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Abstract. With the ever increase in the demand of building secure
systems, recent years are witnessing a plethora of research on informa-
tion flow control (IFC) techniques in programming languages to enforce
a finer-grained restriction on the propagation of information among
untrusted objects. In this paper, we introduce a dynamic labelling (DL)
algorithm (This paper is an extended version of the article [1] presented
in SECRYPT’18.) for security certification of imperative programming
languages that follows a combination of mutable and immutable labelling
referred to as hybrid labelling approach. First, we study the possible
methods of binding security labels with the subjects and objects of
the program which include program counter that represent implicit flow
within a program and compare the precision achieved by the applications
of methods on benchmark programs. Next, we describe our labelling
algorithm that generates labels for intermediate subjects/objects of a
program from the given set of initial labels (some of which could be
immutable throughout the computation) adhering to the constraints
defined in [2] for a program to be information-flow secure. Apart from
the usual control statements found in the imperative languages, we also
present the labelling approach for a procedure call highlighting subtleties
of different parameter passing mechanisms adopted in modern languages.
Further, we discuss a variant of the algorithm for concurrent programs.
It is shown that our algorithm always terminates after a finite number
of iterations, also establish the soundness concerning non-interference as
given by [3]. We compare the labelling precision realizable by our app-
roach with the existing approaches in the literature.

1 Introduction

The seminal work of Denning [4] on security certification of programs built on
information-flow security led to a firm foundation for language-based security.
The extension of such a theory through the proposal of the Decentralized Label
Model (DLM) [5] provided a momentum for language-based security. Since then
there has been an enormous amount of literature on language-based security [6–
9]. Various well articulate assessments of the status of language-based security
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have been discussed in [10–12]. With the need for security everywhere including
IoT, language-based security is becoming prominent as it deals with security at
various levels, and also brings out various points of leaks and attacks.

Non-interference was developed after Denning’s security certification as a
more semantic characterization of security [13], followed by many extensions.
Informally the non-interference property says the impact on the program due
to changes in high inputs should not be observable by the low outputs. [3]
have used a purely value-based interpretation of non-interference as a seman-
tic characterization of information-flow, and derived sound typing rules to cap-
ture Denning’s certification semantics effectively. Volpano et al.’s notion of non-
interference, and its extensions have become the de-facto standard for the seman-
tics of information-flow in the literature on language-based security. Usually, the
objective of IFC is to enforce non-interference property to ensure end-to-end flow
security.

A broad spectrum of information-flow security mechanisms varies from fully
dynamic ones, e.g., in the form of execution-monitors [14,15] to static ones, e.g.,
in the form of type systems [3]. While one would prefer static labels as that leads
to certification of programs at compile-time, it has the problem of classifying pro-
grams that would not leak any information under the information-flow policy at
execution time due to the underlying inputs that arrive at run-time. Real-world
web applications often require to interact with the external environment that
cannot be predicted during compile-time which motivates researchers to enforce
security at run-time. For instance, security settings of files and database records
are updated frequently, and these changes might affect the information flow con-
trol which cannot be handled by static mechanisms. Dynamic labels are essen-
tial to capture the changes in security label and accordingly labels are changed
at run-time. However, unlike static or immutable labelling implementation, a
dynamic mechanism has a cost that user has to pay in the form of significant
run-time overhead, and also implicit flows introduced due to uncovered flow
paths not considered at run-time. Hence, an ideal label-checking mechanism
should have a hybrid labelling that would have an excellent trade-off for mutable
and immutable labels to realize acceptable precision and performance.

In this paper, we first discuss various labelling approaches that use a combi-
nation of attributes like mutable, immutable, static, compile-time, run-time, etc.,
for the security certification along with the corresponding realizable precision of
security. Having assessed the shortcomings [1], we propose a new hybrid (mutable
and immutable) labelling approach for certifying programs for information-flow
security using the standard certification of constraints as elaborated by Den-
ning. Our dynamic labelling algorithm is sound with respect to non-interference,
and we further prove the termination of the labelling algorithm. Our proposed
labelling algorithm leads to certification that is more security precise than other
labelling approaches in the literature [7,8,16–20]. It may be pointed out that the
labels are generated succinctly without unnecessarily blowing up the label space.
As the method is not tied to any particular security model, it provides a sound
basis for the security certification of programs for information-flow security. We
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further compare the precision realizable by our approach with those in the liter-
ature. The comparison of our approach also brings to light, an intrinsic property
of our labelling algorithm that could be effectively used for non-deterministic or
concurrent programs illustrated in Sect. 4.

Structure of the Paper. Section 2 presents different labelling schemes, and
assess the limitations of them. Section 3 describes the proposed dynamic labelling
algorithm along with illustrative examples, and proofs of characteristic proper-
ties as well as soundness with respect to non-interference. Section 4 presents an
extended version of the labelling algorithm for concurrent programs. Section 5
provides a comparison with earlier approaches. Finally, Sect. 6 summarizes the
contributions along with the ongoing work.

2 Certification of Programs

According to Denning’s Information Flow Model (DFM) the necessary and suffi-
cient condition for the flow security of a program P is: if there is an information
flow from object x to object y, denoted by x → y, the flow is secured by P only
if λ(x) � λ(y). ‘λ’ is a labelling function, responsible for binding subject/object
of the program to a security class (either statically or dynamically depending
on the application) from the lattice of security classes as described in Denning’s
lattice model [4]. ‘�’ is a binary relation on security classes that specifies permis-
sible information flows. ‘⊕’ is a binary class-combining operator evaluates least
upper bound (LUB) of two security classes in the lattice. The above condition
is usually referred to as the Information-flow policy (IFP). A program is certi-
fied for IFP if there are no violations of the policy during program execution.
The Information Flow Secure policy forms a basis for certifying programs for
security. The crux of certification lies in assuring that all the information flows
over legitimate channels or storage channels follow the specified flow-policy. The
outcome of approaches could be measured in terms of precision defined below.

Let us suppose that F is the set of possible flows in an information flow
system, and let A be the subset of F authorized by a given flow policy, and let E
be the subset of F “executable” given the flow control mechanisms in operation.
The system is said to be secure if E ⊆ A; that is all executable flows are
authorized. A secure system is precise if E = A.

The method of binding security classes/labels to objects play an essential
role in the analysis of programs. Each of the static certification and runtime
enforcement algorithms proposed in the literature chooses an object labelling
method, some of which may also use the label of the implicit variable, usually
referred to as Program Counter (PC) which may be reset after every statement
or keeps updating monotonically. First, let us consider the following three broad
object labelling schemes:

Scheme 1: fixed labels for all the variables,
Scheme 2: labels of all the variables can be modified; for example, based on the

information contained in them at any given program point, and
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Table 1. There is implicit
flow from x to y while there
is no direct flow (Cf. [1]).

Table 2. Need to label local variables
dynamically (Cf. [1]).

Scheme 3: labels of some variables are fixed while the labels of the other vari-
ables could be modified.

In this section, we argue that from the perspective of capturing the notion
of security,
(i) Scheme 1 is inappropriate as it is too stringent, and results in secure programs
being incorrectly rejected as insecure,
(ii) Scheme 2 is also inappropriate as it allows all programs as secure programs,
and
(iii) Scheme 3 is the ideal candidate, if the variables whose labels can be allowed
to be modified are carefully chosen.

A majority of literature on language-based security follows Scheme 1, as it
has advantages in certifying tricky programs such as the one given in Table 1.

As the program in Table 1 executes, the following information flow is
observed: if the value of x is 0, the value of z becomes 1, and the second if
block will not execute, thus the value of y remains 0. On the other hand, if the
value of x is 1, the second if block executes, and y is initialized to 1. In either
case, the value of y is the same as the value of x although there is no such explicit
assignment, e.g., x = y. If we consider the security labels of x and y are x and y
and x � y then this is an example of the insecure program as there is an implicit
flow from x to y even though they belong to different security classes where an
explicit flow is not allowed. Table 3 analyzes two different labelling approaches,
i.e., Scheme 1 and Scheme 2 in respect of the program in Table 1.

However, purely static labelling is too restrictive and rejects secure programs
as insecure. This is illustrated by considering the program fragment shown in
Table 2, where x, y, and z are global variables, and a is a local variable (we do
not consider pointer variables).

If the program in Table 2 is analyzed under Scheme 1, it generates the fol-
lowing set of flow-constraints to be satisfied for the program to be secure: x � a,
a � y, and z � a. These constraints will be satisfied only if z � y, which implies
that there is an information-flow from z to y. However, from an intuitive per-
spective, the program never causes an information flow from z to y and must be
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Table 3. Analyzing information flow at each line from example in Table 1 according
to static and dynamic labelling (Cf. [1]).

Line
No.

Static labelling (Scheme 1) Dynamic labelling (Scheme 2)

3 Label of z would be inferred in
such a way that all the flows to
and from z should be secured. If
z is assigned to x, the flow from
z → y is not permitted.
There is no way to label z so
that all the flows are safe. For
this reason the program is
insecure

Label of z is initialized to least
confidential security class e.g. public (⊥)

4 As there is a flow from x → z
z is updated to x such that x � z5

6 There is a flow from z → y.
But x cannot flow into y.
Hence the program is insecure

7

considered secure if x � y. Table 4 analyzes two different labelling approaches,
i.e., Scheme 1 and Scheme 2 in respect of the program in Table 2.

Table 4. Analyzing information flow at each line of example shown in Table 2 according
to static and dynamic labelling (Cf. [1]).

Line No Flow direction Static labelling (Scheme 1) Dynamic labelling (Scheme 2)

5 Label of a is automatically inferred in
such a way that all the flows to and
from a is secure. If a is labelled as
x⊕ z due to explicit flows from x and
y to a, the constraint x ⊕ z � y will
not be satisfied because z � y

As static labelling fails to label the
local variable a, the program is
insecure

Label of a is initialized to least
confidential security class e.g. public ⊥

6 x → a Label of a is updated to label of x i.e. x

so that x can flow to a

7 a → y Flow is allowed as the constraint x � y

is satisfied.

8 z → a Label of a is updated to x ⊕ z so that
flow is allowed as z � x ⊕ z. Hence the
program is flow-safe

From the above examples, it follows that the use of purely static labelling is
too conservative, and misses several secure programs.

2.1 Refinement via PC Labels

Information flow is quite tricky to capture and can happen even if a statement
does not get executed. Such flows are called “implicit” [21], and are possible
due to conditional and iteration statements. To keep track of such impact, the
notion of the program counter (pc) label is introduced that denotes the sensitivity
of the current context. Traditionally, once the control exits the conditional or
iteration statements, the pc label is reset to its previous value, thus denoting that
the variables in the condition expression no longer impact the current context.
Subsequently, a sequential composition S1;S2 is deemed secure if both S1 and
S2 are individually secure.
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Examples copy3 and copy4 in [21] have highlighted that certain subtle flows
cannot be captured unless the pc label is updated monotonically, and tracks
the influence of all the information the program has accessed. It was noted that
this might lead to a phenomenon called “label creep” [11] wherein the pc label
rises too high resulting in rejecting any further flows. To avoid label creeping,
the current literature on language-based security takes the route of resetting pc
label after exiting from a control structure.

Tracking PC Labels [18]. The method described for Haskell envisaged in [18]
uses a label for current control without reinitializing every time the control
exits a statement. A labeled IO Haskell library unit LIO is built to track a
single mutable current label (similar to pc) at run-time and allows access to IO
operations. The unit is responsible for ensuring that the current label keeps track
of all the observed data and regulates label modifications. At each computation,
LIO keeps tracks of the current label and allows access to IO functionality, e.g.,
labeled file systems. The current label is evaluated as an upper bound of all the
labels observed during program execution.

2.2 Labelling Schemes: A Summary

Table 5 summarizes possible ways of binding labels with objects.

Table 5. Binding labels with objects for certification (Cf. [1]).

pc Label→ Reset Monotonic
Labelling↓
Static P1 P2

Hybrid P3 P4

Some programs where ignoring the label of program point leads to incorrect
certification are given in Tables 6 and 7. Table 6 shows an example with infor-
mation leaks due to abnormal termination of a program. The value of x can be
calculated from the value of sum (maximum possible integer value) and y on
terminating the program due to integer overflow. There is an implicit flow from
x to y although the assignment to y is conditioned on the sum.

A non-terminating flow insecure program is shown in Table 7. Let us consider
the given label of the global variables x and y are given as x and y such that
x � y. It can be observed that the variable y holds the value equal to x depending
on the termination of the program.

Although LIO follows the label binding P2 that keeps track of program point,
the run-time monitor fails to stop an adversary from obtaining the high values by
observing the termination of programs. Later in Sect. 3, we illustrate examples
that manifest P4 also covers P2. Considering all the limitations discussed above, a
compile-time monitor based on the labelling Scheme 3 and binding mechanism P4
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Table 6. Information-flow through abnormal termination (cf. Copy6 from [21]).

Table 7. Information-flow through non-termination (Cf. Copy5 from [21]).

would be a better candidate for secure certification of programs. A comparative
study is given in Sect. 5 where we categorize the existing prominent IFC tools
and platforms based on the labelling mechanisms.

From the above studies, we can infer:

1. While static labelling has advantages for the security certification of pro-
grams, over-approximately annotated static labels of local variables may lead
to imprecision, and adversely impacts the soundness of these approaches.

2. For certifying iterative programs (terminating, non-terminating, abnormally
terminating including exceptions), annotating local variables with improper
static labels, and following the scheme that resets the label of the program
counter, often miss to capture both the forward label propagation, and impact
on static labels due to repeated backward information flow and leads to a loss
of precision and soundness.

3. While the certification approach of Denning generates the relevant con-
straints, it fails to assert the existence of possible labelling for local vari-
ables/objects that satisfy the initial labels of global variables/objects.

If we can compute labels (or policies) for local variables such that the flow
security is satisfied at all the program points, then we could consider such pro-
grams to be secure. Thus the question will be: is there a dynamic labelling proce-
dure that realizes the same? A sound dynamic labelling approach that overcomes
the limitations of the current techniques listed above shall be presented in Sect. 3.

3 Our Approach to Certification

Our approach of certification is based on a hybrid labelling of objects in the pro-
gram, that could be unrolled a finite number of times. Possibility (or otherwise)
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of labelling the objects of the program leads to certification (or otherwise) of
the program; the same could be used in the execution monitor for checking flow
security at run-time.

In the following, we describe our Dynamic Labelling (DL) algorithm. The
algorithm finds its basis in Denning’s certification semantics.

3.1 Dynamic Labelling (DL) Algorithm for Sequential Programs

Notation: Let G be the set of global variables/objects, L the set of local vari-
ables of a program, (var)(e) the set of variables appearing in expression e, pc the
program counter, and λ, λ0, λ1, · · · the labelling functions that give the security
label/sensitivity-level of variables and pc.

SV is a function that takes a statement/command as input, and returns the
set of source variables appearing in it as output. TV is a function that takes
a statement/command as input and returns the set of target variables appear-
ing in it as output. DL is a dynamic labelling procedure/function that takes a
command, clearance level of the subject executing the program, and a labelling
function, as inputs, and returns either a labelling or UNABLE TO LABEL as
output.

λinit denotes the initial labelling. ∀x ∈ G : λinit(x) is given, ∀x ∈ L :
λinit(x) = ⊥, and λinit(pc) = ⊥, where ‘⊥’ is the least restrictive security
class or public. Let P be a given program together with initial labelling for
the global objects. Let s denote the subject trying to execute the program,
and cl denote his clearance. If DL(P, cl, λinit) returns a valid labelling, then the
program preserves information-flow security when executed by the subject s. If
DL(P, cl, λinit) returns ‘UNABLE TO LABEL’, then information-flow security
will be violated if the program is executed by the subject s, and the algorithm
exits at that point without proceeding further.

Algorithm DL is described in Table 8. It is illustrated through examples fol-
lowed by its’ soundness in the sequel.

Illustrative Examples
We illustrate the advantages of our dynamic labelling procedure by analyzing
the example programs from Sect. 2. Examples clearly highlight the advantages of
the dynamic labelling procedure in capturing subtle information-flows through
control flow path, non-termination/abnormal termination channels, etc. For each
example, initial labels of the global variables are provided. We assume that the
subject executing the program has the highest security label, and thus ignore
the clearance field; dynamic labelling is shown in a tabular form.

We apply the proposed algorithm to the example shown in Table 2. It can
be observed that the algorithm successfully labels the intermediate variable a as
shown in Table 9.

Example 1. Initial labels for global variables: λ(x) = λ(y) = x, λ(z) = z.
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Table 8. Description of algorithm DL for sequential programs (Cf. [1]).

Consider the example shown in Table 6 where x and y are global variables
having labels x and y respectively. At the point y=y+1 the program fails to satisfy
the constraint y ⊕ pc � y because the label of pc is updated to x and x � x.
Therefore the algorithm declares the program as flow-insecure.

The algorithm if applied to the program in Table 7 identifies the flow violation
as shown in Table 10: the label of pc is updated to x while testing the predicate;
detects the flow violation at the statement y=1 because the constraint pc � y
does not satisfy. Hence the algorithm fails to proceed further and declares the
program as flow-insecure, thus detects the control point where a particular object
can leak information.
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Table 9. DL successfully labels that was not possible by static labelling (Cf. [1]).

Statement pc Label Label of local variable(a)

⊥ ⊥
int a=x; x x

y=a; x x

a=z; x ⊕ z x ⊕ z

Table 10. DL detects “insecurity” by failing to label a non-terminating flow (Cf. [1]).

Statement pc Label

⊥
y=0; ⊥
while x==0
skip;

x

y=1; UNABLE TO LABEL

Example 2. Global variable(s): x, y; No local variables.
Initial labels for global variables: λ(x) = x, λ(y) = y.

3.2 DL Algorithm for Procedure Call

A procedure declaration in an imperative language contains: procedure identifier
and name of the formal parameters along with the respective mode of binding
with the actual arguments like in, out, in out etc., declaration of variables
local to the procedure and a body of the procedure. Let us consider a call to
a procedure, say p(a1, . . . , am; b1, . . . , bn), where a1, . . . , am are the actual input
arguments and b1, . . . , bn are the actual input/output arguments corresponding
to formal input parameters x1, . . . , xm and input/output parameters y1, . . . , yn.
According to Denning’s security certification [21], execution of a procedure call
p(a1, . . . , am; b1, . . . , bn) is secure iff

1. Body of the procedure p is flow secure,
2. ai � bj if xi � yj (1 � i � m, 1 � j � n), and

bi � bj if yi � yj (1 � i � n, 1 � j � n).

Note that, the specification of input/output arguments and corresponding
parameters in a procedure call and definition respectively, are often deprecated
in modern programming languages and implicitly identified by the information
passing mechanisms between arguments and parameters. Therefore, these lan-
guages are more lenient on the rigid specifications compared to their legacy
counterparts, and often distinguish a function from a procedure by the mere
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presence of a return construct. We consider the classic definition of the proce-
dure as found in legacy languages and present the dynamic labelling algorithm
for a procedure call adhering the security constraints as given by Denning. The
dynamic labelling algorithm for a procedure call is presented in Table 11. Our
algorithm evaluates the procedure as soon as it encounters a procedure call and
returns the control at the point of invocation once it completes the evaluation.

Table 11. DL algorithm for a procedure call.

The dynamic labelling algorithm performs the following operations at the
time of entry & exit from the procedure: it initializes the labels of the formal
input parameters with the corresponding labels of the actual input arguments
as per the order they appear in the list of the arguments; then, the label of the
program counter (pc) is initialized with ⊥; next, the algorithm evaluates the pro-
cedure body and finally, resets the pc to its initial label on exiting the procedure
and returns the final labels to the caller. Note that, the algorithm adhere to the
parameters transmission mechanisms during transferring the control from caller
to the callee procedure and vice-versa. This will be clear from the subsequent
example.

Consider the procedure Add written in Ada (shown in Fig. 1) that receives
two actual input arguments by the formal input parameters X and Y , add them
and store the result into formal output parameter Z. Then for a procedure call
Add(A,B,C), the dynamic labelling algorithm shall transfer the label of actual
input arguments A and B to formal input parameters X and Y respectively. The
algorithm then evaluates the statement Z := X + Y and generates the label of
Z as LUB of the labels of X and Y . Finally, the algorithm returns the labelling
function containing the mapping from Z to its new label to the caller. Note that,
the DL algorithm by itself enforce the constraints given by Denning thus certify
the procedure as flow secure.

We discuss the possible variants of our labelling algorithm for programming
languages that have different information passing mechanisms for subprograms
such as pass-by-value (e.g., Java,C,C++), pass-by-reference (e.g., C,C++) and
pass-by-object reference (e.g., Python).
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Fig. 1. A procedure Add written in Ada.

Case 1: Consider a language where the actual input parameters act as local
variables to the subprogram (like in parameters in Ada). Then, the labels of these
local variables are initialized with the labels of the corresponding input argu-
ments. Since the parameters are purely local variables, therefore, any changes in
the labels during the evaluation process do not affect the corresponding argu-
ments. However, it is necessary to have the construct return at the end of the
subprogram to transfer the changes to the caller. Such subprograms are referred
to as function and invoked within an expression. In such a case, we could refine
the dynamic labelling algorithm which might treat the function return parame-
ters as the output parameters.
Case 2: In case of a language that follows pass-by-reference (like C, C++)
for passing the information to a subprogram, any reference to the label of the
parameter is considered to be a reference to the label of the argument. Therefore,
changes in the labels of the parameters are direct changes in the labels of corre-
sponding arguments as they appear in the list of the arguments. Therefore, the
dynamic labelling algorithm could be modified to consider the input parameters
that are passed by reference, as the output parameters also and treat accord-
ingly. Note that, in presence of global variables in the list of input arguments the
corresponding formal parameters shall be considered as global within the scope
of the procedure.
Case 3: A programming languages Python follows a complex pass-by-object
reference mechanism – a combination of pass-by-value and pass-by-reference
depending on the data type of the argument, i.e., immutable or mutable respec-
tively. The original references of the immutable objects, e.g., integers, string,
tuples etc. that are passed to subprogram cannot be changed in-place, there-
fore treated as local to the subprogram. Whereas, object references for mutable
objects such as list might be changed in-place in the subprogram depending
on the operation performed on it. E.g., a compound assignment, i.e., ‘+=’ per-
forms an in-place assignment for a list argument. Therefore, in the presence of
such operations we might consider to refine the dynamic labelling algorithm and
treat the mutable object references in the parameter’s list as the formal output
parameters and follow the approach similar to Case 2.

3.3 Soundness of Algorithm DL

We shall establish the termination of our dynamic labelling algorithm, and its
soundness w.r.t. non-interference.
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Clearly, the procedure in Table 8 always terminates and is efficient. In fact,
it is linear in the size of the program. This fact is formally established through
the propositions below.

Proposition 1. DL(S, cl, λ) always terminates for any program S not contain-
ing iteration, any label cl, and any labelling λ.

Proof. The proof is by structural induction. For the base case, it is trivial to
observe that the proposition holds for skip, and x := e.

For the inductive step, it is easy to prove that if the proposition holds for S1

and S2, then it also holds for if e then S1 else S2, and for S1;S2.

Proposition 2. For any program S not containing iteration, any label cl, and
any labelling λ, if DL(S, cl, λ) returns a valid labelling λ1, then λ1(pc) =
λ(pc)

⊕
v∈SV (S)∩G λ(v).

The proof of this proposition is by structural induction and is omitted for
brevity.

Proposition 3. DL(while e do S, cl, λ) always terminates for any program S
not containing iteration, any label cl, and any labelling λ.

Proof. From the definition of DL, we note that the only case in which the evalu-
ation of DL(while e do S, cl, λ) does not terminate is when either the evaluation
of DL(S, cl, λ1) does not terminate, or DL(while e do S, cl, •) goes into an infi-
nite recursion.
The former is impossible due to Proposition 1. Impossibility of the latter is shown
by considering the evaluation of DL(while e do S, cl, λ):

1. λ1 = λ, λ1(pc) = λ(pc)
⊕

v∈var(e)∩G λ(v)
2. λ2 = DL(S, cl, λ1)
3. If λ2 == λ1 the evaluation terminates and there is nothing to prove. So we

assume that λ2 �= λ1. In this case DL(while e do S, cl, λ2) is invoked which
proceeds as follows.

4. λ3 = λ2, λ3(pc) = λ2(pc)
⊕

v∈var(e)∩G λ2(v)
5. λ4 = DL(S, cl, λ3)
6. If λ4 == λ3 the evaluation terminates and there is nothing to prove. So we

assume that λ4 �= λ3. In this case DL(while e do S, cl, λ4) is invoked which
proceeds as follows.

7. λ5 = λ4, λ5(pc) = λ4(pc)
⊕

v∈var(e)∩G λ4(v)
8. λ6 = DL(S, cl, λ5)

We claim that λ6 == λ5. The proof is given below.

1. First iteration:
λ1(pc) = λ(pc) ⊕v∈var(e)∩G λ(v)

λ2(pc) = λ1(pc) ⊕v∈SV (S)∩G λ(v)
= λ(pc) ⊕v∈var(e)∩G λ(v) ⊕v∈SV (S)∩G λ(v)
= λ(pc) ⊕v∈(var(e)∪SV (S))∩G λ(v)

(1)
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2. Second iteration:

λ3(pc) = λ2(pc) ⊕v∈var(e)∩G λ(v)
= λ(pc) ⊕v∈(var(e)∪SV (S))∩G λ(v)
⊕v∈var(e)∩G λ(v)
= λ(pc) ⊕v∈(var(e)∪SV (S))∩G λ(v)

(2)

λ4(pc) = λ3(pc) ⊕v∈SV (S)∩G λ(v)
= λ(pc) ⊕v∈(var(e)∪SV (S))∩G λ(v)

λ4(x) = λ3(x) ⊕ λ3(pc) ⊕v∈SV (S)∩G λ(v)
= λ3(x) ⊕ λ3(pc)
This is because the label of PC is already
influenced by all the global variables in S.

= λ2(x) ⊕ λ(pc) ⊕v∈(var(e)∪SV (S))∩G λ(v)

(3)

3. Third iteration:

λ5(pc) = λ4(pc) ⊕v∈var(e)∩G λ(v)
= λ(pc) ⊕v∈(var(e)∪SV (S))∩G ⊕v∈var(e)∩Gλ(v)
= λ(pc) ⊕v∈(var(e)∪SV (S))∩G λ(v)

λ5(x) = λ4(x)
= λ2(x) ⊕ λ(pc) ⊕v∈(var(e)∪SV (S))∩G λ(v)

(4)

λ6(pc) = λ5(pc) ⊕v∈SV (S)∩G λ(v)
= λ(pc) ⊕v∈(var(e)∪SV (S))∩G λ(v)

λ6(x) = λ5(x) ⊕ λ5(pc) ⊕v∈SV (S)∩G λ(v)
= λ2(x) ⊕ λ(pc) ⊕v∈(var(e)∪SV (S))∩G λ(v)

(5)

It can be observed that λ6 = λ5. Thus, we can conclude that, for the iteration
statement, the dynamic labelling procedure terminates after a maximum of three
iterations.

Combining Propositions 1 and 3 leads to the following proposition.

Proposition 4. DL(while e do S, cl, λ) always terminates for any program S,
any label cl, and any labelling λ.

Proposition 4 immediately establishes termination of DL as formalized below.

Proposition 5. DL(S, cl, λ) always terminates for any sequential program S,
any label cl, and any labelling λ.

Next, we prove some results that highlight the important characteristics of
our dynamic labelling procedure.
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Proposition 6. During the dynamic labelling of any program S with any clear-
ance cl, i.e. during the evaluation of DL(S, cl, λinit), λ(pc) � cl always holds.

Proof. In the initial state λinit(pc) = ⊥ � cl. From the definition of DL, we
note that the label of pc gets updated by taking its LUB with tmp only when
tmp � cl. Therefore λ(pc) � cl always holds due to simple lattice properties.

Proposition 7. An assignment to a global variable x is deemed safe by the
dynamic labelling algorithm for a program executing with clearance cl if and
only if cl � λ(x).

Proof. (Necessity of cl � λ(x)) From the definition of DL for an assignment
statement, it is immediately clear that if the operation is deemed safe then it
must be the case that cl � λ(x).

(Sufficiency of cl � λ(x)) Note that we have λ(pc) � cl from Proposition
6, and for the control to reach the point, we need tmp � cl, thus reducing the
check (λ(pc) ⊕ tmp ⊕ cl) � λ(x) to cl � λ(x).

Proposition 8. During the dynamic labelling of any program S, λ(pc) is mono-
tonically non-decreasing.

The proof of the above is trivially obtained by structural induction and is
omitted for brevity.

Next, we prove a generalization of the result in Proposition 2.

Proposition 9. For any program S, any label cl, and any labelling λ, if
DL(S, cl, λ) returns a valid labelling λ1, then λ1(pc) = λ(pc)

⊕
v∈SV (S)∩G λ(v).

The proof of this proposition is by structural induction and is omitted for
brevity.

Proposition 10. During the dynamic labelling of any program S, for all x ∈ L,
λ(x) is monotonically non-decreasing.

Proof. For x ∈ L, the label of x is updated by the dynamic labelling procedure
only in the case of explicit assignment. In this case the label of x changes to
λ(x)⊕λ(pc)⊕ tmp. Monotonicity of λ(pc) immediately gives us that λ(x) is also
monotonically non-decreasing.

Proposition 11. During the dynamic labelling of any program S i.e.
DL(S, cl, λinit), ∀x ∈ L λ(x) � λ(pc) always holds.

Proof. In the initial state we have λinit(x) = λinit(pc) = ⊥. We will show that
every time the label of x is updated, the property holds in the new state also.

– S ::x := e

λ1(x) � λ(x) ⊕ λ(pc) ⊕ tmp

λ1(x) � λ(pc) ⊕ tmp [ by hypothesis λ(x) � λ(pc)]
λ1(x) � λ1(pc)

(6)
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– S :: if e then S1 else S2

λ3(x) � λ1(x) ⊕ λ2(x)
λ3(x) � λ1(pc) ⊕ λ2(pc) [ by hypothesis]
λ3(x) � λ3(pc)

(7)

Relation with Non-interference
In this section, we establish that the dynamic labelling algorithm is sound w.r.t.
non-interference [3].

A simple example illustrates the relation with non-interference. Consider the
program P1 : x := y; - where x, y are global objects, and the labelling λ(y) = l2,
λ(x) = l3, where l2 and l3 come from a total order l1 � l2 � l3 � l4. Consider
four subjects s1, s2, s3, and s4, with clearances l1, l2, l3, and l4 respectively.

P1 is non-interfering. Dynamic labelling of P1 succeeds only for subjects s2
and s3. Dynamic labelling fails for s1 because his clearance is below y, and
therefore should not be allowed to access y. Similarly, dynamic labelling fails
for s4 because his clearance is above x and therefore should not be allowed to
update x.

In the following, we shall formally establish the soundness of the dynamic
labelling procedure w.r.t. non-interference. Note that globals are the only observ-
ables in this setting.

Theorem 1 (Soundness). If there exists a subject for which a program is
declared secure by the dynamic labelling procedure in Table 8, then the program
is non-interfering.

Proof. For reasoning about value based non-interference, it suffices to work with
the last update to a low labelled variable. From the definition of DL, we observe
that the only place where a global variable is potentially updated is guarded
by the condition λ(pc) ⊕ tmp ⊕ cl � λ(x). In particular, since we are dealing
with λ(x) = low, and the program is declared secure by the dynamic labelling
procedure, we can immediately infer that λ(pc) = tmp = cl = low. This guaran-
tees that no high labelled variable could have been accessed by this time in the
execution.

Traditional methods for the security certification of programs do not consider
the subject labels. Let DL1(S, λ) be a modified dynamic labelling algorithm
obtained by ignoring cl from the algorithm given in Table 8. We now prove that
even this algorithm is sound w.r.t non-interference.

Theorem 2. If a program S is declared secure by procedure DL1 i.e., DL1(S, λ)
returns a valid labelling, then the program is non-interfering.

Proof of this theorem is exactly the same as the proof of the previous theorem,
and is omitted.

Finally, the set of programs declared secure by traditional certification meth-
ods that reset PC and use static labels for variables (Jif is a prominent repre-
sentative of this class) is incomparable to the set of programs declared secure by
our dynamical labelling algorithm as shown below.
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Proposition 12. There are programs declared secure by static labelling that can-
not be dynamically labelled (insecure by our definition), and there are programs
declared secure by our approach that static labelling rejects as insecure.

Proof: Programs in Tables 6 and 7 provide an example for the former, while
the program in Table 2 provides an example for the latter.

4 DL Algorithm for Concurrent Programs

The dynamic labelling algorithm we propose for a sequential imperative pro-
gramming language can be easily extended for concurrent programs, where
shared variables among the concurrent threads are potential threats for leaking
information. In our approach apart from the set of global variables, the dynamic
labelling algorithm shall be given a set of variables that are shared among the
threads during the execution. The labels of the shared variables might be defined
globally and immutable or local to the system and mutable. In case of a shared
variable with an immutable label, the label shall not be changed throughout the
computation of the algorithm, whereas, the shared variables with mutable labels
are changed to accommodate the flows between threads.

Table 12. DL algorithm for concurrent programs.

Let us consider n number of threads T1, . . . Tn that are executing simultane-
ously, where each thread is considered as a sequential program comprise of the
statements discussed in Sect. 3. Further, assume that a set of shared variables
H is provided to the algorithm. The dynamic labelling algorithm for concurrent
programs is shown in Table 12. The algorithm, first computes the label of shared
variables by executing each thread independently. Then, it compares the final
labels of shared variables with their initial labels. The algorithm repeats the pro-
cess again if there exist a single shared variable with unequal label. The process
is iterated until the label of all the shared variables converge in the lattice.

Proposition 13. DL(T1||T2|| . . . ||Tn, cl, λ) always terminates for any n number
of concurrent threads given a priori, and any cl & λ.
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Proof. The algorithm DL for the concurrent programs might not terminate only
for the cases in which either evaluation of any thread Ti, i.e., DL(Ti, cl, λi)
does not terminate, or DL(T1||T2|| . . . ||Tn, cl, •) goes into an infinite recur-
sion. The former case is not possible since each thread is a sequential pro-
gram and Proposition 5 holds good for the sequential programs. The latter case
is impossible due to the reason shown below by considering the evaluation of
DL(T1||T2|| . . . ||Tn, cl, λ):

1. λ1 = λ
2. For all v ∈ H, λ2(v) = λ1(v) ⊕ λ1(v) ⊕ · · · ⊕ λn(v), where λi denotes

the labelling function received after evaluating the thread Ti, i.e., λi =
DL(Ti, cl, •), 1 ≤ i ≤ n

3. If λ1(v) == λ2(v) for all v ∈ H then the evaluation terminates. Therefore,
let us assume there exist at least a v for which λ1(v) �= λ2(v)

4. λ3 = λ2

5. For all v ∈ H, λ4(v) = λ3(v) ⊕ λ1(v) ⊕ · · · ⊕ λn(v)
6. If λ3(v) == λ4(v) for all v ∈ H then the evaluation terminates. Therefore,

let us assume there exist at least a v for which λ1(v) �= λ2(v)
7. λ5 = λ4

8. For all v ∈ H, λ6(v) = λ5(v) ⊕ λ1(v) ⊕ · · · ⊕ λn(v)

We claim that ∀v ∈ H, λ6(v) == λ5(v). The proof is similar to the proof for the
Proposition 3 as likewise pc, the algorithm performs LUB for each shared variable
while evaluating the threads individually to accommodate the changes. There-
fore, we can conclude that, for the concurrent threads, the dynamic labelling
algorithm terminates after maximum of three iterations.

The proof for the Propositions 5 and 13 for the concurrent context shows that
the procedure requires a finite number of unrolling rather than a full termination
to converge the labels.

Illustrative Example
An example of information leakage due to concurrent access is presented by [22].
The order of the assignments to x and y variables in VIP program depends on the
secret value of h. The program in Newsmonger runs simultaneously and prints
the values of x and y inside an infinite loop that are shared variables having
no explicit label. If Newsmonger runs in between any of the assignments that
exist in line 3 and 5 of VIP, it could reveal the value of h. In our approach the
DL procedure would evaluate the labels for the threads VIP and Newsmonger
separately along with the shared variables x and y until the label of the variables
converge in the lattice. Therefore, it would compute the labels for x and y as
equivalent to h and identify the possible flow security risk while executing the
statement “output y” in Newsmonger as label of h cannot flow to public.

5 Comparison with Related Work

In this section, we first briefly describe tools and platforms that enforce rich
information flow policies and then compare our approach with the existing
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Table 13. (a) VIP (left) and (b) Newsmonger (right) (Cf. [1]).

approaches. Further, we discuss the applicability and limitations for certify-
ing different classes of programs like (i) termination-sensitive programs, (ii)
concurrent/non-deterministic programs, etc.

Information Flow Tools
In the last decade a large number of information flow secure tools have been
developed to enforce rigorous flow security policies through prevailing program-
ming languages. For example, Jif [7], JOANA [17], Paragon [19] for Java, Flow-
Fox [23], JSFlow [24], IFC4BC [25] for JavaScript, FlowCaml [8] for Caml, λDSec

[16] for lambda calculus, LIO [18], HLIO [20] for Haskell and SPARK flow
analysis [26] for SPARK. Also flow secure platforms for instance, Jif/split [27],
Asbestos [28], HiStar [29], Flume [30], Aeolus [31] and flow checking systems
that implements sparse information labeling [15], permissive-upgrade strategy
[32] and identifies public labels and delayed exception [33] incorporate different
label mechanisms shown in Table 14. While we have omitted some similar promi-
nent platforms for lack of space, it may be noted that DL realizes the needed
characteristics required for IFC.

Table 14. Comparison of IFC tools and platforms (Cf. [1]).

Tools and Platforms Labelling mechanism Flow-sensitive Termination-sensitive

Jif P1 ✗ ✗

Paragon P1 ✗ ✗

FlowCaml P1 ✗ ✗

λDSec P3 ✓ ✗

LIO P2 ✗ ✗

λLIO
l P4 ✓ ✓

Aeolus P1 ✗ ✗

DL P4 ✓ ✓

The earliest attempt to capture flow-sensitive labels at run-time was observed
in work on λDSec. This was the first to propose general dynamic labels whose
type system was proved to enforce non-interference. The core language λDSec is
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a security-typed lambda calculus that supports first-class dynamic labels where
labels can be checked and manipulated at run-time. Also, labels can be used as
statically analyzed type annotations. The type system of λDSec prevents illegal
information flows and guarantees that any well-typed program satisfies the non-
interference property. In this language, the label of the pc is a lower bound
on the memory effects of the function, and an upper bound on the pc label of
the caller, but unlike DL, pc is not updated dynamically after executing each
statement hence the language falls in the category P3. The non-interference
property discussed in λDSec is termination-insensitive, and also does not deal
with timing channels. In the following, we provide a detail discussion on LIO
that shares a common paradigm and also subsumes the results of λDsec.

Comparison with [18]
Here, the authors have built a labelled IO Haskell library, called LIO, for certi-
fying Haskell programs. LIO tracks a single mutable current label (like program-
counter) at run-time and allows access to IO operations. The unit is responsible
for ensuring that the current label keeps track of all the observed data and reg-
ulate label modification. A type constructor Labeled is used to hold the restric-
tion only value and is mutable during run-time. At each computation, LIO keeps
tracks of the current label and allow access to IO functionality, e.g., labeled file
systems. Current label is evaluated as the upper bound of all the label observed
during the program execution.

Consider reading a secret reference: a ← readLIORef secret, where the
value “secret” is labeled as LS . Now to satisfy the information flow check i.e.,
(LS canFlowTo LC) the current label shall rise to (LC join LS) to read the
secret value. Note that the value a is not labeled explicitly. Now let us take an
example that wish to write the value of an object (a) to an output channel:
writeLIORef output a, where the output channel is labeled as LO (set dynam-
ically according to the user executing the command). It is only permissible to
modify or write data into the output channel when (LC canFlowTo LO) is satis-
fied. A second label current clearance (Lcl) provides an upper bound to current
label. Hence, the computation cannot create, read or write to objects labeled L
if L canFlowTo Lcl == False.

Although our approach overlaps with that of LIO, there are subtle differences
that are briefed below:

– Unlike statically evaluating the labels in our DL algorithm, the approach in
LIO is based on run-time floating-label system.

– Compared to DL algorithm, the LIO library provides IO actions that perform
termination-insensitive flow analysis.

– Due to flow-insensitive labelling LIO does not provide sensitivity level of each
intermediate object precisely.

We illustrate each of these points in the following.

Comparison of Labelling Mechanism
The characterization of security labels, when associated with objects, is an essen-
tial aspect of IFC analysis [34]. Security labels of subjects/objects can be muta-
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ble or immutable. Flow-sensitive IFC monitors allow changing the security labels
throughout the computation thus increase the permissiveness, and also alleviate
the burden of explicit label annotations. Note that these monitors perform the
flow analysis during execution-time or compile-time. Mutable label flow anal-
ysis during execution-time helps to determine the flow-sensitivity of objects at
run-time precisely, but compile-time analysis reduces the incident of false-alarms
and allows more programs as secure.

LIO keeps track of a single mutable current floating-label that is elevated
(e.g., from low to high) at run-time to accommodate sensitive reading; hence,
LIO is flow-sensitive in the current label. However, LIO is flow-insensitive in
intermediate object labels. To allow more programs by the run-time monitor, an
extension of LIO presented by [35] that safely manipulates a label on the reference
label. A label on the label describes the confidentiality of the LIO reference label
itself. The run-time monitor upgrades a label of a reference only if that label on
the label can flow to floating-label. Note that LIO follows the labelling mechanism
P2 whereas the proposed extension incorporates P4. Another extension of LIO
monad, i.e., HLIO that provides programmers the flexibility to defer flow check
of part of the program to run-time (like LIO) or static-time (unlike LIO), boosts
permissiveness of the monitor.

Algorithm DL, is flow-sensitive in the absence of method-calls and a compile-
time monitor built upon it would satisfy P4, and hence it is more permissive than
the other approaches highlighted above. DL follows a hybrid labelling approach
where the labels of global variables are assumed to be fixed, and label of each
intermediate object is allowed to vary, thus, flow-sensitive dynamic labels are
obtained.

Termination-insensitive Flow Analysis
Information leak depending on the termination of the program may remain unde-
tected by the run-time monitor that extends the LIO library unit. A program
that exploits toLabeled function as shown by [36] may lead to information leak
through the termination channel. toLabeled l m executes the LIO operation m
and encapsulates the returned value with label l. However, the function does not
increase the current label. Hence one can write an iterative program that exe-
cutes a toLabeled function depending on a secret value or diverges otherwise.
Assuming the initial current label as low, and as it remains unchanged even after
executing toLabeled, an adversary can determine the secret value by observing
termination of the program through standard output.

The DL algorithm keeps track of the sensitive labels observed by the pc at
compile-time. Therefore, a program that tries to pass termination information to
standard output shall abide by the information flow policy. Hence the proposed
labelling approach performs an exemplary termination-sensitive flow analysis.

Applicability of LIO in Concurrent Context
As initially LIO was not considered for dynamic flow-sensitive concurrent set-
tings, an extension is proposed in [36] that mitigates and eliminates termination
and timing channels in concurrent programs. In that article, a separate cur-
rent label for each thread is mentioned that keeps track of the sensitivity of the
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data it has observed, and restrict the locations to which the thread can write.
Hence, while termination and timing of these threads that may expose the secret
values, the thread requires to raise its current label. This prevents lower secu-
rity threads from observing confidential information written in shared locations.
Another extension of LIO proposed by [35] provides the primitive of automatic
upgrade that safely updates flow-sensitive label references. Both the extensions
are shown to be equally applicable for concurrent context. However, the exten-
sions may not stop the concurrent programs from revealing the secret value. Let
us assume the assignments in the program shown in Table 13 are LIO operations
and the labels of the current label and h are LC and Lh respectively. Then, the
label of y is evaluated as LC join Lh when h is false. Now, before labelling of x
is done by LIO, Newsmonger might disclose the value in x which in turn would
reveal the secret value h.

Determining the Label of Intermediate Variables
As early as 1975, Dorothy Denning proposed in her thesis [37] a run-time source-
to-source transformation to guarantee flow security of programs having the selec-
tion or iteration statements. The method introduces additional code for checking
possible flow violations at run-time. In a sense, her method, simulates possible
information flows for each variable that has to lie between possible highest and
lowest levels. As against this, our method succinctly captures security labels of
variables explicitly without introducing additional code in the program.

6 Conclusions

We have presented a dynamic labelling algorithm, i.e., DL for flow security cer-
tification of imperative programs. Our labelling algorithm is appropriate for not
only classic actual-formal parameter passing mechanism but also for mechanisms
like pass-by-object reference used in Python as illustrated in this paper. Another
characteristic of our approach allows us to capture the labels for termination-
,progress-sensitive programs and has shown to be more security precise compared
to existing approaches. Also, we have established the soundness of our approach
with respect to non-interference. We have extended the DL algorithm to eval-
uate a concurrent context consisting of a finite number of sequential programs
referred to as threads, sharing a given set of variables and executing concur-
rently. The algorithm DL is shown to be always terminating after a finite number
of iterations. So far, we have built a platform for certifying sequential Python
programs. The platform is enriched with the novel features such as declassifica-
tion that helps to build a multi-level secure system that follows a decentralized
labelling model. We have illustrated the efficacy of DL to concurrent programs
and currently extending our platform for certification of concurrent programs as
well.
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