited memory). We shall return to these more specific
issues a bit later, after proving convergence of the method to (max{2η, ε} + δtol)-
solution of the problem (12.1).

Note that the algorithm defines the next trial point in the localizer set Lk . Hence,
for all j ∈ Jk , we have that:

(i) fxj + 〈ξxj
, xk+1 − xj 〉 ≤ f lev

k ; and
(ii) hxj + 〈ζ xj

, xk+1 − xj 〉 ≤ 0.

Using the Cauchy–Schwarz inequality in (i), we obtain that fxj − f levk ≤
‖ξxj

‖‖xk+1 − xj‖ ≤ ‖Λf ‖‖xk+1 − xj‖, whereas inequality (ii) yields hxj ≤
‖ζ xj

‖‖xk+1 − xj‖ ≤ ‖Λh‖‖xk+1 − xj‖. The existence of finite constants Λf

and Λh above is ensured by [37, Proposition 6.2.2], because the oracle errors
are bounded, (12.5) and (12.6) hold, and G is a bounded set. By taking Λ :=
max{Λf , Λh} we have thus shown that

Δk ≤ Fj (f
low
k ) = max{fxj − f lev

k , hxj }
≤ Λ‖xk+1 − xj‖ for all j ∈ Jk . (12.11)

Theorem 12.1 For the problem (12.1), assume that f and h are convex, G �= ∅
is compact, and that the inexact oracles satisfy (12.2) and (12.3). If δtol > 0, then
after finitely many steps Algorithm 12.1 stops with a (max{2η, ε} + δtol)-solution
to the problem (12.1).
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Proof Suppose that Algorithm 12.1 does not terminate. In particular, this implies
that Δk > δtol > 0 for all k. Then, using also (12.11), we obtain that 0 < δtol ≤
Λ‖xk+1 − xj‖ for all k and all j ≤ k. This contradicts the fact that the bounded
sequence (xk) ⊂ G has a convergent subsequence. Therefore, the inequality Δk ≤
δtol must hold after finitely many steps. Remark 12.1 then concludes the proof. ��
As long as xk+1 ∈ Lk and Jk = {1, 2, . . . , k}, the above result ensures convergence
(in the given sense) of Algorithm 12.1 for any nonempty compact set G, regardless
of its structure. For instance, G can be a mixed-integer set, or even something more
complicated. If one can either verify that Lk is empty or, otherwise, pick any point in
Lk in some practical/implementable manner, Algorithm 12.1 is an appealing general
strategy, due to its reliability and simplicity.

12.3.3 Exploiting the Domain

Let x̂k be the stability center, for instance: the last iterate xk−1, the best candidate
xbest , or another point chosen by some rule. Then, determining the next trial point
xk+1 in Lk (given in (12.9)) can be done by minimizing the distance to the stability
center x̂k , i.e., xk+1 solves

{
minimize d(x, x̂k)

subject to x ∈ Lk .
(12.12)

Appropriate choices for the distance function d : Rn × R
n → R+ and for the

stability center x̂k depend on the structure of G. In what follows, we discuss some
possible variants of Algorithm 12.1 by exploiting this structure.

12.3.3.1 The Combinatorial Setting

Let G be composed of binary variables: G = {x ∈ {0, 1}n : Ax ≤ b}, for some
given matrix A ∈ R

m×n and vector b ∈ R
m. Taking d(x, x̂k) := 1

2‖x−x̂k‖2, we get
that d(x, x̂k) = 1

2

∑n
i=1 xi −∑n

i=1 xi x̂i + 1
2

∑n
i=1 x̂i . Hence, the master problem

(12.12) boils down to the binary LP:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize 〈 1
2 1− x̂k, x〉

subject to fxj + 〈ξxj
, x − xj 〉 ≤ f lev

k , j ∈ Jk,
hxj + 〈ζ xj

, x − xj 〉 ≤ 0, j ∈ Jk,
Ax ≤ b, x ∈ {0, 1}n.
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We point out that one does not need to solve this subproblem up to optimality at
every iteration of Algorithm 12.1: merely a feasible point, or a certificate that the
feasible set is empty, is enough to ensure convergence of the level bundle method.
That said, solving up to optimality may decrease the number of oracle calls, as
reported in [81].

12.3.3.2 The Mixed-Integer Setting

Suppose thatG is the mixed-integer set G = {x = (xc, xi ) ∈ R
nc×Z

ni : Ax ≤ b} .
The work [11] proposes to define the next trial point as (approximate) solution of
the following mixed-integer master problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize ‖x − x̂k‖>
subject to fxj + 〈ξxj

, x − xj 〉 ≤ f levk , j ∈ Jk,
hxj + 〈ζ xj

, x − xj 〉 ≤ 0, j ∈ Jk,
Ax ≤ b, x = (xc, xi ) ∈ R

nc × Z
ni ,

(12.13)

where d(x, x̂k) = ‖x − x̂k‖>, and ‖·‖> is a given norm, for instance the L1, L∞ or
L2-norms. For the two first choices, (12.13) becomes a MILP, whereas for ‖·‖> =
‖·‖2 (12.13) is MIQP. For these choices good numerical results were reported in [11]
for dealing with convex MINLP problems: when compared to classical methods for
this type of problems, the given level bundle methods could reduce the number
of oracle calls in around 22%, which can yield a significant CPU time reduction
depending on the computational cost of the oracles.

12.3.3.3 The Convex Setting

Let now G be a closed convex set, the more friendly setting considered in most
bundle methods in the literature [16, 22, 45, 51, 75]. We stick with the classical
choice for the stability function d(x, x̂k) = 1

2‖x − x̂k‖2, yielding the following QP
master problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize 1
2‖x − x̂k‖2

subject to fxj + 〈ξxj
, x − xj 〉 ≤ f levk , j ∈ Jk,

hxj + 〈ζ xj
, x − xj 〉 ≤ 0, j ∈ Jk,

x ∈ G .

(12.14)

The next iterate is therefore the projection of the stability center onto the localizer
set. The projection provides some useful inequalities that permit to analyze the
complexity of Algorithm 12.1. To this end, let us consider special iterations called
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“critical iterations”, the ones which make significant progress in the quest of
solving (12.1) or improving the current lower bound f lowk . More specifically, critical
iterations would be indexed by � and are defined as follows: set Δk(0) = Δ0, � = 0
and update

� := �+ 1, k(�) := k whenever Δk ≤ (1− γ )Δk(�) or Lk = ∅ .

We can thus split the iterative process of Algorithm 12.1 into cycles: denote the �-th
cycle as K� := {k(�), k(�)+ 1, . . . , k(�+ 1)− 1}.
Proposition 12.1 Consider Algorithm 12.1 and assume that G is a compact convex
set with diameter D < ∞ and x̂k = x̂ ∈ G is fixed for all k ∈ K�. Then, any
iteration index k ∈ K� with Δk > δtol > 0 may differ no more from k(�) than the
following bound:

k − k(�)+ 1 ≤
(

ΛD

(1− γ )Δk

)2

.

Proof It follows from the definition of the cycle K� that f lowk = f low
k(�) and Δk is

nonincreasing for all k ∈ K�. This shows that f lev
k is nonincreasing as well. Hence,

Lk ⊂ Lk−1 for all k, k − 1 ∈ K� (because the bundle Jk keeps all linearizations).
Consider the iteration indexed by k − 1 ∈ K�. The projection of x̂ onto Lk−1 yields
xk and, moreover, the inequality

〈x̂ − xk, xk − x〉 ≥ 0 for all x ∈ Lk−1 .

As xk+1 ∈ Lk ⊂ Lk−1, the inequality 〈x̂ − xk, xk − xk+1〉 ≥ 0 used in ‖xk+1 −
x̂‖2 = ‖xk+1 − xk + (xk − x̂)‖2 gives

‖xk+1 − x̂‖2 ≥ ‖xk − x̂‖2 + ‖xk+1 − xk‖2 .

By employing (12.11) with j = k and recalling that Δk > (1 − γ )Δk(�) by the
definition of k(�), we obtain that

D2 ≥ ‖xk+1 − x̂‖2 ≥ ‖xk − x̂‖2 +
(
Δk

Λ

)2

> ‖xk − x̂‖2 +
(
(1− γ )Δk(�)

Λ

)2

.

The result then follows by some simple manipulations of the above relation; see [75,
Lemma 4] for more details. ��

We note that the hypothesis x̂ ∈ G is only used to ensure that the relation D2 ≥
‖xk+1− x̂‖2 holds. In fact, we could use any (non-feasible) stability center x̂: since
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G is compact, the distance ‖xk+1− x̂‖2 would be bounded by another constant, say
D̃2, and the given complexity analysis would hold with D replaced with D̃. We next
estimate the maximum number of oracle calls to obtain Δk ≤ δtol.

Theorem 12.2 Under the assumptions of Proposition 12.1, assume further that
δtol > 0 in Algorithm 12.1. Then, to reach an optimality measure Δk smaller than
δtol > 0 Algorithm 12.1 performs at most

(

1+ f ∗ + η − f low
0

γ δtol

) (
ΛD

(1− γ )δtol

)2

iterations.

Proof Notice that every time Lk is empty the lower bound f low
k of f ∗ + η is

increased by an amount of γΔk (> γδtol). Since f low0 is finite, the maximum
number of cycles �mx times the stepsize γ δtol is less than f ∗ + η − f low0 , i.e.,
�mx � (f ∗ + η − f low

0 )/(γ δtol) . The result then follows from Proposition 12.1
by noting that each cycle K� has at most (ΛD)2/((1− γ )δtol)2 iterations. See [75,
Theorem 2] for more details. ��
Proposition 12.1 requires the bundle of information Jk to keep all the linearizations
indexed by k ∈ K�. However, the bundle can be managed arbitrarily at critical
iterations k(�): for instance, we could simply empty Jk by keeping only the new
linearization indexed by k(�). We mention that for a limited-memory variant of
Algorithm 12.1, one needs to include the so-called aggregate linearizations, as is
standard in modern bundle methods; see, for instance, [75, Step 7 of Algorithm 1].

12.3.4 Handling Oracles with On-Demand Accuracy

We highlight that Algorithm 12.1 does not make any special treatment of inexact
data: it works exactly the same way for both exact and inexact oracles. More efficient
variants are obtained if we can control the oracles’ inexactness. We now address this
subject by focusing on oracles with on-demand accuracy.

Following [23], we say that xk ∈ G is an f -substantial iterate if the inexact
value of the function fxk meets the descent target f tark ∈ R. Similarly, xk ∈ G

is said to be an h-substantial iterate if the inexact constraint value hxk meets the
feasibility target htark ∈ R. An iterate xk is said to be substantial if it is both f - and
h-substantial. Moreover, we denote with S the index set gathering iterations that
provided substantial iterates. We will refer to S as the substantial set. The aim of
this section is to make a few changes in Algorithm 12.1, in order to deal with lower
oracles with asymptotically vanishing errors for substantial iterates. Such oracles
are referred to as lower oracles with on-demand accuracy [75]. They satisfy (12.2)
and (12.3) with the following additional assumptions, where 0 ≤ ηk ≤ η, f tark ∈ R
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and htark ∈ R are given parameters:
⎧
⎪⎨

⎪⎩

ηsxk ≡ 0, (lower oracle),
ηvxk ≤ ηk, if fxk ≤ f tar

k ,

εvxk ≤ ηk, if hxk ≤ htark .

(12.15)

This kind of oracles provide information with accuracy up to ηk for substantial
iterates.

We emphasize that the assumptions (12.2) and (12.3) satisfying also (12.15) are
still quite general and cover many situations of interest. For given xk and ηk = 0, the
oracle provides exact information if both fxk and hxk meet the targets. Moreover,
if both targets f tar

k and htark are set as +∞ for all iterations and ηk = 0, then
the oracles are exact. Asymptotically exact versions of these oracles are obtained if
f tark = htark = +∞ for all k and ηk → 0. Combinations between partially exact
and asymptotically exact versions are also possible. For this setting, in order to get
an exact solution to the problem (12.1) the algorithm must force ηk → 0 (only) for
substantial iterates.

Let f low
k be a proven lower bound for f ∗, the optimal value of (12.1).

At any substantial iterate j ∈ S, the oracle bound ηj is known and can be
exploited in the definition of the improvement function. We therefore define Δk :=
minj≤k FS

j (f
low
k ) with

FS
j (f

low
k ) :=

{
max{fxj − f low

k , hxj } + ηj , if j ∈ S,
+∞, otherwise.

(12.16)

Due to the on-demand accuracy assumption, Lemma 9 in [75] ensures that
FS
j (f

low
k ) ≥ max{f (xj ) − f lowk , h(xj )} ≥ 0. Hence, if FS

j (f
low
k ) = 0 then xj is

an optimal solution to the problem (12.1) and f low
k = f ∗. In this case ηj = 0, i.e.,

the oracle is exact at the substantial iterate xj .
In order to obtain Δk → 0, it is necessary to force ηk to zero for substantial

iterates. This can be done by controlling the oracle error in Step 3 of Algorithm 12.1
as follows:

Step 3’. (On-demand accuracy)

Step 3.1. (Controlling the error) Update the oracle error by setting ηk+1 =
θΔk(�), for a given θ ∈ (0, (1− γ )2) (here k(�) the last critical iteration).

Step 3.2. (Target updating) Set f tark+1 = f lev
k + (1 − γ )Δk and htark+1 = (1 −

γ )Δk.
Step 3.3. (Oracle call) Compute data (fxk+1 , ξxk+1

) and (hxk+1, ζ xk+1
) satisfy-

ing (12.2), (12.3) and (12.15).

We have the following result, whose proof can be found in [75, Theorem 6].

Theorem 12.3 Consider Algorithm 12.1 with δtol = 0, Step 3 replaced by Step 3’
above, and optimality certificate given in (12.16). Let xbestk be the point defining the
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value of Δk. Then Δk → 0 and every accumulation point of the sequence {xbestk } is
an exact solution to the problem (12.1).

The interest of using oracles with on-demand accuracy is evident: the algorithm
can compute an exact solution to the problem, even though most of its iterations are
inexact. The main idea is that there is no gain in “wasting” time for computing exact
data at non-promising points (whose function values are greater than the specified
targets f tar

k and htark ). As shown by the numerical experience in [16, 23, 75], for
a large battery of stochastic programs (two-stage, risk-free, risk-averse and chance-
constrained ones) it is possible to save up to 79% of the total computational time
(while still finding an exact solution) just by letting the bundle method control how
accurate the oracle information should be at substantial iterates.

In the linearly-constrained setting, the complexity analysis of level bundle
methods with on-demand accuracy is very similar to the one of exact bundle
methods, which is known for being optimal or nearly-optimal [6, 12]. We refer
interested readers to [16, Subsection 3.2.3] for a formal statement.

We finalize this section by mentioning that there exist specialized inexact bundle
methods dealing with unbounded set G; see [16, Section 4] for oracles with on-
demand accuracy and [54] for the more general setting. However, none of these
works handle nonlinearly constrained problems. Nonlinearly constrained problems
with unbounded set G are considered in [78], but in a proximal bundle framework.

12.4 Inexact Proximal Bundle Methods

For the sake of simplicity, in most part of this section we drop the nonlinear
constraint h in (12.1) and focus on the simpler setting of

{
minimize f (x)

subject to x ∈ G, (12.17)

where f : Rn → R is a convex function and G ⊂ R
n is a nonempty convex

and closed set, typically polyhedral. The nonlinearly constrained setting will be
discussed in Sect. 12.4.4.3.

To deal with the problem (12.17) we now consider proximal bundle methods
[38, 49]. As in the level variant, proximal bundle algorithms define new iterates by
making use of a cutting-plane model f̂k for f , a stability center x̂k ∈ G and a
stabilization function d . For the classical choice d(x, x̂k) = 1

2tk
‖x − x̂k‖2, with

tk > 0 a prox-parameter, the new iterate xk+1 of a proximal bundle algorithm is the
solution of the master problem

{
minimize f̂k(x)+ 1

2tk
‖x − x̂k‖2

subject to x ∈ G .
(12.18)
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As is well known, if G is polyhedral, then (12.18) is equivalent to solving the
following QP:

⎧
⎪⎪⎨

⎪⎪⎩

minimize r + 1
2tk
‖x − x̂k‖2

subject to fxj + 〈ξxj
, x − xj 〉 ≤ r, j ∈ Jk,

x ∈ G, r ∈ R .

It is worth to mention that for the same model f̂k and the same stability center
x̂k , one can find the proximal and level parameters tk and f levk such that (12.12)
(without the nonlinear constraint h) and (12.18) generate the same next iterate xk+1.
In this formal theoretical sense, the level and proximal approaches can be considered
equivalent. But the details of the implementation and practical performance can be
quite different. In particular, the key parameters are updated by strategies which are
specific to each of the methods, and thus the generated iterates are not the same in
practice.

12.4.1 Descent Test and Optimality Certificate

The stability center in (inexact) proximal bundle methods is usually updated
according to the following descent rule. Let

vk := fx̂k − f̂k(xk+1), (12.19)

and let κ ∈ (0, 1) be a parameter.

If fxk+1 ≤ fx̂k − κvk, then x̂k+1 := xk+1; otherwise x̂k+1 := x̂k . (12.20)

Some other descent rules allowing more flexibility in defining stability centers (or
providing strong convergence in general Hilbert spaces) can be found in [3, 26, 77]
and [80], respectively.

Note first that in the setting of inexact oracles one can have vk < 0 in
(12.19), which renders the descent test (12.20) meaningless. In the convex case,
this situation can only be caused by the oracle inexactness. The method then
checks whether vk is (or is not) sufficiently positive, to detect when inaccuracy
is becoming excessive/cumbersome. If vk is not (sufficiently) positive, the method
increases the prox-parameter tk . The motivation for this is as follows. If vk is not
positive, (12.19) suggests that xk+1 does not sufficiently minimize the model f̂k(·).
Increasing tk in (12.18) decreases the weight of the quadratic term therein, thus
increasing the relative weight of f̂k(·) in the minimization problem. This has the
effect of decreasing the value of the model at candidate points, eventually (once tk is
large enough) making vk in (12.19) acceptably positive. Once the latter is achieved,
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the iteration proceeds as in a standard bundle method. This procedure is called noise
attenuation [47].

In what follows we provide some useful ingredients to check inexact optimality
and to keep the bundle of information Jk+1 limited. Assuming G is polyhedral,
or that an appropriate constraint qualification [72] holds in (12.18), the optimality
conditions for (12.18) yield that

xk+1 := x̂k − tk ξ̂ k, with ξ̂ k := p
f
k + pG

k ,

where p
f
k ∈ ∂f̂k(xk+1) and pG

k ∈ ∂iG(xk+1), iG being the indicator function of the
set G. Making use of Lagrange multipliers αkj associated to the constraints fxj +
〈ξxj

, xk+1 − xj 〉 ≤ r , j ∈ Jk , it further holds that

p
f
k :=

∑

j∈Jk

αkj ξxj
,

∑

j∈Jk

αkj = 1, αkj ≥ 0, j ∈ Jk .

Such multipliers can be used to save storage without impairing convergence. More
precisely, “inactive” indices, corresponding to αkj = 0, can be dropped for the next

iteration: Jk+1 ⊃ {j ∈ Jk : αkj �= 0}. An even more economical model can be
constructed using the so-called aggregate linearization

f̄ka (x) := f̂k(xk+1)+ 〈ξ̂ k, x − xk+1〉,

which satisfies f̄ka (x) ≤ fk(x) + iG(x) ≤ f (x) + η + iG(x) for all x ∈ R
n,

by the oracle assumptions in (12.2) and the definition of ξ̂ k . As in the exact
proximal bundle methods, this linearization plays an important role in the bundle
management: it can be shown that if the new cutting-plane model is defined by the
minimal bundle Jk+1 := {k + 1, ka}, this is still enough to ensure convergence.

The following result establishes a helpful connection between the predicted
decrease vk := fx̂k − f̂k(xk+1) and the aggregate error êk := fx̂k − f̄ka (x̂k). In
particular, it gives a certificate of (approximate) optimality to the problem (12.17).

Lemma 12.2 It holds that êk � −2η, vk = êk + tk‖ξ̂ k‖2, and

ξ̂k ∈ ∂(êk+2η)[f (x̂k)+ iG(x̂k)].

Proof It follows from the definitions of êk , vk , xk+1 and f̄ka that

êk = fx̂k − f̄ka (x̂k) = fx̂k − [f̂k(xk+1)+ 〈ξ̂ k, x̂k − xk+1〉] = vk − tk‖ξ̂ k‖2.

In addition, the oracle definition (12.2) and inequality f̄ka (x) ≤ f (x) + η for all
x ∈ G give: êk = fx̂k − f̄ka (x̂k) ≥ (f (x̂k)− η)− (f (x̂k)+ η) = −2η .
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Let x ∈ R
n be an arbitrary point. Proposition 12.5 and the oracle assumptions

(12.2) yield

η + f (x)+ iG(x) ≥ f̄ka (x) = f̂k(xk+1)+ 〈ξ̂ k, x − xk+1〉
= fx̂k − (fx̂k − f̂k(xk+1))+ 〈ξ̂ k, x − x̂k〉 + 〈ξ̂ k, x̂k − xk+1〉
= fx̂k − (êk + tk‖ξ̂ k‖2)+ 〈ξ̂ k, x − x̂k〉 + 〈ξ̂ k, tk ξ̂k〉
≥ f (x̂k)− η − êk + 〈ξ̂ k, x − x̂k〉 .

Since iG(x̂k) = 0, we conclude that ξ̂k ∈ ∂(êk+2η)[f (x̂k)+ iG(x̂k)]. ��
As a consequence of Lemma 12.2, if for some infinite index set K ⊂ {0, 1, 2, . . .}
we have

lim sup
K5k→∞

êk ≤ 0 and lim
K5k→∞

‖ξ̂ k‖ = 0, (12.21)

then every accumulation point x̄ of the sequence {x̂k : k ∈ K} satisfies 000 ∈
∂2η[f (x̄) + iG(x̄)], i.e., x̄ is a 2η-solution to (12.17). This gives the needed
(approximate) optimality measures.

12.4.2 Inexact Proximal Bundle Algorithm

We now present an inexact proximal bundle method for convex problems in the
form (12.17). We refer to [47] for the original algorithm and to [20] for further
enhancements.

In the exact setting, the aggregate error êk is always nonnegative. This implies
the inequality vk = êk + tk‖ξ̂ k‖2 ≥ tk‖ξ̂ k‖2 = 1

tk
‖xk+1 − x̂k‖2. The inaccuracy

detection inequality êk < −τ tk‖ξ̂ k‖2 at Step 3 implies that the oracle error is too
excessive: note that in this case

vk = êk + tk‖ξ̂ k‖2 < (1− τ )tk‖ξ̂ k‖2 = 1− τ

tk
‖xk+1 − x̂k‖2,

i.e., the predicted decrease is not sufficiently positive. The role of increasing tk in
this situation had been already discussed above.
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Algorithm 12.2: Inexact proximal bundle method

Data: Stopping tolerances δtol1 , δtol2 ≥ 0, a descent parameter κ ∈ (0, 1), a
stepsize t0 ≥ t > 0, and τ ∈ [ 1

2 , 1).
Step 0. (Initialization) Choose a starting point x0 ∈ G, set x̂0 := x0, and

call the oracle to compute (fx0, ξx0
). Set J0 := {0}, k := 0 and na := 0.

Step 1. (Trial point computation) Find xk+1 solving (12.18) and let αk

denote the corresponding optimal simplicial multiplier. Compute ξ̂ k =
(x̂k − xk+1)/tk , vk = fx̂k − f̂k(xk+1), and êk = vk − tk‖ξ̂ k‖2.

Step 2. (Stopping criterion) If ‖ξ̂ k‖ ≤ δtol1 and êk ≤ δtol2 , stop.

Step 3. (Inaccuracy detection) If êk < −τ tk‖ξ̂ k‖2, set tk := 10tk, na := k

and loop back to step 1.
Step 4. (Oracle call and descent test) Call the inexact oracle (12.2) to

compute (fxk+1, ξxk+1
). If the descent test (12.20) holds, then declare the

iterate serious: set x̂k+1 := xk+1, na := 0. Otherwise, declare the iterate
null: set x̂k+1 := x̂k.

Step 5. (Bundle management) Choose Jk+1 ⊇ {j ∈ J k : αkj �= 0} ∪ {k+ 1}.
(Another possibility is Jk+1 := {k + 1, ka}.)

Step 6. (Stepsize updating and loop) If the iterate was declared serious, select
tk+1 ≥ tk . If the iterate was declared null, either set tk+1 := tk , or choose
tk+1 ∈ [0.1tk, tk] such that tk+1 ≥ t if na = 0. Increase k by 1 and go to
Step 1.

12.4.3 Convergence Analysis

Throughout this section, we consider Algorithm 12.2 with δtol1 = δtol2 = 0, applied
to the problem (12.17), assumed to have a solution. The oracle satisfies (12.2).

We start the analysis considering the infinite noise attenuation loop.

Proposition 12.2 (Infinite Noise Attenuation Loop) Suppose the algorithm loops
indefinitely between Steps 1 and 3, after the last serious iterate x̄ = x̂k0 is generated.
Then (12.21) holds with K = {0, 1, 2, . . .} and x̄ is a 2η-solution to the problem
(12.17).

Proof Since the algorithm loops indefinitely between Steps 1 and 3, we have that
êk < −τ tk‖ξ̂ k‖2 for all k large enough. Then, Lemma 12.2 ensures that −2η ≤
êk < −τ tk‖ξ̂ k‖2 < 0 for k large enough. Letting k → ∞ in this relation, and
recalling that tk →+∞ by Step 3 of the algorithm, we conclude that (12.21) holds.

��
Next, we proceed as usual in proximal bundle methods, with two possibilities:

(i) the algorithm generates an infinite sequence of null steps after a last serious
iterate;

(ii) an infinite sequence of serious steps is produced.
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Note that êk ≥ −τ tk‖ξ̂ k‖2 for all k yielding either a null or a serious step (as
otherwise the step is that of noise attenuation), and in particular vk ≥ 0 for such
iterations.

The next result addresses item (i). It makes use of the crucial inequality

0 ≥ lim sup
k→∞

[fxk − f̂k−1(xk)] , (12.22)

whose proof can be consulted in [47, Lemma 3.3, Equation (3.6)] or [20, Theorem
6.4 and Subsection 7.3].

Proposition 12.3 (Infinite Loop of Null Steps) If the algorithm generates an
infinite sequence of null steps after the last serious iterate x̄ = x̂k0 is obtained,
then (12.21) holds with K = {0, 1, 2, . . .} and x̄ is a 2η-solution to the problem
(12.17).

Proof In this case, the descent test (12.20) never holds for k large enough, i.e.,
fxk+1 > fx̂k0

− κvk . We then obtain that

fxk+1 − f̂k(xk+1) = fxk+1 − fx̂k0
+ (fx̂k0

− f̂k(xk+1))

≥ −κvk + (fx̂k0
− f̂k(xk+1)) = (1− κ)vk ,

where vk ≥ 0 for the type of iterations in considertion. Using (12.22), we conclude
that vk → 0. As vk = êk + tk‖ξ̂ k‖2, êk ≥ −τ tk‖ξ̂ k‖2 in this case and tk ≥ t > 0,
the relations (12.21) follow. ��

We now consider the sequence of serious steps.

Proposition 12.4 (Infinite Number of Serious Steps) If the algorithm generates
an infinite sequence of serious steps, then the relations in (12.21) hold for K =
{k ∈ N : the descent test (12.20) is satisfied for k}, and every accumulation point of
{x̂k : k ∈ K} is a 2η-solution to the problem (12.17).

Proof Let f ∗ > −∞ be the optimal value of (12.17). Then the oracle ensures that
fxk ≥ f ∗ − η for all k. For k ∈ K, it holds that fx̂k+1 ≤ fx̂k − κvk , where vk ≥ 0.
Then for any k ∈ K, we obtain that

∞ > fx̂0 − (f ∗ − η) ≥ fx̂0 − fx̂k+1 =
k∑

m=0

[fx̂m − fx̂m+1]

≥ κ

k∑

m=0

vm,

where m ∈ K. Letting in the above k →∞ implies that
∑∞

k=0, k∈K vk is finite, and
hence, vk → 0 as K 5 k →∞. The rest of the reasoning is the same as in the end
of the proof of Proposition 12.3. ��

Combining Propositions 12.2, 12.3 and 12.4, convergence analysis of Algo-
rithm 12.2 is now summarized as follows.
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Theorem 12.4 Suppose that the inexact oracle satisfies (12.2), and that in Algo-
rithm 12.2 one sets δtol1 = δtol2 = 0. Then the optimality certificate (12.21) holds for
some index set K, and every accumulation point x̄ of the sequence {x̂k : k ∈ K} is a
2η-solution to the problem (12.17).

We remark that (x̂k) is guaranteed to be bounded (and thus have accumulation
points) if f has bounded level sets. Indeed, since vk is nonnegative at serious steps,
fx̂k ≤ fx̂0 ≤ f (x̂0)+ η for all k. This shows that f (x̂k) ≤ f (x̂0)+ 2η for all k.

On the other hand, Theorem 4.5 in [20] does not even assume that the problem
has a solution to prove that lim supK5k→∞ fx̂k ≤ infx∈G f (x) + η. For this, the

stopping test of Algorithm 12.2 has to be changed to the following: stop when ‖ξ̂ k‖
and max{0, êk+〈ξ̂ k, x̂k〉} are small enough. Employing the latter quantities is useful
for proving convergence without imposing boundedness on the sequence of serious
steps; see [20, Subsection 4.2] for details.

12.4.4 Inexact Proximal Bundle Method Variants

As for the level bundle method, the proximal bundle algorithm also has many
variants as discussed, for example, in [20, Section 7]. Below we list some of them.
But first, let us note that with exact oracles, Algorithm 12.2 becomes one of the
usual exact proximal bundle methods. In particular, the noise attenuation procedure
in Step 3 is never triggered (because the aggregate error is always nonnegative in
the exact convex case). Then, Theorem 12.4 holds with η = 0.

12.4.4.1 Partially Inexact Proximal Bundle Method

Let the inexact oracle satisfy (12.2) and (12.15) with f tar
k := fx̂k − κvk . Then,

Algorithm 12.2 becomes a partially inexact method, in which at serious iterates
evaluations are by an oracle with on-demand accuracy, but null iterates are of the
general inexact type. It can be shown that in this setting the algorithm computes an
exact solution to the problem (12.17), see [20, Subsection 7.1].

12.4.4.2 Incremental Proximal Bundle Method

Suppose that the objective function in (12.17) has the additive structure, i.e.,
f (x) := ∑m

i=1 f
i(x), with f i : Rn → R, i = 1, . . . ,m, being convex functions.

For example, this is the case in Lagrangian relaxation of multistage stochastic
integer programming, where every component function f i is the optimal value of a
mixed-integer suproblem

f i(x) :=
{

maximize ϕi(u)+ 〈x, ci(u)〉
subject to u ∈ Ui ⊂ R

n1 × Z
n2 .

(12.23)
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We assume that it is possible for any x and η > 0 to find η-solutions uix to the
problem (12.23), that is,

uix ∈ Ui : ϕi(uix)+ 〈x, ci(uix)〉 ≥ f i(x)− η, (12.24)

yielding f i
x = ϕi(uix) and ξ ix := ci(uix) .

However, the computational effort required may be substantial and will depend
on the choice of η. The number of subproblems m may be large, adding further
difficulty to the oracle. It may be possible to simultaneously carry out more than
one such calculation using parallel computing.

In the context in consideration, the only favorable properties of f are its
convexity and the additive structure. Incremental bundle methods [14, 21, 77] take
advantage of this structure using (possibly inexact) information about some of the
functions f i and their subgradients, but trying to avoid evaluating all them functions
(i.e., solving all the m subproblems (12.23)), at least at certain “unpromising” trial
points.

At the k-th iteration of the algorithm, having generated trial points x1, . . . , xk
and the corresponding lower-oracle pairs (f i

xj
, ξ ixj ) as defined in (12.24), the

disaggregate model for f is obtained as follows:

fmmmk (x) :=
m∑

i=1

f̂ ik (x) with f̂ i
k (x) := max

j∈J i
k

{f ixj + 〈ξ ixj , x − xj 〉} (12.25)

for some J i
k ⊆ {1, . . . , k}. Since the oracle is of the lower type, it can be shown (see,

e.g., [14, Lemma 2.3]) that if J i
k ⊃ Jk for all i = 1, . . . ,m, then f̂k(x) ≤ fmmmk (x) ≤

f (x) for all x, i.e., the inexact disaggregate model fmmmk is a better approximation of

f than f̂k .
Aside from offering greater accuracy, the disaggregate model has another

advantage, which has already been exploited in [21]: it allows for “partial” oracle
evaluations in which information about the value of f at a new trial point xk+1
may be obtained without calling all the m individual subproblem oracles (12.24).
Specifically, for any Ik+1 ⊆ {1, . . . ,m}, we have

fIk+1 :=
∑

i∈Ik+1

f ixk+1

︸ ︷︷ ︸
|Ik+1| oracle calls

+
∑

j �∈Ik+1

f̂
j

k (xk+1)

︸ ︷︷ ︸
m−|Ik+1| model
approximations

≤ f (xk+1) . (12.26)

The inequality (12.26) holds because f ixk+1
≤ f i(xk+1) and f̂ ik (xk+1) ≤ f i(xk+1)

for i = 1, . . . ,m. Note that the component functions f j with j �∈ Ik+1 are not
accessed by the oracles.
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When examining an iterate xk+1, the method will sometimes not require the exact
value f (xk+1), and will be able to discard the point based only on the information
that f (xk+1) > f tar

k for some “target” value. If we can check this condition using
a bound of the form fIk+1 as defined in (12.26), we may be able to save on oracle
calls by calling |Ik+1| < m subproblem oracles at xk+1, instead of all the m oracles.
The pseudo-code below outlines a class of procedures for attaining this goal by
incrementally enlarging the set Ik+1, as needed.

Algorithm 12.3: Managing oracle calls

Data: A point xk+1 ∈ G, a target value f tark ∈ R, bounds ηik+1, i = 1, . . . ,m
for the oracle errors.

Initialize Ik+1 ← ∅ and fIk+1 := f̂k(xk+1).

while |Ik+1| < m and fIk+1 ≤ f tar
k do

Select some nonempty J ⊆ {1, . . . ,m}\Ik+1;
for i ∈ J do

Call oracle (12.24) to compute (f ixk+1
, ξ ixk+1

) with accuracy ηik+1 ≥ 0;
Set Ik+1 := Ik+1 ∪ J and compute fIk+1 from (12.26);

Set fxk+1 := fIk+1 , return Ik+1, fxk+1 and {(f ixk+1
, ξ ixk+1

), i ∈ Ik+1}.

Initially, the algorithm above approximates the value f (xk+1) by using the
cutting-plane models f̂ i , i = 1, . . . ,m. It then selects a set of subproblems
J ⊆ {1, . . . ,m} and calls their oracles. Next, it includes J into the set Ik+1 and
updates its estimate fIk+1 of f (xk+1). If this calculation is sufficient to establish
that f (xk+1) > f tar

k , or already all subproblem oracles have been called, it exits.
Otherwise, it repeats this procedure with another subset J of oracles.

In serial computing, it would be most economical to fix |J | = 1 and thus
evaluate a single subproblem oracle per iteration. In a parallel setting, it might be
advantageous to choose |J | > 1, and perform the oracle calls concurrently.

Note that Algorithm 12.3 is not specific about how to select the set J of
subproblem oracles to invoke at each iteration. Determining the best strategy
for selecting J will likely require some experimental study and could well be
application-dependent. One can imagine greedy strategies in which one attempts
to first select oracles that seem likely to be quick to evaluate, or to yield a large
increase in the objective estimate, or some combination of these criteria.

If Ui in (12.23) is a compact set, ci is a continuous function, and errors ηi ≥ 0
chosen in Algorithm 12.3 are bounded, then the overall error of the lower oracle
scheme above is bounded regardless of the size of the index set Ik+1, [14, Lemma
2.5]. Thus, Algorithm 12.2 can possibly be employed with Algorithm 12.3 to
explore additive structures in difficult optimization problems.

The recent work [77] proposes a more general family of incremental bundle
methods for problems with additive structure. The methods in [77] require two
additional assumptions, that are satisfied in many relevant applications. One is
that the Lipschitz constant of the functions must be available. The other is that
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oracles must also produce upper estimates on the function values. Exploiting upper
estimates is an interesting feature that allows to approximate function values at
points where the oracle had not been called. Furthermore, the methods in [77] can
skip oracle calls entirely for some of the component functions, not only at null steps
as in [14] (and Algorithm 12.2 above combined with Algorithm 12.3), but also at
serious steps. These methods can work with oracles whose error bound is either
known or unknown. Furthermore, such oracles may not necessarily be able to attain
arbitrary precision requested by the user/algorithm, or even provide reliable upper
bounds. Of course, when dealing with such general oracles, some properties of the
incremental algorithm might be lost (e.g., exactness of the computed solution).

12.4.4.3 Nonlinearly Constrained Problems

We next comment briefly on inexact proximal bundle methods for nonlinearly
constrained problems of the form (12.1) where, mostly for simplicity, we consider
that G = R

n.
If the Slater condition holds, i.e., h(z) < 0 for some z ∈ R

n, then the exact
penalty approach can be used. Recall that the Slater condition ensures that the set of
Lagrange multipliers associated to any solution of (12.1) is nonempty and bounded
[72]. Then, for any ρ greater than the largest Lagrange multiplier associated to some
solution to (12.1), in principle, the problem (12.1) can be solved minimizing the
exact penalty function

F(x) := f (x)+ ρ max{h(x), 0} ,
i.e., the original problem is reduced to the unconstrained setting (12.17), with f

replaced by F . Note, however, that Lagrange multipliers are obviously unknown
(just like the solution itself), and thus a suitable value of the penalty parameter ρ
is unkown as well. It thus needs to be adjusted along iterations, using appropriate
strategies.

A more general approach is presented in [71], where a bilevel problem is
considered (i.e., that of minimizing one function over the set of minimizers of
another). The usual constrained optimization case is obtained taking the lower-level
function as a penalization of infeasibility, e.g., max{h(x), 0}. The method in [71]
does not require constraint qualifications, though “penalization” is not exact. In [71]
exact oracles are assumed, but it should be possible to introduce inexactness along
of nowadays well understood patterns.

Approximations of the constrained problem by bundle-like linearly constrained
subproblems introduces an exogenous inaccuracy that can be easily handled together
with the genuine errors in the f - and h-oracles. With a model of the form
F̂k(x) := f̂k(x) + ρ max {ĥk(x), 0}, the property that F̂k(·) ≤ F(·) + ηF (for
some overall error ηF ≥ 0) follows from the f - and h-models and oracles. As
already noted, the difficulty lies in estimating the penalty parameter. Also, in the
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inexact case, it appears that a more accurate F -oracle is needed. A possible update
is ρk = max{ρk−1, λk + 1}, where λk ≥ 0 is a Lagrange multiplier associated to the
solution xk+1 of the QP

{
minimize f̂k(x)+ 1

2tk
‖x − x̂k‖2

subject to ĥk(x) ≤ 0.

This QP is feasible (by the Slater assumption), and its solution also solves

minimize f̂k(x)+ ρk max{ĥk(x), 0} + 1

2tk
‖x − x̂k‖2 ,

for sufficiently large ρk . For the approach to work as the exact penalty method,
ρk needs to stabilize eventually, which requires the Lagrange multiplier sequence
{λk} to be bounded, e.g., [20, Lemma 7.1]. Once the penalty parameter stabilizes
at a value ρ, Theorem 12.4 applies to the function F . In particular, accumulation
points of the sequence {x̂k} solve the constrained problem within an accuracy bound
depending also on the asymptotic error made when estimating the penalty parameter
at serious steps.

A specialized inexact proximal bundle method that does not require penalization
is proposed in [78]. Therein, the authors deal with nonlinearly constrained convex
programs by employing an improvement function that is slightly more general than
the one considered in Sect. 12.3.

12.5 Doubly stabilized bundle method (DSBM)

Consider the problem (12.1) with no h-constraint. As seen in the previous sections,
level bundle methods employ the model f̂k of f in the subproblem’s constraints:

{
minimize ‖x − x̂k‖2

subject to x ∈ Lk := {x ∈ G : f̂k(x) ≤ f lev
k }. (12.27)

The proximal bundle methods use the model in the objective function of the
subproblem:

{
minimize f̂k(x)+ 1

2tk
‖x − x̂k‖2

subject to x ∈ G. (12.28)
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It is worth to mention that the choice of the parameter tk in the proximal variant
is quite a delicate task. Although the simplest choice tk = t > 0 (for all k) is enough
to prove theoretical convergence, it is well understood that for practical efficiency tk
must be properly updated along iterations. For level bundle algorithms a fixed level
parameter f lev

k is not possible as this may give infeasible level sets. But as seen in
Sect. 12.3, there exist strategies that manage f levk by simple explicit calculations.
To simultaneously compute trial points and obtain a meaningful update for the
prox-parameter tk , the doubly stabilized bundle method—DSBM—of [18] combines
level and proximal regularizations by adding to (12.28) the level constraint. More
specifically, the method defines trial points by solving

{
minimize f̂k(x)+ 1

2tk
‖x − x̂k‖2

subject to x ∈ G and f̂k(x) ≤ f levk .
(12.29)

We first observe that the above doubly stabilized subproblem can be represented by

⎧
⎪⎪⎨

⎪⎪⎩

minimize r + 1
2tk
‖x − x̂k‖2

subject to fxj + 〈ξxj
, x − xj 〉 ≤ r, j ∈ Jk,

x ∈ G, r ∈ R and r ≤ f lev
k .

This QP has just one extra scalar bound constraint compared to the QP resulting
from (12.28), and one more variable compared to (12.27). Thus, (12.29) is no harder
(or at least, cannot be much harder) to solve than (12.28) or (12.27).

Overall, there seems to be some consensus that for solving unconstrained
problems proximal bundle methods are very good choices (though updating tk is
not straightforward), while for constrained problems level bundle methods might be
preferable. The doubly stabilized bundle method combines the attractive features
of both approaches in a single algorithm [18]. One advantage when compared to
the proximal approach is that the level set constraint provides a certain Lagrange
multiplier, which is used to update the proximal parameter in a simple manner.
When compared to level bundle methods, the objective function f̂k(x) + 1

2tk
‖x −

x̂k‖2 with proximal regularization allows for searching for good points inside of the
level set Lk of (12.27), and not only on its boundary, as the level method does.

Another interesting feature of the doubly stabilized bundle method is that exact
and inexact data are handled in the same manner, as is the case for the level variant
and in contrast to the proximal.
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12.5.1 Optimality Certificate and More

We first state some properties of the minimizer xk+1 in (12.29).

Proposition 12.5 If Lk = {x ∈ G : f̂k(x) ≤ f lev
k } �= ∅ then the problem (12.29)

has the unique solution xk+1. In addition, if G is polyhedral or ri G ∩ {x ∈ R
n :

f̂k(x) � f lev
k } �= ∅ then there exist p

f
k ∈ ∂f̂k(xk+1) and pG

k ∈ ∂iG(xk+1), and
(scalar) Lagrange multipliers μk � 1 and λk � 0 such that

xk+1 = x̂k − tkμk ξ̂ k, with ξ̂ k = p
f
k +

1

μk
pG
k , (12.30)

μk = λk + 1 and λk(f̂k(xk+1)− f lev
k ) = 0.

Furthermore, the aggregate linearization f̄ka (·) := f̂k(xk+1) + 〈ξ̂ k, · − xk+1〉
satisfies f̄ka (x) � f̂k(x) � f (x)+ iG(x)+ η for all x ∈ R

n, where we assume that
(12.2) holds for the oracle.

Proof See [18, Proposition 1]. ��
Interestingly, the Lagrange multiplier μk in Proposition 12.5 indicates that the

solution xk+1 of (12.29) either solves the proximal master problem (12.28), or the
level one (12.27).

Lemma 12.3 For tk > 0 and f levk ∈ R, let xprox ∈ G and xlev ∈ G be the (unique)
solutions of problems (12.28) and (12.27), respectively. Let xk+1 ∈ G be the unique
solution of the problem (12.29). Then it holds that

xk+1 =
{

xprox, ifμk = 1,
xlev, ifμk > 1,

where μk is the Lagrange multiplier defined in Proposition 12.5.

Proof The result follows by comparing the optimality conditions of the three
strongly convex subproblems (12.28), (12.27) and (12.29). See [18, Lemma 1] for
full details. ��

It is thus clear that each iteration of the doubly stabilized algorithm makes either
a step of the associated proximal bundle method, or of the level method. At every
iteration, the algorithm makes this choice automatically.

Once the iterate xk+1 is computed, the oracle provides the new estimate function
value fxk+1 . As in the proximal bundle methods, we shall change the stability center
when the descent test (12.20) is verified:

fxk+1 � fx̂k − κvk .
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As before, κ ∈ (0, 1) and vk = fx̂k − f̂k(xk+1) is the decrease predicted by the
model. It is worth to mention that the level parameter f lev

k also provides expected
decrease

vlevk := fx̂k − f lev
k > 0,

where the inequality follows from the fact that level parameters are chosen to satisfy
f levk < fx̂k for all k. The following result establishes helpful connections among the
predicted decrease vk , the expected decrease vlevk and the aggregate error

êk = fx̂k − f̄ka (x̂k).

Proposition 12.6 It holds that

vk = êk + tkμk‖ξ̂ k‖2 � vlevk ,

where μk is the Lagrange multiplier defined in Proposition 12.5. Moreover, if μk >
1 then vk = vlevk . Furthermore, it holds that

ξ̂k ∈ ∂(êk+2η)[f (x̂k)+ iG(x̂k)].

Proof It follows from the definition of êk and the left-most formula in (12.30) that

êk = fx̂k − f̄ka (x̂k) = fx̂k − [f̂k(xk+1)+ 〈ξ̂ k, x̂k − xk+1〉]
= vk − tkμk‖ξ̂ k‖2.

In addition, since xk+1 is feasible in (12.29), we have that f̂k(xk+1) � f lev
k =

fx̂k − vlevk , which implies vlevk � vk . Recall also that if μk > 1 then λk > 0, in

which case (12.30) implies f̂k(xk+1) = f levk , so that vlevk = vk . The inclusion ξ̂k ∈
∂(êk+2η)[f (x̂k)+ iG(x̂k)] follows from the same steps in the proof of Lemma 12.2.

��
As in the proximal bundle method, we can stop the method when both êk and ξ̂ k

are small enough. An alternative stopping test is borrowed from the level variant:
the management of the level parameter f levk provides (inexact) lower bound f lowk

and thus the DSBM can stop when fx̂k − f low
k is small enough.

12.5.2 Doubly Stabilized Bundle Algorithm

We now present the inexact doubly stabilized algorithm of [18] for convex problems
in the form (12.17).
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Algorithm 12.4: DSBM

Data: Stopping tolerances δtol1 , δtol2 , δtol3 ≥ 0, descent parameters κ, γ ∈
(0, 1), a stepsize t0 ≥ t > 0, τ ∈ [ 1

2 , 1) and vlev0 > 0.
Step 0. (Initialization) Choose a starting point x0 ∈ G, set x̂0 := x0, and

call the oracle to compute (fx0, ξx0
). Set J0 := {0} and k := 0.

Step 1. (First stopping criterion) Set Δk := fx̂k − f lowk . If Δk ≤ δtol3 , stop.
Step 2. (Trial point computation) Set f lev

k := fx̂k − vlevk and try to solve
(12.29) to obtain xk+1 and a Lagrange multiplier λk associated to the level
constraint f̂k(x) � f levk . Set μk := λk + 1, ξ̂ k := (x̂k − xk+1)/(tkμk) and

êk := vk − tkμk‖ξ̂ k‖2. If (12.29) is infeasible set f lowk := f lev
k , vlevk :=

(1− γ )Δk and go back to Step 1.
Step 3. (Second stopping criterion) If ‖ξ k‖ ≤ δtol1 and êk ≤ δtol2 , stop.
Step 4. (Oracle call and descent test) Call the inexact oracle (12.2) to

compute (fxk+1, ξxk+1
). Set f lowk+1 = f lowk .

• (Serious step) If the descent test (12.20) holds, then set x̂k+1 := xk+1,
tk+1 := μktk and vlevk+1 := min{vlevk , (1 − γ )(fx̂k+1 − f low

k+1)}.
• (Null step) Otherwise, set x̂k+1 := x̂k. If μk > 1 (level iterate) and

êk ≥ −τ tkμk‖ξ̂ k‖2, set vlevk+1 := γ vlevk ; otherwise set vlevk+1 := vlevk .
Choose tk+1 ∈ [t, tk].

Step 5. (Bundle management) Same as Step 5 of Algorithm 12.2.
Increase k by 1 and go to Step 1.

Observe that the lower bound f low
k is only updated when the level set Lk is empty

in Step 2. It thus follows from a similar analysis to the one presented in Lemma 12.1
that f lowk ≤ f ∗ + η for all k as long as f low

0 is a valid lower bound. (Note that
Algorithm 12.4 accepts the choice that f low0 := −∞.) Therefore, if the algorithm
stops at Step 1, we have that

δtol3 ≥ fx̂k − f low
k ≥ f (x̂k)− η − (f ∗ + η) ,

i.e., x̂k is a (δtol3 + 2η)-approximate solution to the problem (12.17).
We point out that vlevk > 0 as long asΔk > 0. This property with Proposition 12.6

ensures that vk > 0 for all k, i.e., the decent test (12.20) makes sense always. This is
why Algorithm 12.4 does not need any additional procedure to handle inexact data,
such as noise attenuation in Algorithm 12.2.

Step 5 increases the proximal parameter tk only after descent steps resulting
from level iterations (μk > 1). On the other hand, tk can be decreased only after
null steps. A simple rule used in the numerical experiments of [18] is tk+1 :=
max{t, tkvlevk /vk}, which decreases the proximal parameter only after null steps
resulting from proximal iterations (vk > vlevk is only possible when μk = 1, see
Proposition 12.6). In this manner, the level parameter f lev

k and the multiplier μk
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indicate how to update the proximal parameter tk . This simple strategy has shown
good performance in practice.

It is interesting to note that if at Step 2 (for all k) one sets f levk = ∞,
Algorithm 12.4 becomes a proximal bundle algorithm, c.f. Lemma 12.3.

12.5.3 Convergence Analysis

Convergence analysis of the DSBM has to account for all the possible combinations
of level and proximal steps, whether null or descent, and the possibility of empty
level sets. To that end the following three possible cases are considered:

(i) the level sets Lk are empty infinitely many times;
(ii) item (i) does not happen, and infinitely many descent steps are generated;

(iii) in the same situation, finitely many descent steps are generated.

In what follows, we assume that δtol1 = δtol2 = δtol3 = 0 and that Algorithm 12.4
does not stop. If the algorithm stops for zero tolerances in Step 1 or Step 3, then the
last descent iterate is a 2η-solution to the problem, as previously mentioned.

Proposition 12.7 (Infinitely Many Empty Level Sets) Suppose the level set Lk is
empty infinitely many times. Then Δk → 0.

Proof Every time Lk is found to be empty, the lower bound is increased by vlevk > 0.
Since f ∗ + η ≥ f low

k for all k, then vlevk → 0. The definition vlevk := (1 − γ )Δk

(and monotonicity of {fx̂k }) yields Δk → 0. ��
Consider now the case where Lk �= ∅ for all k large enough, and there is a finite

number of descent steps.

Proposition 12.8 (Infinite Loop of Null Steps) If the algorithm generates an
infinite sequence of null steps after a last serious iterate, then (12.21) holds with
K = {0, 1, . . .}.
The proof of Proposition 12.8 is rather technical; see [18, Lemma 7].

Proposition 12.9 (Infinitely Many Serious Steps) If the algorithm generates an
infinite sequence of serious steps, then Δk → 0 or/and (12.21) holds for K = {k ∈
N : the descent test (12.20) is satisfied for k}.
Proof Analogously to the proof of Proposition 12.4, one obtains that vk → 0 as
K 5 k →∞. Proposition 12.6 then ensures that vlevk → 0 as K 5 k →∞. If there
exists an infinite subset K′ ⊂ K such that

vlevk+1 = min{vlevk , (1− γ )(fx̂k+1 − f low
k+1)}

for all k ∈ K′ in Step 2, then Δk → 0 as K′ 5 k → ∞, as well as for K 5 k →
∞. Otherwise, vlevk is decreased during null steps. In the latter case, the condition

êk ≥ −τ tkμk‖ξ̂ k‖2 holds. Then, as in the proof of Proposition 12.3, vk → 0 as
K 5 k→∞ implies (12.21). ��
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Combining all the cases considered above, we conclude the following.

Theorem 12.5 Suppose that the problem (12.17) has bounded level sets, the inexact
oracle satisfies (12.2) and that in Algorithm 12.4 one sets δtol1 = δtol2 = δtol3 = 0.
Then Δk → 0 or/and the optimality certificate (12.21) holds for some index set K.
Furthermore, every accumulation point x̄ of the sequence {x̂k} is a 2η-solution to
the problem (12.17).

12.6 Nonconvex Objective Functions

Consider the problem
{

minimize f (x)

subject to x ∈ G, (12.31)

where the feasible set G ⊂ R
n is convex and compact, and the objective function

f : R
n → R is proper [65, p. 5], regular [65, Definition 7.25], and locally

Lipschitz continuous (LLC) with full domain. Note that f need not be convex. In
this situation, the Clarke subdifferential ∂f (x) is well-defined for x ∈ R

n, and it
can be considered as the convex hull of all possible limits of gradients at points
of differentiablity, for all sequences of such points converging to x. For alternative
definitions of the subdifferential of regular functions, see [65, Chapter 8].

Again, we are interested in the situations where for a given point, only some
inexact information about the function and subgradient values is available. For
function values, this is modeled the same way as in the convex case above: for
each given x ∈ R

n an oracle returns some estimate fx such that

fx = f (x)− ηvx, (12.32)

where the sign of errors ηvx ∈ R is not specified (so that the true function value can
be either overestimated or underestimated).

As for approximate subgradients, we note that in the nonconvex case, a number of
different interpretations of inexactness is possible. Here, we adopt the rather natural
view of, e.g., [34, 73]. In particular, we consider that at a point x ∈ R

n, an element
ξx ∈ R

n approximates within tolerance ηsx ≥ 0 some subgradient of f at x if

ξx ∈ ∂f (x)+ B̄(0; ηsx), (12.33)

where B̄(0; ηsx) is the closed (Euclidean) ball of radius ηsx centered at the origin.
This means that there exists some exact subgradient z ∈ ∂f (x) such that ‖ξx−z‖ ≤
ηsx , i.e., ξx approximates this subgradient z with the tolerance ηsx ≥ 0.

The error terms in (12.32) and (12.33) are assumed to be uniformly bounded on
the feasible set: for all x ∈ G, it holds that

|ηvx | ≤ ηv and 0 ≤ ηsx ≤ ηs. (12.34)
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However, the error terms themselves, or even their bounds ηv and ηs , are usually
unknown.

12.6.1 Some Examples of Inexact Nonconvex Oracles

Next, we briefly discuss some situations which naturally lead to the setting of
(12.32), (12.33) and (12.34).

Example 12.6 (Derivative-Free Optimization) Suppose f is twice continu-
ously differentiable (generally nonconvex), but only its (exact) function values
are accessible, with no derivatives information available. This is the framework
of derivative-free optimization; see [4, 10]. In this setting, the gradients are
approximated by finite differences, linear interpolation, or other techniques.
Suitable error bounds can be given for a good number of such techniques;
see [10, Sections 2–5] for some examples. Similar error bounds exist also
for a variety of other (sub-)gradient approximation methods [5, 30–32, 48]. In
general, these error bounds involve the Lipschitz constant of the true gradient,
the geometry of the sample set of points used to create the approximation,
and the diameter of the sample set. As the sample set is created by the user,
its geometry and diameter are controlled. The compactness of G, in turn,
yields a bound on the Lipschitz constant. One has then the error bound for
the approximated gradients, but the value of the bound is unknown, of course.

Example 12.7 (H∞-Control) In H∞-control [1, 62], certain nonconvex func-
tions can be locally approximated by using the support function of a compact
set. A detailed explanation of this approximation technique is given in [62,
Subsection 1.9]. An error bound of the form (12.32), (12.33) and (12.34), is
provided in [1, Lemma 2.1]. Moreover, the function in question is lower-C2

(and therefore locally Lipschitz) [62, Lemma 9].

Example 12.8 (Stochastic Simulations) When the objective function is pro-
vided through stochastic simulation, the errors in the function and subgradient
evaluations are understood through probability distribution functions. This
encompasses Example 12.5 above, where also some details are given.
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12.6.2 Models: Handling Nonconvexity and Inexactness

Bundle methods for nonconvex functions using exact information have been
considered in [1, 27, 33, 43, 46, 52, 53, 56, 76]. Note that because of nonconvexity,
even when exact function and subgradient values are used to build the cutting-plane
model of f , this model can cut the graph of the function (and thus its minima).
In other words, unlike in the convex case, the so-called linearization errors can
be negative, even when the data is exact. To deal with this issue, most methods
“downshift” the model, i.e., negative linearization errors are made nonnegative by
“brute force” of downshifting. The method of [33] also tilts the slopes of the cutting
planes, in addition to downshifting.

In the nonconvex case with inexact oracles, negative linearization errors may be
caused by nonconvexity of the function, by inexact data, or by both. This presents
additional challenges. To the best of our knowledge, the only works which deal with
inexact information in bundle methods for nonconvex functions are [34] and [62].
The method of [62] employs the downshift mechanism that modifies linearization
errors if they are negative. The method of [34] uses the ideas of [33]; in particular,
it both downshifts the cutting-planes and tilts their slopes. We next outline the
algorithm of [34].

As in the usual proximal bundle methods, at iteration k one has available
information computed at some previous iterations: in our case, fxj and ξxj

, j ∈ Jk
(j ≤ k), which are the approximate function and subgradient values satisfying the
relations (12.32), (12.33), and (12.34) written for x = xj . Among the previous
iterates, one is designated as the stability center x̂k ∈ G (the “best” point computed
so far, with the approximate function value fx̂k ).

Note that the usual cutting-plane model of the objective function f obtained from
this information would be given by

max
j∈Jk

{fxj + 〈ξxj
, · − xj 〉} = fx̂k + max

j∈Jk

{−ekj + 〈ξxj
, · − x̂k〉},

where

ekj = fx̂k − fxj − 〈ξxj
, x̂k − xj 〉 (12.35)

are the linearization errors. These linearization errors would have been nonnegative
in the convex case with exact data, but not in our setting. We thus introduce the
following modified cutting-plane model:

f̂k(x) := fx̂k + max
j∈Jk

{−ckj + 〈skj , x − x̂k〉}, (12.36)

where in each affine piece both the intercept ckj and the slope skj correspond,
respectively, to the linearization error and an approximate subgradient of the “locally
convexified” function f (·) + βk

2 ‖· − x̂k‖2. The convexification parameter βk > 0
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is adjusted dynamically along iterations, and is taken sufficiently large to make the
intercept ckj nonnegative. Accordingly, each affine piece has a shifted nonnegative
intercept

0 ≤ ckj := ekj + bkj , where bkj :=
βk

2
‖xj − x̂k‖2, (12.37)

with ekj given by (12.35), and a modified slope

skj := ξxj
+ βk(xj − x̂k), (12.38)

which results from tilting the given approximate subgradient ξxj
at xj by means

of the convexification parameter βk . Any choice of βk that makes cjk in (12.37)
nonnegative is acceptable; we take

βk ≥ max

{

max
j∈Jk, xj �=x̂k

−2ekj
‖xj − x̂k‖2 , 0

}

+ γ , (12.39)

for a (small) positive parameter γ .
Once the cutting-plane model is set up, choosing a prox-parameter tk > 0, the

new iterate is given by xk+1, the solution of the usual subproblem of the proximal
bundle method:

{
minimize f̂k(x)+ 1

2tk
‖x − x̂k‖2

subject to x ∈ G .
(12.40)

12.6.3 Key Relations and the Stationarity Certificate

We next discuss relations between the objects the algorithm constructs based on
solving (12.40), with the model satisfying (12.36)–(12.39), and how these objects
can be related to (approximate) stationarity for the problem (12.31).

First, as (12.40) has the structure of the usual proximal bundle method subprob-
lem, it holds (just as in the convex case), that

xk+1 := x̂k − tk ξ̂ k, with ξ̂ k := p
f
k + pG

k ,

where pG
k ∈ ∂iG(xk+1), p

f

k ∈ ∂f̂k(xk+1), and

p
f
k :=

∑

j∈Jk

αkj s
k
j ,

∑

j∈Jk

αkj = 1, αkj ≥ 0 , j ∈ Jk .
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Then the aggregate linearization is given as previously, i.e., f̄ka (x) := f̂k(xk+1)+
〈ξ̂ k, x − xk+1〉, and the aggregate error by

êk := f̂k(x̂k)− f̂k(xk+1)− 〈pf

k , x̂k − xk+1〉 ≥ 0, (12.41)

where the inequality is by the fact that p
f
k ∈ ∂f̂k(xk+1). It can be further seen that

fx̂k = f̂k(x̂k), and that

êk = fx̂k − f̄ka (xk+1)+ 〈pf
k , xk+1 − x̂k〉 =

∑

j∈Jk

αkj c
k
j . (12.42)

For the aggregate linearization, it holds that

f̄ka (x) = fx̂k +
∑

j∈Jk

αkj (−ckj + 〈skj , x − x̂k〉) = fx̂k − êk + 〈pf

k , x − x̂k〉,

where we have used (12.42). The following result (Lemma 12.4 below) shows what
the algorithm should aim for, in order to compute (approximate) stationary points
of the problem (12.31).

We note that the proof of Lemma 12.4 uses the following assumption: “The
number of active indices, i.e., of j ∈ Jk such that αkj > 0, is uniformly bounded in
k”. As a practical matter, this can be readily achieved if D is polyhedral (the typical
case), and an active-set QP solver is employed to solve subproblems (12.40) (this is
because active-set QP solvers choose linearly independent bases).

The last assertion in Lemma 12.4 refers to lower-C1 functions, introduced in
[74]. It is a broad class of LLC functions that contains lower-C2 functions. One of
the equivalent characterizations of f being a lower-C1 function consists in f being
semismooth (see, e.g., [55]) and regular.

Lemma 12.4 Suppose the cardinality of the set {j ∈ Jk : αkj > 0} is uniformly

bounded in k. If êk → 0 as k →∞ and, for some subset K ⊂ {1, 2, . . .}, x̂k → x̄,
ξ̂ k → 0 as K 5 k→∞, with {βk : k ∈ K} bounded, then

0 ∈ ∂f (x̄)+ ∂iG(x̄)+ B̄(0; ηs). (12.43)

If, in addition, f is lower-C1, then for each ε > 0 there exists ρ > 0 such that
for all y ∈ G ∩ B̄(x̄; ρ), it holds that

f (y) ≥ f (x̄)− (ηs + ε)‖y − x̄‖ − 2ηf . (12.44)

Proof See [34, Lemma 5]. ��
The result above indicates that to find an approximate stationary point of the

problem (12.31), the algorithm should drive êk and ξ̂ k to zero along the iterations.
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12.6.4 Inexact Nonconvex Proximal Bundle Algorithm

Naturally, êk and ‖ξ̂ k‖ are driven to zero by means of a sufficient descent condition
for the objective function with respect to its value at the stability center (recall,
however, that both are inexact values in our setting). Specifically, the new iterate
xk+1 computed by solving (12.40) is accepted as the new stability center if

fxk+1 ≤ fx̂k − κvk, (12.45)

where κ ∈ (0, 1) and

vk := êk + tk‖ξ̂ k‖2. (12.46)

If (12.45) does not hold, then a null step is declared and the stability center is not
changed.

Algorithm 12.5: Inexact proximal bundle method for nonconvex functions

Data: Stopping tolerance δtol ≥ 0, a descent parameter κ ∈ (0, 1),
convexification safeguarding parameter γ > 0.

Step 0. (Initialization) Choose a starting point x0 ∈ G, set x̂0 := x0, and
call the oracle to compute (fx0, ξx0

). Set J0 := {0}, k := 0.
Step 1. (Trial point computation) Find xk+1 solving (12.40), and let αkj ,

j ∈ Jk , denote the corresponding optimal simplicial Lagrange multipliers.
Compute ξ̂ k = (x̂k − xk+1)/tk , êk by (12.42), and vk by (12.46).

Step 2. (Stopping criterion) If vk ≤ δtol , stop.
Step 3. (Oracle call and descent test) Call the inexact oracle to compute

(fxk+1 , ξxk+1
). If the descent test (12.45) holds, then declare the iterate

serious: set x̂k+1 := xk+1. Otherwise, declare the iterate null: set x̂k+1 :=
x̂k .

Step 4. (Bundle management) Set Jk+1 := {j ∈ J k : αkj �= 0} ∪ {k + 1}.
Step 5. (Parameters updating and loop). If the iterate was declared serious,

select tk+1 > 0. If the iterate was declared null, select 0 < tk+1 ≤ tk .
Increase k by 1. Compute the convexification parameter by (12.39), and the
new intercepts ckj and slopes skj by (12.37) and (12.38), respectively.
Go to Step 1.

It is worth noting that, contrary to many nonconvex bundle methods endowed
with a linesearch, e.g., [43, 46, 53], Algorithm 12.5 does not employ linesearch. In
[34, Section 5] some explanations are given as to why linesearch is not required
here.
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12.6.5 Convergence Results

Depending on the assumptions about the prox-parameters tk , it can be proven
that the approximate optimality conditions stated in Lemma 12.4 hold for some
accumulation point of {x̂k}; or for all accumulation points of this sequence; or for
the last serious iterate generated. Naturally, it is assumed that δtol = 0 and an infinite
sequence {xk} is generated. Convergence results below assume that the sequence of
convexification parameters {βk} is bounded. This had been shown true for the related
algorithm with exact data [33]. In the inexact setting, no proof is available at this
time. The numerical results in [34] indicate that the assumption is reasonable and
appears to hold in computation.

Theorem 12.6 (Infinitely Many Serious Iterates) Suppose Algorithm 12.5 gener-
ates an infinite number of serious steps. Then vk → 0 as k →∞. Let the sequence
{βk} be bounded. If

∑∞
k=1 tk = +∞, then as k → ∞ it holds that êk → 0, and

there exist K ⊂ {1, 2, . . .} and x̄ such that x̂k → x̄ and ξ̂k → 0 as K 5 k → ∞.

In particular, if the cardinality of the set {j ∈ Jk : αkj > 0} is uniformly bounded in
k, then the conclusions of Lemma 12.4 hold for x̄. If lim infk→∞ tk > 0, then these
assertions hold for all accumulation points of the sequence {x̂k}.
Proof See [34, Theorem 6]. ��
Theorem 12.7 (Finite Serious Steps Followed by Infinitely Many Null Steps)
Suppose Algorithm 12.5 generates a finite number of serious iterates, the last being
x̄ := x̂k0 , followed by infinite null steps. Let the sequence {βk} be bounded and let
lim infk→∞ tk > 0. Then xk → x̄, vk → 0, êk → 0 and ξ̂k → 0. In particular,
if the cardinality of the set {j ∈ Jk : αkj > 0} is uniformly bounded in k, then the
conclusions of Lemma 12.4 hold for x̄.

Proof See [34, Theorem 7]. ��
We conclude by noting that the convergence results for Algorithm 12.5 are

quite similar to the ones for the algorithm in [62]. In the latter reference, the
objective function f is either ε-convex or lower-C1, and bounded lower level sets
for f are assumed (instead of boundedness of the feasible set G). Some details of
comparisons between Algorithm 12.5 and [62] are given in [34, Section 5].

12.7 Concluding Remarks and Research Perspectives

We see several possible directions to develop further or broaden optimization
techniques discussed in this work.

One research direction would be extending level bundle methods to deal with
nonconvex objective and/or constraint functions. While proximal bundle methods
have been adapted to deal with nonconvexity (both in the exact and inexact settings,
see Sect. 12.6), no level or doubly stabilized variants exist for this setting.
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Another topic worth to investigate is the handling of inexact oracles in optimiza-
tion problems involving Difference-of-Convex (DC) functions. Although practical
applications of DC programming involving hard-to-evaluate functions are known in
the literature (see, e.g., [76, Section 5]), currently available bundle methods for DC
programs [13, 28, 40] do not handle noisy oracles. Extending DC bundle methods
to inexact data (with or without on-demand accuracy) is, in our opinion, a relevant
topic for research. Besides, existent DC bundle methods are all of the proximal
type. Investigating level bundle methods for DC programming may give rise to
algorithms possessing dimension independent iteration complexity, both in the exact
and inexact settings.

Finally, we close this chapter with some words and references on bundle
methods software. Due to a large number of possible stability functions, rules
to set parameters, descent and stopping tests, and oracle types, finding the most
appropriate (inexact) bundle method for a given application is not a trivial task
for a practitioner, especially when without very specific knowledge and skills. It
therefore would be essential to make available open-source software (as generic as
possible) implementing several variants of bundle methods. A practitioner could
then choose, among many possibilities and upon trying some test problems, the
most suitable bundle algorithm and its parameter settings, to solve her/his problem.
Admittedly, there is a number of bundle software packages that have been around
for a while by now. Still, making available a wide range of options is something
that has not happened as of yet. That said, as many practical problems can be
cast in specific classes of nonsmooth optimization problems such as Lagrangian
relaxation, two-stage stochastic programs and dual decomposition of multistage
stochastic programs, some functional and robust computational codes have been
appearing relatively recently, in the last years. Matlab implementations of some
of the algorithms discussed here are freely available on the first author’s homepage.
Other freely available implementations of bundle methods are:

• C++ codes by Antonio Frangioni can be downloaded from his homepage http://
pages.di.unipi.it/frangio;

• Fortran codes of a variety of bundle methods (convex, nonconvex, multiob-
jective, DC) by Napsu Karmitsa and her collaborators can be found at the link
http://napsu.karmitsa.fi;

• Julia codes of several implementations of bundle methods (including the
doubly stabilized bundle method discussed in Sect. 12.5) are available in the
open-source and parallel package DSP https://github.com/Argonne-National-
Laboratory/DSP, by Kibaek Kim and Victor M. Zavala.
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52. Lukšan, L., Vlček, J.: A bundle-Newton method for nonsmooth unconstrained minimization.
Math. Program. 83(3), 373–391 (1998)

53. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization. Analysis and Algorithms with
Applications to Optimal Control. World Scientific, River Edge (1992)

54. Malick, J., de Oliveira, W., Zaourar, S.: Uncontrolled inexact information within bundle
methods. EURO J. Comput. Optim. 5(1), 5–29 (2017)

55. Mifflin, R.: An algorithm for constrained optimization with semismooth functions. Math. Oper.
Res. 2, 191–207 (1977)

56. Mifflin, R.: A modification and extension of Lemarechal’s algorithm for nonsmooth mini-
mization. In: Sorensen D.C., Wets R.J.B. (eds) Nondifferential and Variational Techniques in
Optimization. Mathematical Programming Studies, vol. 17, pp. 77–90. Springer, Berlin (1982)

57. Mifflin, R.: A quasi-second-order proximal bundle algorithm. Math. Program. 73(1), 51–72
(1996)

58. Mifflin, R., Sagastizábal, C.: A VU -algorithm for convex minimization. Math. Program.
104(2–3), 583–608 (2005)

59. Miller, S.: Inexact bundle method for solving large structured linear matrix inequalities. Ph.D.
Thesis, University of California, Santa Barbara (2001)

60. Montonen, O., Karmitsa, N., Mäkelä, M.M.: Multiple subgradient descent bundle method for
convex nonsmooth multiobjective optimization. Optimization 67(1), 139–158 (2018)

61. Nasri, A., Kazempour, S.J., Conejo, A.J., Ghandhari, M.: Network-constrained AC unit
commitment under uncertainty: a Benders’ decomposition approach. IEEE Trans. Power Syst.
31(1), 412–422 (2016)

62. Noll, D.: Bundle method for non-convex minimization with inexact subgradients and function
values. In: Computational and Analytical Mathematics. Springer Proceedings in Mathematics
and Statistics, vol. 50, pp. 555–592. Springer, New York (2013)

63. Noll, D., Apkarian, P.: Spectral bundle methods for non-convex maximum eigenvalue func-
tions: first-order methods. Math. Program. 104(2), 701–727 (2005)

64. Ouorou, A.: A proximal cutting plane method using Chebychev center for nonsmooth convex
optimization. Math. Program. 119(2), 239–271 (2009)

65. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer, Berlin
(1998)
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Chapter 13
New Multiobjective Proximal Bundle
Method with Scaled Improvement
Function

Marko M. Mäkelä and Outi Montonen

Abstract Improvement functions are used in nonsmooth optimization both for
constraint handling and scalarization of multiple objectives. In the multiobjective
case the improvement function possesses, for example the nice property that a
descent direction for the improvement function improves all the objectives of the
original problem. However, the numerical experiments have shown that the standard
improvement function is rather sensitive for scaling. For this reason we present here
a new scaled version of the improvement function capable not only for linear but
also for polynomial, logarithmic, and exponential scaling for both objective and
constraint functions. In order to be convinced about the usability of the scaled
improvement function, we develop a new version of the multiobjective proximal
bundle method utilizing the scaled improvement function. This new method can
be proved to produce weakly Pareto stationary solutions. In addition, under some
generalized convexity assumptions the solutions are guaranteed to be globally
weakly Pareto optimal. Furthermore, we illustrate the affect of the scaling with some
numerical examples.

13.1 Introduction

Besides nonsmoothness, many practical problems, for example in economics [28],
engineering [19], mechanics [26], bioinformatics [5] and machine learning [7],
have also a multiobjective nature. If the problem involves more than one goal, it
is more relevant to treat it as a multiobjective problem than model it as a single-
objective one [36]. Indeed, if we select only one objective to be optimized, we may
obtain a solution being arbitrary bad respect to the other goals. Thus, nature of the
multiobjective solution is different from single-objective optimization: instead of
finding the best solution for one goal, we are searching a good compromise solution
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between several goals such that all the goals have as good outcome as possible.
Compared with the single-objective case, the multiobjective problem hardly ever
has a unique solution.

Some basic solution approaches developed from this point of view includes
strategies to select one of the multiple objectives to be optimized and others
transformed into constraints or adding up all the objectives. There exists a wide
range of methods to transform a multiobjective problem into a single objective one
and these are called scalarization techniques [22]. Due to the multiobjective nature,
the decision maker has much more responsibility of the final solution than in the
single-objective optimization. For example, in interactive methods [21, 27, 33, 34],
at each iteration the decision maker can affect on the solution such that the final
solution would fulfill the decision maker’s wishes. For the survey of different kind
of multiobjective methods classified based on the role of the decision maker is given
in [20]. Here we are particularly focused on descent methods achieving solutions
by improving all the objectives simultaneously. Thus, the expertise and personal
opinions given by the decision maker are not needed and the obtained solutions are
more neutral.

Despite the large variety in multiobjective optimization methods, the methods
designed from the nonsmooth basis are more rare (see, e.g., [4, 24, 25, 30]). Among
the approaches to nonsmooth multiobjective optimization, we are concentrating
on the technique called the improvement function. This technique was initially
used in single-objective smooth [29, 37] and nonsmooth [1, 8, 9, 12, 14, 23, 31]
optimization for constraint handling by reformulating the constrained problem to
an unconstrained single-objective problem. In order to get even more benefit from
the improvement function, it can be utilized also in the multiobjective framework
as is done in [10, 15, 18, 21, 24, 35]. In this case, the original multiobjective
constrained problem is reformulated to a single-objective unconstrained one with
the improvement function as its objective. In addition to constraint handling, the
improvement function applied to multiobjective optimization has two other benefits.
First, the descent direction for the improvement function improves all the objectives
of the original problem. Second, we get a useful relation between the optimal
solutions of the original and the reformulated problems.

While in theory the improvement function works perfectly, in practice the
numerical experiments have shown that the standard improvement function is
sensitive for scaling. Indeed, in some cases the scaling of the improvement function
can significantly reduce the amount of the computational effort needed. For example
in the multiobjective double bundle method for DC optimization (see [24] and
Chap. 14), the different magnitudes of the objectives may lead to a situation where
one of the DC components dominates the others hiding their effects and causing
numerical difficulties. In [24], this issue was successfully handled by using a
primitive linear scaling procedure. In this chapter we generalize this approach and
present a new scaled version of the improvement function capable not only for linear
but also for polynomial, logarithmic, and exponential scaling for both objective and
constraint functions.
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In order to be convinced about the usability of the scaled improvement function,
we develop a new version of the multiobjective proximal bundle method (MPB)
[15, 18, 21] by using the scaled improvement function instead of the standard
improvement function. MPB is a generalization of the proximal bundle method
[11, 14, 32] for nonconvex multiobjective problems with inequality constraints. The
idea in brief is to apply the proximal bundle approach to solve the problem with the
scaled improvement function as the objective. The new method can be proved to
produce weakly Pareto stationary solutions and under some generalized convexity
assumptions the solutions are guaranteed to be globally weakly Pareto optimal.

The remaining of the chapter is organized as follows. Section 13.2 summa-
rizes some essential preliminary material on nonsmooth optimization. The scaled
improvement function is presented in Sect. 13.3 with details. We move on to apply
the scaled improvement function by giving an outline of the multiobjective proximal
bundle method in Sect. 13.4 and stating the convergence results in Sect. 13.5. In
Sect. 13.6 we illustrate the affect of the scaling with numerical examples and finally,
the chapter is concluded in Sect. 13.7.

13.2 Preliminaries

We consider a nonsmooth multiobjective optimization problem of the form

{
minimize {f1(x), . . . , fk(x)}
subject to x ∈ S, (13.1)

where the feasible region is defined by

S = {x ∈ R
n : gl(x) ≤ 0, l = 1, . . . ,m}.

The objective functions fi : Rn → R for all i ∈ I = {1, . . . , k} and the constraint
functions gl : Rn → R for all l ∈ L = {1, . . . ,m} are supposed to be LLC.

A function f : Rn → R is f ◦-pseudoconvex [6], if it is LLC and for all x, y ∈
R
n

f (y) < f (x) implies f ◦(x; y − x) < 0

and f ◦-quasiconvex, if

f (y) ≤ f (x) implies f ◦(x; y − x) ≤ 0.

Note, that a convex function is always f ◦-pseudoconvex, which again is f ◦-
quasiconvex (see, e.g., [17]). We recall that if a LLC function attains its local
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minimum at x∗, then

000 ∈ ∂f (x∗). (13.2)

For the f ◦-pseudoconvex function we state the following result.

Theorem 13.1 ([6]) An f ◦-pseudoconvex function f attains its global minimum at
x∗, if and only if

000 ∈ ∂f (x∗).

For LLC functions we can derive the following subderivation rules. The proofs
of the result can be found, for example, in [2, 3].

Theorem 13.2 ([3]) Let fi : Rn → R be LLC at x for all i = 1, . . . , s. Then the
function

f (x) = max {fi(x) : i = 1, . . . , s}

is also LLC at x and

∂f (x) ⊆ conv

{
s⋃

i=1

∂fi(x) : fi(x) = f (x)

}

. (13.3)

In addition, if fi is f ◦-pseudoconvex (f ◦-quasiconvex) for all i = 1, . . . , s, then f
is also f ◦-pseudoconvex (f ◦-quasiconvex).

Theorem 13.3 ([3]) Let f : Rn → R be such that f = h ◦ g, where g : Rn → R

is LLC at x ∈ R
n and h : R→ R is LLC at g(x) ∈ R. Then f is LLC at x and

∂f (x) ⊆ conv
{
∂h

(
g(x)

)
∂g(x)

}
. (13.4)

The equality holds in (13.4) if in addition

(i) h is continuously differentiable at g(x), or
(ii) g is subdifferentially regular at x, h is subdifferentially regular at g(x) and

ξ ≥ 0 for all ξ ∈ ∂h(g(x)).
Theorem 13.4 ([2]) Let f : Rn → R be such that f = h ◦ g, where g : Rn → R

is f ◦-pseudoconvex (f ◦-quasiconvex) and h : R → R is f ◦-pseudoconvex (f ◦-
quasiconvex) and strictly increasing (increasing), then f is also f ◦-pseudoconvex
(f ◦-quasiconvex).

Lemma 13.1 ([2]) A LLC function h : R → R is f ◦-pseudoconvex (f ◦-
quasiconvex) and strictly increasing (increasing), if and only if ξ > 0 (ξ ≥ 0)
for all ξ ∈ ∂h(z) and z ∈ R.
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A LLC function h : R→ R is said to be sign preserving if sign (h(z)) = sign(z),
in other words

h(z)

⎧
⎪⎪⎨

⎪⎪⎩

< 0, when z < 0,

= 0, when z = 0,

> 0, when z > 0.

(13.5)

The following elementary result is easy to prove.

Lemma 13.2 If A,B ⊂ R
n, then

convA ∪ convB ⊆ conv(A ∪ B).

Next we discuss about the solution of the multiobjective problem (13.1). A vector
x∗ is said to be a global Pareto optimum of (13.1), if there does not exist x ∈ S such,
that

fi(x) ≤ fi(x
∗) for all i ∈ I and fj (x) < fj (x

∗) for some j.

Vector x∗ is said to be a global weak Pareto optimum of (13.1), if there does not
exist x ∈ S such, that

fi(x) < fi(x
∗) for all i ∈ I.

Vector x∗ is a local (weak) Pareto optimum of (13.1), if there exists δ > 0 such,
that x∗ is a global (weak) Pareto optimum on B(x∗; δ) ∩ S. Trivially every Pareto
optimal point is weakly Pareto optimal.

A set C ⊂ R
n is a cone if λx ∈ C for all λ ≥ 0 and x ∈ C. We also denote

ray S = {λx : λ ≥ 0, x ∈ S} and coneS = ray convS.

In other words, ray S is the smallest cone containing S and the conic hull coneS is
the smallest convex cone containing S. The contingent cone of a set S ∈ R

n at point
x was defined in Definition 1.12 by

KS(x) =
{
d ∈ R

n : there exist ti ↓ 0 and d i → d with x + tid i ∈ S
}

and the polar cone in Definition 1.13 by

S≤ = {d ∈ R
n : sT d ≤ 0, for all s ∈ S}.

Furthermore, let

F(x) =
⋃

i∈I
∂fi(x)
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and

G(x) =
⋃

l∈L(x)
∂gl(x), where L(x) = {l : gl(x) = 0}.

For the optimality condition we pose the following constraint qualification

G≤(x) ⊆ KS(x). (13.6)

Now we can present the following generalized KKT optimality conditions.

Theorem 13.5 ([17]) If x∗ is a local weak Pareto optimum of (13.1) and the
constraint qualification (13.6) is valid, then

000 ∈ convF(x∗)+ cl coneG(x∗). (13.7)

Moreover, if fi are f ◦-pseudoconvex for all i ∈ I and gl are f ◦-quasiconvex for
all l ∈ L, then the condition (13.7) is sufficient for x∗ to be a global weak Pareto
optimum of (13.1).

A feasible point x∗ ∈ S is called weakly Pareto stationary for problem (13.1), if it
satisfies the necessary optimality condition (13.7).

13.3 Scaled Improvement Function

In what follows we consider nonsmooth multiobjective optimization methods
not employing any scalarizing function [22] explicitly. Some kind of inherent
scalarization is, however, needed in deriving the minimization method for all the
objective functions. Theoretically, we utilize the scaled improvement function H :
R
n ×R

n → R defined by

H(x, y) := max
{
μi

(
fi(x)

)− μi
(
fi(y)

)
, δl

(
gl(x)

) : i ∈ I, l ∈ L
}
,

where μi and δl are sign preserving (see (13.5)) scaling functions for all i ∈ I and
l ∈ L. Moreover, μi is supposed to be strictly increasing for all i ∈ I.

Notice that H(x, y) is a generalized version of the standard improvement
function used, for example in [10, 15, 18, 21, 35], where we have

μi(z) = δl(z) = z for all i ∈ I, l ∈ L and z ∈ R.

The standard improvement function has proved to be very sensitive to scaling in
several numerical tests (see e.g. [18, 24]). For this reason our aim is to stabilize its
numerical behavior by using the scaling functions μi and δl .
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Next we show that the scaled improvement function preserves the following
important optimality condition.

Theorem 13.6 Suppose, that μi and δl are sign preserving and μi is strictly
increasing for all i ∈ I and l ∈ L. A necessary condition for x∗ ∈ R

n to be a
global weak Pareto optimum of (13.1) is that

x∗ = argmin
x∈Rn

H(x, x∗). (13.8)

Moreover, if fi and μi are f ◦-pseudoconvex for all i ∈ I, gl and δl are f ◦-
quasiconvex and δl is increasing for all l ∈ L and the constraint qualification (13.6)
is valid, then the condition (13.8) is sufficient for x∗ to be a global weak Pareto
optimum of (13.1).

Proof Suppose first, that x∗ ∈ R
n is a global weak Pareto optimum of (13.1). Since

x∗ ∈ S we have gl(x∗) ≤ 0 and since the functions δl are sign preserving we have
δl

(
gl(x

∗)
) ≤ 0 for all l ∈ L. Moreover,μi

(
fi(x

∗)
)−μi

(
fi(x

∗)
) = 0, thus we have

H(x∗, x∗) = 0. If x∗ would not be a global minimizer of H(·, x∗), there would
exist y∗ ∈ R

n such that

H(y∗, x∗) < H(x∗, x∗) = 0.

Then we have δl
(
gl(y

∗)
)
< 0 implying gl(y∗) < 0 for all l ∈ L, in other words,

y∗ ∈ S. Furthermore, we have μi
(
fi(y

∗)
)
< μi

(
fi(x

∗)
)
. Since the functionsμi are

strictly increasing this means that fi(y∗) < fi(x
∗) for all i ∈ I, which contradicts

the global weak Pareto optimality of x∗.
Suppose next that (13.8) holds true. Suppose also that (13.6) is valid, fi and μi

are f ◦-pseudoconvex for all i ∈ I, and gl and δl are f ◦-quasiconvex and δl is
increasing for all l ∈ L.

Due to Theorems 13.3 and 13.2 function H(·, x∗) is LLC. Since x∗ is a global
minimizer of H(·, x∗) we have 000 ∈ ∂H(x∗, x∗) by (13.2). Then it follows from
Theorems 13.3 and 13.2 that

000 ∈ conv

⎧
⎨

⎩

⋃

i∈I
conv ∂μi

(
fi(x

∗)
)
∂fi(x

∗) ∪
⋃

l∈L(x∗)
conv ∂δl

(
gl(x

∗)
)
∂gl(x

∗)

⎫
⎬

⎭
.

This means that by Lemma 13.1 there exist ζμi ∈ ∂μi
(
fi(x

∗)
)

and ζδl ∈ ∂δl
(
gl(x

∗)
)

such that for all i ∈ I and l ∈ L(x∗) we have ζμi > 0, ζδl ≥ 0 and

000 ∈ conv

⎧
⎨

⎩

⋃

i∈I
conv ζμi ∂fi(x

∗) ∪
⋃

l∈L(x∗)
conv ζδl ∂gl(x

∗)

⎫
⎬

⎭
.
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Then by using Lemma 13.2, Lemma 2.10 in [16] and choosing ζμ := max
i∈I

ζμi > 0

and ζδ := max
l∈L(x∗)

ζδl ≥ 0 we get

000 ∈ conv

⎧
⎨

⎩
conv

⋃

i∈I
ζμi ∂fi(x

∗) ∪ conv
⋃

l∈L(x∗)
ζδl ∂gl(x

∗)

⎫
⎬

⎭

⊆ conv

⎧
⎨

⎩
ζμ conv

⋃

i∈I
∂fi(x

∗) ∪ ζδ conv
⋃

l∈L(x∗)
∂gj (x

∗)

⎫
⎬

⎭

= conv
{
ζμ convF(x∗) ∪ ζδ convG(x∗)

}

= {
λζμ convF(x∗)+ (1− λ)ζδ convG(x∗) : λ ∈ [0, 1]} .

This means that there exists λ∗ ∈ [0, 1] such that the condition (13.7) is valid.
Indeed, if λ∗ ∈ (0, 1] we have

000 ∈ convF(x∗)+ (1− λ∗)ζδ
λ∗ζμ

convG(x∗)

⊆ convF(x∗)+ ray convG(x∗)

= convF(x∗)+ coneG(x∗)

⊆ convF(x∗)+ cl coneG(x∗).

On the other hand, if λ∗ = 0, we observe

000 ∈ ζδ convG(x∗) ⊆ ray convG(x∗) = coneG(x∗)

⊆ convF(x∗)+ cl coneG(x∗).

Thus, Theorem 13.5 implies that x∗ is a global weak Pareto optimum of (13.1). ��
Notice, that for any λ > 0 and p ∈ N+ the functions

μ(z) = λz (13.9)

μ(z) = λ sign(z)
(
(|z| + 1)p − 1

)
(13.10)

μ(z) = λ sign(z) ln(|z| + 1) (13.11)

μ(z) = λ sign(z)(e|z| − 1) (13.12)

are sign preserving, f ◦-pseudoconvex and strictly increasing. Thus, according
to Theorem 13.6 besides linear scaling (13.9), we can use polynomial (13.10),
logarithmic (13.11) or exponential scaling (13.12). These functions are illustrated in
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Fig. 13.1 Illustration of the scaling functions (13.9)–(13.12). (a) Linear scaling, λ = 1. (b)
Polynomial scaling, λ = 1, p = 2. (c) Logarithmic scaling, λ = 1. (d) Exponential scaling,
λ = 1

Fig. 13.1. Furthermore, for constraint functions, together with the functions (13.9)–
(13.12), we can also use the polynomial scaling function

δ(z) = λ sign(z)|z|p (13.13)

being f ◦-quasiconvex but not f ◦-pseudoconvex (0 ∈ ∂δ(0) although 0 is not a
global minimum, cf. Theorem 13.1). Notice also, that all the above scaling functions
are continuously differentiable, and thus subdifferentially regular.
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13.4 Multiobjective Proximal Bundle Method

This section is devoted to derive the version of the multiobjective proximal bundle
method (MPB) using the scaled improvement function. This version modifies MPB
[18, 21] where the idea of the standard improvement function [10, 21, 35] is utilized.
MPB is a multiobjective counterpart of the single-objective proximal bundle method
for nonconvex constrained problems presented in [14] which in its turn generalizes
the original convex proximal bundle method [11].

The method presented here is suitable for multiobjective nonconvex constraint
problems. As the result of the utilization of either the standard or the scaled
improvement function, the method is a descent one, in other words, it improves
all the objectives simultaneously at every iteration.

In what follows, we suppose that all the scaling functions μi and δl are sign
preserving and subdifferentially regular for all i ∈ I and l ∈ L. Furthermore μi
is supposed to be f ◦-pseudoconvex and strictly increasing for all i ∈ I and δl is
f ◦-quasiconvex and increasing for all l ∈ L.

Direction Finding At each iteration h, we denote the current solution by xh and
auxiliary points from the previous iterations by yj ∈ R

n for j ∈ J h = {1, . . . , h}.
Moreover, we assume that we can evaluate subgradients ξ

j
fi
∈ ∂fi(y

j ) and ζ
j
μi ∈

∂μi
(
fi(y

j )
)

for j ∈ J h, i ∈ I, and ξ
j
gl ∈ ∂gl(y

j ) and ζ
j
δl
∈ ∂δl

(
gl(y

j )
)

for

j ∈ J h, l ∈ L.
As Theorem 13.6 suggests, the search direction of MPB is found by solving the

following nonsmooth problem:

{
minimize H(xh + d, xh)

subject to d ∈ R
n.

(13.14)

First, we focus on the convex case by assuming for a while that the objectives fi
and the constraints gl for all i ∈ I and l ∈ L in the problem (13.1) are convex.
Since the objective and constraint functions are convex, they are subdifferentially
regular. Then, due to the subdifferential regularity and f ◦-quasiconvexity of the
scaling functions, Lemma 13.1 and Theorem 13.3 (ii) guarantee that

ζ jμi ξ
j
fi
∈ ∂(μi ◦ fi)(yj ) for all i ∈ I, j ∈ J h, and (13.15)

ζ
j
δl
ξ
j
gl ∈ ∂(δl ◦ gl)(yj ) for all l ∈ L, j ∈ J h. (13.16)
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Now we can linearize the scaled objective and the scaled constraint functions at the
point yj by

μf i,j (x) := μi
(
fi(y

j )
)+ ζ jμi (ξ

j
fi
)T (x − yj ) for all i ∈ I, j ∈ J h, and

δgl,j (x) := δl
(
gl(y

j )
)+ ζ

j
δl
(ξ

j
gl )

T (x − yj ) for all l ∈ L, j ∈ J h.

Then we define a convex piecewise linear approximation to the scaled improvement
function by

Ĥ h(x) := max
{
μf i,j (x)− μi

(
fi(x

h)
)
, δgl,j (x) : i ∈ I, l ∈ L, j ∈ J h

}

and get an approximation to the direction finding problem (13.14) by

{
minimize Ĥ h(xh + d)+ 1

2u
h‖d‖2

subject to d ∈ R
n.

(13.17)

As usual, the stabilizing term 1
2u

h‖d‖2 with the positive proximity parameter uh is
added to guarantee the existence and uniqueness of a solution to (13.17) and to keep
the approximation local enough. Notice that (13.17) is still a nonsmooth problem,
but due to its minmax-nature it is equivalent to the following (smooth) quadratic
problem

⎧
⎪⎪⎨

⎪⎪⎩

minimize v + 1
2u

h‖d‖2

subject to −αhμfi ,j + ζ
j
μi (ξ

j
fi
)T d ≤ v, i ∈ I, j ∈ J h,

−αhδgl,j + ζ
j
δl
(ξ

j
gl )

T d ≤ v, l ∈ L, j ∈ J h,

(13.18)

where

αhμfi ,j := μi
(
fi(x

h)
)− μf i,j (x

h), i ∈ I, j ∈ J h, and

αhδgl ,j := −δgl,j (xh), l ∈ L, j ∈ J h,

are standard positive linearization errors.
In the nonconvex case the linearization errors are not necessarily positive

anymore, and thus we replace them by subgradient locality measures

βhμfi ,j := max
{
|αhμfi ,j | , γfi‖xh − yj‖2

}
,

βhδgl,j := max
{
|αhδgl,j | , γgl‖xh − yj‖2

}
,
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where γfi ≥ 0 for i ∈ I and γgl ≥ 0 for l ∈ L, (γfi = 0 if fi is convex and γgl = 0
if gl is convex).

In the nonconvex case the formulas (13.15) and (13.16) are not necessarily valid
anymore. Then, we have to assume the subdifferential regularity of the objective
and constraint functions. Another possibility is to use smooth (continuously dif-
ferentiable) scaling functions like (13.9)–(13.13), because then Theorem 13.3 (i)
guarantees the equality in (13.4) and thus (13.15) and (13.16) are valid again.

Line Search Once the solution (dh, vh) of the problem (13.18) is obtained, we
perform the two-point line search strategy [14] detecting the discontinuities in the
gradients of the scaled objectives. Let mL ∈ (0, 1

2 ), mR ∈ (mL, 1), and t̄ ∈ (0, 1] be
fixed line search parameters. We begin by determining the largest number thL ∈ [0, 1]
such that

max
{
μi

(
fi(x

h + thLdh)
)− μi

(
fi(x

h)
) : i ∈ I

}
≤ mLt

h
Lv

h, and

max
{
δl

(
gl(x

h + thLdh)
) : l ∈ L

}
≤ 0.

If thL ≥ t̄ , we take a long serious step:

xh+1 = xh + thLdh and yh+1 = xh+1,

if 0 < thL < t̄ , then we take a short serious step:

xh+1 = xh + thLdh and yh+1 = xh + thRdh

and if thL = 0, we take a null step:

xh+1 = xh and yh+1 = xh + thRdh,

where thR > thL is such that

−βh+1
μfi,h+1 + ζ h+1

μi
(ξh+1

fi
)T dh ≥ mRv

h.

The iteration is terminated when

− 1
2v

h < εs,

where εs > 0 is an accuracy parameter supplied by the user.
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Algorithm To conclude this section, we summarize the previous subsections by
presenting the algorithm of MPB using the scaled improvement function.

Algorithm 13.1: MPB

Data: A final accuracy tolerance εs > 0, an initial weight u1 > 0, line
search parameters mL ∈ (0, 1

2 ), mR ∈ (mL, 1) and t̄ ∈ (0, 1], and
distance measure parameters γfi ≥ 0 for i ∈ I and γgl ≥ 0 for l ∈ L.

Step 1. (Initialization) Select a feasible starting point x1 ∈ S. Set h := 1,
y1 := x1 and calculate ξ1

fi
∈ ∂fi(y

1) and ζ 1
μi
∈ ∂μi

(
fi(y

1)
)

for

i ∈ I, and ξ1
gl
∈ ∂gl(y1) and ζ 1

δl
∈ ∂δl

(
gl(y

1)
)

for l ∈ L.
Step 2. (Direction finding) Solve the problem (13.18) in order to get the

solution (dh, vh).
Step 3. (Stopping criterion) If − 1

2v
h < εs , then stop.

Step 4. (Line search) Find the step sizes thL ∈ [0, 1] and thR ∈ [thL, 1] to take
either a null step (thL = 0) or a serious step (thL > 0). Set

xh+1 = xh + thLdh and yh+1 = xh + thRdh.

Step 5. (Updating) Set h := h + 1, calculate ξhfi ∈ ∂fi(y
h) and ζ hμi ∈

∂μi
(
fi(y

h)
)

for i ∈ I, and ξhgl ∈ ∂gl(y
h) and ζ hδl ∈ ∂δl

(
gl(y

h)
)

for l ∈ L. Choose J h ⊆ {1, . . . , h} and update the weight uh. Go to
Step 2.

Some remarks about the algorithm are in order. In practice, the size of the index
set J h needs to be bounded, and that is why the subgradient aggregation strategy
[9] is applied. For a suitable distance measure parameter selection, set γfi = 0 if fi
is convex and similarly γgl = 0 if gl is convex. In Step 4, the step sizes thL ∈ [0, 1]
and thR ∈ [thL, 1] are generated by the line search strategy described in the previous
subsection. Finally in Step 5, the weight uh is updated by the procedure given in
[11].

13.5 Convergence Analysis

The following convergence analysis is divided into two results. The first result
claims that under some generalized convexity assumptions a global Pareto optimum
can be guaranteed while the second result focuses on more general case when a
weak Pareto stationary solution is obtained.

Theorem 13.7 Let the constraint qualification (13.6) be valid and for all i ∈ I
and l ∈ L let fi , μi , gl and δl be f ◦-pseudoconvex functions such that H(·, xh)
is weakly semismooth. Moreover, let μi and δl be sign preserving, subdifferentially
regular and strictly increasing functions. If the MPB algorithm stops with a finite
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number of iterations, then the solution is a global weak Pareto optimum of (13.1) if
in addition

(i) μi and δl are continuously differentiable, or
(ii) fi and gl are subdifferentially regular.

On the other hand, any accumulation point of an infinite sequence of solutions
generated by the MPB algorithm is a global weak Pareto optimum of (13.1).

Proof Due to Theorems 13.4 and 13.2, the improvement function H(·, xh) is f ◦-
pseudoconvex. Moreover, in both cases (i) and (ii) Theorem 13.3 guarantees that

ζ jμi ξ
j
fi
∈ ∂(μi ◦ fi)(yj ) for all i ∈ I, j ∈ J h, and

ζ
j
δl
ξ
j
gl ∈ ∂(δl ◦ gl)(yj ) for all l ∈ L, j ∈ J h,

meaning that the linearizations μf i,j (x) and δgl,j (x) are well-defined.
The formulation of the MPB algorithm implies, that it is equivalent to the

proximal bundle algorithm applied to unconstraint single objective optimization
of H . According to the convergence analysis of the standard proximal bundle
algorithm (see, e.g., [11, 32]) if it stops with a finite number of iterations, then
the solution xh is a stationary point of a weakly semismooth H , in other words 000 ∈
∂H(xh, xh). Then by Theorem 13.1 function H attains its global minimum at xh.
Since every f ◦-pseudoconvex function is also f ◦-quasiconvex, due to Theorem 13.6
xh is a global weak Pareto optimum of (13.1). The proof of the case, when MPB
generates an infinite sequence of solutions, goes similarly. ��

In order to utilize Theorem 13.6 in the proof of Theorem 13.7, the scaled
improvement function H(·, xh) must be f ◦-pseudoconvex. That is why the con-
straint functions gl and the scaling functions δl are assumed to be f ◦-pseudoconvex
while in Theorem 13.6 only the f ◦-quasiconvexity was required. Similarly, δl is
supposed to be strictly increasing function instead of increasing.

Finally we state, that in a more general case weakly Pareto stationary points of
the problem (13.1) are obtained.

Theorem 13.8 Let the constraint qualification (13.6) be valid and for all i ∈ i and
l ∈ L let fi and gl be weakly semismooth, and let μi and δl be sign preserving
and subdifferentially regular functions. Moreover, let μi be f ◦-pseudoconvex and
strictly increasing, and let δl be f ◦-quasiconvex and increasing functions. If the
MPB algorithm stops with a finite number of iterations, then the solution is a weakly
Pareto stationary point (i.e. it satisfies the necessary optimality condition (13.7)).
On the other hand, any accumulation point of an infinite sequence of solutions
generated by the MPB algorithm is weakly Pareto stationary.

Proof The proof is analogous to that of Theorem 13.7. ��
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13.6 Numerical Examples

In general, MPB has turned out to be efficient and reliable solver both in the single-
objective [2] and in the multiobjective [18] case. Here we focus on exemplifying the
impact of the scaling with the following test problem presented in [18]

⎧
⎪⎪⎨

⎪⎪⎩

minimize f1(x) = √‖x‖ + 2

f2(x) = max
{−x1 − x2, −x1 − x2 + x2

1 + x2
2 − 1

}

subject to g(x) = max
{
x2

1 + x2
2 − 10, 3x1 + x2 + 1.5

} ≤ 0,

where f1 is f ◦-pseudoconvex and f2 and g are convex.
In this example, the starting point is x1 = (−0.5,−0.5) and the parameters

selected are the accuracy tolerance εs = 10−5, the line search parameters mL =
0.01, mR = 0.5, and t̄ = 0.01, the distance measure parameters γf1 = 0.5 and,
γf2 = γg = 0. The weight u1 is initialized by

u1 = 1

k

k∑

i=1

‖ξ1
fi
‖.

Lastly, in order to perform the tests, a slightly modified version of the Fortran 77
implementation of MPB described in [15] utilizing the quadratic solver presented in
[13] is used under Linux Ubuntu system with gfortran as a compiler.

At first, we illustrate the use of different weights for objectives and constraints
in the scaled improvement function. For that purpose, we use the linear scaling
function (13.9) for f1, f2 and g and different values for λ. In Table 13.1, the first
three columns tell the values of λ used for f1, f2 and g, respectively. The next
two columns represent the solution obtained and the last two columns describe
the computational effort by specifying the number of iterations and function
evaluations. It can be seen from the results that the weighting of the functions clearly
has an influence both on the solution obtained and on the computational efficiency of
the method. Especially the constraint function seems to be very sensitive for scaling.

Table 13.1 Results with linear scaling varying the weights

λf1 λf2 λg f1(x
∗) f2(x

∗) Iterations Func. calls

1 1 1 1.57349 0.57595 5 6

0.1 1 1 1.57301 0.60030 5 8

10 1 1 1.58256 0.49134 12 13

10 1 0.1 1.59020 0.45234 59 61

0.1 0.1 10 1.57405 0.56477 3 4
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Table 13.2 Results with different scaling functions

μ1 μ2 δ1 f1(x
∗) f2(x

∗) Iterations Func. calls

− − − 1.57349 0.57595 5 6

(13.9) (13.9) − 1.57314 0.58763 4 5

(13.10) (13.9) (13.11) 1.57901 0.52853 12 13

(13.11) (13.10) − 1.57307 0.60900 15 16

(13.12) (13.9) (13.9) 1.57539 0.54644 10 11
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Fig. 13.2 Illustration of different weights λ in the linear scaling

In Table 13.2, five examples with different scaling functions are given and the
first line describes the solution without any scaling. The first three columns of
this table indicate the scaling functions (13.9)–(13.12) with λ = 0.5 and p = 2
used for each objective and constraint function respectively. Again, the rest of the
columns are devoted to the solution obtained and the computational effort. The
results indicate that also the change of the scaling function influences the final
solution and the number of function evaluations needed, but the influence is not
so remarkable than when changing the weight λ (see Table 13.1).

In Figs. 13.2 and 13.3 it is illustrated what happens with respect to function calls
when only one function is scaled. In both figures, the line with a cross refers to f1,
the line with a circle to f2 and the line with a triangle to g. In Fig. 13.2, only the
linear scaling is used and the weights λ are from the interval 0.01–10 whereas in
Fig. 13.3, different scaling functions are used for each function. Like in Tables 13.1
and 13.2 the constraint function seems to be the most sensitive for linear scaling
while the change of the scaling function itself does not influence on the results so
much.
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Fig. 13.3 Illustration of different scaling functions: (0)—no scaling, (1)—linear scaling, (2)—
polynomial scaling, (3)—logarithmic scaling, (4)—exponential scaling

13.7 Conclusions

We have derived a scaled version of the improvement function capable to linear,
polynomial, logarithmic and exponential scaling for both objective and constraint
functions. We have also developed a new version of the multiobjective proximal
bundle method utilizing this scaled improvement function. The method is globally
convergent and descent. Moreover, it can be proved to produce weakly Pareto sta-
tionary solutions and under some generalized convexity assumptions the solutions
are guaranteed to be globally weakly Pareto optimal. The effects of the scaling need
still more numerical testing and the question what are the minimal assumptions of
the convergence theorems will be an interesting topic for future work.

Acknowledgements This work was financially supported by the University of Turku. The authors
want to thank Prof. Dominikus Noll for the idea given during the HCM Workshop “Nonsmooth
Optimization and its Applications” in Bonn, May 2017.

References

1. Auslender, A.: Numerical methods for nondifferentiable convex optimization. Math. Program.
Study 30, 102–126 (1987)

2. Bagirov, A., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory,
Practice and Software. Springer, Cham, Heidelberg (2014)

3. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)



478 M. M. Mäkelä and O. Montonen

4. Da Cruz Neto, J.X., Da Silva, G.J.P., Ferreira, O.P., Lopes, J.O.: A subgradient method for
multiobjective optimization. Comput. Optim. Appl. 54(3), 461–472 (2013)

5. Handl, J., Kell, D.B., Knowles, J.D: Multiobjective optimization in bioinformatics and
computational biology. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(2), 279–292 (2007)

6. Hiriart-Urruty, J.B.: New concepts in nondifferentiable programming. Bull. de la Soc. Math.
de France Mémoires 60, 57–85 (1979)

7. Jin, Y. (ed.) Multi-Objective Machine Learning. Studies in Computational Intelligence, vol. 16.
Springer, Berlin (2006)

8. Karas, E., Ribeiro, A., Sagastizábal, C., Solodov, M.: A bundle-filter method for nonsmooth
convex constrained optimization. Math. Program. 116, 297–320 (2009)

9. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in
Mathematics, vol. 1133. Springer, Berlin (1985)

10. Kiwiel, K.C.: A descent method for nonsmooth convex multiobjective minimization. Large
Scale Syst. 8(2), 119–129 (1985)

11. Kiwiel, K.C: Proximity control in bundle methods for convex nondifferentiable optimization.
Math. Program. 46, 105–122 (1990)

12. Lemaréchal, C., Nemirovskii, A., Nesterov, Yu.: New variants of bundle methods. Math.
Program. 69, 111–148 (1995)

13. Lukšan, L.: Dual method for solving a special problem of quadratic programming as a
subproblem at linearly constrained nonlinear minimax approximation. Kybernetika 20(6), 445–
457 (1984)

14. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with
Applications to Optimal Control. World Scientific, Singapore (1992)

15. Mäkelä, M.M.: Multiobjective Proximal Bundle Method for Nonconvex Nonsmooth Opti-
mization: Fortran Subroutine MPBNGC 2.0. Reports of the Department of Mathematical
Information Technology, Series B, Scientific computing, B 13/2003. University of Jyväskylä,
Jyväskylä (2003)

16. Mäkelä, M.M., Eronen, V.-P., Karmitsa, N.: On Nonsmooth Optimality Conditions with
Generalized Convexities. TUCS Technical Reports 1056. Turku Centre for Computer Science,
Turku (2012)

17. Mäkelä, M.M., Eronen, V.-P., Karmitsa, N.: On nonsmooth multiobjective optimality con-
ditions with generalized convexities. In: Rassias, Th.M., Floudas, C.A., Butenko, S. (eds.)
Optimization in Science and Engineering: In Honor of the 60th Birthday of Panos M. Pardalos,
pp. 333–357. Springer, New York (2014)

18. Mäkelä, M.M., Karmitsa, N., Wilppu, O.: Proximal bundle method for nonsmooth and
nonconvex multiobjective optimization. In: Neittaanmäki, P., Repin, S., Tuovinen, T. (eds.)
Mathematical Modeling and Optimization of Complex Structures, pp. 191–204, Springer,
Cham (2016)

19. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering.
Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

20. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston
(1999)

21. Miettinen, K., Mäkelä, M.M.: Interactive bundle-based method for nondifferentiable multiob-
jective optimization: NIMBUS. Optimization 34, 231–246 (1995)

22. Miettinen, K., Mäkelä, M.M.: On scalarizing functions in multiobjective optimization. OR
Spectr. 24(2), 193–213 (2002)

23. Mifflin, R.: An algorithm for constrained optimization with semismooth functions. Math. Oper.
Res. 2, 191–207 (1977)

24. Montonen, O., Joki, K.: Bundle-based descent method for nonsmooth multiobjective DC
optimization with inequality constraints. J. Glob. Optim. 72(3), 403–429 (2018)

25. Montonen, O., Karmitsa, N., Mäkelä, M.M.: Multiple subgradient descent bundle method for
convex nonsmooth multiobjective optimization. Optimization 67(1), 139–158 (2018)

26. Moreau, J.J., Panagiotopoulos, P.D., Strang, G. (eds.) Topics in Nonsmooth Mechanics.
Birkhäuser, Basel (1988)



13 Multiobjective Proximal Bundle Method 479

27. Mukai, H.: Algorithms for multicriterion optimization. IEEE Trans. Autom. Control 25(2),
177–186 (1980)
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Chapter 14
Multiobjective Double Bundle Method
for DC Optimization

Outi Montonen and Kaisa Joki

Abstract We discuss about the multiobjective double bundle method for nons-
mooth multiobjective optimization where objective and constraint functions are
presented as a difference of two convex (DC) functions. By utilizing a special
technique called the improvement function, we are able to handle several objectives
and constraints simultaneously. The method improves every objective at each
iteration and the improvement function preserves the DC property of the objectives
and constraints. Once the improvement function is formed, we can approximate it
by using a special cutting plane model capturing the convex and concave behaviour
of a DC function. We solve the problem with a modified version of the single-
objective double bundle method using the cutting plane model as an objective. The
multiobjective double bundle method is proved to be finitely convergent to a weakly
Pareto stationary solution under mild assumptions. Moreover, the applicability of
the method is considered.

14.1 Introduction to Multiobjective DC Optimization

The vast range of practical optimization problems involve several goals. Usually,
these goals are conflicting and compromises have to be made. Thus, it is sensible
to study multiobjective optimization [8, 28]. The real-life application areas for
multiobjective optimization are for example chemical engineering [36], cancer
treatment planning [6], and humanitarian aid [12]. Compared with single-objective
optimization, in multiobjective optimization various objectives need to be handled
simultaneously. One fundamental idea to solve a multiobjective problem is the
scalarization [8, 28], where several objectives are transformed into one objective,
and then some efficient single-objective method can be applied. A typical feature of
scalarization is that we have to take a stand on the relative importance of objectives.
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As many of the practical applications have nonsmooth nature as well, we focus
here on nonsmooth multiobjective optimization. Instead of the scalarization, we
want to treat the objectives as they are, and in particular, to investigate descent
methods. We classify a method to be of a descent one if at each iteration it improves
every objective, and in that sense, every objective is considered to be equally
important. Some examples of descent methods can be found in the literature for
convex (see e.g. [3, 4, 21, 31, 33]) and for nonconvex (see e.g. [27, 29, 35, 41])
problems.

Here we limit our study to DC functions (i.e. functions which can be represented
as a difference of convex functions, so-called DC components) forming a wide
subclass of nonconvex functions. In addition to the wideness, the class of DC
functions has another unquestionable advantage compared to general nonconvex
functions. Due to the convex DC components, we are able to utilize the convex
analysis. Unfortunately, it may be hard to define DC components for a function
even if the function is known to be a DC function. Moreover, due to the fact that a
DC decomposition is not unique, the DC decomposition found may not be the most
suitable one. However, there exist many practical applications where the objectives
are in the explicit DC form, like in clustering [2], spherical separability problems
[10], production-transportation planning [15], wireless sensor network planning
[1], and data visualization [5]. It is worth noticing that these applications usually
either model the problem directly as a single-objective problem or scalarize a bi-
objective problem, even if they have multiobjective nature. Additionally, in [17] a
probabilistic lot sizing model is solved as a multiobjective DC problem.

In this chapter, we are aiming to solve a DC problem of the form

{
minimize {f1(x), . . . , fk(x)}
subject to x ∈ X, (14.1)

where X = {x ∈ R
n : gl(x) ≤ 0, l ∈ L} and L = {1, . . . ,m}. The objectives

fi = pi − qi : Rn → R for all i ∈ I, such that the set I = {1, . . . , k} denotes
the indices of the objectives, and the constraints gl = rl − sl : Rn → R for all
l ∈ L are assumed to be at least partially conflicting and DC functions. Thus, the
DC components pi, qi , rl, sl for all i ∈ I, l ∈ L are convex.

The theory of DC functions has been widely studied in the past few decades (see
e.g. [13, 14, 40]). Additionally, various methods have been developed for single-
objective DC problems like DCA [23, 24, 32], proximal point based methods [38],
special cutting plane based bundle methods [11, 19, 20], and branch-and-bound
and outer approximation algorithms [16]. However, a little research devoted to
multiobjective DC optimization focuses mainly on optimality conditions like in
[9, 34, 39]. Moreover, the exact and inexact proximal point methods in [17, 18]
have lately been introduced.

Our contribution to the field of multiobjective DC optimization is the multiobjec-
tive double bundle method for DC optimization (MDBDC) originally presented in
[30]. MDBDC generalizes the single-objective double bundle method (DBDC) [20]
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(see also Chap. 8) to the multiobjective optimization by utilizing the improvement
function presented in [21, 27, 41]. MDBDC has some distinctive features. First,
MDBDC can handle several DC objectives together with inequality DC constraints.
Second, under mild assumptions MDBDC converges finitely to a weakly Pareto
stationary solution. Last, MDBDC is a descent type method. In addition, MDBDC
has proved to be usable also in practice, and when compared to a general nonconvex
solver, MDBDC can obtain better solutions (i.e. every objective has a better value)
by taking into account the DC structure of the problem [30].

We say some words about the comparison between MDBDC and the exact
proximal point algorithm developed in [18]. Both of these methods base their
ability to handle multiple objectives to the fact that the optimum of some single-
objective problem is known to be a weak Pareto optimum, and they both utilize
convex single-objective subproblems. However, in MDBDC the subgradients for
both DC components needs to be evaluated while in the proximal point algorithm
only the subgradient of the second DC component needs to be known. The first clear
difference between the methods is that MDBDC can handle DC constraints while
the proximal point algorithm is designed only for convex constraints. In addition,
MDBDC is a descent type method improving every objective at each iteration. In
the proximal point algorithm, the descent direction is provided only for a function∑

i∈I λifi(x) such that
∑

i∈I λi = 1 and λi ≥ 0 for all i ∈ I. Thus, every objective
is not necessarily improved. Finally, MDBDC produces weakly Pareto stationary
solutions while the proximal point algorithm yields only Pareto critical solutions.
This theoretical difference is discussed with details in Sect. 14.2.

The rest of this chapter is organized as follows. First, in Sect. 14.2, we consider
the optimality in multiobjective optimization and exemplify the difference between
Pareto critical and weakly Pareto stationary solutions. Section 14.3 compresses all
you need to know about MDBDC into a sketch of the method and proves its finite
convergence. In Sect. 14.4, the numerical behaviour of MDBDC is discussed and
argued in favour of to utilize a method specially designed for DC functions instead
of a general nonconvex method. Finally, some concluding remarks are given in
Sect. 14.5.

14.2 Critical Versus Stationary Solution in Multiobjective
DC Optimization

We begin by saying some words about optimality in multiobjective optimization. A
solution x∗ ∈ X is a global Pareto optimum for the problem (14.1) if there does not
exist another solution x ∈ X such that fi(x) ≤ fi(x

∗) for all i ∈ I and fj (x) <
fj (x

∗) for at least one j ∈ I. This means that we cannot improve any objective
without deteriorating some other objective simultaneously. If we have a solution
such that there does not exist any other solution yielding better values for every
objective, we call the solution a global weak Pareto optimum. In other words, a
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solution x∗ ∈ X is a global weak Pareto optimum for the problem (14.1) if there
does not exist another solution x ∈ X such that fi(x) < fi(x

∗) for all i ∈ I.
Moreover, a solution x∗ is a local (weak) Pareto optimum for the problem (14.1) if
there exists ε > 0 such that x∗ is a global (weak) Pareto optimum on X ∩B(x∗; ε).
To conclude, every Pareto optimum is also a weak Pareto optimum and instead of
only one optimum we usually have several (weak) Pareto optima.

We start with defining weak Pareto stationary and critical solutions and after that
the difference between these two concepts is exemplified. To simplify notations, we
denote by

F(x) =
⋃

i∈I
∂fi(x) and G(x) =

⋃

l∈L(x)
∂gl(x),

where ∂fi(x) and ∂gl(x) are subdifferentials of fi and gl at x ∈ R
n, respectively

and L(x) = {l ∈ L : gl(x) = 0}. Next, we give a necessary condition for a
solution to be a local weak Pareto optimum of the problem (14.1) when objectives
and constraints are general nonconvex functions. Recall that for a set S ⊆ R

n we
denote by KS(x) and S≤ a contingent cone at x ∈ R

n and a polar cone, respectively
(see Definitions 1.12 and 1.13).

Theorem 14.1 ([26]) If x∗ ∈ X is a local weak Pareto optimum for the problem
(14.1) with LLC objective and constraint functions, and the constraint qualification
G≤(x∗) ⊆ KX(x

∗) holds, then

000 ∈ convF(x∗)+ cl coneG(x∗). (14.2)

Proof See [26, Theorem 15]. ��
We say that the point x∗ satisfying the condition (14.2) is weakly Pareto stationary.
In general, nonconvex multiobjective methods find a solution x∗ ∈ X being weakly
Pareto stationary.

A suitable necessary condition for the problem (14.1) can be derived also by
assuming that the objectives and constraints are DC functions. The condition like
this is given in Theorem 3.1 in [34]. For our purposes to illustrate the properties of
different conditions, it is enough to consider the unconstrained case of this condition
given in [18]: If x′ ∈ R

n is a local weak Pareto optimum for the problem (14.1),
where X = R

n and the objectives are DC functions, then

conv{∂qi(x′) : i ∈ I} ⊆ conv{∂pi(x′) : i ∈ I}.

However, this condition is hard to verify in practice, and thus in [18], the condition

000 ∈ conv {∂pi(x′)− ∂qi(x
′) : i ∈ I} (14.3)
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is validated and the solution x′ satisfying this condition is called Pareto critical.
Clearly, weakly Pareto stationary solution x∗ is also Pareto critical, since

000 ∈ conv {∂fi(x∗) : i ∈ I} ⊆ conv {∂pi(x∗)− ∂qi(x
∗) : i ∈ I}.

To argue why the inverse does not necessarily hold, we give an example.

Example 14.1 Consider the unconstrained bi-objective case of the problem
(14.1) and let the DC components be p1(x) = max{−x, 2x}, q1(x) =
max{−2x, x}, p2(x) = max{x2, x}, and q2(x) = max{0.5x2,−x}, where
x ∈ R. We consider the point x ′ = 0 and to verify its Pareto criticality we
investigate the intersection

λ∂p1(x
′)+ (1− λ)∂p2(x

′) ∩ λ∂q1(x
′)+ (1− λ)∂q2(x

′).

At the point x ′, neither of the objectives is differentiable, and the intersection
is of the form λ[−1, 2] + (1 − λ)[0, 1] ∩ λ[−2, 1] + (1 − λ)[−1, 0]. For
instance, with λ = 1 this intersection equals [−1, 1] being a nonempty set.
Thus, the condition (14.3) is valid and x ′ is Pareto critical. However, x ′ is not
weakly Pareto stationary, since 0 /∈ conv {∂f1(x

′), ∂f2(x
′)} = {1}. The similar

observation can be made in the single-objective case as well, as was exemplified
in Chap. 8.

A natural approach towards solving the multiobjective DC problem would be
to verify that the condition (14.3) is satisfied. However, in order to reduce the
number of possible non-optimal solutions in our set of feasible solutions, we want to
ensure that the solution produced is weakly Pareto stationary. To obtain a stationary
solution is not a trivial task even in the single-objective case and to obtain weak
Pareto stationarity in the multiobjective case, we introduce the improvement function
H : Rn × R

n → R [21, 41] defined by

H(x, y) = max{fi(x)− fi(y), gl(x) : i ∈ I, l ∈ L}. (14.4)

One reason for the utility of the improvement function in the case of multiobjective
DC optimization raises from the fact that it is a DC function. Indeed, since the
objectives fi for all i ∈ I and the constraints gl for all l ∈ L are assumed to be
DC functions, then H( · y) is a DC function as a maximum of DC functions [14].
Moreover, the improvement function has three useful elementary properties stated
in the following theorem legitimating the use of it (see also Chap. 13).

Theorem 14.2 ([27, 41]) The improvement function H( · , y) (14.4) has the follow-
ing properties:

(i) If H(x, y) < H(y, y), x ∈ R
n, y ∈ X then fi(x) < fi(y) for all i ∈ I and

gl(x) < 0 for all l ∈ L.
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(ii) If the solution x∗ ∈ X is a global weak Pareto optimum of the problem (14.1),
then

x∗ = argmin
x∈Rn

H(x, x∗).

(iii) If 000 ∈ ∂H(x∗, x∗), then the solution x∗ ∈ X of the problem (14.1) is weakly
Pareto stationary.

Proof See [30, Theorem 2] and also Theorem 13.6 in Chap. 13. ��
Based on the above theorem, we obtain a weakly Pareto stationary solution x∗ for
the problem (14.1) if we find a Clarke stationary solution for H( · , x∗) (i.e. 000 ∈
∂H(x∗, x∗)). Therefore, we are able to utilize some single-objective DC method
to find a Clarke stationary solution. However, many of these methods produce only
critical solutions. Since we are able to use the DC structure of the improvement
function as an advantage, we will apply the escape procedure presented in [20]
being able to test whether an approximate Clarke stationary condition is valid.
Additionally, if this condition is not satisfied, the procedure generates a new search
direction.

14.3 Multiobjective Double Bundle Method for DC
Optimization

The multiobjective double bundle method for DC optimization (MDBDC) collects
ideas from three different bundle type methods and combines them into one
package such that a method for multiobjective DC optimization with inequality
DC constraints is created. These three methods are the multiobjective proximal
bundle method (MPB) ([27, 29] and Chap. 13), the proximal bundle method for
DC optimization (PBDC) ([19] and Chap. 8), and the double bundle method for DC
optimization (DBDC) ([20] and Chap. 8).

The idea how to apply the improvement function with a single-objective bundle-
based method is absorbed from MPB being a bundle-based method to solve
nonconvex constrained multiobjective problems. In MPB, the technique utilizing the
improvement function [21, 27, 41] was combined with the single-objective proximal
bundle method [22]. Besides the ability to handle several objectives simultaneously,
the improvement function gives a way to handle constraints as well. Additionally,
the descent property of MDBDC is the direct consequence of the properties of the
improvement function.

While MPB gives ideas to treat multiple objectives, PBDC gives core ingredients
for the algorithm of MDBDC related to the single-objective part. The cutting plane
model used in MDBDC for the improvement function bases on the one used in
PBDC. The peculiarity of this model is that it captures both the convex and concave
behaviour of a DC function by utilizing explicitly the DC decomposition.
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DBDC is an unconstrained single-objective sibling of MDBDC. In order to
avoid Pareto critical solutions in MDBDC, we take an advantage of the escape
procedure being part of DBDC. DBDC is developed from PBDC by adding the
escape procedure giving an ability to avoid critical solutions. If we end up to a
critical point, the procedure either gives a new descent search direction or ensures
that the approximate Clarke stationary condition is valid.

MDBDC is designed to solve the problem (14.1) with DC objectives and
constraints. The method improves all the objectives simultaneously meaning that
MDBDC is a method of descent type. The idea of MDBDC in its simplicity is to
apply the improvement function such that instead of a constrained multiobjective
problem we can solve an unconstrained single-objective one. This new problem
is then solved by using a special cutting plane model and the modified version of
DBDC. As a result of this process, we end up to a weakly Pareto stationary solution.
Here, we describe the general idea of MDBDC and the more detailed description can
be found in [30].

Improvement Function and Cutting Plane Model Since the cutting plane model
used in MDBDC utilizes the DC decomposition of the objective, we discuss first
about the DC decomposition of the improvement function. As it was previously
mentioned, the improvement function formed by DC functions is a DC function,
and thus, the DC decomposition exists. This decomposition can be obtained as in
[14]. For example, we can rewrite the objectives fi = pi − qi for all i ∈ I and the
constraints gl = rl − sl for all l ∈ L as

fi(x) = pi(x)+
∑

j∈I
j �=i

qj (x)+
∑

t∈L
st (x)−

∑

j∈I
qj (x)−

∑

t∈L
st (x),

gl(x) = rl(x)+
∑

t∈L
t �=l

st (x)+
∑

j∈I
qj (x)−

∑

j∈I
qj (x)−

∑

t∈L
st (x).

In order to simplify the presentation, we denote

Ai(x, y) = pi(x)+
∑

j∈I
j �=i

qj (x)+
∑

t∈L
st (x)− fi(y) and

Bl(x) = rl(x)+
∑

t∈L
t �=l

st (x)+
∑

j∈I
qj (x).

Now the DC decomposition of the improvement function is of the form

H(x, y) = H1(x, y)−H2(x),
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where

H1(x, y) = max{Ai(x, y), Bl(x) : i ∈ I, l ∈ L} and (14.5)

H2(x) =
∑

j∈I
qj (x)+

∑

t∈L
st (x).

Both DC components H1 and H2 are convex with respect to x and the vector y is
treated as a constant.

As the name of MDBDC suggests, we collect information from the previous
iterations into bundles. In the following, the index h denotes the h-th iteration and
xh is the current iteration point. We assume that at each auxiliary point the function
value and one arbitrary subgradient of pi, qi, rl and sl can be evaluated. From these,
we can compose values for functions Ai( · , xh), Bl , H1( · , xh), and H2 and their
subgradients ai , bl , h1, and h2, respectively.

In MDBDC, we collect information into two separate bundles Bh
1 and Bh

2 for
H1( · , y) andH2, respectively. The bundles consist of triplets formed by an auxiliary
point yj , a corresponding function value, and a subgradient. Here the index j is an
element of the index set J h

1 or J h
2 depending on whether the bundle is forH1( · , xh)

or H2. In practice, the bundle Bh
1 is formed by having separate bundles for each

Ai( · , xh), i ∈ I and Bl , l ∈ L and taking the union of them.
In order to find a search direction, we approximate the improvement function

by utilizing the special cutting plane model which is based on the one proposed in
[19]. Therefore, we linearize the convex DC components separately by utilizing the
classical cutting plane model [22, 25, 37]. This way, we can capture both the convex
and concave behaviour of the improvement function. To form an approximation for
H1( · , xh) and H2, we linearize all the components Ai( · , xh) and Bl of H1( · , xh)
and H2. We begin by giving the linearization for Ai( · , xh) :

Âh
i (x) = max

j∈J h
1

{
Ai(xh, xh)+ aTi,j (x − xh)− αAi,j

}
,

where ai,j ∈ ∂Ai(yj , xh) for j ∈ J h
1 . The linearization errors evaluated at xh for

all j ∈ J h
1 are

αAi,j = Ai(xh, xh)− Ai(yj , xh)− aTi,j (xh − yj ) for all i ∈ I.

Note that due to the convexity, all the linearization errors are nonnegative.
Similarly, we can linearize functions Bl for all l ∈ L and H2 and denote these

approximations by B̂h
l (x) and Ĥ h

2 (x), respectively. Thus, we obtain the cutting
plane model for H1( · , xh) of the form

Ĥ h
1 (x) = max{Âh

i (x), B̂
h
l (x) : i ∈ I, l ∈ L}. (14.6)
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Finally, by utilizing the above approximations, we obtain the following piecewise
linear nonconvex DC cutting plane model of H( · , xh):

Ĥ h(x) = Ĥ h
1 (x)− Ĥ h

2 (x).

From the definition of the cutting plane model, it follows that Ĥ h
1 (xh + d) ≤

H1(xh + d, xh) and Ĥ h
2 (xh + d) ≤ H2(xh + d) [30].

Direction Finding By bearing in mind Theorem 14.2, we are motivated to find a
solution x∗ ∈ X such that 000 ∈ ∂H(x∗, x∗). Therefore, we define a search direction
as a solution of the problem

{
minimize H(xh + d, xh)

subject to d ∈ R
n.

(14.7)

By utilizing the model of H( · , xh), we can estimate the problem (14.7) with a
nonsmooth nonconvex DC problem

{
minimize Ph(d) = Ĥ h

1 (xh + d)− Ĥ h
2 (xh + d)+ 1

2t ‖d‖2

subject to d ∈ R
n,

(14.8)

where t > 0 is a proximity parameter. The solution of this problem is denoted by
dht .

We use the solution approach described in [23, 24, 32] to find a global solution of
the problem (14.8). This approach can be applied, since the second DC component
of Ph is Ĥ h

2 (xh + d) and it is polyhedral convex see (8.5) in Chap. 8. The objective
of the problem (14.8) can now be rewritten as

Ph(d) = min
j∈J h

2

{
Ph
j (d) = Ĥ h

1 (xh + d)−H2(xh)− hT2,jd + αH2,j +
1

2t
‖d‖2}.

This enables us to change the order of the minimization in the problem (14.8). Thus,
we end up to solve |J h

2 | convex subproblems

{
minimize Ph

j (d) = Ĥ h
1 (xh + d)−H2(xh)− hT2,jd + αH2,j + 1

2t ‖d‖2

subject to d ∈ R
n,

(14.9)

where j ∈ J h
2 . The solution of the individual subproblem j ∈ J h

2 is denoted by
dht (j), and the global solution dht of the problem (14.8) is dht = dht (j

∗), where the
index j∗ = argmin

{
Ph
j

(
dht (j)

) : j ∈ J h
2

}
. In practice, the amount of computation

can be controlled, since the size of the bundle Bh
2 can be freely chosen such that

|J h
2 | ≥ 1.
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If ‖dht ‖ < δ, where δ > 0 is a fixed stopping tolerance, we either generate
a new descent direction or Clarke stationarity is achieved. In order to test Clarke
stationarity, we need some information about the subdifferential ∂H(xh, xh).
Unfortunately, by calculating arbitrary subgradients h1 ∈ ∂H1(xh, xh) and h2 ∈
∂H2(xh), we cannot guarantee that h1−h2 ∈ ∂H(xh, xh). Thus, we are justified to
use the escape procedure (see Algorithm 8.2 in Chap. 8) having the ability to select
h∗1 ∈ ∂H1(x, x), h∗2 ∈ ∂H2(x) for the objective function H = H1 − H2 at any
x ∈ R

n such that h∗1 − h∗2 ∈ ∂H(x, x) is ensured [20].
At the j -th iteration of the escape procedure, we approximate the Goldstein ε-

subdifferential ∂Gε H(xh, xh) with a set Uj consisting of subgradients calculated as
the difference of subgradients of the DC components. Thus, the new search direction
can be found by calculating dj+1 = −ūj /‖ūj‖, where ūj is a solution of the
problem

{
minimize 1

2‖u‖2

subject to u ∈ Uj .

If this direction is not descent or Clarke stationarity is not achieved, then the
approximation of ∂Gε H(xh, xh) is improved with a new subgradient. To conclude,
in order to exit from the escape procedure, we either find a new descent search
direction or ‖ūj‖ ≤ δ meaning that the approximate Clarke stationary condition is
satisfied and the algorithm of MDBDC is terminated.

Algorithm In this section, we give a general idea of the method with the simplified
version of MDBDC presented in Algorithm 14.1. More detailed description of the
MDBDC algorithm is given in [30].

We make some remarks about the algorithm. First, in Step 5 we execute the
escape procedure given in Algorithm 8.2 in Chap. 8. Note that in this case, the
procedure is executed for the current iteration point xh with the improvement
function H( · , xh) as its objective. Second, we utilize the proximity parameter
t ∈ [tmin, tmax] in Algorithm 14.1, which can be either decreased in Steps 7 and 8
or updated in Step 10 by utilizing the updating procedure inspired by the weighting
update method in [22]. During the latter update, the proximity parameter may either
increase or decrease. The update of the proximity parameter yields an improvement
for the model in the both cases.

As was mention, we give here a more general outline of the algorithm working
well in theory. In practice, we can improve the numerical behaviour of MDBDC
significantly. For example, in the initialization phase of Algorithm 14.1, the scaling
procedure [30] may be executed. The positive affect of scaling has its roots in the
DC decomposition of the improvement function. If the objective functions have
different magnitudes, one of the DC components may dominate the others and hide
their effects. Even if the scaling is executed, it does not affect the optimality of the
solution, since the modified objectives have the same optima than the unmodified
original objectives. Other possible numerical improvements are, for instance, to
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Algorithm 14.1: MDBDC
Data: The stopping tolerance δ ∈ (0, 1), the enlargement parameter θ >

0, the decrease parameters r, c ∈ (0, 1), the increase parameterR >

1, and the descent parameter m ∈ (0, 1).
Step 1. (Initialization) Select x0 ∈ X and calculate h1(x0) ∈ ∂H1(x0, x0)

and h2(x0) ∈ ∂H2(x0). Initialize B0
1 and B0

2, t = 0, h2,max = 000,
and h = 0.

Step 2. (Criticality) If ‖h1(xh)− h2(xh)‖ < δ, then d t = 000 and go to Step
5.

Step 3. (Proximity parameter) If ‖h2(xh)‖ > ‖h2,max‖, then h2,max =
h2(xh). Set

tmin = rθ

2(‖h1(xh)‖ + ‖h2,max‖) (14.10)

and tmax = Rtmin. If t /∈ [tmin, tmax], then select t ∈ [tmin, tmax].
Step 4. (Search direction) Calculate the search direction d t as a solution of

(14.8).
Step 5. (Escape procedure) If ‖d t‖ < δ, then execute Algorithm 8.2

presented in Chap. 8 for the point xh to obtain x+. Set xh+1 = x+
and go to Step 9.

Step 6. (Descent test) Set y = xh + d t . If

H(y, xh)−H(xh, xh) ≤ m
(
Ĥ h(y)−H(xh, xh)

)
,

then set xh+1 = y and go to Step 9.
Step 7. (Parameter update) If fi(y) > fi(x0) for any i ∈ I and ‖d t‖ > θ ,

then set t = t − c(t − tmin) and go to Step 4.
Step 8. (Bundle update) Decrease t if necessary, and update Bh

1 and Bh
2 . If a

new subgradient h2 ∈ ∂H2(y) satisfies ‖h2‖ > ‖h2,max‖, then set
h2,max = h2 and update tmin using (14.10). Go to Step 4.

Step 9. (Clarke stationarity) If xh+1 = xh, then Clarke stationarity is
achieved and stop with x∗ = xh as the final solution.

Step 10. (Model update) Update t and the bundles Bh+1
1 ⊆ Bh

1 and
Bh+1

2 ⊆ Bh
2 selected. Calculate h1(xh+1) ∈ ∂H1(xh+1, xh+1) and

h2(xh+1) ∈ ∂H2(xh+1). Set h = h+ 1 and go to Step 2.

execute the escape procedure when the decrease in the model is nearly non-existing
or to utilize more sophisticated update procedure for the proximity parameter in
Step 8.

Lastly, some words about the bundles. Obviously, in practice the size of the
bundles must be limited. The size of the bundle Bh

1 has to be selected such that
information regarding both Ai( · , xh) and Bl for all i ∈ I and l ∈ L is included.
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Thus, |J h
1 | ≥ k +m. For the bundle Bh

2 , the size of the bundle |J h
2 | ≥ 1, since the

bundle element associated to the current iteration point must be included. As was
mention previously, via restriction of |J h

2 | the number of subproblems solved can
be controlled.

Convergence Analysis The following convergence analysis is divided as follows:
In Theorem 14.3, we state that MDBDC stops after a finite number of iterations
at the point which satisfies the approximate Clarke stationary condition. In order
to prove that, we need Lemma 14.1 to guarantee that the loop between Steps from
4 to 8 is finite and Theorem 8.6 in Chap. 8 to give the finite maximum number
of iterations needed in the execution of the escape procedure in Step 5. Finally,
Theorem 14.4 considers weak Pareto stationarity of the solution.

Throughout the convergence analysis, we assume that the following assumptions
are valid:

Assumption 14.1 The subdifferentials ∂H1(x, y) and ∂H2(x) are polytopes for
each x ∈ R

n.

Assumption 14.2 The level set F0 = {x ∈ X : fi(x) ≤ fi(x0) for all i ∈ I} is
compact.

We begin our convergence analysis by investigating the loop between Steps from
4 to 8. If this loop is infinite, it would lead to a contradiction as is seen in the proof
of Lemma 14.1.

Lemma 14.1 ([30]) Let Assumption 14.2 be valid. For any δ ∈ (0, 1),
Algorithm 14.1 cannot pass infinitely through the sequence of Steps from 4 to 8.

Proof The proof is similar to the one given in Proposition 8.4 in Chap. 8. ��
Now we show the finite convergence of Algorithm 14.1 to a solution satisfying

the approximate Clarke stationary condition for the improvement function.

Theorem 14.3 ([30]) Let Assumptions 14.1 and 14.2 be valid. For any δ ∈ (0, 1)
and ε > 0, the execution of Algorithm 14.1 stops after a finite number of iterations
at the point x∗ satisfying the approximate Clarke stationary condition ‖ξ ∗‖ ≤ δ,
where ξ∗ ∈ ∂Gε H(x∗, x∗).

Proof The execution of Algorithm 14.1 stops only if the Clarke stationary point
x∗ is found in Step 9 meaning that the approximate Clarke stationary condition is
satisfied in the escape procedure in Algorithm 8.2. Assume, that Algorithm 14.1 is
executed infinitely, and thus, the stopping condition in Step 9 is never satisfied.

Similarly to the proof of Theorem 8.7 in Chap. 8, we can deduce that after each
iteration we have H(xh+1, xh)−H(xh, xh) ≤ −σ < 0, where

σ = min
{
m̂εδ,

mδ3

Rrθ

}
> 0
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and m, r ∈ (0, 1), R > 1 and θ > 0 are the parameters of Algorithm 14.1.
Additionally, ε > 0 and m̂ ∈ (0, 1) are the parameters of the escape procedure in
Algorithm 8.2. Due to the definition of H( · , xh) in (14.4), H(xh, xh) = 0 yielding
that H(xh+1, xh) ≤ −σ. Especially,

fi(xh+1)− fi(xh) < −σ < 0 for all i ∈ I,

and after the h-th iteration,

fi(xh)− fi(x0) ≤ −hσ for all i ∈ I.

By passing to the limit h→∞, we obtain

lim
h→∞ fi(xh)− fi(x0) ≤ −∞ for all i ∈ I

yielding a contradiction, since based on Assumption 14.2 and the fact that DC
functions are LLC, every fi , i ∈ I must be bounded from below. ��
Finally, we are interested in to argue that a Clarke stationary solution for the
improvement function yields a weakly Pareto stationary solution for the original
multiobjective problem. In order to prove this, the properties of the improvement
function described in Theorem 14.2 are applied.

Theorem 14.4 ([30]) Let fi and gl be DC functions for all i ∈ I and l ∈ L.
Suppose that Assumptions 14.1 and 14.2 are valid. Then, MDBDC stops after a
finite number of iterations with the solution x∗ ∈ X being a weakly Pareto stationary
point for the problem (14.1).

Proof Consider minimization of an improvement function (14.4). By Theorem 14.3,
after a finite number of iterations MDBDC finds a solution x∗ ∈ R

n such that
000 ∈ ∂H(x∗, x∗). According to Theorem 14.2 (iii), the solution x∗ ∈ X is weakly
Pareto stationary for the problem (14.1). ��

14.4 Numerical Behaviour of MDBDC

We discuss about the numerical behaviour of MDBDC by utilizing the computa-
tional experiments provided in [30], where the performances of MDBDC and MPB
are compared. MPB has been selected as a reference method due to its somehow
similar structure, but unlike MDBDC, it is designed for a general nonconvex
problem. The 53 test problems are formed such that they all have either two or
three objectives and the objectives are collected from academic single-objective DC
problems. Some of the problems also include either a DC or concave constraint.
The dimension of the problems varies from 2 to 500 such that 37 of them are small
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Fig. 14.1 Small test problems (2 ≤ n ≤ 100). (a) Subgradient evaluations. (b) CPU
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Fig. 14.2 Large test problems (250 ≤ n ≤ 500). (a) Subgradient evaluations. (b) CPU

(2 ≤ n ≤ 100) and 16 are large (250 ≤ n ≤ 500). Since MDBDC and MPB both
failed at one large test problem, we exclude this case from the discussion.

The numerical performance is illustrated in Figs. 14.1 and 14.2 where the
performance profiles [7] for small and large test problems are given, respectively. In
the performance profiles, subgradient evaluations and CPU times are compared. In
the small test problems, MDBDC wins MPB in terms of subgradient evaluations but
in terms of CPU times MPB performs slightly better than MDBDC. Nevertheless, in
the larger test problems, MDBDC beats MPB both in subgradient evaluations and
CPU times. Therefore, we can conclude that, in the computational point of view,
MDBDC is a good alternative for MPB in the case of DC problems.

Not only to compare the execution of the algorithms, another main goal in the
numerical experiments in [30] was to emphasize the difference in the solutions
obtained. To compare solutions, we say that a solution is better than the other if
it has better function values for every objective. In practice, it is possible that one
method finds a better solution than the other even if they both find theoretically
equally good solutions, namely weak Pareto stationary points. This is due to the
fact that both local and global optima satisfy the condition (14.2) and the feasible
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set in the objective space is nonconvex. An interesting observation is that by taking
into account the DC structure of the problem, MDBDC finds a better solution than
MPB around 30% of the tests performed in [30], even though both methods find
theoretically equally good solutions. Moreover, in half of the cases where MPB
uses less computational efforts, MDBDC finds a better solution. This shows that the
model used in MPB is more easily attracted to local optima.

14.5 Conclusions

We have discussed about the multiobjective double bundle method for DC optimiza-
tion (MDBDC) being a method for multiobjective DC problems with inequality DC
constraints. The method is descent and under mild assumptions it is proved to be
finitely convergent to a weakly Pareto stationary solution. MDBDC has shown to
behave well numerically and it is observed to be profitable to use a method taking
into account a DC structure instead of a general nonconvex method.

MDBDC can be used in several ways. First, it can be used to solve only one
weakly Pareto stationary solution, or execute it with different starting points to
obtain an approximation of the set of local weak Pareto optima. Due to the descent
property, the starting point is projected to the set of local weak Pareto optima in
the decision space such that the solution obtained lies in the negative orthant from
the starting point. Another possibility is to use MDBDC as a component of some
interactive method as MPB was used in [29]. In addition, MDBDC is suitable to
solve single-objective DC problems with DC constraints.
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Chapter 15
Mixed-Integer Linear Optimization:
Primal–Dual Relations and Dual
Subgradient and Cutting-Plane Methods

Ann-Brith Strömberg, Torbjörn Larsson, and Michael Patriksson

Abstract This chapter presents several solution methodologies for mixed-integer
linear optimization, stated as mixed-binary optimization problems, by means of
Lagrangian duals, subgradient optimization, cutting-planes, and recovery of primal
solutions. It covers Lagrangian duality theory for mixed-binary linear optimization,
a problem framework for which ultimate success—in most cases—is hard to
accomplish, since strong duality cannot be inferred. First, a simple conditional
subgradient optimization method for solving the dual problem is presented. Then,
we show how ergodic sequences of Lagrangian subproblem solutions can be
computed and used to recover mixed-binary primal solutions. We establish that the
ergodic sequences accumulate at solutions to a convexified version of the original
mixed-binary optimization problem. We also present a cutting-plane approach
to the Lagrangian dual, which amounts to solving the convexified problem by
Dantzig–Wolfe decomposition, as well as a two-phase method that benefits from
the advantages of both subgradient optimization and Dantzig–Wolfe decomposition.
Finally, we describe how the Lagrangian dual approach can be used to find near
optimal solutions to mixed-binary optimization problems by utilizing the ergodic
sequences in a Lagrangian heuristic, to construct a core problem, as well as to
guide the branching in a branch-and-bound method. The chapter is concluded with
a section comprising notes, references, historical downturns, and reading tips.
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15.1 Introduction and Motivation

The aim of this chapter is to provide theory and methodology for Lagrangian
dual approaches for solving mixed-integer linear optimization problems, when
stated as mixed-binary problems.1 It covers Lagrangian duality theory for mixed-
binary linear optimization, generalizations of classical dual subgradient algorithms,
cutting-plane methods, and (fractional) approximations of primal solutions from
ergodic sequences, as well as the recovery of primal integer solutions. The chapter
summarizes a research stream on subgradient methods for nondifferentiable opti-
mization applications accomplished by the authors over two decades. While being
based on a series of articles by the authors and co authors, some of the results
presented here are, however, hitherto unpublished.

A strong motive for using Lagrangian dual methods in many applications
of discrete and combinatorial optimization is that such problems may often be
viewed as relatively easily solvable problems (being commonly highly structured)
to which a number of complicating side constraints are added. An example is
the (asymmetric) traveling salesperson problem, which can be viewed as that of
finding a least cost trip assignment subject to subtour eliminating side constraints.
In a Lagrangian dual method appropriate prices are assigned to the side constraints
which then are included in the objective function. A solution to the resulting simpler
problem yields a lower bound on the optimal value of the original problem, but
does usually not fulfill the relaxed constraints. The prices are iteratively improved
by means of some updating rule in an attempt to find prices such that the relaxed
constraints become ’optimally fulfilled’, that is, such that an optimal solution to the
original problem is obtained. In discrete optimization, however, such prices usually
do not exist.

Lagrangian dual methods are nevertheless increasingly popular tools in dis-
crete optimization. Among their merits are their flexibility and applicability to
many different problem structures and their ease of implementation. They also
often produce higher lower bounds on the optimal value than does a continuous
(linear programming) relaxation.2 Lagrangian dual methods are most often used
successfully in combination with other discrete optimization methodologies, such as
branch-and-bound algorithms—within which they provide lower bounds —, local
search methods, and primal heuristics. Among the latter, a popular combination is
Lagrangian heuristics, which combine Lagrangian dual schemes with manipulations
of primal infeasible solutions, aiming at producing near optimal and primal feasible
solutions.

1Note that any mixed-integer optimization problem can be transformed into a mixed-binary
optimization problem with a finite number of binary variables, provided that the feasible region
for the original integer variables is bounded.
2One must add, however, that it requires solving a convex and nondifferentiable optimization
problem, which may be quite nontrivial.
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We consider a Lagrangian dual approach for solving mixed-binary linear opti-
mization problems. We outline the properties of the Lagrangian dual problem, its
relations to the primal mixed-binary problem, and its optimality conditions. Further,
primal–dual optimality conditions are presented, both for a convexified primal
problem and for the mixed-binary problem.

It is described how the dual problem can be solved by means of a simple
conditional subgradient optimization method. For this general method, we provide a
convergence result for an ergodic (averaged) sequence of solutions to the Lagrangian
subproblems. The ergodic sequence is constructed in the same manner as done in
[44, 60] for the case of convex optimization, and which establishes that the ergodic
sequences in the limit produce optimal solutions to the original problem. Here,
however, we establish that the sequences accumulate at solutions to a convexified
version of the original mixed-binary optimization problem.

We further present a cutting-plane approach to the Lagrangian dual problem;
it amounts to solving the convexified problem utilizing Dantzig–Wolfe decom-
position, that is, column generation with the columns being associated with the
solutions to the Lagrangian subproblems. Then we describe an approach to generate
high quality initial columns, obtained from subproblem solutions in a subgradient
optimization method applied—in a prediction phase—to the Lagrangian dual.

In the following section, we present a Lagrangian dual approach to find feasible
and near optimal solutions to mixed-binary optimization problems utilizing

(1) a Lagrangian heuristic based on the ergodic sequences,
(2) a core problem, which is constructed based on information from the ergodic

sequences, and
(3) the ergodic sequences to guide the branching in a branch-and-bound method.

The chapter is then concluded with an extensive section with notes, references,
historical downturns and further reading tips.

15.2 Mixed-Binary Linear Optimization and Its Convexified
Counterpart

We consider a general mixed-binary linear optimization problem. In our presenta-
tion and the derivation of methods to follow, the feasible set is described as the
intersection of two sets. One set is characterized by general, explicit linear inequality
constraints, which are to be Lagrangian relaxed. The other set is implicit and may
be a Cartesian product set, resulting in one or several separable subproblems in
the solution procedure(s); our description is general in that each subproblem may
contain solely continuous, solely binary, or mixed variables.
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Our mixed-binary linear optimization problem is defined as

z∗ := min
xb,xc

cb
?xb + cc

?xc (15.1a)

subject to Abxb + Acxc ≥ b, (15.1b)

(x?b , x?c )? ∈ X, (15.1c)

where z∗ denotes the optimal value, cb ∈ R
nb , cc ∈ R

nc , Ab ∈ R
m×nb , Ac ∈ R

m×nc ,
b ∈ R

m, and nb, nc,m ∈ Z+. The set X := {
(x?b , x?c )? ∈ {0, 1}nb × R

nc+ |Dbxb +
Dcxc ≥ d

}
, where Db ∈ R

k×nb , Dc ∈ R
k×nc , d ∈ R

k , and k ∈ Z+, is assumed
to be nonempty and bounded. By defining x := (x?b , x?c )?, c := (c?b , c?c )?, A :=
(Ab, Ac), D := (Db,Dc), and n := nb + nc, the optimization problem (15.1) can
be equivalently expressed as3

z∗ := min
x

c?x, (15.2a)

subject to Ax ≥ b, (15.2b)

x ∈ X, (15.2c)

where X = {
x ∈ {0, 1}nb × R

nc+ |Dx ≥ d
}
. We generally assume that the mixed-

binary linear optimization problem is feasible, that is, that { x ∈ X |Ax ≥ b } �= ∅
holds, and denote by X∗ := argminx∈X

{
c?x |Ax ≥ b

}
its nonempty solution set.

By denoting an extreme point of the convex hull of the set X with xq and letting
Q be an index set for all such points, the convex hull can be expressed as

Xconv := convX = conv
q∈Q

{
xq

}
. (15.3)

Any extreme point to Xconv can be expressed as xq = ((x
q
b)
?, (xqc )?)?, where

x
q
b ∈ {0, 1}nb and x

q
c is an extreme point to the nonempty polyhedral set

Xc(x
q

b) :=
{

xc ∈ R
nc+

∣
∣ Dcxc ≥ d −Dbx

q

b

}
, q ∈ Q.

The linear programming (LP) relaxation of the set X is expressed as

XLP :=
{
(x?b , x?c )? ∈ [0, 1]nb ×R

nc+ |Dbxb +Dcxc ≥ d
}

(15.4a)

= {
x ∈ [0, 1]nb × R

nc+ |Dx ≥ d
}
. (15.4b)

3The notation in (15.1) and (15.2) will be used interchangeably throughout this chapter.
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It holds that X ⊆ Xconv ⊆ XLP. Replacing the set X in (15.2c) with its convex hull
Xconv results in the linear optimization problem defined as

z∗conv := min
x

{
c?x

∣
∣
∣ Ax ≥ b; x ∈ Xconv

}
≤ z∗. (15.5)

By assumption, the set { x ∈ Xconv |Ax ≥ b } is nonempty and bounded. We let
X∗conv denote the solution set to the optimization problem (15.5). Replacing the set
X in (15.2c) by XLP yields

z∗LP := min
x

{
c?x

∣
∣
∣ Ax ≥ b; x ∈ XLP

}
≤ z∗conv, (15.6)

and we let X∗LP denote the solution set to the optimization problem (15.6).
For the case when the set XLP possesses the integrality property with respect to

the binary variables, that is, when all its extreme points have only integer valued
variables xb, the equality Xconv = XLP holds, implying the equality z∗conv = z∗LP.

Remark 15.1 In many applications, the set X is a Cartesian product set, here
denoted by X := Y1 × Y2 × . . . × YS = ×s∈SYs , where S = {1, . . . , S}.
It is then assumed that each set Ys ⊂ {0, 1}nb,s × R

nc,s is defined over binary
and/or continuous variables ys , such that (y?1 , . . . , y?S )? ≡ x, and such that the
relations nb,s, nc,s ∈ Z+, s ∈ S,

∑
s∈S nb,s = nb, and

∑
s∈S nc,s = nc hold. The

optimization problem (15.2) is then expressed as

z∗ := min
ys ,s∈S

∑

s∈S
c?s ys (15.7a)

subject to
∑

s∈S
Asys ≥ b, (15.7b)

ys ∈ Ys, s ∈ S, (15.7c)

where cs ∈ R
ns , As ∈ R

m×ns , and ns = nb,s + nc,s , s ∈ S. The constraints
(15.7b) are said to be coupling, since relaxing them will result in a Lagrangian
subproblem that separates into one minimization problem for each s ∈ S. The
integrality property may be considered for each of the sets Ys , as needed/being
relevant.

15.2.1 The Lagrangian Dual

The Lagrange function L : Rn × R
m 2→ R with respect to the relaxation of the

constraints (15.1b) by means of the price vector u ∈ R
m+, also called dual variables
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or (Lagrangian or dual ) multipliers, is defined as

L(x,u) := c?x + u?(b − Ax).

Its minimization over x ∈ X determines the Lagrangian dual function h : Rm 2→ R,
as defined by

h(u) := min
x∈X L(x,u) = b?u+min

x∈X

{ (
c − A?u

)?
x

}

= b?u+ min
q∈Q

{ (
c − A?u

)?
xq

}
. (15.8)

The function h is formed by the point wise minimum over |Q| affine functions,
and it is therefore piecewise affine and concave, hence continuous but generally
not everywhere differentiable. Letting X(u) and Q(u) denote the optimal set to the
respective inner minimization problem—the so-called Lagrangian subproblem or
Lagrangian relaxed problem—in (15.8), the following relations hold:

X(u) = argmin
x∈X

{(
c − A?u

)?
x
}
=

{
xq

}

q∈Q(u)
; (15.9a)

Xconv(u) := convX(u) = argmin
x∈Xconv

{(
c − A?u

)?
x
}
= conv

q∈Q(u)

{
xq

}
. (15.9b)

The expression for X(u) in (15.9a) can always be replaced by its convexified
version Xconv(u) in (15.9b), since for any linear objective there is an optimal
extreme point to the set Xconv that is also optimal with respect to the set X.

By weak duality, the inequality h(u) ≤ c?x holds whenever u ∈ R
m+ and x =

(x?b , x?c )? is feasible in (15.2) [and, consequently, in (15.1)]. In order to find the
best possible underestimate of z∗, the prices u should be chosen as to maximize the
Lagrangian dual function, that is, to solve the Lagrangian dual problem defined as

h∗ := max
u∈Rm+

h(u). (15.10)

The problem (15.10) is a convex optimization problem having a concave and gen-
erally nondifferentiable objective function. By the assumption that the polyhedron
{x ∈ Xconv |Ax ≥ b } is nonempty, also the optimal set of (15.10)—denoted U∗—
is nonempty and polyhedral. Thus, by weak duality, the inequality h∗ ≤ z∗ holds.
For most mixed-binary linear optimization problems, however, it holds that h∗ < z∗,
that is, the duality gap z∗ − h∗ is nonzero.
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Using the transformations in (15.8) along with a LP dualization, the Lagrangian
dual (15.10) can be reformulated according to

h∗ = max
u

{
b?u+ min

q∈Q
{ (

c − A?u
)?

xq
} ∣

∣
∣ u ∈ R

m+
}

(15.11a)

= max
u, v

{
b?u+ v

∣
∣
∣
(
Axq

)?
u+ v ≤ c?xq , q ∈ Q; u ∈ R

m+; v ∈ R

}
(15.11b)

= min
λ

⎧
⎨

⎩

∑

q∈Q

(
c?xq

)
λq

∣∣
∣
∣
∣
∣

∑

q∈Q

(
Axq

)
λq ≥ b;

∑

q∈Q
λq = 1; λq ≥ 0, q ∈ Q

⎫
⎬

⎭

(15.11c)

= min
x, λ

⎧
⎨

⎩
c?x

∣
∣
∣∣
∣
∣
Ax ≥ b; x =

∑

q∈Q
λqx

q ;
∑

q∈Q
λq = 1; λq ≥ 0, q ∈ Q

⎫
⎬

⎭

(15.11d)

= min
x

{
c?x

∣
∣
∣ Ax ≥ b; x ∈ Xconv

}
= z∗conv. (15.11e)

In summary, the above derivations of primal–dual connections imply the follow-
ing weak and strong duality relations for the problems (15.1), (15.2), (15.5), (15.6),
and (15.10):

z∗ ≥ z∗conv = h∗ ≥ z∗LP.

For typical—as well as the most interesting—applications of Lagrangian dualization
the straightforward continuous relaxation of the set X does, however, not result in
a set XLP [defined in (15.4)] having integer extreme points. Hence, although the
equality z∗conv = z∗LP may hold, typically Xconv ⊂ XLP holds [Xconv being defined
in (15.3)], which—in practice—most often implies the strict inequality z∗conv > z∗LP.

15.2.2 Optimality Conditions for the Convexified Problem

In order to derive optimality conditions for the convexified optimization problem
(15.5) and, eventually, also for the original optimization problem (15.1) [or (15.2)],
we first define the subdifferential of the concave function h at u ∈ R

m as

∂h(u) :=
{

γ ∈ R
m

∣
∣
∣ h(v) ≤ h(u)+ γ?(v − u), v ∈ R

m
}
,

the elements of which are called subgradients. The following characterization of the
subdifferential holds for any Lagrangian dual objective function.
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Proposition 15.1 (Subdifferential of the Dual Objective Function) For each u ∈
R
m, it holds that ∂h(u) = { b−Ax | x ∈ Xconv(u) } = conv{ b−Axq | q ∈ Q(u) }.

The function h is differentiable at u if and only if ∂h(u) is a singleton set, that is, if
and only if b−Ax is constant on Xconv(u), in which case ∇h(u) = b−Ax for any
x ∈ Xconv(u).4

The normal cone to the set Rm+ at u ∈ R
m is defined as

NR
m+(u) :=

⎧
⎨

⎩

{
ν ∈ R

m | ν?(v − u) ≤ 0, v ∈ R
m+

}

= {
ν ∈ R

m− | ν?u = 0
}
, u ∈ R

m+,
∅ , u /∈ R

m+.

Letting ei denote the i-th unit column, NR
m+(u) = cone {−ei | ui = 0, i ∈

{ 1, . . . ,m } } holds for u ∈ R
m+. The conditional subdifferential of h at u ∈ R

m+,
the elements of which will be referred to as conditional subgradients, is in our
Lagrangian dual setting then defined as

∂R
m+h(u) : =

{
γ ∈ R

m
∣∣
∣ h(v) ≤ h(u)+ γ?(v − u), v ∈ R

m+
}

= ∂h(u)−NR
m+(u) (15.12)

= conv
{
b − Axq | q ∈ Q(u)

}+ cone
{
ei | ui = 0, i ∈ { 1, . . . ,m }}.

Clearly, ∂R
m+h(u) ⊇ ∂h(u) holds for all u ∈ R

m+. The next proposition is immediate.

Proposition 15.2 (Properties of the Conditional Subdifferential) The condi-
tional subdifferential ∂R

m+h(u) is nonempty, closed and convex for all u ∈ R
m+.

Further, ∂R
m+h(u) is unbounded whenever u ∈ bdRm+.

Proposition 15.3 (Properties of the Lagrangian Dual) The following statements
are equivalent.

(i) the Lagrangian dual problem (15.10) has a bounded optimal solution;
(ii) 000 ∈ ⋃

u∈Rm+ ∂
R
m+h(u);

(iii) { x ∈ Xconv | Ax ≥ b } �= ∅.

The optimality conditions for the Lagrangian dual (15.10) are expressed as
follows.

Proposition 15.4 (Optimality Conditions for the Lagrangian Dual Problem) A
dual vector u ∈ R

m+ is optimal, that is, u ∈ U∗, if and only if ∂h(u)−NR
m+(u) 5 000,

or equivalently, ∂h(u)∩NR
m+(u) �= ∅, that is, if and only if there exists a γ ∈ ∂h(u)

such that γ ≤ 000 and u?γ = 0 hold.

4While Proposition 15.1 implies that the function h is differentiable at u ∈ R
m if the set Xconv(u)

is a singleton, the opposite, however, does not hold in general.
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Further, subgradients that verify the optimality of dual solutions correspond to
optimal solutions to the convexified primal problem (15.11e), as expressed below.

Proposition 15.5 (Primal–Dual Optimality Conditions for the Convexified
Problem) Let (x,u) ∈ Xconv × R

m+. Then (x,u) ∈ X∗conv × U∗ if and only
if x ∈ Xconv(u) and b − Ax ∈ ∂h(u) ∩ NR

m+(u) hold, that is, if and only if

x ∈ Xconv(u), Ax ≥ b, and u?(b − Ax) = 0 hold.

As is well known, a primal–dual pair (x,u) ∈ Xconv×R
m+ satisfies the conditions

of the proposition exactly when it is a saddle point of the Lagrange function L with
respect to Xconv ×R

m+:

L(x,u) ≤ L(x,u) ≤ L(x,u), u ∈ R
m+, x ∈ Xconv. (15.13)

The mapping ∂h ∩ NR
m+ is constant on the dual solution set U∗. Hence,

irrespective of the choice of dual solution u∗ ∈ U∗ the solution set to the primal
problem (15.11e) may be expressed as

X∗conv =
{

x ∈ Xconv(u
∗)

∣
∣
∣Ax ≥ b; (

u∗
)?

(Ax − b) = 0
}
. (15.14)

In the typical situation, the subproblem solution set Xconv(u
∗) is not a singleton,

the dual objective function is nonsmooth on U∗, and finding a subgradient that
verifies dual optimality is computationally expensive. Further, since not all points
in Xconv(u

∗) are optimal in the primal problem,5 finding a point x ∈ X∗conv is
nontrivial; this phenomenon is referred to as non-coordinability, and is relevant both
when the original problem is an LP or a mixed-binary linear optimization problem.

15.2.3 Conditions for Optimality and Near Optimality of
Mixed-Binary Linear Optimization Problems

The optimality conditions in Proposition 15.5 and the characterization in (15.14)
can be constructed because of the convexity of the problem (15.5), which yields
that strong duality, that is, h∗ = z∗conv holds. For the nonconvex mixed-binary linear
optimization problem (15.2), for which h∗ ≤ z∗ (and typically h∗ < z∗) holds, these
conditions can be generalized through a well-defined relaxation.

5Usually, some points in Xconv(u
∗) are infeasible in (15.2), while others are feasible but non-

optimal.
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Proposition 15.6 (Primal–Dual Optimality Conditions for Mixed-Binary Lin-
ear Optimization) Let (x,u) ∈ X×R

m+. Then (x,u) ∈ X∗ ×U∗ if and only if the
following system is consistent:

Ax ≥ b, (15.15a)

c?x + u?(b − Ax) ≤ h(u)+ ε, (15.15b)

−u?(b − Ax) ≤ δ, (15.15c)

ε + δ ≤ z∗ − h∗, (15.15d)

ε, δ ≥ 0. (15.15e)

The conditions stated in Proposition 15.6 characterize primal–dual optimal solutions
through five properties:

(i) primal feasibility [x ∈ X and (15.15a)];
(ii) dual feasibility [u ∈ R

m+];
(iii) Lagrangian ε-optimality [(15.15b)];
(iv) a relaxed (δ-)complementarity [(15.15c)];
(v) a bounded sum of nonnegative perturbations [(15.15d)–(15.15e)].

The combination of the inequalities in (15.15) with the condition (x,u) ∈ X ×
R
m+ leads to the equality ε+ δ = z∗ −h∗ being fulfilled. Further, the system (15.15)

is consistent for the primal–dual pair (x,u) ∈ X×R
m+ if and only if the inequalities

L(x,u)− (z∗ − h∗)+ ε ≤ L(x,u) ≤ L(x,u)+ ε (15.16)

hold for all u ∈ R
m+ and all x ∈ X, and for some ε ∈ [0, z∗ − h∗], meaning that

(x,u) is a near saddle point to the Lagrange function L. For a zero duality gap, that
is, when z∗ = h∗, the conditions (15.15) reduce to those stated in Proposition 15.5
while the near saddle point property (15.16) reduces to that of an ordinary saddle
point, that is, (15.13).

Using the conditions (15.15) and an optimal Lagrangian dual solution u∗ ∈ U∗,
the optimal set of the mixed-binary linear optimization problem (15.2) is given by

X∗ =
⋃

δ=z∗−h∗−ε
ε∈[0, z∗−h∗]

{
x ∈ X

∣∣
∣Ax ≥ b; c?x − h∗ − ε ≤ −(u∗)?(b − Ax) ≤ δ

}
.

(15.17)

We define, for any u ∈ R
m+, the sets of ε-optimal [cf. (15.9a)] and δ-

complementary solutions to the Lagrangian subproblem by the following expres-
sions:

X
opt
ε (u) :=

{
x ∈ X ∣

∣ c?x + u?(b − Ax) ≤ h(u)+ ε
}
, ε ≥ 0,
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X
comp
δ (u) :=

{
x ∈ X ∣

∣ − u?(b − Ax) ≤ δ
}
, δ ≥ 0.

The set X∗, as formulated in (15.17), can then for any u∗ ∈ U∗ be expressed as

X∗ =
⋃

ε∈[0, z∗−h∗]

{
x ∈ Xopt

ε (u∗)
∣
∣∣ Ax ≥ b; −(u∗)?(b − Ax) ≤ z∗ − h∗ − ε

}

(15.18a)

=
⋃

ε∈[0, z∗−h∗]

{
x ∈ Xopt

ε (u∗) ∩Xcomp
z∗−h∗−ε(u

∗)
∣
∣∣ Ax ≥ b

}
, (15.18b)

where (15.18a) is derived as a generalization of (15.14).
Given an optimal dual solution, the conditions in the expression (15.14) can, in

principle, be used to calculate an optimal solution to the convexified problem (15.5).
In contrast, given an optimal dual solution, the conditions in the expressions (15.17)
and (15.18) are in general not instrumental for finding optimal solutions to the
problem (15.2), because the size of the duality gap z∗− h∗ is unknown.

The characterizations (15.17) and (15.18) can be generalized to allow for
non-optimal choices of u ∈ R

m+ and to describe near optimal solutions to the
problem (15.2). For this purpose, we introduce the functions ε, δ : X ×R

m+ 2→ R,
defined by

ε(x,u) := c?x + u?(b − Ax)− h(u), (15.19a)

and

δ(x,u) := −u?(b − Ax). (15.19b)

It holds that ε(x,u) ≥ 0 when x ∈ X, and that δ(x,u) ≥ 0 when u ∈ R
m+ andAx ≥

b. For any primal–dual pair (x,u) ∈ X×R
m+, (15.19) can be used to characterize the

ε-optimality and the δ-complementarity of a solution xappr(u) that is near optimal in
the Lagrangian subproblem (15.9a) and feasible in the primal problem (15.2), that
is, values of ε ≥ 0 and δ ≥ 0 such that xappr(u) is included in the sets Xopt

ε (u) =
{ x ∈ X | ε(x,u) ≤ ε } and Xcomp

δ (u) = { x ∈ X | δ(x,u) ≤ δ }, respectively. Then,
for u ∈ R

m+ and β ≥ 0, the set of β-optimal solutions to the problem (15.2) can be
expressed as

X∗β :=
{

x ∈ X
∣
∣∣Ax ≥ b; c?x ≤ z∗ + β

}
(15.20a)

= {
x ∈ X ∣

∣Ax ≥ b; ε(x,u)+ δ(x,u) ≤ z∗ − h(u)+ β
}

(15.20b)

=
{

x ∈ Xopt
ε (u) ∩Xcomp

δ (u)

∣
∣
∣Ax ≥ b; ε + δ ≤ z∗− h(u)+ β; ε, δ ≥ 0

}
.

(15.20c)
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In particular, it holds that X∗0 = X∗. Further, for β = 0 and any u ∈ U∗, the
characterizations (15.17)–(15.18) are recovered.

Neither of the characterizations in (15.20) are practically useful for solving the
problem (15.2), since the optimal value z∗ is unknown, but it suggests a heuristic
principle for searching for near optimal solutions. Given any value of u ∈ R

m+
[preferably being (near) optimal in the Lagrangian dual (15.10)], a point x ∈ X

such that Ax ≥ b holds and such that the values of ε(x,u) and δ(x,u) are both
small, should be sought, that is, a primal feasible solution that is ε-optimal and
δ-complementary, with small values of ε ≥ 0 and δ ≥ 0. A natural starting
point for such a heuristic search is a Lagrangian subproblem solution x(u) ∈
X

opt
0 (u) = X(u) [for which ε(x(u),u) = 0 holds], and the search should typically

be restricted to the set X. The search should then strive for primal feasibility with
respect to Ax ≥ b, while maintaining small values of ε(x,u) and δ(x,u). This
heuristic principle has shown to be effective for finding near optimal solutions
for applications where the problem (15.2) possesses specific structures that can be
exploited in a search which strive for primal feasibility.

Remark 15.2 In the case when the constraints (15.2b) are instead equalities,
δ(x,u) = 0 holds for any primal feasible solution. The characterization (15.20b)
then reduces to

X∗β =
{
x ∈ X ∣

∣Ax = b; ε(x,u) ≤ z∗ − h(u)+ β
}
,

that is, primal feasibility and ε-optimality in the Lagrangian relaxed problem. In
particular, then X∗ = { x ∈ X |Ax = b; ε(x,u) ≤ z∗ − h(u) }. It follows that
Ax �= b must hold for any x ∈ X such that ε(x,u) < z∗ − h(u). Hence, a solution
x ∈ X is optimal in (15.2) if and only if it is the most near optimal solution in
the Lagrangian subproblem that is fulfills the relaxed constraints. This observation
implies that (15.2) can be solved by enumerating elements of X with respect to
increasing values of ε(x,u), whence the first one found that fulfills Ax = b is
therefore also optimal.

For the case of inequality constraints in the problem (15.2), only

X∗ ⊆ {
x ∈ X ∣

∣Ax ≥ b; ε(x,u) ≤ z∗ − h(u)
}

holds, and there is no guarantee that a feasible solution with a minimal value of
ε(x,u) is optimal, since the corresponding value of δ(x,u) may be large [while an
optimal solution may have a large value of ε(x,u) and a small value of δ(x,u)]. If,
however, an upper bound z ≥ z∗ is at hand, by enumerating all elements in the set
{x ∈ X |Ax ≥ b; ε(x,u) ≤ z − h(u) } an optimal solution to (15.2) will be found.
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15.3 Conditional Subgradient Optimization

This section presents a generalization of subgradient optimization for solving a
Lagrangian dual problem to utilize conditional subgradients. We discuss a particular
choice of conditional subgradients, obtained through Euclidean projections, which
leads to an easily implementable modification of traditional subgradient optimiza-
tion schemes. Computational experiments have shown that the resulting subgradient
projection method performs better than traditional subgradient optimization; in
some cases the difference is considerable. This generalization of subgradient opti-
mization is especially advantageous in the context of Lagrangian duals possessing
many nonnegativity constraints, onto which Euclidean projections are simple. The
section further presents a computationally cheap scheme for generating ergodic
sequences of subproblem solutions and which is shown to converge to the optimal
set of the convexified problem (15.5). This scheme is then enhanced, in terms of
faster convergence to the optimal set. The section is then concluded by a heuristic
scheme for the finite generation of feasible solutions that are ε-optimal, for an
arbitrary ε > 0.

15.3.1 Basic Convergence in the Lagrangian Dual Problem

We consider solving the Lagrangian dual problem (15.10) by the conditional
subgradient optimization method, which is given by the following. Choose a starting
solution u0 ∈ R

m+ and compute iterates ut , t = 0, 1, . . ., according to

ut+
1
2 = ut + αt

(
b − Ax(ut )− ν(ut )

)
, ut+1 = [

ut+
1
2
]
+, (15.21)

where x(ut ) ∈ X(ut ) solves the Lagrangian subproblem in (15.9) at ut ∈ R
m+,

so that b − Ax(ut ) ∈ ∂h(ut ) is a subgradient to h at ut , ν(ut ) ∈ NR
m+(u

t ) is an
element of the normal cone of Rm+ at ut , αt > 0 is the step length chosen at iteration
t , and [·]+ denotes the Euclidean projection onto the nonnegative orthant Rm+. Note
that b − Ax(ut ) − ν(ut ) ∈ ∂R

m+h(ut ), that is, the step direction belongs to the
conditional subdifferential, defined in (15.12).

If { ν(ut ) } := {000}, then the method (15.21) reduces to the traditional subgradient
optimization method.

The choices ν(ut ) := argminv∈N
R
m+ (u

t ) ‖ v − (b − Ax(ut )) ‖, where ‖ · ‖
denotes the Euclidean norm, define a special case of the method (15.21) called the
subgradient projection method, which uses a feasible direction from every ut ∈ R

m+,
as

bi −Aix(u
t )− νi(u

t ) =
{[

bi −Aix(u
t )

]
+ , if uti = 0,

bi −Aix(u
t ) , if uti > 0,

i = 1, . . . ,m,

(15.22)
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here bi /Ai /νi(·) denotes the i-th element/row of the vector/matrix b/A/ν(·).
Due to the nondifferentiability of the Lagrangian dual objective function, subgra-

dient based optimization methods cannot rely on a one dimensional maximization
for determining the step length in each iteration. Instead, to ensure convergence
of the sequence of dual iterates to optimality, the step lengths must be computed
according to a (typically predefined) rule. We next present convergence results
for the method (15.21) under different step length rules. The first assures that the
sequence of dual iterates tends to the set of solutions to the Lagrangian dual.

Theorem 15.1 (Convergence to the Solution Set by Divergent Series Step
Lengths) Let the method (15.21) be applied to the problem (15.10), with the
sequence { αt } of step lengths fulfilling the divergent series conditions

αt > 0, t = 0, 1, 2, . . . , (15.23a)

αt → 0, as t →∞, (15.23b)

and

{
t−1∑

s=0

αs

}

→∞, as t →∞. (15.23c)

If the sequence { ν(ut ) } is bounded then it holds that { h(ut ) } → h∗ and{
minu∈U∗ ‖u− ut ‖ } → 0 as t →∞.

Proof We show that the iterates will eventually belong to an arbitrarily small
neighbourhood of the set of solutions to (15.10).

Let δ > 0 be arbitrary and define Bδ := {u ∈ R
m | ‖u‖ ≤ δ }. Since the function

h is piecewise affine and concave, the set Rm+ is nonempty, closed and convex, and
the set U∗ is nonempty and polyhedral, there exists an ε > 0 such that the level set
Uε := {u ∈ R

m+ | h(u) ≥ h∗ − ε } fulfills Uε ⊆ U∗ + Bδ/2. Further, the sequence
{ b−Ax(ut )− ν(ut ) } is bounded and αt → 0. Hence, there exists an Nδ such that
αt ‖ b−Ax(ut )− ν(ut ) ‖2 ≤ ε and αt ‖ b−Ax(ut )− ν(ut ) ‖ ≤ δ/2 for all t ≥ Nδ .

The sequel of the proof is based on induction. First we show that there exists a
tδ ≥ Nδ such that utδ ∈ U∗ + Bδ . Then, we establish that if the inclusion ut ∈
U∗ + Bδ holds for some value t ≥ Nδ , then also ut+1 ∈ U∗ + Bδ .

For an arbitrary u∗ ∈ U∗, in each iteration t of the method (15.21) the relations

∥∥
∥u∗ − ut+1

∥∥
∥

2 =
∥∥
∥u∗ − [

ut + αt
(
b − Ax(ut )− ν(ut )

)]
+

∥∥
∥

2
(15.24)

≤ ∥
∥u∗ − ut − αt

(
b − Ax(ut )− ν(ut )

) ∥
∥2

= ∥
∥u∗ − ut

∥
∥2 − 2αt

(
b − Ax(ut )− ν(ut )

)?(
u∗ − ut

)

+ α2
t

∥
∥ b − Ax(ut )− ν(ut )

∥
∥2
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hold, where the inequality follows from the projection property.6 Now suppose that,
for all s ≥ Nδ , the inequality

2
(
b − Ax(us )− ν(us )

)?(
u∗ − us

)− αs
∥
∥ b − Ax(us)− ν(us )

∥
∥2

> ε

(15.25)

holds. Then by telescoping (15.24), we obtain that for every t ≥ Nδ , the inequality

∥
∥
∥u∗ − ut+1

∥
∥
∥

2
<

∥
∥
∥u∗ − uNδ

∥
∥
∥

2 − ε

t∑

s=Nδ

αs,

holds. Then, from (15.23c) it follows that the right-hand-side of this inequality tends
to −∞ as t →∞, which is clearly impossible. Therefore, the inequality

2
(
b − Ax(ut )− ν(ut )

)?(
u∗ − ut

)− αt
∥
∥ b − Ax(ut )− ν(ut )

∥
∥2 ≤ ε (15.26)

must hold for at least one iteration t = tδ ≥ Nδ . By definition of Nδ the inequality
αtδ‖ b − Ax(utδ ) − ν(utδ ) ‖2 ≤ ε holds, which together with (15.26) implies the
inequality (b−Ax(utδ )−ν(utδ ))?(u∗−utδ ) ≤ ε. Since u∗,utδ ∈ R

m+, the definition
(15.12) implies the inequality h(u∗)−h(utδ ) ≤ (b−Ax(utδ )− ν(utδ ))?(u∗ −utδ ).
Hence, it holds that h(utδ ) ≥ h∗ − ε, that is, utδ ∈ Uε ⊆ U∗ + Bδ/2 ⊂ U∗ + Bδ .

Now, suppose that ut ∈ U∗ +Bδ for some t ≥ Nδ . If (15.25) holds, then (15.24)
implies the inequality ‖u∗ − ut+1 ‖ < ‖u∗ − ut ‖ for any u∗ ∈ U∗. Defining the
Euclidean projection of ut onto U∗ as utproj := argminu∈U∗ ‖u−ut‖ then yields the
inequalities

∥
∥
∥ut+1

proj − ut+1
∥
∥
∥ ≤

∥
∥
∥utproj − ut+1

∥
∥
∥ <

∥
∥
∥utproj − ut

∥
∥
∥ ≤ δ, t = 0, 1, . . . ,

which imply the inclusion ut+1 ∈ U∗ + Bδ . Otherwise, (15.26) must hold and,
using the same arguments as above, we obtain the inequality h(ut ) ≥ h∗ − ε, that
is, ut ∈ Uε ⊆ U∗ + Bδ/2. Since the relations

∥
∥∥ut+1 − ut

∥
∥∥ =

∥
∥∥

[
ut + αt

(
b − Ax(ut )− ν(ut )

)]
+ − ut

∥
∥∥

≤ ∥
∥ut + αt

(
b − Ax(ut )− ν(ut )

)− ut
∥
∥

= αt
∥
∥ b − Ax(ut )− ν(ut )

∥
∥ ≤ δ

2

hold whenever t ≥ Nδ , it follows that ut+1 ∈ U∗ + Bδ/2 + Bδ/2 = U∗ + Bδ .
We conclude that, in either case, whenever t ≥ Nδ , ut ∈ U∗ + Bδ implies that
ut+1 ∈ U∗ + Bδ .

6The projection property states that for any vectors v,w ∈ R
m and any convex set U ⊆ R

m, the
inequality

∥∥argminu∈U ‖u− v‖ − argminu∈U ‖u− w‖∥∥ ≤ ‖v − w‖ holds.
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By induction with respect to t ≥ tδ , it follows that ut ∈ U∗ + Bδ for all t ≥ tδ .
Since this holds for arbitrarily small values of δ > 0 and since the function h is
continuous, the theorem follows. ��

By requiring also that the sum of squared step lengths is convergent it is ensured
that the sequence of dual iterates accumulates at a point in the dual solution set.

Theorem 15.2 (Convergence to a Solution by Quadratically Convergent Diver-
gent Series Step Lengths) Let the method (15.21) be applied to the problem
(15.10), with the step lengths αt fulfilling the conditions (15.23) as well as

{
t−1∑

s=0

α2
s

}

→ p, as t →∞, (15.27)

where p <∞. If the sequence { ν(ut ) } is bounded, then {ut } → u∞ ∈ U∗.
Proof Let u∗ ∈ U∗ be arbitrary and let t ≥ 1. Telescoping (15.24) yields the
inequality

∥
∥u∗ − ut

∥
∥2 ≤

∥
∥∥u∗ − u0

∥
∥∥

2 − 2
t−1∑

s=0

αs
(
b − Ax(us )− ν(us )

)? (
u∗ − us

)

+
t−1∑

s=0

α2
s

∥∥ b − Ax(us)− ν(us )
∥∥2
. (15.28)

Since u∗ ∈ U∗, us ∈ R
m+, and b − Ax(us ) − ν(us) ∈ ∂R

m+h(us) for all s ≥ 0 we
obtain the inequalities

h(us) ≤ h(u∗) ≤ h(us )+ (
b − Ax(us )− ν(us)

)? (
u∗ − us

)
, (15.29)

and hence that the inequality
(
b − Ax(us ) − ν(us )

)?
(u∗ − us) ≥ 0 holds for

all s ≥ 0. We define c := supt { ‖ b − Ax(ut ) − ν(ut ) ‖ }, so that the inequality
‖ b − Ax(us)− ν(us) ‖ ≤ c holds for all s ≥ 0. From (15.27) and (15.23a) follow
that

∑t−1
s=0 α

2
s < p for all t ≥ 1. By inserting this in (15.28), we then conclude that

‖u∗ − ut ‖2 < ‖u∗ − u0 ‖2 + pc2 for any t ≥ 1; it follows that the sequence {ut }
is bounded.

Assume now that there is no subsequence T such that { (b − Ax(ut ) −
ν(ut ))?(u∗ − ut ) }t∈T → 0. Then, there exists an ε > 0 and a tε > 1 such
that the inequality

(
b − Ax(us ) − ν(us )

)?
(u∗ − us) ≥ ε for all s ≥ tε . By

(15.28) and (15.23c) then follow that { ‖u∗ − ut ‖ } → −∞, which is clearly
impossible. Therefore, there is a subsequence T such that { (b − Ax(ut ) −
ν(ut ))?(u∗ − ut ) }t∈T → 0. From (15.29) then follows that { h(ut ) }t∈T → h∗.
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The boundedness of the sequence {ut } implies the existence of an accumulation
point of the subsequence {ut }t∈T , say u∞, and by the continuity of h then follows
that u∞ ∈ U∗.

To show that u∞ is the only accumulation point of the sequence {ut }, let δ > 0
and choose an Nδ ≥ 0 such that the inequalities ‖u∞ − uNδ‖2 ≤ δ/2 and∑∞

s=Nδ
α2
s ≤ δ/(2c2) hold. Consider any t > Nδ . Analogously to the derivation

of (15.28), and using (15.29), we then obtain that

∥
∥u∞ − ut

∥
∥2 ≤

∥
∥
∥u∞ − uNδ

∥
∥
∥

2 +
t−1∑

s=Nδ

α2
s

∥
∥ b − Ax(us)− ν(us)

∥
∥2

<
δ

2
+ δ

2c2 c
2 = δ.

Since this holds for arbitrarily small values of δ > 0, the theorem follows. ��
In subgradient optimization, the important Polyak step length rule has doc-

umented practical usefulness. Convergence to an optimal solution with this step
length rule relies on the optimal objective value h∗. This result extends to the case
of the conditional subgradient optimization method (15.21), for which the Polyak
step length formula is defined by

αt := θt
(
h∗ − h(ut )

)

‖ b − Ax(ut )− ν(ut ) ‖2 , 0 < ε1 ≤ θt ≤ 2− ε2 < 2, t = 0, 1, 2, . . .

(15.30)

Proposition 15.7 (Convergence to a Solution by Polyak Step Lengths) Let the
method (15.21) be applied to the problem (15.10), with the step lengths αt fulfilling
the conditions (15.30). If the sequence { ν(ut ) } is bounded, then { h(ut ) } → h∗ and
{ut } → u∞ ∈ U∗.
Remark 15.3 With step lengths defined by (15.30), the case of subgradient projec-
tion according to (15.22) yields actual steps in (15.21) (that is, ut+1 − ut ) that are
longer, as compared with the case of plain subgradients, that is, when { νt } ≡ {000 }
holds.

For an ε > h − h∗ ≥ 0, finite convergence to ε-optimality can be achieved by
replacing h∗ in (15.30) by an upper bound h ≥ h∗ and letting θt ≡ 1.

Proposition 15.8 (Finite ε-Optimality by Polyak Step Lengths) Let the method
(15.21) be applied to the problem (15.10), with the step lengths { αt } defined by

αt := θt
(
h− h(ut )

)

‖ b − Ax(ut )− ν(ut ) ‖2
, t = 0, 1, 2, . . . , (15.31)
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where θt ≡ 1 and h > h∗. If the sequence { ν(ut ) } is bounded, then for any ε > 0,
there is a tε > 0 such that h(utε ) ≥ 2h∗ − h− ε.

Our results to follow in Sect. 15.3.2—on ergodic convergence to a primal sol-
ution—rely on the divergent series conditions (15.23), (15.27) on the step lengths in
the method (15.21). By ensuring that the sequence { αt } fulfills the conditions

a

b + t
≤ αt ≤ a

b + t
, 0 < a ≤ a, b > 0, t = 0, 1, . . . , (15.32)

convergence in terms of Theorem 15.2 can, however, be shown.7

Corollary 15.1 (Convergence to a Solution by Generalized Harmonic Series
Step Lengths) Let the method (15.21), where the sequence { αt } fulfills (15.32),
be applied to the problem (15.10). If the sequence { ν(ut ) } is bounded, then
{ut } → u∞ ∈ U∗ hold.

15.3.2 Ergodic Convergence in the Primal Problem

The conditional subgradient optimization method (15.21) constructs a sequence
{ x(ut ) } of solutions to the Lagrangian subproblem (15.9). Due to the non-
coordinability of the Lagrangian subproblem (see Sect. 15.2.2) this sequence is,
however, not convergent. We propose a scheme for generating an ergodic sequence
of subproblem solutions, which is shown to converge to the solution set X∗conv. The
generation of the ergodic sequence is computationally cheap and its storage requires
a relatively small amount of memory. The sequence is defined by convexity weights
that are proportional to the step lengths αt ; the latter requirement is then generalized
and improved.

From Propositions 15.2 and 15.4 follow that the set ∂h(u∞) ∩ NR
m+(u

∞) is
nonempty. The next proposition establishes that the sequence { b − Ax(ut ) } of
subgradients to the dual objective function converges in an ergodic sense to an
element that verifies optimality of the Lagrangian dual, in terms of Proposition 15.4.

Proposition 15.9 (Ergodic Subgradients Converge to the Optimality-Verifying
Set) Apply the method (15.21), (15.23) to the problem (15.10) and define the
sequence

{
gt

}
as

gt := 1
∑t−1

s=0 αs

t−1∑

s=0

αs
(
b − Ax(us)

)
, t = 1, 2, . . .

If the sequence { ν(ut ) } is bounded, then
{

minγ∈∂h(u∞)∩N
R
m+ (u

∞) ‖ γ − gt ‖ } → 0.

7For any sequence {αt } of step lengths as defined in (15.31) [or according to (15.23), (15.27)],
there exists constants a, a, and b such that the conditions (15.32) are fulfilled.
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The ergodic sequence
{
xt

}
is then defined as weighted averages (that is, convex

combinations) of the subproblem solutions found up to iteration t of (15.21), as

xt := 1
∑t−1

s=0 αs

t−1∑

s=0

αsx(u
s), t = 1, 2, . . . (15.33)

The convergence of the sequence { xt } to the set X∗conv, as expressed in (15.14),
is then established in terms of fulfilment of the optimality conditions in Proposi-
tion 15.5.

Theorem 15.3 ({ xt } Converges to the Optimal Set of the Convexified Problem)
Let the method (15.21), (15.23) be applied to the problem (15.10), the set X∗conv and
the sequence { xt } be given by (15.14) and (15.33), respectively, and suppose that
the sequence { ν(ut ) } is bounded. Then,

{
minx∈X∗conv

‖ x − xt ‖ } → 0.

Efficient updates of the ergodic iterates xt requires only the previous ergodic
iterate xt−1 and subproblem solution x(ut−1), according to the convex combination

xt :=
∑t−1

s=0 αs − αt−1
∑t−1

s=0 αs
xt−1 + αt−1

∑t−1
s=0 αs

x(ut−1), t = 2, 3, . . . (15.34)

with x1 := x(u0).

15.3.3 Enhanced Primal Ergodic Convergence

The convergence of the ergodic sequence of subproblem solutions according to
Theorem 15.3 is, however, typically very slow. Efforts have therefore been put
into enhancing the convergence speed, by exploiting more information from later
subproblem solutions than from earlier ones. We next present a more general pattern
for constructing the ergodic sequences; the ergodic sequence { x̃t } is defined by

x̃t :=
t−1∑

s=0

μtsx(u
s );

t−1∑

s=0

μts = 1; μts ≥ 0, s = 0, . . . , t − 1,

(15.35)

where the convexity weights μts are defined as

μts := γ ts αs, s = 0, . . . , t − 1, t = 1, 2, . . . , (15.36a)
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and the parameters γ ts fulfil the requirements (N > 0 being a constant)

γ ts ≥ γ ts−1, s = 1, . . . , t − 1, t = 2, 3, . . . ,

(15.36b)
{

max
s∈{1,...,t−1}

{
γ ts − γ ts−1

}
}
→ 0, as t →∞, (15.36c)

γ t0 → 0, as t →∞, (15.36d)

γ tt−1 ≤ N, t = 1, 2, . . . (15.36e)

The requirement (15.36b), together with the definition (15.36a), implies the inequal-
ity μts (μ

t
s−1)

−1 ≥ αs (αs−1)
−1, which means that the ratio of any two consecutive

convexity weights should be no less than that of the corresponding step lengths.
The requirement (15.36c) implies that the difference between consecutive pairs of
subsequent convexity weights tends to zero as t increases, meaning that no primal
iterate may be completely neglected. The requirement (15.36d) implies, however,
that the weight (that is, μt0) of the first iterate [that is, x(u0)] tends to zero when
t increases. The requirements (15.36e), (15.36d), and (15.36b) assure that, for
decreasing step lengths αs , the convexity weights μts decrease at a rate not slower
than that of the step lengths. Efficient updates of the ergodic iterates x̃t can be made,
analogously to (15.34).

Theorem 15.4 ({ x̃t } Converges to the Optimal Set of the Convexified Problem)
Apply the method (15.21), (15.23), (15.27) to the problem (15.10) and define the set
X∗conv and the sequence { x̃t } by (15.14) and (15.35), (15.36), respectively. If the
sequence { ν(ut ) } is bounded, then

{
minx∈X∗conv

‖ x − x̃t ‖ } → 0.

Remark 15.4 For any fixed value of s ∈ {0, . . . , t − 1}, the requirements (15.36b)–
(15.36e) imply that γ ts ≤ γ t0 + s ·maxr∈{1,...,t−1}

{
γ tr −γ tr−1

} → 0 as t →∞. This
yields that μts = γ ts αs → 0 as t →∞, since αs <∞, s = 0, 1, . . .

Remark 15.5 The ergodic sequence {xt }, defined in (15.33), is equivalent to the
special case of (15.35), (15.36) defined by γ ts :=

( ∑t−1
r=0 αr

)−1 (being independent
of s). For this choice of { γ ts }, the requirements (15.36b)–(15.36e) are fulfilled with
N := (α0)

−1.

Remark 15.6 For the special case of (15.35), (15.36) given by (15.32) with a :=
a = a, that is, modified harmonic series step lengths

αs := a

b + s
, a > 0, b > 0, s = 0, 1, . . . , t − 1, (15.37)

and choosing γ ts := (tαs )
−1, the convexity weights become μts = t−1 (then, x̃t

equals a simple average of the subproblem solutions found). For these choices of
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{ γ ts } and { αs }, the requirements (15.36b)–(15.36e) are fulfilled, with N := a−1 ·
max { b, 1 }.

By choosing the step lengths αt according to (15.37) and letting the sequence
{μts } of convexity weights fulfil the requirements

μts ≥ μts−1, s = 1, . . . , t − 1, t = 2, 3, . . . ,

(15.38a)
{
t · max

s∈{1,...,t−1}
{
μts − μts−1

}}→ 0, as t →∞, (15.38b)

t μtt−1 ≤ M, t = 1, 2, . . . , (15.38c)

where M > 0 is a constant, it can be shown that also the requirements (15.36b)–
(15.36e) are fulfilled, with N = a−1M ·max{ b, 1 }.

The so-called sk-rule, for which the corresponding convexity weights, μts , fulfill
the requirements (15.38), is defined by

μts :=
(s + 1)k

∑t−1
r=0(r + 1)k

, s = 0, . . . , t − 1, t = 1, 2, . . . , k ≥ 0.

(15.39)

For k > 0, the sk-rule results in an ergodic sequence (15.35) in which the later
iterates are assigned higher weights than the earlier ones. For larger values of k, the
weights are shifted towards later iterates. Given that step lengths αt according to
(15.37) are utilized in the method (15.21) applied to the Lagrangian dual (15.10), it
can be shown that weights according to (15.39) fulfill the requirements (15.38), so
that convergence for the resulting primal ergodic sequence { x̃t } to the optimal set
X∗conv can be established.

Remark 15.7 Note that the s0-rule yields μts = t−1 [cf. Remark 15.6, where γ ts =
(tαs)

−1]. For k > 0, the sk-rule results in an ergodic sequence in which later iterates
are assigned higher weights than earlier ones. For larger values of k, the weights are
shifted towards increasingly later iterates.

Remark 15.8 Since the conditional subgradient optimization method (15.21) is
memory-less, without loss of generality the computation of the ergodic sequences
{ xt }, {gt }, and { x̃t } may be postponed a finite number of iterations. If the
postponement is “long enough”, each xt (or x̃t ) will be a solution to the Lagrangian
subproblem at the optimal dual point u∞, as defined in Theorem 15.2.
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15.3.4 Finite Primal Feasibility and Finite ε-Optimality

Theorem 15.3 establishes optimality in the limit for the sequence { xt }. While
dual feasibility holds for the sequence {ut }, in general neither primal feasibility
(that is, Axt ≥ b) nor complementarity [that is, (ut )?(b − Axt ) = 0] will
be finitely satisfied. Eventually, however, xt will be both near feasible and near
complementary. Whenever finite primal feasibility is required, a procedure can be
applied that converts any xt into a feasible solution to (15.5), for example, by
computing the Euclidean projection of xt onto the feasible set, as

xtproj := argmin
x∈Xconv

{ ∥
∥ x − xt

∥
∥

∣
∣ Ax ≥ b

}
. (15.40)

Solving (15.40) regularly may, however, be computationally too expensive. Instead,
we consider a heuristic procedure, preferably exploiting the structure of the set { x ∈
Xconv |Ax ≥ b } in the search for a feasible and near optimal solution to (15.40).
Let the function δ : R+ 2→ R+ be continuous and such that δ(β) > 0 whenever
β > 0 and limβ→0+ δ(β) = 0. Define a heuristic projection xtheur of xt ∈ Xconv by
the inclusion

xtheur ∈
{
x ∈ Xconv |Ax ≥ b

}
, (15.41a)

and such that
∥∥
∥ xtheur − xtproj

∥∥
∥ ≤ δ(β) whenever

∥∥
∥ xt − xtproj

∥∥
∥ ≤ β. (15.41b)

Theorem 15.5 (Convergence to Primal Optimality by Heuristic Projections)
Let the method (15.21), (15.23), (15.27) be applied to the problem (15.10). Let
the set X∗conv and the sequences { xt }, { xtproj }, and { xtheur } be defined by (15.14),
(15.33), (15.40), and (15.41a), respectively. If the sequence { ν(ut ) } is bounded and
the conditions (15.41b) hold, then

{
minx∈X∗conv

‖ x − xtheur ‖
}→ 0.

We can now construct an algorithm employing heuristic projections and yielding
convergence to the optimal value in both the primal and dual procedures.

Corollary 15.2 (Finite Termination at ε-Optimality) Given the assumptions of
Theorem 15.5, for every ε > 0 there is a tε > 0 such that c?xtheur−h(ut ) ≤ ε holds
for all t ≥ tε .

This projection principle is thus a way to recover primal feasibility, and
eventually also optimality, in an otherwise purely dual method.
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15.4 Dual Cutting-Planes: Dantzig–Wolfe Decomposition

Assuming that a nonempty subset Q ⊆ Q is given, the Lagrangian dual function is
outer approximated by the function h : Rm 2→ R as defined by

h(u) := b?u+ min
q∈Q

{ (
c − A?u

)?
xq

}
. (15.42)

This function is formed by the point-wise minimum of
∣
∣Q

∣
∣ affine functions. Hence,

it is piecewise affine and concave, as is the Lagrangian dual function h. Clearly,
h(u) ≥ h(u) holds for any u ∈ R

m. Hence, the problem

h
∗ := max

u∈Rm+
h(u), (15.43)

is a relaxation of the Lagrangian dual problem (15.10), so that h
∗ ≥ h∗ holds. The

subdifferential of the function h at u is given by

∂h(u) := conv
q∈Q(u)

{
b − Axq

}
, u ∈ R

m+,

where Q(u) denotes the optimal index set of the inner minimization in (15.42), and
its conditional subdifferential is given by

∂R
m+h(u) = ∂h(u)−NR

m+(u), u ∈ R
m+.

The relaxed dual problem (15.43) has a bounded optimal solution if and only if

000 ∈
⋃

u∈Rm+

∂R
m+h(u). (15.44)

Remark 15.9 A sufficient condition for the relaxed Lagrangian dual problem
(15.43) to have a bounded optimal solution is that some point xq , q ∈ Q, is feasible
in the original mixed-binary linear optimization problem (15.2), since this implies
that

h
∗ = max

u∈Rm+

{
min
q∈Q

{
c?xq + u?

(
b − Axq

)}
}

≤ max
u∈Rm+

{
c?xq + u?

(
b − Axq

) }

= c?xq

holds, where the second equality holds because Axq ≥ b.
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Assuming that the condition (15.44) holds, we find a u ∈ R
m+ such that the

inclusion 000 ∈ ∂R
m+h(u) holds, implying that u is optimal in (15.42). Hence, h

∗ =
h(u) holds. The value of the Lagrangian dual function at this point is

h(u) = b?u+min
x∈X

{ (
c − A?u

)?
x

}
= b?u+ min

q∈Q

{ (
c − A?u

)?
xq

}
.

From the Lagrangian dual problem (15.10) we conclude that h(u) ≤ h∗. To
summarize, the relations h(u) ≤ h∗ ≤ h

∗
hold, that is, the values h

∗
and h(u)

provide upper and lower bounds, respectively, on the optimal value h∗.
If the equality h(u) = h

∗
holds, it follows that h(u) = h∗, implying that u is

optimal in (15.10). In the case when h(u) < h
∗

holds, we consider any solution to
the minimization in (15.8) for u = u, which we denote by xq , where q ∈ Q(u),
such that h(u) = b?u+ (

c − A?u
)?

xq holds. Then, the relations

b?u+ (
c − A?u

)?
xq < h

∗ = b?u+ min
q∈Q

{ (
c − A?u

)?
xq

}

hold, which yields that q /∈ Q. By then augmenting the set Q with the index q,
an improved outer approximation of the Lagrangian dual function is obtained. By
resolving the problem (15.43) and repeating, an iterative procedure for solving the
Lagrangian dual problem (15.10) is obtained. Its convergence is finite, since the set
Q is finite and since a point xq can never be regenerated.

The above procedure is commonly described as a cutting-plane or constraint
generation procedure for the LP formulation (15.11b) of the Lagrangian dual
problem. This formulation can be restated as

h∗ = max
(u,v)∈Rm+×R

{
b?u+ v

∣
∣ c?xq − (

Axq
)?

u− v ≥ 0, q ∈ Q
}
. (15.45)

Let (u, v) ∈ R
m+ × R be optimal in the relaxed problem

h
∗ = max

(u,v)∈Rm+×R

{
b?u+ v

∣
∣ c?xq − (

Axq
)?

u− v ≥ 0, q ∈ Q
}
. (15.46)

Then h
∗ = b?u + v. The question then is if all constraints in the problem (15.45)

are satisfied or not at the point (u, v) = (u, v). This is determined by finding the
most violated constraint, if any, and amounts to solving

min
q∈Q

{
c?xq − (

Axq
)?

u− v
}
= min

q∈Q

{
b?u+ (

c − A?u
)?

xq − h
∗ }

= b?u+ (
c − A?u

)?
xq − h

∗

= h(u)− h
∗
, (15.47)
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where xq ∈ X(u) solves the minimization in (15.8) at u = u. If the minimum value
h(u)−h∗ is negative, then a most violated constraint has been identified. Otherwise,
h(u) = h

∗
holds and u ∈ R

m+ solves the dual problem (15.10).
The dual cutting-plane procedure sketched above is dually equivalent to applying

Dantzig–Wolfe decomposition to the convexified problem (15.5), which by the
reformulation (15.11c) is equivalent to the complete Dantzig–Wolfe master problem

min
λ

⎧
⎨

⎩

∑

q∈Q

(
c?xq

)
λq

∣
∣
∣
∣∣
∣

∑

q∈Q

(
Axq

)
λq ≥ b;

∑

q∈Q
λq = 1; λq ≥ 0, q ∈ Q

⎫
⎬

⎭
,

(15.48)

while also being the LP dual of the problem (15.45). Since

Xconv =
⎧
⎨

⎩
x =

∑

q∈Q
λqx

q

∣
∣
∣
∣∣
∣

∑

q∈Q
λq = 1; λq ≥ 0, q ∈ Q

⎫
⎬

⎭

holds, the variables λq in (15.48) are commonly referred to as convexity variables
and the equality

∑
q∈Q λq = 1 as a convexity constraint. In Dantzig–Wolfe

decomposition, this problem is solved using the linear programming technique
called column generation, in which, for this application, a column corresponds to
the data of a convexity variable, that is, the values of the scalar c?xq , the vector
Axq , and a 1.

Using the analogous reformulation as in (15.11), we obtain

h
∗ = max

u∈Rm+

{
b?u+ min

q∈Q

{ (
c − A?u

)?
xq

}}
(15.49a)

= min
λ

⎧
⎨

⎩

∑

q∈Q

(
c?xq

)
λq

∣∣
∣
∣
∣
∣

∑

q∈Q

(
Axq

)
λq ≥ b;

∑

q∈Q
λq = 1; λq ≥ 0, q ∈ Q

⎫
⎬

⎭

(15.49b)

= min
x

{
c?x

∣
∣
∣Ax ≥ b; x ∈ conv

q∈Q
{
xq

}
}
. (15.49c)

The problem (15.49b) is the restricted Dantzig–Wolfe master problem, referring
to the fact that this problem includes the variables λq , with the corresponding

columns
(
c?xq, (Axq)?, 1

)?
, only for q ∈ Q ⊆ Q, which is clearly equivalent

to imposing the restrictions λq = 0 for q ∈ Q \Q in (15.48).
Let (u, v) ∈ R

m+ × R be an optimal solution to the LP dual of the restricted
master problem. Using strong duality for LP, it then holds that h

∗ = b?u + v. The
LP reduced cost for any variable λq , q ∈ Q, in the complete master problem can



524 A.-B. Strömberg et al.

then be expressed as

cq := c?xq − u?Axq − v = b?u+
(
c − A?u

)?
xq − h

∗
.

The problem of finding the variable λq , q ∈ Q, with the most negative reduced cost
reduces to find

min
q∈Q

{ (
c − A?u

)?
xq

}
= min

x∈X

{ (
c − A?u

)?
x

}
, (15.50)

which is in this context known as a column generation problem, or Dantzig–Wolfe
subproblem. If the solution to (15.50) corresponds to a negative reduced cost cq < 0,
q ∈ Q,8 then Q := Q ∪ {

q
}

and the problem (15.49b) is resolved. When no more
columns having negative reduced costs can be found, which clearly occurs finitely,
the convexified problem (15.5) has been solved.

Note that the problem (15.50) is equivalent to that of finding the most violated
cutting-plane in the dual space [cf. (15.47)], since each constraint in the cutting-
plane formulation of the Lagrangian dual corresponds to a convexity variable in
the master problem. Note also that relaxing the dual problem (15.45) into (15.46) is
dually equivalent to restricting the complete Dantzig–Wolfe master problem (15.48)
into (15.49b).

Remark 15.10 Many textbooks derive the Dantzig–Wolfe decomposition method
for an LP problem with two sets of explicit affine constraints, in our notation
corresponding to Ax ≥ b and x ∈ Xconv. The method can, however, be applied
also when no explicit representation of the set Xconv in terms of affine constraints is
available, as long as the subproblem (15.50) can be solved by some means.

Remark 15.11 If the mixed-binary linear optimization problem (15.2) has a Carte-
sian product structure, as in Remark 15.1, then a separate set of convexity variables
and a convexity constraint can be defined for each of the sets in the product. Letting
{yqs }q∈Qs

denote the extreme points of convYs , s ∈ S, the complete Dantzig–Wolfe
master problem for the problem (15.7) becomes

z∗ = min
λsq , q∈Qs, s∈S

∑

s∈S

∑

q∈Qs

(
c?s y

q
s

)
λsq (15.51a)

subject to
∑

s∈S

∑

q∈Qs

(
Asy

q
s

)
λsq ≥ b , (15.51b)

8It then holds that q ∈ Q \Q, since cq ≥ 0 holds for all q ∈ Q.
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∑

q∈Qs

λsq = 1, s ∈ S, (15.51c)

λsq ≥ 0, q ∈ Qs , s ∈ S. (15.51d)

When applying column generation to the master problem (15.51), there will be one
Dantzig–Wolfe subproblem for each s ∈ S.

Since each vector ys , s ∈ S, is here described by a separate set of convexity
variables, the master problem (15.51) is based on a disaggregate representation,
while the master problem (15.48) is based on an aggregate representation. Whenever
the feasible set of the original problem (15.2) is described by a Cartesian product
set and coupling constraints, as in (15.7), a disaggregate representation is typically
favourable. This is due to (1) that the disaggregate and aggregate complete master
problems contain

∑
s∈S |Qs | and

∏
s∈S |Qs | convexity variables, respectively, and

(2) that a disaggregate restricted master problem is a relaxation of the corresponding
aggregate restricted master problem, and hence the former typically provides
stronger bounds on z∗.

15.5 A Two-Phase Method: Subgradient Optimization
and Dantzig–Wolfe Decomposition

Subgradient optimization and Dantzig–Wolfe decomposition as means for solving
the Lagrangian dual problem (15.10) possess their distinct advantages and disad-
vantages, which are consequences of the nondifferentiability of the Lagrangian dual
function and the inherent properties of these solution principles.

In subgradient optimization, the update of the dual iterate is inexpensive once the
Lagrangian relaxed problem has been solved. The method lacks, however, a good
termination criterion, and in practice it is therefore often run for a preset number of
iterations. Further, primal feasible solutions are typically not easily obtained, neither
to the mixed-binary linear optimization problem (15.2) nor to its convexified version
(15.5). It is, however, quite common to use a Lagrangian heuristic—tailored to
each specific application—to convert Lagrangian subproblem solutions into feasible
solutions to the original mixed-binary problem.

Dantzig–Wolfe decomposition converges finitely and produces feasible solutions
to the convexified problem (15.5). The latter property allows early termination
when the upper and lower bounds on the optimal value of (15.5) are close enough.
Each iteration of the method is, however, expensive, since the next dual iterate
is found by reoptimizing the LP restricted master problem. Further, due to the
inherent instability of cutting-plane approaches, the method typically shows a
poor convergence behaviour, in the sense that successive dual iterates may be
very far apart. This phenomenon is commonly prevented by the introduction of a
stabilization mechanism, such as trust regions in the dual space.



526 A.-B. Strömberg et al.

Another way to improve a Dantzig–Wolfe decomposition scheme is to heuristi-
cally generate an initial set of columns of high quality. We here describe a specific
means to generate such columns, leading to a two-phase method that benefits from
the advantages of both subgradient optimization and Dantzig–Wolfe decomposition.
A first prediction phase employs subgradient optimization, in which Lagrangian
subproblem solutions are stored. At termination, a lower bound on the optimal value
of the convexified problem as well as a number of Lagrangian subproblem solutions
are at hand. A second solution phase uses these solutions to construct an initial
restricted master problem, whereafter the Dantzig–Wolfe method is employed.

The prediction phase aims at setting up a high quality initial restricted master
problem, such that the solution phase can attain and verify optimality in fewer
column generations. If the prediction phase works perfectly, then it is enough to
solve one restricted master problem and make one column generation in order to
reach and verify optimality. Hence, the solution phase can alternatively be viewed
as an evaluation of the outcome of the prediction phase, and if needed compensate
for its shortcoming. The rationale for the prediction phase is that the subgradient
optimization method asymptotically finds columns that are optimal in the complete
master problem, if the step lengths are appropriately chosen, as demonstrated below.

We consider solving the problem (15.10) by using the conditional subgradient
method (15.21), with a sequence { ν(ut ) } that is bounded and with step lengths
αt fulfilling the conditions (15.23) and (15.27), such that the assumptions of
Theorem 15.2 are fulfilled. This method will then in the limit find a dual solution
u∞, such that (u∞, v∞) is optimal in the LP dual (15.45) of the complete master
problem (15.48).

Define the index sets

Tq :=
{
t ∈ Z+

∣
∣x(ut ) = xq

}
, q ∈ Q,

and

Q̂ := {
q ∈ Q

∣
∣ Tq is infinite

} ⊆ Q,

that is, Q̂ contains the indices q ∈ Q such that xq solves the Lagrangian subproblem
an infinite number of times. Consider then the corresponding restricted master
problem

ĥ∗ := min
λ

⎧
⎨

⎩

∑

q∈Q̂

(
c?xq

)
λq

∣
∣
∣∣
∣
∣

∑

q∈Q̂

(
Axq

)
λq ≥ b;

∑

q∈Q̂
λq = 1; λq ≥ 0, q ∈ Q̂

⎫
⎬

⎭
.

(15.52)

Theorem 15.6 (Asymptotic Generation of Optimal Columns) Let the method
(15.21) be applied to the problem (15.10), with the step lengths { αt } fulfilling the
conditions (15.23) and (15.27), and assume that the sequence { ν(ut ) } is bounded.
Then ĥ∗ = h∗ holds.
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Further, let u∞ ∈ U∗ be the limit point for the sequence {ut } (cf. Theorem 15.2)
and let v = v∞ be optimal in (15.45) given that u = u∞, so that (u∞, v∞)
is an optimal dual solution to the complete master problem (15.48). For each
Lagrangian subproblem solution x(ut ), t ∈ Z+, define the reduced cost ct :=
c?x(ut ) − (u∞)?Ax(ut ) − v∞. Then c̄t = 0 holds for every t that is sufficiently
large.

Proof Consider the ergodic sequence
{
xt

}
of subproblem solutions given by

(15.33), that is, xt =
(∑t−1

s=0 αs

)−1 ∑t−1
s=0 αsx(u

s), t = 1, 2, . . . Define the

convexity weights

λtq :=
1

∑t−1
s=0 αs

∑

s∈T t
q

αs, q ∈ Q, t = 1, 2, . . . , (15.53)

where T t
q := { s ∈ {0, 1, . . . , t − 1} | x(us ) = xq }, q ∈ Q, t = 1, 2, . . . Clearly,

λtq ≥ 0, q ∈ Q, and
∑

q∈Q λtq = 1 hold for t = 1, 2, . . . Then, the ergodic solution
xt can alternatively be expressed as the convex combination

xt =
∑

q∈Q
λtqx

q, t = 1, 2, . . . (15.54)

The sequence { λt }∞t=1, where λt := (
λtq

)
q∈Q, is contained in the unit simplex

in R
|Q|, in which it thus has some accumulation point, say λ. The sequence { xt }

then has an accumulation point at x := ∑
q∈Q λqx

q . From Theorem 15.3 follows

that x ∈ X∗conv must hold, which implies that λ is optimal in the complete master
problem (15.48).

For any q /∈ Q̂, the set Tq is finite and the formula (15.53) together with the
divergent series conditions (15.23) yield that λq = 0 holds. Hence, λ is feasible in
the restricted master problem (15.52). It follows that ĥ∗ = h∗ holds.

From the optimality of (u∞, v∞) in the LP dual (15.45) of the complete master
problem (15.48) follows that

h∗ = b?u∞ + v∞. (15.55)

Since the Lagrangian dual function h is polyhedral, for large enough values of t ,
x(ut ) solves the Lagrangian subproblem at ut as well as at u∞. Hence, it holds that
b − Ax(ut ) ∈ ∂h(ut ) ∩ ∂h(u∞), and it follows that the inequalities

h(u∞) ≤ h(ut )+ (
b − Ax(ut )

)?(
u∞ − ut

)

and

h(ut ) ≤ h(u∞)+ (
b − Ax(ut )

)?(
ut − u∞

)
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hold. By combining these inequalities and simplifying we obtain the equalities

h(u∞) = h(ut )+ (
b − Ax(ut )

)?(
u∞ − ut

)

= c?x(ut )+ (
b − Ax(ut )

)?
ut + (

b − Ax(ut )
)?(

u∞ − ut
)

= c?x(ut )− (
Ax(ut )

)?
u∞ + b?u∞,

which together with the equality (15.55) and h∗ = h(u∞) yield that

c?x(ut )− (
Ax(ut )

)?
u∞ − v∞ = 0

holds when t is large enough. ��
According to Theorem 15.6, all columns that are needed to solve the complete

master problem (15.48) are eventually found in the subgradient optimization. In
case of nondegeneracy at a dual optimum, late iterations will provide exactly the
optimal basic columns of the complete master problem.9 Further, columns found
in the early iterations are never indispensable. These properties justify the use
of subgradient optimization for predicting optimal basic columns before applying
column generation.

In practice, the two-phase method works as follows. In the prediction phase, t̄
subgradient optimization iterations are performed, with step lengths fulfilling the
conditions (15.23) and (15.27). Lagrangian subproblem solutions are collected and
columns in the restricted master problem are constructed from iteration t ≤ t̄ .
Upon termination of this phase, an initial restricted master problem is available.
Thereafter, Dantzig–Wolfe decomposition is used as usual. In order to benefit from
the two-phase method, the Lagrangian relaxed problem must be computationally
cheap in comparison with the restricted master problems, since the prediction phase
involves a relatively large number of subgradient optimization iterations.

Theorem 15.3 suggests an ergodic sequence computed within the subgradient
optimization method (15.21) that asymptotically solves the problem (15.5), and
hence also (15.48). Finitely generated ergodic solutions are, however, typically
infeasible. In contrast, a Dantzig–Wolfe restricted master problem—finitely gener-
ated within the prediction phase—can be used to find feasible near optimal solutions
to (15.5). The key difference is that in the former approach, the primal solution is
defined by (15.54) with the convexity weights given a priori by (15.53), while in the
latter approach the values of the convexity weights are optimized by the restricted
master problem.

9In a degenerate dual optimum, nonbasic columns with zero reduced costs can also be obtained.
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15.6 Recovery of Primal Integer Solutions by Means
of Lagrangian Dual Methods

As an application of Theorem 15.3 we give a partial motivation for the success of
Lagrangian heuristics in cases where the Lagrangian lower bound is strong, that is,
when the difference z∗ − h∗ ≥ 0 is small. We establish that the extent to which one
may expect such heuristics to generate feasible solutions of high quality is governed
by the same factors as those determining the quality of lower bounds. Hence, a
solution strategy that yields a high quality Lagrangian lower bound h∗ = z∗conv ≤ z∗
is also likely to yield a high quality upper bound z ≥ z∗.

15.6.1 Primal Integer Solutions From Lagrangian Heuristics

The basic idea behind Lagrangian heuristics is to use the information obtained from
the Lagrangian dual problem (15.10) to construct feasible solutions to the original
problem (15.2). A Lagrangian heuristic commonly works as follows. It is initiated
at a solution that is feasible with respect to the non-relaxed constraints (15.2c).
This solution is gradually adjusted through a finite number of steps that (1) use
information from the Lagrangian dual problem, (2) retain feasible in the non-relaxed
constraints (15.2c), and (3) strive for feasibility in the relaxed constraints (15.2b).
If the heuristic is successful, the final solution is feasible in (15.2). Lagrangian
heuristics are, however, often not guaranteed to find feasible solutions.

To comply with the required initial feasibility in the non-relaxed con-
straints (15.2c), Lagrangian heuristics are commonly initiated with (near) optimal
solutions to the subproblem in (15.8). Appropriate adjustments of solutions are
necessarily problem specific and range from simple roundings, via elaborate
manipulations of solutions, to solving a mixed-integer linear optimization problem.
The information used from the Lagrangian dual problem is typically a near optimal
dual solution, obtained by, for example, subgradient optimization. The adjustments
made when striving for feasibility in the relaxed constraints (15.2b) are often guided
by a merit function defined by original costs or Lagrangian cost, such that the final
solution, if feasible, is likely also near optimal. The heuristic may also continue
with a local search or meta-heuristic search in the original problem, after feasibility
is reached.

We distinguish between two types of Lagrangian heuristics: conservative and
radical. The latter type allows the solution finally found to be far from optimal in the
subproblem. A radical heuristic can, for example, solve a restriction of the original
problem (e.g., a Benders subproblem), which yields a feasible solution.

In conservative heuristics, which are the more common, the initial solution is
(near) optimal in the subproblem, the adjustments made are local and such that near
optimality in the subproblem is retained, and the number of adjustments is required
to be rather small. Due to these limitations, such a heuristic may produce very good
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feasible solutions, or frequently fail to find feasible solutions, depending on the
characteristics of the original problem and the details of the heuristic.

Initialize a conservative Lagrangian heuristic by a solution x̃ to the subproblem
(15.9). Then, the effect of the adjustments made can be characterized by the
inclusion

xheur(x̃) ∈ {x ∈ X |Ax ≥ b; “the distance ‖ x − x̃ ‖ is small” } . (15.56)

To understand (at least partially) why conservative heuristics can produce very good
feasible solutions, we first recall that x̃ is optimal in a relaxation of the original
problem. Further, in many applications a subproblem solution obtained using a near
optimal Lagrangian dual solution is near feasible in the original problem. Moreover,
if x̃ is near feasible, the adjustments needed to reach feasibility are small, and a
feasible solution xheur(x̃), will indeed be close to the input x̃. Hence, it appears
likely that xheur(x̃) can be near optimal in the original problem. The risk of failure
in a conservative heuristic is due to the adjustments being only local, which may be
insufficient to repair intricate infeasibilities.

As the dual sequence {ut } approaches the set U∗, the ergodic sequence { x̃ t }
will approach the set X∗conv. If the Lagrangian lower bound h∗ is strong, that is, if
the duality gap z∗ − h∗ ≥ 0 is small, the sets X∗conv and X∗ are expected to be
close, in the sense that the value min{ ‖ x − y ‖ ∣

∣ x ∈ X∗conv, y ∈ X∗ } is (relatively)
small. Since the adjustments made to the ergodic primal iterates are quite small, a
heuristic based on the inclusion (15.56) can thus be expected to produce solutions
which are close to the set X∗. If, however, as in classical Lagrangian heuristics, the
subproblem solutions x(ut ) are used as inputs to the heuristic, the above arguments
cannot be used to claim that the resulting point will be close to X∗conv or to X∗. We
thus propose to use the ergodic iterate x̃ t in place of the subproblem solution x(ut ),
as input to the Lagrangian heuristic of Algorithm 15.1; it is based on (15.56), that
is, to find xheur(x̃

t ).

Algorithm 15.1: Lagrangian heuristic for (15.2) utilizing ergodic sequences of
subproblem solutions

Data: u0 ∈ R
m+; t := 0;

Result: a (heuristic) solution xheur to (15.2);
repeat

Compute ut+1 and x(ut+1) according to (15.21), (15.23), (15.27);
t := t + 1;

Update x̃ t+1 according to (15.35) and (15.36) [or (15.38)];

Compute a solution xheur(x̃
t+1) according to (15.56);

until the best solution xheur found is satisfactory in (15.2);
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15.6.2 Approximate Solutions to the Primal Problem via Core
Problems

A common solution strategy for discrete optimization problems is to use some
heuristic, problem adapted technique for predicting optimal values for a (relatively
large) subset of the binary variables, and solve the (relatively small) restriction of
the original problem to the nonfixed variables—the core problem—either exactly or
approximately. The core problem should be constructed with the aim of making
it feasible; an optimal solution to the core problem then yields a feasible and
near optimal solution to the original problem. Whenever the core problem turns
infeasible, previously fixed variables need to be relaxed and reinserted in the core.

Let J ∗
0 ⊆ {1, . . . , nb} and J ∗

1 ⊆ {1, . . . , nb} \ J ∗
0 denote the sets of indices for

the variables in xb which possess the value 0 and 1, respectively, in every optimal
solution to the convexified problem (15.5). Further, let J ∗frac := {1, . . . , nb} \ (J ∗0 ∪
J ∗1 ) denote the complementary index set, corresponding to the variables in xb which
possess a fractional optimal value in at least one optimal solution to (15.5).

For each iteration t in the method (15.21), let x̃ t denote the weighted average
of the solutions to the Lagrangian subproblem (15.8) as defined in (15.35), with
step lengths according to (15.23), (15.27), and the convexity weights fulfilling the
conditions (15.36) or (15.38). For each j ∈ {1, . . . , nb} the value x̃ tb,j ∈ [0, 1] can
then be interpreted as the weighted relative frequency by which the variable xb,j
attains the value 1 in an optimal solution to the subproblem. The following result is
immediate.

Proposition 15.10 (On the Weighted Relative Frequency of Binary Solutions)
It holds that

{
x̃ tb,j

} → 0 for all j ∈ J ∗0 and
{
x̃ tb,j

} → 1 for all j ∈ J ∗
1 . If the

sequence
{
x̃ tb,j

}
accumulates at a point in the open interval (0, 1), then j ∈ J ∗

frac.

Proposition 15.10 motivates the use of the weighted relative frequency of the
binary subproblem solutions as an indicator for the solution to the convexified opti-
mization problem (15.5), as well as for the solution to the original problem (15.1)
[or (15.2)]. For each variable xb,j , j = 1, . . . , nb, we thus define the two threshold
values σ 0

j , σ
1
j ∈ (0, 1

2 ), which are used to define the two approximating sets

J0(σ
0, x̃ t ) :=

{
j ∈ {1, . . . , nb}

∣
∣ x̃ tb,j ≤ σ 0

j

}

and

J1(σ
1, x̃ t ) :=

{
j ∈ {1, . . . , nb}

∣∣ x̃ tb,j ≥ 1− σ 1
j

}
.
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A sequence of core problems—to be utilized in Algorithm 15.2—is then defined by

z∗core(σ
0, σ 1, x̃ t ) := min

xb,xc
c?b xb + c?c xc (15.57a)

subject to (x?b , x?c )? ∈ { x ∈ X |Ax ≥ b }, (15.57b)

xb,j = 0, j ∈ J0(σ
0, x̃ t ), (15.57c)

xb,j = 1, j ∈ J1(σ
1, x̃ t ). (15.57d)

We let xtcore denote a feasible (optimal or approximate) solution to the core problem
(15.57), the value of which—whenever feasible—is an upper bound on the optimal
value, that is, the inequalities c?xtcore ≥ z∗core(σ

0, σ 1, x̃ t ) ≥ z∗ hold. We define
ztcore := mins=0,...,t

{
c?xscore

}
. Since lower bounds h(ut ) ≤ h∗ are given by the

dual iterates ut , a termination criterion can be based on the differences

ztcore − ht ≥ z∗ − h∗ ≥ 0, (15.58)

where ht := maxs=0,...,t {h(us ) } , t = 1, 2, . . .

Algorithm 15.2: Approximate solution of (15.2) from a sequence of core
problems

Data: τ ∈ Z+; ε > z∗ − h∗; σ 0, σ 1 ∈ (0, 1
2 )
nb ; u0 ∈ R

m+; t := 0;
Result: a (approximate) solution xcore to (15.2) [or (15.1)];
repeat

Perform τ iterations of the method (15.21), (15.23), (15.27);
Compute hτ as defined in (15.58);
Compute x̃τ as defined in (15.35) and (15.36) [or (15.38)];
repeat

Decrease the values of σ 0
j and σ 1

j , j = 1, . . . , nb;

Generate the sets J0(σ
0, x̃ τ ) and J1(σ

1, x̃ τ );
until the core problem (15.57) is feasible;
Compute a solution xτcore (exact or approximate) to (15.57);
Update zτcore;
Increase the values of σ 0

j and σ 1
j , j = 1, . . . , nb;

u0 := uτ , t := 0;
until zτcore − hτ ≤ ε, or the solution xτcore is satisfactory in (15.2);

15.6.3 Optimal Solutions via a Branch-and-Bound Framework

We next consider using ergodic sequences to obtain feasible solutions to the problem
(15.2) within a branch-and-bound framework. A subgradient method (15.21) can be
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applied to the Lagrange dual (15.10) of the local linear program corresponding to
each branch-and-bound tree node, yielding

(1) a lower bound on z∗ from a lower estimate of h∗ (that is, from the value of an
approximate solution to the Lagrangian dual of the node problem),

(2) an upper bound on z∗ from feasible solutions to (15.2) constructed using the
subproblem solutions obtained in (15.21), and

(3) a branching decision based on the (approximate) reduced costs obtained in the
dual sequence {ut }.

One drawback of this principle is that it seldom provides a fractional primal
solution, since the subproblem solutions are integer valued. So when aiming for a
breadth-first branching, deciding on which variable to branch on is nontrivial. We
propose a procedure in which the upper bounding (2) and the branching rule (3) are
replaced by measures based on the ergodic iterates x̃ t . The upper bound is obtained
by applying Algorithm 15.1, which provides feasible solutions to the problem
(15.2). The branching rule is based on the ergodic iterate x̃ t obtained from the
method (15.21), (15.23), (15.27), (15.35) and (15.36) [or (15.38)]. Branching can
be done on the variables with values close to binary or close to 1

2 . The optimization
problem addressed in node n of the branch-and-bound tree is then the problem
(15.5), with the additional constraints xb,j = �, j ∈ In� , � ∈ {0, 1}, where the
set In� contains the indices of the variables that have been fixed to � in the parent
node of node n. By defining the set Xn

conv := conv
{
x ∈ X | xb,j = �, j ∈ In� , � ∈{0, 1} } ⊆ Xconv, this linear program can then be expressed as

z∗n := min
x

c?x (15.59a)

subject to Ax ≥ b, (15.59b)

x ∈ Xn
conv. (15.59c)

The branching procedure of Algorithm 15.3 is then applied, where the dual starting
point u0 in step 1 is often chosen as the final point uτ obtained from the subgradient
scheme for the parent node. The search strategy for the branch-and-bound tree can
be defined as, for example, depth-, breadth-, or best lower bound-first.

Algorithm 15.3: Branching decision based on ergodic primal iterates

Data: τ ∈ Z+; u0 ∈ R
m+; t := 0.

Step 1. Apply τ iterations of Algorithm 15.1 to the linear optimization
problem (15.59); this yields lower and upper bounds on z∗n.

Step 2. Based on the lower and upper bounds on z∗, decide whether or not
branching should be performed.

Step 3. Perform a branching based on the ergodic iterate x̃τ : branch on a
variable xb,j with x̃ τb,j close to 1

2 , or close to 0 or 1.
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15.7 Notes and Further Reading

In this section we collect notes regarding the various results presented in the former
sections and review important background material, along with references to the
literature. While mentioning a few of the classic articles in the field of Lagrangian
duality—chosen for their eloquence and pioneer status rather than for representing
the state of the art—we also include a selection of more recent articles in the field—
that we think tie in well with the classics.

Notes on Sect. 15.2.1: The Lagrangian Dual That the Lagrangian dual function
h is piecewise affine and concave is shown in, for example, [11, Proposion 5.1.12].
That the dual optimal setU∗ is nonempty and polyhedral when the feasible set of the
convexified problem (15.5) is nonempty is verified in, for example, [11, Section 5].
When the feasible set of (15.5) is empty, however, the Lagrangian dual (15.10)
is unbounded; conditions for the existence of an optimal Lagrangian dual set are
detailed in [74].

In [31] Everett establishes a theorem for the Lagrangian function, which states
that for a given vector of dual multipliers (not necessarily optimal), the minimization
of the Lagrangian function over the primal variables yields a primal vector that
is globally optimal for a primal problem whose available resources are identical
to those utilized in the primal minimum of the Lagrangian function for the given
multipliers. This result suggests that dual multipliers are near optimal when the
minimum of the corresponding Lagrangian subproblem is near feasible. Brooks and
Geoffrion extend in [15] the analysis in [31] to provide near optimal solutions also
when the original problem may include, for example, integer variables.

In [46, 47] Held and Karp investigate approaches to the symmetric travel-
ing salesperson problem, based on a 1-tree relaxation.10 One seeks prices (i.e.,
multipliers) on the nodes (which, however, appear on the adjacent links) such
that the cheapest 1-tree equals an optimal Hamiltonian cycle. Optimal prices are
derived from the solution of the corresponding Lagrangian dual problem, which
is to maximize the value of the 1-tree. The lower bounds obtained from the dual
procedure are also utilized in a branch-and-bound procedure.

Guignard provides in [39] an extensive introduction to Lagrangean approaches
for the exact or approximate solution of difficult combinatorial optimization prob-
lems. The theme is similar to ours, while it is aimed at less experienced readers.

A quite little studied form of Lagrangian relaxation—not covered by this
chapter—is known as Lagrangian decomposition, or variable splitting; see [40, 53].
It can be applied to mixed-integer linear optimization problems with (at least)
two sets of explicit constraints [in (15.1b), (15.2b), or (15.7b)], such that two
different Lagrangian relaxations are possible. The starting point for this approach
is a problem reformulation in which copies of (a subset of) the primal variables
are introduced, in one of the sets of constraints, together with additional constraints

10A 1-tree is the union of a spanning tree and one additional link.
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that ensure consistency between the original variables and the copies. The consis-
tency constraints are then Lagrangian relaxed. The corresponding Lagrangian dual
problem can yield stronger bounds than both of the two possible straightforward
Lagrangian relaxations of the original problem, provided that neither of the LP
relaxations of the resulting Lagrangian subproblems possesses the integrality
property.

Notes on Sect. 15.2.2: Optimality Conditions for the Convexified Problem
While some literature on nondifferentiable functions (naturally) draw a distinction
between ‘supdifferentials of concave functions’ and ‘subdifferentials of convex
functions’, we use the term subdifferential all through, relying on the readers’
familiarity with the concept.

The subdifferential of a concave function is defined in [11, Definition 3.2.3].
Proposition 15.1 follows from [11, Theorem 6.3.7], the convexity of the set
Xconv, and [64, Theorem 11]. Further, the differentiability property of the dual
function h relying on the singleton property of the set Xconv(u) is depicted in
[11, Theorem 6.3.3]. For a proof of Proposition 15.4, see [11, Theorem 3.4.3].
The saddle point optimality in (15.13) is proven in [11, Theorem 6.2.4], while
Proposition 15.5 follows from [11, Theorem 6.2.5]. In [17, Lemma 2] it is shown
that the composite mapping ∂h ∩ NR

m+ is constant on the solution set U∗. The
definition of the subdifferential of an objective function is in [24, 25] generalized
to take the feasible set into account; in our terminology it is called the conditional
subdifferential. The non-coordinability phenomenon is a consequence of the non-
differentiability of the Lagrangian dual function, which in turn is a consequence of
the linearity of the primal problem. This phenomenon is of interest in economic
systems which are described by linear models and where constant prices are used
as a tool for steering decentralized decisions towards system optimality (e.g., [27]).

Turning to the question of how to exploit the Lagrangian dual problem (15.10) as
a tool for finding an (near) optimal solution to the mixed-binary linear optimization
problem (15.2), the fundamental observation is that the dual problem effectively
solves the convexified primal problem (15.5), that is, finds an element of the solution
set X∗conv. Worth noting, however, is that whether such an element is directly
available or not depends on the solution strategy employed for the dual problem.11

If an (near) optimal, solution to the convexified problem (15.5) is at hand, a simple
strategy to find a mixed-binary feasible solution is to employ rounding, that is, to
systematically round the values of xb in a solution to the convexified problem to
binary values, and adjust the values of xc accordingly, with the aim of reaching
feasibility and near optimality in the original problem (15.2).

Simple rounding procedures are, however, in general inadequate for finding near
optimal or even feasible solutions. A more general idea is randomized rounding (see

11For example, a cutting-plane scheme for the dual problem identifies an element of X∗conv while a
subgradient optimization scheme does not. The key difference is that the former scheme provides,
at termination, an optimal dual solution to the Lagrangian dual problem, that is, an optimal primal
solution, while this is not the case for the latter scheme.
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[78]), which for certain applications works as approximation algorithms. A generic
such technique entails the solution of a continuous relaxation of the original prob-
lem, followed by a randomization scheme to decide whether to round up or down.
The article [12] provides a framework for finding approximate solutions to covering
problems through generic heuristics, all based on rounding (deterministic—using
primal and dual information—or randomized—with nonlinear rounding functions)
of an optimal solution to a LP relaxation. The roundings are applied to several
known, as well as to new, results for the set covering, facility location, general
covering, network design, and cut covering problems. The follow-up article [13]
describes a class of structure exploiting methods to round fractional solutions, by
introducing dependencies in the process. The technique improves approximation
bounds for several problems, including the min-k-SAT problem.

The reader may note that rounding and randomized rounding strategies have in
common with the core problem principle (see Sect. 15.6.2) that they identify and
elaborate with a subset of the original variables, based on primal information (e.g.,
variable values) or dual information (e.g., Lagrangian reduced costs).

Notes on Sect. 15.2.3: Conditions for Optimality and Near Optimality of
Mixed-Binary Linear Optimization Problems The global primal–dual optimal-
ity conditions (15.15) and the equivalent near saddle point condition (15.16) were
introduced in [57], in which also computational results are reported. For examples
of solution methods related to the enumeration principle discussed in Remark 15.2,
see [45] and [21] (constrained shortest path problems), and [20] (train timetabling).

Notes on Sect. 15.3: Conditional Subgradient Optimization Subgradient opti-
mization methods for minimizing non-differentiable convex functions originate
in a work by Shor from 1962; [83] reviews the early history of nonsmooth
optimization. For the case of unconstrained optimization, Ermol’ev established in
[30] the convergence of the method using step lengths according to a divergent
series. Polyak extended in [76, 77] the method to the case of constrained convex
optimization and presented additional convergence results; see also [82, Section 2].
These methods have been frequently and often successfully applied, particularly in
connection with Lagrangian duality; see, for example, [32, 33, 36, 48]. Worth noting
is that subgradient optimization methods are closely related to relaxation methods
for solving systems of linear inequalities; see [37].

The important Polyak step length rule, which has proved to be very useful
in computational practice, was presented in [77]. For the case when the optimal
objective value h∗ is known a priori, convergence to an optimal solution by the
method (15.21) using the step lengths (15.30) was established: the restrictions on the
step length parameter θt guarantee that the distance between the current iterate and
the solution set decreases in every iteration. Finite convergence to a near optimal
point was also established for the case when the optimal value h∗ in (15.30) is
replaced by an estimate h ≥ h∗; this generalization, expressed in (15.31), is the
most commonly used in practice.
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Notes on Sect. 15.3.1: Basic Convergence in the Lagrangian Dual Problem The
conditional subgradient optimization method was presented in [58] (see also [24,
25]) and generalizes the subgradient optimization method; it includes as a special
case the subgradient projection method, as given in (15.22), which has shown a
better practical performance than traditional subgradient methods (see [58]). The
convergence of the method (15.21) was established in [58] for the divergent series
and the Polyak step length rules. The proofs of Theorems 15.1 and 15.2 are special
cases of those given in [58, Theorems 2.6 and 2.7, respectively]. The special case
of subgradient projection is detailed in [58, Section 3]. Proposition 15.7 can be
proven analogously as [77, Theorem 1] adapted to a Lagrangian dual problem,
while Proposition 15.8 follows from [77, Theorem 4]. The condition (15.32) is
referred to as the almost complete relaxation strategy; see [26, Section 3.4] and [58,
Corollary 2.8].

Notes on Sect. 15.3.2: Ergodic Convergence in the Primal Problem The princi-
ple of constructing ergodic sequences of primal subproblem solutions in subgradient
optimization can be traced back a long time; see [82, pp. 117] and [2]. The
results presented here are developed in a series of articles; see [56, 59, 60].
Proposition 15.9 and Theorem 15.3 are special cases of [60, Proposition 5 and
Theorem 1, respectively]. The convergence of sequences of convex combinations
in general relies on a result in [54] and which is described in [44, Lemma 3].

A relative to the principle of constructing ergodic primal solutions, and also to
the two-phase method presented in Sect. 15.5, is the volume algorithm of Barahona
and Anbil in [8]. Referencing the classic works of Held and Karp [46, 47] and Held
et al. [48] on the search for good lower bounds for computationally challenging
large-scale optimization problems, Barahona and Anbil identify the drawback of
not considering the convergence characteristics in the primal space and of the
lack of a natural stopping criterion. While at the outset admitting the lack of
a complete convergence theory, the authors describe a dual scheme, which is
similar to a classic conjugate subgradient method (see [93]), in tandem with a
constructive primal heuristic that mimics the master problem in Dantzig–Wolfe
decomposition. The volume algorithm is applied to large-scale linear optimization
problems arising from continuous relaxations of set partitioning, set covering,
airline crew scheduling, max-cut, and facility location problems. The conclusion
from the numerical experiments is that the more favourable problem instances
are those in which variables are bounded within the interval [0, 1], constraint
coefficients lie in the set { 0, 1,−1 }, and the pricing problem is solvable in linear
time.

Notes on Sect. 15.3.3: Enhanced Primal Ergodic Convergence Ergodic
sequences that exploit more information from later subproblem solutions (as
compared to earlier ones) were first presented in 1996 by Sherali and Choi [81]
for the case of LP; this construction of ergodic sequences was generalized in 2015
by Gustavsson et al. [44] to incorporate also general convex optimization, as well as
refined to the so-called sk-rule. Theorem 15.4 follows from [44, Theorem 1]. The
result that the requirements (15.38) on the convexity weights μts combined with step



538 A.-B. Strömberg et al.

lengths αt according to a modified harmonic series (15.37) imply the requirements
(15.36b)–(15.36e) on the parameters γ ts is established in [44, Proposition 5].
Convergence analyses for the sk-rule are presented in [44], while the delayed
initialization of the ergodic sequences according to Remark 15.8 is detailed in [60,
Section 3, Remark 1].

Notes on Sect. 15.3.4: Finite Primal Feasibility and Finite ε-Optimality The-
orem 15.5 and the finiteness result in Corollary 15.2 are established in [60,
Theorem 3 and Corollary 3, respectively]. Approximate solution of the Lagrangian
subproblems yields directions being ε-subgradients; the resulting conditional ε-
subgradient method is investigated and analysed in [61]. Finiteness results are also
presented in [63], in which the ergodic sequences are generated within a simplicial
decomposition framework for nondifferentiable convex optimization.

A characterization in the case of a possibly inconsistent primal problem (15.5)
is carefully detailed in [74], for the more general case of convex optimization.
Convergence is established of an ergodic sequence of subproblem solutions to a
point in the primal space such that the Euclidean norm of the infeasibility in the
relaxed primal constraints is minimized, while the sequence of dual iterates diverges
along the feasible direction of steepest ascent for the Lagrangian dual function.

Notes on Sect. 15.4: Dual Cutting-Planes: Dantzig–Wolfe Decomposition The
article “Decomposition principle for linear programs” published in 1960 by Dantzig
and Wolfe [23] is a pioneering work on the subject of large-scale optimization and
among the most influential publications in the history of operations research. The
Dantzig–Wolfe decomposition principle is founded on the representation theorem
for polyhedra (e.g., [65, Chapter 3, Theorem 3]), which states that a point belongs
to a polyhedron if and only if it can be expressed as a convex combination of the
polyhedron’s extreme points plus a nonnegative linear combination of its extreme
directions.

Dantzig–Wolfe decomposition is derived from the structure of the constraints
of the linear program. It is assumed that the constraints can be partitioned into
two sets, of which one is (relatively) computationally tractable. The other set of
constraints is deemed complicating; hence these are Lagrangian relaxed—giving
the method’s subproblem—and instead dealt with in a separate linear program—the
restricted master problem. For practical problems Dantzig–Wolfe decomposition
typically exploits a block diagonal structure of the subproblem, which can then
be solved as several separate subproblems. Assuming that the subproblems always
have finite optima, the optimal solutions obtained for different price vectors are—
in the restricted master problem—convex combined, such that the complicating
constraints are optimally utilized, with respect to the problem’s objective function.12

Subject to the usual non-degeneracy assumptions (or means for dealing with degen-

12The case of unbounded subproblem solutions can also be handled, by finding feasible directions
along which the objective value is unbounded and—in the restricted master problem—considering
nonnegative linear combinations of such directions.
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eracy), the convergence is finite; this follows directly from the finite convergence
of the simplex method, of which Dantzig–Wolfe decomposition is, in essence, an
application.

Plenty of variations of this computational scheme are possible. For example, each
subproblem can be terminated at a near optimal solution, as long as this solution is
good enough to ensure some progress in the restricted master problem. Further, the
solution of the restricted master problem can be truncated, as long as some progress
has been made. Further, convergence is ensured even if only the current basis is
maintained in the restricted master problem, in a revised simplex manner.

The extension of the Dantzig–Wolfe decomposition principle to the case of
nonconvex [e.g., (mixed-) integer] or non-linear optimization problems is known
as generalized LP. In [68], a fundamental property of generalized LP is established.
It is shown that for nearly all problems of practical importance, any limit point
of the sequence of dual solutions produced by the algorithm is optimal in the
Lagrangian dual problem of the given, primal, problem. This result holds even if
the generalized LP algorithm does not solve the primal problem, which is typically
the case whenever this problem is nonconvex.

Among the first applications of the Dantzig–Wolfe decomposition principle to a
mixed-integer optimization problem is the work in [29] by Dzielinski and Gomory
from 1965; see also [27, Section 7.2]. They consider a problem of production and
inventory planning, which can be characterized as a time indexed, multi product
economic lot size scheduling problem with common production resources. The
problem is straightforward to model as a mixed-integer optimization problem, but
they instead consider an approximate linear optimization model, which is based on
the work [69] by Manne from 1958 and in which each variable corresponds to a
complete production schedule for a single product. The approximate model can be
regarded as a Dantzig–Wolfe master problem for a convexified version of a mixed-
integer model of the problem. Since the number of possible production schedules
can be huge, column generation is used. The column generation problem (i.e., the
Dantzig–Wolfe subproblem) finds a production schedule for a single product and
can be efficiently solved by the well-known Wagner–Whitin lot-sizing algorithm
(which is a dynamic programming scheme), while the restricted master problem
optimally combines the available production schedules with respect to overall cost
and the common production resources.

In the pioneering two-part work [3, 4] on the application of column generation in
the field of vehicle routing, Appelgren describes column generation approaches to a
ship scheduling problem, obtained from a Swedish ship owning company. The first
article applies the Dantzig–Wolfe decomposition method to the LP relaxation of the
scheduling problem, which—probably thanks to the favourable matrix structure—
achieves solutions that are near integer. In the second article, the column generation
method is combined with a branch-and-bound algorithm, in which the branching
is performed on one of the “essential” fractional variables and the bounds are
obtained by the decomposition algorithm. This combined method was able to solve
all problem instances tested, mostly with one branching only.
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The work by Appelgren is an early predecessor to what is today known as branch-
and-price. (The term price refers to the column generation, i.e., the pricing problem.)
In the article [10] the authors first summarize the relations between branch-and-cut
and branch-and-price for (mixed-) integer optimization problems. In branch-and-
cut, classes of valid inequalities, preferably facets of the convex hull of the set of
feasible solutions, are left out of the LP relaxation, because they comprise far too
many constraints to generate and handle efficiently, and most of them will neither
be binding in an optimal solution. Then, if an optimal solution to a LP relaxation
is infeasible (with respect to integrality restrictions), a subproblem—called the
separation problem—is solved in order to identify violated inequalities in a class. If
one or more violated inequalities are found, some of them are added to the linear
optimization problem, in order to cut off the infeasible solution, followed by its re
optimization. Branching occurs only when no violated inequalities can be found.
Branch-and-cut is thus a generalization of branch-and-bound with LP relaxations,
which allows cutting to be applied throughout the branch-and-bound tree.

The philosophy of branch-and-price resembles that of branch-and-cut, except
that the focus is on column generation instead of row generation. In fact, pricing
and cutting are complementary procedures for tightening a LP relaxation. In branch-
and-price, sets of columns are left out of the LP relaxation because they are far too
many to be generated and handled efficiently, and most of the associated variables
will anyway be zero valued in an optimal solution. To check the optimality of a LP
solution, a subproblem—the pricing problem, which is a separation problem for the
dual linear program—is solved in order to identify columns to enter the basis, and
the linear program is re-optimized. Branching occurs when no columns price out to
enter the basis and the linear programming solution does not satisfy the integrality
conditions. branch-and-price is a generalization of branch-and-bound with linear
programming relaxations, which allows column generation to be applied throughout
the branch-and-bound tree.

While appearing contradictory at first, there are several reasons (see [10])
for considering formulations with huge numbers of variables. Not infrequently
a mixed-integer optimization formulation with many variables has a better LP
relaxation (with respect to bound quality). Further, a compact formulation—which
is a formulation not involving a huge number of variables—of a mixed-integer
optimization problem may possess structural symmetries that allows solutions
being mathematically different but having indifferent real-life interpretations; this
causes branch-and-bound perform poorly as the problem barely changes after
branching. A reformulation with a huge number of variables may eliminate such
symmetries. Further, column generation provides a decomposition of the problem
into a master problem and one or more subproblems. This decomposition may have
a natural interpretation in the problem context, thus allowing for the incorporation
of additional important constraints. Finally, a formulation with a huge number of
variables may be the only choice.

At first glance, it may seem that branch-and-price involves nothing more than
combining well-known ideas for solving linear programs by column generation
and traditional branch-and-bound. This is, however, not that straightforward, as
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observed already many years ago by Appelgren in [3, 4]. The most fundamental
difficulty arising is that the traditional single variable branching is no longer
viable, the reason being that it leads to regeneration of (already available) columns.
Appelgren resolved this by finding a best column among those that are not already
available.

Today, the common countermeasure is to use other branching techniques, which
are compatible with column generation by allowing branching restrictions to be
transferred to the column generation problem without leading to essential changes of
its properties. Vanderbeck analyzes in [88] the challenges in combining a branching
scheme with column generation. The article presents a generic branching scheme in
which the pricing oracle of the root node remains of use after branching, and which
does not require an extended formulation of the original problem. It then recursively
partitions the subproblem solution set. Branching constraints are enforced in the
pricing problem, which is solved approximately by a limited number of calls to
the pricing oracle. The scheme is illustrated on the cutting stock and bin packing
problems; it is the first branch-and-price algorithm capable of solving such problems
to integrality without modifying the subproblem or expanding its variable space.

An early and tidy application of branch-and-price is to the generalized assign-
ment problem [80], which is decomposed into a set partitioning master problem
and knapsack column generation problems. Another tidy application of branch-
and-price is given in [87], which considers a time-indexed (i.e., time discretized)
formulation of a machine scheduling problem. Such formulations are known to
provide strong LP bounds, but they tend to be extremely large. The authors show
how to (partly) alleviate this difficulty by means of Dantzig–Wolfe decomposition,
leading to a reformulation with many more variables, but far fewer constraints. The
central pricing problem is solved by dynamic programming in O(nT ) time, with
T and n being the number of time steps and jobs, respectively. To find an integer
optimum, the decomposition approach is embedded in a branch-and-bound scheme.

For general surveys of column generation and branch-and-price, see [66, 92].
A recent research trend in mixed-integer optimization is to develop effective and
efficient solution methods by combining decomposition approaches with heuristic
or metaheuristic principles, in order to exploit their respective advantages. For a
general overview of metaheuristic methods based on decomposition principles, see
[79]. In a column generation context, such a combined method would extend a
heuristic search beyond the columns necessary for solving the LP master problem.
Classes of column generation based primal heuristics for mixed-integer linear
optimization are reviewed in [51], with the aim to extract generic classes of column
generation methods for use as black-box primal heuristics across applications. One
such class consists of the so-called diving heuristics, which perform depth first
searches in a branch-and-price tree, gradually obtaining integer solutions by variable
fixings according to branchings which priorities columns that are part of LP optimal
solutions in the nodes. To escape from local optima, partial backtracking can be
used. Examples of applications of diving heuristics are found in, for example,
[35, 41].
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An interesting topic for further studies is to use an enumeration principle of the
type outlined in Remark 15.2 with the aim to find favourable columns for inclusion
in a restricted master problem. The goal is then to construct a restricted master
problem capable of identifying an (near) optimal solution to the original problem
(15.2), rather than to directly find an optimal solution through enumeration. This
strategy is reasonable if the original problem has a Cartesian product structure—see
Remarks 15.1 and 15.10—such that columns from different sets in the Cartesian
product can be combined in order to achieve overall (near) optimality. Solution
methods related to this strategy are found in [86] (a production planning problem)
and [7] (a vehicle routing problem, not having a Cartesian product structure but a
related suitable structure.)

Another interesting topic for further studies within the field of column generation
is the little studied combination of Lagrangian decomposition (see [40, 53]) and
Dantzig–Wolfe decomposition (i.e., dual cutting-planes) for solving the Lagrangian
dual problem; see [72, 75, 94] for examples of this combination. Both Lagrangian
decomposition and Dantzig–Wolfe decomposition can separately provide strong
lower bounds, and the synergy between these two bounding principles has the
potential to provide even stronger lower bounds.

Notes on Sect. 15.5: A Two-Phase Method: Subgradient Optimization and
Dantzig–Wolfe Decomposition The inherent instability of dual cutting-plane
procedures is discussed in, for example, [49, Chapter 15]. The fundamental dual box
step stabilization was introduced in [70]. Examples of applications of this type of
stabilized dual cutting-plane method (i.e., stabilized Dantzig–Wolfe decomposition)
are found in [62, 90]. More general stabilization techniques are given in [28].
The use of heuristically generated high quality starting columns in Dantzig–Wolfe
decomposition is discussed in, for example, [66, Subsection 4.1.1].

The two-phase method was introduced in [91], which also reports successful
computational experience from an application to large-scale multicommodity net-
work flows. Some similar methods can be found in the literature; in contrast to the
one presented, those methods are, however, not justified by theoretical results.

In [95], subgradient optimization is performed in a first phase, which—in
each iteration—stores dual cuts and solves a Dantzig–Wolfe master problem; the
objective value of the latter is used in the Polyak step length formula. If the same
cut is found too many times, the method switches to a second phase: the Dantzig–
Wolfe method. A drawback of this two-phase method is that a computationally
demanding master problem is solved in each subgradient iteration of the first phase,
although it is only the objective value of the master problem that is actually used.
This two-phase method is further developed in [89], which studies different criteria
for switching to the second phase, in which the effect of using a bundle method
is also studied. Also [55] studies a combined subgradient optimization and bundle
method.

In [9] a fixed number of subgradient iterations is run every few iterations of
the Dantzig–Wolfe method, starting from the restricted master dual optimum. The
columns found are then included in the master problem. Substantially shorter
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computing times are reported, as compared to the standard Dantzig–Wolfe method.
This line of research is continued in [50], which employs subgradient optimization
also for finding approximate dual solutions to Dantzig–Wolfe master problems.

Notes on Sect. 15.6: Recovery of Primal Integer Solutions by Means of
Lagrangian Dual Methods Besides our own stream of research, the recovery
of primal solutions has been treated in, for example, [67, 81, 84].

Notes on Sect. 15.6.1: Primal Integer Solutions from Lagrangian Heuristics A
classic reference on Lagrangian relaxation and Lagrangian heuristics in integer opti-
mization is [32] by Fisher from 1981. In [57] the characteristics of the Lagrangian
heuristic principle is described more formally and such heuristics are classified as
conservative or radical, depending on their nature. The essential difference is that
in a conservative Lagrangian heuristic, the goal is to keep the values of ε(x,u)
and δ(x,u) [defined in (15.19)] small, while in a radical heuristic they may be
large. A conservative heuristic typically starts at x(u) ∈ X(u) and makes small
changes, while a radical often involves solving an auxiliary optimization problem
over a subset of the original problem variables, while keeping the values of the other
variables fixed. For examples of conservative heuristics for specific applications,
see [18, 34, 38, 52]. Examples of radical heuristics are found in [16, 22, 73, 85];
all of these exploit auxiliary optimization problems, some of which, however, being
trivially solved.

The presented Lagrangian heuristic methodology utilizing ergodic sequences is
developed in [1, 43].

Notes on Sect. 15.6.2: Approximate Solutions to the Primal Problem via Core
Problems The use of core problems was introduced by Balas and Zemel [6] in
1981, then applied to binary knapsack problems; a collection of improvements of
their scheme is found in [71].

The core problem principle has also been applied to very large-scale set covering
models arising in crew scheduling [19, 22]; the construction of the core problem is
there based on near optimal LP reduced costs found by Lagrangian relaxation and
subgradient optimization. Further applications of core problems include capacitated
facility location [5] and fixed charge transportation [94].

Our procedure for constructing core problems using ergodic sequences of
Lagrangian subproblem solutions is developed in [42, 43].

Notes on Sect. 15.6.3: Optimal Solutions via a Branch-and-Bound Framework
The use of dual subgradient methods and Lagrangian heuristics as a means for
obtaining branching rules and bounds in branch-and-bound schemes is well studied
(e.g., [14, 32]). The utilization of ergodic sequences to guide the branching in a
branch-and-bound framework is developed in [1, 43].

Acknowledgements This chapter relies heavily on research and earlier publications by the authors
and their collaborators. The most important of these publications are—in chronological order—
[56], [58], [60], [57], [44], [43], [91], and [1].
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Chapter 16
On Mixed Integer Nonsmooth
Optimization

Ville-Pekka Eronen, Tapio Westerlund, and Marko M. Mäkelä

Abstract In this chapter we review some deterministic solution methods for
convex mixed integer nonsmooth optimization problems. The methods are branch
and bound, outer approximation, extended cutting plane, extended supporting
hyperplane and extended level bundle method. Nonsmoothness is taken into account
by using Clarke subgradients as a substitute for the classical gradient. Ideas for
convergence proofs are given as well as references where the details can be
found. We also consider how some algorithms can be modified in order to solve
nonconvex problems including f ◦-pseudoconvex functions or even f ◦-quasiconvex
constraints.

16.1 Introduction

In mixed integer optimization some variables are continuous and some are integers.
The difficulty in dealing with integer variables is that the feasible set is not neces-
sarily connected nor convex. This causes finding descent direction and doing line
searches less fruitful than in continuous optimization. The deterministic methods to
solve mixed integer nonlinear programming (MINLP) problems with differentiable
functions include branch and bound [10], outer approximation [16] and cutting plane
[48] methods. An important special case of an MINLP problem is when integers are
binary variables having only possible values {0, 1}. In this case the variables can
model yes or no type decisions, making these kind of problems important in various
applications. MINLP models have been used in many fields including chemical and
mechanical engineering, physics, medicine and, for example, in design of water/gas
network [2, 3, 28, 29, 39].
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In nonsmooth optimization (NSO) some functions are not necessarily continu-
ously differentiable. A typical reason for nonsmoothness is functions likemax, |·| or
‖·‖. We will only consider the case where functions are locally Lipschitz continuous
(LLC). Lipschitz continuity implies that the set of nondifferentiable points has
zero measure [1]. Furthermore, while we cannot calculate the classical gradient,
a Clarke subgradient belonging to the Clarke subdifferential exists at any point
[1, 7]. The problem in solving NSO is finding a descent direction, which is not as
readily available as in the continuously differentiable case. In addition, identifying
a minimum in which objective function is not differentiable may be problematic.
Nonsmooth problems can be found in many applications for example in optimal
control problems, data analysis and economics [1]. In general NSO problems can be
solved with subgradient (see e.g. [43] and Chap. 2 in this book) and bundle methods
(see e.g. [13, 34] and Chaps. 3–5). In addition, derivative free methods (see e.g. [41]
and Chaps. 18 and 19) or gradient sampling methods (see e.g. Chap. 6) can be used
to solve nonsmooth problems as well but we do not study these methods here.

In this chapter we review some deterministic methods that solve convex mixed
integer nonsmooth optimization problems (MINSO) with help of the Clarke subdif-
ferential. In these problems the objective and constraint functions are convex and
the integer relaxed feasible set is convex. Furthermore, we assume that we can
evaluate a subgradient of any function at any given point. Some of the methods
can be generalized to solve problems with f ◦-pseudoconvex functions or even f ◦-
quasiconvex constraint functions. Methods to solve MINSO problems have been
studied recently in [11, 12, 18, 20, 46, 51], among others.

MINSO problems can be found for example in electrical engineering [6], gas
network planning [42], statistics [52] and facility layout problems [5]. In these
articles the problems were solved with metaheuristics and reformulation techniques.
Other techniques, not covered here, are derivative free algorithms to solve MINSO
problems containing black box functions. These methods can be found, for example,
in [33, 36, 37] and references therein.

One reason for the lack of research on methods for mixed integer NSO is that
typical nonsmooth functions, like max and |·|, can be modelled with auxiliary
variables leading to a smooth MINLP problem. However, transformation sometimes
leads to a more difficult problem as was noticed in [51]. In that case transforming a
mixed integer NSO problem by means of a pseudoconvex objective function resulted
in a nonconvex MINLP problem. Another way to deal with function nonsmoothness
is to use smoothing techniques. For example |x| ≈ √x2 + τ for a small τ > 0 [42].

In Sect. 16.2 we present several deterministic algorithms to solve convex MINSO
problems. Ideas of the convergence proofs are given as well as references to articles
where more details can be found. In Sect. 16.3 the algorithms are illustrated by
solving a simple example problem.
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16.2 Deterministic Algorithms for Convex MINSO

The considered MINSO problem can be formulated as follows

⎧
⎪⎪⎨

⎪⎪⎩

minimize f (x, y)

subject to gj (x, y) ≤ 0, j ∈ J ,

(x, y) ∈ L, x ∈ R
n, y ∈ Z

m,

(MINSO)

whereJ = {1, 2, . . . , J }. The setL is defined by linear constraints and it is assumed
to be compact. Hence, we assume that there are finitely many feasible integer vectors
y. Define the finite set

Y = {
y ∈ Z

m | (x, y) ∈ L, x ∈ R
n
}
.

Sometimes it is convenient not to separate continuous and integer variables and due
to this we define z = (x, y) and set

Z = {
z = (x, y) | x ∈ R

n, y ∈ Z
m
}
.

Denote also

G(z) = max
j∈J

{
gj (z)

}
and N = {z | G(z) ≤ 0} .

With these notations we can formulate the problem (MINSO) as follows

{
minimize f (z)

subject to z ∈ N ∩ L ∩ Z.

If not otherwise stated, the functions f and gj , j ∈ J are assumed to be convex and
thus LLC. Hence, the problem is convex: nonlinear functions are convex and the
feasible set is convex when integer variables are relaxed to be continuous variables.

Some of the algorithms can be generalized to solve problems with f ◦-
pseudoconvex functions and even f ◦-quasiconvex constraint functions.

Definition 16.1 A LLC function f : Rn → R is f ◦ − pseudoconvex (f ◦ −
quasiconvex) if for all x, y ∈ R

n

f (y) < (≤) f (x) implies f ◦(x; y − x) < (≤) 0.

f ◦-pseudoconvexity is a straightforward generalization of the classical pseudocon-
vexity to LLC functions. f ◦-quasiconvexity is slightly more restrictive than qua-
siconvexity for LLC functions [1]. A convex function is always f ◦-pseudoconvex,
which in turn, is always f ◦-quasiconvex. Moreover, an f ◦-quasiconvex function is
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always quasiconvex. An important feature of an f ◦-pseudoconvex function is that
a local minimum is also a global one. Another important property, that holds for
f ◦-quasiconvex functions as well, is that the level sets {x ∈ R

n | f (x) ≤ a} are
convex for any a ∈ R. From the definition of generalized directional derivative and
Definition 16.1 we can see that inequality

ξT (x1 − x2) ≤ 0,

holds true for any ξ ∈ ∂f (x2) and x1 ≤ x2 such that f (x1) < f (x2) if f is f ◦-
quasiconvex. This inequality will prove to be useful when studying problems with
f ◦-quasiconvex constraint functions.

Articles [2, 24] describe several deterministic methods to solve the MINLP in
case all the functions are continuously differentiable. The following deterministic
methods for the nonsmooth case (MINSO) are mainly based on those. Most of the
methods require that we are able to calculate the values of the nonlinear functions
and an arbitrary subgradient at the points where the algorithm visits. These points
are assumed to belong to the set L.

16.2.1 NSO Branch and Bound

The branch and bound (B&B) method for mixed integer linear programming
(MILP) problems was developed in 1960 [31] and it is a general framework to deal
with integer variables. The method was generalized for MINLP problems in [10]. In
the B&B method only integer relaxed problems are solved, that is, problems where
integer variables are treated as continuous ones. To cut off the previous non-integer
solutions, bounds to the integer variables are added to the subsequent problems. The
problems to be solved can also be seen as nodes of a tree.

The B&B method solves the problem (MINSO) as a sequence of continuous NSO
subproblems. The first subproblem is

⎧
⎪⎪⎨

⎪⎪⎩

minimize f (x, y)

subject to gj (x, y) ≤ 0, j ∈ J ,
(x, y) ∈ L, x ∈ R

n, y ∈ R
m.

(BB-NSO)

If at iteration k the solution of the subproblem is not integer feasible, branching
will be applied. In branching we pick an integer variable yi that was not integer at the
solution point (xk, yk). Then we create two subproblems with all constraints from
the previously solved problem and add the constraint yi ≤ @yki A to one subproblem
and yi ≥ 6yki 7 to the other. Clearly, any of these constraints will cut off the previous
solution point. The branching does not occur in three cases:

• the problem has no feasible solution;
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• the solution is integer feasible. In this case the solution is feasible in the original
MINSO problem and, thus, the objective function value at the solution is an upper
bound;

• the solution is not integer feasible but the value of the objective function is greater
than the current best upper bound.

In these cases the node will be pruned and it becomes a leaf of the tree. The B&B
continues to solve previously created subproblems until none is left. As noted in [2]
the subproblems can be uniquely identified by the bounds (l,u) given to the integer
vectors. For example, problem NSO(l,u) corresponds to subproblem with bounds
l ≤ y ≤ u and NSO(−∞,∞) corresponds to the first subproblem or the root node.
The NSO branch and bound algorithm is presented in Algorithm 16.1.

Algorithm 16.1: NSO branch and bound algorithm
Step 1. Set upper bound U = ∞, k = 0 and initiate the list of unsolved

subproblems L = {NSO(−∞,∞)}.
Step 2. If L = ∅ the current upper bound is the global minimum. Otherwise,

choose a subproblem NSO(l,u) from the list L and update
L = L\ {NSO(l,u)}.

Step 3. Solve NSO(l,u). If NSO(l,u) is infeasible go to Step 2. Otherwise,
denote (xk, yk) the solution of NSO(l,u) and set k = k + 1.

Step 4. Suppose yk is an integer vector. If f (xk, yk) < U set U = f (xk, yk).
Go to Step 2.

Step 5. Suppose that yk is not an integer vector. If f (xk, yk) > U , go to
Step 2. Otherwise, take an integer variable yi that was not integer
at yk . Set l− = l, l−i = 6yki 7, u+ =u and u+i = @yki A. Add two new
subproblems to the list L = L ∪ {

NSO(l−,u),NSO(l,u+)
}
. Go to

Step 2.

Theorem 16.1 If the NSO subproblems are solved to a global minimizer, Algo-
rithm 16.1 finds a global minimizer of (MINSO) after solving a finite number of
NSO subproblems.

Proof Since there are finitely many feasible integer vectors the tree will be finite as
well. If every NSO subproblem is solved to a global minimum, the minimum of the
original problem will be found. ��

In the worst case the B&B method solves more NSO problems than there are
integer vectors in Y . For example if Y consists of binary vectors {0, 1}m there are
2m possible binary vectors but in the worst case the B&B method solves 2m+1 − 1
NSO problems. Thus, the efficiency of the B&B is based on ruling out regions from
the feasible set by a good upper bound or by finding integer feasible solutions from
the relaxed problems.

There is a couple of degrees of freedom in Algorithm 16.1. The choice of the
branching variable and the choice of the problem to be solved at Step 3 is discussed
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for example in [2]. Good choices will ideally result in a smaller search tree. The
choice of branching variable aims to find a variable causing the minimum of the
resulting NSO problem to be greatest making it probable to prune it. The choice
of NSO problem aims to find a good upper bound fast and then increase the lower
bound in order to prove the optimality of the current upper bound.

The NSO algorithm itself can be freely chosen as long as it can solve the NSO
problems to the global minimum. Nonsmooth algorithms like in [13, 34] could be
used to solve the NSO problems we consider. However, to authors’ knowledge
there exists no implementation of these with the B&B. There exists, though, an
implementation of the B&B with a derivative free NLP algorithm [21] that can deal
with nonsmooth functions.

Being a general way to handle integer variables the B&B method can be used to
solve also MILP problems. This can be done by using a linear programming solver
instead of the NSO solver in Algorithm 16.1. In fact, many popular LP solvers,
like CPLEX [8] and Gurobi [25], utilize sophisticated versions of the B&B and
can solve MILP problems very efficiently. MILP is an important class of problems
since the other methods we consider to solve the problem (MINSO) generate MILP
subproblems as a part of their solution strategy.

16.2.2 Outer Approximation

The outer approximation method was developed in 1980s–1990s [16, 22]. The linear
outer approximation method is not as readily applicable for nonsmooth problems as
the NLP branch and bound. Hence, we will present the method for the smooth case
first.

In the linear outer approximation method an MILP master problem is created by
removing nonlinearities from the original MINLP problem. The nonlinear functions
are taken into account by adding linear approximations of them to the MILP
master problem. The points at which these approximations are made are found
by solving NLP problems. Thus, the method alternates between solving NLP and
MILP problems. At iteration k the NLP problem corresponds to the original MINLP
problem where integer vector has a fixed value yk obtained as an initial point or from
the solution point of the MILP master problem. The NLP problem can be written as

⎧
⎪⎪⎨

⎪⎪⎩

minimize f (x, yk)

subject to gj (x, y
k) ≤ 0, j ∈ J ,

(x, yk) ∈ L, x ∈ R
n.

(OA-NLP(yk))

The solution of this problem will provide an upper bound for the original MINLP
problem. Denote Uk the smallest upper bound found after solving the kth NLP or
feasibility problem. If the problem (OA-NLP(yk)) turns out to be infeasible we need
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to solve a feasibility problem instead. One possible feasibility problem is
⎧
⎪⎪⎨

⎪⎪⎩

minimize μ

subject to gj (x, y
k) ≤ μ, j ∈ J ,

(x, yk) ∈ L, x ∈ R
n.

(OA-F(yk))

In the both cases, linearizations of the nonlinear functions at the solution point
(xk, yk) will be added to the MILP master problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize η

subject to η < Uk − ε,

η ≥ f (xi , yi )+∇f (xi , yi )T
(

x − xi

y − yi

)

, i ∈ T k,

0 ≥ gj (x
i , yi )+∇gj (xi , yi )T

(
x − xi

y − yi

)

, i ∈ T k ∪ Sk, j ∈ J ,

(x, y) ∈ L, x ∈ R
n, y ∈ Z

m, η ∈ R.

(OA-MILPk)

Here ε > 0 is a small user given parameter and the set T k collects indices
when (OA-NLP(yk)) is feasible whereas Sk collects indices when it is not.

Algorithm 16.2: OA algorithm

Data: Let feasible integer solution y1 ∈ Z
m be given.

Step 1. Set k = 1, T 0 = ∅, S0 = ∅ and U0 =∞.
Step 2. Solve (OA-NLP(yk)), or the feasibility problem (OA-F(yk)),

if (OA-NLP(yk)) is infeasible, and let the solution be xk .
Step 3. Linearize the objective and constraint functions on (xk, yk). Set

T k = T k−1 ∪ {k} or Sk = Sk−1 ∪ {k} as appropriate.
Step 4. If (OA-NLP(yk)) is feasible and f (xk, yk) < Uk−1 then update

Uk = f (xk, yk). Otherwise, set Uk = Uk−1

Step 5. Solve (OA-MILPk), giving a new integer vector yk+1. If (OA-MILPk)
is infeasible, stop: the current upper bound is the global minimum.
Otherwise, set k = k + 1 and go to Step 2.

To guarantee the optimality of the solution we need to assume that KKT-
conditions hold at the minimizer of (OA-NLP(yk)) for each feasible yk . This
assumption holds if an appropriate constraint qualification is satisfied at (xk, yk)
one example being that the gradients of the active constraint functions are lin-
early independent [22]. Due to variable μ the gradients of constraint functions
of (OA-F(yk)) are never 000. Thus, the Cottle constraint qualification [1] holds at
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any point, implying that the classical KKT-conditions hold at the minimum without
any additional assumptions.

When the assumption holds, the linearizations made at (xk, yk) will make the
integer value yk infeasible in the subsequent MILP master problems. The convexity
of f and gj for all j ∈ J implies that no feasible point in which f attains smaller
value than Uk − ε will be cut off. The solution is found after a finite number of
iterations since Y is finite. Then Uk is the global minimum as every (OA-NLP(yk))
is solved to the global minimum.

Theorem 16.2 Algorithm 16.2 solves the problem (MINSO) to a global minimizer
when functions are convex and continuously differentiable and KKT-conditions hold
at minimizer of (OA-NLP(yk)) for every feasible yk .

Proof The proof can be found in [22]. ��
Outer approximation has been generalized to handle continuously differentiable

quasiconvex constraints [4, 26]. With these constraints the integer relaxed feasible
set will be convex. Three difficulties arises with this generalization. The first one
is that the linearizations in (OA-MILPk) may cut off feasible points when the
corresponding functions are not convex. This is solved by doing linearizations from
quasiconvex functions at point (xk, yk) only if they are active, that is, gj (xk, yk) =
0. Then the linearization reduces to

∇gj (xk, yk)T
(

x − xk

y − yk

)
≤ 0. (16.1)

Due to the properties of quasiconvexity linearization (16.1) will not cut off
any points where gj attains value less than or equal to gj (x

k, yk) = 0. The
active constraints are the important ones when proving that the linearizations
in (OA-MILPk) will cut off the old solution (xk, yk). Hence, this property holds
when linearizations (16.1) are used in (OA-MILPk) for quasiconvex functions.

Another difficulty is the feasibility problem (OA-F(yk)) that will now have a
nonquasiconvex constraint functions. Instead of the feasibility problem we may
solve problem

⎧
⎪⎪⎨

⎪⎪⎩

minimize θ(y; yk) := ∥
∥y − yk

∥
∥2

subject to gj (x, y) ≤ 0, j ∈ J ,
(x, y) ∈ L, x ∈ R

n, y ∈ R
m.

(FP-NLP(yk))

Note that y is considered continuous variable in this problem. (FP-NLP(yk)) finds
(x, y) that minimizes distance of yk and the projection of the integer relaxed
feasible set N ∩ L onto R

m. Then hyperplane

{
y | ∇θ(y; yk)T (y − y) = 0

}
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separates convex sets N ∩ L and
{
y | θ(y; yk) ≤ θ(y; yk)}. More importantly, it

separates N ∩ L and yk . Hence, the constraint

∇θ(y; yk)T (y − y) = 2(y − yk)T (y − y) ≥ 0 (16.2)

will not cut off any points from N ∩ L but will make yk infeasible. The lineariza-
tion (16.2) will be added to the MILP master problem (OA-MILPk).

In [26] an alternative to the constraint (16.2) was presented. Let Ĵ be the set of
indices of active constraints at point (x, y). Then linearizations

∇gj (x, y)T
(

x − x

y − y

)
≤ 0, j ∈ Ĵ ,

will cut off yk but points in N ∩ L remain feasible. However, a constraint
qualification must be satisfied at (x, y) in order to make the KKT-conditions hold.
With this procedure the objective of the problem (FP-NLP(yk)) may also be set to
θ(y; yk) = ∥∥y − yk

∥∥
1.

The last problem in this generalization is that NLP problems have quasiconvex
constraints. These problems were assumed to be solved to global optimality in
[4, 26]. With some additional assumptions this can be done, for example, with the
supporting hyperplane algorithm presented later.

In [22] the outer approximation method was generalized to solve the following
nonsmooth MINLP problem

{
minimize f (x, y)+ h(g(x, y))

subject to (x, y) ∈ L, x ∈ R
n, y ∈ Z

m.
(OA-MINSO)

Here the functions f : Rn+m → R and g : Rn+m → R
J are assumed to be convex

and continuously differentiable, while h : RJ → R is assumed to be convex but
nonsmooth. The function h is also assumed to be monotone in the sense that if
ai ≤ bi for all i = 1, 2, . . . , n then h(a) ≤ h(b). This kind of restrictions are met
by functions like maxi {ai} and

∑n
i=1 |max {0, ai} |. The problem (OA-MINSO) is

a special case of the problem (MINSO). It can be used to solve the continuously
differentiable case with the exact penalty function method [22].

When solving problem (OA-MINSO) for a fixed value yk there will always be
a feasible solution and no feasibility problems are needed to solve. At the solution
zk = (xk, yk) the linearization

η ≥ f (zk)+ ∇f (zk)T
(

x − xk

y − yk

)
+ h

(
g(zk)+ ∇g(zk)T

(
x − xk

y − yk

))
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is added to the MILP problem. The convergence of the algorithm was proven in
[22]. Although the proof utilized subgradients of h, no subgradients are needed to
calculate in the algorithm.

OA method for MINSO problem was also studied in [18]. It was proved
that even if we can solve NSO problems instead of NLP problems we cannot
guarantee the convergence of the OA method by simply replacing gradients by
arbitrary subgradients in Algorithm 16.2. The trouble is that the linearizations done
after (OA-NLP(yk)) or (OA-F(yk)) problem may not cut off the previous integer
vector yk , thus, resulting in potential infinite loop. The reason for this is that an
arbitrary subgradient does not necessarily satisfy KKT-conditions as an equality.
However, if we can find a subgradient that does this, the algorithm will work as
intended. This was also studied in detail in [46]. Also, in [47] it was proved that it is
sufficient that the functions are continuously differentiable with respect to x. In this
case we can use arbitrary subgradients in Algorithm 16.2. If the integer variables
are binary, the infinite loop can also be avoided by using integer cuts presented in
[16, 24].

Another special case of MINSO problem that can be solved with OA method can
be found in [15]. In that paper a mixed integer second order conic programming
(MISOCP) problem is considered. Due to conic constraints the problem is not
smooth. With help of duality the authors were able to find subgradients satisfying
KKT-conditions of NLP problem, and thus, formulate an OA based algorithm with
proven convergence.

Recently, the OA method was successfully generalized to handle convex MINSO
problems in [11]. NSO and the feasibility problem were solved with an exact
penalization proximal bundle algorithm. This provides subgradients satisfying
KKT-conditions along with the KKT-coefficients. Linearizations are done only from
the constraints that are active at the solution (xk, yk). The components of the
subgradient that corresponds to integer variables can not be chosen arbitrarily but in
a way that the resulting vector is a subgradient.

A straightforward generalization of the algorithm in [11] for problems with
f ◦-quasiconvex constraint functions is not possible. The difficulty arises in NSO
problems that have f ◦-quasiconvex constraint functions while the exact penaliza-
tion proximal bundle algorithm requires convex functions. Otherwise, since the
linearizations are created only from the active constraints the algorithm should be
applicable for problems with f ◦-quasiconvex constraints if the feasibility problems
are dealt in similar manner to [26]. Of course, similar restrictions are valid as in
the problem classes studied in [26], that is, the KKT-conditions must be satisfied at
points where the linearizations are created.

In [11] numerical tests included an academic hybrid robust/chance-constraint
problem. While the problem was convex MINSO problem it could be formulated
as a quadratic smooth nonconvex MINLP problem. However, it turned out to be
easier to solve the nonsmooth formulation especially when the size of the problem
was increased. The OA method was also tested against a variant of extended cutting-
plane method and extended level bundle method, which are presented here later. In
large problem instances the OA method outperformed these two methods which are
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known to excel in cases where nonlinear function evaluations are time consuming.
In the considered problem the nonlinear function could be evaluated fast. However,
the extended cutting-plane method was the fastest algorithm in almost 35% of the
problems.

LP/NLP-Based Branch and Bound LP/NLP-based branch and bound [40] can
be seen as an improvement of the outer approximation method where only one
MILP master problem is solved. The MILP master problem of the OA algorithm is
solved, but, each time an integer solution yk is obtained in the tree of LP problems,
an (OA-NLP(yk)) problem is solved. Note that this is different from OA method,
where MILP master problems are solved to the minimum before solving any NLP
problems. After solving (OA-NLP(yk)) or the feasibility problem (OA-F(yk)), cuts
similar to OA method are generated to all remaining LP problems. Furthermore, the
problem that yielded yk is solved again with the additional constraints.

The algorithm uses similar cuts as the OA method and hence the same difficulties
as with the OA method arises when solving MINSO problems. In addition, a similar
solution to the difficulties applies and the method presented in [11] generalizes
LP/NLP-based branch and bound for MINSO problems.

16.2.3 Extended Cutting-Plane Method

The extended cutting-plane (ECP) method was introduced in [48]. It generalizes
Kelley’s cutting-plane method [27] for smooth mixed integer case. The method was
further generalized for nonsmooth functions by replacing gradients with arbitrary
subgradients in [18]. For the ECP method it is necessary to transform the nonlinear
objective function to a constraint as in (OA-MILPk). This is done by introducing an
auxiliary variable μ that will be minimized and adding the constraint

f (z)− μ ≤ 0 (16.3)

to the problem (MINSO). Since f is assumed to be convex so is f − μ.
Suppose in this subsection that variable μ is included in vector z. As some MILP
solvers can also solve mixed integer quadratic programming (MIQP) problem, this
transformation is not necessary if the objective function is quadratic. Although, this
will result in solving MIQP problems instead of MILP problems.

The ECP method is similar to the OA method in the sense that the method
solves MILP subproblems. However, at the MILP solution point zk the most violated
nonlinear constraint function is linearized instead of solving an NSO problem. For
the most violated constraint jk , the equationG(zk) = gjk (z

k) holds. Then the linear
constraint that will be added to the MILP problem is

lk(z) := gjk (z
k)+ ξTjk (z − zk) ≤ 0, (16.4)
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where ξ jk ∈ ∂gjk (zk) is arbitrary. Hence, at iteration k the MILP problem is

⎧
⎪⎪⎨

⎪⎪⎩

minimize μ

subject to li(z) ≤ 0, i = 1, 2, . . . , k − 1,

z ∈ L ∩ Z.
(ECP-MILPk)

The problem (ECP-MILP1) corresponds to the original problem without the
nonlinear constraints. The process of solving an MILP problem and adding new
linear constraint is repeated until the solution of the MILP problem satisfies also the
nonlinear constraints. The ECP method is described in Algorithm 16.3.

Algorithm 16.3: ECP algorithm
Data: Give the tolerance parameter εg > 0.
Step 1. Set k = 1.
Step 2. Solve the problem (ECP-MILPk). Denote the solution by (zk).
Step 3. If zk satisfies the nonlinear constraints, that is G(zk) ≤ εg, stop, the

point zk is a global minimizer of the original MINSO problem.
Step 4. Create a new problem (ECP-MILPk+1) by adding in (ECP-MILPk)

the constraint gjk (z
k)+ ξTjk (z− zk) ≤ 0, where ξ jk ∈ ∂gjk (zk) is

arbitrary and gjk (z
k) = G(zk).

Step 5. Set k = k + 1 and go to Step 2.

Unlike in the OA method, the cutting-plane (16.4) at iteration k does not cut off
all solutions with integer values yk . However, it cuts off the previous solution zk .
Due to the convexity of the constraint functions, the cutting-planes do not cut off
any points from the feasible region. Then, since the objective function is linear, if
an MILP solution is feasible in the nonlinear constraint functions, it is a global
minimizer of (MINSO). If this is not obtained in a finite number of iterations,
Algorithm 16.3 generates a sequence {zk} of different points. The compactness of L
and the Cauchy-Weierstrass Theorem imply that there exists an accumulation point.
It turns out that any accumulation point of {zk} is feasible in nonlinear constraint
functions, and thus a global minimizer of (MINSO).

Theorem 16.3 If εg = 0, Algorithm 16.3 finds a global minimizer of (MINSO) in
a finite number of iterations or it generates a sequence with a global minimizer as
an accumulation point.

Proof The proof can be found in [18]. ��
The advantage of the ECP over the NSO B&B and the OA methods is that

no NSO problems are needed to solve. This usually results in a fewer number of
nonlinear function evaluations, which is significant if the function evaluations are
time consuming like in the chromatographic separation problem [17]. On the other
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hand, if the bottleneck of the problem is hard MILP problems, the other methods
are supposedly faster.

There are two modifications that may speed up the solving process of the ECP
method. Instead of one violated constraint function we may linearize more, or even
all, violated constraints at the current MILP solution zk . While more linearizations
should make algorithm solve less MILP problems, the MILP problems may become
harder due to more constraints. Furthermore, we do not need to solve the MILP
problems to optimality every time. Only the last MILP problem needs to be solved
to optimality. We can, for example, stop MILP solving at the first integer feasible
solution and create cutting-planes there. The last MILP problem must be solved to
optimality. To ensure this, we can gradually increase the number of integer feasible
solutions a MILP solver needs to find before stopping. The strategy may prove
useful if the MILP problems are hard to solve. This ploy was presented in flow
chart in [49] and applied in [5] (strategy 1) for the αECP algorithm that is presented
in the next subsection.

αECP Method The ECP method was generalized to deal with pseudoconvex
constraint functions and objective function in [38, 49, 50]. In [19] this was further
generalized to deal with nonsmooth f ◦-pseudoconvex functions. The difficulty in
applying the Algorithm 16.3 to the problems with f ◦-pseudoconvex constraint
functions is that cutting-plane (16.4) may then cut off feasible points. To avoid this
problem an α coefficient is added to the linearization (16.4) resulting in α-cutting-
plane

gjk (z
k)+ αkjk ξ

T
jk
(z− zk) ≤ 0, (16.5)

where ξ jk ∈ ∂gjk (z
k) is arbitrary. The coefficient αkjk is first set to 1. The α-

cutting-plane will cut off the previous solution point zk from the MILP problem.
As the constraint function is not convex, it may cut off some feasible points as well.
However, since the constraint functions are f ◦-pseudoconvex and thus LLC, there
exists α̂ such that (16.5) does not cut off any feasible point if αkjk > α̂ holds true [19].
The constant is not generally known beforehand (besides the convex case α̂ = 1).
In practice, we gradually increase the α coefficients until certain limit. If the MILP
problem (ECP-MILPk) is infeasible the α coefficients are increased by setting

αk+1
jk

= β · αkjk , (16.6)

where β > 1. The α coefficients are also increased if a feasible solution is found. In
that case we use another parameter γ > 1 instead of β in (16.6). The coefficient αkjk
will be updated until

αkjk ≥
gjk (z

k)

εz
∥
∥ξ jk

∥
∥ , (16.7)
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where εz > 0 is a user given parameter. To interpret this inequality, consider the
case that relation (16.7) holds as an equality. By inserting the obtained αkjk to the
α-cutting-plane (16.5) we get

ξTjk∥
∥ξ jk

∥
∥ (z− zk) ≤ −εz.

Thus, the points with distance less than εz from the hyperplane

H =
{

z ∈ R
m+n | ξTjk∥∥ξ jk

∥∥ (z− zk) = 0

}

are cut off. The criterion (16.7) can be interpreted as follows. The coefficient αkjk is
sufficiently large if none of the feasible points with greater distance than εz from the
hyperplaneH are cut off. The smaller the parameter εz the more we need to update
α coefficients, but the smaller the feasible region is that may be cut off.

If an f ◦-pseudoconvex objective function is transformed into constraint (16.3),
the constraint may not be f ◦-pseudoconvex. In fact the function f (z) − μ is
quasiconvex only if f is convex [9]. To avoid this non-f ◦-pseudoconvex constraint,
the f ◦-pseudoconvex objective function is taken into account by adding the
reduction constraint f (z) − fr ≤ 0 and μ ≤ fr in the original MINSO problem
and minimizing μ. The constant fr is the current upper bound, which is updated
whenever we find z such that G(z) ≤ εg and f (z) < fr . To make the resulting
MINSO problem meaningful we need to bound μ from below with help of f . This
is done with linear constraints presented next.

We will add constraints

fr + ξT (z− zk) ≤ μ, (16.8)

where ξ ∈ ∂f (zk), in the MINSO problem at any point zk with f (zk) = fr .
Linearization is also added at zk that is εg-feasible in the MINSO problem. Then,
the constraint f (z) ≤ fr guarantees that f (zk) ≤ fr + εg. Note that since
constraints (16.8) are linear, they transfer to the MILP problems being solved in
order to solve the MINSO problem.

Since the upper bound fr changes whenever a new upper bound is found we need
to update constraints (16.8). One option would be to omit the linearizations with the
old fr . This makes the convergence proof tricky requiring the additional assumption
that the solution sequence has only one accumulation point [19]. Another option is
to simply replace the old fr values in (16.8) with the new one.

Linearizations (16.8) steer MILP solution away from zk , and thus prevent infinite
loops. They are also the only constraints that bounds the minimized variable μ from
below besides the box constraints. If a feasible solution z̃ with f (z̃) < fr exists,
f ◦-pseudoconvexity implies that ξT (z̃− zk) < 0. Thus, when minimizing μ we get
μk < fr whenever fr is not the global minimum value. Eventually, the algorithm
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stops when fr − μ ≤ εf is satisfied for given εf > 0. If εf = 0 it can be shown
that the algorithm converges to an εg-feasible global minimum [19].

16.2.4 Extended Supporting Hyperplane Method

Supporting hyperplane method was introduced in [45] to solve NLP and MINLP
problems. The method was recently implemented and studied in more detail in [30]
where the name extended supporting hyperplane (ESH) was introduced. In [20] it
was generalized for MINSO problems with f ◦-pseudoconvex constraint functions.
In [51] it was further generalized for problems with f ◦-pseudoconvex objective
function.

The ESH method is quite similar to the ECP method. The ESH method proceeds
similarly to the ECP method, but instead of cutting-planes we create supporting
hyperplanes to the nonlinear feasible set N . To find these hyperplanes we need an
inner point zint that strictly satisfies all nonlinear constraints, that is, G(zint) < 0.
Furthermore, we have to do a line search between the current MILP solution
point zkMILP and zint to find the point zk such that G(zk) = 0. The polyhedral
approximation of N is enhanced by adding to the MILP problem the linearization

ξTjk (z − zk) ≤ 0, (16.9)

where ξ jk ∈ ∂gjk (zk) is arbitrary and gjk (z
k) = G(zk). Notice that this is actually a

cutting-plane since gjk (z
k) = 0. It also turns out that we do not need α coefficients

for f ◦-pseudoconvex constraint functions. The constraint functions can be f ◦-
quasiconvex with an additional restriction that 000 /∈ ∂gj (zk) if linearization is created
from gj at zk [51]. This condition is met if the Cottle constraint qualification is
satisfied at zk .

The convergence to the global minimum can be proven similarly to the ECP
method. The supporting hyperplane (16.9) will cut off the previous solution point
zkMILP. Furthermore, it does not cut off any feasible point. The compactness of L and
the Cauchy-Weierstrass Theorem will guarantee that the solution sequence {zkMILP}
has an accumulation point and it can be proven to be feasible. The linearity of the
objective function then implies that the accumulation point is also optimal. For more
details see [20].

Above we required that G(zint) < 0. Essentially this means that (MINSO) must
satisfy the Slater constraint qualification. In the case some constraint functions are
active at the inner point, it is possible that algorithm gets stuck to an infinite loop
[20]. In practice, where we can assure feasibility only up to a tolerance εg > 0, we
can relax this condition. If in the line search we find a point zk such that gjk (z

k) =
εg
2 we can still guarantee to find an εg-feasible point. In this case it is sufficient that
G(zint) ≤ 0. This kind of point exists if (MINSO) has a feasible solution. We will
use this ploy in the subsequent consideration.
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We can deal with the f ◦-pseudoconvex objective function similarly as we did in
the αECP method. However, the inner point should satisfy f (zint)−fr ≤ 0, for any
upper bound fr . Eventually, fr will be close to the optimal value, and thus, f (zint)

should be less than the global minimum value. This can be achieved if we first solve
the original problem with integer variables relaxed to continuous variables and let
zint be the solution of this relaxed problem. Essentially this means we are solving
the root node of NSO branch and bound method. Another way is to have separate
inner points for the objective function and for the other constraints. The inner point
for the objective function, denoted by z

f
int, can be updated, whenever new upper

bound fr is found.
In [51] MINLP problem with f ◦-pseudoconvex objective function is solved

without using the reduction constraint f (z)− fr ≤ 0. The procedure relies on line
search between obtained feasible point of the MINSO problem and point z

f

int such

that f (zfint) ≤ fr . The point z
f

int can always be set to be the point where the upper
bound fr was obtained. Furthermore, if there are several points z1

f , z
2
f , . . . , z

p
f

satisfying f (zif ) ≤ fr we can set

z
f
int =

p∑

i=1

1

p
zif . (16.10)

The line search will find a point where the constraint (16.8) can be added. The line
search was already studied for the αECP in [38], where it ended at a point from the
set {z | f (z) = fr }. It is sufficient to find a point from the region

{
z | f (z) = fr + εg

}
, (16.11)

which allowed us to omit the reduction constraint, that in [38] prevented infinite
loops.

Assuming that we update the upper bound fr in constraints (16.8), the MILP
problem solved at iteration k is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize μ

subject to fr + ξT (z − zk) ≤ μ, k ∈ If ,
ξTjk (z− zk) ≤ 0, k ∈ Ig,
z ∈ L ∩ Z.

(ESH-MILPk)

Here Ig represents iterations where MILP solution is not feasible in nonlinear
constraints and hence a supporting hyperplane is added. Correspondingly, If
denotes iterations where a feasible point is found and a line search is done to find a
point from region (16.11).
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Algorithm 16.4: ESH algorithm
Data: Give the tolerance parameters εg, εf > 0 and an inner point

zint ∈ N ∩ L.
Step 1. Set fr = ∞ and k = r = 1.
Step 2. Solve the problem (ESH-MILPk). Denote the solution by (zkMILP, μ

k).
Step 3. If μk ≥ fr − εf , then stop: fr is the optimal value.
Step 4. If G(zkMILP) > εg, do a line search between zint and zkMILP to find zk

such that G(zk) = εg
2 . Add to (ESH-MILPk+1) the linear constraint

ξTjk (z − zk) ≤ 0, where ξ jk ∈ ∂gj (zk) and gj (zk) = G(zk).

Step 5. If G(zkMILP) ≤ εg then

Step 5.1. If f (zkMILP) < fr , update r = r + 1. Set zk = zkMILP and
fr = f (zk). Update the constraints of type (16.8) by using the new
value fr .

Step 5.2. If fr ≤ f (zkMILP) ≤ fr + εg, set zk = zkMILP.

Step 5.3. If f (zkMILP) > fr + εg, calculate z
f
int from (16.10). Find

zk such that f (zk) = fr + εg with a line search between z
f
int and

zkMILP.
Step 5.4. Add to (ESH-MILPk+1) the linear constraint

fr + ξT (z − zk) ≤ μ, where ξ ∈ ∂f (zk).
Step 6. Set k = k + 1 and go to Step 2.

Algorithm 16.4 will find an εg-feasible point after a finite number of iterations
if εg > 0. Then we can add new constraint (16.8) and sometimes find a new upper
bound. If εf = 0 the algorithm will converge to a global minimizer.

Theorem 16.4 Algorithm 16.4 converges to an εg-feasible global minimizer
of (MINSO) or finds one after a finite number of iterations.

Proof Proof can be found in [51]. ��
While the ESH may require more function evaluations than the αECP due to the

line searches, sometimes it creates tighter approximation of the feasible set. This can
result in finding a minimizer in less number of iterations. Furthermore, in theory the
ESH handles f ◦-pseudoconvex functions better without needing the α coefficients.
Due to the α coefficients the αECP may cut off small parts of the feasible set and,
updating the coefficients, the number of MILP problems to be solved increases. In
[20] there was a remarkable difference in solving times between the ESH and αECP
in favour of the ESH in an instance of a facility layout problem with pseudoconvex
constraints. This was a result of the αECP generating harder MILP problems with
α-cutting-planes.

In [51] there was an example that showed the benefits of being able to
solve MINSO problems with f ◦-pseudoconvex objective function rigorously. The
objective function of the problem is maximum of four pseudoconvex functions



566 V.-P. Eronen et al.

while the constraints were linear. This problem can be solved with Algorithm 16.4.
Alternatively, we can also get rid of nonsmoothness by introducing four nonlinear
constraints fi(z) − μ ≤ 0, but then we need a nonconvex MINLP method to solve
the problem to the global minimum. The BONMIN solver in GAMS [23] solved
the problem fastest (30 s) followed by the ESH (70 s) while solvers like SCIP and
LINDOGlobal could not find the minimum in 1000 s.

16.2.5 Extended Level Bundle Method

In [12] the extended level bundle method (ELBM) was introduced. It is based on the
NSO algorithm level bundle method [32, 44]. Similarly to the ECP method no NSO
problems are needed to solve while solving a sequence of MILP subproblems will
lead to the global minimum of the problem (MINSO).

As in the ECP method, cutting-planes are created from nonlinear functions in
MILP solution points. In the ELBM linearizations are generated from all nonlinear
functions contrary to the ECP, where some linearizations are generated from some
violated constraints. The objective function of the MILP problem is the stability
function ϕ(· ; ẑk), where ẑk is the stability center at iteration k. The stability center
can be e.g. a fixed point, the last iterate zk or the incumbent iterate defined later in
the algorithm pattern. In [12] stability functions

ϕ(z; ẑk) = ‖z − ẑ
k‖1 and ϕ(z; ẑk) = ‖z − ẑ

k‖∞
were considered in more detail. Both of these functions can be reformulated with
auxiliary variables so that the objective becomes linear and the resulting problem is
an MILP problem. An interesting case to notice is the stability function

ϕ(z; ẑk) = f̂ (z)+ 1

2tk
‖z − ẑ

k‖,

where tk > 0 is a parameter and f̂ is the linear approximation of f so far. In
this case the ELBM algorithm is straightforward generalization of the level bundle
method presented in [14] to the mixed integer problems. However, this stability
function results in MIQP problems instead of MILP problems.

The purpose of the stability function is to keep the solutions near the point where
approximation of the functions are good. This ability is lacking for example in the
ECP method which may cause the consecutive solutions to be far away. Stability
function also allows better utilization of good initial solution z0.

At iteration k we solve subproblem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize ϕ(z; ẑk)
subject to f (zi )+ ξT (zi )(z − zi ) ≤ f k

lev, i ∈ Bk,

gj (z
i )+ ξ j (z

i )T (z − zi ) ≤ 0, j ∈ J , i ∈ Bk,

z ∈ L ∩ Z,
(ELBM-MILPk)
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where ξ(zi ) ∈ ∂f (zi ) and ξ j (z
i ) ∈ ∂gj (zi ) are arbitrary. The set Bk , called bundle,

defines at which solution points the functions are linearized. The constant f k
lev is

defined by

f k
lev = f k

low + γ hk, (16.12)

where f k
low is the current lower bound, γ ∈ (0, 1) is a chosen parameter and hk is

the residual of optimality defined by

hk = min
i=1,2,...,k

max
j∈J

{
f (zi )− f k

low, gj (z
i )

}
. (16.13)

By solving (ELBM-MILPk) we get another point where linearizations are created
and possibly a new value for hk . If the MILP problem is infeasible there are no
feasible points where f attains value f k

lev. Thus, we obtain a new lower bound
f klow = f klev, which may make the MILP problem feasible. This way the ELBM
generates increasing sequence of lower bounds converging to the global minimum.
The ELBM algorithm is presented in Algorithm 16.5.

The rule for bundle update is user specified. The smaller the bundle the easier the
MILP problems are. However, then the linear approximations become less accurate
which may result in more iterations. Bundle can be updated only if reasonable
improvement of hk has occurred and this prevents infinite loops due to too frequent
bundle updates.

Theorem 16.5 If εg = 0, Algorithm 16.5 converges to a global minimizer
of (MINSO) or finds it after a finite number of iterations.

Proof The convergence is proven in [12]. ��

Algorithm 16.5: ELBM algorithm
Data: Give the tolerance parameter εg > 0, γ ∈ (0, 1) and initial point

ẑ
0 = z0 ∈ L ∩ Z. Give f 0

low or calculate it from an MILP problem
based on linear approximations on z0.

Step 1. Set k = 0, l = 0, kl = 0 and B0 = {0}.
Step 2. Define hk as in (16.13) and denote zkbest the point at which it is

attained. If hk ≤ εg, stop: the optimum is zkbest.
Step 3. If hk ≤ (1− γ )hkl , choose bundle Bk with restriction that {k} ⊂ Bk .

A new stability center ẑ
k = zkbest is set. Set kl+1 = k and l = l + 1.

Step 4. Calculate f k
lev by Eq. (16.12) and solve the MILP problem

(ELBM-MILPk).
Step 5. If the MILP problem is infeasible, update f k+1

low = f klev. Set Bk+1=Bk ,
kl+1 = k and l = l + 1.

Step 6. If the MILP problem has solution zk+1, update the bundle
Bk+1 = Bk ∪ {k + 1} and set f k+1

low = f k
low.

Step 7. Set k = k + 1 and go to Step 2.
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The convergence can be seen as follows. For a given f klev the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize ϕ(z; ẑk)
subject to f (z) ≤ f k

lev,

gj (z) ≤ 0, j ∈ J ,

z ∈ L ∩ Z.

(ELBM-MINSO)

is solved with a sequence of MILP problems (ELBM-MILPk) as in the ECP method.
Suppose that index l remains the same, that is, no new f k

low is found and hk is greater
than (1−γ )hkl . Similarly as in the convergence proof of the ECP method, the ELBM
will generate a sequence that will converge to a feasible point of (ELBM-MINSO).
At the feasible point z we have, according to the Eq. (16.12),

f (z)− f k
low ≤ f k

lev − f k
low = γ hk < hk.

Thus, after a finite number of iterations hk and f k
lev will decrease. Also hk would

converge to 0 unless (ELBM-MINSO) becomes infeasible. In both cases index l will
be increased after finite number of iterations.

The index l is increased if one of the conditions in Step 3 and 5 holds. In Step
5 the lower bound will be increased by amount γ hk . If hk does not converge to 0,
there can be only finitely many increases of the lower bound, otherwise, f k

low →∞.
In turn in Step 3 the condition hk ≤ (1 − γ )hkl holds. If this holds true infinitely
many times hk → 0 since (1−γ ) < 1. Thus, hk → 0 if the algorithm does not stop
after a finite number of iterations.

The stability function does not play any role in the convergence proof and
consequently MILP problems do not need to be solved to the optimality, feasibility
being enough. the ELBM carries the same strength as the ECP, namely the lack of
NSO problems which usually lead to fewer number of function evaluations. Another
strength that also the ECP and OA share is that the functions are needed to evaluate
only at point where integer variables attain integer values. In numerical comparison
[12] the ELBM was found out to be more effective on average than a variant of the
ECP method in terms of CPU and number of function evaluations when solving
example problems. The test set included 39 problems from the MINLP Library
[35], several instances of an academic chance constrained problem and several
instances of stochastic programming problem. The latter two problem types have
hard to evaluate functions making cutting-plane type methods preferable than the
ones needing to solve NSO problems.
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16.3 Illustrative Example

In this section we illustrate the presented algorithms by solving an easy example
problem. The problem reads

⎧
⎪⎪⎨

⎪⎪⎩

minimize f (x, y) := |x − 4| + |y − 4|
subject to g(x, y) := max

{
(y − 2)2 + x2 − 9, x + 2y − 9

} ≤ 0,

0 ≤ x ≤ 5, y ∈ {0, 1, 2, 3, 4, 5} .

The objective function and the constraint function are convex but nonsmooth.
Parameter value ε = 0.1 for stopping criteria has been used for all the algorithms.

NSO Branch and Bound Method The NSO branch and bound begins by solving
the integer relaxed problem NSO(0,5) and finds (x1, y1) = (1 + 4√

5
, 4 − 2√

5
). It is

not integer feasible, and thus, two problems NSO(0, 3) and NSO(4, 5) are created.
Solving NSO(0, 3) results in the integer feasible solution (x1, y1) = (2

√
2, 3) and

no new problems need to be created. Also the integer feasible solution gives an upper
bound f (2

√
2, 3) ≈ 2.17. The solution to the problem NSO(4, 5) is (x2, y2) =

(1, 4) giving an upper bound f (1, 4) ≈ 3. There are no problems left to solve and
the best upper bound 2.17 is the global minimum found at (2

√
2, 3). The solution

process of NSO B&B as well as the example problem are illustrated in Fig. 16.1.

0 1 2 3 4 5
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x

y

g(x,y)=0
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1

2

3

Fig. 16.1 The solution points found by NSO branch and bound algorithm. Thick lines correspond
to feasible region of the example problem
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OA Method For the OA algorithm suppose that y1 = 4. The solution of
OA-NSO(4) is x1 = 1 giving an upper bound U1 = 3. At this point g is differen-
tiable and its linearization is x+ 2y− 9. The objective function is not differentiable
at this point and its subdifferential is ∂f (1, 4) = {(−1, λ) | λ ∈ [−1, 1]}. The
component corresponding to x is unique, and thus, we may choose any subgradient.
Let us choose ξ = (−1, 0) resulting in linearization 2−x. The problem OA-MILP1
then reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

minimize η

subject to η ≤ 3− 0.1,

2− x ≤ η,

x + 2y − 9 ≤ 0,

0 ≤ x ≤ 5, y ∈ {0, 1, 2, 3, 4, 5} .

The solution to this problem is not unique with possibilities being (5, 0), (5, 1)
and (5, 2) giving η value −3. Suppose the MILP algorithm gives us (5, 2). The
solution point of OA-NSO(2) is (3, 2) giving the same upper bound 3 as the previous
integer solution. At this point both of the nonlinear functions are differentiable and
OA-MILP2 is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize η

subject to η ≤ 3− 0.1

2− x ≤ η

8− x − y ≤ η

x + 2y − 9 ≤ 0

6x − 18 ≤ 0

0 ≤ x ≤ 5, y ∈ {0, 1, 2, 3, 4, 5} .

The unique solution to this problem is (3, 3) giving η = 2. Solving OA-NSO(2)
gives (2

√
2, 3) with a new upper bound U3 = 2.17. The next MILP problem will

be infeasible stopping the algorithm. The solution process is depicted in Fig. 16.2.

ECP Method The ECP method begins with solving MILP problem without any
linearizations from the nonlinear functions. This, essentially feasibility problem,
reads

{
minimize μ

subject to 0 ≤ x ≤ 5, y ∈ {0, 1, 2, 3, 4, 5} ,−10 ≤ μ ≤ 10,

where bounds to the μ guarantee a finite solution. Suppose the obtained solution
is (x, y, μ) = (5, 5,−10). Both nonlinear constraints f − μ and g are violated at
this point. To speed up the solving process we make linearizations from all violated
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Fig. 16.2 The solution points found by outer approximation method. Points “1”, “2” and “3”
correspond to solution points of the NSO problems while “1.5” and “2.5” are solution points of the
MILP problems

constraints. The problem ECP-MILP2 is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize μ

subject to x + y − 8 ≤ μ,

10x + 6y − 55 ≤ 0,

0 ≤ x ≤ 5, y ∈ {0, 1, 2, 3, 4, 5} ,−10 ≤ μ ≤ 10,

and its solution is (0, 0,−8). Only f − μ is violated and a new linearization
−x − y + 8 ≤ μ is added to the MILP problem. The solution to this MILP problem
is (2.5, 5, 0.5). After adding the new linearizations from this point the problem
ECP-MILP4 is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize μ

subject to x + y − 8 ≤ μ

−x − y + 8 ≤ μ

−x + y ≤ μ

5x + 6y − 36.25 ≤ 0

10x + 6y − 55 ≤ 0

0 ≤ x ≤ 5, y ∈ {0, 1, 2, 3, 4, 5} ,−10 ≤ μ ≤ 10.
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Fig. 16.3 The solution points found by extended cutting-plane method

The point (3.65, 3, 1.35) will solve this problem and a new linearization 7.3x +
2y ≤ 27.3 is added to the problem. The algorithm continues similarly and
stops at (2.83, 3, 2.17) after 7th iteration. The solving process is depicted in
Fig. 16.3.

ESH Method For the ESH method we will use readily found inner point (0, 0, 10).
The first solution point (x, y, μ) = (5, 5,−10) coincides with the solution point of
the ECP method. Line search between these points finds (1, 1, 6), where f − μ is
active. A supporting hyperplane plane will be added to the MILP problem resulting
in problem

⎧
⎪⎪⎨

⎪⎪⎩

minimize μ

subject to −x − y + 8 ≤ μ,

0 ≤ x ≤ 5, y ∈ {0, 1, 2, 3, 4, 5} .

The solution point of this problem is (5, 5,−2). The line search will find point
(2.87, 2.87, 3.11) where g is active. The constraint 5.74x + 1.74y − 21.5 ≤ 0 is
added to the MILP problem. The next solution is (2.22, 5, 0.77) and the line search
will find point (1.64, 3.68, 3.21). The linearization of g at this point is x + 2y − 9.
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Fig. 16.4 The solution points found by extended supporting hyperplane method. Points “1”, “2”,
“3”, and “4” corresponds to MILP solution points. Points “1.5”, “2.5” and “3.5” are found by the
line search

The problem ESH-MILP4 is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

minimize μ

subject to −x − y + 8 ≤ μ,

5.74x + 1.74y − 21.5 ≤ 0,

x + 2y − 9 ≤ 0,

0 ≤ x ≤ 5, y ∈ {0, 1, 2, 3, 4, 5} .

The solution point is (2.83, 3, 2.17). At this point the stopping criterion is met and
the algorithm stops. The solving process is depicted in Fig. 16.4.

ELBM For the ELBM let x0 = y0 = 5, γ = 0.2 and stability function ϕ = ‖·‖1.
To get the lower bound we first linearize nonlinear functions at z0 = (x0, y0) =
(5, 5) and solve problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize μ

subject to x + y − 8 ≤ μ,

10x + 6y − 55 ≤ 0,

0 ≤ x ≤ 5, y ∈ {0, 1, 2, 3, 4, 5} .
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The solution is (0, 0,−8) giving lower bound f 0
low = −8. Currently B0 = {0} and

thus the stability center ẑ
0 = z0,

h0 = max
{
|5− 4| + |5− 4| − (−8), (5− 2)2 + 52 − 9

}
= 25,

f 0
lev = f 0

low + γ h0 = −8+ 0.2 · 25 = −3.

The next point will be found by solving ELBM-MILP0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize |x − 5| + |y − 5|
subject to x + y − 8 ≤ −3,

10x + 6y − 55 ≤ 0,

0 ≤ x ≤ 5, y ∈ {0, 1, 2, 3, 4, 5} .

Note that we could rewrite the objective by μ+ η and add constraints

x − 5 ≤ μ, −x + 5 ≤ μ, y − 5 ≤ η, 5− y ≤ η

to the problem to make it linear, and thus, an MILP problem. For simplicity, we
do not do so in this presentation. The next iterate is not unique and we choose
z1 = (0, 5). Since

max
{
|0− 4| + |5− 4| − (−8), (5− 2)2 + 02 − 9, 0+ 2 · 5− 9

}
= 13 < h0,

we set h1 = 13. Inequality h1 ≤ (1− 0.2)h0 holds and we set a new stability center
ẑ

1 = z1. We will keep every iterate in the bundle throughout this example and, thus,
neglect updating the bundle Bk . Calculating f 1

lev = −8+ 0.2 · 13 = −5.4 we obtain
ELBM-MILP1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize |x| + |y − 5|
subject to x + y − 8 ≤ −5.4,

−x + y ≤ −5.4,

10x + 6y − 55 ≤ 0,

x + 2y − 9 ≤ 0,

0 ≤ x ≤ 5, y ∈ {0, 1, 2, 3, 4, 5} .
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Table 16.1 Information on iterations when solving the example problem with the ELBM

Iteration zk ẑk zkbest hk f klow f k
lev

0 (5, 5) (5, 5) (5, 5) 25 − 8 − 3

1 (0, 5) (0, 5) (0, 5) 13 −8 −5.4

2 Infeasible (0, 5) (0, 5) 10.4 −5.4 −3.32

3 (3.32, 0) (0, 5) (3.32, 0) 10.08 −5.4 −3.38

4 Infeasible (3.32, 0) (3.32, 0) 8.06 −3.38 −1.77

5 Infeasible (3.32, 0) (3.32, 0) 6.45 −1.77 −0.48

6 Infeasible (3.32, 0) (3.32, 0) 5.48 −0.48 0.62

7 Infeasible (3.32, 0) (3.32, 0) 4.38 0.62 1.49

8 Infeasible (3.32, 0) (3.32, 0) 3.51 1.49 2.19

9 (3, 3) (3, 3) (3, 3) 1 1.49 1.69

10 Infeasible (3, 3) (3, 3) 1 1.69 1.89

11 Infeasible (3, 3) (3, 3) 1 1.89 2.09

12 Infeasible (3, 3) (3, 3) 1 2.09 2.29

13 (2.83, 3) (2.83, 3) (2.83, 3) 0.07 2.09 2.11

This problem is infeasible and we update f 2
low = f 1

lev = −5.4. Now h2 = 13− 8+
5.4 = 10.4 and f 2

lev = −5.4+ 0.2 · 10.4 = −3.32. The next MILP problem is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize |x| + |y − 5|
subject to x + y − 8 ≤ −3.32,

−x + y ≤ −3.32,

10x + 6y − 55 ≤ 0,

x + 2y − 9 ≤ 0,

0 ≤ x ≤ 5, y ∈ {0, 1, 2, 3, 4, 5} .

Again, the solution is not unique and we pick z2 = (3.32, 0). The procedure
continues and converges to the global optimum after 14th iteration. The solving
process is reported in Table 16.1 and depicted in Fig. 16.5.

16.4 Concluding Remarks

In this chapter we considered deterministic algorithms for convex mixed integer
NSO problems. Some of the algorithms can also solve problems with generalized
convex functions. All of the algorithms require at least that we can calculate a
subgradient from the Clarke subdifferential of the nonlinear functions at any point
which algorithm visits. While most of the methods are based on MINLP algorithms
for differentiable case, the ELBM is a generalization of an NSO algorithm to the
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Fig. 16.5 The solution points found by the extended level bundle method

mixed integer case. By showing that this is possible, it also rises a question whether
other bundle methods can be generalized to solve mixed integer problems as well.
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Chapter 17
A View of Lagrangian Relaxation and Its
Applications

Manlio Gaudioso

Abstract We provide an introduction to Lagrangian relaxation, a methodology
which consists in moving into the objective function, by means of appropriate
multipliers, certain complicating constraints of integer programming problems.
We focus, in particular, on the solution of the Lagrangian dual, a nonsmooth
optimization (NSO) problem aimed at finding the best multiplier configuration. The
algorithm for solving the Lagrangian dual can be equipped with heuristic procedures
for finding feasible solutions of the original integer programming problem. Such an
approach is usually referred to as Lagrangian heuristic. The core of the chapter
is the presentation of several examples of Lagrangian heuristic algorithms in areas
such as assignment problems, network optimization, wireless sensor networks and
machine learning.

17.1 Introduction

The relevance of any mathematical concept lies in its ability to generate many fruits
in diverse areas and to produce long-lasting effects. This is definitely the case of
the Lagrange multipliers [38], which have influenced the development of modern
mathematics and are still fertile as far as mathematical programming theory and
algorithms are concerned.

In this chapter we confine the discussion to the treatment of numerical optimiza-
tion problems in a finite dimension setting, where the decision variables are the
vectors of Rn.

Looking at the cornerstones of the historical development of such an area,
we observe that Lagrange multipliers have survived the crucial passages from
equality- to inequality-constrained problems, as well as from continuous to discrete
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optimization. In addition they have shown their potential also when nonsmooth
analysis has come into play [48, 49].

Originally the rationale of the introduction of Lagrange multipliers was to
extend to the equality constrained case the possible reduction of an optimization
problem to the solution of a system of nonlinear equations, based on the observation
that an optimality condition must necessarily involve both objective function and
constraints. The geometry of the constraints became more and more important
as soon as inequality constrained problems were taken into consideration, and
Lagrangian multipliers were crucial in the definition of the related optimality
conditions.

The introduction of the duality theory highlighted the role of the Lagrangian
multipliers in the game-theoretic setting, as well as in the study of value functions
associated to optimization problems. More recently, the 1960s of last century, it
was clear [18] that a Lagrangian multiplier-based approach was promising even in
dealing with optimization problems of discrete nature, showing that in some sense
it was possible to reduce the gap between continuous and integer optimization.

In this chapter we focus on Lagrangian relaxation, which was introduced in [29],
for dealing with integer or mixed integer optimization problems and immediately
conquered the attention of many scientist as a general-purpose tools for handling
hard problems [21]. Pervasiveness of Lagrangian relaxation is well evidenced in
[39].

The objective of the presentation is to demonstrate the usefulness of combined
use of Lagrangian relaxation and heuristic algorithms to tackle hard integer
programming problems. We will introduce several examples of application in fairly
diverse areas of practical optimization.

The chapter is organized as follows. Basic notions on Lagrangian relaxation are
in Sect. 17.2, while solution methods for tackling the Lagrangian dual are discussed
in Sect. 17.3. A basic scheme of Lagrangian heuristics, together with an example
of dual ascent for the classic set covering problem, is in Sect. 17.4. A number of
applications in areas such as assignment, network optimization, sensor location,
logistics and machine learning are discussed in Sect. 17.5. Some conclusions are
drawn in Sect. 17.6.

17.2 Basic Concepts

We introduce first the following general definition.

Definition 17.1 (Relaxation) Given a minimization problem (P ) in the following
form:

{
minimize f (x)

subject to x ∈ X ⊂ R
n,

(17.1)
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with f : Rn → R, any problem (PR)

{
minimize h(x)

subject to x ∈ XR ⊂ R
n,

(17.2)

with h : Rn → R, is a relaxation of (P ), provided that the two following conditions
hold:

X ⊂ XR; (17.3)

h(x) ≤ f (x), x ∈ X. (17.4)

Under the above definition, if x∗ is any (global) minimum of (PR), then h(x∗) is a
lower bound on the optimal value of the problem (P ). Of course it is advantageous to
spend some effort to obtain such information whenever (PR) is substantially easier
to solve than (P ).

There exist many different ways for constructing relaxations. For example, the
usual continuous relaxation of any integer linear programming (ILP) problem
satisfies the conditions (17.3) and (17.4).

We introduce Lagrangian relaxation starting from a linear program (LP) in
standard form:

⎧
⎪⎪⎨

⎪⎪⎩

minimize cT x

subject to Ax = b,

x ≥ 0,

(17.5)

with x, c ∈ R
n, A ∈ R

m×n and b ∈ R
m. We assume that the problem is feasible and

has optimal solution, so that the dual problem is feasible as well.
For any choice of the Lagrangian multiplier vector λ ∈ R

m (or, simply, the
multiplier vector), we define the Lagrangian relaxation (LR(λ))

{
minimize cT x + λT (b − Ax)

subject to x ≥ 0,
(17.6)

which can be rewritten as

bT λ + min (c − AT λ)T x

subject to x ≥ 0.
(17.7)

Letting zLR(λ) be the optimal value of the problem (17.7), we obtain

zLR(λ) =
{

bT λ, if c − AT λ ≥ 0,

−∞, otherwise.
(17.8)
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From the definition of relaxation, zLR(λ) is a lower bound for the LP problem (17.5),
possibly the trivial one for those values of λ which do not satisfy the condition
AT λ ≤ c. It is quite natural to look for the best lower bound and this results in
solving the problem

maximize zLR(λ), (17.9)

which, taking into account (17.8), is exactly the dual of (17.5),

{
maximize bT λ

subject to AT λ ≤ c.
(17.10)

The problem (17.9) will be referred to as the Lagrangian dual of the LP prob-
lem (17.5), and in fact the optimal solution λ∗ of the dual is optimal for (17.9)
as well.

The main motivation for the introduction of Lagrangian relaxation is the treat-
ment of ILP problems. We will not consider in the sequel the mixed integer linear
programming (MILP) case, where Lagrangian relaxation theory can be developed
in a completely analogous way as in the pure case. The binary linear programming
(BLP) problems can be considered as a special case of ILP. Thus we focus on the
following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize cT x

subject to Ax = b,

Bx = d,

x ≥ 0, integer,

(17.11)

with x, c ∈ R
n, A ∈ R

m×n, B ∈ R
p×n, b ∈ R

m and d ∈ R
p. We assume that the

problem is feasible and that the set

X = { x ∈ R
n | Bx = d, x ≥ 0, integer}

is finite, that is X = {x1, x2, . . . , xK } and we denote by K = {1, 2, . . . ,K} the
corresponding index set. In writing the problem (17.11) two different families of
constraints are highlighted, those defined through Ax = b being the complicating
ones. By focusing exclusively on such set of constraints, we come out with the
Lagrangian relaxation defined for λ ∈ R

m

{
minimize cT x + λT (b − Ax)

subject to x ∈ X, (17.12)



17 A View of Lagrangian Relaxation and Its Applications 583

which is supposed easier to solve than the original problem. By letting x(λ) and
zLR(λ) be, respectively, the optimal solution and the optimal value of (17.12), it is

zLR(λ) = cT x(λ)+ λT (b − Ax(λ)) = min
k∈K

cT xk + λT (b − Axk). (17.13)

Remark 17.1 Function zLR(λ) is often referred to as the dual function. Note that,
in case x(λ) is feasible, that is Ax(λ) = b, then it is also optimal for the original
problem (17.11)

In order to look for the best among the lower bounds zLR(λ), we define also in
this case the Lagrangian dual

zLD = max
λ∈Rm

zLR(λ), (17.14)

that is, from (17.13)

zLD = max
λ

min
k∈K

cT xk + λT (b − Axk). (17.15)

The optimal value zLD is the best lower bound obtainable through Lagrangian
relaxation.

It is worth noting that the problem (17.15), which we will discuss later in more
details, consists in the maximization of a concave and piecewise affine function. It
is in fact the NSO problems which can be tackled by means of any of the methods
described in this book. On the other hand, by introducing the additional variable
v ∈ R, it can be rewritten in the following LP form:

⎧
⎨

⎩
maximize

λ,v
v

subject to v ≤ cT xk + λT (b − Axk), k ∈ K,
(17.16)

whose dual, in turn, is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
μ

cT (
∑

k∈K
μkxk)

subject to A(
∑

k∈K
μkxk) = b,

∑

k∈K
μk = 1,

μk ≥ 0, k ∈ K,

(17.17)
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or, equivalently,

⎧
⎪⎪⎨

⎪⎪⎩

minimize cT x

subject to Ax = b,

x ∈ convX,

(17.18)

where X = { x ∈ R
n | Bx = d, x ≥ 0 integer}. The Lagrangian dual is thus a

partially convexified version of the ILP (17.11). From the inclusion

convX ⊆ { x ∈ R
n | Bx = d, x ≥ 0} = X̄,

it follows

zLD ≥ zLP , (17.19)

where zLP is the optimal value of the continuous LP relaxation of (17.11):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize cT x

subject to Ax = b,

Bx = d,

x ≥ 0.

(17.20)

The property (17.19) indicates that the lower bound provided by the best (not by
any!) multiplier vector setting is not worse than the optimal value of the continuous
relaxation. Moreover, it is important to observe that in case the so-called integrality
property holds, that is in case the vertices of the polyhedron X̄ are integer, it is
zLD = zLP .

Whenever the integrality property is satisfied (and this is a rather common case
in integer programming applications) Lagrangian relaxation may appear a quite
weak approach compared to classic continuous relaxation: we need to solve a NSO
problem of the maxmin type just to get he same bound obtainable by solving a LP!
Nonetheless, Lagrangian relaxation may be a useful tool also in this case for the
following reasons:

• in several applications the continuous relaxation is a huge LP and it may be a
good idea not to tackle it;

• in Lagrangian relaxation the decision variables (think e.g. binary variables) keep
the original physical meaning, which, instead, gets lost in continuous relaxation;

• the possibly infeasible solutions of the Lagrangian relaxation are often more
suitable for repairing heuristics than those of the continuous relaxation.

Coming back to the two formulations (17.15) and (17.17), we observe that they
offer two possible schemes for solving the Lagrangian dual.
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Consider first (17.15), which is a finite maxmin problem where the function to
be maximized is concave. In fact it is defined as the pointwise minimum of a finite
(possibly very large) number of affine functions of variable λ, one for each xk ∈ X.
Application of the classic cutting plane model consists in generating an (upper)
approximation of the min function, initially based on a relatively small number of
affine pieces, which becomes more and more accurate as new affine pieces (cuts) are
added. In practice, taking any subset S ⊂ K (and the correspondent points xk ∈ X,
k ∈ S) the cutting plane approximation zS (λ) of zLR(λ) is defined as

zS (λ) = min
k∈S

cT xk + λT (b − Axk),

and thus we come out with the restricted primal problem

zrestr(S) = max
λ

min
k∈S

cT xk + λT (b − Axk), (17.21)

which, in turn, can be put in the LP form of the type (17.16):

⎧
⎨

⎩
maximize

λ,v
v

subject to v ≤ cT xk + λT (b − Axk), k ∈ S.
(17.22)

Assuming the problem (17.21) is not unbounded and letting λS be any optimal
solution, we calculate now zLR(λS ) (in fact we solve the Lagrangian relaxation for
λ = λS):

zLR(λS ) = min
k∈K

cT xk+λS
T (b−Axk) = bT λS+min

k∈K
(c−AT λS )

T xk. (17.23)

Letting the optimal solution of the above problem be attained in correspondence to
any index, say kS , and assuming zLR(λS ) be sufficiently smaller than zrestr(S), the
procedure is then iterated after augmenting the set of affine pieces in (17.21) by the
one associated to the newly generated point xkS .

Consider now the formulation of the Lagrangian dual provided by (17.17). It is a
(possibly very large) LP in a form particularly suitable for column generation [53].
We observe in fact that the columns are associated to points xk , k ∈ K, in perfect
analogy with the association affine pieces–points of X in the formulation (17.15).
To apply the simplex method it is necessary to start from any subset of columns
providing a basic feasible solution and then look for a column with negative reduced
cost. Such operation is not necessarily accomplished by examining the reduced
costs of all non basic columns, instead it can be implemented by solving a pricing
problem. In fact the constraint matrix in (17.17) has size (m + 1) × K and has the
form:

[
Ax1 . . . AxK

1 . . . 1

]
. (17.24)
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Letting λB be the vector assembling the firstm dual variables associated to the basis,
the components of the reduced cost vector ĉ are:

ĉk = (c − AT λB)
T xk − λm+1, k ∈ K,

where λm+1 is the last dual variable and plays the role of a constant in the definition
of ĉk , k ∈ K. Consequently, the pricing problem consists of solving

min
k∈K

(c − AT λB)
T xk, (17.25)

which is a problem formally identical to (17.23).

Remark 17.2 It is worth noting that both (17.23) and (17.25) need not be solved at
optimality, as for the former it is sufficient to generate a cut, that is to calculate any
index k, k /∈ S such that

cT xk + λS
T (b − Axk) < zrestr(S),

while for the latter the optimization process can be stopped as soon as a column
with the negative reduced cost has been detected.

We observe, finally, that in the formulation (17.11) the complicating constraints
Ax = b are in the equality form. Lagrangian relaxation is well defined also in case
they are of the type Ax ≥ b, the only difference being in the need of setting λ ≥ 0.
This fact implies that the Lagrangian dual is now

max
λ≥000

zLR(λ). (17.26)

It is worth noting that feasibility of x(λ) no longer implies optimality. In fact it can
be easily proved that now x(λ) is only ε-optimal, for

ε = (Ax(λ)− b)T λ ≥ 0.

17.3 Tackling the Lagrangian Dual

Solving the Lagrangian dual problem (17.14) requires maximization of a concave
and piecewise affine function (see (17.15)). Consequently, all the available machin-
ery to deal with convex nondifferentiable optimization can be put in action. We
have already sketched in previous section possible use of the cutting plane method
[13, 35]. On the other hand the specific features of the Lagrangian dual can be
fruitfully exploited.

The basic distinction is between algorithms which do or do not use the differen-
tial properties of function zLR . Observe that a subgradient (concavity would suggest
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the more appropriate term supergradient) is immediately available as soon as zLR
has been calculated. Letting in fact (see (17.13))

zLR(λ) = cT x(λ)+ λT (b − Ax(λ)) = min
k∈K

cT xk + λT (b − Axk)

we observe that, for any λ′ ∈ R
m, it is

zLR(λ
′) = min

k∈K
cT xk + λ′T (b − Axk) ≤ cT x(λ)+ λ′T (b − Ax(λ))

= cT x(λ)+ λ′T (b − Ax(λ))+ λT (b − Ax(λ))− λT (b − Ax(λ))

= zLR(λ)+ (λ′ − λ)T (b − Ax(λ)),

thus (b−Ax(λ)) is a subgradient of zLR at λ, that is g(λ) = (b−Ax(λ)) ∈ ∂zLR(λ).
As for methods that use the subgradient for maximizing zLR(λ), we mention first

the classic (normalized) subgradient method [46, 51], where the h-th iteration is

λh+1 = λh + th
g(λh)

‖g(λh)‖ ,

th being the step size along the normalized subgradient direction. We remark that
monotonicity of the sequence of values zLR(λh) is not ensured, while convergence
to a maximum is guaranteed under the well known conditions on the step size th →
0 and

∑∞
h=1 th →∞. Very popular formulae for setting th are

th = C

h
, (17.27)

and the Polyak formula

th = ẑ
(h)
LD − zLR(λh)

‖g(λh)‖ , (17.28)

where C is any positive constant and ẑ
(h)
LD is an improving overestimate at the

iteration h of zLD , the optimal value of the Lagrangian dual.
Subgradient-type were the first and the most widely used methods for dealing

with the Lagrangian dual, despite their slow convergence, mainly for their imple-
mentation simplicity. In more recent years, stemming from the approach introduced
in [44], the so-called fast gradient methods have received considerable attention
[26]. The approach consists in smoothing first the objective function and applying
next gradient-type methods. Besides such stream, incremental subgradient methods,
which are applicable whenever the objective function is expressed as a sum of
several convex component functions, have been devised to deal with the Lagrangian
dual [7, 36].

A careful analysis of the performance of subgradient methods for Lagrangian
relaxation is in [25].
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The cutting plane method previously summarized has been the building block
for devising two families of algorithms, the bundle [34] and the analytic center
[30] methods for convex minimization (or, equivalently, concave maximization).
They can be considered as an evolution of the cutting plane, aimed at overcoming
some inherent weakness in terms of stability, speed and well posedness. An update
discussion on bundle methods is in Chap. 3 of this book.

The above methods have been successfully employed in several applications of
Lagrangian relaxation in frameworks such as energy management [5, 8, 19, 31, 40],
network design [25], train timetabling [20], telecommunication networks [41],
logistics [43] etc.

As for methods which do not make explicit use of the subgradient of function
zLR, they are iterative algorithms of the coordinate or block-coordinate search type,
according to the fact that at each iteration just one or a (small) subset of multipliers
is modified. The update is aimed at increasing zLR , thus such class of methods is, in
general, referred to as the dual ascent one [33].

The choice of the component of the current multiplier vector λ to be updated is
usually driven by the properties of the optimal solution x(λ). In general one picks
up a violated constraint and modifies the corresponding multiplier trying to achieve
a twofold objective:

• to increase zLR;
• to ensure feasibility of the previously violated constraint.

In several cases it is possible to calculate exactly (sometimes by solving some
auxiliary problem) the multiplier update which guarantees satisfaction of both the
above objectives. Most of the times, however, it is necessary to introduce a line
search capable to handle possible null step exit, which cannot be excluded as
consequence of nonsmoothness of function zLR.

From the computational point of view, comparison of dual ascent and subgradient
methods shows that the former produce in general more rapid growth of the dual
function zLR . On the other hand, dual ascent algorithms are often affected by
premature stop at points fairly far from the maximum, whenever no coordinate
direction is actually an ascent one. In such a case it is useful to accommodate for
re-initialization, by adopting any subgradient as restart direction.

17.4 Lagrangian Heuristics

As pointed out in [39], Lagrangian relaxation is more than just a technique to
calculate lower bounds. Instead, it is a general philosophy to approach problems
which are difficult to tackle, because of their intrinsic complexity.

Lagrangian relaxation has been extensively used in the framework of exact
methods for integer programming. We will not enter into the discussion on the best
ways to embed Lagrangian relaxation into branch and bound, branch and cut and
branch and price algorithms. We refer the interested reader to the surveys [24] and
[32].
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We will focus, instead, on the use of Lagrangian relaxation in the so-called
Lagrangian heuristic framework for solving the problem (17.11). The computa-
tional scheme is fundamentally the following:

Algorithm 17.1: Lagrangian heuristic

Step 0. (Initialization) Choose λ(0). Set k = 0 and set zUB = ∞.

Step 1. (Lagrangian relaxation ) Calculate zLR(λ(k)) and the corresponding
x(λ(k)). If
x(λ(k)) is feasible, then stop.

Step 2. (Repairing heuristic) Implement any heuristic algorithm to provide,
starting from x(λ(k)), a feasible solution x

(k)
eur . Set z(k)eur = cT x

(k)
eur and

possibly update zUB .
Step 3. (Multiplier update) Calculate λ(k+1) by applying any algorithm for

the Lagrangian dual. Set k = k + 1. Perform a termination test and
possibly return to Step 1.

The above scheme is just an abstract description of how a Lagrangian heuristic
works and several points need to be specified.

As for the initialization, a possible choice, whenever the LP continuous relax-
ation (17.20) is not too hard to solve, is to set λ(0) = λ∗LP , where λ∗LP is the dual
optimal vector associated to constraints Ax = b.

At Step 2 the Lagrangian relaxation (17.12) is solved. As previously mentioned,
it is expected to be substantially easier than the original problem (17.11), and in
fact it is solvable, in many applications, in polynomial or pseudo-polynomial time.
This is not always the case, as (17.12) may be still a hard combinatorial problem.
In such cases it is possible to substitute an approximate calculation of zLR to the
exact one, which amounts to adopt a heuristic algorithm to tackle the Lagrangian
relaxation (17.12) at Step 1.

Inexact calculation of zLR has a strong impact on the way in which the
Lagrangian dual (17.14) is tackled at Step 3. Here all machinery of convex
optimization with inexact calculation of the objective function enters into play.
For an extensive treatment of the subject see [16, 37] and Chap. 12 of this book.
An example of the use of inexact calculation of zLR in a Lagrangian heuristic
framework is in [27].

The repairing heuristic at Step 2 is, of course, the problem dependent and it is
very often of the greedy type.

The termination test depends on the type of algorithm used for solving the
Lagrangian dual. Classic termination tests based on approximate satisfaction of the
condition 000 ∈ ∂zLR(λ(k)) can be used whenever bundle type algorithms are adopted.
In case subgradient or dual ascent algorithms are at work, stopping tests based on
variation of zLR can be adopted, together with a bound on the maximum number of
iterations.
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An important feature of Lagrangian heuristics is that they provide both a lower
and an upper bound and, consequently, significant indications on the upper–lower
bound gap are often at hand.

It is worth remarking, however, that, differently from the case where Lagrangian
relaxation is used within an exact algorithm, here the main aim is to produce good
quality feasible solutions rather than to obtain tight lower bounds. In fact it happens
in several applications that poor lower bounds are accompanied by a fairly good
upper bound. This is probably due to the fact that, as the algorithm proceeds,
many feasible solutions are explored, through a search mechanism where multiplier
update is finalized to get feasibility. From this point of view, adopting a not too fast
NSO algorithm is not always a disadvantage!

Consequence of the above observations is that Lagrangian heuristics can be
satisfactorily applied even to problems which exhibit the integrality property, that
is also in case one knows in advance that Lagrangian dual is unable to produce
anything better than the continuous LP relaxation lower bound.

17.4.1 An Example of Dual Ascent

The following example shows how to get, by tackling the Lagrangian dual, both a
lower and an upper bound for a classic combinatorial problem. The Lagrangian dual
is approached by means of a dual ascent algorithm, which works as a co-ordinate
search method and modifies just one multiplier at a time.

Consider the standard set covering problem (SCP), which is known to be NP-
hard. Suppose we are given a ground-set I = {1, . . . ,m}, a family of n subsets
Sj ⊆ I, j ∈ J = {1, . . . n} and a real cost vector c ∈ R

n, c > 0. The problem is to
select a minimum cost cover, that is an index set J ∗ ⊆ J such that ∪j∈J ∗Sj = I
with minimal associated cost

∑
j∈J ∗ cj . By defining the m × n binary incidence

matrix A of the subsets Sj and letting e be a vector of m ones, the SCP reads as
follows

⎧
⎪⎪⎨

⎪⎪⎩

minimize cT x

subject to Ax ≥ e,

x binary,

(17.29)

where x is a binary decision variable vector with xj = 1 if j is taken into the cover
and xj = 0 otherwise, j ∈ J .

By relaxing the covering constraints Ax ≥ e by means of the multiplier vector
λ ≥ 000, λ ∈ R

m, we obtain

zLR(λ) = min cT x + λT (e − Ax)

subject to x binary,
(17.30)
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which can be in turn rewritten as

zLR(λ) = eT λ + min (c − AT λ)T x

subject to x binary.
(17.31)

An optimal solution x(λ) to the problem (17.31) can be obtained by simple
inspection of the (reduced) cost vector c(λ) = c − AT λ, by setting

xj (λ) =
{

1, if cj (λ) = cj − aj
T λ ≤ 0,

0, otherwise,
(17.32)

where aj is the column j of matrix A. Observe that in this case the integrality
property holds, thus zLD = zLP .

We introduce now a rule for updating the multiplier vector λ, in case the
corresponding x(λ) is infeasible, so that in the new multiplier setting:

• the number of satisfied constraints is increased;
• the function zLR increases as well.

We proceed by updating just one component of λ. Since we assume that x(λ) is
infeasible, there exists at least one row index, say h, such that:

∑

j∈J
ahjxj (λ) = 0, (17.33)

which implies, taking into account (17.32),

cj (λ) = cj − aj
T λ > 0, for all j ∈ J (h) = {j | ahj = 1}.

Now, defining a new multiplier setting in the form λ+ = λ + δeh for some δ > 0,
where eh is the h-th unit vector, the updated reduced cost is c(λ+) = c(λ)− δAT eh,
that is

cj (λ
+) =

{
cj (λ)− δ, if j ∈ J (h),

cj (λ), otherwise.
(17.34)

In particular, by setting δ = minj∈J (h) cj (λ) = cj∗(λ), it is cj∗(λ+) = 0 and thus,
from (17.32), xj∗(λ+) = 1. Summing up it is

xj (λ
+) =

{
xj (λ), if j �= j∗,
1, if j = j∗.

(17.35)

Corresponding to the new solution x(λ+), the constraint h is no longer violated
and it is zLR(λ+) = zLR(λ)+ δ. Summing up, dual ascent has been achieved and at



592 M. Gaudioso

least one of the constraints previously violated is satisfied, while the satisfied ones
remain such. By iterating the multiplier update, we obtain, in at most m steps, both
a feasible solution and a lower bound, produced by a sequence of ascent steps.

Algorithm 17.2: Dual ascent for set covering

Step 0. (Initialization) Set λ(0) = 000, c(λ(0)) = c, zLR(λ(0)) = 0, x(λ(0)) = 000
and k = 0.

Step 1. (Termination test) If Ax(λ(k)) ≥ e, then calculate zUB = cT x(λ(k))

and stop. Otherwise, select h such that
∑n

j=1 ahjxj (λ) = 0, calculate

0 < δ = minj∈J (h) cj (λ
(k)) and j∗ = argminj∈J (h){cj (λ(k))}, with

J (h) = {j | ahj = 1}.
Step 2. (Multiplier and reduced cost update) Put λ(k+1) = λ(k) + δeh,

c(λ(k+1)) = c(λ(k))− δAT eh,

xj (λ
(k+1)) =

{
xj (λ

(k)), if j �= j∗,
1, if j = j∗,

zLR(λ
(k+1)) = zLR(λ

(k))+ δ. Set k = k + 1 and return to Step 1.

At stop in correspondence to any iteration index k, we obtain both a feasible
solution x(λ(k)), with associate objective function value zUB , together with the
lower bound zLR(λ(k)).

Remark 17.3 For set covering problem the integrality property holds true, thus we
cannot expect from the above procedure anything better than the LP lower bound.
Moreover, since it is not at all guaranteed that the optimum of the Lagrangian is
achieved when the algorithm stops, the lower bound provided might be definitely
worse than the LP one. On the other hand the interplay between quest for feasibility
and dual function improvement is a typical aspect of the applications we are going
to describe in next section.

17.5 Applications

In this section we describe a number of applications of Lagrangian relaxation to
integer programming problems coming from fairly diverse areas. In almost all
cases a Lagrangian heuristic based on the abstract scheme sketched in Sect. 17.4 is
designed. The Lagrangian dual is dealt with either via dual ascent or via subgradient
algorithms. In particular the following problems will be treated:

• generalized assignment [22];
• spanning tree with minimum branch vertices [10];
• directional sensors location [3];
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• cross docking scheduling [14];
• feature selection in support vector machines [28];
• multiple instance learning [4].

The presentation is necessarily synthetic and no numerical results are presented.
The interested reader is referred to the original papers and to the references therein.

17.5.1 Generalized Assignment

A classic application of a dual ascent procedure based on updating one multiplier
at a time is the method for solving the generalized assignment problem (GAP)
described in [22]. GAP can be seen as the problem of assigning jobs to machines
with limited amount of a resource (e.g. time or space), with the objective of
maximizing the value of the assignment.

The sets I and J of machine and job indices, respectively, are given, together
with the following data:

• aij , the resource required by job j when processed on machine i, i ∈ I and
j ∈ J ;

• bi , resource availability of machine i, i ∈ I;
• cij , value of assigning job j to machine i, i ∈ I and j ∈ J .

Defining, for i ∈ I and j ∈ J , the decision variable xij = 1 if job j is assigned to
machine i and xij = 0 otherwise, the GAP is then formulated:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize
∑

i∈I

∑

j∈J
cij xij

subject to
∑

i∈I
xij = 1, j ∈ J ,

∑

j∈J
aij xij ≤ bi, i ∈ I,

xij binary, i ∈ I, j ∈ J .

(17.36)

A possible relaxation is obtained by acting on the semi-assignment constraints∑
i∈I xij = 1, j ∈ J , thus obtaining, for each choice of the multipliers λj ,

j ∈ J (they are grouped into vector λ), the following upper bound zLR(λ) (note
that (17.36) is a maximization problem, hence the Lagrangian dual is a minimization
problem):

zLR(λ) =
∑

j∈J
λj + max

∑

i∈I

∑

j∈J
(cij − λj )xij

subject to
∑

j∈J
aij xij ≤ bi, i ∈ I,

xij binary, i ∈ I, j ∈ J .

(17.37)
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It is easy to verify that the problem (17.37) decomposes into |I| binary knapsack
subproblems, that is

zLR(λ) =
∑

j∈J
λj +

∑

i∈I
z
(i)
LR(λ),

where

z
(i)
LR(λ) = max

∑

j∈J
(cij − λj )xij

subject to
∑

j∈J
aij xij ≤ bi,

xij binary, j ∈ J .

(17.38)

If for any λ the solution x(λ) of the Lagrangian relaxation satisfies the relaxed
constraints, then it is optimal for the GAP as well. In [22] a judicious selection
of the initial values of the multipliers by setting λj = max(2)

i∈I cij , where max(2)

indicates the second largest number in a set, makes x(λ) to satisfy the condition∑
i∈I xij (λ) ≤ 1, j ∈ J . Thus the only possible infeasibilities of such solution are

of the type
∑

i∈I xij (λ) = 0, for one or more jobs.
The core of the algorithm is the multiplier vector update which is driven by such

kind of infeasibility. In fact, consider any job h such that
∑

i∈I xih(λ) = 0. Any
decrease in multiplier λh makes all reduced costs (cih − λh) of such unassigned
job increase. As consequence, job h becomes more competitive in view of possible
assignment. The key point of the algorithm is the possibility of calculating exactly
the minimum reduction Δh of multiplier λh which allows, under the new setting,
assignment of the previously unassigned job to at least one machine.

This calculation can be performed as follows. It is first calculated Δih, the
minimum reduction in λh which allows assignment of job h to machine i, i ∈ I. To
this aim, the following auxiliary knapsack problem is solved:

z
(i,h)
LR (λ) = max

∑

j∈J , j �=h
(cij − λj )xij

subject to
∑

j∈J , j �=h
aij xij ≤ bi − aih,

xij binary, j ∈ J , j �= h,

(17.39)

and then it is

Δih = z
(i)
LR(λ)−

(
cih − λh + z

(i,h)
LR (λ)

) ≥ 0.
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Finally we have

Δh = min
i∈I

Δih,

and it is easy to verify that, in case Δh > 0 and letting λ+ = λ − Δheh, function
zLR reduces of exactly Δh.

We skip here some details of the algorithm, e.g., how to enforce condition∑
i∈I xij (λ) ≤ 1, j ∈ J to hold throughout the execution. We wish to emphasize,

instead, that at each iteration just one multiplier is updated (thus the algorithm is a
co-ordinate descent one). Moreover, unlike the algorithm for set covering discussed
in previous section, it is not ensured that the number of satisfied constraints increases
monotonically. However, termination at a feasible (and hence optimal) solution is
guaranteed.

An approach inspired by this method was introduced in [11] to deal with a classic
location–allocation problem known as terminal location.

17.5.2 Spanning Tree with Minimum Branch Vertices

In previous subsection it has been presented a dual ascent procedure, based on
modification of one multiplier at a time, with exact calculation of the step size along
the corresponding coordinate axis. Here we discuss a dual ascent algorithm for the
spanning tree with minimum branch vertices (ST-MBV) problem which still works
modifying just one multiplier at a time, but it is equipped with a line search along
the coordinate axis.

Another application of Lagrangian relaxation to a variant of the Steiner tree
problem is in [17].

The ST-MBV problem arises in the design of optical networks, where it is
necessary to guarantee connection to all nodes of a given network. Thus a spanning
tree is to be found. Since at least one switch must be installed at each node of the tree
whose degree is greater than two (branch vertices) the problem is to find a ST-MBV.

This problem admits several formulations. We focus on the integer programming
(IP) one described in [10], where a Lagrangian heuristic is presented in details.

We consider an undirected network G = (V ,E), where V denotes the set of n
vertices and E the set of m edges. The decision variables are the following:

• xe, e ∈ E, binary; xe = 1 if edge e is selected and xe = 0 otherwise;
• yv , v ∈ V , binary; yv = 1 if vertex v is of the branch type (that is its degree, as

vertex of the tree, is greater than two), and yv = 0 otherwise.
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Then, the IP formulation of the MBV is the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
∑

v∈V
yv

subject to
∑

e∈E
xe = n− 1,

∑

e∈E(S)
xe ≤ |S| − 1, S ⊆ V,

∑

e∈A(v)
xe − 2 ≤ δvyv, v ∈ V,

yv binary, v ∈ V and xe binary, e ∈ E,

(17.40)

where for any given subset of vertices S we denote by E(S) the set of edges having
both the endpoints in S. Moreover, we denote by A(v) the set of incident edges to
vertex v and by δv its size, i.e. δv = |A(v)|. The objective function to be minimized
is the total number of branch vertices. Constraints

∑

e∈E
xe = n− 1 and

∑

e∈E(S)
xe ≤ |S| − 1, S ⊆ V,

ensure that a spanning tree is actually detected, while the complicating constraints
are

∑
e∈A(v) xe − 2 ≤ δvyv , v ∈ V . They guarantee that variable yv is set to 1

whenever v has more than two incident edges in the selected tree.
By introducing the multipliers λv ≥ 0, v ∈ V (grouped, as usual, in vector λ),

we obtain the following Lagrangian relaxation:

zLR(λ) = min
∑

v∈V
yv +

∑

v∈V
λv(

∑

e∈A(v)
xe − 2− δvyv)

subject to
∑

e∈E
xe = n− 1,

∑

e∈E(S)
xe ≤ |S| − 1, S ⊆ V,

yv binary, v ∈ V and xe binary, e ∈ E.

(17.41)

By simple manipulations, zLR(λ) may be rewritten as

zLR(λ) = −2
∑

v∈V
λv + z

(1)
LR(λ)+ z

(2)
LR(λ), (17.42)

where z(1)LR(λ) and z(2)LR(λ) are defined as follows:

z
(1)
LR(λ) = min

∑

v∈V
yv(1− δvλv)

subject to yv binary, v ∈ V,
(17.43)
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and

z
(2)
LR(λ) = min

∑

v∈V

∑

e∈A(v)
λvxe

subject to
∑

e∈E
xe = n− 1,

∑

e∈E(S)
xe ≤ |S| − 1, S ⊆ V,

xe binary, e ∈ E.

(17.44)

Note that zLR(λ) is rather easy to calculate. In fact the problem (17.43) is solved
by inspection of the cost coefficients, by setting

{
yv = 1, if 1− δvλv ≤ 0,

yv = 0, otherwise,
(17.45)

while z(1)LR(λ) is the optimal value of the minimum spanning tree problem where the
weight of edge e = (u, v) is λu + λv .

As for the Lagrangian dual, it is possible to prove [10] that the optimal multiplier
vector λ∗ satisfies the condition

λ∗v ≤
1

δv
, v ∈ V. (17.46)

On the basis of such property it is possible to devise an ascent strategy which
modifies one multiplier at a time. Suppose that (x(λ), y(λ)) is an optimal solution
to the Lagrangian relaxation for a given λ, then such strategy is at hand whenever
one of the two following cases occurs for some v ∈ V :

1.
∑

e∈A(v)
xe(λ) > 2 and yv(λ) = 0;

2.
∑

e∈A(v)
xe(λ) ≤ 2 and yv(λ) = 1.

Consider first the case 1 and observe (see the objective function of the prob-
lem (17.41)) that the v component

∑
e∈A(v) xe(λ) − 2 − δvyv(λ)) of a subgradient

of zLR is strictly positive, thus one can expect an increase in the objective if λv is
increased. Observe, in addition, that property (17.46) suggests to adopt an Armijo-
type line search along the co-ordinate direction ev with 1

δv
as initial step size. On

the other hand, a consequence of nonsmoothness of zLR is that direction ev is not
necessarily an ascent one, thus the backtracking line search must accommodate for
possible failure (the so-called null step, to use the terminology of bundle methods).

As for the case 2, the v subgradient component
∑

e∈A(v) xe(λ)− 2− δvyv(λ)) is
negative and, in addition (see (17.45)) it is λv > 0. Thus it is worth to consider



598 M. Gaudioso

a possible reduction on λv , that is a move along the co-ordinate direction −ev ,
adopting, also in this case, an Armijo-type line search equipped with possible null
step declaration.

The use of the co-ordinate search approach has both advantages and drawbacks.
As pointed out in [10], co-ordinate search is definitely faster than standard sub-
gradient but the lower bound is slightly worse due to possible premature stop (see
Sect. 17.3).

We remark that for this application a feasible solution of the problem (17.40) is
available with no additional computational cost at each iteration of the dual ascent
procedure. After all, the Lagrangian relaxation provides a spanning tree, thus, to
implement a Lagrangian heuristic, it is only needed to calculate the corresponding
cost in terms of the objective function of (17.40).

17.5.3 Directional Sensors Location

In wireless sensor networks (WSN) [54] a sensor is a device capable to receive
(and possibly store and forward) information coming from a sufficiently close area.
In general, such an area is a circle of given radius, whose centre is the sensor
location itself. Points inside the area are deemed covered by the sensor. In case the
area, instead of being a circle, is an adjustable circular sector, the sensor is defined
directional [12].

The directional sensors continuous coverage problem (DSCCP) is about cov-
ering several targets, distributed in a plane, by a set of directional sensors whose
locations are known. Each sensor is adjustable, being characterized by a discrete set
of possible radii and aperture angles. The sensor orientation is a decision variable
too. The model accommodates for possible sensor switch off. Since different power
consumption is associated to the sensor adjustments, the objective is to minimize
the total power cost of coverage.

We report here the formulation given in [3] as a mixed integer nonlinear program
(MINLP). Note that in most of the literature only a discrete number of sensor
orientations are considered (see [50, Lemma 1 and Corollary 1]). The motivation
for defining, instead, the orientation as a continuous variable is in the choice of
Lagrangian relaxation as the attack strategy. It will be clear in the sequel, that
solving the relaxed problem is easy once the sensor orientation is assumed to be
a continuous variable.

Suppose that a given set I of sensors is located in a certain area and si ∈ R
2 is

the known position of sensor i, i ∈ I. The location tj ∈ R
2, j ∈ J , of the targets

is also known, together with the sensor-target distance parameters d ij = tj − si
and cij = ‖t j − si‖, i ∈ I and j ∈ J . A set of K + 1 different power levels k,
k = 0, . . . ,K can be considered for sensors, each of them corresponding to a couple
of values of the radius rk and of the half-aperture angle αk of the circular sector. In
particular, the level k = 0 is associated to an inactive sensor (r0 = 0 and α0 = 0).
We also introduce the parameter qk = cosαk , qk ∈ [−1, 1].
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The area covered by the sensor i, activated at level k, is then the revolution cone
defined as

{
x | x ∈ R

2, ‖x − si‖ ≤ rk, qk‖x − si‖ ≤ (x − si )
Twi

}
, (17.47)

where wi ∈ R
2, ‖wi‖ = 1, is the orientation direction assigned to sensor i, i ∈ I

(‖.‖ is assumed to be the Euclidean norm).
As a consequence, target j is covered by the sensor i, activated at level k, with

orientation direction wi if and only if the following two conditions hold:

rk ≥ cij and qkcij ≤ d ij
Twi . (17.48)

The decision variables are:

• wi ∈ R
2, the orientation direction assigned to sensor i, i ∈ I;

• xik , i ∈ I, k = 0, . . . ,K , binary: xik = 1 if sensor i is activated at power level k
and xik = 0 otherwise;

• σij , i ∈ I, j ∈ J , binary: σij = 0 implies that both conditions (17.48) are
satisfied;

• uj , j ∈ J , binary: uj = 0 implies that the target j is covered by at least one
sensor.

The model considers two types of costs:

• pk , the activation cost for turning on any sensor at power level k, k = 0, . . . ,K
(with p0 = 0);

• H , the penalty cost associated to an uncovered target.

Finally the DSCCP can be stated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
∑

i∈I

K∑

k=0

pkxik +H
∑

j∈J
uj

subject to
K∑

k=0

xik = 1, i ∈ I,

K∑

k=0

xikrk ≥ cij −Mσij , i ∈ I, j ∈ J ,

cij

K∑

k=0

qkxik − dij
Twi ≤ Mσij , i ∈ I, j ∈ J ,

uj ≥
∑

i∈I
σij − (|I | − 1), j ∈ J ,

‖wi‖ = 1, i ∈ I,
x, σ ,u binary and wi ∈ R

2, i ∈ I.

(17.49)
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The model contains the “big M” positive input parameter, which is common in
formulation of location problems. Variables xik , σij and uj are grouped into the
vectors x, σ and u, respectively.

The objective function is the sum of activation cost and penalty for possibly
uncovered targets. The first set of constraints are classic semi-assignment, ensuring
that exactly one power level (possibly the 0-level) is assigned to each sensor.
Constraints

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K∑

k=0

xikrk ≥ cij −Mσij , i ∈ I, j ∈ J ,

cij

K∑

k=0

qkxik − d ij
T wi ≤ Mσij , i ∈ I, j ∈ J ,

(17.50)

are related to target coverage. They are trivially satisfied if σij = 1 but, whenever
they are satisfied with σij = 0, then target j is covered by sensor i (see (17.48)).
Constraints

uj ≥
∑

i∈I
σij − (|I| − 1), j ∈ J (17.51)

impose that, for any target j , uj = 1 in case σij = 1 for all i ∈ I, that is if the target
j remains uncovered. At the optimum uj = 1 if and only if

∑
i∈I σij = |I|. Finally

the (nonconvex) constraints ‖wi‖ = 1, i ∈ I, aim at normalizing the orientation
direction assigned to each sensor.

By introducing the nonnegative multiplier vectors λ, θ and γ , the following
Lagrangian relaxation is defined

zLR(λ, θ , γ ) = min
∑

i∈I

K∑

k=0

pkxik +H

n∑

j=1

uj

+
∑

i∈I

∑

j∈J
λij (cij −Mσij −

K∑

k=0

xikrk)

+
∑

i∈I

∑

j∈J
θij (cij

K∑

k=0

xikqk − d ij
T wi −Mσij )

+
∑

j∈J
γj (

∑

i∈I
σij − (|I| − 1)− uj )

subject to
K∑

k=0

xik = 1, i ∈ I,

‖wi‖ = 1, i ∈ I,

x, σ ,u binary, wi ∈ R
2, i ∈ I,

(17.52)
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which, rearranging the objective function, may be rewritten as

zLR(λ, θ , γ ) =
∑

i∈I

∑

j∈J
λij cij + (1− |I|)

∑

j∈J
γj

+ min
∑

i∈I

K∑

k=0

[pk +
∑

j∈J
(θij cij qk − λij rk)]xik

+
∑

i∈I

∑

j∈J
[γj −M(λij + θij )]σij

−
∑

i∈I

∑

j∈J
θijd ij

Twi +
∑

j∈J
(H − γj )uj

subject to
K∑

k=0

xik = 1, i ∈ I,

‖wi‖ = 1, i ∈ I,

x, σ ,u binary, wi ∈ R
2, i ∈ I,

(17.53)

The above formulation leads to the following decomposition:

zLR(λ, θ , γ ) = C(λ, γ )+z(1)LR(λ, θ)+z(2)LR(λ, θ , γ )+z(3)LR(θ)+z(4)LR(γ ), (17.54)

where

C(λ, γ ) =
∑

i∈I

∑

j∈J
λij cij + (1− |I|)

∑

j∈J
γj , (17.55)

z
(1)
LR(λ, θ) = min

∑

i∈I

K∑

k=0

[pk +
∑

j∈J
(θij cij qk − λij rk)]xik

subject to
K∑

k=0

xik = 1, i ∈ I,

x binary,

(17.56)

z
(2)
LR(λ, θ , γ ) = min

∑

i∈I

∑

j∈J
[γj −M(λij + θij )]σij

subject to
K∑

k=0

xik = 1, i ∈ I,

σ binary,

(17.57)
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z
(3)
LR(θ) = − max

∑

i∈I

∑

j∈J
θijd ij

Twi

subject to ‖wi‖ = 1, i ∈ I,

wi ∈ R
2, i ∈ I,

(17.58)

and

z
(4)
LR(γ ) = min

∑

j∈J
(H − γj )uj

subject to u binary.

(17.59)

Calculation of the constant C(λ, γ ) is immediate. The solution of prob-
lems (17.56), (17.57), and (17.59) can be obtained by simple inspection of the
corresponding cost coefficients, while the problem (17.58) has optimal solution
wi (θ), i ∈ I, in the following closed form:

wi (θ) =

⎧
⎪⎨

⎪⎩

∑
j∈J θijd ij

‖∑
j∈J θijdij ‖ , if

∑

j∈J
θijd ij �= 000,

any vector w ∈ R
2, ‖w‖ = 1, otherwise.

(17.60)

In [3] the Lagrangian dual is tackled by applying a coordinate search method
which modifies one multiplier at a time, in view of possible increase of function
zLR(λ, θ , γ ). The choice of such multiplier is driven, as usual, by the type of
infeasibility occurring at the current solution of the Lagrangian relaxation. Thus
different rules are designed, according to the choice of the component either of λ or
θ or γ to be updated. For the details of such rules we refer the reader to [3].

The dual ascent procedure is particularly suitable for embedding a Lagrangian
heuristic. In fact the solution of the Lagrangian relaxation can be made feasible at a
quite low computational cost, hence providing an upper bound.

More specifically, whenever the solution to (17.52) is not feasible for (17.49), the
set J̄ of possibly uncovered targets is considered. For each of them at least one of
the following conditions holds:

K∑

k=0

xikrk < cij for all i ∈ I, (17.61)

cij

K∑

k=0

qkxik > d ij
T wi for all i ∈ I (17.62)
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at the optimum of the Lagrangian relaxation. Thus, for each target j ∈ J̄ , possible
coverage is sought by acting on the power levels (variables x) assigned to those
sensors which are eligible for covering it. In such search, sensor orientations
(variables wi) returned by the Lagrangian relaxation are not modified.

Summing up, at each iteration of the dual ascent procedure both a lower and
an upper bounds are calculated. In [3] it is highlighted that while the lower bound
provided by the algorithm is extremely poor, the best feasible solution found is, in
general, of good quality also for relatively large scale problems. It is worth noting
that the algorithm is equipped with possible restart along a subgradient direction in
case the Armijo line search fails along all coordinate directions.

17.5.4 Cross Docking Scheduling

A cross docking distribution centre (CD centre, in the following) is a modern logistic
node where goods are unloaded from inbound trucks, consolidated with respect to
the customer orders and then immediately loaded on outbound trucks, cancelling in
practice the traditional and costly storing and retrieval phases. Management of a CD
centre is a serious challenge since the processes of arrival and departure of goods
are strongly coupled and sophisticated synchronization schemes are to be fulfilled.

Intensive research efforts have been made to devise effective models and
algorithms for optimizing the combined scheduling of the inbound and outbound
trucks; more recently Lagrangian relaxation has been applied in this area (see [14]
and the references therein). The problem addressed is about finding the optimal
inbound and outbound sequences at a CD centre characterized by only two gates (or
doors), one for the inbound and the other for the outbound trucks. The objective is to
minimize the total completion time (the makespan in scheduling theory parlance).

The rules of the game are the following:

• only one truck at a time can be handled at a door and no interruption (preemption)
is allowed;

• the loading of an outbound truck cannot start until all goods it is expected to
deliver have been unloaded;

• all trucks require the same processing time (one slot) and are ready at the time 0.

As an input data we consider a set of n inbound trucks (I = {1, . . . , n}) to be
unloaded, together with a set of m outbound trucks (J = {1, . . . ,m}) to be loaded.
The following sets are also given:

• Ji , the set of outbound trucks receiving goods from the inbound truck i, i ∈ I;
• Ij , the set of inbound trucks providing goods to the outbound truck j , j ∈ J .

The planning horizon is discretized into time-slots, each of them being capable
to accommodate for processing of one truck. Let K = {1, . . . , n} and L =
{1, . . . , H }, H ≥ m+n, be the time horizon for the inbound and outbound services,
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respectively (note that, under the assumptions made, n + m is an upper bound on
the makespan).

Introducing the following binary decision variables:

• xik = 1, if the inbound truck i is assigned to the time-slot k and xik = 0
otherwise, i ∈ I, k ∈ K;

• yjh = 1, if the outbound truck j is assigned to the time-slot h, yjh = 0 otherwise,
j ∈ J , h ∈ L;

and the integer variable CMax , the makespan, then the one door cross docking
(ODCD) problem is modelled as follows:

Z = min CMax

subject to
∑

k∈K
xik = 1, i ∈ I,

∑

i∈I
xik = 1, k ∈ K,

∑

h∈L
yjh = 1, j ∈ J ,

∑

j∈J
yjh ≤ 1, h ∈ L,

CMax ≥
∑

h∈L
hyjh, j ∈ J ,

∑

h∈L
hyjh ≥

∑

k∈K
kxik + 1, j ∈ J , i ∈ Ij ,

xik binary, i ∈ I, k ∈ K,

yjh binary, j ∈ J , h ∈ L.

(17.63)

The first four constraint sets regulate the time slot-truck assignment at both the
inbound and outbound door. The constraints CMax ≥ ∑

h∈L hyjh, j ∈ J define the
makespan CMax as the maximum truck completion time, of course on the outbound
side. The constraints

∑

h∈L
hyjh ≥

∑

k∈K
kxik + 1, j ∈ J , i ∈ Ij

ensure that loading of each outbound truck cannot start until the unloading of
all corresponding inbound trucks has been completed. They are the complicating
ones and lead to the following Lagrangian relaxation obtained via the multiplier
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vector λ ≥ 0.

zLR(λ) = min CMax +
∑

j∈J

∑

i∈Ij
λij

( ∑

k∈K
kxik −

∑

h∈L
hyjh + 1

)

subject to
∑

k∈K
xik = 1, i ∈ I,

∑

i∈I
xik = 1, k ∈ K,

∑

h∈L
yjh = 1, j ∈ J ,

∑

j∈J
yjh ≤ 1, h ∈ L,

CMax ≥
∑

h∈L
hyjh, j ∈ J ,

xik binary, i ∈ I, k ∈ K,

yjh binary, j ∈ J , h ∈ L.

(17.64)

The relaxation decomposes into two independent matching problems, related,
respectively, to the inbound and outbound door. In fact, by simple manipulations
based on the observation i ∈ Ij ⇔ j ∈ Ji , and setting

s =
∑

j∈J

∑

i∈Ij
λij =

∑

i∈I

∑

j∈Ji

λij , (17.65)

and

ρi =
∑

j∈Ji

λij , i ∈ I, σj =
∑

i∈Ij
λij , j ∈ J , (17.66)

we rewrite zLR as a function of vectors ρ and σ (grouping the ρis and the σj s,
respectively) as follows

zLR(ρ, σ ) = s +min
∑

i∈I

∑

k∈K
kρixik + CMax −

∑

j∈J

∑

h∈L
hσj yjh. (17.67)

Thus we define

zLR(ρ, σ ) = s + z
(1)
LR(ρ)+ z

(2)
LR(σ ),
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with

z
(1)
LR(ρ) = min

∑

i∈I

∑

k∈K
kρixik

subject to
∑

k∈K
xik = 1, i ∈ I,

∑

i∈I
xik = 1, k ∈ K

xik binary, i ∈ I, k ∈ K,

(17.68)

and

z
(2)
LR(σ ) = min CMax −

∑

j∈J

∑

h∈L
hσj yjh

subject to
∑

j∈J
yjh ≤ 1, h ∈ L,

CMax ≥
∑

h∈L
hyjh, j ∈ J ,

yjh binary, j ∈ J , h ∈ L.

(17.69)

Problems (17.68) and (17.69) [14] are two simple single machine scheduling
problems which can be solved by appropriate sorting of the vectors ρ and σ .

The following holds for the Lagrangian dual.

Theorem 17.1 There exists an optimal solution to the Lagrangian dual problem
such that

s =
∑

i∈I

∑

j∈Ji
λij =

∑

i∈I
ρi =

∑

j∈J

∑

i∈Ij
λij =

∑

j∈J
σj ≤ 1. (17.70)

The above property is helpful in designing algorithms to solve the Lagrangian dual,
mainly as it enables appropriate sizing of the step size in implementing a line search.

It is worth noting that the ODCD does not enjoy the integrality property (see, in
particular, the problem (17.69)), thus the lower bound obtained from the Lagrangian
dual is more accurate than that provided by the LP relaxation.

In addition, any solution of a Lagrangian relaxation which is not feasible for the
ODCD can be repaired, at low computational cost, by implementing some heuristic
method based on simple forward-shifting of those outbounds trucks j for which the
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relaxed constraints

∑

h∈L
hyjh ≥

∑

k∈K
kxik + 1

have been violated for at least one i ∈ Ij at the optimum of (17.64).
In [14] the Lagrangian dual has been tackled by resorting to a standard

(projected) subgradient method, which has been equipped, at each iteration, with
a repairing procedure, thus allowing to possibly update both the lower and upper
bounds.

The Lagrangian heuristic has provided satisfactory results on test problem
characterized by a number of inbound trucks n up to 20 and a number of outbound
ones m in the range [10, 40].

17.5.5 Feature Selection in Support Vector Machines

Feature selection (FS) is a relevant issue in machine learning and, in particular, in
pattern classification. In fact classification is a kind of diagnostic process which
consists in attaching a label (that is certifying exactly one class membership) to
an individual (a sample or a pattern ), on the basis of a given number of known
parameters (the features). Most of the research work has been focussed on binary
classification, where the classes are only two. A binary classifier then is a tool
which is able to attach the appropriate label to a sample whose class membership is
unknown.

The classification models we are dealing with are of the supervised type, since
the classifier is constructed on the basis of the information provided by a certain
number of samples (the training set) whose class membership is known.

A fundamental paradigm to construct such classifier is the support vector
machines (SVM) [15, 45] which consists of separating the samples belonging to
the training set by means of a hyperplane, either in the feature space or in a higher
dimension one, upon an appropriate kernel transformation. Once the hyperplane
has been calculated, it is used to classify newly incoming patterns whose class
membership is unknown.

In the standard SVM approach, the training set is formed by two given point-sets
A = {ai , i ∈ I} and B = {bj , j ∈ J } in R

n (the feature space). The problem
is about finding a hyperplane defined by a couple (w ∈ R

n, γ ∈ R) that strictly
separates A and B. Thus one would require

wT ai + γ ≤ −1, i ∈ I (17.71)
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and

wT bj + γ ≥ 1, j ∈ J . (17.72)

Since the necessary and sufficient condition for existence of such strictly separating
hyperplane

conv{A} ∩ conv{B} = ∅

is, in general, not known to hold in advance, we define the point classification error
functions ξi(w, γ ), i ∈ I and ζj (w, γ ), j ∈ J as follows:

ξi(w, γ ) = max
{
0, 1+ (wT ai + γ )

}
, i ∈ I, (17.73)

and

ζj (w, γ ) = max
{
0, 1− (wT bj + γ )

}
, j ∈ J . (17.74)

Note that ξi and ζj are positive if and only if (17.71) and (17.72) are violated,
respectively. Consequently, they can be considered as a measure of the classification
error related to point ai ∈ A and bj ∈ B.

The convex and nonsmooth error function E(w, γ ) is then defined as

E(w, γ ) =
∑

i∈I
max

{
0, 1+ (wT ai + γ )

}+
∑

j∈J
max

{
0, 1− (wT bj + γ )

}

=
∑

i∈I
ξi(w, γ )+

∑

j∈J
ζj (w, γ ).

Finally we come out with the standard SVM model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
w,γ,ξ ,ζ

‖w‖2 + C(
∑

i∈I
ξi +

∑

j∈J
ζj )

subject to aTi w + γ ≤ ξi − 1, i ∈ I,
−bTl w − γ ≤ ζj − 1, j ∈ J ,

ξi ≥ 0, i ∈ I,
ζj ≥ 0, j ∈ J.

(17.75)

The objective function is the sum of the error functionE weighted by the parameter
C > 0 and the square of the norm of w. The latter term is aimed at maximizing the
separation margin between the two sets A and B. In fact (see [15, Chapter 6]) 2

‖w‖
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is the distance (the separation margin) between the hyperplanes

H− = {x | wT x + b = −1} and H+ = {x | wT x + b = 1},

thus minimization of ‖w‖ leads to maximization of the margin. In practical
applications the squared norm ‖w‖2 replaces ‖w‖ in the objective function.

In the SVM framework the role of the FS is to detect those features that are
really relevant for classification purposes. In other words a classifier embedding a FS
mechanism is expected to guarantee classification correctness (effective separation
of A and B) and, also, to be parsimonious, that is to provide a vector w (the normal
to the separating hyperplane) with as few as possible non-zero components.

Several different optimization-based approaches for the FS are available in
literature; we cite here, among the others, [9] and [47]. We focus on treatment of
the FS problem via mixed integer programming (see [6, 42]). In particular, we refer
to the model described in [28], where a Lagrangian relaxation approach has been
implemented.

Aiming at enforcing a feature selection mechanism, that is at reducing the
number of the non-zero components of w, the binary feature variable vector y ∈ R

n

is embedded into the model (17.75), with yk indicating whether or not feature k is
active. The following mixed binary formulation of the SVM-FS problem is stated:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
w,γ,ξ ,ζ

‖w‖2 + C(
∑

i∈I
ξi +

∑

j∈J
ζj )+D

n∑

k=1

yk

subject to aTi w + γ ≤ ξi − 1, i ∈ I,
−bTl w − γ ≤ ζj − 1, j ∈ J ,

−ukyk ≤ wk ≤ ukyk, k = 1, . . . , n,

−uk ≤ wk ≤ uk, k = 1, . . . , n,

ξi ≥ 0, i ∈ I,
ζj ≥ 0, j ∈ J,
yk binary, k = 1, . . . , n.

(17.76)

The objective function of the problem (17.76) is the sum of three terms. The
norm ‖w‖, as usual in SVM-type models, is intended to maximize the separation
margin (we note in passing that in [28] the L1-norm, instead of the more commonly
used L2, is adopted). The second term is the error functionE(w, γ ) and, finally, the
third one represents the number of nonzero components of w. Note also the presence
of the positive weights C and D in the objective function and of the upper bounds
uk > 0 on the modulus of each component wk of w.

In [28] the problem above has been tackled by resorting to Lagrangian relaxation
of the constraints linking the variables w and y, by means of the multiplier vectors
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λ ≥ 0 and μ ≥ 0. Thus we obtain

zLR(λ,μ) = min
w,γ ,ξ,ζ ,y

‖w‖ + C

(
m1∑

i=1

ξi +
m2∑

l=1

ζl

)

+D

n∑

k=1

yk

+
n∑

k=1

λk(wk − ukyk)−
n∑

k=1

μk(wk + ukyk)

subject to aTi w + γ ≤ ξi − 1, i ∈ I,

− bTl w − γ ≤ ζj − 1, j ∈ J ,

− uk ≤ wk ≤ uk, k = 1, . . . , n,

ξi ≥ 0, i ∈ I,

ζj ≥ 0, j ∈ J,
yk binary, k = 1, . . . , n.

(17.77)

By rearranging the objective function, we get to the following decomposed formu-
lation:

zLR(λ,μ) = z
(1)
LR(λ,μ)+ z

(2)
LR(λ,μ),

with

z
(1)
LR(λ,μ) = min

w,γ ,ξ,ζ
‖w‖2 + C

(
m1∑

i=1

ξi +
m2∑

l=1

ζl

)

+
n∑

k=1

(λk − μk)wk

subject to aTi w + γ ≤ ξi − 1, i ∈ I,

− bTl w − γ ≤ ζj − 1, j ∈ J ,

− uk ≤ wk ≤ uk, k = 1, . . . , n,

ξi ≥ 0, i ∈ I,

ζj ≥ 0, j ∈ J,

(17.78)

and

z
(2)
LR(λ,μ) = min

y

n∑

k=1

(D − uk(λk + μk))yk

subject to yk binary, k = 1, . . . , n.

(17.79)
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Note that calculation of z(1)LR(λ,μ) requires solution of a problem SVM-like, the
only difference being the presence of the linear term

∑n
k=1(λk − μk)wk into the

objective function. As for the second problem, z(2)LR(λ,μ) can be simply calculated
by sign inspection of the cost coefficients (D − uk(λk + μk)), k = 1, . . . , n.

As for the Lagrangian dual

zLD = max
(λ,μ)≥0

zLR(λ,μ),

the following proposition [28] holds:

Proposition 17.1 There exists an optimal solution to the Lagrangian dual satisfy-
ing the condition

uk(λk + μk) = D, k = 1, . . . , n. (17.80)

In [28] the above property is utilized to eliminate the variables μk , k = 1, . . . , n in
the Lagrangian dual, which is then tackled by resorting to the general purpose C++
bundle code developed in [23].

Solution of the Lagrangian dual is embedded into a Lagrangian heuristic algo-
rithm. Note in fact that a feasible solution (and consequently an upper bound) for
the problem (17.76) can be easily obtained starting from the optimal w(λ) obtained
by solving the Lagrangian relaxation for any feasible choice of the multiplier vector
λ. It is in fact sufficient to set yk = 1 whenever |wk(λ)| > 0 and yk = 0 otherwise.

Also in this application the Lagrangian heuristic approach has proved to work
well. The numerical results [28] are quite satisfactory, particularly in terms of trade-
off between the classification quality and the number of active features.

17.5.6 Multiple Instance Learning

Multiple instance learning (MIL) [1] is a classification paradigm, connected to
SVM [15], which is capable to handle complex problems, mainly in medical image
analysis and in text categorization. While the objective of SVM-like methods is
to classify samples in a given feature space, MIL deals with classification of sets
of samples, bags in Machine Learning parlance. We discuss here a specific MIL
problem where binary classification of bags is considered. The approach has been
introduced in [2] and Lagrangian relaxation has been applied in [4], giving rise to a
Lagrangian heuristic algorithm.

To provide an intuitive explanation of the problem, we describe an example
driven from image classification where the objects to be classified are images, each
of them representing a certain mix of geometric figures (e.g. triangles, squares,
circles and stars) of different size. Each image is a bag which is segmented according
to some appropriate rule [55] and in turn a feature vector in R

n is associated
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to each image segment, where aggregate information about segment luminosity,
texture, geometry etc. are reported. Thus each image is represented by a set of
points (instances), each of them being a vector in the feature spaces representing
one of its segments. In our example the problem at hand is to discriminate between
images containing at least one star (positive images) and those which contain no star
(negative ones). In the supervised classification framework, the class membership of
the images is known, thus each of them is labelled either as positive or negative.

A classic SVM scheme, aimed at separating by means of a hyperplane the
instances of positive bags from those of the negative ones, does not seem profitable
in this case. In fact the similarity degree between positive and negative images is
high (after all triangles, square and circles may definitely appear in images from
both classes) and, consequently, the expected separation quality is poor.

The MIL introduces a different paradigm. It is assumed in fact that a hyperplane
in the feature space correctly classifies the images if all instances of each negative
bag are in the same halfspace, while at least one instance of each positive bag is on
the other side.

The MINLP formulation of the problem proposed in [2] follows: Assume m

positive bags are given and let J+ = {J +1 , . . . ,J +
m } be the family of the index

sets of the instances of each bag. Analogously let J− = {J −1 , . . . ,J −
k } be the

family of the index sets for k given negative bags. We indicate by xj ∈ R
n the j -th

instance belonging to a positive or negative bag.
In the classic instance based SVM, we would look for a hyperplane defined by

a couple (w ∈ R
n, γ ∈ R) separating the instances belonging to the negative bags

from those belonging to the positive ones.
Instead, according to [2], one looks for a hyperplane

H(w, γ ) = {x | wT x + γ = 0},

such that

1. all negative bags are contained in the set S− = {x | wT x + γ ≤ −1};
2. at least one instance of each positive bag belongs to the set S+ = {x | wT x+γ ≥

1}.
The following optimization model, aimed at finding such a hyperplane, is then

introduced. The decision variables, apart the couple (w ∈ R
n, γ ∈ R), are the

labels yj ∈ {−1, 1} to be assigned to all instances of the positive bags. The twofold
objective consists of minimizing the classification error (which is equal to zero in
case a separating hyperplane is actually found) and of maximizing the separation
margin, defined as the distance between the shifted hyperplanes (see Sect. 17.5.5)

H− = {x | wT x + γ = −1} and H+ = {x | wT x + γ = 1}.
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That is,

z∗ = min
w,γ ,y

f (w, γ , y)

subject to
∑

j∈J +
i

yj + 1

2
≥ 1, i = 1, . . . ,m,

yj ∈ {−1, 1}, j ∈ J +
i , i = 1, . . . ,m,

(17.81)

where

f (w, γ , y) = 1

2
‖w‖2 + C

k∑

i=1

∑

j∈J −
i

max{0, 1+ (wT xj + γ )}

+ C

m∑

i=1

∑

j∈J +
i

max{0, 1− yj (w
T xj + γ )},

with ‖ · ‖ being the Euclidean norm in R
n and C > 0 the trade-off parameter. Note

that constraints

∑

j∈J +
i

yj + 1

2
≥ 1, i = 1, . . .m

impose that, for each positive bag, at least one of its samples must be labelled as a
positive one. Function f is the sum of three terms:

1.
1

2
‖w‖2. As previously mentioned, minimization of ‖w‖ leads to maximization

of the margin;
2.

∑k
i=1

∑
j∈J −

i
max{0, 1+ (wT xj +γ )}. This term is the total classification error

relatively to the negative bags;
3.

∑m
i=1

∑
j∈J +

i
max{0, 1 − yj (w

T xj + γ )}. This term represents the total clas-
sification error of the instances belonging to positive bags. Notice that such
an error is zero if and only if for each positive bag J +

i , i = 1, . . . ,m, there
exists at least one instance j ∈ J +

i such that wT xj + γ ≥ 1. Note that, by
letting the corresponding label yj = 1, feasibility with respect to constraint
∑

j∈J +
i

yj+1
2 ≥ 1 is achieved and, in addition, the classification error associated

to such a bag is driven to zero, provided no instance of such bag falls into the “no
man land”, that is in the area where |wT x + γ | < 1.

Summing up the classification error is equal to zero if and only if all negative bags
are contained in the set S−, at least one instance of each positive bag belongs to the
set S+ and no instance xj of any positive bag satisfies the condition |wT xj+γ | < 1.
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The Lagrangian heuristic introduced in [4] is based on relaxation of the linear

constraints
∑

j∈J +
i

yj+1
2 ≥ 1. The following problem is then obtained:

zLR(λ) = min
w,γ ,y

f (w, γ , y)+
m∑

i=1

λi

⎛

⎜
⎝1−

∑

j∈J +
i

yj + 1

2

⎞

⎟
⎠

subject to yj ∈ {−1, 1}, j ∈ J +
i , i = 1, . . . ,m,

(17.82)

where λ ≥ 0 is a vector of multipliers in R
m.

The Lagrangian dual problem is, as usual,

zLD = max
λ≥0

zLR(λ). (17.83)

It is of course zLR(λ) ≤ z∗, for any choice of the multiplier λ ≥ 0, and zLD ≤
z∗. The tackling problem (17.83) within a Lagrangian heuristic scheme requires at
each iteration calculation of function zLR(λ) by solving (17.82), a MINLP which is
particularly suitable for application of a block coordinate descent method (see [52]).
In fact the algorithm adopted in [4] works by alternately fixing, at each iteration, the
values of y and of the couple (w, γ ), according to the following scheme.

Algorithm 17.3: Calculation of zLR(λ)

Step 0. Choose a feasible point y(0). Set l = 0.
Step 1. For the current y(l) solve the convex problem

min
w,γ

f (w, γ , y(l))+
m∑

i=1

λi

⎛

⎜
⎝1−

∑

j∈J+i

y
(l)
j + 1

2

⎞

⎟
⎠

and obtain the couple (w(l+1), γ (l+1)).
Step 2. For the current couple (w(l+1), γ (l+1)) solve the problem

min
yj∈{−1,1}f (w

(l+1), γ (l+1), y)+
m∑

i=1

λi

⎛

⎜
⎝1−

∑

j∈J+i

yj + 1

2

⎞

⎟
⎠

and obtain y(l+1). Set l = l + 1 and go to Step 1.

We remark that the minimization problem at Step 1 is a standard SVM-like
problem, while solution of the problem at Step 2 can be easily obtained by
inspection of the values h(l+1)

j = w(l+1)T xj + γ (l+1).
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In [4] update of the multiplier vector λ is performed by standard subgradient
method adopting the Polyak step size (17.28). A projection mechanism to take into
account the nonnegativity of λ is also embedded.

To complete the bird’s-eye view of the Lagrangian heuristic, we observe that
any solution (w(λ), γ (λ), y(λ)) of the Lagrangian relaxation which violates the
relaxed constraints can be easily “repaired” to get feasibility by means of greedy
modification of one or more label variables yj .

It is worth noting that the Lagrangian dual (17.83) enjoys the relevant property
that the duality gap is equal to zero, that is zLD = z∗. Moreover, by solving the
Lagrangian dual, one gets, in fact, also an optimal solution for the problem (17.81).
These results are provided by the following theorem [4].

Theorem 17.2 Let λ∗ be any optimal solution to the Lagrangian dual (17.83) and
let (w∗, γ ∗, y∗) be any optimal solution to the Lagrangian relaxation (17.82) for
λ = λ∗. Then (w∗, γ ∗, y∗) is optimal for the original problem (17.81) and zLD =
z∗.

The implementation of the Lagrangian heuristic has provided satisfactory results
on a number of benchmark test problems. In particular the zero duality gap has been
fully confirmed.

17.6 Conclusions

We have provided some basic notions on Lagrangian relaxation, focusing on its
application in designing heuristic algorithms of the so-called Lagrangian heuristic
type. Although the number of applications available in the literature is practically
uncountable, we are convinced that the potential for future application is still
enormous.
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Part IV
Derivative-Free Methods



Chapter 18
Discrete Gradient Methods

Adil M. Bagirov, Sona Taheri, and Napsu Karmitsa

Abstract In this chapter, the notion of a discrete gradient is introduced and it is
shown that the discrete gradients can be used to approximate subdifferentials of a
broad class of nonsmooth functions. Two methods based on such approximations,
more specifically, the discrete gradient method (DGM) and its limited memory
version (LDGB), are described. These methods are semi derivative-free methods
for solving nonsmooth and, in general, nonconvex optimization problems. The
performance of the methods is demonstrated using some academic test problems.

18.1 Introduction

In this chapter, we describe the notion of the discrete gradient for approximating
subdifferentials of nonsmooth functions and discuss two minimization algorithms
based on such approximation. Consider the unconstrained nonsmooth optimization
(NSO)

{
minimize f (x)

subject to x ∈ R
n,

(18.1)

where the objective function f is, in general, locally Lipschitz continuous (LLC)
and not necessarily convex.

The problem (18.1) has been a subject of research for almost 60 years. Different
methods have been developed to solve this problem including the subgradient
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method [26], the bundle-type methods [9, 11, 12, 16, 20–23, 29, 31], algorithms
based on smoothing techniques [8, 24, 25, 30], and the gradient sampling algorithm
[10] (see also Chaps. 2, 3, and 6).

In most NSO methods it is assumed that the value of the objective function
and one of its subgradients can be computed at any given point. However, in some
practical applications computing subgradients of involved functions is not possible
or it is time consuming. This may happen when the chain rule does not exist or
analytic expressions of functions are not available. In such situations, derivative
free methods can be applied to solve the problems. In principle, most of these
methods (for example, the generalized pattern search methods [1, 2, 28]) can be
applied to solve NSO problems, although, the convergence of these methods can be
proved under rather restrictive differentiability or strict differentiability conditions.
For example, in [1] (see, also [2]), the convergence of the generalized pattern search
method is proved under the assumption that the function f is strictly differentiable
near the limit point. However, in many important practical problems the objective
functions are not strictly differentiable at their local minimizers. Moreover, the
conventional finite difference approximations are not applicable to nonsmooth
functions since they may produce an approximation that does not belong to the
subdifferential.

In this chapter, we describe the discrete gradients that can be considered as a
generalization of finite difference approximations for nonsmooth functions. Differ-
ent approaches have been used to develop finite difference estimates to subgradients
of nonconvex nonsmooth functions in [26, 27]. However, these estimates are able
to approximate only one subgradient at a given point while the discrete gradients
can be used to approximate the whole subdifferential. The notion of the discrete
gradient was introduced in [3], and then modified and applied to design numerical
algorithms in [4–7, 17, 18]. Here we present a further modification of the discrete
gradient by removing infinitesimal functions in its definition.

Using the discrete gradients, we design two bundle-type semi-derivative-free
methods for solving nonsmooth and, in general, nonconvex optimization problems:
the discrete gradient method (DGM) [7] and the limited memory discrete gradient
bundle method (LDGB) [18]. Both these methods use the discrete gradients
that are computed using only function values to find the descent direction of a
nonsmooth objective function. Furthermore, neither of them uses approximations
of subgradients in most iterations and such approximations are utilized only in the
final phase of the methods. Therefore, they can be considered as semi derivative-free
methods.

The DGM has been developed for solving NSO problems with relatively small
dimensions while the LDGB is capable of solving large scale NSO problems. On the
other hand, in small problems the accuracy of the DGM is usually better than that
of the LDGB. Although these two methods are different, they have some interesting
similarities in their structures, that is, in addition to using the discrete gradients and
bundling the information, both methods wipe out the old information whenever the
serious step occurs. This feature is different from standard bundle methods, where
the old information is collected near the current iteration point and stored to be
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used in the next iterations. In practice, storing all information collected in previous
iterations may have several disadvantages: first, it needs a storage space, although
unbounded storage requirement may be addressed by the so-called aggregation
procedure introduced in [19]; second, it adds computational cost; and, furthermore,
it may store and use information that is no longer relevant due to the fact that it
might have been collected far away from the current iteration point. The last one
may be especially problematic in the nonconvex case.

The rest of this chapter is organized as follows. Section 18.2 provides some theo-
retical background which will be used to define the discrete gradients. In Sect. 18.3
we describe the discrete gradients, and in Sect. 18.4 we discuss approximation of
subdifferentials using the discrete gradients. The DGM is presented in Sect. 18.5
and the LDGB is described in Sect. 18.6. The performance of the methods using
several academic test problems are given in Sect. 18.7. Section 18.8 concludes the
chapter.

18.2 Theoretical Background

In this section we provide theoretical background and preliminaries that will be used
throughout this chapter. Let Ā ⊂ R

n be a polytope represented as a convex hull of a
set A = {a1, . . . , am} ⊂ R

n of a finite number of points. In addition, let G be a set
of all vertices of the unit hypercube in R

n, that is

G = {e ∈ R
n : e = (e1, . . . , en), |ej | = 1, j = 1, . . . , n}.

Given e ∈ G and α ∈ (0, 1], define the sequence of n vectors

ej = ej (α) = (αe1, α
2e2, . . . , α

j ej , 0, . . . , 0), j = 1, . . . , n. (18.2)

Consider the sets R0 ≡ R0(e) = A and

Rj ≡ Rj(e) =
{
v ∈ Rj−1(e) : vj ej = max{wjej : w ∈ Rj−1(e)}

}

for j = 1, . . . , n. The sets Rj(e) are called R-sets of the polytope Ā for the given
e ∈ G. Note that

Rj �= ∅ for all j ∈ {0, . . . , n},
Rj ⊆ Rj−1 for all j ∈ {1, . . . , n},

and

vr = ur for all v,u ∈ Rj , r = 1, . . . , j. (18.3)
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Proposition 18.1 The set Rn is a singleton.

Proof The proof follows from (18.3). ��
Take any a ∈ A. If a �∈ Rn, then there exists ra ∈ {1, . . . , n} such that a ∈

Rt, t = 0, . . . , ra − 1 and a �∈ Rra . For each a ∈ A \ Rn we determine such
ra ∈ {1, . . . , n} and define a number z(a) = vraera − araera > 0. Compute

z1 = min{z(a) : a ∈ A \ Rn}.

Since the set A is finite and z(a) > 0 for all a ∈ A \ Rn it follows that z1 > 0. Let

z2 = max{‖a‖ : a ∈ A} < +∞.

Take any r, j ∈ {0, . . . , n} such that r < j . Then for all v,w ∈ Ā and α ∈ (0, 1] we
have

∣
∣
∣∣
∣
∣

j∑

t=r+1

(vt −wt)α
t−r et

∣
∣
∣∣
∣
∣
< 2z2αn.

Define

α0 = min{1, z1/(4z2n)}. (18.4)

It is clear that α0 ∈ (0, 1], and for any α ∈ (0, α0] we get

∣
∣
∣∣
∣
∣

j∑

t=r+1

(vt −wt)α
t−r et

∣
∣
∣∣
∣
∣
<

z1

2
. (18.5)

For given α ∈ (0, 1], j ∈ {1, . . . , n} and the vector ej define the set

R̄(ej (α)) =
{
v ∈ A : 〈v, ej 〉 = max {〈u, ej 〉 : u ∈ A}} . (18.6)

Proposition 18.2 For all j ∈ {1, . . . , n} and α ∈ (0, α0], where α0 is defined
in (18.4), we have R̄(ej (α)) ⊆ Rj (e).

Proof Assume the contrary. Then for some j ∈ {1, . . . , n} and α ∈ (0, α0] there
exists y ∈ R̄(ej (α)) such that y �∈ Rj(e). The latter implies that there exists r ∈
{1, . . . , n}, r ≤ j, such that y /∈ Rr(e) and y ∈ Rt(e) for any t = 0, . . . , r − 1.
Take any v ∈ Rj(e), then v ∈ Rr−1(e) and from (18.3) we have

vt = yt for all v, y ∈ Rr−1, t = 1, . . . , r − 1.
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Therefore,

vt et = ytet , t = 1, . . . , r − 1, and vrer − yrer ≥ z1.

This together with (18.5) imply that for v, y ∈ Ā we get

〈v, ej 〉 − 〈y, ej 〉 =
j∑

t=1

(vt − yt )α
t et

= αr

⎛

⎝vrer − yrer +
j∑

t=r+1

(vt − yt )α
t−ret

⎞

⎠ > αrz1/2 > 0.

Since y ∈ R̄(ej (α)) we have 〈y, ej 〉 = max{〈u, ej 〉 : u ∈ Ā} and thus,

〈y, ej 〉 ≥ 〈v, ej 〉 > 〈y, ej 〉 + αrz1/2

which is a contradiction. ��
Next we consider a convex function f : R

n → R and assume that its
subdifferential ∂f (x) at a point x ∈ R

n is a polytope. It is well known [9] that
the function f is directionally differentiable on R

n and

f ′(x; d) = max{〈ξ , d〉 : ξ ∈ ∂f (x)} for all x, d ∈ R
n. (18.7)

Now let A be a set of extreme points of the subdifferential ∂f (x). Then (18.7) can
be written as

f ′(x; d) = max{〈v, d〉 : v ∈ A}. (18.8)

Proposition 18.3 For a convex function f : Rn → R at a point x ∈ R
n, there

exists α0 > 0 such that

f ′(x; ej (α)) = f ′(x; ej−1(α)) + vjα
j ej ,

for all α ∈ (0, α0], v ∈ Rj(e), e ∈ G and j ∈ {1, . . . , n}.
Proof Take any e ∈ G and j ∈ {1, . . . , n}. It follows from (18.6) and (18.8) that

f ′(x; ej (α)) = 〈v, ej (α)〉 for all v ∈ R̄(ej (α)).

Proposition 18.2 implies that v ∈ Rj (e) for all α ∈ (0, α0] and j ∈ {1, . . . , n}.
Therefore,

f ′(x; ej (α))− f ′(x; ej−1(α)) = 〈v, ej 〉 − 〈v, ej−1〉.
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Since v ∈ Rj(e) we have v ∈ Rj−1(e). Then it follows from (18.3) that vt =
ut , t = 1, . . . , j − 1, and therefore, we get

f ′(x; ej (α))− f ′(x; ej−1(α)) = vjα
j ej .

This completes the proof. ��
Consider a function f : Rn → R represented as a difference of two convex (DC)

functions

f (x) = f1(x)− f2(x). (18.9)

Assume that subdifferentials ∂f1(x) and ∂f2(x) of the functions f1 and f2 at a point
x ∈ R

n are polytopes. For a given e ∈ G define the R-sets R1j (e) and R2j (e) for
polytopes ∂f1(x) and ∂f2(x), respectively.

Corollary 18.1 Let f : Rn → R be a DC function, defined in (18.9). Then at a
point x ∈ R

n there exists α0 > 0 such that

f ′(x; d) = f ′1(x; d)− f ′2(x; d) = f ′(x; ej−1(α))+ (vj −wj)α
j ej

for all α ∈ (0, α0], v ∈ R1j (e), w ∈ R2j (e), e ∈ G and j ∈ {1, . . . , n}.
Proof The proof is similar to that of Proposition 18.3. ��

Let e ∈ G, and λ > 0, α > 0 be given numbers. Given x ∈ R
n, consider the

following points:

x0 = x, xj = x0 + λej (α), j = 1, . . . , n.

It is clear that xj = xj−1 + (0, . . . , 0, λαj ej , 0, . . . , 0), j = 1, . . . , n. Introduce a
vector v = v(e, α, λ) ∈ R

n with coordinates

vj = vj (e, α, λ) = (λαj ej )
−1

[
f (xj )− f (xj−1)

]
, j = 1, . . . , n. (18.10)

For any fixed e ∈ G and α > 0 define the set

W(x, e, α) =
{
w ∈ R

n : there exists (λk ↓ 0, k→∞), w = lim
k→∞ v(e, α, λk)

}
.

Proposition 18.4 Assume that a function f : Rn → R is convex, its subdifferential
at a point x ∈ R

n is a polytope and the number α0 > 0 is defined by (18.4). Then
we have

W(x, e, α) ⊆ ∂f (x) for all α ∈ (0, α0].
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Proof It follows from (18.10) that

vj (e, α, λ) = (λαj ej )
−1

(
f (xj )− f (xj−1)

)

= (λαj ej )
−1

(
f (xj )− f (x)− (f (xj−1)− f (x))

)

= (λαj ej )
−1 (

λf ′(x, ej )− λf ′(x; ej−1)+ o(λ, ej )− o(λ, ej−1)
)
,

where λ−1o(λ, ei ) → 0 as λ ↓ 0, i = j − 1, j. Take w ∈ Rn(e). According to
Proposition 18.1 the vector w is unique. Since w ∈ Rn(e) we get w ∈ Rj (e) for all
j ∈ {1, . . . , n}. Then it follows from Proposition 18.3 that for any fixed α ∈ (0, α0]
we have

vj (e, α, λ) = (λαj ej )
−1

(
λαj ejwj + o(λ, ej )− o(λ, ej−1)

)

= wj + (λαj ej )
−1 (

o(λ, ej )− o(λ, ej−1)
)
,

and therefore, we get

lim
λ↓0
|vj (e, α, λ) −wj | = 0.

This means that limλ↓0 v(e, α, λ) = w, where w ∈ ∂f (x). ��
Corollary 18.2 Assume that a function f : Rn → R is DC, subdifferentials ∂f1(x)

and ∂f2(x) of its DC components f1 and f2, respectively, at a point x ∈ R
n are

polytopes and the number α0 > 0 is defined in (18.4). Then

W(x, e, α) ⊆ ∂f1(x)− ∂f2(x) for all α ∈ (0, α0].

Corollary 18.3 Let f : Rn → R be a DC function. For any fixed α ∈ (0, α0]
consider the set

W(x, α) = conv
⋃

e∈G
W(x, e, α).

Then W(x, α) ⊆ ∂f1(x)− ∂f2(x).

Results presented in Proposition 18.4, Corollaries 18.2 and 18.3 demonstrate
how subgradients of a DC function and, in particular, a convex function f can be
approximated using a vector v(e, α, λ) with its coordinates defined in (18.10). In
order to get such an approximation it is sufficient to compute the vector v(e, α, λ)

for any e ∈ G and sufficiently small α, λ > 0.
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18.3 Discrete Gradients

We define the discrete gradients as finite difference approximations of subgradients.
Note that the conventional finite difference estimations of gradients cannot be used
to approximate subgradients as is it is shown in Example 18.1.

Example 18.1 Let the function f : R2 → R be defined as

f (x1, x2) = max{2x1 − x2,−x1 + x2}.

The subdifferential of this function at the point x = (0, 0) is

∂f (0, 0) = conv{(2,−1), (−1, 1)}.

There exist various finite difference estimations of the gradients. We consider
the following simplest one, that is, the vector u = (u1, u2) ∈ R

2, whose
coordinates are

uj = λ−1 (
f (x + λêj )− f (x)

)
, j = 1, 2.

Here êj stands for the j -th unit vector. Then for the function f at the point x =
(0, 0) we have u = (2, 1). It is obvious that u /∈ ∂f (0, 0). The similar results
can be obtained applying more sophisticated finite difference estimations of the
gradients.

Let the function f : Rn → R be LLC. Denote by S1, the unit sphere in R
n. Take

any vectors g ∈ S1, e ∈ G and positive numbers λ > 0, α > 0. Define vectors
ej (α), j = 1, . . . , n as in (18.2). Consider the points

x0 = x + λg, xj = x0 + λej (α), j = 1, . . . , n. (18.11)

The illustration of these points in R
2 is given in Fig. 18.1.

Take any g ∈ S1, compute c̄ = max{|gk|, k = 1, . . . , n} and define the set

I(g) = {i ∈ {1, . . . , n} : |gi | = c̄} .

It is clear that |gi | ≥ 1/n for all i ∈ I(g). Then we have the following definition
for the discrete gradient of the function f : Rn → R at the point x ∈ R

n.

Definition 18.1 The discrete gradient of the function f : Rn → R at the point
x ∈ R

n is the vector

Γ i (x,g, e, λ, α) = (Γ i
1 , . . . , Γ

i
n ) ∈ R

n, g ∈ S1, i ∈ I(g)
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x

x + λg

x + λ g + e2(α)
)

Fig. 18.1 Points x, x0 and x1 in R
2

with the following coordinates

Γ i
j = (λαj ej )

−1
(
f (xj )− f (xj−1)

)
, j = 1, . . . , n, j �= i and

Γ i
i = (λgi)

−1

⎛

⎝f (x + λg)− f (x)− λ

n∑

j=1,j �=i
Γ i
j gj

⎞

⎠ .

The discrete gradient Γ i of the function f at the point x ∈ R
n is defined in a

direction g ∈ S1. More precisely, using a sequence of points x0, . . . , xn, defined
in (18.11), we calculate the values of the function f at these points and also at
the point x, that is we compute n + 2 values of this function. To compute Γ i ,
we calculate n − 1 coordinates Γ i

j similar to those of the vector v(e, α, λ), given

in (18.10). The i-th coordinate Γ i
i is computed so that the equality

f (x + λg)− f (x) = λ〈Γ i (x,g, e, λ, α),g〉,
g ∈ S1, e ∈ G, λ > 0, α > 0

(18.12)

is satisfied. This equality can be considered as a version of the mean value theorem.

Proposition 18.5 Let the function f : Rn → R be LLC and L > 0 be its Lipschitz
constant on an open bounded set X ⊂ R

n. Then for any x ∈ X, g ∈ S1, i ∈
I(g), e ∈ G, λ > 0, α > 0 such that xj ∈ X, j = 0, 1, . . . , n we have

‖Γ i‖ ≤ C(n)L, C(n) = (4n2 − 3n)1/2.
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Proof It follows from the definition of the discrete gradient that |Γ i
j | ≤ L for all

j = 1, . . . , n, j �= i. For j = i we get

|Γ i
i | ≤ L

⎛

⎝|gi |−1‖g‖ +
n∑

j=1,j �=i
|gi |−1|gj |

⎞

⎠ .

Since |gi | = max{|gj |, j = 1, . . . , n} we have |gi |−1|gj | ≤ 1, j = 1, . . . , n.
Moreover, since g ∈ S1 and |gi | ≥ 1/n it follows that |gi |−1‖g‖ ≤ n and therefore,
|Γ i

i | ≤ L(2n− 1). This together with |Γ i
j | ≤ L complete the proof. ��

18.4 Approximation of Subdifferentials

In this section we study the discrete gradients to approximate subdifferentials of
convex and DC functions. For given α, λ > 0 define the set

V (x, α, λ) = {v ∈ R
n : there exist (g ∈ S1, i ∈ I(g), e ∈ G),
v = Γ i (x,g, e, α, λ)},

and for a given α > 0, the set

V (x, α) ={v ∈ R
n : there exist (g ∈ S1, i ∈ I(g), e ∈ G,

{λk}, λk ↓ 0 as k→∞), v = lim
k→∞Γ i (x,g, e, α, λk)}.

Proposition 18.6 Let the function f : Rn → R be LLC. Then

• the set V (x, α, λ) is compact for any x ∈ R
n, α, λ > 0;

• the set V (x, α) is bounded for any x ∈ R
n and α > 0.

Proof It follows from Proposition 18.5 that for any x ∈ R
n, both sets V (x, α, λ)

and V (x, α) are bounded for any α, λ > 0 and for any α > 0, respectively.
To prove the closedness of the set V (x, α, λ), we take any sequence wk ∈

V (x, α, λ) and suppose that wk → w as k → ∞. Since wk ∈ V (x, α, λ) we have
wk = Γ ik (x,gk, e, α, λ) for some gk ∈ S1 and ik ∈ I(gk). The set S1 is compact
and therefore, the sequence {gk} has at least one limit point. Assume without loss
of generality that gk → ḡ as k → ∞. It is clear that ḡ ∈ S1. Since the set G is
finite we can assume that the vector e is the same for all k. In addition, there exists
k0 > 0 such that I(gk) ⊆ I(g) for all k > k0. This together with the continuity of
the function f imply that wk = Γ ik (x,gk, e, α, λ) → Γ i (x,g, e, α, λ) = w for
some i ∈ I(g) and therefore, w ∈ V (x, α, λ). ��
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Next we show the relationships between the subdifferential of the function f and
the sets V (x, α, λ) and V (x, α).

Continuously Differentiable Functions We start by considering continuously
differentiable, possibly nonconvex, functions.

Proposition 18.7 Let the function f : Rn → R be continuously differentiable in
some neighborhood of a point x ∈ R

n. Then

V (x, α) = {∇f (x)}

for any α > 0.

Proof The proof follows from the definition of the discrete gradients, continuous
differentiability of the function f and the mean value theorem. ��

For any convex function, not necessarily differentiable, we have the following
results.

Proposition 18.8 Let f : Rn → R be a finite valued convex function. Then

∂f (x) ⊆ convV (x, α, λ)

for any α ∈ (0, 1] and λ > 0.

Proof The convexity of f implies that this function is directionally differentiable
on R

n and we have

f ′(x;g) ≤ f (x + λg)− f (x)

λ

for all λ > 0. From (18.7) and (18.12), for any g ∈ S1 and i ∈ I(g) we get

max
ξ∈∂f (x)

〈ξ ,g〉 = f ′(x;g)

≤ f (x + λg)− f (x)

λ

= 〈Γ i (x,g, e, λ, α),g〉
≤ max{〈w,g〉 : w ∈ convV (x, α, λ)}.

This means that

max{〈ξ ,g〉 : ξ ∈ ∂f (x)} ≤ max{〈w,g〉 : w ∈ convV (x, α, λ)}

for all g ∈ R
n. Then the proof follows from the compactness and convexity of the

sets ∂f (x) and convV (x, α, λ). ��
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Corollary 18.4 Assume that f : Rn → R is a finite valued convex function. Then
for any α ∈ (0, 1] we have

∂f (x) ⊆ cl convV (x, α).

Proof The proof follows from Proposition 18.8 and the definition of the set V (x, α).
��

Convex Polyhedral Functions Next we consider convex polyhedral functions
defined as

f (x) = max
j∈J

{〈aj , x〉 + bj }. (18.13)

Here J is a finite index set and aj ∈ R
n, bj ∈ R, j ∈ J . The subdifferential of

this function at a point x ∈ R
n is

∂f (x) = conv{aj , j ∈ J (x)},

where

J (x) = {
j ∈ J : 〈aj , x〉 + bj = f (x)

}
.

Upper semicontinuity of the subdifferential mapping and the finiteness of the set J
imply that for the function f there exists δ > 0 such that

∂f (y) ⊆ ∂f (x) (18.14)

for all x ∈ R
n and y ∈ B(x; δ).

Proposition 18.9 For the convex polyhedral function f there exist α0 > 0 and
λ0 > 0 such that

∂f (x) = convV (x, α, λ)

for all x ∈ R
n, α ∈ (0, α0] and λ ∈ (0, λ0).

Proof The inclusion ∂f (x) ⊆ convV (x, α, λ) follows from Proposition 18.8.
Therefore, we only prove the opposite inclusion. Take any g ∈ S1. Then according
to (18.14) we have that ∂f (x + λg) ⊆ ∂f (x) for all λ ∈ (0, λ0), where λ0 = δ. For
the given direction g ∈ S1 consider the set

J (x,g) = {
j ∈ J (x) : 〈aj ,g〉 = f ′(x;g)} .

Then ∂f (x + λg) ⊆ conv{aj : j ∈ J (x,g)} for all λ ∈ (0, λ0).
Construct directions ej (α), j = 1, . . . , n by applying (18.2). Then compute

a vector v(α) = (v1, . . . , vn) at the point x + λg using (18.10). According to



18 Discrete Gradient Methods 633

Proposition 18.4 for α0 > 0, defined in (18.4), we have v(α) ∈ ∂f (x + λg) for all
α ∈ (0, α0]. Take any i ∈ I(g) and apply Definition 18.1 to calculate the discrete
gradient Γ i at the point x ∈ R

n with respect to the direction g ∈ S1. It is clear that
Γ i
j = vj (α), j = 1, . . . , n, j �= i. To compute the i-th coordinate Γ i

i , note that for
the function f , defined in (18.13), we have

f (x + λg)− f (x) = λ〈ξ ,g〉

for all ξ ∈ ∂f (x + λg) and λ ∈ (0, λ0), and therefore, using the subgradient v(α)

we get

Γ i
i = (λgi)

−1

⎛

⎝λ〈v(α),g〉 − λ

n∑

j=1,j �=i
vj (α)gj

⎞

⎠ = vi(α).

Then it follows from (18.14) that v(α) ∈ ∂f (x). This completes the proof. ��
Corollary 18.5 For the convex polyhedral function f there exists α0 > 0 such that

∂f (x) = convV (x, α)

for all x ∈ R
n and α ∈ (0, α0].

Convex Functions We say that a convex function f : Rn → R belongs to the
class F0 at a point x ∈ R

n if for some ε > 0 there exists a polyhedral function
ϕ : Rn → R such that

f (y) = f (x)+ ϕ(y − x)+ o(‖y − x‖), for all y ∈ B(x; ε)

and ∂ϕ(x) = ∂f (x). Here

ϕ(x) = max
j∈J

〈aj , x〉,

and J is a finite set of indices. If the function f ∈ F0 at x ∈ R
n, then for any

g ∈ S1 we have

f (x + λg) = f (x)+ λϕ(g)+ o(λ) (18.15)

where λ−1o(λ)→ 0 as λ ↓ 0.

Remark 18.1 One class of nonsmooth functions that belongs to F0 is the function
f : Rn → R given as

f (x) = max
j∈J

fj (x),
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where the functions fj , j ∈ J are convex and smooth.

Proposition 18.10 Let f ∈ F0 at a point x ∈ R
n. Then there exists α0 > 0 such

that

∂f (x) = convV (x, α)

for all α ∈ (0, α0).

Proof The inclusion ∂f (x) ⊆ convV (x, α) follows from Corollary 18.5 and
therefore, we only show that convV (x, α) ⊆ ∂f (x). Take any w ∈ V (x, α). Then
for some g ∈ S1, i ∈ I(g) and e ∈ G we have

w = lim
k→∞ Γ i (x,g, e, α, λk)

where λk ↓ 0 as k → ∞. Applying Definition 18.1 and considering (18.15), the
j -th coordinate Γ i

jf for the function f, j ∈ {1, . . . , n}, j �= i is

Γ i
jf =

f (xj )− f (xj−1)

λαj ej

= f (x)+ ϕ(xj − x)+ o(λ)− [f (x)+ ϕ(xj−1 − x)+ o(λ)]
λαj ej

= ϕ(xj − x)− ϕ(xj−1 − x)+ o(λ)

λαj ej

= ϕ(xj )− ϕ(xj−1)+ o(λ)

λαj ej

= Γ i
jϕ +

o(λ)

λαj ej
.

This means that limλ↓0 Γ
i
jf = limλ↓0 Γ

i
jϕ, j = 1, . . . , n, j �= i. In addition,

according to Proposition 18.11 there exist α0 > 0 and λ0 > 0 such that for some
v ∈ ∂ϕ(x) we have Γ i

ϕ = v for all α ∈ (0, α0) and λ ∈ (0, λ0). Since f ∈ F0 at x

we have v ∈ ∂f (x), and therefore, we get

lim
λ↓0

Γ i
jf = vj , j = 1, . . . , n, j �= i.

Since the function f is convex we have f ′(x;g) = 〈v,g〉. Then it follows from
Definition 18.1 and (18.12) that limλ↓0 Γ

i
if = vi , and we have w = v ∈ ∂f (x). This

completes the proof. ��
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Corollary 18.6 Let the function f ∈ F0 at x ∈ R
n. Then for any ε > 0 there exist

λ0 > 0 and α0 > 0 such that

convV (x, α, λ) ⊂ ∂f (x)+ B(000; ε)

for all λ ∈ (0, λ0) and α ∈ (0, α0).

Proof According to the definition of the set V (x, α), for any ε > 0 there exists
λ0 > 0 such that

V (x, α, λ) ⊆ V (x, α) for all λ ∈ (0, λ0).

Then the proof follows from Proposition 18.10. ��
Consider the set

Ṽ (x) =
⋂

α>0

cl convV (x, α).

It is obvious that the set Ṽ (x) is convex and compact at any x ∈ R
n.

Corollary 18.7 Assume that f ∈ F0 at x ∈ R
n. Then Ṽ (x) = ∂f (x).

Proof The proof follows from Corollary 18.4 and Proposition 18.10. ��
Difference of Convex Polyhedral Functions Consider the function

f (x) = f1(x)− f2(x), x ∈ R
n, (18.16)

where

f1(x) = max
i∈I

{〈ai , x〉 + bi} , f2(x) = max
k∈K

{〈ck, x〉 + dk} .

Here I and K are finite index sets, ai , ck ∈ R
n, bi, dk ∈ R, i ∈ I, k ∈ K . The

subdifferentials of the functions f1 and f2 at a point x ∈ R
n are

∂f1(x) = conv {ai , i ∈ I (x)} , ∂f2(x) = conv {ck, k ∈ K(x)} ,

where

I (x) = {i ∈ I : 〈ai , x〉 + bi = f1(x)} and

K(x) = {k ∈ K : 〈ck, x〉 + dk = f2(x)}.

Applying upper semicontinuity of the subdifferential mappings and taking into
account the finiteness of the index sets I and K we get that there exists δ > 0
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such that

∂fp(y) ⊆ ∂fp(x), p = 1, 2 (18.17)

for all y ∈ B(x; δ).
Proposition 18.11 For the difference of polyhedral functions f there exist α0 > 0
and λ0 > 0 such that

convV (x, α, λ) ⊆ ∂f (x)

for all x ∈ R
n, α ∈ (0, α0] and λ ∈ (0, λ0).

Proof For a given g ∈ S1 introduce the following sets:

Ī (x,g) = {
i ∈ I (x) : f ′1(x;g) = 〈ai ,g〉

}
and

K̄(x,g) = {
k ∈ K(x) : f ′2(x;g) = 〈ck,g〉

}
.

Since both functions f1 and f2 are convex polyhedral it follows that at the point x ∈
R
n there exists λ0 > 0 such that I (x + λg) = Ī (x,g) and K(x + λg) = K̄(x,g)

for all λ ∈ (0, λ0). This means that

∂f1(x + λg) = conv
{
ai : i ∈ Ī (x,g)

}
and

∂f2(x + λg) = conv
{
ck : k ∈ K̄(x,g)

}

for all λ ∈ (0, λ0).
Let λ ∈ (0, λ0). Take any α > 0, construct the vectors ej (α) by applying (18.2)

and then using (18.10) compute vectors v1(α) = (v11, . . . , v1n) and v2(α) =
(v21, . . . , v2n) at the point x + λg for functions f1 and f2, respectively. Define

v(α) = v1(α) − v2(α).

Proposition 18.4 and the fact that functions f1 and f2 are convex polyhedral imply
that there exists α0 > 0 such that v1(α) ∈ ∂f1(x + λg) and v2(α) ∈ ∂f2(x + λg)

for any λ ∈ (0, λ0) and α ∈ (0, α0).
Polyhedral representations of the functions f1 and f2 and the construction of the

R-sets for sets {ai , i ∈ Ī (x,g)} and {ck, k ∈ K̄(x,g)} imply that subdifferentials
∂f1(x

n), ∂f2(x
n) are singletons for any λ ∈ (0, λ0) and α ∈ (0, α0). Let u1 ∈

∂f1(x
n) and u2 ∈ ∂f2(x

n). From the definition of R-sets we have v1(α) = u1
and v2(α) = u2. Furthermore, the subdifferential calculus implies that ∂f (xn) =
{u1 − u2}. Then it follows from (18.17) that u1 − u2 ∈ ∂f (x).

Take any i ∈ I(g) and apply Definition 18.1 to calculate the discrete gradient
Γ i at the point x ∈ R

n with respect to the direction g ∈ S1. It is clear that Γ i
j =

vj (α), j = 1, . . . , n, j �= i. To compute the i-th coordinate Γ i
i , note that for the
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function f , defined in (18.16), we have

f (x + λg)− f (x) = λ〈ξ ,g〉

for all ξ ∈ ∂f (x + λg) and λ ∈ (0, λ0), and therefore, using the subgradient v(α)

we get

Γ i
i = (λgi)

−1

⎛

⎝λ〈v(α),g〉 − λ

n∑

j=1,j �=i
vj (α)gj

⎞

⎠ = vi(α).

Then it follows from (18.14) that v(α) ∈ ∂f (x). This completes the proof. ��
Corollary 18.8 For the function f , defined in (18.16), there exists α0 > 0 such that

convV (x, α) ⊆ ∂f (x)

for all x ∈ R
n and α ∈ (0, α0).

Difference of Convex Functions Assume that f : Rn → R is a DC function,
defined in (18.9) with f1 and f2 being finite valued convex functions.

Proposition 18.12 Let f : Rn → R be a DC function, defined in (18.9). Assume
that f1, f2 ∈ F0 at a point x ∈ R

n. Then there exists α0 > 0 such that

convV (x, α) ⊆ ∂f (x)

for all α ∈ (0, α0).

Proof The proof repeats that of Proposition 18.10 and therefore is omitted. ��
Corollary 18.9 Let f : Rn → R be a DC function, defined in (18.9), and f1, f2 ∈
F0 at a point x ∈ R

n. Then for any ε > 0 there exist λ0 > 0 and α0 > 0 such that

V (x, λ, α) ⊂ ∂f (x)+ B(000; ε)

for all λ ∈ (0, λ0) and α ∈ (0, α0).

Corollary 18.10 Let f : Rn → R be a DC function, defined in (18.9), and f1, f2 ∈
F0 at a point x ∈ R

n. Then

Ṽ (x) ⊆ ∂f (x). (18.18)

In this section we showed that the discrete gradients can be used to approximate
subdifferentials of convex and DC functions. We say that a function f belongs to
the class F if it satisfies the inclusion (18.18) for any x ∈ R

n. This class contains,
in particular, differentiable, nonsmooth convex and nonsmooth DC functions.
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Proposition 18.13 Let the function f ∈ F . Then at a point x ∈ R
n for any ε > 0

there exist λ0 > 0 and α0 > 0 such that

convV (x, α, λ) ⊂ ∂f (x)+ B(000; ε)

for all λ ∈ (0, λ0) and α ∈ (0, α0).

Proof According to the definition of the set Ṽ (x), at the point x ∈ R
n for any ε > 0

there exist λ0 > 0 and α0 > 0 such that

convV (x, α, λ) ⊂ Ṽ (x)+ B(000; ε)

for all λ ∈ (0, λ0) and α ∈ (0, α0). Then the rest of the proof follows from the fact
that for the function f ∈ F the inclusion (18.18) is satisfied. ��

18.5 Discrete Gradient Method

The idea of the original DGM introduced in [7] is to hybridize derivative free
methods with bundle methods. In contrast with bundle methods, which require
the computation of a subgradient of the objective function at each trial point, the
DGM approximates subgradients by the discrete gradients using only values of the
objective function. Similar to bundle methods, the previous values of the discrete
gradients are gathered into a bundle and a null step is used if the current search
direction is not good enough.

The DGM consists of inner and outer iterations. The inner iteration has serious
and null steps. We select sequences {δk} and {λk} such that δk, λk ↓ 0 as k → ∞.
The outer iteration depends on the index k and in this iteration parameters δk and
λk are updated. The inner iteration depends on the index s. In the inner iteration
we compute the search direction and either update the solution or add an element
into the set of the discrete gradients V (xks ). In other words, we either take a serious
step or a null step occurs. At the beginning of each inner iteration (i.e. s = 1) we
first compute the discrete gradient vk1 = Γ i (xk1,g, e, λk, α) with respect to any
initial direction g ∈ S1 and any fixed e ∈ G. We set the initial bundle of the discrete
gradients V (xk1) = {vk1}, v̄k1 = vk1 and find the search direction dk1

dk1 = −
v̄k1

‖v̄k1‖
.

In the next inner iterations (i.e. s > 1) we compute the vector

v̄ks = argmin
v∈V (xks )

‖v‖2,
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that is the distance between the convex hull of all computed the discrete gradients
and the origin. Then we find the search direction

dks = −
v̄ks

‖v̄ks‖
.

Next, we check whether this direction dks (s ≥ 1) is descent or not. If it is, then we
have

f (xks + λkdks )− f (xks ) ≤ −εLλk‖v̄ks‖,

with the given numbers εL ∈ (0, 1) and λk > 0. In this case we compute the next
(inner) iteration point

xks+1 = xks + tksdks ,

where the step size tks is defined as

tks = argmax
{
t ≥ 0 : f (xks + tdks )− f (xks ) ≤ −εRt‖v̄ks‖

}
,

with the given εR ∈ (0, εL].
In the case of a serious step, we compute the new discrete gradient vks+1 =

Γ i (xks+1 ,g, e, λk, α) with respect to any direction g ∈ S1, set V (xks+1) = {vks+1},
and continue to the next inner iteration with s = s + 1. Otherwise, a null step
occurs and we compute another discrete gradient vks+1 = Γ i (xks , dks , e, λk, α) in
the direction dks , update the bundle of the discrete gradients

V (xks+1) = conv {V (xks ) ∪ {vks+1}},

set xks+1 = xks , and continue the inner iterations with s = s + 1. Note that, at each
null step the approximation of the subdifferential ∂f (x) is improved.

The inner iteration stops if ‖v̄ks‖ ≤ δk , that is for given values of δk and
λk the last iteration xks can be considered as an approximate solution to the
problem (18.1) and this solution cannot be significantly improved using the same
values of parameters. Therefore, this point is accepted as a new iteration xk+1 and
the algorithm returns to the outer iteration to update the values of parameters δk
and λk . In its turn, the outer iteration has one stopping criterion. It stops if δk < ε

and λk < ε with a given tolerance ε > 0. This means that the further decrease of
values of δk and λk will not improve the approximation of the subdifferential and
the solution xk .
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Algorithm 18.1: DGM

Data: x1 ∈ R
n, ε > 0, {λk}, {δk}, λk, δk > 0, λk, δk ↓ 0 as k→∞, α ∈

(0, 1], εL ∈ (0, 1] and εR ∈ (0, εL].
Step 1. (Outer iteration initialization) Set k = 1.
Step 2. (Inner iteration initialization) Set s = 1 and xks = xk . Choose any

g ∈ S1, e ∈ G. Compute the discrete gradient

vks = Γ i (xks ,g, e, λk, α).

Set V (xks ) = {vks }.
Step 3. (Stopping criterion) If λk < ε and δk < ε, then stop with xk as a final

solution.
Step 4. (Minimum norm) Compute the vector

v̄ks = argmin
v∈V (xks )

‖v‖2.

Step 5. (Inner iteration termination) If ‖v̄ks‖≤ δk , then update λk+1 and δk+1.
Set xk+1 = xks , k = k + 1 and go to Step 2.

Step 6. (Search direction) Compute the search direction

dks = −
v̄ks

‖v̄ks‖
.

Step 7. If f (xks + λkdks )− f (xks ) > −εLλk‖v̄ks‖, then go to Step 9.
Step 8. (Serious step) Construct xks+1 = xks + tksdks , where the step size tks is

computed as

tks = argmax
{
t ≥ 0 : f (xks + tdks )− f (xks ) ≤ −tεR‖v̄ks‖

}
.

Compute a new discrete gradient vks+1 using xks+1 and any g ∈ S1:

vks+1 = Γ i (xks+1 ,g, e, λk, α).

Set V (xks+1) = {vks+1}, s = s + 1, and go to Step 4.
Step 9. (Null step) Compute a new discrete gradient vks+1 using xks and dks :

vks+1 = Γ i (xks , dks , e, λk, α).

Update the set

V (xks+1) = conv{V (xks ) ∪ {vks+1}}. (18.19)

Set xks+1 = xks , s = s + 1, and go to Step 4.
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Convergence of the DGM Next we prove that for given δk and λk the number of
serious and null steps in the inner iterations are finite. We start with the null step.

Proposition 18.14 Let the objective function f : Rn → R be LLC and L > 0 be
its Lipschitz constant. For any δk ∈ (0, C̄) the number s0 of null steps in an inner
loop of the DGM is finite, where

s0 ≤ 1+ 2

⌈(
log2(δk/C̄)

log2 r

)⌉
, (18.20)

and r = 1 − (
(1− εL)(2C̄)−1δk

)2
, C̄ = C(n)L with C(n) given in Proposi-

tion 18.5. Here 6·7 is ceiling of a number.

Proof It is clear that the null step is called when ‖v̄ks‖ > δk and f (xks + λkdks )−
f (xks ) > −εLλk‖v̄ks‖. Then a new discrete gradient vks+1 computed in the null
step does not belong to the set V s(xks ). Indeed, in this case it follows from (18.12)
that

f (xks + λkdks )− f (xks ) = λk〈Γ i (xks , dks , e, λk, α), dks 〉
= λk〈vks+1 , dks 〉,

and therefore, λk〈vks+1 , dks 〉 > −εLλk‖v̄ks‖. Then we get

〈vks+1 , v̄ks 〉 < εL‖v̄ks‖2. (18.21)

On the other hand, since v̄ks = argminv∈V (xks )‖v‖2 it follows from the necessary

condition for a minimum that 〈v̄ks , v − v̄ks 〉 ≥ 0 for any v ∈ V s(xks ), or 〈v̄ks , v〉 ≥
‖v̄ks‖2. This together with (18.21) imply that vks+1 �∈ V s(xks ).

In order to prove that the number s of null steps is finite for a given δk, we find an
upper estimation s0 for the number of the discrete gradients to achieve ‖v̄ks0 ‖ ≤ δk .

According to (18.19), we have ‖v̄ks+1‖2 ≤ ‖tvks+1 + (1− t)v̄ks‖2 for all t ∈ [0, 1],
and therefore, we get

‖v̄ks+1‖2 ≤ ‖v̄ks‖2 + 2t〈v̄ks , vks+1 − v̄ks 〉 + t2‖vks+1 − v̄ks‖2.

In addition, it follows from Proposition 18.5 that ‖vks+1 − v̄ks‖ ≤ 2C̄. This together
with (18.21) imply that

‖v̄ks+1‖2 < ‖v̄ks‖2 − 2t (1− εL)‖v̄ks‖2 + 4t2C̄2.

For t = (1− εL)(2C̄)−2‖v̄ks‖2 ∈ (0, 1) we get

‖v̄ks+1‖2 < [1−
(
(1− εL)(2C̄)−1‖v̄ks‖

)2]‖v̄ks‖2. (18.22)
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Let δk ∈ (0, C̄). It follows from (18.22) and the condition ‖v̄ks‖ > δk, s =
1, . . . , s0 − 1 that ‖v̄ks+1‖2 < [1 − (

(1− εL)(2C̄)−1δk
)2]‖v̄ks‖2. Denote by r =

1− (
(1− εL)(2C̄)−1δk

)2
. It is clear that r ∈ (0, 1). Then we have

‖v̄ks0 ‖2 < r‖v̄ks0−1‖2 < . . . < rs0−1‖v̄k1‖2 < rs0−1C̄2,

where the last inequality comes from Proposition 18.5. If rs0−1C̄2 ≤ δ2
k , then

‖v̄ks0 ‖ ≤ δk and we get the estimation (18.20) for the number of steps s0. This
completes the proof. ��

In the next proposition we prove that for given δk and λk the number of serious
steps in the inner iterations is finite.

Proposition 18.15 Assume that the objective function f satisfies the condition
f ∗ > −∞, where f ∗ = min{f (x), x ∈ R

n}. Then, for any δk, λk > 0 the number
smax of serious steps in an inner loop of the DGM is finite, where

smax ≤
⌈
f (xk)− f ∗

εLλkδk

⌉
.

Proof At the beginning of the k-th inner iteration in the DGM, the value of the
objective function f is f (xk). Furthermore, at each serious step the condition

f (xks + λkdks )− f (xks ) ≤ −εLλk‖v̄ks‖,

is satisfied and ‖v̄ks‖ > δk. Therefore, we have

f (xks+1)− f (xks ) ≤ f (xks + λkdks )− f (xks )

≤ −εLλk‖v̄ks‖
< −εLλkδk.

This means that at each iteration the value of the objective function is reduced by
at least uk = εLλkδk and this number does not depend on the serious steps. Since
f ∗ > −∞ the number of the serious steps cannot be more than 6(f (xk)−f ∗)/uk7.
This completes the proof. ��
Corollary 18.11 Assume that conditions of Propositions 18.14 and 18.15 are
satisfied. Then for any k the number of steps Mk in the k-th inner iteration of the
DGM is finite and Mk ≤ s0smax.

In Proposition 18.13 we showed that for the function f ∈ F the closed convex
set of the discrete gradients V (x, α, λ) is an approximation of the subdifferential
∂f (x) for λ ∈ (0, λ0) and α ∈ (0, α0). However, this is true only at a given
point x ∈ R

n. In order to get convergence results for the DGM we need a
relationship between the set V (x, α, λ) and ∂f (x) also in some neighborhood of x.
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Therefore, we give an additional assumption that the set of the discrete gradients in
the neighborhood of x approximates the Goldstein ε-subdifferential of the function
f (see Definition 1.10).

Assumption 18.1 Let x ∈ R
n be a given point. For any ε > 0 there exist δ >

0, α0 > 0 and λ0 > 0 such that

V (y, α, λ) ⊂ ∂Gε f (x)+ B(000; ε)

for all y ∈ B(x; δ), α ∈ (0, α0) and λ ∈ (0, λ0).

Proposition 18.16 Assume that the function f ∈ F , Assumption 18.1 is satisfied
on R

n and the set L(x1) = {x ∈ R
n : f (x) ≤ f (x1)} is bounded for any x1 ∈

R
n. Then, every accumulation point of the sequence {xk} generated by the DGM

belongs to the set X0 = {x ∈ R
n : 000 ∈ ∂f (x)}.

Proof Since the function f is continuous and the set L(x1) is compact we get f ∗ >
−∞. Therefore, conditions of Proposition 18.15 are satisfied and the inner loop of
the DGM terminates after a finite number of steps with a point xk+1 such that
xk+1 = xks for some s > 0 and

min
v∈V (xk+1)

‖v‖ ≤ δk. (18.23)

In addition, it is clear that

V (xk+1) ⊂ V (xk+1, α, λk).

Since {f (xk)} is a decreasing sequence the point xk ∈ L(x1) for all k ≥ 0. Then
the sequence {xk} is bounded and has at least one accumulation point. Assume that
x̄ is an accumulation point of the sequence {xk} and there exists a sequence {xki }
such that xki → x̄ as i →∞. It follows from (18.23) and (18.5) that

min{‖v‖ : v ∈ V (xki , α, λki−1)} ≤ δki−1. (18.24)

According to Assumption 18.1 at the point x̄ for any ε > 0 there exist β > 0, α0 >

0 and λ0 > 0 such that

V (y, α, λ) ⊂ ∂Gε f (x̄)+ B(000; ε) (18.25)

for all y ∈ B(x̄; β), α ∈ (0, α0) and λ ∈ (0, λ0). Since the sequence {xki }
converges to x̄ there exists i0 > 0 such that xki ∈ B(x̄; β) for all i ≥ i0. On
the other hand, we have δk, λk → 0 as k → +∞ and therefore, there exists k0 > 0
such that δk < ε and λk < λ0 for all k > k0. Then there exists i1 ≥ i0 such that
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ki ≥ k0 + 1 for all i ≥ i1. Thus, it follows from (18.24) and (18.25) that

min{‖v‖ : v ∈ ∂Gε f (x̄} ≤ 2ε}.

Since ε > 0 is arbitrary and the mapping ∂f (x) is upper semicontinuous we get
000 ∈ ∂f (x̄). This completes the proof. ��
Remark 18.2 Since in the DGM descent directions can be computed for any values
of λ > 0 one can take λ1 ∈ (0, 1), some β ∈ (0, 1) and update λk, k ≥ 1 for
instance by the formula λk = βkλ1, k ≥ 1. Thus, approximations to subgradients
are used only at the final stage which guarantees the convergence of the DGM. In
most of iterations such approximations are not used and therefore, the DGM is a
semi-derivative-free method.

Remark 18.3 It is obvious that in the DGM always the step size tks ≥ λk . In order
to compute tks one can define a sequence θm = mλk, m ≥ 1 and take tks as the
largest θm satisfying the inequality in the line search step.

Remark 18.4 There are similarities between the DGM and bundle methods. More
specifically, the method presented here can be considered as a semi-derivative-free
version of the bundle method introduced in [29]. Algorithms for the computation
of descent directions in both methods are similar. Nevertheless, the DGM uses the
discrete gradients instead of subgradients.

18.6 Limited Memory Discrete Gradient Bundle Method

In this section we recall the limited memory discrete gradient bundle method [18] for
large scale derivative free nonconvex NSO. The idea of the method is to combine the
discrete gradient method DGM described in the previous section with the limited
memory bundle method LMBM [13–15] described in Chap. 5.

The DGM is a semi derivative-free method for (small or medium size)
nonconvex NSO while the LMBM utilizes the subgradient information to solve
large scale NSO problems. In the LMBM we bundle the subgradients that are
computed in a small neighborhood of the current iteration point. On the other hand,
in the DGM we gather into a bundle the discrete gradients that are calculated only at
the current iteration point but with respect to different directions (see Definition 18.1
and Sect. 18.5). In the LDGB we combine these ideas and compute the discrete
gradients in a small neighborhood of the current iteration point with respect to
different directions.

In the DGM a quadratic subproblem (see Step 4 of Algorithm 18.1) needs
to be solved to find the discrete gradient with the least norm and, as a con-
sequence, to calculate the search direction. The convex combination of at most
three discrete gradients is computed and the search direction is calculated using
the limited memory approach. Thus, a time consuming direction finding prob-
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lem needs not to be solved in this method. In addition, the difficulty with the
unbounded storage space that may be required in the DGM is dealt with in the
LDGB.

The obvious difference between the LDGB and the LMBM is that we now
use the discrete gradients instead of subgradients of the objective function. In
both methods, inner and outer iterations are used in order to avoid too tight
approximations to the subgradients at the beginning of computation (thus, we have
a derivative free method similarly to the DGM). The inner iteration of the LDGB
is essentially same as the LMBM. That is, the search direction is computed by the
formula

dks = −Dks ṽks ,

where s and k are the indices of inner and outer iterations, ṽks is an aggregate
discrete gradient and Dks is a limited memory variable metric update. In addition,
the line search procedure (see Chap. 5, Eqs. (5.3)–(5.5)) is used to determine a new
iteration and auxiliary points xks+1 and yks+1

, and the aggregation procedure (see
Chap. 5, Eqs. (5.7) and (5.8)) is used to compute a new aggregate discrete gradient
ṽks+1 and a new aggregate subgradient locality measure β̃ks+1 .

The first discrete gradient v11 = Γ i(x,g11
, e, α, λ), where i = argmax{|gj | :

j = 1, . . . , n}, is computed using an arbitrary initial direction g11
∈ S1. After

that we always use the previous normalized search direction gks+1
= dks /‖dks‖ to

compute the next discrete gradient vks+1 . Parameters λ > 0 and α > 0 are selected
similarly to the DGM.

The inner iteration is terminated if we have

1

2
‖ṽks‖2 + β̃ks ≤ δk

for some outer iteration parameter δk > 0.
The LDGB uses an adaptive updating strategy for the selection of outer iteration

parameter δk . At the beginning, the outer iteration parameter δ1 is set to a large
number. Each time the inner iteration is terminated we set

δk+1 = min{σδk,wks },

where σ ∈ (0, 1) and wks = −〈ṽks , dks 〉 + 2β̃ks . Similarly to the LMBM, the
parameterwks is used also during the line search procedure to represent the desirable
amount of descent (see Chap. 5, Eqs. (5.4) and (5.5)).

Let us assume that the sequence λk > 0, λk ↓ 0, k → ∞, a sufficiently small
number α > 0 and the line search parameter εksL ∈ (0, 1/2) are given. The LDGB
proceeds as follows.
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Algorithm 18.2: LDGB

Data: x1 ∈ R
n, ε > 0, δ1 > ε, λ1 > ε, α ∈ (0, 1], εL ∈ (0, 1/2).

Step 1. (Outer iteration initialization) Set k = 1 and choose gk1
∈ S1.

Step 2. (Inner iteration initialization) Set s = 1 and xks = xk .
Step 3. (Stopping criterion) If λk < ε and δk < ε, then stop with xk as a final

solution.
Step 4. (Serious step 1) Compute a discrete gradient

vks = Γ i(xks ,gks , e, λk, α).

Set m = s, ṽks = vks , and β̃ks = 0.
Step 5. (Direction finding for serious steps) Compute dks using ṽks and the

L-BFGS update.
Step 6. (Inner iteration termination) If 1/2‖ṽks‖2 + β̃ks ≤ δk, then set

xk+1 = xks , gk+11
= dks /‖dks‖, and update λk+1 and δk+1. Set

k = k + 1 and go to Step 2.
Step 7. (Line search and updating) Find step sizes tksL and tksR , and the

subgradient locality measure βks+1 . Update the limited memory
matrices.

Step 8. If f (xks + t
ks
R dks )− f (xks ) > −εLtksR (−〈dks , ṽks 〉 + 2β̃ks ), then go

to Step 10.
Step 9. (Serious step 2) Construct the iteration xks+1= xks+tksL dks . Set

gks+1
= dks /‖dks‖, s = s + 1 and go to Step 4.

Step 10. (Null step) Construct a trial point yks+1
= xks + t

ks
R dks and set

gks+1
= dks /‖dks‖. Compute a new discrete gradient

vks+1 = Γ i(yks+1
,gks+1

, e, λk, α)

and the aggregate values

ṽks+1 = ζ
ks
1 vkm + ζ

ks
2 vks+1 + ζ

ks
3 ṽks and

β̃ks+1 = ζ
ks
2 βks+1 + ζ

ks
3 β̃ks .

Step 11. (Direction finding for null steps) Compute dks+1 using ṽks+1 and the
L-SR1 update. Set xks+1 = xks , s = s + 1, and go to Step 6.

As in the DGM the discrete gradient is computed according to Definition 18.1.
Similarly to the LMBM the search direction and the aggregate values are computed
by using the L-BFGS update after serious steps and L-SR1 update otherwise (see
Chap. 5 for more details of the limited memory matrix updating and their usage in
the LMBM). The step sizes tksR ∈ (0, tmax] and t

ks
L ∈ [0, tksR ] with tmax > 1 are

computed such that either the serious step (5.4) or the null step condition (5.5) in
Chap. 5 is satisfied. In addition, the subgradient locality measure βks+1 as well as the
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multipliers ζ ksi satisfying ζ
ks
i ≥ 0 for all i ∈ {1, 2, 3}, and

∑3
i=1 ζ

ks
i = 1 utilized

in the aggregation procedure are computed similarly to the LMBM (see Chap. 5,
Eqs. (5.6) and (5.7)).

Convergence of the LDGB We now prove the global convergence of the
LDGB under the assumptions that the function f ∈ F and the set L(x1) =
{x ∈ R

n : f (x) ≤ f (x1)} is bounded for any x1 ∈ R
n. In [18] the convergence of

the LDGB is proved for general semismooth functions.

Definition 18.2 Let ε > 0, λ > 0, and α > 0. We define the ε-set of discrete
gradients by

Vε(x, α, λ) = conv{V (y, α, λ) : y ∈ B̄(x; ε)}.

We first show that the ε-set of discrete gradients can be used to approximate the
Goldstein subdifferential of a function. Note the analogue of this Proposition with
Assumption 18.1.

Proposition 18.17 Suppose that the assumptions of Proposition 18.13 are satisfied
at every y ∈ B̄(x; ε) with some ε > 0. Then, there exist λ0 > 0 and α0 > 0 such
that the ε-set of discrete gradients approximates the Goldstein subdifferential by

Vε(x, α, λ) ⊂ ∂Gε f (x)+ B(000; ε)
with all λ ∈ (0, λ0) and α ∈ (0, α0).

Proof Let v ∈ Vε(x, α, λ). Then v = ∑
i σiv

y
i , where v

y
i ∈ V (yi , α, λ), yi ∈

B̄(x; ε), ∑
i σi = 1 and σi ≥ 0 for all i. Now, by Proposition 18.13 there exists λi0

and αi0 for any ε > 0 such that V (yi , α, λ) ⊂ ∂f (yi ) + B(000; ε) for all λ ∈ (0, λi0)
and α ∈ (0, αi0). Thus, we have v

y
i = ξ

y
i + sεi , where ξ

y
i ∈ ∂f (yi ) and sεi ∈ B(000; ε).

Hence,

v =
∑

i

σi (ξ
y
i + sεi )

=
∑

i

σiξ
y
i +

∑

i

σis
ε
i

⊂ conv{∂f (yi ) : yi ∈ B̄(x; ε)} + B(000; ε)
= ∂Gε f (x)+ B(000; ε)

with all λ ∈ (0,mini{λi0}) and α ∈ (0,mini{αi0}) . ��
Next we show that all the aggregate discrete gradients generated by the LDGB

belong to the ε-set of discrete gradients.

Lemma 18.1 For all inner iterations ks , there exists εks ≥ 0 such that

ṽks ∈ Vεks (xks , α, λk).
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Proof After a serious step we have ṽks+1 = vks+1 ∈ V (xks+1, α, λk) and the result
is true with any εks ≥ 0. After a null step the aggregate discrete gradient ṽks+1 is
computed as a convex combination of three discrete gradients: vks ∈ V (xks , α, λk),
vks+1 ∈ V (yks+1

, α, λk) and ṽks . For null steps we use the scaled direction vector
θkdk with θk = min { 1, C/‖dk‖ } and predefined C > 0 in the line search (for
more details, see [15]). Thus, we have ‖yks+1

− xks‖ ≤ tmaxC, and we have
vks+1 ∈ Vεks (xks , α, λk) with some 0 < εks ≤ tmaxC. Since the first aggregate
discrete gradient ṽks after a serious step is equal to vks , they both belong to the set
Vεks (xks , α, λk) with any εks ≥ 0.

As a convex combination of these three discrete gradients, the second aggregate
discrete gradient ṽks+1 after the serious step belongs to the set Vεks (xks , α, λk) with
some 0 < εks ≤ tmaxC. The rest of the proof follows by induction. ��
Proposition 18.18 Let f : Rn → R be a LLC semismooth function. Then the
number of inner iterations in the LDGB is finite and, at the termination, we have

min
v∈V (xk+1,α,λk)

‖v‖2 ≤ 2δk. (18.26)

Proof The inner iteration loop in the LDGB is essentially the same as the LMBM
with subgradients replaced by the discrete gradients. It has been shown that the
LMBM terminates after finite number of iterations, if the stopping parameter (cf.
δk here) is greater than zero (see, [15] and Chap. 5). The use of the discrete gradients
does not alter this result. Thus, the inner iteration loop in the LDGB is terminating
after finite number of steps.

At the termination we have

δk ≥ 1

2
‖ṽks‖2 + β̃ks ≥

1

2
‖ṽks‖2.

By Lemma 18.1 we have ṽks ∈ Vμ(xks , α, λk) with some μ ≥ 0 and we set xk+1 =
xks at the termination. Thus, we have

min
v∈V (xk+1,α,λk)

‖v‖2 ≤ ‖ṽks‖2 ≤ 2δk.

��
Proposition 18.19 Assume that the function f ∈ F and for any x1 ∈ R

n, the set
L(x1) = {x ∈ R

n : f (x) ≤ f (x1)} is bounded. Then, every accumulation point of
the sequence {xk} generated by the LDGB belongs to the set X0 = {x ∈ R

n : 000 ∈
∂f (x)}.
Proof Since f is continuous and the set L(x1) is bounded, we have f ∗ > −∞. By
Proposition 18.18 the inner iterations terminates after a finite number of steps with
a point xk+1 such that (18.26) holds. Thus,

min{‖v‖ : v ∈ V (xk+1, α, λk)} ≤
√

2δk (18.27)
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for any k ≥ 1. Since {f (xk)} is a nonincreasing sequence, the point xk ∈ L(x1)

with all k ≥ 1. Moreover, the boundedness of the level set implies that the sequence
{xk} has at least one accumulation point. Let x̄ be an accumulation point of {xk}
and let xki → x̄ when i →∞. Then we have from (18.27) that

min{‖v‖ : v ∈ V (xki , α, λki−1)} ≤
√

2δki−1. (18.28)

Now, by Proposition 18.17 for any y ∈ B̄(x̄;μ) with μ > 0 there exists λ0 > 0 and
α0 > 0 such that

V (y, α, λ) ⊆ Vμ(x̄, α, λ) ⊆ ∂Gμ f (x̄)+ B(000;μ) (18.29)

for all λ ∈ (0, λ0) and α ∈ (0, α0). Since xki converges to x̄ there exists i0 ≥ 1 such
that xki ∈ B(x̄;μ) for all i ≥ i0. In addition, since δk → 0 and λk → 0 as k →∞
there exists k0 > 1 such that δk ≤ ε with some ε > 0 and λk < λ0 for all k > k0.
Then there exists l0 ≥ i0 such that kl ≥ k0+ 1 for all l ≥ l0. It follows from (18.28)
and (18.29) that

min{‖v‖ : v ∈ ∂Gμ f (x̄)} ≤ μ+√2ε.

Now, since μ, ε > 0 are arbitrary and the mapping ∂f (x) is upper semicontinuous
we get 000 ∈ ∂f (x̄). This completes the proof. ��

18.7 Illustrative Examples

In this section we present illustrative examples to demonstrate the performance of
both the discrete and the limited memory discrete gradient methods. We include
four small size convex, four small size nonconvex and four large scale (both convex
and nonconvex) problems. Test problems are listed in Table 18.1. Their details can
be found in [9].

Results are presented in Tables 18.2, 18.3, 18.4, 18.5, 18.6, and 18.7. The
following notations are adopted to report results:

• fbest—the best known estimate for the global minimum value;
• f—the best objective function value obtained by an algorithm;
• Nf —the number of function evaluations;
• CPU—computational time, in seconds, used by an algorithm.

Table 18.1 Test problems

Small convex problems Small nonconvex problems Large scale problems

P1 Shor P5 Crescent P9 Chained LQ

P2 Maxq P6 El-Attar P10 Chained CB3

P3 Maxl P7 L1-Rosenbrock P11 Chained Mifflin 2

P4 Goffin P8 L1-Wood P12 Chained Crescent I
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Table 18.2 Results for small convex problems

DGM LDGB

Prob fbest f Nf CPU f Nf CPU

P1 22.60 22.6002 4697 0.00 37.7919 371 0.00

P2 0 0.0000 9808 0.00 0.0000 5841 0.00

P3 0 0.0000 10935 0.00 0.0003 29313 0.00

P4 0 0.0000 403440 3.30 225.1001 35173 0.01

Table 18.3 Results for small nonconvex problems

DGM LDGB

Prob fbest f Nf CPU f Nf CPU

P5 0 0.0000 795 0.00 0.0000 353 0.00

P6 0.56 0.5598 9235 0.02 0.5619 8848 0.03

P7 0 1.0000 583 0.00 0.0000 789 0.00

P8 0 0.0000 1988 0.00 0.0000 8609 0.00

Table 18.4 Large scale convex problem-P9

DGM LDGB

Prob fbest f Nf CPU f Nf CPU

10 -12.73 -12.7279 7601 0.00 -12.7279 8723 0.00

20 -26.87 -26.8700 28070 0.01 -26.8694 11890 0.00

50 -69.30 -69.2954 123201 0.10 -69.2927 23143 0.01

100 -140.01 -140.0071 461270 1.33 -140.0052 43989 0.01

200 -281.43 -281.4283 794650 1.92 -281.4148 106316 0.06

500 -705.69 -705.6914 2217624 3.48 -705.6507 242397 0.28

1000 -1412.77 -1412.7688 4475147 7.99 -1412.7646 619571 1.40

Table 18.5 Large scale convex problem-P10

DGM LDGB

Prob fbest f Nf CPU f Nf CPU

10 18 18.0000 7363 0.00 18.0000 13041 0.00

20 38 38.0000 25141 0.01 38.0000 25893 0.01

50 98 98.0003 120470 0.14 98.0032 28520 0.02

100 198 198.0000 398897 1.78 198.0056 48061 0.04

200 398 398.0000 807894 3.06 398.0049 102334 0.17

500 998 998.0000 1994797 9.79 998.0332 360158 1.42

1000 1998 1998.0005 4361977 36.32 1998.1608 1054782 8.39
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Table 18.6 Large scale nonconvex problem-P11

DGM LDGB

Prob fbest f Nf CPU f Nf CPU

10 -6.52 -6.5146 8368 0.00 -6.5146 16681 0.00

20 -13.58 -13.5823 27196 0.01 -13.5819 42397 0.01

50 -34.79 -34.7811 114786 0.07 -34.7871 47722 0.01

100 -70.15 -70.1468 481212 1.00 -70.1365 70008 0.03

200 -140.85 -140.8473 1036091 1.78 -140.8387 166332 0.11

500 -352.95 -352.8119 2677212 5.50 -352.9542 212768 0.33

1000 -706.42 -706.0061 5601267 18.83 -706.4151 852903 2.53

Results for small size convex test problems are reported in Table 18.2. We
can see that the DGM is able to find solutions with high accuracy, however the
LDGB failed in two cases. On the other side the latter method requires significantly
less computational effort than the former algorithm with the exception of the test
problem Maxl.

Table 18.3 contains results for small size nonconvex test problems. The DGM
failed to find the global minimizer of the function P7 and in all other cases it finds
global minimizers with high accuracy. The LDGB finds global solutions in all cases
except for the problem P6 where the obtained solution is not an accurate solution.
Overall, the LDGB requires more computational effort than the DGM for solving
small scale nonconvex NSO problems.

Tables 18.4 and 18.5 present results on large scale convex problems. The DGM
produces more accurate results than the LDGB for the first problem P9 whereas
for the second problem P10 we can observe the opposite outcome. In both cases the
LDGB requires significantly less computational effort than the DGM as the number
of variables increase. Although the CPU time used by both methods is reasonable
the number of function evaluations is large.

Results for large scale nonconvex NSO problems are reported in Tables 18.6
and 18.7. Here, both methods demonstrate the similar performance in finding
accurate solutions. If for solving the problem P11 the LDGB method requires less
number of function evaluations and CPU time we can observe the opposite outcome
for the problem P12. Again computational time used by methods is reasonable but
the number of function evaluations increases significantly as the number of variables
increase.

Results reported in this section demonstrate that both the DGM and LDGB are
efficient and in general accurate methods for solving both convex and nonconvex
NSO problems when the evaluation of the objective function is not expensive. These
methods may become inefficient when the evaluation of the objective function is
time consuming.
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Table 18.7 Large scale nonconvex problem-P12

DGM LDGB

Prob fbest f Nf CPU f Nf CPU

10 0 0.0000 5147 0.00 0.0000 3945 0.00

20 0 0.0000 13712 0.00 0.0000 9700 0.00

50 0 0.0000 61086 0.02 0.0000 12402 0.00

100 0 0.0000 197368 0.45 0.0000 16444 0.01

200 0 0.0000 422367 0.90 0.0000 2000220 1.81

500 0 0.0000 1069370 2.27 0.0000 5000000 4.41

1000 0 0.0000 2044425 7.00 0.0000 10000620 41.27

18.8 Conclusions

In this chapter the discrete gradients are considered to approximate subdifferentials
of nonsmooth functions. The discrete gradients are computed using only function
values. They can be considered as finite difference estimates of subdifferentials.
It is shown that the discrete gradients can be used to approximate subdifferentials
of a broad class of nonsmooth functions including the nonsmooth convex and
nonsmooth difference of convex functions. Two methods—the discrete gradient
and the limited memory discrete gradient bundle methods—are designed using
these approximations. Both methods are some type of semi derivative-free methods
because they use approximation of subdifferentails only at the final stages of
methods. Convergence of methods is studied and their performance is demonstrated
using several academic NSO test problems with both convex and nonconvex
objective functions. Numerical results show that the methods considered in this
chapter are able to find accurate solutions in most cases, however the number of
function evaluations may increase significantly as the number of variables increases.
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Chapter 19
Model-Based Methods in Derivative-Free
Nonsmooth Optimization

Charles Audet and Warren Hare

Abstract Derivative-free optimization (DFO) is the mathematical study of the
optimization algorithms that do not use derivatives. One branch of DFO focuses
on model-based DFO methods, where an approximation of the objective function is
used to guide the optimization algorithm. Historically, model-based DFO has often
assumed that the objective function is smooth, but unavailable analytically. How-
ever, recent progress has brought model-based DFO into the realm of nonsmooth
optimization (NSO). In this chapter, we survey some of the progress of model-based
DFO for nonsmooth functions. We begin with some historical context on model-
based DFO. From there, we discuss methods for constructing models of smooth
functions and their accuracy. This leads to modelling techniques for nonsmooth
functions and a discussion on several frameworks for model-based DFO for NSO.
We conclude the chapter with some of our opinions on profitable research directions
in model-based DFO for NSO.

19.1 Introduction

In 1969, Winfield defended a Ph.D. thesis titled “Function and functional optimiza-
tion by interpolation in data tables” [92]. The associated paper appeared 4 years
later in the Journal of the Institute of Mathematics and its Applications [93]. In
it, Winfield presented a method to optimize a function using only function values.
Winfield was not the first to consider the challenge of optimization using only
function values (consider, for example, the influential papers by Hooke and Jeeves
[52] or Nelder and Mead [67]). However, Winfield was the first to use the function
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values to build a model of the objective function and then use the model to guide the
search for a new incumbent solution. It is now 50 years later, and this framework is
the cornerstone of model-based derivative-free optimization.

Let us define derivative-free optimization (DFO) as the mathematical study
of algorithms for continuous optimization that do not use first-order information
(derivatives, gradients, directional derivatives, subgradients, etc.). Note that, we
said that the algorithms do not use first-order information, which is quite different
from saying that the objective function is nonsmooth. Also note, we use the term
mathematical study to emphasize that research examines concepts such as proof of
convergence, accuracy of stopping conditions, and rigorous analysis of numerical
tests. This allows us to remove heuristic methods from our definition. In our opinion,
when the mathematical analysis of an algorithm is provided, it is no longer a
heuristic.

DFO methods have been successfully applied in a wide collection of areas.
Some examples include oil production optimization problems [38, 43], molecular
geometry [2, 60], helicopter rotor blade design [18, 19, 85], research on water
resources [1, 40, 63, 65], alloy and process design [41, 42, 80]. Many other
engineering applications and extensions are given in [4, 36].

Using our definition, DFO can be broadly split into two algorithmic styles: direct
search methods, and model-based methods.

Direct search DFO methods work from an incumbent solution and examine
a collection of trial points to seek improvement. If improvement is found, then
the incumbent solution is updated; while if no improvement is found, then a step
size parameter is decreased and a new collection of trial points is examined. The
aforementioned works of Hooke and Jeeves [52] and Nelder and Mead [67] are
classic examples of direct search methods.1 Direct search methods have lead to
many successful algorithms and been applied in many applications. However, the
focus of this chapter is model-based DFO, so we simply refer the curious reader to
a few detailed surveys on the subject [4, 58, 94] and the books [7, Part II] and [30,
Chapters 7 and 8].

Model-based DFO methods begin by approximating the objective function with
a model function, and then use the model function to help guide optimization. In
[93], the model is built through quadratic interpolation, and the information is used
by minimizing the model over a trust-region. This has remained one of the most
popular techniques in model-based DFO (see Table 19.1). However, as we shall
explore in this chapter, other ideas have recently emerged.

To understand model-based DFO methods, a first step is to study modelling
techniques. Intuitively, we require techniques that produce “good” models. This can
be interpreted in many ways. Winfield’s quadratic interpolation approach interprets

1The Nelder-Mead method as presented in [67] is a heuristic. However, subsequent variants,
including Tseng’s fortified Nelder-Mead method [89] or Price, Coope, and Byatt’s Nelder-Mead
reset method [77], have proven convergence. This places the Nelder-Mead method into the realm
of DFO.
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“good” in the form of a second-order Taylor-like error term: (under some conditions)
there exists constants κf , κg, and κh such that

|f (y)−Q(y)| ≤ κfΔ
3 for all y ∈ B(x;Δ),

‖∇f (y)−∇Q(y)‖ ≤ κgΔ
2 for all y ∈ B(x;Δ),

and ‖∇2f (y)−∇2Q(y)‖ ≤ κhΔ for all y ∈ B(x;Δ),

where f is the true objective function,Q is a model based on quadratic interpolation
centered at x, and Δ > 0 is a scalar parameter which the optimizer controls (we
shall explore details of this in Sect. 19.3). Obviously, one condition required for
the above equations to hold is that ∇2f (y) is well-defined. This would apparently
separate model-based DFO from the field of nonsmooth optimization (NSO).

Let us define NSO as the study of algorithms for continuous optimization
problems that are not everywhere differentiable. In particular, NSO problems are
typically not differentiable at their minimizers (or maximizers), which makes
convergence analysis based on Taylor-like approximations problematic. Derivatives
and gradients are generalized through variational analysis to construct directional
derivatives, subgradients, or other similar objects. Precise definitions of variational
analysis object relevant to this chapter will appear as required.

In order to merge the fields of model-based DFO and NSO, it is necessary
to break away from the traditional Taylor-like error bounds, and pursue novel
modelling techniques and analysis. In this chapter, we demonstrate that the merging
of model-based DFO and NSO is not just possible, but underway. We begin with a
more complete background on model-based DFO (Sect. 19.2) and then move on
to some basic methods for constructing and using models of smooth functions
(Sect. 19.3). We also discuss ways to analyze their accuracy. The methods for
constructing models of smooth functions will allow us to discuss modelling methods
and their accuracy for nonsmooth functions, which we present in Sect. 19.4. In
addition, we provide further details on several frameworks that employ such models
in model-based DFO for NSO. Section 19.5 concludes the chapter with some of our
opinions on profitable research directions in model-based DFO for NSO.

19.2 Historical Overview

As mentioned in Sect. 19.1, model-based DFO dates back to at least 1969 [92].
However, we did not mention that Winfield’s paper made very little impact on the
field. In fact, the paper was largely ignored by the DFO community until Han and
Liu [44] cited it in 2004 as a first contribution to the field.2

2Interestingly, Winfield’s paper also appears in the references of DFO papers from 2002 to 2003
[58, 72, 73], but is not actually mentioned in the text of those articles.
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Despite the early beginning of model-based DFO, it was not until 1994 that
model-based DFO received the spark it required to take on life. That spark came
in the form of a fully analyzed and implemented model-based DFO method
called COBYLA (constrained optimization by linear approximation) [71]. Powell’s
COBYLA method uses linear interpolation to build a linear model of the objective
function, then minimizes the linear model over a trust-region. Over the course of
the algorithm, model accuracy is improved until asymptotically it is equivalent to a
first-order Taylor expansion. Thus, asymptotically the method becomes equivalent
to steepest descent, and its convergence is ensured [71] under some standard
conditions.

Shortly after Powell’s COBYLA, Conn and Toint [24] developed a similar
method based on quadratic interpolation and a quadratic model function.3 The
use of a quadratic model means that the trust-region minimization can now take
curvature into account and is no longer a reframing of steepest descent. However,
the quadratic model comes at the price of making the model construction and the
trust-region minimization more difficult. Like Powell, Conn and Toint’s research
included a proof of convergence along with a fully implemented algorithm that was
numerically tested. Combined, the papers of Powell and Conn and Toint launched
model-based DFO as a field full of possibilities.

Motivated by these ideas, more researchers started exploring the ability to
minimize an objective function using model-based DFO. In many cases, the
development of a model-based DFO algorithm began from a classical algorithm for
smooth optimization. Researchers began by showing that they could build a model
of the true objective function that enjoys a property similar to a first- or second-
order Taylor-expansion (see Sect. 19.3). These models can then be used in place
of the first- or second-order Taylor-expansion. In order to show convergence, some
mechanism is added to the algorithm to ensure that the model converges to the truth
as the algorithm approaches a critical point. Some examples of algorithms that fit
this description are provided in Table 19.1. The first two algorithms in Table 19.1
are separated out, as they are algorithmic frameworks, not complete methods. The
remaining algorithms are listed in order of first appearance in literature.

In examining Table 19.1, notice that the majority of methods follow the second-
order trust-region framework described in [7, Chapter 10] and [30, Chapter 10]. We
include details on this framework in Sect. 19.3.5.

3Conn and Toint’s paper argues that there are 5 classes of DFO algorithms: finite-difference meth-
ods, pattern search methods, random sampling methods, successive one-dimension minimization
methods, and model-based methods. Researchers have now unified pattern search methods, random
sampling methods, and successive one-dimension minimization methods, as direct search methods.
While finite-difference methods fall under our broad description of model-based methods.
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Table 19.1 Model-based DFO algorithms that are closely related to classical smooth optimization
algorithms

Framework Reference Smooth equivalent

MBD [7, Chap. 10] and [30, Chap. 9] Gradient-based line-search methods

MBTR [7, Chap. 11] and [30, Chap. 10] second-order Trust-region method

Algorithm Reference Year Smooth equivalent

SQM [92, 93] 1969 Second-order trust-region

unnamed [61] 1975 Newton

COBYLA [71] 1994 First-order trust-region

unnamed [24] 1996 Second-order trust-region

DFO [27] 2001 Second-order trust-region

UOBYQA [72] 2002 Second-order trust-region

CONDOR [14, 15] 2004 Second-order trust-region

(for parallel computing)

BOOSTERS [68, 69] 2005 Second-order trust-region

(using radial basis functions)

NEWUOA [75] 2006 Second-order trust-region

(advances UOBYQA)

ORBIT [90, 91] 2008 Second-order trust-region

(using radial basis functions)

BOBYQA [76] 2009 Second-order trust-region

(advances UOBYQA to allow

bound constraints)

DFTR [29] 2009 2trust-region

(first- and second-order

convergence analysis)

CSV2 [17] 2013 Second-order trust-region

DFPP [49, 50] 2014 Proximal point method

DEFT-FUNNEL [82] 2015 SQP trust-region

CONORBIT [79] 2017 Second-order trust-region

for constrained optimization

(adaptation of ORBIT)

19.2.1 Model-Based DFO for Nonsmooth Functions

The proof of convergence of each algorithm in Table 19.1 requires a smoothness
assumption on the objective function. First-order methods, such as [49, 50, 71],
use approximate gradients in the algorithm, and the proof of convergence requires
that the approximate gradients asymptotically converge to the true gradients. This
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immediately means the objective function must be continuously differentiable
(i.e., f ∈ C1). Furthermore, assumptions that imply the approximate gradients
asymptotically converge to the true gradients typically include that the gradients
are locally Lipschitz continuous (i.e., f ∈ C1+). Second-order methods (the rest of
Table 19.1) use approximate Hessians, and require assumptions that ensure these
approximations are suitably well-behaved. In some cases, it is sufficient to assume
the approximate Hessians are bounded in norm. In these cases, f ∈ C1+ may be
enough to ensure convergence. In other cases, convergence requires the approximate
Hessians to asymptotically converge to the true Hessian, which typically requires
f ∈ C2+.

More recently, some research has begun exploring the notion of solving NSO
via model-based DFO. The first published research on this (to the best of the
authors’ knowledge) appeared in 2008 [11]. In this work, Bagirov, Karasözen and
Sezer presented a discrete gradient derivative-free method for unconstrained NSO
problems. To understand further, it is necessary to remind the reader of the definition
of the subdifferential for locally Lipschitz functions. To do so, we recall that if a
function is locally Lipschitz, then it is differentiable almost everywhere.

Definition 19.1 (Subdifferential) Let f : Rn → R be a locally Lipschitz function.
Let D(f ) be the set of points where f is differentiable. The subdifferential of f at
the point x ∈ R

n is defined

∂f (x) = conv{v ∈ R
n : there exists yi ∈ D(f ), such that

yi → x, ∇f (yi )→ v},

where conv denotes the convex hull.

At a given incumbent solution xk , Bagirov, Karasözen and Sezer’s approach
constructs a large number of approximate gradients at points yk,i near xk . The
convex hull of the approximate gradients can then be used as an approximation
of the subdifferential. The resulting approximation was used within a conjugate
subgradient style algorithm. A similar approach [57] was published in 2010, where
Kiwiel used a large number of approximate gradients to construct an approximate
subdifferential and used the approximate subdifferential in a gradient sampling style
algorithm.

Bagirov, Karasözen and Sezer’s algorithm was implemented and tested under
the name DGM. While the numerical tests show very high accuracy, they do not
discuss the number of function evaluations required in each iteration. Kiwiel’s work
contains no numerical testing the result.

In DFO, the speed of convergence is typically measured in function evaluations,
not time [13, 64]. This is done because, while academic test problems are extremely
fast to compute, in many real-world applications each function evaluation takes a
notable amount of time. For example, in [95], the authors consider the planning of
bioequivalence studies in the pharmaceutical industry. In this problem, each function
evaluation launches a Monte-Carlo simulation and requires approximately 3 min to
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complete on a cluster of 6 computers. Thus, an algorithm that requires one million of
function evaluations, would require almost 6 years to complete. In [95], the authors
limit the number of function evaluations to 100 in order to get a solution within a
5 h time period.

With this in mind, let us reconsider the approaches of Bagirov, Karasözen and
Sezer and of Kiwiel. Each approximate gradient requires n + 1 or 2n function
evaluations (the first being from [11], the second from [57]). So, the natural
question is, how many approximate gradients are needed to provide a reasonable
approximation to the subdifferential?

A heuristic answer to this was given by Burke et al. [22], who suggested 2n
gradients be sampled at each iteration. Another answer was given in [8], where
the authors examined the question of how many exact gradients are needed to
reconstruct a polyhedral subdifferential? In R

2, the answer is three times the number
of edges of the polytope. In R

n, a precise answer is still unknown, but does depend
on the number of faces.

The planning of bioequivalence studies problem from [95] has only n = 4
optimization variables. Therefore, each iteration of the approach of [11] or [57]
would require 2n2 = 32 function evaluations, which corresponds to more than
1.5 h. So, only three complete iterations could be completed in the 5 h time period.
A similar problem with n = 8 and 6 min function evaluations would not even
complete a single iteration in 5 h. Clearly, these methods are intractable, even for
small dimension problems, unless the time per function evaluation is negligible.

Happily, this is not the end of the story for model-based DFO of nonsmooth
problems. Recognizing the difficulty of approximating the subdifferential of an
arbitrary function, researchers have turned their attention to approximating the
subdifferential of a structured function. In [47, 48], the authors considered finite-
max functions, i.e., functions of the form f (x) = max{Fi(x) : i = 1, 2, . . . , Nf }
and each Fi ∈ C2. Finite-max functions do arise naturally in DFO problems; for
example, an application in seismic retrofitting design is examined in [16].

The finite-max structure allows for a simple formula for the subdifferential:

f (x) = max{Fi(x) : i = 1, 2, . . . , Nf }, Fi ∈ C2, implies that

∂f (x) = conv{∇Fi(x) : Fi(x) = f (x)}.

Using this formula it is possible to approximate the subdifferential of a finite-max
function using only n + 1 function evaluations, which allows for the application of
these methods in practice. The details of this construction are presented in Sect. 19.4.

Another structured function was studied in [59]. In that paper, Larson, Menick-
elly, and Wild, considered problems where the objective function takes the form of

an L1-norm: f (x) =∑Nf

i=1 |Fi(x)| and each Fi ∈ C2. In this case we have,

f (x) =
Nf∑

i=1

|Fi(x)|, Fi ∈ C2, implies that ∂f (x) =
Nf∑

i=1

αi∇Fi(x),
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where

αi =
⎧
⎨

⎩

1, Fi(x) > 0,
[−1, 1], Fi(x) = 0,
−1, Fi(x) < 0.

Once again, using the simpler formula allows the ability to approximate the
subdifferential using just n + 1 function evaluations. The technique has recently
been extended to piecewise-linear functions [56].

In [47, 48, 56, 59], the authors focused on line-search and trust-region methods.
However, the subdifferential approximation techniques therein can be employed
with other algorithms. For example, in [12], the comirror algorithm for NSO is
reexamined in light of the subdifferential approximation ideas in [48]. Another
example is the recent work [51], where the authors examine the VU-algorithm from
[62] in the setting of DFO.

Table 19.2 summarizes the current model-based DFO algorithms for NSO.
In all of these cases, the trick to a successful model-based DFO algorithm

for NSO is to focus on structured functions where the subdifferential can be
approximated using a reasonable number of function evaluations. Section 19.4
returns to this statement, and discusses model building techniques for nonsmooth
functions.

19.2.2 Model-Based DFO Used Within Direct Search

Before moving on to more technical details of model-based DFO, it is worth a small
detour into the realm of direct search methods. In particular, we discuss some of the
work that has considered applying model-based methods as subroutines in direct
search methods.

Some direct search methods, such as generalized pattern search (GPS [88])
and mesh adaptive direct search (MADS [5]), are of a search-poll paradigm [20].
The poll step is a local exploration intended for theoretical and practical local

Table 19.2 Model-based DFO algorithms that are designed for NSO

Algorithm Reference Year Smooth equivalent

DGM [11] 2008 Conjugate subgradient

WASG [47] 2012 Gradient sampling

RAGS [48] 2013 Subgradient descent with line search

DFOcomirror [12] 2015 Comirror

CMS, GDMS, DMS, SMS [59] 2016 Manifold sampling

MS4PL [56] 2018 Manifold sampling

DFO VU [51] preprint VU-algorithm
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Table 19.3 Uses of model-based DFO techniques with a direct search framework

Algorithm Reference Year Smooth algorithm with similarities

to model-based portion

Unconstrained or bound-constrained optimization

IMFIL [21] 1998 Gradient-based search

GPS [33] 2007 Gradient-based line-search methods

SNOBFIT [53] 2008 Sequential quadratic programming

GPS & MADS [34] 2008 Gradient-based line-search methods

Newton with diagonal Hessian approximation

SID-PSM [35] 2010 Trust-region

MADS [25] 2013 Trust-region

Constrained optimization

DFN [39] 2014 Projected linesearch with penalty function

MADS [9] 2014 Line search

QPMADS [23] 2015 Directional derivative-based Hessian update,

linear models of the constraints

PBTR [10] 2016 Trust-region

GOSAC [66] 2017 Cubic radial basis function

LOWESS [86] 2018 Locally weighted regression

MADS [3] 2018 L∞-norm trust-region

convergence. The search step is a global exploration in the space of variables,
whose purpose is to identify promising regions. Model-based strategies have been
incorporated into the search step for a better global exploration of the space of
variables, as well as into the poll step to improve the efficiency of the local
exploration. Table 19.3 lists some direct search methods that exploit simplex
gradients or even simplex Hessians. This information is used in the search step with
line search strategies, or with trust-region methods, and is also used in the poll step
for opportunistic termination.

The algorithms listed in the top half of the table are for unconstrained or bound-
constrained optimization. The algorithms on the bottom half are for problems with
nonsmooth constraints, and they construct models of the objective function and
of each constraint, or penalize constraints into the objective function. As with the
previous tables, the last column indicates a connection with more classical smooth
algorithms. But here, we are talking about similarities rather than equivalences.
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19.3 Building Models of Smooth Functions

In order to study the mathematical details of model-based DFO for smooth
optimization it is valuable to provide some background on model-based DFO for
smooth optimization. As mentioned, the first step in model-based DFO is the
construction of a model.

19.3.1 Linear Interpolation and the Simplex Gradient

For a smooth function, the simplest model is that of linear interpolation. The
following definition presents conditions on the points used to build such model.

Definition 19.2 (Poised for Linear Interpolation) The set Y = {y0, y1, . . . , yn}
⊂ R

n, is poised4 for linear interpolation if the (n + 1)× (n + 1) matrix
[
1 YT

]
is

invertible, where Y = [
y0 y1 . . . yn

]
and 1 ∈ R

n+1 is the vector of all ones.

The next definition defines the linear interpolation function.

Definition 19.3 (Linear Interpolation Function) Let Y = {y0, y1, . . . , yn} ⊂
R
n be poised for linear interpolation and f : Rn 2→ R. Then the linear interpolation

function of f over Y is

LY (x) := α0 + αT x,

where (α0,α) is the unique solution to
[
1 YT

]
[
α0

α

]
= f (Y).

The linear interpolation function provides a first-order approximation of the
function f . As such, the gradient of the linear interpolation function can be used
to check (approximately) descent directions and first-order stopping conditions.

Recall that a simplex in R
n is a bounded polytope with a non-empty interior and

exactly n + 1 vertices.5 It is fairly easy to show that Y = {y0, y1, . . . , yn} ⊂
R
n, is poised for linear interpolation if and only if conv(Y) is a simplex [7,

Proposition 9.1]. As such, the gradient of a linear interpolation model has been
named the simplex gradient.6

4The term poised was introduced by Sauer and Xu [83] in 1995 and imported into the context of
DFO by Conn and Toint [24] in the following year.
5The term simplex was first used by Schoute [84] back in 1902. Since then, the simplices have
arisen in numerous areas of optimization, largely because they are the simplest full dimensional
polytope.
6The simplex gradient was introduced by Kelley [54] to monitor the performance of a modified
Nelder-Mead algorithm.
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Definition 19.4 (Simplex Gradient) Let f : R
n 2→ R, and let Y =

{y0, y1, . . . , yn} ⊂ R
n be poised for linear interpolation. The simplex gradient

of f over Y, denoted ∇Sf (Y), is the gradient of the linear interpolation function
LY of f over Y and defined by

∇Sf (Y) := ∇LY (x) = α.

The quality of the linear interpolation model, and the simplex gradient, are
analyzed in the following theorem.

Theorem 19.1 (Linear Interpolation Error Bounds) Let x ∈ R
n, Δ̄ > 0, and

f ∈ C1+ on B(x; Δ̄) with the Lipschitz constant (of the gradient) given by K . Let
Y be poised for linear interpolation with y0 = x and Δ = Δ(Y) ≤ Δ̄. Define

L̂ := 1

Δ

[
y1 − y0 y2 − y0 . . . yn − y0

]
.

Then the linear interpolation function L(y) = α0 + αT y satisfies

‖f (y)− L(y)‖ ≤
(

1

2
K(1+√n‖L̂−1‖)

)
Δ2 for all y ∈ B(x;Δ). (19.1)

Moreover, the simplex gradient α = ∇Sf (Y) satisfies

‖∇f (y)− α‖ ≤
(

1

2
K
√
n‖L̂−1‖

)
Δ. (19.2)

Furthermore,

‖∇f (y)− α‖ ≤
(

1

2
K(2+√n‖L̂−1‖)

)
Δ for all y ∈ B(x;Δ). (19.3)

Proof Proofs can be found in [30, Chapter 2], [55, Chapter 5], and [7, Chapter 9],
for example. ��

The complexity of computing simplex gradients has recently been studied in [31].

19.3.2 Fully Linear and Fully Quadratic Models

Theorem 19.1 shows that linear interpolation provides an accuracy similar to that of
a 1st order Taylor expansion. In [91], Wild and Shoemaker formalize this property
under the name fully linear models, although they give credit to Conn et al. [28]
for inspiring the terminology. Indeed, the latter authors use the terms fully linear,
quadratic and even fully cubic but do not provide a formal definition. They further
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introduce the name fully quadratic models for models that provide an accuracy
similar to that of a 2nd order Taylor expansion. These terms provide a convenient
language for model-based DFO, so we now take a brief interlude from constructing
models to formalize these definitions. We begin with fully linear.

Definition 19.5 (Class of Fully Linear Models) Given f ∈ C1, x ∈ R
n, and Δ̄ >

0 we say that {f̃Δ}Δ∈(0,Δ̄] is a class of fully linear models of f at x parameterized
by Δ if there exists a pair of scalars κf (x) > 0 and κg(x) > 0 such that, given any
Δ ∈ (0, Δ̄] the model f̃Δ satisfies

|f (y)− f̃Δ(y)| ≤ κf (x)Δ
2 for all y ∈ B(x;Δ),

and ‖∇f (y)− g̃Δ(y)‖ ≤ κg(x)Δ for all y ∈ B(x;Δ),

where g̃Δ = ∇f̃Δ.

The previous definition involves classes of models at a given x. Let us now
generalize the definition to classes that adapt to any x ∈ R

n.

Definition 19.6 (Fully Linear Models) Let f ∈ C1. We say that f̃Δ are fully linear
models of f to mean that, given any x ∈ R

n and Δ̄ > 0, there exists a class
{f̃Δ}Δ∈(0,Δ̄] of fully linear models of f at x parameterized by Δ.

We say that f̃Δ are fully linear models of f with constants κf and κg to mean
that, given any x ∈ R

n and Δ̄ > 0, there exists a class {f̃Δ}Δ∈(0,Δ̄] of fully linear
models of f at x parameterized by Δ and the scalars κf (x) and κg(x) can be taken
as the constants: κf (x) = κf and κg(x) = κg (independent of x).

Fully linear models provide a linear level of accuracy for approximating the
function. If a higher accuracy is desired, then we demand fully quadratic models.

Definition 19.7 (Class of Fully Quadratic Models) Given f ∈ C2, x ∈ R
n, and

Δ̄ > 0 we say that {f̃Δ}Δ∈(0,Δ̄] is a class of fully quadratic models of f at x

parameterized by Δ if there exists scalars κf (x) > 0, κg(x) > 0, and κh(x) > 0
such that, given any Δ ∈ (0, Δ̄] the model f̃Δ satisfies

|f (y)− f̃Δ(y)| ≤ κf (x)Δ
3 for all y ∈ B(x;Δ),

‖∇f (y)− g̃Δ(y)‖ ≤ κg(x)Δ
2 for all y ∈ B(x;Δ),

and ‖∇2f (y)− h̃Δ(y)‖ ≤ κh(x)Δ for all y ∈ B(x;Δ),

where g̃Δ = ∇f̃Δ and H̃Δ = ∇2f̃Δ.

Again, we generalize to any x ∈ R
n.

Definition 19.8 (Fully Quadratic Models) Let f ∈ C2. We say that f̃Δ are fully
quadratic models of f to mean that, given any x ∈ R

n and Δ̄ > 0, there exists a
class {f̃Δ}Δ∈(0,Δ̄] of fully quadratic models of f at x parameterized by Δ.
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We say that f̃Δ are fully quadratic models of f with constants κf , κg , and κh to
mean that, given any x ∈ R

n and Δ̄ > 0, there exists a class {f̃Δ}Δ∈(0,Δ̄] of fully
quadratic models of f at x parameterized by Δ and the scalars κf (x), κg(x), and
κh(x) can be taken as the constants: κf (x) = κf , κg(x) = κg, and κh(x) = κh
(independent of x).

Basically, fully linear models enjoy a 1st order Taylor-like behaviour and fully
quadratic models enjoy a 2nd order Taylor-like behaviour.

The value of this terminology is that it removes the need to define the model
building process within a model-based DFO algorithm. Instead, algorithms can
begin with the assumption that a class of fully linear or quadratic models is available,
and then prove convergence using Definition 19.5 or 19.7 as appropriate. We will
return to this in Sect. 19.3.5, but for now we return attention to the construction of
models.

19.3.3 The Generalized Simplex Gradient

One weakness of the simplex gradient is its dependance on the simplex. In particular,
Y must contain exactly well-poised n+1 points. Custódio et al. [34] and Regis [78]
present a more general framework that may be applied when the number of points
is not n+ 1. Suppose Y contains m+ 1 elements and consider the linear system

LT α = δf (Y) (19.4)

where

L = [
y1 − y0 y2 − y0 . . . ym − y0

] ∈ R
n×m and

δf (Y) = [
f (y1)− f (y0) f (y2)− f (y0) . . . f (ym)− f (y0)

]
T ∈ R

n.

If m = n and if Y is a simplex, then the system is determined and the solution α

to Eq. (19.4) is unique and is the simplex gradient from Definition 19.4. If m < n,
then the system is underdetermined, so has an infinite set of solutions. This can be
resolved by seeking the solution with minimal norm

if m < n, then solve α ∈ argmin
α∈Rn

{‖α‖2 : LT α = δf (Y)}.

If m > n, then the system is overdetermined, so may not have a solution. This can
be resolved by seeking the least square solution

if m > n, then solve α ∈ argmin
α∈Rn

{‖LT α − δf (Y)‖2}.
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In all three cases, the solution can be written as α = (L†)T δf (Y), where L† is the
Moore–Penrose pseudoinverse of the matrix L [34, 78].

Since a the resulting generalization no longer requires Y to form a simplex, the
term simplex gradient no longer seems appropriate.

Definition 19.9 (Generalized Simplex Gradient) Let f : Rn 2→ R, and let Y =
{y0, y1, . . . , ym} ⊂ R

n be an ordered set with m ≥ 1. The generalized simplex
gradient of f over Y, denoted ∇Sf (Y), is given by

∇Sf (Y) := (L†)T δf (Y),

where

L = [
y1 − y0 y2 − y0 . . . ym − y0

]
and δf (Y) =

⎡

⎢⎢
⎢
⎣

f (y1)− f (y0)

f (y2)− f (y0)
...

f (ym)− f (y0)

⎤

⎥⎥
⎥
⎦
.

The above definition leads to a generalization of the inequality (19.2).

Theorem 19.2 (Generalized Simplex Gradient Error Bounds) Let x ∈ R
n, Δ̄ >

0, and f ∈ C1+ on B(x; Δ̄) with Lipschitz constant (of the gradient) given by K .
Let Y = {y0, y1, . . . , ym} with y0 = x and Δ = Δ(Y) ≤ Δ̄. Suppose Y is poised
in the sense that Y = [y0 y1 . . . ym] is full-rank. Let Û(Y)Σ̂(Y)V̂ (Y)T be the
reduced singular-value decomposition7 of L̂

T
and define

Ṽ (Y) =
{

In, if m ≥ n,

V̂ (Y), if m < n.

Then, the generalized simplex gradient ∇Sf (Y) satisfies

‖Ṽ (Y)T
[
∇f (y0)− ∇Sf (Y)

]
‖ ≤

(
1

2
K
√
m‖Σ̂(Y)−1‖

)
Δ. (19.5)

Consequently,

‖Ṽ (Y)T [∇f (y)−∇Sf (Y)] ‖ ≤
(

1

2
K(2+√m‖Σ̂(Y)−1‖)

)
Δ (19.6)

for all y ∈ B(x;Δ)

7The reduced SVD of the matrix L̂T ∈ R
m×n of rank r is such that Û (Y) ∈ R

m×r is an
orthonormal basis for the column space, Σ̂(Y) ∈ R

r×r is a nonsingular diagonal matrix with
positive entries, and V̂ (Y)T ∈ R

n×r is an orthonormal basis for the row space.
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Proof Proof of Eq. (19.5) can be found in [78, Corollary 1].8 Proof of Eq. (19.6) is
a trivial adaptation of the proof of Eq. (9.6) in [7, Theorem 9.5]. ��

Comparing Theorem 19.2 to Theorem 19.1 we consider three cases.

(i) (m = n) If m = n, then we are in the determined case. The statement,
“Y = [y0 y1 . . . ym] is full-rank” is exactly equivalent to Y is poised for
linear interpolation [7, Proposition 9.1]. The matrix Ṽ (Y)T is the identity,
and ‖L̂(Y)−1‖ = ‖Σ̂(Y)−1‖. Thus, the gradient error in Theorem 19.1 is
reproduced by Theorem 19.2.

(ii) (m < n) If m < n, then we are in the underdetermined case. The statement “Y
is full-rank” now means that rank(Y ) = m+ 1. In this case Ṽ (Y)T = V̂ (Y)T

and the gradient error in Theorem 19.1 is not reproduced.
Indeed, consider an example with n = 2 and m = 1 on f (x) = β(x1+ x2).

Define the sample set Y = {Δe1,Δe2}, where ei are the coordinate vectors
and Δ > 0. In this case, L = [Δ(e1 − e2)] = [Δ − Δ]T and δf (Y) = [0].
Therefore, the generalized simplex gradient is ∇Sf (Y) = 0, regardless of Δ.
As ∇f (x) = [β β]T , ‖∇f (y0) − ∇Sf (Y)‖ =

√
2β, regardless of Δ. So the

gradient approximation will never become accurate. To understand the error
bound, note that the reduced singular-value decomposition of L̂T = [1 − 1]
is

Û = [1], Σ̂ = [√2], V̂ T = 1√
2

[
1 −1

]
.

Now examine

∥
∥
∥Ṽ (Y)T

[
∇f (y0)− ∇Sf (Y)

]∥∥
∥ =

∥
∥
∥
∥

1√
2

[
1 −1

]
[
β

β

]∥
∥
∥
∥ = 0.

The effect of Ṽ (Y)T in the error bound is to project the vectors onto
the subspace spanned by the matrix L̂T . Thus, the error bound is saying,
the approximate gradient is sufficient to provide approximate directional
derivatives in directions parallel to the span(L̂T ). In directions not parallel to
span(L̂T ), the directional derivatives created using ∇Sf (Y) are uncontrolled.

(iii) (m > n) If m > n, then we are in the overdetermined case. The matrix
Ṽ (Y)T is the identity, so we have a direct bound on the error in the gradient
approximation, similar but not the same as Theorem 19.1. In particular, notice
the error bound contains

√
m, instead of

√
n as in Theorem 19.1. This implies

that as the number of sample points increases the error may actually get worse.

Note, in cases (i) and (iii) above, we carefully state that we achieve a bound on the
error in the gradient approximation. This is not quite equivalent to creating a fully

8Note that this result is presented in [34, Theorem 2.1] and in [32, Theorem 4.1.1] without proof.
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linear model. Fully linear models also require the models to approximate function
values and an error bound on the quality of those approximations. Conveniently
however, a good gradient approximation along with the exact function value is
sufficient to create a fully linear model.

Proposition 19.1 Suppose x ∈ R
n, Δ̄ > 0, f ∈ C1+ on B(x; Δ̄) with Lipschitiz

constant (of the gradient) given by K . Suppose that the model functions f̃Δ ∈ C1+
on B(x; Δ̄) with Lipschitz constant (of the gradient) given by K̃ . Suppose there
exists κg > 0 such that the gradients {∇f̃Δ : Δ ∈ (0, Δ̄]} satisfy

‖∇f (y)− ∇f̃Δ(y)‖ ≤ κg(x)Δ for all y ∈ B(x;Δ).

Define f̂Δ = f̃Δ − f̃Δ(x) + f (x). Then {f̂Δ} is a class of fully linear models of f
at x. In particular, if f̃Δ(x) = f (x) for every Δ ∈ (0, Δ̄], then {f̃Δ} is a class of
fully linear models.

Proof We need to show the existence of κf (x) such that

|f (y)− f̂Δ(y)| ≤ κf (x)Δ
2 for all y ∈ B(x;Δ).

Since that f̂Δ(x) = f (x), we have that

|f (y)− f̂Δ(y)| ≤ |f (y)− f (x)− ∇f (x)T (y − x)|
+|∇f (x)T (y − x)−∇f̂Δ(x)T (y − x)|
+|f̂Δ(x)+∇f̂Δ(x)T (y − x)− f̂Δ(y)|.

(19.7)

Applying f ∈ C1+ and f̃Δ ∈ C1+, we note that f̂Δ ∈ C1+, and therefore the 1st
order Taylor approximation error bound holds [7, Lemma 9.4]. In particular,

|f (y)− f (x)−∇f (x)T (y − x)| ≤ 1
2K‖y − x‖2

≤ 1
2KΔ

2 for all y ∈ B(x;Δ), and

|f̂Δ(x)+∇f̂Δ(x)T (y − x)− f̂Δ(y)| ≤ 1
2 K̃‖y − x‖2

≤ 1
2 K̃Δ

2 for all y ∈ B(x;Δ).

Examining the middle term of inequality (19.7) and using our gradient error bound,
we find that

|∇f (x)T (y − x)−∇f̂Δ(x)T (y − x)| ≤ ‖∇f (x)−∇f̂Δ(x)‖‖y − x‖
≤ κg(x)Δ‖y − x‖ for all y ∈ B(x;Δ)
≤ κg(x)Δ

2 for all y ∈ B(x;Δ).
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Summing these approximations, we see that κf (x) = (K + K̃)/2+ κg(x) satisfies
the desired inequality. ��

19.3.4 Quadratic Models

The framework of generalized simplex gradients, combined with Proposition 19.1,
provides a straight-forward way to generate fully linear models. However, the
error bound in Theorem 19.2 includes a “

√
m” term, which suggests that using

more points will not necessarily improve the model quality. Moreover, when the
number of sample points becomes sufficiently large, it may become possible to build
quadratic models.

For quadratic models, we consider model functions of the form

Q(x) = α0 + αT x + 1

2
xT Hx, with H = HT .

As such, we seek α0 ∈ R, α ∈ R
n, and H ∈ R

n×n. Enforcing H = HT implies we
need 1 + n + n(n + 1)/2 = 1

2 (n + 1)(n + 2) well-poised sample points. We next
formalize the definition of being poised for quadratic interpolation.

Definition 19.10 (Poised for Quadratic Interpolation) The set Y =
{y0, y1, . . . , ym} ⊂ R

n with m = 1
2 (n + 1)(n + 2) − 1, is poised for quadratic

interpolation if the system

α0 + αT yi + 1

2
(yi )T Hyi = 0, i = 0, 1, 2, . . .m

has a unique (trivial) solution for α0, α, and H = HT .

Being poised for linear or quadratic interpolation has a nice geometrical inter-
pretation. A (n + 1) × (n + 1) linear system of equations α0 + αT yi = f (yi ),
i ∈ {0, 1, . . . , n} has a unique solution unless the points are collinear. That is,
the set Y = {y0, y1, . . . , yn} ⊂ R

n is not poised for linear interpolation if
and only if the points all lie on the level surface of a single nontrivial linear
function. Similarly, a linear system of equations α0+αT yi + 1

2 (y
i )T Hyi = f (yi ),

i ∈ {0, 1, . . . , 1
2 (n + 1)(n + 2) − 1} has a unique solution unless the points all

lie on the level surface of a single nontrivial quadratic function. That is, the set
Y = {y0, y1, . . . , ym} ⊂ R

n, m = 1
2 (n+1)(n+2)−1, is not poised for quadratic

interpolation if and only if the points all lie on the level surface of a single nontrivial
quadratic function. Figure 19.1 illustrates the notion of being poised for linear or for
quadratic interpolation in the case where n = 2.

The figure illustrates that it can be difficult to visually confirm whether or not
a set is poised for quadratic interpolation. Fortunately, the algebraic test is still
straight-forward.
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Fig. 19.1 Poised and non-poised sets for interpolation (figure inspired from [7]). (a) Poised for
LI. (b) Not poised for LI. (c) Poised for QI. (d) Not poised for QI. (e) Not poised for QI. (f) Not
poised for QI

Given a set that is poised for quadratic interpolation, we define the quadratic
interpolation function.

Definition 19.11 (Quadratic Interpolation Function) Let f : Rn 2→ R, and let
Y = {y0, y1, . . . , ym} ⊂ R

n with m = 1
2 (n+1)(n+2)−1, be poised for quadratic

interpolation. Then the quadratic interpolation function of f over Y is

QY (x) := α0 + αT x + 1

2
xT Hx,

where (α0,α,H = HT ) is the unique solution to

α0 + αT yi + 1

2
(yi )T Hyi = f (yi ), i = 0, 1, 2, . . . ,m.

In [28], Conn, Scheinberg and Vicente show that quadratic interpolation resulted
in a class of fully quadratic models.

Theorem 19.3 (Quadratic Interpolation is Fully Quadratic) Let x ∈ R
n, Δ̄ > 0,

and f ∈ C2+ on B(x; Δ̄). Let Y = {y0, y1, . . . , ym} ⊂ R
n be poised for quadratic

interpolation with y0 = x and Δ = Δ(Y) ≤ Δ̄.
For 0 < δ ≤ 1 define Yδ = {y0, y0 + δ(y1 − y0), . . . , y0 + δ(ym − y0)}. Then

Yδ is poised for quadratic interpolation with y0 = x and Δ(Yδ) = δΔ < Δ̄.
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Let Qδ be the quadratic interpolation function of f over Yδ. Then {Qδ}δ∈(0,1]
defines a class of fully quadratic models at x parametrized by δ.

Proof Details can be found in [28]. ��
In Sect. 19.3.3 we saw one method for dealing with sample sets with greater than

n + 1 points. Comparing Theorem 19.2 to Theorem 19.3 makes it clear that if the
number of sample points reaches 1

2 (n+1)(n+2), then quadratic interpolation should
become the preferred option. However, if n + 1 < m + 1 < 1

2 (n + 1)(n + 2) has
m+1 closer to 1

2 (n+1)(n+2) than n+1, then it still might be reasonable to try and
squeeze some curvature information out of the data. To do this we turn to minimum
Frobenius norm models.

Consider the situation where Y = {y0, y1, . . . , ym} and n + 1 < m + 1 <

(n + 1)(n + 2)/2. There are not enough sample points to build a unique quadratic
model of f . Indeed, there can be infinitely many quadratic functions parameterized
by α0,α,H = HT that satisfy

α0 + αT yi + 1

2
(yi )T Hyi = f (yi ) for i = 0, 1, 2, . . . ,m.

Among all these quadratic functions, we select the one whose quadratic coefficients
hi,j of H are as small as possible in the Frobenius norm sense.9 As such, we solve
the following quadratic optimization problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize 1
2

n∑

i=1

n∑

j=1
h2
i,j

subject to α0 + αT yi + 1
2 (y

i )T Hyi = f (yi ) for i = 0, 1, 2, . . . ,m,

H = HT ∈ R
n×n, α0 ∈ R, α ∈ R

n.

(19.8)

Thus, we have the idea of minimum Frobenius norm models. The following
definition extends the notion of a set of points being poised for Frobenius norm
modelling.

Definition 19.12 (Poised for Minimum Frobenius Norm Modelling) The set
Y = {y0, y1, . . . , ym} ⊂ R

n with n < m < 1
2 (n + 1)(n + 2) − 1, is poised

for minimum Frobenius norm modelling if the problem (19.8) has a unique solution
(α0,α,H).

Given a set of poised points, we next introduce the minimum Frobenius norm
model.

9This Frobenius norm approach was suggested by Conn et al. [26] in 1998, by Powell [74] for the
UOBYQA algorithm, and by Custódio et al. [35] for SID-PSM.
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Definition 19.13 (Minimum Frobenius Norm Model Function) Let f : Rn 2→
R, and Y = {y0, y1, . . . , ym} ⊂ R

n, n < m < 1
2 (n+ 1)(n+ 2)− 1, be poised for

minimum Frobenius norm modelling. Then the minimum Frobenius norm model
function of f over Y is

MY(x) := α0 + αT x + 1

2
xT Hx,

where (α0,α,H) is the unique solution to the problem (19.8).

In these models, the number of points exceeds the required number of points for
linear interpolation, but is not sufficient for quadratic interpolation. Therefore, the
error bounds for minimum Frobenius norm models are not as strong as for quadratic
interpolation, but at least as strong as those for linear interpolation models.

Theorem 19.4 (Minimum Frobenius Norm Modelling is Fully Linear) Let x ∈
R
n, Δ̄ > 0, and f ∈ C1+ on B(x; Δ̄). Let Y = {y0, y1, . . . , ym} ⊂ R

n be poised
for minimum Frobenius norm modelling with y0 = x and Δ = Δ(Y) ≤ Δ̄.

For 0 < δ ≤ 1 defineYδ = {y0, y0+δ(y1−y0), . . . , y0+δ(ym−y0)}. ThenYδ is
poised for minimum Frobenius norm modelling with y0 = x andΔ(Yδ) = δΔ < Δ̄.

Let Mδ be the minimum Frobenius norm model function of f over Yδ . Then
{Mδ}δ∈(0,1] defines a class of fully linear models at x parametrized by δ.

Proof Proof of this result is found in [35]. ��
On a final note, the particular case in whichm = n is such that Y forms a simplex.

Quadratic interpolation with minimum Frobenius norm produces the same solution
as linear interpolation because the optimal solution will set H to the zero matrix.

19.3.5 Using Fully Linear or Quadratic Models in a DFO
Algorithm

Now that we have established the ability to construct fully linear and fully
quadratic models, let us examine how they can be used within DFO algorithms.
As mentioned, the value of the fully linear and fully quadratic terminology is
that it decouples the algorithm from the model building process. This is perhaps
best illustrated via an example. Therefore, we present the MODEL-BASED TRUST-
REGION framework from [7, Chapter 11] (which is minor adaption of the framework
in [30, Chapter 10]). As mentioned, many of the algorithms in Table 19.1 fit into this
framework.

In examining the MODEL-BASED TRUST-REGION framework note that there is no
mention of how the fully linear models are constructed. Convergence is established
using the error bounds in Definition 19.5. This in done through two procedures
imbedded within the algorithm.
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Algorithm 19.1: Model-based trust-region

Data: Given f ∈ C1, starting point x0 and fully linear models f̃Δ of f .

Step 0. (Initialization) Initialize Δ0 ∈ (0,∞) initial trust-region radius, f̃ 0

initial model (a fully linear model of f on B(x0;Δ0)), μ model
accuracy parameter, η ∈ (0, 1) sufficient decrease test parameter,
γ ∈ (0, 1) trust-region update parameter, εstop ∈ [0,∞) stopping
tolerance, and k← 0 iteration counter.

Step 1. (Model building and accuracy check) If Δk > μ‖∇f̃ k(xk)‖ or f̃ k is
not a fully linear model of f on B(xk;Δk), then

– decrease Δk+1 = γΔk , set xk+1 = xk;
– use f̃Δ to create a fully linear model f̃ k+1 of f on B(xk;Δk+1);
– increment k← k + 1 and go to Step 1.

Step 2. (Stopping criterion)
If Δk < εstop and ‖∇f̃ k(xk)‖ < εstop, then

– declare algorithm success and stop.

Step 3. (Trust-region subproblem) Solve (or approximate)

xktmp ∈ argmin
x

{f̃ k(x) : x ∈ B(xk;Δk)}.

Step 4. (Candidate test and trust-region update) Evaluate f (xktmp) and
compute the ratio

ρk = f (xk)− f (xktmp)

f̃ k(xk)− f̃ k(xktmp)
.

If ρk > η (sufficient decrease exists), declare iterate success and

– let xk+1 be any point such that f (xk+1) ≤ f (xktmp);
– increase next trust-region Δk+1 = γ−1Δk;
– create f̃ k+1 using f̃ k and xk+1.

Otherwise ρk ≤ η, declare iterate failure and

– set xk+1 = xk, decrease trust-region Δk+1 = γΔk and keep
f̃ k+1 = f̃ k.

Increment k← k + 1 and go to Step 1.

In Step 1, the algorithm checks if Δk ≤ μ‖∇f̃ k(xk)‖. If this verification fails,
then the trust-region radius Δk is decreased and a new model is constructed. As a
result, the algorithm links the model accuracy with the first-order critical conditions:
higher accuracy is demanded as a potential critical point is approached.



676 C. Audet and W. Hare

In Step 2, the algorithm checks if Δk < εstop and ‖∇f̃ k(xk)‖ < εstop. Thus,
the algorithm should only stop when both model accuracy and the approximated
gradient are sufficiently small. If both conditions are true, then applying the fully
linear models ensures that

‖∇f (xk)‖ ≤ ‖∇f (xk)−∇f̃ k(xk)‖+‖∇f̃ k(xk)‖ ≤ κgΔ
k+εstop ≤ (κg+1)εstop,

and an upper bound on the true gradient is obtained.
Using these two precautions, other smooth optimization algorithms can also be

adapted to work with fully linear models. Gradient-based line-search methods [7,
Chapter 10], [30, Chapter 9], and [71], Newton’s method [61], the proximal point
method [49], and SQP [82] have been adapted to work for DFO. Of these, [7,
Chapter 10], [30, Chapter 9], and [49] designed the algorithm to be independent of
the modelling technique. As such, these algorithms are better termed frameworks,
as changing the modelling technique may drastically alter the behaviour of the
algorithm [50].

As future researchers explore model-based algorithms for DFO, we recommend
using language that decouples the algorithm and the model building technique.

19.4 Accuracy and Models of Nonsmooth Functions

19.4.1 Accuracy of Nonsmooth Functions

While Definitions 19.6 and 19.8 (fully linear and fully quadratic) provide a useful
terminology discussing models of smooth functions, they depend on the true
gradients and true Hessians to provide the marker for comparison. As such, if the
objective function f is nonsmooth, then it is impossible to construct a class of fully
linear approximations. We therefore introduce a new terminology that allows us to
appraise the quality of a model. We will begin with order N function accuracy.

Definition 19.14 (Order N Function Accuracy) Given f , x ∈ dom(f ), and Δ̄ >

0 we say that {f̃Δ}Δ∈(0,Δ̄] is a class of models of f at x parameterized by Δ that
provides order N function accuracy at x if there exists a scalar κf (x) > 0 such that,
given any Δ ∈ (0, Δ̄] the model f̃Δ satisfies

|f (x)− f̃Δ(x)| ≤ κf (x)Δ
N.

We say that {f̃Δ}Δ∈(0,Δ̄] is a class of models of f at x parameterized by Δ that
provides order N function accuracy near x if there exists a scalar κf (x) > 0 such
that, given any Δ ∈ (0, Δ̄] the model f̃Δ satisfies

|f (y)− f̃Δ(y)| ≤ κf (x)Δ
N for all y ∈ B(x;Δ).

Clearly, if {f̃Δ}Δ∈(0,Δ̄] is a class of fully linear models, then it is also a class of

models that provides order 2 function accuracy near x. Similarly, if {f̃Δ}Δ∈(0,Δ̄] is a
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class of fully quadratic models, then it is also a class of models that provides order
3 function accuracy near x.

Let us now introduce the definition of subgradient accuracy of a Lipschitz
function. The definition relies on the notion of the Clarke subdifferential given in
Definition 19.1. The elements of the subdifferential are called subgradients.

Definition 19.15 (Order N Subgradient Accuracy) Given f ∈ C0+, x ∈ R
n, and

Δ̄ > 0 we say that {f̃Δ}Δ∈(0,Δ̄] is a class of models of f at x parameterized by Δ
that provides order N subgradient accuracy at x if there exists a scalar κg(x) > 0
such that, given any Δ ∈ (0, Δ̄] the model f̃Δ satisfies

(i) given any v ∈ ∂f (x) there exists ṽ ∈ ∂f̃Δ(x) with ‖v − ṽ‖ ≤ κg(x)Δ
N ; and

(ii) given any ṽ ∈ ∂f̃Δ(x) there exists v ∈ ∂f (x) with ‖v − ṽ‖ ≤ κg(x)Δ
N .

We say that {f̃Δ}Δ∈(0,Δ̄] is a class of models of f at x parameterized by Δ that
provides order N subgradient accuracy near x if there exists a scalar κg(x) > 0
such that, given any Δ ∈ (0, Δ̄] the model f̃Δ satisfies

(i) for all y ∈ B(x;Δ) given any v ∈ ∂f (y) there exists ṽ ∈ ∂f̃Δ(y) with ‖v −
ṽ‖ ≤ κg(x)Δ

N ; and
(ii) for all y ∈ B(x;Δ) given any ṽ ∈ ∂f̃Δ(y) there exists v ∈ ∂f (y) with ‖v −

ṽ‖ ≤ κg(x)Δ
N .

If f ∈ C1+ and {f̃Δ}Δ∈(0,Δ̄] is a class of fully linear models, then it is also a class

of models that provides order 1 subgradient accuracy near x. Similarly, if f ∈ C1+
and {f̃Δ}Δ∈(0,Δ̄] is a class of fully quadratic models, then it is also a class of models
that provides order 2 subgradient accuracy near x.

Surprisingly, if f ∈ C1+ and {f̃Δ}Δ∈(0,Δ̄], f̃Δ ∈ C1+, is a class of models that
provides order 1 subgradient accuracy and order 2 function accuracy at x, then
{f̃Δ}Δ∈(0,Δ̄] is a class of fully linear models.

Theorem 19.5 (Fully Linear Versus Order N Accuracy) Suppose x ∈ R
n, Δ̄ >

0, and f ∈ C1+ on B(x; Δ̄) with Lipschitz constant (of the gradient) given by K .
Suppose that the model functions f̃Δ ∈ C1+ on B(x; Δ̄) with Lipschitz constant (of
the gradient) given by K̃ . Then the following are equivalent:

(i) {f̃Δ}Δ∈(0,Δ̄] is a class of fully linear models;

(ii) {f̃Δ}Δ∈(0,Δ̄] provides order 1 subgradient accuracy and order 2 function
accuracy near x;

(iii) {f̃Δ}Δ∈(0,Δ̄] provides order 1 subgradient accuracy and order 2 function
accuracy at x.

Proof Clearly (i) and (ii) are equivalent and imply (iii).
Suppose (iii) is true. Note that f ∈ C1+ and f̃Δ ∈ C1+ imply that ∂f = {∇f }

and ∂f̃Δ = {∇f̃Δ}. Thus, order 1 subgradient accuracy at x is equivalent to

‖∇f (x)−∇f̃Δ(x)‖ ≤ κgΔ,
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where κg = κg(x) is the parameter of subgradient accuracy. Considering any y ∈
B(x; Δ̄), we find that

‖∇f (y)−∇f̃Δ(y)‖ ≤ ‖∇f (y)−∇f (x)‖ + ‖∇f (x)−∇f̃Δ(x)‖
+ ‖∇f̃Δ(x)−∇f̃Δ(y)‖

≤ K‖y − x‖ + κgΔ+ K̃‖y − x‖
≤ (κg +K + K̃)Δ.

Thus, the models provide order 1 subgradient accuracy near x using parameter κ∗g =
κg +K + K̃ .

Next define f̂Δ = f̃Δ − f̃Δ(x) + f (x). By Proposition 19.1 {f̂Δ} is a class
of fully linear models of f at x, so (ii) holds for f̂Δ. Let κf be the parameter of
function accuracy f̃Δ at x and κ̂f be the parameter of function accuracy f̂Δ near x.
Considering any y ∈ B(x; Δ̄), we find that

|f (y)− f̃Δ(y)| ≤ |f (y)− f̂Δ(y)| + |f̂Δ(y)− f̃Δ(y)|
≤ κ̂f Δ

2 + |f̃Δ(y)− f̃Δ(x)+ f (x)− f̃Δ(y)|
= κ̂f Δ

2 + |f̃Δ(x)− f (x)|
≤ κ̂f Δ

2 + κfΔ
2.

Thus, the models provide order 2 function accuracy near x using parameter κ∗f =
κ̂f + κf . ��

The notion of order N subgradient accuracy can be extended to higher (gener-
alized) derivatives in the obvious manner. This suggests the following conjecture
(since we leave this for future researchers, we do not formally define the notion of
order N Hessian accuracy).

Conjecture 19.1 (Fully Quadratic Versus N Order Accuracy) Suppose x ∈ R
n,

Δ̄ > 0, and f ∈ C2+ on B(x; Δ̄). Suppose that the model functions f̃Δ ∈ C2+ on
B(x; Δ̄). Then the following are equivalent:

(i) {f̃Δ}Δ∈(0,Δ̄] is a class of fully quadratic models;

(ii) {f̃Δ}Δ∈(0,Δ̄] provides order 1 Hessian accuracy, order 2 gradient accuracy, and
order 3 function accuracy near x;

(iii) {f̃Δ}Δ∈(0,Δ̄] provides order 1 Hessian accuracy, order 2 gradient accuracy, and
order 3 function accuracy at x.

In light of Theorem 19.5, it would appear that the minimum standard for a
model-based DFO method to be expected to work might be that the class of models
{f̃Δ}Δ∈(0,Δ̄] provides order 1 subgradient accuracy and order 2 function accuracy

near xk . In fact, if the only target is first-order optimality, then it suffices to have
access to a class of models that provides order 1 subgradient accuracy at xk .
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Algorithm 19.2: Model-based steepest descent

Data: Given f ∈ C1, starting point x0 ∈ R
n and a class of models

{f̃Δ}Δ∈(0,Δ̄] that provides order 1 subgradient accuracy at given
points.

Step 0. ( Initialization) Initialize Δ0 ∈ (0,∞) the initial model accuracy
parameter, μ0 ∈ (0,∞) the initial target accuracy parameter, η ∈
(0, 1) an Armijo parameter, εd ∈ (0, 1) minimum decrease angle
parameter, εstop ∈ [0,∞) stopping tolerance, and k ← 0 iteration
counter.

Step 1. ( Model and descent direction) Access the class of models to select
f̃ kΔ that provides order 1 subgradient accuracy at xk . Select g̃k ∈
∂f̃ kΔ(x

k) to (approximately) solve argmin{‖g‖ : g ∈ ∂f̃ kΔ(xk)}.
Step 2. ( Model accuracy checks)

(a) If Δk < εstop and ‖g̃k‖ < εstop,

– declare algorithm success and stop.

(b) If Δk > μk‖g̃k‖,
– declare the model inaccurate;
– decrease Δk+1 ≤ 1

2Δ
k , set μk+1 = μk, xk+1 = xk , k ←

k + 1, and go to Step 1.

(c) If Δk ≤ μk‖g̃k‖,
– declare the model accurate and proceed to Step 3.

Step 3. ( Line search) Set

dk = − g̃k

‖g̃k‖ . (descent)

Perform a line-search in the direction dk to seek tk with

f (xk + tkdk) < f (xk)+ ηtk(dk)T g̃k (Armijo)

If tk is found, declare line-search success.
Otherwise, declare line-search failure.

Step 4. (Update)
If line-search success,

– let xk+1 be any point such that f (xk+1) ≤ f (xk + tkdk);
– set Δk+1 = Δk,μk+1 = μk .

Otherwise (line-search failure),

– set xk+1 = xk,Δk+1 = Δk, and decrease μk+1 ≤ 1
2μ

k .

Increment k← k + 1 and go to Step 1.
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As the name suggests, the MODEL-BASED STEEPEST-DESCENT framework is
essentially the nonsmooth steepest-descent algorithm with the true subdifferential
replaced with a model-based approximate subdifferential. Convergence of the
MODEL-BASED STEEPEST-DESCENT framework can be established using fairly
standard DFO techniques. To begin, consider the stopping test (Step 2a).

Lemma 19.1 Suppose the stopping test in Step (2a) is triggered. Then xk satisfies

dist(0, ∂f (xk)) ≤ (1+ κg)εstop,

where κg is the constant for subgradient accuracy and dist(x, S) is the distance of
the point x to the set S.

Conversely, if

dist(0, ∂f (xk)) <
1

2
min{εstop/κg, εstop} and Δk <

1

2
min{εstop/κg, εstop},

then the algorithm will stop.

Proof First suppose the stopping test is triggered. Order 1 subgradient accuracy
implies that for any g̃k ∈ ∂f̃Δk there exists gk ∈ ∂f (xk) with ‖g̃k − gk‖ ≤ κgΔ

k .
So, if Δk < εstop and ‖g̃k‖ < εstop, using this gk , we note that

dist(0, ∂f (xk)) ≤ ‖0− gk‖
≤ ‖0− g̃k‖ + ‖g̃k − gk‖
≤ εstop + κgΔ

k ≤ (1+ κg)εstop.

Now suppose

dist(0, ∂f (xk)) <
1

2
min{εstop/κg, εstop} and Δk <

1

2
min{εstop/κg, εstop}.

Let gk ∈ ∂f (xk) with ‖gk‖ < 1
2 min{εstop/κg, εstop}. Applying order 1

subgradient accuracy, we know that there exists g̃k ∈ ∂f̃Δk with ‖g̃k−gk‖ < κgΔ
k .

Which yields

‖g̃k‖ < κgΔ
k + ‖gk‖

< κg
1

2
min{εstop/κg, εstop} + 1

2
min{εstop/κg, εstop}

≤ εstop.

Since Δk < 1
2 min{εstop/κg, εstop} ≤ εstop, the stopping conditions are

triggered. ��
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Lemma 19.1 demonstrates the importance of the two parts of defining order 1
subgradient accuracy. Part (ii) of Definition 19.15 is used to show that if the algo-
rithm stops, then an approximate critical point is found. Part (i) of Definition 19.15
is used to show that if the algorithm reaches an approximate critical point, then the
stopping conditions will be triggered (once Δk is sufficiently small).

Next, we consider the situation where Algorithm 19.2 is run without stopping
conditions (i.e., Step 2a is omitted).

Theorem 19.6 Suppose f is bounded below and f ∈ C0+ with Lipschitz constant
(of the function values) given by K . Suppose Algorithm 19.2 is run without stopping
conditions and let xk be the resulting infinite sequence. Suppose the step sizes tk are
bounded below by a constant t̄ > 0. Then either

(i) f (xk) ↓ −∞; or
(ii) ‖dk‖ → 0 and every accumulation point x̂ of {xk} satisfies 0 ∈ ∂f (x̂).
Proof A comparison of Algorithm 19.2 to [48, Algorithm AGS] shows that
Algorithm 19.2 generalizes [48, Algorithm RAGS] to include any modelling
technique that provides order 1 subgradient accuracy (whereas [48, Algorithm
RAGS] employed specific modelling technique in the algorithm). All the proofs in
[48] except [48, Lemma 1] use only order 1 subgradient accuracy assumption, while
[48, Lemma 1] proves the applied modelling technique provides order 1 subgradient
accuracy. As such, this result is an easy adaptation of [48]. ��

In presenting the MODEL-BASED STEEPEST-DESCENT framework, we note
that, like steepest descent, it is unlikely to be competitive with a more advanced
algorithm.10 Instead, our goal in presenting Algorithm 19.2 is to demonstrate how
a model-based DFO algorithm can be decoupled from the models. Any modelling
technique that satisfies order 1 subgradient accuracy at xk can be used within the
MODEL-BASED STEEPEST-DESCENT framework to create a convergent method.

Let us return now to Table 19.2. As we have just demonstrated, the RAGS
algorithm in [48] is easily adapted to allow for any model that provides order 1
subgradient accuracy at xk . As the RAGS algorithm is an advancement to the
WASG algorithm in [47], it is reasonable to say that WASG is also adaptable to
any model that provides order 1 subgradient accuracy at xk . Considering the rest of
Table 19.2:

• The DGM algorithm of [11] applies a model that converges in a limiting sense
only11;

10This said, in model-based DFO the relative effectiveness of algorithms is often less clear.
For smooth optimization, Newton’s method will almost always dramatically outperform steepest
descent. In model-based DFO, the inaccuracies in the models and the difficulty in constructing
models with good quality Hessian approximations may make steepest descent a competitive
alternative [50].
11In [11], the model accuracy is forced to converge to 0 by pre-selecting the model accuracy level
δk such that δk → 0.
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• The DFOcomirror of [12] applies a model that provides order 1 subgradient
accuracy and order 2 function accuracy at xk [12, Corollary 3.3] and [45,
Theorems 2.1 and 3.1];

• The CMS, GDMS, DMS, SMS algorithms of [59] apply models that provide
order 1 subgradient accuracy and order 2 function accuracy at xk [59, Lemma 2]
and [45, Theorems 2.1 and 3.1];

• The MS4PL of [56] applies a model that provides order 1 subgradient accuracy
([56, Lemma 1] shows the first required inequality, the second required inequality
can be obtained using similar techniques);

• The DFO VU-algorithm of [51] applies a model that provides order 1 subgradient
accuracy and order 2 function accuracy at xk [45, Theorems 2.1 and 3.1].

In each case, it is reasonable to conjecture that there is nothing special about the
models used, except the types and quality of accuracy they provide. It would be
valuable to reexamine the methods above and see if a model-flexible method of
each method could be created.

19.4.2 Constructing Models of Nonsmooth Functions

Constructing models that provide order N function accuracy at x can be accom-
plished easily. Indeed, one only needs to ensure that the model value is correct at
the point of interest. Constructing models that provide orderN subgradient accuracy
at x is more difficult.

As mentioned in Sect. 19.2, some researchers have explored constructing models
that provide some subgradient accuracy for broad classes of functions [11, 57].
While theoretically interesting, the number of function calls required to create the
models is too high for practical use.12 As such, researchers have turned to studying
constructing models for more structured functions [45, 47, 48, 56, 59].

Let us consider the situation where the objective function f is the composition
of two functions F : R

n → R
m and g : R

m → R, specifically f (x) =
g(F (x)). Suppose that function values (for f ) are computed in two steps: first the
vector-valued function F(x) = [F1(x), F2(x), . . . , Fm(x)] is evaluated through a
blackbox, second the single-valued analytically available function g is evaluated
at F(x). Using this framework, if we can construct model functions for each Fi ,
then the analytic structure of g allows an obvious method to construct a model
function of f . In particular, if F̃i,Δ are model functions of Fi , then we can use
f̃Δ(x) = g([F̃i,Δ(x), F̃i,Δ(x), . . . , F̃i,Δ(x)]) as our model function of f .

We next define a model accuracy for vector valued functions.

12The techniques of [11, 57] do not provide error bounds, but instead showed asymptotic
convergence. Thus, independent of the number of function calls, the models do not satisfy order N
accuracy conditions.
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Definition 19.16 (Order N Accuracy for Vector-Valued Functions) Given

F : Rn → R
m : x 2→ [F1(x), F2(x), . . . , Fm(x)],

x ∈ dom(F ), and Δ̄ > 0, we say that {F̃Δ : Δ ∈ (0, Δ̄]} is a class of models of
F parameterized by Δ that provides order N function (subgradient) accuracy at x

(near x) if

F̃Δ : Rn → R
m : x 2→ [F̃1,Δ(x), F̃2,Δ(x), . . . F̃m,Δ(x)],

and each F̃i,Δ(x) is a class of models of Fi that provides order N function
(subgradient) accuracy at x (near x).

In this case, we use κFi (x) (κGi (x)) as the accuracy parameter for subfunction
Fi , and κF (x) = max{κFi (x)} (κG(x) = max{κGi (x)}) in order to provide a single
accuracy parameter suitable for all subfunctions.

The next result provides bounds on the function accuracy of a model constructed
by composing g with models of the vector-valued function F . A similar result can
be found in [45, Theorem 2.1].

Theorem 19.7 (Compositions of Order N Function Accuracy) Suppose

f : Rn → R : x 2→ g(F (x)),

where g : Rm → R ∪ {∞} and F : Rn → R
m. Suppose x ∈ R

n with F(x) ∈
int(dom(g)) and g is locally Lipschitz on its domain. Let Δ̄ > 0 and {F̃Δ : Δ ∈
(0, Δ̄]} be a class of models of F parameterized by Δ. Define

f̃Δ : Rn → R : x 2→ g(F̃Δ(x)).

(i) If {F̃Δ : Δ ∈ (0, Δ̄]} provides order N , N ≥ 1, function accuracy at x, then
there exists Δ̄f > 0 such that {f̃Δ : Δ ∈ (0, Δ̄f ]} provides order N function
accuracy at x.

(ii) If {F̃Δ : Δ ∈ (0, Δ̄]} provides order N , N ≥ 1, function accuracy near x, then
there exists Δ̄f > 0 such that {f̃Δ : Δ ∈ (0, Δ̄f ]} provides order N function
accuracy near x.

Proof

(i) Suppose {F̃Δ : Δ ∈ (0, Δ̄]} provides order N function accuracy at x. Let L
be a local Lipschitz constant of g at x and κF (x) be the parameter of order N
function accuracy for F . Since {F̃Δ : Δ ∈ (0, Δ̄]} provides order N function
accuracy at x, there exists Δ̄f ∈ (0, Δ̄] such that F̃Δ(x) ∈ int(dom(g)) for all
Δ ∈ (0, Δ̄f ].
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Given any Δ ∈ (0, Δ̄f ] we find that

|f (x)− f̃Δ(x)|2 = |g(F (x))− g(F̃Δ(x))|2
≤ L2‖F(x)− F̃Δ(x)‖2

= L2 ∑m
i=1 |Fi(x)− F̃i,Δ(x)|2

≤ L2 ∑m
i=1(κF (x))

2Δ2N

≤ L2m(κF (x))
2Δ2N.

Which shows that |f (x) − f̃Δ(x)| ≤ L
√
mκF (x)Δ

N , so {f̃Δ : Δ ∈ (0, Δ̄f ]}
provides order N function accuracy at x.

(ii) Suppose {F̃Δ : Δ ∈ (0, Δ̄]} provides order N function accuracy near x. As
F(x) ∈ int(dom(g)) and F is continuous, there exists δ > 0 such that F(y) ∈
int(dom(g)) for all y ∈ cl(B(x; δ)). Since {F̃Δ : Δ ∈ (0, Δ̄)} provides order
N function accuracy near x, this implies the existence of Δ̄f ∈ (0,min{δ, Δ̄}]
such that F̃Δ(y) ∈ int(dom(g)) for all Δ ∈ (0, Δ̄f ], y ∈ cl(B(x; Δ̄f )).

By the continuity of F , {z ∈ R
m : z = F(y), y ∈ cl(B(x; Δ̄f ))} ⊆

int(dom(g)) is compact. As such, there exists a Lipschitz constant for g relative
to this set [81, Theorem 9.2]. Let L be this Lipschitz constant and κF (x) be the
parameter of order N function accuracy for F .

Given any Δ ∈ (0, Δ̄f ] and y ∈ B(x̄;Δ), following an analogous series of
inequalities to the above, we find that

|f (y)− f̃Δ(y)|2 ≤ L2m(κF (x))
2Δ2N.

Which shows that {f̃Δ : Δ ∈ (0, Δ̄f ]} provides order N function accuracy
near x. ��

It is not difficult to grasp the importance ofF(x) ∈ int(dom(g)) in Theorem 19.7,
as without it we can select models that result in g(F̃Δ(x)) = ∞ [45, Example 2.3].

We next examine subgradient accuracy of a model constructed by composing g
with models of the vector-valued function F . Theorem 19.8 shows that given three
key pieces the composition models retain subgradient accuracy properties. These
key pieces are: the chain rule ∂f (x) = ∇F(x)T ∂g(F (x)) holds, the subdifferential
is bounded, and the models give exact function values at the point of interest.

Theorem 19.8 (Compositions of Order N Subgradient Accuracy) Suppose

f : Rn → R : x 2→ g(F (x)),

where g : Rm → R ∪ {∞} and F : Rn → R
m. Suppose a nondegeneracy condition

holds for g and F so that

∂f (x) = ∇F(x)T ∂g(F (x))

and ∂g(F (x)) is bounded.
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Let Δ̄ > 0 and {F̃Δ : Δ ∈ (0, Δ̄]} be a class of models of F parameterized by Δ
satisfying F(x) = F̃Δ(x). Define

f̃Δ : Rn → R : x 2→ g(F̃Δ(x))

and suppose a nondegeneracy condition holds for g and F̃Δ so that

∂f̃Δ(x) = ∇F̃Δ(x)T ∂g(F̃Δ(x)).

If {F̃Δ : Δ ∈ (0, Δ̄]} provides order N , N ≥ 1, subgradient accuracy at x, then
{f̃Δ : Δ ∈ (0, Δ̄]} provides order N subgradient accuracy at x.

Proof Apply F(x) = F̃Δ(x) and the chain rule to see that

∂f̃Δ(x) = ∇F̃Δ(x)T ∂g(F (x)).

Note ∂g(F (x)) is bounded and define M = sup{‖w‖ : w ∈ ∂g(F (x))}. Let κG(x)
be the parameter of order N subgradient accuracy for F .

Selecting any v ∈ ∂f (x), there exists w ∈ ∂g(F (x)) such that v = ∇F(x)Tw.
Define ṽ = ∇F̃Δ(x)Tw ∈ ∂f̃Δ(x), and notice that

‖v − ṽ‖2 = ‖∇F(x)T w −∇F̃Δ(x)Tw‖2

=

∥
∥
∥
∥
∥
∥∥
∥
∥

⎡

⎢
⎢
⎢
⎣

∇F1(x)
Tw −∇F̃1,Δ(x)

Tw

∇F2(x)
Tw −∇F̃2,Δ(x)

Tw
...

∇Fm(x)Tw −∇F̃m,Δ(x)Tw

⎤

⎥
⎥
⎥
⎦

∥
∥
∥
∥
∥
∥∥
∥
∥

2

=
m∑

i=1

∇(Fm(x)Tw −∇F̃m,Δ(x)Tw)2

≤
m∑

i=1

‖∇Fm(x)−∇F̃m,Δ(x)‖2‖w‖2

≤
m∑

i=1

(κG(x))
2Δ2NM2 ≤ m(κG(x))

2M2Δ2N.

This yields ‖v− ṽ‖ ≤ √mκG(x)MΔN , which gives the first inequality required for
order N subgradient accuracy.

Conversely, selecting any ṽ ∈ ∂f̃Δ(x), there exists w ∈ ∂g(F (x)) such that
v = ∇F̃Δ(x)Tw. Define v = ∇F(x)Tw ∈ ∂f (x). Repeating the sequence of
inequalities above, yields the second inequality required for order N subgradient
accuracy. ��
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The important of the chain rule in Theorem 19.8 is obvious. Examples of what
can go wrong if the subdifferential is not bounded or the models do not give exact
function values at the point of interest can be found in [45, Examples 3.2 and 3.3].

19.5 Conclusions and Open Directions

DFO studies algorithms that do not use derivative information, because explicit
derivative information is unavailable. This might be because the derivatives are not
explicitly known, or simply because they do not exist. Model-based methods build
approximations and use them in an algorithm that explores the space of variables.
The ways that the models are constructed and the way that the algorithm exploits
them define various model-based methods.

Many model-based methods target unconstrained optimization problems, and
assume that the objective function is once or twice differentiable. These assumptions
motivate the use of models and allow the methods to be supported by a convergence
analysis relating the accuracy of the model, its gradient, or possibly its Hessian.
Models for such problems include interpolation, (generalized) simplex-gradient
models, and other fully linear and fully quadratic models.

More recently, model-based DFO methods have targeted problems for which
there is no reason to believe that the functions are differentiable. Different tools
need to be used to construct models, and different analytical nonsmooth tools need
to be applied to study their behaviour. We have presented some of this research.

We believe that research in model-based DFO for NSO is only at its beginning.
Open research directions in model-based DFO for NSO include the following:

(1) Expanding the list of algorithms, and identifying which work best for specific
classes of problems. We believe that an important strategy when developing
new algorithms is to present it in a flexible way so that it is generic on
which model is used. To this end we introduce the term “order N accuracy”
(Definitions 19.14 and 19.15) to describe model quality without providing
details on model construction.

(2) Expanding modelling techniques, in particular for nonsmooth functions. Herein
we present some results for when the objective function is the composition of a
nonsmooth function and a smooth function. However, other possible nonsmooth
structures should be considered. For example, Poissant [70] recently studied a
situation in which only incomplete monotonic information is known. Another
obvious structure is splitting problems f = F + G, where F is smooth and G
is some form of nonsmooth regularizer (e.g., as found in the LASSO problem
[87]). While this could be rephrased as a composition of a nonsmooth function
and a smooth function, it may be valuable to consider such popular structures
directly.

(3) Determine how the knowledge of structure within a problem (as mentioned in
(2)) can best be exploited by an optimization method. A step towards this might
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be achieved by a better understanding of calculus rules for models, similar to
the rules suggested for smooth functions in [78].

(4) Determine how model-based DFO methods can be applied to problems with
nonlinear constraints. There has been some progress in the development of
direct search algorithms for inequality constrained blackbox optimization [6],
but model-based DFO method have largely remained in the realm of uncon-
strained or box-constrained problems. One step in model-based optimization
has been made by Amaioua et al. [3]. Another step could be the development
of a definition for “order N accuracy” of the normal cone (a starting place
might be [37, 46]). Such a definition would allow for modelling techniques
and model-based DFO algorithms for constrained optimization to be researched
independently.

(5) Further research on interweaving model-based and direct search DFO methods.
More research should be conducted in combining such methods and in compar-
ing strengths and weaknesses of each.
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Final Words

The book is an updated state of the art of the numerical methods for solving
optimization problems in finite dimension, under no differentiability assumptions.
Such methods date back to the 60s of last Century and we have tried to provide
an idea on how many branches did stem out from the pioneering works that, both,
in Eastern and Western countries were conducted at that time. In fact, despite of
the current wide diversification of models, methods and application fields, it is
apparent that some very basic ideas (e.g. subgradient direction and cutting plane) are
still alive and capable to indicate new directions of research. Experts from several
countries, who have been invited to illustrate their points of view on specific aspects
of NSO, have covered, in practice, the main research areas related to numerical
methods.

The dualism and the fruitful competition between subgradient and cutting
plane-like methods have been fully reflected in Part I of the book. In this part,
the modern and accelerated versions of the subgradient method, bundle methods
in their numerous variants and gradient-sampling approaches, capable to handle
nonconvexity too, have been discussed in depth.

Part II has focused on treatment of problems equipped with some known
structure. It is worth mentioning that the analysed methods, although structure-
based, cover an extremely vast area of interest. For instance, minmax (sometimes
minmaxmin) problems are the most common ones in applications where either
worst-case analysis or robustness issues or stochastic scenarios appear within
decision making processes. Not to say that the often occurring possibility of
expressing nonconvex nonsmooth objective functions in DC form allows us to
use most of the machinery coming from convex optimization to deal with such
special class of (global) optimization problems. This is particularly relevant in
many modern applications of optimization, for example within the impressively
growing area of machine learning. Structure exploiting methods are also those
based on detecting domain areas where function smoothness is concentrated or on
constructing piecewise linear model reflecting derivative discontinuities.
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694 Final Words

Part III has been devoted to the study of special problems, in particular
multiobjective and mixed integer. As for the former, the analysis has involved the
general case of LLC functions, as well as the special case of multiobjective DC
functions. Coming to mixed integer optimization (both linear and nonlinear), it
suffices to recall the strong demand for effective NSO methods that such an area
has expressed in last decades, motivated by the diffusion of dual ascent methods in
large-scale settings. Moreover, in the latter sector (but also in other applications of
relevant importance) time-consuming function evaluation has led to design methods
which take into account explicitly inexact data evaluations of functions and/or
subgradients.

Finally, Part IV has been concerned with the rapidly growing research area of the
derivative-free methods.

We firmly believe that nonsmooth optimization is becoming an increasingly
important research area in optimization. It will find many interesting applications
in very diverse areas of human activity in the future. We are confident that this book
will stimulate further research in this fascinating area and in its many applications.

Adil M. Bagirov
Manlio Gaudioso
Napsu Karmitsa

Marko M. Mäkelä
Sona Taheri
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