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Abstract Artificial realizations of the mammalian brain alongside their integration
into electronic components are explored through neuromorphic architectures,
neuroarchitectectonics, on CMOS compatible platforms. Exploration of
neuromorphic technologies continue to develop as an alternative computational
paradigm as both capacity and capability reach their fundamental limits with the
end of the transistor-driven industrial phenomenon of Moore’s law. Here, we con-
sider the electronic landscape within neuromorphic technologies and the role of the
atomic switch as a model device. We report the fabrication of an atomic switch
network (ASN) showing critical dynamics and harness criticality to perform bench-
mark signal classification and Boolean logic tasks. Observed evidence of biomimetic
behavior such as synaptic plasticity and fading memory enable the ASN to attain a
cognitive capability within the context of artificial neural networks.
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1 Introduction

In 1965 Gordon Moore, co-founder and chairman of Intel, published a paper on the
number of transistors per integrated circuit (microchip) doubling every 2 years. This
trend became known as Moore’s Law and meant processing speed doubled every
2 years. Recently, Moore’s law shows signs of slowing down due to physical and
economic constraints. In the next few decades individual elements will approach the
scale of a few atoms and in turn the fundamental limits of miniaturization [1]. Feature
sizes are constrained by the optical diffraction limit which defines minimum feature
size by wavelength divided by two times the numerical aperture of the microscope
[2]. Even before physical boundaries are approached, the economical limitations of
continuing miniaturization and massive integration will be reached. With extremely
small features fabrication costs increase dramatically, making them unsuitable for
cost-effective mass production. Thus, as the end of Moore’s Law is approached [3]
processing power will no longer increase unless alternative individual elements or
architectures of integrated circuits are explored.

Modern computers ubiquitously use the Von Neumann architecture first
described by John von Neumann in 1945. This architecture separates memory and
processing components within integrated circuits [4]. Partitioning data and instruc-
tion storage from arithmetic/logic processing leads to a limitation of information
transfer known as the Von Neumann bottleneck [5]. When calculating more complex
problems requiring mass amounts of data or instructions from memory storage,
processors sit idle. In order to maximize information processing and ultimately
overcome the Von Neumann bottleneck, significant changes to computer architec-
tures must be made.

Carver Mead, a scientist at Cal Tech that coined the term “Moore’s Law” became
known for his bio-inspired work in the mid 60s. Particularly his attempts to emulate
neural functionality directly into analog hardware implementations and pioneering
the “Neuromorphic” computation field. His neuromorphic research was specifically
based on analog metal oxide semiconductor (MOS) processors. By 1995 Mead and
collaborators demonstrated a single silicon transistor ‘synapse’ capable of analog
learning. However, the ensuing rapid development in digital microprocessors using
VLSI superseded early analog computing approaches. In turn, digital neural network
software led to today’s deep learning and machine learning algorithms.

Concurrently, the growth of the internet-of-things, cloud computing and the rapid
explosion of unstructured data has placed new demands on computers in our increas-
ingly interconnected world. Examples of interconnected data are those from satellites,
sensors, economic markets, commerce, global climate patterns, social media and
consumer habits. This combinatorial complexity challenges the inherently serial Von
Neumann architecture of computers which, at their core, scale poorly into supercom-
puters requiring massive increases in hardware and energy consumption. Currently,
China’s Tianhe-2 supercomputer uses 18 MW at full power [6] and is still very far
from performing many tasks that a human brain can achieve using merely 20 W. In
terms of dealing with complex tasks, the scalability of today’s computers cannot keep
up in a realistic manner with the world in which we live.
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In response, we find ourselves in a new era of challenges promulgating research
with the aim to develop science and technology that emulate how the brain works
and to utilize that knowledge for creating a paradigm shift in computation towards
cognition. New technologies such as functional magnetic resonance imaging (fMRI)
and advanced image processing have also made major inroads into neuroscience,
although the theory of understanding how our brain works is at an early stage.
Nevertheless, fundamental scientific experiments to emulate and create brain-like
behavioral characteristics are underway.

In this chapter we discuss one such approach using devices, based on the atomic
switch’s synaptic-like properties, connected in a network called the “Atomic Switch
Network” (ASN). The device is inspired, not only by its synaptic function, but also
by the brain’s inherent network characteristics in the neocortex and its distributed
memory.

2 Frameworks for Neuromorphic and Bio-inspired
Computing

In order to advance the field of computing, new computational hardware paradigms
are required including artificial neural networks, deep learning, reservoir computa-
tion, and neuromorphic computing. Additionally, identifying ways to apply these
systems for use with established algorithms such as deep learning will play a key role
in ushering in the next generation of computing [7].

2.1 Neuromorphic Computing and Artificial Neural
Networks

Beautifully designed by the natural world, the human brain is capable of complex
multisensory tasks and decision-making using architecture distinct from the hyper-
engineered grids of von Neumann computers. Modern neurobiology describes
neurons using the formulations of the Hodgkin-Huxley model [8], emulating single
neurons as a circuit of capacitors, nonlinear resistors, and a current source. Individ-
ual neurons connect to one another through synapses, creating a connectome archi-
tecture [9] or network allowing cascading ions to transmit information. Network
connectivity determines the efficiency of interneuron communication and has been
heuristically observed to follow a small-world network topology [10, 11]. Found
throughout nature from galaxy formation to sociological trends, small-world dynam-
ics form the core of understanding complex systems nonlinearizable by current
methods. Amazingly, cognitive behavior and memory association practiced by the
brain utilize these salient features to be able to perform both computation and
information storage within a single synapse [12]. Collectives of interacting neurons
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found in the brain act as compartmentalized networks ascribed to specific brain
functions, but are capable of growing through heuristic learning. Computing and
cognitive capabilities developed through an evolutionary scheme selectively prune
weakly correlated neurons and enforce strongly correlated neurons as described in
Hebbian learning [13]. These features drastically increase the power of the human
brain to complete complicated tasks too computationally expensive for current
CMOS technology.

Mead drew upon the natural computing capability of neuron networks to develop
the concept of neuromorphic hardware in the mid 1980s. Neuromorphic engineers
attempt to emulate neuron functionalities and brain architectures to be capable of
performing similar multisensory complex tasks such as associative-dissociative
memorization of unstructured data, pattern recognition, and chaotic series predic-
tion, to name a few. Initial attempts to harness brain dynamics for computation relied
upon contemporary CMOS technology to construct purpose-built field programma-
ble gate arrays (FPGAs), and supercomputer assisted software within the field of
machine learning. Artificial neural networks first developed as the perceptron [14] by
Frank Rosenblatt adopted the same connectionist theory as biological neurons.
Implemented using camera photocells while contemporary variations are realized
in software, the perceptron consisted of a collection of nodes representing neurons
with each node owning a number of weighted connections wi transmitting informa-
tion xi. Information propagates from external sensors towards individual nodes.
Information traveling through the connections and converge at their respective
nodes, activating the node depending on a transfer function or learning rule fj.

yj tð Þ ¼ f j
X

wi ∙ xi tð Þ
� �

The overall task is then computed using the sum of all node operations while
programmable control is achieved through modification of the weights in a learning
procedure [15].

Conceptually, Mead’s neuromorphic computing described a system possessing
analog circuit elements capable of emulating biological features of the brain. The
fundamental element of neuromorphic computing is the spiking neuron, and func-
tions similarly to the logic gates of traditional von Neumann architectures. While
traditional logic gates evaluate data as binary states of either 0 or 1, spiking neurons
transmit a series of one or more spikes within a fixed period of time where the
number of spikes represent the data as discrete continuous values, 0, 1, 2, etc. Thus,
neuromorphic computing more closely resembles power-efficient analog systems
[16]. A neuromorphic system contains many of these spiking neurons connected in a
complex network, which must then be conditioned or trained, using spike-timing-
dependent plasticity in order to perform specific tasks such as pattern recognition.

The key advantage of a neuromorphic system is its highly interconnected and
parallel architecture providing remarkably reduced power consumption relative to
traditional von Neumann architectures. Additionally, neuromorphic systems by
design remove the significant bottleneck between memory and processing. This
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combination of improved bandwidth between memory and processor, along with
parallel processing will theoretically allow neuromorphic computing systems to
perform complex operations much faster and more efficiently than conventional
systems [17].

Artificial neural networks, or ANNs, are a biologically inspired computing archi-
tecture incorporating functional elements designed to mimic the brain’s neural
networks. The networks form by a collection of artificial neurons. These neurons
are interconnected via structures functionally resembling synapses, such that each
neuron can transmit a signal it generates or receives to another neuron it is connected
with [17]. Each neuron and synapse may possess a different “weight”, dependent on
plasticity and history of past signals, which modifies the strength of the transmitted/
received signal. The neurons themselves are organized into three layers—input,
hidden, and output—and signals traverse these layers one or more times as the
network works to solve a given task. Key advantages for this type of architectural
framework include fault tolerance characteristics and reliability within hardware [17].

The most basic model of an artificial neural network, the feedforward neural
network, only allows signals to propagate in one direction, forward, towards the
output layer [17]. An alternative operational mode to the feedforward neural network
exists in the form of recurrent neural networks (RNN). Here the connections between
units of the network form a feedback loop, which allows the internal memory of the
RNN to process arbitrary input sequences [17]. This characteristic widens the RNN’s
application range to include tasks such as speech recognition. Both feedforward and
recurrent artificial neural networks are discussed further in Sect. 3.3.

2.2 Artificial Neural Networks

Artificial neural networks (ANNs) have been developed to have brain-like functions
using three layers of neurons, input, hidden and output. Hidden layers are
unobserved neurons which alter the flow of information between inputs and outputs
achieving a level of complexity that prevents outputs being simple functions of
inputs. Connections between each layer act as synapses with tunable (weighted)
properties. The presence of a feed-back loop also allows for dynamical complexity to
dominate the system.

ANNs require training cycles for the tuning of synaptic weights fitted to a desired
algorithm. In altering the hysteresis of each synapse, desired outputs can be retrieved
from task specific inputs. ANN training techniques can be broken into three primary
classes: supervised, unsupervised and reinforcement learning. Supervised learning
simultaneously introduces an input vector paired with the desired outputs and adjusts
its weights through an implemented learning algorithm (i.e. Manhattan update rule)
[18]. Unsupervised learning, also commonly referred to as self-organization, outputs
are trained to respond to a cluster of inputs. This results in a system designed to
respond to specific input stimuli, and fabricate its own representations of the
transmitted information. Reinforcement learning can be thought of as a trial-and-
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error system akin to repeating a maze periodically until the optimal route has been
determined. The ANN is not given a specific path to take, and must be tuned through
numerous training cycles [19].

Recurrent neural networks (RNNs) are a sequence based model of ANNs. RNN’s
can be separated into two primary classes, the RNN will either be presented with a
constant, single input and stabilize to a desired state or presented with variable inputs
fluctuating over time with the intention of yielding time-dependent outputs
[20]. RNN’s are capable of using their internal memory to process input sequences
allowing for complex applications including speech and handwriting recognition
[20, 21].

Convolutional neural networks (CNNs) function similar to a general ANN,
however neurons are now arranged in three dimensions and characterized by height,
width and depth. This manipulates the manner in which patterns are constrained and
scales more efficiently than a typical ANN for larger pattern recognition systems.
CNNs utilize three core layers: the convolutional layer, pooling layer and fully-
connected layer (this is present in a typical ANN). The convolutional layer computes
output neurons in relation to a dot product between the input region and its
corresponding weights. After the convolutional layer, an element based activation
function is applied followed by the pooling layer which down samples the width and
height dimensions while leaving the CNN volume intact; both of these act as fixed
pre-determined functions. Finally, the fully-connected layer will compute class
scores which relate the pattern to its desired category. Training through
backpropagation is only necessary for the convolutional and fully-connected layers.
CNNs core design achieves much more efficient pattern classification than a regular
ANN and makes it readily implementable in deep neural networks for image and
speech recognition.

Recursive neural networks (rNNs) are another model applicable to deep learning
that function by recursively applying an identical set of weights to a given system.
This achieves structured predictions based on variable inputs; this architecture also
allows for the flow of data in any given direction. While CNNs are good deep
learning models for pattern recognition, rNNs offer the ability to predict variations in
hierarchical systems, demonstrated in natural language processing, and can be
regarded as a linear modification of RNNs though are unable to parse tree-like
hierarchies [20].

Multi-layer perceptron’s (MLPs) are a class of ANNs which implement feed
forward loops. All hidden and output layers in the MLP act as a neuron responding to
stimuli (inputs) which rely on a non-linear, typically sigmoidal or hyperbolic
tangent, activation function. The activation function acts as a weighted tolerance
value governing the output function. MLPs typically utilize backpropagation algo-
rithms for training and the weights can be updated iteratively after each testing phase
(often results in chaotic alterations) or in unison after all weights have been analyzed
(batch learning, often yields more stable alterations) [22]. By defining classes to
analyze, MLPs can be applied to many different tasks including 3D image recogni-
tion and handwritten image recognition.
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2.3 Deep Learning

Modern neuromorphic system design strives to build the same adaptive learning
capacity found in biological neural systems into an electronic device. One way to
incorporate this system design is through the employment of machine learning
algorithms. Machine learning algorithms attempt to emulate neuronal design in
software. The learning process can be accomplished in a supervised or unsupervised
manner, with the key distinction being whether the data fed into the algorithm is
labeled (supervised) or unlabeled (unsupervised) [23]. Presently, supervised learning
is the most common form of machine learning, regardless of the algorithm
employed.

Historically, machine learning algorithms and techniques struggled to process
natural data sets in raw form and only through extensive work by engineers could
machine learning be tailored to perform tasks such as speech recognition [23]. This
has changed with the development of new methods, feature learning or representa-
tion learning, which are capable of identifying the minimum features that represents
each class of object for detection and/or classification within a data set. Those
methods led to the creation of the well-publicized machine learning technique
known as deep-learning that simulates a multi-layered neuron architecture. Its
purpose is for organizing unstructured data and applying this learned information
to various tasks, such as computer vision, speech recognition and bioinformatics. In
the case of supervised learning, the process starts by amassing a large data set where
each element of the data set is labeled with its corresponding category. Next, the
machine is trained by supplying it with data representative of each category, for
which the machine then produces an output in the form of a vector of scores for every
category. The goal is to train the machine so that the vector of scores for a particular
piece of data has the highest possible score for the category to which it belongs. This
is achieved by computing a function that measures the error between the output
scores and a desired score pattern, after which the machine modifies its own
parameters, or weights, via a gradient vector—a function that adjusts weights
depending on whether the error would increase or decrease based on that adjust-
ment—in order to reduce the error. Consequently, training can be an arduous process
for which the best results typically require incredibly extensive data dates and
hundreds of millions of weights [23].

More advanced machine learning algorithms attempt to completely emulate
neuronal design in software, simulating multi-layered neurons similar to the
perceptron in an architecture known as ‘deep learning’ [24]. Organized in a hierar-
chal tree, the output of one perceptron is fed forward to a connected perceptron to
compute complex tasks. The interaction between layers increases the difficulty in the
learning procedure due to the nonseparability of individual weights from the internal
recurrent response. Researchers have developed methods of mitigating the difficul-
ties through feedback learning and error backpropagation schemes that predict
network behavior [24, 25].
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Contemporary industries alleviate big data demands by relying on these machine
learning algorithms distributed across hundreds of servers and graphics processing
units (GPUs), which are discussed in a later section, in an attempt to emulate a
brain’s capability of organizing unstructured data. However, CMOS-based neural
networks are trending towards costly power consumption as transfer speeds between
buffer memory and logic components as well as miniaturization capabilities are
approaching fundamental limits.

2.4 Reservoir Computing

Reservoir computing (RC) is an emerging paradigm that promotes computing using
the intrinsic nonlinear dynamics of an excited system called a reservoir. Maass et al.
initially proposed a version of RC called the Liquid State Machine (LSM) as a model
for cortical microcircuits. Independently, Jaeger introduced a variation of RC called
the Echo State Machine (ESM) as an alternative RNN approach for control tasks.
Variations of both LSM and ESM have been proposed for many different machine
learning and system control tasks. Büsing et al. conducted a comprehensive study of
reservoir performance using different metrics as a function of the node
connectivity K, the logarithm of the number of states per node m, and the variance
of the weights in the reservoir [26].

At its core, the RC paradigm utilizes a reservoir’s capability to project an input’s
information into a mathematical higher representation space, similar to a Fourier
transform. A variety of spatially distributed mathematical operations occur through-
out the system according to system properties and dimensionality. Computation
occurs as a recursive learning algorithm that inscribes a filter on the system such that
the projection spans the correct mathematical operations and the desired process is
achieved. The reservoir essentially outputs a series of nonlinear transformations of
the input which are then trained at the output layer by synaptic weights using linear
regression. A system with sufficiently rich dynamics can remember perturbations by
an external input over time which compared to other approaches, has many key
advantages of using RC such as:

1. Computationally inexpensive training (low programming overhead).
2. Flexibility in the physical reservoir implementation (cost-effective fabrication).
3. A high tolerance to material variation, defects, and faults (robustness).

These factors make RC particularly suitable for emerging unconventional com-
puting paradigms, such as computing using physical phenomena [27] and self-
assembled electronic architectures [28]. The high nonlinearity, and thus the high
dimensionality, ensures convergence of this algorithm in practical time. Reservoir
computing differs from earlier attempts at computing with random assemblies of
nano-cells or switches, e.g., Tour et al. [29]. Such systems lacked a formal frame-
work and required complex and time-consuming optimization steps in order to
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produce a desired output function. Another problem of these early attempts was the
lack of scalability, and thus the difficulty to obtain more complex functions.

3 Hardware Paradigms for Neuromorphic Computing

The previous section described a few framework paradigms for next-generation
computing. This section will discuss several examples of the physical implementa-
tion of these paradigms, including hardware configurations utilized for deep learning
and neuromorphic computing. Throughout the design of a new architecture, its
desired neuromorphic properties need to be considered. An array of different metrics
can benchmark devices for the implementation of a specific neural network. Con-
siderable factors include efficiency, reconfigurability, and scalability.

3.1 Neuromorphic Chips

Neuromorphic refers to any artificial neural system whose core design and architec-
tures are based upon the biological central nervous systems. Traditional computing
architecture efficiency is governed by how many floating-point operations per
second (FLOPS) per watt can be performed. In developing neuromorphic systems,
spiking neurons are fabricated into the hardware; these can be benchmarked by their
synaptic operations per second (SOPS) per watt [30]. Floating-point operations are
inefficient and slow; even the most powerful super-computers are not capable of
obtaining real-time performance on detailed large-scale simulations of neural sys-
tems [30]. Synaptic operations offer an advantage in that operations are achieved
directly through the hardware; this allows for real-time operation independent of
synapse density and/or coupling. This advantage is achieved through circumventing
the von Neumann bottleneck; a single component of hardware running specific tasks
alleviates the overhead from multiple components communicating with each other
achieving real-time analysis.

Silicon neurons are a promising avenue for mimicking biological synaptic/neu-
ronal interactions. Unlike the previously mentioned hardware, a silicon neuron can
be broken into computational blocks which can be functionalized for task specific
neuronal activity. The synaptic block is capable of carrying out both linear and
non-linear input spikes with short and long-term plasticity mechanisms available.
Some blocks are a group of sub-blocks designed to computationally represent the
theoretical model in which they are based upon. Finally, dendrite and axon circuit
blocks account for the spatial structure and interconnectivity of the overall system
allowing for an intricate and fully connected array of neurons [31]. Sub-segments of
each element can be manipulated for the desired implementation of a specific task or
model.
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The clear desire for neuromorphic architectures has led to further investigation
and developments of different synthetic synapse models. In recent years, atomic
switch systems have garnered much interest and are now being modeled and
investigated as synthetic synapses with the hopes of scaling them into a connected
network yielding synaptic densities and topographies similar to that of the human
brain.

ASICs
Carver Mead’s work in pioneering analog VLSI implementations for neural systems
set the foundation for early neurocomputing architectures, or neuroarchitectures. His
work clearly outlined the need for neurons and synapses (weighted connections
between neurons) for real-time processing on a single device capable of parallel
processing. Mead’s investigation of neural networks denoted that various frame-
works could be implemented for general purpose neurocomputers, however, the
neuroarchitecture will need to be uniquely designed while accommodating the
desired neural networks [7]. This presents the potential to develop rigid and highly
efficient task specific neurocomputers or, by contrast, versatile and tunable
neurocomputers utilizing a hierarchy of neural networks.

Early implementations of neurocomputers were achieved using application-
specific integrated circuits (ASICs) fabricated using CMOS VLSI technology. As
their name suggests, they were developed for the execution of specific tasks and
cannot be reconfigured at a later time by the end user. Each ASIC works as either as a
master or slave node interconnected in a ring or bus network which broadcast signals
based on their topology. The master node functions to control neurocomputation
while the slave nodes enable parallel processing, the backbone of ASIC’s efficiency
for neuroarchitectures. This system utilizes external memory for the storage of
neuron outputs and synaptic weights [32]. Efficiency and speed is ultimately
governed by the number of neurons on a chip. An issue with ASIC
neuroarchitectures is that they are developed for a specific neural network and are
not reconfigurable devices [33] despite this they are notably proficient at specific
tasks and highly power efficient.

3.2 FPGAs

Field-programmable gate arrays (FPGAs) while worse in raw performance than
ASICs, offer the added benefit of reconfigurability. FPGAs are designed to be
manipulated by the end user allowing for a great degree of flexibility in designing
FPGA based neuroarchitectures capable of functioning in an array of neural net-
works for prospective optimization in ASIC implementations. Despite their lower
performance, FPGA’s re-configurability and capacity to perform parallel processing
has overshadowed ASICs in the development of neurocomputers [33].

As FPGA architectures continue to garner interest, programming frameworks
have been developed to simplify their manipulation. The Open Computing
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Language (OpenCL) platform has been designed to allowing programming through
a heterogeneous array of hardware components including FPGAs. Intel has demon-
strated a convolutional neural network (CNN) implementation using this platform
which currently outperforms traditional CPU based CNNs with a significant increase
in efficiency [34]. Advances in software continue to expand the use of FPGAs for a
wide array of applications.

Continued developments in FPGA architectures have demonstrated their profi-
ciency as accelerators in deep convolutional neural networks [35], Qiao et al. have
developed an FPGA accelerator compatible with Caffe software, which is currently
implemented in a wide array of CNNs. A comparison of their FPGA (Xilinx Zynq)
accelerator to a traditional CPU (Intel Xeon X5675) and GPU (Nvidia Tesla K20)
based CNNs shows FPGAs are superior in versatility and power efficiency to CPUs
[34]. While GPUs still offer the capability of much higher performance (486 Gflops
to the Zynq’s 77.8 Gflops), the large disparity in power consumption (235 W to the
Zynq’s 14.4 W) implicates FPGAs as the most power efficient device to be
implemented in the acceleration of CNNs. Future advances in GPU and FPGA
technology may alter this trend.

3.3 Graphics Processing Units (GPUs)

The term graphics processing unit, or GPU, was promulgated by NVIDIA in 1999 to
mark the release of the world’s first such device, the GeForce 256 [36]. This GPU
was touted as an incredible advancement in the world of computer hardware,
possessing approximately 23 million transistors (NVIDIA boasted at the time that
this was twice as complex as a Pentium III processor) and possessed 50 gigaflops of
floating-point calculation capability [36]. Nearly two decades later, GPUs have made
enormous strides in power and capability. The most powerful GPU as of 2017 is
NVIDIA’s Tesla V100, a device possessing 21 billion transistors, over 5000 cores
providing 120 teraflops of performance for deep learning applications while drawing
only 300 W of power [37]. Thus, these units have increased in processing power by
over four orders of magnitude over the last 18 years.

As GPU power increased over time, interest in them from individuals and
organizations outside the computer gaming community grew significantly. In the
quest to expand upon the capabilities of existing computing architectures and
platforms, academic research groups began evaluating GPU’s viability for
performing certain tasks previously delegated to supercomputers. In 2012,
researchers at the University of Toronto demonstrated that GPUs could be used to
drastically improve tasks related to computer vision and deep learning, such as
image reconstruction, by using the GPUs to run deep neural networks [38]. These
GPUs displayed significant performance gains relative to traditional computer
processor-based neural networks thanks to their massively parallel architecture
involving thousands of individual processor units and exceptional processor-to-
memory bandwidth.
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Since that time, companies, particularly NVIDIA, have helped lead the way
toward an artificial intelligence revolution with the use of GPUs [39]. GPUs are
now utilized extensively by companies and universities involved in the fields of big
data, machine learning, and genomics, among others [39–41]. GPUs are also seeing
increased utilization in areas of academic research as more coding languages and
libraries, such as C and FORTRAN, are updated to take advantage of the parallel
processing power of this architecture.

3.4 Purpose-Built Chips and History

With an exponentially growing interest in neuromorphic architectures, many
researchers began further pursuing their development. In 2005, Fast Analog Com-
puting with Emergent Transient States (FACETS) launched a research initiative
funded by the UK to implement brain-like hardware architecture for neuromorphic
computing. The project concluded in 2010 with a VLSI implementation of a
traditional CMOS fabricated device containing 400 neurons and 100,000 synapses
[42]. In 2011, brain-inspired multiscale computation in neuromorphic hybrid sys-
tems (BrainScaleS) intended to expand upon FACETS work and concluded in 2015
with an architecture containing 1.6 million neurons and 400 million synapses. In the
middle of the BrainScaleS project further interest in neuromorphic architectures
arose.

In 2013, the Information and Communication Technologies (ICT) of the EU
launched the Human Brain Project. This comprehensive research initiative aimed to
advance our understanding of the human brain through numerous fields including
neuroscience and computation. In the field of neuromorphic architectures, this
flagship intends to refine and expand upon the work of FACETS and BrainScaleS.
The same year, the United States launched the Brain Initiative under the Obama
administration with similar intent and currently funds numerous agencies including
DARPA, NIH and NSF. Through this funding neuromorphic based projects continue
to progress.

As these architectures advance, hardware has begun to be designed for task
specific applications. IBM has developed TrueNorth, a brain inspired device suitable
for complex applications which utilize neural networks. TrueNorth is a 5.4 billion
transistor chip containing 4096 neurosynaptic cores interconnected to an intrachip
that utilizes 1 million programmable spiking neurons and 256 million configurable
synapses; it consumes a mere 70 mW and is able to process 46 billion SOPS, per
watt. This greatly exceeds the limit of energy efficient super computers which are
only capable of processing 4.5 billion FLOPS per watt. This device has demon-
strated high fidelity multi-object recognition in real-time capable of discerning
objects based on different classes (i.e. person vs. cyclist). TrueNorth highly excels
in task specific applications which do not require reconfigurability similar to ASICs.

The Spiking Neural Network Architecture (SpiNNaker) is on ongoing project
which aims to have 1 million ARMs processors in parallel. Unlike TrueNorth which
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is optimized for specific tasks, SpiNNaker has implemented a versatile, tunable
neuromorphic architecture in the same vein as FPGAs at the cost of power effi-
ciency. Both architectures have been designed for scalability and can accommodate
cascades of devices allowing for easier implementations of larger systems.

Qualcomm Technologies Zeroth Machine Intelligence platform has also devel-
oped a deep learning software development kit (SDK) which has brought the power
of deep learning to mobile devices. This breakthrough has removed the need to
connect to a cloud server to utilize the benefits of deep learning and gives mobile
phones the innate capability to perform numerous complex tasks like facial recog-
nition, object tracking and natural language processing [43].

3.5 ASNs for Computing

ASN devices exhibit various properties associated with atomic switches and other
memristive systems [44], the latter defined as a system with its internal resistance
based on electric flux [45]. Such properties include but are not limited to a requisite
forming step and distributed, frequency-dependent hysteretic switching among a
collection of dynamically interacting elements. In addition, the functional topology
of ASNs has been shown to produce a diversity of complex behaviors, ranging from
distributed memory function to emergent critical dynamics similar to those found in
both fMRI/EEG of biological brains and multi-electrode array (MEA) studies of
neuronal populations [15].

Observations of power-law scaling in various device dynamics and a ‘fading
memory’ property of learned states have implicated as an essential component for
applications of reservoir computing (RC) using critical states. Initial progress in the
use of ASNs as nonlinear reservoirs capable of task performance in the RC paradigm
has shown through simulation and experimental implementation of a benchmark
task known as waveform generation.

Based on extensive studies of the dynamical response of ASNs (Fig. 4), these
devices have been identified as an ideal platform for hardware-based reservoir
computation [46]. ASN devices have shown, through both experiment and simula-
tion [47–49], to be a viable platform for hardware-based RC toward applications in
pattern recognition, prediction and logic. Based on their ability to integrate, segre-
gate, store and respond to external stimulus, the utility of ASNs as nonlinear
reservoirs has been demonstrated through implementation of multiple benchmark
tasks including: (1) waveform generation [48] and (2) various logic operations
(AND, OR, XOR) (see Sect. 3.2). The speed, density, and [50] scalability of the
ASN serve to overcome major hurdles in the RC paradigm.
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4 Building the Atomic Switch Network

Designing a system capable of neuromorphic computation requires adequate func-
tionality in terms of non-linearity, persistent activity, and recurrent structures. In
addition to these metrics, a chip must be power efficient in order to be a viable option
for industrial applications. Keeping these requirements in mind our group sought to
harness the inherent properties of individual atomic switches (non-linearity, quan-
tized conductance, and memory) and use them as artificial neurons in this device.
Through these means, a device was fabricated using both top-down and bottom-up
methods. The atomic switch network (ASN) consists of highly recurrent structures
that produce dynamic activity through space and time. These networks produce
non-linear responses and their emergent behavior is much more complex than that of
its individual junctions. This dynamic system’s emergent distributed behavior also
provides a diverse array of output signals. Configured as neuromorphic chips, ASN
devices are capable of performing alternative types of computing.

Atomic Switches as Synthetic Synapses
Establishing specific connections between patterns of electrical activity and brain
function is a difficult task that requires studying general features of neuronal
structure in order to determine the essential properties required to construct a device
capable of learning in a physical sense. These features are believed to include
synaptic plasticity, allowing physical reconfiguration of the network to enable
functional differentiation and the development of hierarchical structures, which all
possess correlated memory distributed throughout the dynamically coupled synap-
ses. Therefore, it can be inferred that learning capacity is connected to dynamic
activity within the brain. Specifically, a near-critical or “edge of chaos” operational
regime [51] has been associated with the fast, correlated response to stimulation
necessary for computation and learning. Though extremely attractive as a construct
for developing computational machinery whose operation results from intrinsic
critical dynamics, the production of such a device in hardware has proven a daunting
task, with ASN devices being one of the few successful demonstrations in the
scholarly literature.

The first experiment to measure the transition from an electron quantum tunneling
to single point contact regime was reported in 1987 using a scanning tunneling
microscope (STM) in ultra-high-vacuum (UHV) on a silver surface [52]. Current-
distance characteristics showed that, at sufficiently small tip-surface gaps, an abrupt

increase in conductance, G, of � 2e2
h � 1

13 kΩ which is the quantized unit of conduc-
tance. Subsequent theoretical analysis verified that at small gap distance the effective
tunnel barrier collapses prior to point contact via ballistic electron injection

[53]. Later work demonstrated further jumps of � n 2e2
h , where n ¼ 1, 2, 3. . . in the

conductance occur as the contact area is increased. Such observations were not
limited to STM experiments; even two macroscopic wires brought in contact also
displayed this effect, albeit in a less controlled manner. Quantized conduction, also
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introduces Landauer’s concept of transmission where the term t is the
transmission [54].

G ¼ 2e2

h

X

n
tn

In 2002, experiments by Terabe et. al found that Ag atoms could be transported
through an STM tip made of silver coated with silver sulfide and deposited on a
surface in a controlled manner [55]. The characteristics of this process also occurred
via quantized conduction. However, the mechanism involved ion migration under
the influence of an electric field, a process called ‘electroionics’ meaning that in
addition to electron motion, ion motion also occurs simultaneously. Normally ionic
diffusion processes on the macro-scale are considered to be slow, but when they are
induced on the nanometer scale, they are actually quite fast and can occur on a (sub-)
nanosecond time scale depending on the geometry and dimensions of the junction. In
2005, using junctions fabricated using conventional microelectronics, Terabe et al
demonstrated atomic switching in silver sulfide junctions with discrete and revers-
ible quantized jumps from n ¼ 1 to 10. This was the birth of the “atomic switch”.
Since that date, a number of researchers have observed quantized conduction in a
wide range of materials including sulfide junctions of copper, tungsten sub-oxides as
well as various metal-doped polymers.

Aside from the fundamental science of their quantization, interesting electronic
features of atomic switches are pinched hysteresis, large ON/OFF conduction ratio,
MHz switching speeds and volatility characteristics as well as CMOS compatibility
because of their potential in digital electronic memory applications. Indeed, NEC
recently have incorporated atomic switch technology into field programmable gate
arrays (FPGAs) where a reduction in device foot print, speed, and energy consump-
tion was achieved by replacing certain memory tasks, normally using transistors,
into the circuitry [56].

Additional atomic switch functionality was reported in 2011 when studying
switching near-threshold conditions [57, 58]. It was found that atomic switches
have an on-off memorization property of past switching events. For instance if
switching is performed infrequently, the switches remain in the on-state only briefly
whereas if frequent switching events are made in rapid succession then the on-state
persists for a longer time. A series of careful experiments were able to relate these
physical observations to a psychological model of learning call the Akinson-
Schriffin multi-store model. The essence of the model involves sensory memory
(SM), short-term memory (STM) and long-term memory (LTM). New information
arrives to the brain as sensory memory and that information is passed to short-term
memory. In the absence of similar stimulation, information is forgotten. However, if
the process is repeated many times the information is moved into long-term memory.
Think of learning to play a tune on a piano by diligently practicing repeatedly. In
terms of bio-inspiration the operational characteristics of the atomic switch under
threshold switching also related to characteristics of biological synapses. The atomic
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switch therefore has also been called a synthetic synapse where memory is
represented by conduction state.

The next step in creating a ‘brain inspired’ device is the fabrication of networks of
synthetic synapses (Atomic Switches). Taking the neocortex as a biologically
inspiration, self-assembly was used to incorporate atomic switches into a dense
dendritic tangle of silver nanowires resulting in a density of ~108 connections/cm2.
In response to electrical inputs which inject energy into the network, these networks
exhibit self-organization, critical power law dynamics and spatio-temporal
non-linear outputs at a multiple electrodes. The device is called an Atomic Switch
Network (ASN) and is described in detail in the next section.

4.1 Network Fabrication

Several routes to fabricate functionally complex recurrent networks have been
experimentally explored, including: seed free networks, random seed networks,
and patterned seed networks. The seeds are small areas of deposited copper that
react in solution to generate silver wires through electroless deposition. The pat-
terned seed networks proved the most versatile, and utilized a combination of
top-down with bottom-up fabrication, a powerful general fabrication approach
known as nanoarchitectonics. Initial approaches on implementing atomic switches
into a network topology consisted of pipetting 150 μL of an isopropanol suspension
(149.8 mg Ag/L) of monodisperse silver nanowires (120–150 nm � 20–50 μm,
Aldrich) onto a substrate and allowing to air dry. These devices were then activated
using the technique described in Sect. 4.2 and non-linear IV curves were subse-
quently observed. However, the non-uniformity in the dispersion of nanowires
initially caused concern in the area of spatially distributed activity.

With a density controlled network in mind, electrochemistry was used to grow a
recurrent silver network via copper seeds. Following the galvanic reaction below,
network growth occurs through an electroless deposition (ELD) reaction via indi-
vidual atom displacement reactions between Ag+ and Cu0 based on respective
electric potentials. A spontaneous ELD reaction is preferred over an electrically
induced reaction to minimize artifacts and maintain the delicate nature of the
electrochemical reactions. Here, silver atoms are oxidized while copper is reduced
during the galvanic displacement reaction.

Cu sð Þ þ 2 Agþ aqð Þ ! 2 Ag sð Þ þ Cu2þ sð Þ ΔE ¼ �1:26 V

Using this ELD reaction, a random seed network was fabricated by pipetting a
1 mL aliquot of copper microspheres 1–10 μm (99.995% purity, Alfa-Aesar) which
was then air dried. Silver nitrate (50 mM) was pipetted (20 μL) onto the center of the
device. Following the ELD described above, silver dendritic structures
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spontaneously formed a complex network. Again, network density exhibited
non-uniformity due to the stochasticity associated with drop casting metal
suspensions.

Successful implementations of the ELD reaction above allowed us to design a
technique using highly patterned top-down photolithography combined with com-
plex spontaneous and self-organized growth. The patterned seed networks consist of
a 2 μm layer of AZ nLOF 2020 (a negative photoresist), a soft bake, followed by UV
photolithography, and a post-exposure bake. This resist is developed in MF26A,
rinsed with isopropanol, and a 300 nm layer of copper is then deposited and lifted off
overnight in acetone. At the end of this process, a patterned grid of copper posts
300 nm high is left. The size and pitch of these posts were refined over time to give
the most desirable silver crystal growth [59].

When first designing a purpose-built device to emulate mammalian brain activity,
dendritic silver structures were desired. Experimentally we find that by changing the
size of the copper posts, a morphological transition occurred and a seed site of
1 � 1 μm up to 3 � 3 μm leads to fine long rhizome-like nanowires. Seeds between
3 � 3 μm and 10 � 10 μm yield a mixture of nanowires with branched dendritic
structures, while posts larger than 10� 10 μm produce predominantly dendrites [59]
(Fig. 1).

Fig. 1 Above are SEM images depicting the morphological transition seen from changing seed
size. Branching dendritic crystals occur above 10 μm posts, while below 3 μm nanowire growth
along the (111) lattice is observed. Intermediary post sizes yield a mixture of dendrites and
nanowires (Avizienis Crystal Growth & Design)
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4.2 Network Functionalization

Devices are functionalized through the deposition of an insulator onto metallic
nanowires. In the case of Ag|Ag2S|Ag, a temperature controlled sublimation of
cyclooctasulfur (S8) is then directed from a sulfur chamber to another chamber
containing the sample using a carrier gas. Sulfur gas is exposed to the silver networks
for 5 min and the ASN chips are then removed and stored in vacuum. A slow
diffusion reaction governs the movement of sulfur into the silver lattice, which can
be assessed by monitoring the electrical this time resistance of the device and if
necessary consecutive sulfurizations are performed to obtain the optimum sulfide
coverage. The surface chemical reaction can be written as:

S8 gð Þ þ 16 Ag sð Þ ! 8Ag2S sð Þ

Once the desired resistance is reached, the network is initialized in a process
called electroforming by sweeping a triangular voltage waveform across the network
via the contact electrodes. The triangular sweeps induce a current flow across the
device through complex pathways, and with adequate voltage, the device is able to
form tiny filaments. A multitude of junctions form creating a conductive pathway to
ground, and thus increased current. This increasing current flow through the device
can be seen in Fig. 5 and depicts this electroformation of numerous nanofilamentary
pathways throughout the atomic switch network.

4.3 Device Fabrication

Over the years there have been multiple generations of ASN devices, starting with
simple two electrode devices all the way up to 128 electrodes chips. Devices with
4, 16 and 128 electrodes are shown in Fig. 2. Patterned seed networks consist of a
2 μm layer of AZ nLOF 2020 (a negative photoresist), a soft bake, followed by UV
photolithography, and a post-exposure bake. This resist is developed in MF26A,
rinsed with isopropanol, and a 300 nm layer of copper is then deposited and lifted off
overnight in acetone. Copper lift off occurs leaving a patterned grid of copper posts
~300 nm thick. These patterned seeds enable a level of network density control not
previously realized in earlier experiments. The process provides a level of repro-
ducible control over the spontaneous growth of materials that are CMOS compatible
and most importantly for alternative computing: structurally complex.
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4.4 Measurement Platform

The ASN measurement platform was custom designed in CAD and 3D printed
(MakerBot Replicator 2.0). ASN chips sit on the bottom of the platform and are
attached with gold spring-loaded pins. These pins connect the measurement hard-
ware to the outer electrodes of the ASN chip. Measurement hardware consists of a
source measure unit ((National Instruments Model 4141), two data acquisition cards
(National Instruments Model 6368), and a switching module (National Instruments
Model 2532). These units allow for the ability to define each electrode as an input or
output (I/O) signal, specific signals to source, and concurrently record these input
signals as well as record spatially-distributed voltage traces that percolate through
the network. All measurements on the multielectrode array are performed and
recorded simultaneously. Control software for the ASN device was coded in
LabView 2012 (National Instruments). Post analysis work was done in MatLab
2010b (MathWorks).

Fig. 2 Different generations of ASN devices are shown above. Chips include (a) 4 electrode
device, (b) 16 electrode, and (c) 128 electrode ASN. Inner networks of each device are shown on the
bottom row (d–f, scale bars ¼ 100 μm, 1 mm)
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5 Results: Atomic Switch Network Dynamics

5.1 Operational Characteristics of the Atomic Switch

Experimental studies into the operational characteristics of atomic switches has
recently promulgated attention from the perspective of modeling and simulation.
Atomic switches are known to operate through two mechanisms: (1) formation/
dissolution of conductive filaments, and (2) a phase transition between monoclinic
acanthite (α) and body centered cubic argentite (β) within Ag2S. Application of a bias
voltage across the junction has been shown using transmission electron microscopy
to induce the formation of nanoscale conducting channels across the Ag2S interface
through a bias-catalyzed phase transition, converting the surrounding α-Ag2S matrix
to the conductive β-Ag2S phase which exhibits high super ionic mobility (Fig. 3).

Voltage Pulsed STM/LTM
In the absence of continued applied bias, the conductive channels eventually return
to their stoichiometric, thermodynamically favored equilibrium state, reverting the
atomic switch to its initial high resistance. This transition gives rise to a weakly
memristive behavior prior to the formation of Ag filaments across the interface.
Continued application of bias voltage results in a concurrent increase in current
through the device, which then further drives migration of silver cations toward the
cathode. At the cathode mobile silver cations are subsequently reduced to metallic
Ag0, forming a highly conductive Ag nanofilamentary wire. The completion of this
filament results in a strong transition to an ON state defined by a significant increase
in conductivity with a typical conductance ON/OFF ratio of ~105 [59]. Removal of
the applied bias results in filament dissolution as the device again returns its
thermodynamic equilibrium state. The completion and dissolution of this filamentary
structure characterizes strongly memristive behavior. Continuous application of a
bias voltage serves to increase filament thickness as additional silver cations are
reduced, causing thickening of the metallic filament. This dynamic process has been
shown to alter the dissolution time constant, and can be externally controlled by
changing the input bias pattern (e.g. pulse frequency). Such changes in volatility can
be interpreted as long-term or short-term memory (LTM and STM) (Fig. 4).

Ag+

Ag2S

Ag(s) Ag(s)

µv

w(t)

Fig. 3 Atomic switches are comprised of an Ag|Ag2S|Ag junction. Applied electrical bias causes
Ag cation migration to the cathode where it is reduced, forming a stable metallic filament, resulting
in resistance change. This migration is modeled by the filament length w(t), Ag cation mobility μv
and additional stochastic terms (Sillin Nanotechnology 2013)
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5.2 Device Activation and Switching

The ionic resistive atomic switch has been shown to exhibit fascinating electrical
properties analogous to short- and long-term plasticity at single synaptic junctions
while operating as a two-terminal device controlled through formation/annihilation
of a metal filament within a Metal-Insulator-Metal (MIM) interface. However, the
behavior of a collection of atomic switches directly coupled both spatially and
electrically is as of yet unknown. In common with the current understanding of
switching mechanisms in devices based on Ag2S, TiO2, and Ta2O5, our network
required an initial forming step to create a short-lived high conductivity ‘ON’ state.
As measured by current-voltage (I-V) spectroscopy, ASN devices demonstrated
non-linear I-V characteristics comprised of a sequential decrease in network resis-
tance with consecutive bias sweeps followed by an abrupt transition to the activated
‘ON’ state. This cascade-type activation required a higher switching voltage (~7 V);
however, they exhibit similar time constants (μs) to single atom switches. The
switching behavior in the fractal network is attributed to an increased spreading
resistance of many individual switching interfaces. In contrast, un-sulfurized control
devices comprised of a purely metallic network have substantially lower resistance

Fig. 4 Resistive switching and long/short term memory effects in at an Ag-Ag2S-Ag junction arise
from (a) increased Ag+ mobility in the presence of an externally applied electric field. (b) Short
pulses reduce Ag+ to form a conductive Ag filament which will quickly re-dissolve in the absence of
an applied bias acting as short term memory. (c) Longer pulses of the same amplitude are capable of
generating long lasting filaments acting as longer term memory. This likely arises from a combi-
nation of multiple filament formations, thicker filaments formed and Ag+ ions which have irrevers-
ibly crossed a grain boundary until the external bias is removed (AZ Stieg Memristor Networks
2014)
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(<100 Ω) and demonstrated repeatable linear, ohmic I-V characteristics at interme-
diate voltages (�3 V) followed by irreversible breakdown (melting) at high bias
(Fig. 5).

Reproducibility of the switching behavior observed in single atomic switches,
i.e. I-V hysteresis, short- and long-term memory, and device activation, were
validated using the ASN simulation. In addition, the simulations faithfully
reproduced the various emergent properties specific to the ASN architecture.
These efforts allow detailed investigation of internal dynamics of the network
where it would otherwise have been experimentally impractical. Similar to the
electroforming step observed in individual memristive elements, ASNs must
undergo an activation process before they display memristive and emergent behav-
iors [44, 60]. Freshly fabricated ASNs contain Ag2S interfaces in their
low-temperature insulating phase and function as quasi-ohmic resistors. Bias voltage
sweeps of the virgin-state network devices exhibited weak memristive/soft switching
behavior as silver cations initially migrate into the junctions and are characterized by
pinched hysteresis current-voltage curves with a small RON/ROFF ratio and a
smooth transition between the two states (Fig. 6a). Continued application of a bias
voltage produced an abrupt, nearly discontinuous jump to a state of higher conduc-
tance (Fig. 6b). Repeated stimulation with bipolar bias voltage sweeps produced
strong memristive/hard switching behavior, typified by abrupt switching between
two distinct resistance states (Fig. 6c). While parameters such as threshold voltage
and the RON/ROFF are to an extent device specific, the qualitative transition from
weak to strong memristive behavior is a general property of the ASNs.

This observed phase transition has been theoretically predicted in simulations of
memristor networks [61] and was reproduced in ASN simulation [49]. The transition
from soft to hard switching results from the emergence of distinct spatial patterns
corresponding to individual hard and soft switching elements (Fig. 6a0). The initial
weakly memristive state was characterized by a large fraction of soft switching
junctions. As net flux through the network increased, connections became increas-
ingly polarized and conductive. Continued stimulation eventually yields the forma-
tion of a percolative pathway comprised of conductive, hard switching elements
across the simulated network (Fig. 6b0). Completion of this pathway results in a

Fig. 5 Activation sweep of an ASN device showing the electrically induced filament formation
step. A signal of +/– 3 V was input in one corner of the device at a frequency of 10 Hz and current
was collected across the network (Avizienis PLoS 2012)
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dramatic change in conductance associated with the activated state and a concurrent
shift from weak to strong memristive behavior. Subsequent hard switching was
observed following the destruction of this highly conductive pathway, as strongly
memristive elements were redistributed throughout the network, increasing the
probability that connecting a given link would create an equivalent highly conduc-
tive path (Fig. 6c0). This is an example of a dynamical self-organization process:
different ASNs can have very different initial conditions, yet the basic features of
their functional units and network topology cause similar patterns of behavior to
emerge during activation and subsequent operation.

Based on experimental and simulation results, a description of physical processes
in the ASN was formulated to describe the activation process based on the two
mechanisms described in the preceding paragraph: a bias-catalyzed phase transition
of Ag2S, and the subsequent Ag filament formation. A weakly memristive effect is
caused primarily by a distribution of phase-transition driven atomic switches, with a
small fraction of filamentary driven switches. As overall conduction and the fraction
of hard switching elements increases, the electric field intensifies across the
remaining soft switching junctions, encouraging further filament formation. Network
response changes from weak to strong memristive behavior when a percolative
pathway of hard switching junctions forms across the network. Having undergone
this transition, the continuously swept network operates as a hard switching
memristor, as only a few local switching events are required to reconnect an
equivalent path.

5.3 Coupling and Harmonic Generation

Individual atomic switches were shown to be directly coupled in configurations
using a shared ionic conducting layer, even when separated by large distances.
Spatially distributed atomic switch junctions interact through local variations in
ionic concentration and electrochemical potential that depend on the combined
electrical resistance of the entire network as well as the configuration, or state, of
all other electro-ionically interconnected switches.

While ‘weak’ and ‘strong’ behavior can be exhibited by single elements, the most
interesting features of this complex atomic switch device are its network-specific
properties. Infrared imaging was used track Joule heating from current flow during
DC bias sweeps in order to confirm distributed network conductance. The IR images
(Fig. 7) show power dissipation occurring across the network, indicating that the
phase change in network I-V behavior was not attributable to percolation but rather
due to the sum of parallel current flows, meaning that network structure and
connectivity actively influence device function. Additional evidence for the distri-
bution of switch function stemmed from the analysis of the device’s frequency
response. Theoretical simulations indicate that second harmonic generation will
occur under an applied sinusoidal voltage in networks whose percentage of hard
switching junctions exceeds the percolation threshold. Furthermore, the relative

224 R. Aguilera et al.



magnitude of higher harmonics increases with the relative number of hard switching
junctions. Device response to a 10 Hz sinusoidal voltage signal revealed a large
increase in higher frequency components after functionalization (Fig. 7). The pro-
portion of higher harmonics generated increases with signal amplitude, indicating
that the network contains a distribution of switching voltage thresholds. As the bias
voltage increases, so does the number of memristive junctions operating in the hard
switching regime, producing a larger degree of higher harmonic generation. This
confirms the IR observation of distributed activity throughout the network, with
different regions activating at different voltages.

5.4 Memory and Plasticity

A general objective in designing a functional device platform included a direct
interface the between memory/logic elements embedded in ASN architecture and
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Fig. 7 Network-specific behaviors. (Left) Representative IR image (sensitivity <20 mK) of Joule
heating in atomic switch network during bias sweeps indicating current flow distributed throughout
the device. Electrode positions are indicated by dashed lines. The image was taken from data
integrated during <1 min of bias. (Right) Frequency Response (a) Fourier transforms of a
functional device’s current response (black) to a 2 V, 10 Hz sinusoidal input signal shows enhanced
overtones of the input signal with respect to a control device (gray). (b) Plot of normalized
amplitudes (χ) of 2nd and 3rd harmonic generation for varying sinusoidal signal voltages in both
functional (black) and control (gray) networks. Sulfurized networks generate higher harmonics, as
was theoretically predicted for random memristor/resistor networks with 80% or more strongly
memristive (switching) elements
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externally controlled input/output contact electrodes allowing for data processing. In
the current device configuration, ASNs can only be electrically probed using the
macroscopic interface electrodes. It was therefore essential to confirm that these
electrodes could be effectively coupled to local ensembles of atomic switches within
a particular spatial region of the network. Experimental observations of network
plasticity [44] as a mechanism for the formation of feedforward pathways within
ASNs was addressed through simulation [49] as seen in Fig. 8. Monitoring the
conductance of all electrode combinations throughout the stimulation regimen
revealed dynamic patterns of activity in regions free from intentional manipulation.
The coexistence of localized changes in network connectivity alongside complex
system-wide correlations suggest a capability for autonomous, higher-dimensional
information processing through formation of specialized functional regions.

5.5 Fluctuations, Correlations and Power Laws

Our group examined the ASN device for emergent properties considered fundamen-
tal to brain function, which are not observed for individual atomic switches operating
in simpler geometries, namely recurrent dynamics and the activation of feedforward
subnetworks [44]. The presence of recurrent loops and dynamics within the ASN
devices were demonstrated by applying a constant DC bias (Fig. 9a) across a
particular region of the network. This produced persistent, bidirectional fluctua-
tions—both increases and decreases—in network conductivity.

Fig. 8 (Left) Simulation of spatially overlapping channels being modified independently by write/
rewrite pulses, emulating the 2-bit switching functionality of actual device behavior (inset). (Right)
Simulated internal network configurations (N ¼ 219) at different ON/OFF configurations describ-
ing the formation of feedforward assemblies. In ON states of the network, conductances do not
distribute uniformly. In fact, the simulation shows that several different configurations may
correspond to the same ON/OFF channel configuration depending on the history of channel
switching. For example, the internal configurations responsible for the ON of channel A at the
two time points when it is activated before/after the activation/deactivation of channel B (blue), is
shown
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In the absence of recurrent structures within the network, conductivity would
increase monotonically under constant DC bias, as in the case of a single atomic
switch. However, bidirectional fluctuations in the current response persisted for
several days under constant applied voltage, demonstrating that the complex net-
work connectivity inherently resists localized positive feedback that would lead to
the serial formation of a single, dominant high conductivity pathway between
electrodes. Previously unreported current fluctuations of this kind are ascribed to
recurrent loops in the network that create complex couplings between switches,
resulting in network dynamics that do not converge to a steady state even under
constant bias. A single switch turning ON does not simply lead to an increased
potential drop across the next junction in a serial chain, but redistributes voltage
across many recurrent connections that can ultimately produce a net decrease in
network conductivity. These fluctuations are not attributable to noise, as shown by
comparing the Fourier transformed current responses (Fig. 9b) of the devices to
constant voltage before and after functionalization. The formation of atomic switch
junctions expands the degree of correlation in current fluctuations, producing 1/f-like
behavior across the entire sampled range. This behavior is distinct from that of
control devices (unsulfurized silver network, grey line in Fig. 9b), which flattens to
white noise and some high energy, high frequency fluctuations attributed to arcing
between neighboring wires.

Fig. 9 DC response (a) time traces of current response to 2 V DC bias show current increases and
decreases at all time scales around a mean of 5.81 μA (standard deviation 0.88 μA), behavior
specific to recurrent AS networks. (b) Fourier transforms of DC bias response for Ag control (grey)
and functionalized Ag-Ag2S (black) networks. The power spectrum of the functionalized network
displays 1/f power law scaling, indicating a high level of temporal correlation and memory
(Avizienis PLoS 2012)
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5.6 Distributed Switching/Correlations

Further examples of correlations within the network exist as local and global
switching events are monitored in the form of voltage fluctuations at each electrode.
With an applied DC bias, the network moves through different patterns of activity.
These patterns include local perturbations seen in rows (a) and (b) of Fig. 10, as well
as large cascading switching events distributed throughout the whole network
(Fig. 10c). Potential changes vary through time from low to high as current flows
throughout the complex architecture. Electrodes many orders of magnitude larger
than the individual atomic switches capture a general potential map along with the
separability of outputs. Thus, the highly recurrent and interconnected coupling of
individual switches leads to the emergence of distributed activity, which enables for
a wide array of outputs and in turn potential applications in alternative computing
paradigms.

5.7 Temporal Metastability and Criticality

To our knowledge, the atomic switch network represents a unique implementation of
a purpose-built self-assembled network composed of coupled non-linear elements
that clearly demonstrate the essential characteristics of criticality, specifically power-
law scaling of: 1/f fluctuations, energetic avalanches, as well as temporal metasta-
bility. The emergent complex behaviors observed in their temporally metastability
indicate a capacity for memory and learning via persistent critical states with

Fig. 10 Spatial temporal switching activity in the ASN is seen in rows (a)–(c). Each row represents
3 ms with a 0.5 ms frame rate while a 5 V DC bias was applied at the upper right electrode and
grounded at the lower left electrode. Both (a, b) localized switching, and (c) distributed switching
affecting the entire network are observed (Demis Nanotech. 2015)
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potential utility for the creation of physically intelligent machines capable of evolu-
tion and learning. In addition to the exciting behaviors described in Sect. 5.6,
complex networks of coupled nonlinear elements such as this commonly manifest
non-trivial spatiotemporal evolution through dynamic system reconfigurations. Such
reconfigurations, readily described by critical dynamics, enable enhanced mainte-
nance of system correlations and more effective signal propagation. Indicators of
criticality typically include power-law scaling of 1/f fluctuations and temporal
metastability. Analysis of the power spectral density of network conductivity in
the activated state revealed 1/f power law scaling over five orders of magnitude with
f� 1.4 (data not shown). Temporal metastability was observed during sub-threshold
pulsed voltage stimulation, analogous to methods employed in neuroscience to
probe cortical cultures. Under typical conditions, the current response fluctuated
over a wide range of metastable conductance states associated with discrete network
configurations (Fig. 11c–f), as classified by residence times in a given state ranging
from milliseconds (within a single stimulation pulse) to several seconds (across
hundreds of pulses). Comparing the probability of state duration with its time
duration indicated a power law distribution with �1.8 (Fig. 11e–f), indicating a

Fig. 11 Electrical characteristics of complex nanoelectroionic networks. (a) Experimental I-V
curve demonstrating pinched hysteresis; RON ¼ 8 KΩ, ROFF > 10 MΩ. (b) Ultrasensitive IR
image of a distributed device conductance under external bias at 300 K. (c, e) Representative
network current response to a 2 V pulse showing switching between discrete, metastable conduc-
tance states. (d, f) Temporal correlation of metastable states observed during pulsed stimulation
demonstrated power law scaling for probability, P(D), of duration. Power law scaling existed for
residence time both (d) within a single 10 ms pulse and (f) over 2.5 s during extended periods of
pulsed stimulation (Stieg Adv. Mat 2012)
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diverging temporal correlation length. Observation of both increased and decreased
conductivity during stimulation, similar to fluctuations under DC stimulation
described above, were again attributed to recurrent network dynamics.

Finally, opportunities for teaching and learning through utilizing metastable
critical states were initiated through close collaboration with our theoretical team.
This process required: the development of an analytical model for the complex
behavior observed in such devices, the design and implementation of teaching
algorithms, and exploration of means to interact with the network.

5.8 Altered Critical Power-Law Dynamics

ASN devices have also demonstrated altered power spectral density, or PSD, slopes.
As seen in Figs. 1 and 2, the mean current of a given state showed a marked
dependence on both the length of the state and the probability (P(D)) of its occur-
rence where longer state durations and increased activity, characterized by 1/f alpha
power-law scaling of PSD, were observed for intermediate mean current values. In
an effort to control these properties, a current-controlled feedback loop was
implemented in a similar fashion to that shown in Fig. 3. Real-time maintenance
of a defined current set-point between two arbitrarily defined electrodes was readily
achieved through application of an applied bias voltage (Fig. 14). While persistent
fluctuations in ASN conductance are known to exhibit non-trivial spatiotemporal
correlations characterized by power-law scaling of PSD [44, 46], procedures to
control such correlations have yet to be reported. Utilization of the current-control
approach provides a direct method to tune network dynamics as seen in Fig. 12,
where higher current setpoints generated larger, more rapid network reconfigurations
in the form of resistance switching as indicated by steeper PSD slopes (α) for both
current and local voltage. Reliable transitions between resistance states, and thus

Fig. 12 Representative probability distribution P(D) of metastable state duration (left) obeyed
power law scaling with exponents dependent on the mean current during a given state (right)
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regimes of operational dynamics, was achieved as seen in Fig. 13. Finally, cross-
correlation analysis of spatiotemporal correlations in device activity at various points
throughout the network provided further support of the current set-point as a control
parameter for network dynamics. During periods of limited activity, observed
correlations were attributed to shared background noise. Periods of activity, at higher
current set-points, resulted in a diversity of voltage recordings throughout the
network characterized by broadening of correlation coefficients.

6 Computing with the Atomic Switch Network

6.1 Theoretical Constructs

The ASN is one of a limited number of CMOS compatible platforms capable of
performing RC [62]. Within the context of the RC formalism, each atomic switch is a
functional node in the reservoir and the connective weights between each node are
mediated by the silver nanowires. The multi-electrode array on which the network is
grown can be adjusted to control input and readout functionality of the electrodes to
measure all nodes in 10–50 μm regions of the network. All necessary criteria such as
short-term memory, increased fault tolerance, and an arbitrarily scalable number of
higher-dimensional outputs are fulfilled by the ASN. The memristive behavior of
individual atomic switches bestows the ASN with a fading memory characteristic.
This ensures that previous inputs to the network do not exert considerable influence
over the current state. The power-law dynamics (Fig. 12) indicate that the system has
a scale-free topology that allows it to operate at the “edge-of-chaos,” a dynamical
regime providing a balance between memory and instability. The non-linear trans-
formations Fig. 14 are an intrinsic behavior of the system that can be harnessed to

Fig. 13 Representative example of power law (1/fα) scaling (left) of the PSD slope (α) which was
observed to depend on the mean value of the current output (right)
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increase performance. These transformations manifested as separable unique voltage
signals and are a consequence of the input signal entering a higher representational
space that is then used in reconstructing the desired target waveform. Unlike current
computational models of explicitly programmable algorithms, RC relies on systems
operating in a regime where they are able to ‘learn’ through experience,
circumventing the need for intelligent programming.

Generally, RC utilizes a randomly connected network, dubbed the ‘reservoir,’
composed of interacting elements called neurons with a topology based on mam-
malian brain neural networks. Information propagates through network connections
via electrical or electrochemical signals which are preferentially directed towards
neurons with the greatest connective strength. Neurons may be activated by the
incoming signal based on a set of learning rules causing them to undergo internal
modifications and excitatory transformation of the incoming signal. This stimulated
response of the neuron is then communicated through the neuron’s outgoing con-
nections, thereby allowing the signal to percolate throughout the network. Compu-
tation is achieved by recording outputs from a few neurons assigned during
initialization and these neurons are trained to achieve the desired functionality.
Training resembles the evolutionary phenomenon observed in biological and natural
systems adapting due to environmental changes. External stimulation of the reser-
voir allows the system to independently evolve into a number of diverse neurons due
to signal propagation and local interactions which activate and modify neuron
properties. Clusters of neurons are capable of displaying distinct activity and emer-
gent behaviors due to local interactions interplaying with signal percolation. Train-
ing selects a number of clusters desirable for computation and reinforces these
neurons for specialization into relevant mathematical processors. After the system
is properly trained using sample tasks, the neurons are passivated such that the
system retains the knowledge and experience for future computation. RC is both a
simple and elegant construction that avoids the need for absolute control over
programmable elements while capable of producing powerful processors due to
evolutionary concepts. Performance is controlled by neuron connectivity and distri-
bution of strong and weak connections. Operational utility is thus dependent on the
reservoir’s statistical characteristics and global parameters, focusing on emergent
qualities of the network instead of individual elements.

The non-linear dynamics exhibited by the ASN device is uniquely positioned to
be exploited using the paradigm of reservoir computing [49, 63]. Interactions
between atomic switches in the network produce non-linear transformations of
input signals not present in Ohmic resistors or single switches. The additional
non-linear transformations of the input signal increases the diversity of the output
signals and thereby increase output separability and potential for computational
capability. In the reservoir computing approach, the input signal undergoes a
projection into a higher dimensional representation space, which can be thought of
as an expansion of the output into a sum of mathematical elements [64, 65]. Having a
rich collection of elements provides a large repertoire of possible transformations of
the input via mathematical representation vectors. The separability and utility of
multiple transformations enable the construction of mathematical algorithms by
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integrating desired representations. Within this representation space, reservoir com-
puting is able to identify useful elements of the output function to attempt to solve a
specific task. Depending on the degree of non-linearity, which in turn determines the
size and resolution of the reservoir, a task may be optimally solved in this higher
dimensional representation space. In the ASN device, variations in connectivity,
atomic switch density, and junctions contribute to the degree of non-linearity by
creating a larger range of functional elements that have different activation and
operational voltages.

6.2 Implementations

6.2.1 Waveform Regression

Simulations of ASNs have indicated that the system has the fundamental capacity to
perform waveform regression [66]. From simulation results, performance depended
on the level of higher harmonics produced and the harmonic distortion (Fig. 16)
required for the specific task. For example, the cosine task only requires a shift in its
periodicity and, therefore, does not require extensive higher harmonic generation.
Conversely, the square wave task requires infinitely distributed harmonics to pro-
duce a straight line through wave interference. Further, voltage dependent simula-
tions showed that increasing device activation controlled these harmonic
generations. Here, the device was expected to perform in a similar way with task
difficulty increasing from cosine, triangle, sawtooth, and square due to increasing
harmonic requirements. Device initialization and activation to achieve the best
performance is described in the previous section.

Experimental performance of various waveform regression tasks using ASN
devices are presented in Fig. 15. To implement waveform regression the ASN was
stimulated with a bipolar sinusoidal voltage, inducing switching activity and placing
the network in an active state. The output potentials measured at each electrode were
then combined using the Moore-Penrose linear regression and optimized during a
training period [67–69]. Two-second epochs of data were used to evaluate the
ASN’s computational capability, where 1 s of data was allocated for both training
and testing. Performance was measured during a 1 s period after training where the
ASN accomplished various tasks (Fig. 15). The performance of the ASN was
quantified by calculating the normalized mean squared error between the target
and generated waveforms [70]. Here, the difference between error and unity was
used to calculate accuracy.

The ASN was capable in achieving up to ~90% accuracy using 62 of the
64 measurement electrodes for each task. Task complexity increased from cosine
to square wave due to the increasing mismatch between the sinusoidal input and the
target waveform. In the case of cosine generation, the overall waveform of the input
is preserved save for a shift in its periodicity. The cosine generation was the simplest
task where the ASN performed with the highest accuracy, ~90%. Note that the
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cosine regression shown in Fig. 15a would not be possible using a grid of regular
resistors due to their intrinsic linear response. Since individual atomic switches have
a non-linear memristive response, it is possible to harness that state function into the
highly recurrent structure of the ASN. The highly recurrent structure allowed higher
levels of coupled interactions that cannot be captured by a single atomic switch,
resulting in emergent behaviors. Particularly, the network was capable of producing
delayed responses and enabled the network to shift the phase of the input signal by a
half-wavelength, producing a cosine.

Figure 15b shows hardly any mismatch in the triangle generation, achieving a
similar ~90% accuracy and visually validates the performance metric used through-
out our analysis. A similar argument is used to explain the high performance of the
triangle wave when compared to the cosine task. The determining factor for reservoir
performance is the level of similarity between the target and input signal, where the

Fig. 15 Computation of a sinusoidal wave into various waveforms. The above figure shows several
waveforms (sawtooth, square, triangle, and cosine) produced using the ASN as a computational
device using the setup in Fig. 4. Each plot contains the desired signal (red) and the computed signal
(blue) with their accuracy w.r.t. the desired signal shown above the curves. All tasks share an 11 Hz
frequency for their waveforms and share the same dataset with only differences in the target task.
The dataset was approximately 1 min long, divided into 2 s epochs, and 1 s within each interval was
allocated for training and testing. A 1 s excerpt which best represents device behavior during testing
are shown above (Sillin Nanotechnology 2013)
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reservoir acts as a transformational operator to minimize dissimilarities. In both
cases, the target waveform is aesthetically similar to a sinusoidal wave and maintains
the overall shape of the input signal. Despite steeper edges in the triangle task, the
algorithm is able to correct any differences by selectively combining different
representations produced by the ASN.

The ASN generated sawtooth (Fig. 15c) waveforms with similar accuracy to
previously reported simulations of memristive networks at roughly 90% accuracy
[71]. Despite the requirement to produce an instantaneous drop, the ASN delivered
the sawtooth waveform with astounding accuracy. Figure 15c illustrates significant
mismatch between the target and generated waveform at the turning point leading to
a minor drop in accuracy. Basic visual inspection shows the sawtooth task retains the
overall shape of the sinusoidal input while the square wave task requires complete
transformation of the input signal into a two-valued function.

Figure 15d, on the other hand, shows significant mismatch throughout the series.
The square wave generation was carried out with roughly a 78% accuracy, which
was much lower than the accuracy of the other tasks. To recreate a straight horizontal
line, an infinite series of higher harmonics is necessary in order to satisfy the spectral
theorem in the algorithm [49]. Fourier analysis showed that the square wave task was
relatively selective in utilizing higher harmonics to construct the waveform. While
the sawtooth and square wave both require an infinite series of sinusoidal harmonics,
the square wave requires continuous constructive interference patterns to produce a
horizontal line, which limits it to odd or even harmonics and drastically diminishes
the regression algorithm. In this case, the ASN was only capable of producing a finite
number of higher harmonics. However, further post-processing such as setting a
threshold on the voltage to binarize the data can be performed to expand the device’s
response to a square wave input, a necessity for reliable Boolean logic
computing [72].

It was found that the ASN was capable of replicating computing performances
typical of reservoirs with 103 output signals [73]. Theoretical studies predicts the
performance to scale with an increasing number of output signals due to the
dependence on the regression algorithm [74]. However, how can a reservoir with
much fewer output signals outperform reservoirs with output signals orders of
magnitude higher than the ASN? Further inspection of the mathematical formalism
[74] show that performance is additionally characterized by the uniqueness of each
output signal. Obtaining a set of unique signals allows us to linearly combine the
output signals into a number of unique solutions, where the number of unique
solutions scales with the number of unique output signals. The larger set of solutions
increases the size of the “net” we cast which increases the probability and approx-
imation of producing the correct solution (Fig. 16).

6.2.2 Logic

Expanded efforts to assess their performance in Boolean logic operations using
non-temporal inputs based on randomized Boolean input streams. Zero and one

236 R. Aguilera et al.



bits were converted to negative and positive DC voltage pulses, respectively. Next, a
linear readout layer was applied to an array of voltage outputs from the device to
reconstruct target output signals for the given task. ASNs produced nearly perfect
results at low voltages for AND, OR, and NAND with more than 95% confidence.
XOR, which requires non-linearity to solve, was able to be partially solved at high
voltages with more than 95% confidence owed to stable, non-temporal, non-linear
behaviors in the device under optimized operational conditions. As opposed to
previous works which have investigated temporal computation in ASNs, this work
was the first to demonstrate semi-predictable, non-temporal, non-linear behavior
within the device. These results demonstrate that the device connectivity is complete
enough to perform complex computations. With a more comprehensive view of
ASN behavior, these devices will be capable of performing functions currently
implemented in CMOS while occupying less area and processing more inputs
simultaneously (Fig. 17).

Fig. 16 (a) Schematic of network simulation used in the waveform generation RC task, with
specific electrodes chosen as inputs/outputs (16 output electrodes). RC was implemented using a
10 � 10 node network with a 5 V, 10 Hz sinusoidal input signal and tasked to produce 10 Hz
triangle/square and 20 Hz sinusoidal waveforms. (b) Mean-squared error (MSE) for each task with
respect to driving amplitude showed minimal error in triangle/square waveform generation task at
10 V, corresponding to the onset of higher harmonic generation (see red curve of Fig. 6b).
Performance in the 20 Hz sinusoidal waveform generation task decreased when (c) the relative
amplitude of the average 2nd harmonic intensities of the readouts becomes increasingly diminutive.
These results correspond to a strong dependence on the 2nd harmonic for 20 Hz sine generation and
the need for HHG in triangle/square generation as expected by Fourier analysis (Sillin Nanotech-
nology 2013)
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7 Outlook

If we consider the future of A.I. certainly we are at a turning point in history where
increasingly we see the practically limitless applications in diverse areas such as
driverless vehicles, medical diagnosis—healthcare, climate prediction, even social
comfort. Our digital computer systems of today are nevertheless being pushed to the
ultimate limits of fabrication with the end of Moore’s Law in clear sight. In other
words, it will become prohibitively expensive to maintain the advances required for
A.I. to create a post-human world. The poor scaling of computer hardware and
software required as combinatorial complexity increases will not be overcome in
future von Neumann machines.

Predictions of increasing computational capacity in comparison to that of the
human brain or the “singularity”, as coined by Ray Kurtzweil are unlikely using
digital approaches. The scenario of computational equivalence to a human was
proposed to give rise to a sudden and massive increase in dominantly
non-biological intelligence, and we propose it can best be approached by using
biological inspiration in making a system that has physical operational characteris-
tics closer to ourselves. The Atom Switch and networks of them have a potential role
to play in Hybrid–CMOS morphic systems where methods such as Reservoir
Computation in physical analogue hardware can be integrated into a morphic system
that utilizes the optimum performances of CMOS digital with the ASN approach.
Already Atomic Switches have successfully integrated into FPGA devices by NEC
reducing energy consumption, footprint, size and transistor count [56]. The Atomic
Switch technologies are more robust in terms of sensitivity to electromagnetic noise
and radiation than Flash making them candidates for robotic and space satellite
applications. The key differences of the ASN approach to conventional computation
are in the elimination of programming and error correcting each step of a calculation
with the RC paradigm. Likewise, ASN devices use distributed fading memory not
RAM similar to living systems. The ability to handle multiple tasks in parallel is
another advantage of such an approach. Although accurate calculations of arithmetic
operations will always be superior in digital systems, analog systems such as the
ASN excel in decision making, or noisy and error prone data that have no precise
solution but rather a range of outcomes with a best guess of the outcome probabilities
a bit like Newtonian vs. Quantum mechanics where deterministic solutions are
replaced by probabilities. The potential impact of A.I. in society has become quite
heated in terms of the dangers it poses to our society and discussions of government
regulation (Elon Musk) and possibly imposing taxes on A.I. robots and systems have
even been proposed (Bill Gates). However, in many advanced countries there is a
future need for such technology as baby-boomers retire and the population of a
young work force declines A.I. will be essential in healthcare, welfare, national
security, and in many other areas of societal enhancements.
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