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Abstract The seismic response of multiple base-isolated structures is here
evaluated through both iterative linearization and numerical solution of
the nonlinear structure subjected to stochastic dynamic excitation with the purpose
of predicting the behavior of a monitored system. An analytical procedure is used
to determine the second-order response statistics of a simple model composed by
linear superstructures posed on a common nonlinear base isolation system. The
seismic excitation is modeled as a zero-mean filtered white noise and combined
with the system equation of motion in an augmented state space representation.
Different levels of seismic magnitudes are investigated, and preliminary results are
presented here. The study furnishes insights for the design of a permanent seismic
monitoring system of the four parts composing the building superstructure of the
Department of Human Science at University of L’Aquila laying on a common base
isolation system.

Keywords Performance-based optimization · Stochastic dynamic loading ·
Monitoring design

F. Potenza (�)
Department of Civil Architectural and Environmental Engineering, University of L’Aquila,
L’Aquila, Italy
e-mail: francesco.potenza@univaq.it

V. Gattulli
Department of Structural and Geotechnical Engineering, Sapienza University of Rome,
Rome, Italy
e-mail: vincenzo.gattulli@uniroma1.it

S. Nagarajaiah
Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
e-mail: satish.nagarajaiah@rice.edu

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), Nonlinear Dynamics and Control,
https://doi.org/10.1007/978-3-030-34747-5_4

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34747-5_4&domain=pdf
mailto:francesco.potenza@univaq.it
mailto:vincenzo.gattulli@uniroma1.it
mailto:satish.nagarajaiah@rice.edu
https://doi.org/10.1007/978-3-030-34747-5_4


34 F. Potenza et al.

1 Introduction

Base isolation has become a popular solution to reduce seismically induced
acceleration and relative displacement in buildings. Base-isolated structures reach
a great number of implementations worldwide [1], and in several cases, the
superstructure may consist of several parts separated by seismic or thermal joints.
The prediction of seismic response of these structural systems has been simulated
by a devoted numerical code in which the nonlinearities are concentrated at the base
[2]. However, the approach of the problem by Monte Carlo simulations is extremely
onerous. Especially when the aim is related to the reproduction of the seismic
behavior of existing structures that have experienced large displacements, bringing
the material in the plastic range [3]. Therefore, preliminary design criteria have
been proposed for dissipative devices in adjacent structure based on the stochastic
evaluation of the structural responses. Moreover, such methods have taken into
account the seismic excitation modeled as a filtered white noise considering soil
effects [4]. Further, performance-based optimization of nonlinear structures subject
to stochastic dynamic excitation has been formulated in terms of the variance of
stationary structural responses, which are obtained via equivalent linearization [5].
This approach could provide insights into the optimization of the structural design
equipped by dissipative passive systems or base isolated systems. In this respect,
the issue to be faced is related to a stochastic structural optimization problem. The
problem has been already formulated in a more general context [6], but in recent
works, it has been enriched to solve it taking into account the multi-objective nature
of the engineering design problems [7]. In this chapter, the prediction of the seismic
response of simplified multiple-base isolated structural model could be useful for a
preliminary designing of a seismic monitoring system. A further development of the
work will be to propose a relationship between the acceleration amplitude induced
by environmental noise and the sensor sensitivities.

2 Problem Formulation

Let us consider a simple model composed by n simple oscillators modeling several
separated parts of a superstructure posed on a nonlinear base isolation system
(Fig. 1a). The model is suitable to evaluate the stochastic dynamic response to
seismic excitation of a multiple base-isolated structure (e.g., Fig. 1b).

The equations of motion of a minimum case of two oscillators can be directly
derived by D’Alambert principle as follows:

M1
(
Üb + D̈1

) + C1Ḋ1 + K1D1 = 0
M2

(
Üb + D̈2

) + C2Ḋ2 + K2D2 = 0
Mb

(
Üg + D̈b

) + M1D̈1 + M2D̈2 + CbḊb + KbDb = 0
(1)
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Fig. 1 (a) Simple model composed of linear superstructures posed on a common nonlinear base
isolation system. (b) Department of Human Science buildings at L’Aquila

Denoting L as a convenient reference length, the following set of dimensionless
variables and mechanical parameters can be introduced:

ui = Ui

L
, ub = Ub

L
, ug = Ug

L
, di = Ui−Ub

L
, db = Ub−Ug

L
, ρi = Mi

Mb
,

ω2
i = Ki

Mi
, ω2

b = Kb
Mb

, βi = ωi

ωb
, ξi = Ci

2 ωiMi
, ξb = Cb

2 ωbMb
, τ = ωbt

(2)

where ui, ub, and ug are the absolute displacements for i-th pendulum representing
a part of the superstructure, base, and ground, respectively, while di and db are
the relative displacements between the superstructures and base and the base and
ground, respectively. The relevant parameters to describe the system dynamics are
ρi and β i. The first one is defined as the ratio between the mass of the i-th pendulum
of the superstructure and the mass of the isolated base while the second one is the
ratio between the fundamental frequency of the i-th pendulum of the superstructure
and the frequency of the base isolated. The linear dimensionless equations of motion
are follows:

d̈1 + d̈b + 2 ξ1 β1 ḋ1 + β2
1d1 = −üg

d̈2 + d̈b + 2 ξ2 β2 ḋ2 + β2
2d2 = −üg

d̈b + ρ1 d̈1 + ρ2 d̈2 + 2 ξb ḋb + db = −üg

(3)

where the dots indicate differentiation with respect to the nondimensional time τ .
The dimensionless compact form is the following:

M d̈ + C ḋ + K d = −r üg (4)

in which M, K, and C are the mass, stiffness, and damping matrices, respectively.
The vector r allocates the external forces while the vector d contains the relative
displacements. All variable and parameters are as follows:
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M =
⎡

⎣
1 0 1
0 1 1
ρ1 ρ2 1

⎤

⎦ , C =
⎡

⎣
2ξ1 β1 0 0

0 2ξ2 β2 0
0 0 2ξb

⎤

⎦ , K =
⎡

⎣
β2

1 0 0
0 β2

2 0
0 0 1

⎤

⎦ ,

r =
⎡

⎣
1
1
1

⎤

⎦ , d =
⎡

⎣
d1

d2

db

⎤

⎦

(5)

Considering a hysteretic behavior, the nonlinear equations of motion are given by

M d̈ + C ḋ + fN = −r üg (6)

The hysteretic component of the restoring force, fN , is represented here by an
adjunct variable, z, whose evolution is described through a Bouc–Wen model

fN = KLd + (1 − α) h z (7)

where KL is the linear stiffness matrix, h is the allocation vector of the hysteretic
component, and α is the post- to pre-yielding stiffness ratio. The matrix KL and the
vector h have the following expressions:

KL =
⎡

⎣
β2

1 0 0
0 β2

2 0
0 0 α

⎤

⎦ , h =
⎡

⎣
0
0
1

⎤

⎦ (8)

The new nonlinear system is:

M d̈ + C ḋ + KL d + (1 − α) h z = −r üg

ż = −γ
∣∣ḋb

∣∣ z |z|n−1 − β ḋb |z|n + A ḋb
(9)

where in the Bouc–Wen model, the parameters γ and β control the shape of the
hysteresis loop, A the restoring force amplitude, and n the smooth transition from
elastic to plastic response (for large value of n the model tends to an elasto-plastic
behavior).

2.1 Stochastic Structural Response

The linear stochastic response of the system described in Eq. (4) can be calculated
through the covariance matrix �. Moreover, defining the state vector as xs =
[
dT ḋT

]T
, Eq. (4) can be organized in the space-state formulation:

ẋs = As x + Bs w (10)
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where w is a zero-mean stationary Gaussian process while the space-state matrices
A and B assume the following expression:

As =
[

03×3 I3×3

− M−1 K −M−1 C

]
, Bs =

[
0T

1×3 −rT
]T

(11)

The stationary stochastic structural responses can be obtained evaluating the
covariance matrix � through the solution of the following Eq. (3):

0 = As Γ + Γ As + 2πBs SBs (12)

which is the well-known Lyapunov equation in the unknown � while S is the power
spectral density of the white noise. It is worth to highlight that the main diagonal
of the covariance matrix consists of the expected values (variance and standard
deviations) of the displacements and velocity while the mixed expected values are
given by the terms out of diagonal.

The nonlinear stochastic response can be approximately determined by an
equivalent linear system [4, 7] that allows to easily manage the solution to the
previously introduced Lyapunov equation. Consequently, the new form of the
equations of motion is follows:

M d̈ + C ḋ + KL d + (1 − α) h z = −r üg

ż + C21 ḋb + K22 z = 0
(13)

where the two coefficients C21 and K22 can be evaluated in terms of the second
moments of ḋb and z [8]:

C21 =
√

2
π

[
γ

E
[
ḋbz

]

σḋb
+ β σz

]
− A

K22 =
√

2
π

[
γ σḋb

+ β
E

[
ḋbz

]

σz

] (14)

Starting from the equivalent linear system, it is possible to define a new state-

space vector as x̃ = [
dT ḋT z

]T
that brings the system to a new state-space

formulation:

˙̃x = Ae x̃ + Be w (15)

where the new state-space matrices, Ae and Be (where the subscript stands for
equivalent linearization), assume the following form:

Ae =
⎡

⎣
03×3 I3×3 03×1

− M−1KL −M−1C − (1 − α) h3×1

01×3 C21hT K22

⎤

⎦

7×7

, Be =
⎡

⎣
03×1

− r3×1

0

⎤

⎦

7×1

(16)
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Considering the fact that the coefficients C21 and K21 depend on the standard
deviations, to solve the Lyapunov equation, an iterative solution is required. The
iteration can start using the solution of the linear system with a stiffness equal to the
pre-yielding stiffness of the nonlinear system.

The stochastic excitation can be represented as a filtered white noise (e.g., Kanai-
Tajimi) that in the state space form assumes the following expression:

ẋf = Afxf + Bfw

ü = Cfxf
(17)

where xf is the state vector for the filter while Af, Bf, and Cf are chosen to
represent the characteristics of the excitation. In particular, combining the equations
of the structural model and the ones of the loading model, a new expression of an
augmented system is obtained:

ẋa = Aaxa + Baw

ys = Caxa
(18)

where

xa =
(

xT
s xT

f

)T
, Aa =

[
As BsCf

0 Af

]
, Ba =

[
0
Bf

]
, Ca =

[
Cs DsCf

]
(19)

In this case, the covariances of the structural responses can be determined
through the solution of the following equation:

Γ̇ xa = Aa Γ xa + Γ xa Aa + 2πBa SBa (20)

In the case of direct integration, the effect of the nonstationary stochastic process
could be considered multiplying the output of the filter by an envelope function
e(t) [7].

3 Numerical Results

This section illustrates and describes some preliminary numerical results regarding
the linear and nonlinear stochastic structural response. In particular, Fig. 2 reports
the results for the linear case while Fig. 3 reports the ones with the nonlinear effects
analyzed through the equivalent linearization procedure previously introduced. In
the Fig. 2 have been fixed the structural parameters for the first oscillator (β1 = 8.33,
ρ1 = 0.1) while in the Fig. 3 the ones of the second oscillator (β2 = 6.25, ρ2 = 0.3).

Looking at the results obtained considering a linear behavior, as expected, by
increasing the β2 parameters, a quick exponential decay of the standard deviation
of the second oscillator is observed, especially for low β2 values (see Fig. 2b).
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Fig. 2 Linear stochastic structural response for multiple base-isolated structures: For all cases:
β1 = 8.33 and ρ1 = 0.1. Modal damping: ξ1 = ξ2 = ξb = 0.05. Standard deviations for first
oscillator (a) and (d), second oscillator (b) and (e), base-isolated (c) and (f)
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The corresponding behavior, shown in the Fig. 2a, remains practically unchanged.
The variations caused by increasing ρ2 are reported in the Fig. 2d, e. Such increasing
seems to influence both standard deviations. However, in this case, the responses
have been analyzed, preliminary, for high fixed β2 values, and so the variations have
been visualized for a small range of the standard deviations. Some main remarks
are the following: (1) in all cases, for fixed ρ-parameters, the standard deviations
decrease going towards high β2 parameters, even if the variations are very small;
(2) in Fig. 2d the value of the standard deviation seems to tend to an asymptotic
value near to 0.15; (3) it is worth to highlight that in Fig. 2d, e, for all analyzed
cases, local minimum (and a maximum only for β2 = 6.25) that could suggest the
development of the design procedure is found. In the last two Fig. 2c, f, the standard
deviation of the base structural response has substantially linear behavior varying
the ρ2 parameter and unchanged varying the β2 parameters.

The effects of the nonlinear behavior have been evaluated increasing the value of
the power spectral density of the white noise, i.e. S. In particular, as described in the
previous section, the nonlinearity, introduced to describe the hysteretic component
of the restoring force, directly influences the structural response of the base. This
appears evident looking at the results reported in Fig. 3c, f. Indeed, for small values
of the spectral intensity, the standard deviation of the base assumes a hardening
behavior, reaching a minimum point for a certain value of the spectral intensity.
Moreover, this particular situation occurs for increasing S-values decreasing the ρ1
parameter.

This makes a sense because it corresponds to a relative stiffening of the base.
Imperceptible variations are observed when the β1 parameter is changed (see
Fig. 3f). After that point, further increasing of the spectral density would seem
to produce a linear increasing of the standard deviation. The standard deviations
related to the relative displacements of the two oscillator seem to have a more regular
behavior. Indeed, the amplitudes grow while increasing the value of the intensity and
go down while decreasing both ρ1 and β1 parameters. Interesting to note that in Fig.
3d the results seem to show a point of minimum for a particular value of β1 with S
fixed.

4 Conclusion

The work aimed at developing a simple analytical model representative of the
dynamic of a multiple base-isolated structures. The evaluation of linear and
nonlinear stochastic structural response could be used for both to optimize nonlinear
structures equipped by dissipative devise and to select sensor sensitivities for
seismic monitoring. Moreover, the application of a linearized iterative procedure
permits to evaluate the stochastic stationary response avoiding the execution of very
long and onerous numerical simulations. A real case study at L’Aquila will be used
to verify the design procedure potentiality.
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