
Martin Carlsen
Ingvald Erfjord
Per Sigurd Hundeland   Editors

Mathematics 
Education 
in the Early 
Years
Results from the POEM4 Conference, 
2018



Mathematics Education in the Early Years



Martin Carlsen • Ingvald Erfjord 
Per Sigurd Hundeland
Editors

Mathematics Education  
in the Early Years
Results from the POEM4 Conference, 2018



Editors
Martin Carlsen
Department of Mathematical Sciences 
Faculty of Engineering and Science
University of Agder
Kristiansand, Norway

Per Sigurd Hundeland
Department of Mathematical Sciences 
Faculty of Engineering and Science
University of Agder
Kristiansand, Norway

Ingvald Erfjord
Department of Mathematical Sciences 
Faculty of Engineering and Science
University of Agder
Kristiansand, Norway

ISBN 978-3-030-34775-8    ISBN 978-3-030-34776-5 (eBook)
https://doi.org/10.1007/978-3-030-34776-5

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-34776-5


v

Introduction

The fourth POEM Conference was held on 29–30 May 2018  in Kristiansand, 
Norway, at the University of Agder, following the conference held in Frankfurt am 
Main, Germany, in 2012 (Kortenkamp et  al., 2014); Malmö, Sweden, in 2014 
(Meaney et al., 2016); and Karlsruhe, Germany, in 2016 (Benz et al., 2018). POEM 
is a conference comprising invited participants, and it is a conference for research-
ers working in early childhood mathematics education. In 2018, 9 years after the 
launching of the early years mathematics thematic working group at CERME 6 
(The Sixth Congress of the European Society for Research in Mathematics 
Education in Lyon, France), we are still faced with the critical question: In which 
way—and how much—should children be “educated” in mathematics before enter-
ing primary school (Levenson, Bartolini Bussi & Erfjord, 2018)? In a working 
atmosphere, focusing on interaction and exchange, participating researchers 
addressed this question in order to start and maintain a research network in early 
mathematics learning.

Over the 2 days of the conference, three plenary sessions were provided by 
Professor Maria Giuseppina Bartolini Bussi from the University of Modena and 
Reggio Emilia, Italy; Professor Lieven Verschaffel from the Catholic University of 
Leuven, Belgium; and Professor Luis Radford from Laurentian University, Canada. 
These plenaries engaged the listeners in three different directions.

Bartolini Bussi did her talk on the theme “Early Years Mathematics: Semiotic 
and Cultural Mediation”, in which she reflected on in which ways the theory of 
semiotic mediation (Bartolini Bussi & Mariotti, 2008) has had an impact on national 
standards in Italian pre-school mathematics. She exploited the compatibility of 
semiotic mediation with Bishop’s idea of mathematical enculturation (Bishop, 
1988) through his six fundamental mathematical activities: counting, locating, mea-
suring, designing, playing, and explaining. She also elaborated on how the theory of 
semiotic mediation has been drawn upon, over the years, to interpret and design 
mathematical activities also for pre-school children. Furthermore, she reported and 
analysed several original examples of mathematical enculturation involving  children 
from 0 to 6 years old.
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Verschaffel gave a talk on “Young Children’s Early Mathematical Competencies: 
The Role of Spontaneous Focusing Tendencies”, in which he reflected on spontane-
ous focusing tendencies amongst young children and their role in early mathemati-
cal development. He drew on neurocognitive research results on children’s early 
mathematical abilities, but he also launched a new line of research focusing more on 
dispositional aspects of children’s early mathematical competencies. The most 
 studied dispositional aspect so far is children’s spontaneous focus on numerosity 
(SFON), but Verschaffel presented research results, including theoretical insights, 
diagnostic tools, and educational recommendations, with respect to other aspects as 
well: numerical symbols (SFONS), quantitative relations (SFOR), and mathemati-
cal patterns and structures (SFOPS). His main point was that these aspects are not 
addressing what children may think and do when taught mathematics but rather 
what young children spontaneously focus on without any teaching.

The theme of Radford’s talk was “Play and the Production of Subjectivities in 
Kindergarten”, in which he elaborated on his theory of knowledge objectification to 
also encompass a process of subjectification. He reflected on this theme by drawing 
on a situation in which children were playing mathematical games in a kindergarten 
context. Radford analysed these situations with a particular interest in mind. He 
took the audience through his ideas aiming for understanding in what ways mathe-
matical ideas emerging through play allow children to inscribe themselves in the 
social world in which they participate and are members, i.e. a process of subjectifi-
cation. Thus, in this way, he recast a more usual research approach within early 
years mathematics education research, namely, how play allows children to develop 
mathematical ideas.

All three plenary speakers have written a chapter based on their talks. These 
chapters are placed first in this book as Chaps. 1–3. These are followed by selected 
revised chapters submitted for the conference. The review process of the chapters 
comprised three rounds. Initially, each author submitted his/her chapter to the 
 conference. These versions of the chapters were presented and discussed at the con-
ference. Based on these discussions, questions, and comments from the audience, 
the authors submitted a full revised chapter to the editors. The editors then launched 
the first round of review. In the first round, each chapter was sent to two reviewers. 
The reviewers were both participants at the conference and international experts in 
the field of early years mathematics education research. The reviews were collected 
by the editors and submitted to the authors. The authors then revised and resubmit-
ted their chapters accompanied by a letter in which all changes and modifications 
were described with respect to the reviewers’ comments. The second round of 
review comprised the editor’s careful and thorough reading of the revised chapters, 
making sure that the reviewers’ comments and prompts were dealt with as well as 
raising new concerns, questions, and ideas for revision. These reviews were sent to 
the authors, urging them to consider the criticisms made. The authors then submit-
ted their third version of their chapters to language control before proofreading was 
done. The final versions of the chapters resulting from this profound review process 
are included in this book.
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Over the 2 days of the conference, five parallel sessions also took place. There 
were three parallels in each session, and every session included the presentation 
and discussion of two chapters, making a total of 30 chapters being presented and 
discussed in total. A selection of these chapters is thematically divided and com-
mented upon below. Based on the research areas in focus of these chapters, we 
have categorised them into three themes: (1) children’s mathematical reasoning, 
(2) early years mathematics teaching, and (3) parents’ role in children’s mathemat-
ical development.

 Children’s Mathematical Reasoning

This section comprises 15 chapters, Chaps. 4–18, whose object of study is  children’s 
mathematical reasoning with respect to various mathematical concepts. The chap-
ters encompass a vast variety of theoretical lenses used to study early childhood 
mathematics education.

Tsamir, Tirosh, Barkai, and Levenson study how pre-school teachers implement 
patterning tasks in their teaching and in what ways the children engage in copying 
repeating patterns and comparing the patterns. The teachers in their study  introduced 
a strand of beads representing an AB-structured pattern, and they asked the children 
to make a similar strand of beads. However, the children had to use different colours 
than the original one. Then the children were asked to compare their own pattern 
with the model pattern. A similar task was carried out with an AAB- structured pat-
tern. Tsamir et al. found that the children were using two different strategies when 
copying the AB-structured pattern and a third strategy when copying the AAB-
structured pattern. The authors hypothesise that this third strategy might signal an 
intermediate position in children’s development of structure recognition. These 
researchers also found, interestingly, that more children recognised the AAB-
structured pattern than the AB-structured pattern.

Lüken also presents a study of patterning; in her case, the focus is on children’s 
strategies when working with repeating patterns. Her concern is on children’s pro-
cesses rather than the product of such pattern activities. She conducted interviews 
with 159 children aged 3–5 years while they were working with patterning tasks, 
and she coded their strategies in five strategy categories. Her results show a wide 
variety of strategies being used and with a tendency that the older children more 
often used strategies considered as more advanced. A main insight is that most 
young children are not using the unit of repeat in patterning activities.

In their chapter, Björklund and Reis report from a study of how pre-schoolers use 
fingers in numerical reasoning when working on arithmetic problems. Variation 
theory of learning is used as a theoretical lens in analysis of 133 observations of 
4–5-year-olds work with arithmetic problems and particularly how they use their 
fingers when working with the problems. Three main different kinds of finger use 
were found, where two of the three kinds of finger use were based on expressions of 
number knowledge that did not contribute to solving the problems. Debating on 
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whether finger use should be advocated or not in early mathematics, Björklund and 
Reis take the stance that it is how fingers are used rather than its use per se that must 
be given concern.

Bjørnebye and Sigurjonsson take a study of 3–4-year-old children in outdoor 
navigation tasks in kindergarten as its empirical basis. According to the authors, 
these children initially did not master cardinality for exact enumeration but had 
previously engaged in an experimenter-led articulated “kangaroo-two” feet activity 
with physical tagging of 1–4 dotted arrays. The reported study in the chapter 
 concerns a new experimenter-led intervention where the children individually navi-
gated across a 50 dots circle. The conceptual metaphor theory is used as a theoretical 
lens to analyse the children and the experimenter actions and verbal and non-verbal 
utterances while engaging with the navigation task. Their findings indicate that the 
children in their verbal and physical communication were able to use number 
 metaphors. Bjørnebye and Sigurjonsson mention “rooster-one”, “kangaroo-two”, 
“monkey- three”, and “frog-four” as examples of such metaphors. They argue that 
the spatial structured language design as evident in their tasks could develop chil-
dren’s enumeration skills efficiently exceeding a basic cardinality insight.

Similarly, as Bjørnebye and Sigurjonsson, Lossius and Lundhaug also take out-
door activity in kindergarten as their departure. However, a clear difference in the 
studies is that Lossius and Lundhaug do not use adult- or experimenter-led activities 
as their focus but rather look at a children-initiated spontaneous outdoor activity in 
a kindergarten. By adopting theories of instrumental and pedagogical situations in 
kindergartens, they characterise the problem-solving situations in the activity and 
how mathematics is involved in the activity. Despite that the children only implicitly 
themselves used mathematics to solve a practical task, the kindergarten offered sup-
port of their mathematical ideas and is argued as a pedagogical purpose in the kin-
dergarten teachers’ contributions. Based on this insight, Lossius and Lundhaug 
argue that awareness of the features of mathematical problem-solving could support 
kindergarten teachers to be able to support and develop mathematical problem- 
solving in the outdoor environment.

De Simone and Sabena discuss how strategy games may be exploited to develop 
mathematical reasoning and argumentation competencies in kindergarten. Five- 
year- old children were involved in a teaching experiment based on the game “13 
buttons”. The game is played by two players, which alternate and play one against 
the other, starting from the initial situation of 13 buttons (or other tokens) displayed 
on a line. Each player, in his turn, can take one, two, or three buttons. It is not pos-
sible to skip the turn. The one who takes the last button loses the game. They anal-
ysed their data by adopting two theoretical frameworks, the game theory and the 
structure of attention frame. Their results indicate that children in game activity 
settings experience different aspects of mathematical thinking, such as making 
choices and checking their consequences, identifying regularities and relationships, 
producing conjectures, and explaining them. The results also point out the key role 
of the teacher in prompting children to develop these processes, and in particular, 
three different kinds of successful prompts are suggested.

Introduction
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In the study of Mellone, Baccaglini-Frank, and Martignone, insights are  provided 
with respect to how 5–6-year-old children engage with quantities of rice. According 
to Mellone et  al., rice is a mathematically interesting substance since it can be 
viewed both as a continuous and a discrete substance. The children were asked to 
compare quantities of rice and whether there was “as much [rice] as” in different 
piles of rice, having the opportunity to take advantage of various provided artefacts. 
From a semiotic mediation perspective, the authors analyse the children’s strategies 
in solving the task as well as the developed situated signs of the children. From this, 
Mellone et al. identify those signs that teachers later may use as pivot signs in their 
teaching aiming for mathematical meanings of measurement.

The aim of the study of Severina and Meaney is to investigate the semiotic 
resources children utilise when asked to come up with mathematical explanations 
within hypothetical situations. Severina and Meaney analyse video data from a 
 situation in which 4–5-year-olds and a kindergarten student teacher interact in dis-
cussions of both real and imaginary page layouts of a photo book. The authors 
analyse the children’s reasoning as they argue about the number of photographs in 
the various layouts. The children’s reasoning is characterised by the use of oral 
language, gestures, and physical objects. According to Severina and Meaney, these 
results indicate that younger children, than previously suggested, can use mathe-
matical ideas in their provided explanations of hypothetical situations – explana-
tions afforded by the use of semiotic resources.

As Mellone et al. and Severina et al., semiotic perspectives are also at stake in the 
chapter written by Di Paola, Montone, and Ricciardiello. They report from a case 
study involving kindergarten children aged 5–6, who were asked to build a Lego 
block and then to discuss drawings of such blocks observed from different points of 
view. These authors emphasise the didactic potentiality of the use of an artefact, 
useful to construct mathematical meanings concerning the coordination of different 
points of view. Di Paola et  al. hypothesise that the alternation between different 
semiotic systems, i.e. graphical system, verbal system, and system of gestures, is 
important in the children’s mathematical learning. The theory of semiotic mediation 
is suitable to design the teaching sequence and to analyse the collected data. This 
chapter reports some preliminary results concerning the validity of the hypothesis 
about the potentiality of using the combination of artefacts as tools.

Sprenger and Benz study children’s development of number and arithmetic con-
cepts by emphasising the important role of structures in these developments. In 
supporting a child’s perception and use of structures, Sprenger and Benz analyse 
this child’s ways of determining the cardinality of a set of objects. Drawing on a 
pre- and post-design and follow-up design study, in which interventions focused on 
playing games emphasising structures were carried out, these authors argue that the 
child changed the way he perceived structures in sets. Moreover, the child took 
advantage of the perceived structures to determine the cardinality of various sets.

Maier and Benz’ chapter present a study of children’s conception of geometrical 
shapes. In order to investigate the geometrical concept formation of 4–6-year-old 
children in two different learning environments, around 80 English and German 
children were given several tasks concerning the conception of geometrical shapes. 
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Different aspects of children’s concepts are illustrated, as, for example, how  children 
explain the shape of a triangle; how they perceive different kinds of triangles; what 
kinds of examples they choose as circles, triangles, and squares; and how their 
explanations and their choices of shapes, as well as their drawings, go in line with 
each other. Their results indicate that the children often cannot apply a comprehen-
sive definition of a shape to different representations of that respective shape. Thus, 
it can be concluded that a definition that is learned by heart, without an understand-
ing of what this definition means, does not contribute to a comprehensive concept 
formation.

Palmér and Björklund present a study where the emphasis is on mathematics 
teaching framed with narratives. The fairy tale “Goldilocks” is used in two exam-
ples, one with children aged 1–3 and one example with children aged 4–5. The 
empirical examples are used to illustrate the complexity and to reinforce the focus 
of the chapter, a content analysis of the Goldilocks story. These authors investigate 
what mathematical concepts can be explored and framed within the story and what 
challenges the story imposes for learning mathematical concepts. The result of the 
analysis shows that the mathematical content in the story entails a complexity that 
may hinder the emergence of mathematical learning objects if the story is played 
out true to its original form. Palmér and Björklund conclude that unless a pre-school 
teacher has an advanced understanding of the mathematical concepts in question, 
the story makes it difficult to frame children’s concept exploration in profitable ways.

Policastro, Almeida, Ribeiro, and Jakobsen aim to achieve a more profound 
understanding of connections between 5-year-old kindergarten children’s and kin-
dergarten teachers’ insights into measurement. Through a lens of one teacher’s 
 specialised knowledge in mathematics, these researchers investigate the subtleties 
of this teacher’s ways of fostering mathematical discussions. These discussions are 
launched to empower the involved children’s mathematical learning processes with 
respect to measurement. Policastro et al. analyse one taught video-recorded lesson 
on measurement tasks. Their results show, particularly in contingency moments, 
how the teacher’s specialised mathematical knowledge informs decisions during the 
teaching to sustain relationships between the children’s mathematical contributions 
and the teacher’s mathematical insights.

Breive’s concern is on the coordination of turn-taking in small groups of 
 pre- school children aged 5–6 working with addition problems. Breive uses a multi-
modal interpretative perspective as the basis for her analysis and draws on the theory 
of knowledge objectification as outlined by Radford. Her findings pinpoint that the 
way children organised their turn-taking resulted in different kinds of materialisa-
tion of their mathematical thinking and how multiplicative structure emerged. 
Breive proposes that children’s early multiplicative thinking could be fostered by 
small group settings and by using various equal group addition problems with hands 
and fingers.

Tzekaki’s theoretical study aims to provide insights into characteristics of early 
childhood mathematical activity. Tzekaki takes as a point of departure that pre- 
schoolers, in order for them to develop mathematical ideas, generally are engaged 
in games, various tasks, and situations comprising mathematical objects and content 
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such as measuring, counting, and recognising of different geometrical shapes and 
patterns. Nevertheless, Tzekaki argues that whether these children are considered to 
act and think mathematically and learn mathematical concepts depends on what we 
as researchers define mathematical thinking and acting to be. This researcher thus 
seeks to characterise what she calls genuine mathematical activity in early child-
hood, culminating in arguing generalisation as the essential component of mathe-
matical activity. Examples from mathematics teaching practices in early childhood 
are provided which demonstrate the importance of generalisation.

 Early Years Mathematics Teaching

This section comprises five chapters, Chaps. 19–23, whose object of study is math-
ematics teaching in early childhood education. The chapters emphasise both the 
teaching of teachers and early childhood education students’ teaching of mathematics.

Bruns, Carlsen, Eichen, Erfjord, and Hundeland report from a cross-country study 
of early childhood education students’ situational perception of the mathematics 
involved in learning situations with children in a kindergarten environment. The 
respondents were students in their educational training to become professional kin-
dergarten teachers. Bruns et al. conducted a study with ten students, five from Austria 
and five from Norway. The students watched seven video vignettes prepared by the 
researchers and individually wrote down their observations and reflections after look-
ing at each of the seven vignettes. Each vignette was a video recording of a situation 
in a kindergarten, and no sound was offered. Through the use of qualitative content 
analysis of the students’ written responses, three categories of responses were found: 
process, learning, and mathematical concepts. Their findings showed clear differ-
ences between Austrian and Norwegian students’ responses when it came to the cat-
egory mathematical concepts where the density of these responses was much higher 
for the Norwegian students. The main difference between Austria and Norway is the 
students’ background in early years mathematics, where the Norwegian students had 
met mathematics as part of their educational training to become kindergarten teach-
ers. Based on their findings, Bruns et al. conclude that the kindergarten teachers’ situ-
ational perception of mathematical concepts is less influenced of general aspects of 
education and stronger influenced by their knowledge background in mathematics.

Flottorp’s chapter does, as Bruns et al., focus on early childhood education stu-
dents. The attention in this study is on how the students reflect on ways of support-
ing children in spontaneous mathematical situations. The data is collected from 
students’ reports from kindergarten and interviews with them afterwards. The 
framework of the knowledge quartet is used in the analysis. Flottorp investigates the 
challenges early childhood education students face in spontaneously supporting 
children in measuring activities and how these students reflect on being active ver-
sus passive. The study reveals that not only contingency is involved in spontaneous 
situations. Many aspects of the knowledge quartet are necessary for being able to 
act in the moment.
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Similarly to Bruns et al., Fosse, Lange, and Meaney study kindergarten teachers’ 
responses to photos of children working with mathematics. Fosse et al., in focus 
group interviews, were particularly interested in whether problem-posing and 
problem- solving were explicitly discussed since previous research has found this 
not to be evident. By utilising Bishop’s universal mathematical activities of explain-
ing and playing in their analysis of kindergarten teachers’ responses, they found 
four components in problem-posing and problem-solving being paid attention to. 
These were the routine or nonroutine nature of the problems, known or unknown 
problem-solving strategies, body actions or verbal explanations, and playing by 
exploring different scenarios or following rules. Fosse et al. state that their identifi-
cation of kindergarten teachers’ responses, capturing their discussion of problem- 
posing and problem-solving, contribute as a way to characterise kindergarten 
teachers’ professional knowledge.

Measurement is the mathematical scope in the chapter by Keuch and Brandt. 
Their concern is on how kindergarten teachers in small group oral interaction with 
children support learning of measuring length and mass (weight). They adopt inter-
actional linguistics as a theoretical basis to analyse the use and meaning of adjec-
tives in the interaction between the kindergarten teachers and the children. They 
found 14 different occasions where measuring was in focus in such small group 
interactions, nine on length and five on weight. Their findings are twofold. Keuch 
and Brandt argue that interaction focused on measuring gives rich possibilities to 
develop an understanding of adjectives. Despite this, they only found a few exam-
ples that the kindergarten teachers exploited the learning opportunities, and they 
argue that the kindergarten teachers do not seem to possess sufficient language 
awareness to exploit these opportunities for learning.

In the study of Sæbbe and Mosvold, the research focus is at the complexity of the 
work of teaching mathematics in kindergarten. These authors analyse instances of 
mathematics teaching in Norwegian kindergartens. As a result, Sæbbe and Mosvold 
not only propose mathematical tasks that characterise the work of teaching mathe-
matics in kindergarten but also anticipate that the work of teaching mathematics in 
kindergarten is constituted by these and similar tasks. This testifies to the complex 
nature of mathematics teaching in kindergartens situated within a social pedagogy 
tradition, in which free play and learning from everyday situations are highly valued.

 Parents’ Role in Children’s Mathematical Development

This section comprises the final two chapters of the book, Chaps. 24 and 25, whose 
object of study is children’s mathematical development within the home environment.

In Lembrér’s chapter, parents, as well as other family members, are recognised 
as young children’s first educators who contribute to their learning of mathematics 
knowledge and skills. The focus of this study is on how parents describe their chil-
dren’s engagement with mathematics at home. She is interested in what parents 
value in the mathematics activities that their children engage in at home. Data were 
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collected from nine Norwegian parents through photo-elicited focus group 
 interviews, where the parents’ own photos were used as stimuli for the interviews. 
The analysis was done using a narrative approach to identify how parents saw their 
children authoring, sense-making, collaborating, and using non-verbal communica-
tion which gave insights into the values they held. Results indicate that the parents 
valued their children learning numbers, counting skills, early measuring concepts, 
and use of money.

As Lembrér, Anderson and Anderson also focus on the home context. They 
report on two “pedagogical” at-home, play-based activities for evidence of two 
mothers’ capacity to establish and sustain mathematics as a goal while addressing 
each child’s role throughout the event. Their attention is on ways in which parent- 
child activity may unfold in families and underscore a need to learn more from 
parents about the pedagogical practices that make sense to them. Periodically over 
the course of 2.5 years, six pre-schoolers were videotaped as they participated with 
family members in at-home activities, such as baking cookies or reading a story-
book. The chapter offers a detailed account of two cases where the mothers’ and 
children’s interaction during two pedagogical activities are analysed.
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Chapter 1
Early Years Mathematics: Semiotic 
and Cultural Mediation

Maria G. Bartolini Bussi

1.1  Introduction

1.1.1  What Does Early Years Mathematics Mean?

According to the POEM literature (Benz et  al., 2018; Kortenkamp et  al., 2014; 
Meaney, Helenius, Johansson, Lange, & Wernberg, 2016), early years means chil-
dren aged 2–8. Yet, in the international literature, mathematical concepts (whatever 
they mean) are addressed also for younger children. For instance, a famous paper 
by Karen Wynn (1992) addressed addition and subtraction by human infants with 
ingenious experimental settings:

A group of 32 infants were divided randomly into two equal groups. Those in the “1+1” 
group were shown a single item in an empty display area. A small screen then rotated up 
hiding the item from view, and the experimenter brought a second identical item into the 
display area, in clear view of the infant. The experimenter placed the second item out of the 
infant’s sight behind the screen. Thus, infants could clearly see the nature of the arithmeti-
cal operation being performed, but could not see the result of the operation. The “2-1” 
group was similarly shown a sequence of events depicting a subtraction of one item from 
two items. For both groups of infants, after the above sequence of events was concluded, 
the screen was rotated to reveal either one or two items in the display case. Infants’ looking 
time at the display was then recorded […]

For “addition,” the trials alternated between a two-item (possible) outcome and 
an one-item (impossible) outcome. The same was done for “subtraction,” alternat-
ing between a two-item (impossible) outcome and an one-item (possible) outcome. 
In both cases infants looked longer to the impossible outcomes. Wynn’s conclusion 
follows:
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Here I show that 5-month-old infants can calculate the results of simple arithmetical opera-
tions on small numbers of items. This indicates that infants possess true numerical con-
cepts, and suggests that humans are innately endowed with arithmetical abilities.

The words used by Wynn are taken from mathematics (e.g., calculate, operation, 
addition, subtraction, results, and numerical concepts). Doridot and Panza (2004), 
in contrast, claim that it is very important to distinguish between innate perceptual 
capacities (similar to the ones recorded by Wynn) and the constitution of arithmetic 
as a system. They put their comment in a paper addressing a much larger issue, i.e., 
the possible contribution of cognitive sciences to the philosophy of mathematics. 
For them, mathematics is supposed to be what Barton (2008) calls NUC Mathematics 
(i.e., Near-Universal Conventional Mathematics), that is,

the smaller, formal, conventional world of academic mathematics as it is exemplified in 
schools and universities all over the world. (p. 10)

Barton contrasts NUC Mathematics with a QRS system, that is,

any system that helps us deal with quantity or measurement, or the relationships between 
things, or space, shapes or patterns. (p. 10)

When we speak of early years mathematics, we hint, in most cases, at a QRS 
system rather than to NUC Mathematics. In this perspective, infants’ perceptual 
sensitivity to possible and impossible outcomes recorded by Wynn (1992) may be 
considered the germs of a QRS system. This interpretation supported my personal 
trajectory in this research field.

1.1.2  My Personal Trajectory

In the 1980s, I started to collaborate with the municipal preschools in Modena, my 
home city. I worked with a famous Italian educator (Sergio Neri), who was later 
appointed in the National Committee for the first definition of national programs 
for preschools (Orientamenti, 19911). The Orientamenti were divided into six fields 
of experience, one of which was mathematics (named space, ordering, and measur-
ing). I was asked by Neri to outline this field. I did it following Bishop’s (1991, 
2016) idea of mathematical enculturation, with the six “universal” activities: 
counting, locating, measuring, designing, playing, and explaining. The Orientamenti 
are still the guidelines for school design, although summarized versions were later 
issued as standards (Indicazioni, 20122). Standards did not repeal the Orientamenti 
but coordinated a short outline of them with the standards for grades 1–8 aiming at 
longitudinal continuity.

In 2012, I was appointed as a leader of the WG13 on Early Years Mathematics 
for CERME 8 (Antalya) and CERME 9 (Praha). In that context, I started a very 

1 http://www.edscuola.it/archivio/norme/decreti/dm3691.html
2 http://www.indicazioninazionali.it/J/
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fruitful collaboration with Ingvald Erfjord and Ester Levenson, who cochaired the 
group with me (Levenson, Bartolini Bussi, & Erfjord, 2018). In 2013, the peda-
gogical coordination of Modena launched a new action research program3 with the 
extension of the original program to toddler centers too (the so-called ZEROSIX 
program hinting at kids’ age). The program was organized in 3-year cycles, with 
about 30 + 30 participants (30 toddler center educators and 30 preprimary school 
teachers4).

Between the years 2012 and 2018, I cochaired with Xu Hua Sun, the first ICMI 
Study on early mathematics (Bartolini Bussi & Sun, 2018), who addressed, for the 
first time, the issue of arithmetic in primary school, with some possible extension 
to preprimary too.

1.2  Some Outcomes of the Preschool Program

The preschool research was realized by the collective work of an action research 
group comprising a mathematical advisor (the author of this chapter), a small num-
ber of pedagogical coordinators, and some dozens of preschool teachers. Some 
documentation is reported in a multimedia.5

1.2.1  The Giant Slavonic Abacus

The quoted multimedia has a whole section on the giant slavonic abacus (Bartolini 
Bussi, 2013). In 2008, all the municipal preschools were given a giant Slavonic 
abacus (Fig. 1.1). Teachers themselves had designed it with 40 beads because this 
number meets the most common needs of school activity (e.g., counting children in 
the roll and counting the days per month in the calendar). The large size fosters 
large body gestures (even steps for younger children) to move the beads. 
Intentionally, schools received a dismantled abacus, as most teachers agreed that 
the very assembling could have been an important part of the exploration of the 
artifact.

3 The complete action-research program addresses several school subjects: number and space 
(mathematics); knowledge of the world (science); body and motion (gym); from gesture to sign 
(drawing); talking with children; oral narration; philosophy with children. The last one is for prep-
rimary teachers only. Every educator/teacher is enrolled for 3 years in one of the above programs. 
The yearly structure of the program is roughly outlined by Bartolini Bussi (2013).
4 In Italy the term educatore/educatrice (educator) is used in the toddler centers, while the term 
insegnante (teacher) is used in the preschools. There are different ways and rules for preservice 
education and for recruitment, although recently the coordination of the so-called zerosix services 
has been issued (http://www.gazzettaufficiale.it/eli/id/2017/05/16/17G00073/sg). In this chapter I 
shall use the two different terms accordingly.
5 http://memoesperienze.comune.modena.it/bambini/index.htm
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Fig. 1.1 The giant 
slavonic abacus: 
exploration and 
representation

Some mathematical meanings were analyzed by the research group:

• Partition, to separate counted beads from beads to be counted;
• One-to-one correspondence, between beads and numerals;
• Cardinality, given by the last pronounced numeral;
• Sequence of early numerals, to be practiced in counting.
• Place value (early approach), as beads are divided in tens.

A system of suitable tasks was collaboratively produced by the research group, 
with the aim of fostering children’s productions of different voices: the presence of 
different voices allowed the teacher to orchestrate a polyphony of voices,6 which, 
according to the theoretical framework of semiotic mediation, nurtures the indi-
vidual construction of mathematical meanings during collective interaction. This 
way, the same artifact is looked at from different perspective. Some tasks tested 
with 4- and-5-year-old children follow.

6 The term voice is used after Bakhtin (1981). See also Bartolini Bussi and Mariotti (2008).

M. G. Bartolini Bussi
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1.2.1.1  Task 1: The First Impact (The Narrator’s Voice)

Tasks are different if the abacus is assembled (A) or if it is dismantled (B): (A) 
What is it? Have you seen it before? What is its name? (B) What have I carried 
today? What do you see? Do you know objects with many beads? Such tasks, used 
in either small or large group discussions, aim at evoking earlier experiences and 
involving children. At the end, the name may be introduced (in Italian the word 
pallottoliere—has the same root as pallina—bead). This task fosters the emergence 
of the narrator voice.

1.2.1.2  Task 2: The Structure of the Artifact (The Constructor’s Voice)

How is it made? What do we need to build another one? How to give instruction to 
build another one? Such tasks, used in either small or large group discussion, aims 
at identifying the components and naming them in a correct way, and describing the 
spatial relationships between them. They foster the emergence of the constructor 
voice. After a discussion, individual drawing tasks are given: draw our abacus. The 
previous verbal analysis of the structure of the artifact fosters the production of 
very detailed drawings, with, for instance, the right number of beads and the realis-
tic representation of legs and other parts (Fig. 1.1, right).

1.2.1.3  Task 3: The Use of the Artifact (The User’s Voice)

The task is functional to the context where the artifact is used. For instance, it may 
be used to keep the score in skittles or to count the present children during the call. 
It may be given in small or large groups. How do you use it to keep the score? How 
do you use it during the call? This task fosters the emergence of the user voice.

1.2.1.4  Task 4: The Justification for Use (The Theoretician’s Voice)

In this case too, the task is connected with the context. Children are asked to explain 
“why does it work to keep the score?” and similar. This is a very difficult task that 
fosters the emergence of the theoretician voice, to explain what mathematical 
meaning or process makes us sure that the function is effective. This task may be 
given indirectly, showing a puppet that makes mistakes and encouraging children 
to comment and to correct it, if they do not agree, explain why.

1.2.1.5  Task 5: New Problems (The Problem Poser and Solver’s Voice)

These last tasks were not designed in advance but emerged together with creative 
solutions in classroom activities. For instance, in a classroom, children proposed to 
use the Slavonic abacus to plan the preparation of tables for lunch. They suggested 

1 Early Years Mathematics: Semiotic and Cultural Mediation
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registering, on the abacus, the number of children for each table on a different line. 
When they realized that the tables to be set were 5, they explained that there were 
not enough lines and decided to create a new line on the floor, lining up 10 small 
cubes and moving them accordingly. Such self-posed tasks may foster the emer-
gence of the problem poser and solver voice.

The system of tasks for the giant Slavonic abacus may be usefully referred to in 
literature on mathematics education. The emergence of the narrator voice in the first 
task is related to devolution (Brousseau, 1986), as it fosters the personal involve-
ment of children in the tasks. The emergence of the constructor voice in task 2 is 
related to Rabardel’s instrumentation (1995), as it concerns the component of the 
artifact as an object. The emergence of the user voice in task 3 is related to Rabardel 
instrumentalization (1995), as it fosters the emergence of individual utilization 
schemes. The emergence of the theoretician voice in task 4 is related to mathemati-
cal meanings, hence, it is consistent with the Vygotskian approach to school sub-
jects through semiotic mediation (Bartolini Bussi & Mariotti, 2008). The emergence 
of problem poser and solver voice in task 5 shows that, in spite of the teacher’s 
guidance, children’s creative ideas have space to be developed. However, those tasks 
were not exercises of application of that literature, but rather experiments designed, 
realized, interpreted, analyzed, and generalized, in collaboration between teacher 
educators, teachers, and pedagogists in a dialogic way, exploiting the literature.

1.2.2  The Time Tube

Later, other activities were designed by the action research group to complement 
the activities of counting practiced in the schools. One of them aimed at introduc-
ing the activity of measuring and estimating, which concerns approximate pro-
cesses. The activity spanned over a long period (several weeks or even months), 
hence contrasting the focus on only short-term processes. To construct a context 
suitable and motivating for young children too, a special artifact7 was designed. 
The activity was carried out with 4-and-5-year-old children in more than 20 schools. 
The children were already familiar with the number line in the form of a monthly 
calendar. A day-by-day tear-off calendar was added. A cylinder tube of plexiglass 
with no graduation was gradually filled with small balls made by crumpling tightly 
each day sheets: every day, a child tears off the old sheet (yesterday), crumples it 
very strongly, and throws it into the time tube (Bartolini Bussi, 2015).

The past “goes” into the tube, the present is visible on the front of the pad, and 
the future is still hidden (in the calendar on the wall). If the teacher suggests to 
mark the level after 1 month, it may approximately define a unit. Guessing games 
can be played, like “What will the level be on Christmas day?” and the conjectures 
can be checked some weeks or months later. What is into play, from the arithmetic 
point of view, is approximation, as the level of the crumpled balls only gives an 
approximate idea of the time duration (Figs. 1.2 and 1.3).

7 The notion of artifact (and, in particular, cultural artifact) is elaborated below.

M. G. Bartolini Bussi
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Fig. 1.2 Some images of the time tube activity (our data 2014–16)

Fig. 1.3 Some images of the activity in the calendar corner (our data 2014–16)

1 Early Years Mathematics: Semiotic and Cultural Mediation
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However, actually deeper issues are discussed by children, concerning narrative 
and metaphorical thinking as the short excerpt from 5-year-old children’s conversa-
tion with their teacher shows the following:

Teacher:  but according to you, where do the days go by?
S.:  in the tube!
Teacher: I do not mean the cards we tear … the things we did yesterday, for example, 

where do the things we have done yesterday go? The days we have already 
passed?

E.:  the past days have gone behind us.
C.:  they end up in our mind, they are free to turn in head…
M.:  no, they do not end up in our mind because there are our thoughts: there is no 

space!
R.:  the days hang on thoughts and go in the head. The thoughts are free in the head.

The time tube was creatively invented by the research group: the members were 
likely to be inspired by traditional artifacts like sand clepsydras, but produced some-
thing new. First, the global time duration was much longer than usual, not minutes 
(as in the standard clepsydras), but weeks and even months with just an item (a 
crumpled ball) added every day; second, it was explicitly related to other activities 
concerning time, proposed to the same children, fostering narrative and metaphori-
cal thinking. In this sense, it was a cultural artifact in a twofold interpretation, as 
related, on the one hand, to the traditional culture of sand clepsydras and, on the 
other hand, to the classroom culture of reflection on time.

1.2.3  Semiotic Mediation at the Preschool Level

The two abovementioned examples may be interpreted by means of the Theory of 
Semiotic Mediation (TSM) as developed by Bartolini Bussi and Mariotti (2008) 
after a Vygotskian approach. TSM was first developed by the two authors drawing 
on the studies by Bartolini Bussi on manipulative artifacts in both primary and 
secondary schools, and by Mariotti in secondary schools on Information and 
Communication Technologies (Bartolini Bussi & Mariotti, 2008). The following 
scheme (Fig. 1.4) was used at all school levels, but it is presented here with explicit 
reference to the example of the time tube. The example of the Slavonic abacus is 
discussed by Bartolini Bussi (2013).

Figure 1.4 shows the scheme of the process of semiotic mediation around the 
time tube artifact. The task is to foresee the level of the crumpled ball for Christmas; 
the mathematics knowledge at stake is estimation; the traces are found in conversa-
tions, graphical representations, gestures, and so on, produced during the activity; 
the mathematical “texts” (if any) are the conclusions constructed by the children 
under the teacher’s guidance to answer the given task. The observations made 
immediately before Christmas (hence more than 2 months after the beginning of 
the activity with semiotic activity developed every day with increasing complexity) 
allow children to check whether the proposal was correct or which of the different 
proposals (if more appeared during the process) was correct and to argue about the 
rationale of either proposal.
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Fig. 1.4 The semiotic mediation scheme

1.3  The Shift to Toddler Centers (and to Prelinguistic Kids)

1.3.1  From Semiotic Mediation to Cultural Mediation

When the action research program was extended to toddler centers in 2013, the 
research group reflected on the possible interpretations of the semiotic mediation 
scheme. The research group was aware that some nodes of the scheme were tricky: 
what kind of tasks were suitable for very young children? Were the tasks to be 
explicitly posed by the educators or self-posed by the children under the stimulus of 
the context? In the first case, what might have been the function of semiotic means 
(language, gestures, gazes)? What kind of mathematics knowledge could have been 
focused on? It was clear enough that NUC mathematics was not an appropriate 
reference, but which parts of a QRS system might have been referred to? What kind 
of traces could have been observed? Very young children are, in many cases, prelin-
guistic, hence just gestures and gazes were likely to be considered as language 
precursors (see, for instance, Corballis, 2002). And which kind of mathematical 
“texts” (if any) might have been constructed and shared by adults and children?

To foster continuity between toddler centers and preprimary schools, a promising 
theoretical construct seemed to be the notion of artifact. Artifacts are used (either 
intentionally or sometimes even unintentionally) by educators to define the context 
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Fig. 1.5 Free play with 
everyday artifacts (pasta) 
and chairs (our data 2013)

of children’s activity. The artifacts are culturally biased, although professional jour-
nals for educators tend to present a kind of “universality,” especially when commer-
cially structured material is concerned (Fig. 1.5).8

If one visits either toddler centers or preschools in different countries, s/he may 
discover different space organization, different furniture and artifacts, and different 
building locations, even before entering the details of classroom interaction. Classroom 
culture shows from the very beginning. The differences convey different values and 
traditions for early childhood education that are in the background of every institu-
tional educational choices. When I was in Kristiansand for the POEM conference 
(May 2018), thanks to the kind and generous support of the local organizers, I had the 
possibility to visit primary and preprimary schools: everything looked different from 
the places I was familiar to in Italy and in many other countries. The preprimary 
school building was in a forest and on the shore of a lake; young children (1 year old) 
were free to explore the environment climbing in the rain, and to be exposed to situa-
tions that Italian parents (and maybe also teachers) might have considered not suitable 
(too dirty, too cold, too wet) and even “dangerous” for the children. It was, for me, a 

8 See, for instance, https://www.gov.mb.ca/fs/childcare/resources/pubs/equipment_toddler.pdf
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short, but full lively immersion in outdoor education, which I only knew through lit-
erature. The language barrier fostered the attention on gesture and gaze observation. 
The strong and deep cultural differences in preschools were the object of famous 
ethnographic studies (Tobin, Hsueh, & Karasawa, 2009; Tobin, Wu, & Davidson, 
1989). Yet, educators and teachers are likely to not always be aware of this cultural 
bias and seem convinced that just one model is the correct one (e.g., either a child-
centered or a teacher-centered model and either an indoor or an outdoor model).

Since the beginning of the ZEROSIX action research program, it was clear that 
the notion of semiotic mediation, as focused mainly on language traces, was not the 
best way to cope with the extension to younger (prelinguistic) children. A crucial step 
in this process was represented by the careful reading of Arievitch and Stetsenko 
(2014), and by the continuous dialogue with them. The starting point of the two 
Vygotskian scholars was to consider semiotic mediation (or sign mediation) as just 
an aspect of cultural mediation.

The transformational power of sign mediation was the centerpiece of Vygotsky’s programmatic 
attempt to eliminate the gap between external activities and the human mind – the direction wherein 
many of his hallmark achievements lie. Yet we argue that Vygotsky did not provide a sufficiently 
coherent explanation of cultural mediation. Most significantly and quite paradoxically, Vygotsky did 
not consistently apply his own, quintessentially developmental approach to this key construct: he did 
not offer a developmental account of cultural mediation. (Arievitch & Stetsenko, 2014, p. 217)

In the following, I offer examples produced and observed by the members of the 
action research group intertwining our data with Arievitch and Stetsenko’s argu-
ments (see also Arievitch, 2017; Stetsenko, 2016).

1.3.2  The Newborn Experience in a Cultural Context

According to Arievitch and Stetsenko (2014),

The infants’ earliest encounters and experiences take the form of joint activities […] 
including feeding, bathing, dressing, going to sleep, and so on. […] [they are] communal, 
collaborative, social, and culturally mediated processes of being held and touched, fed and 
nursed by the other person, with actions of looking, touching, and hearing all being ini-
tially performed together with the other, as intricate parts of activities arranged and orches-
trated by caregivers. (Arievitch & Stetsenko, 2014, p. 229)

Adults engage in joint activities with infants according to social rules and conventions of 
their culture and their understanding of cultural practices, including those of infant care 
and human contact. (ibidem, p. 230)

Newborns are social beings and everything starts from social relationships, 
which are culturally biased. There are cultures where newborns are tightly bound 
and kept bound for either weeks or months; there are cultures where newborns are 
recommended to be placed naked on the mother’s naked stomach to experience skin 
to skin contact for as long as possible. There are sound reasons often depending on 
the context, but there is not the best “universal” way to behave, although Western 
pediatricians are sometimes supposed to have discovered the ultimate right answer. 
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Fig. 1.6 A girl, a doll, and a diaper (our data: 2013)

Yet, whoever had the experience of more than one child, in different years (as the 
author of this chapter), has experienced the change of pediatricians’ advices, every 
time with apparently good reasons for change.

A funny example may be observed by tourists who visit China: very young chil-
dren wear open-crotch trousers or a split pair of pants,9; these trousers encourage 
children to urinate and defecate without lowering the pair of pants. The child sim-
ply squats, eliminating the need for diapers. The shift to potty training is much 
easier and faster than in the West. This early experience creates a context consistent 
with the QRS system, as far as relationships between one’s own body and space 
context are concerned. The diaper experience of Western children is different. In 
the toddler centers, children experience routines, with adults taking care younger 
children. Figure 1.6 shows a 2-year-old girl who is taking care of a doll and tries to 
reproduce the observed gestures of caregivers. She is commenting on her efforts 
(speaking to herself) to orient the doll in the right position (a spatial experience).

Another episode was reported by an educator, who narratively described the 
strong efforts of a 2-year-old girl who tried (and succeeded) to tie a puppet on her 
shoulders with a scarf, imitating the gestures of her mother who came from a cul-
ture where this way of carrying babies was common.

In their cross-cultural study on motor development, Adolph, Karasik, and Tamis- 
LeMonda (2009) report different routines (suspension and shaking by ankles, arms, 
and head) which would be astonishing (and maybe considered “dangerous”) for 
Westerner caregivers.

9 https://en.wikipedia.org/wiki/Open-crotch_pants
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1.3.3  Vygotsky’s Hints to Non-Verbal Mediation: The Inner 
Visual Field

Vygotsky’s reliance on narrow linguistic interpretations of verbal meanings as the 
only mediators of the mind is highlighted and criticized by Arievitch and Stetsenko 
(2014). There are, however, in Vygotsky’s work, some hints to a more complex 
system of signs. For instance, Vygotsky reads as follows:

Our experiments demonstrate two important facts: (1) A child's speech is as important as the 
role of action in attaining the goal. Children not only speak about what they are doing; their 
speech and action are part of one and the same complex psychological function, directed 
toward the solution of the problem at hand. (2) The more complex the action demanded by 
the situation and the less direct its solution, the greater the importance played by speech in 
the operation as a whole. Sometimes speech becomes of such vital importance that, if not 
permitted to use it, young children cannot accomplish the given task. These observations 
lead me to the conclusion that children solve practical tasks with the help of their speech, as 
well as their eyes and hands. This unity of perception, speech, and action, which ultimately 
produces internalization of the visual field, constitutes the central subject matter for any 
analysis of the origin of uniquely human forms of behavior. (Vygotsky, 1978, p. 25–6)

The complex system of visual perception, speech, and action fits well with the 
observation of children in our culture, which gives value to language and verbal 
communication. Yet, cultural anthropology (e.g., Morgan et al., 2015) documents 
other ways of transmission of tool-making teaching (e.g., imitation/emulation and 
gestural teaching), although the social transmission of technology in primitives 
seems to be enhanced by direct teaching and, in particular, by verbal teaching.

The internalized visual field is likely to become a zone of mental experiments, 
where practice problem-solving is found. An example of its functioning may clarify 
the power of this construct in problem-solving. The following game was tested in 
many preprimary classrooms (Briand, Loubet, & Salin, 2004). The artifact is given 
by a large collection of matches and a small collection (around 15) of empty match 
boxes where a small hole has been produced to allow a single match to be intro-
duced inside (Fig. 1.7). The game is proposed by the teacher to a child (4–5 years 
of age), in a group of children with the following task: You must put just one match 
in each of the boxes. You cannot open the box. Only when you say that you have 
finished, we shall open all the boxes. If there is exactly one match in each box, you 
win. But if there is no match or more than one match, you lose.

Fig. 1.7 The artifact: match boxes and matches (our data 2017)
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In the first trial, the boxes are placed on the table and can be displaced. In a 
second trial, the boxes are stuck on a cardboard and cannot be displaced. What we 
observed in several experiments is that, in the first trial, children very quickly invent 
strategies (the same strategies in different preschools and even different countries): 
for instance they put aside the filled boxes (as if they were counting them), or, they 
shake a box to check whether something is already inside. Neither displacing nor 
shaking is possible any more when the boxes are stuck on the cardboard. Hence, 
children have to look at other strategies. The task is difficult. Adults are soon likely 
to split the process into steps: first they prepare just one match close to each box 
and then regularly put them in the boxes. This strategy may be interpreted as draw-
ing on a mental experiment: the player knows the desired result and prepares one 
match for each box before acting, hence is able to change the natural time sequence, 
drawing on the verbal reconstruction of the process, while young children mechani-
cally follow the order given in the task and fill a box before taking another match. 
Only later, after having played, lost, and discussed with the teacher and with their 
peers, they are likely to produce a more advanced strategy. Our interpretation is that 
through the unity of perception, speech, and action, they are eventually able to 
exploit the internalized visual field.

1.3.4  Vygotsky’s Analysis of the Pointing Gesture

One of the most famous examples from Vygotsky (1978) concerns the genesis of 
the pointing gesture. An infant tries to grasp an object, but cannot because it is too 
far away. When the adult hands the object to the infant, s/he socially supplies the 
indicatory meaning to the infant’s grasping. As a result, the infant realizes that s/he 
does not actually need to grasp an object in order to procure it. Her/his grasping 
movement then reduces in scope (becoming pointing), which can direct adults to 
fetch objects that are further away, such as a dropped toy (Vygotsky, 1978). 
Vygotsky’s comment is crucial:

An interpersonal process is transformed into an intra personal· one. Every function in the 
child's cultural development appears twice: first, on the social level, and later, on the indi-
vidual level; first, between people (interpsychological), and then inside the child (intrapsy-
chological). (Vygotsky, 1978, p. 56)

This is the genesis of the so-called imperative or richiestive gesture to be con-
trasted with the declarative gesture (not considered by Vygotsky, as far as I know), 
where children direct the adult’s attention to a referent in order to indicate its exis-
tence and share interest in it. As stated in the comprehensive volume by Kita (2003) 
about pointing, some authors do not agree in Vygotsky’s reconstruction (e. g., 
Wilkins, 2003), claiming that finger pointing is not as universal as it would have 
been if related to the universal grasping movement. However, pointing gestures by 
means of other body parts (e.g., the head or the lips) seem to refer to some limited 
cultural groups living in remote regions.

The ZEROSIX group suggested to observe the emergence of pointing gestures, 
in both imperative and declarative functions in the toddler centers. Moreover, the 
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intention was not only to observe but also to foster this emergence, creating specific 
educational activities which were likely to encourage children to produce these 
gestures with the educator. The following excerpt with photos is taken from a para-
digmatic educator diary (emphasis in the original).

Every morning, after breakfast time, we prompt reading image books with familiar objects. 
One of the books includes a kite also. Two kites are close to the ceiling of the room. I can 
show the kite in the book and the real kites. One morning I asked children “Where is the 
kite like that of the book?” pointing at the book and looking at them. And Caterina (11 
months), listening to me, pointed to the kite at the ceiling and looked at me in response.

I then smiled at her and looked at the real kite, pointing at it, while she looked at me with 
the intention of sharing the interest. I produced and she produced a declarative gesture 
with her finger and showed aware that we were only talking about the kite but could not 
touch it or pull it down. A routine has produced a piece of knowledge, a shared meaning, 
by imitation. Caterina has repeated my gesture and showed me to have understood through 
a non- verbal communication (gestures and gazes).

In another situation, I offered an object from far. The child wished to touch and have it. The 
richiestive gesture is different from the declarative gesture. I repeated the routine with all 
the children, creating the possibility of observing each other and of enjoying the pleasure 
of waiting one’s own turn.

The educator is not simply observing, but fostering the child’s process and intro-
ducing a conscious educational perspective (e.g., waiting one’s own turn) (Fig. 1.8).

This diary reports the early steps of what Arievitch and Stetsenko (2014) call 
collaborative meaning making.

Fig. 1.8 Declarative and imperative gestures (our data: 2017)
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At the earlier, pre-semiotic (or proto-semiotic) stages, the guiding activity of the adult 
is performed in its fully-fledged form, whereby the adult’s actions intertwine (fuse) 
with those of the child within joint activities providing foundations for collaborative 
meaning making. Later in ontogenesis, the guiding role of others gradually takes on a 
more distanced and condensed (abbreviated) form represented by activities “crystal-
lized” first in objects (according to their cultural use) and then in symbols and signs. At 
even later stages, children themselves begin to use this condensed and abbreviated guid-
ance embodied in signs for orienting and self-regulating their own activity. (Arievitch 
& Stetsenko, 2014, p. 218).

1.3.5  A Replica of a Classical Experiment: Learning to Drink 
from a Cup

In the action research program, we have encouraged educators to replicate some 
classical experiments mentioned by Vygotsky and his collaborators. The aim was 
not to test the correctness of their analysis, but rather to understand better the 
reported process. Learning to drink from a cup is described as follows by 
Leont’ev (1981):

When an adult first tries to give a baby a drink from a cup, the touch of the liquid evokes 
unconditioned reflex movements in the child that strictly correspond to the natural conditions 
of the act of drinking (cupping the hands as a natural water-holder). The baby’s lips push out, 
forming a pipe, the tongue is advanced, the nostrils contract, and sucking motions are per-
formed. The cup is not yet seen here as an object that determines the way of performing the 
act of drinking. The baby soon learns, however, to drink properly from the cup, i.e. its move-
ments are reorganised so that the cup is now used appropriately to its purpose. Its rim is 
pressed down onto the lower lip, the baby’s mouth is distended, the tongue takes up a position 
in which its tip just touches the inner surface of the lower jaw, the nose trils expand, and the 
liquid flows from the tipped cup into the mouth. A quite new functional motor system arises 
that performs the act of drinking and incorporates new elements. (Leont’ev, 1981, p. 305)

This careful description was reconsidered by an educator who reported the pro-
cess of a 5-month-old girl who was learning to drink from a cup (Denise and the 
water). She videotaped the same girl every week for some months starting from the 
initial offer by the educator and ending at Denise’s autonomous drinking taking the 
cup with both hands. The correspondence between the observed process and the 
process reported by Leont’ev was astonishing, and was debated in the collective 
meetings. This example suggested to analyze, at least theoretically, what could have 
been the process if not a standard cup but a sippy cup was offered. In this way the 
peculiar function of the cultural artifact was analyzed and the reasons for choosing 
either was debated (Fig. 1.9).

1.3.6  The Effects of Social Relationships

All the examples reported above highlight the adults’ implicit or explicit functions as 
cultural mediators. This view has the potential to change the approach to early child-
hood education. The observation of the so-called spontaneous children behavior gets 
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Fig. 1.9 Denise and the water (2016: our data)/right: a cup and a sippy cup

Fig. 1.10 Traces in corn flour (our data, 2016)

a new sense and induces the search for which kind of adult–child interaction (if any) 
was in the prehistory of an episode. This is not an easy process as, in the West, obser-
vations are mainly focused on children (learner centered).

An activity in our toddler centers is fostering children to leave traces in corn 
flour or to saw corn flour on the floor. This use of flours (or sands) is a very popular 
activity in some cultures (e.g., sona in Africa, Gerdes, 2007, or kolam in the Tamil 
culture, Ascher, 2005) (Fig. 1.10).

We used corn flour to leave the possibility of exploring by the mouth, without 
incurring in celiac disease allergy as it may happen with wheat flour. Sometimes 
additional artifacts were introduced (e.g., spoons, sticks, combs, rakes, or straws). 
We have collected hundreds of photos of children blowing through a straw in the 
flour and observing the effects. The big number of photos of playing children might 
suggest that this action is a children “spontaneous” creation. This was the early 
interpretation during a meeting. But suddenly we discovered that, among dozens of 
photos, where children playing alone were photographed, there was just one where, 
at the same table, an educator was photographed. When we asked for details about 
the activity, she explained that, actually, she prompted the activity: the children had 
to learn how to blow in order to produce what they wished. Hence, the activity was 
not “spontaneous” at all, but suggested by the adult (Fig. 1.11).
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Fig. 1.11 Blowing in corn flour with a straw. Left: children; right: the educator. (our data: 2017)

Another example was told by an educator:

We collected a lot of objects from families and put them at the disposal of young kids (less 
than 12 months). They were quite interested by cell phones but not by an “old” phone, 
although it was coloured, movable and producing interesting noise.

The interpretation might be that cell phones evoked joint activity with parents, 
while the old telephone did not evoke anything.

The above examples clearly show the (sometimes hidden) intertwining of the 
adult’s and children’s action.

infants at first dance the dance without knowing that they do so. (Arievitch & Stetsenko, 
2014, p. 231)

Artifacts, the actions and signs (gestures, words, other kinds of production) of all 
the participants in the interaction, are the cultural means which structure the chil-
dren’s learning process.

Similarly to Bakhtin (1981, p. 341) who has argued that “becoming a human being is the 
process of selectively assimilating the words of others” our account suggests that cultural 
means and signs represent the actions of others and thus carry in themselves the history of 
human activities. Before semiotic mediation, the child’s actions and the involved objects 
assume meanings through the guiding role of the adult. Meanings are born in joint action and 
undergo several substantial transformations before they become the meanings of words. 
Therefore, when the developmental path “from social to individual” and “from external to 
internal” in Vygotsky’s law of cultural development is expanded to include the earliest 
stages of child–adult joint activity, it becomes possible to chart a continuous progression in 
the mastery of ever-new activities that are engendered by ever-new forms of cultural media-
tion, without any ontological breaks among diverse forms that these activities take, including 
the most complex and sophisticated (i.e. mental) ones. (Arievitch & Stetsenko, 2014, p. 237)

1.4  Concluding Remarks

In this chapter, I have outlined some outcomes of the more than 5-year-long 
ZEROSIX action research program addressing educators of toddler centers and 
teachers of preprimary schools for mathematics (numbers and space). In the two 
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3-year cycles, more than 50 teachers and 50 educators have been involved. The 
mathematics in play is, in most cases, part of a QRS system, rather than of a NUC 
mathematics, because of the young children’s age. All the reported examples con-
cern either quantitative aspects (the slavonic abacus, the time tube), relational 
aspects (problem-solving), or spatial aspects (routines). The cases of pointing, 
learning to drink, and learning to blow in the flour concern the development of 
some specific motor systems that are fundamental for the further development. The 
continuity between toddler centers and preschools exploited the construct of cul-
tural artifacts and the approach through semiotic and cultural mediation, consistent 
with the line traced by Arievitch and Stetsenko (2014), in order to critically over-
come the breaks emerging from the activities with prelinguistic and linguistic chil-
dren. This is just a part of the story, as with older children (in preprimary school), 
the connections with NUC mathematics (numbers and arithmetic) became more 
evident and paved the way toward the most complex and sophisticated cultural 
forms of the primary school.

The signs produced during the adult–child “dance,” led by adults in the begin-
ning, make the collective meaning evident. Our position fits well with Arievitch 
and Stetsenko’s (2014) claim:

There is a dynamic continuum of different forms of mediation. From this per-
spective, mediation does not begin with, but rather develops into mediation by 
external signs and later culminates in the internalized ability to guide and self-
regulate one’s own activity. (Arievitch & Stetsenko, 2014, p. 218)

In all cases the social relationships between children and adults are emphasized: 
they happen within and are biased by the already shared (or the to-be-shared) cul-
ture. The presence of examples from other cultures in our elaboration is a leitmotiv, 
although we are not engaged in comparative studies, but aim to exploit Bateson’s 
statement, which says,

Information consists of differences that make a difference. (Bateson, 1978, p. 99)

In other words, following Stetsenko, knowing other cultures gives one the pos-
sibility of

seeing the world through a new lens, while learning not only to understand new culture(s) 
but to also see one’s own culture and oneself from a newly acquired distance. These experi-
ences highlighted, with striking clarity, the prescience of Bakhtin’s words that “our real 
exterior can be seen and understood only by other people, because they are located outside 
us in space and because they are others,” whereby “[a] meaning only reveals its depths 
once it has encountered and come into contact with another, foreign meaning” (1986 , 
p. 7). (Stetsenko, 2017, p. 17)

This position is consistent with the approach to a cultural transposition, as elabo-
rated by Mellone, Ramploud, Di Paola, and Martignone (2019), and exploited in all 
our programs of teacher education and development in schools.

This chapter on early years mathematics presents neither the conclusion of the 
action research program nor a fully-fledged theory of ZEROSIX development for 
mathematics. The present members of the action research program (and the future 
members of similar programs as well) will continue to design, implement, interpret, 
and redesign a repertory of meaningful ZEROSIX experiences within our culture 
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and to discuss and expand theoretical reflections.10 In this way, the relationship 
between theory and practice appears reciprocal and dialogical. The detailed diaries 
of the educators and the teachers of the ZEROSIX group are paradigmatic exam-
ples, putting them all at the crossroad of theory and practice. We agree that

Kurt Lewin’s famous expression that there is nothing more practical than a good theory 
could thus be expanded, in the spirit of Vygotskian approach, by the mirror expression – 
that there is nothing more theoretically rich than a good practice. (Stetsenko & Arievitch, 
2014, p. 235)
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Chapter 2
Young Children’s Early Mathematical 
Competencies: The Role of Mathematical 
Focusing Tendencies

Lieven Verschaffel, Sanne Rathé, Nore Wijns, Tine Degrande,  
Wim van Dooren, Bert De Smedt, and Joke Torbeyns

2.1  Introduction

The past 10–15 years have witnessed the emergence of a remarkably productive and 
highly influential line of research on the development of young children’s early 
mathematical knowledge and skills (such as counting, subitizing, comparing numer-
ical magnitudes, number recognition, number line estimation, simple arithmetic, 
and basic mathematical patterns and structures), on their association with school 
mathematics, and on their stimulation in the home, preschool, and beginning ele-
mentary school environments (Andrews & Sayers, 2015; Aunio & Niemivirta, 
2010; Baroody & Purpura, 2017; Torbeyns, Gilmore, & Verschaffel, 2015; 
Verschaffel, Torbeyns, & De Smedt, 2017). In this line of research, children are 
explicitly prompted to use their mathematical knowledge and skills, and they are 
assessed in terms of their ability to deal with the task at hand.

So, these studies take an “ability” perspective on children’s early mathematical 
development and stimulation. In doing so, they concentrate on children’s early 
mathematical knowledge and skills, thereby ignoring other possibly relevant aspects 
of young children’s early mathematical competence. One such aspect, which will be 
the theme of the present chapter and relates to the dispositional side of children’s 
early mathematical competence, is their inclination or tendency to attend to and 
focus on numerosities, Arabic numerals, quantitative relations, and patterns in their 
environment. We emphasize that these “mathematical focusing tendencies,” as we 
will call them in this chapter, are not about what children think and do when they 
are instructed or guided to the mathematical entities, relations, or patterns in the 
situation, but about what they think and do when there is no explicit instruction or 
guidance to focus on them.
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The basic claim underlying this latter line of research is that, besides having dif-
ferent abilities with respect to the abovementioned distinct elements or aspects of 
early mathematical competence, young children also demonstrate different mathe-
matical focusing tendencies when exploring, describing, and organizing their every-
day world.

Furthermore, it is argued that this tendency to focus on the mathematical aspects 
of a situation will trigger self-initiated practice of the corresponding mathematical 
knowledge and skills. Thus, if some children are more prone to focus on these math-
ematical aspects of various situations, this will be more beneficial for their mathe-
matical development compared to children who are not (Hannula-Sormunen, 2015).

During the past 10–15 years, researchers have started to empirically investigate 
these various mathematical focusing tendencies in young children, their develop-
ment, their concurrent or predictive relation to children’s mathematical achieve-
ment, and their stimulation by means of particular interventions (Hannula & 
Lehtinen, 2005; Verschaffel et al., 2017). So far, this research has largely focused on 
children’s spontaneous focusing on numerosity (SFON), but to a much lesser extent, 
similar efforts have been made for Arabic number symbols (SFONS), quantitative 
relations (SFOR), and mathematical patterns (SFOP).

We start our overview of the available research on these mathematical focusing 
tendencies with the research on SFON.  Afterwards, the emerging research on 
SFONS, SFOR, and SFOP is reviewed. In these overviews, we will give a broad 
picture of the international research scene, with special attention to the research 
done by our own research team.

2.2  SFON

As stated above, Hannula-Sormunen and colleagues were the first to hypothesize 
that within children’s early mathematical competencies, there exists a separate and 
domain-specific attentional process of spontaneously focusing on numerosity 
(SFON). Hannula, Lepola, and Lehtinen (2010, p. 395) defined SFON as “a process 
of spontaneously (i.e., in a self-initiated way not prompted by others) focusing 
attention on the aspect of exact number of a set of items or incidents.” According to 
these authors, this spontaneous focusing of attention on exact numerosity is needed 
for triggering exact number recognition processes (Hannula-Sormunen, 2015), 
affects the amount of children’s self-initiated practice in recognizing and operating 
with exact numerosities in their everyday surroundings (Hannula, Mattinen, & 
Lehtinen, 2005), and, as such, will have a significant positive impact on their 
numerical skills and broader mathematical development (Hannula et  al., 2010). 
Reversibly, more elaborated numerical and mathematical ability may further 
strengthen children’s SFON tendency. So, the relationship between SFON and 
mathematical ability is assumed to be reciprocal.

Because the instruments aimed at assessing SFON must capture whether chil-
dren spontaneously use their available exact numerical knowledge and skills in 
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 situations where they are not explicitly guided, stimulated, or instructed to do so, 
these instruments must meet several strict methodological criteria. A major criterion 
is that the experimenter is not allowed to give any instruction before or feedback 
during the testing of SFON that could help the child figure out which are the rele-
vant aspects of the task (Hannula, 2005; Hannula & Lehtinen, 2005; Hannula- 
Sormunen, 2015).

The most frequently used type of SFON task is the Elsi Bird Imitation task, 
wherein the child is instructed to imitate the experimenter’s playing behavior with 
toys, i.e., feeding berries into the beak of a toy parrot. For instance, the experimenter 
puts two berries, one at a time, into the parrot’s beak. Immediately afterwards, the 
child is asked to imitate the experimenter’s behavior (Hannula et  al., 2010). 
Importantly, during the introduction and further administration of the task, no 
instructions are given to treat the task as numerical, implying that it is up to the child 
whether (s)he regards exact numerosity as a relevant aspect of the task. Whereas 
some children may put the exact number of berries into the parrot’s beak or other-
wise demonstrate spontaneous attention to the numerosity of the berries (e.g., by 
verbally counting the berries they put into the parrot’s beak), others may put a ran-
dom number of berries, or all the available berries into the toy parrot’s beak, without 
paying any attention to numerosity. A SFON score is given on an item as soon as the 
child is observed using the correct number of objects or otherwise saying something 
that shows that he/she is spontaneously attending to the quantitative aspect of the 
situation (e.g., making a quantitative statement about the number of berries to be 
used) even without using the correct number of berries. (For a more detailed descrip-
tion of the various SFON imitation tasks and their scoring, see Hannula & Lehtinen, 
2005; Hannula et  al., 2005; Rathé, Torbeyns, Hannula-Sormunen, De Smedt, & 
Verschaffel, 2016). Meanwhile, several other action-based SFON tasks have been 
developed by Hannula and colleagues (see Hannula et  al., 2005; Hannula & 
Lehtinen, 2005; Rathé, Torbeyns, Hannula-Sormunen, De Smedt et al., 2016).

Batchelor, Inglis, and Gilmore (2015) designed a less behaviorally and more 
verbally based type of task, the Picture task, wherein the child is shown three differ-
ent cartoon pictures displaying both nonnumerical and numerical information (e.g., 
about a little girl making a walk in the forest) and is requested to verbally describe 
as precisely as possible what is in the picture. If the child spontaneously refers to 
exact numerosities—correct or not—in his or her verbal description of the picture, 
(s)he gets a SFON score of 1 per trial (For a more detailed description of the avail-
able SFON picture measures, see Batchelor et al., 2015; Rathé, Torbeyns, Hannula- 
Sormunen, De Smedt et al., 2016).

Since the early 2000s, Hannula-Sormunen and her colleagues set up a large set 
of studies on the variety in children’s SFON and its association with other early 
numerical and mathematical competencies.

The first series of cross-sectional and longitudinal SFON studies revealed that 
typically developing children at the ages of 3–12 years largely differ in their ten-
dency to spontaneously focus their attention on exact numerosity (Hannula- 
Sormunen, 2015). In these studies, SFON showed a reasonable within-subject 
stability across two or three different SFON tasks, or even across years 
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 (Hannula- Sormunen, 2015). Furthermore, results showed a positive relationship 
between children’s SFON and the development of early mathematical skills (i.e., 
subitizing-based enumeration, counting, number sequence, and basic arithmetical 
skills) (Hannula & Lehtinen, 2005; Hannula, Räsänen, & Lehtinen, 2007), later 
mathematical achievement in elementary school (Choudhury, McCandliss, & 
Hannula, 2007; Hannula et  al., 2010; Hannula-Sormunen, Lehtinen, & Räsänen, 
2015), and even rational number conceptual knowledge by the end of elementary 
school (McMullen, Hannula-Sormunen, & Lehtinen, 2015), suggesting that chil-
dren with higher SFON tendencies before school age acquired a clear mathematical 
advantage in elementary school. Moreover, path models revealed evidence for the 
reciprocal influence of SFON and early mathematical ability (Hannula & Lehtinen, 
2005). In addition, subitizing-based enumeration was found to be an important 
mediator of the association between SFON and object counting skills (Hannula 
et al., 2007). Finally, longitudinal investigations suggested the domain-specific role 
of SFON in children’s mathematical development by showing that SFON acts as an 
important predictor of later arithmetical but not of reading achievement (Hannula 
et al., 2010; Hannula- Sormunen, Lehtinen et al. 2015).

Motivated by the outcomes of the first SFON studies, Hannula et al. (2005) and 
Mattinen (2006) also investigated whether it was possible to enhance children’s 
SFON tendency in day care by providing 3-year-old typically developing children a 
4-week SFON enhancement program. During the training period, the day care per-
sonnel observed and kept a record of incidents when children spontaneously focused 
their attention on numerosity while also purposefully guiding children’s attention to 
exact numbers involved in everyday behavior, such as during eating, picking up 
toys, and outdoor activities. In addition, these preschool children played a set of 
structured numerical games with numerosities from 1 to 3, such as numerosity 
matching games. They also had a board of variable numbers of animal figures on the 
wall of the playroom at the day care center. The results of this quasi-experimental 
study showed that it was possible to enhance children’s SFON tendency by means 
of social interaction in preschool settings, although effects were only obtained for 
children who already had demonstrated some initial SFON tendency.

During the past few years, a large number of other researchers have started to 
investigate SFON outside of Finland, including Australia (Gray & Reeve, 2016), 
Belgium (Rathé, Torbeyns, De Smedt, Hannula-Sormunen, & Verschaffel, 2018; 
Rathé, Torbeyns, Hannula-Sormunen, & Verschaffel, 2016), China (Tian & Siegler, 
2015), Ecuador (Bojorque, Torbeyns, Hannula-Sormunen, Van Nijlen, & Verschaffel, 
2016), Germany (Poltz, Wyschkon, Hannula-Sormunen, von Aster, & Esser, 2014), 
Israel (Sharir, Mashal, & Mevarech, 2015), Italy (Sella, Berteletti, Lucangeli, & 
Zorzi, 2016), Switzerland, Germany (Kucian et al., 2012), the UK (Batchelor, 2014; 
Batchelor et al., 2015), and USA (Edens & Potter, 2013; Tian & Siegler, 2015), and 
have thereby addressed both similar and new research themes. Some studies looked 
into additional theoretical questions on the development of SFON by examining 
spontaneous nonverbal counting among toddlers (Sella et al., 2016), the spontaneity 
and malleability of SFON (Chan & Mazzocco, 2017), the role of cognitive factors 
such as symbolic fluency (Batchelor et  al., 2015). Others focused on the role of 
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environmental factors, such as spontaneous activity choice during kindergarten play 
(Edens & Potter, 2013), the quality of early mathematics education (Bojorque et al., 
2016), home numeracy experiences (Batchelor, 2014, Study 3), numerical picture 
book reading (Rathé, Torbeyns, Hannula-Sormunen, & Verschaffel, 2016), and 
broader cultural influences (Tian & Siegler, 2015) in the development of 
SFON. Other studies focused on methodological issues by investigating the psycho-
metric properties of the SFON tasks (Batchelor, 2014, Study 1; Batchelor et  al., 
2015). A final series of studies focused on the relation between SFON and mathe-
matical difficulties, such as Developmental Dyscalculia (Kucian et al., 2012) and 
(low) math profiles (Gray & Reeve, 2016). Generally speaking, these new studies 
replicated the main Finnish findings mentioned above (e.g., Batchelor et al., 2015; 
Bojorque et al., 2016; Gray & Reeve, 2016; Poltz et al., 2014; Tian & Siegler, 2015). 
However, they also pointed to important issues concerning the measurement, devel-
opment, and enhancement of SFON (for a more detailed discussion of these issues, 
see Rathé, Torbeyns, Hannula-Sormunen, De Smedt, et al., 2016).

2.3  SFONS

One important characteristic of the SFON studies reviewed in the previous section 
is that they always used numerosities as stimuli and thus exclusively presented num-
bers in a nonsymbolic format. As a result, children’s spontaneous attention for 
Arabic number symbols has not yet been addressed in this research. In the context 
of the PhD project of Sanne Rathé, we are addressing this gap by exploring the 
existence of a separate tendency of spontaneously focusing on Arabic number sym-
bols (SFONS) within children’s mathematical competencies.

Whereas SFON is defined and operationalized as children’s tendency to sponta-
neously focus on the exact numerical magnitude of sets and use that information in 
their action (Hannula-Sormunen, 2015), SFONS refers to a similar but potentially 
separate attentional process whereby children spontaneously attend to and use 
Arabic number symbols in their everyday surroundings (Rathé, Torbeyns, De Smedt, 
& Verschaffel, 2019). As is the case for SFON, we assume that children’s tendency 
to spontaneously attend to Arabic number symbols acts as an important contributor 
to children’s early mathematical development. Analogous to the role of environ-
mental print in the development of letter knowledge (Neumann, Hood, Ford, & 
Neumann, 2013) and the role of SFON in the development of counting skills 
(Hannula et al., 2007; Hannula & Lehtinen, 2005), SFONS tendency might provide 
children with more self-initiated learning opportunities to practice their knowledge 
of Arabic numerals, which in turn may enhance their further mathematical 
development.

So far, SFONS has been measured by means of a Picture Description task. In this 
task, which is presented and administered in a similar way as the SFON Picture 
Description task of Batchelor et al. (2015), the child is asked to describe as precisely 
as possible the content of three different cartoon pictures showing numerical as well 
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as nonnumerical information. As in the SFON Picture Description task of Batchelor 
et al. (2015), some of this numerical information is nonsymbolic, but each picture 
also contains a small and familiar Arabic number symbol (1, 2, or 3) that is mean-
ingfully integrated into the depicted situation. In line with previous SFON research, 
no mathematical hints or instructions are provided during task instruction or perfor-
mance, so the child’s attention is not directed or guided toward the Arabic number 
symbols in the pictures. Children score SFONS in a trial when they mention the 
correct, an incorrect, or even a nonspecific number symbol while describing the 
picture (see Rathé et al., 2018, for a detailed description of the task).

In a first cross-sectional study (Rathé et  al., 2018), we investigated whether 
SFONS can be observed in children from the 3 years of Flemish kindergarten (i.e., 
K1, K2, and K3) and explored whether SFONS is related to early mathematical 
competencies, including SFON, numerical abilities, and teacher ratings of mathe-
matical competence. The participants were 111 kindergartners aged 2  years and 
4 months to 6 years and 2 months who completed measures of SFONS, SFON, and 
numerical abilities (i.e., Arabic numeral identification, verbal counting, and count-
ing objects). Kindergarten teachers were asked to rate their children’s mathematical 
competence on a 4-point Likert scale. Findings showed that children from the three 
kindergarten years differed in their tendency to spontaneously attend to the Arabic 
number symbols in the pictures, and SFONS correlated with age. Furthermore, chil-
dren’s SFONS and SFON scores were not significantly associated in the three kin-
dergarten years, except for a marginally significant association in K3. Interestingly, 
children’s SFONS significantly related to their numerical abilities in K1 and K2, 
and teacher ratings of mathematical competence in K3. In K2, these associations 
remained significant when age, average word count (i.e., the average total number 
of words formulated during the picture tasks), and SFON were taken into account, 
which suggests that SFONS is a unique contributor to individual differences in chil-
dren’s early mathematical competencies.

These findings provided the first evidence for the existence of SFONS and its 
role in early mathematical development, raising interesting questions about the psy-
chological possibility and educational value of its early stimulation. However, there 
are several questions concerning the construct of SFONS which first need to be 
addressed by future (longitudinal) research.

First, is there some developmental priority of SFONS and SFON? Does one 
mathematical focusing tendency develop before the other? In our study, we observed 
more SFON than SFONS in the three kindergarten years, but given the cross- 
sectional nature of our data, we are limited in drawing conclusions regarding this 
question. Second, are SFONS and SFON separate constructs, and how does the 
association between SFONS and SFON develop with age? Does their association 
increase with age and do they merge into one construct? How does SFONS influ-
ence the development of SFON and vice versa? Our cross-sectional data revealed no 
significant association between children’s SFONS and SFON in K1 and K2, and 
only a marginally significant association in K3. On the one hand, these findings sug-
gest that SFONS is different from SFON, but the slight developmental trend in the 
data might also indicate that SFONS and SFON tend to merge with age. Third, are 
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both SFONS and SFON involved in the development of early mathematical abili-
ties? Do their contributory roles change with age? Our data suggest that both 
SFONS and SFON are important in the first years of kindergarten, but their role 
might diminish when children enter formal education. Finally, where do these indi-
vidual differences in SFONS and SFON come from? What are the developmental 
roots of these mathematical focusing tendencies? One hypothesis is that these indi-
vidual differences in SFONS stem from qualitative and quantitative differences in 
the home and classroom numeracy environment, but given the reciprocal nature of 
the association between SFON and early mathematical skills, it is also likely that 
individual differences in SFONS and SFON are partly due to individual differences 
in early mathematical abilities.

We are currently addressing the abovementioned issues by means of a 3-year 
longitudinal study, in which we are following the developmental trajectories of 181 
kindergartners’ SFONS and SFON in relation to their early numerical abilities and 
mathematics achievement while taking into account their language ability, nonver-
bal IQ, and home and classroom environment. Preliminary results from the first data 
wave of the longitudinal study show that a two-factor model with a separate SFONS 
and SFON factor provided the best fit to the data, indicating that SFONS constitutes 
a unique tendency within children’s mathematical competence. Replicating the 
cross-sectional data, SFONS significantly related to early numerical abilities and 
mathematics achievement in 4- to 5-year-old children, also after taking into account 
age, parental education, language ability, nonverbal IQ, and SFON.

2.4  SFOR

Shortly after the first publications about SFON, the Turku team proposed another 
spontaneous mathematical focusing tendency, namely spontaneous focusing on 
quantitative relations (SFOR) (e.g., McMullen, Hannula-Sormunen, & Lehtinen, 
2013). While SFON refers to noticing numerosity as an aspect of situations that 
involve one discrete quantity, SFOR refers to noticing quantifiable relations between 
(at least) two quantities. As for the two previous spontaneous focusing tendencies, 
the overall claim is (1) that children can also recognize and use quantitative rela-
tions without explicit guidance to do so, (2) that there are individual differences in 
how often children spontaneously focus on quantitative relations that cannot be 
entirely explained by their ability to use their relevant mathematical abilities, and 
(3) that these individual differences in SFOR are (predictively) associated with their 
(later) mathematical development. Taking the principles for designing proper mea-
sures of SFON in mind (Hannula-Sormunen, 2015, see Sect. 2), McMullen and 
colleagues developed several SFOR tasks (for an overview, see McMullen, 2014), 
including behavioral tasks such as the Bread task, and tasks that were rather ver-
bally based such as the Teleportation task.

In the Bread task (see McMullen et al., 2013), two stuffed dogs are fed pieces of 
bread that are cut into different proportions from a whole (i.e., halves, thirds, 
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 quarters, or sixths). For instance, in the first item, the experimenter has two halves 
of which (s)he gives one to the first stuffed dog, and the child, who has a set of four 
fourths, is asked: “Watch what I do carefully, and do it in exactly the same way” for 
the second dog. Children’s matching strategies are then coded with regard to the 
most mathematically advanced level utilized as involving quantitative relations, 
numerosity, or other.

The Teleportation task, also devised by McMullen and colleagues (McMullen, 
Hannula-Sormunen, Laakkonen, & Lehtinen, 2016), involves a cover story telling 
that a set of supplies containing three sets of objects was sent from earth through 
space with a teleportation machine. However, when doing so, the objects are trans-
formed. Children are asked, first, to describe the transformation in their own words 
in as many ways as possible, and, second, to draw what they expect to happen with 
a different numerosity of the same objects. When doing so, learners can pay atten-
tion to the various nonmathematical changes (e.g., in terms of the colors or shapes 
of the objects) and also to the quantitative relation between the original and final 
numerosity of the three sets. Children’s responses on the items are then coded with 
regard to the most mathematically advanced level utilized as involving the intended 
quantitative relations or nonquantitative aspects.

Those studies using SFOR tasks further the understanding of how children rec-
ognize and utilize mathematical aspects when not explicitly guided to do so, com-
plementary to SFON. More specifically, in the first SFOR study, McMullen et al. 
(2013) investigated SFOR in children aged 5–8 using behavioral SFOR tasks such 
as the Bread task. There were substantial differences in children’s use of quantita-
tive relations and numerosity. The number of matching strategies based on quantita-
tive relations tended to increase with age.

In follow-up studies, the tasks developed to measure SFOR were further vali-
dated. In the first part of the study of McMullen, Hannula-Sormunen, and Lehtinen 
(2014), kindergarteners to third graders completed the abovementioned SFOR tasks 
and then completed a variant of these tasks with explicit guidance to focus on quan-
titative relations. Again, there were substantial differences in children’s SFOR ten-
dencies, which could not be fully explained by their ability to solve the guided task 
using quantitative relations. Similar results were found in third to fifth graders, who 
were presented with verbally based SFOR tasks and a guided version of these tasks. 
Individual differences in SFOR remained after taking into account children’s guided 
performance, both within and across grade levels (McMullen et al., 2016).

The SFOR tendency has been examined in relation to other aspects of mathemat-
ical development. In the second part of the aforementioned study of McMullen et al. 
(2014), which was longitudinal in nature, first graders completed behavioral mea-
sures of SFOR tendency and a measure of fraction knowledge 3 years later. SFOR 
tendency was found to predict later fraction knowledge, suggesting that it plays a 
role in the development of fraction knowledge. Later studies, using verbally based 
SFOR tasks that were presented to children in upper primary education, confirmed 
that SFOR is an important predictor of rational number knowledge (Van Hoof, 
Degrande, Verschaffel, & Van Dooren, 2016) and rational number knowledge devel-
opment (McMullen et  al., 2016), even after controlling for a range of known 
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 predictors of rational number knowledge (McMullen et al., 2016; Van Hoof et al., 
2016). More recently, by following third to fifth graders longitudinally over a period 
of 4 years, McMullen, Hannula-Sormunen, and Lehtinen (2017) showed that SFOR 
has a reciprocal relation with rational number knowledge, each being uniquely pre-
dictive of the other. Moreover, SFOR was found to predict algebra knowledge 
3 years later, even after taking into account nonverbal intelligence and rational num-
ber knowledge.

As for the other spontaneous focusing tendencies, further research on SFOR is 
needed. First, the conceptualization of SFOR evokes several questions. Several 
authors noticed that quantitative relations were so far unilaterally conceptualized as 
multiplicative, and therefore operationalized by means of tasks that were multipli-
cative in nature (Degrande, Verschaffel, & Van Dooren, 2017; Vamvakoussi, Vraka, 
Lioliousi, & McMullen, 2016). In this respect, Vamvakoussi et al. (2016) stated that 
many of the SFOR tasks require even more than merely noticing a simple multipli-
cative relation; they also require proportional reasoning, at a quite advanced level. 
Therefore, they plea for examining whether multiplicative tasks that minimize the 
requirement for proportional reasoning could be devised. At a more fundamental 
level, Degrande et al. (2017) confronted children with a more open version of the 
same Teleportation task, containing items that could be interpreted and solved in 
terms of multiplicative relations as well as an additive relation. Based on these data, 
they suggested that SFOR might be better conceived as a bundle of different and 
competing focusing tendencies on different types of quantitative relations that may 
evolve differently throughout the development and may affect the development of 
mathematical knowledge and skills differently. Hence, besides the question “to 
what extent do children focus on quantitative relations?”, the question “If so, on 
what kind of quantitative relations do children spontaneously focus?” appears to be 
a relevant one too. The latter question is the focus of the PhD thesis of Tine Degrande.

Second, and relatedly, all authors point to the need for further improvement of 
the reliability and validity of the currently available SFOR measures. In this respect, 
Vamvakoussi et al. (2016) argued that previous SFOR tasks exclusively involved 
tasks containing quantitative relations between discrete quantities. However, the 
nature of the quantities in the task may impact the type of relations children focus 
on. In tasks containing discrete quantities, children might be more prone to attend 
to absolute than relative quantities and also to additive rather than multiplicative 
relations (e.g., Ni & Zhou, 2005). Therefore, they designed SFOR tasks containing 
continuous quantities that needed to be compared. For instance, in their Elf task, 
children had to prepare a magic potion by using a picture of the ingredient needed 
for the potion as well as an object of reference, with a ratio of 1:2 or 1:4 between 
both. After that, children had to select the ingredient needed among five three- 
dimensional objects: the ingredient in question, the object of reference, and three 
more objects similar to the SFOR object but varying in length (one obviously shorter 
and two obviously longer than the SFOR object) and color. An SFOR response was 
coded when either the ingredient in question was chosen or when the child’s behav-
ior indicated that (s)he had noticed the relation.
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Third, while research has begun to document the origin and development of the 
SFOR tendency in children in relation to mathematical knowledge and skills, little 
is known yet about the origins of individual differences in SFOR, as well as about 
the relation between SFON and SFOR. The fact that many of the SFOR measures 
require that children first focus on the numerosities in order to quantify the relation 
(Vamvakoussi et al., 2016) limits our understanding of the relation between both 
tendencies, and the estimation of their separate contribution to the development of 
mathematical knowledge and skills (McMullen, 2014).

Finally, research on the origins of individual differences in SFOR is closely 
related to research on its enhancement. The first steps have been taken in this direc-
tion. McMullen, Hannula-Sormunen, Kainulainen, Kiili, and Lehtinen (2019) found 
that a 7-week-long intervention program in which sixth graders used mobile tech-
nology to explore quantitative relations in their everyday life was successful. 
However, it still needs to be further explored under which conditions educational 
interventions to enhance SFOR may be profitable (McMullen, 2014; Vamvakoussi 
et al., 2016).

2.5  SFOP

Inspired by the research on the three previous spontaneous mathematical focusing 
tendencies, several researchers have suggested that similar processes might exist for 
mathematical patterns (e.g., Seo & Ginsburg, 2004; Verschaffel et al., 2017). In their 
conceptualization of “Awareness of Mathematical Patterns and Structures” (AMPS), 
Mulligan and Mitchelmore (2009) also tend to go beyond the pure ability aspect of 
early mathematical competence, by stating that AMPS may consist of “two interde-
pendent components: one cognitive (knowledge of structure) and one meta- cognitive 
(a tendency to seek and analyze patterns)” (p. 38). However, neither in their assess-
ment nor in their intervention materials, they have tried to specifically and explicitly 
address this spontaneous focusing aspect, given that all their assessment and instruc-
tional tasks are explicitly aimed at, respectively, measuring and stimulating chil-
dren’s knowledge and skills with respect to patterning and structuring.

Recently, new tasks have been designed to explicitly assess young children’s 
SFOP as part of two broader studies (Sharir et  al., 2015; Wijns, De Smedt, 
Verschaffel, & Torbeyns, in press). In a first study, focusing on children’s Recognition 
of Mathematical Structures (i.e., ROMS; an overarching term for all possible spon-
taneous mathematical focusing tendencies), Sharir et  al. (2015) developed three 
tasks. The two verbal tasks, one with pictures and one with geometrical shapes, 
were similar to the picture tasks used in the research on SFON and SFONS, whereas 
the nonverbal task resembled the action-based tasks used in SFON research. Each 
of the three ROMS tasks included quantities (e.g., xx), mathematical patterns (e.g., 
xxx xxx), and arithmetic series (e.g., x xx xxx). Again, there was no use of any 
phrase which could have suggested that the tasks were somehow mathematical or 
quantitative.
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In a second study, which is part of an ongoing large-scale longitudinal study 
about the development and stimulation of early core mathematical competencies, 
we are addressing, in the context of the PhD project of Nore Wijns, young children’s 
patterning competencies. Besides tasks measuring children’s patterning ability, we 
also included a measure that is aimed to catch their SFOP, namely the Tower task. 
This Tower task emerged from the finding that some children, even with disadvan-
taged backgrounds, spontaneously engage in patterning activities (Fox, 2005; 
Garrick, Threlfall, & Orton, 2005; Seo & Ginsburg, 2004) and the suggestion that 
children with such a spontaneous engagement in patterning activities might have 
more advanced patterning abilities than children with no such spontaneous interest 
in patterns (McKillip, 1970). The child is presented with a set of blocks of different 
colors (five yellow, five red, and five blue) and asked to make a tower with (all) 
these blocks. Importantly, we administered this task at the very beginning of the 
interview, before the administration of the complementary patterning ability tasks, 
and we also restrained from using the word “pattern” in the task instructions. When 
the child had finished the task, the experimenter took a photo of the child’s construc-
tion, and then categorized the photo as either “pattern,” “sorting,” or “random.” In 
order to get categorized as “pattern,” there had to be at least two full units of the 
assumed repeating or growing pattern and even the start of a third unit present in the 
child’s tower. A construction was categorized as “sorting” when all blocks were 
sorted by color. All other constructions were named “random” since there was no 
clear evidence of a pattern.

Sharir et al. (2015) presented the three ROMS measures as well as a curriculum- 
based mathematical reasoning task including number word sequence production, 
counting of objects, numerical sequence order, and basic arithmetic skills to 113 
4–6-year-old children from four Israeli kindergartens. Results indicated that young 
children could spontaneously recognize not only quantities presented in random 
order but also multiplication patterns and arithmetic series. Quantities did appear to 
be the easiest to recognize spontaneously, followed by multiplication patterns which 
are in turn easier to recognize spontaneously than arithmetic series. Children’s 
scores on the nonverbal ROMS were significantly higher than those on the verbal 
ROMS and older children significantly outperformed younger children on most 
ROMS types. Furthermore, a factor analysis on the whole set of ROMS tasks 
revealed three different factors, explaining 47% of the variance, namely ROMS 
verbal based on pictures, ROMS verbal based on geometrical shapes, and ROMS 
nonverbal, implying that the data were classified according to the three ROMS rep-
resentations (pictures, geometrical shapes, and nonverbal) rather than according to 
the ROMS types (quantities, multiplicative patterns, and arithmetic series). Finally, 
the different types of ROMS explained 34% of the variance in mathematics reason-
ing, while children’s age and mothers’ education added an additional 14% of the 
explained variance.

In our own ongoing longitudinal study with 391 4-year-olds from a wide range 
of socioeconomic backgrounds, we administered the abovementioned Tower task 
together with a measure for early patterning ability and for early numerical abil-
ity (Wijns et al., in press). The early patterning ability measure consisted of three 
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activities, namely extending (i.e., What comes next?), generalizing (i.e., Make the 
same pattern using different materials), and identifying the unit of repeat (i.e., 
Reconstruct the pattern when hidden). Each of the three activities was implemented 
with six repeating (e.g., AABAAB) and six growing (e.g., AB, AAB, and AAAB) 
patterns. The measure of early numerical ability consisted of 88 items that were 
selected based on recent research (see Andrews & Sayers, 2015; Jordan, Kaplan, 
Olah, & Locuniak, 2006; Purpura & Lonigan, 2013) and comprised subtests mea-
suring verbal counting (i.e., “Count as high as you can”), dot enumeration (e.g., 
“Count the dots”), object counting (e.g., “Give me N stones”), symbolic and non-
symbolic comparison (e.g., “Which number is the largest”), number order (e.g., 
“Which number comes before/after N?”), number recognition (e.g., “Which num-
ber is this?”), and verbal arithmetic (e.g., “I put N stones in a box and add/subtract 
M, how many stones are in my box?”). As expected, the photos showed a wide 
variety of constructions, ranging from towers that manifestly did not involve any 
pattern (49%) to towers revealing sorting behavior (14%) or very systematic pat-
terning behavior (37%). We also related children’s behavior on the Tower task to 
their scores for patterning ability and to their numerical ability. Children who con-
structed a pattern had a patterning ability and numerical ability similar to children 
who sorted the blocks per color. However, children who made a random arrange-
ment had a lower patterning ability and numerical ability than children who did 
make a pattern.

As for the other mathematical focusing tendencies, several issues related to 
SFOP require further research. Concerning the conceptualization of SFOP, it seems 
reasonable to theoretically differentiate SFOP both from other mathematical focus-
ing tendencies and from the patterning ability. Particularly the theoretical distinc-
tion between SFOR and SFOP seems less clear. Empirical evidence for conceiving 
SFOP as a construct different from the other mathematical focusing tendencies is 
absent since the only available factor analysis by Sharir et al. (2015) did not yield 
empirical evidence in favor of that differentiation. Maybe different results might be 
found when using other available measures of these different mathematical focusing 
tendencies.

As far as the measurement of SFOP is concerned, the attempts that have been 
made by Sharir et al. (2015) resemble the action-based and the picture tasks of other 
mathematical focusing tendencies discussed in the previous sections. However, one 
might argue that the need to include the more complex elements of mathematical 
structures and series into these simple tasks runs the risk of confronting the child 
with quite artificial scenes or actions wherein the structural or serial element is very 
prominently present, making them less suitable as measures of children’s spontane-
ous focusing tendencies. In this respect, the open Tower task used in the study of 
Wijns et al. (in press) may therefore capture children’s spontaneous focusing ten-
dency to mathematical patterns and structures more adequately, but our experiences 
with the coding of the children’s constructions force us to warn of the difficulty in 
making a clear and objective distinction between a tower with and without a pattern, 
when only relying on the child’s externally observable actions and final product. A 
solution might be to collect additional verbal description data, but given the chil-

L. Verschaffel et al.



35

dren’s young age it is questionable whether they will be able to provide sufficiently 
rich and valid explanations of their construction. More research on this measure-
ment issue is absolutely necessary.

Furthermore, whereas the available studies yield already some interesting find-
ings about the interindividual variation in SFOP and its relation with other sponta-
neous focusing tendencies and with patterning ability, as well as with mathematical 
ability in general, future—preferably longitudinal—research is needed to yield bet-
ter insight into the development of SFOP and its relation with other components of 
children’s early and later mathematical development.

Finally, in line with the intervention studies addressing other mathematical 
focusing tendencies, training of SFOP might stimulate the development of pattern-
ing ability and mathematical ability in general. Such intervention studies could pro-
vide evidence for possible causal associations between SFOP, patterning ability, and 
mathematical ability. Clearly, the number of intervention studies aimed at the 
design, implementation, and evaluation of innovating learning environments that 
pay intensive and systematic attention to the development of young children’s pat-
terning ability is increasing drastically (Pasnak, 2018), but, to the best of our knowl-
edge, in these studies the role of the tendency to attend to mathematical patterns and 
structures is hardly addressed in the intervention and/or assessment part of these 
intervention studies.

2.6  Conclusion and Discussion

During the past decades, early mathematical competencies have been widely recog-
nized as a significant predictor of later mathematical performance (Andrews & 
Sayers, 2015; Aunio & Niemivirta, 2010; Baroody & Purpura, 2017; Verschaffel 
et al., 2017). Most of this research has been conducted with a view to characterize 
and stimulate the kinds of mathematical knowledge and skills that underlie this 
predictive relationship, using tasks wherein the children are explicitly asked to acti-
vate and demonstrate these mathematical abilities. During the last 10–15  years, 
there has been a growing interest in another aspect of children’s early mathematical 
competence, namely their tendency to pay attention to numerical and mathematical 
aspects of an everyday situation or event when their attention is not drawn explicitly 
to these aspects. A main idea underlying this latter research is that in everyday situ-
ations or actions when there is no specific externally imposed attentional focus or 
guidance, before children put their mathematical knowledge to use, they need to pay 
attention to aspects that are amenable to quantification or mathematization. It is 
argued that such focusing on numerical and other mathematical aspects of a situa-
tion may elicit self-initiated practice of the corresponding mathematical abilities, 
resulting in an advantageous mathematical development over children who do not 
(Hannula-Sormunen, 2015). So far, most of this research has been done on young 
children’s spontaneous focusing on exact numerosity (SFON), but to a much lesser 
extent, similar efforts have been made for Arabic number symbols (SFONS), 
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 quantitative relations (SFOR), and mathematical patterns (SFOP). In this chapter, 
we have reviewed these different lines of research and already discussed, for each 
of them, issues concerning their definition, measurement, development, and stimu-
lation. In this final section, we reflect upon these issues in a more general and inte-
grated way and propose some lines for future research.

2.6.1  Conceptual Issues

Even though serious efforts have already been made to clearly define these various 
mathematical focusing tendencies, several conceptual queries remain.

First, since most empirical studies involved only one or at most two of these 
spontaneous focusing tendencies, the relation between SFON, SFONS, SFOR, and 
SFOP remains unclear. Further theoretical reflection and empirical research is 
needed to answer questions such as: Is it theoretically appropriate and empirically 
warranted to distinguish between these four spontaneous mathematical focusing 
tendencies? Are these four tendencies conceived and defined at the appropriate level 
of specificity? Do they jointly cover the complete set of spontaneous mathematical 
focusing tendencies? For instance, the explicit and deliberate presence of the term 
“exact” in the definition of SFON makes this spontaneous focusing tendency highly 
specific to exact numerosities, raising the question why children’s spontaneous 
focusing tendency on approximate numerosities must be left out of the scope. 
Similarly, in its definition and operationalization, SFONS is restricted to spontane-
ous focusing on Arabic number symbols. But what about possible individual differ-
ences between young children in their spontaneous focusing on verbal number 
words in daily conversations, stories, etc.? With respect to SFOR, it is remarkable 
that all tasks are about multiplicative relations between discrete quantities. As sug-
gested by Degrande et al. (2017), there are good reasons to differentiate between 
different SFOR tendencies so that other kinds of mathematical relations, especially 
additive relations, are also included. Finally, with respect to SFOP, it should be clear 
that only a very small portion of the enormous variety of mathematical structures 
and series is being addressed in the initial elaborations of this concept by Sharir 
et al. (2015) and Wijns et al. (in press).

2.6.2  Measurement Issues

As described above, Hannula et al. (2005) listed five criteria that needed to be met 
in order to validly measure children’s SFON. Essentially, all these criteria have been 
taken over by other scholars who have designed measures not only of SFON but 
also of the other mathematical focusing tendencies reviewed above. Whereas it is 
clear from the descriptions of all these measures that all researchers did serious 
attempts to meet these criteria when designing the materials, the instructions, and 
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the scoring criteria of their measurement tasks, for all four tendencies important 
queries can be raised with respect to one or more of these criteria that jeopardize the 
(content) validity of these measures. Also, partly as an inevitable result of these 
criteria and partly as a consequence of the young age of the children at stake, there 
are problems with the reliability of most measures. Continued and intensified meth-
odologically oriented research is needed with a view to analyze and improve the 
reliability and validity of these measures. Meanwhile, given this state of affairs with 
respect to the psychometric qualities of the various measures, it may be recom-
mendable to assess SFON, SFONS, SFOR, and SFOP by means of a varied set of 
tasks covering these constructs.

2.6.3  Developmental Issues

As amply documented above, research has shown that already remarkably early in 
their development, many children demonstrate a tendency to attend not only to sim-
ple numerical elements or aspects of their environmental world but also to mathe-
matically more advanced mathematical elements such as mathematical notations, 
relations, and patterns. Moreover, significant interindividual and developmental dif-
ferences in all these mathematical focusing tendencies have been reported. However, 
several questions remain unanswered.

The first set of important questions relates to the development of the mathemati-
cal focusing tendencies. It seems very reasonable to assume, on theoretical grounds, 
that SFON, which involves spontaneous attention to nonsymbolic numerosities, 
develops both before SFONS, which involves attending to symbolic number repre-
sentations as well as before the mathematically more complex focusing tendencies 
of SFOR, and SFOP. Empirical evidence supporting these hypotheses is scarce, but 
the scarce available evidence tends to support them: Rathé et al. (2018) found that 
early in their development, children’s SFON scores exceed their scores for SFONS, 
while Sharir et al. (2015) found that quantities are easier to recognize spontaneously 
than multiplication patterns and arithmetic series.

Second, the question raises what causes that some children focus their attention 
on the numerical and mathematical elements in their environmental world and oth-
ers do not, and that these focusing tendencies grow over time. As documented 
above, most research aiming at answering this question has been done in the domain 
of SFON. This research has yielded some indications favoring the plausible hypoth-
esis that—just as what happens with the ability aspects of early mathematical com-
petence—these mathematical focusing tendencies are at least partly affected by the 
intensity and quality of the early mathematical experiences children experience at 
home and in preschool. Although some studies provided first evidence for this 
hypothesis (Batchelor, 2014, Study 3; Hannula et al., 2005), other studies showed 
mixed findings (Edens & Potter, 2013; Rathé, Torbeyns, Hannula-Sormunen, & 
Verschaffel, 2016), but this may be due to measurement problems involved in the 
assessment of (the quality of) these mathematical environments. Future longitudinal 
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studies should continue to explore the contribution of environmental factors to the 
development of these mathematical focusing tendencies. This future research should 
include more specific and direct measures such as observations of parents’ number 
talk (Gunderson & Levine, 2011; Ramani, Rowe, Eason, & Leech, 2015) and the 
quality of classroom activities (Bojorque et al., 2016). Besides these environmental 
factors, various domain-general factors, such as symbolic fluency (Batchelor et al., 
2015), inhibition (Clark, Pritchard, & Woodward, 2010), working memory (De 
Smedt, Janssen, Bouwens, Verschaffel, & Ghesquière, 2009; Passolunghi & 
Lanfranchi, 2012), language (Moll, Snowling, Göbel, & Hulme, 2015; Purpura & 
Ganley, 2014), and general motivational orientations such as task orientation and 
social dependence orientation (Lepola, Hannula-Sormunen, & Lehtinen, 2019) as 
well as domain-specific such as early mathematical abilities (Hannula et al., 2005), 
may also influence a child’s score on a mathematical focusing tendency test. Further 
research, preferably applying a multi-method approach combining qualitative and 
quantitative methods, is needed to further our insight into the factors that affect the 
development of these mathematical focusing tendencies.

The third set of questions relating to development involves how the development 
of the mathematical focusing tendencies is related to the development of their math-
ematical ability. Based on the available evidence, particularly in the domain of 
SFON and SFOR, it seems reasonable to claim (1) that the mathematical focusing 
tendencies of children measured early in their development are uniquely related to 
children’s concurrent and later mathematical performance up to many years later, 
(2) that there is a reciprocal relationship between the dispositional and ability com-
ponents of children’s mathematical development during their early and elementary 
mathematical development, and (3) that the main reason for this reciprocal relation 
is that children who have a higher mathematical focusing tendency are also more 
inclined to engage in self-initiated reflective practice, playing with number and 
mathematical relations and patterns which in turn will enhance their mathematical 
reasoning (Hannula et al., 2005), while children with low mathematical focusing 
tendencies will be less inclined to engage in such mathematical activities. Even 
though theoretically very plausible (Hannula, 2005) and already supported by some 
empirical findings (e.g., McMullen et al., 2017), convincing empirical evidence for 
the latter explanatory mechanism is lacking.

2.6.4  Promotion of Mathematical Focusing Tendencies

As far as the promotion of mathematical focusing tendencies is concerned, little is 
known about the possibility and effectiveness of promoting mathematical focusing 
tendencies in young children through specific interventions. Research so far has 
provided some initial evidence that children’s SFON tendency can be stimulated by 
means of targeted interventions, which is a promising approach for improving 
young children’s mathematical development (Hannula et  al., 2005; Hannula- 
Sormunen, Alanen, McMullen, Kyttälä, & Lehtinen, 2015). As mentioned above, 
Hannula et al. (2005) and Mattinen (2006) showed that SFON tendency can be pro-
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moted by means of guided focusing activities in preschool and kindergarten set-
tings, but these intervention studies have raised critical questions, both about the 
spontaneous nature of children’s focus on numerosities after an intervention that is 
explicitly aimed at increasing children’s SFON, and about the broader pedagogical 
question whether education should stimulate young children’s tendency to attend 
primarily at the quantitative and mathematical dimension of their environmental 
world (Verschaffel et al., 2017). While some first steps in the direction of stimulat-
ing other spontaneous tendencies such as SFOR (e.g., see McMullen et al., 2019) 
have been taken, the same questions can arguably be asked for these other mathe-
matical focusing tendencies.
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Chapter 3
Play and the Production of Subjectivities 
in Preschool

Luis Radford

3.1  Introduction

Play has always been a popular topic in early childhood education. And, one way or 
another, it has been associated with the more general question of children’s develop-
ment. Indeed, despite the impressive variety of conceptions of play (see, e.g., 
Elkonin, 2005), play has usually been considered either as a source of development 
or as a window through which one can grasp the current state of the child’s 
development.

In the latter view, play appears as a kind of methodological tool. This is the case 
of Piaget’s conception of play. In observing children play, the children’s under-
standing of rules can be made apparent. Reasoning along this line, Piaget (1948) 
suggested a series of successive stages which children undergo in play: children 
travel from a motor or individual understanding of rules where the driven force is 
the child’s desires, to an egocentric stage where although playing together each 
child plays “on his own” (p. 16), to incipient and, later on, developed stages charac-
terized by social forms of collaboration.

In the former view, by contrast, play appears as something that can potentially 
influence the child’s development. For instance, Smirnova and Gudareva argue that 
“Play is of special importance for the formation of the child’s motivational sphere 
and voluntariness” (Smirnova & Gudareva, 2017, p. 252).

This chapter is about children playing mathematical games in a preschool set-
ting. However, it goes in a different direction. Indeed, in this chapter, I am not inter-
ested in exploring how play allows children to develop mathematical ideas (the 
play-as-a-source view mentioned above that confines play to a mere facilitator of 
knowledge construction and intellectual growth). Nor am I interested in what we 
can learn about development in observing children play (the play-as a-window view 
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that confines development to a natural unfolding process). I am interested in some-
thing different: I seek to understand how, through mathematical ideas and play, 
children and their teachers coproduce themselves and, at the same time, are pro-
duced by their cultural–historical context.

To pose the problem of teachers and students as entities that coproduce them-
selves and, at the same time, are produced culturally and historically, is to adopt a 
theoretical position about humans that is at odds with the classical view articulated 
during the Enlightenment and that has come down to us through the work of 
Rousseau, Pestalozzi, Piaget, and the mathematics education movement of the 
twentieth century epitomized in constructivism. In the enlightened tradition—that 
is, the European intellectual movement of the late seventeenth and eighteenth cen-
turies that broke with tradition and emphasized individualism and reason 
(Horkheimer & Adorno, 2002)—the individual is portrayed as a constructor of ideas 
and the origin of her feelings, meaning, and intentionality. Kant, perhaps, the most 
enlightened philosopher of the Enlightenment, illustrates this idea of the individual 
better than anyone else: the Kantian individual is a subject of reason, the crafter of 
her/his own destiny, and the origin and source of meaning and knowledge. The 
result is a self-sufficient and substantialist conception of the individual: the self- 
made subject. In this context, the child appears as a given entity; that is, someone 
who, in order to develop her own intellectual capacities, simply needs a stimulating 
social environment (Martin, 2004).

In this chapter, I take a different route: I draw on a dialectical materialist philoso-
phy and its conception of the human. Instead of being the origin of knowledge, 
feelings, meaning, and intentionality, the individual is conceptualized as an entity in 
flux, in perpetual becoming—an entity who through practical activity (like play) is 
continuously inscribing herself in the social world and, in doing so, she is continu-
ously produced and coproducing herself within the limits and possibilities of her 
culture. In the first part of the chapter, I consider some theoretical ideas—such as 
subjectivity, subjectification, being, and becoming. These ideas frame the dialecti-
cal understanding of the child and her production in play offered here. In the second 
part, I discuss some video data that come from my current research in preschool 
settings. The last part of the chapter is an attempt at showing that the question of the 
production of individuals is immersed in ethical issues that mathematics education 
can no longer avoid taking into account.

3.2  The Production of Individuals In and Through Play

At first sight, exploring the production of individuals in and through play may seem 
an esoteric endeavor. Why, indeed, could such a problem be interesting from the 
point of view of mathematics education? Two of the major theories in our field—
constructivism and the theory of didactic situations (see, e.g., Radford, 2018a)—
charted a research agenda for themselves and the theories that followed where our 
problem at hand hardly finds a niche. While constructivism is oriented toward the 

L. Radford



45

investigation of the child’s “construction of increasingly powerful conceptual struc-
tures and the development of intellectual autonomy” (Cobb, 1988, p. 100), the the-
ory of didactic situations is oriented toward the creation of the didactical conditions 
that are conducive to the diffusion of mathematical knowledge (Brousseau, 1997). 
As we can see, the problem of the individual is left unproblematized in both theories.

I draw here on the theory of objectification (TO)—a Vygotskian theory of teach-
ing and learning (Radford, 2008, 2018b)—that inscribes itself in a different educa-
tional project: it posits the goal of mathematics education as a political, societal, 
historical, and cultural endeavor aimed at the dialectical creation of reflexive and 
ethical individuals who critically position themselves in historically and culturally 
constituted mathematical practices and who ponder new possibilities of action and 
thinking.

As a result, in the TO, the focus is not on the mathematical content alone; the 
focus is not only on knowing (the dimension of knowledge) but also on becoming 
(the dimension of the subject or the individual). As a result, a cogent understanding 
and explanation of how learning happens should include accounts of how students 
come to know (knowing) and to be (becoming). Therefore, instead of being some-
thing esoteric, the problem of the production of individuals in and through play (or 
other educational settings) appears as something of great importance.

To avoid misunderstandings, I hasten to say that I do not see the production of 
individuals as the deterministic result of social forces shaping an inert tabula rasa 
subject. However, I do not see the production of individuals as the mere auto- 
production of the self either. What I have in mind is a production of individuals 
whose most distinctive feature is to be dialectical: individuals are projects of life in 
the making; they produce reality as much as reality produces them.

To look at children and teachers in this dialectical manner is to depart from the 
view of the world as “some eternal and objective network of causal factors converg-
ing on [the individuals] to shape an unresisting, passive blob to their external pre-
given [cognitive] structures” (Wartofsky, 1983, p.  188). To look at children and 
teachers in a dialectical manner is also to depart from the view that conceives of 
individuals in general and children in particular as “self-contained homunculus, 
radiating outward in development from some fixed configuration of traits, disposi-
tions, or preformed potencies” (Wartofsky, 1983, p.  188). That is, a view where 
children and teachers appear as the origin of their own experience and the product 
of their own life. Unfortunately, we tend to believe that the experiences through 
which we allegedly auto-craft ourselves are something direct. We tend to forget that 
the way we experience ourselves and come to constitute ourselves as subjects is 
mediated by culture and history. As Michel Foucault notes

The experience we make of ourselves seems to us to be the most immediate and the most 
original; but it has in fact its historically formed patterns and practices. And what we believe 
to see so clearly in us and with such transparency is given to us in fact through deciphering 
techniques painstakingly constructed throughout history. (Foucault, 2017, pp. 29–30)

I want to contend that it is only through a genuine dialectical understanding of 
individuals and their social, cultural, and historical contexts that we can unravel 
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what Stetsenko and Ho (2015) call “one of the most complex paradoxes of human 
existence” (p. 224).

This paradox is about being one among many, that is, about being a unique individual in an 
essentially communal world shared with others. The paradox involved is that human beings 
are singular and unique individuals, yet they are also profoundly relational and deeply 
social, sharing with other people no less than the existential grounding of life in all of its 
expressions and forms. (Stetsenko & Ho, 2015, p. 224)

It is against the background of this most complex paradox of human existence 
that, in this chapter, I want to continue exploring a line of inquiry that I outlined in 
previous papers (Radford, 2014, 2018c), where the central idea is that all educa-
tional settings—play included—ubiquitously produce not only knowledge but indi-
viduals too. Since we are entering almost uncharted territory, I need to introduce 
some theoretical constructs. I need to delve into more detail on the question of the 
individual and the role cultures play in the process of knowing and becoming. To do 
so, I need to start from the beginning. I need to start with a brief discussion of a 
symbolic structure that, in each culture, defines the space of agentic maneuvering of 
the individuals and provides them with a definite sense of personhood.

3.3  Semiotic Systems of Cultural Signification

The starting point of the theoretical position that I want to explore here is that human 
subjectivity is entangled with its social, cultural, and historical contexts. Cultures, 
indeed, provide their individuals with the raw material of what they are. For instance, 
the very fabric of human subjectivity in ancient Mesopotamia was intertwined with 
the individuals’ participation and their positioning in social and cultural activities 
such as agriculture, animal husbandry, or participation in religious events or mili-
tary campaigns. These social and cultural activities out of which a sense of self 
emerged were, in turn, shaped by the political, religious, and economic structures 
that provide the individuals with meaning to their life. It is in this context that indi-
viduals in ancient Mesopotamia learned to live and die (see, e.g., Crawford, 1991; 
Kramer, 1963; Reade, 1991). And so do we, in our own cultural–historical context. 
And because these contexts are different, we find ourselves confronted by a differ-
ent range of possibilities concerning rights and obligations from those encountered 
by the Mesopotamians, the ancient Greeks, Chinese, etc. We find ourselves in front 
of a world with different political, economic, and legal apparatuses and, as a result, 
with a different space of agentic maneuvering. The scope of the space of agentic 
maneuvering is both facilitated and constrained by a symbolic superstructure. This 
symbolic superstructure encapsulates the distinctive features of a culture—for 
example, its thematization of meaning production, the relationship between mind 
and reality, and the understanding of reality itself.

Symbolic superstructures have always puzzled philosophers, sociologists, and 
anthropologists. For example, adopting a Kantian position, Ernst Cassirer speaks of 
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symbolic forms. Symbolic forms operate ubiquitously. They structure experience. 
For Cassirer (1955), language is the symbolic form par excellence: it is through 
language that, according to Cassirer, all forms of thought find meaning and expres-
sion. Abandoning the Kantian perspective, Hegel proposes a more dynamic vision 
in which the mind is considered as advancing historically (Hegel, 2001). Writing 
from a sociological perspective, Castoriadis (1987) speaks of the collective creation 
of symbolic webs that provide the individuals with the means to overcome the real 
and imagine new things. From the social, historical, and cultural educational per-
spective in which the theory of objectification is inscribed, the question of the sym-
bolic superstructure is articulated around the material production of life in all its 
spheres, and particularly around the production of knowledge, mainly around domi-
nant forms of knowledge production and their political–economic character. In the 
theory of objectification, the symbolic superstructure is termed Semiotic Systems of 
Cultural Signification (SSCS). They are dynamic systems that originate in the prac-
tical and sensuous activity of the individuals. They comprise ideas about the nature 
of the world (e.g., the nature of mathematical objects and their way of existing), 
truth (e.g., how truth is and can be established), and the nature of the individuals.

SSCS are full of tensions, as are the activities from where they emanate. They 
have a (implicit, explicit, or both) normative function and necessarily convey politi-
cal and ethical views; for example, how we show ourselves to others, how we are 
expected to behave socially and to be recognized by others.

To understand the operativity of SSCS and how the individuals’ deeds are embed-
ded in a web of historical, political, legal, and economic relations that circumscribe 
the concept of self, let me mention an example from premodern times. The example 
comes from a county court in medieval England, where a prestigious blacksmith 
individual, Richard Bourdeaux, was offended publicly by a lower-status butcher, 
William Webbe (for details, see Shaw, 2005). This act, which was socially sensed as 
a disruption of rules governing the honor ethic and hierarchically structured social 
order that defined premodern life, went to court. The insult was seen as an offense 
against God and the hierarchical status of the town. The sentence included a repen-
tance about social behavior and a monetary penalty. While the repentance was 
issued as a means to protect and validate the structural relationships between the 
social categories of people involved, the monetary penalty was a way to repair the 
offense to society in the form of a charitable donation to help with the restoration of 
a church. An excerpt from the court record reads as follows:

For this reason, the said William begged (supplicavit) the said Richard, out of respect for 
God and for charity’s sake, in view of the entire meeting, that he earnestly hoped he would 
pardon him his abusive language (maledictum) and the slander (verba de dicto Ricardo 
malelocuit) he had spoken. Then the said Richard, at the request of the master and bur-
gesses, remitted and relaxed to the said William all the said fine and evil deed (malefactum) 
on condition that he never in the future publicly or openly say or proclaim defamatory 
words about Richard, such as he previously spoke so violently and harmfully, on threat of 
40s. sterling to be paid to the current or future Master within two weeks of the relapse. And 
the said money should be applied to the restoration of St. Cuthbert’s Church. (Shaw, 2005, 
p. 127)
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Commenting on this medieval example, Diehl and McFarland note that “being 
successful in disputes over honor was predicated, at least partly, on the ability of 
disputants to justify their [social] position by appealing to cultural beliefs about 
what persons like them (and their opponents) should or should not do” (Diehl & 
McFarland, 2010, p. 1735). Those cultural beliefs about persons and what they can 
do can only make sense through the effects of Semiotic Systems of Cultural 
Signification. They operate through a complex web of political, legal, and economic 
relations and come to shape the concept of self, offering a spectrum of socially rec-
ognized positions and providing them with an agentic space for human action. The 
agentic space for human action is organized through a conception of the nature of 
the individuals that demarcates, in particular, the ethics of situated actions. Such 
agentic space is enforced through a legal system that vigilantly seeks to keep society 
and its individuals in a certain harmony.

3.4  Being, Becoming, and Subjectivity

Now, the relationship between the cultural “raw material” conveyed by the SSCS 
and the concrete individuals should not be seen in a causal or mechanical sense. On 
the one hand, as humans, we are unavoidably affected by our cultural–historical 
concrete context. This is part of our ontological makeup. It is part of what it means 
to be human. This is the point that the seventeenth-century philosopher Baruch 
Spinoza (1989) made in his Ethics—a book that had a tremendous influence on 
Vygotsky and Marx (Fischbach, 2014). However, individuals are not simply 
affected. They are affected in a reflexive manner. What reflexivity means here is that, 
in addition to being affected by their cultural–historical concrete context, individu-
als react agentically to such context. Vygotsky used to say that what distinguishes 
us most from other species is not intelligence, but free will (del Rio & Alvarez, 
1995; see also Tappan, 1998).

Thus, while what emerges from the effects of affection—that is, the subject—
bears the imprint of its culture, it always emerges as something different—different 
to others and to itself: the resulting subject is an “I” whose formula is “I ≠ I.”

This formula captures the conception of the individual as, on the one hand, a 
dynamic concrete living agentic entity always in flux, in transformation, and, on the 
other hand, an entity whose agentic dimension can only be understood against the 
backdrop of culture and history. To refer to the individual in the aforementioned 
sense, I shall use the term subjectivity. To specify its sense a bit further, I need to 
turn to two related terms first: being and becoming.

Being, as I understand it here, is a generative capacity constituted of cultural 
conceptions of living in the world: ways of conceiving of oneself and of being con-
ceived; ways of positioning oneself and of being positioned. In the previous exam-
ple from medieval England, being includes those ways in which blacksmiths, 
butchers, cathedral builders, priests, soldiers, etc. conceived of themselves and were 
conceived by others. Those ways of conceiving of oneself and of being conceived 
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by others are continuously materialized in the deeds and activities of the individu-
als. What materializes, however, does not coincide with the capacity that engenders 
it, for this capacity is a cultural, general, latent capacity. Being can only show itself 
through its materializations in the concrete world, where it can be recognized as 
what it is. Being a butcher, for example, is materialized in the deeds of William 
Webbe, as being a blacksmith is materialized in the deeds of Richard Bourdeaux. 
The always unfolding materialization or instantiation of being is related to being, 
but it does not coincide with it. William Webbe’s deeds do not coincide with 
“butcher” (in the same way as the idea of a triangle does not coincide with any of its 
materializations). The materialization of being has a technical name: its name is 
becoming.

Now we can come back to the concept of subjectivity. A subjectivity is a unique 
sentient cultural concrete subject (William Webbe, Richard Bourdeaux, or a student 
or a teacher in our case) whose specificity results from the fact that it is continuously 
reflectively affected by being through its concrete materializations—an entity 
always in a process of becoming: an unfinished and unending project of life. 
Moreover, because it is constantly reflectively affected by being, a subjectivity is an 
entity that “is inseparable from the space of moral issues [of its culture and] from 
how one ought to be” (Taylor, 1989, p. 112). To be a subjectivity is “being able to 
find one’s standpoint in this space, being able to occupy, to be a perspective in it” 
(p.112).

Empirically speaking, subjectivities are investigated through what I have termed 
in previous papers as processes of subjectification (Radford, 2012, 2018b). That is, 
the activity-bound processes where, coproducing themselves against the backdrop 
of culture and history, teachers and students (and individuals in general) come into 
presence.

In the next part of the chapter, I seek to understand how, through play, children 
and their teacher coproduce themselves and, at the same time, are produced by their 
cultural–historical context. I draw on video data that come from my current research 
in preschool settings.

3.5  Playing a Mathematical Game

In general, two contemporary trends can be discerned about the role of preschool. 
One of them considers preschool as a space of socialization and play suitable for the 
intellectual and physical growth of the child. The other trend is not in opposition to 
the first one, but it considers preschool as a preparation for school. While the former 
is usually immersed in the romantic view of the child of the Enlightenment, the lat-
ter is more preoccupied with school readiness. While the former usually advocates 
free play, the latter usually advocates learning in settings that follow a similar—
although simplified—structure to what children will find in Grade 1. Furthermore, 
the latter view gives special attention to literacy and numeracy. Without expecting 
that children acquire deep concepts of numbers and forms, preschools are  considered 
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as channels to ensure the children’s first contact with mathematics. This is the case 
in the Canadian province of Ontario, where my example comes from. My example 
comes, indeed, from a preschool classroom of 4- to 6-year-old children and is about 
a mathematical game whose goal is to introduce children to counting.

The emphasized presence of mathematics at the preschool level is coherent with 
the purpose of Ontario’s vision of the school: the preparation of the young for a 
highly technological society characterized by quick change and adaptability. Of 
course, this emphasis on mathematics (and language) is not something new. Since 
the dawn of the twentieth century, mathematics came to occupy a privileged posi-
tion in the school curriculum of those countries that saw in industrialization the path 
toward modern society. Mathematics became the ally and support of the new capi-
talist forms of production. To a large extent, the main problem of twentieth-century 
educational reform was the problem of massive schooling to train the young in the 
participation and development of a technological society (Radford, 2004). One cen-
tury later, things have not changed much. Capitalism has not vanished. It has become 
transnational, diversified, and globalized. It is, hence, not surprising that the pre-
schoolers I see entering the school every morning start the day with activities around 
counting. They start by singing, that is true. However, the content of the singing is 
about counting (see Fig. 3.1, Picture 1):

One little lamb in my house that jumps and turns around.
One, two, three, four, five.
One, two, three, four, five.
One, two, three, four, five.
It helps me fall asleep.

If the school has to create producers, consumers, technologically oriented minds, 
and “entrepreneurs”—as an important official document in Ontario insists again and 
again (see Ontario Ministry of Education, 2014, pp. 1, 3, 4, and passim)—counting 
has to be the starting point.

The mathematical game that I discuss involved two players and concrete arte-
facts to play it: a plastic sheet that contained two rows made up of 10 squares with 

Fig. 3.1 Left, the children with their teacher singing an arithmetic song. Right, two players and 
the concrete material to play a mathematical game

L. Radford



51

space enough for the children to place a small plastic bear in each, 10 bears of one 
color for one child, and 10 bears of another color for the other child, and one dice 
(see Fig. 3.1, Picture 2).

In the second part of the game, which is the focus of my discussion, the children 
started with empty rows. The rules were as follows:

 (a) Taking turns, each child had to place on her/his row the number of bears that 
corresponded to the number shown by the dice after the child rolled the dice.

 (b) The winner is the child who filled her/his row first.
 (c) To fill the row, the child had to roll the dice and obtain the exact number of 

points on the dice as the number of spaces left on her/his row.

To demonstrate the rules, the teacher played a game with a child in front of the 
class. Then, the class was divided into groups of two.

There were several mathematical notions involved in the game, such as produc-
ing a numerosity (the points shown by the dice); counting the numerosity (quantity) 
either perceptually or with their fingers and/or words; determining the number; 
choosing a quantity of bears that corresponds to the number; and placing the bears 
on the row and determining whether or not the game has been finished.

There were also some social dimensions involved in the game, such as subjecting 
oneself to the rules of the game; articulating one’s actions with those of the other 
child; and paying attention to the various phases of the game.

Here is an account of the game played between Carl and Jack.
Jack rolls the dice and gets 6. With a tone of satisfaction, he says “6!” and pro-

ceeds to place six bears on his row while counting aloud. Carl follows Jack’s actions. 
He waits for Jack to finish putting the bears on the corresponding row. When Carl is 
done, he says, “OK. My turn, my turn!” Carl takes the dice, rolls it, and says “Oh! 
2!” He takes one bear at a time and places them on his row while counting aloud. 
Jack follows Carl’s actions. Carl finishes placing his bears, moves the dice close to 
Jack’s row and says, “OK, it’s your go.”

So far so good. The children have taken turns and moved the bears according to 
the game’s rules. Unfortunately, things went badly right after. Here is the continua-
tion of the game: Jack picks up the dice and rolls it. The upper face shows two points 
(see Fig. 3.2).

Jack is not happy with the result, picks up the dice again, puts it in his hands, 
shakes his hands vigorously, and lets the dice fall. He utters, “5!” Satisfied with the 
result, he starts adding bears while counting “1, 2, 3, 4.” He is puzzled as he realizes 
that he does not have enough bears. Carl has been looking at what Jack does, appar-
ently without fully understanding Jack’s actions. Carl does not seem perturbed by 
the fact that Jack has ignored the first result (the dice showing 2 points) and has 
rolled the dice again.

At this moment, a child from another group calls the teacher and Carl’s attention 
moves to that group. In the meantime, Jack is busy reordering his bears on his row. 
Thirteen seconds later, Carl’s attention comes back to Jack. Jack is still reordering 
his bears on his row. Carl stretches his arm and tries to get the dice, which is in front 
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Fig. 3.2 Left, Jack rolls the dice and gets 2 points. Right, a close-up of the dice

Fig. 3.3 With his left arm, 
Jack (left) prevents Carl 
(right) from taking the dice

of Jack. Jack prevents Carl from taking the dice (see Fig. 3.3) and says, “So, it’s … 
wait! OK, it’s ….”

Carl does not pay attention to Jack and says, “OK, my [turn], I …” Jack inter-
rupts and says, “No, wait! Wait! Wait!” After some physical struggle, Carl succeeds 
in getting the dice. Jack continues, “So, it’s 1, 2, 3, 4, 5, 6” and keeps on placing and 
counting bears: “1, 2, 3, 4.” Carl is not paying attention to what Jack does. Carl rolls 
the dice twice. Jack finishes counting and puts his arms in a victory position. He 
utters, “I won! I won! I won! I won! I won! I won! Look!” Carl turns the dice in his 
hand, and when he finds the 6-point face, he stops and starts counting the points: “1, 
2, 3, 4, 5, 6 … 6!” He tries to start putting six bears on his row. Jack puts his arms 
on the page covering all the bears to prevent Carl from placing his bears. Jack says, 
“I won! … Me, I won!” Carl moves his body toward the page and in a very frus-
trated tone says, “Ughhhhhh!” (see Fig. 3.4, Picture 1). Jack insists, “Me, I won!” 
Carl replies, “Me is getting mad at you!” Jack responds, “Me, I won! Won!” Jack 
takes the dice and shakes it vigorously as if to start a new game. Carl exclaims “No! 
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Fig. 3.4 Carl showing his frustration to Jack

JACK . . . Ughhhhhhh! No! This is enough!” He succeeds in getting the dice. “My 
was only when [I] have this” (he points to 6 on the dice) “So, my turn.” Jack answers, 
“No, you didn’t get that! . . . You did like (he pretends to hold a dice in his hand and 
to move it around) flip, flip, flip and then you found 6! Um, Carl cheated, he does 
like flip, flip, flip, flip! … (pointing at Carl) Cheater! Cheater! Cheater! Cheater!” 
Carl reacts with his body. He comes very close to Jack as if he is going to hit him 
(see Fig. 3.4, Picture 2).

3.6  The Inscription of the Children in the Social World

3.6.1  The Role of Rules

Generally speaking, following social rules is a crucial step toward inscribing oneself 
in the social world. A rule, indeed, provides a normative dimension and an agentic 
space of action that, as far as the rule is followed, keeps in principle the individuals’ 
interaction within the scope of the socially expected. The medieval example dis-
cussed above provides an example of transgression. Not all rules are explicit. And 
even when they are—depending on the complexity of the behavior, duties, respon-
sibilities, etc. that they target— rules may become objects of interpretation, for a 
rule is, by nature, general: it applies not only to a specific case, but a range of poten-
tial (i.e., not yet produced concrete) cases. The rules of the mathematical game 
played by Carl and Jack were explicit. The rules do not make a distinction between 
players. In this sense, the mathematical game’s rules introduced above have a 
homogenizing effect on the children.

In the first part of the episode, we see how, drawing on the game’s rules, the 
children come to position themselves in the game: they take turns, they wait for the 
other child to play, they even collaborate in sharing the dice; they seem to accept 
their responsibilities and the responsibilities toward the other player. Still, the 
inscription of the children in the social world is not an easy task. They have to pay 
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attention to the evolution of the game; they have to wait for the other player to finish 
placing his bears. Moreover, to do so, they have to control themselves. As our data 
suggest, usually, in playing competitive games in preschool, it does not take long for 
the rules of the game to be broken. When Jack rolls the dice twice, he transgresses 
the social dimension of the rule. He seems to be aware of it. Figure 3.2, left, shows 
Jack rolling the dice and getting two points on the upper face of the dice. 
Disappointed, he picks up the dice again and shakes his hands vigorously with a 
sneaky smile on his face, which may mean something like: “I know that I should not 
be doing this, but …” Since Carl does not react, he continues playing seriously as if 
nothing had happened. We saw above that, right after, Carl got distracted and his 
attention moved to another group. The result is a rupture in the children’s collabora-
tion that was present in the early part of this game. The collaboration includes a 
coordination of actions (e.g., taking turns) but also paying attention to what each 
player does. Part of collaboration is indeed to pay attention to others, even if it is not 
one’s turn. To maintain his attention on the game is a tremendous task for Carl, who 
is 1 year younger than Jack. In turn, although Jack’s attention is on the dice and his 
bears, he does not realize that Carl is not paying attention. Jack is focused on his 
own actions. When Carl’s attention comes back to the game, it is focused on taking 
his turn, regardless of the position of the game. The rules that hold the children 
together and oriented the processes of subjectification in the first part of the game 
are no longer there. The rules, which provided the children with rights and duties 
before, have evaporated. As a result, the social and theoretical common ground 
embodied in the rules of the game disappeared. The positioning of the children in 
the social world no longer has a shared reference. Without a shared reference, the 
connection and mutual recognizance that the children achieved before are lost. The 
relationship to the other takes a different turn. Impulse, desire, and imposition now 
drive the children’s processes of subjectification. It is in this context that Jack draws 
on the stock of cultural categories at his disposal (the category of “cheater”) to dis-
qualify Carl. Carl, who exhibits a lesser mastery of the language than Jack, does not 
like to be called a cheater and responds with unarticulated phrases and with frustrat-
ing emotions expressed verbally (“Ughhhhhhh!”) and with threatening body lan-
guage (Fig. 3.4, Picture 2).

3.6.2  The Role of the Mathematical Content

In addition to the rules, the mathematical content required in the game also offers 
the children an important support to inscribe themselves in the social world. Indeed, 
the mathematical content offers the children entrance into a shared space of count-
ing. For to play the game, the children have to count following the same culturally 
and historically constituted way of counting—they have to follow a same arithmetic 
and its counting principles. It would be a mistake to think that counting, as the chil-
dren do in this game, is something natural. As shown by anthropological and ethno-
mathematical research, not all cultures count in the same way and not all count the 
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same things (see, e.g., Lancy, 1983; Owens, 2001). Despite the presence of the 
bears, their colors, the plastic sheet with the rows, the dice, etc., the apparently con-
crete arithmetic these preschool children are playing targets an abstract form of 
arithmetic thinking that will be required in the abstract commercial exchange net-
work that the children will find in society. The arithmetic that the children are 
encountering is, in fact, already economic and politically oriented toward a certain 
way of living and dealing with events in the world. The Semiotic Systems of Cultural 
Signification that ubiquitously operates in the school, the school system, and society 
as a whole naturalize this way of counting and its importance in children’s educa-
tion. It is only as a result of the effects of the Semiotic Systems of Cultural 
Signification that we end up assuming that counting things as the children do in this 
game is something obvious, necessary, and natural.

In short, the children’s coproduction as subjectivities and their inscription in the 
social world takes place in processes (the process of subjectification) that occur as 
children engage in classroom activity—in this case, an activity around a mathemati-
cal game. Two important elements in these processes are (a) the manner in which 
children do (or fail to) subject themselves to the social rules and (b) the necessarily 
ideological stance of the content that they are learning. By ideological, I do not 
mean something that is purposely misleading (like a false consciousness). Following 
Voloshinov (1973), by ideological I mean that all theoretical content (like the arith-
metical one conveyed by the game) is unavoidably the bearer of a vision or idea of 
the world—hence the term ideological. This is why the rules and the mathematical 
content are both also part of the very fabric of the children’s subjectivity and their 
inscription in the social world.

There is still a third very important element in the children’s inscription in the 
social world: the teacher.

3.6.3  The Teacher as the Embodiment of an Ideal Form

In a landmark paper, The problem of the environment, Vygotsky (1994) called atten-
tion to the fact that the settings in which children live are replete of “ideal forms” or 
“models” (p. 348) of behaving, thinking, speaking, doing, and so on, and argued 
that their greatest characteristic is not that these cultural and historically constituted 
ideal forms are already there in the environment or in society. Their greatest charac-
teristic consists of how these ideal forms exert a real influence on the child. But how 
can this ideal form exert such an influence on the child? Vygotsky’s (1994) answer 
is: under particular conditions of interaction between the ideal form and the child. 
Following Vygotsky’s idea, I want to submit that the teacher is an embodiment of 
ideal forms—forms about knowledge, but also about being. In interacting with the 
children in classroom activity, teachers bring to the fore, and make available to the 
children, features of knowledge and being that are relevant in teaching and learning. 
To explain my point, let us come back to the classroom episode and continue with 
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Fig. 3.5 From left to right, 
Jack, Carl, and the teacher

what happened in the children’s game right after Carl expressed his unhappiness 
and frustration to Jack (Fig. 3.4, Picture 2).

At this point, the teacher came to see Carl and Jack. She put herself close to Carl 
and, in a calm tone, asked him to sit down (see Fig. 3.5).

Jack was furious; pointing to Carl, he said loudly, “Cheater!” Carl defended him-
self responding, “Me no cheater.” Carl turned to the teacher and, in a complaining 
tone, told her, “He does not want to listen to me!” In a patient, supportive, and com-
forting tone, the teacher responded to Carl with a question: “He doesn’t listen to 
you?” In a discouraged tone, Carl responded with a brief “No!” Taking him seri-
ously, the teacher asked, “What are you trying to tell him?” In the meantime, Jack 
pointed to Carl and shouted, “He, he cheats!” The teacher turned to Jack, and in the 
same calm tone she talked to Carl said, “OK. Stop saying that.” Jack explained, “He 
was doing like (making some gestures with his hands) … and found 6.” Coming 
back to Carl, the teacher asked him in a calm manner “What … what do you want 
to tell him?” Carl did not articulate a full answer and barely said, “Uh …” Then, the 
teacher invited the children to continue the game. Talking to both children, she said, 
“Whose turn is it?” Carl responded, “Me, me, me rolled like that but he didn’t lis-
ten.” In a comforting tone, the teacher said, “OK. Roll it [the dice] again. We’ll 
restart [the game].”

At this point, the children started collaborating again. They started taking turns, 
paying attention to the other, putting the bears on their row and counting aloud. The 
teacher remained with them for 12 s and, having succeeded in calming both chil-
dren, left to see another group.

What happened? In her interaction with the children, the teacher was able to 
calm them down. The teacher made available for the students forms of being (more 
specifically, forms of behaving and addressing the other) that were not within the 
children’s reach. The teacher was able to show in a concrete way how to listen and 
how to care. She also showed empathy to the children. By showing empathy, she 
was able to connect with them and provide the reconstruction of a social, fluid, and 
dynamic structure where the children could reorganize their deeds around the rules 
of the game.
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3.7  Synthesis and Concluding Remarks

In this chapter, I attempted to explore the question of the production of subjectivities 
in preschool. The question is based on a conception according to which individuals 
are affected by their cultural–historical context. However, as I pointed out, this 
affection should not be understood in a mechanical or causal sense: it should be 
understood in a reflexive manner. What this conception means is that while individu-
als are living agentic entities in a continuous process of transformation, the scope 
and parameters of their agentic dimension can only be understood against the back-
drop of culture and history. It is in this sense that I talk about individuals coproduc-
ing themselves and, at the same time, being produced by their cultural–historical 
context.

One of the fundamental manners in which individuals are reflexively affected by 
their cultural settings is by the manner in which cultures offer their individuals a 
range of traits about how to show to, and position oneself in, the world. This is the 
idea of the concept of being that I introduced above. Being, I suggested, is as a gen-
erative capacity constituted of cultural conceptions of living in the world. Being is 
an ontological category, subsumed in symbolic superstructures that I termed 
Semiotic Systems of Cultural Signification. These systems operate ubiquitously 
through a complex web of historical, political, legal, and economic relations. It 
should not come as a surprise that schools, as places of preparation to life in society, 
draw from those Semiotic Systems, implicitly as well as explicitly. The Ontario sys-
tem of education, for instance, seeks to produce “graduates who are personally suc-
cessful, economically productive and actively engaged citizens” (Ontario Ministry 
of Education, 2014, p. 1). These three traits or forms of being obey a historical tradi-
tion anchored around the Enlightened concept of the child mentioned in the 
Introduction of this chapter, a specific Canadian conception of life around the indi-
viduals’ community, and a contemporary economic urge to move successfully in the 
direction of the global economy, an urge that translates into the insistent inclination 
toward the formation of entrepreneurial minds.

Preschool is, in this context, the first step in the long journey on which children 
are about to embark. It is in preschool that they make the first contact with numbers, 
shapes, and social life. It is there that they start meeting, in a more or less structured 
way, the forms of being that society has to offer—for instance, to be an “actively 
engaged citizen,” which includes knowing how to live by social rules. But being, in 
any of its cultural forms, is always something latent, a kind of archetype, something 
that in order to be perceived or noticed by the children, have to be materialized in 
the concrete world. Its materialization is what I called becoming.

In the first part of the game, the children followed the rules of the game. They 
enacted a way of being—being a good citizen. And because the game was about 
introducing children to abstract counting (as required in the counting of merchan-
dise, the calculation of their prices, etc.), we could argue that the game is also about 
introducing the children to the sphere of (to use the Ministry’s expression) the “eco-
nomically productive,” for how could you be economically productive if you do not 

3 Play and the Production of Subjectivities in Preschool



58

know how to count? Then, we saw that the game was disrupted. Carl and Jack 
stopped following the rules. We also saw the crucial role that the teacher came to 
play. The teacher actively participated along with the children in recreating a social 
context where Jack and Carl could resurface and find manners of becoming a pres-
ence in the world, manners of agentically positioning themselves again in socially 
accepted ways (e.g., politely addressing the other and waiting for their turn).

The teacher’s and the students’ success in recreating a fruitful social context to 
continue the game calls attention to the fact that such an enterprise would not be 
possible without the reciprocated willingness to repair what was lost and mutual 
trust. As an embodiment of culturally and historically constituted ideal forms, the 
teacher was able to make available for the children traits of being of an ethical 
nature, such as genuine listening (“What are you trying to tell him?”), caring, 
answerability, and empathy. In practicing empathy, I would like to contend, the 
teacher is not just showing compassion. She is touching upon perhaps one of the 
most central features of what makes us human, namely the recognition of our fragil-
ity in the fragility of the other. I do not claim, though, that the children recognized 
those ethical traits of being as such. What I could claim is that, in playing the math-
ematical game, the children made the experience of those traits, that they sensed 
them, that those traits might have become objects of consciousness (not necessarily 
theoretical consciousness), and that, hopefully, those traits will become orienting 
parts of their subjectivity and their future deeds. Moreover, if this is so, I think that 
mathematics education can no longer ignore the centrality of the question of ethics 
in teaching and learning.
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Chapter 4
Copying and Comparing Repeating 
Patterns: Children’s Strategies 
and Descriptions

Pessia Tsamir, Dina Tirosh, Ruthi Barkai, and Esther Levenson

4.1  Introduction

The importance of engaging young children with pattern activities is supported by 
mathematicians, mathematics education researchers, and curriculum developers. 
Pattern exploration and recognition may support children as they develop mathe-
matical skills, such as skip counting, and the invention and use of arithmetic strate-
gies, such as adding “doubles” (Sarama & Clements, 2009). Exploring patterns may 
also enhance children’s deductive reasoning skills as they generate equivalent pat-
terns using different media and learn to predict what comes next in an existing pat-
tern (Greenes, Ginsburg, & Balfanz, 2004). In addition, recognition and analysis of 
patterns may provide children with the opportunity to observe and verbalize gener-
alizations as well as to record them symbolically (English & Warren, 1998). At the 
preschool level (ages 4 and 5 years), exploring repeating patterns has specifically 
been emphasized because of the relative ease with which children can recognize the 
basic unit which repeats and imagine its relationship with successive elements in the 
pattern (e.g., Papic, Mulligan, & Mitchelmore, 2011). Repeating patterns are pat-
terns with a cyclical repetition of an identifiable “unit of repeat” (Zazkis & Liljedahl, 
2002). For example, the pattern ABBABBABB… has a minimal unit of repeat of 
length three. According to the Israel National Preschool Curriculum (2008), “pat-
terning activities provide the basis for high-order thinking, requiring the child to 
generalize, to proceed from a given” unit, “to a pattern in which the unit is repeated 
in a precise way” (p. 23).

Whether spontaneously or teacher led, children most often engage in duplicat-
ing, copying, and extending activities (Fox, 2005). Results of these activities are 
often described in general, stating success rates of children performing some tasks 
and typical errors (e.g., Rittle-Johnson, Fyfe, McLean, & McEldoon, 2013). Even 
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when strategies are mentioned, they are often described in general terms, giving one 
or two examples (Papic et al., 2011). Yet, Klein and Starkey (2004) argued that “if 
mathematics standards and instruction aspire to be developmentally sensitive, they 
should reflect an awareness of the sometimes subtle changes that occur in children’s 
early mathematical thinking as they progress toward full understanding of a con-
cept” (p. 344). This study focuses on the subtle differences in children’s strategies 
as they engage with a copying task, as well as children’s verbal utterances when 
comparing the pattern they constructed with the pattern they copied. Children were 
shown a strand of beads with an AB pattern (and then with an AAB pattern) and 
requested to make a strand similar to the one shown but using different colored 
beads. They were then asked to compare the model strand with the one they con-
structed. In the next section, we discuss different types of pattern tasks, including 
copying, duplicating, and translating patterns.

4.2  Duplicating, Copying, and Comparing Patterns

Duplicating a pattern “involves making an exact replica of a model pattern” (Rittle- 
Johnson et al., 2013, p. 378), that is, constructing the same pattern using the same 
materials. The activity of copying a pattern is less clear. Papic et al. (2011) described 
several types of tasks, calling them all copying tasks. The first type was requesting 
children to create an exact duplication of block towers with identical blocks. The 
second type was to copy a block tower using tiles, and the third was to copy a block 
tower by drawing it with colored markers. Copying a pattern using different materi-
als is sometimes called an abstraction task, or a translation task, as the child is 
requested to translate the structure found in one medium to another (Rittle-Johnson 
et al., 2013). This type of activity is considered more complex than duplicating a 
pattern using identical elements and may promote recognition of the unit of repeat 
(Sarama & Clements, 2009).

In relation to the complexity of duplicating and copying patterns, Papic et al. 
(2011) described different stages of structural awareness. Children who could dupli-
cate a two-block tower (AB) with blocks, or copy it with tiles, or by drawing the 
tower, were considered to be at the prestructural stage. Children who could copy a 
four-block tower (ABAB) were considered to be at the emergent stage, those copy-
ing a six-block tower ABABAB were considered to be the structural stage, and 
those copying towers with a three-color repetition (ABC × 2 or ABC × 3) were con-
sidered to be at the advanced structural stage. Rittle-Johnson et al. (2013) based 
their construct map for repeating patterns on the level of abstraction needed to com-
plete the task. They claimed that duplication tasks were at the lowest level, whereas 
translating a pattern from one material to another was more complex. Sarama and 
Clements (2009), in their description of the developmental progression for pattern 
and structure, noted that by the age of 4  years, most children can duplicate 
AB-structured and ABB-structured patterns, and that by the age of 6 years, children 
can translate patterns into new media.
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When copying patterns, one strategy children use is the “direct comparison” 
strategy, where children copy a pattern by matching one item at a time. Papic et al. 
(2011) illustrated this strategy by showing a figure of a child lining up the tower he 
was building right next to the model tower. A second strategy, often used by children 
when copying an AB pattern, is the “alternation” strategy, because it is used most 
often when the elements alternate (Papic et al., 2011). Children using this strategy 
focus on the sequence, making comments such as “first red, then blue, then red, then 
blue.” A third strategy is recognition of the unit of repeat. We will call this the unit 
strategy. Instead of a child saying out loud that after red comes green (alternation 
strategy), the child says red–green, pause, red–green, pause, and so on in a rhythmic 
pattern. The rhythm emphasizes that the two go together as a unit.

Studies of children’s engagement with copying and duplication patterns vary 
with regard to the number of elements presented in the model pattern. For example, 
Klein and Starkey (2004) reported that when asked to copy the pattern ABABABAB, 
some children constructed ABABABABBBBBB.  We can surmise from this that 
extra materials were given to the child and not just enough to duplicate the exact 
pattern. In a different study (Rittle-Johnson et al., 2013), two full units of repeat 
were presented to the children and children were offered exactly enough identical 
tiles to build two complete units and one partial unit of the model pattern. Another 
variable when copying a pattern might be its starting point. This issue arose when 
children were shown the pattern GGRGGRGGRGGR and asked to use the same 
tiles and make a new pattern that was the same as the presented pattern (Warren, 
2005). One solution was RGGRGGRGGRGG. Note that this solution is actually the 
original pattern, just read from right to left. The researcher pointed out that the start-
ing point of a pattern might be an important attribute of a pattern in the eyes of 
children. In other words, is it critical to “read” the pattern from left to right, or can 
we view it from right to left?

While most studies offer details of the unit of repeat, and the number of repeti-
tions the unit appears in the model pattern, other details, such as the exact number 
and types of elements given to children with which to copy the pattern, are often left 
out. This study extends those studies by offering details of the elements (in this case 
beads) given to children in order to construct the pattern, as well as detailing how 
those loose elements were presented. Might these factors also affect children’s abil-
ity to successfully copy a pattern and might they affect strategies used to copy the 
pattern? This leads us to our first two research questions: (1) Do children use differ-
ent strategies when copying AB and AAB patterns, and if so, what are they? (2) 
What can we tell about the ways in which a copying task is presented, and the strate-
gies children use to copy the pattern? Note that because the colors of the beads were 
different from the model pattern, we do not call this a duplication activity. On the 
other hand, because children used the same materials (beads) as the model strand, 
we do not call this a translation task. Instead, we use the term copying.

Often, the same strategies used when copying a pattern may be found when a 
child is requested to compare two patterns verbally. In our previous study (Tsamir, 
Tirosh, Levenson, Barkai, & Tabach, 2017), we investigated kindergarten children’s 
ability to express similarities and differences between patterns with the same 
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 structure and patterns with different structures. In one instance, when describing the 
difference between two strands of beads, one with an ABB structure and one with 
an AB structure, a child said, “Here, there are two purples and one yellow and here 
everything is one.” We claimed that this description indicates the child’s recognition 
of the minimal unit of repeat. On the other hand, when asked to describe the similar-
ity between two strands of beads, each with an ABB structure, one child said, “Here 
are two yellows (pointing to one strand) and here (pointing to the other strand) are 
two pinks. Here (in the first strand) is one green and here (in the second strand) is 
one purple.” In this case, the child was matching a section of one strand against a 
section of the second strand and did not refer to the unit of repeat.

Most studies have either investigated children’s ability to copy or duplicate a pat-
tern, while other studies investigated children’s ability to verbally compare two pat-
terns. However, taking into consideration that “action experience [is] a simple yet 
powerful tool for learning throughout development and into adulthood” (Kontra, 
Goldin-Meadow, & Beilock, 2012, p. 732), it might be that results would differ if 
children were first asked to copy a pattern (i.e., physically act), and then asked to 
compare (verbally) the one constructed with the model pattern. The next two 
research questions explore this possibility: (3) Are kindergarten children able to 
recognize the similarity between the structures of two repeating patterns, one pre-
sented to them, and one they constructed as a copy, and if so, how do they express 
this similarity? (4) Is there a relationship between being able to copy a pattern and 
being able to express the similarity of the structures of the patterns?

4.3  Methodology

This study took place within the context of a professional development course for 
preschool teachers, focusing on patterning for young children (for details regarding 
the professional development course, see Tirosh, Tsamir, Barkai, & Levenson, 
2018). Twenty-three preschool teachers participated in the program. All had a first 
degree in education and between 1 and 38  years of teaching experience in pre-
schools. During the program, teachers were introduced to different patterning tasks 
as a tool for promoting their mathematical and pedagogical knowledge for teaching 
patterns in preschool. For the final project of the program, teachers were instructed 
to choose two of the tasks that were presented and analyzed during the course and 
implement and video-record those chosen activities with one child (aged 4–6 years). 
Those videos were then analyzed and discussed together in terms of the children’s 
solutions.

In this study, we focus on the enactments of a copying activity by the teachers, as 
well as the children’s strategies when copying the pattern and when describing simi-
larities and differences between the constructed pattern and the model pattern. The 
task, as presented to the teachers during the professional development course, was 
as follows:
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Present to the child a strand of beads (we will call it a necklace) with an AB struc-
ture. Place on the table a string (or wire) and a number of different colored 
beads—use two different colors and make sure not to use the same colors as 
those presented on your necklace. Ask the child to create a necklace that has the 
same pattern as your necklace.

After the child has finished constructing his or her necklace, ask the child the fol-
lowing: “How are these two necklaces the same?” After the child answers, repeat 
this question, until the child seems to have nothing else to add. Then ask the 
child: “How are these two necklaces different?” Repeat this question again, as 
was done for the first question.

Repeat the whole procedure, but this time present a necklace with an AAB pattern.

Although the number of repetitions of the minimal unit of repeat in the necklace 
to be presented was not specified, during the course it was discussed that children 
should be shown at least three repetitions of a unit if we wish to encourage the rec-
ognition of a pattern.

Ten teachers (T1–T10) implemented this task, each with one child (C1–C10) in 
a quiet corner of the classroom. We note that the task was presented to the teachers 
by the teacher educator, who demonstrated how the task might be implemented, 
along with the instructions given above. Furthermore, this task was not meant to be 
an instructive task, but instead an evaluation task in the sense that it was meant to 
assess children’s ability to copy and compare various repeating patterns. That being 
said, as with other tasks (Tirosh, Tsamir, Barkai, & Levenson, 2017), not all teach-
ers implemented this task in the same way, and some teachers did intervene in 
the middle.

4.3.1  Data Analysis

When analyzing the teachers’ implementations, we looked for the following possi-
ble variations in the way the task was presented and implemented: the number of 
repetitions shown in the teacher’s necklace, the number of beads offered to the chil-
dren to make their own necklace, the colors of the beads given to the children for 
stringing (were there only two different colors and were those colors different than 
those of the teacher’s necklace?), and the teachers’ instructions.

Children’s strategies when copying the necklaces and the final necklaces were 
analyzed. Three copying strategies were mentioned above: direct comparison, alter-
nation, and unit strategies. However, since one of the patterns to be copied was 
AAB, and the colors of the beads did not merely alternate, we use the term “succes-
sion strategy” to describe a child who strung one bead after another, based on what 
comes next. Regarding the final necklace, we noted if it had the same pattern struc-
ture as the teacher’s necklace, how many repetitions of the unit of repeat were in the 
final necklace (especially in comparison to the teacher’s necklace), if the child 
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ended the necklace with a complete or incomplete unit of repeat, and if the child left 
over unnecessary beads.

When analyzing children’s comparisons of the necklaces, we adopted the coding 
system of Tsamir et al. (2017), who assigned levels of structure recognition based 
on children’s verbal statements and hand motions when engaging with a similar 
activity. Thus, children who made no utterances or gestures that referred to the unit 
of repeat were assigned Level 0. Level 1 was assigned to children who used either a 
“matching one at a time” strategy or a “succession” strategy. Finally, children who 
were able to abstract the unit of repeat were assigned Level 2. To summarize, levels 
of structure recognition were as follows: 0—no recognition of structure, 1—possi-
ble recognition of structure, and 2—recognition of structure. Two researchers inde-
pendently coded the transcripts and were in agreement for all codes, except for one, 
which will be presented in the findings.

4.4  Findings

This section begins by describing engagement with the AB-structured necklace and 
then continues by describing engagement with the AAB-structured necklace. It then 
looks more closely at specific children, describing similarities and differences 
between the ways they engaged with each pattern. For both tasks, teachers used the 
same verbal instructions, telling the children to make a necklace like the one the 
teacher had and then to compare the necklaces.

4.4.1  Copying and Comparing AB-Structured Necklaces

Table 4.1 shows the variations in teachers’ presentations and the final necklaces of 
the children for the AB-structured necklace. Only C3’s necklace did not have an AB 
structure. T1 and T4 gave the children the exact amount of beads in order to copy 
the given pattern, while T9 gave one bead less. None of the children who were given 
extra beads strayed from the given pattern, and where there were extras of one color, 
those extras were left on the table unused.

Out of the nine children that created an AB-structured necklace, six used the suc-
cession strategy, taking each bead out of the basket of beads as it was needed, one C 
bead, stringing it, one D bead, stringing it, and so forth. A variation of this strategy 
was when one child took out a handful of beads from the basket, but still strung one 
bead at a time. Two children seemed to recognize the unit of repeat, first taking out 
both C and D, either taking them out together from the bowl of beads, or one from 
each bowl of beads (see Fig. 4.1), and then stringing them one at a time.

C7 used the unit strategy consistently. However, C6 started off by taking one 
bead at a time (see Fig. 4.2a). He did this twice, completing the first unit. He then 
took out together one unit (see Fig. 4.2b) and strung that unit. After that, he took out 
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Table 4.1 Copying an AB-structured strand of beads

The teacher The child

Pattern presented
Unstrung 
beads Pattern built

Unstrung 
beads

1 ABABABAB (4 repetitions) 4 × C, 4 × D 
in one 
container

CDCDCDCD None

2 ABABABAB (4 repetitions) Many of 
both C and D 
in one 
container

CDCDCDCD (The teacher 
stopped her)

Many

3 ABABABABA (4 
repetitions and 1 extra)

Many of 
both C and D 
in one 
container

CDDCDDCDD (different 
structure)

Many

4 ABABABABA (4 
repetitions and 1 extra)

5 × C, 4 × D 
in one 
container

CDCDCDCDC None

5 ABABABABABABABAB 
(8 repetitions)

Many of 
both C and D 
in one 
container

CDCDCDCDCDCDCDCDC Many

6 ABABABABABABA (6 
repetitions and 1 extra)

7 × C, 9 × D 
in one 
container

CDCDCDCDCDCDCD 2 × D

7 ABABABABA (4 
repetitions and 1 extra)

Many of 
both A and B 
in separate 
containers

ABABAB Many

8 ABABABABA (4 
repetitions and 1 extra)

10 × C, 
13 × D in 
separate 
containers

CDCDCDCDCDCDCDCDCDCD 3 × D

9 ABABABABA (4 
repetitions and 1 extra)

4 × C, 4 × D 
in 2 separate 
piles on the 
table

CDCDCDCD None

10 Showed a picture of a 
necklace

Many beads 
of many 
colors in one 
container

CBCBCBCBC Many

Fig. 4.1 C7 takes out C 
and D beads at the same 
time
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Fig. 4.2 (a) C6 takes out one bead at a time, (b) then two at a time, and (c) places pairs on the table

three more pairs, laid them out on the table (see Fig. 4.2c), and strung the beads one 
at a time, after which he continued taking out one unit at a time and stringing that 
unit until he was done. C10 used what seemed like a mix of directly copying a pat-
tern, along with a succession strategy. C10 counted the number of yellow beads in 
the teacher’s picture of a pattern and then counted out the exact same number of 
orange beads from the bowl. He then counted the number of green beads in the 
teacher’s pattern and counted out the exact same number of green beads as those in 
the picture. He then proceeded to string the beads one at a time. Note that T7 placed 
different colored beads in different containers (see Fig. 4.1), while T6 placed both 
colored beads in one container (Fig. 4.2). C10 placed many beads of many colors in 
one container. This way of presenting the unstrung beads might also have affected 
the children’s strategies when copying the pattern.

After the children copied the necklace, they were asked to say how the necklace 
they constructed was the same and different from the teacher’s necklace. Only 
children who successfully copied the pattern were analyzed further. In addition, 
T10 skipped this step of the task. Table 4.2 summarizes the children’s strategies 
when copying the necklaces, as well as their level of structure recognition when 
comparing the patterns.

Regarding how children described differences between the necklaces, most 
children related to the different colors of the beads; others, where it applied, related 
to the length of the necklace. Regarding their descriptions of similarities, approxi-
mately half of the seven children who used a succession strategy exhibited Level 1 
recognition of structure. For example, C6 stated, “This (pointing to the A bead in 
one necklace) is similar to this (pointing to the C bead in the second necklace). And 
this (pointing to the B bead) is similar to this (pointing to the D bead).” This descrip-
tion essentially mimics the succession strategy. Three of those who used a succes-
sion strategy did not exhibit any structure recognition. For example, when C1 asked 
to say what was the same about the necklace she built and the one the teacher had 
shown her, C1 replied, “they both have strings.” When asked if there was anything 
else that was the same, she said, “they both have beads.” When asked a third time, 
C1 remained quiet. Most surprising was C7, who used a unit strategy but did not 
exhibit in her verbal description any recognition of structure. Taking into 
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Table 4.2 Copying strategies and levels of structure recognition for AB patterns

Child AB/Not AB Strategy Level of structure recognition

1 AB Succession 0
2 AB Succession 1
3 Not AB – –
4 AB Succession 1
5 AB Succession 0
6 AB Succession and unit 1
7 AB Unit 0
8 AB Succession 0
9 AB Succession 1
10 AB Succession (Was not asked to compare the patterns)

 consideration that nearly all of the children used a succession strategy, it is not so 
surprising that none of the children exhibited Level 2 recognition of structure, that 
is, recognition of the unit of repeat. Regarding Level 2 of recognition, there was one 
child, C4, who, although we decided not to code her description at Level 2, might 
be considered on the verge of this level. When asked to say how the patterns were 
similar, the following exchange occurred:

C4:  Here there is a color (pointing to the first bead on the first necklace) and here 
there is a different color (pointing to the second bead on the same necklace).

T4: And that is similar?
C4: No.
T4: So, how are the two [necklaces] similar?
C4:  A color and a different color, a color and a different color, a color and a different 

color (as she talks, she uses her finger to move along one necklace).

On the one hand, C4 begins by stating the minimal unit of repeat, a color and 
another color. In addition, she uses general terms, “a color and another color.” This 
generalization might also indicate that she recognizes this as the unit of repeat in 
both necklaces. Yet, when asked again, she feels each bead in turn on only one neck-
lace, alternating the words, “a color” and “another color,” and does not indicate that 
she recognizes this pattern in the second necklace.

4.4.2  Copying and Comparing AAB-Structured Necklaces

Table 4.3 shows the variations in teachers’ presentations and the final necklaces of 
the children for the AAB-structured necklace.

Taking a look at the children’s final necklaces, we note that three children 
(C5, C7, and C9) did not end up with AAB-structured patterns and that each of 
those three were different from each other. This might have been four if T6 had 
not requested C6 to check his strand of beads, causing C6 to correct himself. 
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Table 4.3 Copying an AAB-structured strand of beads

The teacher The child

Pattern presented Unstrung beads Pattern built (comments)
Unstrung 
beads

1 AABAABAAB (3 
repetitions)

6 × C, 5 × D in 
one container

CCDCCDCCD 2 × D

2 AABAABAAB (3 
repetitions)

Many of both C 
and D in one 
container

CCDCCDCCDCC (was 
stopped by the teacher)

Many

3 ABBABBABB (3 repetitions) Many of both C 
and D in one 
container

CCDCCDCCD (note the 
reversed direction of the 
pattern)

Many

4 AABAABAAB (3 
repetitions)

6 × C, 3 × D in 
one container

CCDCCDCCD None

5 AABAABAABAABAABA 
(5 repetitions and 1 extra)

Many of both C 
and D in one 
container

CDCDCDCDCCDCD 
(different structure)

Many

6 AABAABAABAAB (4 
repetitions)

15 × C, 13 × D 
in one container

Begins with CDCDCD. The 
teacher intervenes. Final 
product 
CCDCCDCCDCCDCCD

5 × C, 
8 × D

7 AABAABA (2 repetitions 
and 1 extra)

Many of both A 
and B in two 
separate 
containers

AABBAABBAABBABB 
(different structure)

Many

8 AABAABAAB (3 
repetitions)

8 × C, 7 × D in 
one container

CCDCCDCCDCCD 3 × D

9 AABAABAAB (3 
repetitions)

6 × C, 3 × D in 
two separate 
piles on the 
table (In the 
middle, the 
teacher adds 
5 × D.)

CCDCCDCCDDDDDD (5 
extra Ds after 3 repetitions of 
CCD)

None

10 Showed a picture of a 
necklace

Many beads of 
many colors in 
one container

CDDCDDCDD Many

Although C9’s final strand has five extra D beads at the end, it might be that C9 
added those extra beads because the teacher added those extra beads while C9 was 
in the middle of constructing his necklace. Perhaps, C9 thought that if the teacher 
added beads, they must be used. One also might say that C3’s strand was different 
from that of the teacher’s necklace, because the teacher had shown ABB and not 
AAB. However, as this study took place in Israel, where Hebrew is read from right 
to left, it may be that the child “read” the pattern from right to left.

Table 4.4 summarizes the children’s strategies when copying the necklaces, as 
well as their level of structure recognition when comparing the patterns. Out of the 
eight children (including C9) who ended with a correctly copied pattern, three 
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Table 4.4 Copying strategies and levels of structure recognition for AB patterns

Child AAB/Not AAB Strategy Level of structure recognition

1 AAB Succession 0
2 AAB Succession and 

two-one
2

3 AAB Succession and 
two-one

0

4 AAB Succession 2
5 Not AAB 

(CDCDCDCDCCDCD)
– –

6 First not AAB and then AAB Two-one 1
7 Not AAB (AABB) – –
8 AAB Succession 0
9 Not AAB 

CCDCCDCCDDDDDD
Two-one 1

10 AAB Succession and 
two-one

(Was not asked to compare the 
patterns)

 children consistently used the succession strategy, taking out one bead at a time, 
stringing each bead in its turn. C6 and C9 consistently took out two C beads at once, 
strung them, and then took out a D bead, strung that bead, and repeated. While this 
strategy does not necessarily imply recognition of the unit of repeat, it may be more 
advanced than the succession strategy. In fact, before beginning to string the beads 
on her string, C2 sang rhythmically to herself “pink, pink, green, (pause), pink, 
pink, green, (pause), pink, pink, green.” We will call this strategy the “two-one” 
strategy, and consider it to be an in-between strategy, between the succession and 
the unit strategy. Three children used a mix of the succession and the two-one strat-
egy. None of the children took out three beads together as a unit.

When asked to compare the patterns and say what was similar, (again) there were 
children who indicated that both necklaces had strings (C8), or they simply did not 
answer (C1) and were thus coded at Level 0 of structure recognition. C9, coded at 
Level 1, placed the two necklaces side by side and said, “They are similar because 
this has two reds (points to the first necklace) and this has two pinks (points to the 
second necklace). This is yellow (pointing at the first necklace) and this is blue 
(points to the second necklace).” C2 was a bit hesitant in the beginning. It was only 
after the teacher’s third request that she said the following: “The same… for 
instance… uh… green green (pointing to one necklace) and this is orange orange 
(pointing to the second necklace). And this is yellow and this is pink.” At this point, 
it seems that C2 is at Level 1 because she is matching the beads on one necklace to 
the other. But then C2 continues, “And each time it goes the same and each time it 
goes the same.” We infer from this last part that C2 combines the two beads of one 
color with the one bead of a second color into one unit that she recognizes will now 
repeat over and over again. Thus, we labeled her at Level 2.

Above, we claimed that the “two-one” strategy might be considered as an in- 
between strategy, between the succession and the unit strategy. This seems to go 
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hand-in-hand with the children’s verbal descriptions. Of the four children (C2, C3, 
C6, C9 and not including C10) who used a “two-one” strategy at some point, one 
(C3) did not exhibit any structure recognition when comparing the patterns, two 
(C6, C9) exhibited limited structure recognition (Level 1), and one (C2) exhibited 
recognition of the unit of repeat (Level 2).

4.4.3  Comparing the AB and AAB Patterns

Looking first at the necklaces constructed by each child, nine children successfully 
copied the AB necklace, while six children successfully copied on their own the 
AAB pattern (with another two copying the pattern, C6 with help from the teacher, 
and C9 with extra beads on the tail). Table 4.5 summarizes each child’s strategies 
and levels of verbal structure recognition for each pattern. Three children who used 
a succession strategy when copying the first pattern used this strategy when copying 
the second pattern. Three other children who only used a succession strategy for the 
AB pattern used a mix of succession and two-one strategies, hinting at a possible 
recognition of the unit of repeat. Interestingly, C7, who had used a unit strategy for 
the first pattern, hinting at her recognition of the unit of repeat, did not create an 
AAB pattern like the teacher did for the second necklace, seemingly making up her 
own pattern (AABB).

Regarding verbal descriptions when comparing two AB patterns, four children 
exhibited recognition of structure at Level 0, four children at Level 1, and no chil-
dren exhibited recognition of structure at Level 2. When comparing two AAB pat-
terns, three children exhibited recognition of structure at Level 0, two children at 

Table 4.5 Strategies and levels of structure recognition per child per pattern

Child

AB AAB

Strategy
Structure 
recognition Strategy

Structure 
recognition

1 Succession 0 Succession 0
2 Succession 1 Succession and 

two-one
2

3 – – Succession and 
two-one

0

4 Succession 1 Succession 2
5 Succession 0 – –
6 Succession and 

unit
1 Two-one 1

7 Unit 0 – –
8 Succession 0 Succession 0
9 Succession 1 Two-one 1
10 Succession – Succession and 

two-one
–
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Level 1, and two children exhibited recognition of structure at Level 2. In addition, 
among the six children who were analyzed for both tasks, four children exhibited 
consistent levels of structure recognition, two at Level 0, and two at Level 1. To sum 
up, although children had greater success copying the AB-structured necklace, their 
strategies and verbal descriptions indicated greater structure recognition for the 
AAB-structured necklaces.

4.5  Discussion

Before we answer and discuss the questions asked in the beginning of the chapter, 
we note that when comparing the final results of both tasks, findings indicate that 
copying an AB-structured pattern is easier for children than copying an AAB- 
structured pattern. This is in line with previous studies that noted that the AB struc-
ture is usually the simplest for children to duplicate, copy, and extend (Sarama & 
Clements, 2009). This study extends those studies by comparing the AB-structured 
to an AAB-structured pattern, a pattern not specifically investigated previously.

Do children use different strategies when copying AB and AAB patterns? 
Regarding strategies, for both structures, more children used a succession strategy, 
either alone or in combination with another strategy, than any of the other strategies. 
None of the children seemed to use a direct comparison strategy, as suggested by 
Papic et al. (2011). While C10 did count out in the beginning exactly how many 
beads of each color she needed, she then proceeded to string them, alternating col-
ors, without glancing again at the teacher’s strand. It could be that none of the chil-
dren used this strategy because of the materials used in the task. When stringing 
beads, one has to hold one end of the string up and concentrate on getting the string 
through the bead. Then, one has to concentrate on not letting the strung beads slide 
off. In other words, unlike copying block patterns with blocks, or laying down tiles 
to copy a tile pattern, the materials used here might have challenged children to go 
beyond matching one item at a time. Interestingly, two children used the unit strat-
egy when copying the AB pattern, but none used this strategy when copying the 
AAB pattern. Perhaps, abstracting the unit of repeat in an AAB is more difficult. 
Perhaps, taking out three beads at once, especially if all the beads are placed together 
in one container, is physically more difficult than taking out two beads at once, 
especially for small hands. An additional strategy came to the fore when copying the 
AAB pattern, the two-one strategy. This strategy hints that children are not merely 
looking at one element at a time, but are looking to see how the elements are com-
bined, that two of the same go together and then one different. This strategy might 
be a prelude to abstracting the unit of repeat and may specifically be promoted by 
the AAB or the ABB structure.

This study also suggests an intermediate level task that promotes structure recog-
nition. While previous studies have discussed the transition from duplicating, to 
extending, to translating patterns (e.g., Sarama & Clements, 2009), this study 
focused on copying, differentiating it from duplicating and translating. For teachers, 
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the discussion of how materials can affect the level of challenge is important, as they 
scaffold children’s development. This relates to our second research question: What 
can we tell about the ways in which a copying task is presented and the strategies 
children use to copy the pattern? Looking back at the differences in teachers’ pre-
sentations, in all presented patterns except one (T7’s AAB pattern), teachers showed 
at least three whole repeats of the minimal unit of repeat. In the one case when this 
was not done, the child did not copy the teacher’s pattern structure. Yet, the amount 
of beads given to children with which to make their necklaces, as well as the place-
ment of the beads in one or two containers, hardly seemed to affect children’s ability 
to copy the pattern. Only one child added extra incorrect beads, and that was per-
haps because his teacher surreptitiously added those beads as the boy was stringing 
his necklace. However, because children were not asked to specifically reflect on the 
pattern they had created, how they created it, and what influenced their decisions 
regarding how to create it, we cannot know for sure what did or did not influence 
their constructions.

The last two questions we address are related to each other: Are kindergarten 
children able to recognize the similarity between the structures of two repeating 
patterns and if so, how do they express this similarity? Is there a relationship 
between being able to copy a pattern and being able to express the similarity of the 
structures of the patterns? To begin with, there seemed to be more recognition of the 
structure for the AAB pattern than for the AB pattern. In fact, none of the children 
regressed, and two children went from Level 1 to Level 2 of structure recognition. 
It could be that after having some experience comparing AB patterns, children were 
more aware of the structure in the second set of patterns. It could also be that the 
children thought they were expected to verbally describe what they had just done, 
and thus, their verbal expressions did not necessarily reflect their perception of pat-
tern structure. However, it may be that more complex structures encourage children 
to take a closer look at structure.

Regarding the relationship between children’s ability to verbally describe pattern 
structure and to physically copy a pattern, we note that not all children who success-
fully copied the patterns were able to verbalize the similarities in the structures. This 
is in line with previous studies that found success in other patterning tasks, such as 
extending patterns or choosing appropriate continuations to a given pattern, does 
not always go hand in hand with the ability to verbalize pattern structure (e.g., 
Rittle-Johnson et al., 2013; Tsamir et al., 2017). In fact, in one of our previous stud-
ies, we found that some children who did recognize pattern structure when compar-
ing two patterns were not always able to choose appropriate continuations to a given 
repeating pattern. Yet, in that study, children were asked to compare pictures of two 
ABB-structured patterns. In this study, children were first asked to copy a pattern 
and then compare the patterns. Interestingly, the results of both studies were about 
the same. In both studies, approximately half of the children did not verbalize any 
aspects of structure, a quarter of the children indicated possible recognition of struc-
ture, and a quarter of the children recognized structure. While the current study is 
limited by the small sample, taken all together, these studies hint at a possible dis-
connection between physically manipulating objects and verbalizing structure. 
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In fact, depending on how a child strings the beads when copying a pattern, abstract-
ing the unit of repeat might actually be inhibited, as the child focuses on what bead 
to place next. A future study might first ask children to compare two patterns and 
then to copy them. It might be that by first focusing on the pattern, without manipu-
lating items, more children would use the unit strategy when requested to copy a 
pattern.

As children are still language learners, their verbal comparisons may not always 
reveal what they are noticing. Teachers can help children verbalize the structure by 
talking about how they constructed the model necklace. Teachers can also suggest 
to the children that they discuss what they are doing, while they are in the moment 
of constructing their necklace, and then reflect on their strategies for copying a pat-
tern. This might help children connect the physical with the verbal. Teachers can 
also invite children to reflect on how their strategies could be more efficient (e.g., by 
taking out of the container two or three beads at a time), thus emphasizing the unit 
of repeat. After this reflection, and after children have had more opportunities to 
perceive the unit of repeat, they can be asked again to compare two strands.

Acknowledgment This research was supported by the Israel Science Foundation (grant No. 
1270/14).

References

English, L. D. & Warren, E. A. (1998). Introducing the variable through pattern exploration. 
Mathematics Teacher, 91(2), 166–170.

Fox, J. (2005). Child-initiated mathematical patterning in the pre-compulsory years. In H. L. Chick 
& J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the 
Psychology of Mathematics Education (Vol. 2, pp. 313–320). Melbourne: PME.

Greenes, C., Ginsburg, H.  P., & Balfanz, R. (2004). Big math for little kids. Early Childhood 
Research Quarterly, 19, 159–166.

Israel National Mathematics Preschool Curriculum (INMPC) (2008). Retrieved April 7, 2009, 
from http://meyda.education.gov.il/files/Tochniyot_Limudim/KdamYesodi/Math1.pdf

Klein, A., & Starkey, P. (2004). Fostering preschool children’s mathematical knowledge: Findings 
from the Berkley math readiness program. In D.  Clements & J.  Sarama (Eds.), Engaging 
young children in mathematics (pp. 343–360). Mahwah, NJ: Lawrence Erlbaum Associates, 
Publishers.

Kontra, C., Goldin-Meadow, S., & Beilock, S. L. (2012). Embodied learning across the life span. 
Topics in Cognitive Science, 4(4), 731–739.

Papic, M., Mulligan, J., & Mitchelmore, M. (2011). Assessing the development of preschoolers’ 
mathematical patterning. Journal for Research in Mathematics Education, 42(3), 237–269.

Rittle-Johnson, B., Fyfe, E. R., McLean, L. E., & McEldoon, K. L. (2013). Emerging understand-
ing of patterning in 4-year-olds. Journal of Cognition and Development, 14(3), 376–396.

Sarama, J., & Clements, D. (2009). Early childhood mathematics education research: Learning 
trajectories for young children. London: Routledge.

Tirosh, D., Tsamir, P., Barkai, R., & Levenson, E. (2017). Preschool teachers’ variations when 
implementing a patterning task. In T. Dooley & G. Gueduet (Eds.), Proceedings of the Tenth 
Congress of the European Society for Research in Mathematics Education (CERME 10) 
(pp. 1917–1924). Dublin: DCU Institute of Education and ERME.

4 Copying and Comparing Repeating Patterns: Children’s Strategies and Descriptions

http://meyda.education.gov.il/files/Tochniyot_Limudim/KdamYesodi/Math1.pdf


78

Tirosh, D., Tsamir, P., Barkai, R., & Levenson, E. (2018). Using children’s patterning tasks for 
professional development for preschool teachers. In C. Benz, H. Gasteiger, A. S. Steinweg, 
P. Schöner, H. Vollmuth, & J. Zöllner (Eds.), Mathematics education in the early years: Results 
from the POEM3 conference, 2016 (pp. 47–68). New York: Springer.

Tsamir, P., Tirosh, D., Levenson, E., Barkai, R., & Tabach, M. (2017). Repeating patterns in kin-
dergarten: Children’s enactments from two activities. Educational Studies in Mathematics, 
96(1), 83–99.

Warren, E. (2005). Patterns supporting the development of early algebraic thinking. In P. Clarkson, 
A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce, & A. Roche (Eds.), Building 
connections: Research, theory and practice (Proceedings of the 28th annual conference of the 
Mathematics Education Research Group of Australasia, Melbourne) (pp. 759–766). Sydney: 
MERGA.

Zazkis, R., & Liljedahl, P. (2002). Generalization of patterns: The tension between algebraic think-
ing and algebraic notation. Educational Studies in Mathematics, 49(3), 379–402.

P. Tsamir et al.



79

Chapter 5
Patterning as a Mathematical Activity: 
An Analysis of Young Children’s Strategies 
When Working with Repeating Patterns

Miriam M. Lüken

5.1  Introduction

It is at the heart of mathematics education that it is not all about the right solution 
but about the way a solution is found. We clearly differentiate strategies in arithme-
tic and look at HOW children solve a task (CCSSI, 2010; Houlihan & Ginsburg, 
1981). It is part of a sound mathematical diagnostic to not only survey if a child can 
solve a task like 8 + 6 correctly, but also to analyze if the child solves it by counting 
or maybe by using the law of constancy as 7 + 7 (DEET, 2001). In general, we try 
to guide children’s learning from their informal (counting-)strategies to more 
advanced, formal strategies (Sarama & Clements, 2009).

For repeating patterning activities, which are part of preschool and primary 
school curricula in many countries, strategies do not seem to be considered as rele-
vant, yet (NCTM, 2013; Sekretariat der Ständigen Konferenz der Kultusminister 
der Länder in der Bundesrepublik Deutschland, 2005). Recent psychology-based 
research on young children’s patterning competencies mainly focuses on correct 
solution frequencies or error types (Rittle-Johnson, Fyfe, McLean, & McEldoon, 
2013). The relation between patterning skills (measured by correct performance) 
and early mathematic knowledge/arithmetic achievement is measured and quanti-
fied (Lee, Ng, Bull, Pe, & Ho, 2011; Ngyen et al., 2016; Warren & Miller, 2013), 
and patterning skills are related to both working memory and relational knowledge 
(Fyfe, Evans, Eisenband Matz, Hunt, & Alibali, 2017; Miller, Rittle-Johnson, Loehr, 
& Fyfe, 2016). Intervention studies show effects of teaching patterning on chil-
dren’s arithmetic skills (Kidd et al., 2013, 2014; Pasnak et al., 2015). In summary, 
pattern knowledge seems to be significant for children’s mathematical development. 
But why? Specifically: What is the mathematics in a repeating pattern? How are 

M. M. Lüken (*) 
Bielefeld University, Bielefeld, Germany
e-mail: miriam.lueken@uni-bielefeld.de

© Springer Nature Switzerland AG 2020
M. Carlsen et al. (eds.), Mathematics Education in the Early Years, 
https://doi.org/10.1007/978-3-030-34776-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34776-5_5&domain=pdf
mailto:miriam.lueken@uni-bielefeld.de
https://doi.org/10.1007/978-3-030-34776-5_5#DOI


80

patterning activities mathematically important? And why is looking at children’s 
patterning strategies worthwhile?

To address these questions, the chapter first considers the mathematical founda-
tion of repeating patterns and how it relates to other mathematical contents in pri-
mary and secondary school. Second, research studies on young children’s patterning 
strategies are reviewed, and five strategy categories which are the basis of this chap-
ter’s data analysis are introduced. The empirical study that is the subject of this 
chapter, then, explores how young children address patterning activities in different 
mathematical and nonmathematical approaches and how these strategies develop 
with age. Finally, selected activities are evaluated with regard to their potential to 
elicit strategies that address the pattern’s mathematical structure.

5.2  Repeating Patterns and Mathematics

A repeating pattern is a periodic sequence of elements that can be reduced to a 
smallest subset—the unit of repeat—which is repeated in the form of a geometric 
translation and, thus, creates the repeating pattern. Repeating patterns, therefore, 
have a cyclic structure (Liljedahl, 2004). Based on this definition, a mathematical 
approach to a patterning activity would be the recognition and use of the pattern’s 
structure, i.e., the unit of repeat and its cyclic repetition.

A lot of mathematical topics in primary and secondary school are based on this 
same or a very similar structure. To show this, I will take three different perspectives 
on the repeating pattern’s structure.

First, from a geometric mapping point of view, I interpret the unit of repeat as a 
basic figure. Every congruence mapping then shares the same idea: a basic figure is 
multiplied by a mapping with certain specifications. Frieze patterns and tessella-
tions contain a basic figure that is repeated (like in the simpler repeating patterns) 
by a geometric translation. Furthermore, in axially symmetrical and rotationally 
symmetrical figures, a basic figure can be found; only the mapping specifications 
are different.

As a second approach, the unit of repeat is interpreted cardinally as a unit of the 
same size. This structure forms the basis of every base ten number representation, 
like the ten- or twenty-frame or the hundred-abacus. Other examples of this struc-
ture are multiplication as addition of equal parts, or analog, division as partitioning 
in equal units. Furthermore, understanding the repetition of a unit is the basic idea 
of measuring, and even the concept of fraction as part whole is based on the com-
prehension of partitioning a whole into equal parts.

My third perspective focuses on the periodicity of repeating patterns. The experi-
ence of a regularly recurring sequence can be made in the sequence of unit digits of 
any arithmetic sequence; for example, when counting in steps by fives (5, 10, 15, 
20, 25 …) the ones digit alternates. The simplest and in daily life most often used 
example might be the sequence of digits in our decimal system that recur from 0 to 
9 through every place. The decimal expansion of rational numbers is nothing else 
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than a repeating pattern, in which the unit of repeat is even explicitly marked (e.g., 
11/37 = 0,297297297297… = 0,297). Finally, one might consider the periodicity of 
trigonometric functions (sin(x), cos(x)).

Although the examples given above are only exemplary illustrations, they clearly 
show that the basic concept of repeating patterns underlies a lot of other mathemati-
cal contents up to secondary school. Therefore, activities that help children recog-
nize a repeating pattern’s structure may support laying a foundation for an 
understanding of other mathematical topics.

5.3  Patterning Strategies

There are few studies that specifically look at the process of solving patterning 
tasks, the way children think about repeating patterns, and the strategies they 
employ. Three of these studies are described in the following; all three interviewed 
children aged 3–5 on various patterning tasks.

Rustigian (1976) might have been the first who—under a problem-solving 
approach—described “response techniques” (p. 189) which children employed in 
the course of working on the three patterning tasks reproduction (copy with the 
model pattern in view while child responds), identification (select a structurally 
identical pattern), and extension (continue the pattern to one side). Her techniques 
are specific to the task and describe in detail the children’s approach to finding a 
solution. Six different techniques are listed for both the activities reproduce and 
extend. Both category lists start with a random and end with a correct placement 
technique. In the categories in between, children’s responses, on the one hand, focus 
only on relationships of similarity, for example, repeating a single element of the 
given sequence. On the other hand, children’s responses focus on relationships of 
similarity and difference. Developmental hierarchies are suggested for the repro-
duction and the extension techniques.

Papic, Mulligan, and Mitchelmore (2011) in their study used similar and addi-
tional patterning tasks (copy with and without the model pattern being in view, cre-
ate, explain, extend). They did not only describe task-specific strategies but 
formulated five main categories in which the children’s solution strategies fell into. 
Papic et al. (2011) suggested that their strategy categories have an increasing order 
of sophistication, starting, similar to Rustigian (1976), with strategies where chil-
dren choose and place elements randomly (random arrangement). Strategies that 
match items one-by-one were frequently observed and make up the category direct 
comparison. The most common strategy in this study was alternation, where chil-
dren focus on the sequence of individual colors. For strategies in the fourth category, 
children are able to identify and use the unit of repeat (basic unit of repeat). 
Strategies where children demonstrate and express simple generalizations about the 
unit of repeat were sorted into the most sophisticated category advanced unit 
of repeat.
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In the most recent study on patterning strategies, Collins and Laski (2015) sug-
gested that patterning tasks can be solved using either a one-to-one appearance 
matching strategy or a relational similarity strategy. For a one-to-one appearance 
matching strategy, children match superficial features without considering the pat-
tern’s underlying structure, e.g., copy a pattern by matching the color or shape of 
each item in the pattern, one at a time. In order to mentally represent, abstract, and 
manipulate the unit of repeat, relational similarity strategies are required. The chil-
dren in Collins and Laski’s (2015) study also used strategies where elements are 
placed randomly, sorted by color or shape, or used for building. This third strategy 
category is called off-task errors.

In an effort to bring the findings of the different studies together and systemati-
cally investigate patterning strategies for a variety of patterning tasks, I conducted a 
longitudinal study describing the development of six children’s repeating patterning 
strategies during their three years of Kindergarten (see Lüken, 2018). The observed 
patterning strategies could be assigned to five superordinate categories. As these 
strategy categories form the basis for this chapter’s analyses, they are further 
explicated:

 1. The first, most basic strategy category is called no reference to pattern besides 
reproduction of the pattern’s gestalt. All strategies where children choose ele-
ments based on guessing, personal preference, or random selection belong to this 
category. A common example is using different colors or shapes than those rep-
resented in the pattern while copying or extending a pattern. General character-
istics of this category’s strategies are that they refer neither to the specific features 
of the elements nor to the regularity of the pattern. Still, most children will 
arrange the pattern’s objects in a line, thus recognizing the linear arrangement. 
Their general perception seems to focus on the external shape. Put simply, two 
patterns are the same if they have the same shape or form (i.e., gestalt).

 2. In the second strategy category, attention to singular characteristics, children’s 
strategies show an understanding of singular aspects of the pattern. For example, 
they use either the same colors or the same shapes as in the pattern, or they pur-
posely recreate the same length. However, they do not recreate the pattern’s 
structure. Little regularity can be found in the children’s patterns altogether. The 
general view on patterns seems to be: Two patterns are the same if they consist 
of the same elements (e.g., colors).

 3. The idea of regularity initially becomes visible in the third strategy category 
comparison & classification. Children compare the pattern’s elements and high-
light sameness within and between patterns on a basic, very concrete level (e.g., 
“The yellows are the same.”; “Three purples and six blacks here. Three yellows 
and six oranges here.”). A common strategy for extending a pattern is to look at 
the pattern’s beginning, and to compare and match the extension step by step 
with the beginning. This procedure shows an emerging sense for some kind of 
regularity within the pattern, although the specific regularity is not yet graspable 
for the child.
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 4. The growing awareness of regularity within the pattern can be observed in the 
strategies that belong to the fourth strategy category focus on sequence. The 
strategies focus on the relations between successive elements of the pattern, e.g., 
“Next to green is purple, next to purple is orange, next to orange is green, next to 
green is purple, next to purple ….” Other typical strategies for this category are 
alternating colors or cycling through the elements of the pattern over and over 
again, even chanting them rhythmically. The children are aware that the elements 
are ordered in a regular way, without explicitly grasping the structure. The ele-
ments of the pattern are rather seen as strung together. Children are not yet able 
to break the pattern down into the units of repeat.

 5. In the last, most advanced strategy category, view of unit of repeat, the strategies 
show the children’s understanding of the pattern’s structure. The children know 
that there is a smallest part that produces the sequence—they are able to identify 
this unit of repeat and use it during the tasks.

When we now look at these strategies which children employ when solving a 
patterning task, not all of them refer to the repeating pattern’s structure. Only the 
strategies in the fifth category make use of the pattern’s mathematical structure, the 
unit of repeat, and its repetition. Still, other mathematical approaches become visi-
ble in some of the other strategy categories. In category 3, children compare and 
classify, some even enumerate the number of different objects. These are basic 
mathematical activities. The strategies in the fourth category show the use and 
understanding of regularity and succession. Children use the relationship between 
consecutive elements when predicting an unknown element. In this way, it is only 
possible to predict the next element in the sequence, and then the next, one element 
after the other, starting from the last known element (i.e., an + 1 = f (an)). This type of 
thinking is called recursive thinking (McGarvey, 2012; Wijns, Torbeyns, De Smedt, 
& Verschaffel, 2019). In contrast, functional thinking in a repeating pattern context 
would be to identify the unit of repeat and to use the pattern’s structure to predict 
any element of the sequence (i.e., an = f(n); Wijns et al., 2019). This mathematical 
approach can be seen with the strategies of the fifth category.

Threlfall (1999) is an expert on the topic of repeating patterns in the early pri-
mary years. Among his reasons for working with these structures, is his belief that 
they develop a sense of sequencing and regularity. He has found that one way in 
which children can succeed in creating or extending a repeating pattern is through a 
rhythmic approach. As shown above, strategies based on the rhythmic approach 
would be categorized as a focus on the sequence or recursive thinking, and, there-
fore, belong to the fourth category. However, in line with my considerations on the 
mathematics in repeating patterns, Threlfall (1999) claimed that in order to general-
ize the pattern, a rhythmic approach is not sufficient. It is essential that the child 
develops a perception of the pattern’s unit of repeat. This argument results in my 
question, how far do children develop this perception in early childhood (without 
instruction). As Threlfall (1999) already suggested, we cannot infer a perception of 
the repeating unit from a correct solution but need to consider the child’s way to get 
to her correct (or wrong) solution—the child’s strategy.
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Therefore, this chapter addresses the following research questions: What strate-
gies are employed by children aged 3, 4, and 5 when solving repeating patterning 
tasks? What differences in the distribution of frequencies for the various strategies 
are found between the age groups? And, in particular, to what extent do children use 
strategies from the fifth category (view of unit of repeat)?

For informing early childhood education settings, it might also be worthwhile to 
investigate if some tasks are more helpful than others for challenging children to use 
or refer to the unit of repeat. I am, therefore, going to exemplarily analyze the dis-
tribution of strategies for selected tasks and discuss some issues I found with 
these tasks.

5.4  Method

5.4.1  Setting and Participants

Consent was obtained for 159 children attending 14 kindergartens1 in a metropoli-
tan area in Germany. The sample consisted of 54 children of age 3 (30 girls, 
Mage = 3;6, SD = 2.7 months, range = 2;11–3;11, 76% speaking German as family 
language), 65 children of age 4 (33 girls, Mage  =  4;5, SD  =  3.2  months, 
range = 4;0–4;11, 82% speaking German as family language), and 40 children of 
age 5 (15 girls, Mage  =  5;4, SD  =  3.9  months, range  =  5;0–5;11, 80% speaking 
German as family language).

None of the participating kindergartens were using a specialized curriculum 
focused on patterning, and teachers reported doing no repeating patterning activities 
at all (which I consider representative of German kindergartens). Therefore, it might 
be suggested that the findings of this study shed light on children’s informal pattern-
ing knowledge and its organic development.

5.4.2  Tasks and Materials

Eight patterning tasks were designed to test children’s strategy use in working with 
repeating patterns. They were based on items that are long known in mathematics 
education (Burton, 1982; Sarama & Clements, 2010) and are also published in 
research studies (e.g., Papic et  al., 2011). In several prestudies, the tasks were 
adapted and tested. The eight patterning tasks are listed in Table 5.1, organized by 
the order in which they were administered.

1 German kindergarten comprises the three years before school entry, i.e., children start kindergar-
ten when they are 3 years old.
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Table 5.1 Description of patterning tasks

Task Instruction

1 Explain “Please, tell me about the pattern. What’s the same? What’s 
different?”

2 Copy (the model 
pattern is in view 
while child responds)

“Create the same pattern as mine. Use the same colors.”

3 Copy (the model 
pattern is hidden while 
child responds)

“Create the same pattern as mine. Use the same colors.”

4 Repair “A cube is missing. What color is the missing cube?”
5 Extend “What comes next?”
6 Name the last element [The pattern is extended by the interviewer with 3 (AB), 4 (ABC), 

5 (ABCC) uncolored cubes.] “Look, these cubes have lost their 
color. Imagine we recolor them according to the pattern. What 
color would be this last cube?”

7 Translate “Use these counters [different material and colors] to create the 
same pattern.”

8 Identify the unit of 
repeat

“Cut the pattern into parts that are the same.”

Fig. 5.1 AB pattern (green, yellow), ABC pattern (green, purple, orange) (top), and ABCC pattern 
(yellow, red, blue, blue) (bottom)

All tasks were conducted consecutively with three repeating patterns that dif-
fered according to the length of their unit of repeat. The pattern units contained two 
(AB), three (ABC), and four elements (ABCC), with only three elements being dif-
ferent in the last, four-element pattern. As shown in Fig. 5.1, the patterns were pre-
sented with three (AB) and two (ABC and ABCC) instances of the repeating unit. 
Whereas the ABCC pattern ended with an additional partial unit, the first two ended 
with a complete unit. All patterns were constructed with colored wooden cubes, 
choosing the dimension of color over the dimension of shape. Since 3-year-olds 
were interviewed, I assumed it easier to communicate about color than relying on 
children’s knowledge of names for different shapes. A brief color-matching test was 
administered to each child in order to screen for color blindness. If the child did not 
specify the colors by herself/himself during the explanation task, the interviewer 
pointed to each colored cube, one at a time, and asked the child to name the color. 
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No children were excluded for color blindness. Numerous cubes in six different 
colors were available for the children to choose from during all tasks. For the trans-
lation task, counters were offered in four colors that differed from the cubes’ colors. 
For the identification tasks, all three patterns were presented with three full units of 
repeat. In this way, it was not possible for the child to identify two equal units that 
were nonminimal.

5.4.3  Data Collection and Analysis

The children worked one on one with a researcher in a quiet room in their kinder-
garten. The session took 45 min on average, and it was split over two days if the 
child showed signs of fatigue. The interviews were video-recorded so that the inter-
viewer was released from taking any notes, giving her the freedom to completely 
engage with the child. In addition, observations of all actions, gestures, and the 
exact wording were available for the analyses.

The answers to every task with all three patterns (i.e., 24 answers for each child) 
were coded by strategy and correctness. To establish interrater reliability, a second 
rater coded 20% of the answers; agreement was high (95%).

5.5  Results

As Table 5.2 displays, all age groups used patterning strategies from the complete 
range of strategy categories. However, the proportion of categories differed largely 
according to the age groups. The 3-year-olds mainly used strategies from category 
1. Half of the strategies used by the 4-year-olds also belonged to category 1; the 
other half was distributed nearly evenly among categories 2–4. The majority (63%) 
of the strategies employed by the 5-year-old children were divided into the catego-
ries 3 and 4. Therefore, the older children used more sophisticated strategies than 
the younger children. Strategies from category 5 were almost never used by the 3- 
and 4-year-olds; the proportion of category 5 strategies for the 5-year-old children 
was under 10%. I conclude that with the vast majority of children who started for-
mal schooling 4–10 months later, an understanding of the unit of repeat was not 
developed yet.

Table 5.2 Distribution of frequencies (%) of strategy categories (all tasks) for 3-/4-/5-year-olds

%

1. No reference to 
pattern besides 
reproduction of the 
pattern’s gestalt

2. Attention to 
singular 
characteristics

3. Comparison 
& classification

4. Focus on 
sequence

5. View 
of unit of 
repeat

Overall 81/50/14 11/19/15 5/16/34 2/13/29 1/2/8
AB 57/25/7 26/25/13 10/20/27 6/27/44 1/3/9
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Table 5.3 Distribution of frequencies (%) of strategy categories (selected tasks) for 5-year-olds

%

1. No reference to 
pattern besides 
reproduction of the 
pattern’s gestalt

2. Attention to 
singular 
characteristics

3. Comparison 
& classification

4. Focus 
on 
sequence

5. View 
of unit 
of repeat

Copy with 
view_AB

2.5 2.5 70.0 17.5 7.5

Copy with 
view_ABC

5.0 0 90.0 2.5 2.5

Copy with 
view_
ABCC

15.0 0 80.0 2.5 2.5

Translate_
AB

22.5 12.5 17.5 42.5 5.0

Translate_
ABC

22.5 32.5 20.0 15.0 10.0

Translate_
ABCC

45.0 17.5 30.0 2.5 5.0

Identify_AB 5.0 40.0 42.5 5.0 7.5
Identify_
ABC

12.5 27.5 52.5 2.5 5.0

Identify_
ABCC

17.5 22.5 52.5 2.5 5.0

If we explicitly look at the distribution of frequencies for each of the patterns 
individually, it becomes apparent that for the easiest AB pattern all age groups used 
more advanced strategies more frequently (see Table 5.2). That is to say, the more 
complex the pattern was, the less sophisticated were the strategies.

The following results show the finely fanned out distribution of frequencies for 
three selected tasks (copy with the model pattern in view, translate, identify) for 
each pattern (see Table 5.3). The tasks are selected for their common inclusion in 
research studies (copy) or are suggested to help children focus on the unit of repeat 
(translate, identify). The findings are described and interpreted in turn using the 
example of the 5-year-olds.

Copy with the model pattern in view: The distribution of frequencies for this task is 
striking and exceptional compared to all other tasks. Seventy to ninety percent of all 
strategies employed while copying a visible pattern belonged to category 3 com-
parison & classification. Looking closer at the kind of strategy, it quickly became 
apparent during the analysis that the majority of 5-year-olds used a compare and 
match strategy, meaning they executed a one-to-one correspondence. They did 
this—contrary to the finding of the overall strategy use—although they showed 
more advanced strategies for other tasks.

Translate: During the analysis, I found it remarkable that 14% of the 5-year-olds 
were able to correctly translate an AB pattern, but also created an AB pattern when 
translating an ABC pattern. Looking at their strategy use, it became apparent that 
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the successful children mainly used two strategies. Some of the children argued 
about similarities in color intensity and matched, in a one-to-one manner, a dark 
color with another dark and a light color with another light (category 3). The others 
very confidently created a repeating AB pattern step by step, some even arguing 
about alternation of color (category 4). A large proportion of the children who were 
using an alternation strategy with the AB pattern kept the strategy of alternating two 
colors for translating the ABC pattern (now coded category 2).

Identify: The task identify was the only task where it was difficult to fit the strategies 
into the five strategy categories. It rather became a classification of children’s solu-
tions than of strategies. Category 1 comprised solutions where children cut the pat-
tern into parts which were of different length, and no regularity could be found 
whatsoever. In category 2, the patterns were cut into equal parts (mostly single 
cubes) without regularity regarding the color. The most common strategy made up 
category 3: cutting the patterns into single cubes and sorting them by color. There 
were no strategies or solutions that involved the succession of elements (category 
4). In category 5, all children cut the patterns into units of repeat immediately after 
they had been asked to do so. As this task seemed difficult to explain verbally, all 
interviewers offered help to every child that produced a wrong solution during the 
first try. We contrasted two different parts that the child had produced previously 
and asked if the child thought the parts were really the same. If the child negated, 
the child was encouraged to try again. If the child cut the pattern correctly into units 
of repeats during the second try, the solution was then coded category 4. Hence, 
only the categories 4 and 5 contained correct solutions. This means that a child 
either had an understanding of the unit of repeat, i.e., the structure of the pattern and 
consequently was able to cut the pattern correctly or did not have an understanding 
of the unit of repeat and, therefore, was not able to solve the task identify correctly. 
This finding is different from the other tasks where children could produce very well 
a correct solution without having perceived the pattern’s structure.

5.6  Discussion

This study considers strategies that children employ while working on repeating 
pattern tasks as an important diagnostic tool for assessing their understanding of the 
pattern and its structure. The results show that the 3-year-olds’ strategies are mainly 
based on an understanding of the pattern’s shape and, to a lesser extent, on the per-
ception of singular, external characteristics of the pattern, like color. Regarding an 
AB pattern, half of the 4-year-olds show those same strategies. The other half of the 
4-year-olds’ strategies refer to basic regularities in the pattern (e.g., “The greens are 
the same, the yellows are the same.”) or regard the succession of the specific colors 
(e.g., “Next to green is yellow, next to yellow is green, next to green is yellow, …”). 
It is interesting that the 4-year-olds’ strategies are distributed nearly evenly among 
the first four strategy categories for the AB pattern, thus showing a broad develop-
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mental range. The 5-year-olds’ main strategies belong to categories 3 (comparison 
& classification) and 4 (focus on sequence) and are thus displaying an emergent 
understanding of regularity, order, and succession. These findings go in line with 
Papic et  al.’s (2011) categories direct comparison and alternation, which were 
observed most frequently for their overall sample, too.

Hence, the data show huge differences regarding the use of patterning strategies 
between the 3-, 4-, and 5-year-olds. The tendency is that older children use strate-
gies focused on regularity and structure more often than younger children. It has to 
be said, though, that the strategy categories do not constitute a developmental stage 
model. One limitation of the study is that it is a cross-sectional study, and only 
trends between groups (not a development on an individual level) can be stated. 
Hence, it cannot be accounted for that every child’s strategies will progress through 
all five categories. Furthermore, by sorting the participants into age groups for an 
easy comparison, some information gets lost. Children are possibly born only days 
apart but belong to different age groups. This is a limitation of working in a quanti-
tative way.

What developmental mechanisms might underlie the improving understanding 
of repeating patterns? As the children did not receive any instruction on repeating 
patterning other than what they might have experienced at home or observed on 
television, the development is presumably not due to instruction. A possible expla-
nation could be the general cognitive development in early childhood. Previous 
studies have shown that working memory is particularly important for helping pre-
schoolers identify, re-create, and learn about patterns (Miller et al., 2016; Rittle- 
Johnson et al., 2013). Increases in working memory capacity are thought to allow 
young children to transition from focusing on singular aspects of a task to coordi-
nating attention to two dimensions (Case & Okatomo, 1996). Furthermore, children 
between 3 and 5 years undergo significant development in their language ability. 
Children’s explanations form the basis of categorization, and with more elaborate 
language, it is more likely that the interpretation of a child’s strategy reflects her true 
thinking.

Another main finding is the variability of strategy regarding the difficulty of pat-
tern: The more complex the pattern was, the less sophisticated were the strategies 
which the children employed. This goes in line with findings suggesting that chil-
dren use more basic strategies in calculating when asked to solve unknown, com-
plex tasks (Siegler, 1988).

Radford (2012) argued that the ability to discern and generalize patterns and 
mathematical structure in general does not develop spontaneously; rather it depends 
on cultural influence or some kind of education. Sarama and Clements (2009) noted 
that being able to recognize the unit of repeat may not develop until the age of 
6 years. However, this study found that, in single cases, children as young as 3-year- 
olds are capable of recognizing structure. Still, only 8% of all strategies used by the 
5-year-olds hint at a recognition of the unit of repeat. Since formal schooling in 
Germany starts when children are 6 years old, and patterns are part of the curricu-
lum, it would be interesting to see the extent to which school education on pattern-
ing fosters the understanding of the pattern’s structure. It would also be interesting 
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to compare 3- to 5-year-old children’s strategy use in countries where formal 
schooling starts earlier and/or patterning is part of the preschool curriculum.

This chapter also specifically reflects on some selected patterning tasks and how 
these tasks challenge children to use the pattern’s underlying structure. A very com-
mon task with children of various ages is to copy a pattern while the model pattern 
is still displayed in front of the child. It is interesting to see that children who are 
otherwise showing advanced strategies, even referring to the repeating unit, regress 
to doing a one-to-one correspondence for this task. From this finding, I conclude 
that this kind of copying task is not challenging the children to use the repeating unit 
in finding a solution and, consequently, it might be an inappropriate task in an edu-
cational setting for older children, i.e., most 5-year-olds.

The task translate, where a model pattern is recreated with different materials, is 
often considered a helpful task for children to shift their attention from the superfi-
cially different characteristics of two patterns (e.g., color, shape) to the underlying 
identical structure (e.g., unit of repeat consists of two different elements) (Hoenisch 
& Niggemeyer, 2004; Warren & Cooper, 2006). Being able to translate patterns into 
new media is considered a more advanced stage by Sarama and Clements (2009, 
p. 331) than being able to copy, extend, or repair a pattern. Rittle-Johnson et al. 
(2013) even interpret a correct solution in a translation task as the child’s ability to 
abstract the pattern’s structure. Hence, this task is called an “abstraction task” 
(p. 381). Looking at the strategies, it becomes obvious that children are able to cor-
rectly translate a pattern into different material without having an understanding of 
the unit of repeat. This goes especially in line with the findings of Collins and Laski 
(2015), which highlight the one-to-one matching strategy also for the translation 
tasks. Furthermore, it seems that some 5-year-olds have developed an understand-
ing of “pattern” as an alternation of two colors, a succession of colors with a certain 
regularity. Or, put differently, the AB pattern has become the prototype example for 
a repeating pattern. If asked to produce a pattern, this prototype is reproduced, 
regardless of its particular structure. In the work on patterning with children, it is, 
therefore, important to ask for the children’s view of similarities and differences 
between the two patterns and what strategy they used to create the same pattern in 
the different medium.

The only task children gain a correct solution exclusively with an understanding 
of the unit of repeat is identify, i.e., breaking the pattern down into the repeating 
units. Although children show many different ideas for breaking a pattern down into 
parts, there are no differing strategies that lead to the correct solution. As it is the 
specific aim of the task to put the repeating part and with it the pattern’s structure 
into focus, it might be a valuable task in teaching children the pattern’s structure. 
Similar tasks would be, for example, to circle the unit of repeat, place a string 
around it (Papic et al., 2011), or build a tower with a repeating pattern and request 
the child to build the smallest tower that still keeps the same pattern as the one 
already built (Rittle-Johnson et al., 2013).

This argument leads to learning environments that teachers create around pat-
terning activities in school. What kind of patterning tasks do teachers choose? What 
explanations do they give, and which strategies do they (sub-)consciously foster? 
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Do they link repeating pattern’s structure to other mathematical content with a simi-
lar structure?

My hope is that the findings of this study convince teachers to ask more ques-
tions like “How do you do it? How do you know?” and to look closer at the process 
of patterning instead of the correct solution. The goal is to make patterning more of 
a mathematical activity.
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Chapter 6
Preschoolers’ Ways of Using Fingers 
in Numerical Reasoning

Camilla Björklund and Maria Reis

6.1  Background and Aim

Young children encounter numerical questions on a daily basis; they are for instance 
asked how old they will be on their next birthday and most answer without hesita-
tion with a number of raised fingers; they are asked how many days there are until 
their birthday, which is answered by raising one finger at a time while saying the 
weekdays in succession until the day of the birthday and a number of fingers are 
raised. The fingers are used in numerical situations in both cases, but how the fin-
gers are used to end up with the answer differs. In the first case by showing a pattern 
that likely represents a number, and in the second case by keeping track of the num-
ber of days counted. Furthermore, fingers could be used to structure numbers in that 
the abstract relation between and within numbers becomes visible, as a whole hand 
can be seen as three and two fingers but also as one and four fingers together. 
Different ways of using fingers may be based on the situation, as the first examples. 
However, recent studies bring fore that the children’s way of using their fingers may 
also be an expression of how numbers are experienced with implications for their 
numerical reasoning proficiency (Björklund, Kullberg, & Runesson Kempe, 2019). 
This is the issue we aim to discuss here—in what ways do preschoolers, without 
formal education in arithmetic problem-solving strategies,1 use their fingers in 
numerical reasoning, and what do the differences tell us about their arithmetic 
skills? The research questions we ask are specifically: (1) What meaning of num-
bers are expressed by the children in their ways of using fingers? And (2) How are 
children’s ways of using fingers related to their arithmetic skills?

1 Compulsory education with formal mathematics learning goals begins in Sweden the year chil-
dren turn 7, at the time of the study.
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Arithmetic skills is a broad and complex field of knowledge, which according to 
the large body of research commonly include knowledge of (symbolic) representa-
tions of numbers and basis in principles such as one-to-one correspondence, cardi-
nality, and stable order (Gelman & Gallistel, 1978). Fingers are considered to be an 
aid in comprehending such knowledge and also in a more instrumental way to keep 
track when reciting the number sequence (Fuson, 1988). Due to the fact that most 
people have 10 fingers, these may also support the apprehension of the base-10 
system and necessary conceptual knowledge of numbers’ part-part-whole relations. 
However, empirical research is needed to find out if and how children’s use of fin-
gers are related to their proficiency in solving basic arithmetic tasks.

Fingers are known to be used globally as a kind of natural tool to keep track of 
counted items (Ifrah, 1985) and as representational systems that different finger pat-
terns carry (Bender & Beller, 2012). Finger use is however not an innate ability 
since there is a broad variety in how fingers are used in different cultures and also to 
the extent fingers are used in the first place. The more advanced ways of using fin-
gers for counting purposes, such as expressing tens with different finger patterns, 
have in common that they bridge the concrete countable items and the cognitive act 
of making use of fingers as representations for the quantity of items. There is in 
other words both a cognitive and a cultural dimension of finger use.

Our intention in this chapter is to contribute to a recent debate about finger use for 
mathematical problem-solving (Moeller, Martignon, Wessolowski, Engel, & Nuerk, 
2011). Particularly neuro-scientific findings advocate the use of fingers, whereas 
researchers in mathematics education show a prolonged use of fingers among stu-
dents with mathematical difficulties in later school years (Geary, Hoard, Byrd-Craven, 
& DeSoto, 2004; Ostad, 1998), which could indicate a relation to children not devel-
oping necessary knowledge about the abstract feature of numbers. However, the lit-
erature, both earlier work in the field of mathematics education (Fuson, 1988) and 
recent work in neuro-psychology (Berteletti & Booth, 2015), are restricted to advo-
cating for or against (any kind of) use of fingers (see also Boaler, Chen, Williams, & 
Cordero, 2016). The findings supporting the benefits of finger use for arithmetic prob-
lem-solving are interesting for the field of mathematics education, but we wish to 
discuss distinctly different ways of using fingers in numerical reasoning, to clarify the 
benefits and hindrance of finger use in early childhood. To study this, we used obser-
vations of Swedish 4- and 5-year-olds, who have not before attended formal educa-
tion in arithmetic strategies or counting. Our approach is experiential, based on 
Variation Theory of Learning (Marton, 2015; Marton & Booth, 1997), meaning that 
we do not only observe the ways in which children act but also interpret their actions 
as expressions of ways of experiencing the numbers they encounter in arithmetic tasks.

6.2  Research Review

The literature on children’s arithmetic skills development is vast (see Baroody, Lai, 
& Mix, 2006; Baroody & Purpura, 2017; Carpenter, Moser, & Romberg, 1982) and 
many have described children’s use of fingers in this process (e.g., Baroody, 1987; 
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Fuson, 1982). First, there has to be made a distinction between using fingers to rep-
resent (cardinal) numbers and as (iconic) symbols for numbers. The former allows 
the child to add units in a cumulative manner, producing a set, while the latter is a 
static image connected to a number word, which may or may not have an ordinal 
meaning. Research generally treats finger use as if fingers carry a numerical mean-
ing and thus represent cardinal numbers, but exceptions of different finger systems 
and even absence of finger use are found in different cultures. Finger use for calcu-
lating purposes is thereby not evidently naturally occurring, it is rather a culturally 
induced tool that has to be learnt (Bender & Beller, 2012).

The use of fingers is evidently prosperous when keeping track of a smaller 
amount of items, but there is a natural constraint in the limited number of fingers on 
our hands. There has to be an extension of fingers’ meaning and instrumental use 
that extends the perceived fingers at hand and include principles of the numerical 
system (Steffe, Thompson, & Richards, 1982). Children’s use of fingers in counting 
activities starts from counting with perceptual unit items. This is the most primitive 
way of counting because the counted items have to be present. All numerical rea-
soning is then perception-bound until the child develops a more advanced way of 
counting with figural unit items, such as fingers that may represent items that are not 
present. Nevertheless, Steffe et al. conclude that even though children can make use 
of figural units (fingers) to represent quantities, they often fail in solving arithmetic 
tasks because of their inability to coordinate the problem-solving. Research of early 
numerical encounters where fingers are used in different ways gives strong support 
to this by concluding that some ways of expressing numbers with fingers are more 
prosperous than others. Eventually, most children stop using their fingers once they 
learn number facts and advanced arithmetic strategies. Children’s finger use in 
arithmetic problem-solving and how children experience their fingers is neverthe-
less found to be related to arithmetic proficiency (Reeve & Humberstone, 2011). 
There is also evidence of a relationship between number knowledge and body 
knowledge long after a person has stopped using his/her fingers in arithmetic 
problem- solving. Rusconi, Walsh, and Butterworth (2005) conclude, based on 
neuro-cognitive studies, that finger calculation is “an almost universal stage in the 
learning of exact arithmetic” (pp. 1610).

Even though using fingers is commonly observed, it is nevertheless a rather com-
plex ability since using fingers in arithmetic problem-solving requires that the child 
perceives fingers as representations of numbers, giving a cardinal and ordinal value 
to quantities that may not be present. Steffe et al. (1982) show how the perceptual 
attachment (what you count have to be counted on, literally) hinders children, par-
ticularly when a task is presented verbally only or the number range extends ten. 
Knowing that it is possible to use fingers as representations for numbers is a 
 prerequisite but not enough to aid the problem-solving. The child also needs to 
coordinate the problem in that finger patterns or extension of fingers while counting 
is a way to construct sets to which other sets can be added or removed. This is sig-
nificant knowledge for arithmetic skills development since constructing sets and 
making use of the part-whole structure created as finger patterns are found to be 
decisive for many preschool children’s arithmetic proficiency (Björklund 
et al., 2019).

6 Preschoolers’ Ways of Using Fingers in Numerical Reasoning



96

Fuson (1982, 1988) shows how children use fingers as an aid for counting when 
numbers exceed the subitizing range (more than the child can perceive in a non- 
counting process, approximately three units). Baroody (1987) also makes substan-
tial efforts to systematically describe how young children use their fingers and 
points out the benefit of structuring numbers with finger patterns as “shortcuts” in 
counting (see also Björklund et al., 2019). Typical ways of using fingers are as fol-
lows: keeping track such as counting (up) the first addend on one hand, then the 
second addend on the other hand, and finally counting all fingers raised together, 
thus keeping track of the numbers added. According to Baroody (1987), this is a 
way of producing a pattern by adding single units. It also works when subtracting 
but is difficult to carry out, as the child has to count backwards and simultaneously 
keep track of counted units (thus keeping track with fingers unit by unit). Baroody 
also describes what he calls “pattern recognition,” where the child does not need to 
count to know the number of units. The child then recognizes the first addend as a 
pattern on the fingers, then the other addend and furthermore recognizes the total 
number of both parts when seeing both patterns together on their fingers. This latter 
strategy is also described by Brissiaud (1992), but he argues that this way of recog-
nizing finger pattern sets (as called by Brissiaud) should precede any counting strat-
egies and be presented as the primary way of determining numbers by young 
children.

There are also other scholars advocating a structural approach, such as Davydov 
(1982) and Schmittau (2004), in that constructing units (primary to counting sin-
gles) facilitates the advanced way of perceiving numbers as part-part-whole rela-
tions, which, for example, by Baroody (2016), is a breakthrough in the development 
of arithmetic skills. Gattegno (1974) presented an overview of the number struc-
tures to be found in finger patterns and argued that systematic training enhances 
children’s flexibility in recognizing finger patterns and their counterparts, for exam-
ple, in a ten structure (6-4 and 4-6 by folding six fingers, leaving four unfolded and 
vice versa, promoting commutativity).

As shown above, there are observations of children’s different ways of using 
fingers and that there may be a relation to arithmetic skills, either as an instrumental 
tool to keep track of counted items or as a bridge toward more advanced ways of 
handling numbers in arithmetic problem-solving. In educational studies, it has been 
found that finger use is more common among children with mathematics difficulties 
in primary school (Geary et  al., 1998), but Neuman (1987; 2013) makes a clear 
distinction that it is not finger use per se that induces mathematics difficulties. Her 
studies are in agreement that finger use may indeed become a cumbersome way to 
solve arithmetic problems, but it is rather due to different ways of experiencing 
numbers that hinder children in their arithmetic development. She, in line with 
Gattegno (1974), supports the idea that children benefit from using finger patterns, 
but in ways that promote seeing number structure and relations between and within 
numbers—in other words, experiencing fingers as representing a part-part-whole 
relation as opposite to experiencing fingers as separate single units. In a recent study 
(Björklund et al., 2019) with 5-year-olds, it is shown that children who use finger 
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patterns to structure arithmetic tasks and thereby use fingers as a strategy to make 
parts and whole “visible” are most often successful in their arithmetic problem- 
solving. Those who cannot use fingers in this way never solved the problems in 
that study.

6.3  The Study

This study is part of a larger project (FASETT),2 in which we investigate a system-
atic pedagogy that promotes a structural approach to numbers through the use of 
finger patterns and its effect for developing arithmetical skills in preschool years. 
This leads us to the present study, where we direct attention to the relation between 
finger use and numerical reasoning. Our study is based on Variation Theory of 
Learning (Marton, 2015; Marton & Booth, 1997) and thus based on an experiential 
approach to how children learn the meaning of numbers. According to Variation 
Theory, learning is the change in ways of seeing (or experiencing) phenomena in the 
surrounding world. A certain way of seeing, for example, numbers constitute those 
aspects of numbers that a child is able to discern in a particular situation. Some 
aspects of numbers are prominent when counting single units (for example, the 
ordinal feature of numbers) and others come to the foreground when showing a 
finger pattern in an instant gesture (for example, cardinality and part-part-whole 
relations). If the child is only able to see some, but not other aspects, this may limit 
what the child is able to do with numbers, that is his/her arithmetic skills. In our 
study, this theoretical framing induces that when children use their fingers in a 
problem- solving situation, it is interpreted as an expression of the way they experi-
ence the task and the numbers presented in the task.

An interview with children was conducted to screen their knowledge of numbers 
and arithmetic skills and in particular to find out what meaning of numbers they 
expressed when using fingers to solve arithmetic tasks. These interviews were task- 
based, covering basic number knowledge, finger patterns as representations of num-
bers and arithmetic problems within the number range 1–10. No manipulative 
material was present, or pen and paper, the children were though encouraged to use 
their fingers if they wanted to since this was one of the questions of interest. The 
children were 4–5 years old. The interviews were conducted in the children’s own 
preschool by trained interviewers. Each interview lasted for approximately 20 min. 
Of the participating children in the FASETT project (n = 103), we had 99 children 
with their legal representatives’ written consent to document the interview with 
video selected for this study. Since the purpose was to investigate finger use in 
detail, those children who we could not collect video data from were excluded. The 
interviews were thus video-recorded to ensure reliable data for analyzing finger use, 
acts that can sometimes be very subtle or quick.

2 FASETT is funded by the Swedish Research Council grant no. 721-2014-1791.
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The study design consists of two parts. To find the different ways of using fingers 
and how this relates to the children’s ability to solve arithmetic tasks, we first made 
an overview of the participating children’s basic finger-use abilities related to how 
they experience numbers in two “show a number” tasks:

 (a) Show me how old you are on your fingers.
 (b) Show me six fingers.

When children learn that specific number words are used to describe quantities, they 
begin to understand that numbers are unique for a certain amount of items (Sarnecka 
& Gelman, 2004). The most common way of testing children’s understanding of 
numbers’ cardinal feature is by asking them to “give-a-number,” that is to create a 
set of objects, usually by counting one item at a time, adding them to complete the 
requested number of items (Wynn, 1990, 1992). Give-a-number tasks do however 
direct attention to counting and producing a set in additive manners, while in our 
study we ask the children to “show” a number, which is more likely to induce an 
instant finger pattern rather than adding single units. For the purpose of our study, 
this distinction was important since it allowed the children to express their way of 
seeing numbers without being biased into counting procedures if another way of 
creating numbers was a possible alternative.

Secondly, for this particular study, we chose four arithmetic tasks from the inter-
view for a thorough analysis of the children’s ways of using fingers in arithmetic 
problem-solving. The same tasks were given to all children with an exception if a 
child had given incorrect or no answers to the first two tasks (the interview was 
then ended):

 (c) You have two sea shells and receive five more, how many do you have then? 
(2 + 5=).

 (d) If you have ten candies and eat six of them, how many are left? (10–6=).
 (e) You have three glasses, but are going to set the table for eight people, how many 

more glasses do you need? (3 + _ = 8).
 (f) On the morning of your birthday party, you blew up balloons. At the party, three 

balloons broke, and there were only six balloons left. How many balloons did 
you blow that morning? (_–3 = 6).

The tasks were developed to cover different part-part-whole relations: (c) straight 
forward addition of two parts, (d) removal of one known part from the whole, (e) 
missing addend, and (f) missing whole. These tasks thus cover both addition and 
subtraction, of which (e) and (f) may be solved by the inversion principle. As 
Vergnaud (1979) states, the construct of a task is important to consider when study-
ing children’s concept knowledge. Our tasks thereby cover numbers 1–10, which 
were all given verbally and with no other manipulatives than children’s own fingers 
since we aimed to study the way of experiencing the tasks’ part-whole structure, to 
which finger patterns or counting strategies were possible to enact.
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6.4  Analysis

In accordance with the Variation theory of learning (Marton, 2015), we conjectured 
that children act in a problem-solving situation in ways that reflect their way of 
experiencing, in this case, the numbers in the arithmetic task. Answers to the “show 
a number” tasks were thus coded in accordance with the child’s preferred way of 
creating the number on their fingers: Counting single units to six, showing a finger 
pattern instantly and no/wrong answer. We then selected observations from those 
children who spontaneously, or after being encouraged by the interviewer, used 
their fingers when encountering the four arithmetic tasks. Of the 99 children, 59 
were finger users and 40 children chose not to use their fingers when trying to solve 
the tasks. The 59 finger users were thus selected for further analysis. The arithmetic 
tasks performed by the finger users were then coded for correct/incorrect answers, 
followed by a thorough qualitative analysis of different ways of experiencing num-
bers represented by fingers.

In total, our data consist of 133 unique observations of finger use in arithmetic 
tasks that is 59 children × the number of tasks they tried to solve by using fingers. 
The children did not necessarily use fingers in all four tasks they were given. We 
then did a microanalysis of each observation to differentiate the ways in which chil-
dren were using their fingers. The observations were coded based on the purpose of 
using fingers that the children expressed. Based on Variation theory, we then inter-
pret these ways of using fingers as qualitatively different ways of experiencing num-
bers. Three categories emerged in the analysis:

 1. Fingers as an image of numbers.
 2. Fingers to create numbers of single units.
 3. Fingers to visualize the structure of numbers.

Fingers as an image of numbers can be related to what Bender and Beller (2012) 
describe as iconic symbols, which are culturally informed ways of representing a 
number word, however, does not necessarily have a cardinal or ordinal meaning. 
Fingers to create numbers of single units is an expression of added ones constitut-
ing a number. Fingers are then figural units that can be counted or used to keep 
track of counted single units (c.f. Steffe et al., 1982 “figural units”). Last, fingers 
to visualize the structure of numbers, which also has been observed by Baroody 
(1987) as pattern recognition in arithmetic problem-solving. The three categories 
of ways of using fingers were then related to the success rate in the arithmetic tasks, 
which strengthened the interpretations of the children’s ways of experiencing the 
numbers in the tasks. We will in the following section present these categories with 
examples from the data and in relation to correct/incorrect answers given, to dis-
cuss what the ways of using fingers entail for arithmetic problem-solving skills in 
the early years.
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6.5  Results

All children were able to show with their fingers how old they were (either 4 or 5) 
and furthermore, all of them showed this with an instant finger pattern (see 
Table 6.1). The second question concerned the ability to create a finger pattern: 8 of 
the children did not attempt to show any fingers, or, created a finger pattern that did 
not represent six as in six raised fingers. In 15 cases the children counted and raised 
one finger at a time ending when six was uttered and six fingers were raised. Finally, 
36 children showed a finger pattern of six instantly, without counting, either as a 
whole hand and a thumb on the other hand or any other finger combination of six. 
This overview was important as a basis for the thorough analysis of how different 
ways of using fingers influence on arithmetic problem-solving skills. Now, we knew 
that all the children were able to show a set of fingers, but there were differences in 
abilities and ways to create a finger pattern as a representation for a specific number.

The findings from the “show a number” tasks directed our attention to the differ-
ences found in how children created numbers with their fingers. To create a set 
(number) represented with fingers may indicate an understanding of the cardinal 
meaning of numbers. If so, this would have an impact on the children’s ways to try 
to solve arithmetic tasks. As Steffe et al. (1982) have shown, there seems to be a 
critical change when children not only create quantities and represent numbers with 
fingers but also are able to coordinate patterns as addends in arithmetic tasks. 
However, this initial task could not illuminate if the children experienced numbers 
expressed as finger patterns in a cardinal sense.

There are three main categories of ways to use fingers found in our analysis. The 
differences are seen as expressions of different ways to experience numbers. And 
accordingly, there are differences in the success rate found within the categories 
(see Table 6.2): Fingers as an image of numbers (category 1) and Fingers to create 
numbers of single units (category 2) entail mostly incorrect answers. These catego-
ries are distinctly different from using fingers to visualize the structure of numbers 

Table 6.1 Ability and way to create a number among the 59 children who used fingers in their 
arithmetic problem-solving

Question
No answer or 
wrong answer

Counting single 
units to six

Showing a finger 
pattern instantly

Show me how old you are 
on your fingers

0 0 59

Show me six fingers 8 15 36

Table 6.2 Frequency of correct and incorrect answers sorted by way of using fingers

Category Correct answers Incorrect answers Total

Category 1 1 16 17
Category 2 2 20 22
Category 3 61 33 94
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(category 3), which most children express themselves doing and consequently solve 
many of the given arithmetic tasks. These results show that there are significant 
 differences in how children are using their fingers and that finger use per se cannot 
determine whether a child is able to solve an arithmetic task or not.

In the following text, we will describe the characteristics of these categories and 
also proceed to a more detailed analysis of differences in meaning within and 
between the categories.

6.5.1  Fingers as an Image of Numbers

A total of 17 observations (13%) show that children are using fingers to present an 
answer to the arithmetic task that is characterized as an image of one of the numbers 
heard in the task. No arithmetic structure or operation that would be necessary for 
solving the task is addressed by the children. Nevertheless, numbers (in words or in 
fingers) are related to the question “how many.”

We suggest that fingers are, in Excerpt 1, used as an image of a number, which is 
expressed in the example and utterance “is this six?”. The only case where a correct 
answer is given in this category we interpret as a “lucky guess” since the child is 
holding his hands with some fingers folded unchanged from the previous task, look-
ing at his hands and says “look, seven!” which happened to be the correct answer 
(2 + 5 = _).

These observations and similar cases are interesting because the child is con-
structing a finger pattern which most often is assumed to have a cardinal meaning. 
The majority of children in this category instantly show a finger pattern for the 

Excerpt 1

Interviewer At the party, three balloons broke, and there were only six balloons left. 
How many balloons did you blow up that morning?

Charlie Mmm. What?
Interviewer Well, three were broken and six were whole.
Charlie (folds up thumb, index and middle fingers on the right hand, then all five 

fingers on the right hand) Is this six? No, it’s five. (folds up thumb on the 
left hand and then all ten fingers) Is this six?

Interviewer How did you show six before?
Charlie One, two (starts unfolding thumb and index finger, then showing all 

fingers but left thumb) like this. (lays down her right hand on the table but 
holding up the other hand with four raised fingers) four.

Interviewer Yes, four. Mmm, how many balloons did we have from the beginning 
then?

Charlie Three.
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number “six” in the interview. However, when finger patterns are used as an image 
of a number, it does not aid their numerical reasoning since the image has no cardi-
nal meaning and thus cannot be considered a part included in a larger quantity. The 
images/numbers do not seem to be related to other images/numbers that would be 
expected in a true cardinal sense. The children rather pick up a number heard in the 
task and represent it with their fingers, as an image, not as a composite set.

6.5.2  Fingers to Create Numbers of Single Units

Fingers are by some children used to help create a number, by counting each finger 
as a single unit (17% of the observations). The order of the counting sequence seems 
to be experienced as closely attached to each finger, as the children start counting 
from one and either touch each counted finger or extend one finger for each said 
counting word. It differs thereby from the previous category in which children 
instantly showed or tried to show a finger pattern. This category is building on the 
counting procedure where an answer is produced by counting one finger at a time. 
However, the children using fingers in this way do not necessarily relate the created 
number or finger pattern to other numbers or try to operate with the created pattern 
such as to add another addend by “counting on” (see Steffe et al., 1982).

This child acts in a typical way for this category. A number (either some number 
heard in the verbal task or a seemingly random number) is created by counting fin-
gers as single units. This way of experiencing numbers does not emphasize any 
arithmetic operation or structure to operate on. It is rather the question “how many” 
that prompts a specific procedure of counting on the counting sequence in corre-
spondence with single fingers.

The child, in Excerpt 2, created a number by adding single units. However, the 
result of the addition cannot be seen as related to the task at hand. In Excerpt 3, on 
the other hand, the child is struggling to create the number six, but seems to 

Excerpt 2

Interviewer You have two sea shells and receive five more, how many do you have 
together then?

Sam (looks at his hands with all fingers unfolded) A lot.

Interviewer Is it possible to solve it?
Sam Yes. (points with his right index finger on each finger on the left hand 

while counting) One, two, three, four, five. (changes to pointing with his 
left index finger, continuing counting and pointing at each finger on the 
right hand) Six, seven, eight, nine, ten.

Interviewer Is it ten?
Sam Yes
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Excerpt 3

Interviewer When your birthday party is over, three balloons broke, and there were 
only six balloons left. How many balloons did you blow up that 
morning?

Robin (starts with all fingers unfolded, then folds all fingers but the thumb on 
the left hand and folds the right thumb, leaving four fingers unfolded on 
the right hand, then looks at the interviewer)

Interviewer You had six and three were broken. How many were there from the 
beginning?

Robin (unfolds index and middle finger on the left hand, now showing three 
fingers on the left and four fingers on the right hand, then folding back 
and remaining the left thumb and four fingers on the right hand again) 
This is six. With four. (moves his hands closer together) Or should the 
thumb be there as well? (unfolds the right thumb and counts each finger) 
One, two, three, four, five, six. Then I need it. (starts counting all fingers 
again) One, two, three, four (points at his left thumb) What is this then?

 experience that there is a relation between numbers and the finger patterns he cre-
ates. He seems to know the pattern for “four” but is unsure whether the thumb 
should be included in creating “six” or not. Numbers, as they are presented on the 
fingers, seem to lack cardinal meaning as he asks “what is this called then” pointing 
at his unfolded thumb on his left hand (the “sixth” finger). Similar observations 
have been made also by Brissiaud (1992) and Neuman (1987), by them called “word 
tagging” or “numbers as names,” meaning that each finger is given a number name, 
that is the number. Such meaning in the use of fingers will not aid the child in expe-
riencing the arithmetic structure or that numbers can be added or subtracted. Images 
or names cannot be added to another image or name in the same way as numbers 
with a cardinal meaning can. The difficulty the children experience when trying to 
create a number with their fingers by adding single units is to know when the added 
“ones” are enough and if the child recognizes a finger pattern (“is this six”) to know 
which fingers (ones) to include in the pattern. Consequently, the children do not 
experience numbers in ways that would help their solving arithmetic tasks.

6.5.3  Fingers to Visualize the Structure of Numbers

The two categories presented above are similar in the sense that the children act to 
create some representation of numbers with their fingers (however differently). 
These stand in bright contrast to the last category (70% of the observations), in 
which children are using their fingers to visualize the structure of the numbers in a 
task and thus experience a part-part-whole relation in the arithmetic task. By struc-
turing the parts and the whole on their fingers the children act in somewhat different 
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ways to find missing addends or adding units to create a sum. It is necessary to cre-
ate a set on the fingers among these children too (as the previous categories were 
examples of), but the difference is shown in that these children seem to experience 
numbers not as isolated images or as single units (on the counting sequence), but as 
composite sets that are possible to extend or divide to make new (larger) sets or to 
find a part that is missing.

The child, in Excerpt 4, creates the numbers on his fingers as patterns, without 
counting. When folding the set representing the eaten candy, the missing part 
remains visible to him and he seems to recognize the relation between the whole 
(ten), the first part (six), and the missing part (four).

Our observations show that even though some children “see” the structure of 
numbers as a pattern of composite sets, some children need to create the sets, for 
example, by counting single units. Still, when they experience that the created num-
ber can be seen as part of a larger whole, they use their fingers to structure numbers 
and the relations within the given task.

Children in this category create finger patterns that are resembling the patterns 
shown in categories 1 and 2. However, the patterns are experienced in a distinct way, 
as the children are, in the former categories, not able to experience their pattern as a 

Excerpt 4

Interviewer If you have ten candies and eat six of them, how many are left?
Kim (puts both hands on the table) I eat six (folding all five fingers on the right 

hand and left thumb, looks at the remaining four unfolded fingers) Four!

Excerpt 5

Interviewer You have three glasses, but are going to set the table for eight people, how 
many more glasses do you need?

Tintin (shows index, middle and ring finger on the left hand). I think I have to 
count (pointing and counting now unfolded little, ring and middle finger 
on the left hand) One, two, three (then pointing at index finger and thumb) 
one, two (switches to the right hand’s thumb, starting to count) three, four. 
Is it this many. Eight?

Interviewer Eight children.
Tintin Okay, I have to count them all then. (pointing and counting all fingers on 

his left hand, continuing on the right hand’s thumb, index and middle 
finger) One, two, three, four, five, six, seven, eight. (folds the last three 
counted fingers, unfolds the fingers again) I have already three glasses on 
the table. (folds the five fingers on his left hand, shows the fist to the 
interviewer) Five more!
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composite set or as a part-part-whole relation. When children are able to experience 
the finger pattern as composite sets, they are able to discern the relation between and 
within patterns, which seems to aid them in solving the task, giving correct answers 
in 65% of the observations within this category.

In summary, children who create finger patterns as representations for numbers 
(either as images or as single units) have to extend their experiences to include the 
numbers/patterns in a structure in which the relationship to other numbers is the 
basis for their operation. Such an extension allows for more prosperous ways of 
solving arithmetic tasks, in which fingers are powerful tools for visualizing this 
structure.

6.6  Conclusions

The ways children use their fingers are in the vast majority of cases consistent over 
the different tasks. In those rare cases (9 of 59 children) where the same child uses 
fingers in different ways across tasks, it can be noticed that the child starts seem-
ingly with a wild guess but changes her strategy in the middle of the task, or the 
child starts creating or illustrating a number but does not continue using the created 
numbers to model the task in similar ways as in the other tasks. Reliability in this 
sense is very difficult to establish since the children’s acts are sometimes very subtle 
and sometimes interrupted which may give a false outcome of the child’s expres-
sion. However, our aim is not to categorize children but to analyze unique observa-
tions of different ways of using fingers, to which our 133 observations provide a 
sufficient basis of data.

The observations show that merely creating a finger pattern is not sufficient to 
solve arithmetic tasks. Critical for solving the tasks is an awareness of numbers as a 
composite set, which can be created either by adding or removing single units 
(counting) or by experiencing and structuring the part-part-whole relation as finger 
patterns. However, by merely looking at children’s ways of creating a finger pattern, 
it cannot be interpreted how the child experiences the meaning of numbers and thus 
is able to solve an arithmetic task. It is in the problem-solving act that the meaning 
appears in the way the child makes use (or does not make use) of the created set. 
Similarly, a child may very well create a number on her fingers by counting single 
units/fingers, but unless the cardinal meaning is experienced in the number/created 
finger pattern, it does not help the child experiencing the arithmetic relations in the 
task. These findings support the common knowledge of part-part-whole as an 
important aspect in arithmetic problem-solving (Baroody, 1987, 2016; Björklund 
et al., 2019). Our study though contributes to the field of knowledge with empirical 
evidence of how this is manifested by preschool children who have not yet taken 
part in formal mathematics education or been taught counting strategies of any for-
mal kind.

By tradition, it is accepted for younger children to use fingers as an aid in 
 calculations in their early years. Our interest in this field is thus pedagogical—the 
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important distinction found in our study is that seemingly similar ways to use fin-
gers, sometimes are used to represent isolated numbers and sometimes to operate on 
the part-part-whole relation within an arithmetic task. Fingers are excellent aid to 
create (keep track of) units that compose a set or to represent numbers as a pattern, 
but these sets/patterns need to be extended toward carrying a relational meaning (as 
parts and whole), as the observations in category 3 show that quite many preschool 
children are doing. These findings have significant pedagogical implications to edu-
cational practice with young children because counting on your fingers or illustrat-
ing numbers as images does not per se facilitate numerical reasoning that is 
necessary for arithmetic problem-solving.

Steffe et al. (1982) conclude that even though children can make use of fingers to 
represent quantities, they often fail in solving arithmetic tasks because of the inabil-
ity to coordinate problem-solving. Recent research also shows that some ways of 
expressing numbers with fingers are more prosperous than others—critical seems to 
be children’s ability to recognize numbers’ part-part-whole relations (Björklund 
et al., 2019). We can relate our findings in this study to these observations in that 
using fingers as an image of numbers (category 1) or as single units (category 2) will 
not support children in finding answers because of their lack in experiencing these 
sets as related to other sets. Our contribution to these known observations is the way 
we explain how seemingly similar ways of using fingers differ in numerical meaning.

In our experience, counting single units or presenting a finger pattern as a repre-
sentation for numbers are common acts in preschool. Furthermore, it is observed in 
most cultures that different counting sequences on fingers are developed to keep 
track of counting (Bender & Beller, 2012). Nevertheless, finger counting is not an 
innate ability but a culturally implemented tool for enumeration, which can be used 
for structuring numbers in prosperous ways. It would thus be beneficial, based on 
the results of this study, to promote the use of fingers in arithmetic problem-solving, 
but in a goal-oriented way where arithmetic structure (part-part-whole relation) is 
emphasized.
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Chapter 7
Young Children’s Cross-Domain Mapping 
of Numerosity in Path Navigation

Morten Bjørnebye and Thorsteinn Sigurjonsson

7.1  Introduction and Background

Within a continuous view of cognition that sees learning as a synthesis of inborn 
and constructed representational systems, there is consensus that cognition is 
grounded in a limited set of innate domain-specific core knowledge systems for 
representing objects, actions, numbers and space (Spelke & Kinzler, 2007). One of 
these cognitive capacities supports navigation in the three-dimensional room, while 
the Approximate Number System and the Object Tracking System support spatially 
organised non-verbal representations of the cardinality of estimated values of sets 
and the exact quantification of small sets, respectively (Feigenson, Libertus, & 
Halberda, 2013; Piazza, 2010). These reciprocal functioning neurocognitive mecha-
nisms account for basic number sense in space and time, and they guide and con-
strain the learning of the symbolic and cultural aspects of the number concept 
(Feigenson, Dehaene, & Spelke, 2004; Piazza, 2010). A model that reflects appro-
priation of cultural tools for representing numbers is the knower-level theory (Lee 
& Sarnecka, 2010; Wynn, 1992), which is based on the Give-N-task (Schaeffer, 
Eggleston, & Scott, 1974; Wynn, 1990). Typically, the Give-N-task uses a puppy to 
familiarise the test situation, and the experimenter asks: “Can you give the puppy 
one/two/three/four/five item(s)?” Based on the child’s production of the requested 
set, the experimenter asks: “Is that one/two/three/four/five item(s)?” A child who 
shows consistency in producing a maximum of two items on the Give-N-task is 
labelled a C2-knower. The knower levels one to four (i.e. C1–C4) are categorised as 
subset-knowers (Le Corre & Carey, 2007), which reflects that the mapping is con-
strained by a limited-capacity system associated with the Object Tracking System 
and hence also subitising (Kaufman, Lord, Reese, & Volkmann, 1949). In order to 
illuminate that the cardinal meaning of higher number words is learned in a 
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 qualitatively different way, the group that master the use of the cardinal principle 
(Gelman & Gallistel, 1978) for exact enumeration are named CP-knowers. Wynn 
(1990, 1992) reported that most children do not understand the cardinal word prin-
ciple until the age of 3.5–4  years, and the study of Levine, Suriyakham, Rowe, 
Huttenlocher, and Gunderson (2010) predicts that the conceptual breakthrough of 
understanding that a number word reflects the set as a whole occurs at 46 months of 
age. Hence, an educational challenge is to create models that enhance transforma-
tion between inborn aptitudes and culturally achieved representations of numbers 
(Gallistel, 2011), and in particular for subset-knowers who struggle to master exact 
enumeration. Informed by discoveries in neurocognitive science, which argue for 
the advantages of guided approaches that build on knowledge of the brain’s cogni-
tive architecture (Kirschner, Sweller, & Clark, 2006), the participants (mean age 
51 months) were, prior to this study, engaged in an intervention using a spatially 
structured language to support body-spatial-verbal coupling. For example, they 
articulated “frog-four” as they physically mapped the elements in a four-dotted 
array using four limbs (i.e. the feet and hands). Likewise, they said “monkey-three” 
as they imitated an itching monkey by placing one hand on the head, while the other 
hand and the feet tagged the elements in a three-dotted array. Based on these shared 
experiences, we ask the following: What inhibits and scaffolds C2- or C3-knowers’ 
mapping of spatial structured knowledge of numerosity across conceptual domains 
in a navigation task? The results will be analysed according to the theoretical frame-
work outlined in the next section.

7.2  Theoretical Framework

Conceptual Metaphor Theory (CMT) as introduced by Lakoff and Johnson (1980) 
in “Metaphors We Live By” is regarded as a prominent theory in interdisciplinary 
metaphor studies (Gibbs, 2009). CMT posits that metaphors are primarily a concep-
tual phenomenon characterised by complex mental ensembles of schemas. Of par-
ticular significance is the class of image schemas, which refers to spatially structured 
mental pictures or representations of assemblies of objects, bodily orientation, 
movement and physical interaction that structure and guide abstract thoughts and 
reasoning (Lakoff & Johnson, 1980). Image schemas with their perceptual and con-
ceptual nature provide “a bridge between language and reasoning on the one hand 
and vision on the other” (Lakoff & Núñez, 2000, p. 31), and therefore they possess 
a mediating role between the embodiment and formation of complex concepts such 
as the idea of numbers. Based on this, CMT holds that metaphors are cross-domain 
mapping in the conceptual system (Lakoff & Johnson, 1980). Consequently, the 
tension created by metaphors possesses an epistemic function as it addresses insta-
bility and transfer of meaning between two cognitive domains. Central to a concep-
tual mapping is thus what the source and targeting domain have in common, and this 
set of shared features or similarities is termed the “ground”. For example, a meta-
phorical mapping between the spatial domain in the form of the visual perception of 
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the legs of a kangaroo onto a semantic targeting domain (e.g. “kangaroo-two”) has 
the imaginative rationality reflected in the cardinal value “two” as it is a shared 
ontological feature (i.e. a part of the ground). The dissimilarities between the two 
compared domains create a metaphorical “tension”. It is important to note that the 
instability in any conceptual metaphorical mapping might hinder understanding, but 
the dissimilarities might also point to the “grounds” zone of proximal development 
(cf. Vygotsky, 1978). To further develop our understanding of the epistemological 
potential of conceptual metaphorical mappings, we will apply the term cognitive 
conflict, which refers to a psychological state that involves a discrepancy between 
mental representations (including image schemas) and experience, or between dif-
ferent cognitive structures (Waxer & Morton, 2012). For example, a cognitive con-
flict might emerge when a quadruped body posture does not allow a one-to-one 
correspondence to an assembly of three items on the ground, and the cognitive ten-
sion in terms of the mismatch in the transfer of quantity might be resolved by raising 
one hand or one foot. Moreover, a principal tenet of CMT is that abstract concepts, 
for example numbers, are structured by several layers of mutually supporting and 
overlapping conceptual metaphors (classified as structural, ontological and orienta-
tional metaphors), which in turn are based on some concrete representations or 
complex bodily gestalts (e.g. a one-legged pose imitating a howling rooster), which 
are referred to as grounding metaphors (Lakoff & Johnson, 1980).

The notions subitising, Approximate Number System, Object Tracking System 
and pattern recognition might further develop our understanding of how vision, bodily 
gestalts and everyday experiences such as navigation, hop, gait, crawling and the bal-
ancing and physical tagging of objects might conflate with innate numerosity in “met-
aphorical mappings so that the inferences of the source domains will map correctly 
onto arithmetic” (Lakoff & Núñez, 2000, p. 102). The Object Tracking System (OTS), 
also termed the “parallel individuation system”, is a cognitive system for tracking 
from 1 to 3 or 4 objects in parallel (Piazza, 2010). The term “individuation” empha-
sises that through this mechanism the objects are perceived as specific entities at a 
given spatial location. Perceptual subitising refers to an intuitive and direct perception 
of the numerosity of a small set of objects (Clements, 1999), and some neurocognitive 
scientists claim that perceptual subitising emerges from the OTS system (Piazza, 
Fumarola, Chinello, & Melcher, 2011). Another core knowledge system, the 
Approximate Number System (ANS, also termed “analogue magnitude”), sub-serves 
rapid non-verbal estimated representations of quantities in an analogue fashion, and 
its precision relates to the size of the set (Feigenson et al., 2013; Piazza, 2010). The 
ANS might capture more-and-less-relations by comparing approximated values of 
arrays of dots or sequences of actions and sounds, thereby supporting non-symbolic 
ordering of sets, addition and subtraction. Moreover, the notion pattern recognition 
describes a process where visual perception of a learnt configuration (i.e. a blend of 
ontological and structural metaphors), possibly supported by OTS and ANS, is 
mapped onto conceptual metaphors. For example, visual perception of a patterned 
group of objects might be recognised to share spatial and quantifiable features with a 
bodily gestalt, and a goal-directed (i.e. orientational metaphors) articulated body-spa-
tial coupling might transfer additional layers of meaning in the process of abstraction.
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In this study, we see the core knowledge systems as mental representations (or 
rather image schemas) that might support navigation, subitising, pattern recognition 
and spatial structured transitive relations of quantities and the synthesis of these 
processes. This stance is further based on the dialectically functioning, rapid and 
spontaneous nature of these inborn capacities for supporting perception in space 
and time (Spelke & Kinzler, 2007). This concurs with the basic assumptions of 
CMT that metaphors are usually used instinctively and naturally as an integrated 
part of ideas, thoughts and reasoning in real life (Lakoff & Johnson, 1980). 
Moreover, the notion of metaphorical mapping (i.e. conceptual mapping) provides 
a tool for analysing the direction and coherence in the projection of numerosity 
across conceptual domains, and we will use this conceptual framework to guide and 
structure our methodological choices as outlined in the next section.

7.3  Methodology

7.3.1  The Intervention and Case Selection

Upon the written consent of their parents, 15 children of 3–4  years old in a 
Norwegian kindergarten participated in guided outdoor sessions over a 2-month 
period. The intervention focused on articulated body-spatial mapping of numbers 
in 1- to 4-dotted arrays (regular shape for sets with three and four dots) using cor-
responding number metaphors (i.e. “cock-a-doodle-doo-one”, “kangaroo-two”, 
“monkey-three” and “frog-four”), see Fig. 7.1. The selection of these four number 
metaphors was based on the aim of building on children’s prior knowledge of ani-
mal behaviour, and to include established bodily expressions in the representation 
of the numbers 1–4. Moreover, the articulated body-spatial coupling could also rep-
resent novel aspects concerning numerosity to specific animal behaviour, for exam-
ple a head- scratching monkey imitation might represent the set of three elements 
(see Fig. 7.1). The navigation task was administered as a post-test of the interven-
tion to examine the participant’s ability to use, adapt and transform their spatial 
structured knowledge in a novel context involving navigation and free use of num-
ber metaphors in a multi-dotted unstructured array.

Fig. 7.1 Articulated 
body-spatial mapping of 
“monkey-three” and 
“cock-a-doodle-doo-one”
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The selection aimed to include extreme cases from the intervention group 
(Flyvbjerg, 2001) in terms of choosing participants who struggled to master the 
cardinal principle for exact enumeration. Thus, using this biased criterion on the 
scores on a Give-N-test (Wynn, 1990) that was taken 2 weeks after the naviga-
tion task, two C2- and six C3-knowers (four girls, four boys; mean age 4:3, 
range 3:11–4:9; average participation 9 sessions and 7 h) were included in the 
present study.

7.3.2  Procedure of the Navigation Task

The navigation task (see Fig. 7.2) was contextualised in a circle (d = 3 m) with 50 
arbitrary distributed dots (d = 0.1 m). In order to familiarise the participants with the 
context of the navigation task, the 50-dotted array was used in a modified Give-N- 
test (cf. Bjørnebye, Sigurjonsson, & Solbakken, 2017) as preparation. Using the 
criterion of at least two successes out of three trials (Wynn, 1992), the scores on this 
warm-up task showed that six of the participants mastered articulated bodily pro-
duction of requested number metaphors (e.g. “Can you jump a frog-four?”) linked 
to cardinal values from 1 to 4. The C3-knowers Al and Val (all names are ano-
nymised) did not master production of “cock-a-doodle-doo-one” and “monkey-
three”, respectively.

Coloured lines outside the circle marked the start (A) or the end (B) of the trial 
(see Fig. 7.2). The experimenter presented the task: “You are to jump from the red 
line to the white line (pointing), and you must tell what you jump”. After the com-
pletion of a trial, feedback was provided if the child skipped articulation (“remem-
ber to say what you jump”) or double-tagged (“do not use the same dot twice”). 
During action, the experimenter could give hints to remind the participants of the 
aim of the task (e.g. “You are to jump to”), provide encouragement (e.g. “and then”) 
or address unclear body-spatial-verbal coupling (e.g. “You said monkey-three?”).

Fig. 7.2 Array with 
50-dots used in the 
navigation task
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7.3.3  Operationalisation and Data Analysis

The present investigation is a case study which combines pattern matching and 
cross-case synthesis to develop general descriptions that fits the task behaviour of 
the eight C2- and C3-knowers (Yin, 2009). Pattern-matching logic involves compar-
ing empirical patterns with theoretical predicted ones (Yin, 2009). Thus, informed 
by our theoretical framework, we assumed that articulation (e.g. “frog-four”), 
experimental gestalt (e.g. a four-limbed grounding pose) and body-spatial coupling 
(i.e. physical tagging of spatial structures) mediated signatures of cross-domain 
mapping of numbers. As subset-knowers seldom use counting procedures for exact 
enumeration (Le Corre, Van de Walle, Brannon, & Carey, 2006), we presupposed 
that a rapid series of simultaneously expressed embodied parts were supported by 
core knowledge structures for representing numbers. Moreover, we assumed that 
their knower level as assessed in the Give-N-task provided an indication of their 
capacities to produce exact numbered sets across modalities (e.g. kinaesthetic, 
semantic and body-spatial coupling). In this way, we also examined how the clas-
sification of knower-level behaviour (Lee & Sarnecka, 2010; Wynn, 1992) conflated 
with Conceptual Metaphor Theory. Concerning navigation, we looked at precise 
and flexible actualisation of the spatial layout and the measurable (i.e. distance and 
angle) and topological properties of the affordances (Gibson, 1979), in a manner 
that preserved orientation to the targeting line B. Based on assumed diversities in 
the gross motor proficiency of 47- to 57-month-old children (i.e. gait, jump and 
body coordination), we hypothesised that the participants would show varied com-
petence in actualisation of the affordances (Gallahue, Ozmun, & Goodway, 2012).

The data analysis consisted of three main stages: First, based on codes (e.g. type 
of number metaphor expressed verbally and physically, coherence in body-spatial- 
semantic mapping) and thick descriptions from the transcript of the video-recorded 
material, shared patterns and diversities for the eight participants were analysed and 
compared to the predicted patterns as outlined in the operationalisation. Second, in 
order to generate conjectures of a classificatory framework that captured similarities 
and diversities across and within the subset-knower level (Gerring, 2004), different 
categories of cases were compared and discussed. Finally, we synthesised the find-
ings. To support the qualitative analysis, selected numerical data were extracted from 
the empirical material. The credibility and reliability in the data were supported by 
crosschecking the coding of the data, which has been conducted by two researchers.

7.4  Results

This section presents the general results of the task solution of the eight participants. 
Then, in order to provide an empirical basis for comparing patterns across and 
within cardinal knower level and to perform a cross-case synthesis (Yin, 2009), the 
next part presents rich descriptions which highlight similarities and differences in 
main categories and levels of performance.
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7.4.1  General Results

Each of the participants produced two to four movement trajectories across the 
50-dotted circle in 22 tasks. Along these trails, using the hands and legs for tagging, 
there were 106 physical expressions of numbers distributed across three series of 
three parts (e.g. notated as 4+2+3), six series of four parts, seven series of five parts, 
four series of six parts and two series of seven parts. Three C3-knowers and one 
C2-knower embodied all four number metaphors, while the rest did not include the 
“cock-a-doodle-doo-one” gestalt in their repertoire. Regarding the frequency of dif-
ferent embodied containers, a four-limbed gestalt was applied 36% (36/106) of the 
time, a two-legged-tagging was applied 26% (28/106) of the time, a three-limbed 
gestalt was applied 25% (26/106) of the time and a one-legged tagging was applied 
15% (16/106) of the time. Most verbalisations (i.e. 102/116 = 88%) were consid-
ered to precede or overlap with a part of the body-spatial coupling process, while 
two remained unarticulated and the rest pointed to a completed tagging. Double 
tagging of dots occurred in 5 out of 22 series and most frequently after a monkey-
three or frog-four body pose. In some series, extensions of an initial tagging 
occurred. For example, one C3-knower said “kangaroo, frog-four” as she extended 
a two-dotted- feet-tagging to include the hands in a four-limbed gestalt. In 91% 
(96/106) of the embodied containers, there was conformability in the cross-modal 
mapping of numerosity between the experimental gestalt and the spatial and lin-
guistic domain. With the exception of one deviant mapping, the rest of the verbal-
body-spatial couplings showed coherence between two out of the three observable 
modalities of quantities. However, some children corrected their misuse of semantic 
expression in situ, while others “stepped out” for visual examination to adjust their 
articulated body-spatial coupling.

Concerning navigation and accounting for guiding hints, all but one series ended 
in the predetermined coloured line. Most of these movement trajectories reflected a 
goal-directed path from A to B.  However, five out of 22 series had intermediate 
embodied containers adjacent to the arc of the circle, suggesting off course. Four of 
the participants walked, two combined jumping and walking, and one C2 and one 
C3-knower jumped between each embodiment. The group of children that walked 
seemed to search for a tagging opportunity until an approximated regular-shaped 
configuration appeared in front of them. For example, two-dotted arrays had to be in 
parallel with their visual field, and the configuration and orientation of a set of three 
items had to appear as regular in a “2-1 structure”. In contrast, the children who 
jumped showed proficiency in adapting their body posture to sets with irregular layout.

Based on pattern matching and analyses of the eight children’s behaviour, three 
categories of task performance emerged:

 1. Children who failed in some of the cross-modal mapping of numerosity.
 2. Children who had problems in navigation and pattern recognition.
 3. Children who showed coherence in multimodal use of numerosity and goal- 

directed appropriation of the affordances.

The next section provides rich descriptions and excerpts highlighting unique and 
shared aspects of these categories.
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7.4.2  Rich Description of Three Groups of Task Solutions

The in-depth presentation of three groups of task solutions presented below aims to 
show differences in performance and shared patterns based on prerequisites of using 
a spatial language, as well as on different abilities of goal-directedness, fluency and 
precision in the cross-modal mapping in the navigation task. In particular, task 
behaviour in the first group with Al (C3) and Val (C3) aims to highlight inconsis-
tency in cross-modal production of numerosity. They also demonstrate task perfor-
mance for children with gaps in prior knowledge as they failed to produce one of the 
number metaphors in the warm-up task. The second group with Ed (C2) and Max 
(C3) represents children who opted to walk and showed problems with pattern rec-
ognition and navigation. Although Elias (C3) and Rae (C3) also belong to this 
group, their task performances will not be presented as their behaviour does not add 
any significant information to this category. Finally, Liv (C2) and Amy (C3) repre-
sent the group of participants that opted to jump and showed fluency in navigation 
and precision in body-spatial-semantic coupling.

Al (C3) produced 4+4+3+3+2 (43  s), 4+1+3+2+3 (32  s, see Fig.  7.3), 
4+2+3+4+2+3 (30 s, see Fig. 7.4) and 4+2+1+2+2+4+3 (53 s). Al opted to walk and 
took a long time to initiate a coupling. Two trails had intermediate parts adjacent to 

Fig. 7.3 Al embodies 
4+1+3+2+3 and articulates 
“frog-four, cock-a-doodle-
doo-one, monkey-three, 
kangaroo- two, cock-a-
doodle-doo-one” (Closed 
curves illustrate tagged 
sets)

Fig. 7.4 Al embodies 
4+2+3+4+2+3 and says 
“frog-four, kangaroo-two, 
cock-a-doodle-doo-one, 
frog-four, kangaroo-two, 
cock-a-doodle-doo-one”
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the arc of the circle. In the third series, Al extended a two-footed tagging to a four- 
limbed coupling while verbalising “kangaroo, frog-four”. Al performed six errors in 
the one-to-one correspondence, all related to three-limbed gestalts. On five occa-
sions, his body-spatial coupling was correct, but he said “cock-a-doodle-doo-one”. 
For example, in the embodied series 4+4+3+3+2, Al articulated “frog-four, frog-
four, cock-a-doodle-doo-one, cock-a-doodle-doo-one, kangaroo-two”. Notably, in 
the fourth mapping, Al made a three- limbed coupling onto two dots and said “cock-
a-doodle-doo-one”. Al overlapped once, between the two “frog-four”-couplings in 
this series. The following excerpt starts from the second tagging in the series 
4+1+3+2+3 (see Fig. 7.3) and shows the only correct mapping of numerosity three:

Al: [Al uses one foot and tags a dot] Cock-a-doodle-doo-one [Al 
walks and uses one hand and both feet and tags three dots and 
immediately utters] Heah? [Al looks up at the experimenter with a 
questioning expression on his face, holds his position and waits for 
3 seconds] Heah?

Experimenter:  [Pause for 2 seconds] What do you call this?
Al: [Pause for 2 seconds] Monkey-three [Al stands up, walks, using 

both feet he tags two dots] kangaroo-two [Al walks and uses one 
hand and both feet and tags a set of three dots] cock-a-doodle-doo-
one [Al walks to B]

Val (C3) produced 4+4+2+4+2 (68 s, see Fig. 7.5) and 3+4+4 (14 s). Val walked and 
articulated all parts in parallel with the coupling process. The following excerpt is 
from the first trial:

Val: [Val walks from A and tags two dots with her feet] Kangaroo [Val 
extends the coupling to include her hands to tag four dots] frog-
four [Val stands up and turns slightly to the right, and faces a three-
dotted set in a 1–2 structure (i.e. “arrowhead” pointing towards 
her, see Fig. 7.6). She uses both hands and tags the paired dots 
with her feet placed on either side of the odd dot (see Fig. 7.7). Her 
four-limbed gestalt partly overlaps the previous tagging] monkey-
three [Val stands up, walks and completes the series]

Fig. 7.5 Val embodies 
4+4+2+4+2 (Dotted curve 
illustrates gait pattern)
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Fig. 7.6 Val faces three 
dots shaped as an 
“arrow-head” pointing 
towards her

Fig. 7.7 Val aims to tag 
three dots, uses four limbs 
and says “monkey-three”

Fig. 7.8 Ed produces 
2+4+4+4

In the first embodiment of the second series, the three-dotted configuration held a 
regular “2-1-structure” and Val tagged it correctly.

Ed (C2) produced 3+3+2+3+4+4 (56 s) and 2+4+4+4 (45 s, see Fig. 7.8). Five 
articulations were in parallel with a coupling process, while three verbalisations 
pointed back on a completed embodiment and two double-footed spatial couplings 
remained unarticulated. Ed walked and his bodily direction seemed to be deter-
mined by the orientation and shape of the identified pattern. Ed overlapped twice in 
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Fig. 7.9 Ed says “that is 
for the return”

Fig. 7.10 Max produces 
3+4+2 (Arrow illustrates 
bodily direction in tagging)

the first series. After the third coupling in the second trial, he turned around and 
initiated the tagging of a three-dotted set, but he reconsidered, pointed and said “that 
is for the return” (cf. Figs. 7.8 and 7.9).

Max (C3) produced 3+4+2 (35 s, see Fig. 7.10), 2+3+4 (23 s), 4+4+2+2 (32 s) 
and 4+3+4+3 (22 s). Two movement trajectories had embodied containers adjacent 
to the arc of the circle. The following excerpt is from the series 3+4+2:

Max:  [Max walks from A and uses both feet and one hand and tags three dots] 
Monkey-three

[Max stands up, walks around and initiates a tagging, but he does not complete it, 
then turns, stares at and partly circles the configuration] Here [in an exaggerated 
tone and pointing, he tags four dots] monkey, frog-four [Max stands up, walks and 
halts] Here [Max tags two dots while his bodily direction is about 180 degrees from 
the previous tagging and 90 degrees from the A-B line (see Figs. 7.7 and 7.11)]

Experimenter:  What is that?
Max:  Kangaroo-two [Max turns to the right and walks to B]
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Fig. 7.11 Max steps out of 
course

Fig. 7.12 Max tags an 
irregular assembly

In the series 4+4+2+2, Max nearly inaudibly said “frog” as he tagged an irregular 
configuration of four dots (see Fig.   7.12), and he stepped out and looked at the 
container with a body language that projected doubt before he completed the series.

Liv (C2) produced 1+2+3+4+2+1 (28 s), 1+2+1+3+4+2 (18 s) and 1+1+3+4+2 
(26 s). Liv articulated most parts in parallel with the body-spatial coupling (15/17), 
and she jumped and adapted her embodiment in a manner that maintained direction 
towards the targeting line B. On one occasion, she extended a one-legged tagging to 
a two-feet coupling while verbalising “cock-a-doodle-doo, kangaroo-two”. In the 
third and fourth tagging in the second task, she said “frog-four” as she tagged first 
one and then three dots (coded as failures). The following excerpt starts from the 
third tagging in the first trial (see Fig. 7.13):

Liv:   [Liv tags a three-dotted assembly and articulates in parallel] 
Frog-four [She moves “out” to the right of her trajectory and 
looks at the tagged array (cf. dotted curve in Fig. 7.13)]

Experimenter: Was it a frog-four?
Liv:   No, a monkey-three. [She articulates and re-tags the assembly 

and completes the sequence in a jumping fashion]
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Fig. 7.13 Liv experiences 
a cognitive conflict in 
1+2+3+4+2+1

Fig. 7.14 Amy jumps and 
embodies 2+3+4+1+4

Fig. 7.15 Amy in goal-directed, rapid and precise body-spatial couplings

Amy (C3) produced 2+1+3+4 (25 s), 1+2+3+4+4 (12 s) and 2+3+4+1+4 (17 s, 
see Figs.  7.14 and 7.15). Recurring patterns were jump and rapid and coherent 
body-spatial-semantic coupling and adaption to the configuration of the set in a 
goal-directed manner.

7.5  Discussion

This study investigates the use of a spatially structured language to cultivate inborn 
aptitudes in navigation and non-verbal representations of numerosity to enhance 3- 
and 4-year olds’ skills in exact quantification. Using CMT to guide our analysis, we 
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assume that body-visual coupled patterns and the spatial structure reflected in artic-
ulated number metaphors mediate salient signatures of cross-domain mapping of 
numerosity. In the task, the ANS supports initial comparison, discrimination and 
identification of estimated magnitudes and configurations of relevant sets; for 
 example the spatial structure of an assembly of less dots (e.g. 3) is more jumpable 
than the larger group (e.g. 5). Based on increased visual attention, the mapping 
between the OTS (perceptual subitising) onto the semantic domain (e.g. “monkey-
three”) or the body-based conceptual metaphor (e.g. a three-limbed gestalt) might 
support transfer of exact numerosity. Moreover, the pauses in between each embodi-
ment create a timeframe for orientation and perception of the geometry in the array, 
in relation for instance to the distance, angle and topological properties of boundar-
ies of potential sets, and thereby establish coherence in cultivation of inborn and 
learnt cognitive capacities for navigation and for representing numbers.

In over 90% of the body-spatial couplings, the tension created by the cross- 
domain conceptual mapping preserves the numerosity as a shared ontological fea-
ture (i.e. the “ground”). Moreover, 40% of the participants’ self-governed embodied 
mappings reflect cardinal values that exceed their assessed capacity of abstract rep-
resentations of numerosity (c.f. the Give-N-task). For C2-knower Ed, his mappings 
of numerosity three and four (i.e. 8 out of 10) are coherently mediated across 
semantic and visual-motoric modalities. However, when operating within his cardi-
nal knower level, he has problems mapping the body-spatial representation to the 
semantic domain as none of the two “kangaroo-two” gestalts are verbalised. 
Concerning contrasting performance levels in using a spatial structured language, 
Liv (C2) and Amy (C3) integrate all four number metaphors in each task, while Ed 
(C2) and Max (C3) show rigidity as they apply only two metaphors in three out of 
the six series and do not use “cock-a-doodle-doo-one” at all.

The overall results also show a mismatch in the intermodal mediation of numer-
osity (i.e. 10/106), and we illustrate this with the task solution of Al (C3) and Val 
(C3), who fail to produce one of the number metaphors in the preparation task. In 
four navigation trails, Al maps five three-limbed spatial couplings onto the semantic 
expression “cock-a-doodle-doo-one”. Compared to the warm-up modified Give-N-
task where he maps the verbal instruction “cock-a-doodle-doo-one” onto a monkey-
three gestalt, this suggests that the mismatch is bidirectional and grounded in 
semantics. Hence, for Al, this underlines that metaphorical expressions are only 
surfacing manifestations of more deeply grounded conceptual metaphors (Lakoff, 
1993). Moreover, in one coupling, Al produces a similar articulated gestalt onto a 
two-dotted configuration, and thereby he shows discrepancy in the mapping of 
numerosity from the visual source domain (i.e. numerosity two) onto the linguistic 
(i.e. numerosity one) and motoric (i.e. numerosity three) target domains. Another 
example of failure in the one-to-one correspondence concerns the issue of pattern 
recognition. Consistent with the warm-up task, Val (C3) identifies an approximately 
regular three-dotted assembly with a “1-2-structure” (i.e. “arrow-head” pointing 
towards her) and produces a four- limbed gestalt and articulates “monkey-three” 
(see Fig. 7.7). Thus for Val, in  contrast to Al, this suggests that the discrepancy in 
the intermodal transfer of numerosity is primarily a body-spatial issue. Ed (C2) also 
addresses this potential visual-motoric tension, as he points to a similar oriented 
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configuration and remarks “that is for the return” (see Fig. 7.9). With reference to 
the intervention, this suggests that guidance embracing conceptual metaphors (e.g. 
“monkey-three” gestalts), which hold the idea that body-spatial coupling only 
applies to oriented regularly structured configurations, might inhibit the use of the 
core knowledge structures in cross-domain mappings of quantities (cf. Fig. 7.1).

However, for most participants, this type of tension creates a cognitive conflict 
(Waxer & Morton, 2012). For example, Liv (C2) steps out of the “container” to 
visually examine the discrepancy provided by the cross-modal mapping of numer-
osity (see dotted curve in Fig. 7.13). In addition, Amy (C3), Max (C3) and Elias 
(C3) adjust their initial articulations during an embodiment to match the body-spa-
tial coupling, as they said “monkey, kangaroo-two”, “monkey, frog-four” and “frog, 
cock-a-doodle-doo, monkey- three”, respectively. We offer two possible explana-
tions for the emergence of and solution to these cognitive conflicting tensions, 
which are backed up by claims saying that ANS supports numerical processes of 
small numbers and interacts with the OTS (Feigenson et al., 2013; Piazza, 2010), 
and that subitising and ANS is activated in respectively tactile and haptic modalities 
(Gimbert, Gentaz, Camos, & Mazens, 2016; Riggs et al., 2006). The first hypothesis 
is based on an initial use of ANS for estimation of the numerosity of a set of dots, 
or for perception of a more-and-less relation based on discrimination of distinct or 
overlapping groups. Either way, the imprecise representation of a jumpable quantity 
is thus mapped onto the semantic domain (e.g. Elias: “frog, cock-a-doodle-doo”). 
In the next phase, based on increased visual attention and possibly supported by 
tactile and haptic sensory information, the OTS supports the conceptual mapping 
onto the embodied and linguistic domain to a correctly verbalised representation 
(e.g. Elias: “monkey- three”). The second hypothesis is based on the assumption that 
an initial visual pattern recognition was simultaneously mapped onto the bodily and 
semantic domain (e.g. Max: a four-limbed coupling and says “monkey”). Following 
this line of reasoning, the spatial structured discrepancy in the visual-linguistic 
transfer of numerosity is, via the body-semantic mapping, corrected to hold the 
cardinal value as a shared feature (e.g. Max: “frog-four”). Regardless, and epistemi-
cally speaking, this underlines that the “ground” in different mappings interacts 
according to a proximal zone that might include coherence in transfer of numerosity 
across conceptual domains in general and in spatial layout of the items in particular. 
This claim is further supported in Al’s (C3) behaviour, as his only correct cross-
modal mapping of numerosity three (i.e. 1 out of 7) occurred right after a “rooster-
one” tagging (see Fig. 7.3). On the basis that the other three-limbed couplings were 
mapped onto the same semantic unit (i.e. “rooster-one”), this suggests that the con-
flict, linguistically expressed as “Heah?” and physically as halting with a question-
ing facial expression, emerges due to a close temporal and spatial contiguity. 
Moreover, the task’s incorporated potential to establish balance between perception 
and conflicting ideas that include the invariant property of numerosity is exempli-
fied by Max’s (C3) first path (see Fig. 7.10), where he circles around and examines 
a potential set from different angles and eventually uses the Eureka-word “Here” 
when he recognises a jumpable pattern. In addition, when Max hesitates and par-
tially articulates the metaphor (i.e. “frog”) while embodying an irregular configura-
tion (see Fig. 7.12), his body language says “Was that really a frog-four?” as he 
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subsequently examines the tagged part. Liv (C2), on the other hand, shows flexibil-
ity as she maps a similar irregular configuration of four items onto the linguistic 
expression “frog-four” and afterwards projects the perceived whole onto an embod-
ied part-part structure (i.e. 1 + 3).

Concerning actualisation of the measurable and topological properties of the 50 
dotted array, some children jump from one body-spatial mapping to the next in a 
goal-directed manner, which suggests a coherent visual-motoric appropriation of 
distance, angle and spatial layout of the affordances. This is exemplified in the six 
series of Liv (C2) and Amy (C3), where they adapt their body position to the affor-
dances and maintain the orientation towards the targeting coloured line in producing 
31 parts in 126 s (i.e. average frequency of 4.1 s/part). In contrast, others such as Ed 
(C2) and Max (C3) walk and use substantially more effort to decode and interpret 
the visual information (on average 8.9 s/part), and their bodily angle seems to be 
determined by the regularity and orientation of the perceived set. Max illustrates 
this in the series 3 + 4 + 2 (see Fig. 7.10), where his corporal direction changes 180° 
between consecutive body-spatial couplings. Moreover, his “astray” movement tra-
jectory suggests that his aim was to identify patterns that fit rigid ideas of how the 
spatial structure of the number metaphors ought to be mapped onto the embod-
ied domain.

7.6  Summary and Concluding Remarks

Based on a design targeting the integration of innate capacities and learnt represen-
tations of spatial structured magnitudes, this qualitative study aimed to analyse 
subset-knowers’ cross-domain mapping of numerosity in a bodily path navigation 
task. The main findings are that the eight C2- or C3-knowers mastered articulated 
bodily production of numerosity that exceeded their cardinal knower level. The 
examination also points to the task’s inherent epistemic potential in creating and 
solving cognitive conflicts in situ, and thus it underlines that, “Bodily projections 
are especially clear instances of the way our bodies shape conceptual structure” 
(Lakoff & Johnson, 1999, p.  34). The analysis also shows quality differences in 
subset-knowers’ ability to perform visual pattern recognition and in use of a spatial 
structured language to enhance body-spatial coupling. We suggest that the most 
prominent feature of the participants who walked is that task solution for them 
becomes an issue of pattern matching and that a rigid conceptualisation of the spa-
tial structure of the number metaphors hinders appropriation of the affordances 
across different arrangements of the dots. In contrast, participants with a high level 
of proficiency in the navigation task are characterised by flexibility in metaphor 
usage, coherence in the body-spatial semantic mapping of numerosity and rapid, 
adaptive and goal-directed visual-motoric coupling across spatial layout and the 
shape of the boundaries. Hence, the group of jumping children actualises funda-
mental properties of the concept of cardinality (Fuson, 1988), and their fluent appro-
priation of the affordances suggests support for and synchronisation of core 
knowledge structures and culturally achieved concepts. However, prior to the navi-
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gation task, the participants did receive guidance on how to use selected number 
metaphors for regular-shaped body-spatial coupling of small numbers. In light of 
CMT, which holds that abstract concepts as numbers consist of a cluster of partly 
overlapping conceptual metaphors (Lakoff & Johnson, 1980), such focus might 
indirectly hide other salient aspects of the concept. Hence, and particularly in regard 
to the participants who did not master production of all the number metaphors prior 
to the task, we acknowledge that other conceptual metaphors might support the 
synthesis of navigation and multimodal production of numbers in qualitatively dif-
ferent ways. However, compared to the Give-N-task, which basically concerns chil-
dren’s ability to map a linguistic representation of a memorised number word onto 
a sequentially produced exact numbered set, we argue that by reversing the mapping 
order and building on autonomy the navigation activity possesses the potential to 
utilise authentic movement patterns and inborn capacities in cross-domain mapping 
of numerosity in an outdoor scene. Even though a small number of cases and tasks 
limit the study, the in-depth inquiry might contribute to knower-level behaviour as 
it reveals shared proficiencies and qualitative differences in task performance across 
and within knower level. In light of a consensus that exact enumeration of large sets 
build on children’s ability to label small sets (Mix, Sandhofer, Moore, & Russell, 
2012), further research should address how subset-knowers might map the cardinal 
value linked to number metaphors onto number words.

To wrap up, from a CMT stance, we have examined the qualities, constraints and 
entailments of a limited number of conceptual mappings of numerosity in a naviga-
tion task, and the idiosyncratic and the cross-case analyses show that spatial struc-
tured metaphors relate to the source and target domain differently as they coexist in 
a complex network. Hence, our findings show that the C2- and C3-knowers are 
more diverse than the cardinal knower level indicates.
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Chapter 8
Mathematical Problem-Solving Visualised 
in Outdoor Activities

Magni Hope Lossius and Torbjørn Lundhaug

8.1  Introduction

A problem-solving approach to learning of mathematics has for decades been an 
important goal for school mathematics (Pólya, 2004; Schoenfeld, 2016; Stanic & 
Kilpatrick, 1989). In the early years mathematics, research has tended to focus on 
children’s mathematical problem-solving primarily in relationship to number sense 
(Carpenter, Ansell, Franke, Fennema, & Weisbeck, 1993; Charlesworth & Leali, 
2012; Rogers, 2004; Tarim, 2009). In contrast, problem-solving has not been dis-
cussed in the same way in relation to other mathematical topics, particularly when 
situated in outdoor activities in kindergarten.1 Yet problem-solving is an instinctive 
part of children’s daily life as they make sense of the world. Children face many new 
situations with curiosity and intelligence because the world is new to them.

Problem-solving “has been used with multiple meanings” (Schoenfeld, 2016, 
p. 1). Lesh and Zawojewski (2007) phrase it in the following way: “No strategy, 
process, behavior, or characteristic should be expected to always be productive for 
every problem, nor for every stage in learning or problem-solving.” (p. 778). We, 
therefore, define problem solving as the process that occurs when children meet 
challenges they do not immediately know the answer to or how to reach an answer. 
Consequently, there are many opportunities to stimulate problem-solving during 
outdoor activities in kindergarten.

In Norway, nearly every child between the ages of 1 and 6 attends kindergarten 
(Stabekk, 2017). Norwegian kindergarten is based on play-oriented guidelines, fol-
lowing a sociocultural tradition (Engel, Barnett, Anders, & Taguma, 2015). The 

1 When we use the term Kindergarten, it relates to children between 1 and 6 years old that is the 
year span in Norwegian kindergartens.
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guidelines in the national Framework Plan for the Content and Tasks of Kindergartens 
(Norwegian Directorate for Education and Training, 2017) regulate the rules, con-
tent and tasks that should be undertaken in Norwegian kindergartens. The frame-
work plan includes different learning areas. “Quantities, space and shapes” is the 
learning area related to mathematics. Yet explicit discussion of problem-solving is 
relatively new in the kindergarten curriculum. The previous Framework Plan 
(Norwegian Ministry of Education and Research, 2006) made no reference to 
problem- solving. In the 2017 Framework Plan, the requirement for kindergartens to 
engage children in problem-solving has been made prominent:

The learning area shall stimulate the children’s sense of wonder, curiosity and motivation 
for problem-solving …

By engaging with quantities, space and shapes, kindergartens shall enable the children 
to … investigate and gain experience of solving mathematical problems and find pleasure 
in mathematics …

Staff shall… stimulate and support the children’s capacity for and perseverance in 
problem- solving. (Norwegian Directorate for Education and Training, 2017, p. 53–54)

With the new focus on problem-solving, we decided to investigate and character-
ise mathematical problem-solving situations in kindergartens and to look specifi-
cally at outdoor situations. Outdoor activities are considered a central part of the 
work of kindergartens, with every child expected to spend time outside during their 
days in kindergarten, regardless of the weather. For example, Moser and Martinsen 
(2010) found that children in Norwegian kindergartens spend 70% of the time out-
side during the summer and 30% during the winter. In kindergartens which specifi-
cally focus on nature and outdoor play, the children spend even more time outdoors, 
87% of the time in the summer and 79% in the winter (Lysklett, 2005). Moser and 
Martinsen are critical of the outdoor activities happening in the kindergarten. They 
questioned whether the outdoor environment acts as a pedagogical space for play, 
learning and development and raised the question about the extent that staff criti-
cally reflect upon their outdoor practice (Moser & Martinsen, 2010). Similarly, 
Kaarby and Tandberg (2017) questioned if the absence of an explicit understanding 
of the value of being outdoor implied a form of hidden curriculum. In light of these 
concerns, we are particularly interested in mathematical problem-solving in an out-
door environment as a way of understanding the possibilities of combining play, 
learning and development.

Although little research has been done on this area, Lee (2012) conducted a case 
study in New Zealand over a 4-month period in which she videotaped 32 children 
aged between 13 months and 3 years. In her case study, she described how the chil-
dren explored mathematics in their outdoor play. She focused on natural play among 
the toddlers and excluded play situations that included interactions between chil-
dren and adults. Her findings showed that many children engaged in problem- 
solving in their play and used a variety of strategies to solve these problems.

We wanted to follow up on Lee’s (2012) research and investigate what consti-
tutes mathematics problem-solving in outdoor situations in Norwegian kindergar-
tens. In Sweden, Delacour (2016) investigated how two preschool teachers 
implemented an outdoor realistic problem situation for children aged 4–5 years. She 
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discussed the communication between the children and the adult in the outdoor set-
ting, and how the teacher followed up the children’s interests in a planned activity. 
However, the majority of activities in kindergartens are not pre-planned, but rather 
evolves based on the children’s own interests. Therefore, this study wanted to inves-
tigate the problem-solving opportunities that occur during daily activities with a 
focus on the interaction between adults and children. Consequently, our research 
question is: What kind of mathematical problem-solving can be identified in the 
communication between children and the teacher in an outdoor context?

8.2  Theoretical Frameworks About Mathematical 
Problem-Solving

In regard to mathematical problem-solving, researchers have proposed the use of a 
range of different theoretical frameworks for investigating problem-solving interac-
tions, depending upon whether it is the teacher, the child or the problem-solving 
process which is the focus. In order to answer our research question, it has been 
important to consider problem-solving interactions from all the three perspectives.

The teachers’ role in supporting children to become “good” problem solvers has 
been discussed for many years in relationship to school mathematics. Sometimes 
the teacher presents problems so that the children have an opportunity to learn some 
mathematics. For example, in Carpenter et  al.’s (1993) study, the kindergarten 
teachers generally presented problems, with the purpose of having children learn 
mathematics. In this situation, the focus is on how the teacher considered that math-
ematics will be learnt through problem-solving.

At other times, mathematics is used as a tool to solve a problem so that learning 
mathematics is not the goal; rather it is the solving of the problem. In this case, the 
teacher wants the child to learn to solve problems with the mathematics having only 
a use value within that problem-solving context. A child could engage in problem- 
solving with the mathematical aspects being more or less visible, depending on how 
they perceive the goal of the activity. Nevertheless, children’s engagement with the 
problems can provide information to the teacher. Charlesworth and Leali (2012) 
stated that problem-solving “provides a window into children’s mathematical think-
ing” (p. 373). In Charlesworth and Leali’s description of children’s problem- solving, 
mathematics is more or less a tool for problem-solving for the children.

In considering the teaching of problem-solving, English and Sriraman (2010) 
summarised the findings from a range of studies to suggest that it is not possible to 
identify just one or a few strategies to teach every child to do problem-solving. This 
is because the problem needs to be something new for the child to explore. If a 
teacher gives children detailed instructions on how to solve the problem, then the 
child’s own exploration and learning will be reduced.

When the focus shifts to the child and their engagement with problem-solving, 
the mathematics can be backgrounded. For example, in research on higher-order 
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thinking, Lesh and Zawojewski (2007) discussed instructional strategies that 
encouraged problem-solving. They described an effective problem solver as being 
among other things a person that could break up a complex problem into subtasks, 
do each subtask and exhibit self-regulation. Further, they suggested that brainstorm-
ing and trying alternatives was not good or bad but a way to revise the problem 
solver’s way of thinking. According to Lesh and Zawojewski, the teacher should be 
aware of the children’s beliefs and dispositions (approaches to learning). Burkhardt 
cited in Schoenfeld (2016, p. 22) discussed the difficulties for the teacher when they 
teach problem-solving at school both mathematically, pedagogically and person-
ally. The teacher would not necessarily know the students’ strategies. This means 
that the teachers need to be professionally confident in the different areas of math-
ematics to know if the students’ strategies are productive or not, both for solving the 
problem and for learning more about mathematics or about problem-solving. The 
teacher needs to know how and when the students need support without giving them 
the answers. The teacher does not know what will happen if they give problem- 
solving task to the students, so they have to deal with the uncertainty meaning that 
they need confidence in handling the situation. These difficulties are maybe even 
stronger in kindergarten because kindergarten teachers have less education in 
mathematics.

Based on Lesh and Zawojewski (2007) research, Copley (2010) described an 
effective problem solver in early childhood as a person who perseveres, takes risks, 
tries alternative strategies, remains flexible and focus attention on the problem. 
Copley indicated that an effective problem solver also tested hypotheses and exhib-
ited self-regulation. Although problem-solving is a complex area and children are 
likely to learn to be effective problem solvers in different ways, teachers do have an 
impact on supporting children to be effective problem solvers. The teachers’ role 
includes helping children focus their attention on the problem, give them sufficient 
time to solve the problem and to remain flexible when the children solve the prob-
lem. Further they have a role in letting children try alternatives, take risks and 
exhibit self-regulation. As part of our investigation, we wanted to determine if 
Copley’s characteristics also occurred in mathematical problem-solving in outdoor 
activities.

When problem-solving is the focus of studies, Polya’s description of mathemat-
ics as problem-solving is acknowledged as foundational in considerations of the 
role of problem-solving in mathematics (Schoenfeld, 2016). Polya described four 
stages in problem-solving: “(1) Understand the problem, (2) Device a plan, (3) 
Carry out the plan and (4) Look back” (Pólya, 2004). He situated problem-solving 
as the focus for mathematics instruction in schools, where the teacher provides a 
problem-solving activity which the pupils then solve. His model describes a process 
that supported students’ problem-solving processes as it gave them a metalanguage 
for discussing how they could improve their strategies. Nevertheless, it is not easy 
to see how Pólya’s (2004) stages could be used by kindergarten children, who tend 
to engage spontaneously in problem-solving in kindergartens with the process hap-
pening dynamically. In all of the frameworks described so far, there is an  expectation 
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Fig. 8.1 The Didaktic 
Space Framework from 
Helenius et al. (2016, 
p. 161)

that the teacher has planned a problem-solving situation, with the purpose for that 
situation identified beforehand.

Given the tensions around the role of mathematics in problem-solving, we also 
considered the didaktic space (Helenius et al., 2015; Helenius, Johansson, Lange, 
Meaney, & Wernberg, 2016) to discuss the role of mathematics in outdoor problem- 
solving activities. “The ‘didaktic space’ utilises a ‘k’ in order to highlight the 
Nordic-German rather than the Anglo-Saxon notion of ‘didactic’.” (Helenius et al., 
2016, p. 160). In their framework, the purpose of the problem-solving is considered 
from the child and the teacher perspectives, thus allowing the mathematics to be 
seen within spontaneous situations. The didaktic space is a theoretical framework 
described by Helenius et al. (2015, 2016) and is based on Walkerdine’s (1988) clas-
sification of instrumental and pedagogic tasks. The primary purpose of an instru-
mental task is to solve a practical task, and using/learning mathematics is needed to 
solve the problem. In a pedagogic task, the focus is on the teaching/learning of 
mathematics and problem-solving is the vehicle for achieving this. Helenius et al.’s 
(2016) framework expands that of Walkerdine (1988) by distinguishing between 
whether it is the teacher or the child who focuses on solving the problem or on 
learning the mathematics, as is shown in Fig. 8.1.

If both the teacher and the child are focusing on solving the task so that mathe-
matics is the tool to solve the problem, the situation is considered to be in quadrant 
1. In quadrant 2, the child would consider the activity as being about learning math-
ematics while the kindergarten teacher’s focus would be on the problem itself. In 
quadrant 3, both the child and the teacher are focused on teaching/learning mathe-
matics. In quadrant 4, the teacher is focused on the teaching/learning of mathemat-
ics, while the child or children have their focus on solving the problem.

In our analysis, we identified spontaneous problem-solving situations that 
included elements of numbers, measurements, shapes, spatial thinking or reasoning, 
which are highlighted in the mathematics component of the framework plan 
(Directorate for Education and Training, 2017).
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8.3  Methodology

The data for this study came from observations in a Norwegian kindergarten that 
took place during the autumn of 2017. The observations included video and audio 
recordings and field notes. In this kindergarten, the children were outdoors from 
10 am to 3 pm each day. The first author collected the data over 7 non-consecutive 
days, by following a group of 22 children, aged 5–6 years old, 2 kindergarten teach-
ers and 2 assistants. These days normally began with planning and packing for the 
day’s excursion, then travelling to an outdoor environment, such as a forest, the 
seaside, a park, a valley, or climbing up a mountain, before returning to the kinder-
garten. The aim was to give the children new environments to explore.

8.4  Data

From the data set, one problem-solving situation was chosen for analysis using the 
different theoretical frameworks. To answer the research question, we wanted to 
analyse how the kindergarten teacher interacted with the children in a spontaneous 
situation initiated by a child in an outdoor setting. In this situation, the children and 
the kindergarten teacher were communicating about a problem-solving event.

As most previous research has focused on children’s problem-solving with num-
ber ideas (Carpenter et al., 1993; Charlesworth & Leali, 2012; Rogers, 2004; Tarim, 
2009), we selected a situation that involved measurement. According to Sarama and 
Clements (2009) and Zöllner and Benz (2016), certain ideas are common across 
different measurement situations. At an early age, children learn to use language to 
represent quantities or magnitudes. They also engage in comparing objects directly 
and in this way recognise equality or inequality. Later on, children come to under-
stand how to use units to measure, usually non-standard and then standard units, and 
connect numbers to quantities.

The outdoor environment had the advantage of plenty of space, and it was easy 
to involve a lot of children. The outdoor setting also provided access to natural 
materials such as sticks, trees, and stones, which allowed the children to use their 
own creativity and imagination about how this material could be used. The nature 
had rich access to tools that might be used for measurement activities. The advan-
tage was that tools as for example sticks did not have predefined properties in the 
same way as measuring tools for example a ruler or a tape measure. In nature the 
children were allowed to explore the material and find a suitable tool to solve the 
problem, adding an extra dimension to the problem-solving activity.
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8.4.1  A Child-Initiated, Problem-Solving Activity

The episode happened outside the kindergarten building while a group of nearly 20 
children (aged 5–6 years old) and 2 kindergarten staff members were waiting to 
begin their daily excursion. A boy (4 years old) from another part of the kindergar-
ten arrived requesting help from a kindergarten teacher as a spade had fallen in- 
between some planks on a wooden boat and the gap between the planks was too 
narrow to retrieve it easily. The spade had a handle with a hole at the top.

In this episode, we have named the participants as: kindergarten teacher “Kt”; 
Child 1, the boy that initiated the problem, “C1”; Child 2, “C2”; Child 3 “C3” and 
Child 4, “C4”.

The transcript begins with the kindergarten teacher and the boy, C1, standing and 
looking at the lost spade through the slats of the boat.

1 Kt:  How should we solve this? Maybe we could fish it up in some way?
2 C1: Could we use a stick?

 The boy ran and fetched a stick, put the stick in the hole, but it could not reach 
the spade.

3 Kt:  It is too short.
 The boy ran and fetched a small spade and wanted to use it to grasp the lost 

spade. He returned and looked down on the lost spade with his small spade in 
his hands, then moved his eyes and looked at the small spade and after that 
returned his eyes to the lost spade. Finally, he took a few steps back.

 Other children came along, and one child carried a spade of the same size as 
the one that had fallen down. This spade was longer than the first one. C2 
looked at the kindergarten teacher and said:

4 C2: Is it possible to use this?
 Then the children and the kindergarten teacher took a glance at the spade and 

down the hole.
5 Kt:   It is not a good idea to push the new spade in the hole. This spade is so wide so 

you have to push it down to get it into the hole in the boat and that could easily 
result in losing two spades. What else do you think we can use?

 One of the children discovered a plank that is slightly loose on one side. He 
lifted the plank and rotated it slightly to make the hole a bit bigger.

6 C3: Could we use a rope?
 The kindergarten teacher walked inside and got some string. C3 tried to fish up 

the spade with the string, and finally the string reached the spade. However, the 
string just hung down in the hole and the spade stayed where it was. The 
children were quiet, looking down in the hole.

7 Kt:  Do we have a long stick to use?
 The children started searching in the nearby area.

8 C2:  We could get a stick in “Trollskogen” (“The troll forest”, an area close to the 
kindergarten, approximated 250 metres from the boat).

9 Kt:  Yes, that was a good idea.
 The kindergarten teacher and the children moved towards “Trollskogen”. On 

the way, they passed the shed and on the top shelf in the shed, they found a 
long pole. It was difficult for the children to reach up to the pole, so the 
kindergarten teacher picked up the pole and they brought it back to the boat. 
More children were coming along and the dialogue around the boat continued.
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10 C4: I want to see, I want to see.
 About 10 children gathered around the boat, looking for the missing spade. They 

all wanted to try to fish up the spade by using the pole. Suddenly the bell rang 
and the kindergarten teacher had to leave with her own group for their day trip. 
She asked one of the other employees if they could help. The kindergarten 
teacher only told the other adult about the spade in the hole, not about the 
children’s engagement in the problem. The other employee removed the loose 
wooden plank, put his hand down the hole and picked up the spade. Then he 
reinserted the wooden plank.

After this episode, the first author talked to the kindergarten teacher who said:

Just before the bell rang, I was thinking that this activity could take up the children’s mind 
for quite a long time, because everyone wanted to fish up the spade. My thought was that 
this was such a wonderful opportunity to explore measurement and their logical thinking, 
both the distance down to the spade and their suggestions of how one actually should grab 
the spade at the bottom of the boat. I was the one that got the children into this activity, but 
I was also the one that stopped their activity. Could we have engaged with it for longer and 
let the children solve it themselves? Would they have managed to fish the spade up on their 
own if I had told my colleague about the children’s activity instead of just telling him about 
the spade in the hole?

8.5  Analysis and Discussion

In order to answer the research question, we analyse the interaction from different 
perspectives: the mathematics; the child and the teacher, using different theoretical 
frameworks. Using these frameworks provides an understanding of what comes into 
focus and how this contributes to understanding the research question.

8.5.1  An Analysis and Discussion of the Measurement 
Understanding

As noted earlier, the problem-solving involved the children engaging with different 
measurement ideas. In this situation, the problem seemed to have two parts: one was 
to reach down to the lost spade, and the other one was how to grab the spade and get 
it up. The first one involved a measurement understanding, related to the distance 
down to the lost spade. According to Sarama and Clements (2009), an important 
understanding about measurement is identifying the attribute to be measured, in this 
case the length. In solving the problem, the children seemed to understand that they 
had to focus on the distance between two points, the boards on the boat and the 
spade under the boards. This indicates that they could identify the attribute, length, 
as being important in solving the problem.

M. H. Lossius and T. Lundhaug



135

When they tried a stick which was too short, they did not try the same stick twice 
as they understood that the length of the stick did not change. They also did not sug-
gest items smaller than this stick indicating that they understood transitivity in that 
if the length to the lost spade is longer than the length of the stick and the stick is 
longer than other sticks, then the length to the lost spade must be longer than the 
lengths of the other sticks (Bush, 2009). In the episode, the children showed 
 competence in comparing different objects to determine if they were long enough to 
reach down to the lost spade. After trying a stick, child 1 ran and fetched a small 
spade and wanted to use it to grasp the lost spade. He used his eyes to make a com-
parison because he moved his eyes from the lost spade to the small spade in his 
hands and finally looked back to the lost spade. Then, he took some few steps back, 
perhaps because he concluded that his small spade was too short without having to 
physically make a comparison. It did not seem that the children chose items to reach 
down to the spade randomly. Instead they adjusted their choice of objects from what 
they learnt from using the previous one.

According to Lesh and Zawojewski (2007), problem-solving can involve find-
ing an appropriate tool to solve the problem. In this episode, the children explore 
sticks and other spades as tools to solve the problem. One of the benefits of an 
outdoor environment is that there is a variety of potential tools available. In this 
case, where a direct comparison is needed between the tool and the length between 
the boat slats and the lost spade, sticks of different lengths seem more valuable for 
this problem than rulers or measurement tape with a fixed length that indicates 
standard units of measurement. In this environment, the children had the possibil-
ity to choose different objects based on their own creativity and fantasy as the 
most appropriate tool to reach down to the lost spade. This problem-solving situ-
ation is, therefore, in alignment with the Framework Plan’s emphasis on following 
children’s own interests.

In this interaction, the first two objects are too short, while the third tool is longer 
but too wide. Finally, the string had an appropriate length, but they were not able to 
get the string around the spade so they could not solve their actual problem of 
retrieving it. However, to get as far as they did, the children engaged in a lot of com-
parisons, which is one of the initial forms of measurement understandings (Sarama 
& Clements, 2009). The kindergarten teacher described what the children were 
doing with certain adjectives of length, such as short and long, and it seemed that 
the children understood the meaning of them in this context, which is noted as 
another competence of measurement (Zöllner & Benz, 2016).

8.5.2  An Analysis and Discussion Using Copley’s 
Characteristics of an Effective Problem Solver

To analyse the situation by highlighting how the teacher supported the child’s role 
as a problem solver, Copley’s (2010) description of an effective mathematical prob-
lem solver was used. Copley (2010) described an effective problem solver in early 
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childhood as a child who perseveres, takes risks, focuses attention on the problem, 
remains flexible and tries alternative strategies, by testing hypotheses and exhibiting 
self-regulation.

In the episode, the kindergarten teacher helped the children to focus on the prob-
lem and encourage the children to try alternative strategies. For example, when 
Child 2 suggested using a spade the kindergarten teacher told the children why it 
was probably not a good idea, but then she followed up with the question, “What 
else do you think we can use?” In this way, she did not take the onus for the problem- 
solving off the children but encouraged them to preserve with trying out alternative 
ideas even after she had rejected the initial suggestion as not being appropriate.

When a child suggested using a rope, the kindergarten teacher did not say that 
using a rope would not work but allowed the children to explore the suggestion. The 
children got the opportunity to try and fail, but their action and utterances showed 
that they were adjusting their understanding of the different qualities that an object 
would need if it was to be used for rescuing the lost spade. When child 1 suggested 
using a stick and it was too short, no other child suggested using a stick of the same 
or smaller size. Instead, the children came up with alternative strategies, based on 
their reflections on their previous attempts. The kindergarten teacher gave the chil-
dren some time to solve the problem before she had to leave. After the episode, the 
kindergarten teacher reflected on how she could have maintained the problem- 
solving activity among the children. In this reflection, the kindergarten teacher 
showed that she had thought about how it would have been possible to give the 
children more time to solve the problem, thus supporting the children in persisting 
with the problem. Thus, Copley’s characteristics of an effective problem solver sup-
port our understanding of how the teacher can support children to learn how to 
engage in mathematical problem-solving in outdoor situations.

8.5.3  An Analysis and Discussion Using Polya’s 
Problem- Solving Stages

Polya’s four stages of problem-solving provide the possibility of analysing the 
episode by highlighting the children’s engagement with problem-solving. It is possible 
to see that the children engaged trying to understand the problem, the first of Pólya’s 
(2004) stages. The children recognised that they needed enough information about 
the problem as well as solution strategies to identify the conditions for solving the 
problem. It seemed that they did this as they were also devising plans.

The children’s plan seemed to be to identify items, initially by guessing and later 
by refining those guesses based on previous information from trying them out. 
However, there was no explicit discussion about alternative strategies until each 
idea was tested.

The third stage, “Carry out the plan”, involves actively solving the problem and 
often this seems to be easier than stopping to plan how to solve the problem. 
Certainly, the guessing and trying in this episode were actions for carrying out the 
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plan and also provided a basis for redefining their understanding of the problem and 
the sorts of strategies that would be successful.

According to Jacobbe (2007), the last stage “look back” or “reviewing the solu-
tion” is often the most neglected of all of Polya’s stages in school. In this episode, 
the last stage, “look back”, was not explicit in the children’s problem-solving 
 processes, rather it seemed to occur when it was found that the string could reach 
the spade but not bring it up. However, the children did not use metalanguage for 
discussing what they did that might be useful to solve similar problems in the future. 
Instead, the refining of the choice of tools could be seen as a result of reflection on 
what they had learnt from trying out items that were not appropriate. Polya’s stages 
provide some understanding of the problem-solving situation, but aspects related to 
how the children interacted with the teacher and with each other were not high-
lighted as it had been, for example from the analysis using Copley’s ideas about 
problem solvers.

8.5.4  An Analysis and Discussion Using the Didaktic Space

To get an understanding of the relation between mathematics and problem-solving 
in relationship to the interaction between the teacher and the children, we analysed 
the situation using the framework of the didaktic space. In the example, the kinder-
garten teacher did not impose their own view on the problem-solving process but 
tried to prompt the children to engage with the problem. By allowing the children to 
try out different ideas, she seemed to be respecting their suggestions in order for 
them to learn from their own experiences.

We classify the start of utterance 1 “How should we solve this?” as pedagogical 
(Helenius et al., 2016) as it seemed that the kindergarten teacher had a pedagogic 
purpose to encourage the child’s reasoning abilities in relation to solving the prob-
lem. The kindergarten teacher asks the child for a solution instead of just telling the 
child how to find the solution.

In contrast, when the kindergarten teacher then suggested fishing the spade up in 
some way, it could be that she was now more interested in solving the problem and 
not in teaching the children about mathematical ideas, so we classify the end of 
utterance 1: “maybe we could fish it up in some way” as belonging to quadrant 1 as 
both the teacher and the children had an instrumental purpose. However, it may also 
be that in order to take the child’s perspective the teacher asked a question that she 
herself already knew the answer to, which would then mean that this part of the 
utterance is also pedagogical in that it was designed to support the children learning 
about problem-solving strategies. The children’s interest was not on learning or 
teaching others about mathematical ideas. Their interest remained purely on solving 
the problem. The mathematics and the problem-solving were pathways for solving 
the problem, so their purpose in engaging in it was instrumental.

In the utterances 2 and 3 there is a switch from an instrumental to a pedagogic 
situation. Child 1’s utterance, “Could we use a stick?”, is classified as instrumental 
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because it focused on the actual problem and not on the mathematical ideas that 
could be learnt. The boy compared the length of his spade with the length from the 
top of the wooden plank down to the lost spade, showing that mathematical ideas 
about comparing lengths were essential for solving the problem. Still, his main 
purpose is to solve his problem and not on learning mathematical knowledge. This 
makes his utterance instrumental.

The kindergarten teachers described his physical exploration in words by saying, 
“It is too short”. In this way, she switches attention away from the solving of the 
problem, to ensuring that the child has an opportunity to learn the appropriate math-
ematical language. Thereby we classify utterance 2 and 3 as belonging to quadrant 
4, where the purpose is instrumental for the child and pedagogic for the kindergar-
ten teacher. Utterances 4 and 5 suggest that the situation remained instrumental for 
the children as they were focused on solving the problem. Engaging in direct com-
parisons, the children used their mathematical knowledge about measurement to try 
to solve the problem, rather than learning about how to make a direct comparison. 
Therefore, these utterances belong in quadrant 1, as both the child and the kinder-
garten teacher are focused on the problem.

It is not until the kindergarten teacher’s final question in utterance 5, where she 
seemed to take on a more pedagogical focus by asking about the children’s other 
ideas, “What else do you think we can use?”. The teacher’s discussion about the risk 
of putting another spade down the hole could also be pedagogical, as it both used 
measurement terms to do with distance and also provided a model of logical reason-
ing to describe her wish for them not to try with the other spade.

Utterance 6: “Could we use a rope?” is an example of a situation that was instru-
mental for the child because the child was focused on the problem. An adaptation of 
the child’s suggestion was tried and failed, not because it had inappropriate mea-
surement attributes but because it was an inappropriate way to fish up the spade.

Then, the kindergarten teacher returned the focus to measurement, “Do we have 
a long stick to use?”. This suggests that the teacher saw this as a pedagogical situa-
tion but allowed the children to stay with their instrumental focus. Thus, we classify 
this interaction as belonging to quadrant 4, instrumental for the child and pedagogic 
for the teacher.

8.6  Implication for the Kindergarten Teacher’s Role

In the kindergarten teacher’s reflection after the episode, she reflected on how she 
could have prolonged the activity. She questioned whether she could have done 
something else to support the children’s own problem-solving activity even more. 
As discussed in the theoretical framework section, Burkhardt cited in Schoenfeld 
(2016, p. 22) discussed the difficulties for the teacher when they teach problem- 
solving in school both mathematically, pedagogically and personally. In this epi-
sode, the kindergarten teacher needed to know what kind of mathematics she could 
highlight for the children in solving this problem. This would include knowledge 

M. H. Lossius and T. Lundhaug



139

about how to support children’s measurement understanding, as well as children’s 
knowledge about arguing and logical thinking. The kindergarten teacher would also 
need knowledge about how to support the children pedagogically, by deciding what 
to ask questions about and how to enquire about children’s own ideas about their 
exploration. The kindergarten teacher did not know what would happen next when 
the children tried to solve the problem. That is an uncertainty, challenging the kin-
dergarten teacher personally.

A discussion related to theory might be a way of learning how to overcome such 
challenges. Copley’s (2010) characteristics of problem solvers, Pólya’s (2004) 
stages and the theory of the didaktic space (Helenius et al., 2015) could be theoreti-
cal tools to help the kindergarten teacher to identify problem-solving situations in 
outdoor education and to reflect on how to support children’s own understanding in 
similar situations. Kaarby and Tandberg (2017) suggest that if the kindergarten 
teacher education to a greater extent acknowledged subject-specific play and learn-
ing experiences and discussions, it may help prospective kindergarten teachers to 
see the variety of possibilities that exist within outdoor activities, in this case related 
to mathematical problem-solving.

Another element in this situation is that it is not given that the mathematics is clear 
for the children while they are trying to solve the problem. In fact, it might be detri-
mental to the problem-solving if the kindergarten teacher had stopped to highlight the 
mathematics. Maybe it had been a better idea to have a discussion about the episode 
another day so that the children had an opportunity to reason about the experience? 
Lossius (2012) wrote about how pedagogical documentation might be the starting 
point for professional discussions with the children. In this situation, the kindergarten 
teacher could have taken a picture of the boat itself and let it be the starting point for 
a common later reflection. It also could give the kindergarten teacher an opportunity 
to reflect on how to ask pedagogical questions allowing children to use mathematical 
terms in their discussion about their previous problem- solving activity. This is in line 
with Pólya’s (2004) stage “look back”.

8.7  Conclusion

This episode shows an example of how mathematical problem-solving occurs in an 
outdoor child-initiated activity. In the situation, mathematics was a tool that the 
children used implicitly to solve a practical task in the outdoor environment. 
However, the kindergarten teacher was able to use the child’s instrumental focus to 
raise measurement awareness, suggesting that she had a pedagogical purpose. The 
didaktic space theory provided a nuanced tool to discuss how the kindergarten 
teacher switched from instrumental to pedagogic perspectives and vice versa. Both 
Copley’s (2010) ideas about problem-solving and Polya’s four stages of problem- 
solving also provided some insight into what the children were doing. However, 
they did not show how the kindergarten teacher used the problem-solving situation 
to highlight measurement ideas about direct comparison, to support the problem 
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being solved and also to raise these points as being valuable for the children to 
reflect on.

The kindergarten teacher used the children’s interest and ideas to drive the 
problem- solving, while also providing opportunities for them to engage with direct 
comparisons, an initial measurement understanding. The kindergarten teacher used 
mathematical terms to describe the children’s experiments, such as “short”, “wide”, 
“long”. In this way, the teacher had a clear pedagogical stance in relationship to the 
children engaging in the problem-solving situation, “My thought was that this was 
such a wonderful opportunity to explore measurement and their logical thinking, 
both the distance down to the spade and their suggestions of how one actually 
should grab the spade at the bottom of the boat”.

According to Moser and Martinsen (2010), Norwegian kindergartens spend a lot 
of time in the outdoor environment, but kindergarten teachers do not take advantage 
of this environment in supporting learning. In this chapter, we have focused on a 
situation where the kindergarten teacher listened to children’s interests in the out-
door problem-solving activity and supported the children to solve the problem on 
their own, while also raising mathematical ideas. Such awareness of the potential of 
similar problem-solving situations might be fruitful to stimulate mathematical 
learning in the outdoor environment.

Mathematical problem-solving is a complex area, and the kindergarten teacher 
needs knowledge both in mathematics and in problem-solving. In a planned activity, 
the kindergarten teacher has the time to prepare and think of how to support and 
engage children in problem-solving, but the knowledge requirements are higher in 
spontaneous situations that happen in the outdoor environment. According to Kaarby 
and Tandberg (2017), learning opportunities may not be recognised by kindergarten 
teachers in the outdoor context. The discussion in this chapter around one episode 
may help kindergarten teachers to develop a language to talk about mathematical 
problem-solving in the outdoor environment and an understanding of how to support 
mathematical problem-solving in similar situations.
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Chapter 9
Making Choices and Explaining Them: 
An Experiment with Strategy Games 
in Kindergarten

Marina De Simone and Cristina Sabena

9.1  Introduction

The development of mathematical thinking from the time of childhood is recom-
mended by the National Standards in most countries and is getting increasing atten-
tion in mathematics education research (see for instance the recent ICMI Study 23, 
Bartolini Bussi & Sun, 2018). Many studies focus on number development and, 
more generally, on numeracy, whereas less attention is dedicated to other topics 
(e.g. spatial thinking or probability), or to less content-specific aspects such as 
problem- solving and argumentation. Furthermore, as Levenson, Bartolini Bussi, 
and Erfjord (2018) point out as a future direction for research in early years math-
ematics, “there is little research into the nature and task design of mathematical 
activities and teacher’s orchestration that might foster children questioning and chil-
dren’s own investigation” (p. 112).

In our research, we explore how strategy games may be designed and orches-
trated at kindergarten level in order to promote children’s mathematical processes 
such as reasoning, making choices, identifying regularities and relationships, pro-
ducing conjectures and explaining them. We consider these processes as key tools 
to give young children “access to powerful mathematical ideas” (Perry & Dockett, 
2008). However, their development is hardly to be achieved without a careful task 
design and teachers’ guidance.

Research addressing primary and secondary school levels has shown that math-
ematical games may constitute potential learning tools for mathematics teaching 
and learning, in particular with respect to spatial reasoning, mathematical 

M. De Simone (*) 
University of Geneva, Geneva, Switzerland
e-mail: marina.desimone@unige.ch 

C. Sabena 
University of Torino, Torino, Italy

© Springer Nature Switzerland AG 2020
M. Carlsen et al. (eds.), Mathematics Education in the Early Years, 
https://doi.org/10.1007/978-3-030-34776-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34776-5_9&domain=pdf
mailto:marina.desimone@unige.ch
https://doi.org/10.1007/978-3-030-34776-5_9#DOI


144

 abstraction, higher level thinking, decision making and problem-solving (e.g. 
Ernest, 1986). By referring to Harvey and Bright (1985) and Oldfield (1991), 
Mousolides and Sriraman define a task or activity as a “pedagogical appropriate 
mathematical game” when the following criteria are met:

has specific mathematical cognitive objectives; students use mathematical knowledge to 
achieve content-specific goals and outcomes in order to win the game; is enjoyable and with 
potential to engage students; is governed by a definite set of rules and has a clear underlying 
structure; involves a challenge against either a task or an opponent(s) and interactivity between 
opponents; includes elements of knowledge, skills, strategy, and luck; and has a specific 
objective and a distinct finishing point (Mousolides & Sriraman, 2014, pp. 383–384).

Taking a design-based perspective (Cobb, Confrey, diSessa, Lehrer, & Schauble, 
2003), we designed and carried out a study in an Italian kindergarten, based on 
strategy interactive games in which children were asked—in addition to playing in 
a supportive atmosphere—to make choices in order to win a game, and to explain 
them. The design is in line with the Italian National Guidelines, which underline the 
importance of developing, starting in kindergarten, children’s “rational thinking”, in 
order to allow them to “tackle problems and situations based on certain elements 
and being aware of the limitations of statements regarding complex issues that do 
not lend themselves to univocal explanations” (MIUR, 2012, p. 10, translation by 
the authors). Children are introduced to strategy games within a guided play setting 
(Levenson et al., 2018), in which the teacher not only offers activities and material 
to children but also interacts with them, in ways that support the development of 
their mathematical ideas and reasoning processes. We agree with those approaches 
in mathematics education, inspired by phenomenological perspectives on cognition, 
that stress how mathematical learning requires a development of scientific ways of 
seeing and focusing things. As underlined by Radford (2010, p. 4), students must be 
taught to “see and recognize things according to ‘efficient’ cultural means” and to 
convert their “eye (and other human senses) into a sophisticated intellectual organ”. 
Namely, it is necessary to promote a “lengthy process of domestication” (ibid.) of 
the way they are looking at things while learning mathematics.

In the next section we introduce the two main theoretical pillars of our study, 
namely the game theory for framing the design and the analysis of the activities 
from a global point of view, and a phenomenological frame that will allow us in 
detail to analyse children’s foci of attention and their evolution during the teaching 
experiment.

9.2  Theoretical Framework

Strategy games are strategic interaction problems in which two or more decision 
makers can control one or more variables that affect the problem’s results. Each 
individual’s situation is fully dependent on the move of the opponents, and the play-
ers know this. The decisions of each player influence the final result of the game. 
Therefore, every player should think, not only about his/her possible moves but also 
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about what other players should do if they want to construct a successful strategy. 
According to Game Theory, usually the best strategy to win the game is discovered 
through a backward induction process that starts from the last move and goes back 
to the first one (von Neumann & Morgenstern, 1947).

Strategy games’ features are in line with the previous definition of a pedagogical 
appropriate mathematical game. More precisely, our research is based on the 
assumption that these games constitute suitable contexts to develop key compe-
tences related to problem-solving and argumentation, from the time of childhood. As 
a matter of fact, strategy games are based on making and comparing choices, hence 
they may be related both to planning processes (e.g. to figure out winning strategies 
for the game) and to control processes (e.g. choosing suitable semiotic resources to 
represent the possible outcomes of a certain move), which are important features of 
genuine problem-solving (Martignone & Sabena, 2014). If inserted within a suitable 
educational design in which the students are asked to give reasons for their choices 
and to explain what they observe in order to win the game, strategy games may be 
also be suitable activities to develop processes of argumentation. Previous results in 
primary school seem to confirm such a hypothesis (Sabena, 2018); to our knowl-
edge, research on this topic in kindergarten level is underdeveloped.

In order to find a winning strategy of a game, students need to identify regulari-
ties and to relate these regularities. This requires focusing attention on specific 
aspects of the game, ranging from more global ones to more detailed ones. Mason 
(2008) defines attention as “the manifestation of will, of intention. It is not a thing, 
but its influence can be inferred, though certainly not observed, in others. It is obser-
vation: it is the medium through which observation takes place” (ibid., p. 4).

When facing a mathematical problem, students focus their attention on it in dif-
ferent manners. In this perspective, attention has “micro qualities” that characterize 
how students are attending, rather than to what they are attending. In particular, 
Mason (ibid.) outlines five forms of attending: gazing at the whole, discerning 
details, recognising relationships, perceiving properties, and reasoning on the basis 
of specific properties. These forms of attention are often intertwined in students’ 
mathematical activity and they are not organized in a hierarchical structure.

Gazing at the whole encompasses “gazing not really focused on anything in par-
ticular, yet taking in the whole” (ibid, p. 6). Rather, discerning details is referring to 
the process of making distinctions. For example, in Fig. 9.1, we can focus our atten-
tion by discerning some details of this strip: it is made up of aligned squares, some 
squares are greyed out and others are white, the 5 squares seem identical, etc.

Then, “recognising of relationships between discerned elements is often an 
entirely automatic development from discerning details” (ibid, p. 7), but it could be 
difficult to be aware of a relationship between two or more elements embedded in 
the activity. In the previous example (Fig. 9.1), it is the relationship between 2, 3 

Fig. 9.1 The example of the strip (from Mason, 2008)
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and 5 that is essential. For example, we could formulate the following relationships: 
2/5 squares are white or 3/5 squares are grey. More formally, taking the entire strip 
as a unit, 3/5 of the strip is grey or 2/5 is white.

Perceiving properties is activated when a subject is aware of a possible relation-
ship and looks for elements to reinforce/confirm it. Particular relationships are con-
sidered, therefore, as examples of general properties, i.e. particular relationships are 
instantiations of properties. In the example of the strip (Fig. 9.1), a student perceives 
a property related to fractions between 2, 3 and 5 if he looks for and finds other par-
ticular relationships that confirm this property. For instance, in order to distinguish 
which of the two fractions 3/5 and 5/3 are represented, one should know some infor-
mation on what represents the unit in the strip, that is a specific property related to 
fraction models. Or, more simply, a child could perceive a property related to addi-
tion, and understand that 3 grey squares and 2 white squares equals 5 squares in all.

Finally, reasoning on the basis of specific properties refers to the utilization of 
axioms, theorems and definitions for constructing mathematical thinking. For 
example, reasoning about equivalent fractions on the basis of their definition.

The different forms of attending are strongly influenced and shaped by knowl-
edge: as all phenomenological perspectives underline, attention and knowledge are 
deeply interrelated. In educational settings, teachers therefore have an important 
role in guiding learners’ attention: “indeed perhaps the only thing they [teachers] 
can actually do for learners, is to direct learners’ attention” (Mason, 2008, p. 1). 
This theoretical premise constitutes the background on which the teacher’s role has 
been foreseen in our study.

9.3  The Teaching Experiment

Following a design-based methodology (Cobb et al., 2003), we designed and carried 
out a teaching experiment in a kindergarten school in Italy, involving twenty 5-year-
old children and one teacher. The kindergarten involved in the research was a volun-
tary school. The teaching experiment was conducted once a week over a period of 3 
months. Each intervention lasted about 2 h. Children were involved in playing some 
strategic interaction or probability games and in reflecting on how they could make 
the best choices in order to win the game. During this teaching experiment, we pro-
posed to children three different games: a strategic game called the “Thirteen buttons 
game”, a game about the spatial orientation inspired by the problem of the seven 
bridges of Königsberg and a probability game. In this chapter, we focus on the teach-
ing experiment based on the “Thirteen buttons game”, an adaptation from the “Race 
to twenty” (Brousseau, 1997).1 “Thirteen buttons game” was the first game intro-
duced to children in our study, for a period of about 1 month (10 h).

1 The game has been adapted from the “Race to 20” to the “Thirteen token game” by Valeria Perotti 
for the “Gruppo di ricerca disciplinare” I.C. in Pianello Val Tidone, with the support of Donatella 
Merlo, teacher-researcher from the University of Torino.
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The first author was present in the classroom as a participant observer and col-
laborated with the teacher in all phases of the design experiment. A master’ student 
was also present and helped with videotaping the activities and with transcribing the 
dialogues.

9.3.1  The Thirteen Buttons Game

The game is played by two players, which alternate and play one against the other, 
starting from the initial situation of 13 buttons (or other tokens) displayed on a line. 
Each player, in his turn, can take 1, 2 or 3 buttons. It is not possible to skip the turn. 
The one who takes the last button loses the game.

As the reader may check himself/herself, the winning strategy involves starting 
as the second player and in taking the buttons according to the following number 
sequence: 4-8-12 (multiples of 4). In this way, the other player is obliged to take the 
last button in the final move and loses the game. As “the run to twenty”, the game 
may be connected to the Euclidian division (13: 4 = 3, rest 1). More generally, in 
these kinds of games, the player needs to find out, for any move by the opponent 
player, the right move in order to win the game: hence such processes may be related 
to the logical scheme of coordinating a universal qualifier (for any move of my 
opponent player…) with an existential one (there exists a winning move), as is the 
case in many mathematics theorems. At kindergarten level, this is not, of course, the 
mathematical refinement that is meant to be considered. The Thirteen buttons game 
was chosen in order to propose an inquiry situation in which children could be 
engaged in making choices and checking their consequences, identifying regulari-
ties and relationships, and producing conjectures and explaining them. Even if, in 
playing the game, children can rely on immediate recognition of quantities up to 
3–4 (subitizing), the identification of the complete winning strategy is far from 
being immediate and constitute a suitable inquiry situation for children, also in 
upper school level.

9.3.2  The Didactical Choices

Children were organized in two groups of 10, and each group was involved for 10 h 
in the experimentation, which has been organized in three phases. In the first phase 
(the first lesson, 2 h), the game is introduced as a mysterious game that the teacher 
and the researcher (introduced to children as a new teacher) are playing. After the 
initial hypothesis expressed by the children on the goal of the game, the rules are 
made explicit. Children are then organized in pairs and start playing, one pair after 
the other, in front of the other children, the teacher and the researcher.

During the second phase (three lessons, 6 h), in order to help children understand 
some regularities underpinning to the winning strategy, a new element has been 
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Fig. 9.2 The dinosaur with the analogical representation for numbers from 1 to 13

introduced: a dinosaur with 13 crests, each crest providing an analogical representa-
tion of a natural number through dots. In this way, a sort of analogical number line 
from 1 to 13 (Fig. 9.2) is provided. The dinosaur was introduced 1 week from the 
first meeting, when the rules of the game were discovered. This was pre-planned by 
the researcher in the organization of the experiment. We used dots for representing 
numbers because not all pupils engaged in the activity knew numbers written in 
digits. Putting buttons on the top of the crests aimed to make visible to pupils the 
position of each button (in light yellow in Fig. 9.2).

In the new game, an ordinal sense for natural number is introduced and associ-
ated with the buttons. On the other hand, the analogical representation is meant to 
scaffold children to establish which number of the sequence is considered, ground-
ing on subitizing processes and on counting.

In the third phase (lasting 2  h), children played again without the dinosaur, 
simultaneously and autonomously. This phase allows the researcher and the 
teacher to observe if children have understood how to win the game and, more 
generally, which strategies they follow without the scaffolding of the analogical 
dinosaur line.

Since the first phases, the teacher and the researcher’s roles consist of playing 
with children, and of prompting them to make explicit their ideas and to refine their 
observations; also, teacher and researcher may ask directly about the choices made 
by the children, especially in case of failure, so to enhance their reflection. The 
focus on the verbalization of incorrect procedures is planned ahead with the aim of 
getting children to verbalize their choices as much as possible. This way, also chil-
dren who observed the matches could intervene and help their mates through creat-
ing a positive atmosphere, in which losing the game was not considered as a failure 
but as an occasion to reflect. Furthermore, in each phase, after a playing time, some 
time is dedicated to reflect on what happened during the game. In these “reflective 
moments”, the teacher and the researcher interacted with the children in order to 
prompt their attention towards important aspects of the game and to foster the pro-
duction of explanations on what they observed.
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9.4  Data Analysis

We will briefly report on each phase and detail selected episodes, in order to report 
how children’s focus of attention evolved and how they were engaged in meaningful 
mathematical processes, such as reasoning, making choices, identifying regularities 
and relationships, producing conjectures and explaining them.

The episodes are selected from the video recording of the entire cycle of activi-
ties, obtained through a mobile video camera. We video-recorded the mathematical 
activity of all the children but, for our analysis, we have selected the most meaning-
ful excerpts. In the transcriptions, all children’s names have been changed.

9.4.1  Phase 1: Introduction to the “Thirteen Buttons Game”

To introduce the game, we brought a metal box containing many buttons of different 
colours and shapes. We asked two randomly selected pupils to collect 13 buttons 
from this box, and put them in a line (Fig. 9.3). We agreed with the students that the 
buttons were all equivalent, although some of them had different colours and shapes.

The activity is introduced through some matches being played between the 
teacher Maria and the researcher Marina, without any explanation. The children 
observe and are then involved in a discussion on how the game works. The researcher 
opens the discussion with some questions: “what do you think this game is about?”, 
“who has won the match?”, “why has the winner won?”. The last move—taking the 
last button— is soon identified as a losing move:

1 Silvia:     She took the last button and she lost the game.
2 Bruno:      And then if a button remains there, it means that Maria takes it and so Marina 

wins.

After the initial hypothesis expressed by the children on the goal of the game 
(“it’s the ‘take-the-buttons-game’”, “who takes more buttons wins the game”), the 
buttons are all counted and the rules are made explicit by the teacher and the 

Fig. 9.3 The buttons’ box 
and the buttons displayed 
in a line
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researcher. Children are then organized in pairs and start playing, one pair after the 
other, in front of the other children, the teacher and the researcher. Sometimes they 
play against Maria or Marina. In this phase, the children insist on being the first 
player; they almost always take the maximum number of buttons that they can, that 
is 3, saying that “taking more” increases their chances of winning. Also, they show 
a tendency to take the buttons without following a precise order, so, for instance, 
they take them from both sides of the line. We remark that this behaviour is allowed 
by the rules of the game, which do not establish anything about which buttons are to 
be taken, or any order to be followed.

These first naive considerations will change for most children during the devel-
opment of the teaching experiment. During the first phase, almost all children 
understood that taking the second last button allowed them to win. They did not 
spontaneously verbalize this choice, but just enacted it. This is an example of a 
match between Marina (the researcher) and a pupil, Pia: Pia begins the match and 
she takes three buttons, then Marina also takes three buttons, Pia takes three buttons, 
Marina takes two buttons and, in this moment, Pia is very careful to take the second 
last button and to stop.

We will now analyse, more in detail, one example from this first phase, in which 
the researcher (Marina) interacts with Stefano, after playing with him. Marina has 
just won a match against Stefano and asks the child to reflect on why he has lost. In 
order to narrow down Stefano’s attention to a specific aspect of the game, Marina 
produces the same configuration that Stefano was facing in his second last move: 
four buttons are left on the floor. During the match, in front of this configuration 
Stefano had taken two buttons; hence Marina could take one button and win (because 
Stefano had to take the last one). The reader is reminded that when four buttons are 
left on the floor, a player has the possibility to win the game, taking three buttons 
and leaving the last one to the opponent.

After setting the configuration with four buttons, Marina asks Stefano what he 
could have done to win:

3 Marina (researcher):    How many buttons should you take to win?
4  Stefano:    One, two, and three (pointing with his finger to the buttons thathe intends to 

take, Fig. 9.4, and stressing the number “three”)!

Focusing on the specific configuration with four buttons, Stefano is now able to 
identify the winning move. Referring to the structure of attention frame (Mason, 
2008), we can say that, thanks to the researcher’s intervention, Stefano is discerning 
the details in this specific configuration, and in this way he is discovering a local strat-
egy, i.e. a strategy that allows him to win the game in a specific configuration that can 
be reached during a match. However, at this moment, Stefano is not aware of the 
conditions that allow him to reach such a configuration with four buttons; nor that if 

Fig. 9.4 Stefano’s 
pointing gestures while 
counting to find the right 
move
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he repeats this strategy backwards, he will obtain other winning positions. In other 
words, he, as well as the other children, has not yet recognized the relationships 
between the positions of the buttons, which will allow them to seize the global strategy 
to win the game (consisting in the 4th, the 8th and the 12th positions). This will be the 
goal of the second phase, in which the representation with the dinosaur is introduced.

9.4.2  Phase 2. The Discovery of the “Magic Buttons”

The second phase lasts for about three lessons (about 6 h) and it is (again) a pair of 
children playing in front of the class. In this phase, the dinosaur with the analogical 
number line is introduced. Children discover that there are special buttons that allow 
a player to win (the 4th, 8th and 12th position): they call them “magic buttons”.

The discovery starts from the 12th position: if a player manages to take it, he/she 
wins the game because the opponent player is obliged to take the last button.

5 Luca:                This is important (he indicates the 12th crest), because if we take this 
button (Luca imagines that the button is placed on the crest), the other 
[player] loses the game.

6 Researcher:     Which is this button?
7 Luca:                (he counts the dots in the crest, Fig. 9.5) 12, the button in the crest with 

12 dots.

As we see in the excerpt, the penultimate button is recognized as the number 12 
after the researcher has asked pupils to name the button that Luca was pointing at. 
The analogical representation on the dinosaur’s crest is used by the child to identify 
this number (in Fig. 9.5, he is counting the dots in the crest).

The discoveries about the 8th position, and later the 4th one (going backwards as 
usual in these kinds of games) occur later, during the reflective moments that the 
researcher sets between series of matches. We can see an example in the following 
excerpt, in which a child, Giuseppe, focuses his attention on the 8th button:

8 Researcher:   What have you discovered thanks to the matches played on the dinosaur?
9 Giuseppe:      The 8th button is the most important, it is magical

Fig. 9.5 Luca counts the 
dots in the 12th crest of the 
dinosaur
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10 Researcher:        Can you show me which one is it?
11 Giuseppe:            1, 2, 3, 4, 5, 6, 7, 8 (he is counting the crests until 8, then he indicates 

the 8th position, Fig. 9.6a)
12 Researcher:        Why?
13 Giuseppe:            It is important because…and then it is also important this one here 

(indicating the 12th button, Fig. 9.6b), and then this one is left 
(indicating the 13th button) and the other loses.

14 Researcher:         So, we discovered that there exist at least two magic buttons, one on 
the crest with 8 dots and the other on the crest with 12 dots.

Answering to the request of the researcher, Giuseppe is verbalizing the strategy 
that he followed during his matches, and which allowed him to win: taking the 8th 
and then the 12th button, he calls the ones belonging to such a strategy “magic but-
tons” (and the other children will soon share this name also). Asked to explain why 
the 8th button is a “magical one”, he explains that it is “important” and immediately 
links it to another important button, the 12th (line 13, Fig. 9.6a, b), specifying that 
taking it allows a player to win (because the other player loses). In this way, 
Giuseppe is making an important step in order to build a global strategy to win the 
game, by coordinating the discerning of the details and the gazing at the whole 
strategy to win the game. This coordination requires discovering which buttons are 
subsequent winning moves of the game, and are therefore related to each other.

The discussion continues and the researcher prompts children to clarify why the 
button in the 8th position is a winning one. To reach this goal, she involves them in 
imagining a hypothetical situation during a match:

15 Researcher:     Why, if I take the 8th button, do I surely win? Let’s pretend that Felice 
and I have played and that I have taken the 8th button (she organizes the 
buttons in order to reproduce this configuration, Fig. 9.7). What happens 
if I take the 8th button? That is to say, if I arrived at the 8th button, I 
stopped and I took it?

16 Luca:              You win
17 Researcher:    Why, Gaia? Explain what Felice can do now.
18 Luca:               If he takes three buttons (he takes 3 buttons from the configuration), you 

take 1 and you win, you.

Fig. 9.6 (a, b) Giuseppe indicates the 8th and then the 12th button on the dinosaur line
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Fig. 9.7 The researcher 
sets the imagined game 
configuration to discuss, 
with five buttons

19 Researcher:       Ok, but can he take 2, for instance?
20 Luca:                  Yes (placing back the buttons and taking 2 of them), but you take two 

and you win.
21 Pietro:               You take two and you win.
22 Gaia:                  If he takes two (indicating Felice), but you (indicating the researcher) 

you take one, he wins.
23 Researcher:         This idea that Gaia said is very interesting, because we are imagining to 

know how to play well, but if I did not know what to do to win, then 
what Gaia said could happen: that is if Felice takes two buttons, it could 
be the case that I don’t know that in order to win I have to take two new 
buttons, because I don’t know that the 12th one is magical, and so what 
Felice does?

24 Gaia:                 He takes 1
25 Researcher:       And who is going to win?
26 Gaia:                 He wins (referring to Felice)
27 Researcher:        So, summing up, if we have four buttons, if he takes three buttons, I 

take
28 Many children: One button and you win
29 Researcher:       If he takes two buttons, I take
30 Many children: Two buttons and you win
31 Researcher:       If he takes one button, what do I have to do to win?
32 Many children: Three
33 Researcher:       Ok? Do you all agree?
34 Many children: Yes

Explaining why the 8th button is a winning one requires explaining that, for any 
opponent’s choice (1, 2 or 3 buttons), the player can make the winning choice (3, 2 
and 1 buttons, respectively). And that such a choice leads to a win because it allows 
taking the 12th button, so leaving the last one to the opponent. The children have 
well established that the 12th button must be taken in order to win, so this last part 
of the argument is not focused here anymore. The discussion on the first part of the 
argument is introduced through an imagined match between the researcher and a 
child, Felice (lines 15–21). Luca immediately imagines one of the possible moves 
that Felice can do, that is taking three buttons (line 18). The researcher then guides 
an argument by cases, corresponding to all the possible moves that Felice could do 
(lines 19–21). Imagining all the possible moves requires Luca (and all the children 
who are silently attentive) to foresee a sequence of two moves, discerning the details 
of the situation, and also discerning the relationships between these details.

Even if the researcher is scaffolding the reasoning by cases—which is indeed a 
complex reasoning because it requires to consider simultaneously different choices 
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and consequences—the children appear to follow the argumentation process, thanks 
to the imagined moves in the fictitious match. This leads, for instance, Gaia to pro-
pose an alternative move for the researcher so that Felice could win the game 
(lines 22–26).

From line 27 onwards, the researcher sums up all the different cases, and now, 
many children participate in answering her questions. This shows that they were 
also actively participating in the previous part, in which they were active listeners to 
the exchange between the researcher and Luca.

In the following excerpts, we see how the children’s focus of attention shifts to 
recognizing relationships because they begin to understand a global strategy that 
allows them to win the game from the beginning, generalizing the relations among 
different buttons and moves. This is realized through the identification of the 4th 
button as a winning one, together with the 8th, and hence the 12th. The match 
between Greta and Giovanni is a catalyst for this discovery:

35 Greta takes three buttons
36 Giovanni takes one button (the 4th one), stops and comments: I took 1
37 Researcher:           Why did you take 1?
38 Giovanni:              Because I win anyway
39 Researcher:            Why? Can you repeat because it was not clear. You took the button 

in which position?
40 Many children:     The 4th
41 Giovanni:               I did it just because I wanted to win and I knew how to. If she now 

takes 2, then I take 2 and I win.
42 Researcher:           And if she takes 3?
43 Giovanni:              I win immediately (because it would take just one button to win)
44 Researcher:           Ok, so that button has been a smart move. Which is?
45 Alex:                     The fourth

After taking the button in the 4th position, we see that Giovanni stops and real-
izes that he will win the move, no matter the move of his opponent (line 38: “I win 
anyway”). He is gazing the mathematics as a whole and he concludes that he will 
reach the 8th position and hence win the game (line 41). In reaching this conclusion, 
he does not need to go through all the details about what happens after taking the 
8th button, which has already been discussed and is not in the forefront in the child’s 
attention. This shows that this child has recognized the relationship that exists 
between taking the 4th and the 8th button and winning the game. The other children 
are closely considering what Giovanni is saying and at the end of the match, when 
Marina asks which is the button that was crucial to win the game (line 44), it is 
another child, Alex, who answers (line 45).

9.4.3  Phase 3: The Dinosaur Goes on Holiday

In the third phase, the game has been played again without the dinosaur. In general, 
in this phase children selected buttons following their sequence in the line (1–13), 
rather than randomly as in the first phase. This helps them to recognize the “magic 
buttons” that were identified with the dinosaur.
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We report a short excerpt in which Giorgio shows to the researcher the “magic 
buttons” before the beginning of a match:

   46 Researcher:     Giorgio, could you show me the “magic buttons”?
   47 Giorgio points to the fourth button (Fig. 9.8)
   48 Researcher:     Then?
   49 Giorgio:           This one (Giorgio points to the 12th button, Fig. 9.9)
   50 Researcher:     Then?
   51 Giorgio:           This one (Giorgio points to the 9th button, Fig. 9.10)
   52 Researcher:     Are you sure?
   53 Elia:                 You have to count to know which is the eighth button
   54  Researcher:      It’s right! You have to count from where you have started. Where did 

you start?
   55 Giorgio:           There, 1, 2, 3, […], 8 (he counts until the eighth button)
   56 Researcher:     Ok! Who begins?
   57 Giorgio:           You!

We see that Giorgio recognizes the 4th and the 12th winning buttons even with-
out the support of the dinosaur. He makes a mistake in indicating the 8th one, and 
points to the 9th one (line 51). Elia suggests to count in order to find out which is 
the 8th button (line 52). Following his suggestion, Giorgio counts up to eight, start-
ing from the first button in the line. Finally, when the researcher asks who is going 
to begin the game, Giorgio reacts immediately and proposes that his mate can start: 

Fig. 9.8 Giorgio points to 
the 4th button

Fig. 9.9 Giorgio points to 
the 12th button
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Fig. 9.10 Giorgio points 
to the 9th button

Fig. 9.11 The magic 
buttons are made evident 
by shifting them from the 
line

this indicates that he knows how to apply the winning strategy from the beginning 
of the game.

At the end of the third phase, almost all children manage to identify the winning 
buttons without the support of the dinosaur, but sometimes they need to mark them 
before beginning the match, moving them to the side of the line (Fig. 9.11).

It is through this semiotic trick that most children manage to understand the 
structure of the winning strategy as a whole, and make clear that, in order to win, it 
is not convenient to play as a first player.

9.5  Conclusion

The didactic activity based on the “Thirteen buttons” game has been designed to 
foster the development of basic competences related to mathematical problem- 
solving and rational thinking from an early age. In particular, in our study we inves-
tigated how the game can be exploited by the teacher to introduce children to making 
choices and checking their consequences, identifying regularities and relationships, 
producing conjectures and explaining them.

From the first encounter with the game, to the final identification of the “magic 
buttons” that allow a player to win, we could actually identify an evolution in the 
children’s focus of attention (Mason, 2008). At the beginning, thanks to the ploy of 
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making the teacher and the researcher play without any explanation, the children’s 
attention is focused on the rules of the game, and in understanding who is winning. 
Then, during the first game moment they get immersed in the game, but soon they 
start to discern details about specific choices that can be made in order to win: this 
leads them to identify the 12th button as a magic button. The discerned details are 
then organized to foresee a sequence of two consecutive moves through an anticipa-
tory thinking, which leads to the discovery of the 8th magic button.

The number representation with the dinosaur played a role in such an organiza-
tion because it allowed the children to consider the buttons in an ordered way from 
1 to 13. Discerning details is not enough to understand all the sequences of the win-
ning buttons, which requires focusing the attention to the game in a global way, and 
to identify or recognize the relationships between the various positions of the but-
tons. In upper school levels (e.g. primary school), such relationships may be related 
to multiplication or division schemes between natural numbers.

In the study, the didactic design has been based on the alternation of playing 
moments and reflective moments guided by the researcher (who took the role of the 
teacher), and on the mediation of an analogical representation of the ordered 
sequence of numbers from 1 to 13 (the dinosaur).

Playing moments are those moments in which children are familiarized with the 
game, between themselves or with the researcher. The focus of attention is on par-
ticipating in the game (possibly on winning), and feeling pleasure and enjoyment 
are essential parts of the game. Reflective moments are organized by the researcher 
so that children may stop playing and dedicate time to reflect on the game situations, 
without being immersed in the playing action. Throughout our analysis, we could 
observe how intertwining reflective moments and playing moments are crucial in 
engaging children in fundamental mathematical processes such as making hypoth-
eses and checking them, identifying relationships, producing arguments to support 
a claim. To this purpose, the role of the researcher/teacher appears as crucial and 
from our data we found three different kinds of prompts that are particularly 
successful:

Invite children to reflect back on the matches they have just played, on what they 
have discovered when playing, and on why their discoveries are true (see phase 2, 
lines 5–11) or why they made the winning move (lines 35–39);

Ask children to explore other possibilities that they did not consider when play-
ing. Indeed, in this way children may be introduced to the actual existence of other 
possibilities—which is crucial to strategy games, as in genuine problem-solving, as 
well as to argumentation processes. This has been accomplished in particular by 
asking children to imagine a hypothetical situation that could occur during a match: 
in this way, the researcher prompted the children to clarify why the button in the 8th 
position was a winning one (see phase 2, lines 12–31 and 39–42).

Ask children to make explicit their strategy before playing (see phase 3, 
lines 46–57).

From our observations it is particularly important to get children involved in 
imagined matches in which they can foresee possible moves. Asking the children to 
imagine a match without playing it has allowed children to make explicit all the 
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possible moves that a player could do and to analyse their consequences in the 
game. The ideas emerging during such reflective moments have then been exploited 
in the subsequent actual matches. Previous studies carried out with similar games in 
primary school suggest that such imagined fictitious matches may be enacted by 
older students, also without the teacher’s mediation, and may be exploited in the 
argumentation processes that involve reasoning through using cases (Sabena, 2018). 
In this study, we provide evidence of their educational role, also at kindergarten 
level, at least when the teacher suitably organizes the reasoning through using cases, 
coordinating it with the imagined matches, which become present during the 
discussion.

The mediation of the number sequence representation with the dinosaur has not 
been deeply analysed, and this constitutes a limit of this study. We have evidence 
that, thanks to the representations, children could easily consider the buttons in an 
ordered way from 1 to 13, and that this order is also kept during the third phase, 
when the “dinosaur goes on holiday”. This appears to confirm that the pedagogical 
choice to build on the ordinal sense of numbers, rather than a cardinal one, did sup-
port children to identify the structure 12th-8th-4th buttons, then reversed to 
4th-8th- 12th. Another option that could be explored is to substitute the analogical 
representations with the black dots in the crests with the numbers written in Arabic 
digits. We hypothesize that this change would not make a fundamental difference in 
the design; of course, it requires that children are at ease with the Arabic digit rep-
resentations of numbers, up to 13. Another option could be to start playing from the 
beginning on a number line, whereas a rather different choice would be allowing 
children to continue playing with much less scaffolding. Also, many different didac-
tic choices could be explored through considering how children are organized dur-
ing the play, which could be different from children playing in pairs in front of the 
class (e.g. allowing multiple free plays among peers and then an open discussion). 
All these choices are deeply affected by pedagogical principles, and only some of 
them are coherent with our phenomenological perspective on mathematics learning, 
which also shaped the researcher’s/teacher’s role in the design. We would be pleased 
if other researchers may explore other didactic designs, based on different theoreti-
cal premises. We will continue our research in the direction of establishing whether 
this kind of didactic design and specific prompts made by the teacher may constitute 
good scaffolding for students in activating mathematical thinking processes (also 
with respect to metacognitive skills) in similar or different situations.
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Chapter 10
Measuring Rice in Early-Childhood 
Education Activities: A Bridge Across 
Discrete and Continuous Magnitudes

Maria Mellone, Anna Baccaglini-Frank, and Francesca Martignone

10.1  Introduction

Measurement of different kinds of magnitudes is one of the goals presented in the 
section “learning about the world” in the Italian National Guidelines for the pri-
mary school curriculum (MIUR, 2012). Moreover, within the international pan-
orama, measurement is considered to be a necessary and fundamental concept to 
master when learning to reason mathematically (NCTM, 2000; OECD, 2010). 
Measurement is considered a grounding core of mathematics school curricula 
because of its special role and pervasiveness in so many aspects of the practical and 
social life. Indeed, measuring quantities is a common action of our daily life, 
although it requires culturally sophisticated operations in terms of both action and 
abstraction. For example, in order to measure quantities, we choose a convenient 
sample to be compared to the quantity to be measured. Then, one has to somehow 
count how many times the unit of measure fits in the quantity to be measured and 
deal with a reasonable approximation based on the goal of the measurement. This 
planned action and its connections with numbers have been one of the crucial trig-
gers of the human social and cultural evolution (Aleksandrov, Kolmogorov, & 
Lavrent’ev, 1965).

Since measuring is a complex cultural practice that involves links to numbers, in 
order to introduce it in school, some appropriate pedagogical conditions need to be 
created. We believe that such pedagogical conditions must stem from and be 

M. Mellone (*) 
Università di Napoli Federico II, Naples, Italy
e-mail: maria.mellone@unina.it 

A. Baccaglini-Frank 
Università di Pisa, Pisa, Italy 

F. Martignone 
Università del Piemonte Orientale, Vercelli, Italy

© Springer Nature Switzerland AG 2020
M. Carlsen et al. (eds.), Mathematics Education in the Early Years, 
https://doi.org/10.1007/978-3-030-34776-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34776-5_10&domain=pdf
mailto:maria.mellone@unina.it
https://doi.org/10.1007/978-3-030-34776-5_10#DOI


162

 coordinated with children’s naïve skills in counting and quantifying. With this aim, 
we carried out an explorative study, to analyze children’s skills, upon their entrance 
in first grade, when working with a particular substance, rice, which can be treated 
as an intermediate between discrete and continuous quantities. The idea to use rice 
is related to the evidence coming from the fields of both neuroscience and psychol-
ogy that at the origin of human numerical insights there is a strong link between the 
management of continuous, uncountable quantities and large amounts of discrete, 
countable objects (Gallistel, Gelman, & Cordes, 2006; Piazza, 2010).

In this study, we present some qualitative results, focusing on how young chil-
dren manage the task of comparing quantities, judging whether there is “as much 
[rice] as” in different piles. We report on different strategies activated by the chil-
dren to accomplish the tasks they were given. We analyze these strategies reflecting 
on which aspects can be potentially used by a teacher in order to build mathematical 
meanings associated with the measuring process. Moreover, acknowledging the 
crucial role of artifacts both at a psychological and at a social level (Vygotsky, 
1978), we offered the children different artifacts to choose from and work with if 
they thought it might help. The idea of an artifact is very general and encompasses 
several kinds of productions of “human beings through the ages: sounds and ges-
tures; utensils and implements; oral and written forms of natural language; texts and 
books; musical instruments; scientific instruments; tools of the information and 
communication technologies” (Bartolini Bussi & Mariotti, 2008, p. 746).

10.2  Theoretical Background of the Study

Historically and pedagogically (natural) numbers are firstly seen as tools for count-
ing. Most approaches in mathematics education prevalently assign, with minor dif-
ferences, a primitive and dominant role to natural numbers and to the action of 
counting discrete, countable magnitudes. The management of countable magnitudes 
usually consists of counting the discrete entities of which it is composed. In general, 
approaches from the Western tradition tend to introduce natural numbers before 
introducing measurement. For example, Sfard (1991) proposes a reconstruction of 
the number concept within the process/object dialectics, according to which the 
development of a mathematical object always starts as a process. For example, the 
process “subtracting” as “taking away” is eventually reified into an object, in this 
case “subtraction of integers.” In Sfard’s perspective, the counting process consti-
tutes the starting point, whereas the measuring process appears only at a later stage, 
when rational numbers are generated. A different approach was proposed by the 
Russian psychologist Davydov, who placed the experience of measuring continuous 
quantities as preliminary to the introduction of numbers (Davydov, 1982). According 
to Davydov, counting itself may be conceived as the particular measuring process of 
sets of discrete objects in which the unit of measure is the discrete object itself. 
Therefore, Davydov suggests that in early education, managing continuous quanti-
ties should precede the introduction of natural numbers. This crucial idea has found 
several followers and initiatives all around the world; one among others is the proj-
ect Measure Up (see, e.g., Dougherty & Slovin, 2004).
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In our research, we are not arguing in favor of assigning priority neither to the 
discrete nor to the continuous approach. Instead, we wish to reflect on possible 
effective strategies of early cultural mediation in order to create solid links between 
the discrete and the continuous aspects of numbers (in the direction of Iannece, 
Mellone, & Tortora, 2009). This approach seems to be in line with neuroscientific 
findings about the preverbal mathematical systems. Two systems for numerical 
quantification, which children are equipped with before symbolic learning (spoken 
or written language, number systems, symbol systems, and so on), have been identi-
fied: the object tracking system (OTS or “parallel individuation”) and the approxi-
mate number system (ANS or “analogue magnitude”) (Piazza, 2010). The first 
system is specialized in recognizing the numerosity of small groups of objects (usu-
ally up to four) by subitizing, while the second one provides “an analogical repre-
sentation of quantities, in which numbers are represented as distributions of 
activation on the mental number line” (Dehaene, 2001, pp. 10–11). What is espe-
cially interesting is that the second system is activated not only for comparing and 
manipulating continuous quantities but also for perceiving and processing discrete 
quantities in an approximate way. Moreover, there is evidence of existing links 
between these abilities regarding approximate estimation of nonsymbolic magni-
tudes (e.g., sets of dots or grains of rice), approximate evaluation of spatial exten-
sion, and the numerical symbols (Piazza, 2010). Moreover, recent research (e.g., 
McMullen, Hannula-Sormunen, & Lehtinen, 2014) showed how children’s ten-
dency to spontaneously focus on quantitative relations can be used as a predictor of 
their following knowledge of rational numbers. In particular, during McMullen 
et al.’s longitudinal research project (McMullen et al., 2014), a group of children 
was followed for 4 years. In particular, these children’s ability to evaluate quantities 
of cake or of rice in first grade positively correlated with their abilities to manage 
fractions 3 years later (their conceptual knowledge of fractions).

We took inspiration from these studies to design a particular task with the aim of 
exploring processes related to these existing links between the approximate estima-
tion of large amounts of discrete quantities and symbolic systems.

This study was set up with the goal to gather information on strategies that chil-
dren, raised in the Italian culture, may produce, based on possible cognitive links 
between the system of approximate estimation of large amounts of discrete quanti-
ties and the symbolic system. Moreover, we focus this study on a specific age range: 
that of children at the beginning of primary school, when the exposition to symbolic 
systems has already started, but is not very advanced. We deal with spontaneous 
daily concepts (Vygotsky, 1987) that could be activated by children managing a 
particular kind of substance (rice) that is in between discrete and continuous magni-
tudes. We also offered the children a variety of artifacts to choose from if they 
thought any of these would be helpful, so that we could analyze the use of the par-
ticular artifact and, then, the potential semiotic activity produced in accomplishing 
the task. We take the perspective offered by the Theory of Semiotic Mediation 
inspired by Vygotsky (1978, 1987) and developed by Bartolini Bussi and Mariotti 
(2008) specifically for mathematics education. The Theory of Semiotic Mediation 
states that the progressive and intentional introduction of artifacts in educational 
activities can play a crucial role if teachers use them as “instruments for semiotic 
mediation.”
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[…] the teacher may guide the evolution towards what is recognizable as mathematics. In 
our view, that corresponds to the process of relating personal senses (Leont’ev, 1964/1976, 
p. 244 ff.) and mathematical meanings, or of relating spontaneous concepts and scientific 
concepts (Vygotsky, 1934/1990, p. 286 ff.) (Bartolini Bussi & Mariotti, 2008, p. 754).

In particular, to analyze the role of artifacts in processes of semiotic mediation, 
Bartolini Bussi and Mariotti (2008) use a set of interpretative tools from Rabardel’s 
instrumentation approach (Bèguin & Rabardel, 2000; Rabardel, 1995), according to 
which a subject, engaged in a goal-directed activity, can build schemes of instru-
mented action for an artifact. The artifact, together with the utilization scheme a 
subject has developed for using it to accomplish a task, becomes an instrument. In 
Bartolini Bussi and Mariotti’s framework (see the schema in Fig. 10.1), the instru-
ment is a tool with a double potential: it is a tool for the pupil to accomplish a given 
task and also a tool for the teacher to use in the task of helping pupils construct math-
ematical meanings stemming from the meanings that emerged in the situated context.

According to the Theory of Semiotic Mediation (see Fig. 10.1), classroom activi-
ties can be arranged around the use of an artifact and specific appropriately designed 
tasks presented to the students. In the design of the activities, the artifact is closely 
related to particular mathematical content and should be used by the students to 
solve the assigned tasks. During their solving processes, students produce signs 
called artifact (or situated) signs (they could be words, phrases, drawings, gestures, 
etc.), which may present a certain autonomy from the artifact and task context. In 
this case, the situated signs can also be used as pivot signs by the teachers in order 
to create explicit connections to mathematical content. Eventually, pivot signs can 
be transformed into more formal mathematical signs (Bartolini Bussi & Mariotti, 
2008). Pivot signs are particularly situated signs produced in a specific context 
(including a task and an artifact), but that also can be put in relation with more 
 formal mathematics. In this sense, they present a shared polysemy: they may refer 
to specific instrumented actions, to oral or written language, and, at the same time, 
they are used to link to mathematical signs. The polysemy of the pivot signs can be 
used by teachers as hinge for fostering the transition from the context of the specific 
task and artifact to the context of mathematics. Indeed, children, as in the case of our 
interviews, use a variety of terms and gestures with situated meanings; among these 

Fig. 10.1 A diagram 
summarizing the Theory of 
Semiotic Mediation and 
the role of pivot signs 
(Bartolini Bussi & 
Mariotti, 2008, p. 757)
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signs, we can identify those with a potential of leading to mathematical signs. 
Situated signs with this potential are good candidates for the teacher to use later to 
foster the development of mathematical meanings.

Since the interviews analyzed in our study proposed practical activities involving 
interaction between a researcher and a child, we carried them out outside the class-
room context. Thus, they cannot be considered classroom activities. This is an 
important difference with respect to the activities traditionally studied and described 
using the Semiotic Mediation framework introduced above. Indeed, the idea of 
pivot signs was introduced to study the teacher’s use of particular situated signs 
when guiding the students in the construction of mathematical meanings. Pivot 
signs arise as situated signs, with meanings relative to a particular artifact, and they 
are used by the teacher in relation to selected mathematical signs with culturally 
accepted and shared mathematical meanings. Pivot signs act as hinges between situ-
ated meanings and more general mathematical meanings. In our study, we label the 
signs identified in the interviews as potential pivot signs, underlining that they have 
the potential to later become pivot signs in classroom activities. The specific research 
questions we address in this study are as follows: What strategies (in relation to 
selected artifacts) do children at the beginning of primary school use to evaluate 
small quantities of rice? Which potential pivot signs can be identified in young stu-
dents’ attempts to evaluate quantities of rice?

Indeed, knowing which signs that later could be used by the teacher as pivot 
signs can be quite useful for a teacher when designing or carrying out educational 
activities related to the same mathematical content, in our case measurement of 
length, surface, and volume. We believe that such knowledge should become part of 
teachers’ Pedagogical Content Knowledge (Shulman, 1986). Therefore, it is impor-
tant to conduct analyses of students’ responses, even in a setting like that of our 
interview, in order to identify such signs.

10.3  Methodology

In order to gain insight into the strategies mobilized by young children to compare 
and to measure, we chose to work with a substance typically treated as continuous 
but that can also be treated as many discrete entities, i.e., uncooked rice; and we 
asked children to judge whether there is “as much as” of a certain quantity of rice. 
Indeed, we wanted children to be able to propose strategies through which they 
could treat the substance as continuous, but we were just as interested in observing 
whether some children (and which ones) would opt for strategies handling the rice 
discretely, as many grains.

We interviewed 5- to 6-year-old children (14) from an Italian public school at the 
beginning of first grade (in the third month from the beginning of the school year). 
The children did not all have the same preschool experience, and two had not 
attended preschool at all. During the first months of first grade, the teacher had 
introduced a variety of counting activities with artifacts, such as a horizontal abacus 
with which children would count and straws for counting and representing small 
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numbers. The class had also been taught to write the symbols of natural numbers up 
to 9. The children were interviewed one at a time through clinical interviews 
(Hunting, 1997), outside the classroom setting, in social interaction with the inter-
viewing researcher (one of the authors). The experimental set up consisted in the 
following material and script: the interviewer picked up a bag containing about 
½ kg of rice, and then poured about 200 grains onto the table lifting the bag and 
slowly letting the rice pour out. Then, she asked the child (phase 1): “Now can you 
please give me as much as you have in front of you?” When the child had finished 
making another pile of rice, the interviewer asked: “How are you sure they are the 
same [pointing to one pile of rice and then to the other]?” and she offered the chil-
dren a variety of artifacts (Table 10.1) to choose from if they thought one would be 
helpful to answer the question (phase 2).

Table 10.1 Artifacts offered to students

Picture of the artifact
Description of the artifact and 
possible expected utilization scheme

Spoon—measure the rice in 
spoonfuls, treating it as a continuous 
substance, possibly recalling 
utilization schemes developed 
outside of school
Transparent plastic cups—compare 
the quantities of rice giving them the 
same practically two-dimensional 
shape

Unbendable straws—“line up” the 
grains of rice of the pile to measure, 
and measure the rice in “full-straws”

20 cm ruler with millimeter 
markings—use strategies to measure 
a dimension of two-dimensional or 
three-dimensional arrangements of 
the rice
A pen and paper—to write 
something down, possibly to help in 
the counting process or to draw 
something
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The approximate number of grains was chosen to allow the counting process for 
the comparison, but at the same time to make it a difficult and maybe even a discour-
aging task, in order to allow different strategies to emerge.

As introduced in the previous paragraph, we attribute a crucial role to the use of 
artifacts: after an answer to the first request, the interviewer offered the children the 
artifacts in Table 10.1. By introducing these artifacts, we wanted to gain insight into 
the children’s utilization schemes related to the chosen artifacts and to the manage-
ment of continuous substances, or whether they preferred to count. The artifacts 
chosen were a spoon, some transparent plastic cups, some straws, a ruler, and a pen 
and paper. The rationale of the choice of these artifacts is the following: (1) the 
spoon could be used in the attempt to measure the rice in spoonfuls, treating it as a 
continuous substance, possibly recalling utilization schemes developed outside of 
school; (2) the plastic cups could be useful for comparing the quantities of rice giv-
ing them the same practically two-dimensional shape1; (3) the straws were chosen 
due to a previous study (Mellone, 2008) in which a child had used a straw to “line 
up” the grains of rice of the pile he had to measure, and then proceeded to measure 
the rice in “full-straws”; (4) the ruler was offered in case some children felt inclined 
to use strategies in which they wanted to try to measure a dimension of two- 
dimensional or three-dimensional arrangements of the rice; and (5) a pen and paper 
were offered if children wanted to write anything down, for example, for helping 
themselves in the counting process or for drawing something. The interviewer 
would set all these items in front of the children during each interview, but did not 
insist on having them use anything if they did not immediately want to. We chose 
not to propose other artifacts, like scales, because we preferred not to involve the 
concepts of mass or gravity.

10.4  Analyses

In the analysis carried out in our study, in addition to the children’s strategies and 
utilization schemes with the artifacts, we intended to identify some potential pivot 
signs produced by these children during the accomplishment of the task. We refer to 
these signs as potential pivot signs because they have the potential of evolving 
toward mathematical signs linked to the measurement process; indeed, these signs 
can be built on in the design of later teaching interventions grounded in the semiotic 
mediation framework. We will point out all these aspects in the excerpts we chose 
to present in the next section.

1 The about 200 grains of rice form a thin layer in the plastic cup, if the quantities to compare were 
slightly larger, we expected that the cups might be used to compare the heights of the rice in each 
cup.
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10.4.1  Strategies Before Introduction of the Artifacts

After a first round of analysis of the strategies adopted in the first phase of each 
interview, we found that the main distinction can be made on whether the children’s 
strategies are oriented toward an evaluation of the amount of rice in terms of numer-
osity of the grains, surface, or volume occupied by the quantities of rice considered.

10.4.1.1  Evaluation of Numerosity

Four of the fourteen children focused on numerosity activating, at least initially, 
counting strategies. The children who chose to do this seemed quite confident in 
their counting skills, but only two seemed to really be acting in accordance with 
Gelman and Gallistel’s (1978) counting principles, and to be using the correct strat-
egies and number words even when dealing with large numbers that had not yet 
been introduced at school.

Child 1: These are more [pointing to the larger pile] because I counted them. And these here 
were one hundred eighty and these here fewer…one hundred…one hundred twenty-three.

This child chooses to measure a set of discrete objects (the pile of rice) using as 
a unit of measure the single discrete object (a grain of rice), and then to count how 
many units there are in the group. The child uses the comparison between the num-
bers he found by counting as a means to compare the cardinality of the two piles. 
Here, the number words and the comparison made “these are more [...] one hundred 
eighty [...] these here fewer [...] one hundred twenty-three,” are “situated signs” 
because they are related to the particular task, but they also refer to a standard mea-
surement strategy potentially extendable to other situations. These are, thus, argued 
to be potential pivot signs for a subsequent teaching intervention about counting 
discrete quantities.

10.4.1.2  Evaluation of Surface

Three children considered the properties of the piles, seeing them as two- dimensional 
objects. One child formed small flattened piles and rounded them into similar circu-
lar shapes. When the interviewer asked how this is helpful, he answered:

Child 2: This is a lot big and this is big

The “a lot big” [it: “tanto grande”] seems to be deictic, as if it indicates a specific 
quality of that pile, almost saying that the pile is “very large,” and the other “big” is 
used to express that the second pile has a similar property as the first, but it is a bit 
smaller. In this sense, the child expresses a comparison which is not quite yet a 
comparison between measurements, but can become the starting point to introduce 
the relationship between two quantities.
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Another child tried to compare the amounts by flattening the piles: he seemed to 
focus on the two dimensionality of the shapes obtained. In this case, the identifica-
tion of the same “shape” as the same surface occupied can ground the processes 
about the area comparison. When asked to explain what he was seeing and doing, 
he said:

Child 3: I have done like this [he scatters the two piles so that they roughly occupy the same 
surface, (Fig. 10.2)] […] I look at the rice, and that this and this are the same.

In another case, a child had trouble explaining what she was evaluating, but her 
manipulation of the rice and her manual control suggest that she was considering 
the two-dimensional form. In response to the interviewer’s request to explain how 
she was sure, she said:

Child 4: They are the same because … uhm …because this one has the amount of this [she 
highlights the limits of the two piles with her hands] because they are equal, because this is 
equal to this.

In this case, the potential pivot sign are not only the words, but also the child’s 
gesture of limiting the two piles in order to identify congruent shapes.

Indeed, the gesture led to the generation of similar shapes for the piles. This 
could later, through discussion and comparison with other proposed strategies (e.g., 
the strategy of child 6 showed below), be described as volumes with the same base 
(2D surface) of which the heights can be compared to establish which is greater.

10.4.1.3  Evaluation of Volume

Five children more or less explicitly referred to the volumes of the piles. After mak-
ing the two handfuls, a little girl said:

Child 5: This here is fatter [she then rearranges the pile making it more compact].

The control on the rice is essentially visual and tactile. It seems that in making 
the pile more compact with her hands she feels something, but the term “fatter [it: 
‘ha più ciccezza’]” suggests that she is substantially considering both the surface 
and the height, thus the volume occupied.

Fig. 10.2 Child 3 
flattening piles of rice
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Fig. 10.3 (a, b) Child 6 comparing piles of rice using volume

Fig. 10.4 Child 7 comparing piles of rice using volume

Then, there were children who showed more organized strategies, such as a child 
who, after forming two elongated shapes (Fig. 10.3), said:

Child 6: Mine is lower and yours is higher and it means that I have less and there, you there 
have more.

It would have been sufficient for the child to add something like: “if/since they 
have the same base area,” and her method would have been mathematically exact. 
We interpret the expression as a potential pivot sign, since it can go beyond the 
particular task we are considering. Here, the unit of measurement is precisely the 
selected surface given by the shape of the base: the volume is measured by layers of 
equal surfaces. Similar strategies that depend on the measurement of volume were 
used by other children: in particular one who, after generating the second pile, 
checked the amount looking at the height:

Child 7: It went a bit up [pointing to the first pile] and also here it went a bit up [...] Wait [he 
makes the gesture of moving his index finger horizontally from a pile at the other Fig. 10.4] 
[...] No, here there is still some missing [he adds 3 or 4 grains and makes the pile compact 
again] Yes, now I’m sure.

Here, concerning the previous strategy, the idea seems quite similar except for an 
initial focus of giving piles the same base area. Moreover, we consider the gesture 
of the finger that moves from one level to another as a potential pivot sign, which is 
essentially isomorphic to the recognition of the difference in the volumes of water 
contained in identical cylinders through the level (Fig. 10.5) proposed by Davydov 
(1982). Therefore, this sign can be used in the design of future measurement activi-
ties with continuous quantities.
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Fig. 10.5 Difference in 
volumes of water in 
identical cylinders

Fig. 10.6 Two- 
dimensional strategy 
comparing surface 
rectangles with one 
dimension evaluated by the 
ruler

10.4.2  Strategies with Artifacts

Some children exhibited sophisticated counting abilities during the interview and 
successfully compared the piles based on the numerosity of the rice in them. We 
note that for most of these children, the counting strategy seems to be satisfying 
enough for them to choose not to use the artifacts in the second phase of the inter-
view. On the other hand, the children who chose to count, but had trouble due to 
difficulties in remembering the number words for the numbers after ten, tended to 
use new strategies for evaluating the quantities of rice in the second phase of the 
interviews.

When the interviewer proposed to use artifacts, two children chose the ruler to 
evaluate one-dimensional measures of the rice piles. One of these children had 
initially decided to count the rice grains in each pile, but gave up. He then decided 
to use the ruler. To do this, he lined up the two piles of rice on the sides of the ruler 
(Fig. 10.6) and said that to make the piles the same he had to add some rice to the 
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second pile. He did this, lining up the piles again and again after each addition of 
rice. He then said:

Child 8: I measure it like this. […] I measure, like, I measure if they are the same or not.

A careful analysis of the video indicates that the child is not reading the numbers 
on the ruler, so the instrumented action scheme is not the conventional one the arti-
fact was constructed for. Another child also used the ruler to compare the rice quan-
tities without reading the numbers on the artifact. She arranged the rice along the 
entire length of both sides of the ruler, as if she was trying to confirm the fact that 
the two piles contained the same amount of rice. In this case, the ruler seemed to be 
used as an axis of symmetry (Fig. 10.7).

The word “measure” in these examples refers to comparing quantities, although 
no reference to number is made; we see the ruler (or a part of it) as being used as a 
unit for a one-to-one comparison between lengths. However, this is a potential pivot 
sign, because in a later whole-class activity its situated meaning could evolve toward 
its cultural meaning. For example, the teacher could make explicit the differences 
between the child’s process and the culturally approved process of measuring.

A two-dimensional evaluation of the size of the rice piles was accomplished by 
some of the children through two main different processes: an evaluation of the 
length of one of the curved sides of the surfaces occupied by the piles or an evalua-
tion of the surface by using a selected unit of area. We will focus on this second 
process. One child chose the straws and picked up a handful (six of them), which 
suggested she was not trying to establish a one-to-one correspondence between 
straws and grains. Then, she held the straws flat over each flattened rice pile, barely 
touching it, (Fig. 10.8) and said:

Child 9: They look equally big [it: “grosse,” it could also mean “fat”] if I put them like this. 
[…] Like to count we would put thousands, thousands, thousands [it: “migliaia”]…

Although the child could use the straws to flatten the piles and change their 
shape, this does not seem to be the case, as she barely touches the rice with the 
straws, as if not to change them after her earlier flattening. In this case, the straws 
seem to be used to measure the area. Also, in this case the utilization schemes were 
not those for which the artifact was constructed: the student showed the interviewer 

Fig. 10.7 One- 
dimensional strategy 
comparing lengths of 
“symmetric” piles
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Fig. 10.8 Two- 
dimensional strategy 
comparing surfaces with 
straws lined up

Fig. 10.9 (a, b) Three-dimensional strategy comparing heights of the volumes of rice in cups

that the same number of straws covers both piles, and she seemed to be referring to 
a straw as “a thousand.” It is interesting that the word a thousand is already present 
in some children’s vocabulary (another girl writes “1000” on paper). Although it is 
not appropriate for this context because the grains of rice are in the order of hun-
dreds, the word seems to be somewhat connected to an idea of orders of magnitude 
(here it probably is used as a mathematical synonym of “a lot”) and to an idea of 
possibility of using a counting strategy for rice, perceived as a discrete substance, 
and it can be considered as a potential pivot sign.

To evaluate volumes using three-dimensional strategies, one child decided to 
use the ruler to measure the height of the piles of rice, while four children chose the 
plastic cups. One of these four children is Child 6, who before being introduced to 
the artifacts referred to the heights of the piles (Fig. 10.3b). She chose the plastic 
cups and placed the two piles of rice one in each cup. The cups turned out to be 
rather large compared to the quantity of rice considered (the rice barely covered the 
bottom of the cup). So the child inclined the cups trying to obtain the same degree 
of inclination (Fig. 10.9a, b) and said:

Child 6: These are more because they do not stay [it: “stare,” it could also mean “fit”] and 
they go farther forward than the others, and the others are fewer because they reach to here.
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The child seems to be trying to adapt the artifact to her initial idea by obtaining 
the same surfaces and then comparing levels in the cups: the same heights of the 
piles would indicate equivalent volumes. This idea seems to be expressed in the 
potential pivot signs “they go farther forward” or “they reach to here”: These signs 
have specific contextual connotations, but they are potentially exploitable in a pro-
cess of semiotic mediation leading to culturally accepted forms of volume evalua-
tion, such as using a graduated measuring cup and using expressions referred to 
precise levels (frequently identified through numerical values) of the measuring cup.

Since the student says that the piles do not contain the same amount of rice, the 
interviewer asked her to modify the piles so that they contained the same quantity. 
Now she added enough rice to each pile so that the cups properly set down on the 
table contained rice up to the same height. The interviewer asked her if she was sure 
that now each pile contained as much rice as the other, and the child answered:

Child 6: I am not sure, counting is better, but [I would have to] count up to a thousand and 
a hundred.

Here, we can notice that because the degree of precision required in the compari-
son is not clarified in the task, the children can choose the approximation that they 
consider satisfying or easier to obtain.

Then, the interviewer asked the child to show what she was looking at; the child 
put the two cups close to each other (Fig. 10.9b) and said: “the difference.” This 
could also become a pivot sign, in that here it indicates a specific contextual aspect, 
the difference in height of the rice in the cups, but it can also refer to a general strat-
egy linked to the result of the operation of subtraction. The situation is analogous to 
the one in Davydov (1982) (Fig. 10.5, in which “difference” has a double meaning. 
It refers to the result of a comparison and to the result of the operation of subtrac-
tion, related not only to the classical meaning of “taking away” but also to the iden-
tification of the quantity to add or subtract in order to obtain equality).

10.5  Conclusions and Future Perspectives

The analyses presented in this study show different strategies carried out by children 
at the beginning of first grade when asked to evaluate and manage quantities of rice, 
a substance that can be treated as continuous or discrete. This led to the  identification 
of a set of situated signs that could later be used by teachers as pivot signs when 
constructing the meanings of discrete and continuous measurement of area and vol-
ume. As discussed earlier, we label these signs as potential pivot signs because they 
potentially can become pivot signs in semiotic mediation activities (Bartolini Bussi 
& Mariotti, 2008).

The design of educational interventions during classroom activities is not the 
focus of the current study, so it is not included. Indeed, the interviews we conducted 
serve as a preliminary basis assessing schoolchildren’s incoming informal knowl-
edge. Building on the results of this research, we plan to design an intervention 
framed within the theory of semiotic mediation, in which the teacher builds on the 
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children’s initial signs identified here, to then lead them to refine their own strate-
gies and develop cultural and more formal approaches and meanings related to 
measurement.

Moreover, classroom activities using “as much as” can be framed as a problem 
in a narrative context that could further motivate children to compare the rice quan-
tities according to a certain goal insert in the narration (see also the activities with 
the rice proposed in McMullen et al., 2014). This type of activity can pave the way 
for gradually more formal reflections on measuring instruments or even, more gen-
erally, on the theme of approximation.

Obviously, we could have chosen other artifacts, different from the ones we 
worked with here, and these may be included in later activities with rice, always 
with the awareness that the children may use these artifacts with nonconventional 
and personal utilization schemes. These sorts of activities should be intertwined 
with other ones involving numbers, shapes, areas, and volumes; together they can be 
used to broaden the mathematical meanings gradually constructed. With this aim, it 
could be insightful to conduct deeper analyses of the children’s strategies and to 
identify relationships between the children’s strategies before they use the artifacts 
and the utilization schemes for their chosen artifacts. This direction of research 
promises to be quite fruitful.

Another development of this study could be to relate the strategies used by the 
children to some of the neuroscientific models described in recent studies. In this 
respect, we note that many of the strategies we identified, especially the ones based 
on comparison of spatial properties of the piles of rice, may be grounded in cogni-
tive abilities that deal with manipulation of nonsymbolic magnitudes (e.g., sets of 
dots) and an approximate sense of spatial extension. This direction of research could 
be quite useful for educational purposes, because, as suggested by Piazza (2010), 
there is evidence of existing links between these abilities and those involved in 
managing numerical symbols. Indeed, Piazza argues that cognitive abilities that 
deal with manipulation of nonsymbolic magnitudes and those involved in an 
approximate sense of spatial extension can lead to the development of neural map-
pings that strengthen the meaning of the numerical symbols and that consequently 
strengthen many mathematical skills based on them.
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Chapter 11
The Semiotic Resources Children Use 
in Their Explanations of Hypothetical 
Situations

Elena Severina and Tamsin Meaney

11.1  Introduction

In this study, we analyse young children’s explanations about the amount of photos in 
imaginary layouts in a photo book to document the semiotic resources the children use 
to explain and justify their mathematical thinking. To do this, we use Donaldson’s 
(1986) definitions of empirical and deductive explanations as a basis for our analysis. 
In the past, very young children were not considered capable of providing explana-
tions about hypothetical situations. In a seminal study, Donaldson (1986) suggested 
that the ability to explain requires linguistic skills (such as the use of causal connec-
tives), cognitive abilities (such as making distinctions between cause and effect, a 
reason and a result, a piece of evidence and a conclusion) and a certain level of under-
standing of the phenomenon being explained. She described earlier studies that indi-
cated that children did not have the necessary understanding to describe a causal 
relationship until the age of 7–8 years. However, she also highlighted significant prob-
lems in the research methodologies used in these studies, indicating that more in-depth 
research on this is needed. In mathematics education research in the 30 years since her 
book was published, there has been no research which has looked at the semiotic 
resources that young children use in causal relationships about hypothetical events.

Understanding how children provide explanations is important, as they are 
essential in both using and learning mathematics. According to Yackel (2001), 
mathematical explanations and justifications serve particular communication func-
tions. The main function of explanations is to clarify aspects of mathematical think-
ing that may not be completely clear to others, while the function of mathematical 
justifications is to respond ‘to challenges to apparent violations of normative math-
ematical activity’ (Yackel, 2001, p. 6).
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Mathematical explanations and justifications can be related to Donaldson’s 
(1986) four modes of explanation: empirical (what has happened to cause…?), 
intentional (for what purpose…?), deductive (how do you know that …?) and pro-
cedural (how do you DO…?). Each kind of explanation has distinctive features and 
also fulfils specific functions. An empirical explanation includes a directional indi-
cator, through the inclusion of words, such as ‘because’ or ‘so’, which shows that 
something is caused by something else. This would be the equivalent of Yackel’s 
(2001) explanations. An intentional explanation provides insights into the actor’s 
reason for doing something. A procedural explanation describes the steps leading to 
a particular goal so that someone else could achieve the same goal. In these explana-
tions, the temporal order is more important than information about causality, and so 
although they would appear to be similar to mathematical explanations, they do not 
necessarily provide information about mathematical thinking. In contrast, but simi-
lar to Yackel’s justification, a deductive explanation uses evidence through logical 
reasoning to support why something is the case:

The evidence may be observable, or it may take the form of a rule or of a ‘given’ fact. The 
role of causal connectives in deductive sentences is to make explicit the links in the deduc-
tive process, rather than causal relations between events (Donaldson, 1986, p. 104).

There is limited previous work on young children using mathematical thinking 
to discuss imaginary happenings. Furthermore, it is known that describing non- 
physical things or events requires more explicit information to be provided than 
when discussing physical things or events. For example, Meaney’s (2011) research 
on a six-year-old child showed that discussions about time needed to be more 
explicit than measurement of length, which could be judged by the eye and thus did 
not need to be described verbally. In Saar’s (2013) research in which 6- and 7-year- 
old children in a Swedish preschool class discussed the amount of imaginary cats 
that could be present in a picture in their mathematics textbook, the children gave 
different explanations for their thinking. These explanations included that there 
might be cats in the town that were not seen in the picture because they were hiding, 
or they had gone on holiday to the country or were ghost cats that were hard to see. 
The fact that they were discussing cats that could not be seen required the children 
to orally express their previous experiences with cats and on their awareness of hap-
penings, such as going on holidays and ghosts. Their descriptions of what might 
have resulted in the cats not being visible can be considered as deductive explana-
tions, from Donaldson’s (1986) perspective. The discussions provided them with 
opportunities to discuss the idea that a number represented a specific amount of 
something, regardless of whether it was real or imaginary.

However, explanations of young children do not rely solely on speech. Other 
research has shown that younger children support their oral explanations with semi-
otic resources, such as gestures and physical objects. For example, Johansson, 
Lange, Meaney, Riesbeck, and Wernberg (2014) showed how three children, aged 
4–5 years, who were playing with glass jars, predominantly used gestures to convey 
meaning to each other, but used verbal language in mathematical explanations to the 
teacher. They concluded, ‘explanation is not a reflection of the thinking but actually 
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constitutes the thinking’ (Johansson et al., 2014, p. 898). Consequently, our research 
question is: what are the semiotic resources young children use in naturally occur-
ring situations to explain the presence of hypothetical objects?

11.2  Semiotic Resources and Explanations

In this study, we consider children’s production of explanations as a semiotic pro-
cess – a process that actualises knowledge through signification (Radford & Sabena, 
2015) of words, gestures and artefacts, etc. Artefacts and gestures have no specific 
meaning before being used in interactions. In a specific context, speech, gestures 
and the manipulation of artefacts are combined to convey meaning to others 
(Radford & Sabena, 2015). The different explanations described by Donaldson 
(1986) are likely to include combinations of oral language, gestures and manipula-
tions of artefacts. However, how the combinations are enacted will differ depending 
on the explanation’s function. Thus, it is important to identify the semiotic resources 
being used and their functions.

As Johansson et al. (2014) noted, gestures play an important role in young chil-
dren’s explanations. Sabena (2008) defined gestures in mathematical classrooms as 
‘those movements of hands and arms that subjects (students and teachers) perform 
during their mathematical activities and which are not a significative part of any 
other action (i.e. writing, using a tool, …)’ (p. 21). Gestures are usually performed 
in a limited area in front of the body, between the shoulders, eyes and waist.

In studies on embodied knowledge in mathematics (see, for example, Alibali & 
Nathan, 2012; Roth, 2001; Sabena, 2008), McNeill’s (1992) taxonomy of four basic 
types of the gestures is often used. The four types are: beat, deictic, iconic and meta-
phoric gestures. These types are connected to other contributors to the interaction, 
like speech, or artefacts and are context-dependent (Sabena, 2008). According to 
McNeill (2005), the same gesture can belong to several types, depending upon the 
meaning it is conveying and the function it fulfils in a particular context.

Beat gestures are simple, non-pictorial rhythmic gestures that indicate temporal 
or emphatic structure. An up-and-down movement, a flick of a hand and tapping 
motions used to emphasise certain utterances are examples of beat gestures 
(Roth, 2001).

Deictic gestures are gestures used to indicate objects, events or locations, often 
with an extended index finger, but sometimes with other fingers or the entire hand. 
Abstract pointing, according to McNeill (1992), identifies an abstract or non- present 
object, ‘the speaker appears to be pointing at empty space, but in fact the space is 
not empty; it is full of conceptual significance’ (p. 173). When providing an abstract 
deictic gesture, the movement of the pointing finger or hand can follow different 
paths, depending on the meaning being conveyed (Sabena, 2008). Goldin-Meadow 
(1998) suggested that abstract pointing does not occur until children are 10 years old.

According to Alibali and Nathan (2012), iconic gestures depict literal aspects of 
meaning, through the shape or motion trajectory of the hand(s), such as when 
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cupped hands are used to indicate a cup. Iconic gestures are complementary to the 
speech, as they ‘refer to the same event and are partially overlapping, […] but each 
presents a somewhat different aspect of it’ (McNeill, 1992, p. 13). They provide 
information not only about the object being represented, but also the speaker’s par-
ticular point of view about that object (Alibali & Nathan, 2012).

Metaphoric gestures are ‘images of the abstract’ (McNeill, 2005, p. 39). They 
depict ‘the concrete metaphor for a concept, a visual and kinesic image that we feel 
is, in some fashion, similar to the concept’ (McNeill, 1992, p. 14). The concept is 
given form in the imagery of objects, space, movement, etc. For example, when a 
speaker cups his/her hands while saying ‘I have an idea’, the metaphorical meaning 
is associated with the abstract concept of an ‘idea’ being held in the empty space in 
the hands, which makes use of the iconic nature of the holding-the-object gesture 
(McNeill, 2005). In mathematics, many metaphors are spatial and, thus, tend to rely 
on metaphorical gestures to carry the meaning, ‘metaphors that involve space and 
action are readily expressed in metaphoric gestures that reflect the spatial structure 
of the underlying images’ (Alibali & Nathan, 2012, p. 255).

As both iconic and metaphoric gestures are pictorial, they are considered by 
many researchers to belong to the broader category of representational gestures 
(Alibali & Nathan, 2012). Representational gestures are used to model an object or 
to simulate a process in order to support the thinking or its expression (Roth, 2001). 
They, therefore, provide a way of conveying important meaning when children are 
explaining their mathematical thinking.

11.3  Methodology

The data is a videoed discussion of the number of photos in a photo book. They 
came from a wider data set, collected in a Norwegian kindergarten. The question for 
the wider study was about the kind of mathematics young children engaged with 
when involved in photography activities. This particular video was interesting 
because of the imaginary nature of the objects being discussed and the diverse 
resources used in the explanations. In the 2:40-min video, a kindergarten student 
teacher began by showing the photo book to four 5-year-old children and asking 
them how many pictures were on the page. After a response, one child described the 
amount of photos in an alternative layout. The alternative layout seemed to include 
both existing photos and photos that the child imagined and which could not be seen 
by others. It was the child’s explanation which allowed others to visualise them; 
therefore, we have labelled these photos imaginary and the layouts alternative.

The video camera was placed behind the children so that the photo book and the 
kindergarten student teacher were in focus. A second camera did not record as it 
should have, resulting in some of the children’s gestures not being visible. After 
watching the video numerous times, episodes were identified in which alternative 
layouts were discussed. All gestures were described and together with screenshots, 
overlaid with drawings of the hand movements, were added to the transcript of the 
children’s verbal utterances. We use square brackets in the transcript to identify 

E. Severina and T. Meaney



181

when speech was accompanied by a gesture. The gesture is described in italics in 
round brackets. Our analysis first identified the semiotic resources the children 
used, such as types of gestures, oral language and artefacts, and then we connected 
them with Donaldson’s (1986) different kinds of explanations.

11.4  Results

The children’s explanations described how many photos could be placed on the 
actual or alternative, single- or double-page layout. As was the case with Saar’s 
(2013) research, the children used the counting of real and imaginary objects, to 
justify their claim for a specific amount of pictures being placed on a page, based on 
their spatial positioning. These explanations combined oral language with gestures 
that illustrated how they visualised the alternative layouts as well as pointing to 
other artefacts, such as number cards which showed patterns of objects, linked to 
specific numerals.

11.4.1  Introducing an Imaginary Layout

The dialogue started with the kindergarten student teacher, T, asking the four chil-
dren about how many photographs were on the page, to which they immediately 
answered, ‘three’. As the children said ‘three’, Child 2 (C2) pointed at the book, 
made one vertical beat movement, as if counting, and then moved her index finger 
from left to right and then down. This gesture may have been used to support her 
silent counting.

After T emphasised that there were three photos on one page with words and 
gestures, C2 then offered a suggestion for an alternative layout.

C2: If we [divide it] (C2 bends forward to touch the book), [then it will be five] 
(C2 uses the side of her palm to draw a line in the middle of the bottom photo: 
from the top (Fig. 11.1a) to the bottom (Fig. 11.1b))

T: Then it will be [five. If you divide it here]… (T draws a line with her index 
finger from the top to the bottom in the middle of the bottom photograph.)

C2: Yes, I did not count. (C2 shaking her head.) [I just said it.] (C2 takes her 
hands up from her knees and moves them to the sides and back to the knees.)

Using a combination of words, gestures and interactions with an artefact, C2 
gave a deductive explanation about why she considered that there would be five 
photos in the alternative layout. She used the words ‘if we divide it’, and a cutting 
gesture that continued the vertical line between the two pictures all the way to the 
bottom of the right page, by touching it with the side of her finger (see Fig. 11.1). 
Such division introduces the idea of separation of one real photo in two imaginary 
objects. Although she seemed to have miscounted the amount of photos, her expla-
nation showed that she understood the need to indicate how she was dividing the 
page in order to justify the amount of photos.
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Fig. 11.1 Beginning (a) and end (b) of C2’s gesture

Fig. 11.2 C1’s counting 
path

C2’s cutting gesture has some deictic qualities. However, the dynamic motion of 
it highlighted the trajectory of the cut, suggesting that the gesture was iconic, as it 
resembles a typical cutting gesture made with a knife (see e.g., Edwards, 2009). The 
cutting gesture could be seen as having a spatial metaphoric component, as drawing 
the line made the two places for the new photos visible. Synchronising the gesture 
with speech extended the meaning of the verbal utterance, ‘divide it’, with an indi-
cation of how it should be divided.

After the teacher’s comment, C2 seemed to realise that ‘five’ was not the correct 
amount of photos. The beat gesture in which she raised her hands from her knees 
that accompanied the speech could have indicated her uncertainty about the amount 
of photos in the alternative layout.

Building on the alternative layout introduced by C2, T held her hand on the 
imaginary division line and asked the children about the amount of photos. The 
children suggested ‘four’ and ‘five’. The difference in the answers seemed to come 
from different counting strategies and provided information about the children’s 
understanding of quantifying (what should be counted) and their ability to distin-
guish between real and imagined pictures.

T continued to hold her finger in the middle of the bottom photo, when C1 
responded to T’s invitation to count by saying ‘one, two, three, four’ while pointing at 
each place on the page (Fig. 11.2). C1 counted from left to right: first, two real photos 
at the top, and then – two imaginary parts of the photo that T ‘split’ with her hand 
(Fig. 11.3). T’s hand was an important semiotic resource for C1, as it highlighted the 
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Fig. 11.3 C1 saying 
‘Three’

Fig. 11.4 C2 points and 
looks at the number card of 
ten

imaginary division line. What began as a beat gesture connected with the counting of 
real photos seamlessly became an abstract deictic gesture synchronised with the 
child’s oral utterances, connected with the counting of imaginary photos.

C1’s actions provided information about how counting could be done to justify a 
particular amount; thus, it can be considered a deductive explanation, in which what 
was to be quantified was identified. The evidence for the amount was provided 
through the counting, supported by pointing with the index finger to where the 
imaginary photos would be. Nevertheless, it should be noted that in this deductive 
explanation, the logical connectives, which Donaldson (1986) suggested showed 
the relationship between cause and effect, were missing.

All children agreed with four, including C2. Nevertheless, as T turned the page, 
C2 looked at the card for number ten on the wall. She placed her hand on the closest 
drawing of five (see Fig. 11.4) and said, ‘Yes, but we have to see…’, indicating 
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some remaining uncertainty. However, T and the other children did not respond to 
her utterance. It may be that by placing her hand on the number card, C2 is using a 
deictic gesture to highlight the pattern, as part of a procedural explanation about 
there being five pictures in her alternative layout.

In this episode, the children used speech, without logical connectives, gestures, 
physical objects – the photo book and number cards – as semiotic resources, when 
giving deductive and procedural explanations. In providing a deductive explanation, 
C2 used a cutting gesture towards the photo book that could be iconic (describing 
how to make a cut) or metaphoric (the way to visualise the imaginary photos). C1 
gave a further deductive explanation by locating both real and imaginary photos 
with a beat and abstract deictic gesture, respectively. C1 seemed to use T’s hand as 
a semiotic resource to visualise the division line. C2 also gave a procedural explana-
tion for determining that there were five images on her imaginary layout using a 
deictic gesture to indicate the pattern of five in the number card for 10. The chil-
dren’s gestures were often in connection with specific objects and were synchro-
nised with the speech in all three cases. The explanations gave insights into how the 
children viewed the spatial structure of the alternative layout, which combined real 
and imaginary photos on the page. Both dividing the page and counting the photos 
indicated positions for the imaginary photos. However, while the cutting gesture 
created the position for the imaginary photos, the counting grouped both the real 
and imaginary objects together on the page.

11.4.2  Adapting Gestures

In a later episode, C4 repeated C1’s beat gesture, while touching the page and count-
ing out aloud, suggesting that the children could interpret each other’s use of ges-
tures in explanations and then use or adapt them in their own. This episode also 
showed how C2 adapted her earlier cutting gesture to show where an imaginary 
photo might be placed, indicating a different kind of adaptation.

T opened a new double-page layout and asked the children how many photos 
there were. C4 moved forward and touched one photo at a time, saying ‘One! Two! 
Three!’, using a beat gesture to count the two photos on one page and the single 
photo on the opposite page. Simultaneously with C4’s ‘one!’ and ‘two!’, C2 pointed 
twice towards the book with a straight hand and the index finger (Fig. 11.5), but held 
the hand in the air when C4 said ‘Three!’. C2 could have been using a deictic ges-
ture to follow C4’s counting, as C2’s gestures were initially synchronised with C4’s 
speech. As C4 leant back, C2 turned towards the photo book, while pointing with 
her index finger at four different positions on the page, as if she was counting 
silently. This suggests that she was using an abstract deictic gesture to count photos 
in an alternative layout, adapting the ideas and actions of C1.

About 1 s after finishing her counting, C2 tried to get the attention of the others 
by moving closer to the book and starting to explain her ideas, by saying ‘if we do 
it’ and using a cutting gesture similar to the one used in the previous example, but 
by only using the index finger.
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Fig. 11.5 C2 counts in the 
air

Fig. 11.6 C2 splits with 
the finger

T: But what is this? (T lifts the book over her head, C3 sits down, C2 stands up, 
moving closer to the photo book)

C2: Hey, [if we divide it in two]… (C2 draws a line from top to bottom in the 
middle of the left page with the left index finger (see Fig. 11.6), but fails to 
get attention of the others)

After this failed attempt, C2 tried again to get the attention of the others 
and succeeded:

C2:  Hey! (All become silent for one second) If we [divide it] in two (C2 draws a 
line from the top of the left page to the bottom with her left palm formed as 
a cup, see Fig.  11.7. Hand relaxes.), we’ll get [three] (C2 scratches her 
ankle with the left hand), I think. [No] (slips the grip of the right hand to 
keep balance), four. (Pause of about half a second) [One, two, three, four.] 
(Right-hand goes up and C2 touches each space of an imagined picture on 
the left page with her index finger as she counts, see Figs. 11.8 and 11.9. Sits 
down after she finishes the counting.).

T:  Yes, completely right, C2.

This time, her repeated metaphoric gesture (Figs. 11.6 and 11.7) is synchronised 
with ‘if we divide it in two’ and indicates where the real photos should be split 
according to the alternative layout. On Fig. 11.7, C2’s hand forms a cup with the 
palm partly turned upwards, seemingly indicating how the imaginary photo should 
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Fig. 11.7 C2 splits the 
page with the cupped palm

Fig. 11.8 C2’s counting 
path

Fig. 11.9 C2 points at the 
second imaginary photo

be positioned in space. The metaphorical meaning was transformed from the pro-
cess of cutting to being a container for the new imaginary photo. In this way, the 
gesture lost its iconic component and gained an abstract deictic form.

C2’s oral language suggested that she was uncertain about the amount of imaginary 
objects, ‘We’ll get three, I think. No, four’. C2 seemed to count two parts to the left of 
the imaginary division line and only one to the right, which the cupped palm enclosed. 
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C2 corrected herself almost immediately, perhaps because of the symmetry of the 
arrangement. C2 seemed to have a good understanding of the quantifying (what should 
be counted) aspect of counting, while still struggling with distinguishing the different 
imagined objects (parts of the page as places for photos). It may be that the cupping 
gesture helped her to visualise the placement of the imagined photos, but at the same 
time distracted her from seeing all the photos in the alternative layout.

The uncertainty about the total amount of pictures and the pause immediately 
before C2 started to count aloud suggests that C2 was trying to find a way to resolve 
her uncertainty. After the pause, C2 connected physical spaces to her counting 
through the abstract deictic gesture. She counted slowly, pointing at one imaginary 
photo at a time, first right and left parts of the bottom photo and then right and left 
parts of the top photo (Fig. 11.8). ‘One’, ‘two’ and ‘four’ were synchronised with 
the pointing, but her finger touched the book a little bit before C2 said ‘three’. This 
may have been because C2 recalled where the imaginary division line was. The beat 
nature of the gesture was not clear as the pointing was performed slowly.

C2 started her counting path from the imaginary photo closest to her hand, bot-
tom right, and proceeded to the left and up, while C1 (Fig. 11.2) started at the top 
left and proceeded to the right and down. The counting paths provide insights into 
important differences between these explanations. When C1 counted, she gave a 
new explanation and used T’s hand to visualise the division line, while C2 continued 
her interrupted explanation (due to her scratching) and had to remember where her 
imaginary division line had been. However, both C1 and C2 seemed to structure 
their counting path in a similar way, by using the real photo split into two by the 
imaginary division line as a semiotic resource to keep track of which imaginary 
photos had already been counted. The counting path can be seen as providing extra 
meaning to C2’s deductive explanation and insights into her understanding of the 
layout, as well as revealing where the counting might have been challenging for her.

The purpose of C2’s deductive explanation was to convince herself and others of 
the total amount as was the case with her previous explanation. However, this one 
had a different structure as, in addition to making the imaginary division line visi-
ble, she indicated where an imaginary photo would be placed. This gesture provided 
an elaboration of the deductive explanation, by using the metaphorical division line 
to illustrate an alternative layout and an abstract deictic gesture to indicate the posi-
tion of the photos. It seems that counting by pointing provided her with another way 
to convey meaning, as the objects to be counted was placed in the space created by 
the first gesture.

In this interaction, C2 and C4 used a range of semiotic resources to convey mean-
ing, but in two different situations. T’s question resulted in C4 providing a deductive 
explanation in which he used his counting to confirm that the total amount was 
three. C4 counted real objects with words and by touching the photos, using a beat 
gesture. For her alternative layout, C2 adapted the beat gesture to an abstract deictic 
gesture to verify the layout’s capacity. C2 used two metaphoric gestures to illustrate 
the alternative page layout. The first one was to repeat the cutting gesture, while the 
second one was new and performed with a cupped hand, indicating where a photo 
could be placed. Therefore, the second gesture could be considered to have abstract 
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deictic qualities. The combination of the two gestures that supported the visualisa-
tion of the placement of the imaginary photos could indicate that C2 understood she 
needed to give precise arguments so that others could follow her reasoning. 
Nevertheless, logical connectives remain absent in her speech with the gestures 
being the main semiotic resources for conveying meaning about the relationship 
between the layout and the photos.

11.4.3  Clarifying What Is Discussed

In the next part of the transcript, C1 combined C4’s and C2’s previous explanations 
by indicating that she was visualising an alternative layout which included C2’s 
imagined photos on the left page and the actual photo on the right page.

C1: [One, two, three, four, five.] (C1 stands up and touches one place at a time 
with her index finger as she counts, see Figs. 11.10 and 11.11)

Although C1 used an abstract deictic gesture when counting imaginary photos 
and a beat gesture when counting the real one, the structure of this deductive expla-
nation is different from those given earlier. C1 seemed to have accepted C2’s imagi-
nary division line, by counting by touching four places for the imaginary photos 

Fig. 11.10 C1 counts

Fig. 11.11 C1’s counting 
path
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(Figs. 11.10 and 11.11) without having to make a cutting gesture herself. Comparison 
of the counting paths used by C1 (Fig. 11.11) and C2 (Fig. 11.8) suggests that C1 
may have been creating her own alternative layout by extending C2’s imaginary 
layout to include a real photo on the right page, so being the first to count across the 
double-page spread. It is interesting to note that C1’s counting path is a reflection of 
C2’s: C1 counted from left to right, while C2 counted from right to left. This might 
be explained by C2 sitting to the right of C1, and therefore C2 had to stand up, take 
a step forward and stretch out her hand in order to reach the left page of the photo 
book, while C1 just had to stand up. Also, in case of C2s’ counting path (Fig. 11.8), 
her view of the right page seemed to be blocked by her right hand, which was not 
the case for C1 (Fig. 11.11), making it more natural to proceed to the right page.

In this episode, C1 used the same semiotic resources as the others, namely count-
ing aloud, abstract deictic and beat gestures. However, the imaginary division line 
identified previously by C2 seemed to have been accepted by the children. It may be 
that the children’s positioning to the photo book influenced their choice of counting 
path, but there were too few examples to be certain of this. It may be that where the 
child’s hand was positioned for counting in the photo book may have influenced the 
possibilities for creating the alternative layouts and reasoning about them. Therefore, 
we suggest that the use of semiotic resources could have affected how explanations 
were developed and were not just vehicles for conveying already-established meaning.

11.4.4  Alternative Support for Deductive Explanations

The children continued to identify alternative layouts of the same page. In this epi-
sode, C3 responded to C1’s explanation by indicating a non-symmetrical division of 
both pages (Fig. 11.12).

C3:  But what, but what if we [divide it] (C3 puts his right arm with the palm 
straightened, making a vertical line across the right page and then drags the 
arm down (Fig. 11.12, line 1 and Fig. 11.13), and then we [divide it] (C3 puts 
his right arm with the palm straightened, making a vertical line across the 
left page and drags the arm down (Fig. 11.12, line 2 and Fig. 11.14), and then 
we divide (inhales) [it] (C3 puts his right arm with the palm straightened so 
that it continues the horizontal line between upper and lower photos on the 
left page to the right page and drags the hand to the right (Fig. 11.12, line 3 
and Fig. 11.15), then it will be six. (C3 sits down).

Fig. 11.12 C3 cutting
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Fig. 11.13 C3’s arm at 
line 1

Fig. 11.14 C3‘s arm at 
line 2

Fig. 11.15 C3‘s arm at 
line 3
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Fig. 11.16 C2 counts 
cards as support

Fig. 11.17 C4’s counting 
path

Whereas C2 used a finger or a palm to make her cutting gestures (Figs. 11.6 and 11.7), 
C3 used his entire arm to illustrate the imaginary division lines. Also, while C2 
appeared to divide photos, C3 seemed to divide pages, as he used the masculine form 
of ‘it’ in Norwegian, which is relevant for pages, but not for pictures. The structure of 
C3’s vertical and horizontal cutting gestures was slightly different, but the orientation 
of the imaginary division lines seemed to always remain in focus. The vertical cutting 
gestures did not follow the separation between real photos, which had been the case 
for C2 when producing her alternative layouts. It did have two strokes: first C3 placed 
his arm on the page along an imaginary division line while saying ‘divide’, and then 
moved the arm down along the line while saying ‘it’. The first stroke had iconic char-
acteristics, as his arm split the page into two pieces, while the second stroke had 
abstract deictic characteristics, as C3 was drawing an imaginary division line in the 
alternative layout. C3 performed the cutting movement for the horizontal division 
with his hand. Before dividing the right page, he carefully aligned his fingertips with 
the separation space between the two photos on the left page. C3 seemed to have used 
the position of the real photos as a semiotic resource to divide the right page into two 
parts horizontally. As C3 was drawing an imaginary division line, the gesture can be 
considered an abstract deictic one.
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It is not entirely clear how C3 arrived at his answer ‘six’. It is possible that he was 
referring to the amount of page parts after the division, in that the vertical cuts on 
the left page produce two parts and the horizontal and vertical cuts on the right page 
produce four parts. This is different from what the other children had done where 
they kept the real photos as a basis for seeing the parts after the cutting. Nevertheless, 
C3’s explanation can be classified as deductive, because its function seemed to be to 
justify his answer. Unlike other explanations, it included the logical connective, ‘if 
… then’, indicating a causal relationship between the splitting actions and the result.

T seemed to be uncertain about the division of the page and the amount of photos 
and suggested another counting round. However, the children were not keen, except 
for C2 who stated, ‘I can count them!’ while pointing with her index finger at the 
wall with the number cards. T was not looking at C2 and turned the page. C2 then 
responded with, ‘Hey!... I wasn’t looking at [this]’, while pointing to the photo book 
and then ‘I was looking at [this]’ while pointing at the number card for eight on the 
wall (Fig. 11.16).

Although somewhat limited, this could be a deductive explanation, as C2 seemed 
to be indicating that with the help of the number charts she had determined the 
number of photos in C3’s layout. The pointing gesture had characteristics of two 
types: deictic (use of the index finger to indicate the direction of the number cards) 
and beat (gesture used at a high speed to emphasise the meaning). The counting 
card, showing a representation of ‘eight’, seemed to be C2’s evidence for verifying 
that C3’s layout had eight photos.

In this episode, C3 and C2 used similar semiotic resources to what had been used 
previously, that is representational, deictic and beat gestures, the photo book and the 
number cards. However, C3’s adaption of the cutting movement seemed to result in 
it fulfilling iconic and abstract deictic functions. C3 did not use counting, neither 
verbally nor with gestures, to support his claim that the correct result was six, but 
instead he used a logical connective to support his deductive explanation. C2 used 
the number cards in her deductive explanation (what the right amount is), while 
previously she had used the number cards in a procedural explanation (how one can 
count the imaginary objects).

11.4.5  Explicit Explanation

In the final episode in the transcript, the children gave more explicit explanations 
that drew on a broader range of semiotic resources. It may be that the teacher’s 
intervention supported them to realise that others might not always be able to follow 
their reasoning.

After the last episode, T lifted the photo book and said in a low voice, looking at 
C4: ‘How many do you see here?’. C4 immediately ran forward and counted, ‘One, 
two, three, four, five!’, while touching one real photo with his index finger per count 
(Fig.  11.17). Starting simultaneously with C4, C2 made seven pointing gestures 
towards the book in the air with a straight hand and the index finger. As C2 finished, 
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T said, ‘Oh, five’. As in ‘Adapting gestures’, C4 counted the amount of real objects, 
with his pointing gesture having beat characteristics, while C2 counted by pointing 
at non-present objects using an abstract deictic gesture. In both cases, the children 
tried to figure out the amount of photos in different layouts. In C4’s case, the 
 counting formed the evidence for the deductive explanation to the group, while C2’s 
use of gestures only suggests her thinking process.

C2 then stated ‘I see seven!’ and provided a justification for her solution by 
counting aloud up to seven and touching the location of the imaginary photos as she 
verbalised her count (see Fig.  11.18). Her use of the abstract deictic gesture of 
touching the photo book to indicate the location of the non-existing objects made 
this alternative layout visible to others. In this way, the gesture gained metaphorical 
characteristics.

C2’s counting path (Fig. 11.18) has several features that distinguish it from the 
one she used earlier (see Fig. 11.8). C2 started at the top of the page as was the case 
with C1 (Fig. 11.2) and C4 (Fig. 11.17). As had been done previously, C2 counted 
the imaginary photos before the real photos, moving from right to left (1–2) and 
then anticlockwise from left to right (3–4). The change in the counting direction of 
imaginary and real photos indicates that C2 understood that she could start and fin-
ish her systematic counting at any location and the amount would be the same, one 
of Gelman and Gallistel’s (1978) principles of counting, order-irrelevance. C2 
extended her counting across the double-page spread, moving from an imaginary 
photo at the right bottom corner of the right page (4) to the real image at the right 
bottom corner of the left page (5), then up (6) and down to the left corner (7). 
Although counting across the double-page spread had previously been done by C1 
and C4, C2 moved from right page to the left. The direction of the counting is in 
alignment with our view that positioning with regard to the photo book might have 
influenced the choice of the counting path.

T then asked C2 ‘What are you doing now in your head? [One…] (T points with 
her index finger at the top picture on the right page.)’, explicitly inviting C2 with the 
gaze, gesture and speech to explain her thinking.

C2: I [divide it in two!] (C2 stood up and used the side of her palm to draw a line 
in the middle of the right page from top (Fig. 11.19a) to bottom (Fig. 11.19b). 
C2 sits down.)

T: You divide it in two.

Fig. 11.18 C2’s counting 
path
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Fig. 11.19 C2 draws the first division line (a) Gesture start. (b) Gesture end

Fig. 11.20 C2 draws a 
horizontal line

C2: And this one [is already divided in two.] (C2 stood up and drew the line with 
the side of her palm along the white space between the photos on the right 
page, see Fig. 11.20. C2 sat down.).

T: This one was divided in two.
C2: And if we [have these] (C2 stood up and rotated her hand an anticlockwise 

direction in the central part on the left page starting from the bottom right 
position (Fig. 11.21). C2 sits down.), then it will be correct!

C2’s explanation consisted of three steps, each communicated by speech and 
synchronised with a gesture. T repeated C2’s words or described her actions after 
each step and each gesture was marked by C2 standing up and sitting down. The 
alternative layout was defined by the counting path. The gesture used to visualise 
the imaginary division created two pairs of imaginary photos in the alternative lay-
out. Therefore, the gesture was both deictic because it indicated where she would 
cut, and metaphoric, as the drawing of the division line revealed the two places for 
imaginary photos on each real photo. The drawing of a horizontal line on the left- 
hand page in the alternative layout relied on the position of the actual photos. 
Therefore, this gesture seemed to be more an abstract deictic one than a representa-
tional one. C2 did not count as part of her explanation, and she seemed to assume 
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Fig. 11.21 C2 makes a 
circular movement

that her audience would remember the total amount of photos that she had given 
previously. Instead, she used gestures to illustrate how she built on the existing lay-
out to create a new arrangement of real and imaginary photos. When she included 
three real pictures, she used a metaphorical gesture of drawing a circle to communi-
cate ‘those three photos on the left page’, and completed her explanation with ‘then 
it will be correct!’. When C2 performed the circular movement, it followed the 
counting path in Fig.  11.18 for 5–7, which could indicate a strong connection 
between counting and cutting as parts of the same explanation.

This explanation is more explicit than the ones the children used previously. The 
teacher’s question prompted C2 to provide more details about her reasoning. She 
built on her claim that her imaginary layout had seven photos, by describing how 
she divided the photos on the right page to produce four imaginary photo places. 
She then connected the virtual and real photos with ‘if we have these’ real photos 
and concluded with ‘then it will be correct’. Her explanation is deductive and con-
tained an ‘if … then’ statement showing a causal relationship and also gestures.

In this episode, the children used similar semiotic resources to the ones they 
had used in previous episodes: oral utterances, gestures and the photo book. 
However, in this episode, C2 moved away from just using counting in her oral 
utterances to including the same logical connective as C3 had used. Whereas C4 
only counted actual photos, C2 described an imaginary layout for the right-hand 
page and combined this with the actual photos on the left-hand page. This suggests 
that C2 was able to adapt her visualisation of different layouts and also respond to 
the needs of her audience by combining a range of semiotic resources to convey 
her meaning.

11.5  Discussion

In our analysis, we have described the semiotic resources used by five-year-old 
children to explain hypothetical situations, involving alternative layouts of photos. 
Like Saar’s (2013) study of a preschool class in Sweden, the children, particularly 
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C2, seemed to enjoy the challenge of discussing these alternative layouts. The math-
ematical idea in both Saar’s (2013) and our study was that a number represented a 
specific amount of something, regardless of whether it was real or imaginary, 
Gelman and Gallistel’s (1978) principle of abstraction. In our data, the children 
drew on a range of semiotic resources, such as spoken language, gestures, and arte-
facts, to give predominantly deductive explanations about the amount of real and 
imaginary photos. Some of these semiotic resources were those which other 
researchers had previously considered too advanced for this age of children, such as 
the deictic gesture of abstract pointing. We conjecture that it may be the context of 
explaining the amount of photos in imaginary layouts, which prompted the children 
to use this range of semiotic resources. If this is the case, then the context of the situ-
ation can be considered as affecting the functions that the semiotic resources need 
to fulfil.

In our study, in all but one case, the 5-year-old children gave deductive explana-
tions (Donaldson, 1986). Donaldson (1986) had suggested that children may not be 
able to understand the causal relationships, needed for a deductive explanation, until 
they were 7–8 years old. However, the children in this interaction showed an under-
standing of two causal relationships in their deductive reasoning. The first was that 
dividing the existing photos on a page would produce a new amount of photos. The 
second was that by counting real, real and imaginary, or just imaginary photos, a 
total amount of photos could be determined. As was the case also in Saar’s (2013) 
study, the children in our study drew on their previous experience and observation 
of the real-world situations, such as of photos, number cards and page layouts, to 
support their explanations.

Donaldson (1986) suggested that linguistic skills like the use of logic connec-
tives are needed for deductive reasoning. However, in the interaction, the children 
more often used other semiotic resources, such as iconic and metaphorical gestures, 
to indicate through a cutting motion how the page was to be divided. As such, they 
provided the logical links between the actual layout and the alternative layout that 
the child wanted to ‘show’ to the others.

As the layouts could consist of only real (C4), real and imaginary (C1, C2 and 
C3) or only imaginary photos (C2), both beats (C1, C2 and C4) and an abstract 
deictic (C1 and C2) gestures were used to point at specific areas on the page to con-
vey evidence for the amount of photos being counted. C3’s cutting gesture also had 
abstract deictic characteristics. These children’s use of gestures in their explanations 
is interesting in that Goldin-Meadow (1998) suggested that children are not able to 
use abstract pointing until they are 10 years old. Nonetheless, in these deductive 
explanations, the children used abstract pointing to illustrate the logic behind the 
counting of imaginary photos.

As was the case with counting, the children often used artefacts, in connection 
with gestures, to convey meaning. The photo book and its existing page layouts 
clearly provided inspiration to the children for their alternative layouts. As well, the 
teacher’s hand was used as a semiotic resource by C1 to convey extra meaning about 
her counting of imaginary photos for the first time. C2 used a deictic gesture to point 
at number cards on the wall when she provided her deductive explanation of amount 
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of photos in C3’s alternative layout, as well as in the limited procedural explanation 
about how she got a total amount of five photos in her first alternative layout. The 
cards provided extra meaning by illustrating how she imagined the alternative lay-
out would look like.

Logical connectives in oral language were used only in a few cases. C3 used 
‘if…then’ to provide some indication of the relationship between dividing the page 
and the number of photos in his imaginary layout. In C2’s last explanation prompted 
by T’s request for her to explain her thinking, she used ‘and’ to connect all her divi-
sions, and ‘if … then’ to indicate how the actions would give the correct amount of 
photos, suggested previously. Except for these two cases, the logic linking the dif-
ferent parts of the explanations was mediated by following a fairly consistent expla-
nation structure  – description of the dividing of the actual photos and pages, 
followed by counting of the imaginary photos – through gestures and artefacts as 
well as speech.

It may be that the need to reason about the amount of imaginary photos created 
a context which stimulated the children to use these types of gestures at a much 
younger age than Goldin-Meadow (1998) suggested. Meaney’s (2011) research has 
previously indicated that non-physical objects, such as time, require oral discussion 
and it may be that the hypothetical nature of the alternative layouts prompted the 
children to use a wider range of semiotic resources that would have been the case 
with just counting physical objects. These results indicate that further research is 
needed to better understand how context affects the range of semiotic resources that 
children draw upon.

11.6  Conclusion

In this chapter, we have described the semiotic resources used by 5-year-old chil-
dren in naturally occurring explanations about hypothetical situations, in which they 
imagined alternative layouts. In the interaction, the children used a range of semi-
otic resources to give mostly deductive explanations. Similar to Johansson et al.’s 
(2014) suggestion from their research, we argue that the gestures, along with the 
spoken utterances, did not represent the children’s internal thinking, but actually 
contributed to that thinking. It is in the deductive explanations about the division 
lines and the number of photos or the number of places on a page which supported 
the children to understand the relationship between them. The objects to be counted 
existed in a complex space where real photos and imaginary ones were combined in 
alternative layouts and it seemed that the counting paths were used by the children 
to visualise this complex space. The use of the semiotic resources in the different 
explanations provided some insights into the mathematical thinking of the children, 
as well as into what might have been challenging for them.

Given that our results are in contrast with those of other researchers (Donaldson, 
1986; Goldin-Meadow, 1998), there is a need for further research to understand how 
children make use of non-verbal semiotic resources to justify their understanding 
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about hypothetical situations. In particular, we consider that understanding the 
impact of different contexts on the semiotic resources that children chose to use in 
their explanations would be extremely valuable, as it seems that the hypothetical 
nature of what they were discussing affected their use of resources. This is because 
the explanations required the semiotic resources to take on specific functions in 
order to ensure the appropriate meaning to be provided.

References

Alibali, M.  W., & Nathan, M.  J. (2012). Embodiment in mathematics teaching and learning: 
Evidence from learners’ and teachers’ gestures. Journal of the Learning Sciences, 21(2), 
247–286.

Donaldson, M. L. (1986). Children’s explanations. Cambridge: Cambridge University Press.
Edwards, L.  D. (2009). Gestures and conceptual integration in mathematical talk. Educational 

Studies in Mathematics, 70(2), 127–141.
Gelman, R., & Gallistel, C. (1978). The child’s understanding of number. Cambridge, MA: 

Harvard University Press.
Goldin-Meadow, S. (1998). The development of gesture and speech as an integrated system. New 

Directions for Child Development, 79, 29–42.
Johansson, M., Lange, T., Meaney, T., Riesbeck, E., & Wernberg, A. (2014). Young children’s mul-

timodal mathematical explanations. ZDM—International Journal on Mathematics Education, 
46(6), 895–909.

McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago, IL: University 
of Chicago Press.

McNeill, D. (2005). Gesture and thought. Chicago, IL: University of Chicago Press.
Meaney, T. (2011). Only two more sleeps until the school holidays: One child’s home experiences 

of measurement. For the Learning of Mathematics, 31(1), 31–36.
Radford, L., & Sabena, C. (2015). The question of method in a vygotskian semiotic approach. In 

A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in 
mathematics education (pp. 157–182). New York: Springer.

Roth, W.-M. (2001). Gestures: their role in teaching and learning. Review of Educational Research, 
71(3), 365–392.

Sabena, C. (2008). On the semiotics of gestures. In L.  Radford, G.  Schubring, & F.  Seeger 
(Eds.), Semiotics in mathematics education: Epistemology, history, classroom, and culture 
(pp. 19–38). Rotterdam: Sense Publishers.

Saar, T. (2013). Articulating the immanent: Children unfolding numbers. Global Studies of 
Childhood, 3(3), 310–317.

Yackel, E. (2001). Explanation, justification and argumentation in mathematics classrooms. In 
A. Cockburn & E. Nardi (Eds.), Proceedings of the 26th Annual Conference of the International 
Group for the Psychology of Mathematics Education (Vol. 1, pp. 9–25). Norwich: PME.

E. Severina and T. Meaney



199

Chapter 12
Drawings, Gestures and Discourses: 
A Case Study with Kindergarten Students 
Discovering Lego Bricks

Benedetto Di Paola, Antonella Montone, and Giuditta Ricciardiello

12.1  Introduction

The Italian Ministerial Guidelines in their latest formulation (MIUR, 2012) propose 
for Kindergarten a mathematical area, named ‘knowledge of the world’. In this area, 
they propose the following: ‘Children continually explore reality, but need to learn 
to reflect on their experiences by describing them, representing them, and reorganiz-
ing them, according to specific educational goals. In this way it is possible to lay the 
foundations for the subsequent elaboration of scientific and mathematical concepts 
that will be introduced in primary school’ (p. 21). Moreover, in the transition from 
kindergarten to primary school, the Italian Ministerial Guidelines emphasize the 
power of Geometry in involving students in activities such as the use of visualiza-
tion, spatial reasoning, analysis of the characteristics of the figures, production of 
arguments, mathematics related to geometric relationships and modelling to solve 
problems (MIUR, 2012).

Moreover, we believe that the learners’ capacity to visualize geometric relation-
ships can develop, starting from kindergarten (Anning & Ring, 2004; Di Paola, 
Battaglia, & Fazio, 2016), as children sort, build, draw, model, trace and measure. 
Active children’s involvement in the use of manipulatives is, indeed, fundamental in 
geometry. Such activities develop their skills in visualizing and reasoning about spa-
tial relationships (Di Paola & Montone, 2018; Faggiano, Montone, & Mariotti, 2018). 
It has long been known that use of real objects and manipulative tools can be useful to 
support mathematics learning (Sowell, 1989; Montone, Faggiano, & Mariotti, 2017).
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The Theory of Semiotic Mediation (TSM) (Bartolini Bussi & Mariotti, 2008) 
offers an effective reference framework in order to study the relationships between 
artefacts, the actions they allow one to accomplish and how pupils use them to con-
struct mathematical concepts. In the present work that fits into this research field, a 
sequence of activities has been created, to be carried out using a manipulative arte-
fact, a Lego block and its drawing, and aimed at promoting the construction/concep-
tualization of the coordination of different points of view. The focus of the study is 
on investigating the alternation between different semiotic systems, graphical, ver-
bal and gestures (Arzarello, Paola, Robutti, & Sabena, 2009). Our didactic assump-
tion claims that the process of construction of the correct coordination of different 
points of view can be achieved through the mediation of specific artefacts.

In this chapter, we analyse a mathematical discussion concerning the drawings of 
Lego blocks realized by 15 kindergarten students (8 of them are 5 years old and the 
remaining 7 are 6  years old) connected with their use of gestures as a semiotic 
resource into the description of their drawings. This analysis is aimed to study the 
thought construction made by the children in the coordination of different points of 
view (Duval, 1998) observing a 3D object as a Lego block. This topic is not deeply 
studied in research. Therefore, we think that it should be interesting for the study of 
the geometrical and spatial thinking (Battista, 2007; Clements, 2004), starting from 
Kindergarten level (Radford, Edwards, & Arzarello, 2009).

12.2  Theoretical Framework

As stated above, in this study we refer to TSM. The main aspect of the TSM that we 
focus on in the design aspect of the teaching process is the semiotic potential. The 
semiotic potential of an artefact consists of the double relationship that occurs 
between an artefact, the personal meanings emerging from its use to accomplish a 
task (instrumented activity) and the mathematical meanings evoked by its use and 
that are recognizable as mathematics by an expert (Bartolini Bussi & Mariotti, 
2008, p. 754).

In semiotic activities, various signs are produced: the ‘artefact signs’, the ‘math-
ematics signs’ and the ‘pivot signs’. The ‘artefact signs’ express personal meanings 
that often have a highly subjective nature and are linked to the learner’s specific 
experience and/or culture (Di Paola, 2016; Mellone, Ramploud, Di Paola, & 
Martignone, 2019) with the artefact and the task to be carried out. The ‘mathematics 
signs’ express the knowledge of mathematics which may evolve ‘artefact signs’. 
Finally, the ‘pivot signs’, with their hybrid nature, show the evolution between arte-
fact signs and mathematics signs, through the linked meanings.

Such an evolution can occur together with specific semiotic activities, in particu-
lar, in the peer interaction during the task and in the collective discussions, accom-
panied by the expert guidance of the teacher. The collective construction of shared 
mathematical meanings is a complex process, where it is possible to distinguish 
between evolution paths (semiotic chains) described by the appearance and chains 
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of different types of signs: artefact signs, mathematical signs and pivot signs 
(Bartolini Bussi & Mariotti, 2008).

Through a complex process of texture, the teacher constructs a semiotic chain relating arti-
fact signs to mathematics signs, expressed in a form that is within the reach of students. In 
this long and complex process, a crucial role is played by other types of signs, which have 
been named pivot signs. […] they may refer to specific instrumented actions, but also to 
natural language, and to the mathematical domain. Their polysemy makes them usable as a 
pivot/hinge fostering the passage from the context of the artifact to the mathematics context 
(Bartolini Bussi & Mariotti, 2008, p. 757).

Finally, we must underline the importance of organizing the teaching in such a 
way that it, during this evolution, may foster the collective production and develop-
ment of signs through Mathematical Discussion (Bartolini Bussi, 2008).

In recent years, many researchers have studied and highlighted the role and coex-
istence of various semiotic resources that come into play in the processes of learn-
ing and teaching mathematics (Fandiño Pinilla, 2008). The words (written or 
spoken), the specific symbols of the discipline, gestures, body position and all other 
aspects related to the embodied nature of knowledge (Edwards & Robutti, 2014) are 
considered as fundamental mediators of the mathematical thinking of students and 
teachers alike, and not as mere accidental elements (Nemirovsky & Ferrara, 2009; 
Radford et al., 2009).

Radford et al., (2009) describe gestures as important sources of abstract thinking 
and as the very texture of thinking. Therefore, the activation of different cognitive 
and semiotic components together with the perceptive-motor and ‘embodied’ activ-
ities, such as the manipulation of materials or artefacts, drawing, gestures, body 
movements, and rhythms, support the student’s thinking process (Arzarello 
et al., 2006).

12.3  Research Methodology

According to the main assumption concerning the TMS and the role of gestures as 
a semiotic resource used by young students (5–6 years old) in the learning process, 
a teaching sequence has been designed. However, the main hypothesis consists of 
alternating activities involving the manipulation of a Lego block, the use of drawing 
and a description of representations that could make the evolution of the signifi-
cance concerning the coordination of different perspectives from different points of 
view. The teaching sequence was carried out in a pilot study with the participation 
of 10 children attending the last year of kindergarten (5/6 years old). In order to 
analyse the students’ drawings, gestures and the related discourse, the teaching 
experiment was videotaped. Transcriptions were used in the analysis of the data to 
highlight the evolution of the signs from artefact signs to mathematics signs.

In this chapter, we will refer to data coming from the mathematical discussion. 
We will not only show the unfolding of the semiotic potential related to the artefacts, 
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but also how the transition from the manipulation of the real object to its representa-
tion can foster the construction of mathematical meanings.

The teacher conducted the teaching experiment. She asked students to manipu-
late a Lego block observed from different points of view and to draw it, identifying 
the main characteristics related to all its parts (e.g. faces, angles and parallelism). 
The interpretations of the drawing are analysed by the teacher and researchers who 
observed the videotape of students’ interactions and his/her gestures used to present 
his/her drawings to the teacher and to the other students.

The following questions guided the research conducted:
How does the use of different semiotic systems allow students to construct and 

conceptualize the correct coordination of different points of view?

12.4  Overview of the Teaching Sequence

The first teaching phase involves the Lego blocks, like in the following figure 
(Fig. 12.1).

Throughout the exploration, manipulation and observation of the blocks, each 
child describes his/her blue block to their fellow students. The child becomes famil-
iar with the three-dimensional object, and through the use of personal symbols 
describes the shape, the presence of edges or ‘points’ and how many there are.

The second phase involves the drawing of the block. The request to draw the blue 
block freely on an A4 sheet has the aim of making the child express through the 
drawing one of the many points of view and the relations between the parts of the 
blue block compared to the chosen point of view.

As in the first phase, each child initially observes (through manipulation) the 
blue block, trying to grasp its shape, the presence of edges, ‘circles’, their relative 
number and so on. Later, the block is placed on a bench and the children line up in 
front of it. Children are then asked to draw the blue block again, now being able to 
see it. This setting is chosen to support more observation points of view of the chil-
dren, and to link it to the position taken by the children with respect to the position 
of the blue block. We try to encourage the production of drawings of the same 
object, but with different points of view.

The third phase, executed in the days following those dedicated to the previous 
phase, was carried out in the kindergarten through a mathematical discussion aimed 
to analyse what students put in evidence producing the figurative representations of 

Fig. 12.1 Lego block
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the Lego block observed from different points of view. Children were asked to 
describe their drawing to the rest of their classmates. The teacher asked them to 
‘compare’ the various drawings with one another. The selection of the drawing most 
similar to the blue block was made by the class, thanks to a discussion orchestrated 
by the teacher (Bartolini Bussi & Boni, 1995), and was designed to allow all stu-
dents to independently assess the designs of their classmates and its accuracy in 
relation to the point of view used.

12.5  Analysis and Preliminary Results

In this section, we present the analysis of the drawings and the students’ discourses 
through the emergence and evolution of specific signs. Data analysis is based on the 
transcriptions of students’ interactions during their accomplishment of the task 
using their drawings, and finally on the transcripts of the collective discussions. A 
specific lens of analysis will regard the identification of key elements used in the 
drawing of real objects in order to begin to coordinate the different points of view, 
strengthening the ability to understand someone else’s point of view. The listed 
protocols are only some of the most significant ones, in relation to the variety of 
strategies, identified in the drawings produced by children.

12.5.1  Different Points of View of Matilde, Laura and Elio

With regard to the research hypothesis, we will in this section present the analysis 
of some interesting episodes involving all children. In particular, three of them, 
Matilde, Laura and Elio, compare their different drawings and show not only the 
evolution of signs towards the mathematical meanings, but also the expected ability 
to use different points of view and recognize the necessity to coordinate them.

12.5.1.1  Episode 1

The children carry out this task: ‘Take the blue block in your hands, touch it and 
look at all its parts, then draw it’. During the following mathematical discussion, 
the teacher asks them to describe their own drawing and compare it with others’ 
drawings. In the first part, the discussion focuses on the description of their draw-
ings. In the following, the discussion focuses on the shape of the Lego block. Not all 
the children immediately realize that it would have been enough to draw one of the 
parts of the Lego block, but at the end of the discussion none of them seem to have 
any doubts about that. Then, Matilde intervenes and demonstrates an important but 
obvious point. She draws the circles on the figure with her index finger and then 
goes through the two rows of dots in parallel. Afterwards, she points with her index 
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Fig. 12.2 The drawing of 
Matilde

and middle finger on the couple of dots, counts and says ‘we must draw the Lego 
block, as we saw it’. At this stage, the discussion1 is concentrated on the shape of the 
block and Matilde, seeing on her sheet (Fig. 12.2), tries to explain what she has done:

 1. Matilde: In a first moment I have done… I did the shape of the square, then I 
made first one very small then as Elio, then I didn’t like it, I erased it and before 
I did all these r, I didn’t like it and I did it again.

afterwards pointing with her index and middle finger on the couple of dots she 
counts and says:

 2. … two, two, two, two… eight… because on that rectangle there were eight.
 3. Teacher.: the rectangle?
 4. Matilde: there were eight circles.

Matilde tapping with her finger on each circle, touching them all

 5. Teacher.: there were eight circles… you said you did the shape.
 6. Matilde: yes, the shape …I did the same edge of the block put in this way.

with her index finger running along the rectangle she had drawn, putting her hands one in 
front of the other, making a rectangle matching thumbs and index fingers together, the other 
fingers closed. She went down with her hands on the drawing, as holding the block in her 
hands, showing the view from above.

In the description (Point 1), concerning what she has done, Matilde tries to 
remember the block used in the previous phases and thinks about its top part. Then, 
she thinks back to the choices made and expresses a judgement on her drawing by 
declaring an indecision with respect to the choice of the point of view to be consid-
ered. Indeed, the task asks to draw the block, but it is not specified from what point 
of view. Matilde probably interprets this request first by answering with a side 
 representation of the block. Subsequently, however, she considers her first represen-
tation not matching to the Lego block. Indeed, she often repeats ‘I didn’t like it’. 
Finally, she chooses the representation from above. The need to choose a point of 
view from which to observe is already beginning to emerge in Matilde’s indecision.

1 Transcripts and gesture (in Italic) descriptions extracted from the video-recording of the third 
phase, concerning the collective discussion about drawings and their comparing.
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In the representation that Matilde does in the end (Point 2), she turns her atten-
tion to the circles, which strongly characterize the Lego block in the drawing. 
Indeed, finally she counts the circles as a fundamental element of the drawing and 
says ‘because on that rectangle there were eight’. Consequently, her drawing is not 
just any rectangle, but the eight circles determine the characterization of the 
object drawn.

Then, the teacher (Point 3) mirrors the words used by Matilde, ‘rectangle’ to 
focus on the shape. But Matilde (Point 4) counts the circles two at a time, tapping 
the index finger and the middle finger on the sheet, giving importance to how the 
circles are arranged, parallel to two by two, probably because her attention is caught 
by the characterizing element of the drawing.

The teacher (Point 5) repeats the words used by Matilde, ‘shape’, and mirrors it. 
Finally, Matilde (Point 6), helping herself with her hands, seems to make a projec-
tion of the three-dimensional shape in the plan, like the shape left by the block on 
the sand. Here, the point of view from above began to emerge as a privileged point 
of view.

This episode shows the first evolution towards the mathematical meanings that 
are the aims of the teaching intervention. The intervention of the teacher is funda-
mental in inducing the pupils to express their personal meanings, and the different 
reformulations show how such meanings evolve from the description of the drawing 
to the idea of a shape (rectangle). According to Bartolini Bussi and Mariotti (2008), 
the passage from the context of the artefact to the mathematics context begins 
to appear.

12.5.1.2  Episode 2

The discussion continues and Laura intervenes, saying that she also did it the same 
way. Therefore, the teacher invites her to express her ideas. So she says:

 7. Laura: The block… I did the same thing as Matilde, I took the block….
she moved her hands as if there was a block laying on the sheet of paper 

(Fig. 12.3)
 8. …that was in this position and I drew some lines, as if it was a ruler

held a fictive block with one hand and drew the edge with the other one 
(Fig. 12.3)

 9. … the lines with the block, the shape… we did it in the same position, 
identical

Fig. 12.3 The hands of 
Laura to simulate the block 
while she compares 
different drawings
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Fig. 12.4 Laura sliding 
with her index finger on 
the upper side of the 
rectangle

Fig. 12.5 Laura interprets 
Elio’s drawing, of a block 
placing on a side face

 10. Teacher: but why did you draw it in this way?... as if it was on the desk. What 
did you choose? Did you make a choice to draw it, did you?

 11. Laura: In a first moment I thought to do it above… like Elio and Matilde, then 
I changed my mind and I wanted to…I choose to draw the circles here, in the 
middle…above here (Fig. 12.4).

sliding with her index finger on the upper side of the rectangle
 12. Teacher: and why? What is it “above here”?
 13. Laura: yes, Elio, for example, drew it in this way.

she lays the hand on one side of the rectangle, with the palm of the hand in 
front of herself

 14. …from the side
Laura raising the sheet of paper and pointing to the rectangle with thumb 

and index finger, as if she wanted to lean the block on a side face and says
 15. ...Elio put the Lego Block in this way, so… (Fig. 12.5)
Afterwards mshe put the sheet on the desk and rotate both her hands, as is if she 

held the brick tight, in the movement of rotating the brick itself, changing her 
point of view from above to aside. In a first moment she used the whole hand to 
contain the brick; in a second moment she laid on the sheet a thumb and an index 
finger only, representing the edge of the base. With the rotation of the fingers, 
only, she emphasizes the thickness of the block which comes out from the sheet 
(Fig. 12.6).

In this episode, Laura (Points 7–9) compares her point of view with the one 
expressed by Matilde, deducing that it is the same. According to TMS and our 
assumption, Laura uses different semiotic systems: graphical, verbal and gestures. 
She, while speaking, uses drawing as a starting point to compare her point of view 
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Fig. 12.6 Laura rotaing the finger, only, to emphasize the thickness of the block

with that of others, and uses gestures to simulate the position of the real object on 
the desk relative to the point of view of the observer. She takes up the sign ‘shape’ 
used first by Matilde and then repeated by the teacher. The passage from the three- 
dimensional object that Laura simulates with her hands (Fig.  12.3), to her two- 
dimensional representation, is evident. Laura uses an iconic gesture and the word 
‘shape’. According to Arzarello et al., (2009), her gestures seem to be important 
sources supporting her thinking process.

At this point, the teacher (Point 10) asks her to clarify and to explain the reasons 
that guided her choices.

In Laura’s next expression (Point 11), a rethinking can be noted. Laura first 
draws the block looking at it from one side, and then she crosses it out and draws 
the block again when she looks at it from above. While talking, Laura refers to the 
circles on the top of the block.

The characteristic of the block represented by the circles emerges again to con-
firm that children recognize it as an element that cannot be left out in the representa-
tion of the Lego block, because it is what distinguishes the Lego block from other 
rectangular blocks. It had also already emerged in the intervention of Matilde.

The teacher mirrors the words ‘above here’ and the intervention of Laura (Points 
13–15) seems to us very interesting. The previous idea expressed by Matilde began 
to evolve and is shared. The shape of the block leads to recognizing a rectangle. 
Moreover, Laura tries to explain her drawing through the comparison with the draw-
ings of other pupils. She interprets Elio’s drawing, considers Elio’s point of view 
and highlights the differences between the two drawings.

According to TMS and Arzarello’s point of view, the alternation among different 
semiotic systems, graphical, verbal and gestures, promotes the evolution of the 
meanings.

Furthermore, the characteristic of the circles is an element that cannot be left out 
in the representation of the Lego block because it is what distinguishes the Lego 
block from other rectangular blocks. And it had already emerged in the intervention 
of Matilde.

12.5.1.3  Episode 3

At this point, Matilde intervenes again:

 16. Matilde: Elio has done in this way.
stretching her arms in front of herself, she placed them one in front of the 

other, as if she held the brick in her hands, she leaned on the chair back and 
stirred between her hands as if she could see a brick, seen from aside (Fig. 12.7) 
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Fig. 12.7 Matilde’s gesture to represent different points of view

Fig. 12.8 Matilde’s 
gesture to represent the 
point of view from the side

 17. …and Laura and me, from the top
she puts her open hands with her palms down, as if she were touching the 

upper part of the brick, getting them closer to the desk and with the whole body 
she leans on the desk, looking at it from above

 18. Teacher: What do you think, Elio?
 19. Elio: Yes, it’s true! I drew the block looking at the side, while Matilde and Laura 

looking it from the top.
 20. Matilde: Elio in this way (Fig.  12.8) … instead Laura and me from the top 

(Fig. 12.9).
she stretches her arms, puts once more her hands parallel to each other in 

front of herself, with the open palms (Fig. 12.8).
she makes a quick gesture, putting her hands on the sheet and overlooks it 

with her whole body (Fig. 12.9).
At this point, Laura intervenes, gesticulating in the space in front of her, 

opening her hands and moving them as if she touched the brick on its side, and 
says:

 21. Laura: Elio looked at the block from the side. Matilde and me looked at it from 
the upper side, instead.

Laura stood up and overlooked the desk, bended her head forward
 22. Laura: Not in this way.

B. Di Paola et al.
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Fig. 12.9 Matilde’s 
gesture to represent the 
point of view from the top

Fig. 12.10 Laura lifts the 
sheet and looks at its 
profile as if she saw the 
thickness of the block

Laura first lifted the sheet from the desk and she put it in front of herself, as if it was 
the side surface of the brick (Fig. 12.10).

Then she leaned the sheet on the desk and put her open hand on the drawing, flat-
tening/ pressing it from above. She repeats the same gestures done by Matilde.

In this episode, the reference to the idea of different points of view clearly 
emerges, coming out of the comparison of three different drawings.

Matilde, confirming what Laura says and acting with gestures, interprets the 
drawings made by Laura, compares Laura and Elio’s drawings and underlines the 
difference in the points of view from which they are drawn (Fig. 12.7).

The sign emerges in relation to the use of the manipulative artefact, the Lego 
Block and the drawing evolves, thanks to the shared discussion. In fact, ‘from the 
top’ can be considered a pivot sign, because on the one hand it may express the 
action of seeing the block from above, and on the other hand, it refers to the math-
ematics sign (view from above).

At this point, the teacher invites Elio to explain the point of view from which he 
observed the block when he drew it (Point 18.). Elio confirms and summarizes 
(Point 19).

Subsequently, Matilde recognizes two different points of view in the drawings. 
The sign ‘this way’ is a pivot sign, because it on the one hand indicates the draw-
ings that Matilde is directly observing, on the other hand it refers to the side of 
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real object that is represented (Point 20). The sign is matching with gestures 
(Figs. 12.8 and 12.9).

In the end (Point 21), it seems that Laura wants to describe her representation as 
a representation that takes into account multiple points of view at the same time, but 
she clearly has in mind that a different point of view has been used in her representa-
tion than in the one of Elio.

The analysis of episodes 2 and 3 shows the development of the complex system 
of meanings and the texture of their relationship, highlighting the expected alterna-
tion between different semiotic systems, graphical, verbal and gestures. Moreover, 
these episodes are showing how the meanings of the different points of view emerge 
once more. In addition, the final argumentation by Matilde and Laura shows how 
the use of the artefacts, the Lego block and the drawing, led to a consolidation of the 
mathematics meaning among the students. The process of the interpretation of the 
drawings played a fundamental role that conducts the pupils to compare different 
representations, to choose the adequate geometrical shape, the rectangle, to recog-
nize in the drawing the characteristic element of the object, the circles. It is evident 
that the alternation among different semiotic systems, graphical, verbal and ges-
tures, when pupils try to explain their argumentation, supports, as a fundamental 
mediator, the student’s thinking process. Also, the process of construction of the 
correct coordination of different points of view has been achieved through the medi-
ation of specific artefacts, the Lego block and the drawing.

12.6  Conclusions

This chapter reports some preliminary results concerning the validity of the hypoth-
esis about the potentiality of using the combination of artefacts as tools of semiotic 
mediation. The analysis of the data coming from a teaching experiment clearly 
shows how the potentiality of each single artefact can be utilized and combined. In 
this way, it is possible to construct and develop mathematical meanings concerning 
the coordination of different perspectives, drawing three-dimensional figures from 
different points of view. Additionally, the analysis of the collected data shows the 
potentiality of the alternation among different semiotic systems, graphical, verbal 
and gestures, and how the different meanings could be related and integrated to 
develop expected meanings related to the mathematical notion of point of view.

The discussed results, considering the small number of children, cannot be said 
to have any general character. According to our hypothesis, we try to interpret the 
data collected in reference not only to the request to represent the Lego brick with a 
drawing, but also to a subsequent description made by the same children with ges-
tures and words. The drawing is linked both to the representation of a three- 
dimensional object on a two-dimensional surface in relation to different observational 
points of view, and to the argumentative skills related to the natural language and 
gestures recorded during the discussion.
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The analysis of the drawings produced by the children and the relative gestures 
used during the discussion allow us to highlight the evolution of signs and corre-
sponding meanings. Here, we notice the presence of several visible parts drawn at 
the same time or the overlapping of several elements linked to different points 
of view.

Looking at the Mathematics teaching/learning phases in a vertical perspective 
that embraces all school grades, we believe that the discussed results can be a good 
starting point for reflection for researchers in mathematics education for future the-
oretical and experimental investigations on the development of the geometric 
thoughts in all its forms from the Kindergarten to University.
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Chapter 13
Perceiving and Using Structures When 
Determining the Cardinality of Sets: 
A Child’s Learning Story

Priska Sprenger and Christiane Benz

13.1  Introduction

Early childhood education in mathematics is often limited to the most obvious 
mathematical activities children show at this age: counting and determining sets. 
Researchers (cf. Brownell et al., 2014; Gasteiger & Benz, 2018; van Oers, 2004) 
and official policy educational documents agree that early mathematics education 
should be based on central mathematical concepts, and enable continuous learning 
and a broad understanding of mathematics (Brownell et al., 2014; Gasteiger, 2015). 
Not only mathematical contents are relevant for a broad understanding of mathe-
matics, but also mathematical processes or proficiency strands, for example, 
problem- solving or reasoning (cf. Australian Curriculum, Assessment and Reporting 
Authority, 2014; Department for Education, 2013; National Council of Teachers of 
Mathematics, 2000). Nevertheless, the arithmetical content is still one important 
part in early mathematical educational concepts and policy documents—also in 
relation to the background of early intervention or prevention for problems in learn-
ing mathematics in school. Therefore, we will look at and analyze some aspects of 
early numerical and arithmetical development.

13.2  Role of Structures for Numerical and Arithmetical 
Development

Structures play an important role in numerous models for number and arithmetic 
concept development (cf. Baroody, Lai, & Mix, 2006; Lüken, 2012; Mulligan & 
Mitchelmore, 2018; Mulligan, Mitchelmore, English, & Crevensten, 2013). In the 
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hypothetical development trajectory for key aspects of early number and arithmetic 
development, Baroody et al. (2006) emphasize the importance of structures both for 
the number concept and for the arithmetical development:

Conceptually based VNR [verbal number cognition] enables a child to see (decompose) 
collections of two (a whole) as one and one (into its parts) […]. […] Experiences [of] 
decomposing and composing small, easily subitized collections may be the basis for con-
structing an informal concept of addition (and subtraction) (Baroody et al., 2006, p. 193).

Structure or structuring, which can be defined as the way in which various ele-
ments are organized and related (Mulligan & Mitchelmore, 2013), can be seen as 
decomposing and composing (visible) objects and therefore it is an underlying con-
cept for the part–whole-relations because “this composing process fosters an under-
standing of part-whole-relations and vice versa” (Baroody et al., 2006, p. 193).

A part–whole concept and experience with composition and decomposition may underlie 
an understanding of “number families” or the different-names-for-a-number concept (a 
number can be represented in various ways because a whole can be composed or decom-
posed in various ways) and is one key link between number and arithmetic (Baroody et al., 
2006, p. 195).

Thus, it is not surprising that Resnick, already in Resnick, 1989, pointed out that 
“probably the major conceptual achievement of the early school years is the inter-
pretation of numbers in terms of part and whole relationships” (p. 114). Referring 
to Baroody et al. (2006), (de)composing collections of objects can nurture the part–
whole understanding. If children (de)compose collections of objects, they switch 
the focus from individual items to perceiving and identifying structures of parts. 
Hunting (2003) describes this ability as an important step for part–whole reasoning, 
which in turn contributes to numerical development. If the switch from focusing on 
individual items to perceiving and identifying structures of parts is so important, 
different aspects of this “switch” have to be examined, so that children can be sup-
ported to achieve this switch. Therefore, in this study we look at different possibili-
ties to perceive items in collections and also how perception is used for the 
determination of cardinality.

The evaluations of the learning story presented in this study are based on a theo-
retical model that distinguishes between two processes: the process of perceiving 
sets and the process of determining cardinality. These processes can run one after 
the other, or coincide with each other, for example during subitizing (cf. Fig. 13.1 
and Schöner & Benz, 2018). In Fig. 13.1, possible relationships between the two 
processes are illustrated.

Each of these two processes can be divided into three different subgroups. The 
different ways of perceiving a set allow different ways to determine the cardinality 
as, for example, the use of a counting strategy, a derived facts strategy, or the use of 
known facts. If the elements of a set are perceived as individual elements, the only 
possibility to determine the cardinality is to use the counting strategy “counting all.” 
If a set is perceived in (sub-)structures, “counting all” would also be a possible 
strategy to determine the cardinality. Furthermore, in this case, in addition to “count-
ing on” (four, five, six, seven, eight) or “counting in steps” (four, six, eight), 
noncounting- derived facts strategies (three and three equals six and two more is 
eight) can also be used to determine the cardinality.

P. Sprenger and C. Benz
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Fig. 13.1 Two processes: Perception of sets and determining cardinality (Schöner & Benz, 2018)

13.3  Research Question

In this chapter, we aim to answer the following research question based on a child’s 
learning story:

How do the perception of structures and the use of structures determine the car-
dinality of a set change based on an implementation?

13.4  Design of the Study

Ninety-five children from nine different kindergartens aged from 5 to 6 years were 
interviewed three times. The study of Schöner and Benz (2018) describes that at the 
first interview (T1), 102 children were interviewed. Some children have left the 
study, for example due to a move to another city. The children were divided into a 
treatment group (n = 55) and a control group (n = 40). Only the treatment group 
took part in an implementation phase (cf. Fig. 13.2). Luca, the boy in the presented 
learning story, was a member of the treatment group. In the first interview (T1), at 
the beginning of the last year in kindergarten in September 2015, Luca was five 
years and two months old. Then, an implementation happened for four months. 
After the implementation period, the posttest interview (T2) proceeded in February 
2016. The children were given the same tasks again to investigate the development 
in perceiving and using structures to determine the cardinality of sets. The third 
interview (T3), at the end of the last year in kindergarten, was conducted as a fol-
low- up interview in July 2016 (cf. Fig. 13.2).

13 Perceiving and Using Structures When Determining the Cardinality of Sets…



216

Fig. 13.2 Timeline of the study

Fig. 13.3 Order of the presented items

The study is designed in a panel design, so the same children were interviewed 
three times (T1, T2, T3) to evaluate whether and how they perceive and use struc-
tures for determining the cardinality of the presented sets. To get some deeper 
insights into the perceiving process of the children, the research tool eye-tracking 
was used. With eye-tracking, it is possible to detect the eye movements of the chil-
dren while they are perceiving and determining the cardinality of sets. The whole 
interview consists of four different parts (in three of them, the research method eye- 
tracking is used: unstructured pictures of dots, egg cartons, and daily life pictures). 
In this study, the focus is on the part with the egg cartons for ten eggs which has an 
equivalent structure as the tenth frame. It is the typical size of egg cartons in 
Germany.

13.4.1  Tasks

In this part of the study, pictures of egg cartons with the quantities two, three, four, 
five, seven, nine, and 10 were presented to the children on a monitor. In the present 
learning story of Luca, only the sets with cardinality ≥5 are considered. In Fig. 13.3, 
the order of these items is illustrated.

Because there are three pictures with the cardinality five and two with cardinality 
seven, it is necessary to name the egg cartons individually. “u3,b2” means, for 
example, “three eggs on the upper row” and “two eggs on the bottom row” (cf. 
Fig. 13.3). These abbreviations were not visible to the children. They are useful in 
this chapter to facilitate communication about individual egg cartons.

P. Sprenger and C. Benz
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Before the pictures were presented, the children had been told that the inter-
viewer would like to know how many eggs they saw. They were asked to say the 
number as soon as they knew it and they had as much time for determining the 
quantity as needed. As soon as they said a number, the interviewer asked how they 
came to the result (cf. Schöner & Benz, 2017; Schöner & Benz, 2018). First, a 
closed egg carton could be seen. Then, the carton was opened. After the child said a 
number (cf. Fig. 13.5, phase 1) and explained how it came to the result (cf. Fig. 13.5, 
phase 2), the carton was closed again.

13.4.2  Implementation

After the first interview (T1), the treatment group got a collection of different mate-
rials and games, like the game “I spy with my little eye” which will be explained 
below. These materials and games offered the opportunity to discover and facilitate 
the structured perception of sets in a playful way. The children in the control group 
did not get the materials. Additionally, in order to observe a development in perceiv-
ing and using structures through an everyday support of the children in kindergarten 
and at home, the kindergarten of the control group did not work with any special 
mathematical training program in perceiving and using structures. That means that, 
during the test period, the kindergarten teachers worked with mathematics in exactly 
the same way as before the research project. The normal routines of the kindergar-
tens of the control group were therefore not altered.

During the four months of the implementation phase (cf. Fig. 13.2), the kinder-
garten teachers in the treatment group were instructed to use these materials with the 
children one to three times each week for 30 min (cf. Schöner & Benz, 2017). During 
the entire implementation phase and until the end of the kindergarten year in July 
2016, the materials were kept in the kindergartens and were always freely accessible 
to the children. During the implementation phase, the educators were asked to keep 
a diary by writing down their activities with the children and their observations in 
order to get additional information. Luca was mentioned by name, so statements 
about his development can be given from the perspective of his educators.

The ten-egg-cartons were part of the provided materials. The kindergarten teach-
ers were instructed on how to use the materials and how to ask questions in order to 
gain insights into the children’s ideas and their ways of thinking. Additionally, they 
got a handbook with different ideas and examples. One of these ideas was a modi-
fication of the game “I spy with my little eye:” Sets of eggs with quantities ranging 
from 1 to 10 are sorted in the egg cartons in such a way that the upper row is always 
filled first. Thus, the numbers are represented up to 10 with a five-structure  
(cf. Fig. 13.4).

After the cartons are filled, a collective conversation about the “appearance” of the 
different number-pictures can take place. Afterwards, the egg cartons are closed and 
mixed. Now, a child (or a kindergarten teacher) takes an egg carton and looks inside 
it. He or she describes which number-picture he or she sees. There are different 
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Fig. 13.4 “I spy with my little eye” – Three examples

requirements: Filled rows and places and/or empty rows and places can be described. 
Hence, a description of the number six can be different. For example: “The upper 
row is full. In the bottom row it is just one egg” or “The upper row is full. In the bot-
tom row, four places are empty or in the bottom row four eggs can be placed” or 
“There are still four empty places or in the bottom row it is still place for four eggs.” 
The game is finished when all egg cartons have been described. The child who knows 
how many eggs there are in the carton will receive the carton. Whoever guesses the 
most boxes wins. If the game is played in this way it is very challenging, because 
children have to rely on internal pictures. In order to help the children to build up 
internal, structured images of the individual numbers, a variation of the game may be 
played. If all cartons are open during the whole game, children can see the pictures 
when somebody else describes it and link picture and description. Some helpful 
questions for both ways of playing are “can you describe how the number-picture 
looks like?” or “can you say how many eggs there are in a full egg carton without 
counting every single egg?”

Another focus can be established if cartons can be filled without any restriction. 
So, one number can be displayed by many different ways in an egg carton. Here, the 
focus can be placed on different ways of decomposing a set of objects and therefore 
different ways of decomposing numbers. Here, one possible question could be: 
“How can you put n eggs in the carton (for ten eggs)?” (Benz, 2010, p. 28). There 
was, on the one hand, a description of the games and, on the other hand, a lot of 
possible questions and impulses in the handbook the kindergarten teachers got. 
These questions and impulses were helpful in supporting the use of the learning 
opportunities of the games regarding the perception of structures and the structural 
use to determine the cardinality.

13.4.3  Aspects of Data Analysis

In the evaluation, a distinction is made between three different types of data: the 
observation aspects, the eye-tracking data, and the explanation (cf. Fig.  13.5). 
Each piece of data leads to hypotheses about the perception process and the deter-
mination process. On the one hand, hypotheses about these processes are generated 
on the basis of the observations which are made during the interview, such as ges-
tures, sounds, or promptness of the answer (cf. Fig. 13.5, observation aspects and 
explanation). On the other hand, additional information is gained during phase 1, 
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Fig. 13.5 Differentiation of aspects of analysis

by detecting the eye movements with the help of the eye-tracker (cf. Fig. 13.5, eye-
tracking data).

The eye-tracking data can provide insights into children’s processes of percep-
tion (see paragraph below “Data Analysis by the use of Eye-tracking technology”). 
These insights can be used to form hypotheses about perceiving structures (percep-
tion process) and about determining the cardinality (determination process). A typi-
cal observation with eye-tracking data is that the children’s gaze often oscillates 
between two subsets when a structure is perceived. So, the eye-tracking data first 
lead to a hypothesis about the perception process. In most cases, it is possible to 
generate a hypothesis on the determination process from the hypothesis on the 
 perception process. This is the case, for example, when the eye-tracking data show 
that each egg was fixed individually. In this case, the hypothesis for the determina-
tion process would be “counting all.” If the eye-tracking data show a pendulum 
motion between two subsets, then a perception process can be concluded as a deter-
mination process. In the learning story described below, a special observation can 
be made during the analysis of the eye-tracking data. First, a pendulum movement 
between two subsets is visible and then the fixation of each individual egg. In this 
case, both the perception process (structural perception) and the determination pro-
cess (counting all) become visible (cf. Fig. 13.9). Regarding the observation aspects, 
it became apparent in the course of the evaluations that, often, only a hypothesis on 
the determination process and none on the perception process can be made. An 
example of this is “counting all” as a strategy for determining cardinality (determi-
nation process). In this case, no interpretation of perception is possible, because it is 
not clear if the child perceived the set as individual elements or in (sub-)structures 
(cf. Fig. 13.6). Explanations, which can be assigned to a structural perception and 
use, are, for example, “there are four and three and that is seven. I know that” or “In 
the upper row there are three and below two, that is together five.”

13 Perceiving and Using Structures When Determining the Cardinality of Sets…
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Fig. 13.6 Observation aspects

The final hypotheses about the perception and determination process are gained 
from all three different types of data (cf. Fig. 13.5). The evaluations are therefore 
based on a hypothesis-generating method (for more details, cf. Schöner & Benz, 
2018). In the following example, it becomes clear that the three-level evaluation 
process is very complex. The three data types, observation aspects, explanation, and 
eye-tracking data, are interrelated and complement each other.

13.4.4  Data Analysis by the Use of Eye-Tracking Technology

The eye-tracking data is a collection of the eye movements that the children made 
during the interview. The analysis of eye-tracking is based on the hypothesis that 
“eye movements provide a dynamic trace of where a person’s attention is being 
directed in relation to a given visual display” (Jang, Mallipeddi, & Lee, 2014, 
p. 318). To follow these dynamic traces of the children, there are different ways of 
visualizing the eye-tracking data: the GazePlot, the HeatMap, or the Cluster. Each 
of these visualization types are dynamic representations of the selected media. 
In the study presented here, mainly the GazePlot-data was evaluated. It is a helpful 
tool to evaluate the eye-tracking data, because the order in which the child fixed 
the  single objects is shown by numbers written on the dots. The dots reflect an  
eye- fixation and the diameter of the dots indicates the duration of each fixation. 
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The longer the child looks at an object, the larger is the diameter of the dot in the 
GazePlot visualization. To evaluate the data, the GazePlot-video was interpreted by 
replaying it several times. In the video, the dots appear one after the other and the 
course of the child’s gaze becomes visible. The data of the GazePlot-video can also 
be represented in another way, namely as an Accumulate-Graphic. Here, all dots are 
shown on one picture (cf. Fig. 13.8). In the present study, it is important, not only to 
look at the eye-tracking data, but also to connect it with the observation aspects and 
the explanation (cf. Fig. 13.5). With this three-level evaluation process, more reliable 
assumptions can be made about the perception and the determination of the children.

13.4.5  Example from the Data Analysis

In order to show how the collected data was evaluated, an example from the posttest 
(T2) with the item “u5,b0” is described in the following. It is an example from the 
interview with Luca. The egg carton with five eggs in the upper row was presented 
to Luca. Light head movements could be observed and then he said “five.” The 
interviewer asked how he found out that there were five and he answered that he had 
counted quietly. Looking at the observation aspects of Luca, light head movements 
could be observed, which leads to the hypothesis that he probably used a counting 
strategy to determine the cardinality. No hypothesis about his way of perceiving is 
possible (cf. Fig. 13.6). At an early stage of the evaluations, the hypothesis “percep-
tion as individual elements” was established if a “counting strategy” was observable 
in the observation aspects (cf. Schöner & Benz, 2018). In the course of analyzing 
the data of all children who were interviewed, it was decided not to draw any more 
hypotheses about the perception process in this case, as it has been shown that chil-
dren of this age very often have counted the number, but still perceived a structure 
(cf. Example “Liam” in Schöner & Benz, 2017). To sum up, it can be said that the 
data of the observation aspects of Luca does not automatically lead to the hypothe-
sis that he perceived the set as individual elements.

In the data of explanation (cf. Fig. 13.7), Luca said that he counted the eggs qui-
etly. This statement allows no hypothesis about the perception process, because one 
cannot conclude from this statement alone whether he perceived the set as individ-
ual elements or perhaps in a (sub-)structure. For the determination process, the 
hypothesis “counting strategy” can be generated because he says that he has counted 
(cf. Fig. 13.7).

In Fig. 13.9, the eye-tracking data indicate that Luca’s gaze oscillates between 
the left and the right side of the eggs. Then, he fixed every single egg one after the 
other. These two types of perception (in substructures and as individual elements) 
become visible in the eye-tracking data if the GazePlot-Graphic is divided into two 
parts. In the first part of the GazePlot-Graphic (cf. Fig. 13.8, above), it becomes vis-
ible how his gaze oscillates back and forth.

In the first part of the graphic, it can be seen that his gaze oscillates between the 
left and the right side of the presented eggs (cf. Fig. 13.8, above). This is a typical 
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movement when two subsets are perceived (cf. Schöner & Benz, 2018). The data on 
the first part of the GazePlot-Graphic can lead to the assumption that Luca perceived 
two eggs on the left and three eggs on the right. This is an interpretation based on 
the evaluation of all eye-tracking data of the 95 children who participated in the 
study. These comparative data from all eye-tracking data could only be obtained by 
analyzing the observation aspects and the explanation in a three-level evaluation 
process. The second graphic (cf. Fig. 13.8, below) shows that Luca fixed every sin-
gle egg. This leads to the hypothesis that he counted every single item. Luca started 
with the egg on the top right and then fixed each egg separately from right to left. 
The evaluation of all eye-tracking data shows that the first egg the children have 
counted is often not very clearly fixed. This can also be seen in the example of Luca, 
because the first fixation dot is not in the middle of the egg, but on the left side. 
Another phenomenon is that sometimes two gaze-dots are exactly on top of each 
other. In this case, it is dots two and three (numbered 13 and 14, respectively, in 
Fig. 13.8, below). This does not mean that Luca counted this egg twice, because not 
every fixation dot corresponds to a counting step (Fig. 13.9).

Presumably, Luca cannot yet use the perceived structure to determine the cardi-
nality and uses his familiar counting strategy “counting all.”

The final hypotheses on the two processes are that Luca perceived the set in 
structures and used the counting strategy “counting all” to determine the cardinality. 
Hypotheses on the perception process could not be made, either on the basis of the 

Fig. 13.9 Eye-tracking data
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data from the observation aspects or on the basis of the data from the explanation. It 
can therefore be stated that without the eye-tracking data, no hypothesis on the per-
ception process would have been possible.

13.5  Results of the Learning Story of “Luca”

The observation of the educators refers to the mathematical situations that were 
guided. Referring to the observations of the kindergarten teachers, Luca was diffi-
cult to motivate for the mathematical activities. He often quickly lost interest. The 
kindergarten teachers responded to this fact, for example, by forming smaller groups 
in order to support him and in order to take his interests into account. This worked 
successfully – according to the educator’s statements – and he could later be reinte-
grated into the whole group. In November 2015, the kindergarten teacher described 
Luca’s difficulties imagining the arrangement and finally the cardinality of the sets 
of eggs described by another child in the game “I spy with my little eye.” Even an 
open, empty egg carton to see the ten-structure did not help him at this stage. Four 
weeks later, in December 2015, he still had difficulty (with the same activity) in 
giving a verbal explanation, but most of the time he could name the number imme-
diately, if somebody else described it. By comparing the results of the three inter-
views (T1, T2, T3) with this information, it can be concluded that the analysis of the 
data supports the kindergarten teacher’s observations regarding perceiving and 
using structures to determine the cardinality (cf. Fig. 13.10).

Figure 13.10 shows the final hypotheses of the three individual interviews of the 
learning story of Luca. Only the quantities with a cardinality ≥5 are considered. On 
the left part of the bars, Luca’s way of perceiving a set is presented (gray: no inter-
pretation possible; dark yellow: perceiving a set in (sub-)structures and, on the right 
part of the bars, his way of determining the cardinality is shown (violet: counting 
strategy: counting all; light yellow: structural use). The results are divided into the 
three parts: T1 (pretest), T2 (posttest), and T3 (follow-up).

In the pretest (T1), Luca counted every single egg aloud for each item to deter-
mine the cardinality and also pointed, with his finger, to the corresponding egg. No 
interpretation about his way of perceiving the set was possible because, on the one 
hand, his finger gesture interrupted the connection to the eye-tracking camera and, 
on the other hand, there was no additional observation, like an explanation, which 
could lead to a hypothesis about perception. The fact that he counted every single 
egg does not automatically lead to the hypothesis that he did not perceive a struc-
ture. The observations in the posttest (T2) lead to the hypothesis that Luca always 
perceived a set in structures but he could not use the structures to determine the 
cardinality. In the example “u5,b0” (T2), described in detail above, the observations 
obtained using the eye-tracker indicated that Luca had perceived a structure (cf. 
Fig.  13.8). For the remaining items, Luca verbally named the structure, and the 
existing eye-tracking data confirmed this observation. To answer the question on 
how many eggs there were, he again consequently used the counting strategy 
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Fig. 13.10 Results of the learning story of Luca

“counting all.” In the follow-up interviews (T3), the eye-tracking data for all seven 
items led to the hypothesis that Luca again perceived a structure. In four of the 
shown items (u5,b0; u5,b2; u3,b2; u4,b3), Luca was now able to use the perceived 
structure for determining the cardinality (cf. Fig. 13.10). Only in three remaining 
items (u4,b1; u5,b4; u5,b5), he continued to use the counting strategy “counting all” 
to determine the cardinality.

13.6  Summary and Discussion

The research question in this chapter was “how does the perception of structures and 
the use of structures to determine the cardinality of a set change based on an imple-
mentation?” Based on the learning story of Luca, a development can be seen. In the 
first interview (T1), he counts all the eggs individually and loudly, and points with 
his finger to each individual egg. No statement can be made about the perception 
process. After the implementation phase (T2), we can observe that he is able to per-
ceive a structure in the presented sets, but still counts each egg individually to deter-
mine the cardinality. By structuring (decomposing) the presented set, the basis for a 
part–whole understanding is initiated (cf. Baroody et al., 2006, p. 193). At the end 
of the last kindergarten year (T3), Luca was able to use the perceived structure par-
tially to determine the cardinality of the sets. It cannot be safely assumed from this 
single learning story that these results can also be transferred to other children and 
other learning environments. But still, the assumptions as stated above can be made.
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The presented material (egg cartons) is used for the implementation phase as 
well as for the interviews with the children. For this reason, the study could be 
accused of “teaching to the test.” It must be taken into account that also other mate-
rials were used for the implementation. There are activities with structured materi-
als like “finding pairs” with the egg cartons where the existing structure is in focus, 
as well as unstructured materials such as glass nuggets, where the children can 
structure the set themselves. It is also very important for children, especially in 
regard to primary school, to learn reliable structures that they can use for calculating 
strategies (Lüken, 2012). This could be enhanced in primary school by using certain 
materials, for example, the ten-frame, a typical didactical presentation used in pri-
mary school, which has a ten-structure (like the egg cartons), and extends the num-
ber space to 100. Therefore, perceiving structures and using them for noncounting 
strategies are valuable skills which can serve as a basis for the development of a 
part–whole-understanding, and later for the development of calculating strategies. It 
is shown that children at this age are able to develop a perception of (sub-)structure 
and a structural use of determination strategies. The study is based on a hypothesis- 
generating procedure. In the future, some hypotheses will be tested in a statistical 
examination and significances will be calculated.
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Chapter 14
“A Triangle Is Like a Tent”: Children’s 
Conception of Geometric Shapes

Andrea Maier and Christiane Benz

14.1  Introduction

Because “children’s minds are moldable” (Hüther, 2007, p. 70) and to a higher 
degree than previously supposed, the focus on early childhood education has 
increased over the last decade. Studies reveal that there is a coherence between a 
high number of mathematical activities in kindergarten and higher mathematical 
achievements in school (Krajewski, 2003) and moreover, there is no other time in 
life where one is capable of learning as much as in early childhood (e.g., Caspary, 
2006). Thus, early knowledge of mathematics is often seen as a predictor for later 
school success. With respect to geometry, there are less studies concerning early 
childhood education, although geometry is an important aspect of the mathemati-
cal development in children (Clements, 2004). Children begin to build geometric 
concepts even before they enter school. In order to answer the question of how to 
best support the development of geometrical concepts and reasoning, one must 
first look at how children develop geometrical concepts. This chapter gives some 
insights into how 4- to 6-year-old children explain and draw triangles and identify 
different shapes (circles, squares, and triangles). Emphasis will be laid on the 
children’s ways of explaining a triangle in comparison to the images of triangles 
they have in mind.
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14.2  Theoretical Background

Firstly, this chapter will illustrate how children develop geometrical concepts and 
geometrical thought, before showing how children aged between 4 and 6 can 
develop a comprehensive concept knowledge with reference to the single aspect of 
concept formation presented here in this chapter.

There are different ways how a concept can be built (Franke & Reinhold, 2016, 
p. 116ff.). Children mainly build concepts “by actively dealing with objects in con-
nection with language” (ibid., p. 118). Thus, concepts are built through everyday 
experiences and through language. Furthermore, concept formation is often 
described as being related to categorization or classification, which will be described 
in the following chapter. Within cognitive psychology, there are two major theories 
trying to describe the processes of categorization and concept formation: the classi-
cal view and the probabilistic (prototype) view, differing mainly in answering the 
following questions: Is there a general description for all members of a class? And 
do all attributes specified in one consistent description apply to all examples of the 
class (Smith & Medin, 1981)? The classical view affirms both questions and 
assumes that all examples of a concept share common properties, which are both 
necessary and sufficient in order to describe the concept (Klausmeier & Sipple, 
1980; Smith & Medin, 1981). The classical view assumes clear-cut boundaries 
which is defined by what belongs to a certain concept and what does not belong. For 
this reason, the classical view applies to mathematical concepts because mathemati-
cal examples always have precise and clear definitions. Hence, a triangle is defined 
as a (1) plane, closed figure, (2) with three corners and (3) three straight sides. On 
the other hand, the probabilistic or prototype view (Clarke, 2004; Reed, 1972; 
Szagun, 2008) takes into account characteristic features and not just defining fea-
tures. Some members of a concept can be considered as “better examples” than 
others. The probabilistic or prototype view proposes the existence of “ideal exam-
ples,” often described as “prototypes.” In the case of triangles such “better exam-
ples” from a child’s view can be equilateral or isosceles triangles, considering for 
example that the sides must be of the same length in order to be called a triangle. 
When regarding mathematical concepts, both views are often employed. The classi-
cal view because it resembles mathematical definitions (the definition of a concept) 
and the probabilistic view because it illustrates the individual picture, the image, 
one acquires about a shape.

A concept name when seen or when heard is a stimulus to our memory. Something is 
evoked by the concept name in our memory. Usually it is not the concept definition, even in 
the case the concept does have a definition. It is what we call ‘concept image’. (Vinner, 
1991, p. 68)

The image of a concept is something nonlinguistic that is connected with the 
name of the concept. Still, the concept image often resembles only a few typical 
examples (often prototypes) and not the variety of examples that can be connected 
with the concept name (Franke & Reinhold, 2016, p. 123). At other times, the con-
cept image may include examples that contradict the definition, being rather non-
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examples (Levenson, Tirosh, & Tsamir, 2011). The concept definition in combination 
with a variety of the respective images plays a crucial part in the formation of 
concepts.

There are two main types of models describing the development of geometric 
thought and reasoning. Some researchers emphasize a hierarchical structure, where 
one level develops after the other (Battista, 2007; Piaget, Inhelder, et al., 1975; Van 
Hiele, 1985) and in order to advance into a higher level, one must first acquire all 
the competencies at the present level and the single levels are connected to certain 
age groups. Because students often used the competencies of different levels for one 
task or switched between the levels depending on the task, other researchers sug-
gested a more dynamic or “wave-like” development (Clements & Sarama, 2007; 
Lehrer, Jenkins, & Osana, 1998; Siegler, 1996), where the competencies develop at 
the same time with one aspect always being predominant. However, in both models, 
the development reaches from visual reasoning (as “most basic level” or “first domi-
nant wave”) to descriptive reasoning and finally to analytical reasoning.

However, there is no description yet what constitutes concept formation in kinder-
garten and primary school. From a further developmental view, originally describing 
competencies of secondary school children, aspects that constitute a comprehensive 
conception of geometric shapes (Vollrath, 1984) or respectively the aims of concept 
formation (Franke & Reinhold, 2016) are formulated. In the following summary 
Vollrath’s as well as Franke and Reinhold’s descriptions of a comprehensive concept 
formation are illustrated: (1) knowledge of the content of the concept, i.e., knowing 
definitions and properties, (2) capture of the range of the concept, e.g., distinguishing 
examples from non-examples, drawing own examples, building or designing own 
examples of shapes, (3) knowledge of the generic as well as the minor terms, and (4) 
being familiar with the applications of the concept. These aspects may also apply for 
early childhood but must be specified when applying them to a younger age group. 
For example, a 4- to 6 -ear-old child is not yet expected to give a perfect definition, 
as will be illustrated more precisely later. In this chapter, only some aspects of a 
comprehensive concept formation are illustrated: (a) how children explain the shape 
of a triangle (correlating to (1) “content of the concept”), (b) how they perceive dif-
ferent kinds of triangles, i.e., what kind of shapes they consider as being triangles, 
manifested in their drawings and identifications (see (2) “range of the concept”) as 
well as (c) what kind of examples they choose as circles, triangles, and squares (cor-
relating to (2)), and (d) how their explanation and their choice of figures as well as 
their drawings go in line with each other (consistency between (1) and (2)). For this 
reason, a brief background to these four aspects will be given.

14.2.1  Explaining Shapes

The knowledge children have about the content of a category of shapes is shown in 
their explanations, i.e., in the way they describe a geometric shape. Here, it is not 
yet important that they know the perfect definition but that they are aware of the 

14 “A Triangle Is Like a Tent”: Children’s Conception of Geometric Shapes



232

single critical attributes, whether these are described formally, informally, or via 
gestures. Often, the children are able to describe (give a definition of) a shape cor-
rectly but are not able to link this explanation to respective examples (Levenson 
et al., 2011). Consequently, a definition (that is learnt by heart) does not indicate a 
concept knowledge if it is not connected to the respective examples of shapes.

14.2.2  Drawing Shapes

The drawings of children reveal what kind of image children have in mind and 
shows how far they “captured the range of the concept.” Still, in order to draw an 
object correctly, it demands the knowledge as well as the ability to put this knowl-
edge into praxis, the so-called drawing skills. If these are still undeveloped, a child 
is not able to draw a geometric shape even when he or she knows what it looks like. 
Piaget interpreted such a situation to be due to a lack of knowledge. He was not 
considering a lack of drawing skills if a child was not able to copy or draw a certain 
shape, which is one reason why his results were criticized (Battista, 2007; 
Freudenthal, 1983). Because drawing a shape correctly demands knowledge and 
drawing skills, Kläger (1990) highlights the importance to never regard drawings of 
children in isolation but to always complement these drawings with interviews. This 
was considered and conducted in a task by Burger and Shaughnessy (1986), who 
asked children to draw many different triangles. They found that younger children 
often vary their drawings by ending up with “new inventions,” as for example a tri-
angle with “zic-zac-sides”; older children vary their drawings more according to the 
nature of triangles (equilateral, isosceles, rectangular, or general triangles).

To summarize the findings concerning children’s drawings, it can be stated that 
children cannot be “generalized,” they draw what they see and know but also more 
and less than they see and know (Kläger, 1990, p. 15f.).

14.2.3  Identifying Shapes

The ability to distinguish between examples and non-examples of a certain category 
of shapes also illustrates whether children “captured the range of a concept,” i.e., 
which representatives belong to a certain category and which do not, and also which 
attributes of a shape children consider as being crucial in order to be described as a 
certain shape. The identifying shape task was originally conducted by Razel and 
Eylon (1990), applied by Clements, Swaminathan, Hannibal, and Sarama (1999) and 
with minor changes adapted for this study. Here, the children were shown different 
arrangements of shapes (see Fig. 14.1), where they were asked to mark all the circles 
(left), all the squares (middle), all the triangles (right), and all the rectangles (not pre-
sented here). In both studies, circles and squares were more often identified correctly 
in comparison to triangles and rectangles (Clements et al., 1999; Razel & Eylon, 1990).
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Fig. 14.1 Tasks of “Identifying shapes” (Razel & Eylon, 1990, in Clements et al., 1999, p. 211)

14.2.4  Coherence

Coherence between single aspects of a comprehensive concept formation is impor-
tant to mention because one can only talk about a comprehensive concept knowl-
edge if all aspects are fulfilled. This means that a child who is able to explain a 
shape correctly but is not able to show all kinds of examples does not have a com-
prehensive understanding of the concept yet. In this case the concept knowledge is 
inconsistent (Wilson, 1990, p. 31 f.). Wilson assumed in her research (ibid.) that 
children use definitions without any connection to examples. Other researches 
explain this as a natural developmental process that children may have high compe-
tencies at a certain task and lower achievements in another task (Bauersfeld, 1983; 
Senk, 1989; Siegler, 1996).

In order to investigate the role of instruction in geometric concept formation, this 
study investigates children of the same age but from two different learning environ-
ments. One from an English primary school, where the education is rather system-
atic and curriculum-based, and the expected competencies are described as “stepping 
stones.” The other from a German kindergarten, where learning through play and an 
approach using “everyday mathematics” is at present the main concept. Thus, two 
different ways of fostering children’s concept formation are at the basis for the 
interviews. The study complements previous studies that were focusing mainly on 
one aspect of concept formation.

14.3  Research Question

In this chapter the following research questions will be answered:

• Which tendencies in explaining, drawing, and identifying shapes are visible 
regarding the results of the German and the English children? What kind of 
images do they have in mind concerning certain geometric shapes (in this chapter 
focusing on triangles and squares)?
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• In how far do these images (illustrated through their drawings as well as their 
identifications of triangles) match the children’s definitions (shown in their 
explanations) of these shapes?

• Can these results or tendencies be explained by regarding the different ways of 
instruction (very instructive in the England preschool vs. rather constructive in 
the German kindergarten) in the two countries?

14.4  Design of the Study

The study comprises 77 children, 34 from England, and 43 from Germany aged 
between 4 and 6, who were interviewed at the beginning and the end of one school 
year. The children from England go to a local primary school (for children from 4 
to 11 years old), and German children of the same age attend a kindergarten for 
children from the age of 3 to 6 (up to primary school). The elementary education in 
England is rather systematic and curriculum- based and the expected competencies 
are described as “stepping stones,” whereas in Germany, learning through play and 
an approach using “natural learning situations” (Gasteiger, 2015, p. 258) is at pres-
ent the main concept in kindergarten education.

The study was conducted in the form of qualitative interviews, taking about 
30 min for each child. The order of the tasks—there were five tasks altogether, of 
which three are presented in this chapter—as well as the material was predeter-
mined, but in accordance with the nature of qualitative interviews this order could 
be altered or complemented. There were two points of data collection (S1 and S2), 
one at the beginning of the school year or kindergarten year and the other at the end, 
without a planned intervention. Still, the different learning environments add their 
own natural interventions; the English children, in contrast to the German children, 
were instructed in geometry during the year.

14.4.1  Tasks

In this chapter, the results of some aspects of the explaining triangles task, the 
drawing triangles task, and the identifying shapes task will be illustrated, thus giv-
ing insights in the concept formation of the children. First, the children were asked 
to “explain a triangle to someone who has never seen a triangle before.” In another 
task, they were asked to draw a triangle, then a triangle that looks a bit different 
from the first one and again another one looking different than the first two and so 
on. The children were asked to draw at least three triangles but were often asked to 
draw more (up to seven at the most) depending on whether their way of variation 
could be seen or not.

This study complements the original study by Burger and Shaughnessy (1986) 
by examining whether children also prefer drawing prototypical triangles and 
whether there is a correlation between the children’s explanations and their draw-
ings of a triangle. In the third task presented here, the children were asked to iden-
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tify, in a collection of different shapes, the ones belonging to a certain category of 
shapes (cf. Fig. 14.1). Here, mainly the results of the “identifying triangles” task 
will be presented and also some tendencies concerning circles and squares.

14.4.2  Analysis

For the analysis of the children’s explanations, drawings, and identifications, differ-
ent categories were generated and discussed. These categories were first formulated 
after a pretest (n = 10) and a thorough examination of the theory and then comple-
mented and altered after the two points of investigation (S1 and S2) were conducted. 
Besides the interpretation of the qualitative data as small case studies, quantified 
details will also be given to show tendencies and to suggest hypotheses because 
quantitative details can be one aspect of qualitative reality (Oswald, 2010, p. 186). 
Moreover, significances (Wilcoxon test, Mann-Whitney U test as well as chi-square 
test) were calculated in order to highlight different tendencies between the English 
and the German children, as well as between the two points of investigation.

14.5  Results

14.5.1  Explaining Shapes

To answer the research questions, there will be an illustration of how the children 
explained a triangle when being asked to describe the shape of a triangle to someone 
who has never seen a triangle before. Here, five categories could be generated (cf. 
Table 14.1). As illustrated in the table, the majority of the English children used a 
formal definition (“a triangle has three straight sides and three corners”) at both 
points of investigation in order to explain the shape of a triangle, significantly more 
than the German children.

Table 14.1 Explaining the shape of a triangle
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The majority of the German children used “informal ways” (4) of explaining at 
both points of investigation (cf. Table 14.1). With the term “informal,” the explana-
tions of the children were described who on the one hand knew the attributes of a 
shape but on the other hand lacked the formal descriptions and used their own words 
to explain a shape, as it is seen in the example of Lucca (cf. transcript Lucca below). 
He used “comparisons” (to everyday objects) (3) to explain what a triangle looks 
like, as for example: “a triangle looks like a roof,” “like a tent,” or “like the hat of 
a witch.”

Lucca (6;1 years, S2).

Lucca: It looks like a roof. [comparison]
It is straight at the bottom and at the top it is not straight, it’s sloped, so that it 
becomes a spike. [informal]

Interviewer: What would you say is different to a circle?
Lucca: The circle, it is, well, it has not corners. It is like a star without spikes 

[comparison].

The example of Lucca also shows that the answers of the children could often be 
grouped into different categories at the same time, thus multiple answers were pos-
sible. Therefore, the overall percentages could be more than 100% (cf. Table 14.1). 
At this task, it was very interesting that the majority of the English children were all 
using the same explanation: “a triangle has three straight sides and three corners.”

14.5.2  Drawing Triangles

In another task, the children were asked to draw a triangle, then to draw another one 
that looks different and another one being different to the first two and so on. 
Looking at the children’s drawings of triangles, it is evident that the majority of the 
children varied the triangles according to their size, i.e., “area dimension” (cf. 
Table 14.2). Because the children’s variations could be grouped into several catego-
ries, multiple answers were possible. Altogether, variations according to size were 
often combined with angle variations (“angular dimension”), but rather rare in 
 combination to variations according to positions (triangles pointing in different 
directions). This indicates that the prototypical representation of an upright triangle 
is more familiar to the children than triangles pointing in different directions as for 
example an “upside-down-triangle” from the child’s perspective.

The category “shape,” as well as “missing attributes,” was considered as “not 
correct variations” because when varying a triangle according to its shape (e.g., 
changing the nature of the sides or drawing additional corners), it is not a triangle 
anymore (cf. Figs.  14.2 and 14.4). Additionally, when critical attributes as three 
sides, straight sides or three corners (cf. Fig. 14.3 (Lilly)) are missing, the shape 
cannot be described as triangle anymore. Jannis (Fig.  14.2) draws a triangle in 
“steps” in order to make it look different, whereas the triangles of Johannes 
(Fig. 14.4) “get feet” throughout the drawing task.
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Table 14.2 Drawing triangles in different variations

Fig. 14.2 Jannis (S2)

The illustrated tendencies and images give a brief impression of the results at this 
task. Still, a closer look should be given to the coherence of the children’s explana-
tions as well as their drawings of a triangle. Although the children could already 
explain a triangle quite well, there were quite a few children drawing non-triangles 
as variations of triangles and describing them as proper triangles. Especially as 
second or third triangle, the children often drew triangle-like shapes but for example 
with “rocky,” “wavy,” or “step-like” sides or additional “feet” (cf. Fig. 14.4).
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Fig. 14.3 Lilly (S1)

Fig. 14.4 Johannes (S2)

14.5.3  Coherence Between the Children’s Explanations 
and Drawings

The following tables illustrate to what degree the drawings and the explanations of 
the children correlate (cf. Tables 14.3 and 14.4). Combined variations were sum-
marized in the category “mixed” variations.

Children, who explained the shape of a triangle formally (mainly the English 
children) as well as the children who explained a triangle in informal ways but cor-
rectly (mainly the German children), varied the triangles at both points of investiga-
tion in most cases according to size, i.e., area dimension. One could also infer that 
the children, especially the English children, could explain a triangle with nearly 
perfect definitions, but still chose mainly triangles varying only in size and triangles 
that were pointing upwards. Thus, they did not apply the definition to all kinds of 
triangles. There were less children varying the triangles according to the position 
(different directions), but these children mainly explained in a formal way. The 
children who drew wrong variations (either according to shape or missing attri-
butes) also explained mainly in a formal way. Some explained informally (and 
 correctly) but still varied the shape of a triangle or did not draw some critical attri-
butes (such as straight sides or closed figure or only three sides).

At the second point of investigation an overall increase in correct variations is 
visible and twice as many German children than before drew triangles in different 
variations (“mixed”). The number of wrong variations, especially in the case of the 
English children, decreased, so at the second point of investigation there is a higher 
correlation of correct explanations and correct variations than before.
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Table 14.3 Coherence drawings and explanations (S1)

Table 14.4 Coherence drawings and explanations (S2)

14.5.4  Identifying Circles, Squares, and Triangles

In order to show what kind of images the children have in mind, when thinking 
about certain shapes, one task needs to be illustrated here as well: the “identifying 
shapes task.” Here, the children had to distinguish between examples and non- 
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examples of each class of shapes (in this case circles, squares, and triangles, cf. 
Fig. 14.1). Firstly, certain aspects of this task will be illustrated, before showing to 
what extent the children’s explanations of a triangle matched their actual choices of 
different representations of a shape. Starting with the identifying circles task, the 
majority of the children in both countries marked all the circles and no other shapes. 
Only a few (about 10%) additionally chose the ellipse as circle. The choice of cir-
cles did not seem to be difficult for the children because for them a circle is the most 
familiar shape and can deviate only in its size.

Regarding the children’s choices of squares, it was first examined whether the 
children chose (1) only all the squares, (2) all the squares and other figures, (3) not 
all the squares but no additional other figures, or (4) not all the squares and other 
figures. At the beginning of the school year (S1), about the same proportion of chil-
dren (G: 47%; E: 44%) only marked all the squares as examples. Still, more than 
half of the English children (53%) marked “only squares but not all the squares.” At 
the end of the school year (S2), there were significantly less English children who 
chose only all the squares (21%). Instead, the majority of the English children again 
marked “only squares but not all the squares” (68%). So, at the end of the school 
year, there were more children who only chose “squares but not all of them.” Taking 
a closer look at which of the squares that were considered as “not being squares,” it 
becomes obvious that the squares not lying in horizontal position were often not 
considered as being squares, but “diamonds” (rhombuses) instead (cf. Fig. 14.5):

“Turned squares” (nos 5, 11, and 13) were often described as “diamonds” by the 
children, so the choice of a square was depending on the position of the square.

Lucy (5;3 years, S2):

Lucy: Now I’ve got all the squares.
Interviewer: Are there any more squares?

(Lucy points to square no. 5, cf. Fig. 14.5)
Lucy: That is a likely square but it’s a diamond.
Interviewer: Why is it a diamond and not a square?
Lucy: Because it goes that way (draws the shape with her fingers on the table) and not 

that way (draws a horizontal lying square).

11

4 53

76

2

1

10

8

9

12

13

Fig. 14.5 Identifying 
squares—non-chosen 
squares are highlighted

A. Maier and C. Benz



241

Most of the English children who did not choose all the squares explained that “a 
turned square is a diamond” or “if you turn a square it turns into a diamond” 
(Georgia, 6;1,1 S2). In a few cases, as in the example of James, the rhombus (cf. no. 
3, Fig. 14.5) was marked as a square too, although it was realized that the “dia-
mond” (as he described the rhombus) looks a bit different than the squares, describ-
ing it as “a bit bent.” Most of the few English children who chose “all the squares 
and other shapes” chose the rhombus as additional square. There were some chil-
dren, mainly German children, who marked all the squares and other shapes. Here, 
mainly the rectangle (no. 2, cf. Fig. 14.5) was chosen as additional square, but the 
rhombus (no. 3, ibid.) was also chosen quite frequently.

Even more difficult than identifying squares was the task to identify all the tri-
angles correctly. This could also be due to the illustration (cf. Fig.  14.1, right) 
because now non-examples that are very similar to equilateral triangles are included, 
just with convex (nos 3 and 7, ibid.) and concave sides (nos 5 and 14, ibid.) or an 
additional concave corner (no. 9, ibid.). Here, hardly any of the children chose just 
all the triangles: only one German child at the beginning of the school year (S1) and 
two English children at the end of the school year (S2). The choices of the children 
are illustrated in Table 14.5, starting with the most frequent choices and ending with 
the least chosen triangle (no. 4, ibid.).

The majority of the children chose the equilateral triangle pointing downwards 
(no. 8, cf. Table 14.5), some even exclusively, as Tizian. Here, his explanations for 
not choosing some of the triangles ranged from “too thin” (nos 4 and 11, ibid.), “has 
a peak” (nos 6 and 11, ibid.), “one side is too long” (no. 1, ibid.). The children who 
did not choose this triangle (no. 8, ibid.) argued that “it is upside down” or turned 
the paper, arguing that in this position it would be a triangle. In the case of the tri-
angles (nos 4 and 11, ibid.) which were chosen the least often, the children often 
reasoned that these are pointing in a “wrong direction,” “pointing downwards” or 
were “too thin” and thus could not be triangles. As in the identifying squares task, 
some children here also considered the position of a shape when judging whether 
the respective shape was an example or a non-example. Children of both countries 
who did not choose the right-angled triangles as triangles often argued that these 
were “too straight,” “too long at one side,” or “are lacking one corner.”

The non-examples are also presented according to their frequency of choice (cf. 
Table 14.6).

Here, the most frequently chosen non-examples can be compared to the least 
often chosen examples (nos 11 and 4, cf. Table 14.5). The most chosen non- examples 
resemble equilateral or at least isosceles triangles in an upward position, which is 
illustrated through the red triangles in the table. Many of the non-examples (cf. 
Table 14.6) were chosen with the same frequency as, or in some cases even more 
than, the two scalene triangles. Although the children often emphasized that a tri-
angle must have “three straight sides,” non-examples with curved sides or an addi-
tional corner were chosen as well. Regarding these tendencies, it becomes obvious 

1 6;1 represents the age of 6 years and 1 month
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Table 14.5 Identifying triangles—examples

that the chosen triangles resemble a certain image the children had in mind. This 
could either be “triangles in an upward position,” “triangles where the sides are 
about the same length,” or triangles that are not “too pointy” or “too scalene” (con-
sidering angles).

When the image of “triangles in an upward position” is dominant, triangle no. 8 
(cf. Fig. 14.1, right) is not chosen. If the arrangement of the sides is regarded, only 
the equilateral (no. 8, ibid.) or the isosceles triangle (no. 6, ibid.) is chosen. 
Furthermore, if the angular dimension is considered, the scalene triangles (nos 4 
and 11, ibid.) are not described as triangles. Depending on the predominant image 
of a triangle (e.g., equilateral triangles), non-examples that are similar to examples 
of triangles (cf. marked figures, Table 14.6) are chosen. These images that influ-
enced the choices of the children are “ideal examples” or “prototypical examples” 
that could be triangles pointing upwards, equilateral, or isosceles triangles. 
Additionally, some attributes are not connected with a triangle as for example very 
“scalene” or “too skinny” triangles or triangles that are “too straight” (often right- 
angled triangles). For the children, such images are more influential when it comes 
to choosing examples than definitions, even when the child knows the formal defini-
tion (Vinner, 1991).
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Table 14.6 Identifying triangles—non-examples

14.5.5  Coherence Between Children’s Explanations 
and Identifications

The following cross tabulation (Table 14.7) illustrates the coherence of the chil-
dren’s explanations (either no explanation or two ways of correct explanations) and 
their identifications. A high number of the English children chose non-triangles as 
triangles although they were able to explain a triangle correctly in a formal way. 
Although the German children did not often explain in a formal way, there is a 
coherence visible between other correct explanations (i.e., through gestures, com-
parisons, or informal explanations) and triangle-like shapes in the results of the 
German children. The quadrangle no. 9 was chosen by a quarter of the English 
children who also explained a triangle formally. Here, only the three acute angles 
were considered, not the obtuse angle. Correct examples were recognized by most 
of the formally explaining children. Still, there were more English children who 
explained in a formal way (59% at S1 or 62% at S2 cf. Table 14.1) but did not iden-
tify upside-down triangles, rectangular triangles, or the two general but very scalene 
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Table 14.7 Coherence explaining and identifying triangles

triangles. The same applies for the German children who mostly did not explain 
formally but in other ways correctly. Still, their correct explanations (through ges-
tures, comparisons, and informal explanations) could not always be applied to all 
triangles or respectively was applied for non-triangles as is shown in the high 
 number of children choosing all kinds of non-triangles although explaining cor-
rectly. Thus, it is evident that the high percentage of formal definitions of the chil-
dren was not in line with their selection of shapes. About two-thirds of the English 
children at both points of investigation gave a formal definition, whereas no English 
child at the beginning and only 6% at the end of the school year identified all the 
triangles and only triangles. Thus, in summary, the children could not link the defi-
nition they had in mind to certain examples of triangles.

14.6  Summary and Discussion

To summarize the results, the explanations of the children (especially in the case of 
the English children, among whom a large proportion already gave formal explana-
tions) did not always match their drawings and identifications. The children’s expla-
nations partly matched their drawings for they drew mainly correct triangles or 
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correct variations of triangles, respectively, but these drawings were rather one- 
sided: variations according to position (orientation) were drawn rather seldom and 
the number of wrong variations (i.e., variations concerning the shape of the figure 
or drawing figures missing critical attributes) was quite high.

Regarding the explanations of the children, although the majority of the children 
explained a triangle correctly, this “definition” could in most cases not been applied 
to different representations of a certain shape category. Especially in the case of the 
English children, the good explanation of a triangle (“three corners and three straight 
sides”) was in most cases not considered when drawing different kinds of triangles 
as well as when identifying different kinds of triangles. The children’s images or 
perceptions were more influential when they were judging a shape as belonging to 
a certain category than the definitions they had in mind. These images were often 
“ideal examples” or “prototypical examples” such as “triangles pointing upwards” 
and equilateral or isosceles triangles. Consequently, the children regarded noncriti-
cal attributes such as position, sides, or angular dimension as being decisive attri-
butes. Moreover, the children often neglected critical attributes of a shape such as 
straight sides or three corners when the non-example resembled the prototype of a 
triangle. It was also evident in the drawings of the children that they preferred draw-
ing triangles in an upright position, just varying in size.

Concerning squares, the children’s predominant images were “horizontal lying 
squares,” especially in the case of the English children, who chose significantly 
more often only squares in horizontal position. Children, who tended to also choose 
45° turned squares, neglected right angles, if a non-example was very similar to a 
prototypical representation. The children of both countries had no difficulties to 
name, choose, and distinguish circles from non-examples. This was also the case in 
previous studies, where shapes were much more likely to be chosen the more they 
resembled a certain prototype (Clements et al., 1999; Tsamir, Tirosh, & Levenson, 
2008). Furthermore, untypical examples were significantly less often correctly cho-
sen as prototypes (Unterhauser & Gasteiger, 2018). With this, the main tendencies 
at these tasks as well as the coherence of the children’s explanations and the images 
they had in mind are illustrated and the first two research questions are answered.

The remaining question is whether this tendency to choose prototypical exam-
ples (and also prototypical-like non-examples) is a natural step in development (cf. 
Franke & Reinhold, 2016) or is due to a one-sided or “limited” teaching in school. 
One possible way to explain these tendencies and thus answering the research ques-
tion is by regarding the different learning environments of the children. The English 
children chose less squares (mainly horizontal lying squares) at the end of the school 
year compared to the beginning. This leads to the assumption that this tendency is 
not due to a natural developmental process but due to the instruction in school. 
Regarding the material and the examples that are used in the primary school where 
the study took place, only equilateral triangles and only squares in horizontal posi-
tion were shown and the illustrated 45° turned shapes were only rhombuses. 
Clements (2004) also speaks of a too limited use of prototypical examples of shapes 
in school. In this case it could be carefully stated that educational instruction that is 
too limited regarding examples, and that only aims on developing definitions that 
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are learned by heart, could lead to a limited concept formation among children. 
With respect to the German children, the methods and materials of instruction can-
not be taken into account because the German children of the study were not yet 
attending primary school. To summarize, it is evident that the learning environment 
is influencing the children’s geometric concept formation.

14.7  Conclusion

The results of the study have shown that the children often could not apply a com-
prehensive definition of a shape to many different representations of that respective 
shape. Thus, it can be concluded that a definition that is learned by heart without an 
understanding of what this definition means does not contribute to a comprehensive 
concept formation. Therefore, one can suggest that instead of an isolated memoriz-
ing of definitions and the limited use of only prototypical representations, which can 
dominate children’s thinking throughout their lives (Sarama & Clements, 2009, 
p. 216), the focus should be more on the ability to connect a concept with many dif-
ferent representations of that concept, even as early as preschool level.

So as to enhance a comprehensive formation of concepts, the children should 
have the opportunity to encounter many different examples of a shape category to 
explore the differences and similarities of the examples. Moreover, non-examples 
(e.g., lacking one decisive attribute such as straight sides or having “wavy” or 
“rocky” sides) could be included and accompanied by explanations differentiated 
from examples of a shape category. Thus, critical attributes could be mentioned and 
explored without learning isolated definitions. Moreover, children’s own produc-
tions such as drawings or constructions of shapes could also foster the formation of 
concepts, and together with examples and non-examples, be a step toward building 
a valid concept formation in early childhood.
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Chapter 15
Framing Mathematics Teaching 
with Narratives: The Ambiguity 
of Goldilocks

Hanna Palmér and Camilla Björklund

15.1  Introduction

Young children’s interest in and ability to learn mathematics is rarely questioned 
today. Nevertheless, in both research and early childhood education, there is a diver-
sity regarding what constitutes appropriate content and how early mathematics edu-
cation should be designed (Palmér & Björklund, 2016). The debate often comes 
down to whether a specific method or material is suitable or not, rather than scruti-
nizing the learning potential or challenges that different methods and materials 
offer. The lacuna in the current debate is, therefore, how teaching may be designed 
to offer children profitable learning opportunities. In this chapter, we take our point 
of departure from a traditionally well-used method for teaching mathematics to 
young children—narratives. In the Nordic countries, preschool education is heavily 
influenced by creativity, play, fantasy and—not least—stories, where our aim with 
this chapter is to contribute with scientifically grounded knowledge to the research 
and teaching of early childhood mathematics.

In the Nordic countries, play-oriented activities withholding mathematical con-
tent are often set as a counterpole to systematic teaching of mathematical learning 
objects (Palmér & Björklund, 2016). This debate is similar to the dichotomy that 
Bennett (2005) describes between academic and social-pedagogical teaching 
approaches. This dichotomy becomes critical in relation to preschool mathematics 
since mathematics has been shown to be hard to implement as a natural component 
in children’s play and, at the same time, hard to teach as meaningful content for 
young children (Björklund, 2014a; Björklund, Magnusson, & Palmér, 2018). To 
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overcome these difficulties, material, drama and pictures are often mentioned as 
possible starting points for the teaching of early mathematics. Many preschool 
teachers use narratives, such as children’s stories and fairy tales, in an attempt to 
make mathematics interesting and appealing to the children (Carlsen, 2013), and to 
frame the content in familiar contexts to support children’s interpretation of mean-
ing of what is intended for them to learn (Shiyan, Björklund, & Pramling 
Samuelsson, 2018).

The starting point for this chapter is a research project exploring play-responsive 
teaching in preschool (funded by the Swedish Institute for Educational Research, 
project no. 2016/112). One of the objectives in the project was operationalized as 
the preschool teachers enacted narrative play, and several of them chose to play the 
story of Goldilocks in their preschool groups. However, these explorations made 
visible several difficulties where the mathematics content in the story seemed to be 
hard to discern for the children. This experience, together with research showing 
contradictory results regarding whether narratives benefit or hinder mathematics 
learning, tells us that the question of using narratives in early childhood mathemat-
ics education includes a complexity that is not thoroughly investigated or known in 
preschools. In this chapter, we will therefore focus on both the benefits and chal-
lenges found in an analysis of the mathematical content in the story of Goldilocks. 
The specific research questions are:

• What mathematical concepts can be explored and framed within the story?
• What challenges for learning mathematical concepts does the story impose?

In the chapter, the use of the Goldilocks story is first illustrated by two empirical 
examples from the above-mentioned research project. After that follows a content 
analysis of the story itself, with the aim of answering the research questions.

15.2  Narratives as Pedagogical Tools

A narrative used as a pedagogical tool may be based on a known story, fairy tale, 
personal experiences or stories made up in the moment, where “narrative” implies 
that there is a logical frame that intertwines and relates phenomena and features. The 
narrative creates stringent episodes of meaning, which may, as suggested by Burton 
(2002), be important for learning abstract concepts and discerning internal relation-
ships as a coherent whole. In preschool, mathematics education is preferably focused 
on mathematical content situated in familiar and meaningful settings for children. 
Deliberate use of communicative strategies in teaching mathematics to young chil-
dren has shown positive long-term effects (Doverborg & Pramling Samuelsson, 
2011; Pruden, Levine, & Huttenlocher, 2011). In such ways of teaching, the teacher 
makes use of and, together with the children, explores the meaning of mathematical 
concepts. The use of stories is thus one example of how mathematical content can be 
communicated, framed within a familiar setting, where children’s interest can be 
directed towards mathematical concepts that are naturally occurring in the narrative 
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framework (van Oers, 1996). Narratives are in this sense a natural, culturally and 
contextually situated, suitable way to introduce mathematical concepts to children. 
The beneficial aspects of narratives are usually centred around the opportunity they 
offer to intertwine features of both play and teaching, since the content is framed in 
familiar contexts and thus has relevance for the children and the problem at hand 
(Flevares & Schiff, 2014).

Studies exploring the use of picture books when teaching mathematics (van den 
Heuvel-Panhuizen & van den Boogaard, 2008; van den Heuvel-Panhuizen, van den 
Boogaard, & Doig, 2009) and studies comparing the use of picture books with other 
ways of teaching mathematics in preschool have yielded positive results (Hassinger- 
Das, Jordan, & Dyson, 2015; Jennings, Jennings, Richey, & Dixon-Krauss, 1992). 
Studies by Hassinger-Das et al. (2015) have highlighted that children who are taught 
mathematical concepts through reading picture books may develop conceptual 
knowledge and a flexible use of mathematical concepts. When investigating con-
ceptual understanding, the children in the studies who were taught mathematics by 
narratives outperformed the children who were taught mathematics by task-based 
books. However, narratives may include many different features, which can draw 
attention away from the mathematical content towards other issues, explaining why 
the mathematical content may not be experienced as the primary object of learning 
by children (Pramling & Pramling Samuelsson, 2008). Furthermore, decoding the 
meaning of mathematical concepts involved in a narrative is a complex undertaking 
and relates to the child’s ability to make use of cultural tools to structure their 
thoughts (Shiyan et al., 2018).

In preschool, teachers often tell narratives they know in a physical way, using 
facial expressions, voice, gestures and props to engage the children and to illustrate 
and emphasize the mathematical content. In a study by Carlsen (2013), it was made 
clear how a preschool teacher, while telling the story of Goldilocks, used her face, 
body and voice as well as questions and paraphrasing to emphasize the comparison 
words in the narrative (quantities, size, temperature and softness). Also, narratives 
are commonly used together with props in order to illustrate or reify components of 
the story or the mathematical content.

Thus, even though narratives are not exclusively used for teaching mathematics 
in preschool, there nevertheless seems to be many benefits. However, although the 
use of material and pictures can visualize mathematical content in narratives, they 
can also make it difficult for children to discern the intended mathematical objects 
and processes if they draw attention away from the mathematics towards other fea-
tures (Björklund, 2014b; Dowker, 2005; Rathé, Torbeyns, Hannula-Sormunen, & 
Verschaffel, 2016). Furthermore, visualizing mathematical concepts by the use of 
manipulatives only facilitates understanding to a limited extent because of the 
abstract nature of mathematical objects (Lakoff & Núñez, 2000). Thus, there seems 
to be reason to more thoroughly investigate the pedagogical content and form in 
narratives for teaching mathematics in early childhood.
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15.3  Methodology

As mentioned, the empirical examples in the chapter are from a research project on 
play-responsive teaching in preschool. In this study, preschool teachers made video 
documentations of play activities in their preschools, where one theme was narra-
tive play. Several of the teachers chose to play the story of Goldilocks, of which two 
examples are used here as illustrations. “Goldilocks and the three bears” is a tradi-
tional story for children, originating from England and folklore stories (Tatar, 2002; 
see Appendix). The story is about a girl and a family of bears: Papa bear, Mama bear 
and Baby bear. The story is commonly used with props where teachers often choose 
bears in three different sizes to represent Papa bear, Mama bear and Baby bear, and 
the utensils and furniture that Goldilocks finds in the story usually correspond with 
the size of the bears.

The focus of this chapter is on the mathematical content in the story and in par-
ticular how the content may be experienced and thus facilitate learning in the spe-
cific setting of the narrative. To gain better knowledge of what aspects of 
mathematical concepts may be discerned in the story and thus what pedagogical 
potential it may have, we do a content analysis. We use Variation theory of learning 
(Marton, 2015) to analyse the mathematical content of the story. This theoretical 
framework makes visible what mathematical learning objects (concepts appearing 
in the narrative) are brought to the fore, and more specifically what challenges for 
learning the narrative entails. In this analysis, we focus on how different aspects of 
a mathematical concept are expressed and reified in the story, and thus direct our 
attention to the dimensions of variation that are possibly opened up for exploration. 
Dimensions of variation means the aspects of a mathematical concept that, through 
patterns of contrasting features, are made possible for the children to experience. 
Broadening the understanding of a mathematical idea is, according to Variation 
theory of learning, possible if a mathematical concept is contrasted; for example, 
the meaning of three will only be discernible (as an earlier unknown concept) if 
three is contrasted with a set of four or other sets while the objects constituting the 
sets are kept invariant. To generalize the idea of numbers is thereafter possible if the 
quantity of a set is kept invariant while other irrelevant aspects, such as colour, 
shape or other non-numerical features, are allowed to vary (Marton, 2015). Thus, 
the analysis is focused on potentials for learning; the mathematical concepts that 
may become possible to learn through contrasting and generalizing necessary 
aspects. This analytical approach reveals why some expressions in the story may 
entail challenges for young children to whom the concepts are novel.

Before presenting a content analysis of the story, two empirical examples of 
children playing Goldilocks with their teacher are presented. The aim of this is to 
illustrate the complexity that framing mathematics teaching within the story may 
entail. According to the theoretical framework of Variation theory of learning, chil-
dren’s concept development can be understood in terms of what aspects of a concept 
they are able to discern in a specific situation (Marton, 2015). Learning means a 
more differentiated way of seeing a phenomenon, and teaching means to offer the 
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learner experiences that will enable them to differentiate necessary aspects of the 
phenomenon that they were not able to see before (Pramling Samuelsson & 
Pramling, 2013).

15.4  Two Empirical Examples

Two empirical examples are used to illustrate the complexity that framing the math-
ematics teaching within the story of Goldilocks may entail. The aim is not to anal-
yse children’s learning but to illustrate how the use of the narrative makes it possible 
or not for the children to differentiate necessary aspects of mathematical concepts 
that they were not able to see before.

15.4.1  Example 1

One teacher and four children aged 1–3 years are seated on the floor around a green 
piece of clothing illustrating the home of the Bear family. First the teacher picks up 
the props, three bears in three different sizes representing Papa bear, Mama bear and 
Baby bear. There are also bowls, chairs and beds in three different sizes.

Before the teacher starts to tell the story, they talk about which chair and which 
bowl belongs to which bear. It is obvious that the children are familiar with the 
story. The teacher starts to tell the story and at the same time she moves the bears. 
The episode below starts when Mama bear has made porridge.

Teacher     And in the little bowl she put Baby bear’s porridge.
Child         Yes
Teacher      And in the middle bowl she puts her porridge. And in the big bowl [still acting 

as narrative-teller but starts talking with a deep voice] she puts Papa bear’s 
porridge.

                   Quite soon the bears are out on their walk and Goldilocks enters their house 
and starts to taste the porridge.

Teacher      Oh, here is porridge. Oh! That porridge was too hot. She then tastes the middle 
one, Mama bear’s porridge. Oh! It was too cold. And then she tasted Baby 
bear’s porridge. And she ate it all. Then she sat down on Baby bear’s footstool. 
And it broke. She sat down on Mama bear’s. It was so uncomfortable. And then 
she sat on Papa bear’s. … What did she do then?

Child        Lay down in that bed [pointing at the middle-sized bed].
Teacher      Should she lie in that bed? [pointing at the middle-sized bed] Should we try? 

[She is laying down the doll in the bed that suits perfectly in size] No, it was 
not comfortable.

Child         Yes it was.

In this example we can follow (parts of) the traditional story both through the 
verbal narrative and the props that are used to illustrate the story. However, there 
seems to be some different interpretations of Goldilocks’ conclusions, based on the 
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Picture 15.1 Goldilocks 
is trying Mama bear’s bed

children’s responses when listening to and watching the narrative played out. One 
notion that is critical in the story is when Goldilocks finds the perfect chair or the 
perfect porridge temperature, that is, something that is “just right” (“lagom” in 
Swedish). The children direct their attention primarily to the visual props, which are 
contradictive in meaning in relation to the verbal story (see Picture 15.1); for 
instance, when a perfect-sized bed is said to be “not comfortable” but visually fits 
the Goldilocks figure just right.

15.4.2  Example 2

The second example is a drama play where three children aged 4–5 and one teacher 
are acting out the different characters in the story. In this example it is again obvious 
that the children are familiar with the story. The teacher is the storyteller and Papa 
bear and when the episode below starts, the child acting as Goldilocks sits in a dress 
at a table with three bowls in different sizes.

Teacher      At the kitchen table Goldilocks found three bowls of newly made porridge. She 
had walked far and was hungry so now she wanted to taste the porridge.

Child         [leans over the bowl, takes a spoon in her hand and pretends to eat]
Teacher     The largest bowl, but it was too hot.
Child         Yuck [walks towards the middle-sized bowl]
Teacher     Then she tasted the porridge in the middle-sized bowl.
Child         [pretends to taste the porridge in the middle-sized bowl] Yuck!
Teacher     But it was too cold.
Child        [moves towards the smallest bowl]
Teacher      Then she tasted the porridge in the smallest bowl and it was just right, so she 

ate it all.

In this episode we find that the child is receptive to the narrative as it is told ver-
bally. She acts in accordance with the story and moves from the largest via the 
middle-sized to the small-sized bowl, which gets approved.
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Teacher     Now she was tired so she decided to rest for a while.
Child         [lays on top of a large couch] Yuck [kicking around].
Teacher     First she lay in the really large bed but it was too hard.
Child          [gets up and walks towards two mattresses, throws herself down on them, gets 

up and puts them in order].
Teacher      And then she tried the middle-sized bed.
Child         [lies down and gets up again].
Teacher     But it was way too soft.
Child         [walks to a doll’s cradle].
Teacher     Then she tried the smallest bed.
Child         [sets the blanket on the bed]
Teacher     And it was just right, it was so comfortable.

The child continues acting according to the verbal story, accepting the smallest 
bed as “just right” even though it clearly does not fit her in real life as she has to put 
her legs and feet over the foot of the bed (see Picture 15.2).

In both examples, the teachers use the concepts little, middle and large as they 
talk about the bowls and they sometimes emphasize a concept with their voices, 
bringing attention to it as a demarcated phenomenon. However, there is an ambigu-
ity visible in the illogical relationship between the size of the bowls and the tem-
perature of the porridge in both examples. In the first example, the teacher never 
says “just right” about the porridge in the small bowl so the series is not completed. 
Instead she directly continues with Baby bear’s footstool, which gets broken. In this 
example it seems like the big chair, Papa bear’s chair, is the suitable one—since 
Baby bear’s footstool gets broken and Mama bear’s was too uncomfortable, while 
nothing is said about Papa bear’s chair. Similarly, one child says that Mama bear’s 
bed is comfortable, which can be understood as the “just right” one. An ambiguity 
in the relationship between the sizes of the beds in relation to “just right” also 
becomes visible in the second example, where the reasonably soft bed is actually 
too small for the child acting as Goldilocks.

As the three beds are different in size it makes sense for the children to discern 
size instead of softness, since the latter is not visible to the eye. Furthermore, regard-
less of the chosen props, size was the concept to be focused on in relation to the 
three bowls and the three chairs just before, which is why it may have made sense 

Picture 15.2 Goldilocks 
tries the smallest bed, 
which was “just right”
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for the children to continue to focus on size as the narrative implicates a direction 
towards generalizing concepts. Thus, based on both examples, one can question 
what mathematical content is brought to the fore and thus may be picked up as 
potential learning objects. Together, the two examples illustrate some of the com-
plexity in framing mathematics teaching within this story. This was the starting 
point for the content analysis of Goldilocks presented below.

15.5  Content Analysis of the Goldilocks Story

The first piece of mathematical content found in the story is the number three. The 
number range is already comprehensible to most children in their early years and 
possible to subitize as a set of items (Wynn, 1998). Sarnecka, Negen, and Goldman 
(2017) also show that children from 2 to 3 years of age develop their sense of num-
ber words’ cardinality, which means they become aware of the precise numerical 
meaning of numbers. Three objects should thereby be a comprehensible quantity to 
explore relations within by preschoolers.

A second piece of content found to be central in the story is seriation. Series or 
sequences re-occur throughout the story in several ways: size, warmth and softness. 
The bears and items related to each bear are relational in size. The other concepts 
are also relational in that there are different values of warmth and softness expressed. 
Piaget (1952) defines the act of making series as a relational one, where every item 
has to be related and compared to every other. In his studies, 4-year-olds were 
shown to struggle with making series of more than three elements. However, in a 
more recent study of toddlers who were given abundant time to explore item rela-
tions, the children made series of up to six elements (Reis, 2011).

A third piece of content of a mathematical kind is the relation to Goldilocks 
herself, as a reference point of what “just right” may be. The value of the units in 
the series is thus related to a specific reference. This content relates to the series 
in the story, as a tool for comparing the units. In mathematical activities where 
measurement is used as point of departure, this is known to be an essential and 
necessary aspect for young learners (Schmittau, 2004). Children, 2–3-year-olds, 
also use reference points as intuitive strategies to compare and sort items 
(Öhberg, 2004).

Thus, all of these pieces of content in Goldilocks are known to be within the 
range that preschool children should be able to make sense of as learning objects. 
The following analysis will direct attention towards how it is made possible to expe-
rience this content and make meaning from it, based on how the pieces of content 
are presented in the story.
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15.5.1  What Mathematical Challenges Does the Story Impose?

The story is divided into three sections. Each section is illustrated by Goldilocks 
moving from one scene to the other, referring to Papa bear, Mama bear or Baby bear 
accordingly, in different setups. Series or sequences of three units are the dominant 
learning object occurring in the story. Thus, reference points become central in that 
every object or value (unit) in a sequence has to be compared to some unit kept 
invariant, to make a series. In this story, the visual props entail simple and easily 
comprehensible series (such as series of size), but the idea of series is challenged 
through the reference point being Goldilocks’ preferences of “just right”. What is 
considered “just right” is not consistent throughout the story as a successive increase 
or decrease of some value. The idea of series constitutes that the relational aspect is 
discerned. This dimension of variation is opened up for exploration as the size of the 
utensils and furniture occurring in the story are visual props and ordered in accor-
dance with size. However, the story offers an additional, different approach:

She tasted the porridge from the first bowl [Papa bear’s]. “This porridge is too hot!” she 
exclaimed. She tasted the porridge from the second bowl [Mama bear’s]. “This porridge is 
too cold,” she said. She tasted the last bowl of porridge [Baby bear’s]. “Ahhh, this porridge 
is just right.”

The porridge is in accordance with the re-occurring series Papa bear–Mama 
bear–Baby bear, tasted first from the largest bowl, then the middle-sized bowl and 
last from the smallest bowl. But the temperature of the porridge is first too hot, then 
too cold and finally just right. One would assume that “just right” would be a tem-
perature between hot and cold, but in the story, this sequence of warmness does not 
follow the increasing or decreasing structure that the sizes of the utensils entail. 
Although the size varies and thus makes it possible to explore the relative nature of 
size and the effect this has on the occurring series, the values of the warmth would 
need to be explored more explicitly according to the relative meaning. The same 
ambiguous relation between size and other elements of order also occurs in the 
second section.

“This chair is too big!” she exclaimed, sitting on the first chair [Papa bear’s]. So she sat in 
the second chair [Mama bear’s]. “This chair is too big, too!” she whined. So she tried the 
last chair [Baby bear’s]. “Ahhh, this chair is just right,” she sighed. But just as she settled 
down into the chair to rest, it broke into pieces!

Obviously, the last chair, which was the smallest one, was not right for Goldilocks, 
since she broke the chair while sitting in it. And once more, a visible series is offered 
for the children to perceive (size), but it is not related to the size of Goldilocks, but 
to her own judgement.

She lay down in the first bed [Papa bear’s], but it was too hard. Then she lay in the second 
bed [Mama bear’s], but it was too soft. Then she lay down in the third bed [Baby bear’s] and 
it was just right.

The last section is similar to the first one in that the order of the occurrences goes 
from one extreme (too hard) to the other extreme (too soft) and finding the perfect 
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softness in the last attempt. This is also inconsistent with the props used, starting 
with the largest bed, then the middle-sized bed and finishing with the smallest one. 
As the three beds are different in size, it makes sense for the children to discern dif-
ferent values of size instead of softness, which is not visible to the eye.

15.6  Discussion

In this chapter we presented two empirical examples from authentic preschool prac-
tice where the children’s story Goldilocks was used as a narrative for teaching. 
These examples show difficulties occurring when the story is played either with 
small figures or as a drama where children themselves act out the story. These two 
examples are not chosen to illustrate how Goldilocks should or should not be used 
in preschool, but to illustrate the complexity of using the narrative for teaching pur-
poses. What is discerned by the child while testing three beds that differ in size, 
colour, material and softness? What impression of “just right” is formed when you 
are lying in a bed in which your feet do not fit? Even if the teacher emphasizes soft-
ness by altering her voice, the child may connect her wording to other possible 
mathematical (or other) content. In our study, the story Goldilocks was told in 
accordance with the original traditional setting, which turned out to limit the oppor-
tunities to develop concept knowledge. Stories that are created with a pedagogical 
purpose as their primary goal may of course provide better opportunities to select 
and frame content that stand out and allow exploration to facilitate conceptual 
development (Björklund & Pramling Samuelsson, 2013).

Another empirical example of the difficulty in using the story of Goldilocks is an 
intervention focused on area using circles with older children (Ameis, 2001). In the 
intervention the focus was on “just right” as a middle value, with the aim of finding 
the “just right” area in between a too-large area and a too-small area. However, this 
study found, in accordance with our analysis, that “just right” is not the middle 
value, which is why the use of the story in Ameis’ intervention may have confused 
children’s understanding. Thus, our intuition from our and others’ empirical inves-
tigations was that the mathematical content in the story entails a complexity that 
hinders the emergence of mathematical learning objects if the narrative is played 
out true to its original form, or if the mathematics is not made a piece of content for 
exploration.

The learning potential in the story could theoretically be seen as the idea of 
series. Other potential learning objects are size, softness and warmth, all of which 
are necessary to experience as relations of different values. The relative nature of 
the notion of size can in the examples be explored by comparing the visible props 
used to illustrate the story, which is not the case for softness and warmth. The series 
from one extreme, via an in-between value, to another extreme could be one way of 
opening up necessary dimensions of variations for learning the meaning of size, 
softness or warmth. Thus, the story has the potential to either provide a structure for 
exploring values in sequences, which is necessary for ordering them consecutively 
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(a series), or for learning about the relative nature of the different concepts. If a 
child has discerned the necessary aspects of series (relative and relational), this 
could be beneficial for generalizing the idea to other features, such as the concepts 
of size, warmth and softness. According to Variation theory of learning, the gener-
alization of mathematical ideas, for example series, is possible if the idea is kept 
invariant while other irrelevant aspects of the series are varying. However, in the 
story of Goldilocks, the two possible learning objects—series and the concepts of 
size, warmth and softness, with their respective aspects that children would need to 
discern—are fused together. This makes the story a mathematical challenge for 
young children who may not have an understanding of either values in sequences or 
the different concepts. Thus, it is questionable to what degree the narrative enables 
children to differentiate the necessary aspects of the phenomenon of series as well 
as size, warmth and softness, if the children had not been able to discern them before.

Based on the content analysis, using the narrative of Goldilocks for teaching 
mathematical concepts to young children can be seen as a challenge per se, which 
explains some of the challenges found in the empirical examples. An important 
issue to keep in mind is that the content analysis of the story was made after we 
experienced the widespread use of the narrative by the preschool teachers, so they 
did not have access to the content analysis before they conducted the activities. Not 
being aware of the illogical structure of the narrative makes it hard to elaborate its 
content with the children, resulting in the mathematical concepts becoming difficult 
for the children to discern.

In this chapter, we have only focused on one story, and despite the difficulties 
highlighted, we strongly encourage preschool teachers to use narratives for peda-
gogical purposes, not least because of the coherence and interrelationship between 
concepts that are enabled (Burton, 2002). Narratives have many features that may 
emphasize specific learning objects in ways that embrace young children’s need for 
concrete experiences of mathematical relations. Furthermore, concepts may be 
communicated in ways that direct children’s attention to the specific features, 
extending both their verbal resources and experiences (Carlsen, 2013; Pramling 
Samuelsson & Pramling, 2013). Nevertheless, as our analysis shows, there are chal-
lenges lying within this approach that need to be highlighted. It is not clear cut that 
children will experience a story in ways that enlighten the meaning of mathematical 
concepts if the narrative does not support such relations in comprehensible ways. If 
teachers make a thorough analysis of the mathematics content in stories, as exempli-
fied in this chapter, the possibility of mathematics becoming an object of learning is 
likely to be increased. However, for this to happen, the teacher has to have an 
advanced understanding of the specific and general aspects of the concepts in ques-
tion. Thus, although using narratives may be a strategy to overcome the dichotomy 
between academic and social-pedagogical approaches, our analysis indicates that 
preschool teachers need mathematical knowledge that enables them to orchestrate 
the activity in a way that makes it possible for the children to discern the intended 
aspects of the involved concepts in a profitable way.
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 Appendix: The Story of Goldilocks and the Three Bears

Once upon a time, there was a little girl named Goldilocks. She went for a walk in 
the forest. Pretty soon, she came upon a house. She knocked and, when no one 
answered, she walked right in. At the table in the kitchen, there were three bowls of 
porridge. Goldilocks tasted the porridge from the first bowl. “This porridge is too 
hot!” she exclaimed. So, she tasted the porridge from the second bowl. “This por-
ridge is too cold,” she said. So, she tasted the last bowl of porridge. “Ahhh, this 
porridge is just right,” she said happily and she ate it all up. After she had eaten she 
was feeling a little tired. So, she walked into the living room where she saw three 
chairs. Goldilocks sat in the first chair to rest her feet. “This chair is too big!” she 
exclaimed. So she sat in the second chair. “This chair is too big, too!” she whined. 
So she tried the last and smallest chair. “Ahhh, this chair is just right,” she sighed. 
But just as she settled down into the chair to rest, it broke into pieces! Goldilocks 
was very tired by this time, so she went upstairs to the bedroom. She lay down in the 
first bed, but it was too hard. Then she lay in the second bed, but it was too soft. 
Then she lay down in the third bed and it was just right. Goldilocks fell asleep. As 
she was sleeping, the three bears came home. “Someone’s been eating my por-
ridge,” growled the Papa bear. “Someone’s been eating my porridge,” said the Mama 
bear. “Someone’s been eating my porridge and they ate it all up!” cried the Baby 
bear. “Someone’s been sitting in my chair,” growled the Papa bear. “Someone’s 
been sitting in my chair,” said the Mama bear. “Someone’s been sitting in my chair 
and they’ve broken it all to pieces,” cried the Baby bear. They decided to look 
around some more and when they got upstairs to the bedroom, Papa bear growled, 
“Someone’s been sleeping in my bed.” “Someone’s been sleeping in my bed, too,” 
said the Mama bear. “Someone’s been sleeping in my bed and she’s still there!” 
exclaimed Baby bear. Just then, Goldilocks woke up and saw the three bears. She 
screamed, “Help!” And she jumped up and ran out of the room. Goldilocks ran 
down the stairs, opened the door, and ran away into the forest. And she never 
returned to the home of the three bears.
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Chapter 16
Kindergarten Teacher’s Knowledge 
to Support a Mathematical Discussion 
with Pupils on Measurement Strategies 
and Procedures

Milena Soldá Policastro, Alessandra Rodrigues de Almeida, Miguel Ribeiro, 
and Arne Jakobsen

16.1  Introduction

Measurement is a core construct of mathematical learning, since it serves as a 
“bridge between the two critical domains of geometry and numbers” (Clements & 
Sarama, 2007, p. 517) and research has revealed that early cognitive foundations are 
not limited to number concepts (e.g. Mix, Huttenlocher, & Levine, 2002). Research 
focusing on early childhood education, especially in the context of measurement, is 
still limited, and even more so when considering the role of the teachers’ knowledge 
in supporting (or inhibiting) the development of pupils’ mathematical knowledge, 
and consequently students’ performance (e.g. Boyd, Grossman, Lankford, Loeb, & 
Wyckoff, 2009; Hill, Rowan & Ball, 2005; Nye, Konstantopoulos, & Hedges, 2004). 
In that sense, it is essential to broaden the understanding of the impacts of teachers’ 
knowledge on measurement in the development of children’s learning in this 
domain. Amongst the diversity of teachers’ knowledge conceptualisations, a com-
mon tendency is to consider such knowledge as specialised for the work of teaching 
mathematics and, in that sense, one of such conceptualisations assuming both math-
ematical and pedagogical knowledge as specialised concerns the Mathematics 
Teachers’ Specialised Knowledge—MTSK (Carrillo et al., 2018).

More recent research indicates that young children are capable of engaging in 
situations and discussions involving substantive mathematical ideas (e.g. Baroody, 
Lai, & Mix, 2006; Clements, Sarama, & DiBiase, 2004). Children often engage in 
mathematical thinking and reasoning when exploring patterns, shapes, and spatial 
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relations, as well as when comparing magnitudes and counting objects (Clements & 
Sarama, 2007). Furthermore, it has been reported that when young children have 
access to a guide asking key questions, they are more likely to go further with their 
mathematical thinking (Björklund, 2008), as well as advance to the higher stages of 
developmental progression in terms of measurement thinking (e.g. Sarama, 
Clements, Barret, Van Dine, & MacDonel, 2011; Szilagyi, Clements, & 
Sarama, 2013).

In this study, we aim to contribute to a deeper and broader understanding of kin-
dergarten teachers’ knowledge—considering the MTSK perspective—implied in 
supporting a mathematical discussion to foster children’s knowledge, promoting 
their progression through the measurement thinking levels. Pursuing such an aim, 
we focus on one kindergarten teacher’s practice and on the revealed knowledge 
when implementing a measurement task with 5-year-old children. Our research 
question is: How does the teacher’s (specialised) knowledge support and facilitate 
mathematical discussions to foster and develop the children’s mathematical knowl-
edge on concepts, procedures, and measurement strategies?

16.2  Theoretical Framework

In order to acquire the notion of magnitudes, children need to go through different 
stages involving, among others, correct and adequate wording when expressing the 
magnitudes and the use of different resources and strategies for measuring. In that 
sense, understanding the measurement strategies and related processes is much 
more complex than putting them into practice.

Based on a previous work on Learning Trajectories (Clements & Sarama, 2004), 
Sarama et al. (2011) proposed a description of children’s thinking and learning in 
the scope of length measurement, through a set of instructional tasks designed to 
generate mental processes or actions conceptualised to help children move through 
a developmental progression of levels of thinking. Later, Szilagyi et al. (2013) pre-
sented a set of descriptors with nine levels for children’s mathematical thinking and 
learning when working in a length measurement context: (a) Length Quantity 
Recognizer; (b) Length Direct Comparer; (c) Indirect Length Comparer; (d) Serial 
Orderer to 6+; (e) End-to-End Length Measurer; (f) Length Unit Relater and 
Repeater; (g) Length Unit Relater; (h) Length Measurer; and (i) Conceptual Ruler 
Measurer.

The work discussed here is related to the ways children represent and communi-
cate their reasoning, including linguistic and gestural communication, when com-
paring a certain measurement of 3D objects (toys, for example) and when measuring 
some of the magnitudes of such 3D objects (e.g. length using pieces of a string). In 
that sense, we focus on only four of the aforementioned levels for children’s math-
ematical thinking and learning (b) to (e). (b) Length Direct Comparer includes the 
children’s capacity for physically aligning two objects to compare length, under-
standing the end-to-end comparison, placing the objects side by side. Furthermore, 
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it includes understanding that objects can be repositioned and rotated (mentally, 
then physically) in order to align and compare them; (c) Indirect Length Comparer, 
which concerns the children’s capacity for comparing the length of two objects by 
representing it with a third object. This level includes the ability to build a mental 
image of a particular length, maintaining and, to a simple degree, manipulating such 
a mental image, to compare it with other objects, applying to the images an explic-
itly transitive order relationship: a > b and b > c makes a > c; (d) Serial Orderer to 
6+, which concerns the children’s ability to order lengths, organising a scheme in a 
hierarchy, creating a mental image of a scale in which the higher-order concept 
prevails. This level also includes the ability to estimate relative lengths, by a trial- 
and- error approach and, eventually, complementing it with a scheme that considers 
a series of objects organised in such way that each one must be longer than the one 
before it and shorter than the one after it (Szilagyi et al., 2013). It is important to 
highlight that when a person builds a mental image of a particular object’s length, 
different meanings of the concept “length” are evoked and linked to the concept 
image—in Vinner’s (2002) sense. Thus, several aspects related to the same concept, 
which might be expressed in different representation systems (graphic, linguistic or 
semiotic), or various properties of such a mathematical concept, are addressed; and 
(e) End-to-End Length Measurer, which concerns the children’s capacity to lay 
units end to end, although (s)he may not recognise the need for units of equal length. 
As this level includes an “implicit concept that lengths can be composed as repeti-
tions of shorter lengths” (Szilagyi et al., 2013, p. 586), it is expected that children 
intuitively use equal-sized units or avoid gaps between units.

Considering teachers’ knowledge as a factor that impacts students’ understand-
ings and results (Boyd et al., 2009; Hill et al., 2005; Nye et al., 2004), when aiming 
at grounding children’s understanding for improving their results, it is essential to 
devise ways for improving teachers’ knowledge. From the diversity of teachers’ 
knowledge conceptualisations, we assume the specialised nature of such knowledge 
in and for teaching mathematics. Thus, we consider such specialisation in terms of 
both the Mathematical Knowledge (MK) and the Pedagogical Content Knowledge 
(PCK), which are the two main domains included in the MTSK model (Carrillo 
et al., 2018). Considering such conceptualisations, three subdomains are considered 
in each domain.

When thinking about the MTSK related to measurement, such specialised knowl-
edge is included in MK and PCK. In terms of the MK, it includes, for instance, 
knowledge associated with the foundations of the measurement activity (what is a 
measure), the principles and procedures of the measurement activity (what, how, 
and why to measure), and the reasoning associated with it (Clements & Stephan, 
2004). Here, the first level associated with measuring is included, corresponding to 
a visual comparison in terms of the considered magnitude (e.g. length, weight, 
height). It requires that the teacher possesses knowledge of the different representa-
tions that can be employed in the kindergarten context concerning how gestural and 
linguistic representations need to be considered in an adequate manner. Such knowl-
edge, associated with MK, is included in the Knowledge of Topics (KoT), a subdo-
main of the MTSK.
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In terms of the PCK on measurement, ideally, teachers should be knowledgeable 
on, for example, the children’s abilities and difficulties when working on a measure-
ment task. For instance, how to measure, what to measure, and how (and why) to 
address the measurement topic, in terms of the nature of the task, the strategy of 
implementation, examples, and the resources used. Such knowledge is a part of the 
subdomain of Knowledge of Features of Learning Mathematics (KFLM). It is also 
a part of the PCK, the knowledge associated with the “awareness of the potential of 
activities, strategies and techniques for teaching specific mathematical content, 
along with any potential limitations and obstacles which might arise” (Carrillo 
et al., 2018, p. 12), termed as Knowledge of Mathematics Teaching (KMT).

Considering the teachers’ role in a mathematical discussion, Stein, Engle, Smith, 
and Hughes (2008) proposed a set of five facilitating practice foci of “de- emphasizing 
the improvisational aspects of discussion facilitation in favour of a focus on those 
aspects of mathematical discussions that can be planned for in advance” (p. 231). 
Our focus will be on the aspects involving anticipations of children’s thinking and 
responses, to plan some decisions to be made “about how to structure students’ 
presentations to further their mathematical agenda for the lesson” (p. 231), which 
corresponds to (a) anticipating children’s likely responses to mathematical tasks and 
(b) monitoring children’s responses to the tasks during the implementation of the 
facilitating practice.

When the objective is promoting the development of a mathematical discussion, 
the conceptualisation and implementation of a task require the teacher to mobilise 
the content of his/her specialised knowledge. Such knowledge also grounds the 
anticipation of students’ productions, in a direct relationship with the teacher’s own 
space of solutions in the sense put forth by Jakobsen, Ribeiro, and Mellone (2014) 
and Mellone, Tortora, Jakobsen, and Ribeiro (2017). Such ability to anticipate stu-
dents’ productions and give meaning to such productions and comments grounds 
the decision-making process mainly in the so-called contingency moments—cor-
responding to “knowledge-in-interaction as revealed by the ability of the teacher to 
‘think on her feet’ and respond appropriately to the contributions made by her stu-
dents” (Rowland, Huckstep, & Thwaites, 2005, p. 266). Such knowledge mobilisa-
tion can occur, for example, when children face difficulties in using words correctly 
in the context of a mathematical discussion on a measurement activity when dif-
ferentiating the “smallest” from the “biggest”.1 In such cases, the teacher needs to 
possess a specialised knowledge that would sustain her/his decision to extend the 
mathematical discussion to the development of an adequate mathematical vocabu-
lary. For instance, when the pupil uses the term tiny to refer to a very small toy, the 
teacher decides to emphasise the need to reword the term to small, highlighting the 
direct relationship between the wording, the particular dimension(s) of the consid-
ered elements, and the classification assumed.

1 In Portuguese, for example, because of the words smallest (menor) and biggest (maior) sound 
very similar, it is very common for children to experience difficulties using these terms 
appropriately.
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16.3  Context and Method

The work reported in this study is a part of a broader research study focusing on 
kindergarten and primary teachers’ knowledge and practices in geometry.2 Here, we 
focus particularly on one kindergarten teacher’s (Karina) knowledge on the topic of 
measurement when implementing a task and developing a mathematical discussion 
with her 5-year-old children from a Brazilian public school.

Data has been gathered through audio and video recordings of the meetings 
(where the task has been designed by the teacher and the first author); the imple-
mentation of the task with children and two interviews with the teacher (before and 
after the class). The video recordings focused on the children’s and the teacher’s 
actions (strategies and procedures) in and for measuring. The video recordings of 
the implementation were captured using three devices: one focusing on the teach-
er’s actions, another focused on the children’s actions, and the third one was posi-
tioned in order to capture the global scenario. During the task design, the discussion 
focused on aspects related to the teacher’s MTSK on measurement (e.g. related to 
the mathematical goals and topics involved in the task and the type of resources 
chosen to be used during the task implementation—pieces of sticks or strings). The 
interviews immediately before the task implementation focused on the teacher’s 
“lesson image”, which correspond to Karina’s vision of what will occur in the class 
and how it will occur, including children’s interactions and responses (Schoenfeld, 
2000). The interviews after the class focused on discussing Karina’s perceptions of 
her implemented practice.

When preparing the task, the teacher had the explicit aim of promoting a math-
ematical discussion on measurement with pupils and, in order to do so, the task 
implementation comprised three stages. First, children were presented with a set of 
five aquatic animal toys (which, during the interaction, the teacher named as “whale, 
shark, orca, dolphin, and goldfish”) and afterwards they were asked to identify the 
smallest and the biggest among the five animals. In the second stage, children had 
to organise the toys by “size order”. In the third stage, focusing on measurement 
strategies and procedures, two strings of different lengths were given to the children 
and they were required to: (1) “measure the whale” using a string much longer than 
the toy and (2) “measure the whale” using short pieces of string (of the same size). 
During the implementation of the three stages of the task, the children were working 
in groups of four. Our focus here is on two specific episodes. The first episode is 
related to the second stage of the task, when the teacher instructed pupils to present 
the five toys in a queue considering “size order”, and then started a discussion about 
the reasoning the pupils used to organise the toys in a certain way. The second epi-
sode pertains to the third stage of the task, when the teacher invited the pupils to 
measure one of the five toys (specifically, the whale), using short pieces of string 
(each of 5 cm length), invited them to explain their procedures, and (eventually) 
their “results”.

2 Research Project “Kindergarten and Early Years’ mathematics teachers’ specialized knowledge 
on geometry.”
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The video analysis—identification of mathematically significant episodes in 
terms of teacher’s knowledge of measurement—was grounded on Sherin, 
Linsenmeier, and van Es’ (2009) criteria for characterizing video clips of students’ 
mathematical thinking: (a) windows into students’ thinking, related to the sources 
given by the pupils, as responses or forms of communication (gestural, for exam-
ple), which thus become evidence of students’ thinking; (b) the depth of students’ 
mathematical thinking, which is related to the pupils’ exploration of substantive 
mathematical ideas; and (c) the clarity of students’ thinking, which is associated 
with the ease of understanding the pupils’ thinking shown in the video. These three 
categories of the aforementioned characterisation of students’ mathematical ideas 
are graduated into three levels, denoted as “low”, “medium”, and “high”. Particularly, 
here we focus the discussion on the moments involving two medium-level episodes 
concerning student thinking when understanding the task and working on the task. 
The episodes concerning student thinking when understanding the task refers to 
episodes when the student, even without providing detailed information about his/
her thinking, revealed a sufficient understanding of the teacher’s request. 
Complementarily, the analysis focused on the episodes identified when children 
were working specifically on the task, particularly referring to the mathematical 
thinking and learning revealed (Szilagyi et al., 2013). The selected episodes have 
been chosen due to their suitability for discussing evidence of children applying 
different levels of thinking during the ongoing mathematical discussion and that 
pertaining to Karina’s knowledge sustaining such a discussion.

The episode selection implied activating our own “ability to read, hear, and under-
stand the interactions and knowledge in action” (Ribeiro, Badillo, Sanchez- 
Matamoros, Montes, & de Gamboa, 2017, p.  3379) in order to effectively select 
potential episodes. Thus, such a selection was made considering three foci: (a) one of 
the student’s positioning of the toys when organising the queue by “size order”; (b) 
the strategy one of the students used when measuring the toy (a whale); and (c) the 
teacher’s revealed knowledge. Concerning the teacher’s capacity to support a mathe-
matical discussion, we focus on anticipating children’s likely responses to mathemat-
ical tasks, and monitoring children’s responses to the tasks during the implementation 
of the facilitating practice (Stein et  al., 2008).3 For the teacher’s MTSK, different 
subdomains were considered as means of analysing the teacher’s knowledge and 
practices both during the mathematical discussion and in the interviews.

16.4  Analysis and Discussion

During the meeting when the task was designed, Karina stated that she was aware 
of the importance of teaching measurement, although she admitted needing to 
broaden her own knowledge on such a topic (“I need to incorporate and have more 

3 We have to note that even if such facilitating practices where developed with older students, in the 
work we are developing with kindergarten and primary teachers, its core essence remains.
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elements in order to be able to work with children more often.”). Such verbalisation 
is perceived as a recognition of the teacher’s need for developing and grounding her 
MTSK on measurement in order to sustain a mathematical discussion with 
her pupils.

16.4.1  Episode 1: Ordering by Length Vs. Height

The first selected episode is deemed particularly suitable for analysis due to the 
distance considered by the pupil between the goldfish (1) and the shark (2), as 
shown in Fig. 16.1, and the discussions that this prompted. Moreover, Karina explic-
itly mentioned that this kind of situation is a challenge for her, as she does not know 
very well how to proceed in such cases. She shared, “She shared, “I was not expect-
ing a correct answer. In fact, I do not know if there is a correct answer in those situ-
ations … Is there one?”. This scenario, even if anticipated, corresponds to a 
contingency moment (Rowland et al., 2005). This revelation points to the need for 
Karina to improve her MTSK on measurement and on the principles related to what 
is measurable when considering 3D objects (toys in this case).

The previous student’s ordering of the toys and the distance between Toy 1 and 
Toy 2 may be related to the discrepant goldfish size (in the variety of dimensions) 
when compared with the other toys, corresponding to a medium evidence of student 
thinking (Sherin et al., 2009). 

Karina [Putting the whale in the set of animals]: How would you guys organise the animals? 
Queuing, for example? Let Isadora have her queue first, then each of you will have yours.
Karina: But you must organise the toys in order of size. You must look at the size.
[Isadora organises her queue—Fig. 16.1]
Karina: Wait … Let’s see Isadora’s queue. You started from the biggest or the smallest, 
Isadora?
Isadora [pointing to the shark (2)]: With this one.
Karina: Which one is the first in your queue?
Isadora [pointing to the shark (2)]: This one.
Karina [referring to the goldfish (1)]: What about that one?
Isadora: Also.
Karina: Ah, also? And did you arrange by the size order?
[Isadora nods affirmatively]

Fig. 16.1 Student’s 
organisation by “size 
order”
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Isadora made sense of the teacher’s request (Fig.  16.1), although she did not 
provide detailed information about her thinking (“With this one”) when Karina 
posed the question on what the starting element was—the biggest or the smallest 
(associated with KoT). The teacher’s questioning led Isadora to a short list of 
answers (accompanied by pointing) and revealed aspects of the teacher’s knowledge 
related to anticipating the students’ answers/productions. This is grounded in the 
content of the different subdomains of the MK and her previous experience with 
measurement, which she recognises as being an important topic, although she 
admits not working with students and measurement often.

The dialogue continues: Karina [pointing to the whale (5)]: This one is big, isn’t it?
 Isadora [picking up the goldfish (1)]: And this one is tiny.

Although the pupil provides a brief verbal response, her gestural communication 
(pointing and picking up) is significant for the discussion and externalisation of her 
knowledge (understanding), allowing the teacher to make informed decisions 
grounded in the meaning given to the student’s answers. Isadora seems to exclude 
the goldfish from the queue arrangement, putting her arms around the toy (Image 
1 in Fig. 16.2), although she nods affirmatively to the teacher when prompted for a 
response. The pupil’s response reveals that she knows how to compare the whale 
and the goldfish by size, even when these toys are apart from each other. Such a situ-
ation positions the child at a “Length Direct Comparer” level of the developmental 
progression in the Learning Trajectory of length measurement (Szilagyi et al., 2013).

Regarding the mathematical depth of the episode, it corresponds to what Sherin 
et al. (2009) label “low level”, since Isadora seems to organise the toys in a way that 
is usual for her.

Karina [pointing to the orca, the dolphin, and the shark]: And among these three here, 
which one is the biggest among these three?
[Yuri points to the dolphin]
Felipe [pointing to the shark]: No, it is that one! 
[Isadora points to the shark]
Karina [pointing to the shark]: That one? (Image 2, Fig. 16.2) 
 Karina: Let’s have Felipe’s queue? Would you order the animals now, Felipe? Look for 
the size. How would you organise them by their size? All of you will make a queue.

Fig. 16.2 Student’s answer followed by the teacher’s questioning
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Even if the children provide information from different sources (e.g. responses, 
forms of communication), they do not provide clear information (low clarity, in 
terms of Sherin et al., 2009), because Isadora does not provide clues to identify her 
reasoning when arranging the toys. In the size-ordered queue that Isadora proposed, 
it is evident that the fish is located much further from the shark (Toy 1 and Toy 2 in 
Fig. 16.1). In addition, the other toys—dolphin, orca, and whale (labelled 3, 4, and 
5 in Fig. 16.1)—are positioned closer to each other.

Such an unanticipated way of organising the animals (by height measurement 
instead of length) left Karina in a contingency moment (Rowland et al., 2005) as the 
students’ and teacher’s focus was not aligned (height and length), which also can be 
related to the teacher’s knowledge of what can be measured. When ordering (one 
step in the measuring process) the animals, one can have a diversity of foci. Being 
aware of such diversity is part of teachers’ specialised knowledge, which is associ-
ated with the set of (im)possible solutions for the same problem/situation—the ele-
ments of the space of solutions each one has/develops for each situation/problem 
(Jakobsen et al., 2014). This awareness allows the teacher to give meaning to chil-
dren’s productions, contributing consequently for promoting deep mathematical 
discussions which are intentionally grounded on such diversity and the implications 
of the focus of attention when ordering. In that sense, this lack of correspondence 
between what is asked for and what is answered—in terms of focus of attention—is 
linked both to the teacher’s knowledge of what can be measured and the kind and 
nature of the given instructions (order by size), leading to the teacher’s apparent 
space of solutions with one single element.

When focusing on Isadora’s options and arguments—reflecting her knowledge—
placing the shark first in the queue, corresponds to the fact that she considers this 
toy the tallest animal among the others (considering the height from the table to the 
belly of the animal). The goldfish is not included in Isadora’s queue, probably due 
to her perception of similarity between the height of the goldfish and that of the 
other four animals, revealing her understanding of transitivity. If the instruction was 
to organise by “size order”, two toys of the same size cannot be placed in the same 
position. Alternatively, because its height is so discrepant to the other animals, she 
does not know where to include it within the queue.

Isadora is able to physically align two objects to perform a comparison of a mea-
surement (seen by the teacher as length, but assumed by the student as height), 
understanding the end-to-end comparison, placing the objects side by side, reveal-
ing knowledge associated with the “Length Direct Comparer” level (Szilagyi et al., 
2013). She recognises that, among the three objects in the subset of the previous 
arrangement (toys labelled 2, 3, and 4 in Fig. 16.1), the biggest animal in terms of 
both length and height (as well as volume or weight) is the shark. The key question 
in the mathematical discussion that emerged from this situation is grounded in the 
duality of understanding of “comparing”. For the student, comparison is being made 
between the heights of the objects, whereas, for the teacher, “organise the queue by 
size order” is assumed to refer to the length of the toys, as confirmed by the teacher 
in the post-class interview.
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Furthermore, the teacher’s request to “queue in size order” is related to a com-
mon daily activity performed by the children when entering the classroom, as they 
queue from the shortest to the tallest. The mental image (Vinner, 2002) evoked by 
the pupil is aligned with the mathematical way pupils consider length (referring to 
height, in their daily activity when perpendicular to the plane we walk on) which 
then, when associated with the word “queue”—“Indirect Length Comparer” 
(Szilagyi et al., 2013)—was the natural correspondence for the pupil. Furthermore, 
Isadora’s arrangement of the toys considering their height corresponds on a hierar-
chical scheme with the higher-order concept of an element in an ordered series, 
creating a mental image of a scale—corresponding to what Szilagyi et al. (2013) 
termed as Serial Orderer to 6+.

The teacher’s interventions were also related to monitoring students’ responses 
to the tasks during implementation (Stein et al., 2008), but such interventions fol-
lowed a path that did not necessarily consider the students’ answers and reason-
ing—linked to the teacher’s “space of solutions” (Jakobsen et al., 2014; Mellone 
et al., 2017) in the scope of measurement. Such lack of awareness of the multiplicity 
of meanings of the word/notion size (organising by “size order”) related to the 
teacher’s knowledge (Carrillo et al., 2018) of the concept definition and the concept 
image—in Vinner’s (2002) sense. Such knowledge refers, from one perspective, to 
the knowledge associated with the principles and procedures related to the measure-
ment activity (Clements & Stephan, 2004)—which has been established as the 
focus of the measurement activity. Thus, it is not something considered uniquely as 
an element of the teachers’ knowledge, even if it is obviously an element of MTSK 
(in this case, it corresponds to the knowledge that pupils are required to possess/
develop). From another perspective, a part of the teachers’ knowledge refers to the 
different types of representations including, but not limited to, a gestural communi-
cation associated with the natural language in order to externalise the knowledge 
grounding the performed reasoning.

It is also noteworthy that, when the students compare the size of three of the five 
given toys (shark, dolphin, and orca), the shark is indeed the “biggest”, whether 
comparing lengths or heights (as well as if considering the other “typical” mea-
sures—volume, weight/mass, perimeter, the “space” occupied on the table). In fact, 
the question the teacher posed in connection with the given example does not help 
her (the teacher) to identify the reasons (students’ thinking) that led to specific 
object arrangements, whereby the goldfish is placed before the shark and not 
included in the queue. This corresponds to the KMT dimension on MTSK. Such 
difficulties in posing mathematically powerful questions, linked with the missed 
opportunities for exploring in depth some of the students’ responses, are, according 
to the teacher, related to the fact that she does “not have much confidence, some-
times because, for example, there are situations I do not know very well how to find 
a way out”. In that sense, such lack of confidence in and for exploring the mathe-
matical topics—here related to some dimensions of measurement—is grounded in 
her awareness of “having something missing”, and thus points to the need for 
improving her own knowledge (KoT and KFLM) related specifically to the mea-
surement criteria and with anticipating the students reasoning and possible difficul-
ties in the topic.
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16.4.2  Episode 2: The Magnitude of Length

The second episode focuses on the magnitude of length (in particular related to 
perimeter) corresponding to a student production and measurement procedure 
anticipated by Karina during the interview. Before inviting pupils to measure the 
whale, Karina engaged with them in a discussion about the size of the pieces of 
string. Prompted by one of the pupils’ statements (These strings are very short), she 
stimulated them to think about the number of pieces of string they would need to use 
to measure the whale.

Karina [showing the pieces of string]: Look guys! Now, this is the [piece of] string we 
will use to measure the whale.
Isadora: These strings are very short.
Karina [showing some strings]: Are these very short?
Felipe: Yeah!
Karina: How many pieces [of string] you think will be needed to measure the whale?
Felipe: A lot of them!
Karina: A lot of them? Hum…
Karina: [Looking to Felipe]: How many pieces of this very short string do you think you 
will need to measure the whale?
Felipe [Looking to the pieces of string]: Ahm … Thirty!

The pupils’ statements about the length of the strings (Isadora and Felipe) reveal 
that the children are on the “Serial Orderer to 6+” level of the developmental pro-
gression in the Learning Trajectory of length measurement (Szilagyi et al., 2013), 
since they seem to organise a hierarchy scheme of a mental image of scale in which 
the higher-order concept prevails. Besides that, regarding the window of students’ 
thinking revealed in the episode, it can be characterised as a medium level, since the 
teacher had to explore Isadora’s statement (These strings are very short) more 
deeply in order to understand the evidence of the student’s thinking.

This episode corresponds to a crucial situation for deciding to continue exploring 
the mathematical ideas on the use of a “short string” to measure the whale. Contrary 
to what occurred in the first episode (organising the toys by size-order), this situa-
tion had been anticipated by Karina when elaborating on the task (Ribeiro et al., 
2017) and thus was not a contingency moment (Rowland et al., 2005) as she was 
prepared to deal with it. Consequently, she was able to support and develop a more 
fruitful mathematical discussion, engaging children in giving sense (mathemati-
cally) to what they say and allowing them the opportunity to justify their arguments 
(Stein et al., 2008).

Karina: Ok guys, do you agree that Felipe should start measuring the whale? Because he 
said he would need thirty [pieces of string] to measure the whale, wasn’t that the case 
Felipe? You said thirty, right?
Felipe: Yes.
Karina: So, do you agree that Felipe should start?

When asking the pupil to confirm his estimate of the number of pieces of string 
he will use to measure the whale, Karina is investing into the development of the 
pupil’s knowledge within the “Serial Orderer to 6+” level. It is related to Karina’s 
knowledge of the principles and procedures related to the measurement activity, as 
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well as the reasoning associated with it (Clements & Stephan, 2004) which is the 
content of Karina’s knowledge related to the topic (KoT). During the interview, 
Karina emphasised the importance of providing several pieces of string for the 
pupils to develop their knowledge and understanding of the correct procedure for 
measuring the length of an object. She mentioned:

Karina: I think that with a single piece it is difficult [for the children], because, then, you 
need to mark, go marking with your finger, to turn [indicating that the end of the string 
should be kept at the same point to iterate the unit] the string, right? I do not know … So, 
I think you will need … to provide to all of them, regardless of age, several pieces of 
string to measure.

Karina reveals her knowledge associated with the principles and procedures of 
measurement—  in  the same space of knowledge that her pupils are supposed to 
develop. This is associated with parts of KoT, related to knowing how to perform. 
However, her comment does not reveal the need for using a single unit of measure-
ment to iterate, but instead, by “simplifying” the process, she provides several 
strings.When asked about the need for using several pieces of string for the mea-
surement process, Karina mentioned:

Karina: The first time I did something like this with them [pupils], I used several pieces of 
string. Maybe in a teaching process that lasts a long time, for instance, a year, you can 
work with this [possibility] … it takes time … they must play, think, explore … so then, I 
think they can, after a process, they can try … try to do without several strings.

When intentionally exploring the task allowing pupils to use several equal units 
(pieces of string with same length) Karina reveals her knowledge associated with 
pupil’s features of learning the topic of measurement (KFLM), being this procedure 
of using multiple equal units an intermediate step for the development of the notion 
of measure. Her statement reveals, thus, simultanously, her knowledge associated 
with one of the main principles of the measurement activity—using one unit to iter-
ate (KoT).This is an evidence that the teacher’s MK influences her PCK.

When Felipe performed the measurement of the whale’s “perimeter”, he opted 
for positioning the pieces of string in a standard way (end to end, seemingly trying 
to avoid gaps and overlaps) and counting the number of strings used (Fig. 16.3).

Fig. 16.3 Felipe’s strategy for measuring the whale’s perimeter
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The pupil’s arrangement of the pieces of string puts him at the “End-to-End 
Length Measurer” level, since it is evident that the child understands the necessity 
to queue the units and that the length can be expressed as a repetition of shorter 
lengths. Moreover, he uses “intuitive constraints to use equal-size units or to avoid 
gaps between units” (Szilagyi et al., 2013, p. 586), even if some of the pieces of 
string are not properly arranged, which may be due to the physical nature of the 
string or could be related to the children’s difficulty in manipulating the string—not 
related to the mathematical notion of measurement.

After positioning the pieces of string, Karina questioned the pupil about the 
number of pieces of string he used to measure the whale.

Karina: Ok guys, come and take a look at how Felipe proceeded with measuring the whale.
Karina: Felipe, how many pieces of string did you use to measure the whale?
Felipe [starts counting one by one]: Thirteen.
Karina: Thirteen? And did you use more or less [pieces] than you thought [estimated] 
before?
[Felipe does not respond]
Karina: You said thirty before, and now you used thirteen.
[Felipe remains silent, looking at his arrangement of strings]
Yuri: It is a smaller amount.
Karina: Is it a smaller amount, Yuri?
[Yuri nods]

Even after considering the issue of the number of pieces of string to be used to 
measure the whale as a potential aspect to be explored with children, the teacher did 
not engage with pupils in this mathematical discussion (Stein et al., 2008). During 
the interview after the class, the teacher recognised that it would be a good opportu-
nity to discuss quantities with the children, comparing thirty to thirteen (KoT—
types of representation and number sense) by using the strings (KMT—the 
potentiality of the resource). However, she admitted to having consciously chosen 
not to use this opportunity for discussing quantities once she realised that she would 
need to spend (extra) time discussing the procedure employed by the pupil in order 
to help him develop his knowledge on this particular aspect of measurement (mobil-
ising elements of both KoT and KFLM) but would prefer to do that in another 
moment with another task.

Continuing the discussion:

Karina: Look guys, Felipe used thirteen pieces of string to measure the whale. What do 
you think about his way of measuring?
Yuri: Imagination.
Karina: Imagination? What do you mean by “imagination”?
Yuri: Because he did it like this [gesturing as if he was doing a circle on the table, 
pretending he was skirting the toy] and then he put all the strings the way he wanted to do.

Yuri’s statement reveals that he is interpreting his classmate’s (Felipe) procedure 
as having created a mental image (Vinner, 2002) of the length to be measured. This 
possible interpretation puts Yuri both in the “Serial Orderer to 6+” and the “End-to- 
End Length Measurer” levels on the Learning Trajectory, which are expected  
to be developed in parallel (Szilagyi et  al., 2013). Moreover, it can be said that 
Yuri  is trying to give sense to Felipe’s procedure by building a concept image 
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(Vinner, 2002) of what must be done when measuring a perimeter, linking it to the 
concept that lengths can be expressed as repetitions of shorter lengths.

Regarding the content of the teacher’s knowledge to support the mathematical 
discussion grounded in Yuri’s comment, within this situation, Karina encounters 
another contingency moment (Rowland et al., 2005). Karina has not anticipated that 
the notion of “imagination” would appear in the context of an experimental activity, 
in which children are required to effectively employ physical movements for mea-
suring. It was not even related to the process of estimation. Such a dimension of the 
content of teachers’ knowledge is related, on the one hand, to the notion of building 
a mental representation of a concept, in this case the measurement of a length (KoT), 
before proceeding to the activity of actual measuring. On the other hand, this knowl-
edge is associated with the relationships between such a concept image and the 
resources applied to design the tasks aimed at generating learning opportunities, in 
this case the pieces of string, which are, mathematically linked to the notion of 
length (KMT—resources used).

Building a mental representation of a certain length can, amongst other possibili-
ties, support children in developing knowledge related to estimating lengths 
(Policastro, Almeida, & Ribeiro, 2017) as well as other magnitudes. Thus, the 
notion of “imagination” Yuri evoked during the discussion is one of the core ideas 
teachers should explore more frequently in the context of kindergarten schooling, in 
order to develop children’s mathematical thinking (Björklund, 2008). This would 
allow and contribute to the development of the foundations for more formalised 
learning in the years to come.

Since Karina was focusing on the procedure related to measurement, she ques-
tioned Felipe about one of the parts of the whale (the tail) that he did not consider 
when measuring its “perimeter” (see also Image 2 in Fig. 16.3) (Fig. 16.4):

Karina: [pointing to the tail of the whale] Hey Felipe, tell me something … what about 
this part of the whale? Don’t you need to measure it?
Felipe: I forgot.
Karina: Did you forget? So, what would you do now to fix it?

Immediately, the child moved one of the pieces of string he was using in the 
measurement (the one which was under the tail of the whale) and rearranged it on 
the line that was defining the “perimeter” of the toy (see Fig.  16.5). Then, he 
 continued the process of including the units of measurement to complete the skirt-
ing, using three more pieces of string he had available.

Fig. 16.4 Teacher 
questioning the pupil on 
the “unmeasured” part of 
the perimeter of the whale
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Fig. 16.5 Felipe’s 
rearranging the pieces of 
string

It can be said that the pupil reveals a level of knowledge that can be considered 
at the “End-to-End Length Measurer” level, although he does not properly recog-
nise the relationship between the number (verbalised) and the quantity of objects 
associated with such a number.

Karina: And now, how many pieces of string did you use, Felipe?
Felipe: [starts counting pointing with his finger to the pieces of string]: Seventeen.
Karina: Now you used seventeen? Ok.
Karina: Isadora, now it is your time to measure …

Felipe did not count the quantity of strings properly, because he pointed to both 
ends of one of the pieces of string on the line, effectively counting the same piece 
twice. This is a problematic aspect of children’s knowledge related to what the focus 
of counting is: the extremes (points) or the units connecting those extremes. Such a 
situation is configured as an obstacle to ground students’ learning since kindergar-
ten, and it was a good opportunity for the teacher to develop a discussion with the 
pupils about the counting process, in order to also work jointly on the conservation 
of a quantity, starting from the 13 strings (the number Felipe already used) and add-
ing three more.

Such an opportunity might not have been considered by Karina, since her focus 
during the task was on the procedure involved in the measurement activity. 
Alternatively, it might not be an element of Karina’s space of solutions (Mellone 
et al., 2017) concerning the connections between the pupils’ difficulties when estab-
lishing the correspondence between measuring (the procedure involved) and giving 
a final number to the measurement (counting the number of times they need to 
repeat the unit of measurement).

16.4.3  Final Comments

Considering the specialised nature of teachers’ knowledge, to better understand the 
content of such knowledge and its impact on practice and students’ understanding 
is not only about addressing “what” teachers know (in terms of the mathematical 
and pedagogical content), but also addressing “how” one needs to know what (s)he 
knows. In that sense, understanding teachers’ knowledge requires taking into 
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account that it “is not a kind of knowledge but a style of knowing that accounts for 
specialisation in mathematics teacher knowledge” (Scheiner, Montes, Godino, 
Carrillo, & Pino-Fan, 2019). In this perspective, analysing the role of MTSK in 
teachers’ practice is a complex task that involves, amongst others, moving the focus 
from assessing the content of teachers’ knowledge (from what they seem not to 
know) towards emphasising what they know and how they know it. Such analysis is 
needed in order to be able to contribute effectively to improving the quality of 
teacher education.

Here, the results enhance the role of teachers’ specialised knowledge as one of 
the pillars that sustain the interrelationship between anticipating students’ answers 
and the set of answers teachers would provide. This allows them to make informed 
decisions and implement significant mathematical practice even in contingency 
moments (Rowland et al., 2005) during ongoing mathematical discussions.

Here, we refer explicitly to the knowledge dimensions involving principles (what 
is measured) and measurement procedures (how we measure), as well as the rela-
tionships between natural and mathematical language in measurement contexts. 
However, the dimensions that involve knowledge about the children’s difficulties 
and understandings, the kind and focus of the questions to pose, and examples to 
provide are also some of the required elements of teachers’ knowledge in order to 
promote a mathematical discussion focusing on developing students’ knowledge 
and understanding of the topic and the connection within and between topics. In that 
sense, and in order for teacher education to place its focus where it is most needed, 
and grounded in research results, some possible topics of attention that will guide 
our future investigations are as follows: (1) the content of teachers’ knowledge in 
and for anticipating students’ productions and comments related to a specific math-
ematical task; (2) the content of teachers’ knowledge associated with posing ques-
tions following students’ hypothetical reasoning; and (3) what the core elements of 
teachers’ knowledge on measurement are, how they differentiate or complement the 
general dimensions of measurement, and how they can be promoted.
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Chapter 17
The Materialisation of Children’s 
Mathematical Thinking Through 
Organisation of Turn-Taking in Small 
Group Interactions in Kindergarten

Svanhild Breive

17.1  Introduction

Children stand in constant relation to an ever-changing environment. To notice 
 differences and similarities in the ever-changing environmental context and to rec-
ognise structures (generalities) from these differences and similarities are argued by 
many to be the essence of mathematical thinking (e.g. Mulligan & Mitchelmore, 
2013; Radford, 2010). In kindergarten, children may experience mathematical 
structures in both free-play situations and in organised activities. For example, when 
children work in small groups to solve a mathematical problem they must coordi-
nate and organise their actions in order to productively solve the problem. It is 
through this coordination of actions that mathematical structures emerge in the 
activity (Radford, 2010, 2013, 2015).

To understand more about how mathematical structures may appear in young 
children’s activities, this study examines the characteristics of children’s turn-taking 
while they work in small groups to solve addition problems. The aim is to reveal 
how children coordinate and organise their actions to move the activity forward and 
solve the problems. The analysis focuses on children’s use of various semiotic 
means like gaze, word emphasis and gestures to organise their turn-taking and what 
mathematical structures are revealed through their joint activity.

This study addresses the following research questions:

• What characterises children’s organisation of turn-taking while they work in 
small groups to solve addition problems?

• What role does children’s organisation of turn-taking play in the materialisation 
of children’s mathematical thinking in the joint activity?
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17.2  Theoretical Framework

In the research study reported here, I draw on Radford’s (2013) theory of knowledge 
objectification, a cultural-historical theory of mathematics teaching and learning 
where learning is conceived as “social processes of progressively becoming 
 critically aware of an encoded form of thinking and doing” (Radford, 2013, p. 26). 
It is through a complex coordination of semiotic means (language, artefacts, math-
ematical signs, gestures and other bodily actions) that mathematical ideas are medi-
ated into our consciousness. Put another way, learning mathematics is to become 
critically aware of mathematical structures in the environmental context. However, 
this process does not happen all of a sudden, rather, there are layers of generality 
(Radford, 2010) which the subject gradually becomes more aware of. And it is 
through human activity and through a coordinated use of semiotic means that these 
generalities are materialised, which is brought into life and into our consciousness.

Roth and Radford (2011) use the term ‘joint practical activity’ to describe how 
humans jointly work together towards a mathematical object in the process of 
objectification. In their study, they show how a teacher and a student work together 
towards a mathematical object (a specific algebraic pattern) and how the algebraic 
pattern is materialised (brought into life) through the two participants’ actions. 
Through complex coordination and tuning of different semiotic means, a space of 
joint action and intersubjectivity is created where thinking appears as a collective 
phenomenon (Radford & Roth, 2011).

This study investigates young children’s joint practical activity working in small 
groups to solve addition problems. To understand more about the nature of the 
 coordinated interaction, the movement of the activity, and the materialisation of 
children’s mathematical thinking, the study focuses on children’s turn-taking and 
especially how children organise their turn-taking by coordinating various semiotic 
means. In their description of a ‘simplest systematics for organisation of turn- 
taking’, Sacks, Schlegoff, and Jefferson (1974) characterise organisational features 
for turn-taking in conversation and describe how turn-taking is organised by two 
main types of ‘turn-allocation techniques’: a current speaker may select the next 
speaker, or a ‘non-speaker’ may self-select in starting to talk. In self-selected turn- 
taking, the potential next speaker must find a ‘transitional-relevance place’, which 
is a place where it is relevant for a transition in the conversation. Such transitional- 
relevance places are determined by clausal, phrasal and/or lexical principles which 
create conversational units, and by which the speaker may construct a turn.

In his investigation on how the next speaker in turn-taking is addressed by the cur-
rent speaker, Lerner (2003) discusses a range of explicit and tacit ‘techniques’ for 
addressing the next speaker. The current speaker may select the next speaker using 
address terms (like ‘you’ or the next speakers name), or through gaze- directional 
addressing where the current speaker is directing his/her gaze to another participant 
while speaking. Although describing these ways of addressing the next speaker inde-
pendently, Lerner (2003) emphasises that these methods are often used in concert with 
each other (like the use of an address term in concert with gaze or gestures). Tacit 
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addressing is another method for addressing the next speaker, and this makes evident 
who is being addressed without using explicit address terms or other explicit means. 
Tacit addressing draws upon specific features of the current circumstances and through 
a specific composition of content and initiating actions, the next speaker is being 
selected. Lerner (2003) emphasises that both explicit and tacit address ‘techniques’ 
are context sensitive; however, tacit addressing cannot be considered without it. 
Similarly, Mondada (2007) emphasises the situatedness or context sensitivity of turn-
taking. From a multimodal perspective, she investigates how participants, in a conver-
sation, gradually establish him/herself as the next speaker through specific use of 
gestures. By using pointing gestures, while the current speaker is still talking, the 
participants establish him/herself as the next speaker. In her case study, the partici-
pants are sitting around a table with diverse artefacts (maps, documents, etc.) in the 
middle, and where everyone is engaged in reading, writing and considering these 
artefacts. In this context, the interaction is not primarily organised as a face-to-face 
exchange of talk but as a side-by-side exchange where the participants are not looking 
at each other (having eye contact), rather looking at the artefacts and their joint actions.

In the two segments that are examined in this study, the children were given addi-
tion problems (considering the semantic structure1 of the problems). However, as 
will be shown in the results, these problems and the children’s organisation of turn- 
taking while solving these problems promt rhythmic counting of groups and 
repeated addition which may be considered as key steps towards multiplicative rea-
soning. Multiplicative reasoning is distinguished from additive reasoning and tradi-
tionally considered as more complex (Anghileri, 1989;Greer, 1992 ; Mulligan & 
Mitchelmore, 1997). In additive reasoning, quantities of the same type are added, 
for example 5 apples plus 3 apples equals 8 apples. In multiplicative reasoning, 
quantities of different types are involved, for example 4 baskets with 3 apples in 
each basket equal 12 apples altogether. The example also illustrates the group struc-
ture, which is characterised by multiplication.

From research on the semantic structure of multiplicative situations (Greer, 
1992; Mulligan & Mitchelmore, 1997) there have been found at least four different 
types of problems relevant for kindergarten and early school-years, where ‘equal 
groups problems’ (e.g. 4 baskets with 3 apples in each) is considered as one of the 
basic sematic groups. To solve equal groups problems, rhythmic counting and 
repeated addition, with diverse use of tools, are found as two key strategies that 
children use, and are key steps towards multiplicative reasoning with number facts 
(Anghileri, 1989; Mulligan & Mitchelmore, 1997).

What can be found from the substantial number of empirical research on the 
relationship between the sematic structure of addition and subtraction problems 
and children’s strategies for solving these problems is that most of the research has 
focused on children’s individual skills and individual problem-solving strategies 
(see Baroody & Purpura, 2017 for an overview). Similarly, research on children’s 
understanding of multiplication and their multiplicative problem-solving strategies 

1 ‘Semantic structure’ refers to the way in which the problem is formulated, either in writing text 
or verbally, before the children start to solve it.
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has also focused on children’s individual skills (e.g. Anghileri, 1989; Greer, 1992; 
Lu & Richardson, 2018; Mulligan & Mitchelmore, 1997) where clinical interviews 
are often used as a method for collecting data. These studies fail, I hold, to see the 
contextual features of children’s thinking.

In the literature above, rhythmic counting is seen as a means to reach multiplicative 
thinking. In Radford’s (2013, 2015) theory, on the other hand, rhythm must be seen as 
an integral part of mathematical thinking. Thinking, in Radford’s (2015) conception, 
is thought put into motion and it is through joint practical activity that mathematical 
thinking is brought to life (i.e. being materialised or actualised). Radford (2015) 
argues that “mathematical thinking happens in time. (…) Mathematical thinking not 
only happens in time but its most striking feature is movement” (p. 68). Rhythm is one 
structuring feature through which children’s mathematical thinking may be materi-
alised, and Radford defines rhythm like this: “In its general sense, the concept of 
rhythm tries to characterise the appearance of something at regular intervals and 
attempts to capture the idea of regularity, alternation, or something oscillating between 
symmetry and asymmetry” (p. 68). An important feature of rhythm is thus movement, 
and in accordance with Radford’s conception of mathematical thinking, rhythmic 
counting (as referred to in the literature above) is not merely a means for multiplica-
tive thinking, but rather a part of the multiplicative thinking itself.

Rhythm mediates several things, and one of the most important elements of 
rhythm is what Radford calls ‘theme’. “Theme is the very important component of 
rhythm that moves us from memory to imagination and that provides us with the 
feeling of continuity of the phenomenon under scrutiny—the sense that something 
will happen next, or the expectation of a forthcoming event” (Radford, 2015, p. 81). 
Rhythm mediates that there is a regularity or a continuation of something and it 
gives the children possibilities for imagining what comes next. Another important 
element of rhythm is ‘prolongation’. According to Radford (2015), “Prolongation is 
the component of rhythm where a phenomenon is expressed” (p.  81). Through 
rhythm, a mathematical phenomenon may be expressed or materialised. In this case 
the rhythmic counting that emerges from children’s turn-taking materialises a struc-
ture fundamental for multiplication. The different elements of rhythm help to orga-
nise thinking and are essential components for the flow of thinking.

17.3  Methodology

The case study (s) reported in this chapter is part of a larger Study (S) on mathemati-
cal teaching and learning in kindergarten and is situated within a research and devel-
opment project called the Agder Project.2 Five kindergarten teachers (KTs) from the 
focus group of the AP and their groups of children participated in the Study. Data 

2 The Agder Project is funded by the Research Council of Norway (NFR no. 237973), The Sørlandet 
Knowledge Foundation, The Development and Competence Fund of Aust Agder, Vest Agder 
County, Aust Agder County, University of Agder and University of Stavanger.
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was collected from 37 sessions during the academic year 2016/2017 (the interven-
tion year of the project) where the five KTs implemented mathematical activities 
pre-designed in the project. The 37 sessions included activities with numbers, 
geometry, measurement and statistics and were organised as both whole group ses-
sions and as small group collaborations. All observed sessions were video-recorded 
using two video cameras and focused on the participants’ facial expressions as well 
as bodily actions.

This case study focuses on the joint activity and the coordination of turn-taking 
within two small groups of kindergarten children (aged 5–6) working on addition 
problems. The two segments3 examined in this study were selected from the data 
set of 37 sessions, focusing on activities where children were challenged to solve 
addition problems in small groups, without extensive interference from the KT, 
and where the children showed willingness to solve the problems, that is they 
persevered in their effort to solve the problems. These criteria for selecting seg-
ments limited the data reported here to two segments from two different kinder-
gartens (K1 and K2). In K2, the KT interfered in children’s group work at the end 
of the segment, and therefore segment 2 is divided into two sub-segments (seg-
ments 2.1 and 2.2).

The KT in K1 implemented an activity called ‘Treasure Hunt’ where children 
searched for a treasure, and to get to the treasure the children had to solve mathemat-
ical problems en route. Each problem needed to be solved before the children could 
move on to the next problem. One of the problems in the activity, and which is the 
focus in segment 1, was formulated as follows: “Run around the nearest located tree 
three times each. How many times have you run around the tree altogether?”

The KT in K2 implemented an activity called ‘Balloon Play’. In ‘Balloon Play’, 
the KT placed several balloons on a wall, each containing a mathematical task or 
problem. The children chose which balloon to burst with a drawing pin, and they 
worked in groups to solve the problem. One of the problems, which is the focus in 
segment 2, was: “Look at your hands, how many fingers have you got altogether in 
the group?”

The two segments were transcribed4 and then analysed from a multimodal, inter-
pretative perspective. The analysis was conducted (and refined) through iterative 
examination of the video recording and of the corresponding transcripts focusing on 
verbal and non-verbal actions which the participants used and made available to 
others for the purpose of moving the activity forward. The analysis focused on iden-
tifying verbal and non-verbal actions which seemed important for understanding the 
ongoing interaction in light of the formulated research questions. This fine-grained 
iterative analysis served as a means for interpreting the segment as a whole.

3 A segment is here considered a self-contained part of a lesson with a distinct beginning and end.
4 Transcription codes: (()) denotes non-verbal actions or contains explanations and interpretations 
necessary to understand the dialogue; _ denotes that the underlined word is emphasised; … denotes 
a pause in the verbal utterance; [] denotes that the utterance is cut off by another participant.
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17.4  Results

In this section, three examples are presented to illustrate diverse ways in which 
 turn- taking may be organised in small groups in kindergarten. The first example 
(segment 1) is taken from K1, where four children (Pia, May, Amy and Adam) col-
laborate to solve an addition problem. The example illustrates, primarily, how gaze 
in concert with word emphasis is used to address the next speaker and move the 
activity forward. From this way of organising turn-taking, a rhythmic counting is 
released and a multiplicative pattern emerges. The second example (segment 2.1) 
illustrates, primarily, how children self-select turns in the organisation of turn-tak-
ing. In this example, the children have different ideas for how to solve the problem, 
but during the activity they tune to one another and reach a compromise for how to 
solve the problem which they all support. In the third example (segment 2.2), the 
KT interferes in children’s group work, and the turn-taking takes yet another form. 
The KT now strongly structures the turn-taking and helps the children re-establish 
joint attention and focus on a common strategy to solve the problem. The second 
and third examples (segments 2.1 and 2.2) are taken from K2, where three children 
(Lily, Eva and Mia) collaborate to solve an addition problem.

17.4.1  Segment 1, from Kindergarten 1 (K1)

Before the segment presented below, the KT and the children have reached post 2 in 
the ‘Treasure Hunt’ activity. The KT reads the problem for the children (“Run 
around the nearest located tree three times each. How many times have you run 
around the tree altogether?”), and the children immediately start to run around the 
tree. The children run around the tree three times each and then represent their runs 
with their fingers (each child shows three fingers to the KT and the other children). 
Then the KT initiates the second part of the task which is to figure out how many 
runs they have run around the three altogether. Figure  17.1 illustrates how the 
 children are positioned when they try to solve the problem.

115    KT     But, how many times have you run altogether?
116    Pia     ((Pia shows three fingers))
117    KT      All of you ((swipes her hand over the children, while keeping her gaze on Pia))
118   Pia      Aaah, we have to count! … One, two, three. ((Turns her gaze to May))

Fig. 17.1 Illustrates how 
the children in K1 are 
positioned when they try to 
solve the problem

S. Breive



287

119   May    Four, five, six. ((Turns her gaze back at Pia))
120    Pia      ((Turns her gaze towards Amy)) Amy, it’s your turn to count! ((Points 

towards Amy))
121    Amy   One, two, three, fo[ ]

In line 115, the children keep their gaze at the KT while she asks how many times 
they have run around the tree altogether. Pia shows three fingers to the KT and the 
KT looks back at Pia (line 116). The KT then, in line 117, emphasises “all of you” 
and swipes her hand over the children, but is still looking at Pia. In line 118 it seems 
that Pia gets an idea of how to solve the problem, because she immediately turns her 
gaze to May and says “Aaah, we have to count”. To use Radford’s (2015) terminol-
ogy, Pia gets an idea (a thought) which is still pure possibility (the ‘feeling’ of a 
possible counting strategy), and which she has to put into motion. To put the thought 
into motion, that is to transform the idea into materialised thinking, she must inter-
act with the other children. The idea includes the other children, because each child 
represents their runs around the tree and the mathematical thinking can (only) be 
materialised through their joint activity. Since the idea is pure possibility there is a 
risk to fail, and to succeed Pia is dependent on the other children’s loyalty and their 
persistence to ‘work out’ the idea. Pia then, still in line 118, turns her gaze to her 
own fingers and starts to count “one, two, three”. As she counts her third finger, she 
holds on to it and simultaneously moves her gaze to May. Both the gaze and the 
word emphasis address May as the next speaker. In line 119, May continues the 
initiated pattern, which indicates that she has got the ‘feeling’ of the idea, but which 
is still pure possibility that is about to be materialised. May looks down at her fin-
gers while she counts “four, five, six”, and as she counts her third finger she holds 
on to it and simultaneously moves her gaze back to Pia. May’s gaze and word 
emphasis address Pia as the next speaker. Pia has already counted and therefore she 
turns her gaze further to Amy (line 120), but Amy has not paid attention to the ongo-
ing interaction. She has been examining something on the ground and does not 
recognise that Pia has turned her gaze to her. Pia then approaches Amy verbally and 
says, “Amy, it’s your turn to count!” and simultaneously points eagerly towards 
Amy. Amy then recognises that it is her turn to count and responds, “One, two, 
three, fou[ ]” in line 121. Since Amy has not paid attention to Pia and May’s previ-
ous interaction, she has not recognised the pattern of the counting. She has recog-
nised neither that she has to continue on seven, nor the rhythm of the counting. Amy 
starts to count from one and is about to continue further from three.

Pia recognises that Amy does not continue the same counting pattern as she and 
May initiated, and she interrupts Amy.

122    Pia No, not like that! … One, two, three! ((Pia counts slowly and keeps her 
gaze at Amy while she counts))

123    Amy One, two, three. ((Amy keeps her gaze at Pia while she counts))
124    Pia Ahrr. … ((Pia sounds a bit irritated, and then she turns her gaze to May’s 

fingers and points at May’s index finger))
125    May But I have already counted! … ((May sounds a bit irritated, she looks back 

at Pia with a resigned facial expression)) …
126    Pia But wait. Then we have to count one more time, since Amy counted one, 

two, three.
127    May One, two, three. ((then she turns her gaze at Pia and pokes Pia’s hands)) 

Your turn!
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128    Pia ((Pia looks down at her fingers, and holds on to her index finger for a while, 
before she starts counting)) … Four, five, six. ((Pia turns her gaze further to 
Amy))

129    Amy Seven, eight, nine. ((Amy turns her gaze back to Pia))
130    Pia ((Pia turns her gaze further to Adam))
131    Adam ((Adam blushes, and looks down at his thumb)) …
132    Pia Your turn! ((Pia points at Adam))
133    Adam OK … Eleven, twelve, thirteen.
134    May Thirteen altogether! ((May turns her gaze to the KT and smiles))
135    Pia Yes. Thirteen!

In line 122 Pia interrupts Amy and says “No, not like that!”, and expresses both 
verbally and non-verbally (with a resigned facial expression), that Amy did not 
count as anticipated (in accordance with the initial idea). Then, still in line 122, Pia 
makes an attempt to correct Amy. She counts her fingers slowly and distinctly, “one, 
two, three”, with marked stress on “three”, while she keeps her gaze at Amy. By 
counting slowly and distinctly, Pia emphasises the rhythm in her counting—Amy is 
not supposed to count or say more than three counting words. It seems that Pia also 
tries to prompt Amy to count further, by keeping her gaze at Amy while she counts. 
In line 123, Amy imitates Pia’s actions. It seems that Amy understands the impor-
tance of the rhythm; however, she does not recognise that she has to count further. 
She counts slowly “one, two, three” while she keeps her gaze at Pia as if she needs 
Pia to confirm, accept or correct her.

Amy’s counting is still not in line with Pia’s initial idea, and in line 124 Pia 
expresses her frustration both verbally and non-verbally. In frustration she points at 
May’s index finger (which is difficult to understand why she did; perhaps it was just 
an attempt to keep the activity moving somehow). In line 125, May expresses, also 
a bit frustrated, that she has already counted and turns her gaze back to Pia with a 
resigned facial expression. This action does not really move the activity further. 
There is a pause in the interaction, where none of the children do anything, and the 
activity could have stopped at this point. However, it seems that Pia understands that 
something needs to be done, and she suggests, in line 126, that they start over. May 
accepts the idea and immediately starts to count from one, in line 127, and in the 
same manner as earlier she turns her gaze to Pia while she holds on to her third 
finger and says “three”. Again, the word emphasis and gaze address Pia as the next 
speaker. In line 128, Pia looks down at her fingers and holds on to her index finger 
for a while before she starts counting further from three, “four, five, six”. She seems 
concentrated, as if she wants to do it right and ensure that the activity moves for-
ward in the desired direction, hence in accordance with the initial idea. As Pia 
counts her third finger, she holds on to it and moves her gaze further to Amy while 
she says “six”. This time Amy has payed attention to May and Pia’s counting strat-
egy; she recognises the counting pattern (counting further, but not more than three 
numbers) and, in line 129, Amy counts further without hesitation. When she counts 
her third finger, she turns her gaze back to Pia and addresses Pia as the next speaker 
again. In line 130 Pia recognises that it is her turn, but without speaking she just 
turns her gaze further to Adam and addresses Adam as the next speaker. Adam has 
paid attention to the ongoing activity, but he has not yet contributed. Adam blushes 
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as if he feels pressured. All the others have counted, and it is only him left. In addi-
tion, he knows that this is the second attempt to solve the problem, and the others 
would probably be disappointed if he failed. In line 132 Pia says “Your turn!” and 
expresses that she is impatient for him to count. In line 133 Adam says “OK” and 
after a little pause he counts “eleven, twelve, thirteen”. Although he skipped count-
ing ‘ten’, he still counted further, and the other children seem satisfied and accept 
thirteen as the final answer. May and Pia state, in line 134 and 135, that thirteen is 
the correct answer to the problem.

In most of the segment, gaze is used to organise turn-taking by addressing the 
next speaker (in 15 out of 21 turns). In many of the turns, gaze is used in concert 
with word emphasis (line 118, 119, 122, 123, 127, 128 and 129), typically in the 
turns where the current speaker counts and then prompts another person to count 
further. In some cases, gaze is also used in concert with a direct verbal prompt (line 
120, 127 and 132), for example when the person being addressed does not pay 
attention or when the current speaker is impatient. Although turn-taking in the 
example above is mainly organised by addressing the next speaker, turn-taking is 
also organised by self-selecting in some cases (in lines 116, 122, 127, 132, 134 and 
135). Although these turns have different reasons for being self-selected, they are 
still used to move the activity forward in some way. Or, as in line 122, the self- 
selected turn is used to move the activity in a different direction. In line 122, Pia 
interrupts Amy because Amy is not following the anticipated direction of the activ-
ity, as she does not act in accordance with the initial idea. Pia must re-direct Amy, 
and try to make her realise the initial idea.

After this segment, the KT makes another attempt to solve the problem together 
with the children and ensures that they get the correct answer. The KT asks the chil-
dren to find as many pinecones as they have run around the tree and then to put them 
in a pile. To solve the task, they count all the pinecones that lie in the pile together.

17.4.2  Segment 2.1, from Kindergarten 2 (K2)

In K2 the children play ‘The Balloon Play”. The children are working in small 
groups to solve the problems. In one of the problems, the children are supposed to 
count how many fingers they have altogether on their hands. A girl named Lily 
immediately starts to solve the problem. Figure 17.2 illustrates how the children are 
positioned when they try to solve the problem.

6    Lily Ten, twenty, thirty, forty, fifty … We have to count as well. … One, two [ ]
7    Eva That is a lot slower
8    Lily [ ] three, four, five  then you have to count mine. ((Touches Mia’s hand))
9    Eva But we know that this is five ((points at Mia’s right hand))
10    Mia This is ten altogether ((Mia puts both her hands out to each side))
11    Eva Yes
12    Lily Ehm … this is ten … ((Lily counts Mia’s right hand together with her own 

left hand as ten, and then continues on Mia’s left hand and further to Eva’s 
hands)), eleven, twelve, thirteen, ((she continues counting from thirteen to 
twenty-nine)), twenty-nine
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Fig. 17.2 Illustrates how 
the children in K2 are 
positioned when they try to 
solve the problem

13    Mia Twenty-nine! … It’s twenty-nine! ((She turns her gaze to the KT))
14    Lily Or, maybe not… ((Starts to count her own fingers mentally))
15    KT Is it twenty-nine?     ((The KT, who stands a little aside, recognises that the 

children do not find the correct answer))
16    Eva Five, ten, twenty, thirty, forty, fifty ((Eva counts “five, ten” on Mia’s hands and 

then “twenty, thirty” on Lily’s hands and then “forty, fifty” on her own hands)).
 17    Lily ((Lily continues to count by ones, and she counts her own ten fingers three times)) 

It’s twenty-eight! We got twenty-eight!! ((She turns her gaze to the KT))

In line 6, Lily starts quite ‘spontaneously’, however a bit careless, to count by 
tens. She uses the correct counting words, but she does not really point at any fin-
gers or hands when she counts. But then she changes her mind, and from the utter-
ance “we have to count as well”, it seems that she doesn’t really think of counting 
by tens as a satisfying strategy to solve the problem. Perhaps she just ‘plays’ with 
the counting words (ten, twenty, thirty, forty, fifty) without really trying to solve the 
problem. But when she considers how to solve the problem, she chooses to count by 
ones. In line 7, Eva self-selects her turn by interrupting Lily’s counting, and com-
ments that Lily’s strategy is a lot slower. Lily ignores Eva’s comment and continues 
her counting by one strategy in line 8. Lily counts five fingers on Mia’s right hand, 
and then she prompts Mia to count hers. She addresses Mia by the address term 
‘you’ and a corresponding touch on Mia’s hand. In line 9, Eva again self-selects her 
turn, this time in a suitable transitional-relevance space, and comments that they 
know that there are five fingers on Mia’s right hand. Although Mia was addressed 
by Lily in line 8 to continue her strategy, she does not follow Lily’s suggestion. In 
line 10, Mia states that it is ten fingers altogether on her two hands. She puts both 
her hands out to the side, which indicates that it is ‘obvious’ for her. Eva agrees with 
Mia in line 11 and confirms that it is ten fingers on two hands. In line 12, it seems 
that Lily accepts Eva and Mia’s statements because she confirms that there are ten 
fingers on two hands (her left hand and Mia’s right hand). And then she uses that 
derived fact to count further by ones. Lily continues with eleven on Mia’s left hand, 
then she continues from sixteen on her own right hand, and then she continues from 
twenty on Eva’s fingers. Eva and Mia are watching Lily’s hands while she counts, 
and thus maintain joint attention. This indicates that everyone is now satisfied and 
support the strategy, and thus it is their strategy not only Lily’s strategy, although it 
is Lily who counts.
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None of them recognises that Lily makes a mistake, as she skips a finger when 
she counts eighteen. This results in an incorrect answer, as they end up with twenty- 
nine but should have had thirty. Mia accepts twenty-nine as the solution in line 13; 
however, Lily seems to doubt that the solution is correct. It is difficult to say whether 
she doubts the solution because she has an idea of what the answer should be or 
because she doubts the strategy that they used. Anyhow, in line 14 she starts to men-
tally count by ones as if she wants to check the answer.

The KT, who has helped another group of children and therefore stands a little 
aside, recognises that the children do not get the correct answer. In line 15 the KT 
asks “is it twenty-nine?” Lily continues to count by ones using her own fingers, and 
Eva in line 16 tries to use counting by fives or tens, but she mixes the two counting 
sequences. Eva counts a bit ‘sloppy’ without actually pointing at any hands or fin-
gers. Again, it seems that she ‘plays’ with the words, but she is not really able to use 
it as a strategy to solve the problem. Mia partly focuses on what Eva does and partly 
focuses on what Lily does.

In the segment above, all turns are self-selected turns. In line 8, Lily is addressing 
Mia as the next speaker by using “you” and by touching Mia’s hand; however, Mia 
does not respond to Lily’s request. Instead, Eva takes the turn in line 9. Except from 
Eva’s interference in line 7, the other self-selected turns are taken in transitional- 
relevance spaces. The joint activity, at least in the beginning, is characterised by 
disagreement which is identified by the way that the children interrupt each other. 
But the disagreement is not necessarily unproductive disagreement. The turn-taking 
is nevertheless moving the activity forward and gives possibilities to recognise 
diverse ways to solve the problem.

17.4.3  Segment 2.2, from Kindergarten 2 (K2)

In line 14 in the segment above, Lily starts to mentally count by ones using her own 
fingers. Simultaneously as Lily counts her own fingers, Eva tries to count by fives 
or tens, and Mia is partly focusing on what Eva does and partly focusing on what 
Lily does. The KT recognises that the group has problems to keep joint attention 
and to collaborate to solve the problem, and thus she interferes:

18    KT Hmm … if you Lily, put your hands out. And you Mia. And then I. Maybe you 
can count how many fingers we have altogether Eva?

19    Eva One … Emm … Five, ten, fifteen, twenty … No …
20    Lily Yes. ((Lifts her left hand a bit up in the air)) Twenty
21    KT Twenty, and then … ((Turns her gaze to Eva))
22    Eva Thirty, forty ((points at Mia’s right and left hand respectively))
23    KT Is it thirty after twenty? … Twenty-one … ((she points at Mia’s little finger 

when she says “twenty-one” and then moves her pointing finger to Mia’s ring 
finger))

24    All Twenty-two, twenty-three, twenty-four, twenty-five, twenty-six, twenty-seven, 
twenty-eight, twenty-nine, thirty ((the KT points at each of Mia’s fingers 
respectively))

25    KT Thirty ((whispers)) … If we take away the thumbs? If you take away your 
thumbs, how many fingers have you got then?
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In line 18, the KT physically (but gently) takes Lily and Mia’s hands and organ-
ises them so they are easy to operate on. Then she asks Eva to count. The KT orga-
nises whose hands should be counted, how the hands should be placed and who is 
going to count. The KT addresses Eva as ‘the counter’ and in line 19 Eva starts to 
count from one, but then she changes her mind and starts over counting by fives. 
First, she counts the KT’s hands (five, ten) then Lily’s hands (fifteen, twenty), and 
she is about to continue on Mia’s hands, but then she stops and says “no”. Probably 
she stops because she can’t remember what comes after twenty in the counting 
sequence. Lily has paid attention to Eva’s actions, and in line 20 she interferes and 
says “yes” and then lifts her hand and says “twenty”. Lily confirms that she agrees 
with Eva’s way of counting until that point and prompts Eva to continue to count 
from twenty. Lily does not offer any suggestion for how to continue, so Eva does not 
respond to Lily’s actions. In line 21 the KT also repeats “twenty”, while she holds 
on to Lily’s left hand, and then she moves her hand to Eva’s right hand and says, 
“and then …”, which prompts Eva to continue counting. The KT prompts Eva to 
continue, but Eva still needs to figure out what comes after twenty. In line 22, Eva 
continues to count, but she is not consistent with her previous counting strategy, 
which was counting by fives. Instead, she continues counting by tens. The KT inter-
feres in line 23 and asks, “is it thirty after twenty?” This might be a confusing ques-
tion because thirty comes after twenty if you think of the number line, and it comes 
after twenty if you count by tens. However, thirty does not come directly after 
twenty if you count by fives, and this is, I think, what the KT means. The KT has a 
little pause, which might indicate that she considers how to continue, and then she 
initiates counting by ones by saying “twenty-one” and then points to the next finger 
which is about to be counted. The way that the KT initiates counting by ones is 
illustrated in Fig. 17.3. Then, in line 24, they all count the rest of the fingers by ones 
and solve the task together. In line 25, the KT confirms the answer as the correct 
answer, and then she initiates another problem for the children to work on, which is 
of the same type.

The nature of the turn-taking changes completely in line 18 when the KT inter-
feres in the children’s group work. In segment 2.1 (lines 6–17), the children self- 
select turns. From line 18 it is the KT that organises the turn-taking (except from 
line 20, where Lily self-selects her turn). The KT both self-select her turns and she 
addresses the next speaker, and the activity becomes quite structured. In line 18, the 
KT organises whose hands should be counted, how the hands should be placed and 
she addresses Eva as the next speaker. The KT gives Eva the role as ‘the counter’. 
Eva accepts being addressed as the counter, and starts counting by fives in line 19. 
Lily self-selects her turn in line 20 and then she invites Eva to continue, but Eva 
does not accept Lily’s invitation. Then the KT self-selects her turn in line 21 in order 
to move the activity further and again she addresses Eva as the next speaker by turn-
ing her gaze to Eva. Eva accepts being addressed and tries to continue counting. In 
line 23 the KT again self-selects her turn, but this time she does not turn to any 
particular child. Instead, she prompts everyone to count together.
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Fig. 17.3 Illustrates how 
the KT in line 23 initiates 
counting by ones

17.5  Discussion

As mentioned above, turn-taking is used by the participants to adjust and move the 
activity further. Since thinking, in Radford’s (2015) conception, is thought put into 
motion, turn-taking is one way that children put ideas into motion. To investigate the 
organisation of children’s turn-taking is therefore a way to understand how chil-
dren’s (and the KT’s) mathematical thinking is materialised through their joint 
activities. The discussion is organised around two issues: (1) The characterisation of 
children’s turn-taking in the three segments reported in the result section, and pos-
sible reasons for the various ways in which children (and the KT) organise their 
turn-taking, and (2) The role of children’s organisation of turn-taking in the materi-
alisation of children’s mathematical thinking in the joint activity.

17.5.1  The Characterisation of Children’s Turn-Taking: 
Similarities and Differences in the Three Segments

The examples provided in the result section illustrate diverse ways that children 
(and a KT) organise turn-taking in small groups to solve addition problems. The 
turn-taking in the three segments are quite different. In the example from K1 there 
is mainly turn-taking by addressing the next speaker, and the children seem to agree 
on a common strategy. In segment 2.1 there is mainly self-selected turn-taking, and 
the children do not immediately agree on which strategy to use. In segment 2.2 it is 
mainly the KT that organises the turn-taking by taking and addressing turns. The 
structure that the KT brings into the activity by organising the turn-taking helps the 
children to focus on a common strategy and to re-establish joint attention.

There are probably several reasons for the differences in the turn-taking. 
However, one reason may be the way that the children are positioned and how the 
problems are formulated, which indicates that turn-taking is strongly dependent on 
context (cf. Lerner, 2003; Mondada, 2007). In the first example from K1, the chil-
dren are working on a problem that invites all children to participate. All children 
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are asked to run around the tree. The problem does not explicitly ask the children to 
represent their runs by their fingers, but this is, I hold, a likely strategy for modelling 
the problem. When the children are adding up their runs, they stand a bit apart from 
each other, and this may be a reason why they address the next speaker by gaze and 
word emphasis. The children use the fingers on one hand to represent their runs and 
the fingers one the other hand to count. And because they stand a bit apart from each 
other, they lift their gaze and emphasise the last counting word to address the next 
speaker. This way of taking turns may be regarded as face-to-face interaction (cf. 
Mondada, 2007), because the current speaker and the next speaker keep eye contact 
in the transition of turns.

In segments 2.1 and 2.2, the children are also working on a problem that invites 
all children to participate. The problem asks the children to count the fingers on all 
the children’s hands. In segment 2.1 the children are standing quite close to each 
other while they solve the problem, which makes it possible to touch one another’s 
hands for addressing the next speaker. Since they are standing quite close, they also 
have the possibility to count each other’s hands and/or fingers (not only one’s own 
fingers as in K1). This way of taking turns may be considered as side-by-side inter-
action (cf. Mondada, 2007), since the children do not (or very seldom) keep eye 
contact in the transition of turns (they usually kept their gaze on their hands/fingers). 
In segment 2.2, the KT interferes in the children’s group work. Just before the KT 
interferes, in line 16 and 17, the children are not working together in a joint activity; 
rather they participate in separate activities. The KT recognises that the children 
have problems in collaborating, and she interferes to re-establish the joint activity. 
To achieve this re-establishment, there needs to be some structure to build the joint 
activity around, and the KT brings the necessary structure into the activity so that 
the children are able to focus on a common strategy again and act in a joint activity.

Another reason for the different ways in which children (and the KT) organise 
their turn-taking may be children’s understanding of the problem and the degree of 
agreement of how to solve the problem. In segment 1 it seems that Pia gets a spe-
cial organising role. Turns are often coming back to Pia, even when it is not her turn 
to count. Perhaps this is because Pia was the one who had the original idea for how 
to solve the problem. The idea was, in the beginning, pure possibility and Pia 
needed the other children to participate in a joint activity to put the idea into motion 
(cf. Radford, 2015). When the idea is put into motion, it seems that all children take 
up Pia’s initial idea, however with various awareness of it, and through the joint 
activity the children’s thinking becomes materialised. Because Pia is most likely 
the one who is the most aware of the idea, the other children trust Pia to organise 
the turn- taking to increase the possibility for the idea to be actualised.

In segment 2.1 there is disagreement, at least in the beginning, on how to solve 
the problem. Lily seems to focus on the answer and the ‘safest’ strategy to solve the 
problem. In the beginning of the segment Lily ‘plays’ with the words in the count-
ing sequence by counting by tens. However, it seems that she realises that she is not 
able to use that strategy to solve the problem and she changes her strategy. Lily 
wants to count by ones, which is probably the strategy that they have used the most 
and which is then the ‘safest’ strategy to solve the problem. Eva and Mia’s perspec-
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tives are perhaps a bit different. It seems that they are concerned about counting by 
fives or tens or that they at least use derived facts to solve the problem. During the 
activity the children struggle to tune in to one another to establish a common strat-
egy. In the end of segment 2.1, the children compromise and combine the two strate-
gies. They use a derived fact (there are ten fingers on two hands) and then they count 
further by ones. The way that the children compromise illustrates the flexibility of 
their thinking. Instead of accepting one of the suggested strategies (and discard the 
other), they compromise and combine the strategies into one common strategy.

In segment 2.2 the children have lost joint attention and work on separate activi-
ties. The KT takes a leading role in re-establishing the joint activity. The activity 
becomes quite structured, where the KT organises most of the turn-taking and where 
there is little room for disagreement. The KT does not decide which idea should be 
materialised (at least not initially), rather, she recognises the idea that the children 
want to put into motion and helps them materialise their thinking. The KT gives Eva 
the role to initiate an idea, and Eva initiates to count by fives. The structure that the 
KT brings in by taking and addressing turns helps the children to re-establish joint 
attention and to work in a joint activity again. Although it is Eva who is given the 
role as ‘the counter’, both Lily and Mia pay attention to Eva’s actions, and the activ-
ity must therefore be recognised as a joint activity and materialised thinking as their 
joint thinking.

In all segments, whenever there is disagreement, we find that children interrupt 
each other, and it seems that interruption is not only moving the activity forward, 
but also adjusting the direction of the activity so that the children may focus on a 
common strategy.

17.5.2  The Role of Children’s Organisation of Turn-Taking 
for the Materialisation of Children’s Mathematical 
Thinking in the Joint Activity

The previous paragraph pointed to ways in which children organise turn-taking and 
some possible reasons for the various ways in which the children (and the KT) 
organised their turn-taking. This paragraph is devoted to a discussion about what 
role children’s organisation of turn-taking plays in the materialisation of children’s 
mathematical thinking. Since movement is the most striking feature of the (mathe-
matical) thinking (Radford, 2015), the way that the children organise their turn- 
taking (through a complex coordination of various semiotic means) in order to move 
the activity forward reveals children’s joint mathematical thinking and the way 
mathematical ideas are put into motion (Radford, 2013, 2015).

The semantic structure of the two problems may be considered as additive 
because they consider only one quantity (the number of runs around the tree or the 
number of fingers). However, the problems give possibilities for multiplicative 
thinking because the children are asked to add equal groups (cf. Anghileri, 1989; 
Mulligan & Mitchelmore, 1997), and as argued in the result section, children’s joint 
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activity (their complex coordination of various semiotic means) in the two examples 
do bring to life layers of multiplicative thinking (cf. Radford, 2013, 2015).

Segment 1 is particularly interesting for understanding how multiplicative think-
ing may be materialised through a joint activity. In segment 1 the children use gaze 
and word emphasis to address the next speaker (on every third number), and their 
coordinated turn-taking is especially important for materialising a specific feature 
of the thinking, namely rhythm. First of all, rhythm indicates that there is a regular-
ity and a continuation. This component of rhythm is what Radford calls ‘theme’ 
(Radford, 2015). Already in line 118, Pia sets out with a rhythmic counting of three 
(“one, two, three”), which is a regular sequence of three counting words. However, 
the stress on “three” indicates that “three” is the end of the sequence and which may 
be followed by another regular sequence of three counting words. The rhythm gives 
possibilities for the other children to imagine what comes next and mediates that the 
sequence could be continued. The rhythmic counting indicates that something 
should re-appear, which in this case is three counting words. Through the following 
turn-taking a rhythmic counting sequence is then released: 1, 2, 3—4, 5, 6—7, 8, 
9—11, 12, 13 (which should have been 10, 11, 12).

Rhythmic counting is emphasised as important in the transition from additive 
reasoning to multiplicative reasoning because it reveals the fundamental group 
structure of multiplication (Anghileri, 1989; Mulligan & Mitchelmore, 1997). In 
Radford’s (2013, 2015) conception, however, rhythm (rhythmic counting) is 
embedded in the mathematical thinking itself, and is not merely a means for reach-
ing ‘another form’ of thinking (in this case from additive reasoning into multipli-
cative reasoning). An important element of rhythm is ‘prolongation’, through 
which the phenomenon itself is expressed (Radford, 2015). As Radford (2015) 
argues, “They [elements of rhythm] are central features of the mediation of thought 
and the  manner in which it becomes actualised in the students’ reflections and 
actions. They are part of the materiality of thinking” (p. 78). Through the ongoing 
activity in segment 1 the multiplicative structure (at least some layers of the mul-
tiplicative structure) is mediated by children’s joint rhythmic counting. The phe-
nomenon that is materialised through this rhythmic counting sequence is repeated 
addition of three (3 + 3 + 3 + 3) and the number sequence 3, 6, 9, 13 (which should 
have been 12), both of which are elements of multiplication. Turn-taking is a way 
to structure the activity and to move the joint activity forward. It is turn-taking 
(children’s coordination of various semiotic means) which releases the rhythmic 
counting that materialises the joint multiplicative thinking. To what extent chil-
dren are aware of the multiplicative structure in their joint activity is of course an 
important consideration to make. The children are not yet able to multiply with 
number facts, that is to see that there are four groups of three, and then calculate 
4 × 3 = 12. However, the way that the children are able to follow the same pattern 
(at least in the second attempt), indicates that they are aware of some layers of 
generality (Radford, 2010), that is some layers of the multiplicative structure in 
their interaction.

Above, I argued that the initial problem gives rise to possibilities for multiplica-
tive thinking, because the children are asked to add equal groups. But the problem 
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itself is not enough to materialise multiplicative thinking. After segment 1, the KT 
makes another attempt to solve the problem together with the children and ensures 
that they get the correct answer. The KT asks the children to find as many pinecones 
as they run around the three. Each child finds three pinecones, and on the request of 
the KT they gather them in a pile. To solve the task, they count all the pinecones 
which lie in the pile together. This solution strategy does not materialise the group 
structure of multiplication. The rhythmic counting disappears, so the problem itself 
is not enough to bring forth rhythm and a multiplicative pattern. The way that the 
children are placed (their positional location in space), the available artefacts and 
the way that the children organise the turn-taking is important for the materialisa-
tion of their multiplicative thinking. The mathematics is embodied in the children’s 
use of word emphasis, gaze, gestures and their positional location in space, and 
these components are essential for the flow of thinking.

In segments 2.1 and 2.2 the turn-taking does not materialise mathematics in the 
same manner as in segment 1, where the turn-taking itself gives rise to rhythmic 
counting and thus materialises a multiplicative structure. However, the children 
seem concerned about the group structure of their fingers. They know that there are 
five fingers on one hand and ten fingers on two hands. In the beginning of segment 
2.1 there is disagreement on what strategy to use for solving the problem. The dis-
agreement in not necessarily unproductive disagreement. The way that Eva, May 
and Lily compromise at the end of segment 2.1 illustrates the flexibility in these 
children’s mathematical thinking. The children in a flexible manner combine two 
strategies into one joint strategy. In segment 2.2, the KT helps the children to 
 re- establish their joint activity (which in line 16 and 17 was split), and to organise 
their thinking. Eva, who was pointed out as ‘the counter’, initiates to count by fives. 
Again, rhythm seems to be an important part of the flow of thinking. Rhythm helps 
Eva to count by fives (in line 19) and later to count by tens (in line 22). In line 23 
the KT problematises Eva’s counting after twenty, and she invites all the children to 
count together, but she also changes her counting strategy. Eva initiated counting by 
fives, but in line 23 the KT initiates counting by ones. Again, the joint activity 
(strongly organised by the KT) materialises a flexibility. Together they flexibly com-
bine two strategies and end up with a satisfactory solution.

Although the turn-taking itself does not materialise rhythmic counting in 
 segments 2.1 and 2.2, rhythm is still an important feature in children’s mathematical 
thinking. Already in line 6 Lily ‘plays’ with the counting sequence “Ten, twenty, 
thirty, forty, fifty”. Lily does not point at any specific hands or fingers when she 
counts, however she still, somehow, rhythmically points to imaginary objects while 
she counts. After this, both Mia and Eva seem concerned about using the group 
structure of their fingers and their hands to solve the problem. In line 16 Eva makes 
another attempt to count by fives and tens. She ‘plays’ with the counting words 
“five, ten, twenty, thirty, forty, fifty” while she rhythmically points to imaginary 
objects. Again it seems that she is ‘playing’ with the counting words and not empha-
sising the correct use of words. The way that Eva changes her mind in line 19 (she 
starts counting by ones and then she changes her mind and starts counting by fives) 
indicates the ‘fascination’ she has for this type of counting. Although the children 
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do not know exactly how to solve the problem with counting by fives or tens, the 
way that they ‘play’ with the rhythmic counting illustrates the importance of rhythm 
in their counting and also their ‘fascination’ for this type of counting.

As emphasised above, rhythm is an essential part of children’s mathematical 
thinking in both segment 1 and segments 2.1 and 2.2, and perhaps valued or priori-
tised higher than a correct sequence of number words or a correct solution. For 
example, in segment 1 Adam is not able to use the correct counting words (he counts 
11, 12, 13 instead of 10, 11, 12), but he is true to the rhythm. It seems that because 
Adam is true to the rhythm, the other children accept the last counting word as the 
answer. This indicates the strong position that rhythm has in children’s thinking. 
Rhythm seems more valued by the other children than the answer itself. It is as if the 
children trust the rhythm and the regularity that it creates, and therefore they trust 
the answer that it gives (although it is incorrect). An important aspect of this inter-
pretation is that all the children in this group are able to count ‘nine, ten, eleven, 
twelve’ in other settings, so to skip ‘ten’ is not a common problem for the children 
when they count.

To summarise, the findings from this study suggest that children’s various ways of 
organising turn-taking give rise to different ways in which their mathematical think-
ing is materialised. Segment 1 illustrates, in particular, how multiplicative structures 
emerge from the way that the children organise their turn-taking. In segment 1 the 
children stand a bit apart from each other which gives rise to a face-to- face exchange. 
The children address the next speaker by gaze and word emphasis, and the turn-tak-
ing reveals a rhythmic counting of groups and materialises layers of multiplicative 
thinking. In segments 2.1 and 2.2 the children stand closer, and the turn-taking may 
be identified as a side-by-side exchange. Segment 2.1 is characterised by disagree-
ment, however not necessarily unproductive disagreement. The children’s turn-tak-
ing and disagreement result in a compromise, which illustrates how the children 
flexibly combine two strategies to solve the problem. In segment 2.2 the KT organ-
ises most of the turn-taking, which helps the children to restore the joint activity. 
Again the children (and the KT) flexibly combine two strategies to solve the prob-
lem. Rhythm is important in all segments, although it is not the turn- taking itself that 
releases this rhythm in segments 2.1 and 2.2. In segments 2.1 and 2.2 rhythm helps 
the children count by fives or tens, and the way that the children ‘play’ with the 
rhythmic counting of fives and tens indicates their ‘fascination’ for this type of count-
ing. The study also illustrates how children’s turn-taking, and thus children’s math-
ematical thinking, seems to be dependent on contextual features like the formulation 
of the problem, available artefacts and the children’s positional location in space. The 
implications that can be drawn from this study is that KTs can promt children’s early 
multiplicative thinking by organising them in small groups and asking them to solve 
various equal groups addition problems with their hands and fingers.
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Chapter 18
Mathematical Activity in Early Childhood 
and the Role of Generalization

Marianna Tzekaki

18.1  Introduction

The importance of early childhood mathematics education is indisputable. Knowing 
that children come to school with relevant and interesting mathematical ideas aris-
ing from the use of mathematical elements or mathematical processes in their every-
day life, education enhances rich programs with games, problems, playing activities, 
or constructions, etc. related to a wide range of mathematical concepts (spatial 
approaches, shapes, patterns, measures, numbers, probabilities, etc., see Aubrey & 
Godfrey, 2003; Baroody, 2004; Battista, 2006; Clements, 2004; Levenson, Tirosh, 
& Tsamir, 2013; Levine, Ratliff, Huttenlocher, & Cannon, 2012; Papic, Mulligan, & 
Mitchelmore, 2013; Sarama & Clements, 2009; van den Heuvel-Panhuizen & Elia, 
2011). Every year, a huge amount of material is gathered by surveys, analyses, proj-
ects, suggested teaching approaches, applications, teaching materials, and related 
technology. Therefore, children, working with all these activities, artifacts, and 
technology, would be expected to develop mathematical ideas relevant and appro-
priate for their age and their way of thinking.

Nevertheless, there is one important question: do all these applications really 
make children act and think mathematically, and thereby, depending on their age, 
start developing mathematical meanings? Recently researchers have raised some 
concerns about young children’s mathematical thinking in games or other tasks, and 
also about teachers’ focus on children’s mathematical development (cf., van Oers, 
2013). They express reservations as to whether youngsters’ ideas derived from these 
tasks or from their everyday life with mathematical objects (like patterns, numbers 
or shapes) are related to mathematical concepts (cf., Lüken, 2018). They argue that 
these acts or ideas appear to be “mathematics” from outside (that is adults’ under-
standing), but in fact are not directly connected to mathematical knowledge. For 
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example, there were questions on whether children act mathematically while repro-
ducing, comparing or following the sequence in a patterning task (Lüken, 2018) and 
discussions about the criteria that make playing a mathematical activity (Dockett & 
Perry, 2010; Helenius et  al., 2016; Holton, Ahmed, Williams, & Hill, 2001; van 
Oers, 2010). van Oers (2013) contends that everyday situations in which children 
find a result by counting or solve a simple problem, thus showing “mathematical 
behavior,” do not ensure that they are able to see this knowledge in a more abstract 
or general way and use it in other problems. Earlier research findings (Carraher, 
Carraher, & Schliemann, 1985) indicated a significant divergence between the 
everyday use of numbers (street mathematics) and their conceptualization in math-
ematics education. Carraher and Schliemann (2002), expanding on the relationship 
between everyday and academic mathematics, examined the connections between 
concrete and abstract, whether local or general. They suggested activities in the 
classroom organized to shift students’ thinking from a local to a more general con-
text with a wide variety of (concrete) situations that would allow them to abstract 
relations and, thus, mathematical concepts.

In general, it would appear necessary to take a deeper look at the characteristics 
of “genuine mathematical activity” in young children’s playing, problem solving or 
working with realistic or constructed situation and, therefore, to examine important 
elements that ensure that this activity is supportive to children’s mathematical 
development. Although research on early mathematics has significantly advanced 
(e.g., English & Mulligan, 2013; Sarama & Clements, 2009), there are still few 
references regarding clarifications or statements on the meaning of mathematical 
development expected at this age. In this chapter, we will not present a research 
study, but based on research findings we will first attempt to specify the character-
istics of mathematical activity in early years, and then to emphasize the importance 
of generalization as an essential component of this activity.

18.2  Analysis of Mathematical Activity in Early Years

In a previous study (Tzekaki, 2014), addressing the issue of early mathematical 
activity and attempting to clarify it, we started synthesizing a number of similar or 
complementary approaches that describe mathematical activity in general. 
According to these approaches, a mathematical activity is a special kind of endeavor 
that follows a specific way of processing problems or situations, with creative and 
flexible reasoning, documentation, symbolization, reflection, and generalization. 
Thus, mathematical activity is considered a situation in which a person or a group 
work to achieve something, keeping certain characteristics, properties, or behavior, 
while a task is a piece of this work to be undertaken or done. For Freudenthal (1983), 
this activity is modeling of real situations, for Brousseau (1997) solving a situation- 
problem, in the epistemological triangle of Steinbring (2005) it is linking situations 
and signs with concepts, for Noss, Healy, and Hoyles (1997) it is also making con-
nections, and for Ernest (2006) it is a process of symbolization. Moreover, doing 
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mathematics is problem-solving or modeling, connecting and representing, but also 
a way of thinking that transfers solutions, models or connections from specific situ-
ations to a more general content (Radford, 2006). These approaches that effectively 
show the complexity of seeking answers about doing mathematics make the task of 
combining them in order to find the specific characteristics of mathematical activity 
in early years even more complicated.

Young children come to school with everyday or intuitive ideas about numbers 
or quantities, shapes, spontaneous patterning, or measurement (Sarama & Clements, 
2009). Undoubtedly, this initial knowledge could be considered as a basis for the 
development of further mathematical ideas, but there are many questions related to 
its nature. Could this knowledge be considered as mathematical, or is it just com-
mon, social, perceptual, and kinesthetic, related to specific experiences or needs but 
with no apparent correspondence to mathematical concepts? Many everyday situa-
tions involving playing or problem-solving or constructing experiences are mean-
ingful for preschoolers and add to their previous knowledge, but usually young 
children have no motivation to think about them, to express their ideas, or to transfer 
them to new situations and view them in more abstract and general ways (Greenes, 
Ginsburg, & Balfanz, 2004).

Therefore, whether young children think or act mathematically or develop math-
ematical concepts depends on what could be considered as genuine mathematical 
activity for early years. Thus, in alignment with the previously presented approaches, 
children’s activity in early years could be characterized as mathematical if it, first, 
concerns modeling of real situations, or solving different problems, but also linking 
or connecting or symbolizing elements and being transferrable to a more general 
content. Some typical examples of usual preschool activities with no wider applica-
tion could perhaps clarify this aspect.

Composing shapes: In this task, children combine shapes of different sizes 
and orientation to produce a composite configuration given by its outline. 
Composing shapes to form a picture (as shown in Fig. 18.1) is a challenging 
task, encouraging preschoolers to reflect and anticipate the component pieces, 
to recall different shapes, to analyze and combine parts, to perceive and com-
pare the attributes of shapes, and to make rotations and other transformations. 

Fig. 18.1 Composing 
shapes
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In short, this task is  supporting a rich and rather general approach to geometri-
cal shapes (Sarama & Clements, 2009).

However, research related to these kinds of tasks produced different levels of 
achievement (see Clements, Battista, Sarama, Swaminathan, & McMillen, 1997). 
Some children may choose shapes and put them together to fit the outline by trial 
and error, some are able to see smaller parts of simple shapes to be put together but 
they relate them mainly with general attributes, while others anticipate different 
parts of smaller shapes and compose them based on their relationships. These find-
ings confirm that preschoolers very often complete this work without reflecting 
(e.g., when working by trial and error) or discussing what they did to achieve this 
result (shape selection, attributes, transformation, etc.). Thus, they do not have the 
opportunity to take advantage of the ideas involved and, thus, they do not gain rel-
evant and aimed conceptual benefits.

Patterning: Children copy or continue repeating patterns like ABC using blocks 
(as shown in Fig. 18.2). Dealing with repetitive patterns and identifying common 
elements and structures in different situations is an important activity that lies at the 
core of mathematical development since it supports recognition of properties and 
relationships in different situations (Papic et al., 2013).

However, not every patterning activity is mathematical, and, consequently, in 
these kinds of tasks children often just reproduce the pattern matching items one by 
one, without “seeing” or focusing on the pattern’s design, while others observe the 
sequence of different colors rather than the unit of repetition (Lüken, 2018). Without 
systematic reflection on what they do and how, as well as identification of the unit 
of repetition and its generalization (Threlfall, 1999), children are limited to imitat-
ing rather than showing a higher level of processing as implied by patterning.

Numbering: In various arithmetic tasks, children usually recite the arithmetic 
sequence (verbal counting) or count quantities of objects, fingers, knocks, etc. 
(object counting, cf. Baroody, 2004). Dealing with numbers is the most recogniz-
able “mathematical task” of this age, although just working with numbers (even as 
part of their daily life) does not introduce children to arithmetic understanding or 
developing number sense. An “easy task” of change, in Nicol, Kelleher, and Saundry 
(2004), showed that children who generally know how to enumerate a quantity of 
objects or to give an answer to the question “how many...” had considerable 

Fig. 18.2 Continuing a 
pattern
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 difficulties when asked to “change 8 to 4.” They evidently used a counting proce-
dure using blocks or their fingers and recited the number sequence, while many of 
them were not even able to find the answer. These results also confirm the argument 
that the simple use of counting in everyday situations is not spontaneously trans-
ferred to other situations. Thus, it does not automatically ensure the conceptualiza-
tion of number sense, relationships, and structure.

Summarizing, the previous examples suggest that children working on a task, 
solving a problem, constructing or generally dealing with a mathematics-related 
situation or mathematical objects (such as numbers, shapes, or patterns) do not 
obviously and automatically develop some mathematical idea. Vygotsky 
(1934/1962) had, since 1934, been distinguishing between spontaneous and scien-
tific concepts. He argued that while higher levels of understanding have their roots 
in everyday personal experiences, spontaneous and scientific concepts are dialecti-
cally related. Artifacts, social interaction and adults’ scaffolding are needed to sup-
port the so-called “bottom to top” development of spontaneous to scientific concepts. 
Otherwise, youngsters remain linked to their specific actions or outcomes, focused 
on the empirical situation or the concrete material, and may not attempt to general-
ize or search for a wider explanation and deeper understanding (if they do not 
need to).

It is common that when children, in order to be driven to a wider understanding, 
are asked after accomplishing a task to connect their current with other practices, 
they often recall previous but rather personal experiences.

For example, after completing a spatial pattern such as  children, who were 
asked “have you done something like this before?” responded by saying “yes, it is a 
castle, I have done it many times…” or “it is a train, I have to do the same…,” show-
ing a connection to some previous experience but not to some other mathematical 
idea such as finding the pattern’s repeating unit. Similarly, in another task pre-
schoolers were provided with four paper squares and were asked to combine them 
in as many different ways as they could (see Fig. 18.3, e.g., “shape composer” in 
Sarama & Clements, 2009).

Completing this work with different results, only a few children were able to 
describe it by saying (with their own way of expressing their ideas) “we made 
squares with other shapes, trying to make them differently…,” indicating an ini-
tial detachment from the specific situation and understanding at a more general 

Fig. 18.3 Combining 
squares
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level. Most of the pupils explained what they did by saying “we made many 
houses” or “we made houses with many rooms,” without “seeing” a geometrical 
idea in this construction.

Concluding, in suggestions for early mathematics education, in which tasks, 
materials, situations, and actions are not obviously “mathematical,” as is an 
arithmetic operation, an equation, or an algebraic expression, teachers are usu-
ally contented when children manage to measure, calculate, or find a pattern. 
However, if we are pursuing an authentic mathematical activity and, thus, the 
development of initial mathematical ideas, we need to thoroughly analyze chil-
dren’s endeavor in terms of actions and outcomes. For this purpose, combining 
different views, we can contend that an activity during early age could be con-
sidered mathematical if it displays characteristic actions and outcomes corre-
sponding to those of the mathematical activity in general, that is looking for 
common characteristics and relationships, recognizing repeating units in pat-
terns and common structures in situations, analyzing and combining parts and 
unit parts, and encouraging children to make connections, express their ideas in 
words, to represent with signs or other symbols, to explain, justify, intentionally 
reflect, and generalize (Helenius et al., 2016; Tzekaki, 2014).

18.3  Development of Mathematical Ideas and Generalization

As mentioned previously, literature related to early years’ mathematics education 
provides many suggestions regarding tasks and material with important pedagogical 
and educational value (cf., Bryant, 1997; Greenes et  al., 2004; Levenson et  al., 
2013; Papic et al., 2013; Sarama & Clements, 2009, etc.). Despite the volume of 
research related to early mathematics education, less focus is placed on the exami-
nation of the mathematical meaning developed by children or, in this sense, on their 
abilities to generalize from their experiences as an indispensable part of their math-
ematical development. Freudenthal (1983) argued that children are expected to 
manage realistic situations close to their interests and needs but their activity, though 
resulting from practical manipulation, had to direct them to transform the real 
objects to mental ones and thus to understand them at a higher level. Without this 
understanding, no matter how rich and challenging a task might be, it is doubtful 
whether it supports mathematical development. Many recent suggestions for early 
mathematics education (cf., Sarama & Clements, 2009) study the gradual develop-
ment of children’s thinking and propose developmental trajectories related to the 
progression of this thinking at different levels with activities and tasks. For this 
approach (or other similar approaches), we believe that a deeper insight into whether 
youngsters, following this succession of tasks, make the necessary connections and 
form the more generalized idea we are seeking is essential. A deeper awareness is 
also needed in the teaching practices while implementing these tasks in order to 
support a development of more general ideas.
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A clarification regarding this consideration could be provided by a challenging 
task (related to 3D shapes) called “the dressmaker.” For the needs of this work, 
children are given a cube and six squares of the same size as the faces of the cube. 
They are asked to cover the cube with the squares (sticking them together) and thus 
to “dress” it (Hejny & Jirotkova, 2006). The task is meaningful for them because of 
its playful constructional character, but also important from a mathematical point of 
view, as preschoolers, after “dressing” the cube, have in their hands several cube 
nets, to be examined and compared, without any teachers’ intervention. However, 
what do young children “see” in these constructions more than different “dresses” 
for their cubes? We venture to suggest that, without other similar tasks that can give 
some meaning to these “dresses” (e.g., other solids, other nets, comparisons, etc.) 
but also appropriate discussions that generalize all these results, this interesting task 
remains without significant conceptual benefits.

In conclusion, reflection and generalization is an integral part of mathematical 
activity, even in preschool age, since mathematics is the product of reflection over 
actions (Duval, 2000). Thus, educational settings aiming at mathematical develop-
ment should give to learners’ opportunities to generalize (Mason, Drury, & Liz 
Bills, 2007). According to research findings, young children have the potential to 
reflect on their actions, to move from a local to a more general level and even to 
express more generalized statements (Tzekaki & Papadopoulou, 2017). There is a 
volume of research related to patterns concerning preschoolers’ abilities to general-
ize or express abstract ideas and relations (e.g., Garrick, Threlfall, & Orton, 1999; 
Papic et al., 2013; Rivera, 2013). Certainly, developing these abilities requires long- 
term practice and appropriate management by the teachers to encourage children 
constantly, to “see” beyond the specific results of a task, a game, or a construction, 
seeking conclusions related to more general ideas.

18.4  A Teaching Approach Encouraging Generalization

As explained earlier, it is important for preschoolers to deal with situations and 
material related to their needs, interests, and their way of thinking, but in order 
to develop mathematical ideas they need teaching approaches that support them 
to extract more generalized ideas from their activity. Duval (2000) emphasizes 
the fact that mathematical development cannot be derived from actions and prac-
tice on particular objects or situations, but demands thinking over these actions, 
“… to take over the thought processes which enable a student to understand 
concepts…” (p. 56). It is, therefore, teachers’ responsibility to develop a learning 
community in their classroom that discusses, explains, and justifies actions and 
outcomes related to their activity, reflects on them, and makes conclusions 
attempting to form more generalized ideas. More specifically, during or after 
finishing their tasks, teachers should orient and support children to systemati-
cally reflect on their actions and discuss their way of doing them or their meth-
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ods, explain their decisions and reach some kind of closing remarks (Dougherty, 
Bryant, Bryant, Darrough, & Hughes Phannestiel, 2015).

These remarks aim at arriving primarily at a first level of generality (1) with 
conclusions drawn by children out of particular tasks or activities (e.g., ways of 
doing things) and related to recognition of characteristics or relationships that con-
cern the specific content or fact. For example, statements such as “this triangle has 
three sides,” or “this pattern is green, red, yellow and again green, red, yellow” refer 
to recognition of characteristics of specific shapes or patterns. At this level, the 
teacher’s questions focus children’s attention on the outcome or the method used in 
a(??) (still specific) activity, for example,

 – How did you find out that this figure is a rectangle?
 – How did you combine these shapes inside this outline?
 – What is the design of this pattern?
 – How can we change 6 to 3?
 – What should you remember if we want to do this measurement again?

Later, at a second level of generality (2), children make announcements related 
to characteristics or relationships but regarding ideas with a wider application. For 
example, statements saying, “a square has four sides” or “patterns have a design” 
or “3 dots+3 dots make 6 dots” refer to more generalized approaches. At this level, 
the teacher’s questions shift children’s attention from specific to wider characteris-
tics, for example,

 – How do we recognize that a shape is a square?
 – What do we observe to find the design of a pattern?
 – How do we examine if two distances are equal?
 – Is 5 and 3 always 8?

Finally, teachers could also target a higher level of generality (3) that concerns 
verbal expressions of rules connected to relevant concepts for this age. This level 
requires systematic and long-term engagement of teachers and students, but research 
shows that young children are eventually able to “formulate” even more generalized 
statements such as (the original verbal expressions of 6-year-old kids were kept) 
“…(a rectangle) has upright angles, two same but smaller sides and the others big-
ger, also same…,” which, in the particular language of 6-year-old children, presents 
a statement with properties and relationships for rectangles. Similarly, in patterns or 
measurement children manage to express statements, such as “…. we see all the 
design, where it starts, where it ends and what pieces it has...” (Papadopoulou, 
2017, p. 207) or “…we start from the beginning, we don’t put the sticks as they are, 
but in a row, one after the other… without overlapping…” (Papadopoulou, 2017, 
p. 238). For these results, a teacher needs to discuss with children their general con-
clusions that summarize a series of activities and outcomes, for example,

 – How do we identify a shape?
 – How do we find the design of a pattern?
 – How do we examine the equality of two distances?
 – How do we know that 5 and 3 makes 8?
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Fig. 18.4 Children’s drawings related to “conclusions” about shapes, measurement, and 
numbers

It is important to underline that the levels of generalization that a preschool child 
can achieve, by improving thus her/his ability to draw general conclusions from 
specific tasks or to find common elements in different situations, follow a develop-
mental trajectory similar to those of concepts: from the specific to the more general-
ized and finally to the general. Often, a semiotic activity in which children capture, 
post, and then use their “conclusions” in the classroom, but also correct or broaden 
them, can prove particularly effective (Fig. 18.4).

The above drawings, as well the examples that follow, come from an 8-month 
teaching intervention, the results of which were synthesized to provide an overall 
image of generalization in early childhood (Papadopoulou, 2017). The next exam-
ples are similar to those presented earlier and illustrate the different ways in which 
children face analogous situations. These differences could be explained by the fact 
that in the following excerpts the preschoolers are intentionally and systematically 
seeking more generalized conclusions, as they were working for months in a com-
munity with discussions, explanations, and justifications and attempts for 
generalization.

Composing shapes: Children combine shapes of different sizes and orientation 
(triangles, rectangles, trapezes) to produce a composite configuration given by its 
outline (as shown in Fig. 18.5).

After working with shapes in different tasks, the children of this class were grad-
ually able to identify more general elements about shapes, e.g., “…we count sides 
and angles to find what shape it is….” Thus, after completing this composing task, 
in the discussion about the ways of doing and justifying it, these children, using 
properties and relationships previously identified, presented the following state-
ments (the original words of the 6-year-olds have been kept):

Child A    “…I put them together because their sides are equal…” (identifying equality of 
shapes’ sides).

Child B    “… I noticed that the sides are the same and not bigger and smaller…” 
(similarly) (Papadopoulou, 2017, p. 132).

Child C    “…I knew that this was the right shape because, no matter how I turn a shape, 
it does not change at all, it's always the same shape….” (identifying shape’s 
orientation) (Papadopoulou, 2017, p. 138).

Patterning: The children had to find a missing element in a geometric pattern 
AABC, as shown in the figure (Fig. 18.6).
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Fig. 18.5 Composing 
shapes

Fig. 18.6 A geometric 
pattern

Fig. 18.7 Nine cells cards

Unlike the previous example with patterns, in this case preschoolers, having 
already worked with similar tasks, did not just match items one by one, but 
focused on the pattern’s unit of repetition. In the discussion on the design of the 
pattern, they replied:

Child A     “…circle, circle, triangle, square and then it starts again…”
Child B    “… it starts circle, circle, triangle, and ends square, it is cut here…”
Child C     “... I found it because it is circle, circle, triangle (first repetition, the child 

presents the pattern rule) and then here... (for the second repetition) I need to 
put the missing circle...”  (Papadopoulou, 2017, p. 163).

Later, the children in this class presented a more general idea about pat-
terns: “…we look at the order of the first part (meaning the pattern’s unit of 
repetition) and we put the other in the same order ... (transferring this unit) 
...” (Papadopoulou, 2017, p. 172).

Number activities: The children in this task had counters and nine cells cards as 
shown in the figure (Fig. 18.7).

They were asked to create all possible arrangements of six counters on 
their cards. At the end of this task, the whole class discussed the possible con-
figurations and decided if there were more or not. The children gave a consid-
erable variety of combinations, by moving the counters and explaining “..., we 
make groups, we keep one and change the other…” or a girl explained show-
ing the cards “here! 5+1, 4+2, 3+3, 3+2+1… it is 3+3, who doesn’t know 
it…?” (Tzekaki & Papadopoulou, 2019).

The process of generalizing and expressing conclusions is a complicated and 
demanding activity at such an early age as 6. It requires considerable practice so 
that young children become gradually able to combine their actions and thoughts 
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and perceive them at a higher level. Therefore, systematic involvement and 
undoubtedly motivation are required, but the implementation of teaching practices 
aiming at developing generalizing abilities in preschoolers suggests impressive 
results (Tzekaki & Papadopoulou, 2017).

18.5  Closing

A number of studies related to preschool mathematics education indicate that sys-
tematic and long-term programs encouraging young children to infer from their 
actions and search for more general elements in a set of situations advance their 
potential to generalize. All studies underline the role of teachers in supporting them 
to focus on relational and structural elements of objects or situations and widen 
these elements to a broader and thereafter a more generalized level. Although gen-
eralization lies at the core of mathematical development, teaching practices in early 
childhood underestimate it, remaining often restricted in the successful completion 
of a task, game or construction. As it is an important component of mathematical 
activity in early age, research needs to thoroughly explore young children’s gener-
alization levels, examining the ways they reflect on their actions and methods and 
express their conclusions about more general ideas in the situations they work with. 
Thus, we hope to understand more clearly how and if preschoolers act and think 
mathematically and how we can advance their relevant knowledge.
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Chapter 19
Situational Perception in Mathematics 
(SPiM)—Results of a Cross-Country Study 
in Austria and Norway

Julia Bruns, Martin Carlsen, Lars Eichen, Ingvald Erfjord, 
and Per Sigurd Hundeland

19.1  Introduction

Lately, several authors have highlighted kindergarten teachers’ (KTs’) mathematics- 
related competence and its relevance to children’s mathematical learning (e.g. 
Bruns, 2014; Dunekacke, Jenßen, & Blömeke, 2015; Gasteiger, 2014; Tsamir, 
Tirosh, Levenson, Tabach, & Barkai, 2014). Competence models describe structural 
elements of KTs’ professional competence (Gasteiger & Benz, 2018a; Jenßen, 
Dunekacke, Eid, & Blömeke, 2015). Not only in the context of early childhood, 
authors currently promote approaches that conceptualise competence as a contin-
uum integrating (math-related) knowledge and beliefs on the one side, skills in 
actual teaching (performance) on the other side and situation-specific skills as a 
structural relation in between (Blömeke, Gustafsson, & Shavelson, 2015; Gasteiger 
& Benz, 2018a).

In the context of early mathematics education, KTs’ situation-specific skills are 
assumed to play a fundamental role as early mathematics education is mostly spon-
taneous and based on natural learning situations (Gasteiger, 2014; van Oers, 2010). 
A decision to intervene in a play situation in order to create a mathematical learning 
situation depends strongly on the mathematics a KT perceives and interprets in this 
situation. Still unclear is, however, how KTs’ situation-specific skills and especially 
their situational perception is shaped. Goodwin (1994) assumed in his seminal work 
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in the field of situation-specific skills (he called it professional vision) that 
 situation- specific skills are developed in a professional community. It  “consists 
of socially organized ways of seeing and understanding events that are answerable 
to the distinctive interests of a particular social group” (Goodwin, 1994, p. 606). 
From this perspective, two aspects seem especially interesting to us:

 1. How situation-specific skills of beginning KTs are shaped
 2. To what extent situation-specific skills of KTs sharing a professional community 

but with different backgrounds differ.

As research results reveal close relations between educators’ situational percep-
tion and their professional knowledge (e.g. Dunekacke et  al., 2015; Wittmann, 
Levin, & Bönig, 2016), one can assume that early childhood students show sound 
skills in situational perception. Moreover, from a mathematics education perspec-
tive, it is not only interesting how situational perception is related to other compe-
tence facets but also which concepts KTs focus on in typical kindergarten situations. 
There is, however, no study yet that examines KT students’ situational perception in 
mathematics from this point of view.

Altogether, these open questions lead to the SPIM project on KTs’ situational 
perception. The main interest of our research is to study (1) which aspects KTs 
perceive in typical kindergarten situations and (2) similarities and differences 
between the situational perception of KTs with different educational backgrounds. 
Therefore, we first elaborate on the competence facet situation-specific skills in 
general and secondly on KTs situational perception. In the following, we present the 
design of our study and the results. In the last section of this chapter, we discuss the 
results in relation to our research question.

19.2  Situation-Specific Skills: An Essential Part 
of Kindergarten Teachers’ Competence

Teachers’ situation-specific skills is the generic term for three aspects of teacher 
competence: situational perception, interpretation and decision-making. In the con-
text of early mathematics education, situational perception is described as identify-
ing mathematics in children’s play and recognising everyday situations with 
mathematical potential (Björklund & Barendregt, 2016; Gasteiger & Benz, 2018a). 
Interpretation is related to the mathematical development of the child; decision- 
making focuses on the planning of mathematical activities for children as well as 
the spontaneous act of offering support in a natural learning situation (Gasteiger & 
Benz, 2018a). Theoretically, it is assumed that these situation-specific skills func-
tion as a bridge between disposition and performance (see Fig. 19.1). Concerning 
early mathematics education there is some research supporting this idea, as studies 
find relations between cognition (e.g. professional knowledge) and mathematics- 
related perception and decision-making (Dunekacke et al., 2015) as well as between 
beliefs and decision-making (Wittmann et al., 2016).
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Fig. 19.1 Competence as a continuum (Blömeke et al., 2015, p. 7)

In addition to the relations between different aspects of competence, it seems 
reasonable to assume close relations between situational perception, interpretation 
and decision-making in KTs’ everyday work. A typical kindergarten situation with 
mathematical learning potential is, for example, setting a table for lunch. However, 
the KT has to interpret this situation as one relevant for mathematical learning (van 
Oers, 2010) to use it as a learning situation. This interpretation in turn depends on 
the mathematical aspects a KT perceives in the given situation. If she/he cannot see 
the mathematical potential of the situation or only parts of it, she/he will most likely 
not use the full potential of the situation to support the mathematical learning of a 
child (Gasteiger & Benz, 2018b). In the context of setting a table one could see the 
potential of this situation to talk, for example, about counting strategies, analyse and 
interpret the child’s counting strategy and ask the child, if she/he can think of 
another way to count the number of plates. However, if the KT does not recognise 
these mathematical concepts she/he probably will not address them (see also 
Björklund & Barendregt, 2016; Gasteiger & Benz, 2018b).

This example shows that sound skills in perceiving mathematical concepts in 
everyday situations in kindergarten can be seen as a precondition not only for inter-
pretation and decision-making but also for good mathematics teaching in early 
childhood. Furthermore, while Lee (2017) found no statistical relation between 
noticing and interpreting, Gasteiger and Benz (2018b) show qualitative results indi-
cating the impact of situational perception on KTs’ pedagogical and didactical 
actions. These contrary results show that research on situational perception of KTs 
is still at the beginning. Therefore, it is worthwhile researching KTs’ situational 
perception more closely.
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19.3  Kindergarten Teachers’ Situational Perception 
of Mathematics

Situational perception was first picked out as a central theme in the middle of the 
1990s by Goodwin (1994) under the keyword professional vision. In his seminal 
work, Goodwin focused among others on a trial in the US against several police 
officers who were accused of unreasonable violence against a black man (the 
‘Rodney King trial’). Notably to Goodwin is that both sides in the trial—the pros-
ecution and the defence—used the same videotape as evidence for their line of argu-
ment. Goodwin reasons from this that “the ability to see relevant entities is lodged 
not in the individual mind but instead within a community of competent practitio-
ners” (Goodwin, 1994, p. 626). This leads him to the conclusion that professional 
vision can and has to be learned to perform successfully in a given job setting. At 
the beginning of the twentieth century van Es and Sherin (2002) adapted this con-
cept of professional vision to the mathematics teaching context. They called this 
facet of teacher competence ‘noticing’ and defined it as “learning to identify what is 
noteworthy about particular situations” (van Es & Sherin, 2002, p.  573) which 
“involves using what one knows about the context to reason about a situation” (op. 
cit., p. 574). Therefore, the concept of noticing integrates the process of perception 
and interpretation.

Fitting to the described line of research, in the more general research field of 
early childhood education, observation and pedagogical documentation has emerged 
as an important research topic (e.g. Heiskanen, Alasuutari, & Vehkakoski, 2018; 
Schulz, 2015). Researchers from this perspective mainly focus on KTs’ skills in and 
methods of observation and pedagogical documentation of children’s development 
and describe observation and documentation as pedagogical activities indispensable 
for understanding and supporting children’s learning (e.g. Knauf, 2015). The results 
indicate that KTs value observation and documentation as an important, but to some 
extent stressful, part of their work (op. cit.) and document some aspects of chil-
dren’s development intensively (Rintakorpi & Reunamo, 2017). Research, however, 
also shows that some KTs spend little time on observation and documentation (e.g. 
Fröhlich-Gildhoff & Strohmer, 2011), they have difficulties interpreting children’s 
skills correctly (e.g. Bruns, 2014; Eichen, 2016) and lose sight of the documentation 
of, for example, mathematical development (Bruns, 2014).

The concept of situational perception in early childhood mathematics education 
can be traced back to some aspects of the described research fields. Definitions of 
situational perception, however, stress that situational perception is more than 
observing children’s mathematical development: Gasteiger and Benz (2018a) define 
situational perception as recognising the mathematical relevance of play situations 
and everyday situations, Dunekacke (2016) as the identification of surface charac-
teristics (as mathematical themes or materials) and more sophisticated characteris-
tics (as the level of development of children or relationships between contributions 
of children). Both definitions have in common that they do not only focus on the 
learning process of the child but also include the perception of mathematics  potential 
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in different situations in a kindergarten setting. Based on this, it can be reasoned that 
the concept of situational perception overlaps more strongly with the concepts of 
noticing and professional vision than the concept of observation.

Empirical results on situational perception are still rare. Björklund and Barendregt 
(2016) assume based on survey data of Swedish KTs that teachers “seem to be quite 
perceptive of their environment and the mathematics that may be recognized within 
it” (p. 370)—except if it comes to situated mathematics learning, which is espe-
cially important to early mathematics education. Additionally, Lee (2017) found 
differences in KTs’ situational perception related to years of teaching experiences 
as well as education background. Our research study that looks more closely into 
KTs’ situational perception aims to add to this sparsely illuminated area of research.

19.4  Research Questions

Following the presented line of argument, it can be stated that situation-specific 
skills are a central aspect of KTs’ competence. However, research on situational 
perception in mathematics is rare—especially regarding KTs. Existing research 
focuses on situation-specific skills of KTs in a more general way (e.g. Eichen, 2016; 
Knauf, 2015; Lee, 2017) or the relation between situation-specific skills in mathe-
matics and other mathematics-related competence facets (e.g. Dunekacke et  al., 
2015; Wittmann et al., 2016). From a mathematics education perspective, however, 
it is not only interesting how situational perception is related to other competence 
facets but also which concepts KTs focus on in typical kindergarten situations. In 
addition, it seems to be an open question how KTs’ situational perception skills 
develop. While Goodwin (1994) assumed that it is shaped by a professional com-
munity and should, therefore, be comparatively stable in different groups of KTs, 
Lee (2017) found differences in KTs situational perception with regards to their 
backgrounds. To address this question, a study comparing the situational perception 
of KTs in the same situation with different backgrounds—as, for example, KT stu-
dents in Austria and Norway are—seems suitable. Altogether, this led to the main 
research questions of our project: What aspects do Norwegian and Austrian early 
childhood students perceive in video-situations from a typical kindergarten setting? 
What are the similarities and differences between Norwegian and Austrian students’ 
situational perceptions of these video-situations?

19.5  Methods

To get some first answers to these research questions, we conducted a pilot study 
with students from Austria and Norway. As the goal of the study is to reconstruct the 
individual perception of the same situation, we chose a qualitative approach.
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19.5.1  Sample

The Norwegian sample comprised of N = 5 students. The Norwegian students were 
on average about 23.5 years old; two of them were males. They were in the middle 
of their 3 years bachelor program in early childhood education. At the point of data 
collection, these students had studied courses in pedagogy, science, social science, 
health science, religion and ethics, and they were in the middle of taking a course 
called language, text and mathematics, from which mathematics comprises ten 
ECTS. Thus, the Norwegian students, at the point of data collection, had an educa-
tional university background in studying early years’ mathematics. However, only 
from a theoretical point of view. The field practice of the course did not take part 
until after the data collection period. Nevertheless, the students had experience from 
field practice from the previous courses mentioned (8 weeks of practice in kinder-
garten all together). None of the Norwegian students had extensive work experience 
in early childhood settings.

The Austrian sample comprised of N = 5 students. The Austrian students were on 
average about 24.4 years old; all of them were females. The students had a bache-
lor’s degree in pedagogy, social pedagogy or social work. All students were in the 
first master’s semester (of four) for social education at the time of the study and 
visited a university course on early childhood education with four ECTS. Thus, the 
Austrian students had a theoretical background in early childhood education. They 
had, however, no special course or qualification in early mathematics education. In 
addition, none of the Austrian students had extensive work experience in early 
childhood settings.

19.5.2  Data Collection

Following the approach of Gasteiger and Benz (2018a) as well as Dunekacke 
(2016), we define situational perception as recognising mathematical concepts in 
different materials and in children’s activities in concrete situations. As the situa-
tions should be comparable in both groups, we did not use real-world observations 
but videotaped situations as a stimulus to collect data (Blömeke, 2013). Two of the 
authors created different mathematical learning opportunities in a kindergarten in 
Germany and videotaped the situations. In this study, we focus on vignettes captur-
ing situations where children work with geometry in two and three dimensions. At 
the beginning of the study, the Norwegian researchers checked if the situations were 
comparable to situations in Norwegian kindergartens. Only videos that matched this 
criterion were included in the study.

Due to the different languages in the two countries, we decided to focus on math-
ematical concepts early childhood students may identify in activities and not in 
children’s language. As young children’s mathematical concepts are mostly tied to 
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real objects, we focused on video-situations where children were actively engaged 
with varied materials and especially on activities that can be described as geometri-
cal learning opportunities. To make sure that the students focused on the activities, 
we selected only videos that showed children in intensive engagement with these 
materials. Overall, we used seven video-situations that met the described criteria 
(fits the German and Norwegian kindergarten setting, active engagement in a geo-
metrical activity, understandable without sound).

In the following, we will make a brief description of the content in the seven 
vignettes watched by the students. Half of the activities the children engaged in, 
shown in the vignettes, were initiated by the KT (vignette 1, 2 and 6), the other half 
was merely child initiated. If the teacher plays a role in the videotaped situation it is 
mentioned in the description (Table 19.1).

Using an open questionnaire, the early childhood students were asked to describe 
the mathematical aspects they saw in the situation. The students watched the 
vignettes only once and wrote down their observations and reflections immediately 
upon watching. The vignettes’ duration was 70–130 s. Before watching the vignettes, 
the students were informed that they were to write down their answer to the follow-
ing question: What mathematical aspects do you see in this situation? Together with 
the information: Please indicate where you have seen these aspects. The video was 
presented to the whole group and each student wrote his or her answer individually 
in the open questionnaire. For each of the seven situations, we analysed data from 
five students in each country. 

Table 19.1 Description of the vignettes 1–7

Vignette number and illustration Brief description of the content of each vignette

1 Vignette 1 shows two girls sitting back-to-back on the floor 
and later face-to-face oriented 90°. They are working with 
congruent coloured rectangular prisms and one of the girls 
tries to copy the other girl’s construction.

2 Vignette 2 also concerns two girls making constructions 
based on prisms. This time different kinds of wooden bricks 
formed as straight square prisms, including cubes and oval 
shapes, are used. 

(continued)
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Table 19.1 continued

Vignette number and illustration Brief description of the content of each vignette

3 Vignette 3 shows one girl working with red- and blue-
coloured congruent wooden equilateral triangles. Next to her 
is an instruction sheet apparently with three sequences of 
three coloured triangles she is to make (only one of these 
sequences is visible on the video). 

4 Vignette 4 shows one boy working with coloured congruent 
plastic cars of two sizes, a tray with squares with holes in the 
same distances where the cars can be put in place based on 
instruction cards. 

5 Vignette 5 shows one girl and two boys working with 
magnetic spheres and sticks, and the girl builds a pentagonal 
prism with five congruent squared sides. 

6 Vignette 6 shows several children holding paper sheets with 
different coloured circles in their hands, one girl has a 
camera, and they are in a room with coloured circles on the 
wall and a spherical-shaped paper creation hanging from the 
roof. 

7 Vignette 7 shows a boy working with magnetic spheres and 
sticks. He has a working sheet in front of him and gets some 
advice from an adult in making a rectangular prism. 

19.5.3  Data Analysis and Analytical Process

To analyse the collected data, we used qualitative content analysis (Mayring, 2015). 
Qualitative content analysis allows a systematic analysis of the content of a text 
within its context. We therefore defined the videotaped situations as the context of 
the answers and each of the answers as a recording unit. These units are the focus of 
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Table 19.2 Identified categories and their definitions

Category Definition

Process When associating the term Process with students’ answers with respect to the 
vignettes, we mean answers focusing on what children do, i.e. their actions. We 
distinguish between a manifold focus (code P, dark blue) and limited focus on 
process (code p, light blue)

Learning When associating the term Learning with students’ answers, we mean answers 
focusing on children’s opportunities to learn and whether the children have 
learned something. We distinguish between explicit focus (code L, dark green) 
and implicit focus (code l, light green) on children’s learning processes

Mathematical 
concepts

When associating the term Mathematical concepts with students’ answers with 
respect to the vignettes, we mean answers where students refer to mathematical 
concepts argued to be perceived in the vignettes. We distinguish between 
explicit and manifold focus on mathematical concepts (code M, dark red) and 
limited and occasionally imprecise focus on mathematical concepts (code m, 
light red)

the analysis. From these recording units we developed categories of perceived 
aspects inductively, meaning the categories were developed step by step guided by 
the answers of the students. Each of the categories represents a different aspect the 
students identified in the video. As the categories are developed inductively, these 
do not necessarily comprise all the aspects of the situations, and it is also possible 
that the students describe mathematical aspects that an expert would not ascribe to 
the presented situation. However, this analytical technique allows us to achieve 
insight into students’ individual situational perceptions.

Firstly, the students’ written responses were translated into English as none of 
the authors speaks both Norwegian and German. Secondly, we identified concepts 
implicitly and explicitly mentioned in the students’ responses. Thirdly, we elabo-
rated the categories below through the iterative process of the content analysis of the 
students’ responses to the vignettes. The description of the categories thus was done 
in parallel with the analysis. In this way we were able to come up with category 
descriptions that comprised all the written responses from the Austrian and 
Norwegian students. We categorised the students’ responses according to process, 
learning and mathematical concepts (see Table 19.2), first individually and then col-
lectively. In most cases we immediately agreed on the category(ies) comprising one 
student’s response to a vignette. In the cases where we initially disagreed, we dis-
cussed the written response thoroughly, watched the vignette in question one or two 
times more and arrived at a shared agreement about the category(ies).

Table 19.3 illustrates our coding within these categories:

19.6  Identified Categories from the Analysed Data

We have analysed five Norwegian students’ and five Austrian students’ answers to 
seven vignettes videotaped in a German kindergarten setting as outlined above. As 
mentioned, we identified three categories relative to the students’ situational per-
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Table 19.3 Examples of coding made based on students’ responses to the vignettes

Code Example Student Nationality Vignette

p “Maybe beginning of a pattern” Student 
2

Norwegian Vignette 
3

P “The children played with shapes. Two children sit back 
to back. One child makes a building with shapes. The 
other child is then to make a copy of the first child’s 
building”

Student 
1

Norwegian Vignette 
1

l “Spatial thinking. How do the figures fit with each 
other? Three-dimensional thinking”

Student 
1

Austrian Vignette 
2

P/L “Children have to build blocks according to a 
construction plan, had to distinguish between colours 
and shapes from building blocks”

Student 
3

Austrian Vignette 
1

m “Distances, large/small”
“We see children who play with one-dimensional and 
two-dimensional shapes”

Student 
2
Student 
1

Austrian
Norwegian

Vignette 
6
Vignette 
2

M/P “Looks at a picture of two-dimensional shapes and tries 
to reproduce the shapes with help of physical bricks. 
The girl mirrors the pictures with three-dimensional 
shapes”

Student 
3

Norwegian Vignette 
3

Vignettes/

Students 

yawroNairtsuA

1 2 3 4 5 1 2 3 4 5 

1 P P P/L P L P M/p P/L M/l L/p 

2 l p P/l P P m  P/m M/L m/p 

3 p/m l P P p/m M/p p M/P M/l P 

4 l l p p/l P P/l m P/m p/M P 

5 M/P l p p P M/P M m p/l p/m 

6 l/m m p m P/m P/m P/m P/m P/M P/L/m

7 P/m P/l p/m P p/l P/l/m P/M L/M P/M L/M 

Table 19.4 Austrian and Norwegian students’ foci relative to perception of process in the vignettes

ception, process, learning and mathematical concepts. Below these categories are 
presented in this very order, one at a time. Table 19.4 presents our categorisation 
regarding the students’ perception of process, whether they focused heavily or lim-
itedly on process in their responses to the various vignettes.

In Table 19.4 we observe that the distribution is fairly equal between the Austrian 
and Norwegian students’ perception of process in the vignettes, both in total and 
between students. However, we also observe that there are some differences between 
the students. With respect to vignette 2, 4 Austrian students’ perception comprised 
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a focus on process compared with two Norwegian students. With respect to vignette 
6, two Austrian students’ perception comprised a focus on process compared with 
all the five Norwegian students. At 16 occasions, we have coded the Austrian stu-
dents’ perception as heavily focusing on processes (code P) the children in the 
vignettes are participating in (coloured dark blue). The number for the Norwegian 
students is 17 in this matter. Additionally, at ten occasions we coded the Austrian 
students’ perception as adopting a limited focus on processes (code p, coloured light 
blue). The number for the Norwegian students is 8. Amongst the Austrian students, 
there were nine occasions which did not focus at process at all (coloured white). The 
corresponding number for the Norwegian students is 10. Based on these numbers 
we argue that it seems as if both the Austrian students and the Norwegian students 
are occupied with the process aspect of the children’s participation, and their per-
ception seems pretty similar in this regard.

Table 19.5 below presents our categorisation regarding the students’ perception 
of learning, whether they focused heavily or limited on learning in their responses 
to the various vignettes.

In Table 19.5 we observe that the distribution is fairly equal between Austrian 
and Norwegian students’ perception of learning in the vignettes. Based on our anal-
ysis of the written responses to the vignettes, we also observed that the students 
were fairly equal with respect to how they described the children’s opportunities to 
learn. At two occasions we have coded the Austrian students’ perception as heavily 
focusing on learning (code L), which the children in the vignettes are participating 
in (coloured dark green). The number for the Norwegian students is 6 in this matter. 
Additionally, at ten occasions we coded the Austrian students’ perception as adopt-
ing a limited focus on learning (code l, coloured light green). The number for the 
Norwegian students is 5. If we combine these numbers, we observe that the Austrian 
students’ perception was coded as focusing on learning at 12 occasions. The corre-
sponding number for the Norwegian students is 11. Since these numbers are almost 

Vignettes/

Students 

yawroNairtsuA

1 2 3 4 5 1 2 3 4 5 

1 P P P/L P L P M/p P/L M/l L/p 

2 l p P/l P P m  P/m M/L m/p 

3 p/m l P P p/m M/p p M/P M/l P 

4 l l p p/l P P/l m P/m p/M P 

5 M/P l p p P M/P M m p/l p/m 

6 l/m m p m P/m P/m P/m P/m P/M P/L/m

7 P/m P/l p/m P p/l P/l/m P/M L/M P/M L/M 

Table 19.5 Austrian and Norwegian students’ foci relative to perception of learning in the 
vignettes
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Table 19.6 Austrian and Norwegian students’ foci relative to perception of mathematics in the 
vignettes

Vignettes Austrian students Norwegian students 

1 2 3 4 5 1 2 3 4 5 

1 P P P/L P L P M/p P/L M/l L/p 

2 l p P/l P P m  P/m M/L m/p 

3 p/m l P P p/m M/p p M/P M/l P 

4 l l p p/l P P/l m P/m p/M P 

5 M/P l p p P M/P M m p/l p/m 

6 l/m m p m P/m P/m P/m P/m P/M P/L/m

7 P/m P/l p/m P p/l P/l/m P/M L/M P/M L/M 

identical, we observe an equal amount of the Austrian students’ perception and the 
Norwegian students’ perception did not focus on learning at all from the vignettes 
(coloured white). Based on these observations we argue that it seems as if the 
Austrian students and the Norwegian students are averagely occupied with the 
learning aspect of the children’s participation in the vignettes, and their perception 
is argued to be similar in this regard.

Table 19.6 presents our categorisation regarding the students’ perception of 
mathematical concepts, whether they focused heavily or limited on mathematical 
concepts in their responses to the various vignettes.

Table 19.6 illustrates the difference between the Austrian and Norwegian stu-
dents for each vignette with respect to the category mathematical concepts. We 
observe that the distribution between Austrian students’ and Norwegian students’ 
perception of learning in the vignettes is different. At one occasion we have coded 
the Austrian students’ perception as heavily focusing on mathematical concepts 
(code M, coloured dark red). The number for the Norwegian students is 14 in this 
matter. Additionally, at eight occasions we coded the Austrian students’ perception 
as adopting a limited focus on mathematical concepts (code m, coloured light red). 
The number for the Norwegian students is 12. In particular, we observe huge differ-
ences between the students with respect to vignettes 1, 2 and 4, where none of the 
Austrian students focused on mathematical concepts compared with nine of the 
Norwegian students. Moreover, in vignette 5 only one of the Austrian students 
focused on mathematical concepts compared with four of the Norwegian students. 
Despite these apparent differences, when focusing on the codes M and m, we see 
that in vignette 6 there is practically no difference between the two groups of stu-
dents. In vignette 3 there is a small difference, as two of the Austrian students’ 
responses are coded m while three of the Norwegian students’ responses are coded 
M. In the five other vignettes we observe that quite many of the Norwegian stu-
dents’ responses are categorised as comprising mathematical concepts while very 
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Table 19.7 Summarising students’ responses

P p L l M m Total 

Austrian 16 10 2 10 1 8 47 

Norwegian 17 8 6 5 14 12 62 

Total 33 18 8 15 15 20 109 

few of the Austrian students’ responses are categorised as comprising mathematical 
concepts.

Based on the analysis above, we summarise our categorisation of the students’ 
perception of process, learning and mathematical concepts in Table 19.7.

From Table 19.7, when comparing the number of responses from the Austrian 
and Norwegian students in the two blue columns separately and the two green col-
umns separately, we see that there are minor differences between the students con-
cerning the answers coded as process or learning (16 + 10 (Austria) versus 17 + 8 
(Norway) process responses; 2  +  10 (Austria) versus 6  +  5 (Norway) learning 
responses). The major difference between the Austrian and Norwegian students’ 
responses is identified in the category mathematical concepts. The Norwegian stu-
dents made 14 + 12 responses emphasising mathematical concepts in the children’s 
activities, in contrast to 1 + 8 responses emphasising mathematical concepts among 
the Austrian students. The difference between the total amount of responses between 
Austrian and Norwegian students (47 versus 62) is thus explainable by the number 
of responses categorised as mathematical concepts.

19.7  Discussion

We set out in this study to come up with answers to the research questions: What 
aspects do Norwegian and Austrian early childhood students perceive from video- 
situations from a typical kindergarten setting? What are the similarities and differ-
ences between Norwegian and Austrian students’ situational perceptions from these 
video-situations? We found that the students perceived what we have categorised as 
process aspects, learning aspects and mathematical concepts aspects. Both Austrian 
and Norwegian students’ situational perceptions were characterised by all three cat-
egories. As regards the process and learning aspects perceived by the students, we 
found that there are negligible differences between the Austrian and the Norwegian 
students. Based on the data collected and analysed, the two groups of students 
placed explicit, quite similar emphasis with respect to process and learning aspects. 
We interpret this result as an argument supporting Goodwin’s (1994) assumption 
that situational perception is related to the professional community. Although our 
sample consisted of early childhood students in different countries, with different 
learning experiences, they focused on similar aspects of process and learning.
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However, we also found that there is a major difference between Austrian and 
Norwegian students’ responses with respect to the category mathematical concepts. 
The Norwegian students made 14 responses that heavily emphasised mathematical 
concepts and additional 12 responses that comprised a limited emphasis on mathe-
matical concepts in the children’s activities. In contrast, we found only one response 
amongst the Austrian students that heavily emphasised mathematical concepts and 
additional eight responses with a limited emphasis on mathematical concepts in the 
children’s activities. This difference seems remarkable, based on the fact that all 
students watched the same video vignettes. This result contradicts the assumption of 
Goodwin (1994) that situational perception is related to a professional community. 
The Norwegian students were in the middle of their education to become kindergar-
ten teachers. Moreover, at the moment of data collection, they were studying a 
course with particular focus on early childhood education in mathematics. The 
Austrian students were enrolled in a university course in early childhood education, 
but no particular emphasis was put on mathematical aspects of early childhood edu-
cation in that course. As the two groups of students had different learning opportuni-
ties concerning early mathematics education, we believe that the difference between 
the two groups of students is due to their educational background.

Summarising our results, we conclude that there is not one situational percep-
tion, but different facets of situational perception, at least the three facets: process, 
learning, and mathematical concepts. Further studies are needed to identify if there 
are even more facets. As our study used short video vignettes as a data collection 
tool, it could be possible that these facets are somehow influenced by our vignette 
selection. Additionally, it seems reasonable to assume that situational perception is 
tied to the whole context (e.g. knowing children, knowing play materials), not only 
to one situation, and situational perception might thus involve even more facets of 
situational perception. Our study therefore might underestimate students’ situa-
tional perception.

While perceiving aspects of process and learning seems to be more closely con-
nected to being part of the professional community of kindergarten teachers, per-
ceiving mathematical aspects seems to need special attention in teacher training. 
Our study, however, only examines students. It is also possible that situational per-
ception of mathematical aspects is further developed by the professional commu-
nity in practice. Therefore, a study examining the situational perception of in-service 
kindergarten teachers with different backgrounds might be interesting. Nevertheless, 
the result of our study confirms the claim by Goodwin (1994) that professional 
vision, in order to be used successfully, has to be learned. The Norwegian students 
seem to have learned the mathematical concepts and mathematical aspects of early 
childhood education, as they were indeed able to utilise their insights successfully. 
They seem to have adopted what van Es and Sherin (2002) call ‘noticing’. This facet 
of (kindergarten) teacher competence, we believe, is fundamental for orchestrating 
mathematical activities where children may engage themselves as well as experi-
ence and learn mathematics. This relationship is made explicit in the theoretical 
model of Blömeke et al. (2015) and Gasteiger and Benz (2018a), where perception 
is closely interrelated with interpretation and decision-making.
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Nevertheless, even though all Norwegian students had at least one response that 
we coded as heavily emphasising mathematical concepts, we observe in Table 19.6 
that there are severe differences among the Norwegian students, from one response 
coded M up to six responses coded M out of the seven vignettes. Varieties in the 
students’ situation-specific skills thus reflect what we know from research (see Lee, 
2017) as well as experience teaching and assessing this type of students for more 
than 10 years. Kindergarten teacher students demonstrate varying competences in 
mathematics relevant for early childhood education, due to varying background in 
mathematics as well as varying experience from early childhood education. We thus 
interpret our results as documenting the importance of addressing situation-specific 
skills in mathematics among kindergarten teacher students, as this is argued to be 
resulting from the students’ own learning of mathematics relevant for early child-
hood education in mathematics in a kindergarten setting.
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Chapter 20
How to Support Kindergarten Children 
in Spontaneous Measuring Activities

Vigdis Flottorp

20.1  Background

In this section, I will first outline some significant features of the Norwegian kinder-
gartens, as portrayed in official documents. I will focus on how learning is described. 
Secondly, I will refer to some studies  concerning the role of the teacher in mathe-
matics activities. I will outline some aspects of measuring and comparing, which is 
the mathematical subject in all the cases in the study. The section will conclude with 
the research questions.

In Norway, most children attend kindergarten, and the students are meant to 
work both with toddlers and 5- to 6-year-olds, without any difference concerning 
education. As a consequence, both the Framework Plan for Kindergarten (Ministry 
of Education and Research, 2017) and The National Guidelinev for (UHR—
Teacher education group for revising national guidelines for Early Childhood 
Education, 2017) are the same regardless of the age of the children.

The Framework Plan for kindergartens emphasises that learning should occur in 
everyday activities and children’s free play. The chapter on mathematics expresses 
the following:

Kindergartens shall highlight relationships and enable the children to explore and discover 
mathematics in everyday life (…). (2017, p. 34)

Several studies show that kindergarten teachers to some extent are capable of 
recognising mathematics in daily life situations (Björklund & Barendregt, 2016; 
Ginsburg, Inoue, & Seo, 1999; Helenius et al., 2015; Østrem et al., 2009). However, 
this is valid for counting and numbers, but less applicable to spatial phenomena. 
This is consistent with an assessment of 82 kindergarten teachers, which examines 
the competence of the kindergarten teacher’s mathematical knowledge. The study 
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ranks the kindergarten teacher’s ability to recognise children’s knowledge in the 
area of number sense as the highest, second lowest in the area of measuring and 
lowest score for the area of spatial sense (Lee, 2010).

Teachers who recognise mathematical situations might easily be able to follow 
up children in these situations. The question is still what happens after they have 
recognised a mathematical situation. Do they just observe passively? Or do they 
act in the moment, by saying or doing something which stimulates and supports the 
children mathematically?

A spontaneous situation typically occurs in daily life and play situations. Since 
children initiate these situations, neither mathematical subjects nor approaches, 
examples or materials can be pre-fixed. Therefore, spontaneous situations may be 
harder to act upon than planned activities. Our knowledge about what occurs in 
spontaneous situations is scarce. This is a contradiction since the Framework Plan 
for kindergartens stresses the learning potential in daily life situations.

Several studies address the role and tasks of the kindergarten teacher. Van Oers 
(1996) investigates how children’s mathematical thinking can be stimulated whilst 
playing shoe shop and finds that the question “are you sure?” might be productive 
for mathematical thinking. Erfjord, Hundesland, and Carlsen (2012) explore how 
kindergarten teachers develop their mathematical practice in a developmental 
research projects in kindergarten. Based on observations and interviews, they 
examine how the kindergarten teachers mature their mathematical practice. The 
teachers express being empowered in an inquiry approach, which enable them to 
be more explicit when communicating mathematical ideas to children. Benz (2016) 
examines the importance of reflection, based on in-service and pre-service course 
for early mathematics education. It seems that content knowledge and action-
related competencies are interweaved by reflection. Lange, Meaney, Riesbeck, and 
Wernberg (2014) investigate the actions of a kindergarten teacher while children 
play with jars. The study shows that the teacher, through respectful listening and 
careful observation, succeeds in asking questions that sparkle the children’s math-
ematical curiosity. Furthermore, the questions develop the activity.

The Framework Plan for Kindergartens in Norway underlines that it is the 
responsibility of the staff in kindergartens to promote learning:

Kindergartens shall create a stimulating environment that supports the children’s desire to 
play, explore, learn and achieve. Kindergartens shall introduce new situations, topics, phe-
nomena, materials and tools that promote meaningful interaction. The children’s curiosity, 
creativity and thirst for knowledge shall be acknowledged, stimulated and form the basis 
for their learning processes. (2017, p. 22).

The Framework Plan for kindergartens does not mention teaching. The empha-
sis is on process, not on learning outcomes. The tasks of the staff are demanding:

The staff shall (…) build on creativity and play and be open to improvisation and the 
children’s own contributions, alternate between spontaneous and planned activities, sup-
port and enrich the children’s initiative (…), support the children’s reflections on situa-
tions, topics and phenomena and create understanding and meaning together with the 
children (2017, p. 43)
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20.1.1  Measuring

As mentioned, the mathematical subject of this study is measuring. According to 
Bishop (1988), measuring is an activity rooted in daily life. Small children also 
encounter situations in play and daily life which are related to measuring.

The National Guidelines for Early Childhood Education does not mention any 
specific mathematical subjects such as numbers, measuring or geometry. Instead, 
the guidelines indicate how each institution shall describe content, interdisciplin-
ary subjects, organisation, working methods and evaluation forms (The Norwegian 
Association of Higher Education Institutions—UHR, 2017, p. 4).

The mathematics in kindergarten covers comparison, sorting, placement, orien-
tation, visualisation, shapes, patterns, numbers, counting and measuring, accord-
ing to The Ministry of Education and Research, (2017). At Oslo Metropolitan 
University (formerly Oslo University College), mathematics constitutes a limited 
part of the curriculum. Therefore, we concentrate on two main subjects rather than 
covering many superficially. The subjects are number and measuring.

The measuring subject was chosen since it is relevant also for toddlers who use 
their body to explore their surroundings (Palmer, 2012). Small children might, for 
example, experience the height up to the doorknob, as they use their bodies, and 
they will obtain this experience without uttering any words. Five- to six-year-old 
kids are involved in measuring activities, often in a different way, for example by 
using transitivity, measuring units or measuring scales.

Measuring in kindergarten is usually about comparing. In all forms of measur-
ing, comparing an object with another is involved. Therefore, the term measuring 
applies to both comparison and measuring in this study.

The Freudenthal tradition introduces learning trajectories to describe three 
learning steps in developing the understanding of measuring (Buys & de Moor, 2005, 
s. 17). The easiest form of measuring is direct comparison, by placing two objects 
next to each other. The second method is to use a measuring unit, and the third is 
adopting a measuring scale.

The difference between the second and third levels is that the third level requires 
the ability to read written numbers. The second level demands counting units 
orally. There is a major cognitive difference between understanding a scale, for 
example with three-digit numbers, and grasping the meaning of counting a unit, for 
example a stick (Flottorp, 2018).

The research on the trajectories is limited. Some findings indicate that children 
might benefit from using a measuring scale before they fully understand what a 
measuring unit is (Sarama, Clements, Barrett, Van Dine, & McDonel, 2011). 
Others stress the importance of understanding the logic of a measuring unit. When 
children have grasped the measuring principles, they understand both arbitrary and 
standard units (Kamii, 2006, s. 158).

Transitivity is not mentioned in the overview above. However, it occurs in sev-
eral of the recorded situations in this study. Measuring with transitivity means to 
compare two objects using a third one, without using units (Sarama & Clements, 
2009, p. 275).
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The research questions are: What are the challenges of Early Childhood 
Education students on supporting children spontaneously in measuring activities? 
How do the students reflect on being active versus passive?

20.1.2  The Knowledge Quartet

The Knowledge Quartet (KQ) was chosen as a theoretical approach because it 
appeared to be useful for my aim, namely to investigate what it takes to follow up 
kindergarten children mathematically in spontaneous daily life situations. The 
theoretical basis for mathematical didactics in kindergarten is scarce. Mathematical 
Knowledge in Teaching (MTK) (Even & Ball, 2008; Rowland & Ruthven, 2011) is 
based on a framework developed within school context, while The Knowledge 
Quartet (KQ) is adopted to a kindergarten context.

Knowledge covers a wide range of aspects. Shulman identified several catego-
ries: general pedagogical knowledge, knowledge of learners, knowledge of con-
text, knowledge of purpose of teaching and learning. In addition, he formulated 
three content-specific knowledges: subject-matter knowledge, pedagogical content 
knowledge and curriculum (Shulman, 1986).

To find out what constitutes The Knowledge Quartet for smaller children, 
Rowland and Ruthven (2011) conducted a longitudinal study, observing and 
interviewing teacher students. Four major categories, called The Knowledge 
Quartet, were distinguished: foundation, transformation, connection and 
contingency (2011, pp. 200).

Foundation concerns subject knowledge, beliefs, awareness of purpose and 
identifying errors. The three other categories are based on foundation. 
Transformation refers to teacher demonstration, use of materials, examples and 
representations. Connection denotes connecting procedures and concepts, antici-
pating complexity, sequencing and recognising relevant concepts. Contingency 
addresses the ability to respond to children’s ideas, to use opportunities and deviate 
from agenda. The “responding moves” seems to be some of the most difficult inter-
ventions for novice teachers to master (Brown & Wragg, 1993, in Turner & 
Rowland, 2011, p. 202).

The elements in the four major categories, foundation, transformation, connec-
tion and contingency, reflect different types of knowledge. An example is beliefs 
listed as a type of knowledge aligned with anticipating complexity.

Some studies focus on the difference between kindergarten and school concern-
ing learning mathematics. Mosvold, Bjuland, Fauskanger, and Jakobsen (2011) 
adapted MKT to a kindergarten context. They found that an important difference 
between kindergarten and school is that the kindergarten teachers had to facilitate 
and use activities and play situations that enable children to experience mathemati-
cal ideas. This is very much in line with the Framework Plan for Norwegian 
 kindergartens. In schools, on the other hand, the mathematics lessons are fixed to a 
certain schedule and textbook.
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The focus in the chapter is spontaneous situations. Contingency occurs in both 
planned and spontaneous situations, as children’s responses cannot be planned by 
the teacher. The concept of contingency is closely related to “competence of impro-
visation” (Erickson, 1982, in Krummheuer, 2012). This notion refers both to the 
content-related aspect of interaction as well as to the aspect of managing the ongo-
ing course of interaction.

Improvisation is an important issue in early childhood education. Many situa-
tions in kindergarten require improvisation, and good improvisation depends on 
knowledge, preparation and training (Steinsholt & Sommerro, 2006). A jazz musi-
cian describes improvisation as an adaption of a pre-composed material (Berliner, 
1994, in Jansen, 2014). A study on interactions between a kindergarten teacher and 
children revealed that what seemed to be improvisation was based on knowledge 
and observations. The actions of the kindergarten teacher were not coincidental 
(Odden, 2005, in Jansen, 2014, p. 57). In kindergarten it is crucial to develop pre- 
composed material, a repertoire that provides alternatives.

20.1.3  The Purpose of Education: Biesta

The theory of Biesta is introduced because it appeared to be relevant in the discus-
sion of the goal of the children’s activity and arguments about the students’ choices. 
The discussions in the student groups exceed the purpose of the foundation domain. 
In KQ, the purpose of learning mathematics is taken for granted. Whether to teach 
mathematics or not is not disputed.

Biesta formulated a threefold question of the purpose of education: qualifica-
tion, socialisation and subjectification (Biesta, 2015). Qualification denotes the 
purpose of being qualified for the future. Socialisation points to the purpose of the 
children being introduced to traditions where the aim is only partly educational. 
The third aspect, subjectification, represents how children “come to exist as a per-
son, opposed to being an object” (2015, p. 77).

Biesta’s three aspects relate to content, tradition and person. Biesta points out 
how the achievement in the domain of qualification dominates the education prac-
tice and discussion, leaving the other two aspects unfocused, especially in school. 
The Framework plan for kindergarten highlights children’s need for care and play. 
Learning is mentioned as the last aspect. There are no learning goals in the 
Framework Plan for kindergartens in Norway. The subjectification domain relates 
to letting children investigate for themselves. It might be less important that the 
children fully understand some mathematical concepts in the process.

The Framework Plan for kindergarten emphasises that the learning area of 
mathematics “…shall stimulate the children’s sense of wonder, curiosity and moti-
vation for problem-solving. It covers play and investigation (Ministry of Education 
and Research, 2017), p. 53)”. This way of formulating learning is connected to 
Biesta’s subjectification, and is connected to the formative aspect mentioned in the 
Framework Plan for kindergartens. Biesta’s concept of qualification can be related 
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to school readiness. Although the Framework Plan for kindergarten emphasises 
care and play, the focus on learning and school readiness increases in Norway. 
Fosse et  al. conducted a discourse analysis of central documents the last years. 
They found that mathematics has been more strongly linked to teaching and learn-
ing than to playing (Fosse, Lange, Lossius, & Meaney, 2018).

20.2  Methodology

The data consists of two parts; firstly, texts of students and secondly interviews. 
The student who records an activity in kindergarten is denoted the recording stu-
dent. The student who comments the activity is called the commenting student. 
Each activity consists of four written parts, 1–2 by the recording student and 3–4 
by the commenting student:

 1. A record of an activity in kindergarten
 2. A description of the mathematical concepts in the activity
 3. A description of what contributed to the measuring activity, by the commenting 

student
 4. A proposal for a follow-up activity, by the commenting student

The students were organised in groups and then interviewed. Three of the 
groups were taped. The students were given a choice whether to participate in the 
study or not, and all consented. The interviews resulted in 3 h with taped data. They 
were transcribed and the names were made unrecognisable. Then the recordings 
were deleted.

The groups were chosen based on which students I knew best, and how easy it 
was to find a suitable time for interviews. All the three groups turned out to be part- 
time students, which is a biased selection. Since the approach is qualitative, I will 
argue that the data still may shed light on the research questions.

The students’ texts and the interviews are coded according to the categories of 
Quartet Knowledge—KQ (Turner & Rowland, 2011). Some aspects appear to be 
important, but hard to fit into the categories of KQ. These are coded “other”.

The three groups that were taped had 14 members altogether. I chose one of the 
groups for closer analysis; this group had five members. The reason for choosing 
this group was that several of the KQ aspects appear in the coding process. 
Moreover, the discussion in the group was particularly elaborate. The purpose of 
mathematics in kindergarten was thematised in a way that exceeds the categories 
of The Knowledge Quartet.

The study contains some quantitative data, based on total amount of 214 stu-
dents’ texts. The purpose of collecting so many texts was to investigate two factors: 
the prevalence of passive observers and the frequency of spontaneous situations in 
the total material. A student is labelled passive when he or she does not say or do 
anything in the situation.
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20.2.1  Limitations of the Study

As the observations are collected by students, I am not present in the situations. 
This challenges the validity of the findings.

The observations are not random notes but are recorded according to guidelines 
as a part of an assignment at the Early Childhood Education at Oslo Met. The stu-
dents had to record the mathematical-relevant actions and words, including infor-
mation on how the situations started and how it ended. Compulsory components of 
the assignment were to report a measuring activity which could be spontaneous or 
planned. Afterwards they were interviewed, based on their texts. The combination 
of texts and interviews illuminate the challenges of supporting children’s daily life 
mathematical activities.

For a researcher, it is difficult to capture spontaneous situations by being present 
in a kindergarten. To use students as co-researchers might therefore offer a way to 
understand these situations better. An important part of the daily life in kindergar-
ten is such situations.

The main purpose of the interviews is to give feedback to the students on their 
text, and secondly to supply answers to my research questions. Therefore, no inter-
view guide was used. Thus, not all parts of the interviews were relevant for the 
research questions.

Furthermore, the interviews are conducted in the context of evaluation. Although 
the students who participated in the interviews knew they had passed, waiting for 
the right answer from the teacher may have affected their ability to reflect freely.

20.3  Analysis

20.3.1  The Quantitative Data

The study has a small amount of quantitative data which concerns the number of 
passive students and the amount of spontaneous situations. A student is labelled 
passive when he/she does not say or do anything in the situation, but just observes 
the children. If a student comes up with a contribution, he or she is labelled active.

I scrutinised the recorded situations and counted the episodes with passive 
students. Twenty per cent of the students were passive in the recorded situation. 
This is a high number, especially since they were asked to participate in the 
measuring activity.

Fifty-three per cent of the observations were spontaneous. There were consider-
able differences between full-time students, who had 48% spontaneous activities, 
and part-time students, who had 72% spontaneous activities. Part-time students 
worked 50–70% in kindergarten and easily captured spontaneous situations. This 
may also explain why all the situations in the taped group interviews were sponta-
neous, since all the students in the interviews were working part time.
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The high number of passive students is related to the number of spontaneous 
activities. I will argue that when you plan an activity, you are usually active in the 
implementation, for example by explaining what the activity is about.

20.3.2  The Qualitative Data

In the following, I will revise five situations, based on the students’ texts and the 
interview data. I use the term situation to denote an event in kindergarten recorded 
by the students. The situation could last for a short or longer period. Using the 
categories of KQ, I will investigate the students’ reflections. The focus will be on 
the challenges of supporting children’s mathematical activities.

The students’ texts are excerpts.1 I have focused on the parts which are the most 
relevant for the research questions and give enough information to create a picture 
of the events. Parts of the observation are reproduced verbatim, reflecting the 
details, which are regarded as relevant.

20.3.3  Relative Heights—Dorothea’s Observation

The case was chosen because the student responded to the children in relevant 
ways but was not able to explain what was going on mathematically.

A child stretches her arm up, asking if she reaches the head of the student. “Almost,” the 
student says, and then takes a broom to measure her. Three more children want to do the 
same, and the student makes a mark on the broomstick for each of them. They use words 
like highest, lowest, the same and in the middle, and then line up according to their heights. 
A boy climbs on the table, measuring himself with the broomstick, concluding he is almost 
as long as the broomstick.

They lose interest in the broomstick. Then one girl finds a ribbon and climbs on the table. 
While the student holds the ribbon, she investigates whether the ribbon is long enough to 
reach from the floor to herself. The other children gather and try to do the same.

The commenting student points out that Dorothea manages to use an informal 
learning situation, responding to the children’s initiatives. She improvises by intro-
ducing the broomstick. These actions are aspects of contingency; she uses oppor-
tunities and responds to the children’s ideas about height. The activity is prolonged 
because her actions keep them going on with measuring.

In her analyses of the situation, Dorothea claims the children use direct com-
parison, and that the broom is a measuring unit. She does not bring in the concept 
of transitivity in describing how the children use the broomstick to compare. Her 

1 The recording student has 300 words to record an event and 300 to analyse it, while the com-
menting student has 300 words to describe what contributed to the activity and propose a 
 follow-up activity.
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text reveals that she is confused about basic measuring concepts, lacking subject 
knowledge. Still, she is able to improvise in an adequate mathematical way.

20.3.4  Who Is Tallest?—Turid’s Observation

The case was chosen because the student let the children find the solution them-
selves. She describes the mathematics in the situation precisely.

The student and two five-year-olds lie on a mattress. One of the children, a girl, jokes 
about being the tallest one, while the boy is protesting. “How can we examine this?” the 
student asks. The girl suggests that they can lay down next to each other. They do, and the 
student asks if this is right. The girl gets on her feet and discovers that their feet are not 
aligned. “Our feet have to be at the same place,” she says. “What do we do then?” the 
student asks. “Peter, you have to move your feet in line with Turid’s feet. Isn’t that cor-
rect?” the girl asks, she looks for confirmation, but does not receive any. The boy adjusts 
his feet and agrees the measuring to be correct. “We are like a staircase;” the girl says. “I 
am at the first step, you (the boy) are in the middle and Turid is at the highest step.”

In her comment, the recording student describes the importance of the same 
starting point. She mentions how the children use actions and words, ordering the 
length of their bodies. The starting point and ordering are important aspects of the 
situation, concerning subject knowledge.

The commenting student points out how Turid is active by encouraging the chil-
dren to try out their hypothesis, not giving answers, but motivating them to solve 
the problem themselves. Turid’s questions are described as open ended—she urges 
the girl to check for herself and the girl consequently discovers the importance of 
having the same starting point.

As a follow-up activity, the responding student suggests measuring the mattress 
with the bodies of the children, arguing that introducing a measuring unit will 
expand the situation. Direct comparison is regarded as easier than measuring with 
a unit, so the follow-up activity might be interpreted as a sign of subject knowledge.

The recording student clarifies that the children are of equal length. During the 
discussion, the group suggests measuring bigger things like the circumference of 
the sandpit, underlining the importance of the children being of equal length. They 
do not mention the idea of iterating the unit, which might indicate that the relevant 
subject knowledge is not fully understood, or that the action-related competence is 
not fully developed.

20.3.5  Selling Water—Astrid’s Observation

After a meal, a girl and a boy stay at the table, where they are talking in a low and confi-
dential tone. The girl suggests selling her glass of water to the boy, who is evaluating the 
offer. They put their glasses close to each other, nod in agreement and conclude that the 
boy has more water. The girl suggests she buys his glass of water since he had a lot. They 
are interrupted by a personal who asks them to hurry to the wardrobe.
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The discussion about this his case made clear different views about the task of 
the pedagague. The students debated whether they should introduce the concept of 
volume, or whether the children should be allowed to investigate undisturbed, 
without focusing on volume as the learning outcome.

During the interview, the recording student Astrid clarifies that the glasses have 
equal form. She admits she does not recognise the relevance of this information to 
start with. To compare two glasses with equal form, you can just compare the 
height of the liquid in the two glasses. This is crucial for understanding the differ-
ence between the attributes of two-dimensional height and the three-dimen-
sional volume.

Astrid admits that her subject knowledge is not thoroughly integrated: “My 
thoughts are spinning, but they are not coming out right in the moment. But 
after processing them for a while, they might come out another time”, she says. 
The importance of reflection is consistent with the findings of Benz (2016), 
indicating that content knowledge and action-related competencies are inter-
weaved by reflection.

The commenting student describes Astrid as a passive observer. After some 
discussion in the group, they argue that she is not exclusively passive. She does not 
stop the children from carrying out their investigations. She is not concerned that 
the children might spill the water. The children are permitted to carry on with their 
investigation when the meal is over and the other children have to go to the ward-
robe, urged by one of the other staff. It is clear that Astrid recognises the children’s 
activity as valuable. The student shows the ability to deviate from the agenda, a 
characteristic of contingency. Time and schedule of the day regulate the life in 
kindergartens, and interruptions are quite frequent in the recorded observations. 
“You have to explain mathematics to the staff in order to make them understand the 
potential learning in spontaneous daily life situations”, one of the students stated.

The group discusses if Astrid’s relatively passive role might be due to the lack 
of equipment. They conclude that she could have introduced glasses with different 
forms, different water bottles or leftovers like milk boxes, all things common in 
kindergartens. These could have led the children to investigate the difference 
between height and volume of the water.

As a follow-up activity, the commenting student suggests exposing the children 
to two glasses with different shapes. This activity might help to “recognise the dif-
ference between one-dimensional and three-dimensional properties”. The sugges-
tion reveals subject knowledge.

Astrid, the recording student, describes the situation as a role play about selling 
water. She emphasises the importance of letting the children investigate themselves.

Astrid: …staying in that investigation is the most important thing in this situation. I am 
wondering about the role of the teacher. Should we point the children to certain facts, or is 
this not so important?

Astrid addresses the purpose of mathematics in kindergarten and the role of 
the kindergarten teacher. She stresses the value of children investigating by 
themselves, and the kindergarten teacher “not pointing to certain facts”. This can 
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be interpreted as a sound justification for a passive role, following Biesta’s con-
cept of subjectification.

Her utterance relates to the dichotomy between process and answer. Several of 
the students express that the best thing might be not to interrupt. On the other hand, 
one student in the group argues that one should not be so afraid of intervening, an 
utterance which can be connected to Biesta’s qualification category:

I think that most kids are excited about adults trying to expand on this. Of course, it 
depends on how they react. To tell them about volume cannot hurt anyone. And, this is, in 
a way, our responsibility when we have the possibility to bring it further.

Astrid reflects on the challenges of making relevant responding moves in the 
moment: “Afterwards it is possible to reflect on that there exists something else 
than height, and then introduce the word volume to the children”, one of the stu-
dents says.

20.3.6  An Empty Cardboard Box—Lina’s Observation

The situation is chosen because it focuses on reasons for being passive.

Two boys, three years old, are playing with a cardboard box, turning it around in different 
positions, making joyful noises. One boy is inside and the other outside. They close the 
flaps of the cardboard box, and both climb inside. When a third boy comes by, they tell him 
there is no room for him. This boy closes the flaps of the cardboard box, knocks on the 
“roof” and leaves the place.

Lina, the recording student, says the boys are experiencing volume, and that 
their bodies can be regarded as measuring units. As a follow-up activity, the com-
menting student suggests bringing in more cardboard boxes to examine how the 
size and form of different cardboard boxes influence how many children a card-
board box may contain. The students focused on the evident mathematical aspects 
of the situations, which might be regarded as subject knowledge.

The commenting student describes Lina as a passive observer. In the following 
discussion, the group elaborates positive aspects of the passive role, such as to 
observe carefully and evaluate whether children need help or not might express 
sensitivity to the children. They argue that the best choice might be to let the chil-
dren investigate by themselves without interrupting, especially in short observa-
tions. A glance from a child can be a signal for wanting help. They argue that this 
requires a high degree of presence and is not a passive role.

The group discusses how the situation might have developed if Lina had been 
more involved. A classmate argues that she could have been more verbally active, 
naming the children’s actions. Another student argues that this might distract the 
children, describing how 2-year-olds often communicate “stop, go away!”, mean-
ing that they want to be left alone.
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20.3.7  Santa Hats—Lars’s Observation

The situation is chosen because the children spontaneously use an arbitrary mea-
suring unit and a rational number. The student seems to play a passive role, but his 
input is crucial, especially considering the age of the children.

I am sitting at the breakfast table with Renate, four years old, when Johan, three years old, 
enters the room. He smiles knowingly and brings out two small Santas belonging to the 
kindergarten. They have been at his home for the weekend. Excited, he tells what he and 
the Santas have done during the weekend.

“They are of equal length,” he says. “How do you know that?” I ask and he responds that 
it is because their hats are the same length. He puts them on the table and compares them 
to each other. “They are the same height,” he says. Renate claims that her hat is bigger than 
that of Santa. She runs to the wardrobe and grabs her hat. “Look, it is double the size!” she 
shouts. Johan starts to measure Santa’s hat putting it upon her hat, while Lars puts his 
thumb as a mark. The children conclude that it is one and half Santa hat, and Johan is 
shouting: “Come, let us measure my hat as well!” and they run to the wardrobe.

No one in the student group recognises the usage of Santa’s hat as a measuring 
unit at once. They do not mention rational numbers, or that Renate’s hat is “one and 
a half” the size of a Santa’s hat. This might be due to lack of subject knowledge. It 
can also illustrate the challenge of immediately discovering what the children are 
about to understand, which is related to recognising relevant concepts, and thus 
related to connection.

The commenting student describes how one single question posed by Lars starts 
the whole measuring activity. In addition, Lars helps them by using his thumb as a 
mark. These two contributions are the only ones the recording student makes. He 
is not described as passive. A classmate claims that he is “helping the children to 
investigate the mathematical ideas further”. No one seems to recognise that the 
children manage to measure, almost by themselves, except Lars helping with 
his thumb.

The follow-up activity includes transferring the activities to the circle time. 
“The kindergarten teacher takes an initiative to a theme, which the children can 
develop according to their interests”, the commenting student explains. The idea is 
to share the measuring of the hats with the other children, thereby letting them 
compare their own hats directly, focusing on the verbal side. “We can inspire the 
children to describe the differences between their hats by using words for compari-
son”, says the commenting student. He describes the circle time as a form of 
guided play.

The follow-up activity does not take into account that the children already mea-
sure by a unit and use adequate words for comparison. It is unclear how the 
 follow- up activity brings the children’s mathematical ideas further. This might be 
due to the challenge of anticipating complexity. It can be a good idea to use direct 
comparison, but the proposal is not justified mathematically.
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20.4  Discussion

The study reveals that it is easier to recognise mathematics in daily life than to act 
upon these situations. It might be surprising that the students seem to recognise 
measuring situations quite easily, an area where kindergarten teachers have the 
second lowest score in mathematical knowledge (Lee, 2010).

Some aspects of KQ seem to be more relevant than others. These are subject 
knowledge and awareness of purpose belonging to foundation, anticipating com-
plexity, sequencing and recognising relevant concepts, and finally, the contingency 
aspects: the ability to respond to children’s ideas, to use opportunities and to devi-
ate from agenda.

In the presentation of The Knowledge Quartet, pedagogues and jazz musicians 
underline the importance of practice. The ability to improvise is connected to prac-
tice because it provides a repertoire of possibilities to act upon.

One might expect the contingency domain to be most frequent in spontaneous 
situations, but the analysis reveals that this is not the case. Contingency is regarded 
as the most difficult of the four categories of KQ, but it seems that other aspects of 
KQ are also challenging in a spontaneous situation. This applies especially to sub-
ject knowledge. Basic concepts of measuring are direct comparison, transitivity 
and measuring unit, labelled as subject knowledge. This turned out to be difficult 
to recognise and to be understood in depth.

The analysis reveals that the challenge of responding to children’s ideas is 
closely related to recognising what kind of help the children need, and what they 
are about to understand, aspects concerning subject knowledge. The “responding 
moves” seem to be some of the most difficult interventions for novice teachers to 
master (Brown & Wragg, 1993, in Turner & Rowland, 2011, p. 202).

It seems difficult to use information from the spontaneous situation to plan a 
follow-up activity. The analysis reveals that the follow-up activities often are 
vague. Sometimes the activity is too easy, sometimes too difficult.

20.4.1  Reflecting on Practise with the Quartet Knowledge

This study is based on a task given in the beginning of the mathematics course. 
This is also mentioned by the students. “You should come back and interview us at 
the end of the course”, one of them says. I will argue that even after the end of the 
mathematical course, they are still novices with a very limited repertoire. Other 
researchers have also questioned whether preservice teacher can be expected to 
provide suggestions on how to develop the children’s mathematical understanding, 
also at the end of the course (Lembrér, Kacerja, & Meaney, 2016).

To what degree can the framework of KQ help novice teachers to develop 
themselves as teachers? I have described the aspects of KQ, which emerge from 
the data. My conclusion is that the focus has been more on the students’ lack of 
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knowledge than on what they master. This might be a consequence of the KQ 
being a mapping tool.

In The Knowledge Quartet it is not totally clear if knowledge is to be regarded 
as something static, or if it is contextual. Mason and Spence (1999) argue whether 
contingency has to do with knowing how to act in the moment, which does not 
coincide with knowing about. It is not a fixed knowledge that you possess or not. It 
is the ability to act, an ability that can be trained. They argue that mental imagery 
for pre- paring can be one way of training the ability (1999, p. 156).

20.4.2  The Active-Passive Dilemma

The students emphasize aspects of being passive, which in fact make them active 
observers. The study reveals that it can be challenging to decide when to be pas-
sive, when to intervene and what kind of responding moves might be relevant. The 
reasons for being passive turn out not to be exclusively lack of subject knowledge.

The passive role includes giving children time, space, equipment and possibility 
to play and to investigate. Time and space are scarce factors in kindergartens, so 
this might be a challenge.

The task of the kindergarten teacher is not always to find the right responding 
move mathematically, but to decide whether to intervene or not. Being passive is 
important and sometimes difficult. The study illustrates why it might be a good 
idea to withdraw and let the children play undisturbed. To investigate by oneself is 
regarded as the best way of learning (Polya, 1945/1971).

The framework of KQ addresses teaching situations with an active teacher. 
Thus, KQ seems to be less adequate for describing the passive role. In the study, 
the children initiate the situation and own the problem. This is different from a 
school context where the teacher poses the problem, often having to make some 
effort to get the children understand the problem.

This is consistent with the study of Mosvold et  al. (2011), finding that the 
tasks of kindergarten teachers were different from the tasks of school teachers. In 
kindergarten, the task of the teacher is described as “facilitating and using activi-
ties and play situations that enable children to experience mathematical ideas” 
(2011, p. 1810).

Some of the utterances of the students reflect the qualification aspects of Biesta, 
for example the importance of introducing the children to the concept of volume 
and making them understand the difference between height and volume. One of the 
students in Astrid’s observation, does not hesitate to introduce the concept of vol-
ume. He argues that “the kindergarten staff have a responsibility to do so”. Other 
utterances reflect the subjectification aspect, stressing the value of the investigation 
itself, questioning whether it is right to “point them to certain facts”.
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20.5  Conclusion

In this study, I addressed two research questions: What are the challenges of Early 
Childhood Education students on supporting children’s spontaneous in measuring 
activities? How do the students reflect on being active versus passive?

Since the study is qualitative, it cannot reveal the prevalence of different aspects 
of KQ, but it can indicate the nature of the challenges. The analyses reveal that the 
category of contingency is not as dominant as expected. The category of subject 
knowledge turns out to be frequent.

Further, mastering contingency does not always correspond with having subject 
knowledge. A student might be able to show contingency knowledge, but not sub-
ject knowledge. Mason and Spence (1999) argue that knowledge is not something 
fixed which you possess or not. It is the ability to act, an ability that can be trained. 
It is necessary to have time to reflect, to have integrated knowledge. The students 
have very little time to train. Therefore, it is hard to tell whether their main problem 
is lack of KQ-knowledge or lack of training.

Daily life situations are regarded as important potential learning situations. As 
all the situations in the study are spontaneous, it can be challenging to act in the 
moment, and it might be too hard for the students to start with. To design a follow-
 up activity based on observations of the children’s activities might be easier when 
you have some time to think about it, and do not have to act on the spot. When the 
students have time to reflect in advance, they may have better chances to learn from 
their experience. This can give a slightly different meaning to “using daily life situ-
ations as learning activities”.

The second research question has to do with the passive-active-dilemma. I 
started with the assumptions that many students are passive in mathematical situa-
tions because they lack subject knowledge. The reasons for being passive turn out 
to be more complex, and the students often show sound pedagogical judgement. 
Discussing this theme, they come up with many ways of being passive, stances 
which can be labelled as active.

This highlights the question about the purpose of mathematics in kindergarten. 
To what degree should we stress learning for the future, and to what degree should 
we focus on play and investigation for its own sake, not stressing the mathematical 
outcome? This is an important question concerning the purpose of mathematics in 
the early childhood education.
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Chapter 21
Kindergarten Teachers’ Stories About 
Young Children’s Problem Posing 
and Problem Solving

Trude Fosse, Troels Lange, and Tamsin Meaney

21.1  Introduction

In this chapter, we explore the stories told by 16 barnehage1 teachers about the 
photos they and their peers had taken of children engaged in mathematics, as inter-
preted by the teachers. The photos, used as stimuli for focus group interviews, came 
from a larger research project. Here, we focus on how the teachers explicitly and 
implicitly described children’s problem posing and problem solving in relationship 
to Bishop’s (1988) mathematical activities of Explaining and Playing.2 There are 
two reasons for undertaking such an investigation. First, the mathematical aspects 
of the Norwegian curriculum for barnehage, known as the Framework Plan 
(Kunnskapsdepartementet, 2017), has traditionally been based on Bishop’s six 
activities (Reikerås, 2008), and, second, in the new curriculum for barnehage there 
is a stronger emphasis on problem solving than in the previous version. Our results 
form a basis for future developmental work with the barnehage teachers, but are 
also likely to be of value for other studies about problem posing and problem solv-
ing in early childhood mathematics education, which has received little focus in the 
past (Lowrie, 2002).

Given current global discussions about the need for instruction and/or construc-
tion in mathematics education in early childhood (see, e.g., Benz, Steinweg, 

1 We use the term “barnehage” for institutions providing early childhood education and care 
(ECEC) for 1–5-year-old children in Norway. Although this term is translated to “kindergarten”, 
kindergarten carries a variety of meanings across countries, so we choose to use barnehage to 
recognise the specificity of ECEC in Norway.
2 Bishop’s 6 mathematical activities are capitalised to distinguish them from everyday meanings of 
the terms.
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Gasteiger, Schöner, & Vollmuth, 2018), we consider that a more in-depth 
 understanding of the relationship between Playing and Explaining and problem pos-
ing and problem solving is important. Problem solving has been a component in 
mathematics school curricula for some time (Lester, 1994). However, in the last 
20 years, there has been a shift in viewing it as something that students needed 
instruction in, to something that could support their construction of knowledge. As 
Palmér (2016) stated, the emphasis has “shifted slowly from a view where students 
first need to learn mathematics in order to become problem solvers to a view where 
problem solving is to be taught as content itself toward today’s view that problem 
solving is a strategy for acquiring new mathematical knowledge” (p. 256). In dis-
cussing young children’s learning of mathematics, Clements and Sarama (2007) 
stated that “problem posing on part of students appears to be an effective way for 
students to express their creativity and integrate their learning” (p. 143). However, 
they noted that very few empirical studies have been conducted on this, particularly 
involving young children.

Given that problem posing and problem solving have been linked to the con-
struction of mathematical knowledge, we contend that they need to be seen as being 
related to two of Bishop’s (1988) six universal mathematical activities, Playing and 
Explaining. Yet, Bishop (1988) did not explicitly mention problem posing or solv-
ing and so the connections are implicit. We provide extensive quotes from Bishop’s 
(1988) writing about these two activities and then discuss the relationship:

Clearly playing is a form of social activity which is different in character from any other 
kind of social intercourse which has been mentioned so far—playing takes place in the 
context of a game, and people become players. The real/not real boundary is well estab-
lished and players can only play with other players if everyone agrees not to behave 
“normally”.

Could these characteristics be at the root of hypothetical thinking? Could playing represent 
the first stage of distancing oneself from reality in order to reflect on and perhaps to imagine 
modifying that reality? Certainly, Vygotsky (1978) argued that “the influence of play on a 
child’s development is enormous” (p. 96) in that action and meaning can become separated 
and abstract thinking can thereby begin. (Bishop, 1988, p. 43)

Bishop (1988) described Explaining as:

The sixth and final “universal” activity I call “explaining”, and it is this activity which lifts 
human cognition above the level of that associated with merely experiencing the environ-
ment. It focusses attention on the actual abstractions and formalisations themselves which 
derive from the other activities, and where these are related to answering the relatively 
simple questions of “How many?”, “Where?”, “How much?”, “What?” and “How to?”, 
explaining is concerned with answering the complex question of “Why?”. (1988, p. 48)

In these passages, Bishop (1988) proposed that Playing could be linked to 
answering how-to questions and the development of hypothetical thinking, which 
he related to the development of abstract thinking. Similarly, he linked Explaining 
to abstract thinking and connected it to answering why-questions.

Descriptions of problem posing and problem solving also make links to hypo-
thetical and abstract thinking through enacting students’ curiosity about the world. 
For example, Hiebert et al. (1996) advocated for students to make the subjects that 
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they studied problematic, in that “students should be allowed and encouraged to 
problematize what they study, to define problems that elicit their curiosities and 
sense-making skills” (p. 12). Silver (1997) described the need for flexibility in prob-
lem posing in ways that are similar to the predicting, guessing and hypothetical 
reasoning that Bishop (1988) connected to Playing. In particular, based on the work 
of Brown and Walter (1983, cited in Silver, 1994), Silver emphasised the value of 
“what-if” and “what-if-not” questions when posing problems. By requiring people 
to pose “what-if” questions in order to explore something that is unknown, problem 
posing can be seen as being based on hypothetical thinking.

Similarly, problem solving can be linked to Explaining in that they both require 
abstract thinking to move beyond the experiential reality of a situation, abstracting 
out of it certain features while discarding others. In describing the problem solving 
of young children, Carpenter, Ansell, Franke, Fennema, and Weisbeck (1993) stated, 
“many problems can be solved by representing directly the critical features of the 
problem situation with an equation, a computer program, or a physical representa-
tion. Modeling also turns out to be a relatively natural solving process for young 
children” (p. 428). In this quote, identifying different representations of key features 
of a problem was connected to the problem-solving process, with hypothetical and 
abstract thinking considered as important for children constructing their own math-
ematical knowledge.

In this chapter, our focus is not on young children’s actions, but on how teachers 
in a Norwegian barnehage considered young children to be engaging in problem 
posing and problem solving. With the extra emphasis on problem solving in the new 
curriculum (Kunnskapsdepartementet, 2017), it is valuable to document what teach-
ers identified as young children’s problem posing and problem solving. Yet, teach-
ers may have difficulties identifying young children’s problem posing and problem 
solving. In a study from New Zealand, Anthony, McLachlan, and Poh (2015) found 
that the early years teachers were more comfortable describing easily-identifiable 
mathematical situations than the mathematics occurring in free play. Identifying 
problem solving and problem posing may be difficult for the same reasons. So, to 
design the data gathering method, we needed to find ways to understand the barne-
hage teachers’ implicit views about problem solving and problem posing.

21.2  Methodology

The data for this chapter comes from a much larger project. Dorota Lembrér, who 
also has a chapter in this book, designed the study in collaboration with the authors 
of this chapter. Data was collected using a photo-story methodology (see Black, 
Choudry, Pickard-Smith, Ryan, & Williams, 2016; Black, Williams, Choudry, 
Pickard-Smith, & Ryan, 2016; Clarke & Robbins, 2004; Hauge et al., 2018). As part 
of this larger study, fourteen teachers at one barnehage began by photographing 
children engaging in situations that the teachers considered involved mathematics. 
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A month later, they, and two others who had not taken photos, participated in focus 
group interviews (ten teachers in one interview and six in another).

A set of photos were chosen for each interview to ensure that all of Bishop’s 
(1988) six activities were evident and that each teacher had at least one photo in the 
set. Lembrér, in consultation with Troels Lange and Tamsin Meaney, chose the pho-
tos as being representative of Bishop’s (1988) six activities. The photos were first 
sorted into groups connected to the six activities (more details on this can be found 
in Lembrér’s chapter in this book). Given that the photos could often be connected 
to more than one category, Lembrér, Lange and Meaney discussed the justifications 
for classifications that were not immediately clear. Although the researchers were 
clear on the classification of the photos, they did not assume that the teachers would 
see the connections to Bishop’s six activities, even if they were familiar with them. 
Thus, the stories that they told about the photos had to be analysed without a pre-
conception that they would be clearly about the activities we saw in the photos.

The use of the photos in the focus group interviews encouraged the teachers to 
tell stories. Initially, the teacher who had taken the photo was asked to describe what 
the child(ren) were doing. This was then followed by comments on this description 
and stories of similar events that occurred in the barnehage. More than one teacher 
contributed to each story. In one interview, there were explicit discussions of the 
problem solving the children were engaged in. This made us aware of the possibility 
of analysing the teachers’ stories, in regard to the children’s problem solving and 
problem posing.

Consequently, two of the authors, Fosse and Meaney, went through the tran-
scripts identifying instances when Bishop’s activities of Counting, Measuring, 
Locating or Designing were evident in the teachers’ stories. In the categorisation, 
we looked for words that had to do with amounts (Counting), comparisons 
(Measuring), positions and movement (Locating) and shapes (Designing). We then 
related these four mathematical activities to Playing and Explaining. Table 21.1 pro-
vides an example of a story by T6 on how we colour-coded the original Norwegian 
transcript (here blue is for Counting, while yellow is for Measuring), before identi-
fying links to Playing, Explaining and problem solving.

If a problem was not described explicitly by the teachers, we made a suggestion 
about what we considered the problem to be that the children seemed to be working 
on. We also noted if the teachers indicated whether the problem arose from the chil-
dren’s interest or if it was proposed by the teacher. Finally, we discussed our indi-
vidual interpretations with Lange.

In the examples, the teachers were identified by the focus group interview they 
participated in (FG1 or FG2) and with an individual teacher identification number. 
Thus FG2:T1 refers to Teacher 1 in Focus Group Interview 2.
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Table 21.1 Initial categorisation of one of a barnehage teacher’s stories

Transcript Explaining Playing Problem solving

Her leker vi Gullhår og de tre 
bjørnene
Og her tenker jeg matematikken med 
liten, mellomstor, for det har de i 
skjeer også
Og senger. Og det er en pappa-bjørn, 
en mamma-bjørn og den lille 
bjørnen. Så det er tre bjørner selv om 
det her bare vises to. Men de er 
veldig opptatt av. at det skal være tre. 
En liten og en imellom og en stor i 
stoler og i sengene

En liten og en 
imellom og en 
stor. I stoler og i 
sengene

Her leker vi 
Gullhår og de 
tre bjørnene

Men de er veldig 
opptatt av. at det skal 
være tre. En liten og en 
imellom og en stor i 
stoler og i sengene

Here we play Goldilocks and the 
three bears
And here I think the mathematics 
with small, medium, because they 
have that in spoons too
And beds. And it is a daddy bear, a 
mummy bear and the little bear. So 
there are three bears, although only 
two are shown here. But they are 
very preoccupied with that there 
must be three. One small and one in 
between and one big one in chairs 
and in the beds

One small and 
one in between 
and one big one, 
in chairs and in 
the beds

Here we play 
Goldilocks 
and the three 
bears

But they are very 
preoccupied with that 
there must be three. 
One small and one in 
between and one big 
one, in chairs and in 
the beds

21.3  Results

In the following sections, we present four stories as representative of the set of 
teacher stories. Each of these stories exemplified how Bishop’s (1988) mathemati-
cal activities Explaining and Playing led us to identify four components that figured 
in stories about problem posing and problem solving. These components are brought 
to the fore in our description of our results.

21.3.1  Goldilocks and the Three Bears

In Scandinavia, the use of boxes filled with objects connected to specific fairy sto-
ries is very common in early childhood institutions. It is, therefore, unsurprising that 
a photograph was taken of children playing with one of these boxes, in this case, the 
one relating to Goldilocks and the three bears. Considered an everyday experience 
in barnehage, this photo was chosen for discussion in the focus group interviews.

Nevertheless, others may query this choice as researchers have previously raised 
concerns about the value of Goldilocks and the three bears with regard to young 
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children’s learning of mathematics. For example, Walkerdine (1988) criticised the 
assumption that young children’s own families would match those of the bears in 
the story, with the father being the largest and the mother needing the middle-sized 
objects. Palmér and Björklund (Chap. 15) discussed how the comparison term “just 
right” changed its meaning during the telling of the story, making the mathematics 
complicated to convey to small children. They highlighted the importance of the 
teacher’s mathematical knowledge in supporting the children to understand the 
mathematical ideas.

Figure 21.1 shows the photo that Lembrér (see chapter in this book) used in the 
focus group interviews with the teachers. FG2:T1, who had taken the photo, began 
by stating:

Her leker vi Gullhår og de tre bjørnene. Og her tenker jeg matematikken med liten, mel-
lomstor, for det har de i skjeer også. Og senger. Og det er en pappa-bjørn, en mamma-bjørn 
og den lille bjørnen. Så det er tre bjørner selv om det her bare vises to. Men de er veldig 
opptatt av at det skal være tre. En liten og en imellom og en stor, i stoler og i sengene.

Here we play Goldilocks and the three bears. And here I think the mathematics with small, 
medium, because they have that in spoons too. And beds. And there is a daddy bear, a 
mummy bear and the little bear. So there are three bears, although only two are shown here. 
But they are very preoccupied with that there must be three. One small and one in between 
and one big one, in chairs and in the beds.

In this story, the problem the children worked on was not described explicitly. 
However, the teacher seemed to suggest that it was to do with clustering dissimilar 
items (bear, chair, bowl, spoon, bed) into three sets based on comparative size rela-
tionships (small, middle, big). To solve the problem, the children had to understand 
that it was the relationships in and between each set of similar objects that had to be 
maintained (e.g. small bear, small chair, small bowl, etc.). According to the teach-
ers, the children achieved this. This can be seen in the following description given 
by FG2:T2:

Den lille har den lille skålen og den lille stolen og den lille skjeen, og lille sengen. 
Mammabjørnen er den mellomste og har det mellomste og pappa har det største, største, 
største.

Fig. 21.1 Playing with the 
toys for Goldilocks and the 
three bears
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Og så snakker de jo sammen sant, «Ja, den store skal ha den store, da må jo den lille ha den 
lille». Sant, at de snakker jo matematikk i tillegg til at de leker.

The little one has the little bowl and the little chair and the little spoon, and the little bed. 
The mummy bear is the middle and has the middle-sized and the daddy has the biggest, 
biggest, biggest.

And then they talk to each other, don’t they, “Yes, the big one must have the big one, then 
the little one must have the little one”. Really, they are talking mathematics in addition to 
playing.

Although the little bed might be bigger than the biggest spoon, it still belonged 
to the set of objects belonging to baby bear. Thus, the teachers seemed to suggest the 
children had posed a problem for themselves about making sets of dissimilar objects 
based on an abstract quality, relative size. The mathematics that the children engaged 
with when playing Goldilocks and the three bears, Palmér and Björklund (in press; 
Chap. 15) was seriation–ordering in a sequence according to a criterium. Using the 
work of Piaget (1952) and Reis (2011), they suggested that children as young as 
4 years old might struggle to determine the relationship in this series. Although such 
problems might be difficult for young children to solve, Schoenfeld (1992) consid-
ered the solving of complex problems to be the heart of mathematics.

It also seemed that the children returned to this situation repeatedly, often vary-
ing the format. For example, FG2:T6 suggested that the children often role-played 
the fairy story:

Og ofte sier de sånn “ja, men du er minst, da må du være den lille bjørnen.”

And often they say, “Yes, but you are smallest, then you must be the little bear.”

The repetition of both the problem posing and problem solving suggests that, in 
Schoenfeld’s (1992) terms, this kind of problem was routine. The aim of engaging 
in routine problems is to have children practice and acquire specific knowledge and 
skills, which in this case had to do with seriation. Yet, one of the differences between 
this situation, as identified by these teachers, and a school situation is that the chil-
dren were in charge, thus making it play (Lange, Meaney, Riesbeck, & Wernberg, 
2014). So, although it seemed a routine problem, it was chosen by the children, 
rather than being provided by adults.

The teachers raised aspects of the situation that could be linked to Explaining, 
because as Bishop (1988) stated, “Explaining is the activity of exposing relation-
ships between phenomena” (p. 48). The teachers saw the children’s representations 
and utterances as highlighting the relationships between objects. Also, FG2:T2’s 
statement seemed to suggest that she saw the situation as being about classifying, 
something that Bishop (1988) considered to be a fundamental explanation in that it 
required an understanding of similarity. The objects could be seriated in ways that 
are homomorphic, that is they produced a mapping of little-medium-big to (or 
between) five materially different sets. According to the teachers, the children both 
talked about this in their allocation of roles and showed it through the clustering of 
artefacts.
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As FG2:T2 stated, the teachers identified the situation as play. Yet, the teachers 
did not highlight aspects of Playing as a mathematical activity, except perhaps in 
regard to children adopting specific roles in the role-playing. As Walkerdine (1988) 
noted, young children can identify the mismatch between their own families and the 
bears in the story. Thus, it could be argued that by following the story and classify-
ing the objects according to relative sizes, the children suspended reality to play 
within a set of rules that legitimised certain actions. Yet, “the ‘as if’ feature of imag-
ined and hypothetical behaviour” that Bishop (1988, p. 23) identified as an essential 
component of Playing is not highlighted in the teachers’ discussions. Instead it was 
the rule-bound nature of the game, which Bishop (1988) also considered to be part 
of Playing, that provided the children with opportunities to practice routine aspects 
of problem solving.

21.3.2  Train Crash

The second example is also a common experience in barnehage, that of children 
playing with toy vehicles, in this case a train. Trawick-Smith, Wolff, Koschel, and 
Vallarelli (2015) chose a wooden train as a focus toy because parents and teachers 
had nominated it as being used frequently in US preschools. In their research, the 
train set was found to support good-quality play, which included problem solving 
by children, regardless of socio-economic background or ethnicity.

As seen in Fig. 21.2, the child had placed a tunnel on the couch arm and a box on 
the floor so that a train could be pushed through the tunnel to land in the box. In 
describing the photo, FG1:T8 stated:

Her er en gutt som kjører tog, og så har han plassert en tunnel oppe på sofaen. Så kjører 
han toget gjennom tunnelen. Så har han flyttet kassen så toget treffer oppi. Så han har 
beregnet hvor kassen må stå, og hvor tunnelen må stå på sofaen for at han skal treffe.

Here is a boy who drives a train, and then he has placed a tunnel on the couch. Then he 
drives the train through the tunnel. Then he has moved the box so the train falls into it. So 
he has estimated where the box must be and where the tunnel must be on the couch for it 
[the train] to hit [the box].

In this description, FG1:T8 implicitly identified that the problem of having the 
train land appropriately as one the child had posed himself. However, FG1:T5 sug-
gested that he may have gotten the idea from watching other children working on 
similar problems. Azmitia (1988) found that children learnt problem solving strate-
gies from observing others, but in this case the teachers seemed to suggest that 
children could also learn to pose problems from watching others.

The teachers considered that posing and solving this kind of problem was not 
something the child could have done the previous year, when he was only a year old. 
Their comments suggest that, for this child, at this point in time this was a non- 
routine problem of the perplexing and difficult type described by Schoenfeld (1992). 
Yet, the teachers’ stories suggest that it belonged to a set of problems that were 
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Fig. 21.2 The blurry train 
leaves the tunnel heading 
for the box

known to others in the barnehage and which the child would have previously 
observed being solved.

FG1:T9, described the situation explicitly as problem solving:

Han har i hvert fall skjønt dette med problemløsning at du må prøve deg frem. “Hva skjer 
hvis jeg gjør sånn? Nei, da skjer det. Hva kan jeg gjøre da?” Så det er klart at han har gjort 
seg noen erfaringer.

He has at least understood this about problem solving that you must try out things. “What 
happens if I do like this? No, then that will happen. What can I do then?” So it is clear that 
he has gained some experience.

The teachers indicated that by moving the tunnel and the box the child was using 
the problem-solving strategy of trial and error. Some time ago, Carpenter et  al. 
(1993) found that many 5-year-old children used trial-and-error strategies to model 
division problems, suggesting that this problem-solving strategy is common in 
young children.

The teachers made implicit links between problem posing and problem solving 
and the mathematical activities of Explaining and Playing (Bishop, 1988). Their 
stories suggested that the child’s actions could be considered as explanations, both 
of setting up a problem and of illustrating a method for solving it. In noting how the 
child may have learnt about this kind of problem from others, the teachers also con-
sidered that other children could learn from watching him:

Kanskje det er noen som ser på dette, og som vil prøve dette senere. Å se på andre, er jo å 
strekke seg litt lenger.

Maybe someone is watching this and will try this later. To look at others is to extend your-
self a little further. (FG1:T5)
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This child’s actions were seen both as copying the explanations provided by 
other children and also as providing explanations for other children so they also 
could pose and solve similar problems. The explanations were physical, rather than 
verbal, perhaps reflecting the child’s age. As Schunk (1987) stated, “young children 
may encode modeled events in terms of physical properties, whereas older children 
often represent information symbolically (e.g., language)” (p. 151).

Unlike the Goldilocks example, Playing appeared as trying out different “as-if” 
scenarios as part of the trial-and-error problem-solving strategy. As the teachers 
pointed out, this Playing had a clear goal. Once the goal was achieved, the problem 
was solved and the possibilities for Playing removed until another goal, such as 
changing the speed of the train, led to a change in the problem.

21.3.3  Counting Orange Boats

The children’s problem posing and problem solving often had another purpose for 
the teacher than providing a mathematical learning opportunity. FG2:T1 explained 
how she had sat next to an unhappy child while he was eating pieces of orange and 
suggested he count the number of orange peel pieces, described as orange boats (see 
Fig. 21.3). Although spontaneous counting has been noted in early childhood situa-
tions (Ginsburg, Lee, & Boyd, 2008), it was the teacher who set up the problem in 
order to distract him from his unhappiness.

Og så satt jeg nå her med disse appelsinbåtene og plutselig fant ut at “Oi! det var mange. 
Skal vi telle dem?”. Og da fikk vi en veldig grei samtale om å telle og sortere dem. Og den 
store appelsinen var i mange båter, sant. Og for hver båt han tygget og spiste så la han ned 
skall og så ville han at vi skulle telle dem på nytt. Peketelle. Telle på fingrene sine. Sånn telte 
han. Og så koblet han liksom båter til fingrene sine.

Fig. 21.3 One to one 
matching of orange peel 
pieces and fingers

T. Fosse et al.



361

And then I sat here with these orange boats and suddenly found out that “Oi! there were 
many. Shall we count them?” And then we had a very good conversation about counting and 
sorting them. And the big orange was in many boats, right. And for each boat he chewed and 
ate, he put down the peel, and then he wanted us to count again. Pointing and counting. 
Counting on his fingers. That’s how he counted. And then he kind of connected the boats to 
his fingers.

The teacher, FG2:T1, described this as an everyday situation which had some 
mathematics. She explained how the child found the problem challenging because 
he could not consistently count yet.

Det handlet veldig mye om å telle en av gangen. Så er det én, så blir det to, så blir det tre 
så blir det fire, og så gå tilbake og begynne på nytt igjen, sant. Ja, Nå er det sånn og sånn. 
Var det riktig? Han måtte vise meg fingrene sine, sant., Det som han så på hendene sine, han 
er fire.

It was very much about counting one at a time. It’s one, then it becomes two, then it becomes 
three and then it becomes four and then go back and start over again, right. Yes. Now it’s 
like this and this. Was that right? He had to show me his fingers, right.

In this situation, the child seemed happy to work on a problem posed by the 
teacher and to practice using counting as a problem-solving strategy. Other teachers 
considered this a typical kind of mathematical situation where something specific 
was counted.

Du har konkretene, og så skal du da telle fingrene, sant? Hvor mange ser du her, sant. Enten 
kan du gjøre sånn [peketelle?], sant, men du kan også telle på fingrene, sant?

You have the concrete, and then you count your fingers, right? How many do you see here? 
Either you can do it like this [pointing and counting?], right, but you can also count on your 
fingers, right? (FG1:T3).

There is no apparent purpose to the counting except to practice it, but the child 
actively participated and found it challenging. The teacher’s story also suggests that 
the child took over the control of what should happen by insisting that he re-count 
the orange boats after he had eaten another one. The problem, of how many, was 
routine in that it was likely that the teachers offered similar opportunities where the 
solution strategy of counting was expected by both the teacher and the child. 
Nevertheless, as in the Goldilocks and the three bears situation, the problem seemed 
challenging and engaging for this child.

From the teachers’ stories, it seemed that the child’s actions, along with orally 
counting the boats, could be considered examples of Explaining in that they illus-
trated how the solution, the total amount of orange boats, was determined. Like the 
Train Crash stories, the physical actions seemed to provide the teachers with insights 
into the child’s problem solving. For example, the teachers seemed to consider that 
by matching his fingers to the orange boats, the child provided extra information. In 
alignment with research (see, e.g., Moeller, Martignon, Wessolowski, Engel, & 
Nuerk, 2011), counting with fingers was mentioned by several teachers as an 
expected way to determine the total amount.

The teachers extended the discussion of the orange boats to discussions of other 
meal time situations in which mathematics could appear. Some of these, like laying 
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the table, had some connection to different “what if” scenarios, but on the whole 
connections to Playing were not obvious. As was the case with Goldilocks, the 
teachers seemed to suggest that the main aim of the child’s participation was to 
practice the expected problem-solving strategy, although in this case both the 
teacher and the child were aware that the child was still in the process of learning it.

21.3.4  Packing the Police Car

The final set of stories were to do with the photo in Fig. 21.4, in which a girl put 
different objects into a toy police car. Although she did not seem to be constructing 
something, the stories that the teachers told indicated that her experimenting resem-
bled construction play, in which:

Children experiment with building objects in order to learn more about the physical world 
and the laws that operate in the world. Higher-level thinking occurs when they attempt to 
solve problems that the construction materials (wood, clay, metal, and paper, for example) 
pose because the solution requires divergent rather than convergent thinking. (Bergen, 
2009, p. 418)

FG1:T8 described how a child filled the police car with different combinations of 
objects, suggesting involvement in divergent thinking that explored a range of dif-
ferent problems and solutions.

Her har jeg en jente som har funnet en politibil. Så har hun satt en dame inni den og en mann 
baki. Og hun holdt på å sette alt oppi, prøvde å få plass til alt. Hun prøvde å se om det var 
plass til alle tingene i bilen, eller “må jeg ta noe ut for at menneskene skal kunne sitte inni 
den”. Så hun satt og beregnet på å ta inn og ut og hva det var plass til. Så jeg tenkte at det 
handlet om romforståelse, hva det er plass til inni bilen. Hva er for stort til å være inni bilen?

Here, I have a girl who has found a police car. Then she has put a woman inside it and a man 
in the back. And she kept putting everything in it, trying to accommodate everything. She 
tried to see if there was space in the car for all the things, or “do I have to take something 
out for the people to be able to sit inside it?” So she estimated, taking in and out and what 
there was space for. So I thought it was about spatial understanding, what will fit in the car. 
What’s too big to be in the car?

Fig. 21.4 Packing and 
unpacking the toy police 
car
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In their comments, the teachers described the problem as being about capacity 
in regard to how much the child could fit into the car (FG1:T7 Det var det hun 
prøvde på, hvor mange eller mye hun kunne ha oppi der. That was what she tried, 
how many or how much she could have in there). Although the problem seemed to 
be a non- routine problem that the child had posed herself, the teachers identified 
it as being about an everyday situation that she might have been aware of 
from home:

Så er det sikkert noe med at hun vet at menneskene skal være i bilen og kjøre den. Og hun 
har jo bestemt seg for at menneskene skal være oppi. “Men hva mer kan jeg få plass til? 
Hva kan jeg få med meg på turen?” (FG1:T8)

Then there is probably something about the fact that she knows that people should be in the 
car and drive it. And she has decided that the people must be in it. “But what more can I fit 
in? What can I bring with me on the trip?”

As was the case in the Train Crash stories, the teachers considered that this child 
used a trial-and-error strategy, but this time, it was to modify the problem as well as 
to find different solutions to the same problem. According to the teachers, the child 
spent a lot of time playing with the car by herself. At one point, the teacher explained 
how the child placed a tower of plastic blocks in the car, but as the car drove off, the 
tower fell out. In reflecting on this story, FG1:T9 suggested that the child was learn-
ing about size relationships: Så det er jo noe med forhold her, å lære seg om forhold. 
(There is something about size relations here, learning about size relations). It is not 
completely clear how size relations were involved, but this comment suggests that 
this teacher saw a range of mathematical possibilities.

As was the case in the Goldilocks stories, the teachers’ focus on relationships 
between the objects and the car’s capacity suggests that they considered the child 
was explaining. As with the case of the other sets of stories, the child’s explaining 
was generally done through body actions. However, the teachers also indicated that 
oral language was important for the children to describe what they were doing.

FG1:T7 Det er mye læring, også for barn, når man holder på med det. Det er ikke bare 
en aktivitet uten at de erfarer mye, og det er sånn de lærer det, gjennom lek. Så 
kan vi gi dem noen benevnelser underveis

FG1:T5 Sette ord på det de gjør
FG1:T7 Så de får med seg noen ord og uttrykk som de kan ta med seg i skolen. Det er det 

vi tenker på, at de skal ha kjennskap til de forskjellige
FG1:T5 Begreper og navn
FG1:T7 There’s a lot of learning, also for children, when you’re doing it. It’s not just an 

activity, but they experience a lot and it’s the way they learn it, through play. 
Then we can give them some terms along the way

FG1:T5 Put into words what they are doing
FG1:T7 So they get some words and expressions that they can bring to school. That’s 

what we are thinking of, that they should know about the different
FG1:T5 Concepts and names

Although Explaining is not discussed explicitly, the teachers indicated that prob-
lem solving provided them with opportunities to develop the children’s oral lan-
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guage. In doing so, they acknowledged that names and concepts were something 
needed for school, rather than for supporting their current problem posing or prob-
lem solving. Thus, although they recognised that the child’s actions involved learn-
ing, they considered that the value of that learning was for the future, not for the 
present.

Similarly, Playing as a mathematical activity (Bishop, 1988) was discussed 
implicitly in regard to how the child adapted the problem, bringing “as-if” possibili-
ties into focus. Bergen (2009) suggested that imaginative play, such as fitting things 
together and taking them apart, allowed children to become interested in “seeing 
what might happen” (p. 419). In this situation, the teachers considered that the child 
worked on solving the problem within the accepted rules—the objects must fit the 
space and not fall out when the car moved—and involved the child in testing differ-
ent “as-if” scenarios, which fits the criteria for Playing as a mathematical activity.

21.4  Discussion

The stories that the teachers told about the children’s engagement in mathematical 
situations raise a number of issues that connect problem posing and problem solv-
ing to Bishop’s (1988) mathematical activities of Explaining and Playing. In our 
analysis, we have identified four interrelated components that we considered 
appeared in the complete set of stories and which we discussed in the four illustra-
tive stories analysed in detail in this chapter. The components, shown in Fig. 21.5, 
that the teachers showed awareness of were: the routine or non-routine nature of the 
problems; known or unknown problem solving strategies; explaining through body 
actions or words; playing by exploring different scenarios or following rules.

In discussing the children’s engagement with the Goldilocks box, the teachers 
seemed to consider the problems the children posed as being routine. They told that 
the children solved similar problems regularly. As Hiebert et al. (1996) found when 
children were able to problematise a situation, even if that situation seemed routine, 
the children were prepared to spend time working on the solution. In the teachers’ 

Non-routine 
problems 

Routine 
problems 

Unknown 
problem-

solving strategy

Known 
problem-

solving strategy

Explaining 
through body 

actions 

Explaining 
through words

Playing by 
investigating 

“what-if” 

Playing by 
following rules

Children´s 
engagement in a 

mathematical 
situation 

Fig. 21.5 Components of problem posing and problem solving from teachers’ stories

T. Fosse et al.



365

stories about the children’s engagement in Goldilocks, the children were not bored 
by the routine nature of the problem but had the possibility to recast it in different 
ways. This suggests that the routine nature of problems were linked to Bishop’s 
(1988) description of rule following as part of Playing. The routine nature of the 
problem set the rules for engagement, but did not inhibit the children’s desire to 
engage in the problem.

The teachers also indicated that the children engaged in non-routine, perplexing 
problems, for example in the Train Crash and Packing the Police Car stories. In both 
cases, the teachers considered that the children explored different “what-if” sce-
narios, where there was no expected solution. In the stories around Packing the 
Police Car, the teachers considered the child was exploring changes to the problem 
as well as the solutions. Thus, Bishop’s (1988) description of Playing can be consid-
ered as being related to both routine and non-routine problems that the teachers 
identified the children engaging with.

The second component was whether the problem-solving strategy was known by 
the children as providing an appropriate answer, or whether the problem-solving 
strategy allowed the children to explore unexpected aspects of the problem as they 
solved it. For example, trial-and-error problem-solving strategies provided children 
with opportunities to explore different “what-if” scenarios. This strategy can, there-
fore, be considered part of Playing as a mathematical activity (Bishop, 1988). This 
was the predominant problem-solving strategy that the teachers described in their 
stories about Train Crash and Packing the Police Car. In contrast, the teachers noted 
that the children used problem-solving strategies in Goldilocks and the Three Bears 
and in Orange Boats, which both the children and the teachers expected would pro-
vide a specific result. However, using these solution strategies could still be chal-
lenging. For example, it was the teacher who proposed a routine problem (Orange 
Boats), where the problem-solving strategy, systematic counting, was expected to 
be used by both the teacher and the child, but which was something that the child 
found challenging and engaging.

The third component was to do with Explaining. Often, the teachers indicated 
that children explained their solutions and solving methods through their body 
actions (Train Crash and Packing the Police Car). As has been shown elsewhere, 
children’s use of their bodies to solve problems (Meaney, 2016) and gestures 
(Johansson, Lange, Meaney, Riesbeck, & Wernberg, 2014) provides important 
insights into their mathematical thinking. Although the teachers, at least implicitly, 
recognised that actions could be interpreted as children’s explanations, there may be 
some value in supporting the teachers to have a meta-language for discussing what 
they paid attention to in these mathematical situations, so that the discussions 
became explicit.

In the stories about Packing the Police Car, the need for verbal language was 
highlighted as being valuable for when the children went to school. Although chil-
dren can learn from watching the actions of others (Johansson et al., 2014), verbal 
reflections might support these children to become better problem solvers who 
could learn from each other (Hiebert et al., 1996). Thus, the teachers could need 
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help to support children to describe verbally their problem posing and problem 
solving.

The final component was about the kind of Playing (Bishop, 1988) that the chil-
dren engaged in. The teachers identified two aspects of Playing which were either 
following a set of prescribed rules (Goldilocks and Orange Boats) or engaging with 
“what-if” scenarios (Train Crash and Packing the Police Car). As stated earlier, the 
kinds of engagement in the problem solving were related to the routine or non- 
routine nature of the problems that the children posed themselves or that were posed 
for them. The teachers generally considered that it was the children who posed 
problems which enabled them to engage in “what-if” scenarios. When the teachers 
posed problems, as in the case of the Orange Boats, there was an expectation about 
the kind of answers which would be found and the solution strategy for gaining 
these answers. We did not have any stories in which the teachers saw their role as 
supporting children to consider how they could pose different versions of the initial 
problem. This seems to be another area which could be developed through profes-
sional development.

21.5  Conclusion

According to our analyses, the teachers showed awareness of differences between 
problem situations that allowed us to posit four components connected to problem 
posing and problem solving. This is useful with the increased emphasis on problem 
solving in Norway, in the new curriculum (Kunnskapsdepartementet, 2017), as it 
can form the basis for professional development programmes that respect the play- 
based approach that underlies mathematics education in barnehage. Anthony et al. 
(2015) had raised a concern that teachers only documented easily recognisable 
mathematical learning opportunities, so it was not clear how problem solving could 
be discussed in the teachers’ stories. Although the explicit mentioning of problem 
solving in the teachers’ stories about the Train Crash photo showed that the teachers 
could discuss this, our analyses showed that the connections to problem posing and 
problem solving were more often implicit. It was by analysing the stories in rela-
tionship to Bishop’s (1988) mathematical activities of Playing and Explaining that 
the nuances of how they interpreted the children’s engagement in the different math-
ematical situations came forth.

Our analysis raised four components that the teachers paid attention to, which 
are illustrated in Fig. 21.5. These components showed both what the teachers were 
aware of and which areas could be developed further, in particular the development 
of children’s verbal language to support their current problem posing and problem 
solving, as well as the teachers’ possibilities for encouraging children to explore 
different variations of the problems or solution strategies. Nevertheless, this was a 
small study and more research is needed on how other barnehage teachers view and 
respond to mathematical problem posing and problem solving.
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Chapter 22
‘You Are Already Bigger Than 
the Giraffe!’—The Use of Adjectives 
in Measurement Activities in Kindergarten

Sarah Keuch and Birgit Brandt

22.1  Introduction

In the paper presented at the CERME conference in 2017 titled ‘The duck is the 
biggest’ (Brandt & Keuch, 2017), we discussed, amongst other things, semantic 
deviations concerning the use of adjectives. This chapter aims at taking a deeper 
look at the role of adjectives and their function in small group interactions concern-
ing the construction of an initial understanding of length and weight in kindergar-
ten. The relevance of language for mathematical learning processes in early 
education has been repeatedly shown, and academic language proficiency is now 
widely acknowledged as an important factor (for example Prediger, Renk, Büchter, 
Gursoy, & Benholz, 2013). Unfortunately, the German school system is still in need 
for effective (pedagogic) approaches to support children with disadvantageous start-
ing conditions like migration, socio-economic status or developmental speech dis-
order, in order to provide them with an equal chance to participate in (mathematic) 
education processes (Gogolin & Lange, 2010; Prediger et al., 2013).

Kindergarten teachers do not only provide language input, they also have the 
possibility to influence the child’s language by deciding when and how to give feed-
back and therefore play an important role for the child’s linguistic and mathematical 
development. While most German kindergarten teachers seem to be aware of their 
function as language role models, only a few have acquired a professional back-
ground that enables them to specifically support interactive language learning pro-
cesses (Ritterfeld, 2000). Research projects from Germany and Switzerland 
investigated early years professionals’ ability to support children’s academic lan-
guage development. Michel, Ofner, and Thoma (2014) examined German kinder-
garten teachers concerning their linguistic knowledge, their knowledge about 
children’s language development and their ability to choose effective interventions. 
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Only half of the items which experts see as relevant to foster the language develop-
ment (in) young children were answered correctly. Isler, Künzli, and Wiesner (2014) 
analysed conversations between Swiss kindergarten teachers and children in order 
to investigate the potential for the acquisition and fostering of academic language 
skills. So far, their results show that kindergarten teachers have to be made more 
aware of the central meaning of their language acts and to support a setup of practi-
cal action patterns for the fostering of academic language skills. In our own research, 
we find similar results as kindergarten teachers show few approaches for supporting 
the children’s language development in mathematic learning opportunities (Brandt 
& Keuch, 2017, 2018). Based on these results, the subordinate aim of our study is 
to raise kindergarten teachers’ awareness of possible language hurdles and learning 
opportunities concerning a specific content, so that they are able to pay special 
attention to them in connection with supporting mathematical learning. Our objec-
tive is not to avoid these language structures, but to use them in a way that fosters 
the children’s language as well as mathematic development. German and interna-
tional experts agree that academic language education processes should start early, 
be designed age-appropriately and be oriented to a specific content (Prediger, 2015; 
Rudd, Satterwhite, & Lambert, 2010). With this project, we would like to make a 
contribution by having a closer look at special features in kindergarten teachers’ 
interactions concerning measuring length and their potential for fostering mathe-
matic as well as linguistic aspects with (a) focus on adjectives as an important com-
ponent for differentiated language use. In this chapter, we concentrate on the two 
following questions:

 – Which adjectives do kindergarten teachers and children use when talking about 
measuring length and mass?

 – How do kindergarten teachers and children use these adjectives with respect to 
fostering mathematical as well as language aspects?

Therefore, we chose to have a closer look at measuring length in kindergarten for 
reasons explained in the following paragraph.

22.2  Measuring Length and Weight

Following Bishop‘s idea of mathematical enculturation, measurement is one of the 
six basic activities and is seen as a basis for the development of mathematics in 
different cultures (Bishop, 1988). Bishop claims that ‘measuring (...) is concerned 
with comparing, ordering, and with quantifying qualities’ (p. 34). For these activi-
ties, an abstraction process is necessary, which results from a concentration on a 
quantifying characteristic. Real objects are compared regarding their length or 
weight, independent from their form, colour or other characteristics. The quantifi-
cation of quality results from comparing with a unit, which is seen as a fundamen-
tal idea of all measuring activities independent from the magnitude. Here, it 
becomes clear that talking about comparing, ordering and quantifying qualities 
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demands a  differentiated language usage, including technical terms and specific 
grammatical structures and word classes, adjectives for example, that are needed, 
for example, to describe a comparison or quantification. Measurement, besides 
numbers, experiencing spatial relationships and geometric shapes, is a main con-
tent in many curricula for early mathematics education. It is of great significance 
for various reasons. On the one hand, it represents a link between mathematically 
abstract concepts and everyday life. On the other hand, measurement comprises 
multiple inner- mathematical relations (especially with numbers and geometry) 
(Barrett et  al., 2011; Sarama, Clements, Barrett, van Dine, & McDonel, 2011; 
Skoumpourdi, 2015; Smith, van den Heuvel-Panhuizen, & Teppo, 2011). Beyond, 
the concept of measurement can be seen as a basis for further concepts, for exam-
ple fractions and rational numbers (Barrett et al., 2011).

Our analyses concentrate on two different magnitudes, length and weight. 
Length, in contrast to weight, is directly perceivable, even for young children. 
However, length is not always easy to grasp because of the relation between length 
and area, and because children have difficulties in distinguishing between them 
(Barrett et al., 2011; Castle & Needham, 2007; Skoumpourdi, 2015). Although an 
integrated approach for different spatial magnitudes, especially in early education, 
is seen as reasonable (Barrett et al., 2011) in order to understand the differences and 
the fundamental idea of measuring as comparison with a unit, we only concentrate 
our linguistic analysis on length and weight. Length belongs to spatial measure-
ment. Piaget, Inhelder, and Szeminska (1960) define the fundamental idea of spatial 
measurement this way: ‘To measure (in Euclidean metrics) is to take out of a whole 
one element, taken as a unit, and to transpose this unit on the remainder of a whole: 
measurement is therefore a synthesis of sub-division and change of position’ (p. 3). 
This change of position requires the understanding that (a) the size of the unit is 
conserved and (b) that the unit can be used iteratively. In doing so, the unit must be 
copied and repeated without a gap as well as without overlapping. Concrete objects 
become representations of length, and their mutual characteristic is constituted in 
their one-dimensional linearity (Nührenbörger, 2002). The activity of measuring 
length concentrates on the determination of a linear expansion. Therefore, one has 
to distinguish between objects with a rather clear linear characteristic, for example 
sticks or distances, and those objects with more than one dimension that can be 
measured (width, height, depth) (Nührenbörger, 2002; Skoumpourdi, 2015).

In contrast to length, weight is not directly perceivable. This means that even for 
direct comparisons and ordering, some kind of tool or mediator (other than one’s 
eyes) is necessary. While hefting (holding objects in one’s hands to make a judge-
ment) comes most naturally and without the need of further devices, it is not the most 
precise method, for example because of different locating surfaces of differently 
shaped objects. Children might also have a problem with perceiving measuring 
weight with ordinary scales as some kind of comparison because the comparison 
process takes place within the scale, invisible for the weighing person, and only offers 
a number that needs to be interpreted. It might be helpful to focus on indirect com-
parisons with pan balances and Roberval balances, so that the comparison process 
becomes visible (Reuter, 2011). The question of how children acquire a  (geometric) 
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concept of magnitudes is dealt with in various research papers. Studies have also 
shown which milestones children have to master and where—from a mathematical 
point of view—they face special difficulties that they have to overcome (Sarama 
et al., 2011). We take this research as a background for our linguistic analyses, but 
will not discuss it in detail. Consequently, it becomes obvious that speaking about 
length and weight comes along with specific linguistic challenges, for example con-
cerning the characteristic of linearity, the differentiation from area and the not always 
visually perceivable differentiation between light and heavy objects. The following 
paragraph looks at the linguistic features of adjectives and their role in talking about 
length and weight.

22.3  Learning Opportunities: Adjectives

The following remarks refer to the usage and characteristics of adjectives in German 
and English and are not in the least universal, which has to be kept in mind when 
analysing the language of learners of German as a second language. Adjectives are 
a part of speech which modify nouns concerning their quality or attribute. They can 
be divided into complementary (dead vs. alive) and gradable (small vs. large) adjec-
tives. Complementary adjectives are characterised by an either–or relationship 
between the two members of such a pair. This means that the negation of one of the 
words is synonymous with the other—not dead is the same as alive. With gradable 
adjectives, however, this is not the case as not big does not automatically equal 
small, there might as well be something like ‘medium’ in between (Bieswanger & 
Becker, 2017). Further, these terms always have to be considered in relation. For 
example, a big mouse is most likely still smaller than a small elephant. This differ-
entiation has to be taken into consideration when talking about measuring sizes with 
young children.

Gradable adjectives can be used to express comparisons. In English, there are 
two ways to express the comparative form depending on the number of syllables 
and final sound of an adjective (periphrastically more adj or synthetically adj + 
-er). In German, only the latter is possible. German uses only inflexional suffixes 
to form comparative and superlative forms. In German and English alike, ‘-er’ 
added to a stem of a word forms the comparative form (small-smaller/klein-
kleiner), ‘-est’ and ‘-sten’ in English and German, respectively, added to a word 
stem build the superlative form (small-smallest/klein-kleinsten) (Bieswanger & 
Becker, 2017). In German, adjectives can be used in three different ways, attribu-
tively, predicatively and adverbial. When an adjective like slow [langsam] is used 
attributively, it is placed between the article and the noun and in German it is 
declined according to the gender and number of the noun (the slow mouse—die 
langsame Maus). When used in its predicative function, the adjective is used with 
a copula verb like to be and is not adjusted to the noun (the mouse is slow—die 
Maus ist langsam). Adverbial adjectives appear with a verb and are used to describe 
it. Again, the adjective is not changed in German, but normally has an -ly suffix in 
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English (the mouse runs slowly—die Maus rennt langsam) (Habermann, 2009). 
Ninio (2004) found that children have problems analysing, understanding and pro-
ducing attributive adjective–noun combinations.

When learning a new language, children (and people in general) deduce the 
meaning of new words from the input they receive. Information about the word 
class can be deduced from the syntactical structure in which it occurs. For the word 
class we are interested in, namely adjectives, this means: If a word occurs within a 
certain sentence frame, like ‘this is an x one’ (this is a small one), x is likely to be 
an adjective (small). Inferring the word class from the syntactical surrounding, how-
ever, does not automatically tell the meaning of the word. This is especially impor-
tant with adjectives that describe non-perceptible characteristics (Corrigan, 2008). 
Even if they cannot immediately learn the meaning of a word, the information in the 
input can still be relevant for the acquisition process. Corrigan (2008) claims that 
explicit teaching might even be less important than exposing children to rich lin-
guistic contexts.

By using adjectives in their conversations, adults in general and kindergarten 
teachers in particular provide information about its meaning, most often uninten-
tionally but sometimes with full awareness. There are four different types of 
information that can be provided by adults to support vocabulary learning. In a 
more explicit way, they can give an explicit definition or synonym (1). In a less 
explicit way, adults can provide a semantically related word/phrase (2). Further, 
they can give comparing or contrasting information (3). In this context, compara-
tive and superlative forms play an important role because they automatically pro-
vide comparative information if the morphological and syntactical structure is 
known to the hearer. Finally, adults can support understanding by providing eval-
uative information, expressing whether the target word is bad, good, weak or 
strong (4). In addition, the referring noun can help understand the meaning if it is 
provided either as a specific noun or as a personal pronoun. The use of pronouns 
that refer to things, general nouns like thing or one or even the complete omission 
of nouns might hinder the acquisition. In everyday situations, though, input often 
contains deviations from the standard language variation and possible irrelevant 
information (Corrigan, 2008).

While adjectives also play an important role in arithmetic contexts to describe 
the relation between numbers, their usage is crucial for measurement. As Bishop 
says, there is a clear cultural need for a language to be able to express qualities, 
comparisons and ordering before developing units for measurement (Bishop, 1988). 
A magnitude is marked by assigning joint characteristics to real existing objects in 
an abstraction process (Nührenbörger, 2002). To verbally express these characteris-
tics, German and many other languages use adjectives. Lorenz mentions the com-
parative form as crucial for expressing relations and the development of an 
understanding of length transitivity (Lorenz, 2008). If you compare two objects 
regarding a magnitude, you put them in relation to each other. In this case, the 
equivalence relation and the order relation become important in a mathematical and 
linguistic sense.
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The equivalence relation is defined by reflexivity and symmetry. Linguistically, 
this relation is expressed by ‘is as long as’ for length and for mass, (that is)‘is as 
heavy as’. Asymmetry and transitivity characterise the order relation, which is 
expressed by ‘longer than’ and ‘heavier than’. While mathematically, the verbali-
sation of these relations seems clear and limited, our aim is to find out if the use 
of adjectives and syntactic constructions differs in oral face-to-face communica-
tion with small children, and if these variations might support or hinder the con-
ceptual development.

Another difficulty might be found in the omission of reference objects. If the 
positive form is used without a reference object, it is called absolute positive 
(Albers, 2007) as in ‘Tom is tall’. Presuming that Tom is a northern European male 
adult, the sentence means that Tom is taller than the normally expected body size 
of a northern European male adult (p. 11). This inference, however, stays implicit 
and might lead to difficulties understanding the sentence if you either do not know 
about this implication or if you have not (yet) established a benchmark for a north-
ern European male adult or the respective reference norm. In the example ‘Sally is 
three inches shorter than Bill’ (p. 197), ‘Bill’ serves as the reference object. By the 
comparative adjective, a path away from Bill is specified along a certain scale of 
value. The distance can be further specified by the use of quantifiers or measure 
phrases, as in the example. Without a specific reference object, there cannot be a 
path and the distance—and therefore the meaning—stays unclear or at least vague 
(Jackendoff, 1983). In her literature review, Corrigan (2008) finds that there is a 
research gap in the kind of information adults provide about the meaning of adjec-
tives when they are not explicitly teaching language. Her ‘[f]indings highlight the 
importance of looking at adult input in situations where teaching word meaning is 
not an explicit goal’ (Corrigan, 2008, p. 159). Against this theoretical background, 
we will reconstruct the use of adjectives to detect aspects of language support and 
to show the connection to specific meanings and concepts that are negotiated in 
certain situations.

22.4  Research Design and Analysing Methods

The data basis for our analysis stems from the project erStMaL (early Steps in 
Mathematical Learning) (Acar Bayraktar, Hümmer, Huth, & Münz, 2011). Within 
this longitudinal project, there are 17 videotaped (15- to 51 min long) small group 
interactions with one kindergarten teacher and two to five children each, designed 
and prepared by the teachers themselves focusing on different magnitudes, namely 
length, weight, and volume, including combinations of two or three of them. For 
this project, the nine situations that mainly deal with length and the five situations 
that focus on mass were chosen for further analysis. Since some teachers and chil-
dren participated in more than one setting, the sample includes data from 9 teachers 
and 35 children at 6 kindergartens. These 14 situations serve as a data basis for the 
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presented project and were transcribed with EXMARaLDA and coded 
with MAXQDA.

In order to answer the first research question, each adjective used during a 
measuring process or while talking about measuring length or weight was coded 
in combination with their grammatical information concerning the speaker, the 
form (comparative, superlative) and function within an utterance (attributively, 
adverbial or predicatively).

In order to answer the second research question, we follow methods from inter-
actional linguistics (Selting & Couper-Kuhlen, 2000). Interactional linguistics takes 
an interdisciplinary and cross-linguistic perspective on language. It looks at the 
structure and use of language, capturing it in its natural environment, the social 
interaction. Based on the linguistic element used in the utterance, we look at their 
role in the conversation. In our context, these linguistic elements are adjectives 
describing or accompanying measuring processes. We are especially interested in 
situations in which adjectives are used in ambiguous ways which might lead to dif-
ferent meanings within the child’s and the kindergarten teacher’s mind. Apart from 
that, we are interested in structures that deviate from a normatively correct way and 
which might therefore inhibit the construction of measuring concepts or at least 
make it harder for children to understand the concepts of length and mass.

22.5  Analysis and Interpretation of Empirical Data

In order to answer the first research question, which adjectives are used by kinder-
garten teachers and children to talk about length, every adjective used was coded 
and is displayed in the following table, independent from the grammatical informa-
tion and function in the sentence:

While there is a total number of 11 adjectives that kindergarten teachers and 
children in our empirical examples use to talk about length within the nine situa-
tions, only about half of them are used more than five times. One can see at first 
glance that big [groß] and long [lang] seem to be popular adjectives while thin, nar-
row and low are less often used. However, the first-mentioned adjectives might 
cause confusion because of their various meanings. In German, groß has nine dif-
ferent meanings. Like big, it can be meant in terms of size, age or time, but also 
intensity or degree.1 This also applies to the adjective long, which can be used to 
talk about a stretch of time or a geographic expansion.2 When answering our second 
research question, how these adjectives are used in interactions, we will take a 
closer look at these ambiguities and see if and how these different meanings could 
lead to mathematic or linguistic problems. Each of the adjective’s antonyms (except 
for medium) is included in the situation, which could support to deduce the meaning 

1 https://www.duden.de/rechtschreibung/grosz
2 https://www.duden.de/rechtschreibung/lang_Adjektiv_auch_raeumlich
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from the context. If you look at two antonymic adjectives, for example big and 
small, it is true for each pair that the one with the higher degree is named more 
often. In total, 611 adjectives concerning measuring length can be found in the nine 
situations, which equals about 68 adjectives per situation. All adjectives are used 
more often by kindergarten teachers than by children, with five of them being exclu-
sively used by the teachers.

Within the five situations that dealt with the magnitude weight, teachers and 
children used ten different adjectives. Seven of these ten adjectives were used more 
than five times. While big and small also occur in situations concerning length, the 
others seem to be specific for weight-situations. The adjective heavy is used most 
often, while strong, long and full appear less often. Only four adjectives (heavy, 
much, light and small) are used more often by kindergarten teachers than by chil-
dren. Strong is the only adjective that is used by the children but not by the kinder-
garten teachers. Since it is semantically not directly associated with weight, we will 
have a look at the occurrences later. Quantity (much, less) also seems to be strongly 
connected with weight. This might have to do with the various occasions where 
non-standard units like bears or stones are used to determine the weight of certain 
objects or to compare these units with each other. The weight of the balance pan can 
be changed by changing the number of bears or stones within it. The high use of 
adjectives in weight-situations might also have to do with the fact that since the 
weight of an object is not visually perceivable, children and kindergarten teachers 
feel a higher need to verbally express these characteristics. Based on these results, 
it seems that talking about weight is accompanied with a greater use of adjectives, 
especially for children. If situations designed to learn about mass naturally offer 
more possibilities to use adjectives, they might be a good place to use these oppor-
tunities to foster semantic, morphologic and syntactic characteristics of adjectives. 
The following analyses will shed more light on the actual use of these adjectives 
within the situations.

The subsequent tables refer to the use of the comparative forms within the situ-
ations and their syntactical incorporation. Especially, these tables look at whether 
the utterance contains a reference object or not. It is further divided into ‘com-
plete’ (the normal ‘x is bigger than y’- structure) and the post-positioned structure 
(‘which is bigger, x or y’), which mostly occurred in questions, or no reference 
object. The analysis is conducted with three different adjectives, big as one adjec-
tive that is used in situations with length and weight, long as the adjective most 
occurring in length- situations after big, and heavy as the adjective used most 
often in weight-situations.

From a total of 242 coded occurrences of big (see Table 22.1), there are 98 tokens 
(40%) used as comparatives. When looking at the use of bigger, it is used without a 
reference object nearly twice as often as with its complete form. Although not pres-
ent on the linguistic level, one might argue that the reference object is often clear 
within the situation because of non-verbal cues. Since we focus on verbal linguistic 
aspects and their relation to mathematical concepts, these kinds of utterances are 
also counted as incomplete, especially since they might still cause dissonances, as 
we will show in the following paragraph on examples for learning opportunities. 
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Table 22.1 Adjectives used when talking about length and weight sorted by quantity

Measuring length Totala (teacher) Measuring weight Total (teacher)

Big [groß] 242 (78%) Heavy [schwer] 318 (74%)
Long [lang] 114 (77%) Much [viel] 178 (63%)
Small [klein] 100 (69%) Light [leicht] 105 (58%)
High [hoch] 81 (61%) Small [klein] 75 (52%)
Thick [dick] 30 (80%) Big [groß] 73 (47%)
Short [kurz] 29 (93%) Empty [leer] 18 (39%)
Medium [mittel] 5 (100%) Few [wenig] 18 (50%)
Low [niedrig] 5 (100%) Strong [stark] 5 (0%)
Wide [breit] 5 (100%) Long [lang] 2 (50%)
Narrow [schmal] 1 (100%) Full [voll] 2 (50%)
Thin [dünn] 1 (100%)

aThe first number in this column indicates the total number of times the adjective occurred within 
the teachers’ and children’s dialogues. The number in parentheses indicates the percentage of 
instances when the adjective is used by the teacher to give a better idea about the distribution of 
one adjective compared to another and of the teacher’s and children’s use

Children produce almost twice as many incomplete as complete structures, although 
the overall number is rather low. The post-positioned structure with big is only used 
by kindergarten children.

With a total number of 318 coded tokens, heavy is the most used adjective 
(Table 22.1). The comparative is used in 146 cases (45%). Hence, heavy is used as 
the comparative form most often, from the percentage and from the absolute per-
spective. The syntactical incorporation of heavy looks quite different from the one 
of big. Only a little over 10% of all utterances are complete, and all but one of them 
are produced by the kindergarten teacher. The frequent production of incomplete 
structures by kindergarten teachers might lead to imitations by the children and also 
to an only limited understanding.

The analysis of long again shows a completely different picture. While it is used 
114 times in total (Table 22.1), the comparative form only occurs 25 times; thus, the 
comparative form is only used in 20% of all cases. Only once is it produced within 
a syntactically complete structure. Children only use the comparative form twice, 
both in an incomplete way. The infrequent use by children might be connected to 
the infrequent and incomplete use by the kindergarten teachers. Hence, the children 
do not have the linguistic model, and because of the incomplete usage, they might 
not be able to grasp the complete meaning of it.

Table 22.2 also shows that the adjectives used in the situation refer to different 
dimensions. This shall now exemplarily be shown for length (Table 22.3). Thin, 
thick, wide and narrow normally describe the distance between sides of a two- or 
three-dimensional object (Width). Long and short describe a clearly horizontal and 
also one-dimensional distance (Horizontal). With high and low, the expansion 
expressed is rather vertical (Vertical). Small, medium and big, amongst other defini-
tions, refer to a rather three-dimensional expansion of a person or thing (Expansion). 
However, as mentioned above, big can also be used with other meanings. Together 
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Table 22.2 Reference objects used with ‘bigger’ (length- and weight-situations), ‘heavier’ 
(weight-situations) and ‘longer’ (length-situations)

Complete Post-positioned
Missing reference 
object

Bigger 
Example

Torben’s bear is bigger 
than yours

Who is bigger, I or that? Yellow is bigger, 
right

b-Total 36 (37%) 2 (2%) 60 (61%)
b-Teachers 28 0 46
Heavier 
Example

Ten little bears are 
heavier than two big ones

We don’t know what is 
heavier, the sand or the stones

Yes right that is a 
little bit heavier

h-Total 17 (12%) 8 (5%) 121 (83%)
h-Teachers 16 7 85
Longer 
Example

Is this one longer than the 
other?

Whose woolen string is 
longer? Lorraine’s or Nina’s?

Look, this is longer!

l-Total 1 (4%) 5 (20%) 19 (76%)
l-Teachers 1 5 17

Table 22.3 Adjectives used in the different situations according to categories

Situation Width Horizontal Vertical Expansion Sum

A (23 min) 8 (20%) 4 0 29 (70%) 41
B (15 min) 6 (13%) 9 (19%) 1 30 (65%) 46
C (36 min) 0 4 36 (69%) 12 (23%) 52
D (34 min) 0 2 (5%) 0 42 (95%) 44
E (29 min) 6 (3%) 6 (3%) 2 137 (90%) 151
F (24 min) 1 27 (82%) 1 4 (12%) 33
G (45 min) 4 54 (60%) 4 28 (31%) 90
H (30 min) 0 27 (67%) 0 13 (33%) 40
I (27 min) 0 3 36 (55%) 65
Sum 25 136 80 562

with small and medium, it can be used (in a rather imprecise way) to talk about other 
spatial dimensions. So while these adjectives originally describe some kind of 
expansion, they can be used as ‘passe-partout’ adjectives in the situations to describe 
different dimensions of length.

Most situations show a clear focus on one or two categories. Since all situations 
are of different length, their focus has to be considered in contrast to the other adjec-
tives used within the situation and not compared to other situations. Three situations 
(D, E and F) show a clear focus on one dimension, with more than 80% of all adjec-
tives used from one dimension. In all situations except for B, there is a focus on two 
dimensions with the two most often named dimensions adding up to at least 80%. 
Only situation B, which is also the shortest situation, shows percentages over 10% 
in three out of four dimensions. From a mathematical perspective, this means that 
when kindergarten teachers talk about length in kindergarten, they most often seem 
to concentrate on one or at most two different dimensions. From a linguistic per-
spective, it could also mean that kindergarten teachers and children align their 

S. Keuch and B. Brandt



379

 language, especially concerning the ‘passe-partout’ adjectives in the category 
Expansion. While most situations do have a focus on one or two dimensions, these 
dimensions seem to vary a bit according to the situation. While F, G and H seem to 
mostly talk about a horizontal dimension of length, situations C and I are the only 
ones that focus on the vertical, linear aspect of length, at least in their speech. Four 
of the nine situations linguistically focus on the expansion of objects (A, B, D and 
E) or rather use these adjectives to talk (imprecisely) about other dimensions:

For the mathematical concept of measuring and length, this means that different 
aspects are highlighted depending on the use of adjectives. Using adjectives for 
measuring length that do not clearly indicate a one-dimensional distance might lead 
to a wrong or at least incomplete understanding of length, since the concept might 
be connected with wrong or unclear adjectives. If length is only talked about using 
adjectives that describe a horizontal distance, children might develop a concept that 
is only associated with this direction. On the other hand, reducing length to one 
dimension in the beginning might present a didactic reduction.

Adjectives that in their original meaning describe the three-dimensional expan-
sion of persons or things, like big and small, however, might lead to a confusion of 
length and area or volume. In this case, the difference between the two cannot be 
made clear with language alone. In the next paragraph, we will have a closer look at 
some empirical examples which show how these adjectives are used in interactions 
between kindergarten teachers and children and how they foster or inhibit mathe-
matical learning and language acquisition.

22.6  Empirical Examples for Learning Opportunities

In the following passage, we will first present some empirical insights into the use 
of adjectives in situations dealing with length, especially concerning the use of big 
and the question what dimension kindergarten teachers and children actually talk 
about when they use it. Then, we look at examples from situations that focus on 
weight. Here, we concentrate on the adjective heavy and the connection between 
weight and size.

As seen in Table 22.1 and discussed for the results of Table 22.3 above, big is the 
most used adjective in situations dealing with length. As mentioned above, it works 
as a passe-partout adjective and comes with many different definitions. Therefore, it 
is not much of a surprise that it is used in different contexts with different meanings 
within these situations:

Measuring the children’s body length with different tools is a popular activity to 
introduce measuring length. Wooden measuring boards with animals, for example, 
are used in several situations to determine the children’s body length. Most kinder-
garten teachers, who use these wooden measuring boards, use the animals to explain 
the children’s body length without having to use numbers that exceed the child’s 
actively mastered number range. However, this might lead to confusions:

Johanna (E)    You’re already bigger than the giraffe
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While the child is not bigger than a real giraffe, it goes without saying that it is 
bigger than the drawing of the giraffe on the measuring board, especially in the 
sense of expansion. What the child needs to understand though, is that her body is 
longer than the distance between the floor and a special point of the giraffe on the 
measuring board. In this situation, the giraffe serves as a substitute for the omitted 
numerical scale value. Without further explanations, this might not be obvious for 
small children without any experience with measurement.

In other situations, kindergarten teachers use folding rules to measure the chil-
dren. Since the declarations on the folding rule are made in centimetre, the numbers 
normally exceed the actively mastered number range of kindergarten children. So, 
the teachers try to give an understanding of these numbers in different ways. One 
kindergarten teacher points at number 120 on a folding rule where every tenth num-
ber is printed in red while all the others are black and explains:

Sabine (D)    You are as big as this red number

Here as well, the child is not literally as big as the number on the folding rule, 
which is only a few millimetres in size. In contrast to the aforementioned example, 
it is not the location of the number which represents the child’s body length, but a 
sign that symbolises the number of times you have to take a centimetre and put it 
one after another to get a stretch that is as long as the child’s length. In both situa-
tions, the scale value is used within the sentence as an object for comparison. This 
means that in this and the example mentioned before, there is some kind of hidden 
vertical, one-dimensional view of length. This contemplation, however, is hidden by 
the use of expansion adjectives. Here, we have two examples where on the linguistic 
surface expansion ‘passe-partout’ adjectives are used to talk about an actual vertical 
dimension.

We also find occasions where kindergarten teachers use big in the sense of ‘old’.

Johanna (E)    Yes, your big sister can do that
Berna (G)    Which topic do the big ones have today?

In situations planned for learning about length, the use of big in terms of age 
could be confusing, especially for young children. After being told that she is 
already bigger than the giraffe, Tamila replies:

Tamila (E)    Four am I still big

Her utterance (in German ‘Vier bin ich noch groß’) implies that in this situation, 
Tamila associates big with age. Since she was 4 years and 10 months old when the 
video was recorded, she is likely trying to express that she is still 4 years of age. 
Soon, she will turn five and will be ‘bigger’ then. While she seems to pick up the 
adjective and tries to verbally participate in the situation, her reaction assumes that 
she was not fully able to grasp the kindergarten teacher’s former utterance concern-
ing her length. The kindergarten teacher could have used Tamila’s utterance to cre-
ate a learning opportunity for her and the other child in this situation by directly or 
indirectly correcting her sentence and/or talk about the different meanings of big. 
Unfortunately, she is so obtained with the measuring activity that she might not even 
notice what Tamila wants to express.
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Another problem with gradable adjectives like big is, that you have to have a 
reference object, at least in your mind. Something is always big in contrast to some-
thing else. Not all kindergarten teachers seem to have this problem in mind:

Dorothea (I)    Square, yes. Good. And is that big or small?

In this example, it is almost impossible to answer the kindergarten teacher’s 
question because she does not explicitly name the object that the square (which is 
actually a wooden cube) shall be compared with. Here, the children can only guess 
the right answer or, if they already have a concept of size at their disposal, ascertain 
a reference object from the context.

While the size or length of an object is visually perceivable, its weight is not. 
This might be the reason why it is sometimes difficult for children (Brandt & Keuch, 
2017) and kindergarten teachers to use adjectives appropriately when weighing 
objects. Sometimes, not only the missing reference object inhibits the understand-
ing of an adjective, but also the noun it refers to:

Bärbel    Too heavy, we have to take another. The balance is too heavy.

Methodically, Bärbel is the only kindergarten teacher who seems to actively 
challenge the children’s perception of associating big objects with high weight. She 
takes a big pillow and a small magnet and has the children first describe their sizes 
and subsequently feel their weight:

Bärbel    And which is big and which is small?

Although in her utterance not exactly present, by presenting two objects, it might 
be quite clear to the children what they are supposed to compare. While this ques-
tion would ask for a more complex answer, the children reply by saying ‘big’ or 
‘bigger’ in one case, and pointing to the pillow.

Bärbel    That’s big and that’s small, the magnet is small.
Gökhan    But a little bit big.
Tobias    But that’s heavy [points to the magnet] this is not heavy [points to the pillow]
Bärbel    Exactly, how do you know that?

Since Bärbel does not make verbally explicit, by using the comparative form, 
that in this case, she wants to only compare the magnet and the pillow concerning 
their size, Gökhan might refer to other magnets he knows that are smaller than the 
one presented. She could have used Gökhan’s idea to clarify the meaning of big in 
this case. As Tobias says something that probably goes along with her script, she 
does not react to Gökhan but takes up Tobias’ remark. Tobias only replies that he 
just knows it and that it is ‘cuddly’, so she asks all children to ‘feel’ if the pillow is 
‘light or heavy’. Again, she uses two contrary adjectives, which might help some 
children to understand the meaning, other children with other reference objects out-
side the actual situation in mind might again have problems with this task. Luckily, 
everyone agrees that the pillow is light and big. Then she hands the magnet to the 
children to feel its weight, again just by contrasting two antonymous adjectives in 
their positive form: ‘Is it light or heavy?’ While most children agree that the magnet 
is heavy, Zahide has a different opinion:

Zahide    Is light.
Bärbel    For you it’s light? Feel both, feel both. Which is heavier?
Zahide    Nothing.
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Here again, a child might refer to a reference object outside the actual context. 
Further, the German word for light is the same as the German word for easy (leicht), 
so here Zahide might want to say that for her it is easy to hold the magnet (that she 
is strong enough to hold the magnet with ease). Bärbel then refers to the subjectivity 
of feeling weight. Instead of making verbally explicit that in this context, only the 
present pillow and the present magnet are the reference objects and that of course 
although the magnet is heavier than the pillow, it is still easy to hold it in your hand, 
she only hands the two objects to Zahide to have her feel them with both hands to 
have a direct comparison. Now, she finally uses the comparative, but only in an 
incomplete structure. Still, Zahide thinks that both things are not heavy or that nei-
ther of them is heavier than the other. Instead of clarifying possible language prob-
lems, Bärbel uses Zahide’s apparent inability to determine the heavier object, to 
lead over to the next topic to introduce the pan balance. On the one hand, it might 
look like she is ignoring Zahide’s problem. Since she still seems to have problems 
with direct comparisons, she is left behind. On the other hand, Bärbel might hope 
that, by making the magnitude weight more visually perceptible with pans that 
move into opposite directions, Zahide’s problems will disappear.

22.7  Conclusion

With our analyses we are able to consolidate and refine our former assumptions 
concerning the use of adjectives for language and mathematic learning (Brandt & 
Keuch, 2017, 2018). The linguistic characteristics of adjectives offer various learn-
ing opportunities, not just language-wise but also mathematically. Comparing, 
ordering and quantifying qualities in German and English is impossible without the 
use of adjectives. Our analysis shows that a variety of adjectives are used when talk-
ing about length and weight in kindergarten. Situations with a focus on weight seem 
to offer many more possibilities to use adjectives, especially for children, than situ-
ations focusing on length. The inability to directly visually perceive weight differ-
ences might raise the need to verbally express them. The use of balance pans also 
seems to increase the (natural) speaking possibilities. In order to avoid talking about 
numbers that probably exceed the children’s range of numbers, kindergarten teach-
ers tend to use many comparisons with different objects in these situations. Hence, 
the invisibility of weight on the one hand leads to mathematical and conceptual 
difficulties. On the other hand, it opens various linguistic learning opportunities, if 
one knows about them and how to use them.

Although the comparative form plays an important role in the development of the 
ordering relation, it seems to be used rather carelessly by kindergarten teachers. At 
least half of the time they use it in an incomplete structure without explicitly express-
ing the reference object. In the empirical examples, we could show how this might 
lead to confusions. They also showed that some kindergarten teachers rather use 
antonyms than comparative forms, which also provides information about the 
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 meaning but might interfere with the children’s imagined reference objects outside 
the situation.

Depending on the kind of adjectives used in the situation, different aspects of 
length are highlighted. However, the adjectives used most often—big and long—are 
ambiguous as they do not only describe a quality of size but also time or age. 
Additionally, they do not clearly hint to the one-dimensional characteristic of length, 
and therefore might lead to problems with the understanding of length and the con-
struction of a solid concept.

The empirical examples show how some kindergarten teachers subconsciously 
reinforce difficulties concerning the emergence of solid concepts of length and 
weight. Especially, the use of passe-partout adjectives and incomplete syntactical 
structures seem to cause problems. While it is not always possible to avoid such 
constructions, it would offer an opportunity to talk about the different meanings 
which might lead to a deeper understanding of the concepts of length and weight—
and offers opportunities for an academic language-oriented language use.

References

Acar Bayraktar, E., Hümmer, A.-M., Huth, M., & Münz, M. (2011). Forschungsmethodischer 
Rahmen der Projekte erStMaL und MaKreKi. In B.  Brandt, R.  Vogel, & G.  Krummheuer 
(Eds.), Die Projekte erStMaL und MaKreKi: Mathematikdidaktische Forschung am “Center 
for Individual Development” (IDeA) (pp. 11–24). Münster: Waxmann.

Albers, J. (2007). Der absolute Komparativ: eine empirische Untersuchung zu seiner Bedeutung 
und kommunikativen verwendung. Göttingen: Cuvillier Verlag.

Barrett, J., Cullen, C., Sarama, J., Clements, D., Klanderman, D., Miller, A., et  al. (2011). 
Children’s unit concepts in measurement: A teaching experiment spanning grades 2 through 5. 
ZDM, 43(5), 637–650. https://doi.org/10.1007/s11858-011-0368-8

Bieswanger, M., & Becker, A. (2017). Introduction to English linguistics (4., überarbeitete und 
aktualisierte Auflage). UTB: Vol. 2752. Tübingen: A. Francke Verlag; UTB.

Bishop, A. J. (1988). Mathematical enculturation: A cultural perspective on mathematics educa-
tion (Mathematics education library, Vol. 6). Dordrecht: Kluwer Academic Publishers.

Brandt, B., & Keuch, S. (2017). The duck is the biggest—kindergartners talking about measure-
ment and magnitudes. In T. Dooley & G. Gueudet (Eds.), Proceedings of the Tenth Congress of 
the European Society for Research in Mathematics Education (pp. 1243–1251). Dublin: DCU 
Institute & ERME.

Brandt, B., & Keuch, S. (2018). Talking about measurement in the kindergarten—linguistic means 
in small group interactions. In C. Benz, A. Steinweg, H. Gasteiger, P. Schöner, H. Vollmuth, & 
J. Zöllner (Eds.), Mathematics education in the early years—results from the POEM3 confer-
ence 2016 (pp. 207–230). New York: Springer.

Castle, K., & Needham, J. (2007). First graders’ understanding of measurement. Early Childhood 
Education Journal, 35(3), 215–221.

Corrigan, R. (2008). Conveying information about adjective meaning in spoken discourse. Journal 
of Child Language, 35(1), 159–184.

Gogolin, I., & Lange, I. (2010). Bildungssprache und durchgängige Sprachbildung. In S. Fürstenau 
& M. Gomolla (Eds.), Migration und schulischer Wandel: Mehrsprachigkeit (pp. 107–127). 
VS-Verlag: Wiesbaden.

Habermann, M. (2009). Fit für das Bachelorstudium: Grundwissen Grammatik. Mannheim: 
Dudenverlag.

22 ‘You Are Already Bigger Than the Giraffe!’—The Use of Adjectives…

https://doi.org/10.1007/s11858-011-0368-8


384

Isler, D., Künzli, S., & Wiesner, E. (2014). Alltagsgespräche im Kindergarten: 
Gelegenheitsstrukturen für den Erwerb bildungssprachlicher Fähigkeiten. Schweizerische 
Zeitschrift Für Bildungswissenschaften, 36(3), 459–479.

Jackendoff, R. (1983). Semantics and cognition. Current studies in linguistics series: Vol. 8. 
Cambridge, MA: MIT Press.

Lorenz, J.  (2008). Diagnose und Förderung von Kindern in Mathematik- ein Überblick. 
In F.  Hellmich & H.  Köster (Eds.), Vorschulische Bildungsprozesse in Mathematik und 
Naturwissenschaften (pp. 29–44). Bad Heilbrunn: Klinkhardt.

Michel, M., Ofner, D., & Thoma, D. (2014). Early childhood educators’ competences for support-
ing children’s academic language skills in Germany. Language Awareness, 23(1–2), 138–156. 
https://doi.org/10.1080/09658416.2013.863896

Ninio, A. (2004). Young children’s difficulty with adjectives modifying nouns. Journal of Child 
Language, 31(2), 255–285.

Nührenbörger, M. (2002). Denk- und Lernwege von Kindern beim Messen von Längen: Theoretische 
Grundlegung und Fallstudien kindlicher Längenkonzepte im Laufe des 2. Schuljahres. Texte zur 
mathematischen Forschung & Lehre: Vol. 17. Hildesheim: Franzbecker.

Piaget, J., Inhelder, B., & Szeminska, A. (1960). The childs conception of geometry. International 
Library of Psychology Philosophy and Scientific Method. London: Routledge & Kegan Paul.

Prediger, S. (2015). Die Aufgaben sind leicht, weil … die leicht sind: Sprachbildung im 
Fachunterricht—am Beispiel Mathematikunterricht. In W. Ostermann, T. Helmig, N. Schadt, 
& J. Boesten (Eds.), Sprache bildet! Auf dem Weg zu einer durchgängigen Sprachbildung in der 
Metropole Ruhr (pp. 185–196). Mühlheim: Verlag an der Ruhr.

Prediger, S., Renk, N., Büchter, A., Gursoy, E., & Benholz, C. (2013). Family backgraound or lan-
guage disadvantages? Factors for underachievement in high stakes tests. Paper presented at the 
37th Conference in the International Group for Psychology of Mathematics Education, Kiel.

Reuter, D. (2011). Kindliche Konzepte zur Größe Gewicht und ihre Entwicklung: Theoretische 
Modellierung und zwei Einzelfallstudien mit Drittklässlern.

Ritterfeld, U. (2000). Welchen und wie viel Input braucht ein Kind? In H.  Grimm (Ed.), 
Sprachentwicklung: Sprache (Vol. 3, pp. 403–432). Göttingen: Hogrefe.

Rudd, L., Satterwhite, M., & Lambert, M. (2010). One, two, buckle my shoe: Using math- mediated 
language in kindergarten. Dimensions of Early Childhood, 38(2), 30–38.

Sarama, J., Clements, D., Barrett, J., van Dine, D., & McDonel, J. (2011). Evaluating of a learning 
trajectory for length in the early years. ZDM Mathematics Education, 43(5), 617–620.

Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik 
Deutschland. (2005). Bildungsstandards im Fach Mathematik für den Primarbereich 
(Jahrgangsstufe 4). München: Wolters Kluwer.

Selting, M., & Couper-Kuhlen, E. (2000). Argumente für die Entwicklung einer 'interak-
tionalen Linguistik’Argumente für die Entwicklung einer 'interaktionalen Linguistik. 
Gesprächsforschung—Online-Zeitschrift Zur Verbalen Interaktion, 1, 76–95.

Skoumpourdi, C. (2015). Kindergartners measuring length. In K. Krainer & N. Vondrová (Eds.), 
Proceedings of the 9th congress of the European society for research in mathematics educa-
tion (pp. 1989–1995). Prague: Charles University in Prague, Faculty of Education and ERME.

Smith, J. P., van den Heuvel-Panhuizen, M., & Teppo, A. (2011). Learning, teaching, and using 
measurement: Introduction to the issue. ZDM Mathematics Education, 43(5), 667–820.

S. Keuch and B. Brandt

https://doi.org/10.1080/09658416.2013.863896


385

Chapter 23
The Complexity of Teaching Mathematics 
in Kindergarten: A Case Study 
and Conceptualization

Per-Einar Sæbbe and Reidar Mosvold

23.1  Introduction

“[T]eaching mathematics to little children is as complex and challenging as is teach-
ing it to older children” (Ginsburg & Amit, 2008, p. 284).

In their study of mathematics teaching in a U.S. kindergarten context, Ginsburg 
and Amit (2008) conclude that teaching mathematics to young children is “essen-
tially the same as teaching it to older children” (p. 274). By this, they do not neces-
sarily mean that mathematics teaching in kindergarten looks exactly like mathematics 
teaching in school, but they claim that the teaching of mathematics in kindergarten 
has the same complexity. Kindergartens differ between countries, however, and one 
might wonder how these differences influence teaching. In the U.S., school is pre-
ceded by a year of kindergarten class. Before entering kindergarten, children attend 
preschool and/or daycare. In other countries, like Belgium, children are enrolled in 
kindergarten at the age of 3. Before this, they attend childcare institutions. Yet, other 
countries have integrated kindergartens for children between the age of 0 and 
5 years. Norway is an example of this. In addition to organizational and structural 
differences, the focus and contents of kindergarten also differ across countries. 
More than five decades ago, Sears and Dowley (1963) described a main distinction 
between systems that consider kindergarten and other early childhood institutions to 
be a downward extension of schools, as opposed to systems that consider such insti-
tutions to be upward extensions of the family. OECD (2006) makes a parallel dis-
tinction between a pre-primary and a social pedagogy kindergarten tradition. In the 
pre-primary tradition, kindergarten is considered to be a preparation for school; in 
the social pedagogy tradition, care and upbringing are emphasized more than learn-
ing and school preparation. The U.S. is an example of the former; Norway is an 
example of the latter. Studies from the Norwegian context illustrate how children 
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might encounter mathematics through, for instance, fairy tales (e.g., Carlsen, 2013) 
and play situations (Fosse, 2016; Sæbbe & Mosvold, 2016), and how Norwegian 
kindergarten teachers refuse to even use the word “teaching” to describe the work 
they do (e.g., Sæbbe & Pramling Samuelsson, 2017). In Sweden, which has a simi-
lar kindergarten tradition to Norway, kindergartens also emphasize learning through 
play and everyday activities (e.g., Bäckman, 2016; Björklund, 2016; Helenius, 
2018; Lange, Meaney, Riesbeck, & Wernberg, 2014). This differs from the pre- 
primary tradition, which primarily aims at preparing children for school (OECD, 
2006). The present study does not aim to challenge claims about cultural differences 
in kindergarten traditions; neither does it argue that mathematics teaching differs 
across kindergarten traditions. Instead, our study aims to illustrate how the work of 
teaching mathematics in a Norwegian social pedagogy kindergarten tradition is 
complex and challenging work, similar to what Ginsburg and Amit (2008) found in 
a U.S. pre-primary kindergarten tradition.

The present study approaches the same general problem that Ginsburg and Amit 
(2008) considered: What might it mean to teach mathematics in kindergarten? 
Before presenting information about the design of our study and its considerations, 
we provide some theoretical background concerning research on teaching in early 
childhood education, and we clarify our use of core terms related to the work of 
teaching mathematics in kindergarten. Following a section where we elaborate on 
the design of the study, we present results from our analysis of challenges and tasks 
of teaching mathematics in kindergarten. Based on this analysis, we return to a 
discussion of how the work of teaching mathematics in a Norwegian kindergarten 
context entails a complexity that parallels the teaching of mathematics in a U.S. kin-
dergarten context (e.g., Ginsburg & Amit, 2008), and how this work is 
mathematical.

23.2  Theoretical Background

It is a common impression that research studies in early childhood education tend to 
focus more on children than on teachers, and that more studies target learning than 
teaching. Yet, in the first edition of the Handbook of research on teaching, Sears and 
Dowley (1963) reported a considerable body of research on teaching in what they 
refer to as “nursery schools.” Back then, these were primarily experimental studies 
that investigated correlations between various personality variables or programs and 
outcomes. In the decades following the first Handbook, numerous programs for 
early childhood education were developed and analyzed. Stallings and Stipek 
(1986) evaluated the long-term effects of several of these programs in their chapter 
in the third edition of the Handbook. Some programs were based on cognitive theo-
ries, some were focused on “direct instruction,” whereas others were organized 
around so-called “mastery learning.” Most of these studies looked for correlations 
between isolated process variables and children’s achievement. This line of process- 
product research provides several interesting results. There is a tendency in these 
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studies, however, to focus more on programs and their effects than on the actual 
work of teaching. When Genishi, Ryan, Ochsner, and Yarnall (2001) look back on 
several decades of research on teaching in early childhood education in their review 
for the fourth edition of Handbook of research on teaching, they state that, in the 
history of early childhood education research, “researchers have focused relatively 
little on teachers, teaching, or its effects” (p. 1176). Along the same lines, Ginsburg 
and Amit (2008) claim that, “little is known about early mathematics teaching” 
(p. 275).

In the decade following the study of Ginsburg and Amit, additional studies of 
early mathematics teaching have been conducted, and the field’s knowledge about 
mathematics teaching in kindergarten is growing. In the European context, the 
CERME (Congress of the European Society for Research in Mathematics Education) 
working group on early years mathematics and the POEM (Perspectives on Early 
Mathematics Learning) conferences that spun out from this group have been influ-
ential. A number of contributions from these conferences have come from the 
Nordic context. For instance, at the first POEM conference, Lange et  al. (2014) 
made important contributions with their discussions of teachable moments in play 
situations. Whereas discussions on mathematics teaching in kindergarten often 
imply a tension between instruction and play, these authors contend that teaching 
can also occur in play situations. They conclude that respectful listening and posing 
of challenging questions are important teacher actions in this context. For the sec-
ond POEM conference, Bäckman (2016) investigated everyday situations—she 
referred to them as “here-and-now” situations—and argued that such situations con-
tain several teachable moments. Whereas Lange et al. (2014) and Bäckman (2016) 
discussed mathematics teaching in the Swedish kindergarten context, Carlsen, 
Erfjord, and Hundeland (2010) investigated kindergarten teachers’ orchestration of 
mathematical activities in a Norwegian kindergarten context. They emphasized the 
role of questions, and they suggested that questioning is prevalent in the work of 
teaching mathematics in the Norwegian kindergarten context. Other Norwegian 
studies also discussed the role of questions. In her analysis of features of mathemat-
ical conversations in a Norwegian kindergarten, Fosse (2016) observed how kinder-
garten teachers’ use of questions structured and organized the discussion in a 
situation where children engaged in building with Lego blocks. Similarly, Sæbbe 
and Mosvold (2016) also emphasized the role of questioning—and of affirma-
tions—in their efforts to conceptualize the work of teaching mathematics in kinder-
garten. These are examples of studies that move beyond the early research on 
seeking correlations between variables related to teachers and teaching, and get 
deeper into the actual work of teaching and the challenges and tasks that are embed-
ded in this work. Our study contributes to this research tradition.

A challenge within the social pedagogy kindergarten tradition is that the work of 
teaching is often unarticulated and invisible. Helenius (2018) aimed at making the 
acts of teaching in this kindergarten tradition more visible when he proposed “a 
conceptual framework for teaching mathematics in a play-based preschool practice” 
(p. 184). His conceptualization consists of three dimensions of practice: pedagogic 
explication, teacher participation, and situational planning. The first dimension 
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explicates how consciousness of a mathematical object of learning is necessary for 
a situation to be “pedagogical.” In a play-based kindergarten tradition, such con-
sciousness cannot be taken for granted and often requires deliberate work from the 
kindergarten teacher. The dimension of teacher participation is important in a con-
text where children are often engaged in play and everyday situations with little or 
no involvement by kindergarten teachers. Through more or less subtle ways, the 
kindergarten teacher can stimulate mathematical activities—also in more informal 
play situations. The third and final dimension relates to how kindergarten teachers 
might deliberately decide whether or not to plan certain activities and situations, 
and it also relates to flexibility and ability to act in the moment.

Up until now, we have used the terms “work of teaching” and “tasks of teaching” 
without defining them. Some consider teaching to be “one person’s influence aimed 
at improving the learning of other persons” (Gage, 2009, p. 2). We agree with such 
a definition, but we follow Ball and Forzani (2009), who add the word “work” to 
emphasize two important aspects of teaching. First, the term “work” implies an 
emphasis on the deliberate, effortful, and dynamic doing of teaching (Ball, 2017). 
Second, we use “work” to indicate that we do not consider teaching as something 
teachers do, but as work to be done. Per definition, work is an activity that involves 
some kind of effort to achieve a result, and it is constituted by one or more tasks that 
are to be done (Oxford English Dictionary, n.d.). Throughout this study, we use the 
words “challenge” and “tasks” interchangeably. We use the word “task” to identify 
a piece of work that has to be done, and the phrase “tasks of teaching” signifies that 
the work of teaching can be decomposed into tasks that the teacher has to complete. 
Our distinction between the work of teaching and its constituent tasks of teaching is 
adopted from Ball and her colleagues at the University of Michigan (e.g., Ball & 
Forzani, 2009; Ball, Thames, & Phelps, 2008). Ball et al. (2008) identified a list of 
mathematical tasks of teaching that teachers are recurrently faced with in the work 
of teaching mathematics, and that require professional knowledge to undertake. For 
instance, they identified the tasks of asking productive mathematical questions, 
responding to students’ questions, presenting ideas, and finding examples to illus-
trate a certain mathematical idea or point. Carrying out the work of teaching, which 
is constituted by such tasks, is also demanding, and we use the word “challenge” to 
emphasize the demanding nature of the work.

23.3  Design of the Study

In considering the problem of what mathematics teaching in kindergarten might 
look like, Ginsburg and Amit (2008) analyzed the work of an American kindergar-
ten teacher (Daniela). We mimic their approach by considering the case of a 
Norwegian kindergarten teacher (Gunnar). Whereas Daniela worked in the pre-
school class of a parochial Catholic school in the U.S., Gunnar works in a Norwegian 
kindergarten that is located on a farm. Daniela’s kindergarten followed the Big 
Math for Little Kids curriculum, whereas Gunnar follows the Norwegian frame-
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work plan for kindergartens (Directorate for Education and Training, 2017)—a 
framework plan that provides mostly general formulations of what kindergartens 
should enable children to experience. These differences are illustrative of the differ-
ences in kindergarten traditions between Norway and the U.S.  Whereas Daniela 
taught a sequence of carefully planned lessons on mapping, Gunnar aimed at engag-
ing children in mathematical discussions in an everyday activity that involved feed-
ing the animals on the farm. In a context that differs significantly from that in 
Ginsburg and Amit’s (2008) study, we follow a similar approach when we analyze 
Gunnar’s work of teaching with the aim of revealing challenges and tasks that might 
be entailed in his work.

Like Daniela, Gunnar has more than 20 years of experience as a kindergarten 
teacher. He finished his education before mathematics was introduced as a compul-
sory course in the kindergarten teacher education program. At the time of the study, 
he worked with children aged 3–6  years in an outdoor kindergarten. We asked 
Gunnar to prepare an everyday activity—something he would normally do with the 
kindergarten children—that had a focus on mathematics. We video-recorded his 
interaction with a group of four children in the activity. The activity lasted for 
20 min, and Gunnar planned and carried out the activity without any intervention or 
influence from the researchers. In the activity, Gunnar and the children were feeding 
the animals on the kindergarten farm. A follow-up interview was planned and car-
ried out by the first author based on preliminary analysis of the video data, and the 
interview was also video-recorded. The purpose of this interview was to bring forth 
Gunnar’s own reflections about the activity. These reflections were intended to indi-
cate whether the tasks and challenges we identify from analyzing the activity were 
also considered challenging by Gunnar, and the reflections were meant to provide 
us with indications about the purpose of the choices that were made. Before the 
interview, Gunnar got a copy of the video-recording from the activity and he had 
seen the recording before the interview. The video from the activity served as a 
starting point for reflecting on his mathematical work of teaching in the interview. 
A similar use of video for stimulated recall has been applied in other studies (e.g., 
Jacobs & Morita, 2002), but unlike some of those studies—where videos of teach-
ing in other countries were used—the kindergarten teacher in our study viewed 
recordings from his own practice and commented on that. The interviews focused 
on Gunnar’s own stories and reflections about the work of teaching mathematics in 
kindergarten—elicited by the interviewer and the videos (Kvale, 2007).

The video-recording from the activity enabled careful analysis of Gunnar’s com-
munication with the children—verbal as well as non-verbal communication. 
Gunnar’s reflections from the interview helped us understand the choices he made 
in his practice. Video recordings from the interview enabled further analysis of his 
reflections, and this also enabled the interviewer to concentrate without having to 
take notes and show the selected recordings at the same time.

The video-recordings were planned with Gunnar in advance to keep the room as 
quiet as possible, and to place the camera where it would be least obtrusive. The 
participants gave permissions, and the children were comfortable being videotaped. 
The video-recordings from the observation and interview were transcribed verbatim 
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by the first author. Our analysis is empirically grounded, but we use these data as a 
starting point for developing conceptualizations of teaching mathematics in kinder-
garten as work to be done rather than to make claims about how Gunnar is teaching. 
The object of our study is thus the work of teaching mathematics in kindergarten—
not Gunnar, or the population of Norwegian kindergarten teachers. For the purpose 
of conceptualizing the work of teaching mathematics in kindergarten, our analysis 
is inspired by the constant comparative method (Strauss & Corbin, 1998). First, we 
developed open coding and examined, compared, and conceptualized the data. The 
next step was the axial coding, where we made connections between the emerging 
categories from the open coding. The last phase was the selective coding, and we 
systematically related and filled in categories that needed development. During the 
process of analysis, subsequent theoretical sampling was applied (Strauss & 
Corbin, 1998).

23.4  Tasks of Teaching Mathematics in Kindergarten

Gunnar is working in a private outdoor kindergarten, which is located on a farm 
with animals. We consider an episode where Gunnar and four children are feeding 
the animals—a daily activity in this kindergarten. During this activity, Gunnar initi-
ates a discussion on how to figure out the right amount of food for the sheep. He has 
prepared a form that they can use for documenting how many animals they have and 
how many cups of food each animal gets (see Fig. 23.1). The first row in this form 
represented the amounts with tally marks, whereas the second row represented the 
same amounts with numerals. Gunnar wanted to include both, since he thought tally 
marks were easier.

For the purpose of this study, we present our analysis of an episode that was 
selected to illustrate some of the complexity that might be involved in the work of 
teaching mathematics in this kindergarten context. We highlight the tasks that the 
kindergarten teacher has to solve when attending to the mathematics as well as to 
the development and needs of each individual child, and we discuss how these two 
perspectives are connected.

Gunnar:                        (poking Mikkel) How many sheep do we have?
Frode:                           Does that include the lambs?
Gunnar:                          Yes, lambs are also included. Let’s write a mark for them too.
[VOICEOVER/Gunnar:  I think this is a good thing about children, because this is how it 

is for them. A sheep is a sheep, right? And then you have the 
lamb. So they are, I mean, I didn’t think about that. So, they 
correct me and then we agree that the lamb also counts for one; 
together they are two. All right. But, I mean, that is what makes 
it so interesting to work with children.]

Gunnar:                            How many did the sheep get?
Mikkel:                            Eh. Two (cups)?
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Fig. 23.1 The form Gunnar used with the children

Gunnar:                                   No. It only got? (Someone else responds) The sheep only got 
one. Then you make a mark there. And then the goat, how 
many did you give the goat? There were two, yes, so you 
write two there. And then the very last one. This is how many 
I got in total. All the cups we got, then you must count all of 
them, these and those (points at the sheet). (Mikkel does not 
seem to understand) How many are there? You have to count?

Nora: One, two, three, four, five, six, seven.
Frode:   I got seven, too. I just counted one, two, three, four, five, six, 

seven. I didn’t know it was seven there. I didn’t calculate it.
Gunnar: (To Mikkel) How many did you count?
[VOICEOVER/Interviewer:  You are in control with these children, and sometimes you let 

go of the control and just explain something to the one. 
Aren’t you afraid the others start with completely different 
things?]

[VOICEOVER/Gunnar:   [...] it is important to give a little extra to the one who needs 
something that the others do not need so much of. [...] I 
somehow see if I can practice a little extra. We use some 
time, and then I’m back with the others. It’s kind of like that, 
and I think that’s normal, I know the children from before 
because I’ve observed them in the same situations before. 
You still have to know in the activity what works and does 
not work [...] I notice it becomes more like this along the way 
in the activity, what are they struggling with and which 
children I have to follow up extra.]
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23.4.1  Initiating Mathematical Discussions

Norwegian kindergartens do not have regular classrooms, lessons, or textbooks. 
Instead, kindergarten teachers are expected to facilitate children’s learning in every-
day situations and play. A common task of teaching is to initiate a mathematical 
discussion, or to direct the children’s attention toward mathematics in an everyday 
situation. There are several ways in which Gunnar could have initiated a mathemati-
cal discussion with these children. He decides to start by asking one of the children, 
Mikkel, “How many sheep do we have?” This is a mathematical question that aims 
to have Mikkel consider quantity. Quantity is a core mathematical topic in kinder-
garten (Directorate for Education and Training, 2017), and the kindergarten teacher 
might expect a particular kind of response. For instance, Mikkel might have 
responded that there are “many” sheep, whereupon Gunnar could initiate a discus-
sion about the concept of many. Mikkel might also have suggested that they can 
count, or that they might provide an approximation. None of this happened. Instead, 
another boy, Frode, interrupts and asks, “Does that include the lambs?” He is won-
dering whether the lambs should be counted with the sheep. In this particular situa-
tion, Frode’s question makes a lot of sense, because it might easily be the case that 
lambs eat less than sheep. However, this question was unexpected, and Gunnar 
reveals in the interview that he did not anticipate this.

23.4.2  Responding to Unexpected Questions

Gunnar is now challenged with the task of dealing with this unexpected question 
from Frode. From our experience, dealing with unexpected questions and responses 
from children is a common task of teaching in the Norwegian kindergarten context. 
Deciding on how to respond implies a possible adjustment of the plan. Should 
Gunnar show flexibility and adjust his original plan (Ginsburg & Amit, 2008), or 
should he continue trying to establish the children’s attention around the idea of 
quantity? Both alternatives might be viable. He could make use of Frode’s question 
and instead switch the focus to classification of animals in relation to age. After all, 
comparison and sorting are also areas of mathematics that the framework plan sig-
nals that children should experience. Some children consider sheep and lambs to be 
different. They are different in terms of age, but also in terms of size and appear-
ance. When young children think about quantity, it matters to them what objects 
they are dealing with. Kindergarten teachers know that this is a common aspect of 
children’s emerging conception of number (Gelman & Gallistel, 1978). The chal-
lenge of responding to Frode’s unexpected question is therefore not only a challenge 
of providing a sensible response, but it represents a task of deciding where the dis-
cussion should be allowed to go next.
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In addition, the decision about how to deal with Frode’s question requires careful 
attention to the children involved. Gunnar’s initial question was directed toward 
Mikkel, and kindergarten teachers are often deliberate about whom to call on or ask 
questions. Mikkel might be a quiet boy that Gunnar wanted to include in the conver-
sation. Encouraging verbal interaction is a common task of teaching (Ginsburg & 
Amit, 2008), and it can be challenging to involve quiet children in a discussion. 
When Frode interrupts by asking another question, Gunnar is not only faced with 
the challenge of deciding on the mathematical course of the discussion, but he also 
has to consider how to position the different children as participants in the discus-
sion. Gunnar only gets a split second to make the decision.

23.4.3  Dealing with Wrong Answers

In this situation, Gunnar decides to respond that, “Yes, lambs are also included. 
Let’s write a mark for them too.” This response acknowledges Frode’s contribution, 
and it maintains the mathematical focus of the discussion. After having responded 
to Frode’s question, Gunnar makes another attempt to navigate the children’s atten-
tion toward quantity. He asks, “How many did the sheep get?” Whereas his first 
question was related to the number of sheep, this next question asks how many cups 
of food the sheep get. Gunnar has still not received a response to the question about 
the number of sheep, and he could have decided to repeat this question. Instead, he 
poses a new and related question, which targets the number of cups of food each 
sheep is getting. This is another choice that has to be made in the moment, and it 
illustrates a task of following up on an unanswered question. Mikkel responds by 
suggesting that the sheep get two cups. Gunnar is now faced with a dilemma. He has 
succeeded in involving Mikkel in the discussion, but Mikkel’s response is mathe-
matically incorrect. On the one hand, kindergarten teachers want to encourage chil-
dren’s participation in the mathematical discussions, and to develop a sense that 
mistakes are essential for learning mathematics (Ginsburg & Amit, 2008). Given 
this, the kindergarten teacher might have decided to encourage Mikkel’s continued 
participation and refrain from correcting him. On the other hand, the animals have 
to get the right amount of food. The question about quantity is not just an abstract 
mathematical question in this situation; it affects the animals’ health. Gunnar has to 
make a quick decision on how to respond. Sometimes, a teacher decides to confirm 
or disprove a child’s response. Other times, a teacher decides to ask more questions 
or call upon other children to initiate a discussion or argumentation to facilitate the 
children’s own discoveries. In making a decision, the kindergarten teacher has to 
balance the attention between the mathematical content and the attention to the 
individual child. Correcting or disproving an incorrect response might be important 
to maintain the mathematical integrity—and, in this situation, to ensure that the 
animals get the right amount of food—but it can place the children in a negative 
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position. Simultaneously, by confirming or rejecting a child’s response, the kinder-
garten teacher puts himself in a position of authority and ownership of the mathe-
matical content. In this case, Gunnar disproves Mikkel’s response by saying, “No. 
It only got?” Someone else responds to this follow-up question, and Gunnar then 
affirms that, “The sheep only get one [cup]”. This testifies to what Sæbbe and 
Mosvold (2016) identified, that questioning and affirmation of children’s responses 
are core acts of teaching mathematics in kindergarten.

23.4.4  Using Representations

Following the correction of Mikkel’s response, Gunnar directs the attention to the 
tally marks in the form. The tally marks are written in a table, one row with tally 
marks for the number of animals, and one row with tally marks for the number of 
cups (see Fig. 23.1). He explains, “Then you make a mark here. And then the goat, 
how many did you give the goat? There were two, yes, so you write two there.” 
From an emphasis on the number of sheep and the number of cups that each animal 
gets, Gunnar now shifts attention to representations of number. This implies a task 
of using appropriate representations, and the tally marks represent the number of 
cups each animal gets. This situation thus involves use of representations, number 
conservation—since a mark represents the quantity of one, regardless of whether it 
refers to sheep or goats—and it involves counting the tally marks and understanding 
that the number word for the last tally mark counted signifies the amount, as in the 
principle of cardinality (Gelman & Gallistel, 1978). A number is an abstract math-
ematical idea, and this situation involves different representations of number. In 
Ginsburg and Amit’s (2008) study, Daniela was also challenged to use representa-
tions, but in her case, it was the map as a representation of the physical world. 
Gunnar points to the sheet of paper and says, “All the cups we got, then you must 
count all of them, these and those.” Mikkel does not seem to understand, and Gunnar 
is thus challenged to make another decision. He decides to repeat and reformulate 
the question, “How many are there? You have to count.” In this episode, we see how 
Gunnar tries to involve Mikkel in the discussion, by posing new questions with 
more information regarding what Mikkel has to do to solve the task. First, Gunnar 
poses the question about how many the sheep got. When Mikkel fails to answer this 
correctly, Gunnar follows up by formulating the initial question in a different way, 
and he adds that Mikkel has to count. Finally, he asks Mikkel a third question: “How 
many did you count?” This work involves a delicate balance between attending to 
the mathematics and attending to each child, and we interpret the voiceover from 
the interview as an indication that Gunnar is conscious about this in the present situ-
ation. Mikkel’s lack of response could indicate that he does not understand. Another 
possibility is that he is discouraged after having had his previous response cor-
rected. Anyhow, Gunnar wants Mikkel to participate.
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23.4.5  Positioning Children as Valuable Contributors

Following the question of how many and the call for counting, Nora replies by 
counting, “One, two, three, four, five, six, seven.” Young children might be able to 
count correctly without understanding that the last number word signifies the 
amount (Gelman & Gallistel, 1978), and a kindergarten teacher has to consider 
whether and how to react when children respond by counting. Again, the decision 
influences how the child is positioned in relation to the mathematical content as well 
as to the mathematics teacher. The kindergarten teacher might decide to commend 
Nora for counting correctly or even interpret her tone of voice when pronouncing 
“seven” as indication of her understanding of the cardinality principle (Gelman & 
Gallistel, 1978), and thus place Nora in a positive position. If the kindergarten 
teacher decides to repeat the question to indicate that her counting does not really 
answer the question, this might place Nora in a more negative position. Before the 
kindergarten teacher gets a chance to respond, Frode interrupts again, “I got seven 
too. I just counted one, two, three, four, five, six, seven. I didn’t know it was seven 
there. I didn’t calculate it.” From his response, Frode indicates that he understands 
the connection between counting and naming the quantity by repeating the last 
number word in the counting sequence (Gelman & Gallistel, 1978). Gunnar now 
has another decision to make. Should he return to Nora in order to see if she is on 
the same page as Frode? Or should he affirm Frode’s response? Or perhaps he 
should leave it open and ask some of the other children what they think? If the kin-
dergarten teacher affirms the response that Frode gave, he could also use this to 
emphasize the important mathematical idea that the last number word in the count-
ing sequence indicates the quantity of the objects counted. We refer to this as math-
ematical affirmation (cf. Sæbbe & Mosvold, 2016). However, Gunnar might decide 
that Frode has already gotten enough space in this discussion and deliberately try to 
let other children get a chance to contribute. By returning to Nora, the kindergarten 
teacher could position her as a valuable contributor to the evolving mathematical 
discussion (cf. Fosse, 2016). Such a decision would also make sense if the kinder-
garten teacher wanted to make sure that the girls were heard in the group, and the 
move could thus be motivated by a wish to disrupt patterns of gender inequity in 
mathematics. The kindergarten teacher has to figure out how to deal with this on the 
fly, without much time to think about and consider the alternatives. Gunnar decides 
to leave it open and approaches Mikkel, who previously did not seem to understand 
this, and asks him, “How many did you count?” This illustrates the delicate balance 
that kindergarten teachers always have to maintain when engaging in mathematical 
discussions with children. They want to see every child and let everyone get the 
opportunity to engage in mathematical thinking. In other words, they want to posi-
tion every child as valuable contributors in the mathematical discussion—and they 
have to navigate all the different possible responses and questions that might come 
up in such a contingent moment without much time to think.
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23.4.6  Asking Productive Mathematical Questions

Throughout this episode, we notice that Gunnar asks a lot of questions. In Ginsburg 
and Amit’s (2008) study, Daniela also asked a lot of questions in her teaching. 
Ginsburg and Amit did not highlight the challenges of questioning, but others have 
identified asking productive mathematical questions as a core task in mathematics 
teaching (Ball et  al., 2008)—also in the Norwegian kindergarten context (e.g., 
Sæbbe & Mosvold, 2016). In the interview, Gunnar explains that, “When I pose the 
question, I think that, that they regard it as their task.” By asking questions, Gunnar 
not only wants to initiate a mathematical discussion, but he wants to offer the chil-
dren ownership of the mathematics. Instead of solving the problem for them, “they 
are going to find the solution to this.” As we have already noticed, however, there is 
complexity in the practice of asking questions. Questions might be asked to initiate 
a discussion or to engage the children in mathematical thinking. Questions might 
also serve to focus children’s attention, or to put them in a position as owners of the 
mathematics. Sometimes questions are repeated—for various reasons—and some-
times questions are repeated with a slight variation. Thus, when considering the 
practice of asking mathematical questions, it seems important to consider the issue 
of purpose. There are different types of questions that kindergarten teachers might 
ask, and the purpose behind questions might differ. We see, from Gunnar’s final 
reflections, that he considers the different purposes behind asking questions, and his 
reflections provide a glimpse into some of the considerations that have to be made 
in the dynamic and deliberate work of teaching mathematics.

23.5  Discussion

In the following discussion, we revisit the claims by Ginsburg and Amit (2008) 
about the complexity of mathematics teaching in kindergarten, and discuss them in 
light of our own analysis. In their analysis of mathematics teaching in a U.S. kinder-
garten context, Ginsburg and Amit (2008) set out to identify “the challenges that 
one teacher faced over time in teaching” (p. 284). Their analysis ends with a list of 
challenges that the preschool teacher—Daniela—was faced with in her work. 
Although Ginsburg and Amit describe these as challenges, we suggest that they are, 
in essence, tasks of teaching mathematics. For instance, Daniela engaged the chil-
dren in a teacher-imposed task. She used an activity related to the children’s every-
day lives to motivate them, she sometimes provided explicit instruction and 
sometimes lectured to the children, she asked them to explain their thinking, and she 
created a classroom culture of learning (Ginsburg & Amit, 2008). The list goes on. 
Based on their analysis of this particular teacher, Ginsburg and Amit argue that 
teaching mathematics in this preschool context is similar to teaching mathematics in 
school. They do not suggest that teaching in kindergarten is identical, but they argue 
that it is “in essence the same” (Ginsburg & Amit, 2008, p. 284), because it is as 
complex and challenging as teaching mathematics to older children.
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When we compare the analysis and arguments of Ginsburg and Amit with our 
own analysis of Gunnar’s teaching of mathematics in a Norwegian kindergarten 
context, there are some apparent differences. For instance, Gunnar did not give a 
lecture to the children, and there was less direct instruction than in the case of 
Daniela. The classrooms were different, and so was the level of structure in the 
activities. Furthermore, differences in curriculum and kindergarten culture probably 
influenced the work. On the other hand, it is interesting to notice the similarities 
between the work of teaching in the cases of Gunnar and Daniela. Both Gunnar and 
Daniela had to act in the moment and solve challenges that appeared on the fly. Both 
engaged the children in a teacher-imposed task that spun from their experiences in 
everyday life. One might argue that the use of questions to guide children’s learning 
is more prevalent in the Norwegian kindergarten context (cf. Carlsen et al., 2010), 
but that is not the main point of our study. Ginsburg and Amit (2008) did not argue 
that the case of Daniela was generalizable to the larger population of U.S. preschool 
and kindergarten teachers. Neither do we argue that the case of Gunnar is represen-
tative to all Norwegian kindergarten teachers, or even to Gunnar’s own teaching. 
However, we claim that this case illustrates some of the complexity and challenges 
that kindergarten teachers might encounter in the work of teaching mathematics in 
a social pedagogy kindergarten tradition. Our point is to name some core compo-
nents of mathematics teaching and thus contribute to a conceptualization of the 
work of teaching mathematics in kindergarten (cf. Sæbbe & Mosvold, 2016). Our 
approach considers teaching as a professional rather than a cultural practice, and we 
consider this distinction to be vital for the discussion of similarities or differences 
across cultures and levels.

In their investigation of mathematics teaching across countries, Stigler and 
Hiebert (1999) argued that the differences in teaching were more significant across 
than within countries. They identified several “cultural scripts” of teaching, and they 
argued that teaching is a cultural activity. We do not intend to disagree with or argue 
against Stigler and Hiebert, and we agree that it is indeed possible to consider teach-
ing as a cultural activity. When considering teaching as a cultural activity, it is 
defensible and justifiable to argue that teaching mathematics is different across kin-
dergarten contexts, and also—we posit—that teaching mathematics in kindergarten 
is different from teaching mathematics in school. On the other hand, it is also pos-
sible to view teaching as a professional activity that consists of “management of 
instructional interactions that are co-constructed by students and teacher around 
content” (Hoover, Mosvold, & Fauskanger, 2014, p. 11). Within this more general 
framing, common tasks of teaching can be identified that are defensible and justifi-
able across cultural contexts. For instance, both Gunnar and Daniela had to deal 
with the tasks of initiating and leading discussions, responding to children, encour-
aging verbal interaction, dealing with errors and wrong answers, using representa-
tions, and asking questions. These are examples of tasks that can be identified across 
cultural contexts, and they illustrate what it might mean for teaching to be a profes-
sional practice. In this sense, it is defensible and justifiable to argue that teaching 
mathematics is similar across kindergarten contexts.
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So far, the discussion of our findings with those of Ginsburg and Amit (2008) has 
been on a level corresponding with how they presented their findings. As a result, 
our discussion of tasks of teaching might have appeared more pedagogical than 
mathematical. However, we want to emphasize—and our analysis shows this—that 
these are indeed mathematical rather than merely pedagogical tasks of teaching. For 
instance, the task of initiating mathematical discussions is a mathematical task that 
might involve asking questions to target a particular mathematical content. 
Responding to children’s unexpected questions is a general task of teaching, but 
responding in a way that directs children’s attention to the mathematical content is 
a mathematical task of teaching that requires mathematical competence. Dealing 
with mathematically wrong answers requires a careful balance between giving 
attention to mathematics and to the children, which can be particularly challenging. 
Representations are important in mathematics, and choosing and using representa-
tions is another mathematical task of teaching. Positioning children as valuable con-
tributors might be considered to be a pedagogical task, but our analysis of Gunnar’s 
interaction with the children showed how this is a mathematical task within the 
context of a mathematical discourse. Finally, the task of asking productive mathe-
matical questions is a prominent mathematical task of teaching that was also identi-
fied by Ball et al. (2008).

Our analysis of the case of Gunnar thus illustrates what teaching mathematics in 
kindergarten might look like, and we contend that engaging with the various math-
ematical tasks of teaching constitutes a complex mathematical work of teaching. 
This work involves tasks of teaching that are similar to the tasks involved in the 
work of teaching mathematics in school (e.g., Ball et al., 2008). In this respect, and 
when viewing teaching as a professional practice, we suggest that the work of teach-
ing mathematics in the Norwegian kindergarten context is similar to—or “in essence 
the same” as—teaching mathematics in the U.S. kindergarten context, and to teach-
ing mathematics in school. By making this argument, we do not intend to argue 
against differences in kindergarten traditions (e.g., OECD, 2006). Neither do we 
want to propose that Norwegian kindergartens should become more like schools, or 
that teaching mathematics in the social pedagogy tradition should become more 
formalized (cf. Helenius, 2018). However, we want to highlight that the work of 
teaching mathematics in the Norwegian kindergarten context is a complex mathe-
matical work that entails several pedagogical and mathematical tasks that the kin-
dergarten teacher has to solve on the fly.

23.6  Conclusion

Our analysis contributes to the ongoing conceptualization of mathematics teaching 
in a social pedagogy kindergarten tradition by making the mathematical work of 
teaching more articulate and visible. Our conceptualization differs from many other 
studies (e.g., Helenius, 2018), in that it targets the challenges or tasks that are 
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entailed in the work of teaching mathematics in kindergarten, rather than dimen-
sions or features of teaching.

Recent research from the Nordic context indicates that play and everyday situa-
tions contain “teachable moments,” which might be used to stimulate children’s 
learning of mathematics (e.g., Bäckman, 2016; Lange et al., 2014). We agree, but 
we want to emphasize that transforming such teachable moments from possibilities 
to actual instances of learning is a deliberate work that requires effort and care. In 
our analysis, we have decomposed this work into several mathematical tasks of 
teaching. To solve these tasks and skillfully carry out the work of teaching mathe-
matics in kindergarten, kindergarten teachers need professional competence (cf. 
Sæbbe, 2018). More efforts should be made to investigate the special mathematical 
work of teaching in kindergarten and the mathematical demands that are entailed by 
this work (cf. Ball, 2017). By investing in such efforts, we might contribute in mak-
ing the teaching of mathematics in the social pedagogy kindergarten tradition more 
visible, to increase respect for the work of teaching mathematics in kindergarten, 
and provide grounds for further development of kindergarten teacher education.
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Chapter 24
Parents’ Valuing of Mathematics for Young 
Children

Dorota Lembrér

24.1  Introduction

In this chapter, parents, as well as other family members, are recognised as young 
children’s first educators who contribute to their learning of mathematics knowl-
edge and skills (Phillipson, Gervasoni, & Sullivan, 2017). From this perspective, 
parents’ views on mathematics education can be considered as assets that influence 
children’s mathematical learning in their early years (Björklund & Pramling, 2017). 
However, there has been a limited amount of research that has taken parents’ views 
seriously concerning young children’s engagement in mathematical learning oppor-
tunities at home. In this chapter, I explore the narratives of nine Norwegian parents 
in order to understand their views on children’s mathematics activities at home. 
From these views, I identify the values they hold about mathematics learning. I am 
interested in the values that are embedded in (LeFevre, Polyzoi, Skwarchuk, Fast, & 
Sowinski, 2010)—or emerge through (Aubrey, Bottle, & Godfrey, 2003)—the nar-
ratives they tell about the children’s informal activities at home, rather than planned 
and goal-oriented mathematics activities in early childhood education institutions 
(Björklund, 2014).

Although research studies in mathematics education highlight parents’ roles dif-
ferently in regard to their children’s mathematics learning, knowledge and skills, 
most situate young children as capable of showing adults (parents, teachers and 
researchers) their understanding of mathematics (Aubrey et  al., 2003; Wager & 
Whyte, 2013). In fulfilling their roles as first educators, parents are considered to be 
active participants in the construction of their children’s mathematics skills, which 
they interpret in many ways (Hawighorst, 2005). Some research has focused on why 
home environments are important for children’s mathematics development and 
learning (Brenner, 1998). Other studies have sought to understand how home 
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 environments can contribute to children’s school mathematics learning (Civil, 
Guevara, & Allexsaht-Snider, 2002). For example, Clarke and Robbins (2004) 
showed that parents were aware of the mathematics in everyday experiences that 
children engaged in at home, such as measuring ingredients for cooking. As a result 
of these studies, parents are often encouraged to use everyday experiences as tools 
to develop mathematical skills and knowledge with their children (Anderson & 
Anderson, 2018). When children attend preschool,1 they bring with them experi-
ences from outside the preschool that can form the basis for mathematical activities 
(Clarke & Robbins, 2004).

However, parents’ views about mathematics activities that their children engage 
in at home may be different from those of teachers, but are important if children’s 
transition to preschool is to be supported. Therefore, the focus of this study is on 
how parents describe their children’s engagement with mathematics at home and the 
research question is: what do parents value in the mathematics activities that their 
children engage in at home?

24.2  Theoretical Perspective

In this study, parents’ views about children’s mathematics activities at home are 
investigated in photo-elicitated interviews (PEIs). In these interviews, the parents 
used narratives to reflect on the photos they took of their children engaging with 
mathematics at home. I consider parents’ narratives to be socially constructed 
(Burton, 1996), in that they are formed by wider societal understandings of these 
specific situations. In an earlier study, I investigated the perspectives of Polish 
immigrant parents living in Sweden in regard to the mathematics that their children 
experienced in preschool (Lembrér, 2018). The findings suggested that the Polish 
parents had adopted Swedish societal norms and values about mathematics in 
preschools.

A narrative approach to research is a way of understanding how meaning is 
imposed on experiences (Burton, 1996, 1999). As Sfard and Prusak (2005) stated, 
the narratives are told by an author, about a person, to a listener: ‘By foregrounding 
the “person’s own narrativizations” and ‘telling who one is”, they link the notion of 
identity to the activity of communication, conceived broadly as including self- 
dialogue—that is, thinking’ (Sfard & Prusak, 2005, p. 16).

1 I adopt the word ‘preschool’ as a label for institutions for Early Childhood Education and Care 
(ECEC) in Norway, for 1–5 year-old children.
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24.2.1  Narrative Approach to the Learning of Mathematics

For this study, there was a need for a framework for analysing parents’ narratives in 
order to identify the values they held about the mathematics activities their children 
engaged in at home. Consequently, I adapted the narrative framework of Burton 
(1996, 1999). In work with children, Burton (1999) described a mathematical nar-
rative as something that ‘may be told and re-told in the style and with emphasis 
chosen by the agent(s) who author(s) the telling’ (p. 24). Burton’s (1996) narrative 
approach was designed to unpack students’ learning of mathematics by interpreting 
their actions and interactions with others as narratives. The narrative approach pro-
vided insights into the children’s understanding of the learning process. Burton 
(1996) stated that, ‘with respect to the content of mathematics, instead of presenting 
it as “objective”, independent and fixed, we can tell its socio-cultural story, seeing it 
as a solution to a social imperative of a particular culture’ (p. 32).

Burton (2002) saw narratives, formed from the children’s actions when doing 
mathematics, as having four aspects: authoring, sense-making, collaborating, and 
using non-verbal narratives. Authoring is when a person uses their experiences to 
reflect on and generate views about learning mathematics. Burton described author-
ing as a way of structuring the children’s coming-to-know mathematics process. 
Burton (2002) gave an example of a boy counting from 1 to 11, 12 before jumping 
to 31, because he seemed to misread 13. He continued to count until he reached 
thirty ten and thirty twelve. Burton described the child as authoring his mathemati-
cal knowledge about counting beyond 10.

Burton indicated that by looking for differences between what the children did 
and how mathematics was taught, teachers (and other adults, including researchers) 
created possibilities for investigating the children’s sense-making, which in this 
case was about counting. Burton suggested that this narrative gave information 
about the child’s mathematical development, in that having learnt to count from 1 to 
10, the boy then created a system to extend and use this pattern with larger numbers.

Burton (2002) exemplified the collaborating aspect by describing how one child 
used some of another child’s response to explore number constructions together. 
The example came from a lesson when a teacher asked the children to state the big-
gest number they knew. One boy gave the response 252 thousand million, two thou-
sand and, after a comment from the teacher, then changed his response to 252 
thousand million. Another boy used this to suggest 252 and 20 million trillion as the 
biggest number, which was followed by the first boy saying 252 thousand million 
trillion. Burton classified this as collaborating, as the children played imaginatively 
with numbers by using each other’s ideas.

An example of non-verbal communication was, ‘Katy’s partner asked her to 
make the calculator display 230. The constant had been set to +10. She approached 
this problem by stopping on 30 and staring at it, then stopping on 130 and comment-
ing that there needed to be a 2 at the front before finally stopping on the correct 
symbolization’ (Burton, 2002, p. 9). Katy used non-verbal communication when 
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using the calculator and verbal communication to describe what the calculator was 
showing.

Burton recognised that people’s actions and interactions provided information 
about mathematics, or what mathematics was about, what it could be and what it 
should be used for. Thus, she considered that narratives connect the social and the 
personal by showing how the social environment influences individuals’ views of 
what it means to learn mathematics.

Narrative is a, possibly the, way to explore the meaning of experience, narrating is partici-
patory, involving a community in telling and responding to a story. Narrative starts from the 
personal and the particular, often encountering the general in its journey, and returns to the 
personal again. Narrative is a strategy for seeking possible answers to questions about our 
world. (Burton, 1996, p. 30).

Burton’s (1996) narrative approach concentrates on the construction of person-
ally meaningful mathematics, in which mathematics is viewed as a sociocultural 
artefact. Burton (1999) considered mathematics learning to be a narrative process in 
which mathematics knowledge and skills are validated by the adults, particularly 
teachers. She noted how this approach opened up possibilities for personal narra-
tives to enhance and enrich children’s possibilities to learn mathematics.

Burton (1999) identified two kinds of narratives that support people’s under-
standing of mathematics and the learning processes. She stated that a paradigmatic 
narrative seeks ‘to establish generalities out of particular examples’ (p. 21) while an 
imaginative narrative is ‘attempting to tell engaging and believable stories which 
become exemplifications’ (p. 21). These two kinds of narratives impose coherent 
meanings on individual experiences and ‘are personal in the degree to which they 
reflect a particular journey towards knowing, general (paradigmatic) where they 
develop mathematical generalities, that is where they turn from being imaginative to 
becoming recognizably paradigmatic knowledge’ (p. 31).

For this study, I have adapted Burton’s (1996, 1999) narrative approach to learn-
ing mathematics in order to identify, in the parents’ discussions, the sets of values 
they hold about young children’s mathematics learning at home. In the next section, 
I describe how Burton’s (2002) four aspects of narratives are adapted for examining 
parents’ narratives about their children engaging in mathematical activities at home 
and how this led to identifying insights into their values about mathematics learning 
in these activities.

24.3  Methodology

To gain parents’ narratives, photo-elicitated interviews (PEIs) were used. In photo- 
elicitated interviews (PEI), participants are asked to take photos of a topic or issue 
and these photos are then used to gain personal views and to allow participants to 
influence the direction of the interview (Greenbaum, 1999). This methodology is 
considered more effective in gaining insider views, than information from 
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 exclusively verbal methods (Hurworth, 2004). PEIs can facilitate dialogues by 
engaging participants and are seen as enjoyable because participants can express 
their views and experiences (Torre & Murphy, 2015). The photos support partici-
pants to reflect on a moment or an action.

In the PEIs in this study, a set of photos taken by the parents were used to enhance 
collaborative and participatory data collection. The narratives were not in the pho-
tos, but emerged in parents’ discussions as they talked together about the photos. 
The parents’ narratives imposed meaning on their experiences about their children’s 
engagement with mathematics at home and were endorsed or challenged in the dis-
cussions with others. By exploring parents’ narratives, societal views about mathe-
matics for young children could be identified, providing potential nuances to the 
views of teachers and policymakers.

Data were collected from nine Norwegian parents, after contact was made with 
preschool staff about the project. The parents received a letter asking them to par-
ticipate in the study. The parents were made aware that they could withdraw from 
the study at any time and that all data would be anonymised. Those parents who 
agreed to participate received guidelines about photographing their children engag-
ing in mathematical activities at home. No information was provided about what a 
mathematics activity was and it was left to the parents to decide what to photograph.

Each family sent 5–17 photos, taken during 1 week in May 2017. In June 2017, 
I conducted two PEIs, with five and four parents, respectively. To keep the interview 
to a reasonable length, a restricted number of photos were chosen. Choosing the 
photos was done by categorising the photos according to Bishop’s (1988) six math-
ematical activities (playing, explaining, designing, locating, measuring and count-
ing). Bishop’s six activities allowed us to identify examples of different kinds of 
mathematics in these photos. Inspiration for categorising the photos was taken from 
the work of Hauge et al. (2018), who classified participants’ photos using Bishop’s 
(1988) six activities, by identifying the principal activity that the children were 
engaged in. A similar classification was done with the set of photos contributed by 
the parents, in collaboration with two other researchers who were part of the wider 
study (see Fosse, Lange & Meaney in this book). At least one photo representing 
each of Bishop’s mathematical activities and at least one photo from each parent 
was chosen for each interview. However, it was not presumed that the participants 
would ‘see’ the same mathematics in the photographs as the researchers. Instead, 
the choice of photos was intended to provide parents with a range of possibilities to 
describe mathematics for young children. As this study is guided by a narrative 
approach, children engaging in mathematics activities at home were viewed from 
the perspective of the parents. It was their views and understanding of children’s 
actions in these activities which were in focus.

For the two PEIs, 9 and 14 photos were chosen, respectively. In the PEIs, I initi-
ated the discussions about each photo by asking: (1) Can you describe the story 
behind this photo? (2) What kinds of mathematics do you see your child doing in 
this photo? The PEIs lasted 55 min, and 1 h and 15 min, respectively, and were 
audio and video recorded. The parents are referred to as P1–P9, and in the case 
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where both parents of one child were represented, they are referred to as P6a and 
P6b. The PEIs were transcribed, with some editing for clarity.

24.3.1  Analysis of the Data

The initial analysis began with identifying descriptions of mathematics. In this way, 
groups of similar activities were identified in the transcripts. These were: board 
games, counting, measuring, and using money. I then searched these groups for 
Burton’s four aspects of narratives (see Table 24.1). I repeated this search twice to 
ensure that all aspects were identified. To identify the kinds of values the parents 
held about the mathematics learning of their children in home situations, I analysed 
the data by asking to what extent and in what way:

 (a) parents used experiences to reflect on and generate their views about mathemat-
ics in children’s activities (authoring)

 (b) parents made sense of how their children engaged in mathematics activities, 
(sense-making)

 (c) parents endorsed shared engagement and validated each other’s views about 
what constitute mathematics in the activities (collaborating)

Table 24.1 The four aspects of narratives adapted from Burton, used to explore parents’ views 
about mathematics activities of young children

Four aspects of 
narratives

Aspect about learning of 
mathematics identified in 
children’s narratives

Aspect about learning of mathematics 
identified in parents’ narratives

Authoring Children’s expressions and 
descriptions of mathematics in a 
particular activity/context

Parents’ expressions and descriptions of 
how their children engaged with 
mathematics at home

Sense-making Sense-making is about reflection 
of a particular journey towards 
certain mathematics knowledge 
and skills

Parents’ views on how their children 
made sense of the mathematics they 
engaged with during an activity at home

Collaborating Collaborating includes validating 
children’s and other’s reasoning 
and use of artefacts that encourage 
sharing amongst participants

Parents co-creating their understandings 
about their engagement with their 
children and by children engaging with 
each other and the use of artefacts that 
encourage sharing amongst family 
members

Non-verbal 
communication

This form of communication 
provides information about how 
children use artefacts to 
complement their verbal narratives 
about learning in mathematics
It focuses on the non-verbal 
actions and children’s use of 
artefacts

This is about how parents viewed their 
own and their children’s use of artefacts 
or tools in mathematics activities at 
home
It focuses on parents’ view on the 
children’s non-verbal actions and use of 
artefacts
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 (d) parents reflected on the artefacts their children engaged with when doing math-
ematical activities (non-verbal communication)

Table 24.1 describes the four aspects of narratives identified by Burton in chil-
dren’s narratives, and the adaptations I made to identify the values that the parents 
held about the mathematics their children did at home.

In the next section, I present the results from parents’ narratives about young 
children’s engagement in mathematics activities at home. From this analysis, I iden-
tify the components of mathematical activities for young children that the parents 
seemed to value the most.

24.4  Results

In this section, I present four groups of activities that emerged from the empirical 
data of two PEIs with parents. Each of the groups (board games, counting, measur-
ing, and using money) is discussed in relation to the four aspects of narratives, and 
the parents’ values about mathematics for young children.

24.4.1  Yahtzee and Ludo, the Value of Learning Numbers

The parents described their children playing the board games Yahtzee and Ludo in 
both PEIs. A photo of children playing Yahtzee was used as a stimulus for discus-
sion in the first PEI group and a photo of children playing Ludo was discussed in the 
second PEI. The parents’ narratives about board games indicated that they valued 
their children learning numbers, in addition to the use of particular pedagogical 
approaches for supporting their children to do this through playing Yahtzee 
and Ludo.

All the parents stated that these games were available at home or in holiday cot-
tages. For example, P6b stated ‘Ludo and Yahtzee were board games that were prob-
ably present in most homes’. One of the parents (P3) described that their children 
did not play Yahtzee at home and reflected over this:

I have got a little guilty conscience, because we almost never played Yahtzee with our other 
child. So we must go home and do that.

In this example, P3 indicated that it was other parents’ stories that made them 
reflect on the potential for mathematics learning when playing Yahtzee. This exam-
ple showed how societal views, through the narratives of other parents, came to 
influence an individual’s view on these kinds of activities. Although this explicit 
acknowledgement of the influence of others was not made again, it was clear that 
the social interaction in the PEI between the parents provided a possibility to 

24 Parents’ Valuing of Mathematics for Young Children



410

 collaborate in enlarging what was seen as possibilities for children to learn mathe-
matics at home.

The parents’ narratives suggested that there was potential for the children to 
engage in counting, adding and subtracting and, to a lesser extent, multiplying, 
when playing the board games. The parents considered that the children authored 
experiences about their coming to know number names and counting sequences. P8 
provided a typical narrative about their child:

We are playing Yahtzee with him (their younger son) in order to collect all the sixes, but it's 
also worth gathering all the sixes. We want to have six on the die because when playing 
Ludo we count how many dots there are on the die. We practice that with him, because he 
counts incorrectly. He could not count them, but he saw that there were six. He has just 
begun, so here we are a little patient with him.

The parents’ valuing of learning numbers can be seen in the recognition that their 
child could not count to six so they used Ludo as a way of encouraging the child to 
count with them. This can be seen in the statements about ‘gathering all the sixes’ 
in order to follow the rules, ‘we want to have six on the die’. P8 supported their child 
in noticing that there were six dots on a die, to learn a number word and to connect 
it to a specific quantity. In doing this, P8 showed that they also valued the collabora-
tion and the sharing of experience as important in supporting the child’s learning 
to count.

Other parents’ narratives provided more detailed descriptions about the mathe-
matics learning that children could gain from playing these games.

P5 It’s good practice to add and subtract, to understand the relationships between numbers
P2 When you have four dice with five dots on each one, it will be four multiplied by five. But 

he takes all five dice and can really add up all the dice. He does that only because he has 
played a lot

In the last narrative, P2 reflected on how there was a possibility for the child to 
engage in multiplying, even though the child only used addition. This is an example 
of sense-making in that the parent identified how their child used addition, but could 
move towards using multiplication. Although P2 highlighted that the child could 
work out the amount on the dice, they also indicated that they saw understanding 
multiplication as being important for children. In P2’s narrative, the child’s learning 
is described as going from the particular context of multiplication and addition to 
their own experiences.

The parents’ valuing of learning numbers seemed to lead them to facilitate their 
children playing Yahtzee. By collaborating through endorsing each other’s experi-
ences, the parents described their pedagogical decisions about providing opportuni-
ties for repeating the numbers and making connections to addition. As was the case 
in the other narratives, P5 explained how they used dice as artefacts to engage their 
young child in Yahtzee:

We play with a die with the numbers 1 to 6, but with the younger child we use the die with 
dots. It is a little easier then.
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In this narrative, the parent described their pedagogical choice about which rep-
resentation of amounts on the die was needed so that their younger child could play 
Yahtzee. P5 situated their children’s mathematics knowledge as not yet sufficient, in 
that P5’s child could not yet recognise numerals. To support the children in learning 
the valued knowledge of counting, P5 made choices about the artefacts the children 
could engage with.

The child’s use of dice to show their counting competence was an example of the 
non-verbal communication aspect of narratives and provided information about 
what the child was capable of doing. In another narrative, P8 stated that they played 
Ludo frequently and because their oldest son had learned to count very well, they 
now played with two dice. However, the additions that the child did were connected 
to the specific context of the mathematical activity:

In other situations, I cannot say to him, ‘What’s 5 + 6’, but when we play Ludo and he 
throws five and six then he knows that it is 11.

Like P5, P8 also recognised what their child could do and provided two dice to 
extend the child’s mathematical understandings.

The parents’ narratives showed that they valued their children learning numbers 
when playing board games and this valuing prompted the parents to seek out oppor-
tunities for the children to learn to count at home. If children are throwing a die as 
part of a game, then the question of ‘how many dots are there’ can be asked. A simi-
lar focus on the knowledge and skills linked to numbers was also found by LeFevre 
et al. (2010). In LeFevre’s et al.’s study, the parents observed and paid attention to 
the numeracy activities that were linked to children’s knowledge about counting 
sequences, with activities such as board games being related to learning numbers. 
However, in the Norwegian parents’ narratives, there seemed to be a distinction 
between the value of learning numbers and the value of learning counting skills, as 
discussed in next section. The narratives about how children learned to count by 
themselves or in activities with family members did not include the parents describ-
ing their own engagement and pedagogical choices explicitly.

24.4.2  Everyday Activities, the Value of Learning Counting 
Skills

Several of the photos used in the PEIs showed children engaging in everyday activi-
ties, such as watching TV, eating, reading and free play. As was the case with the 
board games, in describing the photos in both the PEIs, the parents often focused on 
their children’s development of counting skills, such as repeating number words and 
labelling specific quantities with the number words. The parents narrated how and 
in what sense children were encouraged to think of the world in terms of numbers 
and how they often spontaneously recognised numbers. The parents seemed to 
value counting strategies and understandings of cardinality.
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The following examples of narratives illustrate the everyday activities that the 
parents saw as being connected to counting skills:

Olle is watching TV, and they are counting. (P6a)
He counts 1 and 2 because he is ready, and 3 (and he jumps in the water). (P7)
He counts screws; he has a lot of them, and he counts those screws. He understands it. (P8)
She has a book, this book tells counting sequences 1, 2, 3. […] She would count the objects 

and match them with a numeral on the screen. (P1)

In these narratives, parents described how their children authored their experiences 
as part of their sense making about learning to count. In making sense of their chil-
dren’s learning, the parents showed their understanding of the complexity of know-
ing how to count. For example, P7 stated that their 2-year-old child often had a toy 
in each hand:

Two things—he tends to have one thing in each hand because he has two hands. For exam-
ple, two cars. But, here there’s not much counting on his part.

P7 viewed this activity as an introduction to the idea that one hand could repre-
sent one object. This was valued because it was seen as a beginning stage in devel-
oping counting skills.

Other narratives indicated that some parents valued their children learning one- 
to- one correspondence, in that a number name was connected to touching an object. 
P6a and P6b reflected on an activity that their son did frequently on his own in the 
family bathroom.

P6a He is very keen on counting. He cannot count correctly, but counts 2, 4, 7, 8, 9, 10
P6b 1, 2, 4, 6, 7, 8, I think that’s how he counts
P6a He takes toilet paper rolls on and off again and counts. ‘Many rolls!’ So he has started to 

get a little interested in counting
P6b He has found the most out of it himself. For usually children say ‘1, 2, 4’, but he skips 3 

and goes ‘1, 2, 4’. I do not know exactly how he’s gotten into it; the toilet paper rolls are 
quite easy to move around, and he’s able to place them on the toilet paper holder over and 
over again

P6a He can count almost to 10, but he does not say all the numbers, so it’s not a correct order, 
he’s skipping some

P6b He just practices saying counting words. Thus, it seems that he only practices in a way. He 
develops his language; I believe that’s part of it

The parents seemed to indicate that touching each object and saying a numeral 
name aloud was a necessary step towards their child learning to place the correct 
number words into a counting sequence. This suggested that the parents valued 
counting but recognised that learning to count was made up of a number of different 
stages, each of which was important.

As had been the case with playing Ludo and Yahtzee, these narratives showed 
that the parents noticed that their children were counting. However, their interaction 
with their children in these activities was not discussed. This suggested that 
 sometimes they chose to just watch and allow their children to explore counting in 
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their own way. The manipulation of artefacts by the children was more prominent in 
the parents’ narratives and seemed to act as an encouragement for the children to 
engage in activities by themselves. The parents paid attention to this use of non-
verbal communication.

When the parents did mention that they interacted with their children, they 
seemed to situate themselves as supportive partners, who asked questions or pro-
vided opportunities to show that the last number said represented the total number 
of objects. P6b provided an example where his child asked the question ‘how many’, 
and to which the parent asked the child to find another set of objects which had a 
total of four items.

P6b He often asks, ‘How many fingers is 4?’ He likes to count. I ask him what else 4 is, can 
you find something that is 4 of? We count together when he gets the wrong number of 
items and needs to add or subtract 1

These narratives are classified as illustrating collaboration between the parent 
and the child, in which the parent seemed aware that counting was related to the 
addition and subtraction of 1. Everyday activities also seem to provide opportunities 
for the children to learn about addition. For example:

P6b He learns in many situations, such as when we sit down and eat waffles (the waffles can be 
divided into five pieces, each piece having the shape of a heart). We split the waffle and he 
has 3 + 2 pieces. Then he splits a 2-piece into 1 + 1, so it is 3 + 1 + 1. He has variants. So 
3 + 1 + 1 and 3 + 2 is 5. We do a lot of mathematics everyday, rather randomly

P6b seemed to value the child’s opportunity to visualise the decomposing of five 
in different ways and how this could contribute to the child developing their under-
standing of addition. This parent seemed to consider this kind of activity to be 
meaningful for their child.

P8 gave an example of the non-verbal communication aspect of narratives in 
relation to being able to recognise and write numerical symbols as important com-
ponents for learning addition.

P8 At his age (their son is 5 years old) you are able to do mathematics when it is visual, if I 
would write 6 + 6 and ask him, ‘How much is it,’ I believe he would understand it

In this narrative, the symbolic mathematics was something that this parent con-
sidered would communicate meaning to the child and was something that a child 
would need to learn.

The parents highlighted the value of learning counting skills in everyday activi-
ties which their children were often engaged in by themselves. In these activities, 
the parents did not highlight collaborating with the children, as had been the case 
with playing board games. Other studies, such as by Aubrey et al. (2003), identified 
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everyday activities and experiences of young children, initiated by both children 
themselves and by adults, as potential opportunities for mathematics learning. 
However, the Norwegian parents saw that everyday activities such as watching TV, 
eating, reading and free play did not always require them to facilitate their chil-
dren’s learning of counting. Although Aubrey et al. (2003) stated that it was difficult 
to know how parents’ engagement or pedagogical knowledge about stages of learn-
ing counting influenced their children’s counting skills development, the Norwegian 
parents showed that they understood that children needed to learn a range of differ-
ent types of knowledge and skills in order for them to learn to count or do basic 
operations such as addition.

24.4.3  Length, Volume, Time, and the Value of Learning 
Measurement Skills

Like the counting activities, activities in which children were measuring items at 
home appeared frequently in the narratives. Parents highlighted that their children 
needed to become aware of the attributes of objects that were to be measured, with 
or without measuring tools. However, the parents also described the difficulties that 
children might have when learning about measurement.

P8 You cannot expect children to understand strategies in measuring

As was the case for learning to count, this view seemed to contribute to parents 
emphasising the need to support their children in developing specific, developmen-
tal, measuring skills. As such, the authoring of their children’s experiences of learn-
ing measurement skills often included a reflection on the complexity of the learning 
process.

P4 stated in a narrative that children needed a lot of practical experiences to esti-
mate quantities. They reflected on a shared experience with their child about deter-
mining how much food a fish needed. P4 said that the measuring was not about 
weight because at this point their son could not measure in grams. Instead, the child 
simply compared the size of the fish and the amount of food he had in his hand to 
determine if it was sufficient. P4 explained that the child had said, ‘Mum, this fish 
is quite small so he cannot get so much food’. In this narrative, the parent indicated 
that the child had identified that it was the amount of food, volume rather than 
weight, which was important. In doing so, they highlighted that the measuring pro-
cess required an understanding that an object has attributes that can be measured 
and that there was a need to determine which attribute was most important in a 
specific situation. However, using standardised units was not considered essential as 
P4 described how the child used the measurement term ‘small’ and compared the 
fish with food, without using standardised measuring units.
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The correct language for naming each unit was highlighted in the narratives 
about when children compared objects to determine which was longer or shorter or 
which was heavier or lighter. This suggested that the use of correct terms was valued 
by the parents.

P5 It is the same with height as well. When he (her son) comes with the yardstick and 
measures my height, he will say, ‘You are sixty high’. But he does not understand what 
it means, so we can talk about it
He is reading the numerals on the yardstick and can recognise the numeral 70

P5 told a story about an activity in which their son found objects that had a length of 70 cm:
He goes around finding objects and comparing their length to the yardstick and then reports 
back to me that he found something that is 70 long

In this narrative, the child identified objects that had a specific length by measur-
ing with standard units, using a yardstick as a measuring tool. The parents authored 
narratives about children exploring the use of standardised units and direct and indi-
rect comparisons. The parents used these narratives to make sense of what their 
children understood about the measuring process. The parents seemed to value the 
children exploring objects and their attributes as part of their learning. The collabo-
rating and shared engagement, where children needed to use descriptive language, 
also seemed to be valued.

Measuring time was debated by the parents, especially in regard to whether 
young children could learn to read a clock. Parents seemed to agree that young chil-
dren could not measure time precisely. Instead, reading a clock was a skill that was 
learned in progressive steps over time. Some parents indicated that an initial step 
was for children to show an interest in learning to tell time. Standard units of mea-
surement, such as hours, seconds and minutes, were often introduced by the parents. 
For example, P5 explained how they helped their children make sense of a minute, 
by timing how long they took to brush their teeth.

I try to explain a particular timeslot of 60 seconds, so I told my children that it takes 60 
seconds to brush their teeth. So we can talk a little about the clock and how long one min-
utes takes.

The different aspects of learning mathematics, as exemplified by parents in this 
study is similar to what Meaney (2011) found in her study of a 6-year-old child 
engaged in a number of measurement activities at home. In Meaney’s study, the par-
ent understood and recognised that measuring time was a complex concept. Meaney 
suggested that the abstract nature of time is difficult to grasp, so there is a need to 
find ways to talk about it (for example, experiencing the timeslot of 60  s when 
brushing teeth). The Norwegian parents valued that the children need to want to 
know about learning time as the first stage, which is different from Meaney’s study 
where the mother recognises a need to learn how to tell time for practical reasons.

Parents valued mathematics activities that drew children’s attention to the attri-
butes of objects and highlighted the descriptive language and comparison terms that 
are important for describing these attributes. This suggests that the parents valued 
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the children’s sense-making as they began to measure objects and their strategies for 
learning how to measure. There are some similarities to Clarke and Robbins (2004) 
in which children measuring ingredients and cooking at home were identified as 
illustrating measuring capabilities. According to these researchers, these kinds of 
activities offered general mathematical experiences for the children, while the nar-
ratives from the Norwegian parents gave more detailed justifications about learning 
measurement skills. The parents not only recognised opportunities for exploring 
attributes of objects or use of standardised measuring units but also valued the 
development stages of learning measurement skills when children engaged in activ-
ities such as feeding a fish.

24.4.4  Money and the Valuing of Equivalence

The last group of activities were to do with the equivalence of money, particularly 
between notes and coins. In both PEIs groups, there were photos in which children 
engaged with money, such as when they were saving for a toy or receiving money 
as a gift. The parents seemed to value their children understanding the equivalence 
of different representations of money as a prerequisite for children learning how to 
spend their money wisely. In the parents’ narratives, there was evidence for valuing 
of this skill as something important and useful for children to develop the ability to 
use money in everyday circumstances. This is also validated in the work by Brenner 
(1998), where she found that activities with money, buying things or spending 
money, are among children’s most common uses of mathematics outside of school. 
To gain this skill, parents indicated that they needed to collaborate with their chil-
dren by using artefacts, such as money or objects. The parents authored narratives 
about how children came to know how to use money in everyday life.

One parent described going to a recycling centre and trying to help her child 
understand the value of the money gained from recycling a specific amount of cans 
by comparing it to an amount of Lego.

P3 The aim of going to the recycling centre with my son is to talk about the value of things. I 
explain to him how many bags of cans we need to recycle in order to have money to buy a 
small Lego set. So instead of talking a lot about numbers, I compare the number of bags we 
need to recycle to save for Legos. I am not good at it, but I try to help him relate to it

P3 considered that numbers alone would not help their child understand equiva-
lence. Instead, P3 highlighted the need to make comparisons that made sense to the 
child. They supported the child in seeing the equivalence between a number of bags 
of cans that needed to be recycled and how much was needed to buy a Lego set. Yet, 
in the narrative, P3 highlighted their lack of pedagogical knowledge about explain-
ing to their child the value of what was being recycled.

There were several other narratives in which the parents explained how their 
children did not recognise the value of notes, demanding to have coins instead 
because they were seen as more valuable.
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P7 A 100 kroner note is 100 coins, and 10 coins with a value of 10 kroner are also 100 kroner. 
But my child would rather have 10 (lots) of 10 kroner coins than one 100 kroner note

P1 I can see that she has no understanding of how much 200 kroner is worth even when I 
would count 1, 2, and 3. She recognises the 50 kroner note, but she has little understanding 
about the value of 50 NOK, and she would rather have five 10 kroner coins. In terms of 
notes, she does not yet have an understanding
My children got 200 kroner each from my mother, but the money was divided differently. I 
tried to explain to my older child that they both had the same 200 kroner, but she wanted to 
have more coins. So I decided to exchange her notes for coins. They were preoccupied with 
having equivalent amounts (volume) of money, not the value of the coins and notes

The parents’ narratives seemed to highlight that they valued their children gain-
ing an understanding of the equivalence of notes and coins so that their children 
could use banknotes in real-world exchanges. As such, the non-verbal communica-
tion aspect of the narratives illustrated the children’s difficulty in valuing different 
coins and notes in any other way than simply counting them. These examples illus-
trated that the parents valued coming to know how to use money but realised that 
this was a difficult concept for young children to grasp, because of the need to 
understand the abstract value attached to notes and coins. The parents valued the 
everyday activities in which children engaged in experiences with money. This was 
also the case in the Clarke and Robbins (2004) study where shopping situations 
provided opportunities for parents to use examples of spending money to convey 
moral learning about not being able to buy everything children wanted to have. The 
Norwegian parents’ narratives suggested that they valued the learning equivalence 
of money and considered the children’s use of artefacts as important in developing 
this skill.

24.5  Discussion

In this chapter, I have investigated what parents valued in the mathematics activities 
that their children engaged in at home. These findings contribute to the research 
stating that parents and families play a role in children’s learning and development 
(Phillipson et al., 2017), but provide a detailed justification for identifying the ways 
in which parents valued the mathematics activities their children engaged in at 
home. In considering parents’ role as children’s first educators, it was important to 
identify what they understood from their perspective. Yet, at the same time, it was 
clear that the parents’ understanding did not arise in a vacuum, as it was through the 
discussion with others that their views were endorsed or challenged. In this way, the 
parents revealed some of the societal norms about mathematics for young children 
that they accepted. Through the narratives, these parents seemed to agree on the 
societal values of mathematics education for young children. As had been the case 
with the Polish parents (Lembrér, 2018), these values were affected by the wider 
views, but in this study, it was possible to see how the discussions endorsed particu-
lar norms and values through their discussions.
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By analysing the authoring, sense-making, collaborating and non-verbal com-
municating aspects of Burton’s (1999) narrative approach, the parents’ values 
became apparent to do with: learning numbers, counting and measurement skills, 
and the use of money in everyday life. The parents also indicated that they valued 
activities which supported the children at their different developmental stages.

The parents authored narratives in which they indicated that they were aware of 
how their children engaged with mathematics learning at home by identifying a 
variety of knowledge and actions that their children could currently do and what 
they would like them to be able to do in the future. For example, they recognised 
that their children had a range of different counting skills but were not yet able to do 
multiplication or recognise the equivalence of coins and notes.

As the activities were undertaken both by the children themselves and with fam-
ily members, the parents were able to discuss when and why they would interact 
with their children during the activity as the collaborating aspect of the narratives. 
They also collectively explored their role in their children’s mathematics learning 
and its impact on how their children were engaging with mathematics. The parents 
discussed their pedagogical skills, used different methods to support their children 
when engaging in mathematics activities, and were aware of what their children 
could potentially learn in a specific situation. For some parents, playing board 
games allowed them to identify a range of mathematics skills that were part of the 
children’s everyday experiences.

In regard to the non-verbal aspect of narratives, the parents showed awareness of 
how artefacts, such as dice and measuring tools, could be used to support children’s 
engagement with particular mathematical ideas. They indicated that they under-
stood that some artefacts, such as money, required the children to understand 
abstract ideas that were too advanced for them. Mathematical symbols were seen by 
one parent as possibly being understood by their child, but parents of other, younger 
children might have seen this as being too advanced. This suggests that the parents 
were able to identify what artefacts would help children to make sense of different 
mathematical ideas. The parents negotiated their own understandings of children’s 
actions as something valuable in terms of mathematics learning. This confirms what 
Anderson and Anderson (2018) stated, that parents see children’s home experiences 
as an important source for mathematics learning.

24.6  Conclusion

As parents are children’s first educators, it is important to understand what parents 
value in young children engaging in mathematics activities at home. To do this, I 
used a narrative approach to identify the ways in which parents’ views reveal what 
they value about doing mathematics at home. In particular, I argue that mathematics 
learning is something that emerges between parents and children at home, building 
on the pedagogical choices made by parents. For example, depending on the rules 
applied by the parents in board games, the children can be supported in different 
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ways, creating opportunities of development of basic numerical skills. Parents also 
recognised and valued some unexpected aspects of children’s engagement in math-
ematics activities at home. This provides an opportunity for learning between par-
ents and teachers of young children to become a two way-street with knowledge 
going between both groups. In earlier research (Whyte & Karabon, 2016), commu-
nication has often been situated as a one-way street with parents being told what is 
important by teachers. Parents’ experiences of, and their focus, on children’s actions 
could be considered as potential resources and an example of partnership for shared 
responsibilities in education between preschool staff and parents (Hujala, Turja, 
Gaspar, Veisson, & Waniganayake, 2009).

This research continues to expand early mathematics research with evidence for, 
and understanding of, young children’s expressions to learn mathematics, and to 
widen our perspectives about providing children with rich, meaningful mathematics 
learning experiences. Although this study confirms findings from other studies in 
early childhood mathematics, the nine Norwegian parents provided detailed and 
more nuanced information about the mathematics learning they valued in young 
children’s activities at home. They highlighted how the authoring of children’s 
mathematics skills by engaging in concrete experiences contributed to sense- 
making, as well as how they promoted dialogues to help their children make use of 
artefacts.
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Chapter 25
“Pedagogical” Mathematics During Play 
at Home: An Exploratory Study

Ann Anderson and Jim Anderson

25.1  Introduction

To improve equitable access to school mathematics learning, teachers and research-
ers need to recognize and value the mathematics each child carries with them from 
the socially and culturally diverse experiences in which they engage every day, prior 
to coming to school. Similarly, researchers and teachers need to view parents and 
significant others from a strengths-based, rather than deficit, perspective, in full 
recognition of the “funds of knowledge” (Moll, Amanti, Neff, & Gonzalez, 1992) 
family and community members possess in terms of scaffolding young children’s 
mathematics development. Yet, claims regarding parents’ limited ability to support 
their children’s mathematics learning (e.g., Milner-Bolotin & Marotto, 2018) con-
tinue to proliferate, and are at times, class or race based. In this chapter, we report 
on two “pedagogical” at-home, play-based activities (i.e., Playdoh: Pizza and Toys: 
Cars) to both familiarize readers with two mothers’ capacity to “teach” mathematics 
and to critically examine the privilege we seem to afford “pedagogical” mathemat-
ics as the way forward.

25.2  Theoretical Framework

Informed by socio-historical theory (Rogoff, 2003; Vygotsky, 1978; Wertsch, 1998), 
our research of parent–child engagement with mathematics prior to school is pre-
mised on our recognition and valuing of the social, cultural, and individual ways in 
which children learn mathematics and parents and significant others mediate that 
learning. As such, we argue that children’s mathematical experiences “cannot be 

A. Anderson (*) · J. Anderson 
University of British Columbia, Vancouver, BC, Canada
e-mail: ann.anderson@ubc.ca

© Springer Nature Switzerland AG 2020
M. Carlsen et al. (eds.), Mathematics Education in the Early Years, 
https://doi.org/10.1007/978-3-030-34776-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34776-5_25&domain=pdf
mailto:ann.anderson@ubc.ca
https://doi.org/10.1007/978-3-030-34776-5_25#DOI


422

understood out of the context of the immediate practical goals being sought and the 
enveloping socio-cultural goals into which they fit.” (Rogoff, 1990, p.139). In addi-
tion, we believe that parents’ perceptions of their role in their children’s learning 
and their conceptions of the task-at-hand influence the types of support they pro-
vide. In turn, Vygotsky’s zone of proximal development provides us with a concep-
tion of children’s learning when adults structure activities that engage children in 
more complex behaviors and thinking than they would on their own. Finally, we 
argue that parents’ contributions to their children’s mathematical development are 
such that, as Bjorklund and Pramling (2017) suggest, the adult “is sensitive to what 
the child expresses” (p. 76) and “mathematics is, in Vygotsky’s terms, cultivated 
rather than imposed” (p. 77).

25.3  Background Literature

Research into young children’s engagement with mathematics at home tends to fall 
into three categories. A number of studies (e.g., LeFevre et al., 2009; Skwarchuk & 
LeFevre, 2015) rely on parent reports captured through questionnaires and/or 
interviews. Other studies (e.g., Anderson, 1997; Anderson, Anderson, & Shapiro, 
2004, 2005; Vandermaas-Peeler, Nelson, Bumpass, & Sassine, 2009) investigate 
parent–child interactions during tasks for which the researchers provide the mate-
rials in clinical, childcare, or at-home settings. Finally, there are observational 
studies (Anderson & Anderson, 2014, 2018; Aubrey, Bottle, & Godfrey, 2003; 
Bjorklund & Pramling, 2017; Tudge & Doucet, 2004; Walkerdine, 1988) of par-
ent–child interactions during “naturally occurring” events at home. Overall, this 
research captures considerable diversity across families in terms of the frequency 
and types of activity, and the mathematics inherent in them, although the literature 
appears to suggest that families emphasize counting and number.1 Likewise, over-
all findings, from parent reports and “naturalistic” observations, suggest that chil-
dren’s engagement with mathematics prior to school tends not to occur during 
explicitly didactic interactions (Benigno & Ellis, 2008). For instance, Tudge and 
Doucet (2004) concluded that children from middle- and working-class families 
were minimally engaged in either “academic lessons” or “play with academic 
objects” pertaining to mathematics, although they found significant variation 
across the families.

While educators acknowledge the importance of young children’s mathematics 
learning prior to school, we appear to know less about the impact of the different 
types of mathematical activity that occur at home. In the 1980s, researchers (Tizard 
& Hughes, 1984; Walkerdine, 1988) classified certain at-home tasks as either “ped-
agogic” or “instrumental,” the former referring to occasions where “the focus was 

1 In Anderson and Anderson (2018), we argue that “the prevalence of number previously associated 
with mathematics in the home, … needs further consideration and research” (p. 196).
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predominantly the teaching and practice of counting” (Walkerdine, 1988, p. 81). In 
our longitudinal study (Anderson & Anderson, 2014) of six middle-class homes, we 
found that the role of mathematics within joint adult–child activity fell along a con-
tinuum where mathematics was the goal, a major emphasis, an equal emphasis as 
another goal, a minor focus, or incidental. Hence, pedagogical and instrumental 
categories were viewed as endpoints of such a continuum, corresponding to “math 
as a goal” and “math as incidental,” respectively. Considering the varied activities 
within these families, we further argued that young children’s mathematical experi-
ences prior to school are likely more eclectic than research to date has been able to 
illustrate. While Aubrey et al. (2003) provided evidence of the maximum variation 
in parental mediation styles by describing one mother’s pedagogical and another 
mother’s instrumental style, they argued that neither style of parent mediation could 
be considered “better” than the other, since teachers reported that both children 
were performing equally well in mathematics at school. Likewise, Skwarchuk and 
LeFevre’s (2015) results from their longitudinal project showed that “both formal 
and informal experiences are related to children’s numeracy acquisition but through 
different mechanisms” (p. 109 [emphasis added]).

Our interpretation of the literature is that educators continue to dismiss or under-
value activities and experiences where mathematics is incidental, including those 
found in preschool and Kindergarten classrooms. Similarly, likely due to the limited 
amount of didactical events captured in “naturalistic” studies to date, there appear 
to be increasing calls for educators and researchers to tell parents, and in turn early 
childhood educators, who emphasize a play-based curriculum, how to make math-
ematics more explicit or pedagogical. However, to date, the qualitative nature of 
“pedagogical” mathematics, and parent–child engagement with it, without outside 
intervention, is largely unknown. To begin to address this gap in the literature, the 
current study explores the research question: In what ways do mothers of preschool 
children engage their children with mathematics during “pedagogical” tasks 
at home?

25.4  Method

Periodically over the course of 2.5 years, six preschoolers were videotaped as they 
participated with family members in at-home activities, such as baking cookies or 
reading a storybook. On the day of video recording, the mothers, knowing that the 
focus of the study was on mathematics, designated what to have taped. A research 
assistant recorded four of the families, and two mothers elected to do their own 
recording. Of the 45 activities collected (Anderson & Anderson, 2014, p.  8), 18 
were classified as those in which “math is the goal” (see Table 25.1).
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Table 25.1 Activities, mothers chose to videotape, previously classified as “Math is a goal”

Activity
Each family’s “pedagogical” activity
ADAM (9) Liu (8) PENN (4) Star (7) Beet (7) Pimm (10)

Puzzles Number Number
Joint play Store Stickers
Board game Snakes and ladders Bingo
Story time Number and shapes
Family time Baking
TOYS Pop up 

animals
CARS

PLAYDOH PIZZA
Physical game Hopscotch
Matching 
game

Numerals dots and 
words

Rods: Ten 
pairs

School like Word problems Computer 
game

Songs Number
Other games Macaroni

25.4.1  Data Sources

In this chapter, we focus on two “pedagogical” activities, namely Playdoh: Pizza 
and Toys: Cars, which the same research assistant recorded in the Adam and Penn 
(pseudonyms) homes,2 respectively. In the Adam family, the daughter (aged 
3.5 years) made Playdoh pizza,3 while she and her mother chatted about imaginary 
visitors who were coming to dinner. In the Penn family, the son (aged 3  years) 
played with his toy cars and a wooden “town” set, while he and his mother chatted 
about his cars and nearby neighborhoods (see Appendix A, Figures 25.2 and 25.3). 
In Anderson and Anderson (2014), while both Playdoh: Pizza and Toys: Cars were 
designated as play-based activities, they were also deemed to be pedagogical since 
doing mathematics appeared to be each mothers’ goal from the outset and they ver-
balized mathematics throughout. However, the extent to which the Adam and Penn 
mothers pre-planned these “pedagogical” tasks is unknown. For analysis purposes, 
we repeatedly viewed the videotaped sessions of Playdoh: Pizza and Toys: Cars and 
augmented previous verbatim transcriptions with descriptive details regarding the 
non-verbal and verbal interactions. We then analyzed each of these augmented tran-
scriptions for trends, within and across the two activities, regarding the mothers’ 

2 The Adam mother was an elementary teacher on maternity leave for her second child at the time 
of study; the Penn mother was an international graduate student (her program was unrelated to 
math & education). Both homes were considered middle class (based on values and earning 
power), although family income at time of study may have situated them otherwise.
3 Playdoh is the trade name of a non-toxic modeling compound sold by Hasbro Toys (https://play-
doh.hasbro.com/en-ca)
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pedagogical approaches. In turn, we categorized the pedagogical moves we found 
according to their role in mathematics engagement.

25.5  Results

From the outset, both mothers use several pedagogical moves (see Table 25.2), to 
varying degrees, to make and keep mathematics as the goal of these two play-based 
activities.

25.5.1  Establishing the Mathematics Goal

Both mothers joined their children in their play, sitting at the child’s level and in 
close proximity to the play materials. While the Adam dyad opened with the idea of 
making a Playdoh pizza, the Penn dyad played briefly with plastic animals before 
turning to the toy cars. Both mothers drew from the unfolding dialogue to set the 
stage and pose the mathematical problem to their children. The Adam mother used 
child-like language (e.g., “let’s pretend”) to invite her daughter to consider the 

Table 25.2 Summary of pedagogical “moves” in Playdoh: Pizza (Adam) and Toys: Cars (Penn)

Mathematics 
engagement Pedagogical “moves”

Adam 
mother—daughter Penn mother—son

Establishing goal Setting the stage Four visitors … cut 
pizza so each gets 
same

Line cars in a row and 
then take some away

Changing plans 
(slightly)

How many slices do 
we have/need?

How many “orange” cars 
are there?

Refocusing on original Cutting & counting 
“equal” slices for 
visitors

Adding cars to a group 
and counting (one more)

Sustaining goal Scaffolding (correcting) 
perceived error

Is this piece equal to 
others?

Can you count them [to 
check]?

Connecting math with 
previous experiences

Fractions with money Numbers with age

Responding to child’s 
interest in math

D: Let’s pretend we 
have six people

S: And now you can 
count all of these cars

Addressing 
child’s role

Engaging with child’s 
storying of task

D: Let’s pretend we’re 
sisters, I’m 7, you’re 8

S: This is downtown; … 
daddy’s red truck

Supporting child’s 
problem solving

Child proposes 
alternate cuts; Tic tac 
toe

Child counts cars of both 
color

Encouraging child’s 
independence

Little circles of 
pepperoni

Different parking spaces
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Table 25.3 Setting the stage: mothers pose original problem

Playdoh Pizza: Adam mother (M)—daughter (D)
Toy Cars: Penn mother (M)—
son (S)

M and D are seated at child’s table (adjacent)
1 M: Are you going to make us a pizza?
5 M: … What shape is it going to be?
6 D: A heart
7 M: … What shapes are pizza usually?
8 D: Triangle.
9 M: Yes, when you cut the pieces they are. Let’s see if we can 
make a regular shape. A big circle right? A big pizza
18 M: … How is the pizza? OK … Let’s pretend we are going 
to have four people over for supper, four people are coming. 
We want to cut this pizza so everybody gets the same. So the 
first thing we need to do is cut it in half

M and S seated on floor 
(facing); pairs of cars near
25 M: What do you want to play 
with the cars?
26 S: A broken car. (inaudible)
27 M: Do you want to play the 
counting game with the cars?
28 S: Yeah
33 M:…look almost the same. 
What kind are they?
34 S: Tow trucks
35 M: Two tow trucks
39 M: Shall we play the game. 
Shall I start?
40 S: Counting game
41 M: …do you want to line 
them in a row (M picks up car) 
and then take some away and 
see how many there are?

Table 25.4 Changing plans (slightly): mothers ask “how many” questions directly

Playdoh Pizza: Adam mother (M)—daughter (D)
Toy Cars: Penn mother 
(M)—son (S)

24 M: So you cut it in half first. (D cuts circle horizontally in 
the middle) Good girl. (M separates semi-circles) And there is 
how many pieces?
25 D: Two
26 M: Two. But we need more than two, don’t we? How many 
people are coming?
D holds up four fingers

58 S: Only one red car
59 M: Hum, only one—how 
many, …
61 M: How many orange cars 
are there?
62 S: One, two, three.(points 
toward (above) the cars)
63 M: Three orange cars and 
… how many brown cars are 
there?
64 S: Only one, two. … Only 
two!

 problem of “sharing a pizza equally when four visitors come to supper.” The Penn 
mother referenced “a counting game” they had played before and invited her son to 
consider the problem of “how many cars remain, when a number of them are 
removed” (Table 25.3).

Thus, both mothers’ problems emanate from the child’s play while making 
Playdoh pizza or sorting toy cars, and redirect the child’s efforts toward fulfilling a 
mathematical goal, namely, cutting a pizza into equal slices and finding a numerical 
difference with cars. Interestingly, as both mothers engaged the child in solving the 
problem, plans seem to change slightly, as they asked their child about small sets, as 
an intermediary step (Table 25.4). In doing so, the Adam daughter checks the prob-
lem’s parameters and the Penn son attends to the number of cars already sorted.
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Table 25.5 Refocusing on (revised) original: mothers pose similar problems as the original

Playdoh Pizza: Adam mother (M)—daughter (D)
Toy Cars: Penn mother (M)—son 
(S)

27 M: Four people are coming for supper so can you cut it 
in half this way? (M gestures to cut in middle vertically; D 
gestures a horizontal cut)
28 M: This way sweety? (gestures vertically) Yeah
28 D: … Gotta go this way. Let’s pretend it’s a …
29 M: OK, but let’s do this first; so you already cut it in 
half this way so let’s cut it in half this way. Yeah. Let’s see 
what happens. (D cuts vertically at middle) That’s a girl. 
So we cut it in half that way. Now how many pieces do we 
have? One, two
30 D: One, two, three, four. (M moves each)
31 M: Four

67 M: And can you see any more 
orange cars? … Do you want to put 
it with the other orange cars?
68 S: Another blue car. (picks up a 
blue car)
69 M: Another blue car, good one. 
(S places it near other blue cars) 
Now how many blue cars are there?
70 S: Only three
71 M: Three. You’ve got two and 
one and you’ve got three. And now 
you’ve got three yellow ones and 
look is that another yellow one?
73 S: Yeah (picks up a yellow car)
74 M: You’ve got three and now 
you are going to add another one. 
Now how many …?

Immediately following these simpler “how many” questions, both mothers refo-
cus their child’s attention onto the original problem. However, the problem has been 
revised somewhat, either consciously or inadvertently (Table 25.5).

For the Penn dyad, the revised problem involved adding “one more” to small sets 
of a known quantity and for the Adam dyad, the revised problem involved one-to- 
one correspondence between the number of visitors named and the slices needed. 
As a result of these small and subtle shifts, the Penn mother encouraged a “number 
operations” goal as planned but included the child’s interest in sorting, and adding, 
cars into color groups. Likewise, while the Adam mother continued to encourage 
the “dissecting” goal, the focus was more on counting slices to match a given num-
ber and less on “sharing equally.”

25.5.2  Sustaining the Mathematics Goal

At times, both mothers appear to scaffold their child toward a “correct” answer by 
asking them to try a different strategy (Table 25.6). The Penn mother encouraged 
her son to count to check his solution, while the Adam mother suggested using a 
whole circle, not four parts, to cut for six visitors.

Although both mothers offer the alternate strategy as a choice, both children 
agree with their mother’s idea. Interestingly, each recommended strategy seemed to 
“backfire” for the child, if the mothers’ interpretations, in the moment, accurately 
reflect the child’s intentions.4 Both mothers also connect the mathematics in the 

4 While our data are inconclusive, it is plausible that both mothers “misinterpret” the child’s “solu-
tions”; the sliver may simply be residual from Adam child’s inability to retrace a previous cut, and 
the Penn child may be “counting” the entire row of cars (browns and yellows).
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Table 25.6 Scaffolding (correcting) perceived error: mothers name checking strategy

Playdoh Pizza: Adam mother (M)—daughter (D) Toy Cars: Penn mother (M)—son (S)

33 M: … How can we divide it for six people?
34 D: You go like that. Go like that and then you go 
like that. (gestures a middle cut for each slice)
35 M: Should I build it back together or do you want 
to keep it like this?
36 D: Build it back
44 M: OK you show me
D cuts horizontally near middle and again just 
slightly below. D tries to separate semi-circles
46 M: … if one person gets this piece (holds up a very 
thin strip) is that the same size as this …?
47 D: No. (D shakes head)
48 M: This guy will be so hungry. We need to make 
them so that they are the same size. So let’s put it back 
together. How can we do that?

74 M: You’ve got three and … another 
one. Now how many do you have?
75 S: Five
76 M: Can you count them?
77 S: One, two, three
78 M: Count all of the yellow ones, try. 
(M spaces brown cars further from 
yellow ones)
79 S: (points to each car) One, two, 
three, (taps 4th car, shouts) nine
80 M: One, two three—how many. One, 
two, three—(M points at each car and 
keeps finger on last car)
81 S: (shouts) Eight
82 M: …What comes after three?
83 S: Five

Table 25.7 Connecting math with previous experiences: mothers’ associate with everyday use

Playdoh Pizza: Adam mother (M)—daughter (D) Toy Cars: Penn mother (M)—son (S)

76 D: One, two, three, four. (touches each piece)
77 M: Right. So four of these pieces make
78 D: Have seven
79 M: The whole thing right? Make one. Remember 
when we went to buy Sara your doggy? (puts small toy 
dog on table)
80 D: Yeah
81 M: And you helped mommy count up all the change 
and I told you to put quarters in a pile to make one 
dollar. Remember how many quarters you had to put to 
make one dollar?
82 D: Four
83 M: Four quarters just like this

82 M: …What comes after three?
83 S: Five
84 M: What is it going to be when it’s 
your birthday? How old are you going 
to be after three?
85 S: Four
86 M: Four
87 S: It’s four (S looking at cars M has 
organized)
88 M: It’s four, yes
90 M: And what is it going to be after 
your next birthday when there is one 
more? (puts car next to 4 others)
91 S: (looks down at the row of cars) 
five

activity with previous experiences involving everyday use of number to scaffold the 
child’s understanding (Table 25.7). When the Penn son seems to “confuse” counting 
beyond 3, the Penn mother points to “his age on his next birthday” to help him count 
the “fourth” car and beyond. To explain the idea of quarters, the Adam mother 
reminds her daughter of when she saved 4 quarters5 to buy a stuffed dog.

While the mothers initiated the mathematics problems during the play activities, 
and both children cooperated with their mothers, each child also explicitly signaled 
their own interest in the mathematics as a goal. For instance, the Adam daughter 

5 Canadian coins, valued at 25 cents, are commonly called quarters.
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Table 25.8 Responding to child’s interest in math: mothers acknowledge child’s suggestion

Playdoh Pizza: Adam mother (M)—daughter (D)
Toy Cars: Penn mother (M)—
son (S)

32 D: Let’s pretend we have (pause) six people
33 M: Six people coming? OK. How can we divide it for six 
people?
34 D: You go like that. Go like that and then you go like that. 
(gestures a middle cut for each of the 4 slices of pizza)

129 S: And now you can count 
all of these cars
130 M: Count all of these cars?
131 S: All of them right here. 
(adds cars to row)
132 M: Hum
133 S: Another one—(inaudible)
134 M: … Do you want to put 
white ones together?

suggested a number of visitors to consider, and the Penn son invited his mother to 
count cars he had assembled (Table 25.8).

While both mothers acknowledge their child’s suggestions, the Adam mother 
follows through on her daughter’s suggestion by posing the problem of sharing the 
pizza with six people. The Penn mother, on the other hand, does not “count the cars” 
as the child asks but rather redirects his attention to grouping more cars.

25.5.3  Addressing Each Child’s Role in Play-Based 
Mathematics

While both children readily engage with the mathematics their mothers set out as a 
goal, each child wove components of a story throughout the conversations 
(Table 25.9), thereby infusing characteristics into the task, which appear to maintain 
the playfulness of the activity. For example, the Adam daughter constructs the activ-
ity as two sisters of different ages (i.e., she and her mother) attending a birthday 
party. The Penn child contextualized the cars on the carpet as a short distance from 
Downtown, represented by a building placed on the floor nearby, and inserted refer-
ences to “specific” cars, such as his dad’s red car and an ice cream truck, as well as 
actual places, such as Granville Island, into the play context.

Both mothers “play along” with the storyline, at times adding contextual infor-
mation, like when the Adam mother giggles as an older sister might or the Penn 
mother recites Granville Island’s parking rules, thereby keeping the tenor of the 
activity playful.

Also, when supporting their child’s problem-solving approaches, both mothers 
are receptive to their suggestions. The Adam mother repeatedly listens, and watches 
her child “propose” solutions, and the Penn mother watches her son repeatedly 
make his own shapes, which he called “parking lots,” or count unintended  groupings 
(Table 25.10). On occasion, the Adam daughter does not have the opportunity to 
follow through on her proposed ideas.
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Table 25.9 Engaging with child’s extension of task: mothers play along with the storyline

Playdoh Pizza: Adam mother (M)—daughter 
(D) Toy Cars: Penn mother (M)—son (S)

37 M: So you want to start fresh for six 
people? OK? (M & D pat playdoh back into 
circle)
38 D: Let’s pretend we’re sisters and I’m 7 
and your 8.
39 M: I am seven. Oh you are seven and I am 
eight? (M lifts and flips the circle onto table)
40 D: Let’s switch. I am seven and you are 14
41 M: Oh I am fourteen. So I am the oldest 
sister? (M giggles) OK…
52 M: …first show mommy how you do it in 
half
53. D: You’re not my mother
54 M: Oh show your sister
65 D: Perhaps I can be the birthday girl
66 M: You’re the birthday girl? Ok you can 
pick
67 D: Ok, this one (picks up one of the 6 
slices)

41 M: … take some away and see how many 
…?
42 S: This is the downtown. (S places a tall 
building a short distance from the line of cars)
43 M: That is the town
44 S: That is the downtown
53 M: We should have a red car, why?
54 S: For daddy’s car. …
56 S: This could be daddy’s red truck …
195 S: We have to make a Burnaby
196 M: a Burnaby
288 M: Yeah, it could be Granville Island
289 S: It is Granville Island
297 S: There is no many parking
300 M:…after three hours you have to leave 
Granville Island… or the tow truck comes…

Table 25.10 Supporting a child’s problem-solving approach: mothers encourage child’s actions

Playdoh Pizza: Adam mother (M)—daughter (D) Toy Cars: Penn mother (M)—son (S)

49 D: This is how you do it. I will show you, like 
that. (D moves plastic knife as if to make a 
horizontal cut near the middle) and that (D moves 
knife as if to make a vertical cut) and that (moves 
knife as if to make another horizontal cut below the 
previous one)
50 M: Let’s try it
51 D: OK. (D cuts across lower half of circle)
52 M: (places hand as if to chop pizza in middle) 
right in the middle
53 D: (D continues making a second horizontal cut 
closer to middle of the circle) Tic, Tack, Toe
52 M: Tic, Tack, Toe. (M giggles; smooths out pizza)

108 M: … how many … of this color? …
109 S: One, two—one, two, five, six, 
eight. It’s three
110 M: It’s three. Would you like to count 
to eight? I think there could be eight 
along here. (points across 3 brown and 5 
yellow cars in a row) Well let’s see how 
many …one
111 S: Red
112 M: Two
168 M: … You can set the city up now …
169 S: Yeah. Houses. We can make a real 
…
171 S selects some flat rectangular 
“sidewalks”)
173 S: See, look what I make (see 1)
174 M: What did you make?
175 S: See what I make (see 2)
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Table 25.11 Encouraging child’s independence

Playdoh Pizza: Adam mother (M)—daughter 
(D) Toy cars: Penn mother (M)—son (S)

92 M: … want me to make a little yellow 
one?
93 D: Yes. (D is flattening pink playdoh.) Do 
you want to put the pepperoni in (inaudible)?
99 M: I will make little circles of pepperoni 
and you can put them on how you want OK?
100 D: No you can put them on
101 M: Each piece should get the same 
pepperoni
102 D: Cut it in half. Pretend this one is going 
to be dog food for Sara
103 M: OK, so half of our pizza is dog food 
and what about this half?
104 D: This half is going to be our food
105 M: OK
108 D: I need some more pepperoni

178 M: How about you just make it. How about 
you tell me what you want to make
179 S: A parking space
180 M: Parking spaces. Then you can drive the 
car into park. Hum, good idea
183 S: A different parking spot. Mommy [see 3]

203 S: … this is a parking spot, mommy [see 3]
204 M: This is a parking lot
205 S: I am making a different kind of parking 
spot. Looks good. I want to do it like that [see 4]

M: Is the car going to go inside that space you 
made? [S makes a U shape parking lot]
S: I’m making a parking spot … to fit your van, 
mommy. … (Continues to move sticks)

Indeed, nurturing the child’s independent actions or thinking varied within the 
activities, with both children afforded more autonomy toward each episode’s latter 
portion (Table  25.11). Certainly, the Penn son’s independent activity increased 
when the focus turned to building the town, and the Adam daughter took the lead 
when the focus shifted to adding pepperoni to a pizza. While the Adam daughter 
speaks of “halves” and “more pepperoni,” her attention to mathematics appears to 
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wane. On the other hand, the Penn son’s unspoken attention to shape and space, 
while making parking spots and later parking cars, seems to escalate.

Thus, it is evident that these two mothers behave in teacher-like ways when 
engaging their children with mathematics within these two play-based activities. 
However, it is important to note that these “pedagogical moves” were not static, 
single occurrences arising chronologically, as the excerpted examples inadvertently 
portray. Rather, as each activity unfolded, each mother repeated certain “pedagogi-
cal moves” and thus, the frequency with which they arose, and the order in which 
they occurred, varied.

25.5.4  Beyond Pedagogical Moves: Mother-as-Teacher 
and Funds of Knowledge

In addition to the commonalities found in their pedagogical moves, these two moth-
ers’ teaching of mathematics during play at home carried other similarities, as well 
as differences. For instance, both mothers tended to use a Question-Answer- 
Evaluation discourse to elicit or ascertain their child’s knowledge, especially when 
number, more specifically counting, was the focus. When either asking, or directing, 
their child to reconsider their answers when they made errors, each mother tended 
to point toward strategies for checking. For example, the Penn mother directed her 
son to count to check a total she perceived to be incorrect, and the Adam mother 
asked her daughter to compare slices to check their sizes (see Table 25.6).

However, during the Adam daughter’s exploration of shape while dissecting a 
circle, and the Penn son’s exploration of space through creating parking spots, the 
mothers seemed to position themselves differently. For instance, the Adam mother- 
as- teacher appeared more directive, telling and showing her daughter where to cut 
the circle, and at times making the cuts herself. That said, this mother-as-teacher 
repeatedly had her daughter suggest solutions, verbally predicting where she might 
cut, gesturing those cuts and on occasion, making one or two cuts before the mother 
intervened. The Penn mother-as-teacher, however, appeared more facilitative, 
acknowledging her son’s efforts and encouraging his experimentation. For instance, 
she praises her son for creating parking spaces where “[a] car [can] enter and exit a 
spot without blocking another” and supports his efforts to generate various configu-
rations (e.g., “you are making all interesting designs out of the same pieces”). In 
addition, this mother-as-teacher extends the son’s making of parking lots to include 
the parking of cars in the spots created (e.g., “It is a parking lot ... Can you park four 
cars in there for me?”), culminating in a parking lot that accommodates about 16 
cars, in albeit atypical ways (see Fig.  25.1). Interestingly, this mother-as-teacher 
responds to her son’s “creative” parking plan by checking if all cars can move freely, 
thereby reviewing spatial properties of such a configuration.

M: If you put that one there, how is this one going to get out though?
 What if that one comes to the car before this one and wants to go home?

A. Anderson and J. Anderson



433

Fig. 25.1 Penn son’s 
parking lot with 16 parked 
cars

S:  It can go right here.
M: You have to put this one right here so that this one has room …

 now there, very good. Now this one can go out this way,
 and … this one can go that way.

To observers, these two pedagogical activities appear reminiscent of a “lesson” 
which, in its implementation, tends to broaden or diverge from the original goal in 
unexpected ways, but still allows mathematics to be done and talked about. As such, 
these two mothers demonstrated funds of knowledge for “teaching” and “doing” 
mathematics with their preschoolers during shared play activity. What remains 
unclear from the data is what funds of knowledge informed what decisions as each 
mother-as-teacher worked to support each of their child’s mathematics learning. For 
instance, why does the Adam mother repeatedly model the cutting of the pizza for 
her child, while the Penn mother repeatedly encourages her son’s building of park-
ing spaces? Is one mother drawing on her funds of knowledge gained from formal 
pedagogical education and teacher practice, while the other one is drawing on her 
funds of knowledge of mothering this particular child? Or, why does the Penn 
mother invoke an “abstract” number sequence, such as the child’s ages on upcoming 
birthdays, to assist her son in counting “concrete objects,” and why does the Adam 
mother invoke the money analogy (quarters) to explain the number of fourths in a 
whole? Is it that their funds of knowledge of their particular child’s lived experi-
ences take precedence? Likewise, when the Adam mother supports her daughter’s 
desire to cut sixths of a circle or thirds of a semi-circle, it remains unclear whether 
she is using her funds of knowledge of school math regarding dissecting circles or 
her funds of knowledge of everyday math regarding slicing pizzas. Whereas, the 
Penn mother’s use of her funds of knowledge of everyday parking experiences and 
rules (e.g., “That is what you have to do when you do a parking lot, you have to 
make sure they can all get in and out and not be blocked by another one”) seems 
more evident.

Overall, when we take a strengths-based perspective, we see these mothers as 
competent teachers of mathematics. Like other teachers in school-based or in early 
childhood settings, they enact their pedagogical practice with both the content and 
the child in mind. Whereas a deficit perspective would highlight what they cannot 
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or did not do, we prefer to take note of what they can do, and indeed, did during the 
activity. As Oughton (2010) suggests, we wish to use “funds of knowledge” as a 
metaphor that allows us to “explore an understanding of cultures as diverse and 
dynamic” (p.  71) and that positions “learning as participation, within which the 
learning of a subject is regarded as the process of becoming a member of a certain 
community (Lave and Wenger, 1991).” (p. 71). Hence, we see these mothers-as- 
teachers drawing on funds of knowledge that are growing and not static, developed 
from their participation in many communities, and as Oughton (2010) cautions, we 
are mindful not to “arbitrate what counts as valid or useable funds of knowledge” 
(p. 73).

25.6  Conclusion

Both these mothers co-constructed a pedagogical task within a play-based context, 
in such a way that both preschoolers engaged willingly in mathematics related to the 
child-friendly materials. Indeed, each mother was able to establish and sustain 
mathematics as the goal of the activity, while respectfully addressing each child’s 
role in the play. What more would we want a mother to do? What more would we 
have expected of a teacher during such a task? Advocates who seek to design “par-
ent training” so they might “show or tell” parents how to make math more explicit 
more often, may need to question if their view of parents-as-teachers is a deficit one. 
Those seeking to offer parents support or education likewise need to recognize that 
giving time and space for parents to share what they currently do is likely to deepen 
both the parents’ and educators’ reflections on important taken-for-granted 
assumptions.

While research on more didactical events at-home, and across diverse families, 
is needed, the current study points to the viability of learning more about such prac-
tices in homes, in more qualitative and nuanced ways. In contrast to previous 
research where time sampling during observations (Tudge & Doucet, 2004) or anal-
ysis (Aubrey et  al., 2003), or parent reports on questionnaires (Skwarchuk & 
LeFevre, 2015), led to a characterization of infrequent attention to mathematics in 
homes, observing and analyzing specific in-home activity from start to finish as we 
have done here permitted us to document mathematical engagement underreported 
to this date. For example, if we were to analyze 30 s snippets every 6 min of the 
Playdoh: Pizza activity, similar to how Tudge and Doucet time-sampled and 
 live- coded their observations, a very different picture of the activity emerges. 
Accordingly, we see a mother watching as a child rolls out playdoh (first 30 s), a 
mother watching as her child cuts a “pizza” (6 min later) and a mother making small 
balls of playdoh to use for ‘pepperoni’ as the child flattens the ‘pizza’ (6 min later), 
leaving the impression that minimal attention was paid to mathematics. Instead, our 
holistic analysis of Playdoh: Pizza and Toys: Cars provided ample evidence of the 
ways in which these two mothers attend to and expand on their children’s mathe-
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matical experiences as they play together. Thus, as we collectively continue to “flesh 
out” what is happening within and across families, we argue for more in-depth 
examination of “naturally occurring” pedagogy.

In addition, to broaden our current understandings of parents’ capacity for, and 
propensity toward, pedagogical tasks at home, this case study points to the value of 
finding expansive contexts in which to investigate parents’ pedagogical practices. In 
the current study, we deliberately examined play-based activity, which we deemed 
pedagogical. In doing so, we argue that our sense of pedagogical (i.e., a task in 
which “math is the main goal” for the parent) aligns well with other researchers’ 
definitions of “pedagogical tasks” (Aubrey et al., 2003; Walkerdine, 1988), “formal 
activities” (Skwarchuk & LeFevre, 2015), and “academic lessons” (Tudge & 
Doucet, 2004). Yet, the tenor of these two play-based activities also resembles the 
“participative parental interaction” (Aubrey et  al., 2003, p.  94), “play with non- 
academic objects” (Tudge & Doucet, 2004) and “more collaborative approaches” 
(Skwarchuk & LeFevre, 2015) that, although mentioned, remained unexamined, or 
at least unreported, within previous studies. Interestingly, our findings with regard 
to these two mothers’ pedagogical moves during such play-based activity suggest 
that contexts in which parents “teach” their young children mathematics vary and 
likely go beyond those activities which are stereotypically identified as “mathemati-
cal” (i.e., oftentimes, school-like content narrowly based in number). Thus, while it 
is likely that most readers would identify these mothers’ “how many” questions as 
pedagogical, we argue that the efforts the Adam mother expends to “teach” her 
child how to dissect a circle and the attention the Penn mother gives to the spatial 
properties of her son’s parking lots, are equally intentional, mathematical and peda-
gogical, although less verbal. Consequently, we believe an openness to hybridity 
(i.e., play + pedagogy) and a willingness to seek out less conventional contexts, in 
addition to block play, board or card games, storybooks and so forth, serves to 
enhance the types of pedagogical acts we document, and in turn, validate and 
understand.

Regardless of methods or the contexts in which we examine mathematics peda-
gogy in out-of-school settings, our findings here raise the importance of finding 
authentic ways to investigate the funds of knowledge parents bring to their peda-
gogical practices. Like teachers and early childhood educators in more institutional 
settings, each of these individuals enacted the role of mother-as-teacher differently, 
even though common pedagogical moves framed their endeavors.

In what ways do parents’ schooling experiences or personal out-of-school expe-
riences with mathematics influence their mother-as-teacher stances? What strengths 
do they bring to the shared activity which permits them to scaffold their child? 
While research valuing both pedagogical and instrumental tasks (Aubrey et  al., 
2003) and formal and informal numeracy activity (Skwarchuk & LeFevre, 2015) is 
a step in the right direction, we continue to find what appears to be deficit-based 
claims that “parents often do not know how to do this [make math talk happen at 
home] or how to support their children in mathematics in general” (Lee & 
Kotsopoulos, 2016, p. 154 [author added]). We wonder to what extent the use of a 
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teacher–child lens or possibly a math expert lens to view parent–child interactions 
informs what we believe may be a bias toward schooling pedagogy [e.g., expecting 
homes to mimic schools]. This inevitably places most parents with a deficit. Yet, if 
we position parents-as-teachers as experts in what they do, and genuinely seek to 
learn from them, we argue much is yet to be discovered regarding at-home mathe-
matics experiences of young children. We therefore call for future research into 
pedagogical practices in the home, which values and validates parents’ myriad 
funds of knowledge.

Finally, we end with a cautionary note, that this exploratory study of two well- 
educated mothers, with the privilege to sit and play with their child, for an extended 
period, must not be the norm to which we expect all mothers to aspire. Rather, it 
must inspire us to seek out differences, to learn from mothers in other circum-
stances, in equally respectful ways.

Appendix

As the RA video records, Adam’s mother and her preschool daughter are seated at 
adjacent sides of the child’s table. With her mother’s help, the daughter empties a 
“lump” of Play-Doh onto the table and begins to roll it flat with a wooden rolling 
pin. At times the mother helps flatten the dough to make it easier for the roller and 
converses with her daughter as the child concentrates on rolling out the pizza. Early 
in the conversation, when the mother asks what shape she is trying to make, the 
daughter suggests “a heart”; when the mother asks, “what’s the shape of a Pizza?” 
She’s heard qualifying her daughter’s response of “triangle” with “when it’s sliced”; 
she then encourages her child to make a “big circle” like regular pizzas. As the child 
continues to roll the Play-Doh into a circle, the mother turns their attention to shar-
ing the pizza with imaginary friends who visit for dinner. For the bulk of the epi-
sode, the child and mother discuss how to share the pizza fairly among various 
numbers of visitors, as the child, and at times the mother, cuts the pizza into slices. 
In addition to cutting and counting the slices, on occasion, they talk about whether 
the slices are fair, namely the “same size.”

As the RA video records, Penn’s mother joins her preschool son, who is seated 
on the floor with some plastic toys (e.g., a whale, a rat) and a basket of miniature 
cars nearby. After attending briefly to the plastic animals, the son begins to sort 
through the cars in the basket, looking for any broken ones that he might discard. 
After the mother watches the boy line up several of his cars in pairs, one pair behind 
another pair, near the edge of the carpet, she asks “if he’d like to play the counting 
game” with his cars. While the son agrees, they at first talk about how some of his 
cars are the same (e.g., “two tow trucks” and “a black one and another black one”). 
Almost simultaneously, the mother begins to set up the game, by relocating a small 
number of the same colored cars in a horizontal line close to her, and a small 
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18 Mother: How is the pizza? OK you know what? Let’s pretend we are going to have four people 
over for supper, four people are coming. We want to cut this pizza so everybody gets the same. So the 
first thing we need to do is cut it in half.

19 Daughter: Like this? (gestures cutting middle of circle)

20 M: Yeah right down the middle so there is two pieces the same size.

21 D: Cut it that way?

22 M: Yeah, good.

23 D: And that way? (gestures to cut parallel and to right of previous cut)

24 M: So you cut it in half first, good girl. And there is how many pieces?

25 D: Two.

26 M: Two. But we need more than two, don’t we?  How many people are coming?

Daughter holds up four fingers.

27 M: Four people are coming for supper so can you cut it in half this way? Or this way? Yeah.

28 D: I am going to go this way (inaudible) (vertical cut gestured)

29 M: OK but let’s do this first so you already cut it in half this way so let’s cut it in half this way. 
Yeah. Let’s see what happens. That’s a girl. So we cut it in half that way.  Now how many pieces do 
we have?  One, two---

30 D: One, two, three, four.

31 M: Four.

32 D: Let’s pretend we have (pause) six people.

33 M: Six people coming? OK How can we divide it for six people?

34 D: You go like that. Go like that and then you go like that (gestures a middle cut for each slice).

35 M: Should I build it back together or do you want to keep it like this?

36 D: Build it back.

Fig. 25.2 Mother-daughter dyad “making Play-Doh pizza” (Adam family)

 distance away from the pairs of cars the child had created. While she had intended 
to play a “take-away” game, they instead talk about the number of cars of similar 
color, which she, or the child, gathers together, and to which the child adds more. 
When the mother and child decide to “build” the town, the conversation shifts 
towards the “parking spots” the child makes, and later, back to the cars he parks 
in them.
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25M: What do you want to play with the cars?

26 S: A broken car (inaudible).

27 M: Do you want to play the counting game with the cars?

28 S: Yeah

33 M: You’ve got some matching cars, don’t you? You’ve got two that look almost the same---looks 
like two the same. What kind are they? (M points to a pair of trucks near S; when S moves to the side 
we see he has lined up ten cars in pairs, and each pair is behind the other; and then a small space 
separates those cars from the two trucks which were one behind the other; M moves the trucks so that 
they are side by side, but still spaced from the longer line)

34 S: Tow trucks.

39M: Shall we play the game. Shall I start?

40 S: Counting game.

41 M: We can line them in a row on the carpet and then we can---do you want to line them in a row
(M picks up another car from the lineup and moves it closer to her, between her and S) and then take 
some away and see how many are there?

61 M: How many orange cars are there? (moves a car, so orange cars in her row are together)

62 S: One (S points towards (but above) the cars), two (moves finger closer to face), three (extends 
arm and points towards cars again)

63 M: Three orange cars and how many and how many brown cars are there? (M pushes the brown 
cars closer together and away from orange cars)

Fig. 25.3 Mother-son dyad “playing with cars” (Penn family)
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