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Abstract. Conventional face anti-spoofing paradigms tend to operate
on plain facial profiles and learn either the natural face space alone
(one-class training problem) or both the natural face space as well as
the spoof sample space (2-class training problem). However, this rigidity
with respect to spatially constrained measurements, makes the base fea-
ture or statistic vulnerable to noise related to pose and camera perspec-
tive/orientational and scale changes. Noting that the sharpness profile
computed on a natural face is largely independent of the pose and per-
spective change, it is imperative that the measurements be extracted in
an identity independent setting by ignoring the pose/perspective varia-
tion. To facilitate this, we have deployed a 2-dimensional random walk for
capturing lower order pixel correlation statistics from natural faces, with
virtually no perceptual interference. The proposed identity independent
frame has surpassed the state of the art with reference to a 3D mask
dataset (image oriented, isolated frame setting), with an EER of 2.25%
without auto-population and an EER of 0.45% with auto-population.

Keywords: Anti-spoofing * 3D mask - 2D random walk -
Scan-patterns - Auto-population - Outlier detection - Prosthetic

1 Introduction

Since most facial recognition systems operate based on notion of perceptual
similarity of images of human faces, a majority of them, cannot tell the difference
between a spoofed version of a face, versus, a naturally captured facial image.
It is therefore important to have a counter-spoofing layer that sits above the
facial recognition system, which attacks the environment linked to the image
acquisition process and attempts to anticipate any form of spoofing. Much of
the literature, related to counter-spoofing, has been directed to a specific form of
facial spoofing called planar spoofing [11], wherein the impersonator (X) tends to
present planar images or printed photos of the target subject (Y), (who is being
impersonated). This a type of geometrically constrained spoofing, in which, the
identity of the targeted individual (Y), is embedded in the form of a planar
intensity variation induced either by double printing or by capturing an image
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of a natural photograph. This form of spoofing-model, albeit trivial, is enticing
from a research perspective inviting solutions on multiple fronts, some related
to sharpness reduction [6], some related to base-image quality degradation [4],
some linked to model-specific, geometrically induced distortions [5,7] etc.

With the co-existence of a diverse entertainment industry, a rapid advance-
ment in cosmetic technology and the inclusive growth and evolution of touch-up
artists, facial spoofing frames have evolved considerably. Every individual tends
to possess a distinct facial surface-contour, which, can be captured either overtly
or surreptitiously. This surface contour, can be used to synthesize a prosthetic of
that individual’s face. This prosthetic can be designed either using paper-craft [2]
or rigid plastic or some semi-elastic form of material. However, most prosthetics
are customized according to the target individual who is being impersonated
(viz. Y) and are usually de-linked from the identity of the individual who is
the impersonator (X), to ensure that his/her identity is not revealed during the
counter-spoofing or authentication process. This opens up the problem to the
counter-spoofing community thanks to the following conjecture:

Claim-1: Given an impersonator X and a target subject Y, the prosthetic is
designed to mimic the surface contour of Y and has very little to do with the
surface contour of X. This is to ensure identity masking from the point of the
view of the attacker (X). The only way this can be achieved, is by ensuring
that this physical facial re-mapping or (physical face-morphing), is of a many-
to-one type. Thus a single prosthetic designed to impersonate Y, can fit multiple
individuals of the X-type. In other words, one mask is designed to fit many. This
makes the prosthetic, presented as a synthetic surface contour of X, an over-
smoothed approximation of X’s facial profile with some depth information. One
therefore anticipates a reduction in facial image sharpness as far as image of
the prosthetic of X is concerned. This sharpness variation can be captured by
performing a gradient based analysis.

In this paper, we focus on literature connected with prosthetic based facial
spoofing. A 3D-mask dataset was developed using paper craft models in Erdog-
mus et al. [2], wherein the prosthetics were customized to target different sub-
jects. Some examples of this are shown in Fig. 1. The natural faces of the subjects
are shown in Fig. 1(b)(row-2), while their corresponding spoofed versions with
prosthetics are shown in Fig. 1(a)(row-1). It is obvious that paper craft model
has been cleverly designed to mimic the surface contours including the ocular
and nasal profiles of each targeted subject. In Erdogmus et al. [2], the base
feature used for recognition was the Local Binary Pattern (LBP) along with its
variants. The 3D-Mask dataset was analyzed both as a sequence of static images,
and also as a video sequence, by extending the LBP analysis to include both time
and space differentials. A 2-class SVM was finally constructed by learning the
prosthetic as well as the genuine face spaces, coupled with the decision bound-
ary/surface. Spoof-detection was done by extracting the same features from a
typical query test-face and checking its position with respect to the two refer-
ence clusters. In a video-based setting associated with the 3D mask database,
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(a)
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Fig.1. (a) Examples of 3D mask faces for different subjects, taken from 3D mask
database [2] (b) Examples of their corresponding real genuine samples.

more options exist, since it is possible to deploy space-time micro-feature anal-
ysis to search for liveliness in the facial profile, consistencies and naturalness
in expression changes etc. Optical flow methods were used in Feng et al. [3]
to detect differences in dynamism with respect to texture between an imposter
and a genuine subject. A deep-learning network for attacking multi-biometric
spoofing including facial spoofing was developed by Menotti et al. [9], but again
the learning was two sided and assumed availability of samples related to the
spoofing process. Wen et al. [10], proposed a mixed bag of features ranging from
intensity and gradient all the way up to those which captured color and texture,
with the objective of covering the complete gamut of statistics, which would help
segregate the genuine face class from all forms of spoofing. However, once again,
this arrangement demanded availability of spoof training samples, necessary for
constructing a 2-class SVM. This existing frame had several issues:

— Very often the nature, texture and structure of the customized prosthetic
may not be known. This implies that spoof-class training samples may not
be available. Hence, it is important to shift and restrict the training process
to the genuine face sample set, where the acquisition procedure, naturally
captured facial profile coupled with the local statistics remains predictable.

— Since LBP features are highly localized in space and are registered, pose
deviations and scale changes because of facial migrations with respect to the
camera will lead to a contortion of measurements. This will interfere with the
counter-spoofing procedure. We term this form of interference as perceptual
interference, which arise when the measurements are registered in space.

The first problem related to absence of a spoof model, can be addressed through
an inlier space characterization procedure by learning the space spanned by
genuine natural facial images from different subjects, for different poses and
mild illumination variations. This inlier space characterization was done through
a query feature ranking procedure, in relation to the genuine face feature set, to
detect outliers in [7]. Genuine face space characterization coupled with anomaly
detection in a much more general setting by constructing a one-class SVM was
done in Arashloo et al. [1].
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While this arrangement was designed to care of the first problem related to
the absence of a proper spoofing model, they were applied to planar spoofing
alone. In both these papers [1,7], the measurements were registered in space
either by gridding the image or by computing statistics in specific spatial zones,
whose locations were largely static. They thus proved to be ineffective, when
confronted with 3D-spoof models, wherein the prosthetics attempted to mimic
the depth profile in the imposter’s face.

Attacking this 3D-spoofing problem, with a single sided training procedure,
involving only genuine face space characterization was the main challenge. This
led to the proposed architecture which was placed on an identity independent
setting. The rest of the paper is organized as follows: In Sect. 2 we propose a new
paradigm based on identity independent feature auto-population through ran-
dom scan patterns. Section 3 validates the choice of randomly scanned feature
and builds a one-class SVM to characterize the space of natural faces. Experi-
mental results and comparison with the state of the art are in Sect. 4.

2 Proposed Paradigm and Architecture

The anti-spoofing problem is a typical frame wherein the nature of impersonation
remains unknown in practice. By treating this problem as a form of planar
image or printed photo spoofing, the problem becomes analytically tractable,
mainly because of physical constraints. To make the analysis model independent,
without compromising on the robustness of the detection process, it is important
to change the paradigm or the manner in which the measurements are gathered.

Claim 2: We claim that most anti-spoofing systems work best in an identity
independent setting, wherein the measurements or features extracted are taken
in such a way that perceptual relevance is given the least importance. However,
the residual correlation or some other statistics, which may be derived from
this dissolved identity, carry necessary information regarding the environment
or channel in which the information has been captured to perform anti-spoofing.
This identity dissolution, in our case, is performed using a constrained shuffle
of pixels in the spatial domain using a 2-dimensional random walk. This 2-D
random walk has been inspired by Space Filling Curves [8], which was originally
devised for retaining the compressibility of video signals after encryption.

Claim 3: By auto-populating the each facial image profile with these scans, it
is possible to construct several variations of the same profile, which essentially
carry the same pixel-correlation information, with minimal content interference.
Thus a single facial profile is transformed into an ensemble of scans produced
using independent 2-D random walk patterns. This ensemble carries significant
information regarding the sharpness profile of the facial image and will have
sufficient information to segregate 3D mask profiles from natural facial images.
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2.1 Random Scan Algorithm

Between a complete shuffle and a raster scan, one can find a judicious trade-
off between feature transparency and conservation versus the size of the auto-
populated set based on the type of scan. With a perfect shuffle of pixel complete
pixel correlation structure is lost, while in the case of a raster scan this correla-
tion structure is preserved. However, in the case of the raster scan, the peeling
is done in a regularized fashion and hence only one instance of the facial pro-
file can be made available, imparting a significant rigidity to the generation of
statistics. A trade in terms of conserving the correlation profile in pixels, while
at the same time permitting multiple shuffle trajectories is via the randomized
correlated scan.

Figure2 shows two typical variations in the scan patterns, executed over
the same image Fj. Eventually when the scan is completed, a 1-D vector X; is
generated as a function of the randomizer/key KEY;:

X; =CSCAN(F;, KEY;) (1)

where, CSCAN(.,.), represents the randomized correlated scan algorithm based
on a 2-dimensional random walk directed by a key sequence, K EY;. While per-
ceptual identity is lost in the unregistered feature vector X; structure and for-
mat of the data captured is conserved. Gradient and sharpness features can
now be computed on the top of this randomly scanned intensity feature. The
key sequence carries information pertaining to the direction/trajectory of the
random walk. In case, there is an abrupt termination of the walk, the key
sequence also stores information related to the pixel jump. In a nutshell, the
key sequence is a sequence of location pointers forming a linked list. To reduce
scanning complexity, F; is a down sampled version of the parent facial image.
Let X; = [i1,Ti2,...,Tin). It is to be noted that not all the correlated scans
are contiguous in terms of random walk.

Fig. 2. Random but correlated scans for same facial image F; (two different walks
executed on the same facial image).

When the pointer in the 2-D random walk either walks into a corner or
bumps into its own tail, it may encounter an abrupt termination. At this point,
the pointer must hop to a new free cell within the same grid and resume the
random walk. This process continues till all the pixels within the image grid are
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traversed. If N x N is the size of the image, the length of the scanned vector X;
is n = N2 and the path length is n — 1 units. The walk is rectangular in nature
and diagonal transitions are not allowed. Because of this, the primary scanned
vector X; must be median filtered using a 1 x 3 (w = 3) window, to iron out
singularities. The scanned vector becomes smoother with a larger window size w
at the expense of a loss of detail and an un-necessary alteration of natural pixel
correlation statistics. It is important that the median filter does interfere with
the accuracy of the natural image statistics. Hence, the optimal choice for w is
three. The pre-processed statistic is given by,

with median filter window size, w = 3.

2.2 Final Differential Statistic

Based on earlier conjectures and observations, it is clear that the prosthetic
arrangement is likely to have a smoother surface contour as compared to the
natural face (partly owing to CLAIM-1 in Sect. 1). This is based on the one-mask
fits many assumption, the mask designed to dissolve the identity of the imposter
(X), while emulating the identity of the target (Y), who is being impersonated.
Hence, a simple differential feature which captures the first or second order pixel
derivative, will be sufficient to discriminate between a natural face as compared
to one which has a prosthetic. The natural face is expected to have a greater
roughness (culminating in a greater and more heterogeneous sharpness profile)
as compared to that of the prosthetic. Let DX,i be the differential statistic
computed on the median filtered 1D sequence. If DX}i =[d;1,d;i2,..,din]" and
XMED = [*MED,i,1,CMED,i,2 -, LMED,i,n)s

div = TMEDi,r — TMED,i,(r—1) (3)

for r € {1,2,...,n} and with initial conditions, /g p ;o) = 0. The vector, Dx,
is the final feature vector, extracted from the natural face image class alone, is
fed to a one-class SVM [1] for characterizing the inlier space [7] (or the natural
face space).

3 Feature Validation and Training the One-Class SVM

Feature validation is done by splitting the 3DMAD dataset [2] (composition given
in Table 1), into natural faces and prosthetic based images. The base feature used
for this comparison is the norm of the final differential vector, Dy ;, which is
given by,

By = |IDxills = /@2, + a2y + ..+ &2, (4)

The conditional distributions, fr/Narvrar(e) and fr,spoor(e) are com-
puted on the same scale in Fig. 3, for the 3D-MASK dataset (these are essentially
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Fig. 3. Conditional distributions of the differential energy feature for natural and spoof
samples, computed from the 3DMAD dataset. (Color figure online)

conditional histograms which have been interpolated to impart smoothness to
the functions). In Fig. 3, the conditional distribution shown in blue corresponds
to the genuine face space energy profile, while that shown in red corresponds
to the energy profile generated from the prosthetic samples. As expected, the
differential statistics produced from the natural face space have a larger mean
and larger variance (because of the increased roughness and intensity diversity),
while that of the prosthetic shows a smaller mean and variance (owing to over-
smoothing stemming from the one-mask fits all claim). While the conditional
distributions demonstrate the feature separability and ability of the random
scans to conserve the lower order correlation statistics present in the image, the
impact of the of the random scan in obscuring the identity of the individual
subjects is demonstrated in Fig.4. Notice that the scanned versions presented
for simplicity as a 2-D shuffled version in Fig. 4(b, d), have no resemblance to
their corresponding un-scanned counterparts (Fig. 4(a, ¢)). Thus, the processing
and feature extraction is done in truly an identity independent setting.

Table 1. Description and composition of 3D mask database [2]

3D mask [2] No of subjects | No of poses/subject
Faces with 3D masks | 17 50
Natural faces 17 50

The set of natural faces from the 3DMAD database is split into a one-class
training set for characterizing the inlier space and a test set which comprises
of both natural faces as well as spoofed faces using the prosthetic. Given final
differential base feature vectors Dx;, i € {1,2,..., Noen 1}, where, NoenT
is the number of training images from the genuine and natural face space. A
one-class SVM [2], is constructed by building a hyper-sphere around the genuine
multi-dimensional base differential features vector set corresponding to genuine
face images, with an a-trim outlier fraction set to 10%.
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4 Experimental Results

The 3DMAD database [2], whose composition is presented in Tablel, is split
into three sets: (i) Genuine face set for training, % of the total genuine face
space; (ii) Genuine face set for testing, remaining (100 — 2)% of the remaining
genuine face space; (iii) Spoof samples ONLY for testing, from the paper-craft
based prosthetic arrangement, y = 100% of the spoof set.

Fig. 4. (a) Samples of 3D mask faces (b) Random walk features extracted for mask
faces (c) Samples of real genuine face (d) corresponding random walk features.

Table 2. Error rates for different trim factors a and database splits with 3D mask set.
Note that best results are obtained for o = 10%.

Inlier (z(%
samples (y
x = 30%, (100 — z) = 70%, y = 100% | 5.9291 5.0115 8.4520 10.4653
x = 40%, (100 — z) = 60%, y = 100% | 5.8956 3.4048 5.2192 8.0694
x = 50%, (100 — z) = 50%, y = 100% | 3.2860 2.2594 4.2459 5.8806

(100 — )

(100 — x)

N

)/Outlier EERQ@ EERQ@ EERQ@ EER@
0)) a=5% |a=10% |a=15% o =20%

—~

z = 60%, (100 =40%,y = 100% 2.5087  1.3078 | 3.3742 4.1446
x = 70%, (100 =30%,y = 100% 1.2161  0.1852 | 3.0428 3.0760

Selection of the trim factor in the one-class SVM «, is a careful tradeoff
between extent of generalization of the natural face space versus weeding out
spoof samples which are likely to be close in structure with respect to the natural
space. With limited training samples, the need for generalization calls for an
expansion of the hyper-sphere (or a reduction of «), while the urge to weed out
almost all spoof samples as outliers, demands a compaction or a contraction of
the hyper-sphere (or an increase in «). Either way there will be mis-classifications
either in the form of false positives or in the form of false negatives. Somewhere
in between there is compromise and this optimal trimming factor was found to
be a = 10%, as the outlier fraction. This is visible in Table 2, wherein best results
are obtained for a trim factor of & = 10%. For a specific inlier (genuine space)
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training fraction % (viz. along a specific row in Table2), the Equal error rate
(EER) decreases and then increases when « is varied from 5% to 20%, with the
minima hovering around o = 10%. Note that in this table no auto-population is
done using the random scans. The EER therefore is slightly on the higher side
for x = 50%, 50% natural face samples for training, wherein the minimum EER
(corresponding to oo = 10%) was found to be 2.25%.

4.1 Auto-Population Results and Comparisons

It is natural to deploy the proposed random scan tool to derive statistically
equivalent but identity independent representations of the same natural facial
profile. Thus, every natural face training image is converted into an ensemble
of scans which carry equivalent statistical information pertaining to the lower
order pixel correlation profile. Since the walk is randomized each realization
of the parent image is distinct and provides a unique perspective. Results are
therefore expected to improve considerably with this form of auto-population.
The effective number of training samples is magnified by a significant amount,
viz. by a scale factor Ngcan. Impact of different ensemble sizes (or scale factor
Nscan) is shown in Table3. Note that Ngcany = 1, corresponds to results
without auto-population and the EER numbers are expected to drop from left
to right along a specific row. Saturation is expected beyond a certain point as
the additional scans carry no new information for characterizing the inlier space.
For x = 50%, 50% face training, the lowest EER. is obtained for Ngcan = 20,
highlighted in bold in Table 3, with a percentage of EER = 0.43%, which is
way below the number obtained in the same row corresponding to Ngoan = 1,
which is, FER = 2.25%.

A fair comparison is possible only when the state of the art algorithms are
compared on an image analysis front (with or without implicit auto-population)
but applied to the 3DMAD database. It is unfair to compare video processing
algorithms which attempt to detect liveliness in faces by examining wrinkle and
crease line dynamics to track consistency in emotional transitions of subjects.
The only paper that fits this constraint is the original work by Erdogmus et al. [2].
Both the random scan versions of the proposed algorithm with and without
auto-population out-perform the state of the art. This validates the identity
independent paradigm (Table4).

Table 3. Performance with optimal trim factor, & = 10% and auto-population using
the proposed random scan algorithm. EER results saturate beyond a certain point.

Inlier (z(%))/ EERQ a = 10%

Outlier samples (y(%)) Nsecan = 1| Nscan = 5| Nscan = 10| Nscan = 20| Ngcan = 30
z = 30%, (1 —z) = 70%, y = 100%|5.0115 2.0163 2.1085 2.1059 2.1426

z = 40%, (1 — z) = 60%, y = 100% | 3.4048 1.2387 0.4527 0.4560 0.3486

z = 50%, (1 — z) = 50%, y = 100% | 2.2594 0.9489 0.6657 0.4310 0.4510

z = 60%, (1 — x) = 40%, y = 100% | 1.3078 0.5489 0.2626 0.2441 0.2605

z = 70%, (1 — z) = 30%, y = 100% | 0.1852 0.1131 0.0871 0.0776 0.0731
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Table 4. Comparison with the state of the art, which has used the 3DMAD dataset
as a sequence of images. Training fraction, 50% from the natural face space.

Algorithm Classifier  EER %
Ergodomus et al. [2] SVM 4.92
Proposed random scan (NO auto-population Nscan = 1) SVM 2.25
Proposed random scan (with auto-population Nscan = 20) | SVM 0.4310

5 Conclusions

This paper proposes an identity independent paradigm for facial anti-spoofing
based by deploying 2-D random walks, to preserve the lower order pixel correla-
tion in images, while dissolving the identity of subjects. With the suppression of
perceptual interference, stemming from this form of constrained shuffle of pixels,
results have improved significantly, in relation to the state of the art techniques.
The EER rates with and without auto-population for this identity independent
frame have been found to be 2.25% and 0.45% respectively.
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