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Abstract. Restoring the desired performance of a pruned model
requires a fine-tuning step, which lets the network relearn using the train-
ing data, except that the parameters are initialised to the pruned param-
eters. This relearning procedure is a key component in deciding the time
taken in building a hardware-friendly architecture. This paper analyses
the fine-tuning or retraining step after pruning the network layer-wise
and derives lower bounds for the number of epochs the network will take
based on the amount of pruning done. Analyses on the propagation of
errors through the layers while pruning layer-wise is also performed and
a new parameter named ‘Net Deviation’ is proposed which can be used
to estimate how good a pruning algorithm is. This parameter could be
an alternative to ‘test accuracy’ that is normally used. Net Deviation can
be calculated while pruning, using the same data that was used in the
pruning procedure. Similar to the test accuracy degradation for different
amounts of pruning, the net deviation curves help compare the prun-
ing methods. As an example, a comparison between Random pruning,
Weight magnitude based pruning and Clustered pruning is performed on
LeNet-300-100 and LeNet-5 architectures using Net Deviation. Results
indicate clustered pruning to be a better option than random approach,
for higher compression.

Keywords: Pruning · Model compression · Deep neural networks ·
Retraining network

1 Introduction

Neural Networks have been widely used to solve different real world problems
in different arenas because of its remarkable function approximation capability.
Recently, Deep Neural Networks have attained much awaited attention across
various discipline. Despite of all the advances in the field of Deep Learning,
including the arrival of better and improved optimization algorithms and GPUs,
several questions are still puzzling. One of them is the optimum architecture size.
This includes, how one should decide the number of nodes and number of layers
for a network to solve a particular problem using the data set. Both the deep and
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shallow networks have their own share of advantages and disadvantages. This
makes it difficult for the network designer to create the optimum architecture.
Shallow networks exhibit better generalization performance and learn faster,
but have a higher tendency to overfit [5]. Deeper networks like LeNet-300-100
or LeNet-5 [12], form complex decision boundaries but avoids overfitting.

Model Compression techniques are inspired by the fault tolerance property
to network damage conditions, seen in larger networks. Pruning is one such
model compression technique. Introducing damage to the network purposefully
will compromise its performance in terms of accuracy. However, a procedure of
retraining can be used to regain the original performance. In general, the percent-
age reduction in accuracy is proportional to the amount of damage made. When
the damage to the network is rigorous, the network requires more retraining to
regain the desired accuracy on the particular data set. [18] conducted experi-
ments comparing the accuracy of large, but pruned models (large-sparse) with
their smaller, but dense (small-dense) counterparts and gave results stating that
the large-sparse models outperforms the small-dense models with 10× reduction
in the number of non zero parameters with minimal reduction in accuracy.

Major Contributions. The contributions of this paper are summarized as follows:
(1) We derive theoretical bounds for the number of epochs a pruned network will
require to reach the original performance, relative to the number of epochs the
original unpruned network had taken to reach the same performance. (2) We
derive a relation bounding the error that will be present at the output based
on layer-wise error propagation due to the pruning done in different layers. (3)
A new parameter ‘Net Deviation’ is proposed, that could serve as a measure
to select the appropriate pruning method for a particular network and data, by
comparing the net deviation curves for these methods for different percentage
of pruning. This parameter could be an alternative to ‘test accuracy’ that is
normally used. Net Deviation is calculated while pruning, using the same data
that was used for pruning. The detailed proofs of the stated theorems are given
in the Appendix.

2 Related Works

Research in the area of architecture selection has led to different pruning
approaches. Recently, obtaining a desired network architecture received signifi-
cant attention from various researchers [10,14,17] and [11]. Network pruning was
found to be a viable and popular alternative to optimize an architecture. This
research can be dichotomised into two categories, with and without retraining.

2.1 Without Retraining

The weights which contribute maximum to the output must not be disturbed,
if no retraining is required. In order to achieve this, [7] have used the idea
of Core-sets that could be found through SVD or Structured Sparse PCA or
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an activation-based procedure. Even when this method could provide a high
compression, the matrix decomposition complexity involved could be higher for
larger networks.

2.2 With Retraining

Most of the research works focus on methods that have a retraining or fine-tuning
step after pruning. Such methods can be classified again as given below:

As an Optimization Procedure. In this category, retraining is defined as
a procedure over the trained model to find the best sparse approximation of
the trained model, that doesn’t reduce the overall accuracy of the network. [4]
does the same in two steps- one to learn the weights that can approximate
a sparser matrix (L step) and another to compress the sparser matrix again
(C step). [1] does model compression by considering model compression as a
convex optimization algorithm. Minor fine tuning is also done at the end of this
retraining procedure.

Without Any Optimization Procedure. A pruning scheme without any
optimization procedure, delves into two things: either to keep the prominent
nodes or to remove redundant nodes using some relevant criteria. Prominent
nodes are defined as the nodes that contribute the most to the output layer nodes.
These nodes could be defined based on the weight connections or gradients, as
seen in [3,8,9,13] and [6]. Redundant nodes can be removed by clustering nodes
that give similar output as done in [14]. Data-free methods also exist, like [15]
that does not use the data to calculate the pruning measure.

3 Analysis of Retraining Step of a Sparse Neural Network

3.1 Preliminaries

Consider a Multi-Layer Perceptron with ‘L’ layers, with n(l) nodes in layer l.
Corresponding weights and biases are denoted as W(1),W(2), ...,W(L−1) and
B(2),B(3), ...,B(L) respectively, where W(l) ∈ R

n(l)×n(l+1)
and B(l) ∈ R

n(l)×1.
The loss function is denoted as L(W). This could be mean-squared error or
cross-entropy loss, defined on both the weights and biases, using the labels and
the predicted outputs.

3.2 Error Propagation in Sparse Neural Network

Pruning process can be made parallel if the same is done layer wise. For the
same cause, the layer wise error bound, with respect to the overall allowed error
needs to be known. This section hence looks into the individual contributions



Retraining Conditions 153

of the change in the parameter matrices in each layer to the final output error.
The output of the neural network is given as

Y(L) = f(W(L−1)TY(L−1) + B(L)) (1)

The deviation introduced in the output error δY(L), due to pruning the param-
eter matrices W(L−1) by δW(L−1), can be bounded as

||δY(L)|| ≤ || ∂Y(L)

∂W(L−1)
δW(L−1)|| + || ∂Y(L)

∂Y(L−1)
δY(L−1)|| (2)

Theorem 1. Assuming that the input layer is left untouched, the output error
introduced by pruning the trained network N({Wl}L

l=1,X) will always be upper
bounded by the following relation,

||δY (L)|| ≤
L∑

l=2

[
L∏

i=l+1

(l �=L)

|| ∂Y (i)

∂Y (i−1)
||
]
|| ∂Y (l)

∂W (l−1)
||||δW (l−1)|| (3)

The above relation essentially explains the accumulation of the error in each
layer to produce the error in the final layer i.e., if ε is the total allowed error in
the final layer, then it can be bounded by the sum of individual layer errors, εl

(l = 2, 3, ..., L) as shown below:

ε ≤ ε2 + ε3 + ... + εL (4)

The above equation sets apart error bounds on different layers and will be of
much help in optimisation-based pruning techniques.

εL = || ∂YL

∂WL
δWL||

and εl =

[
∏L

i=l+1|| ∂Y(i)

∂Y(i−1) ||
]
|| ∂Y(l)

∂W(l−1) ||||δW(l−1)||, for l �= L

The assumption of εl = 0 results in a simple relation given in Eq. (5), which can
help in explaining two design practices used in classification networks:

δW(l−1)TY(l−1) = 0 (5)

1. An optimised structure of Multi-Layer Perceptrons used for classification will
have n(l) ≥ n(l+1), where n(l) denotes the number of nodes in layer l and
l = 2, 3, ..., L.
Since W(l) ∈ R

n(l)×n(l+1)
and Y(l) ∈ R

n(l)×1, for Eq. (5) to have a solution,
n(l) ≥ n(l+1). Thus the minimum number of nodes the hidden layers can have
equally to help the network train well from the data, is the number of nodes
in the output layer.
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2. Data dependent approaches results in better compression models.
Each neural network is unique because of its architecture and the data it
was trained on. Any pruning approach must not change the behaviour of the
network with respect to the application it was destined to perform. Consider
Y(l) ∈ R

n(l)×B , where B is the batch size and W(l) ∈ R
n(l)×n(l+1)

. For Eq. (5)
to be satisfied, the column space of Y(l) must lie in the null space of δW(l)

and vice-versa. This implies that the entries for the appropriate δW(l) can be
obtained when the pruning measure is coined based on the features obtained
from that layer.

3.3 Net Deviation(D)

Different pruning algorithms are currently present for model compression. A
measure, similar to test accuracy, for comparing different pruning approaches
based on the compression ratios, is the normalized difference between the
obtained error difference and the bound, which is defined as Net Deviation,
given in (6). An example explaining the use of D, is given in Sect. 4.1.

D = ||δY(L)|| −
L∑

l=2

[
L∏

i=l+1
(l �=L)

|| ∂Y(i)

∂Y(i−1)
||
]
|| ∂Y(l)

∂W(l−1)
||||δW(l−1)|| (6)

3.4 Theoretical Bounds on the Number of Epochs for Retraining a
Sparse Neural Network

Assume that the loss function is continuously differentiable and strictly convex.
The losses decide the number of epochs the network takes to reach convergence
and hence, the number of epochs to reach convergence can be viewed to be
directly proportional to the loss. If the total number of parameters in the network
is M, the parameters can be made p-sparse in M !

p!(M−p)! number of ways. Hence,
the bounds provided below must be understood in the average sense. Adding a
regularisation term still keeps the loss function strongly convex, if the initial loss
function is strongly convex. This makes Theorem 2 and all the accompanying
relations valid even for loss functions with regularisation terms.

Theorem 2. Given a trained network N({Wl}L
l=1,X), trained from initial

weights Winitial using tinitial epochs. For fine-tuning the sparse network
Nsparse({Wl}L

l=1, X), there exists a positive integer γ that lower bounds the
number of epochs (tsparse) to attain the original performance as,

tsparse ≥ γμ1

μ2

[
||∇L(Winitial)||2
||∇L(Wsparse)||2

]
tinitial (7)

When there are different hidden layers, the gradients would follow the chain
rule and the following equation can be incorporated in (7) to obtain the bound.
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||∇L(W)||2 = ||∇L(W(1))||2 + ||∇L(W(2))||2 + ... + ||∇L(W(L−1))||2 (8)

The definitions for μ1 and μ2 vary for connection and node pruning and are
given below. The equations are written for pruning the trained model with final
parameter matrix W∗. W

′
could be either the initial or sparse matrix.

Connection Pruning: Taking advantage of the fact that connection pruning
results in a sparse parameter matrix of the same size as that of the unpruned
network, μ can be defined as:

μ
′ ≤ ||∇L(W

′
) − ∇L(W∗)||

||W′ − W∗|| (9)

Node and Filter Pruning: Node and filter pruning reduces the rank of
the parameter matrix and hence Eq. (9) cannot be used. PL inequality is used
instead.

μ
′ ≤ ||∇L(W

′
)||2

||L(W
′
) − L(W∗)|| (10)

(a) Pruning on LeNet-
300-100

(b) Pruning on LeNet-5
CNN

(c) Pruning on LeNet-
300-100

Fig. 1. Comparison of the three pruning methods for different percentage of pruning
using Net Deviation ((a) and (b)) and Test Accuracy in (c). (a) and (c) are results on
LeNet-300-100 and (b) are of LeNet-5

4 Experimental Results and Discussion

Simulations validating the theorems stated were performed on two popular net-
works: LeNet-300-100 and LeNet-5 [12], both trained on MNIST digit data set
and had test accuracies of 97.77% and 97.65% respectively.
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Table 1. The number of epochs taken for fine-tuning LeNet-300-100 pruned at different
pruning and sparsity ratios.

Node pruning Connection pruning

Pruning
ratio

Theoretical
lower bound

Average
epochs taken

Sparsity
ratio

Theoretical
lower bound

Average
epochs taken

0.1 0.23 1.7 0.1 0.24 2.2

0.5 2.6 2.6 0.6 1.48 2.4

0.9 19.71 50 0.9 2.26 2.8

Table 2. The number of epochs taken for fine-tuning LeNet-5 pruned at different
pruning and sparsity ratios.

Node pruning Connection pruning

Pruning
ratio

Theoretical
lower bound

Average
epochs taken

Sparsity
ratio

Theoretical
lower bound

Average
epochs taken

0.1 0.52 2 0.1 1.26 2.3

0.5 5.049 13 0.6 2.783 2.8

0.9 18.623 25.6 0.9 1.62 2.9

4.1 Analysis of Net Deviation

To explain the application of the parameter ‘Net Deviation’, LeNet-300-100 and
LeNet-5 were pruned using Random, Weight magnitude based and Clustered
Pruning approaches. In random pruning, the connections were made sparse ran-
domly, while in clustered pruning, the features of each layer were clustered to the
required pruning level. One out of each node or filter in the cluster is kept. The
second method chose the nodes that had higher weight magnitude connections.
The results for different percentage of pruning in an average sense, are given
in Fig. 1, which explains that, for lower level of pruning, D is lower for random
pruning approach. But for higher pruning or higher model compression, random
pruning is not a good pruning method to look into. Net deviation is calculated
using the same batch of data that was used for pruning. A similar comparison
has been done on LeNet-300-100 using test accuracy as the parameter and the
results are shown in Fig. 1(c). It could be seen that when choosing the appro-
priate method for pruning, for a particular data set and network, test accuracy
does not give much information with respect to the amount of compression or
the percentage of pruning. Because of similar inferences, random pruning could
be applied by a user, who wants smaller compression, with lower computational
complexity as random pruning is computationally less expensive than clustered
pruning.
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4.2 Theoretical Bounds on the Number of Epochs for Retraining a
Sparse Neural Network

Both the networks were pruned randomly with the same seed in two ways: Con-
nection Pruning and Node Pruning. Tables 1 and 2 show the results obtained at
different pruning ratios for LeNet-300-100 and LeNet-5 respectively. For LeNet-
300-100 pruned at pruning ratios 0.1, 0.5 and 0.9 and for sparsity ratios of 0.1,
0.6 and 0.9, the value of γ was obtained as 0.01, 1 and 100 and 1e-4, 0.2 and
0.5, respectively. Similarly for LeNet-5, γ was found to be 1e-5, 2e-4 and 5e-5
for pruning ratios 0.1, 0.5 and 0.9 and 3e-5, 1e-6 and 1e-5 for sparsity ratios 0.1,
0.6 and 0.9 respectively. The results validate the bound provided in Theorem 2.

5 Conclusions

This paper has theoretically derived and experimentally validated the amount of
retraining that would be required after pruning, in terms of the relative number
of epochs. Also, the propagation of errors through the layers, due to pruning
different layers is analysed and a bound to the amount of error that the layers
contribute was derived. The parameter ‘Net Deviation’ can be used to study
different pruning approaches and hence can be used as a criteria for ranking
different pruning approaches. If not completely avoided, reducing the number of
epochs linked to retraining the network will reduce the computational complexity
involved with training a Neural Network. An empirical formula to calculate
the γ parameter that bounds the number of epochs required for retraining, is
considered as a future work.

A Appendix

A.1 Proof of Theorem 1

From [16], for a function with more than one variable q(x, y), when the uncer-
tainties in x and y are independent and random, the uncertainty in q can be
written as

δq2 =
[

∂q

∂x
δx

]2

+
[

∂q

∂y
δy

]2

(11)

Applying triangular inequality, the following equation is valid.

δq ≤ | ∂q

∂x
|δx + |∂q

∂y
|δy (12)

In the concept of pruning of neural networks, the weight changes and output
changes in earlier layers are independent to each other. The output of the neural
network is

Y(L) = f(W(L−1)TY(L−1) + B(L)) (13)
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The function f(.) can be sigmoid or relu or softmax function as per the layer
considered. Usually, the softmax function is used in the output layer. Assuming
no change in the bias of the layers,

||δY(L)||2 = || ∂Y(L)

∂W(L−1)
δW(L−1)||2 + || ∂Y(L)

∂Y(L−1)
δY(L−1)||2 (14)

and

||δY(L)|| ≤ || ∂Y(L)

∂W(L−1)
δW(L−1)|| + || ∂Y(L)

∂Y(L−1)
δY(L−1)|| (15)

Accumulating the effect of weight changes in all the layers and assuming no
change in the input layer, we get

||δY(L)|| ≤ || ∂Y(L)

∂W(L−1)
δW(L−1)|| + || ∂Y(L)

∂Y(L−1)

∂Y(L−1)

∂W(L−2)
δW(L−2)|| + ...

+
[ L∏

i=3

|| ∂Y(i)

∂Y(i−1)
||
]
|| ∂Y2

∂W1 δW1||

This is given in Theorem 1.

||δY(L)|| ≤
L∑

l=2

[
L∏

i=l+1

(l �=L)

|| ∂Y(i)

∂Y(i−1)
||
]
|| ∂Y(l)

∂W(l−1)
||||δW(l−1)|| (16)

Hence the proof. Suppose the output error is bounded by ε, which corresponds
to the LHS in (16) given above. Expanding the RHS,

ε1 = 0

ε2 =
[ L∏

i=3

|| ∂Y(i)

∂Y(i−1)
||
]
|| ∂Y2

∂W1 δW1||

εL = || ∂Y(L)

∂W(L−1)
δW(L−1)||

Hence, the result given in (4) is obtained, which could also be seen in [2].

ε ≤ ε1 + ε2 + ... + εL (17)

An alternative expression can be found in a similar pattern of derivation starting
with (14)

ε2 = ε21 + ε22 + ... + ε2L (18)

The proof of (5) is quite obvious. Assuming that the error in each layer is approx-
imately zero, εL = 0 and that the function f(.) is sigmoid,

|| ∂Y(L)

∂W(L−1)
δW(L−1)|| = 0

||Y(L) � (1 − Y(L))||||δW(L−1)TY(L−1)|| = 0

δW(L−1)TY(L−1) = 0
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� refers to the Hadamard product of matrices. Similar results can be obtained
for other layers as well.

A.2 Proof of Theorem 2

Assume that the loss function is continuously differentiable and strictly convex.
By the strong convexity assumption, the Polyak-Lojasiewicz (PL) inequality can
be implied, which is stated as follows:

For a continuously differentiable and strongly convex function f , over param-
eter x, with minimum point x∗,

1
2
||∇f(x)||2 ≥ μ(f(x) − f(x∗)),∀x (19)

Using the above relation on the loss function L(W ),

1. Initial training of the network, till convergence

1
2
||∇L(Winitial)||2 ≥ μ1(L(Winitial) − L(W ∗)) (20)

2. Fine-tuning the sparse network, to reach back to the original performance

1
2
||∇L(Wsparse)||2 ≥ μ2(L(Wsparse) − L(W ∗)) (21)

The number of epochs to reach convergence is directly proportional to the dif-
ference in losses and can be written as:

tinitial ∝ ||L(Winitial − L(W ∗)|| (22)

tsparse ∝ ||L(Wsparse − L(W ∗)|| (23)

Combining (20–23) given above, and with a γ to accommodate the proportion-
ality in (22) and (23),

tsparse ≥ γμ1

μ2

[
||∇L(Winitial)||2
||∇L(Wsparse)||2

]
tinitial (24)
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