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Abstract This paper proposes a numerical investigation of a controlled loudspeaker
designed to absorb acoustic plane waves at a duct termination. More precisely,
a nonlinear control for a current-driven loudspeaker is presented, that relies on
(1) measurements of velocity and acoustic pressure at the membrane, (2) a linear
electroacoustic loudspeaker model and (3) a nonlinear finite-time control method.
Numerical tests are carried out by a passive-guaranteed simulation of the loud-
speaker dynamics in the port-Hamiltonian systems formalism. The sound absorption
efficiency is evaluated up to 300 Hz by computing the reflected pressure at the
membrane. The results are compared with a similar control architecture: the finite-
time control for sound absorption proves effective, especially in the low frequency
range.

Keywords Finite-time control · Port-Hamiltonian systems · Electroacoustic
transducer

1 Introduction

One limitation of passive sound absorbers is the bad efficiency at low frequencies
due to the required size of the material. Electrically controlled loudspeakers used
as active absorbers have shown to be a way to extend the frequency bandwidth of
absorption. A possible approach consists in controlling the loudspeaker dynamics in
order to match the membrane impedance to the acoustic characteristic impedance of
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the medium, thus forcing the system to behave like an acoustic transmission line [1].
In particular, Rivet et al. [2] propose an active absorber that uses a feedback based
on pressure or velocity for a current-driven boxed loudspeaker, showing broadband
absorption results. The present paper restates the model and the impedance matching
approach proposed in [2] and describes a new feedback law that combines (1)
passive-guaranteed control based on the port-Hamiltonian systems formalism [3, 4]
and (2) a (nonlinear) finite-time control law [5, 6], an alternative to asymptotic or
exponential control methods. The efficiency of the proposed controller in terms of
sound absorption is evaluated numerically.

2 Open-Loop Electroacoustic System

This section presents the considered models for the acoustic propagation (Sect. 2.1)
and the current-driven loudspeaker (Sect. 2.2).

2.1 Plane Wave Propagation in a Tube

Consider a semi-infinite duct with a loudspeaker located at z = 0, with a membrane
modelled as a flat piston (see Fig. 1). Acoustic plane wave propagation is assumed,
therefore the pressure field can be decomposed into progressive waves p+(t − z/c)

and p−(t + z/c), where c is the speed of sound. At z = 0, the particle velocity field
equals the piston velocity, leading to the following relation between the pressure
field pac(t) at z = 0 and the piston velocity ξ̇ (t),

pac(t) = 2p+(t) − ρc ξ̇ (t), (1)

where ρ is the air density.

2.2 Current-Driven Electrodynamic Loudspeaker Model

Physical Model A lumped model of boxed loudspeaker is adopted, considered as
a mechanical oscillator with displacement ξ(t) and momentum p(t) = Mmξ̇(t),

Fig. 1 Plane wave
propagation in a semi-infinite
duct. A loudspeaker,
modelled as a flat piston, is
located at z = 0
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where Mm is the moving mass. The oscillator is excited by the Lorentz force Bl i(t)

and the force due to the acoustic pressure Sd pac(t). This yields the following
mechanical equation that states the force balance of the system,

Km ξ(t) + Rm ξ̇(t) + ṗ(t) + Bl i(t) = Sd pac(t), (2)

where Km (N/m) is the stiffness coefficient associated with the suspension and the
sealed enclosure, Rm (Ns/m) is the mechanical damping coefficient, Bl (N/A) is
the electromechanical coupling factor and i is the input electric current. The current
drive enables rejection of undesired electric behaviour due to induction effect of the
coil, usually described by a resistance Re (�) and an inductance Le (H).

Port-Hamiltonian Formulation The loudspeaker model described in (2) is
restated in the port-Hamiltonian formalism [3], that relies on the expression of
the system energy,

H(ξ, p) = Kmξ2

2
+ p2

2Mm

, (3)

namely the sum of the potential and kinetic energy stored by the system. Denoting
the state and input of the system by, respectively,

x(t) =
[

ξ(t) : displacement
p(t) : momentum

]
, u(t) =

[
i(t) : electric current

pac(t) : acoustic pressure

]
,

a state-space representation of the loudspeaker dynamics can be derived:

{S} :

ẋ =
( [

0 1
−1 0

]
︸ ︷︷ ︸

J

−
[

0 0
0 Rm

]
︸ ︷︷ ︸

R

)
∇H(x) + [

Gi Gp

]
︸ ︷︷ ︸

G

u,

y =
[
G

ᵀ
i

G
ᵀ
p

]
︸ ︷︷ ︸
Gᵀ

∇H(x),

(4)

where J is skew-symmetric, R is positive semi-definite, Gi = [
0 −Bl

]ᵀ
and Gp =[

0 Sd

]ᵀ
. The outputs are defined as the dual quantities of the inputs u(t):

y(t) =
[

e(t) : back-EMF voltage
vac(t) : acoustic outflow

]
.

The port-Hamiltonian formulation (4) ensures the passivity property of the physical
system through its power balance
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dH (x(t))

dt
= ∇H(x)ᵀẋ︸ ︷︷ ︸

Pstored

= −∇H(x)ᵀR∇H(x)︸ ︷︷ ︸
Pdiss

+ yᵀu︸︷︷︸
Pext

, (5)

where Pstored, Pdiss and Pext are, respectively, the stored, dissipated and external
power.

3 Closed-Loop System

This section describes the derivation of a controller that provides an input current
i�(t) given (1) a target membrane motion ξ�(t), ξ̇ �(t) and (2) the measurement of
the acoustic pressure pac(t) and the velocity ξ̇ (t) at the loudspeaker membrane. The
target membrane velocity can be deduced from the measured pressure

ξ̇ �(t) = pac(t)

ρc
(6)

so that the acoustic impedance at the membrane equals the characteristic specific
acoustic impedance ρc. First, a nonlinear control law that reaches the target ξ̇ �(t)

in finite-time is presented in Sect. 3.1. Then the law is recast as a port-Hamiltonian
system in order to guarantee the passivity of the controller, and thus of the closed-
loop system, in Sect. 3.2.

3.1 Finite-Time Control Law

A system controlled in finite time will reach an equilibrium point in a finite time
(see [7] for a formal definition). Thus, finite-time stability is a stronger property
than asymptotic or exponential stability. It is useful for time-constrained and robust
control. We first state the following result.

Theorem 1 (Finite-Time Control of a Double Integrator [5]) Consider the
double integrator ż1 = z2, ż2 = v. The origin is a finite-time stable equilibrium
point of this system when it is controlled by the input v = −k1�z1� α

2−α − k2�z2�α,

with k1, k2 > 0, α ∈ ]0, 1[ and �x�α � sgn(x)|x|α .

By identification (cf. [6]), one can find a transformation between the system (4) and
the double integrator controlled in finite time. We thus obtain the resulting nonlinear
law on the input current that reads

i�(t) =
Sdpac(t) − Kmξ(t) − Rmξ̇(t) + Mm

(
k1 �ξ(t) − ξ�(t)� α

2−α + k2
⌊
ξ̇ (t) − ξ̇ �(t)

⌉α
)

Bl
.

(7)
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3.2 Passive Finite-Time Control Law

Principle The aim of this part is the derivation of a controller that guarantees (1)
convergence towards specific system dynamics ξ�(t) and (2) stability in case of
badly tuned control parameters. In order to meet these requirements, we impose to
the controller the following port-Hamiltonian structure,

{C} : ẋc = (J c − Rc) ∇Hc(xc) + Gcuc

yc = Gᵀ
c ∇Hc(xc),

(8)

with J c skew-symmetric and Rc positive semi-definite. The power-preserving
interconnection [4] of {C} with {S} is achieved by (see Fig. 2)

[
i(t)

uc(t)

]
=

[
0 −1
1 0

] [
e(t)

yc(t)

]
, (9)

allowing the closed-loop system to be written as a port-Hamiltonian system

{S + C} :

[
ẋ
ẋc

]
=

([
J −GiG

ᵀ
c

GcG
ᵀ
i J c

]
−

[
R 02×2

02×2 Rc

]) [ ∇H(x)

∇Hc(xc)

]
+

[
Gp

02×1

]
pac

vac = [
G

ᵀ
p 01×2

] [ ∇H(x)

∇Hc(xc)

]
.

(10)

In the sequel, we choose the same states for the system and the controller: x = xc.
Modifying the total energy Hs+c(x) and the interconnection matrices in (10)
corresponds to an IDA-PBC control [8].

The controller {C} is derived by following the steps below:

1. Choose an energy Hs+c(x) ≥ 0 for the closed-loop system that has a minimum
at a desired target state x�, so that it converges to x�.

2. Deduce the energy of the controller by Hc(x) = Hs+c(x) − H(x) ≥ 0.
3. The control law is provided by the second line of (8) : yc = G

ᵀ
c ∇Hc(x).

Fig. 2 Block diagram of the
proposed control architecture

{S}

+1
−1

{C}

pac(t)

i(t)

vac(t)

e(t)

uc(t)yc(t)
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Application to the Proposed Finite-Time Control Law The closed-loop energy
is chosen as

Hs+c(ξ, p) = Mmk1
2 − α

2

∣∣ξ − ξ�
∣∣ 2

2−α + Mmk2

Rm

1

α + 1

∣∣∣∣p − p�

Mm

∣∣∣∣
α+1

+ β

2
(ξ − ξ�)2 + γ

2Mm

(p − p�)2.

(11)

It has a minimum at ξ = ξ� and p = p� so that this energy expression is a good
candidate to control the closed-loop system {S + C} towards the desired targets ξ�,
p�. The energy of the controller is deduced by subtracting (3) from (11), leading to

Hc(ξ, p) = Mmk1
2 − α

2

∣∣ξ − ξ�
∣∣ 2

2−α + Mmk2

Rm

1

α + 1

∣∣∣∣p − p�

Mm

∣∣∣∣
α+1

+ β

2
(ξ − ξ�)2 + γ

2Mm

(
p − p�

)2 − 1

2Mm

p2 − Km

2
ξ2,

(12)

where β > Km and γ > 1 ensure that Hc(ξ, p) has a global minimum. Finally, by
imposing the following port-Hamiltonian formulation:

{C} :

ẋ =
( [

0 0
0 0

]
︸ ︷︷ ︸
J c

−
[

0 0
0 0

]
︸ ︷︷ ︸
Rc

)
∇Hc(x) +

[ 1
Bl
Rm

Bl

]
︸ ︷︷ ︸
Gc

uc

yc = [
1
Bl

Rm

Bl

]
︸ ︷︷ ︸

G
ᵀ
c

∇Hc(xc),

(13)

the controller output yields

yc = 1

Bl

[
Mmk1

⌊
ξ − ξ�

⌉ α
2−α + Mm k2

⌊
p − p�

Mm

⌉α

− Km ξ − Rm

p

Mm

+ γRm

(
p − p�

Mm

)
+ β(ξ − ξ�)

]
.

(14)

The proposed finite-time control law (14) is a passive version of (7) presented in
Sect. 3.1, whatever its parameter values satisfying β > Km and γ > 1.

4 Numerical Results

Two control laws are assessed for an up-chirp pressure excitation pac(t) from 20 to
300 Hz at levels 94 and 106 dB.
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Law 1: passive finite-time control law (14). The law is evaluated through simu-
lations of the closed-loop system {S+C} based on a dedicated numerical scheme
[9, 10] that preserves the power balance in discrete time.

Law 2: proposed in [2]. The law relies on a modification of the inherent elec-
tromechanical properties of the loudspeaker, taking the form of a transfer
function between the measured acoustic pressure and the electric current,

I �(s) = Sd ρc − sMm(1 − μ) − Rm − Km

s
(1 − μ)

Bl
(
μs Mm

Sd
+ ρc + μKm

sSd

) P(s), (15)

where P(s) and I �(s) are, respectively, the Laplace transforms of pac(t) and i�(t)

and μ ∈ [0, 1] is a control parameter that adjusts the absorption bandwidth.

Simulations take the total acoustic pressure pac(t) as input and provide electric
currents generated by the control laws and the induced membrane velocities as
outputs. Then the reflected pressure at the membrane is calculated as

p−(t) = pac(t) − ρc ξ̇ (t)

2
. (16)

The control parameters are set to k1 = 750,000, k2 = 50, α = 0.8, β = 1.1Km,
γ = 1.1, μ = 0.15 and the loudspeaker model parameters are those used in [2]. The
sampling rate is set to fs = 44,100 Hz.

Time domain simulations of the reflected pressure p−(t) at the loudspeaker
membrane for an input pac(t) at 94 dB are depicted in Fig. 3. The weak value of the
reflected pressure p−(t) compared to the total pressure pac(t) reveals an efficient
sound absorption for both control laws.

The absorption capabilities are also evaluated in the frequency domain by
calculating the absorption coefficient as a function of the frequency f defined as

α(f ) = 1 −
∣∣∣∣Z(f ) − ρc

Z(f ) + ρc

∣∣∣∣
2

, (17)

where Z(f ) = P(f )/V (f ) and P(f ) and V (f ) are, respectively, the Fourier
transform of the pressure signal pac(t) and the velocity signal ξ̇ (t).

The coefficient α(f ) is depicted in Fig. 4. It can be noted that Law 2 achieves
the best sound absorption (α very close to 1) around the resonance frequency of the
loudspeaker (84 Hz). The proposed Law 1 is especially efficient at lower frequencies
below and has a slightly broader frequency bandwidth. Note that the closed loop
consisting of a linear model (4) and a nonlinear controller (14) is nonlinear. Thus its
performance varies with the amplitude of the control input, as illustrated in Fig. 4
for pac(t) at levels 94 and 106 dB.
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Fig. 3 Time domain simulations of the reflected pressure p−(t) at the loudspeaker membrane for
an input pac(t) at 94 dB, for both control laws

Fig. 4 Absorption coefficient versus frequency for both controls laws at 94 and 106 dB. The
(nonlinear) Law 1 is calculated for two input pressure levels, whereas the (linear) Law 2 does
not depend on the input amplitude

5 Conclusions

This work deals with sound absorption in a duct by a current-driven loudspeaker
control. A passive nonlinear control that provides an electric current from the
measurements of the acoustic pressure and the membrane velocity has been
presented, based on a finite-time control method. Its passivity property ensures
robustness against modelling errors. Numerical evaluation of the proposed nonlinear
control law shows an efficient sound absorption, especially below the resonance
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frequency of the loudspeaker. Further study will focus on a passive control that
handles a one-sample delay between the controller input and output, towards its
application on a test bench.
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