
Walter Lacarbonara 
Balakumar Balachandran 
Jun Ma · J. A. Tenreiro Machado 
Gabor Stepan   Editors

Nonlinear 
Dynamics 
and Control
Proceedings of the First International 
Nonlinear Dynamics Conference 
(NODYCON 2019), Volume II



Nonlinear Dynamics and Control



Walter Lacarbonara • Balakumar Balachandran
Jun Ma • J. A. Tenreiro Machado • Gabor Stepan
Editors

Nonlinear Dynamics
and Control
Proceedings of the First International
Nonlinear Dynamics Conference
(NODYCON 2019), Volume II



Editors
Walter Lacarbonara
Department of Structural and Geotechnical
Engineering
Sapienza University of Rome
Rome, Italy

Balakumar Balachandran
Department of Mechanical Engineering
University of Maryland
College Park, MD, USA

Jun Ma
Department of Physics
Lanzhou University of Technology
Lanzhou, Gansu, China

J. A. Tenreiro Machado
Department of Electrical Engineering
Polytechnic of Porto - School
of Engineering (ISEP)
Porto, Portugal

Gabor Stepan
Department of Applied Mechanics
Budapest University of Technology
and Economics
Budapest, Hungary

ISBN 978-3-030-34746-8 ISBN 978-3-030-34747-5 (eBook)
https://doi.org/10.1007/978-3-030-34747-5

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8780-281X
https://doi.org/10.1007/978-3-030-34747-5


Preface

This volume is part of three volumes collecting the Proceedings of the First
International Nonlinear Dynamics Conference (NODYCON 2019) held in Rome,
February 17–20, 2019. NODYCON was launched to foster the tradition of the
conference series originally established by Prof. Ali H. Nayfeh in 1986 at Virginia
Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA, as
the Nonlinear Vibrations, Stability, and Dynamics of Structures Conference. With
the passing in 2017 of Prof. Nayfeh, who was also the founder of the Springer
journal Nonlinear Dynamics in 1990, NODYCON 2019 was organized as a collec-
tive tribute of the community to Prof. Nayfeh for being one of the most influential
leaders of nonlinear dynamics. NODYCON 2019 was also established to look to
and dream about the future. The call for papers attracted contributions dealing with
established nonlinear dynamics research topics as well as with the latest trends and
developments. At the same time, to reflect the rich spectrum of topics covered by the
journal Nonlinear Dynamics, the call included diverse and multidisciplinary topics,
to mention a few, multi-scale dynamics, experimental dynamics, dynamics of struc-
tures/industrial machines/equipment/facilities, dynamics of adaptive, multifunc-
tional, metamaterial structures, dynamics of composite/nanocomposite structures,
reduced-order modeling, nonsmooth dynamics, fractional-order system dynamics,
nonlinear interactions and parametric vibrations, computational techniques, non-
linear system identification, dynamics of NEMS/MEMS/nanomaterials, multibody
dynamics, fluid/structure interaction, influence of nonlinearities on vibration control
systems, human–machine interaction, nonlinear wave propagation in discrete and
continuous media, chaotic map-based cryptography, ecosystem dynamics, social
media dynamics, complexity in engineering, and network dynamics.

For NODYCON 2019, the organizers received 450 two-page abstracts and
based on 467 reviews from the Program Committee, the Steering and Advisory
Committees, and external reviewers, 391 papers and 17 posters were accepted,
published in the Book of Abstracts (NODYS Publications, Rome, ISBN 978-88-
944229-0-0), and presented by nearly 400 participants from 68 countries. The
diverse topics covered by the papers were organized along four major themes to
organize the technical sessions:
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vi Preface

(a) Concepts and methods in nonlinear dynamics
(b) Nonlinear dynamics of mechanical and structural systems
(c) Nonlinear dynamics and control
(d) Recent trends in nonlinear dynamics

The authors of a selection of approximately 60 papers were invited to publish
in the Special Issue of Nonlinear Dynamics entitled “NODYCON 2019 First Inter-
national Nonlinear Dynamics Conference.” Over 200 full papers were submitted
to the Proceedings of the First International Nonlinear Dynamics Conference
(NODYCON 2019) and only 121 of them were accepted. These papers have been
collected into three volumes, which are listed below together with a sub-topical
organization.

Volume 1: Nonlinear Dynamics of Structures, Systems,
and Devices

(a) Methods for nonlinear dynamics
(b) Bifurcations and nonsmooth systems
(c) Nonlinear phenomena in mechanical systems and structures
(d) Experimental dynamics, system identification and monitoring
(e) Fluid–structure interaction, multibody system dynamics
(f) Turning processes, rotating systems, and systems with time delays

Volume 2: Nonlinear Dynamics and Control

(g) Vibration absorbers and isolators
(h) Control of nonlinear systems
(i) Sensors and actuators
(j) Network synchronization

Volume 3: New Trends in Nonlinear Dynamics

(k) Smart materials, metamaterials, composite and nanocomposite materials, and
structures

(l) MEMS/NEMS and energy harvesters
(m) Nonlinear phenomena in bio- and ecosystem dynamics
(n) Chaos in electronic systems
(o) Fractional-order systems



Preface vii

I wish to acknowledge the work of the Co-Editors of the NODYCON 2019
Proceedings: Prof. Balakumar Balachandran (University of Maryland, College Park,
MD, USA), Prof. Jun Ma (Lanzhou University of Technology, China), Prof. J.
A. Tenreiro Machado (Instituto Superior de Engenharia do Porto, Portugal), Prof.
Gabor Stepan (Budapest University of Technology and Economics, Hungary).

The success of NODYCON 2019 relied primarily on the efforts, talent, energy,
and enthusiasm of researchers in the field of nonlinear dynamics who wrote and
submitted these papers. Special praise is also deserved for the reviewers who
invested significant time in reading, examining, and assessing multiple papers, thus
ensuring a high standard of quality for this conference proceedings.

Rome, Italy Walter Lacarbonara
August 2019



Preface for Volume 2: Nonlinear
Dynamics and Control

Volume 2 of the NODYCON 2019 Proceedings is composed of 33 papers, in which
different kinds of control are applied for nonlinear dynamical systems. The first
section of this volume groups together ten papers; in these studies, the aim of the
applied control is to absorb and/or isolate the vibrations of a physical system. The
second section presents the results of 17 research papers, where the quality of the
applied control strategies is assessed, or sophisticated nonlinear control strategies
are implemented to achieve the desired behavior of a given dynamical system.
The third section involves two papers in which the effects of nonlinearities within
sensors and/or actuators are discussed. Finally, the four papers of the fourth section
investigate synchronization phenomena in networks of nonlinear dynamical systems
and coupled oscillators.

The primary view point of the grouping of the papers was the goal of the research
and not the applied methodology. Independently from the actual placement of a
paper in a given section, the authors make use of a wide range of experimental,
analytical, and numerical techniques for study of nonlinear dynamics.

In the work of S. Mohanty and S. K. Dwivedy, an active nonlinear vibration
absorber is analyzed for a harmonically excited beam system. Z. Lu, D.-H. Gu, Y.-
W. Zhang, H. Ding, W. Lacarbonara, and L.-Q. Chen compare linear and nonlinear
damping effects in case of a ring vibration isolator. T. Lebrun, M. Wijnand, T. Hélie,
D. Roze, and B. d’Andréa-Novel numerically examine electroacoustic absorbers
based on the passive finite-time control of the loudspeakers. The seismic response
of multiple base-isolated structures is predicted by F. Potenza, V. Gattulli, and
S. Nagarajaiah for monitoring purposes. H. S. Kizilay and E. Cigeroglu analyze
liquid-filled column dampers by means of nonlinear modeling in the frequency
domain. M. E. Dogan and E. Cigeroglu achieve vibration reduction by means of
two tuned mass dampers with dry friction. The nonlinear behavior of pendulum-
tuned mass dampers is examined by K. Xu, X. Hua, and Z. Chen for vibration
control. Resonance behavior is studied by Y. Mikhlin and Anton Onizhuk in a non-
ideal system containing a snap-through truss absorber. A. Salvatore, B. Carboni,
L.-Q. Chen, and W. Lacarbonara experimentally study the dynamic response of
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a nonlinear wire rope isolator. In the work of A. Boccamazzo, B. Carboni, G.
Quaranta, and W. Lacarbonara, optimization strategies of hysteretic tuned mass
dampers are discussed for seismic control.

A. Younespour and S. Cheng examine sliding mode control of nonlinear systems
under nonstationary random vibrations via the equivalent linearization method.
G. Stefani, M. De Angelis, and U. Andreaus discuss the experimental dynamic
response of a harmonically excited SDOF oscillator constrained by two symmet-
rically arranged deformable and dissipative bumpers. Active sling load stabilization
is considered by A. Morock, A. Arena, M. Lanzerotti, J. Capps, B. Huff, and W.
Lacarbonara. In the work of D. Jing, J.-Q. Sun, C.-B. Ren, and X.-H. Zhang, the
multi-objective optimization is studied for control of an active vehicle suspension
system. P. Domański and M. Ławryńczuk assess the quality of nonlinear model
predictive control by means of fractal and entropy measures. M. Gidlewski, L.
Jemioł, and D. Z̈ardecki analyze the impact of the controller algorithm on the motor
vehicle steering during a lane-change manoeuver. The application of fractional-
order impedance control is considered by G. Chen, S. Guo, B. Hou, J. Wang, and
X. Wang. In the study of I. Krzysztofik and Z. Koruba, the quadcopter dynamics
are analyzed during programmed movement and under external disturbance. The
same authors study the nonlinear model of quadrotor dynamics during observation
and laser target illumination. D. Li, C. Xu, M. Gola, and D. Botto consider the
problem of reduced-order modeling of friction in case of the line contact in a
turbine blade damper system. M. Galicki examines the finite-time control of omni-
directional mobile robots. L. Nesi, D. Antonelli, G. Pepe, and A. Carcaterra apply
the feedback local optimality principle for rocket vertical landing. Time-delayed
feedback control is applied by A. M. Tusset, J. M. Balthazar, R. T. Rocha, M. A.
Ribeiro, W. B. Lenz, and F. C. Janzen for a non-ideal system with chaotic behavior.
The distributed event-triggered output feedback control is used for semilinear
time fractional diffusion systems by F. Ge and Y.-Q. Chen. Control performance
assessment of the disturbance with fractional-order dynamics is carried out by K.
Liu, Y.-Q. Chen, and P. Domański. The work of W. Tang, Y. Qi, and H. Gao
addresses model correction-based multivariable predictive functional control for
uncertain nonlinear systems.

J. Yuan, S. Fei, and Y.-Q. Chen investigate compensation strategies for actuator
rate limit effect on first-order time-delay systems. The work of C.-E. Park, N.
K. Kwon, and P.-G. Park examines the reliability of output feedback control for
Markovian jump descriptor systems with sensor failure and actuator saturation.

L.-X. Yang and X.-J. Liu discuss the synchronization of coupled oscillatory net-
works with different node arrangements. The work of G. Panovko and A. Shokhin
considers the synchronization of unbalance vibration exciters near resonance. J.
P. Ramirez and J. Alvarez examine the mixed synchronization in unidirectionally
coupled chaotic oscillators. Finally, in this volume, the effect of synchronized
hopping induced by the interplay of coupling and noise is studied by M. Aravind,
K. Murali, and S. Sinha.
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We hope that readers will benefit from the collection of works here reported on
the interplay between control and nonlinear dynamics and that these efforts will
inspire new ideas in the future.

Rome, Italy Walter Lacarbonara
College Park, MD, USA Balakumar Balachandran
Lanzhou, China Jun Ma
Porto, Portugal J. A. Tenreiro Machado
Budapest, Hungary Gabor Stepan
August 2019
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Active Nonlinear Vibration Absorber for
a Harmonically Excited Beam System

S. Mohanty and S. K. Dwivedy

Abstract An active nonlinear vibration absorber (ANVA) using displacement,
velocity, and acceleration feedback from the absorber mass is proposed to reduce
the vibration of an Euler–Bernoulli beam subjected to a harmonical point force.
The ANVA comprises mass, linear spring, cubic nonlinear spring and actuator. The
steady-state equation of the system is obtained by solving the governing differential
equation by harmonic balance method. From the steady state equations, the stability
and vibration reduction of the beam are investigated by frequency responses, time
responses and phase portraits using Newton’s method and fourth-order Runge–
Kutta method. The analysis is carried out by studying the effects of different
feedback control gains and cubic nonlinear stiffness of the absorber to suppress
the vibration of the beam for the first three modal frequencies under different
boundary conditions, namely fixed-fixed, simply supported and cantilevered type.
The performance of the absorber is found to be better with cubic nonlinear stiffness
in the absorber which reduces the vibration of the beam more effectively than the
linear passive or active vibration absorber.

Keywords Vibration absorber · Harmonic balance method · Feedback

1 Introduction

The tuned mass damper (TMD) is an auxiliary mechanical device consisting of
spring, mass and damper with optimal configuration which is attached to the
vibrating primary structure to suppress its vibration by absorbing its vibrational
energy [1]. The energy transformed from the host vibrating structure to the TMDs
makes it to vibrate at higher amplitude which leads to nonlinear response in
the auxiliary mass [2, 3]. The passive TMDs are not useful for wider range of
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frequency of operation with lower mass ratio. To avoid these problems, linear and
nonlinear TMDs are designed with various optimization techniques, along with
the use of active control devices to suppress the vibration for a broader range of
operating frequencies [4, 5]. Hua et al. [6] designed a beam-based dynamic vibration
absorber (DVA) to suppress vibration of a cantilevered beam. They showed that the
proposed DVA outperforms traditional DVAs under same mass ratio. Chatterjee [7]
considered linear analysis and proportional displacement and velocity feedback to
suppress the vibration of a fixed-fixed beam excited by a point load. The present
work is an extension of [7] where nonlinear secondary system is considered by
taking different boundary conditions of the beam with different feedback conditions.

In the proposed model, the auxiliary system consists of a nonlinear spring, mass
and an actuator, which is attached to the beam to suppress its vibration. The beam
that is modelled as an Euler–Bernoulli beam is excited by an external harmonic
point force. Three different feedbacks, namely proportional displacement or velocity
or acceleration or combination of these, are used by the actuator to suppress the
first three modes of vibrations of the beam for various boundary conditions. In the
following section, the mathematical modelling of the system is described.

2 System Description and Mathematical Formulations

The schematic diagram of a fixed-fixed beam subjected to a harmonic excitation
F cos ωt at distance b from left end is shown in Fig. 1. The parameters ρ, A, L, E
and I denote density, elastic modulus, moment of inertia, cross-sectional area and
length of the beam, respectively. The mass, spring and cubic nonlinear stiffness of
the auxiliary system are denoted by m, k1 and k13, respectively. The auxiliary system
is attached at a distance a from the left end of the beam. The active control force
Fc by the actuator is considered to be proportional to displacement or velocity or
acceleration feedback or combination of these taken from the absorber mass. The
transverse displacement of the beam about the neutral axis at any point x and time
t is denoted by W(x, t). The governing differential equation of motion of the system
is obtained by considering equilibrium of the forces and moments, which are given
below.

ya m

k1, k13 Fc
x

a
b W

L

F cos tω

Fig. 1 Vibration control of a fixed-fixed beam subjected to harmonically excited point load by
using an active nonlinear vibration absorber
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ρA
∂2W(x,t)

∂t2
+EI ∂4W(x,t)

∂x4 +W (x(a), t) (k1 (W (x(a), t)−ya))

+W (x(a), t) (k13(W (x(a), t)−ya)
3) = F cosωt − Fc

(1)

mÿa + k1 (ya −W (a, t))+ k13(ya −W (a, t))3 = Fc (2)

Fc = −
(
Kpya −Kvẏa +KIÿa

)
(3)

where Kp, Kv and KI are the control gains of the absorber mass, for displacement,
velocity and acceleration feedback, respectively. The term ya is the displacement of

the absorber mass. TakingW (x, t) =
3∑

i=1
φi(x)qi(t) in Eqs. (1) and (2), where φi(x)

is the mode shape function and qi(t) is the time modulation of the ith mode of the
beam vibration, the temporal equations of the system is obtained by using Galerkin’s

method. Here normalization criteria is taken as
L∫

0

(
φi

2(x)
)
dx = 1. Following

non-dimensional parameters are used for further analysis. Modal displacement of
the beam for ith mode: wi = qi/δst, displacement of the absorber: y = ya/δst,
mass ratio: μ = m/ (ρAL) , ωa = √

k1/m/ω0, ω0 = reference frequency,
normalized natural frequency of ith mode the beam = ωni, cubic nonlinear stiffness
coefficient: α = k13/k1, excitation force: f = F/

(
ρALω2

0δst
)
, control gains:

kp = Kp/
(
ρALω2

0

)
, kv = Kv/

(
ρALω2

0

)
, kI = KI/

(
ρALω2

0

)
,Ω = ω/ω0 and

non-dimensional time τ = ω0t. The obtained non-dimensional equations of motion
are given below.

ẅi (τ )+ω2
niwi (τ )+μω2

aφi(a)

{
3∑

i=1
φ1(a)wi (τ )−y (τ)

}

+φi(a)
{
kpy (τ)−kvẏ (τ )

}+αμω2
aφi(a)

{
3∑

i=1
φ1(a)wi (τ )−y (τ)

}3

+φi(a)kIÿ (τ ) = φi(b)f cos (Ωτ)

(4)

μÿ(t)+ μω2
a

{

y (τ)−
3∑

i=1
φi(a)wi (τ )

}

+ αμω2
a

{

y (τ)−
3∑

i=1
φi(a)wi (τ )

}3

− kpy(t)+ kvẏ (τ )− kIÿ (τ ) = 0
(5)

It may be noted that Eqs. (4) and (5) are similar to Chatterjee [5], but here the
cubic nonlinear stiffness in the absorber and different feedback forces are considered
for various boundary conditions of the beam. Eqs. (4) and (5) are solved for the first
three modal displacement of the beam, i.e. for i= 1, 2 and 3 using harmonic balance
method which is discussed in the following section.
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2.1 Approximate Solution by Harmonic Balance Method

In this section, the harmonic balance method with slowly varying parameters are
employed to Eqs. (4) and (5) to analyse the steady-state response of the system. The
assumed solution are stated as follows:

wn (τ) = An (τ) cos (Ωτ + ϕn (τ)) for n = 1, 2, 3 (6)

y (τ) = B (τ) cos (Ωτ + ϕ4 (τ )) (7)

where A1(τ ), A2(τ ), A3(τ ), B(τ ), φ1(τ ), φ2(τ ), φ3(τ ) and φ4(τ ) are slowly varying
functions of time τ such that one can neglect the higher order or multiplication of
derivatives. Substituting Eqs. (6) and (7) into Eqs. (4) and (5) and equating the
coefficient of sinΩτ and cosΩτ terms separately to zero yield the following set
algebraic equations in the matrix form.

⎡

⎢
⎣

a11 . . . a18
...
. . .

...

a81 · · · a88

⎤

⎥
⎦
{
Ȧ1 ϕ̇1 Ȧ2 ϕ̇2 Ȧ3 ϕ̇3 Ḃ ϕ̇4

}T = {
b1 · · · b8

}T
(8)

From Eq. (8), the following amplitude and phase equations are obtained.

Ȧn = fn (A1, A2, A3, B, ϕ1, ϕ2, ϕ3, ϕ4) for n = 1, 2, 3 (9)

ϕ̇n = fn (A1, A2, A3, B, ϕ1, ϕ2, ϕ3, ϕ4) for n = 4, 5, 6 (10)

Ḃ = f7 (A1, A2, A3, B, ϕ1, ϕ2, ϕ3, ϕ4) (11)

ϕ̇4 = f8 (A1, A2, A3, B, ϕ1, ϕ2, ϕ3, ϕ4) (12)

The steady-state solutions of the equations are obtained by setting the first
derivatives of the slowly varying amplitudes and phases equals to zero, i.e., Ȧ1 =
Ȧ2 = Ȧ3 = Ḃ = ϕ̇1 = ϕ̇2 = ϕ̇3 = ϕ̇4 = 0 in Eqs. (9–12), and the stability
of the system is studied by obtaining the eigenvalues of the Jacobian matrix from
Eq. (8). In the following section, the performance of the active nonlinear vibration
absorber is discussed for various system parameters and control gains to suppress
the vibration of the beam for the first three modal frequencies.
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3 Results and Discussions

In this section, the performance of the active nonlinear vibration absorber on the
beam is studied by the time responses, phase portraits and frequency responses of
the system for the first three modal frequencies and also compared with the passive
linear vibration absorber. The optimum absorber parameters and the control gains
for displacement (kp) and velocity feedback (kv) are considered from Chatterjee [7].
The system parameters are considered as follows: mass ratio μ = 0.2, amplitude
of external excitation f = 1, absorber frequency ωa = 2 and the first three modal
frequencies of the beam are ωn1 = 1, 4 and 9. The parametric study is carried out
by varying cubic nonlinear stiffness coefficient α and control gains kp, kv and kI for
various boundary conditions of the beam. The time responses and phase portraits
of the system are obtained by solving Eqs. (4) and (5) using fourth order Runge–
Kutta method, and the frequency responses of the system are obtained by solving
the steady Eqs. (9–12) using Newton’s method. The stability of a particular solution
is ensured by the negative real part of the eigenvalues of the Jacobian matrix from
the Eq. (8).

3.1 Time Responses Curves of the System

The time responses and phase portraits of the fixed-fixed beam and the absorber
are shown in Fig. 2 for studying the effects of α and control gains in the vibration
suppression of the beam. In Fig. 2a–d comparison of time responses at the first
modal frequency (ωn1 = Ω = 1) of the beam for linear (red) and nonlinear (black)
passive absorber are shown. From Fig. 2a one can observe that with cubic nonlinear
stiffness, the response amplitude of the beam and the absorber decreases by 24% and
50%, respectively, than the linear absorber. The corresponding phase portraits of the
system are shown in Fig. 2b, d where the beam and absorber show quasi periodic
responses. In Fig. 3 responses of the fixed-fixed beam is studied for α = 0.1 and 0.2
with different control gains. In Fig. 3a–d the black line shows the system response
with only control gain kv, and red lines shows with zero control gain for the first
modal frequency (ωn1 =Ω = 1) of operation. It is observed from Fig. 3a, c that with
kv = 0.3578 the response of the beam and the absorber decreases by 52% and 28%,
respectively, than the passive nonlinear absorber. In Fig. 3b, d phase portraits of the
beam and the absorber show quasiperiodic responses. In Fig. 3e–f time responses
are shown to control second modal frequency (ωn1 = Ω = 4) of the beam with
kv = − 1, while all other system parameters are considered the same as in Fig. 3a–d.
Here it is observed that the system amplitude reduces by the application of control
gain in the feedback. In Fig. 3g, h comparison of time responses of the fixed-fixed
beam system are shown, with acceleration feedback (continuous black line) and
both displacement and velocity feedback (dotted black line) for α = 0.2. From these
figures, one can observe that with both kp and kv the system amplitude is more while
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Fig. 2 Comparison of time responses (a, c) and phase portraits (b, d) of the passive fixed-fixed
beam system at (ωn1 = Ω = 1) for linear (α = 0) (red) and nonlinear absorber (α = 0.1) (black)

Fig. 3 Time responses and phase portraits of the system with fixed-fixed boundary conditions for
different feedbacks and nonlinear stiffness in the absorber, where passive (red) and active (black).
(a–d) kv = 0.3578 and α = 0.1 at ωn1 = Ω = 1, (e, f) kv = 1 and α = 0.1 at ωn1 = Ω = 4. (g, h)
kp = 0.6, kv = 0.3578 (dotted lines) and kI = 0.9 (solid lines) for α = 0.2 at ωn1 = Ω = 1

Fig. 4 Time responses of the (a, b) cantilevered beam and (c, d) simply supported beam at
(ωn1 = Ω = 1 for α = 0.1), where passive (red) and active (kv = 0.3578) (black)

with only kI the system amplitude is lower. From Fig. 3 it is observed that for the
nonlinear absorber, control gain with velocity feedback reduces the amplitude of
the system, but when the nonlinearity in the absorber increases than acceleration
feedback is more suitable to suppress vibrations of the fixed-fixed beam. In Fig. 4
the response of the system is studied for the simply supported beam (Fig. 4a, b) and
the cantilevered beam (Fig. 4c, d) with same α and control gains as in Fig. 3a–d.

From Fig. 4a, b the same beating time responses are observed, but with higher
amplitude, though with the control gain (black), the amplitude is lower. For the
cantilever beam shown in Fig. 4c, d the vibration suppression is better than the
simply supported beam with the same applied control gain.
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3.2 Frequency Response Curves

In this section, parametric study is undertaken to analyses the frequency response of
the system with different values of α, boundary conditions of the beam (fixed-fixed,
simply supported, cantilevered) and control gains for displacement (kp) and velocity
feedback (kv). In Fig. 5a, b, a comparison of frequency responses between the linear
(black) and nonlinear active vibration absorber (blue) with kp and kv is shown to
suppress the first modal frequency (ωn1 = Ω = 1) of vibration in the fixed-fixed
beam. From these figures, it is observed that for α = 0.01 the amplitude of the
beam and the absorber decreases for the first three modal frequencies than the linear
absorber. In Fig. 5c, d only velocity feedback is used to suppress the second modal
vibration (ωn1 =Ω = 4) of the beam. It is observed from these figures that with only
kv the second mode of vibration of the beam is suppressed and also the same analogy
can be interpreted for the absorber. It may be noted that Fig. 5a, c are similar to the
results obtained by Chatterjee [7] where only linear analysis has been carried out. In
Fig. 5e, f the same kv and negative kp are considered to suppress the vibration of the
beam at the third mode (ωn1 = Ω = 9). It is observed from these figures that with
the control gains both the third mode and the second mode of vibration of the beam
decrease. In Fig. 5g for α = 0.05 it is observed that the vibration of the beam further
reduces in the first two modal frequencies than Fig. 5a. But for α = 0.1 the beam
vibration increases which is shown in Fig. 5h. In Fig. 5i, j the vibration suppression

Fig. 5 Frequency responses of the fixed-fixed beam at the first three modal frequencies with
kv = 0.3578 and different kp and α. (a, b) kp = 0.6, at ωn1 = Ω = 1, (c, d) kp = 0, α = 0 at
ωn1 =Ω = 4, (e, f) kp = − 1, α = 0.05 at ωn1 =Ω = 9, (g) kp = 0.6, α = 0.05 at ωn1 =Ω = 1,
(h) kp = − 0.6, α = 0.1 at ωn1 = Ω = 1, (i, j) kp = − 1, α = 0.01 at ωn1 = Ω = 1 and (k, l)
kp = − 1, α = 1 at ωn1 = Ω = 1
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Fig. 6 Frequency responses of (a, b) the simply supported beam and (c, d) the cantilever beam
for kp = 0.6, kv = 0.3578 and α = 0.01 at ωn1 = Ω = 1

of the third mode is analysed for α = 0.01 with kvand negativekp. It is observed
that the vibration suppression of the beam in the third mode is not achieved with the
applied control gains. In Fig. 5k, l, α = 1 is considered to suppress the first mode of
vibration (ωn1 =Ω = 1) of the beam. From Fig. 5k, l, high response amplitude and
unstable regions are observed in the system. From Fig. 5 it is observed that for α in
the range of 0 to 0.1 with the applied control gains, the response amplitude of the
system reduces for the first three modal frequencies, but higher values of α, i.e. for
α = 1, make the system unstable with high response amplitude. In Fig. 6a, d the
simply supported beam and cantilever beam are considered with kp, kv andα, while
all other parameters are same as in Fig. 3a–d. In simply supported beam (Fig. 6a, b),
the unstable region is observed for 0.85 < Ω < 0.95 with jump-up and jump-down
phenomena. For cantilever beam (Fig. 6c, d), the response amplitude is higher than
in the fixed-fixed beam with the same control gains.

4 Conclusions

In the present chapter, it is observed that the proposed passive nonlinear vibration
absorber reduces the vibration up to 24% than that of the corresponding linear
vibration absorber. In the active linear and nonlinear vibration absorber, by suitably
taking the optimized displacement and velocity gains, one may reduce the vibration
of beams with fixed-fixed, simply supported and cantilevered beam for different
modal frequencies. For higher nonlinear stiffness in the absorber, it is shown that
the acceleration feedback is more useful than that of the displacement or velocity
feedback. The results obtained by using the harmonic balance method is found
to be in good agreement with those obtained by using Runge–Kutta method.
Hence one may use the developed equations using harmonic balance method to
study the passive and active vibration absorber to effectively suppress the vibration
of the system with less computational time and memory space.
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Comparison of Linear and Nonlinear
Damping Effects on a Ring Vibration
Isolator

Ze-Qi Lu, Dong-Hao Gu, Ye-Wei Zhang, Hu Ding, Walter Lacarbonara ,
and Li-Qun Chen

Abstract Nonlinear isolators in the shape of a circular ring have been shown to
have an advantage over linear isolators in that they allow low-frequency vibration
isolation. These isolators have generally been assumed to possess linear viscous
damping, which degrades the performance of the isolator at high frequencies.
An alternative design is to make use of nonlinear damping, where the nonlinear
behavior is achieved by placing linear dampers, so that they are orthogonal to the
motion of the isolator. In this work, the performance of circular ring isolators with
this type of damping is compared with the corresponding isolators exhibiting linear
viscous damping only. It is found that the isolators with linear viscous damping
perform better around the resonance frequencies, but the isolators with nonlinear
damping perform better at high frequencies.

Keywords Nonlinear vibration · Vibration isolation · Ring · Damping
nonlinearity

1 Introduction

One way to improve low-frequency vibration without incurring static deflections
is to use a nonlinear isolator which has high-static-low-dynamic stiffness [1].
There are many ways to achieve this goal (see [2–5] and the references therein).
Wang et al. [6] studied dynamic characteristics of a nonlinear stiffness vibration
isolator. de Haro Silva et al. [7] studied the influence of a nonlinear cubic stiffness
on the transmissibility. A nonlinear cubic stiffness could improve the isolation
performance at frequencies around and above the resonance. Mojahed et al. [8]
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addressed a nonlinear isolator with geometrically nonlinear stiffness. Huang et al.
[9] designed a nonlinear isolator using Euler buckled beams as negative stiffness
element. Both analytical and experimental results demonstrated that the nonlinear
spring characteristic of the ring beam is beneficial to vibration isolation. In all these
cases, the damping was due to a linear viscous damper in parallel with the vertical
spring.

However, damping nonlinearity has some advantages compared to linear viscous
damping in overcoming the trade-off between mitigating the response at resonance
and maintaining good performance at high frequencies. Anomalous behavior of
damping nonlinearity inspired researchers to exploit the damping nonlinearity for
vibration isolation [10]. Wang et al. [11] compared the effects of linear and nonlinear
dampers in a nonlinear hinged-hinged beam. Ho et al. [12] have studied a 1-dof
nonlinear vibration isolation system with both stiffness and cubic damping nonlin-
earity. They used relatively simple analytical models to characterize the system in
terms of power flow, using output frequency response functions (OFRFs). Recently,
the effects of lateral dampers, which offer some advantages compared to vertical
damping, have been considered in combination with a vertical linear spring [13].
It was shown that this arrangement has the advantage of improving the performance
at the resonance frequency without degrading the isolation performance at high
frequencies for both force and displacement excited systems.

The aim of this chapter is to investigate the differences between having linear
and nonlinear damping in a ring isolator. The two damping configurations are (a)
a linear viscous damper aligned with the direction of excitation and (b) lateral
linear viscous dampers placed orthogonally to the excitation direction (the nonlinear
damping is due to the geometry). The direct separation of motion is used to analyze
the displacement transmissibility of the ring beam combined with linear or nonlinear
damper.

2 Formulation

Figure 1 presents a model of a vibration isolator with stiffness and damping
nonlinearity for a suspended mass m. The stiffness nonlinearity is achieved by the
circular ring. The geometry of the ring is described by radius R, thickness H, and
width W. Two cases are compared: (a) the system with linear viscous damping cv
due to the vertical damper and (b) the system with horizontal linear dampers ch
providing geometrically nonlinear effects.

The static force–displacement relationships of the pre-deformed ring due to the
weight of the isolation mass are given by

fs(i)(x) = mg − Ai/(x + x0)
2 (i = 1, 2, 3) (1)
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Fig. 1 Schematic of circle ring isolators: (a) only linear damping, (b) only nonlinear damping,
(c) both linear and nonlinear damping

where x0 is the static deflection of the ring at equilibrium under its own weight, x is
the displacement measured from the equilibrium. In Eq. (1) Ai represents the index
associated with different branches of the load-displacement for the ring whereby

Stage 1 (for low compressed levels, the eccentricity is large to maintain the
bending moment): m ≤ 0.6296LD/R2g,

A1 = 8LD[(2p/π + 2/p − p)F (p, π/4)− (2/p)E (p, π/4)]2 (2)

Stage 2 (for moderate values, the deformed elastica curve relies on an undulating
elastica): 0.6296LD/R2g ≤ m ≤ 2.7864LD/R2g,

A2 = 8LD[(2/π + 1) F (p, φB)− 2E (p, φB)]
2 (3)

Stage 3 (for large levels, a negative curvature is created): m ≥ 2.7864LD/R2g,

A3 = 8LD[(4/π + 2) F (p)− (2/π + 1) F (p, φB)− 4E(p)+ 2E (p, φB)]
2

(4)

in which φB = sin−1
(

1/p
√

2
)

, D = H3E22/12 is flexural stiffness, E22 is Young’s

modulus, L is equivalent length, E(p,φ) and F(p,φ) are the incomplete elliptic

integral of the second kind and first kind, respectively, p = 2
√
WD/

(
mgh2

)
, h

is deflected ring radius. Under base motion xe = Xe cos (ωt), the equation of motion
for the suspended mass m accounting for both damping scenarios (a) and (b) is
given by

mẍr + cvẋr + 2ch
x2

r

x2
r + l2

ẋr + fs(i) (xr) = mω2Xe cos (ωt) (5)

where xr = x − xe is the relative displacement between the mass and base. Xe and ω
denote the amplitude and frequency of the base motion, respectively. The linear and
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nonlinear damping terms in Eq. (5) are cvẋr and ch
(
x2

r /
(
x2

r + l2
))
ẋr, respectively.

These terms are taken into account separately or comprehensively, in other words,
the effects of linear and nonlinear damping on circle beam vibration isolation can
be compared clearly.

3 Displacement Transmissibility

3.1 Direct Separation of Motion Method

Direct separation of motion method is applied to analyze the frequency response.
The solution to Eq. (5) is assumed as

xr = α (T1)+ ψ (T1, T0) (6)

where new timescales T1 and T0 are denoted as T0 = ωt, T1 = εT0, ε is a book-
keeping small parameter, α is the slow parameter, ψ is the fast parameter. The
average of ψ in a periodic subject to T0 is zero, i.e., 〈ψ(T1, T0)〉 = 0. Equations
of slow and fast motions can be given, respectively

mε2 d
2α

dT 2
1

+ εcv
dα

dT 1
+ εch

α2 + ψ2 + 2αψ

α2 + ψ2 + 2αψ + l2
dα

dT 1
= 0 (7)

m
∂2ψ

∂T 2
0
+ 2mε ∂2ψ

∂T1∂T0
+mε2 ∂2ψ

∂T 2
1
+ cv

(
∂ψ
∂T0

+ ε ∂ψ
∂T1

)
+ ch

α2+ψ2+2αψ
α2+ψ2+2αψ+l2

×
(
∂ψ
∂T0

+ ε ∂ψ
∂T1

)
− Ai
α2+ψ2+2αψ+2x0(α+ψ)+x2

0
= mω2Xe cos (ωt)−mg (8)

Considering that ψ(T1, T0) is a time T0 periodic function, the solution of Eq. (8)
is expanded in series form as

ψ = B1 (T1) cos (T0 + θ1 (T1))+ B2 (T2) cos (2T0 + θ2 (T1))+ · · · (9)

The term containing B2 and θ2 neglected. Thus, substituting Eq. (9) into Eq. (8)
results in

mε2 d2B1
dT 2

1
+ εcv

dB1
dT1

−mB1

(
1+ ε dθ1

dT1

)2 + 2chε
2αB1
l2

dB1
dT1

+ k1B1 − 2k2αB1 + (3/4) k3B
3
1 + 3k3α

2B1 = mω2Xe cos θ1

(10)
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mε2B1
d2θ1

dT 2
1

+
(
cvB1 + 2mε

dB1

dT1

)(
1+ ε dθ1

dT1

)
+ 2ch

2αB1

l2

(
B1 + εB1

dθ1

dT1

)

= −mω2Xe sin θ1

(11)

where k1 = 2Ai/x3
0 , k2 = 3Ai/x4

0 , and k3 = 4Ai/x5
0 .

The steady response for the slow motion could be defined by

k1α − k2

(
α2 + B2

1/2
)
+ k3

(
α3 + 3αB2

1/2
)
= 0 (12)

−mω2B1 + k1B1 − 2k2αB1 + (3/4) k3B
3
1 + 3k3α

2B1 = mω2Xe cos (θ1) (13)

cvωB1 + 2ch2αB2
1ω/l

2 = −mω2Xe sin (θ1) (14)

With the application of sin2θ + cos2θ = 1, the amplitude–frequency relationship
can be derived by

(
−2k2αB1 + (3/4) k3B

3
1 + 3k3α

2B1 +
(
k1 −mω2

)
B1

)2

+
(
cvωB1 + 2ch2αB2

1ω/l
2
)2 = m2ω4X2

e (15)

Equation (15) is a quadratic equation in ω2 and can be solved analytically, if
ke = k1 − 2k2α + (3/4) k3B

2
1 + 3k3α

2, c = cv + 2ch2αB1/l
2, which yields

ω1,2≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c2−2mke

2m2
(
X2

e/B
2
1−1

) ±
[(
c2−2mke

)2+4m2
(
X2

e/B
2
1−1

) (
c2−2mke

)2]1/2

2m2
(
X2

e/B
2
1−1

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

1/2

(16)

The phase–frequency relationship of the system can be given by

θ1 = arctan

(
−cB1

−mω2B1 + k1B1 − 2k2αB1 + (3/4) k3B
3
1 + 3k3α2B1

)

(17)

The absolute displacement transmissibility of the ring beam isolator can be
given by

| TD |= |X| / |Xe| =
√
(B1 cos θ1 +Xe)

2 + (B1 sin θ1)
2/Xe (18)
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Table 1 Physical and geometrical properties of the ring beam

Item Notation Value

Mass m (kg) 0.2
Vertical damping coefficient cv (Ns/m) 0.5
Horizontal damping coefficient ch (Ns/m) 50
Thickness of ring beam H (m) 0.001
Radius of ring beam R (m) 0.3
Width of the ring beam W (m) 0.05
Young’s modulus E22 (Pa) 2.06 × 1011

Length of the horizontal damper l (m) 0.03
Base excitation Xe (m) 0.00035

3.2 Discussion and Results

To investigate whether it is better to place vertical or horizontal dampers in the ring
isolator, the amplitude of the base motion is fixed. Both physical and geometrical
properties of the ring beam are shown in Table 1. In the following study, the
corresponding parameter values of the circular ring beam are assigned as listed in
Table 1 if there is no special mention.

For three stages (m= 0.2, 1.0, 3.1 kg), it can be seen in Fig. 2a–c that the vertical
damper is effective in reducing the response around the resonance frequency, but it
degrades the vibration performance at high frequencies. In Fig. 2a–c, it can be seen
that the horizontal dampers are not as effective around the resonance frequency, but
do not degrade the isolator performance at high frequencies, in the isolation region.
Higher damping could, however, improve the performance at resonance. Thus, the
investigated horizontal dampers offer a clear advantage compared to the vertical
damper for weak excitation. The reason for this is that the nonlinear damping is
correlated positively with the displacement response, and the displacement response
is relatively high at resonance frequency but low at high frequency.

4 Linear and Nonlinear Damping Work Together

To optimize the ring isolator, both vertical and horizontal dampers are used.
As shown in Fig. 3, it has the advantages of linear and nonlinear damping combined.
Compared with the undamped system, the ring isolator equipped with both vertical
damping and horizontal damping could suppress the resonance vibration more
effectively, and simultaneously, the system works well at high frequencies. The peak
reduction increases as the ring thickness increases. A reduction in the transmissibil-
ity is about 23.1 at H = 0.0012 m. The peak reduction decreases as the ring radius
increases. A reduction in the transmissibility is about 24.1 at R = 0.25 m.
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Fig. 2 Comparison of linear and nonlinear damping effects on the dispalcement transmissibility,
for H = 0.001 m, R = 0.3 m, W = 0.05 m, m = 0.2 kg (a, d) 1.0 kg (b, e) 3.1 kg (c, f); (a–c)
No horizontal damping while vertical damping is changed (red solid line for cv = 0.5 Ns/m, black
dotted line for cv = 2.5 Ns/m, blue dotted line for cv = 5 Ns/m); (d, e, f) No vertical damping while
horizontal damping is changed (red solid line for ch = 1 Ns/m, black dashed line for ch = 5 Ns/m,
blue dotted line for ch = 10 Ns/m)

Fig. 3 Comparison of the displacement transmissibility between undamped system and damped
system for various values of thickness H and radius R. Red line: undamped system, blue line:
cv = 1 Ns/m, ch = 2 Ns/m. (a) changing ring thickness H; (b) changing ring radius R
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Fig. 4 The displacement transmissibility of the isolation with both linear and nonlinear damping
for various values of thickness H. cv = 1 Ns/m, ch = 2 Ns/m. (a) stage 1, m = 0.2 kg (b) stage 2,
m = 1.0 kg (c) stage 3, m = 3.1 kg

Fig. 5 The displacement transmissibility with both linear and nonlinear damping for various
values of the radius R. cv = 1 Ns/m, ch = 2 Ns/m. (a) Stage 1, m= 0.2 kg; (b) stage 2, m= 1.0 kg;
(c) stage 3, m = 3.1 kg

To evaluate the isolation performance of both linear and nonlinear damping
designed, the different geometrical parameters of the circle ring beam are addressed.
The thickness H of ring is changed and the radius is fixed at R = 0.3 m. The
analytical results for the displacement transmissibility of the ring isolator are illus-
trated in Fig. 4. All the curves of the displacement transmissibility bend to the
right for different thickness H (0.0008, 0.001, 0.0012 m). The primary peak values
decrease due to the thickness reduction. The vibration isolation range increases as
the thickness decreases at the different pre-loaded mass, and simultaneously, the
high frequency transmissibilities decrease. Figure 5 demonstrates the effect of ring
radius. The radius of the ring is changed R (0.35, 0.3, 0.25 m), when the thickness is
fixed at H = 0.001 m. As the radius increases, the resonant frequency and peak value
of the transmissibility decrease. In Fig. 6, numerical results for the displacement
transmissibility of the circle ring vibration isolator are achieved by the Runge–
Kutta scheme and marked with “o” for increasing frequency and “+” for decreasing
frequency. The approximate analytical results obtained via the proposed method
agree well with the numerical results.
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Fig. 6 The analytical and numerical displacement transmissibility of the isolator when the linear
and nonlinear damping working together, cv = 1 Ns/m, ch = 2 Ns/m. Solid line: the analytical
solution, “+”: forward sweep numerical solution, “o”: backward sweep numerical solution. (a)
Stage 1, m = 0.2 kg; (b) stage 2, m = 1.0 kg; (c) stage 3, m = 3.1 kg

5 Conclusions

The nonlinear damping effects in a circular ring isolator were investigated. The
ring delivers a nonlinear stiffness which depends largely on the initial deflection.
The dampers were either aligned with the direction of motion or orthogonal to it.
It was found that the circular ring isolator is advantageous over other linear isolators,
allowing isolation at low frequencies. Concerning the damping elements, it was
found that linear viscous damping provided in the direction of the excitation force
has good performance at the resonance frequencies but is detrimental to the isolation
performance at high frequencies. This was in contrast to the dampers orthogonal to
the excitation direction which performs better at high frequencies, but not as well
at resonance. Linear and nonlinear damping working together will achieve good
performance.
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Electroacoustic Absorbers Based on
Passive Finite-Time Control of
Loudspeakers: A Numerical Investigation

Tristan Lebrun, Marc Wijnand, Thomas Hélie, David Roze,
and Brigitte d’Andréa-Novel

Abstract This paper proposes a numerical investigation of a controlled loudspeaker
designed to absorb acoustic plane waves at a duct termination. More precisely,
a nonlinear control for a current-driven loudspeaker is presented, that relies on
(1) measurements of velocity and acoustic pressure at the membrane, (2) a linear
electroacoustic loudspeaker model and (3) a nonlinear finite-time control method.
Numerical tests are carried out by a passive-guaranteed simulation of the loud-
speaker dynamics in the port-Hamiltonian systems formalism. The sound absorption
efficiency is evaluated up to 300 Hz by computing the reflected pressure at the
membrane. The results are compared with a similar control architecture: the finite-
time control for sound absorption proves effective, especially in the low frequency
range.

Keywords Finite-time control · Port-Hamiltonian systems · Electroacoustic
transducer

1 Introduction

One limitation of passive sound absorbers is the bad efficiency at low frequencies
due to the required size of the material. Electrically controlled loudspeakers used
as active absorbers have shown to be a way to extend the frequency bandwidth of
absorption. A possible approach consists in controlling the loudspeaker dynamics in
order to match the membrane impedance to the acoustic characteristic impedance of
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the medium, thus forcing the system to behave like an acoustic transmission line [1].
In particular, Rivet et al. [2] propose an active absorber that uses a feedback based
on pressure or velocity for a current-driven boxed loudspeaker, showing broadband
absorption results. The present paper restates the model and the impedance matching
approach proposed in [2] and describes a new feedback law that combines (1)
passive-guaranteed control based on the port-Hamiltonian systems formalism [3, 4]
and (2) a (nonlinear) finite-time control law [5, 6], an alternative to asymptotic or
exponential control methods. The efficiency of the proposed controller in terms of
sound absorption is evaluated numerically.

2 Open-Loop Electroacoustic System

This section presents the considered models for the acoustic propagation (Sect. 2.1)
and the current-driven loudspeaker (Sect. 2.2).

2.1 Plane Wave Propagation in a Tube

Consider a semi-infinite duct with a loudspeaker located at z = 0, with a membrane
modelled as a flat piston (see Fig. 1). Acoustic plane wave propagation is assumed,
therefore the pressure field can be decomposed into progressive waves p+(t − z/c)
and p−(t + z/c), where c is the speed of sound. At z = 0, the particle velocity field
equals the piston velocity, leading to the following relation between the pressure
field pac(t) at z = 0 and the piston velocity ξ̇ (t),

pac(t) = 2p+(t)− ρc ξ̇ (t), (1)

where ρ is the air density.

2.2 Current-Driven Electrodynamic Loudspeaker Model

Physical Model A lumped model of boxed loudspeaker is adopted, considered as
a mechanical oscillator with displacement ξ(t) and momentum p(t) = Mmξ̇(t),

Fig. 1 Plane wave
propagation in a semi-infinite
duct. A loudspeaker,
modelled as a flat piston, is
located at z = 0

ξ ( t )
p+(t−z/c)

p−(t+z/c)

0 z

∞
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whereMm is the moving mass. The oscillator is excited by the Lorentz force Bl i(t)
and the force due to the acoustic pressure Sd pac(t). This yields the following
mechanical equation that states the force balance of the system,

Km ξ(t)+ Rm ξ̇(t)+ ṗ(t)+ Bl i(t) = Sd pac(t), (2)

where Km (N/m) is the stiffness coefficient associated with the suspension and the
sealed enclosure, Rm (Ns/m) is the mechanical damping coefficient, Bl (N/A) is
the electromechanical coupling factor and i is the input electric current. The current
drive enables rejection of undesired electric behaviour due to induction effect of the
coil, usually described by a resistance Re (�) and an inductance Le (H).

Port-Hamiltonian Formulation The loudspeaker model described in (2) is
restated in the port-Hamiltonian formalism [3], that relies on the expression of
the system energy,

H(ξ, p) = Kmξ
2

2
+ p2

2Mm
, (3)

namely the sum of the potential and kinetic energy stored by the system. Denoting
the state and input of the system by, respectively,

x(t) =
[
ξ(t) : displacement
p(t) : momentum

]
, u(t) =

[
i(t) : electric current

pac(t) : acoustic pressure

]
,

a state-space representation of the loudspeaker dynamics can be derived:

{S} :

ẋ =
([

0 1
−1 0

]

︸ ︷︷ ︸
J

−
[

0 0
0 Rm

]

︸ ︷︷ ︸
R

)
∇H(x)+ [Gi Gp

]

︸ ︷︷ ︸
G

u,

y =
[
G

ᵀ
i

G
ᵀ
p

]

︸ ︷︷ ︸
Gᵀ

∇H(x),
(4)

where J is skew-symmetric, R is positive semi-definite, Gi =
[
0 −Bl]ᵀ and Gp =[

0 Sd
]ᵀ

. The outputs are defined as the dual quantities of the inputs u(t):

y(t) =
[
e(t) : back-EMF voltage
vac(t) : acoustic outflow

]
.

The port-Hamiltonian formulation (4) ensures the passivity property of the physical
system through its power balance
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dH (x(t))
dt

= ∇H(x)ᵀẋ︸ ︷︷ ︸
Pstored

= −∇H(x)ᵀR∇H(x)︸ ︷︷ ︸
Pdiss

+ yᵀu
︸︷︷︸
Pext

, (5)

where Pstored, Pdiss and Pext are, respectively, the stored, dissipated and external
power.

3 Closed-Loop System

This section describes the derivation of a controller that provides an input current
i�(t) given (1) a target membrane motion ξ�(t), ξ̇ �(t) and (2) the measurement of
the acoustic pressure pac(t) and the velocity ξ̇ (t) at the loudspeaker membrane. The
target membrane velocity can be deduced from the measured pressure

ξ̇ �(t) = pac(t)

ρc
(6)

so that the acoustic impedance at the membrane equals the characteristic specific
acoustic impedance ρc. First, a nonlinear control law that reaches the target ξ̇ �(t)
in finite-time is presented in Sect. 3.1. Then the law is recast as a port-Hamiltonian
system in order to guarantee the passivity of the controller, and thus of the closed-
loop system, in Sect. 3.2.

3.1 Finite-Time Control Law

A system controlled in finite time will reach an equilibrium point in a finite time
(see [7] for a formal definition). Thus, finite-time stability is a stronger property
than asymptotic or exponential stability. It is useful for time-constrained and robust
control. We first state the following result.

Theorem 1 (Finite-Time Control of a Double Integrator [5]) Consider the
double integrator ż1 = z2, ż2 = v. The origin is a finite-time stable equilibrium
point of this system when it is controlled by the input v = −k1�z1	 α

2−α − k2�z2	α,
with k1, k2 > 0, α ∈ ]0, 1[ and �x	α � sgn(x)|x|α .

By identification (cf. [6]), one can find a transformation between the system (4) and
the double integrator controlled in finite time. We thus obtain the resulting nonlinear
law on the input current that reads

i�(t) =
Sdpac(t)−Kmξ(t)− Rmξ̇(t)+Mm

(
k1 �ξ(t)− ξ�(t)	 α

2−α + k2
⌊
ξ̇ (t)− ξ̇ �(t)⌉α

)

Bl
.

(7)
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3.2 Passive Finite-Time Control Law

Principle The aim of this part is the derivation of a controller that guarantees (1)
convergence towards specific system dynamics ξ�(t) and (2) stability in case of
badly tuned control parameters. In order to meet these requirements, we impose to
the controller the following port-Hamiltonian structure,

{C} : ẋc = (J c −Rc)∇Hc(xc)+Gcuc

yc = Gᵀ
c∇Hc(xc),

(8)

with J c skew-symmetric and Rc positive semi-definite. The power-preserving
interconnection [4] of {C} with {S} is achieved by (see Fig. 2)

[
i(t)

uc(t)

]
=
[

0 −1
1 0

] [
e(t)

yc(t)

]
, (9)

allowing the closed-loop system to be written as a port-Hamiltonian system

{S + C} :

[
ẋ
ẋc

]
=
([

J −GiG
ᵀ
c

GcG
ᵀ
i J c

]
−
[

R 02×2

02×2 Rc

])[ ∇H(x)
∇Hc(xc)

]
+
[

Gp

02×1

]
pac

vac =
[
G

ᵀ
p 01×2

] [ ∇H(x)
∇Hc(xc)

]
.

(10)

In the sequel, we choose the same states for the system and the controller: x = xc.
Modifying the total energy Hs+c(x) and the interconnection matrices in (10)
corresponds to an IDA-PBC control [8].

The controller {C} is derived by following the steps below:

1. Choose an energy Hs+c(x) ≥ 0 for the closed-loop system that has a minimum
at a desired target state x�, so that it converges to x�.

2. Deduce the energy of the controller by Hc(x) = Hs+c(x)−H(x) ≥ 0.
3. The control law is provided by the second line of (8) : yc = G

ᵀ
c∇Hc(x).

Fig. 2 Block diagram of the
proposed control architecture

{S}

+1
−1

{C}

pac(t)

i(t)

vac(t)

e(t)

uc(t)yc(t)
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Application to the Proposed Finite-Time Control Law The closed-loop energy
is chosen as

Hs+c(ξ, p) = Mmk1
2− α

2

∣∣ξ − ξ�∣∣ 2
2−α + Mmk2

Rm

1

α + 1

∣∣∣∣
p− p�

Mm

∣∣∣∣

α+1

+ β
2
(ξ − ξ�)2 + γ

2Mm
(p− p�)2.

(11)

It has a minimum at ξ = ξ� and p = p� so that this energy expression is a good
candidate to control the closed-loop system {S + C} towards the desired targets ξ�,
p�. The energy of the controller is deduced by subtracting (3) from (11), leading to

Hc(ξ, p) = Mmk1
2− α

2

∣
∣ξ − ξ�∣∣ 2

2−α + Mmk2

Rm

1

α + 1

∣∣
∣∣
p− p�

Mm

∣∣
∣∣

α+1

+ β
2
(ξ − ξ�)2 + γ

2Mm

(
p− p�

)2 − 1

2Mm
p2 − Km

2
ξ2,

(12)

where β > Km and γ > 1 ensure that Hc(ξ, p) has a global minimum. Finally, by
imposing the following port-Hamiltonian formulation:

{C} :

ẋ =
([

0 0
0 0

]

︸ ︷︷ ︸
J c

−
[

0 0
0 0

]

︸ ︷︷ ︸
Rc

)
∇Hc(x)+

[ 1
Bl
Rm
Bl

]

︸ ︷︷ ︸
Gc

uc

yc =
[

1
Bl

Rm
Bl

]

︸ ︷︷ ︸
G

ᵀ
c

∇Hc(xc),
(13)

the controller output yields

yc = 1

Bl

[
Mmk1

⌊
ξ − ξ�⌉ α

2−α +Mm k2

⌊
p− p�

Mm

⌉α
−Km ξ − Rm p

Mm

+ γRm
(
p− p�

Mm

)
+ β(ξ − ξ�)

]
.

(14)

The proposed finite-time control law (14) is a passive version of (7) presented in
Sect. 3.1, whatever its parameter values satisfying β > Km and γ > 1.

4 Numerical Results

Two control laws are assessed for an up-chirp pressure excitation pac(t) from 20 to
300 Hz at levels 94 and 106 dB.
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Law 1: passive finite-time control law (14). The law is evaluated through simu-
lations of the closed-loop system {S+C} based on a dedicated numerical scheme
[9, 10] that preserves the power balance in discrete time.

Law 2: proposed in [2]. The law relies on a modification of the inherent elec-
tromechanical properties of the loudspeaker, taking the form of a transfer
function between the measured acoustic pressure and the electric current,

I �(s) = Sd ρc − sMm(1− μ)− Rm −
Km
s
(1− μ)

Bl
(
μsMm

Sd
+ ρc + μKm

sSd

) P(s), (15)

where P(s) and I �(s) are, respectively, the Laplace transforms of pac(t) and i�(t)
and μ ∈ [0, 1] is a control parameter that adjusts the absorption bandwidth.

Simulations take the total acoustic pressure pac(t) as input and provide electric
currents generated by the control laws and the induced membrane velocities as
outputs. Then the reflected pressure at the membrane is calculated as

p−(t) = pac(t)− ρc ξ̇ (t)
2

. (16)

The control parameters are set to k1 = 750,000, k2 = 50, α = 0.8, β = 1.1Km,
γ = 1.1, μ = 0.15 and the loudspeaker model parameters are those used in [2]. The
sampling rate is set to fs = 44,100 Hz.

Time domain simulations of the reflected pressure p−(t) at the loudspeaker
membrane for an input pac(t) at 94 dB are depicted in Fig. 3. The weak value of the
reflected pressure p−(t) compared to the total pressure pac(t) reveals an efficient
sound absorption for both control laws.

The absorption capabilities are also evaluated in the frequency domain by
calculating the absorption coefficient as a function of the frequency f defined as

α(f ) = 1−
∣∣∣
∣
Z(f )− ρc
Z(f )+ ρc

∣∣∣
∣

2

, (17)

where Z(f ) = P(f )/V (f ) and P(f ) and V (f ) are, respectively, the Fourier
transform of the pressure signal pac(t) and the velocity signal ξ̇ (t).

The coefficient α(f ) is depicted in Fig. 4. It can be noted that Law 2 achieves
the best sound absorption (α very close to 1) around the resonance frequency of the
loudspeaker (84 Hz). The proposed Law 1 is especially efficient at lower frequencies
below and has a slightly broader frequency bandwidth. Note that the closed loop
consisting of a linear model (4) and a nonlinear controller (14) is nonlinear. Thus its
performance varies with the amplitude of the control input, as illustrated in Fig. 4
for pac(t) at levels 94 and 106 dB.



30 T. Lebrun et al.

Fig. 3 Time domain simulations of the reflected pressure p−(t) at the loudspeaker membrane for
an input pac(t) at 94 dB, for both control laws

Fig. 4 Absorption coefficient versus frequency for both controls laws at 94 and 106 dB. The
(nonlinear) Law 1 is calculated for two input pressure levels, whereas the (linear) Law 2 does
not depend on the input amplitude

5 Conclusions

This work deals with sound absorption in a duct by a current-driven loudspeaker
control. A passive nonlinear control that provides an electric current from the
measurements of the acoustic pressure and the membrane velocity has been
presented, based on a finite-time control method. Its passivity property ensures
robustness against modelling errors. Numerical evaluation of the proposed nonlinear
control law shows an efficient sound absorption, especially below the resonance
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frequency of the loudspeaker. Further study will focus on a passive control that
handles a one-sample delay between the controller input and output, towards its
application on a test bench.
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Seismic Response Prediction of Multiple
Base-Isolated Structures for Monitoring

Francesco Potenza, Vincenzo Gattulli, and Satish Nagarajaiah

Abstract The seismic response of multiple base-isolated structures is here
evaluated through both iterative linearization and numerical solution of
the nonlinear structure subjected to stochastic dynamic excitation with the purpose
of predicting the behavior of a monitored system. An analytical procedure is used
to determine the second-order response statistics of a simple model composed by
linear superstructures posed on a common nonlinear base isolation system. The
seismic excitation is modeled as a zero-mean filtered white noise and combined
with the system equation of motion in an augmented state space representation.
Different levels of seismic magnitudes are investigated, and preliminary results are
presented here. The study furnishes insights for the design of a permanent seismic
monitoring system of the four parts composing the building superstructure of the
Department of Human Science at University of L’Aquila laying on a common base
isolation system.
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1 Introduction

Base isolation has become a popular solution to reduce seismically induced
acceleration and relative displacement in buildings. Base-isolated structures reach
a great number of implementations worldwide [1], and in several cases, the
superstructure may consist of several parts separated by seismic or thermal joints.
The prediction of seismic response of these structural systems has been simulated
by a devoted numerical code in which the nonlinearities are concentrated at the base
[2]. However, the approach of the problem by Monte Carlo simulations is extremely
onerous. Especially when the aim is related to the reproduction of the seismic
behavior of existing structures that have experienced large displacements, bringing
the material in the plastic range [3]. Therefore, preliminary design criteria have
been proposed for dissipative devices in adjacent structure based on the stochastic
evaluation of the structural responses. Moreover, such methods have taken into
account the seismic excitation modeled as a filtered white noise considering soil
effects [4]. Further, performance-based optimization of nonlinear structures subject
to stochastic dynamic excitation has been formulated in terms of the variance of
stationary structural responses, which are obtained via equivalent linearization [5].
This approach could provide insights into the optimization of the structural design
equipped by dissipative passive systems or base isolated systems. In this respect,
the issue to be faced is related to a stochastic structural optimization problem. The
problem has been already formulated in a more general context [6], but in recent
works, it has been enriched to solve it taking into account the multi-objective nature
of the engineering design problems [7]. In this chapter, the prediction of the seismic
response of simplified multiple-base isolated structural model could be useful for a
preliminary designing of a seismic monitoring system. A further development of the
work will be to propose a relationship between the acceleration amplitude induced
by environmental noise and the sensor sensitivities.

2 Problem Formulation

Let us consider a simple model composed by n simple oscillators modeling several
separated parts of a superstructure posed on a nonlinear base isolation system
(Fig. 1a). The model is suitable to evaluate the stochastic dynamic response to
seismic excitation of a multiple base-isolated structure (e.g., Fig. 1b).

The equations of motion of a minimum case of two oscillators can be directly
derived by D’Alambert principle as follows:

M1
(
Üb + D̈1

)+ C1Ḋ1 +K1D1 = 0
M2

(
Üb + D̈2

)+ C2Ḋ2 +K2D2 = 0
Mb

(
Üg + D̈b

)+M1D̈1 +M2D̈2 + CbḊb +KbDb = 0
(1)
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Fig. 1 (a) Simple model composed of linear superstructures posed on a common nonlinear base
isolation system. (b) Department of Human Science buildings at L’Aquila

Denoting L as a convenient reference length, the following set of dimensionless
variables and mechanical parameters can be introduced:

ui = Ui
L
, ub = Ub

L
, ug = Ug

L
, di = Ui−Ub

L
, db = Ub−Ug

L
, ρi = Mi

Mb
,

ω2
i = Ki

Mi
, ω2

b = Kb
Mb
, βi = ωi

ωb
, ξi = Ci

2 ωiMi
, ξb = Cb

2 ωbMb
, τ = ωbt

(2)

where ui, ub, and ug are the absolute displacements for i-th pendulum representing
a part of the superstructure, base, and ground, respectively, while di and db are
the relative displacements between the superstructures and base and the base and
ground, respectively. The relevant parameters to describe the system dynamics are
ρi and β i. The first one is defined as the ratio between the mass of the i-th pendulum
of the superstructure and the mass of the isolated base while the second one is the
ratio between the fundamental frequency of the i-th pendulum of the superstructure
and the frequency of the base isolated. The linear dimensionless equations of motion
are follows:

d̈1 + d̈b + 2 ξ1 β1 ḋ1 + β2
1d1 = −üg

d̈2 + d̈b + 2 ξ2 β2 ḋ2 + β2
2d2 = −üg

d̈b + ρ1 d̈1 + ρ2 d̈2 + 2 ξb ḋb + db = −üg

(3)

where the dots indicate differentiation with respect to the nondimensional time τ .
The dimensionless compact form is the following:

M d̈+ C ḋ+K d = −r üg (4)

in which M, K, and C are the mass, stiffness, and damping matrices, respectively.
The vector r allocates the external forces while the vector d contains the relative
displacements. All variable and parameters are as follows:
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M =
⎡

⎣
1 0 1
0 1 1
ρ1 ρ2 1

⎤

⎦ , C =
⎡

⎣
2ξ1 β1 0 0

0 2ξ2 β2 0
0 0 2ξb

⎤

⎦ , K =
⎡

⎣
β2

1 0 0
0 β2

2 0
0 0 1

⎤

⎦ ,

r =
⎡

⎣
1
1
1

⎤

⎦ , d =
⎡

⎣
d1

d2

db

⎤

⎦

(5)

Considering a hysteretic behavior, the nonlinear equations of motion are given by

M d̈+ C ḋ+ fN = −r üg (6)

The hysteretic component of the restoring force, fN , is represented here by an
adjunct variable, z, whose evolution is described through a Bouc–Wen model

fN = KLd+ (1− α) h z (7)

where KL is the linear stiffness matrix, h is the allocation vector of the hysteretic
component, and α is the post- to pre-yielding stiffness ratio. The matrix KL and the
vector h have the following expressions:

KL =
⎡

⎣
β2

1 0 0
0 β2

2 0
0 0 α

⎤

⎦ , h =
⎡

⎣
0
0
1

⎤

⎦ (8)

The new nonlinear system is:

M d̈+ C ḋ+KL d+ (1− α) h z = −r üg

ż = −γ ∣∣ḋb
∣∣ z |z|n−1 − β ḋb |z|n + A ḋb

(9)

where in the Bouc–Wen model, the parameters γ and β control the shape of the
hysteresis loop, A the restoring force amplitude, and n the smooth transition from
elastic to plastic response (for large value of n the model tends to an elasto-plastic
behavior).

2.1 Stochastic Structural Response

The linear stochastic response of the system described in Eq. (4) can be calculated
through the covariance matrix �. Moreover, defining the state vector as xs =
[
dT ḋT

]T
, Eq. (4) can be organized in the space-state formulation:

ẋs = As x+ Bs w (10)
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where w is a zero-mean stationary Gaussian process while the space-state matrices
A and B assume the following expression:

As =
[

03×3 I3×3

−M−1 K −M−1 C

]
, Bs =

[
0T

1×3 −rT
]T

(11)

The stationary stochastic structural responses can be obtained evaluating the
covariance matrix � through the solution of the following Eq. (3):

0 = As Γ + Γ As + 2πBs SBs (12)

which is the well-known Lyapunov equation in the unknown � while S is the power
spectral density of the white noise. It is worth to highlight that the main diagonal
of the covariance matrix consists of the expected values (variance and standard
deviations) of the displacements and velocity while the mixed expected values are
given by the terms out of diagonal.

The nonlinear stochastic response can be approximately determined by an
equivalent linear system [4, 7] that allows to easily manage the solution to the
previously introduced Lyapunov equation. Consequently, the new form of the
equations of motion is follows:

M d̈+ C ḋ+KL d+ (1− α) h z = −r üg

ż+ C21 ḋb +K22 z = 0
(13)

where the two coefficients C21 and K22 can be evaluated in terms of the second
moments of ḋb and z [8]:

C21 =
√

2
π

[
γ
E
[
ḋbz

]

σḋb
+ β σz

]
− A

K22 =
√

2
π

[
γ σḋb

+ β E
[
ḋbz

]

σz

] (14)

Starting from the equivalent linear system, it is possible to define a new state-

space vector as x̃ = [
dT ḋT z

]T
that brings the system to a new state-space

formulation:

˙̃x = Ae x̃+ Be w (15)

where the new state-space matrices, Ae and Be (where the subscript stands for
equivalent linearization), assume the following form:

Ae =
⎡

⎣
03×3 I3×3 03×1

−M−1KL −M−1C − (1− α) h3×1

01×3 C21hT K22

⎤

⎦

7×7

, Be =
⎡

⎣
03×1

− r3×1

0

⎤

⎦

7×1

(16)
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Considering the fact that the coefficients C21 and K21 depend on the standard
deviations, to solve the Lyapunov equation, an iterative solution is required. The
iteration can start using the solution of the linear system with a stiffness equal to the
pre-yielding stiffness of the nonlinear system.

The stochastic excitation can be represented as a filtered white noise (e.g., Kanai-
Tajimi) that in the state space form assumes the following expression:

ẋf = Afxf + Bfw

ü = Cfxf
(17)

where xf is the state vector for the filter while Af, Bf, and Cf are chosen to
represent the characteristics of the excitation. In particular, combining the equations
of the structural model and the ones of the loading model, a new expression of an
augmented system is obtained:

ẋa = Aaxa + Baw

ys = Caxa
(18)

where

xa =
(

xT
s xT

f

)T
, Aa =

[
As BsCf

0 Af

]
, Ba =

[
0
Bf

]
, Ca =

[
Cs DsCf

]
(19)

In this case, the covariances of the structural responses can be determined
through the solution of the following equation:

Γ̇ xa = Aa Γ xa + Γ xa Aa + 2πBa SBa (20)

In the case of direct integration, the effect of the nonstationary stochastic process
could be considered multiplying the output of the filter by an envelope function
e(t) [7].

3 Numerical Results

This section illustrates and describes some preliminary numerical results regarding
the linear and nonlinear stochastic structural response. In particular, Fig. 2 reports
the results for the linear case while Fig. 3 reports the ones with the nonlinear effects
analyzed through the equivalent linearization procedure previously introduced. In
the Fig. 2 have been fixed the structural parameters for the first oscillator (β1 = 8.33,
ρ1 = 0.1) while in the Fig. 3 the ones of the second oscillator (β2 = 6.25, ρ2 = 0.3).

Looking at the results obtained considering a linear behavior, as expected, by
increasing the β2 parameters, a quick exponential decay of the standard deviation
of the second oscillator is observed, especially for low β2 values (see Fig. 2b).
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Fig. 2 Linear stochastic structural response for multiple base-isolated structures: For all cases:
β1 = 8.33 and ρ1 = 0.1. Modal damping: ξ1 = ξ2 = ξb = 0.05. Standard deviations for first
oscillator (a) and (d), second oscillator (b) and (e), base-isolated (c) and (f)
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The corresponding behavior, shown in the Fig. 2a, remains practically unchanged.
The variations caused by increasing ρ2 are reported in the Fig. 2d, e. Such increasing
seems to influence both standard deviations. However, in this case, the responses
have been analyzed, preliminary, for high fixed β2 values, and so the variations have
been visualized for a small range of the standard deviations. Some main remarks
are the following: (1) in all cases, for fixed ρ-parameters, the standard deviations
decrease going towards high β2 parameters, even if the variations are very small;
(2) in Fig. 2d the value of the standard deviation seems to tend to an asymptotic
value near to 0.15; (3) it is worth to highlight that in Fig. 2d, e, for all analyzed
cases, local minimum (and a maximum only for β2 = 6.25) that could suggest the
development of the design procedure is found. In the last two Fig. 2c, f, the standard
deviation of the base structural response has substantially linear behavior varying
the ρ2 parameter and unchanged varying the β2 parameters.

The effects of the nonlinear behavior have been evaluated increasing the value of
the power spectral density of the white noise, i.e. S. In particular, as described in the
previous section, the nonlinearity, introduced to describe the hysteretic component
of the restoring force, directly influences the structural response of the base. This
appears evident looking at the results reported in Fig. 3c, f. Indeed, for small values
of the spectral intensity, the standard deviation of the base assumes a hardening
behavior, reaching a minimum point for a certain value of the spectral intensity.
Moreover, this particular situation occurs for increasing S-values decreasing the ρ1
parameter.

This makes a sense because it corresponds to a relative stiffening of the base.
Imperceptible variations are observed when the β1 parameter is changed (see
Fig. 3f). After that point, further increasing of the spectral density would seem
to produce a linear increasing of the standard deviation. The standard deviations
related to the relative displacements of the two oscillator seem to have a more regular
behavior. Indeed, the amplitudes grow while increasing the value of the intensity and
go down while decreasing both ρ1 and β1 parameters. Interesting to note that in Fig.
3d the results seem to show a point of minimum for a particular value of β1 with S
fixed.

4 Conclusion

The work aimed at developing a simple analytical model representative of the
dynamic of a multiple base-isolated structures. The evaluation of linear and
nonlinear stochastic structural response could be used for both to optimize nonlinear
structures equipped by dissipative devise and to select sensor sensitivities for
seismic monitoring. Moreover, the application of a linearized iterative procedure
permits to evaluate the stochastic stationary response avoiding the execution of very
long and onerous numerical simulations. A real case study at L’Aquila will be used
to verify the design procedure potentiality.
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Frequency Domain Nonlinear Modeling
and Analysis of Liquid-Filled Column
Dampers

H. Sefa Kizilay and Ender Cigeroglu

Abstract Tuned liquid column dampers (TLCDs) have an extensive usage as
effective vibration absorbers to enhance the structure response under the effect of
seismic or wind loads. In this study, parameter optimization of nonlinear model of
a TLCD in frequency domain under harmonic excitation is proposed in order to
improve the performance of TLCDs. The nonlinearity in the model is due to the
head-loss caused by the orifice resulting in velocity squared damping. A six-story
building with a TLCD is considered as a case study. Describing function method
(DFM) is used to model the nonlinear effects in frequency domain which results
in a set of nonlinear algebraic equations. The resulting set of nonlinear equations
is solved by Newton’s method utilizing Homotopy Continuation. The effect of
change of TLCD parameters (cross-sectional area, head loss coefficient, total
length, horizontal length) on the overall system response is investigated through
the developed nonlinear model. TLCD parameters are optimized utilizing genetic
algorithm and gradient descent optimization methods. Response of the optimized
and non-optimized models is compared in frequency domain. The linear and
nonlinear models are also compared, and the necessity of introducing nonlinearity
to the frequency domain model is addressed.
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1 Introduction

Balendra et al. [1] studied the effectiveness of passive TLCDs in reducing the
wind-induced vibration of towers. Accordingly, authors used direct time integration
method to solve the linearized nonlinear governing differential equations of motion.
In their studies, optimum parameters were provided for a series of towers in
relation to maximum reduction in acceleration and displacement under harmonic
excitations. Those studies subsequently reveal that virtually the same level of
reduction in acceleration is achievable for any tower of practical interest when a
suitable opening ratio is used for the orifice in the TLCD connected rigidly to the
structure.

Gao et al. [2] considered the same problem, where authors employed direct
time integration, i.e., Newmark’s constant average acceleration method, to solve
the nonlinear differential equation of motion of the building coupled with a TLCD.
Authors provided optimum TLCD parameters for a variety of flexible structures
which reduced the peak structural response to harmonic excitation in a wide
frequency range. Authors considered a variation of U- and V-shaped TLCD, which
have different cross-sectional areas in vertical and horizontal sections.

In the study of Mohebbi et al. [3], a systemic optimization method is proposed
regarding the design of a passive multiple tuned liquid column dampers (MTLCDs)
in an effort to enhance seismic behavior of structures. By developing and solving
a constrained optimization problem through genetic algorithm (GA), the authors
attempt to identify the optimum parameters of TLCDs that minimizes the maximum
displacement and the maximum acceleration values. The authors use Wilson’s theta
numerical procedure to solve the nonlinear differential equation of motion of the
structure. A ten-story shear frame exposed to a filtered white noise excitation is
used while demonstrating the design procedure. Structure with optimal MTLCDs is
tested under the circumstances of real earthquakes.

Ghosh et al. [4] investigated the application of the liquid column damper (LCD)
for seismic vibration control of short period structures and viability of the LCD
coupled to the structure by a spring. The authors modeled the structure as a
linear, viscously damped single-degree-of-freedom system. In linearization of the
nonlinear orifice damping of the LCD, the study adopts a stochastic equivalent
linearization technique.

A trial and error process of satisfying geometrical constraints and varying
controlled response factors for a bi-directional (two-way) liquid damper has been
presented by Min et al. [5]. TLCD in which liquid moves through a U-shaped tube
and the tuned sloshing damper (TSD) in which liquid sloshes within a container,
respectively, for two orthogonal directions, are combined to create the two-way
liquid damper. By minimizing the mean square value of the error between the
nonlinear and equivalent linearized system, the nonlinear equation of motion is
linearized. Tuning the natural frequencies of liquid motion in the damper to those of
the building results in the determination of the required dimensions of the damper.
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In this chapter, a nonlinear TLCD model is constructed, and the effects of differ-
ent parameters on the system response are investigated in frequency domain under
harmonic excitation. For harmonic excitation, utilizing DFM was developed by
Tanrikulu et al. [6], nonlinear differential equations of motion are transformed into
a set of nonlinear algebraic equations which are solved by Newton’s method with
homotopy continuation. It is possible to solve a set of nonlinear algebraic equations
by means of time domain methods; yet, DFM is proved to be a more efficient
method that provides the solution faster than any other time-domain methods. The
nonlinearity generated due to the head loss at the orifice is included in the model
as velocity-squared damping element. DFM is used to model the nonlinear element,
and a set of nonlinear algebraic equations is obtained through the application. TLCD
parameters are optimized in order to minimize the response amplitude of a six-story
building by using genetic algorithm and gradient descent optimization methods.
Results obtained for optimized and non-optimized models are compared, and the
effect of including nonlinearity due to head loss on the system response is shown.

2 Mathematical Modeling

In this part, first, a simple shear building model with a TLCD is considered. It should
be noted that location of TLCD has a significant effect on building model. In this
chapter, TLCD is placed on the rooftop in order to dissipate energy of the first mode
of the structure under the harmonic excitation. However, it is possible to consider
multiple TLCDs at different locations.

2.1 Single DOF System with TLCD

Saoka et al. [7] developed equation of motion of SDOF system with a TLCD, and
Sakai et al. [8] performed experiments to verify the developed equation of motion.
Schematic representation of the SDOF model used in this study is given in Fig. 1.

The nonlinear differential equation of the primary structure and the motion of the
fluid in the U-shaped tube are given as

[
(Ms + ρAl) ρAb
ρAb ρAl

]{
Ẍs

ẍf

}
+
[
c 0
0 0

] {
Ẋs

ẋf

}
+
[
k 0
0 2ρAg

]{
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xf

}

+
{

0
ρ
2Aξ |ẋf| ẋf

}
=
[
F(t)

0

]
. (1)

Ms, c, and k are mass, damping, and stiffness of the SDOF system, respectively.
ρ is the density of liquid , A is cross-sectional area, b is horizontal length, l is total
length, and ξ is head loss coefficient.
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Fig. 1 SDOF system with
TLCD

2.2 Multi-Story Shear Building Model with TLCD

A multi-story shear building model with a TLCD is given in Fig. 2 which is used in
this study. The equation of motion of the model can be given as follows:

[M] {ẍ} + [C] {ẋ} + [K] {x} + {fNL} = {fexc} (2)

{fexc} = − [M] ẍg, (3)

where {x} is the displacement vector, and [M], [C], and [K] denote the mass,
damping, and stiffness matrices, respectively. {fNL} is the vector of nonlinear forcing
due to TLCD, {fexc} is the excitation force vector, and ẍg is the base acceleration
input.

When Eq. (4) is examined, one can understand that total differential equation
number is (n + 1) due to the existence of single TLCD, where n is the number of
stories in the building. System matrices and forcing vectors can be expressed as

{x}n+1 = {x1 x2 . . . . . . xn xf}T. (4)

2.3 Modeling of Velocity-Squared Damping

Fluid forced rapidly through an orifice causes velocity-squared damping. Nonlinear
forcing due to velocity squared damping can be written as

n (ẋ) = cn · |ẋ| · ẋ, (5)

where cn = ρAξ /2 is the coefficient of velocity-squared nonlinearity. Nonlinear
forcing due to velocity-squared damping as a function of velocity is shown in Fig. 3.
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Fig. 2 MDOF n-story
building equipped with
TLCD

Fig. 3 Nonlinear force vs.
velocity for velocity-squared
damping

In this study external forcing {fexc} is assumed to be harmonic. For harmonic
excitation, response of the systems is also assumed as harmonic which can be
written as

{fexc} = Im
(
{F } eiωt

)
, (6)



48 H. S. Kizilay and E. Cigeroglu

{x} = Im
(
{X} eiωt

)
, (7)

where {F},{X}, and ω are complex amplitude vector of external excitation, complex
amplitude vector of displacement response vector, and frequency of excitation.

2.4 Describing Function Method (DFM)

Earthquakes give rise to broadband-type excitation which results in major compo-
nent of oscillations at the resonance frequencies of buildings. Therefore, frequency
domain methods can be used to design and optimize vibration dampers, which are
computationally more efficient, compared to time domain methods, since the target
is to reduce amplitudes of resonance vibrations.

In linear systems, transfer functions between inputs and outputs are independent
of input type and amplitude; however, for nonlinear systems, describing functions,
which correspond to the transfer function for linear systems, are different. Using
describing functions, system nonlinearity is replaced by a linear gain element chosen
in such a way that a similar response of the nonlinearity and its approximation to
the same harmonic input is obtained. For single-input describing function (SIDF),
the describing function ν can be defined by the ratio of phasor representation of the
output components at frequency ω to phasor representation of the input components
at the same frequency.

Assume a single harmonic motion as

x = X · sin (ωt) = X · sin (ψ) . (8)

Using Eqs. (5) and (6), the nonlinear internal force due to velocity-squared
damping can be written as follows:

n (ẋ) = 1

2
ρAξ · ω2X

2· | cos (ωt) | · cos (ωt) . (9)

Describing function, ν, for a nonlinear element can be obtained as follows:

ν = i

X · π ·
2π∫

0

(n (ẋ)) · (cos (ψ)− i sin (ψ)) dψ. (10)

For velocity-squared damping, the describing function is obtained as

ν = 4

3π
ρAξ · ω2X · i (11)
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The describing function given in Eq. (11) depends on the square of excitation
frequency and amplitude of vibrationX. Describing function for velocity-squared
damping is pure imaginary. Nonlinear internal forcing for a single TLCD is obtained
by multiplying describing function and complex amplitude of motion [6] as

FNL = 4

3π
ρAξ · ω2X · (i · xr − xi) , (12)

where X =
√
x2

i + x2
r and xi and xr are imaginary and real parts of the relative

displacement. For harmonic motion, the following form for Eq. (2) is obtained:

[
[K]− ω2 [M]+ iω [C]

]
∗ {X} + {FNL ({X})} = {fexc} . (13)

2.5 Solution of Nonlinear Equations

The nonlinear force given by Eq. (12) is displacement and frequency dependent;
therefore, a numerical method is necessary to obtain the solution. Eq. (13) is re-
written in terms of a residual vector as

{R ({X} , ω)} =
[
[K]− ω2 [M]+ iω [C]

]
∗ {X} + {FNL ({X,ω})} − {fexc} = 0.

(14)

Solution of the nonlinear algebraic equation given by Eq. (14) is obtained by
using Newton’s method. A single iteration for Newton’s method can be expressed as

{X}k+1 = {X}k −
[
∂ {R ({X} , ω)}

∂ {X}
]−1

∣
∣∣∣∣{X}k,ω

{
R ({X}k, ω)

}
, (15)

where k and [∂{R({X},ω)}/∂{X}] are the iteration number and the Jacobian matrix,
respectively. Iterations are terminated when the residual norm falls below a prede-
fined error tolerance.

3 Results

Several case studies are performed to investigate the effects of excitation and
system parameters on the response of a single-story building. In the first case
study, the response of the building is analyzed by changing the amplitude of ground
acceleration, ẍg from 0.1 to 1 m/s2. The studied SDOF building system has 5250 kg
mass, 840,000 N/m stiffness, and 1160 Ns/m viscous damping coefficient. The
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Fig. 4 Displacement of Xs to ground acceleration ratio vs. frequency for different acceleration
levels

natural frequency and the damping ratio of the system are 2.01 Hz and 0.01,
respectively. Liquid density (ρ), cross-sectional area (A), horizontal length (b),
total length (l), and head loss coefficient (ξ ) of the U-shaped TLCD are taken as
1000 kg/m3, 0.5 m2, 0.5 m, 1 m, and 5, respectively.

Note that, in order to clarify the nonlinear effect of the TLCD on the SDOF
system, displacement to ground acceleration ratio for different ground acceleration
values is given in Figs. 4 and 5. As the amplitude of harmonic ground acceleration
increases, the effect of nonlinear damping of the TLCD on system response
increases. Moreover, the resonance frequency of the SDOF system shifts towards
lower frequencies. In the second case study, the effects of TLCD parameters on the
response of the single-story building are investigated. Four parameters of the TLCD
considered analyzed in terms of cross-sectional area (A), horizontal length (b), total
length (l), and head loss coefficient (ξ ).

System parameters are identical to the ones used in the first case study. However,
viscous damping coefficient is reduced to 116 Ns/m, i.e., one tenth of the previous
one, in order to observe the effects of parameter changes clearly. While investigating
the effects of changes in TLCD parameters, only the parameter under investigation
is varied and the other three parameters are kept as constant.

It can be seen from Fig. 6 that as the cross-sectional area of the TLCD increases,
the response amplitude decreases, since the nonlinear damping coefficient is linearly
proportional to the cross-sectional area. However, it should be noted that an increase
in the cross-sectional area increases the amount of fluid used, hence the mass matrix,
and decreases the resonance frequency.
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Fig. 5 Displacement of Xf to ground acceleration ratio vs. frequency for different acceleration
levels

Fig. 6 Effect of cross-sectional area of the TLCD on displacement amplitude

In Figs. 7 and 8, effects of horizontal length and total length of the TLCD
are presented. As horizontal length increases, and resonance frequency increases,
whereas the response amplitude decreases. However, the opposite behavior is
observed for the variation of total length.
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Fig. 7 The effect of horizontal length of the TLCD on displacement amplitude

Fig. 8 Effect of total length of the TLCD on displacement amplitude

The effect of head loss coefficient is critical, since its behavior is not monotonic.
This fact can be seen in Fig. 9. Decreasing trend in both response amplitude and
resonance frequency with increasing head loss coefficient changes after a certain
point.
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Fig. 9 Effect of head loss coefficients of the TLCD on displacement amplitude

Table 1 Effects of system parameters on response amplitude and resonance frequency

Increasing
area (A)

Increasing horizontal
length (b)

Increasing total
length (l)

Increasing
head loss (ξ )

Vibration
amplitude

Decreases Decreases Increases Decreases
then increases

Resonance
frequency

Decreases Increases Decreases Increases

Overall summary of the effects of system parameters on response amplitude and
resonance frequency are tabulated in Table 1. From Table 1, it can be concluded that
TLCD parameters that result in minimum response amplitude at a desired resonance
frequency can be obtained through optimization. In Sect. 4, optimization of a six-
story building model is studied.

4 Optimization Study of a Six-Story Building with a TLCD

In this section, a six-story shear building model (Fig. 2) is considered. Building
parameters used in Erisen and Cigeroglu [9] are used for this system, and they are
given in Table 2.

TLCD is connected rigidly on top of the building, i.e., on the sixth floor of
the building. In the optimization procedure, ground acceleration amplitude is taken
constant as 0.067 m/s2, which is the maximum frequency response value in 1999
Bolu earthquake.
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Table 2 Parameters used for
six-story building

DOF # mn (kg) kn (kN/m) cn (kNs/m)

1 50,000 74,000 120
2 50,000 66,000 90
3 50,000 56,000 75
4 50,000 44,000 65
5 50,000 31,000 45
6 50,000 16,000 32

Table 3 Upper and lower bounds of TLCD parameters used in optimization

Cross-sectional
area (A) [m2]

Horizontal
length (b) [m]

Total length (l)
[m]

Head loss
coefficient (ξ )

Lower bound 1 1 2.5 1
Upper bound 4 3 4 10

Table 4 Upper and lower bounds of TLCD parameters used in optimization

Cross-sectional
area (A) [m2]

Horizontal
length (b) [m]

Total length (l)
[m]

Head loss
coefficient (ξ )

3.85 1.97 2.53 8.74

Minimization of the displacement of the top floor is used as the cost function
during optimization. Two optimization methods are used successively: genetic
algorithm and gradient descent methods resulting in a hybrid algorithm. In order
to capture the global optimum, the first genetic algorithm (GA) is applied. Then,
the optimum values obtained by GA are used as initial guesses for gradient descent
method in order to identify the optimal parameters more accurately. This hybrid
optimization approach decreases the computational effort. Upper and lower bounds
of TLCD parameters for optimization process are given in Table 3.

There are also geometrical constraints on design variables in order to obtain a
reasonable TLCD system. First, the total mass of the TLCD should be between 9000
and 10,000 kg in order not to affect the first resonance frequency of the building
considerably. Second, the total length should be greater than the horizontal length.

The optimization resulted in TLCD parameters given in Table 4 and the
displacement amplitude vs. frequency of the sixth story are given in Fig. 10.

Moreover, solutions obtained by DFM and time integration method (TIM) are
compared in Fig. 10, where Runge–Kutta method is used for time integration, and
there is good agreement between both the solutions. It is observed from the figure
that the maximum displacement amplitude of the sixth story is reduced from 131.10
to 82.21 mm (37% reduction) at a resonance frequency of 1.24 Hz.

In Table 5, peak displacement amplitude reduction ratios of sixth story of
the building with and without optimum TLCD are compared. TLCD constructed
with the optimized parameters also provides a considerable reduction for different
ground acceleration amplitudes. Displacement of the sixth story for different ground
acceleration ratios by using optimal TLCD parameters for 0.067 m/s2 is given in
Fig. 11.
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Fig. 10 Displacement response of the sixth story with and without optimum TLCD

Table 5 The effect of different ground acceleration amplitudes on peak displacement amplitudes
with and without TLCD

Natural frequency [Hz] 1.24 1.24 1.23 1.23 1.22
Ground acceleration amplitude [m/s2] 0.02 0.067 0.12 0.18 0.24
Peak displacement amplitude without TLCD [mm] 40 131 234 352 480
Peak displacement amplitude with optimum TLCD [mm] 32 82 125 166 211
Reduction (%) 20 37 47 53 56

5 Conclusion

In this study, effects of TLCD parameters on a single-story building model are
studied in order to understand the effects of TLCD parameters on displacement
amplitude. Later, a six-story building with a TLCD rigidly connected to the top floor
is considered. Since the parameters of TLCD, i.e., cross-sectional area, horizontal
and total length, and head loss coefficient, have been considered as design variables
that affect the overall system response, optimum values have been determined by
solving an optimization problem. Optimum TLCD parameters are determined by
using hybrid optimization utilizing genetic algorithm and gradient descent methods.

It is observed that, for 0.067 m/s2 ground acceleration considered, 37% reduction
in the maximum displacement amplitude of the top floor can be achieved. It should
be noted that as the ground acceleration amplitude increases, the damping effect
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Fig. 11 Displacement of the sixth story for different ground acceleration ratios by using optimal
TLCD parameters

of the nonlinear TLCD increases which lowers the displacement amplitudes. It
can be concluded that when a TLCD is optimized for lower ground acceleration
levels, its performance increases as the ground acceleration amplitude increases,
and therefore, it can also be used for higher ground acceleration levels.
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Vibration Reduction by Using Two Tuned
Mass Dampers with Dry Friction
Damping

Muhammed Emin Dogan and Ender Cigeroglu

Abstract Vibration reduction of a single-degree-of-freedom system connected to
two tuned mass dampers (TMDs) equipped with dry friction dampers is considered
in this work. The system is subjected to sinusoidal base excitation. Parameters
of TMDs are optimized to minimize the peak values of the response of the
primary system. Harmonic balance method (HBM) is used to obtain the steady state
solution of the three-degrees-of-freedom nonlinear system in frequency domain.
Newton’s method with arc length continuation is utilized to solve the resulting
nonlinear algebraic equation set. In addition to that, optimum linear system and
other nonlinear elements are investigated. Genetic algorithm is used to optimize
parameters of TMDs.

Keywords Tuned mass damper · Dry friction · Optimization

1 Introduction

Around resonance frequency, the response of a system can be very large leading
to structural damage. The response level can be mitigated by using either vibration
isolation systems or TMDs. Use of TMDs is a good solution for vibration reduction
of a mechanical system when the inherent damping of the system is low. TMD-like
systems were first used by Watts [1] in 1883. In 1909, Frahm [2] patented the classic
TMD, which consisted of a mass and a spring. Classic TMDs work by reducing
unwanted vibration around a single frequency by tuning the resonance frequency
of the TMD to that frequency. With the addition of a classic TMD, the response is
almost zero at the previous resonance point under harmonic excitation. However,
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addition of a classic TMD introduces two new resonances nearby the tuned
frequency. Therefore, classic TMDs are useful for a single stationary frequency;
however, excitation is rarely stationary in real applications. Ordmondroyd [3] and
Den Hartog [4] introduced damping to the TMD and provided an expression for
optimal damping and optimal stiffness, which enables to suppress vibration in a
broader band. To improve effective bandwidth, multiple TMDs were considered in
[5–7].

Roberson [8] studied the nonlinear TMD to further extend the effective band-
width. Many other researchers started to study nonlinear vibration absorbers.
Ricciardelli and Vickery [9] used TMD with friction dampers. They studied the
response of a linear single DOF system, where TMD with dry friction damping is
connected by using an equivalent linearized damping for single harmonic motion.
They also obtained optimum slip parameters for harmonic excitation.

In this study, a base-excited single-degree-of-freedom (SDOF) mechanical sys-
tem connected to two TMDs equipped with dry friction dampers is considered as
shown in Fig. 1. By the use of multiple TMDs and nonlinear elements, it is aimed
to suppress the vibrations of the structures in a broader frequency range. mb is
the mass of the main system. m1 and m2 are the masses of the TMDs. kb, k1 and
k2 are linear springs. hb is structural damping elements. kt1 and kt2 are contact
stiffness, and μN1 and μN2 are slip load of the friction elements. Friction force
is defined as the resistance of the motion when one body is tangentially in contact
with another body [10]. Details of the macroslip friction model used in this study
are given in papers [11–13] which is preferred due to its mathematical simplicity.
Hysteresis curve of the friction damper for single harmonic motion is shown in
Fig. 2.

Fig. 1 SDOF systems with two TMDs utilizing dry friction dampers
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Fig. 2 Hysteresis curve for single harmonic motion

2 Mathematical Modelling

Equations of motion of the three-degrees-of-freedom system are given as follows:

mbẍb + (kb + ihb) xb + k1 (xb − x1)+ k2 (xb − x2)+ ff,1 + ff,2 = U (kb + ihb)

m1ẍ1 + k1 (x1 − xb)− ff,1 = 0
m2ẍ2 + k2 (x2 − xb)− ff,2 = 0

,

(1)

where xb, x1 and x2 are displacements of the main system, the first TMD and the
second TMD, respectively. U is base motion and ff,i is the nonlinear internal force.
Equation (1) can be written in matrix form as follows:

Mẍ+ (K+ iH) x+ fn = f. (2)

For harmonic base motion, external forcing, f, is harmonic and response of the
system can also be assumed harmonic as

xrel,j (θ) = xs
rel,j sinθ + xc

rel,j cosθ, (3)

where θ = ωt. Nonlinear friction force shown in Fig. 2 can be expressed as follows:

ff,j (θ) =

⎧
⎪⎪⎨

⎪⎪⎩

−μN + kt
(
xrel,j (θ)+ δ

)
if ψ1 < θ < ψ2

− μN if ψ2 < θ < ψ1 + π
μN + kt

(
xrel,j (θ)− δ

)
if ψ1 + π < θ < ψ2 + π

μN if ψ2 + π < θ < ψ1 + 2π

, (4)
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where

xmax =
√
(xs)2 + (xc)2, δ = 2μN−kxmax

k
,

ψ1= tan−1
(
xs

xc

)
, ψ2= cos−1

(
− δ
xmax

)
+ ψ1π

(5)

3 Harmonic Balance Method

Harmonic balance method (HBM) is used to solve the resulting system in frequency
domain. In HBM, response and nonlinear forces are represented in terms of Fourier
series and substituted into the nonlinear differential equations of motion which
results in a set of nonlinear algebraic equations.

In this study, only the first harmonic is considered; as a result of this, the
following set of nonlinear real algebraic equations is obtained:

[−ω2M+K −H
H −ω2M+K

]{
xs

xc

}
+
{

fs
n

fc
n

}
=
{

fs

fc

}
, (6)

where fs
n and fc

n are the vectors of sine and cosine coefficients of the nonlinear
internal forcing which are amplitude dependent.

Each element in nonlinear force vector is calculated by HBM. The response
in Eq. (4) is relative displacement between masses where nonlinear element is
connected. Nonlinear forces are calculated for each relative displacement.

f s
n,j =

1

π

∫ 2π

0
ff,j (θ) sin θdθ, f c

n,j =
1

π

∫ 2π

0
ff,j (θ) cos θdθ (7)

Nonlinear force vector is constructed as

{
fs
n fc

n

}T = {
f s
n,1 + f s

n,2 − f s
n,1 − f s

n,2f
c
n,1 + f c

n,2 − f c
n,1 − f c

n,2

}T
. (8)

4 Solution of Resulting Nonlinear Algebraic Equations

In order to solve the resulting nonlinear algebraic equations, a residual vector is
defined as follows:

r (x, ω ) =
[−ω2M+K −H

H −ω2M+K

]
x+ fn (x)− f = 0. (9)
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Newton’s method with arc-length continuation is used to solve Eq. (9). The
following arc-length equation is used.

h (x, ω) = (qk − qk−1)
T (qk − qk−1)− s2 = 0, (10)

where s is the arc-length parameter, k − 1 is the previous solution point and k is
the current solution point. With the addition of this new equation, the new vector of
unknowns becomes

q =
{

x
ω

}
.

A single step of Newton’s method becomes

qi+1
k = qik −

[
∂r
∂x

∂r
∂ω

∂h
∂x

∂h
∂ω

]−1

xi & ωi

{
r (xi , ωi)
h (xi , ωi)

}
. (11)

Detailed information related to arc-length continuation method can be found in
Ref. [14].

5 Results

Parameters of the system under investigation are mb = 1 kg, kb = 3948 N/m,
h = 39.48 N/m, m1 = m2 = 0.05 kg and U0 = 0.01 m. Remaining parameters
are optimized by genetic algorithm (GA) of MATLAB. In addition to the system
with frictionally damped TMDs, the same system equipped with linear viscous
dampers is also optimized. The cost function is defined as the minimization of
the combination of the integral of the displacement amplitude and the maximum
displacement of the main system. The values are normalized and their weights are
selected. Results obtained are given in Fig. 3. When the weight of the integral of the
displacement amplitude is zero, i.e. 100% Max, a third resonance peak occurs which
has more vibration amplitude than the linear viscous damping case. This is due to
the fact that only the maximum displacement amplitude is used as the cost function,
and hence, optimization resulted in three peaks with equal amplitudes. When the
weight of the maximum displacement of the main system is zero, i.e. 100% Int,
amplitude of the first resonance peak is larger than vibration amplitudes observed
in the linear viscous damping case. This is due to the fact that the area under the
frequency response function is minimized without considering the amplitudes of
the resonance peaks.

66.6% Max and 33.3% Int. are selected for further analysis. In order to observe
the performance of having two TMDs, SDOF system equipped with a single TMD
associated with dry friction damping, and a linear spring is considered. Moreover,
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Fig. 3 Normalized displacement amplitude of the main system for different cost functions weights

Table 1 Optimum parameters

Configuration Parameters

Two DOF TMD with equipped dry
friction dampers

k1 = 134.7 N/m, k2 = 197.0 N/m,

kt1 = 244.8 N/m, kt2 = 409.9N/m

μN1 = 4.32 N, μN2 = 5.36 N
SDOF TMD with equipped dry friction
damper

k = 192.0 N/m, kt = 473.3 N/m

μN = 17.0 N
Two DOF TMD with equipped viscous
dampers

k1 = 220.1 N/m, k2 = 150.2 N/m

c1 = 1.27 Ns/m, c2 = 0.71 Ns/m
SDOF TMD with cubic stiffness and viscous damper kc = 33794.1 N/m3, c = 0.55 Ns/m

a SDOF system equipped with a single TMD having a cubic stiffness and a viscous
damping is investigated. This system is also studied in the literature [15, 16]. Total
mass of the TMD is identical in all cases. Remaining parameters are optimized, and
the values of the optimized parameters are given in Table 1.

By choosing the appropriate weighting function parameters, the TMDs are
optimized. In order to identify the effect of slip load, they are modified and the
results are given in Fig. 4. Moreover, suppression ratio changes related to slip forces
are presented in Fig. 5.

Results obtained are given in Fig. 6. It is observed that the system with optimum
two TMDs equipped with dry friction dampers has slightly less vibration amplitude
compared to the viscous damping. System with a single TMD equipped with
dry friction damper is generally above the viscous damping case. Also vibration
amplitude is slightly higher after normalized frequency of 1.2. In addition, it
generally has higher amplitude compared to the two TMDs equipped with dry
friction dampers.
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SDOF TMD with cubic stiffness and viscous damping has lower amplitude
except between normalized frequency of 1.1–1.35. Optimum values of the parame-
ters are given in Table 1.
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6 Conclusions

A single-degree-of-freedom mechanical system coupled with nonlinear TMDs
equipped with dry friction dampers is considered in this study. HBM is used
to convert the nonlinear differential equations of motion to nonlinear algebraic
equations which are solved by Newton’s method with arc length continuation. Effect
of slip load on the performance of two TMDs with friction dampers is studied.
Moreover, the obtained results are compared with two TMDs with linear viscous
dampers, single TMD with cubic stiffness nonlinearity and viscous damping, and
single TMD with dry friction damper. It is observed that utilizing two TMDs with
dry friction dampers has a better vibration reduction behaviour in a wide frequency
range.
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Nonlinear Behavior of Pendulum-Tuned
Mass Dampers for Vibration Control
of H-Section Hangers

Kai Xu, Xugang Hua, and Zhengqing Chen

Abstract The influence of the nonlinearity of pendulum-tuned mass dampers
(PTMD) on vibration control of H-section hangers was studied analytically. Firstly,
the coupled system of a slender H-section hanger and an attached PTMD was
simplified to a two-degree-of-freedom (2-DOF) system. The equations of motion
were derived for the system under free vibration and forced excitation. Both linear
and nonlinear results were obtained. Results show that the free vibration responses
of the system are significantly different for linear and nonlinear solutions when the
hanger subjects to the large initial displacements. A small structural damping of the
H-section hanger has significant effects on enhancement of the pendulum motion
stability. For the case of forced vibration, the displacement responses of the primary
structure solved by nonlinear solution are smaller than that solved by the linear
solution when the excitation amplitude is less than 0.3. However, the displacement
responses of the primary structure considering pendulum nonlinearity are larger
than the linear responses when the dimensionless excitation amplitude is gradually
increased.

Keywords H-section hanger · Vibration control · Pendulum tuned mass
damper · Nonlinear behavior · Energy dissipation

1 Introduction

Long and slender H-sections are extensively adopted as hangers or suspenders in
steel arch bridges. However, the H-shaped cross section is a typical bluff body and is
often suffered from fatigue issues due to a variety of wind-induced vibrations such
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as vortex-induced, flutter and galloping vibrations [1]. Therefore, many measures
were proposed to mitigate wind-induced vibrations of H-section hangers, including:
(1) aerodynamic optimizations, (2) the use of wind-resistant cables, and (3) the use
of mechanical damping devices [2–4]. Among them, the use of mechanical damping
devices is the most effective way to suppress the large amplitude vibrations of
H-section hangers due to wind loads.

Recently, tuned mass dampers (TMDs) were proposed for vibration mitigation
of H-section hangers [4]. TMDs, also known as dynamic vibration absorbers, are a
kind of mechanical damping devices that are attached in low-damping structures to
reduce undesirable vibrations due to dynamic loads such as wind, earthquakes, and
traffic loads. The TMD system is a single-degree-of-freedom (SDOF) system that
consists of a mass, a spring, and a damper. Basically, the large-amplitude vibration
of low-damping structures may happen under the various dynamic loads. If the
frequency of the TMD is tuned appropriately to the primary structure, a large part
of the vibration energy of the primary structure will be transferred to the TMD and
then dissipated by the inherent damping of the TMD.

To enhance the control performance and robustness of the conventional TMD
system, the pendulum-tuned mass dampers (PTMDs) were utilized to control struc-
tural vibrations of low-damping structures [5, 6]. Moreover, several applications
of using PTMDs for vibration control of hangers were reported [4]. To the best
knowledge of the authors, only few studies were conducted to investigate the
nonlinear behavior of PTMDs when the large displacement of PTMDs is considered.
Actually, the PTMD is easily affected by nonlinearity at the large displacement
and has differently dynamic characteristics from the conventional linear TMD.
Normally, the optimal parameters of PTMDs are designed based on the optimization
theory of linear TMDs proposed by Den Hartog [7] when the motion of the PTMD
is assumed to a small value, generally less than ±5◦. In practical engineering,
the natural frequency of the H-section hanger is relatively high. Therefore, the
pendulum rod of the PTMD will be normally designed to be of short length
and easily produces large angular displacements in these situations. Based on the
aforementioned issues, it is necessary to study the nonlinearity effects of the PTMD
on its efficiency of the energy dissipation and transformation for vibration control
of H-section hangers.

In this study, the coupled system of an H-section hanger attached with a PTMD
was considered. The linear and nonlinear equations of motion were derived under
free and forced vibration cases. Meanwhile, displacement responses and mechanical
energies of the coupled system were analyzed by employing the linear and nonlinear
solutions. Finally, the results from the linear and nonlinear solutions were compared.
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2 Theoretical Model

2.1 Free Vibration

The hanger vibration is usually excited by vortex-shedding, and the vibration
response is dominated by one particular mode based on the observation from field
measurements and wind tunnel experiments [1]. Therefore, the coupled PTMD-
hanger system can be simplified into a two-degree-of-freedom (2-DOF) model, as
illustrated in Fig. 1, where a single controlled mode of the hanger is simplified to
a primary structure with concentrated modal mass m1. In the model, k1, c1, and x1
are the stiffness, damping coefficient, and displacement of the primary structure,
respectively. The PTMD with a pendulum mass of m2 is attached on the primary
structure, where c2, l, and θ are the damping coefficient, pendulum length, and
angular displacement of the PTMD, respectively. The gravity is characterized by
constant coefficient g.

Governing equations of the coupled system for the free vibration are given by:

(m1 +m2) ẍ1 + k1x + c1ẋ +m2l
(
θ̈ cos θ − θ̇2 sin θ

) = 0
m2l

2θ̈ +m2gl sin θ + c2l
2θ̇ +m2l cos θẍ1 −m2l sin θẋ1θ̇ = 0

(1)

Dimensionless parameters are introduced here:

μ=m2

m1
;ω1

2= k1

m1
;ω2

2=g
l
;β=ω2

ω1
; ζ1= c1

2m1ω1
; ζ2= c2

2m2ω2
; τ=ω1t; x=x1

l
(2)

where τ and x are the dimensionless time and displacement of the primary structure,
respectively, μ is the mass ratio of the PTMD, β is the frequency ratio of the PTMD;
ω1, ζ 1 andω2, ζ 2 are natural frequencies and damping ratios of the primary structure
and the PTMD, respectively.

Fig. 1 Sketch of the coupled
PTMD-hanger system

θ

k1

c1

m1

m2

g

F=F1sin(ω t)

x1

c2

O

θl

l
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Substituting Eq. (2) into Eq. (1) yields the dimensionless form of the governing
equations for the coupled system:

[(1+ μ) ẍ + x + 2ζ1ẋ]+ μ (θ̈ cos θ − θ̇2 sin θ
) = 0

θ̈ + β2 sin θ + 2ζ2βθ ′ + cos θẍ − ẋθ̇ sin θ = 0
(3)

Moreover, the linear governing equations can be obtained after ignoring high-
order terms in Eq. (3), and it is expressed as

(1+ μ) ẍ1 + x1 + 2ζ1ẋ1 + μθ̈ = 0
θ̈ + β2θ + 2ζ2βθ̇ + ẍ1 = 0

(4)

The decrement rate of mechanical energy (γ ) is an important index to evaluate
the performance of PTMD; therefore, the amount of mechanical energy of the
coupled system in a certain time duration was computed and expressed as

Nonlinear : γn (τ ) = (1+ μ) ẋ2 + x2 + μ [θ̇2 + 2θ̇ ẋ cos θ + 2β2 (1− cos θ)
]

(1+ μ) ẋ2
0 + x2

0 + μ
[
θ̇2

0 + 2θ̇0ẋ0 cos θ0 + 2β2 (1− cos θ0)
]

Linear : γl (τ ) = (1+ μ) ẋ2 + x2 + μ [θ̇2 + 2θ̇ ẋ + β2θ2
]

(1+ μ) ẋ2
0 + x2

0 + μ
[
θ̇2

0 + 2θ̇0ẋ0 + β2θ2
0

]

(5)

where zero indexes correspond to the initial conditions for the coupled system.

2.2 Forced Vibration

When a sinusoidal excitation with an excitation frequency ω and amplitude F1
is applied on the primary structure, as shown in Fig. 1, the nonlinear governing
equations of the coupled system are expressed as

(m1 +m2) ẍ + k1x + c1ẋ +m2l
(
θ̈ cos θ − θ̇2 sin θ

) = F1 sin (ωt)
m2l

2θ̈ +m2gl sin θ + c2l
2θ̇ +m2l cos θẍ −m2l sin θẋθ̇ = 0

(6)

Substituting Eq. (2) into Eq. (7) and introducing three new dimensionless
parameters,

xf = k1x1

F1
f = F1

m1g
ρ = ω

ω1
(7)

where xf and f are the dimensionless amplitude of primary structure and the
dimensionless amplitude of the sinusoidal excitation, respectively. ρ is the excitation
frequency ratio. Then, Eq. (6) can be rewritten as a dimensionless form
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fβ2
[
(1+ μ) ẍf + xf + 2ζ1ẋf

]+ μ (θ̈ cos θ − θ̇2 sin θ
) = fβ2 sin (ρτ)

θ̈ + β2 sin θ + 2ζ2βθ̇ + fβ2ẋf
(
cos θ − θ̇ sin θ

) = 0
(8)

and the linear governing equations can be obtained after ignoring high-order terms
in Eq. (8)

fβ2
[
(1+ μ) ẍf + xf + 2ζ1ẋf

]+ μθ̈ = fβ2 sin (ρτ)
θ̈ + β2 sin θ + 2ζ2βθ̇ + fβ2ẍf = 0

(9)

3 Numerical Results

3.1 Free Vibration Analysis

In this section, the responses of primary structure solved by the nonlinear and
the linear solutions were compared under various initial displacements x0. The
parameters of the PTMD were obtained by the formulas proposed by Ioi and Ikeda,
which is considering the inherent structural damping [8]. The optimum design
formulas are as follows:

βopt = 1
1+μ −

(
0.241+ 1.74μ− 2.6μ2

)
ζ1 −

(
1− 1.9μ+ μ2

)
ζ1

2

ζ2opt =
√

3μ
8(1+μ) +

(
0.13+ 0.12μ+ 0.4μ2

)
ζ1 +

(
0.16− 2.6μ+ 5μ2

)
ζ1

2
(10)

Firstly, the structural damping of the primary structure was ignored (ζ 1 = 0),
and the mass ratio of the PTMD was set to μ = 0.1. The optimum parameters of
the PTMD were designed from Eq. (10), which are βopt = 0.91, ζ 2opt = 0.185. The
system responses with different initial displacements are obtained by numerically
solving the nonlinear and linear governing equations, as expressed in Eqs. (3) and
(4). Figures 2 and 3 show the dimensionless time histories for translation of the
primary structure x, angular displacement of the PTMD θ , and the mechanical
energy γ of the coupled system.

In Fig. 2, a small initial displacement of primary structure x0 = 0.1 was adopted.
It is shown that the displacements and mechanical energies of the system are in good
agreement between the linear and the nonlinear results. However, the displacement
responses and the mechanical energies of the coupled system obtained by the linear
solution are not quite fitting with that obtained by the nonlinear solution when
x0 = 1.6 was adopted, as illustrated in Fig. 3. From Fig. 3b, the pendulum mass
is firstly moved to the top position, namely θ = π , when the dimensionless time
is τ = 7.5, which means that the unstable rotation phenomenon has happened.
Then, the structural damping of the primary structure ζ 1 = 0.03 is considered. The
optimum parameters of the PTMD change to ζ 2opt = 0.189 and βopt = 0.897 in
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Fig. 2 Dimensionless time histories for μ = 0.1, ζ 1 = 0, ζ 2opt = 0.185, βopt = 0.91, x0 = 0.1;
(a) displacement of primary structure; (b) angular displacement of PTMD; (c) mechanical energy
of the coupled system
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Fig. 3 Dimensionless time histories for μ = 0.1, ζ 2opt = 0.185, βopt = 0.91, x0 = 1.6;
(a) displacement of primary structure; (b) angular displacement of PTMD; (c) mechanical energy
of the coupled system

Eq. (10). It is shown that the structural damping enhances the stability of PTMD
motion, as shown in Fig. 3b. The mechanical energies of the system under various
initial displacements are illustrated in Fig. 4. It is shown that the decrement rate of
mechanical energies of the coupled system obtained by the nonlinear solution varies
with the changes of different initial displacements. However, the results obtained by
the linear solution are independent to the changes of initial displacements.

3.2 Forced Vibration Analysis

In this section, the1 displacement responses of the coupled system for the forced
vibration were investigated. Moreover, the optimum parameters of the PTMD
were calculated by using Eq. (10). The structural damping is set to 0.005 and
0.03 to simulate low structural damping of steel structures and high structural
damping of concrete structures. Table 1 shows the obtained results respectively
solved by the linear and the nonlinear solutions for small and large dimensionless
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Fig. 4 Effect of initial
displacement condition of
primary structure on
mechanical energy in the
system for μ = 0.1,
ζ 1 = 0.03, ζ 2opt = 0.189,
βopt = 0.897
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Table 1 Amplitude comparison under forced excitations

μ = 0.1, ζ 1 = 0.03, ζ 2opt = 0.189, βopt = 0.897

Nonlinear solution Linear solution
F ρ x θ x θ

0.01 0.85 0.190 0.004 3.707 0.072
1.00 0.161 0.003 3.539 0.073
1.15 0.142 0.023 3.006 0.049

0.10 0.85 1.437 0.278 3.707 0.719
1.00 1.230 0.247 3.539 0.727
1.15 1.134 0.183 3.007 0.493

0.30 0.85 2.755 1.240 3.707 2.158
1.00 3.872 1.194 3.539 2.181
1.15 2.303 0.824 3.007 1.479

μ = 0.05, ζ 1 = 0.005, ζ 2opt = 0.134, βopt = 0.951
0.10 1.00 6.839 1.147 5.492 1.819
0.15 1.00 11.48 177.9 5.492 2.729

amplitudes of forced excitations. It is shown that the displacement responses of the
coupled system are significantly different under the linear and nonlinear solutions
and even the angular displacement of the PTMD is smaller than 0.01 rad. The
pendulum nonlinearity can enhance the performance of the PTMD in controlling the
displacement response of the primary structure when the dimensionless excitation
amplitude is less than 0.3. However, the displacement response of the primary
structure solved by the nonlinear solution is slightly larger than that solved by the
linear solutions when the excitation amplitude f = 0.3 and excitation frequency ratio
ρ = 1 are adopted (Fig. 5c).
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x f
x f

Fig. 5 Displacement responses of the coupled system for μ = 0.1, ζ 1 = 0.03, ζ 2opt = 0.189,
βopt = 0.897, ρ = 1.00; (a) displacement of primary structure for f = 0.1; (b) angular displacement
of PTMD for f = 0.1; (c) displacement of primary structure for f = 0.3; (d) angular displacement
of PTMD for f = 0.3

4 Conclusions

This chapter employed a two-degree-of-freedom (2-DOF) coupled system simpli-
fied from a H-section hanger equipped with a PTMD to analyze the nonlinearity
effects of the PTMD on vibration control of H-section hangers. The displacement
responses and mechanical energy respectively obtained from the linear and nonlin-
ear solutions are compared. The following conclusions can be drawn:

1. For the free vibration case, the displacement responses and the mechanical
energy of the coupled system have no obvious differences when the linear and
nonlinear results are compared at small initial displacement conditions of the
primary structure, respectively. However, the system responses and mechanical
energies are significantly different at the large initial displacement conditions of
the primary structure.
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2. For the forced vibration case, the steady-state responses of the coupled system
solved by the nonlinear solution are smaller than that solved by the linear
solution. However, in the cases of large excitation amplitudes, the steady-state
responses of the coupled system solved by the nonlinear solution are larger than
that solved by the linear solution.

3. A small structural damping of primary structure can significantly enhance the
motion stability of the PTMD. Both nonlinearity of the PTMD and the structural
damping of the primary structure should be considered in the design of PTMD.
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Resonance Behavior of the Non-Ideal
System Which Contains a Snap-Through
Truss Absorber

Yuri Mikhlin and Anton Onizhuk

Abstract Three-DOF system with a limited power-supply (or non-ideal system)
having the von Mises girder as absorber is considered. Stationary resonance
regimes of vibrations with snap-through motions around the unstable equilibrium
position of the system are analyzed in two approximations of the mixed multi-
ple scales/harmonic balance method. Namely, vibrations near the resonance 1:1
between the motor rotation frequency and the linearized sub-system frequency are
analyzed. This analysis and numerical simulations confirm that the regime of snap-
through motions guarantees an effective absorption of elastic vibrations. Besides,
we can find other regimes which guarantee such absorption and the fast outcome
from the resonance region.

Keywords Systems with a limited power-supply · Mises girder · Snap-through
motions

1 Introduction

Systems with a limited power-supply (also the so-called non-ideal systems or NIS)
are considered. In such systems the resonance interaction of the power-supply
and elastic sub-system can be realized. This phenomenon is first observed by
Sommerfeld in 1904 [14]. When it happens, large part of energy is going into
increase of the elastic sub-system vibrations. Dynamics of NIS is first analytically
described by Kononenko [8]. Then numerous investigations on this subject were
published. Different aspects of the NIS dynamics are discussed in few books and
overviews, in particular, in [3, 5, 7, 10].
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The use of absorbers allows to reduce amplitudes of the resonance elastic
vibrations. A variety of vibration absorbers are also considered in the context of the
systems with a limited power-supply, for example, in [3, 11]. In [12] a transfer from
unstable vibration modes to stable ones is presented numerically for the non-ideal
system coupled with a nonlinear oscillator as absorber under resonance conditions.
Snap-through system called also the von Mises girder is considered as a vibration
absorber in [1, 2]. Later dynamics of the 3-DOF NIS containing a motor, elastic
oscillator, and the von Mises girder as absorber was studied in [6], where preferably
numerical analysis of the system dynamics is made.

In this work a system containing the linear oscillator, the energy source with a
limited power-supply, and the von Mises girder as absorber of elastic vibrations is
considered, where main focus being on the large amplitude snap-through motions
of the girder, and other vibration regimes which guarantee effective absorption
of the elastic vibrations are considered too. The present paper aims to describe
the snap-through motions as analytically, as well numerically. A mixed multiple
scales/harmonic balance method (MSHBM) described by Luongo and Zulli in [9]
is applied to obtain analytical results. Our task is to show first both an effective
absorption of the elastic vibrations using the snap-through motions, and a possibility
for escape from the resonance in the system. Moreover, we show that such effects
can be obtained by other kinds of dynamical regimes.

The paper is organized as follows. Model under consideration and main equation
of motions are described in Sect. 2. In Sect. 3 regimes of the snap-through motion
with large girder amplitudes in region of the resonance of the motor rotation
frequency and the first fundamental frequency are considered. Results of numerical
analysis are shown and discussed in Sect. 4.

2 Principal Model

Resonance dynamics of a nonlinear system with a limited power-supply (Fig. 1) is
considered here. The motor D acts on the elastic sub-system with mass M by the
crankshaft of radius r . The mass M is connected to the shaft and rigid foundation
by springs with stiffness c1 and c0. Besides, the system contains the Mises girder
of the mass m as the nonlinear absorber which is attached to the sub-system and to
the motionless ground by springs of the length l and stiffness c2, c3. The angle
γ corresponds to the girder stable equilibrium state. A motion of the system is
determined by the variables x, y, and ϕ, corresponding to motions of the linear
oscillator, the girder, and the motor rotation, respectively.

Dimensionless parameters and time, defined in the Appendix, are introduced.
Also the parameters of the system are rescaled using the small parameter ε > 0.
The following normalized parameters are assumed to be small, namely the mass of
the girder μ, stiffness of the girder springs k2 and k3, the dissipation coefficients β1
and β2, and the dimensionless radius of the shaft r . The angle γ is assumed to be
small too but it is not rescaled using the small parameter. Besides, it is assumed that
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Fig. 1 The non-ideal system
under consideration

the vibration components as function of the angular velocity are small with respect
to the constant component. Now the equations of motion obtain the following form:

ü+ h1u̇+ (k0 + 1) u+ εk2

⎡

⎣(u− 1) cos γ +
(

1+ w2

(1− u)2
)− 1

2

⎤

⎦ = εr sinϕ ,

μẅ + h2ẇ + w
[
k23 cos γ − k2

(
(1− u)2 + w2

)− 1
2 − k3

(
1+ w2

)− 1
2
]
= 0 ,

(1)

ϕ̈−ερ (u−εr sinϕ) cosϕ=L(ϕ̇)−H(ϕ̇).
Here L(ϕ̇) is the driving moment of the energy source, H(ϕ̇) is the moment

of resistance to rotation. For simplification, the characteristic and the moment of
resistance are taken in the following form: L(ϕ̇) = εK (q − ϕ̇), H(ϕ̇) = εhϕ̇.

Considering snap-through vibrations around the unstable equilibrium, we now
assume the following independent variable transformation: u → u + εA. Then,
using Taylor series where only terms up to third power inclusively are saved, we
have the following equations of motion near the zero equilibrium position:

ü+ εh1u̇+ ω2
uu = εr sinϕ + εk2

[
1

2
w2 + w2u

]
+ ε2k2Aw

2 ,

μẅ + h2ẇ − kww + 1

2
k23w

3 − k2(u+ εA)w − k2(u+ εA)2w = 0 ,

ϕ̈ = ε [ρ (u+ εA− εr sinϕ) cosϕ +Kq − (K + h) ϕ̇] ,

(2)
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where ω2
u = 1+k0+εk2, A = k2

ω2
u
(1− cos γ ), kw = k23(1−cos γ )+O(ε),K23 =

K2 +K3.

3 Analysis of the Snap-Through Truss Motion

ODEs (2) are analyzed by the multiple scales method [10]. 1:1 resonance region is
considered, namely, it means the resonance between the motor rotation frequency
and the fundamental frequency of the elastic sub-system ωu. Therefore a detuning
parameter is introduced as ω2

u = (ϕ̇)2 − εΔ.
The following expansions of the variables in series by ε are applied:

u = u0 + εu1 + . . . , w = w0 + εw1 + . . . , ϕ = ϕ0 + εϕ1 + . . . (3)

Terms of the expansions (3) are considered as functions of different time scales
which are defined using the small parameter ε as

t0 = t, t1 = εt, t2 = ε2t, . . .

∂

∂ti
= Di; d

dt
= D0 + εD1 + . . . ; d

2

dt2
= D2

0 + ε 2D0D1 + . . . (4)

Substituting expansions (3) and (4) into (2) and collecting terms of the same order
by ε, the following ODEs system is obtained in two approximations by ε:

ε0 : D2
0u0 + (D0ϕ0)

2u0 = 0 , (5)

μD2
0w0 + h2D0w0 − kww0 + 1

2
k23w

3
0 − k2u0w0 + 1

2
k2u

2
0w0 = 0 , (6)

D2
0ϕ0 = 0 , (7)

ε1 : D2
0u1 + (D0ϕ0)

2u1 =− 2D0D1u0 − h1D0u0 − k2

[
1

2
w2

0 + u0w
2
0

]

+Δu0 + r sinϕ − 2u0(D0ϕ0)(D1ϕ0 +D0ϕ1) ,

(8)

μD2
0w1 + 2D0D1w0 + h2(D0w1 +D1w0)− kww1 + 3

2
k23w1w

2
0

− k2(u1w0 + u0w1 + Aw0)+ 1

2
k2(2Au0w0+ u2

0w1) = 0 ,

(9)

D2
0ϕ1 = −2D0D1ϕ0 + ρu0 cosϕ0 +Kq − (K + h)D0ϕ0 . (10)
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Since the resonance 1:1 is considered here, only modes that can affect it are
retained for solution of the (5)–(7). One has the following:

u0 = C1(t1)e
ip(t1)t0 + cc., w0 = C2(t1)e

ip(t1)t0 + cc., ϕ0 = p(t1)t0 . (11)

Substituting (11) into (6) and balancing only eip terms the following relation is
obtained:

−C2

(
μp2 + kw

)
+ 3

2
k23C

2
2C2 − k2

(
C2

1C2 + 2C1C1C2

)
+ ih2pC2 = 0 . (12)

Equation (12) provides an algebraic relation between complex amplitudes of
the main oscillator and Mises girder in the first approximation by ε. In order to
bring (12) into real numbers domain the complex variables C1 and C2 are presented
as C1 = aueibu , C2 = aweibw and real/imaginary parts are separated:

−μawp2 − awkw + a3
w

3k23

2
+ awa2

uk2 = awa2
uk2 cos(2bu − 2bw) , (13)

awph2 = awa2
uk2 sin(2bu − 2bw) ,

where au, aw, bu, bw are real functions of t1.
From Eq. (13) two relations between real oscillation amplitudes and phases can

be obtained:
[
kw + μp2 + 2k2a

2
u −

3

2
k23a

2
w

]2

+ [h2p]2 =
[
k2a

2
u

]2
,

tan 2ξ = −h2p

kw + μp2 + 2k2a2
u − 3

2k23a2
w

, ξ = bu − bw . (14)

Expression for ϕ1 and the first solvability condition (absence of secular terms)
are now obtained from (10):

ϕ1 = − ρ

8p2C1e
2it0p + cc. , (15)

p′ + (K + h1) p −Kq − ρ
2

(
C1 + C1

) = 0 . (16)

Using (15) we can also present expression for u1 and the second solvability
condition from (8):

u1 = k2

2p2
C2C2 − k2

6p2
C2

2e
2ipt0 + C1

16p2

(
−k2C

2
2 + iρC1

)
e3ipt0 + cc., (17)

2 (pC1)
′ + (iΔ+ hp)C1 + ik2

(
2C1C2C2 + C2

2C1

)
+ 1

2

(
r − ρC1C1

) = 0 .

(18)
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Then the same procedure of separation as was used above is applied to (18):

2 (aup)
′ + auph+ aua2

wk2 sin 2ξ + 1

2

(
r − a2

uρ
)

cos bu = 0 ,

2aupbu
′ +Δau + aua2

wk2 (2+ cos 2ξ)− 1

2

(
r − a2

uρ
)

sin bu = 0 . (19)

These equations together with (14) and (16) form a system describing NIS under
consideration in the first approximation of the multiple scales method.

4 Numerical Results

All numerical results are obtained using Julia programming language [4]. Besides,
DifferentialEquations.jl framework [13] is used for ODE integration and Plots.jl
package is used for drawing. On all figures the system without Mises girder is shown
by the dark color, the system with one is shown by the light gray. Parameters used
for plots are presented in the Appendix.

Obtained algebraic constraints between amplitudes and phases (14) are shown
in Fig. 2 for some values of the motor angular velocity and oscillation frequency
p. Up to two non-zero values of the girder oscillation amplitudes aw are possible
for some value of the main mass oscillation amplitude au. No stable regimes with
snap-through motions are possible when there are no other solutions without trivial
one for that value of au. Lowest possible value for girder amplitudes is exactly√

4/3 times bigger than its stable position, then snap-through motions through all
three equilibrium positions appear. In Fig. 3 integration of initial Eq. (1) is shown in
comparison with integration of Eqs. (16), (19) together with constraints (14). We
can see good correspondence of the analytical solution and checking numerical

Fig. 2 Amplitude and phase difference relations for different p. Here ωu=1.4473. (a) Amplitude
aw from au. (b) Phase difference ξ from au
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Fig. 3 Numeric comparison
of initial system and obtained
in Sect. 3

simulation. For each value of p only lower branch of amplitude constraint (see
Fig. 2a) leads to vibration absorption regime, while upper leads to unrestricted
growth.

Numerical analysis of the NIS confirms that the snap-through motions are effec-
tive for absorption of the elastic resonance vibrations. In Fig. 4 the snap-through
vibration regime of absorption is shown. Vibrations of the elastic sub-system are
more than 70% lower than in the system without the girder. However in the
displayed regime resonance occurs on the frequency that is somewhat lower than
the first resonance frequency.

In Fig. 5 it is shown that the Sommerfeld effect occurs for the system without
girder. Its counterpart with the von Mises girder also gets stuck; however, when
the amplitude of the girder motions grows, it soon switches to the regime of snap-
through motions. Then amplitudes of the oscillator begin to fall down, and in a
short interval of time the system gets pushed out of resonance. But the snap-through
motions are not necessary for absorption regime appearance, as it is shown in Fig. 6.
Note that the mass of the von Mises girder is equal to only 5% of the mass of the
elastic sub-system.

5 Conclusions

Three-DOF NIS having the von Mises girder as absorber is considered. Analysis by
the MSHBM and numerical simulation show that the regime of snap-though motion
is very effective to absorb resonance elastic vibrations. Big part of the vibration
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Fig. 4 Regime of absorption with snap-through motions. (a) Variables in time. (b) Phase plane.
(c) Configuration plane

Fig. 5 Escape from
resonance

energy leaves to the snap-through motions even when the von Mises girder has small
mass. We can see here as absorption of elastic vibrations, as well an escape from
resonance. We can see also that other regimes can be effective for such absorption
and escape from the resonance too.
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Fig. 6 Regime of absorption without snap-through motions. (a) Variables in time. (b) Phase plane.
(c) Configuration plane

Appendix: Dimensionless Parameters and Parameter Values

The following relations between dimensional and dimensionless parameters are
introduced and used in transition from Eqs. (1) to (2):

x

l cos γ
= u, y

l cos γ
= w, m

M
= εμ, r

l cos γ
= εr,

β1

mωl
= εh, c0

c1
= k0,

c2

c1
= εk2,

c3

c1
= εk3,

ki

cos γ
= ki, β2

mωl
= εh2, ω

2
l =

c1

M
,

t = τ

ωl
,
d

dt
= ωl d

dτ
,
M

I
rl cos γ = ρ

Default parameters (these are used unless specified other): γ = π/12, I = 5.0,
M = 1.0, c0 = c1 = 105, r = 0.04, b = 0.5, β1 = β2 = d = 0.1.
Figures 2 and 3: L = 3, m = 0.03×M , c2 = c3 = 0.095× c1.
Figure 4: L = 10, I = 4.0, m = 0.01×M , c2 = c3 = 0.1× c1.
Figure 6: γ = π/9, L = 30, I = 4.0, m = 0.05×M , c2 = c3 = 0.115× c1.
Figure 5: L = 10,M = 2.6, m = 0.01×M , c2 = c3 = 0.3× c1.
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Experimental Dynamic Response
of a Nonlinear Wire Rope Isolator

Andrea Salvatore, Biagio Carboni, Li-Qun Chen, and Walter Lacarbonara

Abstract The steady-state dynamic response of a structure isolated by a nonlinear
wire rope spring operating in the direction of gravity is experimentally studied.
The isolated structure consists of two cantilever beams with a lumped mass at
the tip. The force-displacement cycles provided by the isolator show a hysteretic
behavior due to inter-wire friction and geometric nonlinearities. The restoring
force is nonsymmetric exhibiting softening under compression and hardening under
tension. The device rheological response is identified using experimental data and a
suitable mechanical model. The frequency response curves (FRCs) for increasing
levels of the vertical base excitation are obtained for the standalone device, the
isolated and non-isolated structure. The expected softening trend of the isolation
system and the increase of the displacement amplitude at low frequencies are
ascertained both theoretically and experimentally. The comparison between the
FRCs of the isolated and the non-isolated structure shows a severe reduction of
the transmissibility coefficient in a broad frequency range. This work represents
a first step towards the full modeling, validation of the reduced order model of
the hysteretic isolator, and the isolated structure towards a full optimization of the
device isolation performance.

Keywords Wire rope isolator · Transmissibility · Hysteresis · Vibration
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1 Introduction

Wire ropes are commonly employed to sustain large axial loads. At the same time,
they can be successfully exploited for applications in the field of structural vibration
control. The first patented device based on steel wire ropes dates to the beginning
of the last century and its scope consisted in the mitigation of galloping oscillations
in cable electric transmission lines [1]. In recent years, several devices based on the
hysteresis provided by wire rope assemblies have been proposed [2–7].

In this work, a nonlinear isolation system for reducing vertical vibrations is
identified and experimentally investigated. The isolator is a so-called wire rope
spring while the structure to be controlled is represented by two cantilevers with a tip
mass undergoing bending motion. The nonlinear hysteretic behavior of the isolator
is first characterized evaluating the equivalent stiffness and hysteretic damping at
various displacement amplitudes and then identified through a suitable nonsym-
metric hysteresis model. Subsequently, the test and the structure to be controlled
are designed. Experimental FRCs of the isolated and non-isolated structures are
finally obtained in order to estimate the transmissibility in the frequency bandwidth
of interest.

2 The Isolator Response

The isolation system consists of a compact wire rope isolator (see Fig. 1). It is
made of two metal plates joined by a stainless steel wire rope having a diameter
of 4 mm (7 × 7 wire of 0.4 mm) [8]. The geometric nonlinearities of the cables
induce an asymmetric hysteretic behavior. Hardening or softening is manifested
under tension or compression, respectively. The device high deformability together
with its high damping capacity makes it ideal for vibration control of machinery and
other kinds of structures. Antonelli et al. investigated the hysteretic behavior of the
device via quasi-static testing (Fig. 2) applying cyclic time histories with increasing
amplitudes, namely (0, ±2.5, ±5, ±7.5, ±10, ±12.5, ±15) mm.

The equivalent stiffness and damping versus displacement are obtained at each
quasi-static cyclic amplitude proving the softening behavior under compression and
the softening-hardening behavior under tension with a decreasing trend in equivalent
hysteretic damping (Fig. 3).

Starting from the modified asymmetric Bouc–Wen model of hysteresis proposed
by Carboni et al. [9], a further generalization of the asymmetric constitutive response
is proposed and implemented in this study. By employing the differential evolution
algorithm [10], the model parameters that best fit the experimental quasi-static
force–displacement cycles at different amplitudes are found (see Fig. 4).
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Fig. 1 The compact wire
rope isolator

Fig. 2 Hysteretic loops
under cyclic tests
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Fig. 3 (Left) Stiffness vs. displacement (tension and compression stiffness represented by the
dotted line, the average stiffness is indicated by the solid line) and (right) equivalent hysteretic
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Fig. 4 (Left) Numerical (red) vs. experimental (black) force–displacement cycles and (right)
numerically obtained FRCs for the device with a mass of 1 kg for different base accelerations
(i.e., 0.25, red, 0.5, 0.75, 1.0, 1.25 g, blue)

Fig. 5 Test setup for (left) the non-isolated structure and (right) the isolated structure

3 Experimental Setup

The structure to control during the tests was designed starting with the stiffness
of the device in order to obtain a frequency shift, between the non-isolated and
the isolated structure, of about five times. The designed structure consists of two
symmetric cantilever steel beams (b= 30 mm, h= 2 mm, l= 7.5 cm) with a tip mass
of 0.24 kg for both beams. In order to evaluate the FRCs and the transmissibility
over the investigated frequency range, for both the non-isolated and the isolated
systems, shaker tests were carried out in frequency sweeps (i.e., sinusoidal input
with constant amplitude and varying frequency) (Fig. 5).

The range of investigated frequencies was between 5 and 100 Hz with a
logarithmic sweep of 0.5 oct/min. The test was repeated four times for both
systems with different acceleration amplitudes. The accelerations of the masses
(0.24 kg × 2) at the beam tips, of the mass mounted on the support (0.45 kg) and of
the shaker head were acquired through four PCB piezotronic accelerometers.
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Table 1 Base accelerations,
stiffness constant

Ntest Ag [g] a ξ [%]

1 0.10 2.71 0.61
2 0.15 2.70 0.66
3 0.20 2.68 0.74
4 0.25 2.68 0.74

4 Dynamic Behavior of the Uncontrolled Structure

For the considered range of base motions, the non-isolated structure responds
linearly, so the theoretical FRC curves can be obtained with acceptable
approximation in closed form. The steady-state response in displacement,
xss(Ω), and acceleration, ẍss (Ω), and the linear transfer function H(Ω) are
given by: xss (Ω) = H (Ω) ẍg, ẍss (Ω) = Ω2H (Ω) ẍg,H (Ω) =
(m/k) /

√[
1− (Ω/ωn)2

]2 + (2ξΩ/ωn)2, where Ω is the excitation frequency and
ωn the frequency of the nth mode of the structure. The structural stiffness is that of
a cantilever beam with a point load at the tip. By knowing the mass, the governing
parameters are the elastic constant and the damping ratio, namely k = a · EI/l3

where the constant a = 3 for a perfect clamp; ξ = c/(2mωn) is the damping ratio
expressed in terms of the viscous damping coefficient c which embodies the beam
material damping and the boundary friction.

The frequency sweep tests were repeated for four different amplitudes, and for
each amplitude, the stiffness and damping constant which better fit the experimental
FRCs were found (see Table 1). The accelerations registered by the accelerometers
were first filtered through the Savitzky–Golay filter [11] and then doubly integrated
to obtain velocities and displacements. The results of the integration were filtered
again by a high-pass filter to remove the integration drift. In the subsequent figures,
the experimental FRCs (Fig. 6) and the trend of the transmissibility function (Fig. 7)
are reported.

5 Experimental Response of the Isolated Structure

The same frequency sweep tests were repeated for four different excitation levels
for the isolated structure. As in the previous tests, displacements of each mass
can be obtained by double integration and filtering of the acquired accelerations.
Figure 8 shows the comparison between the experimental FRCs in displacement
and acceleration for the isolated (red) and non-isolated structures (black) for an
input acceleration of 0.25 g.

A strong reduction of the maximum acceleration of the isolated system can be
observed due to the high compliance (hence, low frequency) of the device. As
expected, at low frequencies the displacement of the isolated structure is larger than
that of the non-isolated structure. At the same time, the maximum displacement
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Fig. 6 Experimental FRCs in terms of (left) displacement and (right) acceleration for base
accelerations of 0.1, 0.15, 0.2, 0.25 g
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Fig. 7 Displacement (dotted) and acceleration and damping ratio for each test (cont.) transmissi-
bility peak vs. acceleration amplitude

of the isolated structure (elongation of the isolator) is indeed much smaller than
the maximum displacement of the non-isolated structure (flexural beam vibration),
thanks to the energy dissipation provided by the device built-in hysteresis. Figure 9
represents the displacement and acceleration FRCs for the isolated structure for
different excitation amplitudes (i.e., 0.25, 0.5, 0.75, 1 g). The first and the second
resonance frequencies, about 14 and 24 Hz, are relative at the elongation modes
of the isolator. The third mode, near 74 Hz, is the flexural mode of the beam.
Furthermore, please note that the mass on the beam functions as a vibration absorber
for the constraint mass at the frequency of 70 Hz, making its relative acceleration
vanish.

By focusing on the frequency range of the two last modes, we can observe a
softening trend on both (24 and 74 Hz) due to the softening geometric nonlinearities
of the device (see Fig. 10).
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Fig. 8 Experimental FRCs of the uncontrolled structure (black line) vs. controlled structure (the
red solid lines represent the response of the mass at the beam tip, while the red dashed lines indicate
the response of the lumped mass on the isolator): (left) displacement and (right) acceleration

Fig. 9 (Left) Displacement FRC and (right) acceleration FRC of the isolated structure for different
excitation amplitudes (i.e., 0.25, 0.5, 0.75, 1 g). The solid lines represent the response of the mass
at the beam tip, while the black dashed lines indicate the response of the lumped mass on the
isolator

The transmissibility is reduced by an order of magnitude over the entire
frequency range examined (see Fig. 11). In fact, it goes from an average value of
about 75 for both the acceleration and displacement factors to an average value
of about 6. The transmissibility factor is evaluated for the third mode (74 Hz),
which exhibits the maximum acceleration and the maximum displacement. The
transmissibility factor shows a decreasing trend due to the softening behavior which
causes a more pronounced decoupling between the structure and the ground for
larger excitation amplitudes (see Fig. 12 left). By making use of considerations of
balance of linear momentum, the restoring force of the isolator during the test is also
estimated. Figure 12 (right) shows the force–displacement cycles at the resonance
frequency of the isolator for four amplitudes. The agreement with the hysteretic
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Fig. 10 Acceleration FRC near (left) the second mode and (right) the third mode of the isolated
structure. Solid lines indicate the response of the mass on the beam and dotted lines denote the
response of the mass on the isolator

Fig. 11 (Left) Displacement transmissibility and (right) acceleration transmissibility vs. fre-
quency of isolated structure for an excitation amplitude of 0.25 (red), 0.5, 0.75, 1.0 g (blue)

loops provided by the quasi-static cyclic tests confirms the hardening-softening
asymmetric behavior. There is also a drift because of the system weight during the
dynamic tests, differently from the static tests.

6 Conclusions

The performance of the investigated hysteretic, nonsymmetric wire rope isolator
shows a strong reduction of the transmissibility in terms of both acceleration and
displacement over a wide frequency range. The hysteretic restoring force provided
by the wire ropes under compressional and tensile cyclic loads was identified, and
it was shown to be suitable for vibration damping applications because of the large
dissipation rate. This can mitigate the well-known drawback of isolation systems
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Fig. 12 (Left) Displacement (dotted line) and acceleration (solid line) transmissibility vs. accel-
eration amplitude and (right) force–displacement cycle of the device for the four test amplitudes

arising from the large compliance at low frequencies. However, the main problem
with this type of devices for large-scale structural isolation is the relative size
between the device and the structure to be controlled. The present chapter sets
the initial steps of a wider experimental and theoretical work aimed at validating
a reduced order nonlinear model capable of reproducing accurately the dynamic
behavior of the device and the structure in order to achieve a wide nonlinear isolation
system optimization.
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Optimization Strategies of Hysteretic
Tuned Mass Dampers for Seismic Control

Antonio Boccamazzo, Biagio Carboni, Giuseppe Quaranta,
and Walter Lacarbonara

Abstract The vibration damping capability of a hysteretic tuned mass damper
(TMD) is investigated. Two optimization strategies, based on stationary and non-
stationary excitations, are proposed. In the first instance, the base excitation is a
harmonic acceleration and the cost function is the area subtended by the frequency
response curves at selected amplitudes. In the second instance, the motion of
the main mass caused by earthquake excitations is sought to be reduced for
an ensemble of earthquakes. In both approaches the optimal parameters of the
vibration absorber are obtained by employing a metaheuristic algorithm. Both
methods provide optimal TMDs able to achieve significant reductions in structural
displacement and acceleration.

Keywords Hysteretic tuned mass damper · Optimization · Seismic control

1 Introduction

Among the available technologies to mitigate structural vibrations, tuned mass
dampers (TMDs) are especially attractive. The concept of tuned mass damper,
first introduced by Frahm in 1909 [1], was originally conceived as an additional
mass attached to the main structure with a linear spring; its performance was later
improved when Ormondroyd and Den Hartog [2] introduced viscous damping.
Since then, the concept of vibration absorber has been extensively studied in the
literature from different standpoints. The majority of these studies have considered
linear systems and harmonic inputs. For instance, Den Hartog [3] found the
optimal TMD parameters in case of undamped main structures. Warburton [4]
derived closed-form expressions of the optimal absorber parameters for undamped
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single-degree-of-freedom (SDOF) systems under harmonic and white noise random
excitations.

The beneficial effects of TMDs in reducing structural vibrations have originated
several efforts to extend their applicability in presence of random inputs and
nonlinear systems. Indeed, the implementation of TMDs with nonlinear restoring
forces has been proven to be especially promising in improving the absorber
performances. Arnold [5] applied the Ritz averaging techniques to an absorber
with a cubic spring and used a one-term approximation for the solution; Carter and
Liu [6] studied an absorber system where both springs were nonlinear. Lacarbonara
and Vestroni [7] proposed the use of a hysteretic TMD in the context of low-
rise multi-storey buildings. Carboni and Lacarbonara [8] studied the steady-state
response of TMDs featuring several types of hysteretic nonlinear restoring forces.

In spite of the large deal of researches (most of them numerically oriented) and
despite the fact that TMDs are recognized as effective devices to mitigate wind-
induced vibrations, their seismic effectiveness still remains an open issue. The main
problem that deteriorates the TMD performance is the detuning effect, a frequency
shift generally caused by structural damage that induces a reduction of structural
stiffness and strength.

The main goal of the present study is to compare two distinct strategies to select
the optimal hysteretic TMD parameters. In the first instance, named “Stationary”,
the amplitude of the frequency response curve (FRC) is minimized over a given
frequency bandwidth. In the second instance, named “Nonstationary”, the response
of the main structure subject to seismic base excitations is sought to be minimized
for an ensemble of earthquakes. The optimal TMD constitutive parameters are
obtained using a differential evolution algorithm (DE). This method, originally
proposed by Storn and Price [9], has been widely employed for both optimization
and hysteresis identification [10]. Both approaches are shown to be effective since
the optimized TMDs achieve a significant reduction of the seismic response of the
structure.

2 Modeling Approach

The mechanical model of the main structure equipped with the TMD adopted in
this study results into a two-degree-of-freedom (2-DOF) system. The structure is the
scale five-storey building model investigated in [11]. The experimentally obtained
natural frequencies and damping ratios are summarized in Table 1 as function of the
5th floor displacement amplitude (corresponding to the sway mode) and of the base
acceleration magnitude [12].

The observed softening behavior, characterized by a decrease of the resonance
frequency with the oscillation amplitude, is described by the Bouc–Wen (BW)
model of hysteresis in which the restoring force is the sum of a linearly elastic
part and a hysteretic part denoted by kex and z, respectively. This model was first
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Table 1 Lowest natural frequencies and associated damping ratios of the building for different
displacement amplitudes and base accelerations

Acceleration [m/s2] Displacement [mm] Frequency [Hz] Damping ratio [%]

0.0018g 2 4.230 0.877

0.0081g 5 4.150 1.022

0.0191g 10 4.075 1.267

0.0244g 15 4.050 1.427

0.02715g 20 4.020 1.605

introduced by Bouc [13] and then extended by Wen [14]. The evolution of the
hysteretic part is described by the first-order differential equation:

ż = [kd − (γ + βsgn(ẋz)]|z|nẋ, (1)

where x represents the displacement of the main structure, while ke and kd are
related to its stiffness (i.e., k = ke + kd is the tangent stiffness and ke is the post-
elastic stiffness for n→∞), γ ∈ R and β ∈ R regulate the hysteresis loops shapes,
and n ∈ R+ rules the smoothness of the transition from elastic to elasto-plastic
behavior.

The vibration absorber is described by a variant of the BW model proposed
in [8] to include pinching effects observed in the experimental hysteresis loops.
A pinching function H(x) is introduced to modulate the tangent stiffness k at the
origin according to H(x) = 1− ξH ex2

2/xH , where x2 is the absorber displacement.
This function depends on two parameters, namely ξH ∈ [0, 1) and xH > 0.

The equations of motion of the 2-DOF system read

m1ẍ1 + ke1x1 + z1 − ke2x2 − z2 = −m1ag,

m2ẍ2 +m2ẍ1 + ke2x2 + z2 = −m2ag,

ż1 = [kd1 − (γ1 + β1sgn(ẋ1z1)]|z1|nẋ1,

ż2 = [kd2H(x)− (γ2 + β2sgn(ẋ2z2)]|z2|nẋ2,

(2)

where the subscripts 1 and 2 indicate the quantities related to the structure and TMD,
respectively, while the overdot denotes differentiation with respect to time. The
structural parameters are obtained by means of a system identification technique
described in [12] and are reported in Table 2.

3 TMD Optimization: Stationary Case

In this section, the first TMD optimization procedure is presented. The goal is to
mitigate the dynamic response of the primary structure subject to harmonic base
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Table 2 The identified constitutive parameters of the BW model fitting the actual structure

ke1 kd1 γ1 β1 n1[
kN
mm

] [
kN
mm

] [
kN1−n
mm

] [
kN1−n
mm

]
[−]

0.356 0.058 0.312 0.076 1.000

Table 3 Weights for different optimizations, the base acceleration ẍg is in [m/s2]

Optimization 0.0018g 0.0081g 0.0191g 0.02715g

Low excitation 1 1 1 0

High excitation 0 0 1 1

excitations. Since the excitation is a stationary process, here and henceforth the
strategy is called “Stationary.”

The proposed method seeks to minimize the area subtended by the FRCs within
a frequency bandwidth of interest around the frequency of the mode to control. The
optimization method is based on the use of the DE. By means of this approach it
is possible to consider simultaneously multiple excitation amplitudes. The function
to maximize, varying the TMD design parameters, is the vibration reduction factor
R1 = 1− CF1 in which

CF1 =
∑N
i=1 αi

∫ fsup
finf

FRFi,Cont(f,Ai) df

∑N
i=1 αi

∫ fsup
finf

FRFi,Uncont(f,Ai) df
(3)

where FRFi denotes the displacement amplitude of the FRC for the ith excitation
amplitude Ai , N is the number of considered excitation amplitudes, and αi is a
weight function introduced to penalize certain amplitudes. As a matter of fact,
without weighting the FRCs with respect to the amplitude, this method tends
automatically to minimize the highest excitation amplitude that gives the largest
contribution to the cost function.

The TMD optimization is performed for the system described by Eq. (2). The
hysteretic TMD is optimized by assuming a mass ratio (i.e., the ratio between the
TMD and the main system mass) equal to 1% whereas n is set equal to 1. The
remaining variables ke2, kd2, γ2, β2, ξH , and xH need to be optimized. Four levels
of ground motion severity are considered and two different optimizations are carried
out. The weights for these optimizations are reported in Table 3. The optimization
referred to as “Low excitation” considers the three lowest excitation magnitudes,
while the second referred to as “High excitation” considers the third (intermediate)
and fourth (strongest) amplitudes. As expected, in Fig. 1 it can be seen an equal peak
behavior for the highest oscillation amplitude in the “High excitation” case, while
for the “Low excitation” case the equal peak is achieved for lower accelerations.
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Fig. 1 FRCs for the uncontrolled structure and for the controlled structure (left) and for the
absorber (right). The curves, from the lowest to the highest, are obtained for base accelerations
set to 0.0018g, 0.0081g, 0.0191g, 0.0244g, 0.02715g, respectively

4 TMD Optimization: Nonstationary Case

The second optimization strategy tries to minimize directly the displacement of
the primary structure subject to an ensemble of seismic base excitations. Since the
signals are nonstationary processes, this strategy is referred to as “Nonstationary.”

The mass ratio μ and n are set to 1% and 1, respectively, while the remaining
parameters (ke2, kd2, γ2, β2, ξH , xH ) are selected by means of the DE algorithm.
The objective function to maximize is the vibration reduction factor R2 = 1− CF2
in which

CF2 =
√

1
N

∑N
k=1 |xk,Cont|2

√
1
N

∑N
k=1 |xk,Uncont|2

, (4)

where xk,Uncont, and xk,Cont are the root mean square (RMS) of the uncontrolled
and controlled main structure displacement for the kth earthquake. In order to take
into account the averaged values of the RMS displacement, according to the Italian
Design Code [15], N is set equal to 7.

For each earthquake, the RMS of the main structure displacement is computed
in the unprotected and protected scenarios (only structure and structure equipped
with the TMD, respectively). We consider the RMS instead of the peak displace-
ment because the latter does not give enough information about the cumulative
damage. Artificial seismic ground motions are considered. The parameters used
for generating spectrum-compatible ground acceleration signals are the following:
ag = 0.363g, F0 = 2.466, T ∗c = 0.389s, and the soil is chosen to be of type A.
These earthquakes correspond to the collapse prevention limit state (according to
the Italian Building Code [15]); indeed, strong ground motions are considered to
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Fig. 2 Sample time histories of the base acceleration

Table 4 Comparison between the seismic effectiveness of the hysteretic TMD optimized
according to the stationary (S) and nonstationary (NS) strategies in terms of RMS of the main
structure displacement (D) and acceleration (A), TH labels the artificial seismic ground motion
record

Strategy RMS TH 1 TH 2 TH 3 TH 4 TH 5 TH 6 TH 7 TH 8 TH 9 TH 10 CF2

S D 0.24 0.24 0.30 0.52 0.32 0.04 0.14 0.14 0.06 0.32 0.259

S A 0.25 0.25 0.32 0.53 0.33 0.07 0.15 0.18 0.08 0.33 0.275

NS D 0.41 0.41 0.37 0.58 0.39 0.23 0.18 0.20 0.03 0.42 0.357

NS A 0.42 0.42 0.37 0.58 0.40 0.25 0.19 0.24 0.05 0.42 0.367

emphasize the main structure frequency shift. Three of the seven artificial time
histories chosen as base excitation are shown in Fig. 2.

5 Numerical Simulations and Optimizations Comparison

The two optimization strategies are here compared. For this purpose, a new set
of 10 artificial ground motions are generated to closely match an elastic response
spectrum in the period range of interest for the site of L’Aquila (Italy). The
characteristic parameters for the elastic response spectrum according to the Italian
Design Code [15] are ag = 0.261g, F0 = 2.364, T ∗c = 0.347s, type A soil and
the generated earthquakes correspond to the life safety limit state. The reductions in
terms of RMS of the main structure displacement and acceleration are reported in
Table 4. A comparison in terms of displacement and acceleration time histories is
shown in Fig. 3 and in terms of FRFs curves in Fig. 4. The slightly larger reduction
attained by means of the nonstationary optimization is appreciable in Fig. 3. For both
optimization strategies, the antiresonance located at the resonance frequency of the
structure is observable in Fig. 4. This shows that the optimized hysteretic TMDs,
changing their resonant frequencies, are able to match the nonlinear behavior of the
main structure and, in this way, can mitigate the detrimental effects of detuning.
Indeed, these devices provide a greater RMS displacement reduction than linear
TMDs, as discussed in [12].
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Fig. 3 Displacement (up) and acceleration (down) obtained for the uncontrolled structure (gray)
and for the structure controlled via hysteretic TMD optimized according to stationary (black) and
nonstationary (red) approaches for TH 2
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Fig. 4 FRCs for the main structure (left) and vibration absorber (right) for the uncontrolled
structure (black dotted) and the controlled structure via the hysteretic TMD optimized according
to the stationary (red solid) and nonstationary (black solid) approach

6 Conclusions

In this work, the capability of hysteretic TMDs in reducing the nonlinear response
of a structural system under stationary and nonstationary excitations is discussed.
It is shown that a hysteretic TMD with only 1% mass ratio can reduce the RMS
displacement by an average of 30%. Two different strategies to obtain the absorber
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parameters are explored. The first approach, named Stationary, is based on the
reduction of the FRFs curves obtained for different excitation amplitudes. The
second one, named Nonstationary, makes use of acceleration time histories. Both
approaches lead to significant reduction of the main system response, thereby
confirm the effectivness of the considered hysteretic TMD. As expected, the
mitigation obtained by optimizing the TMD parameters through the nonstationary
approach is more evident, since earthquake signals together with their nonstationary
signatures are directly involved, and it is time-saving because it avoids calculating
the entire FRF. The overall reduction of the area subtended by the FRF is a valid and
equivalent optimization approach, which can thus be conveniently exploited using a
semi-analytical solution. In addition, it is more general and can be employed when
there exists great uncertainty about the excitation signals.
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Sliding Mode Control of Nonlinear
Systems Under Nonstationary Random
Vibrations via an Equivalent
Linearization Method Using Block Pulse
Functions

Amir Younespour and Shaohong Cheng

Abstract This chapter proposes a sliding mode control (SMC) method for non-
linear systems subjected to stationary and nonstationary excitations. The equivalent
linearization (EL) method is commonly used as an effective tool in seeking approxi-
mate solutions to nonlinear systems, and SMC has numerous successful applications
in the field of nonlinear system control due to its robustness in handling uncertainties
in dynamic systems. In the current study, the nonlinear system is first linearized by
a proposed block pulse (BP) function-based equivalent linearization method, then
a continuous form of SMC method is developed to control the linearized nonlinear
system. Numerical simulations reveal that compared to other existing methods, the
proposed BP function-based EL method can predict the nonlinear system responses
more accurately at lower computational cost, and the chattering-free SMC approach
can effectively improve the performance of a nonlinear system when subjected to
various types of random excitations including seismic load.

Keywords Equivalent linearization · Sliding mode control · Block pulse
functions

1 Introduction

Natural phenomena such as wind and earthquake would exert random excitations
on structures and induce nonlinear responses. Studying nonlinearity in dynamic
systems and mitigating vibrations with various control systems to improve their
performance have drawn much attention of researchers in the past few decades.
The key to obtain a favorable system performance is to select a proper control
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strategy. As a nonlinear control method, the sliding mode control (SMC) approach is
proved to be a robust control theory in controlling nonlinear processes under highly
uncertain external excitations. The ability of SMC to handle variable structure
characteristics has made it a more flexible method and possible to switch between
different control laws. It has been successfully applied to various linear and
nonlinear systems, including the single-input-single-output (SISO) and the multi-
input-multi-output (MIMO) systems, the large-scale systems, and the stochastic
systems [1].

On the other hand, the mathematical treatment of nonlinear systems is chal-
lenging, and there is no universal solution available [2]. Among various methods
dealing with nonlinear systems, the equivalent linearization (EL) method is the
most popular one. Since 1970s, the block pulse (BP) functions have been widely
studied and used as a rudimentary set of functions for signal characterizations
in controlled systems. They can provide more accurate approximation with less
mathematical computations and are useful tools in identifying and controlling
dynamic systems [3–5]. Thus, introducing BP functions as the orthogonal functions
into the EL method could considerably reduce the computational cost and accurately
approximate the response of the nonlinear systems subjected to nonstationary
external excitations.

The method proposed in this chapter employs the idea of SMC to improve
the performance of the nonlinear systems linearized by the BP function-based EL
method. To avoid the undesirable characteristic of “chattering” in SMC, in the
proposed approach, a continuous form of the SMC method is developed. Therefore,
when combining with the BP function-based EL method, the proposed approach
would be robust in dealing with system nonlinearities and uncertainties in various
types of nonstationary excitations. Both the stationary and nonstationary excitations
of a Duffing oscillator and a single-degree-of-freedom (SDOF) setup spring are
considered. To validate the accuracy of the proposed approach in determining the
linearization coefficients, other existing linearization methods are exploited. Further,
the linear quadratic regulator (LQR) method is used to evaluate the performance of
the proposed SMC method.

2 Equivalent Linearization Methodology Based
on Orthogonal Functions

The equation of motion of an SDOF system with displacement and velocity
dependent nonlinearity can be expressed as

ẍ(t)+ 2βẋ(t)+ ω2x(t)+ g [x(t), ẋ(t)] = w(t) (1)

where β = ξω, ξ and ω are respectively the damping ratio and frequency of the
linear system; x(t), ẋ(t), and ẍ(t) are respectively the displacement, velocity, and
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acceleration vectors; g [x(t), ẋ(t)] is a nonlinear function of the displacement and
velocity; and w(t) is the excitation which is assumed to be a zero-mean random
excitation. Using the EL method, Eq. (1) becomes

ẍ(t)+ 2βeqẋ(t)+ ω2
eqx(t) = w(t) (2)

where βeq and ωeq are the coefficients of linearization found by the EL method.
When the excitation to the original system is a Gaussian function, if we assume
the response of the nonlinear system is also Gaussian, then βeq and ωeq can be
calculated by the simplified method proposed in [6], i.e.,

2βeq = 2β + E
[
∂g (x, ẋ)

∂ẋ

]
;ω2

eq = ω2 + E
[
∂g (x, ẋ)

∂x

]
(3)

where E[·] is the mathematical expectation. For nonstationary evaluation, the
equivalent damping and frequency are functions of time. For a system with initial
stability (i.e., x(0) = ẋ(0) = 0) and by assuming that these coefficients are
constant in stationary analysis, the time domain response of the system in Eq. (2)
can be expressed by the Duhamel’ integral, and the mean square of the displacement
response is [7]:

E
[
x2
]
=

∞∫∫

−∞
h (t − τ1) E [w (τ1) w (τ2)]h (t − τ2) dτ1dτ2 (4)

In order to solve this integral, we use the BP operational matrix, which, for any
arbitrary functions such as f (t) and l(t) ∈ [0, T), is defined as

B
{∫ T

0
f (τ) l (t − τ) dτ

}
∼= q

2
F T JL

∼= q
2
LT JF (5)

where JL and JF are the convolution operational matrices [5]. Substituting the
operational matrices into Eq. (3) determines the linearization coefficients βeq and
ωeq as constant values. However, with reference to Eq. (3), the equivalent damping
and frequency are time dependent in the nonstationary random process. Although
the assumption of using the constant stationary limits with large duration for these
coefficients is common, an iterative solution process is introduced to enhance the
accuracy of the solutions [8, 9].

In the current study, the proposed linearization approach utilizes the operational
rules of the BP functions to calculate the mean square response of the linearized
system, which allows to increase the efficiency of the EL method, particularly for
nonlinear systems under any general type of nonstationary random excitations such
as wind and seismic loading.
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3 Concept of Sliding Mode Control Method

The basic strategy in sliding mode control is to design a suitable control law to
force the system to move toward a steady state, i.e., a predefined switching surface
called the sliding surface, and remain on it. The SMC design procedure includes
designing a suitable sliding surface and formulating a control law to meet the
reaching and sliding phases. The variable structure characteristic of the SMC allows
it to purposely change the structure by a switching feedback law to track the desired
state.

The dynamic equation of motion for a n-degree-of-freedom system derived from
the proposed equivalent linearization method (Eq. (2)) while including a control
force vector U(t) is written in the state space form as

ż(t) = AZ(t)+ BuU(t)+ BrW (t) (6)

with

A =
[

0 I

−M−1
(
K +Keq

) −M−1
(
C + Ceq

)
]
, Bu =

[
0

M−1B

]
,

Br =
[

0
M−1φ

]
, z(t) =

{
x(t)

ẋ(t)

}

where M,C, and K are the n × n mass matrix, damping matrix, and elastic stiffness
matrix of the considered system, respectively. Ceq and Keq are respectively the n× n
equivalent matrices and A is a 2n× 2n plant matrix of the system. B and Bu are n× r
and 2n × r dimensional location matrices of control force, respectively. U(t) is a r-
vector denoting the control law obtained from SMC algorithm. Br is a 2n× 1 vector
of excitation orientation, and Z(t) includes the degree-of-freedom displacements and
velocities called 2n× 1 dimensional state vector. W(t) is a n× 1 nonstationary zero-
mean Gaussian random excitation vector.

It is supposed to design a suitable switching control law U(t) to force the
system-state trajectories move on the specified sliding surface in the state space for
all subsequent time and slide toward the steady point. Choosing a suitable sliding
surface equation S(x(t)) helps the system slide on it toward and reach x = 0 within
a limited time. Thus, S = 0 would represent a linear differential equation whose
unique solution is x = 0 [10].

The sliding surface is chosen to be a linear function of the system states

S (x(t)) = PZ = [
p1 p2 · · · pn

] {
x(t)1 · · · x(t)n ẋ(t)1 · · · ẋ(t)n

}T
(7)

where xi = x1, . . . , xn and ẋi = ẋ1, . . . , ẋn are the system states and pi = p1,
. . . , pn are the coefficients of the sliding surface equation which are determined by
minimizing a quadradic performance index [11].
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Considering the dynamics while in the sliding mode as

Ṡ (x(t)) = PŻ (8)

and solving the above equation with respect to Eq. (6) while neglecting W(t), an
expression of U called the equivalent control Ueq can be obtained as:

Ueq = −(PBu)
−1PAZ (9)

However, in order to keep S at zero during the subsequent time, the control law
needs to be selected such that out of S [10]:

1

2

d

dt
S2 ≤ 0 (10)

Taking the derivative and using the state equation of motion in Eq. (6), it yields

ST Ṡ = STPŻ

= STP (Az+ BuU + BrW )

= STP

[
AZ − Bu(PBu)

−1PAZ − Buδ
(
STPBu

)T + BrW

]

= STP

[
−Buδ

(
STPBu

)T ]+ STPBrW

= −δ
(
STPBu

)2 + STPBrW

= −δ
(
STPBu

)2
[

1− STPBrW

−δ(STPBu

)2

]

(11)

where δ is the sliding margin (r × r) diagonal matrix with diagonal elements.
Assuming ‖BrW‖ ≤ d and considering δ ≥ d

‖Bu‖ , Eq. (11) satisfies the condition in
Eq. (10). Thus, the control law is obtained as

U = −(PBu)
−1PAZ − δ

(
STPBu

)T = Ueq − δ
(
STPBu

)T
(12)
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By substituting Eq. (12) into Eq. (6), the state trajectories would drive toward the
sliding surface S = 0, and it is expected that the dynamic responses of the system
would decrease satisfactorily.

4 Evaluation of the Proposed Equivalent Linearization
Method

4.1 SDOF Nonlinear Duffing Oscillator

We first consider SDOF Duffing oscillator systems. The Duffing oscillator has been
successfully used to model a wide range of physical processes of which the response
has nonlinear dynamic nature. In the current section, the proposed BP-function-
based EL method is applied to study the behavior of an SDOF Duffing oscillator.
The system equation of motion has the form of [12]:

ẍ(t)+ 2βẋ(t)+ ω2
[
x(t)+ γ x3(t)

]
= w(t) (13)

where γ is a positive real constant representing the strength of the nonlinearity and
w(t) is the excitation. The exact value of the mean-square displacement response,
E[x2], of Eq. (13) is evaluated as [5]:

E
[
x2
]

exact
=
∫∞
−∞ x

2exp
[

4ξω
2πS0σ

2

(
1
2ω

2x2 + 1
4γ x

4
)]
dx

∫∞
−∞ exp

[
4ξω

2πS0σ
2

(
1
2ω

2x2 + 1
4γ x

4
)]
dx

(14)

where S0 is a constant power spectrum and σ is the excitation intensity.
In this example, we only consider the stationary excitations, the excitation

force function of which is a Gaussian white noise process. The sampling rate
of the considered random excitation is 0.01 s. The mean-square response of the
SDOF Duffing oscillator is evaluated by the proposed orthogonal-function-based EL
method under the assumptions of S0 = 0.15, ω = 2, and ξ = 0.05 for two different
nonlinearity strength of γ = 0.1 and 1.0. The standard EL method (i.e., with the
stationary constant value and no iteration) and the iteration method proposed by
Orabi and Ahmadi [8] are also applied to analyze the response of the studied
Duffing oscillator. The results obtained from the above three different approaches
are portrayed in Fig. 1, along with the exact value of variances determined by
Eq. (14).

It can be seen from Fig. 1 that the system responses determined by the standard
EL method, the iterative EL method [8], and the proposed BP-function-based EL
method are always smaller than the exact solution, especially when the system
has relatively stronger nonlinearity. However, when compared with the former two
methods, the responses determined by the proposed approach show better agreement
with the exact solution.
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Fig. 1 Mean square displacement response due to stationary excitation. (a) γ = 0.1; (b) γ = 1.0

4.2 SDOF Nonlinear System with a Setup Spring

The nonlinear setup spring system consists of a concentrated mass m, which is
connected to a setup spring and a linear viscous damper. The system equation of
motion has the form of

ẍ(t)+ 2βẋ(t)+ ω2 [x(t)+ γ sgn(x)
] = w(t) (15)

where γ is a positive real constant that corresponds to nonlinearity strength and w(t)
is a non-white noise function. In this example, the proposed method is applied to
evaluate the response of a setup spring under the nonstationary excitation defined
by Eq. (16)

f (t) =
m∑

j=1

taj exp
{−βj t

}
cos

(
ωj t + θ

)
(16)

where aj, β j, and ωj are constant system parameters, and θ is a random variable
uniformly distributed over [0, 2π ]. The forcing function in Eq. (16) was proposed
by Bogdanoff et al. [13] as a model to describe ground acceleration induced by
earthquake. If we assume μ1 = 0.1 and ω1 = 1, the system parameters in Eq. (16)
would become aj = 1, ωj = jω1, β j = μ1ωj.

Under this set of system parameters, the mean-square response of the setup spring
is evaluated for ω = 5, ξ = 0.05 and two different values of nonlinearity strength.
For the nonstationary excitation, the sampling rate and the positive integer m are
taken as 0.01 s and 2000, respectively. The results are shown in Fig. 2 for two
different nonlinearity strength of γ= 1.0 and γ= 10. Again, Fig. 2 depicts clearly
that the results yielded from the proposed BP-function-based EL method agree
well with those obtained by Orabi and Ahmadi’s method. In addition, compared to
latter, they have better agreement with those determined by the Monte Carlo (MC)
simulation. The examples illustrated in Sects. 4.1 and 4.2 suggest that the proposed
approach is applicable to an SDOF nonlinear system subjected to either stationary
or nonstationary excitations.



116 A. Younespour and S. Cheng

Fig. 2 Mean square displacement response due to nonstationary excitation (a) γ = 1.0; (b) γ = 10

5 Evaluation of Sliding Mode Control Method

In this section, in order to demonstrate the efficiency of the proposed control
method in reducing the dynamic response, the SDOF Duffing oscillator system
subjected to nonstationary loading is considered. The SMC control law is applied to
the dynamic equation of motion to alleviate the responses to a satisfactory level.
Using the proposed EL method, the dynamic equation of motion is written as
Eq. (13), where the equivalent natural frequency and system damping ratio are
3.88 rad/s and 0.05, respectively. A set of real earthquake data, consisting of North-
South acceleration records of the El Centro earthquake (1940), is considered as
the nonstationary excitation. Following the method discussed in [11], the sliding
surface is obtained by minimizing the quadratic performance index with a diagonal
weighting matrix Q, Q11 = 5.3, Q22 = 0.05. Thus, the sliding surface equation is
obtained as S(x) = 10.3x + ẋ.

For comparison, the LQR method is also utilized to control the dynamic response
of the studied SDOF Duffing oscillator system. Thus, using the weighting matrix
Q identical to that used for the sliding surface and considering a sliding margin
δ1 = 1.75 m2/s3 for calculating the control law in Eq. (12), the uncontrolled
and controlled responses of the SDOF system using SMC and LQR methods are
illustrated in Fig. 3.

In addition, the root mean square of the control forces for both methods are
also illustrated in Fig. 4. It is clear that the considered weighting matrix can yield
the same control force; however, the proposed SMC method is more efficient in
mitigating the system response.

6 Conclusions

In the current study, a vibration control method for nonlinear systems subjected to
stationary and nonstationary excitations has been proposed, of which the sliding
mode control method is applied to nonlinear systems linearized by the BP function-
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Fig. 3 Uncontrolled and controlled responses of a SDOF Duffing oscillator using SMC and LQR
methods under El Centro earthquake

Fig. 4 RMS of control forces for SMC and LQR methods

based EL method. Results show that compared to other existing EL methods, the
system responses predicted by the proposed BP function-based EL method are in
better agreement with the exact solution and also the method is computationally
more efficient. In addition, it was found that using the same level of control
effort, the proposed chattering free SMC method can mitigate dynamic vibration
of nonlinear systems more efficiently.
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Experimental Dynamic Response
of a SDOF Oscillator Constrained by Two
Symmetrically Arranged Deformable
and Dissipative Bumpers Under
Harmonic Base Excitation

Giulia Stefani , Maurizio De Angelis , and Ugo Andreaus

Abstract During strong earthquakes, base isolated systems (buildings, bridges,
strategic facilities, equipment, etc.) can impact against the surrounding moat wall
because of the deformation of the isolator if the available separation distance is
limited. A possible mitigation measure is the interposition of shock absorbers.
The aim of this work is to illustrate some of the results of an experimental
laboratory campaign concerning the study of the dynamic response of a single-
degree-of-freedom (SDOF) oscillator excited by a harmonic base acceleration and
symmetrically constrained by two unilateral deformable and dissipative constraints
(bumpers). Three different peak values of table acceleration, four amplitudes of the
total gap between mass and bumpers, and four types of bumpers were considered.
Among the various aspects investigated, particular attention was paid to the study
of pseudo-resonance curves of maximum absolute acceleration and excursion of the
SDOF oscillator and to the characterization of the hysteresis zone.

Keywords Shaking table tests · Two-sided impact · Hysteresis area

1 Introduction

Base isolation represents one of the most applied passive control strategies to miti-
gate the dynamic response of both new and existing structures against earthquakes
[1, 2]. The aim of base isolation is to uncouple the motion of the structure from
that of the ground by introducing some type of support that isolates it from the
shaking ground, thus limiting the energy input into the system and protecting it
from damaging [3]. Flexibility of base isolation increases the fundamental vibration
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period of the structure, which is expected to experience large displacements relative
to the ground, concentrated in the isolation system. In case of strong earthquakes,
these large displacements can damage the isolation system or can lead to poundings
with adjacent structures or surrounding moat wall if the available seismic gap is not
sufficient [4, 5]. The problem of pounding does not only concern buildings but also
other systems, such as bridges and equipment. Rigaud and Perret-Liaudet [6] studied
experimental and numerical dynamic responses of a preloaded vibro-impacting
Hertzian contact under sinusoidal excitation and investigated the evolution of the
experimental downward jump frequency vs. input amplitude in order to identify
the nonlinear damping law during intermittent contact. With reference to pound-
ing between base-isolated structures, Andreaus and De Angelis [7] conducted a
numerical study to investigate the dynamic response of a nonlinear SDOF oscillator
excited by a harmonic base acceleration and constrained by two symmetrically
arranged nonlinear unilateral bumpers. This study allowed the authors to highlight
typical aspects that characterize the dynamics of impacting systems and to outline
possible scenarios within the system response. Based on the obtained results, sub-
sequent campaigns of experimental tests were carried out [8, 9]. In the preliminary
experimental study presented in [8], three peak values of table acceleration were
applied, one amplitude of the total gap was considered, and one type of bumper was
employed. Additional gap sizes and bumper types were considered in the subsequent
campaign [9]. The experimental dynamic responses with and without bumpers
were compared, and the main characteristics of the dynamics with impact (jump
phenomenon, resonance frequency, force-displacement cycles, phase portraits, force
and time of contact, coefficient of restitution, and energy dissipated by the bumpers
during the impact) were identified.

The aim of this work is to illustrate some of the results of a parametric laboratory
campaign of experimental tests, performed using a shaking table, that is linked to
a previous preliminary and exploratory campaign of tests conducted in preceding
laboratory activities [8, 9]. This campaign concerns the study of the dynamic
response of a SDOF oscillator. Three different peak values of table acceleration,
four amplitudes of the total gap between mass and bumpers, and four types of
bumpers were considered. Among the various aspects investigated, in this work
pseudo-resonance curves (PRCs) of maximum absolute acceleration and excursion
of the SDOF oscillator were analyzed in depth. Particular attention was paid to the
characterization of the hysteresis region between the PRCs obtained under forward
and backward frequency sweeps and the variation of the hysteresis region depending
on the considered parameters, namely peak table acceleration, gap clearance,
and bumper stiffness. The nondimensional parameters governing the equation of
motion of the SDOF oscillator excited by a harmonic base excitation will also
play an important role in the case of earthquake ground motion. Although seismic
excitation has much broader frequency content than harmonic motion, it can be
assumed that when a structure is subjected to seismic excitation, large portion of its
response may be characterized by a quasi-resonant state at its effective fundamental
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period of vibration. The chapter is organized as follows: in Sect. 2, the experimental
setup and the performed tests are described; in Sect. 3, some of the results obtained
are shown and discussed; and in Sect. 4, the main conclusions are illustrated.

2 Experimental Setup

The physical model consists of a rigid body that can be treated as a lumped mass
(M = 500 kg), an elastomeric high damping rubber bearing isolator (damper), and
a couple of elastomeric shock absorbers (bumpers). The bumpers are symmetrically
mounted on steel stands which are bolted onto the base plate. The mass is composed
of six plates of mild steel jointed by bolts. The damper is centrally connected to
the lower layer of the mass; the distance between bumpers and mass (gap) can be
varied by adjusting the screws at the fronts of the stands; the mass is supported by
four spherical bearings, rotating within unidirectional guides (Fig. 1). The series of
experimental investigations has considered two distinct configurations: the absence
(No Bumpers, NB) and the presence (Yes Bumpers, YB) of bumpers, under the
same type of excitation. In the second case, the system has two possible states: a
situation when the mass is not in contact with the bumper, denoted as flight, and
another situation when the mass is in contact with the bumper, denoted as contact.
In the following, some of the results obtained in the presence of bumpers (YB) will
be illustrated.

Four different amplitudes of the total gap G (defined as the sum of right and
left gaps, as shown in Fig. 1a) between mass and bumpers were considered:
G1 = 15 mm, G2 = 20 mm, G3 = 25 mm, G4 = 30 mm. Four different bumpers B
(B1, B2, B3, B4), obtained from three types of cross-section, were employed (Fig. 2).
Two bumpers (B1 and B2) have the same cross-section (Fig. 2a) but different contact
length L.

Three different peak values of table acceleration A were imposed (A1 = 0.03 g,
A2 = 0.04 g, A3 = 0.05 g, where g is the gravity’s acceleration). The system was
excited by a stepwise forward (f = 0.5–5.0 Hz) and backward (f = 5–0.5 Hz) sine

(b)(a)

135 680 135

1500

STEEL MOAT
WALL

STEEL
PLATES

BUMPER

DAMPER

LASER

TRANSDUCER

ACCELEROMETER

SPHERICAL
BEARINGS

23
2

INDUCTIVE
TRANSDUCER

ACCELEROMETER14
1

10
0

LEFT
GAP

RIGHT
GAP

SHAKING
TABLE At(t)

35
0

12
8

Accelerometer on the mass

Accelerometer on the tableLaser transducer

Fig. 1 Experimental setup: (a) schematic view; (b) side view
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Fig. 2 Bumper sections: (a) B1 and B2: MB 60 × 52 mm, B1: L = 100 mm, B2: L = 400 mm;
(b) B3: MB 40 × 22 mm, L = 400 mm; (c) B4: AP 65 × 52 mm, L = 400 mm

Fig. 3 Stepwise forward and
backward sine sweep in
displacement control
(f = 0.5–5.0 – 0.5 Hz,
�f = 0.1 Hz,
A = A3 = 0.05 g)
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sweep in displacement control (step �f = 0.1 Hz), in order to impose a given
peak acceleration to the table, with a sufficient number of cycles to reach steady
state; the attainment of the steady-state condition was checked by verifying the
convergence to the limit cycle in both planes of phase portraits (relative velocity
vs. relative displacement) and hysteresis loops (absolute acceleration vs. relative
displacement). A sine sweep in displacement control, corresponding to A3, is shown
in Fig. 3, for illustrative purposes.

3 Results of the Experimental Tests

The measured parameters are the absolute acceleration of the mass and the excursion
of the relative displacement of the mass with respect to the shaking table. The
acceleration of the mass was measured by an accelerometer positioned on the mass.
The relative displacement of the mass was calculated as the difference between the
absolute displacement of the mass, measured by a laser transducer, and the absolute
displacement of the table, measured by an inductive transducer (Fig. 1a).

3.1 Pseudo-Resonance Curves

Among the different results obtained processing the experimental data, for each
combination bumper-gap-peak table acceleration (B–G–A), forward (in the follow-
ing figures indicated with the letter f), and backward (in the following figures
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indicated with the letter b) PRCs of normalized maximum absolute acceleration
α = Amax/A and normalized excursion η = (Dmax – Dmin)/G of the SDOF oscillator
were represented. Dmax and Dmin are the maximum (positive) and the minimum
(negative) relative displacement of the mass, respectively. The values of maximum
acceleration and excursion were evaluated at steady state of each sub-frequency
range both on the forward and on the backward sweep (see Fig. 3). A value of α > 1
indicates that the acceleration of the mass is greater than the acceleration of the
table. Since the excursion was normalized with respect to the total gap G, a value of
η less than 1 indicates that the mass does not touch the bumpers, the limit value 1
indicates that the mass grazes the bumpers but does not deform them, and finally,
a value of η greater than 1 indicates that the mass has beaten and deformed the
bumpers. The symbol ν represents the normalized frequency, that is the excitation
frequency normalized with respect to the pseudo-resonance value relative to the
configuration in the absence of bumpers (NB) for A = 0.1 g, that is, fR ≈ 1.0 Hz,
which corresponds to a shear deformation of the damper equal to about 100%. In
Fig. 4, for illustrative purposes, the forward (red solid line) and backward (blue
dashed line) PRCs of the normalized maximum absolute acceleration α (Fig. 4a)
and normalized excursion η (Fig. 4b), corresponding to the combination B4-G2-A2,
are depicted. Compared to the linear case, the PRCs are bent to the right due to the
hardening caused by impact against the bumpers.

By increasing the excitation frequency (forward sweep, red arrows), the ampli-
tude of the response increases until a bifurcation (point A) to a smaller amplitude
orbit occurs, associated with the absence of impact; at this point, for a slight increase
in ν, the response shows a sudden downward jump to lower values (point B) and then
continues to decrease slowly (no impact). If the exciting frequency is decreased
(backward sweep, blue arrows), the amplitude of the response increases slowly
until a bifurcation (point C) to a larger amplitude orbit occurs, associated with the

(a) (b)

Fig. 4 PRCs (B4-G2-A2) of normalized: (a) maximum absolute acceleration; (b) excursion
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occurrence of impact; at this point, for a slight decrease in ν, the response shows
a sudden upward jump to higher values (point D) and then continues to decrease
as ν decreases (in the presence of impact). The upward jump is less evident in
the PRC of the excursion (Fig. 4b); this is due to the physical limitation of the
displacement of the mass produced by the bumper which accentuates the bending of
the curve. In the interval of amplitude�ν, between the downward and upward jump
frequencies, for each value of ν there are three steady-state solutions, one of which
is unstable and thus not experimentally realizable, whereas the other two stable
solutions correspond respectively to large- and small-amplitude oscillations [10].
This leads to the jump phenomenon. The multivalued amplitudes are consequence
of the bending of the response curve. The hysteresis region (shaded area), comprised
between the downward and upward jump frequencies, in the interval �ν, is also
represented in Fig. 4. This area gives a measure of the nonlinear unstable behavior
of the considered dynamic system. Its extension is influenced by many parameters
such as the peak table acceleration A, the gap between mass and bumpers G, and
the type of bumper considered B. In Figs. 5 and 6, the forward (solid lines) and
backward (dashed lines) PRCs of normalized maximum absolute acceleration α and
normalized excursion η, respectively, are depicted for different values of the peak
table acceleration A (Figs. 5a and 6a, for the pair B4-G2), total gap clearance G
(Figs. 5b and 6b for the pair B4-A2), and bumper stiffness B (Figs. 5c and 6c, for the
pair G2-A2). It can be observed that as the acceleration A increases (Figs. 5a and
6a), the PRCs tend to be bent more and more to the right, and thus the downward
jump frequency increases, while the upward jump frequency increases at a much
smaller extent. Consequently, the amplitude of the range �ν increases.

As the total gap G increases (Figs. 5b and 6b), the downward jump frequency
decreases, while the upward jump frequency does not vary significantly, as already
observed. Consequently, the amplitude of the range �ν decreases. As the bumper
stiffness B increases (passing from B1 to B4 in Figs. 5c and 6c), the downward jump
frequency increases, while the upward jump frequency does not vary significantly.
Consequently, the amplitude of the range �ν increases. The presence of ridges

(a) (b) (c)

Fig. 5 PRCs of normalized maximum absolute acceleration α for different values of: (a) A
(B4 − G2); (b) G (B4 − A2); (c) B (G2 − A2)



Experimental Dynamic Response of a SDOF Oscillator Constrained by Two. . . 125

(a) (b) (c)

Fig. 6 PRCs of normalized excursion η for different values of: (a) A (B4− G2); (b) G (B4− A2);
(c) B (G2 − A2)

at low frequencies was also noted in some cases, and multi-periodic orbits were
observed in the corresponding phase portraits, as already highlighted in [7].
However, this topic, which deserves to be studied in more detail, will not be further
treated in this work. In the absence of the bumpers (free flight), the PRCs are bent
to the left due to the soft restoring force of the damper, and, as the peak table
acceleration increases, the pseudo-resonance frequency decreases.

3.2 Characterization of the Hysteresis Area

In this work, among the different aspects investigated, the characterization of the
hysteresis area and the identification of the parameters that influence its extension
were studied. To characterize the extension and shape of this region, we chose
to consider the area and the width of the frequency range �ν. The hysteresis
area was calculated by computing the approximate integral of α and η via the
trapezoidal method between the downward and upward jumps. In Fig. 7 the area of
the hysteresis region, calculated from the acceleration (Aα, Fig. 7a) and excursion
(Aη, Fig. 7b) PRCs, and the frequency range �ν (Fig. 7c) are depicted, for each
bumper, as a function of a dimensionless parameter δ0 that represents the total gap
normalized with respect to the maximum excursion at resonance without bumpers
(free flight). A value δ0 = 0 indicates that the bumpers are attached to the mass,
a value δ0 = 1 indicates that the mass grazes the bumpers but does not deform
them, while a value between 0 and 1 indicates that the mass beats and deforms the
bumpers; the mass is in the free-flight condition for δ0 > 1. Since the maximum
excursion at resonance without bumpers depends on the peak table acceleration, the
dimensionless parameter δ0 allows to take into account, in a synthetic way, both the
A and G variations. Consequently, each value of δ0 corresponds to a specific pair
gap–peak table acceleration. In the experimental tests, different values of δ0 were
obtained by fixing the gap and varying the peak table acceleration.
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(a) (b) (c)

Fig. 7 Summary graphs: (a) Aα vs. δ0; (b) Aη vs. δ0; (c) �ν vs. δ0

Although there is a certain dispersion of experimental data, some considerations
can be made. The trends depicted in Fig. 7a–c are qualitatively similar. It can be
observed that, as δ0 decreases from 1 to 0, that is bringing the bumpers near to
the mass, both the area (Aα and Aη) and �ν increase, with a more significant
increase, the more rigid the bumper is. Another observation that can be made is
that, if δ0 tends to 0, that is the bumpers are sticking to the mass, the curves diverge
from each other, whereas if δ0 tends to 1, that is the bumpers are grazing the mass,
all the curves tend to zero. In this work, we chose to characterize the hysteresis area
through its area Aα (or Aη) and the frequency range �ν. In this way, it is possible
to bring the original area back to a simpler and equivalent rectangular area with
base b = �ν and height h = Aα (or Aη)/�ν, which can be useful to make further
investigations. Reasoning in terms of equivalent area could possibly be related to
different parameters’ range (tall, h > b; wide, h < b, rectangular or square area).

4 Conclusions

In this work, the experimental dynamic response of a SDOF oscillator excited
by a harmonic base excitation and symmetrically constrained by two unilateral
deformable and dissipative bumpers was investigated. The experimental tests were
conducted using a shaking table and considering different combinations of peak
table acceleration, total gap amplitude and bumper stiffness. Only steady-state
dynamic response was studied by means of PRCs of normalized maximum absolute
acceleration and normalized excursion of the SDOF oscillator. The hysteresis region
between the forward and backward PRCs was investigated and characterized. The
analysis of the experimental results showed that its extension (characterized through
its area Aα and Aη and the amplitude of the frequency range �ν) is influenced by
the variation of the investigated parameters. The trends of Aα, Aη, and �ν were
plotted against the dimensionless parameter δ0, which takes into account the ratio
between the gap width and the maximum excursion in free-flight condition. As δ0
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decreases from 1 to 0, both the area and the instability frequency range increase with
increasing stiffness of the bumper. Moreover, if δ0 tends to 0, the curves diverge
from each other, whereas if δ0 tends to 1, all the curves tend to zero.

References

1. Soong, T.T., Dargush, G.F.: Passive Energy Dissipation Systems in Structural Engineering.
Wiley, New York (1997)

2. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F.,
Skelton, R.E., Soong, T.T., Spencer, B.F., Yao, J.T.P.: Structural control: past, present, and
future. J. Eng. Mech. 123(9), 897–971 (1997)

3. Naeim, F., Kelly, J.M.: Design of Seismic Isolated Structures: From Theory to Practice. Wiley,
Chichester (1999)

4. Polycarpou, P.C., Komodromos, P.: On poundings of a seismically isolated building with
adjacent structures during strong earthquakes. Earthq. Eng. Struct. Dyn. 39(8), 933–940 (2010)

5. Polycarpou, P.C., Komodromos, P.: Earthquake-induced poundings of a seismically isolated
building with adjacent structures. Eng. Struct. 32(7), 1937–1951 (2010)

6. Rigaud, E., Perret-Liaudet, J.: Experiments and numerical results on non-linear vibrations of
an impacting Hertzian contact. Part 1: harmonic excitation. J. Sound Vib. 265, 289–307 (2003)

7. Andreaus, U., De Angelis, M.: Nonlinear dynamic response of a base-excited SDOF oscillator
with double-side unilateral constraints. Nonlinear Dyn. 84(3), 1447–1467 (2016)

8. Andreaus, U., Baragatti, P., De Angelis, M., Perno, S., A preliminary experimental study about
two-sided impacting SDOF oscillator under harmonic excitation. J. Comput. Nonlinear Dyn.
12(6), 061010-1–061010-10 (2017)

9. Andreaus, U., Baragatti, P., De Angelis, M., Perno, S.: Shaking table tests and numerical
investigation of two-sided damping constraint for end-stop impact protection. Nonlinear Dyn.
90(4), 2387–2421 (2017)

10. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)



Active Sling Load Stabilization

Austin Morock, Andrea Arena, Mary Lanzerotti, Jacob Capps, Blake Huff,
and Walter Lacarbonara

Abstract A control strategy for stabilization of single-point sling loads and hoists
is proposed. Nonlinear oscillations of an elastically suspended mass are described by
a suitable nonlinear dynamic model that incorporates delayed position feedback for
active stabilization of both sling loads and hoist. Helicopter maneuvers are described
by assigned trajectories of the mass suspension point to model oscillations of the
payload. For the sling load case, stability analysis is performed to estimate optimal
control gains. For the hoist case, a genetic algorithm is adopted to estimate optimal
control parameters. The controlled system is simulated via time integration of the
nonlinear equations of motion.

Keywords Sling load · Hoist · Active stabilization · Delayed position feedback

1 Introduction

There is a need for reliable stabilization systems that can effectively control lightly
damped, low-mass sling load oscillations. Several models are proposed for the
control problem of containers and slung loads [1–7]. The aim of this work is to
develop a stabilization system for a low-mass sling load or hoist based on active
vibration control devices schematically represented in Fig. 1 [1, 8–10]. Hoisting an
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Fig. 1 Schematic
representation of the
helicopter with hoist and
adopted fixed frame
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individual in 90 s may be taken as a worst case scenario implying a need for fast and
precise control, as required in several rescue missions.

2 Modeling Approach

A fixed Cartesian frame (O, e1, e2) with e1 and e2 collinear with the horizontal and
the vertical directions, respectively, is shown in Fig. 1. Vector r0(t) = r0

1 (t)e1 +
r0

2 (t)e2 is adopted to describe the motion of the payload suspension point. The
latter is given by two contributions, namely x0(t) (helicopter trajectory) and x(t)
(motion of the payload suspension point relative to the helicopter). The position of
the payload with respect to its suspension point is given by l(t) = l(t)el , where
el is the direction of the cable. At time t , the position of the payload is described
by r(t) = r0(t) + R� · l(t), where the 2 × 2 orthonormal matrix R describes the
finite rotations, indicated by the angle θ(t), undergone by the hoisting sling with
components R11 = R22 = cos θ , R12 = −R21 = sin θ . The payload with weight
w = −M g e2 is subjected to the disturbance force fd = fde1 provided by the
horizontal component of the downwash generated by the helicopter blades [11].
After obtaining expressions for the potential and kinetic energies, including motion
of the suspension point, the equation of motion of the one-degree-of-freedom (1
dof) mechanical system is obtained by differentiating the Lagrangian function with
respect to the generalized coordinate θ(t) and its velocity θ̇ (t) and equating to the
Lagrangian component Fθ = fd · ∂θr(t) of the disturbance force, where · represents
the dot product, and ∂θ indicates partial differentiation with respect to θ , such that

M l2(t)θ̈ + 2ζωpM l2(t)θ̇ + 2M l(t)l̇(t)θ̇ +M g l(t) sin θ
+2ζωpM l(t)

(
ṙ0

1 cos θ + ṙ0
2 sin θ

)+M l(t) (r̈0
1 cos θ + r̈0

2 sin θ
) = fdl(t) cos θ.

(1)
The proposed mechanical model incorporates a delayed feedback control system

in which the suspension point (i.e., the point where the sling attaches to the
helicopter) is moved in the horizontal direction. The time-delayed position and
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velocity feedback terms are introduced in the expressions of the components ẋ1(t)

and ẋ2(t) of the time rate-of-change of ẋ(t), such that,

ẋ1(t) = K1l0ωp sin θ(t − τ)+K2l0ωp sin
θ̇ (t − τ)
ωp

; ẋ2(t) = 0, (2)

where τ is the time delay, and K1 and K2 are the control gains.

3 The Case of Sling Load Transportation

Figure 2 shows a typical maneuver performed when carrying a sling load with fixed
cable length (i.e., l(t) = l0). The helicopter accelerates forward from rest to a steady
hover, moves to forward flight, decelerates, and terminates in a hover.

Preliminary stability analyses were performed by solving the eigenvalue problem
associated with the linearized equations of motion in Eq. (1) incorporating the
feedback control terms given by Eq. (2). Stability charts for K2 = −0.05 and
K2 = −0.025 shown in Fig. 3 (here blue dots indicate stable regions while red
dots indicate unstable regions) are used to select the optimal control gains.

Figure 4 shows the results of time integrations, in terms of the oscillation angle
θ , for the sling load with fixed cable length l0 = 20 m. The figure shows the
uncontrolled case (black curves) and feedback controlled case (blue curves, for τ =
3.58856 s, K1 = −0.5 and K2 = −0.025 taken from the stability charts depicted
in Fig. 3b) for the support vertical motion. The effectiveness of the active control
scheme to perform fast reduction of the payload oscillations can be appreciated in
both simulations for free oscillations (left side) and oscillations during a simulated
helicopter maneuver (right side) with fixed cable length.

4 The Hoist Case of Retrieving a Low-Mass Payload

The situation in which a hoist retrieves within 90 s a low-mass (i.e., 299 kg) payload
positioned 88 m below the helicopter is here investigated. For this simulation, the
helicopter is standing at a fixed position (i.e., x0(t) = o), and the payload is retrieved
at a cable winding speed constant at the value of 1.778 m/s, during the first part of
the cable retrieval (i.e., for 0 ≤ t ≤ 47.7 s), while during the last three meters as
the cable approaches the helicopter, the winding speed is reduced to the value of
0.0508 m/s (i.e., for 47.7 ≤ t ≤ 90 s). This implies a cable length varying linearly
in time from a maximum length of 88 m to a minimum length of 1 m as shown
in Fig. 5 for the uncontrolled case (black line) and controlled case (blue line). For
the case modeled in this section, the wind speed is assumed to take on a constant
value of 5 m/s during the entire time the cable is being retrieved, corresponding to a
disturbance force fd of approximately 20 N. The wind speed at the low mass initial
location can be estimated from [11].
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Fig. 2 Helicopter maneuver showing the e1—(lower left) and e2—component of the acceleration
(lower right). Integration provides the e1—(middle left) and e2—component of the velocity
(middle right) and e1—(upper left) and e2—component of the position (upper right)

0.0 0.2 0.4 0.6 0.8 1.0
- 1.0

- 0.5

0.0

0.5

1.0

τ T

K
1

a

0.0 0.2 0.4 0.6 0.8 1.0
- 1.0

- 0.5

0.0

0.5

1.0

τ T

K
1

b

Fig. 3 Stability charts for the selected values of K2: (a) K2 = −0.05 and (b) K2 = −0.025
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Fig. 4 Uncontrolled (black lines) vs. controlled (blue lines) oscillations of sling load: (left) free
oscillations and (right) simulated helicopter maneuver
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Fig. 5 Payload position relative to the helicopter for the full length of the hoist (left) and final three
meters of hoist (right). Black and blue circles indicate selected positions of the payload across its
uncontrolled and controlled motion, respectively, while the dashed lines indicate the corresponding
cable configuration

4.1 Feedback Control Parameters Optimization

In the hoist case, the cable length is varying in time and so is the payload oscillation
frequency. Consequently, the stability regions of the control parameters change
together with the cable length; therefore, to find a set of optimal control parameters,
a global optimization search is needed. In this work we adopt a global optimization
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method based on a genetic algorithm, the so-called differential evolution (DE)
algorithm [12]. The approach consists of generating a pool of n three-dimensional
parameters vectors (including the gains K1 and K2 and the time delay τ ) from
uniform probability distributions to ensure that the parameters span the space
equally and respect the constraint τ > 0. Time integration of the controlled system
reproducing the entire retrieving maneuver is then performed for each set of vectors,
and the maximum oscillation angle (i.e., θmax) is calculated for each simulation.
The DE algorithm then perturbs a randomly selected vector chosen from among
n − 1 vectors of the first generation and provides a new mutated parameters vector
(i.e., a trial vector); θ tri

max is then calculated for the generated trial parameters vector
and compared with the maximum angle θ tar

max evaluated for the parameters vector
(namely the target vector) excluded in the generation of the trial vector. If θ tri

max <

θ tar
max, the trial vector survives; otherwise, the target vector is selected for creating

the new generation of parameters vectors which best perform in terms of control.
The algorithm proceeds by providing new generations of parameters vectors up to
the achievement of a fitness objective, here assumed to be θmax < 5◦. The optimal
parameters provided by this DE-based optimization procedure are represented by
the vector [K1, K2, τ ] = [0.0921, −0.00992, 0.02478].

4.2 Numerical Results

Numerical simulations performed for the uncontrolled system show that during
the retrieving maneuver, the payload undergoes a maximum oscillation angle
of θ ≈ 15◦ which turns out to be unacceptable in practical applications. For
the controlled system, Fig. 6 shows that the feedback control with the optimal
parameters calculated through the DE algorithm bounds and damps the payload
oscillations during the entire maneuver.

A sensitivity analysis was carried out to study the robustness of the control
system. The effectiveness of the feedback control and stability of the system was

Fig. 6 Time history of the
oscillation angle θ(t) during
the payload motion (top)
showing uncontrolled
response (black line) and
controlled case (blue line)
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Fig. 7 Time histories of the
oscillation angle θ(t) during
the payload motion varying
the optimal control
parameters: 50% increase of
K1 (top), 50% increase of K2
(center), and 50% increase of
τ (bottom) for uncontrolled
case (black line) and
controlled case (blue line)
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studied by varying the gains K1 and K2 and the time delay τ within ±50% of their
optimal values. Figure 7 shows that the most sensitive parameters are K2 and τ
whose detuning from their optimal values may lead to the loss of efficiency of the
control system.
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5 Conclusions

The proposed active feedback control method is shown to be an effective approach
for reducing payload oscillations arising from typical helicopter maneuvers. The
delayed-feedback control approach may be effectively used to reduce oscillations in
sling loads and hoists. Further testing and modeling will be carried out to include a
3D model of the actual controller and a small-scale testing of the control feedback in
a drone or advanced computer model. Future work will also estimate the downwash
velocity and motion of the helicopter.
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Multi-Objective Optimization of Active
Vehicle Suspension System Control

Dong Jing, Jian-Qiao Sun, Chuan-Bo Ren, and Xiu-hua Zhang

Abstract In this chapter, a multi-objective optimal design of delayed acceleration
feedback control of an active vehicle suspension system under random excitations
is investigated. The simple cell mapping (SCM) method is used to obtain solutions
of the multi-objective optimization problem (MOP). The continuous time approxi-
mation (CTA) method is applied to analyze the delayed system. Stability is imposed
as a constraint for MOP. Three conflicting objective functions are considered. The
Pareto set and Pareto front of the optimal feedback control design for the vehicle
suspension system are presented. Numerical results have found that the Pareto
optimal solutions provide effective control performance of the suspension.

Keywords Active vehicle suspension system · Delayed acceleration feedback
control · Multi-objective optimization · Simple cell mapping

1 Introduction

Active vehicle suspension technology has received much attention from the research
community for several decades. Suspension system is an assembly of spring and
damper that connect the wheels and vehicle body. When a vehicle moves over
a bump or pothole, the vertical excitation can transfer to the vehicle body from
the road through the suspension. The suspension is designed to isolate the vehicle
from the road disturbances [1, 2]. Active and semi-active controls are introduced to

D. Jing (�) · C.-B. Ren
School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo,
Shandong, China
e-mail: jingvenzhi@163.com

J.-Q. Sun
School of Engineering, University of California Merced, Merced, CA, USA

X.-h. Zhang
Department of Electrical Engineering, Shandong Vocational College of Industry, Zibo,
Shandong, China

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), Nonlinear Dynamics and Control,
https://doi.org/10.1007/978-3-030-34747-5_14

137

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34747-5_14&domain=pdf
mailto:jingvenzhi@163.com
https://doi.org/10.1007/978-3-030-34747-5_14


138 D. Jing et al.

further improve the performance of the vehicle suspension. This chapter considers
a delayed relative acceleration feedback control for active suspensions.

The quarter-car model is commonly used to help design the suspension system,
which shares many features with the vehicle suspension system [3, 4]. Semi-active
suspension systems with magneto-rheological (MR) and electro-rheological (ER)
dampers have been popular [5]. Active suspensions are frequently studied including
the ones with feedback optimal controls [6], sliding mode controls [7], and passive
optimal controls [8]. We should point out that the literature on passive, semi-active,
and active suspensions is vast. The readers interested in the complete review of
the literature can find review articles online.

Time delay has been widely considered in vibration control design. Active tuned
vibration absorbers with time delay were studied by Olgac and colleagues [9–13].
The positive feedback proportional control using large time delays is reported in
[14]. Proper design of feedback controls for active vibration absorbers generally
requires a compromise between usually conflicting objectives. Examples include
minimizing peak levels of the frequency response, flattening the frequency response
over a frequency range, and minimizing the control effort [15]. The work reported
in this chapter is an extension of the research in [15].

Multi-objective optimization of passive and active systems has attracted much
attention [6, 16, 17]. This chapter presents a multi-objective optimal control of active
suspension system with delayed relative acceleration feedback. The simple cell
mapping (SCM) method is applied to solve for the MOP [18–21]. The continuous
time approximation (CTA) method [22, 23] is used to obtain the response of the
delayed system and to analyze the stability and statistics of the responses.

2 The Suspension Model

A vehicle represents a complex vibration system with many degrees of freedom.
Common vehicle models include quarter car, half car, and full vehicle models.
Quarter-car models have been extensively used for investigating the dynamics of
a car suspension, which shares many features with the vehicle suspension system.
Figure 1 shows a simplified two-degree-of-freedom quarter-car model of an active
suspension system.

The equations of motion of a quarter car are given as follows:

mẍ1 − c2 (ẋ2 − ẋ1)− k2 (x2 − x1)+ c1 (ẋ1 − ẋ0)+ k1 (x1 − x0)+ u(t) = 0,
Mẍ2 + c2 (ẋ2 − ẋ1)+ k2 (x2 − x1)− u(t) = 0

(1)

where u(t) = G [ẍ1 (t − τ)− ẍ2 (t − τ)] is an active control force consisting of a
delayed relative acceleration feedback; M is the sprung mass of the vehicle body;
m is the unsprung mass of the wheel; k1 and c1 stand for the equivalent coefficients



Multi-Objective Optimization of Active Vehicle Suspension System Control 139

Fig. 1 A two-degree-
of-freedom vehicle
suspension system model

of stiffness and damping of the wheel tire; k2 and c2 are the stiffness and damping
coefficieints of the suspension system; x0 denotes the road random roughness; x1 is
the wheel displacement; x2 is the vehicle body displacement; G is the feedback gain;
and τ is the time delay. In this work, we set c1 = 0 due to the damping of the wheel
tire is too small. With the acceleration feedback, the delay differential equation of
the system is of neutral type.

Define a state vector as [x1, x2, ẋ1, ẋ2]. The equations of motion can be
written in state space form as

y = A0y + At ẏ (t − τ)+G0W(t) (2)

where
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(4)

and W(t) = k1x0 is modeled as the Gaussian white noise having the zero mean and
the correlation given by

E [W(t)W (t + T )] = 2Dδ(T ) (5)

In the multi-objective design of the feedback control, we shall make use of the
system response in both the frequency and time domains.
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2.1 Spectral Response

The frequency response matrix of the suspension system is given by

H (ω) =
[
iωI − A0 − iωAτ e−iωτ

]−1
(6)

We can obtain the exact solution of the PSD matrix of the state vector y(t). The
PSD matrix of the system response is given by [24]

Syy (ω) = H ∗ (ω)G0Sww (ω)G
T
0H

T (ω) (7)

where H∗ (ω) denotes the complex conjugate of the matrix H(ω).

2.2 Time Domain Response

The dimension of the state space where the state vector (y(t), y(t − s), 0 < s ≤ τ ) is
defined is infinite. To obtain the response of the system, we apply the continuous
time approximation (CTA) method by discretizing the delayed part of the state
vector on the mesh Ω = {τ i, i = 0, 1, · · · , M} of M + 1 points in [0, τ ] such that
0 = τ 0 < τ 1 < · · · < τM − 1 < τM = τ . We define an extended state vector

Y (t) = [y1(t), y2(t), y3(t) y3 (t − τ1) , . . . ,
y3(t − τM), y4(t), y4(t − τ1), · · · , y4(t − τM)]T (8)

We can show that the extended state vector satisfies a differential equation
without time delay. The time domain response and frequency response of Y(t) can
be obtained with the conventional analytical and numerical tools.

The accuracy of the CTA as a function of the discretization level M and the ability
of the method to predict the eigenvalues and time domain responses are studied in
[22, 23]. The theoretical foundation of the method for predicting the right-most
eigenvalue of linear time-invariant systems with time delay is well documented in a
book by Bellen and Zennaro [25].

3 Multi-Objective Optimization

The multi-objective optimization problem for designing the delayed feedback
control can be stated as follows.
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Consider the minimization of a vector-valued function.

min

k ∈ Q {F (k)} (9)

where F = [f1(k), · · · , fp(k)] is the map that consists of the p objective functions and
fi : Q→ R1, k ∈Q⊂ Rq is a q-dimensional vector of design parameters. The domain
Q ⊂ Rq can in general be expressed in terms of inequality and equality constraints.

In this study, we have the design parameters as

k = [G, τ ] (10)

where G is the feedback gain, and τ is the feedback time delay. The design space is
to be described later.

In this chapter, the following three objective functions are considered.
The first objective function is the peak value of the PSD function of the

displacement response of the vehicle body

f1(k) : Smax
XX = max

ω ∈ R1
Sx2x2 (ω) (11)

The second objective function is the following integration of the power spectral
density (PSD) function Sx2x2 (ω) of the displacement response of the vehicle body

f2(k) : SXX =
ω2∫

ω1

Sx2x2 (ω) dω (12)

where ω1 and ω2 denote the frequencies corresponding to the two resonant peaks of
the PSD function.

The third objective function represents the input energy of the delayed feedback
control given by

f3(k) : Suu =
∞∫

0

Suu (ω) dω (13)

where Suu(ω) is the power spectral density function of the delayed feedback control.
Here, SXX would be in conflict with Suu and Smax

XX , while the relationship
between Suu and Smax

XX can be more complicated from the physics point of view.
The simple cell mapping (SCM) method is used to solve the above MOP. The

cell mapping methods describe system dynamics with cell-to-cell mappings by
discretizing both the state space and time [18–21].

In this chapter, the SCM method is used to obtain the Pareto optimal solutions
for the delayed feedback control design. For more details of the SCM method for
MOP, the reader is referred to the references cited above.
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4 Numerical Results

We consider the multi-objective optimal control of active suspension system with
the delayed relative acceleration feedback. The design space for the parameters
k = [G, τ ] is chosen as follows:

Q =
{
k ∈ R2|G ∈ [0, 200] , τ ∈

[
0, 2.0

]
, subject to Re (λ(k))max < −ε

}

(14)

where Re(λ(k))max represents the largest real part of the eigenvalues of the extended
state matrix obtained with the CTA method, and ε > 0 is a small positive number to
provide the robustness of stability. The parameters of the vehicle suspension system
are m = 30, M = 330, c1 = 0, c2 = 6000, k1 = 30,000, k2 = 1500, and ε = 0.0001.
The discretization of the time delay for the CTA method is M = 8. The number of
divisions of both the design parameters is chosen to be 50. The computations of the
example are conducted in Matlab on a laptop PC.

The Pareto set and Pareto front of the multi-objective optimal design of the active
suspension are shown in Figs. 2 and 3. The Pareto set presents a variety of multi-
objective optimal feedback control designs compromising the three objectives.

Figure 4 shows the response PSD of the vehicle body and the wheel with and
without the delayed acceleration feedback control when the peak value f1(k) of the
PSD function of the displacement response of the vehicle body is the smallest. This
is one extreme design in the framework of MOP.

Figure 5 shows the response PSD of the vehicle body with and without the
delayed acceleration feedback control in three cases: (1) when the integration f2(k)
of the PSD function of the displacement response of the vehicle body is the smallest;
(2) when the input energy f3(k) of the control is the smallest, and (3) when the three
objective functions are compromised. The control design is known as the knee point.

Fig. 2 The Pareto set in the design space for the delayed acceleration feedback control
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Fig. 4 The response PSD of the vehicle body with and without the delayed feedback control when
the peak value of the PSD function of the displacement response of the vehicle body is the smallest

The results presented in the figures indicate that the multi-objective optimal
designs of the feedback gain and the delay deliver a range of performances of the
suspension and therefore offer engineers more choices in their tuning of the active
suspension for vehicles.

5 Concluding Remarks

This chapter presents a multi-objective optimal control design method of an active
suspension system with delayed relative acceleration feedback. The Pareto set
provides the multi-objective optimal designs representing various compromises of
the control objectives, and hence gives engineers more choices in their tuning of the
active suspension system for vehicles.
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Fig. 5 The response PSD of the vehicle body with and without the delayed feedback control (a)
shows the response PSD of the vehicle body with and without the delayed feedback control when
the integration of the PSD function of the displacement response of the vehicle body is the smallest,
(b) the input energy of the delayed feedback control is the smallest, (c) the three objective functions
are compromised
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Control Quality Assessment of Nonlinear
Model Predictive Control Using Fractal
and Entropy Measures

Paweł D. Domański and Maciej Ławryńczuk

Abstract Industry faces the winds of change with the new era of Industry
4.0 paradigm. Systems require flexible and stringent operation on the edge of
technological limitations. Process and control quality are closely coupled affecting
simultaneously the overall plant performance within such an environment. Nonlin-
ear model predictive control (MPC) is considered as the top quality control strategy
used in the most challenging tasks. Control quality assessment of nonlinear MPC is
required to supervise and maintain its operation. This work discusses efficiency of
control quality non-Gaussian and nonlinear measures applied to nonlinear MPC of
a polymerization reactor benchmark.

Keywords Model predictive control · Nonlinear control performance
assessment · Hurst exponent · Entropy · Fat tails

1 Introduction

Control systems often perform inefficiently. It happens due to the insufficient
daily maintenance, process fluctuations, instrumentation failures, inappropriate
control structure, poor tuning, varying operating regimes, shortage of experienced
personnel, unknown disturbances, human interventions, etc. The tools to assess
loop quality are required driving the research on evaluation of the approaches and
measures supporting control performance assessment (CPA).

The task of CPA started with the first works on the controllers benchmarking [1].
Research in this area got further interest and popularity with the introduction of the
minimum variance measures [2]. Minimum variance benchmark has soon evolved
towards other benchmarks, such as the linear quadratic Gaussian (LQG) controller,
the proportional integral derivative (PID) controller, and MPC [3]. During the last
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Institute of Control and Computation Engineering, Warsaw University of Technology, Warsaw,
Poland
e-mail: P.Domanski@ia.pw.edu.pl; M.Lawrynczuk@ia.pw.edu.pl

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), Nonlinear Dynamics and Control,
https://doi.org/10.1007/978-3-030-34747-5_15

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34747-5_15&domain=pdf
mailto:P.Domanski@ia.pw.edu.pl
mailto:M.Lawrynczuk@ia.pw.edu.pl
https://doi.org/10.1007/978-3-030-34747-5_15
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years standard benchmarking methods have been extended with other methods that
might be called alternative, using notions of entropy [4], fractals, and Hurst expo-
nent [5]. CPA addresses various control philosophies, such as univariate feedback
and feedforward control, unstable and nonminimum phase systems, multivariate
multiple-input single-output (MISO), and multiple-input multiple-output (MIMO)
cases, varying set-point and cascaded control with further works on MPC [6].

This work addresses the CPA analysis of nonlinear MPC [7] applied to the
nonlinear process benchmark. Many different structures of the predictive control
technique have attracted CPA research for years. First works applied knowledge-
based system for the dynamic matrix control (DMC) algorithm [6]. Further works
followed the benchmarking path [8, 9] and model based approaches [10, 11].
Statistical approach was proposed in [12, 13]. The DMC algorithm was assessed
in different configurations, i.e., as a single controller or the supervisory level over
PID [14, 15].

The nonlinearities require specific quality assessment approach. Review of real
process industry data shows that the majority of the considered variables exhibits
nonlinear, non-stationary, and non-Gaussian behavior. These facts are reflected by
the fat-tailed and/or fractional order [16] properties of the data originating from
industrial processes. Following, this work considers not only standard measures,
such as Gaussian standard deviation, mean square and absolute error indexes, but
also robust measures of Huber standard deviation, least median square error (LMS),
scale factor of the α-stable distribution [17], Hurst exponent [18], differential and
rational entropies [19]. As the classical PID and simple MPC algorithms have been
previously analyzed [20], this work extends the research towards nonlinear MPC
control impacted by fat-tailed disturbances. The analysis points out that proposed
non-Gaussian methods, i.e., stable distribution dispersion factor, Hurst exponent, or
entropy have much higher detectability and robustness against tail fatness of the
embedded process disturbances than classical mean square or Gaussian indexes.

2 Problem Formulation

Alternative CPA methods address practical aspects frequently met in process
industry. In the last years, many attempts to the nonlinear data analysis not based on
the Gaussian assumption have been proposed. Stable statistics, fractal, and entropy
measures are the leaders in these approaches [17, 20]. Such methods are appropriate
for nonlinear control quality assessment, which MPC often exhibits.

2.1 Fractal Methods for CPA

The Hurst exponent was proposed for CPA and tested for the single-input single-
output (SISO) PID control loop [5]. Complex process dynamics frequently brings
about multiple scaling exponents in the same range of scales. Observation of



Control Quality Assessment of Nonlinear MPC 149

industrial control loops data shows that crossover and multiple scales appear
frequently. Thus, the analysis should not be only limited to the single Hurst
exponent, but also consider multiple exponents and crossovers. The rescaled range
R/S plots are used to investigate multi-persistence. Such analysis reveals dichotomy
of scaling behavior that is not predicted by existing simulation models, but detected
empirically.

2.2 Entropy Measures

Ideally, it is assumed that the control error signal should not be fluctuating. Hence,
its distribution shape should be as narrow as possible. Such shape depicts that
uncertainty of the related variable is small, corresponding with the small entropy
value. Entropy has been already used in the CPA as control benchmark [4]. Thus, it
is natural to investigate the opportunities that are offered by the entropy properties
itself. Two different definitions of the continuous-type entropy can be validated
(γ (x) denotes variable distribution, x ∈ R): the differential entropy

Hdiff = −
∫ ∞

−∞
γ (x) ln γ (x) dx (1)

and the rational entropy

Hrat = −
∫ ∞

−∞
γ (x) log

(
γ (x)

1+ γ (x)
)

dx. (2)

2.3 Nonlinear MPC Control

In MPC the values of the process inputs are optimized successively on-line at each
sampling instant. The differences between the required set-point trajectory and the
predicted values of the process outputs are minimized over the prediction horizon.
The algorithm has two important advantages: it can be applied to complex processes
with many inputs and outputs and constraints may be imposed on process variables
during optimization. Simple linear models are used for prediction in classical MPC
algorithms. Unfortunately, in case of nonlinear processes such models cannot be
used since they give inaccurate prediction and perform badly in MPC. In the
most advanced MPC algorithms nonlinear models are used. On-line successive
linearization of a nonlinear model is used to obtain a computationally simple
quadratic optimization tasks [7].
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3 Simulations

Nonlinear polymerization reactor [21] is used as the simulation benchmark. The
initiator flow rate, the monomer flow rate, and the number average molecular weight
are process input, disturbance, and output, respectively. Industrial disturbances
are seldom Gaussian. Hence, the α-stable noise, exhibiting heavy-tails, is used
to address these effects. The following four types of the disturbance signal are
considered to check the impact of the tail heaviness on control quality detection:

r00: normal with small variance generated as α-stable noise: α = 2.0, γ = 0.01,
r20: normal with large variance generated as α-stable noise: α = 2.0, γ = 0.1,
r16: α-stable noise with the same variance: α = 1.6, γ = 0.1,
r12: α-stable noise with the same variance: α = 1.2, γ = 0.1.

Other two probability distribution function (PDF) factors are set to zero, i.e., β =
δ = 0.0). Nine scenarios of MPC settings are tested:

Scen0: the ideal model and tuning parameters: the prediction horizon N = 10,
the control horizon Nu = 3, the weighting coefficient λ = 0.5,

Scen1: too short horizons: N = 2, Nu = 1, (λ = 0.5),
Scen2: too long the prediction horizon: N = 20 (Nu = 3, λ = 0.5),
Scen3: too small the weighting coefficient: λ = 0.05 (N = 10, Nu = 3),
Scen4: too large the weighting coefficient: λ = 50 (N = 10, Nu = 3),
Scen5: ideal tuning, but the model with too small gain: K = 0.5Knom (Knom is

the nominal gain),
Scen6: ideal tuning, but the model with too large gain: K = 2Knom,
Scen7: combination of Scen1 and Scen5,
Scen8: combination of Scen1 and Scen6.

The analysis is performed using the methodology discussed in [20]. It starts with
the evaluation of the control error. Time trends for selected (Scen0, Scen1, Scen3,
and Scen4) control errors are sketched in Fig. 1. Time series reflect representative
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Fig. 1 Time series for selected scenarios with the disturbance variant r00
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features. Scen1 leads to poor control, Scen3 results in very good control, while in
contrary Scen4 gives sluggish controller behavior. The trends enable to calculate
main integral measures of integral square error (ISE), integral absolute error (IAE),
and least median square (LMS).

Next, Figs. 2 and 3 depict two example histograms for the scenarios Scen0
and Scen1, respectively, with the disturbance variant r00. Two features that affect
further analysis are observed. Firstly, significant fat tails are present. Secondly,
worse control quality observed in Scen1 increases both histogram broadness and tail
heaviness. More interesting is the fact that despite normal disturbance the control
error is no longer Gaussian. It exhibits significant tails introduced by the closed
loop operation in the set-point tracking control mode. This observation is somehow
in contrary to the popular understanding. A possible explanation is according to the
central limit theorem. It is assumed that with the increased number of empirical
observations n → ∞ the distribution should converge towards Gaussian PDF.
Unfortunately, it is impossible to find out where one is on the convergence path,
which may result in fat tails [22].

Finally, the fractal R/S analysis is carried out and the persistence measures in
the form of the Hurst exponent are evaluated. Two examples (the same as for

Fig. 2 Histogram for the
scenario Scen0 and the
disturbance variant r00
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Fig. 3 Histogram for the
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the histograms) are sketched in Figs. 4 and 5 for the scenarios Scen0 and Scen1,
respectively, with the disturbance variant r00.

There are two first sight observations. The value of the short memory Hurst
exponent which reflects loop dynamics is H1 � 0.75, which is rather quite far away
from the literature expectations [5], but it has been already observed in real data.
This subject requires further investigation, but one of the hypotheses is that it might
be affected by process or data granulation. Nonetheless, the relative relationship
between optimal control Scen0 and bad sluggish behavior of the Scen1 is well
visible as the H Scen0

1 < H Scen1
1 .

Further analysis uses all the data collected for all selected scenarios run for
all considered disturbance variants. The first observation is that all the considered
indexes are able to detect control quality changes. The detectability for the
considered measures is visualized for two examples of the ISE index in Fig. 6 and
for the α-stable scale factor γ in Fig. 7. The graphs present relative values for the
indexes according to the optimal one in each disturbance variant. One would like to
expect that all the bars in each scenario should be of a similar height. It is observed
that for classical indexes ISA, IAE, σGauss this condition is not fulfilled, while other

Fig. 4 R/S plot for the
scenario Scen0 and the
disturbance variant r00
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Fig. 5 R/S plot for the
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Fig. 6 Detection with the
ISE index
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measures behave closer to the expectations. It is mostly visible for α-stable scale
factor γ and robust standard deviation σHuber. The goal should be the ability to
detect analog loop properties similarly.

Although all the measures are able to detect imperfect control, they cannot point
out the character of poor control. It is achievable with the Hurst exponent (Fig. 8).
Hurst exponent relative changes against the optimal one (Scen0) are in close relation
to the real loop behavior. It is a constructive feature of the Hurst exponent as it is
able to point out the reason and a solution for the loop tuning.

Finally, sensitivity of the measures to the tail index (measured by stability
factor α) is analyzed. Figure 9 presents the relative change for each index against
disturbance variants for optimal Scen0 and Fig. 10 the same relationship for bad
control of Scen1 (normal standard deviation σGauss is denoted as sgauss, the
α-stable scale factor γ is denoted as gstab, the robust measure in form of the
scale M-estimator with logistic psi-function σHuber is denoted as shuber). ISE,
σGauss, and both entropies are highly sensitive to the tail index. IAE is more robust,
while LMS, γ , and σHuber indexes are fully robust to the fat tails.
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Fig. 9 The impact of fat tails
for the scenario Scen0
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4 Conclusions

The analysis of the nonlinear MPC simulations results brought a few main observa-
tions. First of all, the control error signal, which is the basis for the CPA, exhibits fat
tails despite the normal character of disturbances. All considered indexes are able
to detect degradation of control quality, although they are unable to show how far
the MPC tuning parameters are from the optimal ones. Moreover, they are unable
to point out the reason for mistuning, i.e., control sluggishness or aggressiveness.
Hurst exponent, as the only one, is able to show the character of poor control
(sluggishness versus aggressiveness). It is shown that α-stable dispersion γ , robust
standard deviation σHuber, and LMS are the most reliable and robust against the fat
tails. On the other hand, MSE and normal standard deviation are sensitive to the fat
tails, disabling the assessment.
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Impact of the Controller Algorithm
on the Effect of Motor Vehicle Steering
During a Lane-Change Manoeuvre

Mirosław Gidlewski , Leszek Jemioł , and Dariusz Żardecki

Abstract The automation of the lane-change manoeuvre by using an active steering
system is a fundamental problem of the automation of controlling a vehicle driven
at a high speed. The algorithm of controlling the steering system during the lane
change as proposed herein is the result of optimizing the control process by means
of a reference model for the dynamics of vehicle motion with various degrees of
simplification. The algorithm includes the determination of time-optimal reference
curves describing the control input signal (a “bang-bang” type reference signal of
the steering wheel angle) and the vehicle’s linear and angular “responses” describing
its trajectory. The predefined vehicle trajectory signals are implemented in a
regulation process based on two Kalman’s regulators, which ensure the follow-up
process to be optimized in terms of the “linear-quadratic problem”. The regulation
loops can be switched on in different modes. Simulation test results, reflecting the
functioning of such a control system with using various reference signal models and
various regulators’ operation modes, prove the direction of the engineering works
to be correct.
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1 Introduction

Numerous research centres are engaged in works on systems to automate the road
manoeuvres of motor vehicles. The manoeuvres performed with high speeds (e.g.,
obstacle avoidance or overtaking) are particularly difficult for automation because
of the requirement to control an object whose dynamics is non-linear, unstable and
sensitive to parameter changes and whose trajectory is subject to tight limitations.
Usually, road manoeuvres may be treated as a sequence of elementary lane changes.
Therefore, the automation of the lane change is a fundamental problem of the
automation of steering a motor vehicle.

The algorithms of controlling the steering wheel angular motion during the lane-
change manoeuvre are usually based on the concept of tracking system, where the
controller includes a generator of reference signals defining the vehicle motion in
the road plane and regulators correcting the control signal so that the actual vehicle
trajectory is close to the reference (prescribed) trajectory. In many publications,
an assumption is made a priori that the reference vehicle trajectory is to be a
heuristic composition of smooth elementary functions, e.g., sinusoid segments
[1–4]. Similarly, the regulator algorithm forms are a priori assumed, e.g., as PID
or MPC [5–7]. In authors’ works, both algorithms of the reference signal generator
and correcting regulators have been the results of a formal optimization carried
out with using simplified reference models of vehicle motion lateral dynamics. Of
course, such conceptual control system has to be verified in extensive simulation
investigations by using a very detail model of vehicle motion as a virtual object
of a control. These works have been reported in many authorial publications,
e.g. [8–10].

The set point signals generated can be based on reference models with various
degrees of simplifications. Also various regulation loop switching-on modes can be
used in the algorithm of the controller. These research threads are subjects of this
chapter which presents fragments of unpublished simulation investigations.

2 Controller Algorithms

The process of changing the lane by a car travelling at a constant speed on a straight
road can be described using three variables: one “input signal”—steering system
wheel angle δH(t) and two “output signals”—position of the centre of vehicle mass
relative to the centre line of the road (lateral shift) Y(t) and angular position of the
vehicle body relative to centre line of the road (yaw angle) ψ(t). The course δH(t)
that minimizes the manoeuvring time should generally be of the “bang-bang” type,
and the control process can be divided into two successive phases, i.e., transposition
and stabilization. This concept (Fig. 1) is in line with experiences of drivers and
can be confirmed by the control theory relating to time-optimized systems. It should
be noted that when an obstacle suddenly arises, the driver turns the steering wheel
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Fig. 1 The general concept
of “bang-bang”-type steering
(here the most sharp form of
the steering signal) and time
decomposition of lane change
control [8]
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Fig. 2 Block diagram of the automatic control system [9]

violently, first looking for the good lateral displacement of the vehicle and ultimately
improving the angular position of the vehicle.

The structure of the authors’ control system resulting from this general concept
is expressed in a block diagram (Fig. 2).

The reference signals—the steering wheel angle δHR(t) as well as its responses—
the lateral displacement YR(t) and vehicle yaw angle Ψ R(t) are planned and
generated on the basis of an assumed reference model describing the lateral vehicle
dynamics. Because the reference model must be efficient for online computations,
its mathematical form must be simplified enough (here linearized “bicycle model”
expressed by transfer functions). Note also that formal optimization of δHR(t) due
to minimization of the time of the lane change process requires extremely reduced
model. In this case, using Pontriagin’s maximum principle, δHR(t) is calculated
in the most sharp “bang-bang” type form describable analytically by adopted
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parameters of the car and the lane-change. Of course, to get satisfactory input and
output signals δH(t), Y(t), ψ(t) in a real vehicle controlled, the reference signal
δHR(t) needs a correction by signals�δ(t) from two regulators based on error signals
YR(t)− Y(t) (regulator 1) and Ψ R(t)− Ψ (t) (regulator 2). For analytical synthesis of
the regulators’ algorithms, the control task should be formulated to the SISO (single-
input single-output) object. So, according to this concept, the �δ(t) correction
signal comes from only one regulator, and the regulation loops are switched on
sequentially: in the transposition phase—the regulator 1 to minimize the error
YR(t) − Y(t), and then in the stabilization phase—the regulator 2 to minimize the
error Ψ R(t) − Ψ (t). Such a decomposition of the regulation task seems to be not
only in line with experience of drivers but is very beneficial for synthesis effective
regulators’ algorithms. Using Kalman’s control theory of optimal linear-quadratic
systems associated with SISO models, we obtain algorithms in fully analytical forms
whose parameters depend on the parameters of the reference model.

The concept of synthesis of controller’s algorithms (reference signal generator
for δHR(t), YR(t), Ψ R(t), as well as both regulators for �δ(t)) is expressed in Fig. 3.
Details are presented in Ref. [8].

A special feature of the developed controller algorithm is an analytical linking
of its parameters with the parameters of the reference model and lane-change
description. So, by changing the parameters like Y0, V, . . . , the controller can
change its parameters like δ0, T, . . . automatically.

Some detail assumptions of the algorithm shown in Fig. 3 which have been
introduced to simplify its analytical synthesis can be modified very easily. Two
modifications are presented in this chapter:

1. Modification of the reference model in the signal generator:
Here, the model extremely reduced (where the transmittances GYδ(s) and

Gψδ(s) contained only integrating members with gains) is replaced by the
linearized “bicycle model” (with GYδ(s) and Gψδ(s) more developed).

2. Modification of the method of switching control loops:
Here, some earlier activation of regulator 2 is allowed and/or to shorten or

extend an operating time of the regulator 1. In this case, correction action can be
described as follows (see also Fig. 4):

δH(t) = δHR(t)+ΔδH1(t) · f1(t)+ΔδH2(t) · f2(t) (1)

ΔδH1(t) = L−1 (R1(s) (YR(s)− Y (s)) (2)

ΔδH2(t) = L−1 (R2(s) (ψR(s)− ψ(s)) (3)

f1(t) = 1(t)–1 (t–T1) (4)
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INITIAL MODEL (standard approach):
Classic “bicycle model” equations (in local coordinates (x,y))

+ Transformation equations (to global coordinates (X,Y))

Linearization
Laplace transformation

Transfer functions GYδ(s), Gψδ(s)

REFERENCE MODEL - Reduced transfer functions

REFERENCE SIGNAL GENERATOR based on reduced transfer functions

CONTROL SYSTEM based on reduced transfer functions

δH(s)=p·δ(s), δ(s)=δR(s)+Δδ(s)
For transposition state (t≤2T) Δδ(s)=Reg1(s)(YR(s) – Y(s))  

YR(s)= GYδ(s)·δR(s)
For stabilization state  (t>2T)  Δδ(s)=Reg2(s)(ψR(s) – ψ(s))  

ψR(s)= 0
Reg1(s), Reg2(s) – transfer functions of Kalman’s regulators (their structures 

and parameters result from reference model)

Fig. 3 The concept of the lane-change control system synthesis [10]

f2(t) = 1 (t–T2) (5)

where

�δH1(t), �δH2(t)—signals from the regulators 1 and 2
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Fig. 4 Interpretation of
functions f1(t), f2(t)
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f1(t), f2(t)—control functions expressing switching on/off of regulation loops
1(t)—Heaviside function
T1, T2—time parameters

These two modifications require simulation investigation. Representative results
are presented in Sect. 3.

3 Simulation Investigations

The examination of the control system proposed was based on simulation tests
where the controller model controlled a model describing in detail the motion of
a real motor vehicle during a lane-change manoeuvre. The virtual steered object
used in the tests was an authorial 3D multi-body non-linear mathematical model
of the dynamics of motion of a two-axle motor truck of medium load capacity,
with 20 degrees of freedom. Prior to the simulations, the model was thoroughly
experimentally verified during both rig and road tests, carried out in various
conditions, extremely difficult inclusive. Since the simulation tests were to result
in thorough assessment of the impact of changes in model parameters on the vehicle
motion, the calculations were repeated for many datasets describing the controller,
vehicle, and road conditions (including those defined as “difficult”). To deepen the
comparative analysis of the simulation results for different variants of the data,
special integral indicators were introduced. The general idea of simulation-based
investigations has been illustrated in Fig. 5.
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Fig. 5 The concept of sensitivity studies based on simulation investigations

By changing model equations or parameters, we can observe their influence on
the results of simulations. The method is very useful for validating our lane-change
control system. In this case, the models “1” and “2” are activated by the same signal
δHR(t) from the reference signal generator. Here the most important indexes are
WδH , WY and WΨ .

Simulation investigations presented in this chapter concern the two types of
modifications of the controller algorithm. Representative results of simulation are
shown in Fig. 6. Here the modifications of the method of switching control loops
concern the situation when regulators work “in series” (T1 = T2) and T1, T2⊂ {1.2T,
1.5T, 2T}.

In these tests the parameters of the virtual lorry are identical. The simulated lane-
change manoeuvre refers to quit difficult traffic conditions (V = 70 km/h, friction
coefficient μ = 0.3). Also, parameters of the reference signal δHR(t) (δH0 = 54.7o,
T = 1.01 s) as well as parameters of regulators are unchanged.

Example values of the indexes presented in Table 1 have been calculated on
the assumption that Model 1 (nominal) corresponds to the simplest version of
the controller (when the signal generator reference model is based on the most
reduced model) while Model 2 (changed) corresponds to the more sophisticated
model of the controller (when the reference signals are generated on the linearized
bicycle model). The calculations have been repeated for T1, T2 ⊂ {1.2T, 1.5T, 2T}),
(T1 = T2).



164 M. Gidlewski et al.

Fig. 6 Example of result simulations

Table 1 Values of sensitivity
indexes for different T2

T2 WδH (%) WY (%) WΨ (%)

1.2 T 33.1 1.2 20.5
1.5 T 32.3 3.2 18.8
2.0 T 21.2 3.4 10.4

4 Conclusions

The investigation results show the complexity of the dynamic properties of the
vehicle and confirm the advantages of the automatic control solutions adopted.
The regulators used in the controller, correcting the reference “bang-bang” control
signal generated, were confirmed to be effective. For the reference curves obtained
from the extremely simplified vehicle model, the time and distance of avoiding the
obstacle by the truck were shorter, but with excessive steering wheel turning angle
and velocity applied by the regulator. In the case of such a reference model, the
instant of switching on the regulator in the stabilization loop is important for the
vehicle trajectory. The use of the more complicated vehicle model for the generation
of reference signals resulted in a minor growth in the time and distance needed
for avoiding the obstacle, but the steering wheel rotation was far less intensive,
its velocity and angle values were far lower than those obtained for the extremely
simplified model, and the vehicle trajectory was stabilized almost immediately. The
impact of the instant of switching on the regulator was insignificant in this case.
Modifications of the switching on/off procedures seem to be important when the
reference model has the most reduced form.



Impact of the Controller Algorithm on the Effect of Motor Vehicle Steering. . . 165

References

1. Anderson, S.J., Peters, S.C., Pilutti, T.E., Iagnemma, K.: An optimal-control-based framework
for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles
in hazard avoidance scenarios. Int. J. Veh. Autonom. Syst. 8(2), 190–216 (2010)

2. Katrakazas, C., Quddus, M., Chen, W.-H., Deka, L.: Real-time motion planning methods for
autonomous on-road driving: state-of-the-art and future research directions. Transport. Res. Pt
C Emerg. Technol. 60, 416–442 (2015)
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Fractional Order Impedance Control

Guangrong Chen, Sheng Guo, Bowen Hou, Junzheng Wang,
and Xiangyang Wang

Abstract This paper proposes a novel fractional order impedance control. An
integral item is added into the traditional impedance model to eliminate the tracking
error and the idea of fractional order is introduced to make the orders of inertia,
damping, and stiffness are no longer only integers to achieve more significant
compliant performance. Simulation results validate the advantages and proposed
impedance control can be employed to absorb, hold, and dissipate system energy. It
provides an insight for robot dynamic interaction, bouncing, and jumping control.

Keywords Fractional order · Impedance control · Compliance control · Stability
analysis

1 Introduction

Impedance control is an effective way to detail with robotic environmental inter-
action [1]. But as for the traditional impedance model, a second-order system [2],
there exists a tracking error in robotic end-effector, which results in a bad track
performance of robots in handling tasks. In this paper, an integral item is added to
eliminate the tracking error.

It has been studied that fractional order PID can achieve more significant
control performance than traditional PID [3]. In order to improve the compliant
performance, the traditional impedance model is transferred to fractional order
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impedance model by setting the orders of inertia, damping, and stiffness as fractions
by taking the advantages of fractional order [4].

In fact, a robotic leg can be equivalent to a hopper [5]. For simple, a vertical
hopper actuated by hydraulic cylinder was taken as a research subject here.

2 System Model

The system model is shown in Fig. 1. The vertical hopper simulation model, vertical
hopper model, and vertical hopper equivalent model are shown in Fig. 1a, b, and
c, respectively. M is the lumped mass of the system; L is total length of hydraulic
bouncing system; Lc is the length of cylinder; Ls is the length of spring; Lf is the
length of foot; H is the falling height; Ks is the stiffness of passive spring, which
can be taken as the stiffness of environment ( KeKs

Ke+Ks ) for the cylinder when the touch
terrain is rigid, which means Ke = ∞; x is the motion displacement of lumped
mass; Kc,Dc is the actual stiffness and damping of the active hydraulic cylinder
system, respectively; Fc is the control force produced by hydraulic cylinder; Fe is
the contact impact force, which almost equals to the force Fs produced by passive
spring and Fs = KsΔLs , where ΔLs represents the compression of passive spring
caused by contact impact.

3 Fractional Order Impedance Control

3.1 Fractional Order

The overall structure of a FOPID controller is given as

CFOPID = KP +KI s−λ +KDsμ. (1)

Fig. 1 The system model.
(a) The vertical hopper
simulation model. (b) The
vertical hopper model. (c)
The vertical hopper
equivalent model

(a)
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L

M

cL
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fL

H

(b)

cK

sK

cD
L

M

cL

sL

fL

x

eF

cF

H

(c)
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Compared with PID controllers, there are two more tuning parameters: λ and μ,
in FOPID scheme (PIλDμ). λ and μ are positive and real numbers. In fact, they
have been added to the classical PID controllers to make a compromise between
the advantages and disadvantages of the integer-order integral and derivative parts,
and make the controller design more flexible. Since this paper focuses on fractional
order, the details about parameters tuning and stability analysis of FOPID, which
can be found in [4], are omitted here.

3.2 Impedance Control

The diagram of position/force based active compliance controller is illustrated in
Fig. 2, where xd ∈ R

n is desired displacement; x ∈ R
n is actual displacement; xr ∈

R
n is required displacement; xe ∈ R

n is displacement caused by the environment.
The impedance model Zf is utilized to shape the relationship between contact force
Fe and corresponding nominal position modifications or output of target admittance
Δxf ∈ R

n. There exists an inner position loop and an outer compliance loop in the
impedance controller.

The desired impedance Zf (s) is usually adopted in the form of second-order
linear system (spring-damping-inertia system) [2, 6]:

Zf (s) = 1

Ms2 + Ds +K
, (2)

where K,D,M ∈ R
n×n are diagonal positive-define matrices and characterize the

desired stiffness, damping, and inertia, respectively.

3.3 A Novel Fractional Order Impedance Control

For further research, a special and useful example of Zf (s) in (2) (the proposed
novel fractional order impedance model) for legged robots is addressed as

xe

xd x

�x f

x r
FeHydraulic

dynamics 
Environment

Model 

Impedance model

Position
controller 

Inner position loop

Outer impedance loop

+
– –

––

Fig. 2 The diagram of position/force based active compliance controller
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Δx(s)

Fe(s)
= Df1s

df1 +Kf + If1s
−if1

Dx2s
dx2 +Dx1s

dx1 +Kx + Ix1s
−ix1 + Ix2s

−ix2
, (3)

where all the coefficients and orders are larger than 0 and belong to real numbers
(no longer only integers). Specially, 0 < dx1 < 1.5 � dx2 � 2.5, 0 < ix1 <

1.5 � ix2 � 2.5. By comparison, Dx2 , Dx1 , and Kx are the set impedance-like
inertia, damping, stiffness as in (2). The integral item in (3) is utilized to eliminate
(denominator) or increase (numerator) the tracking error in traditional impedance
model. The derivative item in the numerator of (3) is used to determine the total
energy of the system (dissipating or absorbing).

4 Simulation Analysis

4.1 The Influence of Each Parameter

Co-simulations are done between Adams software and Matlab. There are two main
problems in designing a FOPID controller experimentally: (1) an approximation
method is required to realize the fractional-order differentiators and integrators and
(2) an optimization algorithm is needed for the control parameters tuning based
on the experimental data. The first problem can be solved by referring to [3, 4].
Through comparing six different values in one of the 14 parameters in a given
model, analyzed effects are shown in Fig. 3.

The functions of parameters in the choosing model are concluded as follows (6
classical models are shown):

Model 1 ( 1
Dx1 s

1+10
) The Dx1 is the traditional damping in (2). A large Dx1 can

dissipate the system energy and reduce the oscillations, but it will increase the
contact force in turn.

Model 2 ( 1
0.6sdx1+10

) When dx1 gets closer to 1.5, the damping-like Dx1 = 0.6

begins to behave inertia-like, which results in growing contact force and oscillations
before coming into a stable state. When dx1 gets closer to 0, Dx1 = 0.6 begins to
behave like a stiffness so that the system energy cannot be dissipated well and no
stable state can be reached. When dx1 ∈ [0.9, 1.1], a good transition can be obtained.

Model 3 ( 1
0.002s2+0.6s1+10+Ix1 s−1 ) The novelty is that a suitable Ix1 can be utilized

to eliminate the tracking error. A small Ix1 has a long convergence time, while a
large one will cause oscillations before coming into a stable state.

Model 4 ( 1
0.002s2+0.6s1+10+40s−ix1

) The ix1 mainly affects the transition of contact

force and tracking error with little effect on their values. When ix1 gets closer to
0, Ix1 behaves like a stiffness. When ix1 gets closer to 1.5, an overshoot/oscillation
forms.
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Fig. 3 The influences of parameters in (3): (a) Model 1: 1
Dx1 s

1+10
. (b) Model 2: 1

0.6sdx1+10
.

(c) Model 3: 1
0.002s2+0.6s1+10+Ix1 s−1 . (d) Model 4: 1

0.002s2+0.6s1+10+40s−ix1
. (e) Model 5:

Df1 s
1+1

0.002s2+0.6s1+10
. (f) Model 6: 0.001s

df1+1
0.002s2+0.6s1+10
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Fig. 3 (continued)

Model 5 (
Df1 s

1+1

0.002s2+0.6s1+10
) When Df1 grows, oscillations occur. The energy is

added into system so that the system begins to bouncing up with the growing Df1 .
The dissipated energy is fixed by the chosen damping 0.6, while the added energy
depends on Df1 .

Model 6 ( 0.001s
df1+1

0.002s2+0.6s1+10
) When df1 gets closer to 0, Df1 = 0.001 begins to

behave like Kf = 1. When df1 grows, undesired oscillations occur.

From above simulation results, compared with traditional impedance control,
the proposed novel fractional order impedance control has little effect on reducing
contact impact Fe, but it can improve the transition process of force/position
response efficiently and decrease the tracking error Δx = xd − x gradually.
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4.2 Comparative Simulations

Simulations were done in a free falling situation. Figure 4a and b is the tradi-
tional ( 1

0.6s1+10
) and fractional order ( 1

0.002s1.9+0.6s0.95+10+40s−1.1 ) impedance model,
respectively. They are all energy dissipating impedance model and proposed
fractional order impedance control with an added integral item could eliminate the
tracking error and achieve more significant compliance behavior. Figure 4c and d is

the energy holding ( 1
0.6s0.7+10

) and absorbing ( 0.1s1+1
0.002s2+0.6s1+10

) impedance model,
which provides guides for robots bouncing height control and jumping control,
respectively.

In order to know why more significant complaint behavior can be achieved
in the proposed novel fractional order impedance control, the further research of
comparative simulations are implemented in Fig. 4 and the calculated stiffness and
damping of impedance models are shown in Fig. 5. In Fig. 5a, it is easy to see
that the calculated stiffness and damping are almost the same to the given ones
Kx = 10 N/mm,Dx1 = 0.6 N/(mm/s) in traditional impedance model. In Fig. 5b,
the calculated stiffness and damping are variable in impact phase in fractional order
impedance control. The result validates references [7, 8] and is the reason why more
significant complaint behavior can be achieved. Besides, the calculated stiffness and
damping values would decrease to be negative in compressing phase and increase to
be positive again in rebounding phase. As thus, the energy could be dissipated more
efficiently. In Fig. 5c, the calculated damping does not change a lot in the energy
holding impedance model, but the calculated stiffness increases in compressing
phase and decreases in rebounding phase and the whole system energy is held so that
the bouncing height could be kept. In Fig. 5d, the calculated stiffness still increases
in compressing phase and decreases in rebounding phase in the energy absorbing

Fig. 4 Comparative simulations. (a) Traditional impedance model: 1
0.6s1+10

https://youtu.be/

h5uBiMIziJU. (b) Fractional order impedance model: 1
0.002s1.9+0.6s0.95+10+40s−1.1 https://youtu.be/

UMgfV7xIIxk. (c) Energy holding impedance model: 1
0.6s0.7+10

https://youtu.be/g4LbhrrdmJI. (d)

Energy absorbing impedance model: 0.1s1+1
0.002s2+0.6s1+10

https://youtu.be/DE9X5q4W3dI

https://youtu.be/h5uBiMIziJU
https://youtu.be/h5uBiMIziJU
https://youtu.be/UMgfV7xIIxk
https://youtu.be/UMgfV7xIIxk
https://youtu.be/g4LbhrrdmJI
https://youtu.be/DE9X5q4W3dI
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Fig. 5 Calculated stiffness and damping. (a) Traditional impedance model: 1
0.6s1+10

. (b) Frac-

tional order impedance model: 1
0.002s1.9+0.6s0.95+10+40s−1.1 . (c) Energy holding impedance model:

1
0.6s0.7+10

. (d) Energy absorbing impedance model: 0.1s1+1
0.002s2+0.6s1+10

impedance model, but the calculated damping always decreases from positive to
negative to inject energy into the system so that the system starts to jump. Note that
the calculated stiffness and damping are based on the assumption that they are the
same in the neighboring two control cycles and do not change in the flight phase.

4.3 The Criterion of Choosing and Tuning Parameters

Firstly, the chosen parameters in (3) should guarantee the system stability. Assume
the position servo controller (inner position loop in Fig. 2) is stable. If the proposed
novel fractional order impedance model in (3) is stable, the whole system will be
stable. Our previous published work [4] can be employed to ensure the stability of
proposed novel fractional order impedance model.

Secondly, the parameters in (3) are chosen and tuned to make sure the contact
force is as small as possible. Meanwhile, the required/unrequired tracking error
should have a good transition or be eliminated. Model 4 could be a good reference.
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Finally, the detailed procedure of choosing and tuning parameters in (3) refers to
Sect. 4.1. Specially, Dx1, dx1 ,Kx, Ix1 , ix1 ,Df1 , df1 ,Kf play more important roles
among the 14 parameters in (3) and should be determined firstly.

5 Conclusions

In this paper, a novel fractional order impedance control was proposed by combining
an integral item and fractional order into the traditional impedance control. The
research of this paper provides an insight for the compliance control for legged
robots. The main contributions are concluded as follows:

– An integral item is added into the traditional impedance model to eliminate the
tracking error caused by the compliant behavior.

– The idea of fractional order is introduced to make the orders of inertia, damping,
and stiffness are no longer only integers so that more significant compliant
performance can be achieved.

– The proposed novel fractional order impedance control is validated by compara-
tive simulations in a hydraulic bouncing system.
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Analysis of Quadcopter Dynamics During
Programmed Movement Under External
Disturbance

Izabela Krzysztofik and Zbigniew Koruba

Abstract This chapter presents the quadcopter dynamics and controls during
programmed movement under external disturbance such as wind gusts and projectile
blasts. To ensure high precision in maintaining the line of sight at a required
position, the authors proposed a new control method based on a combination of three
regulators: a classic PID controller, a robust sliding controller and a modified linear
quadratic controller. Effectiveness of the developed control method was examined
due to the precision of the set motion. Selected results of the simulation studies are
presented graphically.

Keywords Quadcopter · Programmed movement · Modified LQR · Sliding
mode controller

1 Introduction

This chapter analyses the quadcopter (QUAV) dynamics and controls during
programmed movement under external disturbance such as wind gusts and projectile
blasts. It should be highlighted that the QUAV in question offers an advantage of
being able to remain in a hover position for a specific period of time.

The laser target indication system (LTIS) will therefore not require its own
control system and thus be much simplified, for its control is reduced to adjusting the
angle between the target line of sight (TLOS) and the QUAV longitudinal axis. The
LTIS function is therefore exercised by the drone itself, which is equipped with an
automatic pilot, an infrared sensor for detecting thermal radiation emitted by ground
targets (a tank, a combat vehicle, etc.) and a laser target indicator. In the target search
mode, the drone is set in programmed movement, which provides for scanning the
ground surface along its longitudinal axis which is fitted with an infrared sensor
and laser target indicator. When a heat signal from a target is received, the drone
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Fig. 1 Algorithm for QUAV control during detection and laser illumination of a ground target

moves to a hover position and starts illuminating the target with laser impulses, thus
rendering it as a possible object of attack [1, 2].

The studies used a full, non-linear model of the quadcopter’s dynamics. It should
be emphasized that in the absence of knowledge of the initial conditions and some
variables of the state of the drone, the model was linearized using Jacobian, i.e. a
state matrix with non-stationary parameters. Thanks to this, we can use a dynamic
regulator in autonomous drone movement.

To ensure high precision in maintaining the TLOS at a required position, the
authors proposed a new control method based on a combination of three regulators:
a classic PID [3] controller, a robust sliding mode controller (SMC) [4, 5], and a
modified linear-quadratic controller [6], in the following way: the sliding controller
was determined for the linear coordinates x, y, z of the drone position, while the PID
controller and LQR for the angular coordinates φ, θ , ψ of the drone position.

A simplified operating diagram of the target detection, tracking and laser
indication system from a QUAV is shown in Fig. 1.

2 Control Algorithm

The QUAV position is controlled with the speed of the motors Ω i [7]. Six
control signals are defined: U1—height control, U2—roll channel control, U3—
pitch channel control, U4—yaw channel control and two auxiliary signals for x and
y position control: Ux and Uy [3]. The quadcopter control algorithm is as follows.
Pre-set controls Uz1 as well as Ux and Uy are established. Based on them, roll and
pitch angles are determined:
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φz = m
(
Ux sinψ − Uy cosψ

)
/Uz1 (1)

θz = m
(
Ux cosψ + Uy sinψ

)
/Uz1 (2)

Then, pre-set controls Uz2, Uz3 and Uz4 are determined. With the pre-set control
values known, one can determine the desired rotational speed values for the drone’s
rotors:

�2
1 =

1

4b
Uz1 − 1

2b
Uz3 + 1

4d
Uz4 (3)

�2
2 =

1

4b
Uz1 − 1

2b
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�2
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4d
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�2
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1
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4d
Uz4 (6)

Finally, with the rotational speed values known, one can determine the vector U
components:
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where m—drone weight; b—thrust coefficient; d—drag coefficient; ψ—yaw angle.
The control laws for the sliding mode controller are established as follows [8]:

Uzi = −ki tan h (λiei + ėi ) (8)

where

i = x, y, 1, 2, 3, 4; λi—positive constants; ki —sliding gains
ex = x − xz; ėx = ẋ − ẋz; ey = y − yz; ėy = ẏ − ẏz; e1 = z − zz; ė1 = ż− żz;
e2 = φ − φz; ė2 = φ̇ − φ̇z; e3 = θ − θ z; ė3 = θ̇ − θ̇z; e4 = ψ − ψ z; ė4 = ψ̇ − ψ̇z

In order to establish the optimum control, the following functional is formulated:

Irot =
∝∫

0

(
xTrotQrotxrot + uTrotRroturot

)
(9)



180 I. Krzysztofik and Z. Koruba

The law of control urot is represented by the following formula [9]:

urot = −Krot
(
xrot − xzrot

)
(10)

where xrot—the vector of true variables of the quadcopter state; xzrot—the vector of
the desired values of the quadcopter state variable.

The gain matrix Krot is determined with the lqr function present in Matlab [10]:

Krot = lqr (J,B,Q,R) (11)

where the state matrix A is replaced with the system Jacobian, B is the control
matrix and Q and R are weight matrices reduced to diagonal forms and selected
experimentally.

The Jacobian J is determined on the basis of nonlinear equations that describe
the quadcopter’s movement

Jrot =

⎡

⎢
⎢⎢⎢
⎣

∂g1
∂xrot1

∣∣∣
xz1

· · · ∂g1
∂xrot6

∣∣∣
xz6

...
. . .

...
∂g6
∂xrot1

∣∣∣
xz1

· · · ∂g6
∂xrot6

∣∣∣
xz6

⎤

⎥
⎥⎥⎥
⎦

(12)

where functions g1, g2, g3, g4, g5, g6 represent the right sides of the non-linear state
equations that describe the quadcopter’s dynamics model.

3 Numerical Simulation Results

Simulation studies were conducted in the Matlab/Simulink environment for the
quadcopter control during programmed circular movement in the presence of
external disturbance. The parameters of PID and SMC regulators were selected
using the fmincon function available in the Matlab software. The weight matrices
Q and R were selected in the manner described in [11]. The following quadcopter
movement parameters were assumed [3]:

m = 0.65 [kg]; b = 3.13 · 10−5[Ns2]; d = 7.5 · 10−7[Nms2]
l = 0.23 [m]—arm length
Jr = 6.0 · 10−5 [kgm2]—rotor’s moment of inertia
Ix = 7.5 · 10−3 [kgm2], Iy = 7.5 · 10−3 [kgm2], Iz = 1.3 · 10−32 [kgm2]—moments

of inertia relative to respective axes of the drone-related coordinate system

The values of the sliding mode controller factors are set to:
λx = 1.1, kx = 2.9
λy = 1.3, ky = 3.2
λ1 = 8.8, k1 = 28.2
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The values of the PID controller factors are:
kp2 = 0.45, kd2 = 0.36
kp3 = 0.45, kd3 = 0.36
kp4 = 0.12, kd4 = 0.12

Disturbances acting on linear coordinates of drone position were considered.
They were adopted in harmonic form with large amplitudes of 0.5 for x and y
coordinates and 2.5 for z coordinate.

The graphs in Figs. 2, 3 and 4 clearly show that the appearance of external
disturbances causes significant deviations of the quadcopter position from the set
point. The selected regulator works properly, because the drone quickly reaches
the set values. Figures 5, 6 and 7 show that the developed control system works
effectively when disturbances occur as well as the moment when a drone’s flight

Fig. 2 Actual and pre-set
quadcopter flight trajectory in
space
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Fig. 3 Time-dependent
variations of the actual
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Fig. 4 Time-dependent
variations of the actual
coordinate y (blue) and
pre-set coordinate yz (green)
for the quadcopter position in
space
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Fig. 5 Time-dependent
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changes from an ascending flight to a circle flight (target searching). In turn, Fig. 8
presents that the z position of the quadcopter is not affected by disturbance. During
the whole drone’s flight, the rotational speeds achieve feasible values as shown in
Fig. 9.

In conclusion, external disturbances cause significant deviations of the quad-
copter from the pre-set trajectory (Figs. 2, 3 and 4). However, it should be noted
that despite the large disturbance, the drone quickly returns to the set position.
Therefore, the presented test results clearly show that the drone control system is
good at dealing with external disturbances, despite the fact that it is very sensitive
to them. This is particularly evident in Figs. 5 and 6.
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Fig. 6 Time-dependent variations of the quadcopter pitch angle: actual θ (blue), pre-set θ z (red)
and θ obtained for LQR (green)

Fig. 7 Time-dependent
variations of the quadcopter
yaw angle: actual ψ (blue),
pre-set ψ z (red) and ψ
obtained with LQR (green)

�-lqr
�z

�
0.06

0.05

0.04

0.03

0.02

0.01

0

–0.01
0 10 20 30 40 50 60

t (s)

pi
s,

 p
si

-lq
r, 

ps
iz

 (
ra

d)

4 Conclusions

This chapter examined the effectiveness of the proposed new control system based
on a combination of three regulators: PID, SMC and modified LQR to ensure a
stable position of the drone in its motion on a pre-set trajectory during tracking of
the ground target, under the prevailing disturbances (gusts of wind, explosions of
projectiles).

Where the initial conditions and certain state variables were unknown, the
authors conducted a linearization of the model with the use of a non-stationary state
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Fig. 8 Time-dependent
variations of the actual
coordinate z (blue) and
pre-set coordinate zz (green)
for the quadcopter position in
space
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Fig. 9 Time-dependent
variations of rotational speed
of the motors
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matrix in the form of the Jacobian. This makes the LQR an adaptive regulator that
improves the drone’s flight stability.

The authors conducted a series of tests of control efficiency for each of the above-
mentioned regulators separately. However, initial simulations demonstrated that the
highest efficiency in ensuring the target tracking and laser illumination accuracy
from the drone’s deck was provided by a control system composed of the LQR,
SMC and PID.
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Nonlinear Model of Quadrotor Dynamics
During Observation and Laser Target
Illumination

Zbigniew Koruba and Izabela Krzysztofik

Abstract This chapter presents a nonlinear mathematical model of movement
dynamics of a quadrotor unmanned aerial vehicle (QUAV). The model takes
into account specific properties of QUAV control and introduces auxiliary virtual
controls. The authors have proposed deployment of this type of QUAV to flights on
programmed routes aimed at search, detection, observation and laser illumination
of ground targets, both stationary and moving. Furthermore, it presented kinematic
relationships of the programmed movement and mutual movement of the drone and
ground target. Also, the authors examined operating efficiency of the PID controller
in ensuring the drone’s stability in a hover position and its movement along a pre-set
trajectory during tracking under kinematic disturbance from the drone’s deck.

Keywords Quadrotor dynamics · Non-linear dynamics · Observation and
tracking

1 Introduction

In recent years, quadrotor unmanned aerial vehicles have become a very popular
unmanned platform which finds various applications and is still at the stage of
intensive research. At present, they are used for inter alia making video footage
of collective events, monitoring of transport infrastructure, supporting rescue
operations and monitoring of air pollution. In this chapter, the authors propose to
use this type of quadrotor unmanned aerial vehicle (QUAV) for laser indication of
ground targets, both stationary and moving. The quadrotor flights on a programmed
route searching for a target, and upon receiving a heat signal, it starts illuminating
the target with laser impulses [1]. A full non-linear mathematical model of quadrotor
flight dynamics has been prepared [2, 3]. The authors took into account auxiliary
controls of the position in the horizontal plane, i.e. towards the x and y axes [4].
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The dynamics and navigation of the QUAV are known and widely described in
the subject literature. However, the analysis of drone navigation methods during
tracking and ground target observation is not well-known. For this reason, the
original element and main contribution of this work is the development of the
QUAV guidance kinematics on a specific point in space and tracking, as well as
laser illumination of the ground target. This is the starting point for further research
on the possibility of cooperation of the QUAV with an autonomous land vehicle,
looking for ground targets covered by terrain obstacles (hills, buildings, etc.). It
should be emphasised that we also have in mind the take-off and landing of the
quadrotor from and to the deck of the land vehicle.

2 Nonlinear Mathematical Model of Movement
of the Quadrotor

The position of the QUAV in the earth-fixed inertial frame is established with three
linear coordinates x, y, z and three angles φ, θ , ψ . Figure 1 shows the QUAV
configuration with rotational speeds, forces and moments generated by the four
motors.

The angular velocity vector ω in the fixed frame is defined as follows:

ω =
⎡

⎣
ωx

ωy

ωz

⎤

⎦ =
⎡

⎣
φ̇ − ψ̇ sin θ

θ̇ cos φ + ψ̇ sin φ cos θ
− θ̇ sin φ + ψ̇ cos φ cos θ

⎤

⎦ . (1)

The following forces and moments acting on the QUAV have been taken into
consideration:

The total motor thrust

Fig. 1 QUAV-related
coordinate system
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P =
4∑

i−1

Pi = b
(
�2

1 +�2
2 +�2

3 +�2
4

)
, (2)

where b is the thrust coefficient and Ω i are rotational speeds of the motors.
The torque resulting from the difference in the thrust generated by motors 2

and 4:

Mφ = bl
(
�2

4 −�2
2

)
, (3)

where l is the length of the arms.
The torque resulting from the difference in the thrust generated by motors 1

and 3:

Mθ = bl
(
�2

3 −�2
1

)
. (4)

The torque resulting from the difference in thrusts generated by respective motor
pairs (1,3) and (2,4):

Mψ =
4∑

i−1

Mi = d
(
�2

1 +�2
3 −�2

2 −�2
4

)
, (5)

where d is the drag coefficient.
Gyroscopic moments:

M
g
φ = Jrθ̇ (�1 +�3 −�2 −�4) , (6)

M
g
θ = Jrφ̇ (�1 +�4 −�1 −�3) , (7)

where Jr represents the rotor moment of inertia.
Applying the Euler–Lagrange formalism, the authors derived the following full

non-linear mathematical model of the quadr movement [2, 5]:

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

ẍ

ÿ

z̈

φ̈

θ̈

ψ̈

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

U1 (cos ψ sin θ cos φ + sin ψ sin φ) /m
U1 (sin ψ sin θ cos φ − cos ψ sin φ) /m

U1 cos θ cos φ/m− g[(
Iy − Iz

)
ψ̇ θ̇ − Jrθ̇�r + lU2

]
/Ix[

(Iz − Ix) ψ̇φ̇ + Jrφ̇�r + lU3
]
/Iy[(

Ix − Iy
)
θ̇ φ̇ + U4

]
/Iz

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

, (8)

where
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Ωr = Ω1 + Ω3 − Ω2 − Ω4
Ix, Iy, Iz—QUAV moments of inertia
U1, U2, U3, U4—controls

The control vector U is established according to the following formula:

⎡

⎢⎢
⎣

U1

U2

U3

U4

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

b
(
�2

1 +�2
2 +�2

3 +�2
4

)

b
(
�2

4 −�2
2

)

b
(
�2

3 −�2
1

)

d
(
�2

1 +�2
3 −�2

2 −�2
4

)

⎤

⎥⎥
⎦ . (9)

3 Movement Kinematics Model of the QUAV and Target

While searching for a ground target, the drone moves in a programmed movement
which enables it to scan the earth surface along its longitudinal axis. Upon target
detection, the drone moves to a hover position and starts illuminating the target with
laser impulses, thus rendering it as a possible object of attack [6].

Reaching a mobile point in space with pre-set coordinates P[xp(t), yp(t), zp(t)]
and the initial position of the drone at point D[xdo, ydo, zdo] as well as tracking
and laser illumination from a constant height Hdo (hover) of point C having
coordinates C[xc(t), yc(t), zc(t)] (ground target) are implemented in accordance with
the algorithm described in the following Eqs. (10)—(19).

Guidance equations:

dxd

dt
= Vdx(t) = Vd rdx(t)

rd(t)
, (10)

dyd

dt
= Vdy(t) = Vd rdy(t)

rd(t)
, (11)

dzd

dt
= Vdz(t) = Vd rdz(t)

rd(t)
, (12)

where

rdx(t) = xp(t)− xd(t), rdy(t) = yp(t)− yd(t), rdz(t) = zp(t)− zd(t).

The mutual distance between points D and P:

rd(t) =
√(
xp(t)− xd(t)

)2 + (yp(t)− yd(t)
)2 + (zp(t)− zd(t)

)2
. (13)
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The drone’s tracking of a mobile point moving on the ground surface from a
pre-set height Hd = const = Hdo:

dxd(t)

dt
= Vdx(t) = Vd rdx(t)

rd(t)
, (14)

dyd

dt
= Vdy(t) = Vd rdy(t)

rd(t)
, (15)

dzd

dt
= Vdz(t) = 0, (16)

rd(t) =
√
(xc(t)− xd(t))2 + (yc(t)− yd(t))2 +H 2

do, (17)

rdx(t) = xc(t)− xd(t), rdy(t) = yc(t)− yd(t), rdz(t) = Hdo. (18)

During laser illumination of a ground target from a constant height Hdo, the drone
should be controlled, so that the mutual distance between points D and C is constant,
i.e., rd(t) = const = rdo. Consequently,

drd(t)

dt
= 0 ↔ dxd(t)

dt
= dxc(t)

dt
,

dyd(t)

dt
= dyc(t)

dt
,

dzd(t)

dt
= 0,

√
(xc(t)− xd(t))2 + (yc(t)− yd(t))2 +H 2

do = rdo,

xd = xc, yd = yc, zd = Hdo. (19)

4 Quadrotor Control Algorithm

The QUAV position is controlled with rotational speed of the motors Ω i. Six
control signals are defined: U1—height control, U2—roll channel control, U3—
pitch channel control, U4—yaw channel control and two auxiliary signals for x and
y position control: Ux, Uy [4, 7].

The control laws for the PID controller were defined as follows [8, 9]:

Ux = kpxex + kdx ėx, (20)



192 Z. Koruba and I. Krzysztofik

Uy = kpyey + kdx ėy, (21)

Uz1 = kp1e1 + kd1ė1 + ki1
∫
e1 dt. (22)

Then, the desired values of angles φz and θ z were found to be:

φz = m
(
Ux sin ψ − Uy cos ψ

)

Uz1
, (23)

θz = m
(
Ux cos ψ + Uy sin ψ

)

Uz1
, (24)

Uz2 = kp2e2 + kd2ė2 + ki2
∫
e2 dt, (25)

Uz3 = kp3e3 + kd3ė3 + ki3
∫
e3 dt, (26)

Uz4 = kp4e4 + kd4ė4 + ki4
∫
e4 dt, (27)

where

ex = xz − x; ėx = ẋz − ẋ; ey = yz − y; ėy = ẏz − ẏ,
e1 = zz − z; ė1 = żz − ż; e2 = φz − φ; ė2 = φ̇z − φ̇,
e3 = θz − θ; ė3 = θ̇z − θ̇; e4 = ψz − ψ; ė4 = ψ̇z − ψ̇
kpx, kpy, kp1, kp2, kp3, kp4 —the regulator gain coefficients
kdx, kdy, kd1, kd2, kd3, kd4 —the regulator damping coefficients
ki1, ki2, ki3, ki4—the regulator coefficients of integral parts

Supplying the above drone controls to formula (9), one can determine the desired
values of rotational speeds of the respective rotors:

�2
1 =

1

4b
Uz1 − 1

2b
Uz3 + 1

4b
Uz4, (28)

�2
2 =

1

4b
Uz1 − 1

2b
Uz2 − 1

4d
Uz4, (29)
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�2
3 =

1

4b
Uz1 + 1

2b
Uz3 + 1

4d
Uz4, (30)

�2
4 =

1

4b
Uz1 + 1

2b
Uz2 − 1

4d
Uz4. (31)

The rotational speed values thus determined are supplied to Eq. (9) and then to
Eq. (8).

5 Results

Let us examine the process of movement of the drone from a point in space to the
point at the pre-set height Hdo = 100 [m] exactly above and at a constant distance
from a target moving on the ground surface. In order to verify the correctness
of the algorithm for navigation (guidance) and ground target tracking and laser
illumination described herein, simulations were carried out assuming the following
system parameters [4]:

m = 0.65 [kg]; l = 0.23 [m]; b = 3.13 · 10−5 [Nms2]; d = 7.5 ∗ 10−7 [Nms2],

Jr = 6.0 · 10−5 [
kg m2

] ;ωmax = 500
[
rad
/

s

]
;Vd =

[
m
/

s

]
; d = 7.5 ·

10−5 [Nms2] ,
Ix = 7.5 · 10−3 [kg m2]; Iy = 7.5 · 10−3 [kg m2]; Iz = 1.3 · 10−2 [kg m2],

�1 = 250
[
rad
/

s

]
;�2 = 250

[
rad
/

s

]
;�3 = 250

[
rad
/

s

]
;�4 =

250
[
rad
/

s

]
,

The initial position of the drone is set to: xdo = 0; ydo = 0; zdo = 0
while the initial position of the target is: xco = 0; yco = 0; zco = 0

The velocity components of the target are: Vcx = 5
[
m
/

s

]
;Vcy =

5
[
m
/

s

]
;Vcz = 0

[
m
/

s

]

On the other hand, the values of parameters of the drone’s PID controller are set
to:

kp1 = 11.8, kd1 = 10.8, ki1 = 0.9; kp2 = 0.65, kd2 = 0.46,
kp3 = 0.45, kd3 = 0.36; kp4 = 0.12, kd4 = 0.12,
kpx = 8.8, kdx = 8.9, kix = 3.0; kpy = 8.8, kdy = 8.9, kiy = 3.0.

The parameters of the PID controller were selected using the fmincon function
available in Matlab. Some test results are shown in Figs. 2, 3, 4, 5, 6, and 7.

Figures 2, 3, 4, and 5 show that the drone movement fairly accurately reproduces
the set trajectory, thus thanks to this, the target can be tracked and precisely
illuminated with a laser. The control moments (Fig. 6) and rotational speeds (Fig. 7)
achieve required values.
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Fig. 2 The process of mutual movement of the drone and target during tracking and laser
illumination of the ground target

Fig. 3 Time-dependent
variations of the actual
coordinate x and pre-set
coordinate xz

6 Conclusions

In this chapter, the authors conducted a theoretical study regarding the possible
application of an unmanned mini rotorcraft for tracking and laser illumination of
a stationary and moving ground target such as a tank, infantry fighting vehicle or an
artillery and missile launcher. The full nonlinear mathematical model of the UAV



Fig. 4 Time-dependent
variations of the actual
coordinate y and pre-set
coordinate yz

Fig. 5 Time-dependent
variations of the actual
coordinate z and pre-set
coordinate zz

Fig. 6 Time-dependent
variations of the drone’s
calculated controls
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Fig. 7 Time-dependent
variations of rotational speeds
of the drone’s motors

movement developed herein provides ground to conduct a comprehensive examina-
tion of the drone’s dynamics during search and subsequent laser illumination of the
target.

The authors examined the operating efficiency of the PID controller in ensuring
the drone’s stability in a hover position and its movement along a pre-set trajectory
during tracking under kinematic disturbance from the drone’s deck. Initial simu-
lations demonstrated that the drone control algorithm proposed herein functions
correctly and ensures the laser target illumination capability.
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Reduced-Order Modeling Friction for
Line Contact in a Turbine Blade Damper
System

Dongwu Li, Chao Xu, Muzio Gola, and Daniele Botto

Abstract Under-platform damper is used to attenuate resonant response and further
prevent high cycle fatigue failure of turbine blades. The aim of this work is to
improve the representation of contact interfaces in modeling an asymmetrical under-
platform damper. A new reduced-order contact model with a lumped parameter
form is proposed, which is based on a modification of the classical Iwan model.
This model can explicitly consider the normal contact pressure on line contact. In
modeling process, a method to relate the physical Hertzian normal contact pressure
with the probability density function (PDF) of slider sliding force for continuous
Iwan model is developed. Experimental results from a laboratory asymmetrical
under-platform damper test rig are employed to validate the proposed model. For
comparison, different normal contact pressure distributions are considered. The out-
of-phase motion of the damper is numerically investigated, and the results show
that the proposed model can give an accurate prediction of the damper’s nonlinear
mechanics behavior.

Keywords Turbomachinery · Under-platform damper · Friction contact ·
Iwan model

1 Introduction

To prevent high cycle fatigue failure due to resonant vibration, dry friction dampers
are often used. They are positioned on the underside of two adjacent platforms
of blades and pressed by centrifugal force during rotation. Vibration energy in
blades can be largely dissipated due to the contact friction between the damper and
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platforms. The analysis and optimization of dampers are not an easy task because
complex nonlinear mechanics behaviors occur on contact interfaces [1–3].

The ability to model frictional contact on these interfaces and to predict the
nonlinear dynamic response of the blade system is essential. Specifically, a reduced-
order contact model with fewer parameters is desired for the aim of simplifying
analysis and optimization task. From this point, Griffin [1] investigated numerically
resonant response of a turbine blade based on a Coulomb friction model which is
characterized by a gross slip force and tangential contact stiffness. Subsequently,
Yang et al. [4] developed a gross slip model to further consider the effect of variable
normal load. Since then, this model has been widely used in modeling of friction
contact in blade damper systems due to mathematic simplicity.

When a contact surface is subjected to a high normal load or low amplitude
of tangential relative motion, gross slip may not happen. In this case, micro-slip
dominates hysteresis friction behavior. To reproduce the micro-slip motion, Menq
et al. [5] developed a continuous frictional model and found that incorporating
the effect of micro-slip can give a better prediction of system resonant response.
Ciğeroğlu et al. [6] presented a distributed parameter micro-slip model, which can
model the varying normal contact load and separation. Gastaldi et al. [7] proposed a
reduced-order micro-slip model using an array of Yang’s macro-slip models, which
was used to analyze the mechanics of under-platform dampers. Recently, Li et al.
[8] developed a modified Iwan model including variable normal load and analyzed
mechanics behavior of an asymmetrical damper. However, the assumption of contact
pressure distribution is not suitable for curved-flat contact.

In this chapter, to improve the performance of predicting energy dissipation
of asymmetrical under-platform dampers, a reduced-order micro-slip model is
proposed. The model can physically consider Hertzian normal contact in the Iwan
model. The first part of this work will focus on the derivation of the proposed contact
model and show the effect of contact pressure distribution on the model. In the
second part, the experimental results from a laboratory asymmetrical under-platform
damper test rig will be employed to validate the proposed model. A dedicated
contact parameter extraction procedure will be devised to obtain friction coefficient
and contact stiffness. Moreover, the effect of different PDF forms will be discussed.

2 The Proposed Reduced-Order Iwan Model

2.1 Modifying Iwan Model to Consider Hertzian Contact
Pressure

Iwan model [9] is a phenomenological friction model which can reproduce tangen-
tial stick/micro/macro-slip motions and be easily integrated into dynamic analysis
code for complex jointed structures. The original Iwan model consists of an infinite
number of Jenkins elements in a parallel form. The tangential friction force is
defined as
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T (x) =
∫ ktx

0
f ∗ϕ

(
f ∗
)

df ∗ + ktx

∫ ∞

ktx

ϕ
(
f ∗
)

df ∗, (1)

where T(x) is tangential force, kt is tangential stiffness, x is relative displacement,
f∗ is critical slipping force, and ϕ(f∗) is pre-assumed PDF. The first integral denotes
slip state, while the second denotes stick state.

To achieve physical modeling line contact between blade platform and damper,
the relation between PDF of critical sliding force and contact pressure is developed
in this work. For linear contacts, the pressure distribution p(s) can be obtained by
Hertzian contact theory,

p(s) = p0

√
1− (s/a)2, (−a ≤ s ≤ a) , (2)

where p0 and a denote the maximum contact pressure and contact half-length,
respectively. The total normal load is defined by the integral of the pressure
distribution, N0 = ∫ a

0p(s)ds. Corresponding central pressure can be derived,
p0 = 4N0/πa.

A projection of contact pressure from spatial distribution to Jenkins elements is
built to introduce physical pressure distribution into Iwan model. Correspondingly,
contact pressure distribution on each Jenkins element can be derived,

p(i) = p0

√
(2i/n)− (i/n)2, (0 < i ≤ n) , (3)

where p0 = 4N0/(πn), i is the number of Jenkins element and n the total number of
elements. According to Coulomb law of friction, critical slipping force distribution
on Jenkins element can be obtained from Eq. (3) by assuming a constant friction
coefficient μ, i.e.

f ∗i /n = (4μN0/πn)

√
(2i/n)− (i/n)2, (0 < i ≤ n) . (4)

To get the density function ϕ(f∗) of critical slipping force, its probability
distribution function ρ(f∗ ) must be constructed first. From Eq. (4), it can be found
that ρ(f∗ ) is a joint distribution function of i. Solving Eq. (4), the expression of i can
be easily derived,

i = n−
√
n2 − (πnf ∗/4μN0

)2
. (5)

Then the probability distribution function ρ(f∗ ) is an integral of PDF ϕ(i) of the
number of Jenkins element,

ρ
(
f ∗
) =

∫ n−
√
n2−(πnf ∗/4μN0)

2

0
ϕ(i)di = 1−

√
1− (πnf ∗/4μN0

)2
, (6)



200 D. Li et al.

where ϕ(i) = 1/n which is a uniform density function. Density function ϕ(f∗) of
critical sliding force is the derivative of ρ(f∗ ),

ϕ
(
f ∗
) = dρ (f ∗)

df ∗
= π2f ∗

4μN0

√
(4μN0)

2 − (πf ∗)2
. (7)

Then substituting Eq. (7) into Eq. (1) and considering gross slip, the tangential
force can be obtained,

T (x) = 2μN0

π
a cot

√(
4μN0

πktx

)2

− 1+
√(

ktx

2

)2

−
(
πk2

t x
2

8μN0

)2

. (8)

When contact interface suffers from a tangential cyclic load, the curve that plots
the tangential friction force versus relative displacement forms a hysteresis loop.
The expression of the hysteretic loop can be deduced according to Masing rule [9].

2.2 Effect of Pressure Distribution on Tangential Hysteresis
Friction

This subsection studies the effect of contact pressure distribution on tangential
hysteresis friction by comparing among three typical distribution forms of con-
tact pressure which are uniform, linear, and Hertzian, respectively, as shown in
Fig. 1a. A group of quasi-static numerical simulations are carried out to get
hysteresis loops. This simulation assumes that one of the contact points is fixed
and imposes a tangential cyclic displacement on the other one. Then the tangential
friction force transmitted through contact point is calculated using Eq. (8) and
Masing rule. Parameters of this numerical example include: the tangential stiffness
kt = 1 × 107 N/m, the friction coefficient μ = 0.5, the normal load N0 = 100 N,
and the harmonic tangential displacement x = 10 sin (2π t) μm. Figure 1b shows
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Fig. 1 (a) Three distribution forms of contact pressure, (b) hysteresis loops
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simulated hysteresis loops for the above three distributions. The model with uniform
pressure distribution is the first one reaching slip state with increasing relative
displacement and has the maximum energy dissipation. The damping predicted by
the Hertzian distribution model is moderate, compared with the other two. The linear
distribution model is the last one to reach slip state and has minimum predicted
damping which is 30% lower than that of the first one. Therefore, it can be concluded
that contact pressure distribution has an important effect on prediction results.

On blade damper contact surface, normal load is variable and intermittent
separation is possible for some dampers. To extend the proposed model to include
the representation of normal load variation and intermittent separation, a unilateral
linear spring with detachment is applied. Similar process can be found in ref. [8].

3 Experimental Validation in an Underplatform Damper
Test Rig

3.1 Review of an Asymmetric Damper

A laboratory “crossed curve-flat damper” was designed in ref. [10], which includes a
cylinder-to-flat contact on the left side and a flat-to-flat contact on the right side, as
shown in Fig. 2. The damper is placed between the two platforms by centrifugal
force (CF). The friction forces transmitted from the left blade to the right one
through the damper are measured by two load cells placed orthogonally, shown
in Fig. 2b. The relative displacements between the two blades are measured using
two laser Doppler vibrometers. This test rig can reproduce two main representative
blade motions: Out of Phase (OoP), imposing a horizontal relative motion between
the platforms, and In Phase (IP), a vertical relative motion. The IP motion has been
studied in ref. [8]; therefore, in this chapter, only OoP motion is studied, which can
be regarded as a supplement.

damper

blade
Load cell

(b)(a)

CF

damper
blade blade

Fig. 2 (a) The turbine blade damper model, (b) experimental setup in ref. [10]
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3.2 Model Parameters Estimation Approach

To validate the proposed model, a group of measured results for micro-slip are
selected. In this case, piezo-actuator nominal displacement was a cosine motion
with 10 μm amplitude, and the frequency was set to 5 Hz. The deadweight mass
simulating the centrifugal force was 4.65 kg.

The 450th measured cycle (90s) is taken as an example to show the contact
parameters estimation procedure and validate the proposed model. First, friction
coefficients are estimated according to experimental data. Figure 3a depicts the
ratios of tangential force over normal force on two surfaces. In this case the flat
contact surface experiences a gross slip motion at the stages s2–s3 and s4–s1
because the ratio of tangential over normal force is approximately invariant. While
for the curved surface, the ratio keeps variable during a period. Therefore, the
ratio on the flat surface in gross slip state is regarded as corresponding friction
coefficient. The obtained friction coefficient averages the ratios at stage s2–s3 and
s4–s1, μR = 0.21.

From experimental results, it just can be known that the friction coefficient on the
curved surface is larger than the highest ratio, μL > 0.34. Reference [10] concluded
that friction coefficient has a decisive effect on the range of the force in the hysteresis
loop. Therefore, the friction coefficient μL on the curved surface can be estimated
by matching the relative height of numerical hysteresis loop with that of experiment.
The contact stiffness values obtained in IP motion are employed for the OoP case
to implement initial numerical simulation. Figure 3b illustrates numerical hysteresis
loops for different friction coefficients on the curved surface and shows that the
relative height of horizontal force gradually increases with increasing μL. Matching
the relative range of horizontal force with the experimental counterpart, an optimal
friction coefficient can be selected, μL = 0.36.

After estimating friction coefficients, the values of contact stiffness will be
estimated. When the input displacement is very small, the surface is in stick state,
and the relation between relative displacement and force on surfaces can be regarded

s1

s3

s4

s1

s2
s3

s4

-0.6

-0.3

0.0

0.3

0.6
 Curved surface
 Flat surface

Ta
ng

en
ti

al
 fo

rc
e 

ov
er

 n
or

m
al

 fo
rc

e

Time (s)
0.00 0.05 0.10 0.15 0.20 -8 -4 0 4 8

-20

-10

0

10

20

H
R

(N
)

urel (μm)

μ
L
=0.34

μ
L
=0.36

μ
L
=0.38

 Measured

(b)(a)

Fig. 3 (a) The experimental tangential force over normal force on each surface at the 450th cycle,
(b) hysteresis loops for selecting friction coefficient on curved surface



Reduced-Order Modeling Friction for Line Contact in a Turbine Blade Damper System 203

as linear. Therefore, the relation between contact stiffness and measured variables
can be derived according to the equilibrium equations of the system, which can be
found in ref. [8].

Figure 4a depicts the measured vertical force VR versus the horizontal force HR.
The initial slopes of this curve in loading and unloading average at VR/HR = 0.154.
Figure 4b depicts the measured horizontal force HR versus horizontal relative
displacement urel, and the average initial slope of the curve VR/wrel equals
4.516 × 106 N/m. Based on experiments and a classical genetic algorithm,
a dedicated contact stiffness estimation procedure is developed. The objective
function is min {|Anum-exp/Aexp|}, where Anum-exp denotes the difference of enclosed
areas between simulated and experimental cycles. The design variables are δR and
δL. The bar chart in Fig. 5a depicts optimized results and displays variation of
|Anum _ exp|/Aexp with sampling generation. It shows that the relative error gradually
decreases with sampling generation and reaches a steady state with the minimum
error after evolution of nine generations. Contact parameters are listed in upper right
corner of Fig. 5a. The parameters, δR and δL, denote a proportional relationship
between tangential and normal stiffness.
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Table 1 Energy dissipation
and equivalent elastic
stiffness

Experiment Uniform Linear Hertz type

Area (μJ) 91.1 102.3 80.5 90.4
KR(N/μm) 1.4553 1.4761 1.3666 1.4549

3.3 Numerical Results and Discussions

Contact parameters tuned above are employed to implement numerical simulations
which are compared with experimental results to validate the proposed model. Iwan
models with uniform and linear contact pressure distributions are also studied to
find the effect of pressure distribution on dynamic response of the blade damper
system. Figure 5b depicts the numerical and experimental hysteresis loops in OoP
case. The numerical loop simulated by the Hertzian distribution model matches well
with the experimental counterpart. The amplitude of relative displacement predicted
by the linear distribution model is larger than those by the other models, while
the horizontal force is lower. The linear distribution model is easy to handle. The
hysteresis loop predicted by uniform distribution model encloses more area than
that of the other loops. To compare these results more obviously, some characteristic
variables are extracted from the dynamic response of the damper.

Table 1 lists areas enclosed by hysteresis loops and KR to give more evidences for
model validation and comparison. Here, KR represents equivalent elastic stiffness
in this case, which can be derived by a truncated Fourier term of horizontal force
divided by input displacement [8]. Obviously, the relative differences of these two
characteristic variables between experiment and simulation by the developed model
is less than 1%, which validates the model well. Therefore, a conclusion can be
drawn that the proposed model considering Hertz-type pressure distribution can
realize a high accuracy prediction for cylindrical contact surface in blade damper
system. The uniform distribution model predicts maximum energy dissipation, as
mentioned above, and the relative difference reaches +12.3%. The linear pressure
distribution model has a conservative prediction of energy dissipation with a
−11.6% relative difference. The prediction of equivalent elastic stiffness by linear
pressure distribution model behaves softer than the other two, with a−6.1% relative
difference.

4 Conclusions

In this work, the original Iwan model is modified to include the effect of Hertzian
contact pressure. The relation between contact pressure distribution and the PDF
of the slider sliding force of the Iwan model is built. Quasi-static analyses are
conducted to compare the hysteresis loops predicted by models with different
pressure distribution forms. The results show that the relative difference of energy
dissipation caused by pressure distribution can reach 30% in some cases.



Reduced-Order Modeling Friction for Line Contact in a Turbine Blade Damper System 205

A laboratory asymmetrical damper test is used to validate the effectiveness of
the proposed model. A corresponding parameter estimation procedure is developed
to characterize friction contact. Comparison of numerical simulations with the
experimental results shows that the proposed model has good prediction capability
for the contact mechanics of the asymmetric under-platform damper.

Acknowledgments The authors would like to acknowledge the financial support by China
Science Challenge project (TZ2018007) and the China NSAF project (Grant No. U1530139).

References

1. Griffin, J.H.: Friction damping of resonant stresses in gas turbine engine airfoils. J. Eng. Power.
102, 329–333 (1980)

2. Petrov, E.P., Ewins, D.J.: Advanced modelling of underplatform friction dampers for analysis
of bladed disk vibration. J. Turbomach. 129(1), 143–150 (2007)

3. Panning, L., Popp, K., et al.: Asymmetrical underplatform dampers in gas turbine bladings:
theory and application. In: Paper No. GT2004-53316, ASME Turbo Expo (2004)

4. Yang, B.D., Chu, M.L., Menq, C.H.: Stick–slip–separation analysis and non-linear stiffness
and damping characterization of friction contacts having variable normal load. J. Sound vib.
210(4), 461–481 (1998)

5. Menq, C.H., Bielak, J., Griffin, J.H.: The influence of micro-slip on vibratory response, part I:
a new micro-slip model. J. Sound Vib. 107(2), 279–293 (1986)
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Finite-Time Control of Omnidirectional
Mobile Robots

Mirosław Galicki

Abstract In the present work, a new task space nonsingular terminal sliding mode
(TSM) manifold defined by nonlinear integral equation of the first order with
respect to the task tracking error and a variant of the computed torque method
are introduced to control a four mecanum wheeled mobile robot (FMWMR). By
fulfilment of a reasonable assumption regarding the estimate of the actuation matrix,
the proposed control scheme is shown to be finite-time stable despite uncertain
dynamic equations and (globally) unbounded disturbances acting on the FMWMR.
Moreover, the proposed control law provides (instantaneous) optimal solution. The
numerical simulation results illustrate both the performance of the proposed scheme
and simultaneously its minimizing property for some practically useful objective
function.

Keywords Mobile robots · Trajectory tracking · Finite-time control

1 Introduction

In recent years, an interest in a special class of omnidirectional wheeled mobile
robots has increased due to their particular abilities. The four mecanum wheeled
mobile robots (FMWMR) belong to such class of vehicles which are mathematically
described by holonomic dynamic systems. FMWMRs can move in sideways and
even along curved trajectories (paths) without changing their orientation. These
advantages make it possible to accomplish complicated tasks such as materials
(objects) handling or safe manoeuvring in parts stockrooms, which require, by
their nature, high precision and stability of the performance. However, due to
the use of redundant number of separate actuators with respect to the trajectory
tracking task, the control of FMWMRs becomes complicated. In addition, a
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controller to be designed for the FMWMR should accurately and stably track desired
trajectory expressed in task coordinates despite uncertain dynamics and (globally)
unbounded unknown external disturbances. Due to the challenging nature of the
aforementioned control design problems, many researchers have proposed different
types of controllers. In such a context, one can distinguish a few algorithms of
controlling the FMWMR, which only partially meet the expectations of modern
controllers. The control techniques offered in works [1–5] present robust [1–3]
and/or adaptive [4, 5] algorithms that are capable of trajectory tracking. However,
the approaches from [1–3] require full knowledge of dynamic equations and are not
optimal in any sense. Work [4] involves adaptive term multiplied by the regression
matrix that seems to be both complex to implement and time consuming and work
[5] requires the knowledge of the nominal dynamics whose construction may not
be a trivial task. In the present work, a new task space non-singular terminal sliding
mode (TSM) manifold of the first order is introduced to control FMWMR. The
main drawback of the standard first-order sliding modes is mostly related to the
undesirable chattering effect [6]. In order to eliminate (or to alleviate) the chattering,
the robust sliding mode controllers based on the higher-order sliding techniques
have been used [7, 8], which cannot be applied to discontinuous disturbances
(e.g. the Coulomb or Stribeck terms) and/or to continuous and everywhere non-
differentiable disturbances (e.g. to a Brownian motion). Based on the non-singular
first-order TSM manifold introduced, we propose a new robust model-free controller
acting in the task (Cartesian) space. By fulfilment of a reasonable assumption
regarding the estimate of the actuation matrix, the proposed control scheme is
shown to be finite-time stable despite uncertain dynamic equations and (globally)
unbounded disturbances. On the other hand, works [1–3] require full knowledge
of FMWMR dynamics. Moreover, as opposed to other exiting approaches (see,
e.g., [1–4] ) utilizing the sliding variables, the proposed control law provides
(instantaneous) optimal solution. Furthermore, adaptive control algorithm given in
[5] is not also optimal and neglects external disturbances. In order to eliminate the
undesirable chattering effect, we propose herein a continuous control law based
on the use of a known technique of boundary layer, which is also shown to
possess in our case (non-linear sliding manifold as well as uncertain non-diagonal
actuation matrix) a desirable property of ultimate uniform boundedness. The paper
is organized as follows. Formulation of the finite-time optimal control of FMWMR
is presented in Sect. 2. Section 3 sets up a class of task space robust controllers
solving the trajectory tracking problem in a finite time. Section 4 presents computer
simulation of the trajectory tracking. Finally, some concluding remarks are drawn
in Sect. 5.

2 Problem Formulation

Consider a four mecanum wheeled mobile robot (FMWMR) whose dynamic
equations, expressed in task coordinates, are given below [1–3]
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ẍ = A(x)u+ F(x, ẋ)+D(t, x, ẋ), (1)

where x = (x1,c, x2,c, θ)
T is the vector of task coordinates; (x1,c, x2,c) denotes

location of the mass centre with respect to a global coordinate system and θ
stands for orientation of the mobile platform; A(x) is 3 × 4 non-singular actuation
matrix; F(x, ẋ) represents, in general, vector of viscous damping forces; u =
(u1, u2, u3, u4)

T stands for vector of controls and D(t, x, ẋ) denotes external
disturbing signal. In further considerations, D is assumed to be a locally bounded
Lebesgue measurable mapping which is upper estimated as follows:

||D(t, x, ẋ)|| ≤ α(t, x, ẋ), (2)

where α is a non-negative and locally bounded Lebesgue measurable function.
Let us observe that dynamic system (1) represents a redundant mechanism with
respect to vector of controls u. Consequently, from the practical point of view, it is
particularly desirable to generate robot trajectory x = x(t), t ≥ 0 in such a way
as to minimize an objective function F . We employ a simple and practically useful
optimization criterion for redundancy resolution with the following cost function:

F(u) = 1

2
〈u, u〉, (3)

where 〈, 〉 denotes scalar product of vectors. The aim is to find control u = u(t)

which (instantaneously) minimizes performance index (3) and simultaneously robot
trajectory x = x(t), corresponding to u, exactly follows a given desired trajectory
xd(t) ∈ R

3. Mapping xd(·) is assumed in further analysis to be at least twice
continuously differentiable, i.e. xd(·) ∈ C2[0, ∞). Let us define the task tracking
error e as e = x − xd . Utilizing the task error e, the finite-time control problem of
the FMWMR may now be formally expressed as follows:

lim
t→T e(t) = 0, lim

t→T ė(t) = 0, (4)

where 0 ≤ T < ∞ stands for a finite time of convergence of x(t) to xd(t) and
e(t) = ė(t) = 0 for t ≥ T . Based on expressions (1)–(4) and the Lyapunov stability
theory, a controller solving the robotic task (4) will be proposed in the next Section.

3 (Instantaneously) Optimal Control of FMWMR

For purpose of further considerations, some properties of dynamic equations (1) are
given below. Utilizing inequality (2), the norm of the sum of uncertain term F(x, ẋ)
and unknown disturbing signal D(t, x, ẋ) may be upper estimated as follows

||F(x, ẋ)+D(t, x, ẋ)|| ≤ w1(||ẋ|| + 1)+ α(t, x, ẋ), (5)
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where w1 is a given positive coefficient (construction parameter of the FMWMR).
If α(t, x, ẋ) is unknown constant function, i.e. α(t, x, ẋ) = αmax = const then
expression (5) may be simplified in the following way:

||F(x, ẋ)+D(t, x, ẋ)|| ≤ w2(||ẋ|| + 1), (6)

where w2 = w1 + αmax. In order to propose the controller solving the robotic
task (4), we introduce the following non-singular non-linear terminal sliding vector
variable s = (s1, s2, s3)T ∈ R

3, defined in task coordinates as follows:

s = ė +
∫ t

0

(
λ0e

α1 + λ1(ė)
α2
)
dτ, (7)

where α1 = a
b

; a, b are positive odd numbers, a < b < 2a, α2 = 2α1
1+α1

; λ0, λ1
stand for controller gains. Let us note that for a particular case, i.e. α1 = α2 = 1,
expression (7) presents a classic linear PID sliding manifold. In further analysis, a
useful lemma will be given [9].

Lemma 1 If s(t) = 0 for t ≥ T ≥ 0 then task errors (e, ė) of (7) stably converge
to the origin (e, ė) = (0, 0) in a finite time.

Let Â(x) be a non-singular non-adaptive matrix, which estimates uncertain non-
singular actuation matrix A(x). Moreover, Â(x) is assumed to fulfil the following
practically reasonable inequality:

||Â(x)− A(x)||F ≤ ρ

||Â#||F
, (8)

where 0 ≤ ρ < 1 denotes the accuracy of the approximation; || · ||F stands for the
Frobenius (Euclidean) matrix norm; Â# is the Moore–Penrose pseudo-inverse of Â.
Based on (3) and (5)–(8), we propose the following simple control law of FMWMR
solving the kinematic task (4):

u(t, x, s) =
{
−cÂ# s

||s|| (R+ c′) for s �= 0

0 otherwise,
(9)

where c, c′ denote controller gains to be specified further on; R = w1(||ẋ|| + 1)+
α + ||λ0e

α1 + λ1(ė)
α2 − ẍd || (or R = w2(||ẋ|| + 1) + ||λ0e

α1 + λ1(ė)
α2 − ẍd ||

for α = αmax = const). The aim is to provide conditions on controller gains λ0,
λ1, c and c′, which guarantee fulfilment of equalities (4). Applying the Lyapunov
stability theory, we now derive the following result.

Theorem 1 If λ0, λ1, c′ > 0 and c > 1
1−ρ then control scheme (1), (9) guarantees

stable convergence in a finite time of the task tracking errors (e, ė) to the origin
(e, ė) = (0, 0). Moreover, control u (instantaneously) minimizes performance
index (3).



Finite-Time Control 211

Proof Consider the following Lyapunov function candidate:

V = 1

2
〈s, s〉. (10)

Computing the time derivative of (10) and taking into account definition (7) results
in the following expression:

V̇ = 〈s, ë + λ0e
α1 + λ1(ė)

α2〉. (11)

Based on (1) and definition of e, one obtains that

ë = A(x)u+ F(x, ẋ)+D(t, x, ẋ)− ẍd . (12)

Inserting the right-hand side of (12) into (11) results in the formula given below

V̇ = 〈s, A(x)u〉 + 〈s, F (x, ẋ)+D(t, x, ẋ)− ẍd + λ0e
α1 + λ1(ė)

α2〉. (13)

Let us reformulate (13) to the following equivalent useful form:

V̇ = 〈s, Â(x)u〉 + 〈s, (A(x)− Â(x))u〉 + 〈s, F (x, ẋ)+D(t, x, ẋ)− ẍd + λ0e
α1

+ λ1(ė)
α2〉. (14)

Our aim is to minimize criterion function (3) subject to the following equality
constraint:

Â(x)u = −c s||s|| (R+ c′). (15)

As is easy to see, the solution to (instantaneous) optimization problem (3), (15)
takes the form of control (9). Let us upper estimate the last scalar product in (14).
On account of inequalities (5)–(6), we have

〈s, F (x, ẋ)+D(t, x, ẋ)− ẍd + λ0e
α1 + λ1(ė)

α2〉 ≤ ||s||R. (16)

The next step is to replace u in (14) by the right-hand side of (9) and to utilize
relationship (16). The result is the following inequality:

V̇ ≤ −c
〈
s, ÂÂ# s

||s|| (R+ c′)
〉
−
〈
s, (A− Â)cÂ# s

||s|| (R+ c′)
〉
+ ||s||R. (17)

On account of (8), we have

V̇ ≤ −||s||c′c(1− ρ)+ ||s||R(1− c + cρ). (18)

Based on the assumption of Theorem 1 for c and the fact that ρ ∈ [0, 1) (see the
comment immediately below relation (8)), the last term of the right-hand side of
inequality (18) is non-positive, i.e. ||s||R(1− c + cρ) ≤ 0. Hence,
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V̇ ≤ −||s||c′c(1− ρ). (19)

On account of the fact that cc′(1−ρ) > 0, inequality (19) proves that TSM manifold

s = 0 is stably attainable in a finite time less or equal to
√

2V (0)
cc′(1−ρ) . Finally, from

Lemma 1, it follows that origin (e, ė) = (0, 0) can be attained in a finite time.

A few remarks may be made regarding the control law (9) and Theorem 1.

– Remark 1. Let us note that non-singular sliding variable s has useful property for
a typical regulation task with ė(0) = 0, which implies s(0) = 0. In such a case,
from (19) and (10), it follows that V (t) = 0 and consequently s(t) = 0 for t ≥ 0
(TSM manifold s = 0 is attainable for t = 0).

– Remark 2. The term s
||s|| in controller (9) will cause undesirable chattering effect

in a small neighbourhood of s = 0. In order to eliminate the chattering, a known
boundary layer technique of control law may now be utilized as follows:

u(t, x, s, ε) =
{
−cÂ# s

||s|| (R+ c′) for ||s|| ≥ ε
−cÂ# s

ε
(R+ c′) otherwise,

(20)

where ε is a user-specified arbitrarily small positive real number. Let e = e(t, ε)
and ė = ė(t, ε) be the solutions of control problem (1), (7) and (20). Although
boundary layer control is a well-known technique, its desired property of uniform
ultimate boundedness has been established for linear sliding variables s, e, ė and
diagonal actuation matrices of non-zero diagonal components (or of constant
signs) in [10] as well as for dynamic systems fulfilling the so-called matching
conditions with known actuation matrices in work, e.g. [11], respectively. On
the other hand, expression (7) is a non-linear differential equation with respect
to e = e(t, ε) and ė = ė(t, ε). Moreover, A(x) is uncertain non-diagonal
actuation matrix. Consequently, the classic results regarding the ultimate uniform
boundedness of e = e(t, ε) and ė = ė(t, ε)may not, in general, apply in our case.
Hence, based on the recent results from our work [9], we may conclude that task
errors e = e(t, ε), ė = ė(t, ε) converge uniformly with respect to time t (t ≥ T )
to the origin (e, ė) = (0, 0) as ε → 0, i.e. e(t, ε), ė(t, ε)→ 0 as ε → 0.

– Remark 3. Let us note that controller (9) or (20) depends on construction
parameter w1 or w2 whose determination may not be easy task in practice. Let
ŵ2 be an estimate of unknown parameter w2 (without loss of generality and
for shortening the analysis, we consider only the case of completely unknown
and bounded disturbing signal D, i.e. α(t, x, ẋ) = αmax). If this is the case, we
propose the following adaptive version of control law (9):

u(t, x, s, ŵ2) =
{
−cÂ# s

||s|| (R̂+ c′) for s �= 0

0 otherwise,
(21)
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where R̂ = ŵ2(||ẋ|| + 1)+ ||λ0e
α1 + λ1(ė)

α2 − ẍd || and

˙̂w2 = c(1− ρ)
kw2

||s||(||ẋ|| + 1), (22)

kw2 stands for positive adaptive gain. We are now in position to give the following
theorem.

Theorem 2 If assumptions regarding λ0, λ1, c′ and c of Theorem 1 are satisfied
and ŵ2 is computed from (22) then control scheme (21)–(22) guarantees stable
convergence in a finite time of task errors (e, ė) to the origin (e, ė) = (0, 0).
Moreover, controller (21)–(22) instantaneously minimizes criterion function (3).

Proof The proof of Theorem 2 with Lyapunov function candidate V = 1
2 ||s||2+

kw2
2 α̃

2, where α̃ = ŵ2 − w2, is a small modification of the proof of Theorem 1.
Therefore, it is omitted.

4 Computer Simulations

The aim of this section is to demonstrate the performance of one of the controllers
given by expressions (9), (20), (21)–(22). From the practical point of view, it seems
both interesting and reasonable to test continuous (chattering free) controller (20)
with α(t, x, ẋ) = αmax. Moreover, both a quantitative and qualitative comparison
of our control law to other well-known control algorithms is also carried out. For
this purpose, we utilize a dynamic model of FMWMR presented, e.g., in works
[1–3]. In computer simulations, the SI units are used. The components of the
nominal dynamic equations take the following values (see [1–3]): mass of the
mobile platform m = 6; moment of inertia of the platform I = 0.0945; radius of
the wheel R = 0.05; length of the mobile platform 2L = 0.22; width of the mobile
platform 2W = 0.36; coefficients of viscous friction βx1 = βx2 = βθ = 0.02.
The exact form of actuation nominal matrix A(x) and vector F(x, ẋ) are given in
[1–3]. Initial configuration x(0) and velocity ẋ(0) are equal to x(0) = (0, 0, 0)T ,
ẋ(0) = (0, 3, 0), respectively. Our rough estimates for controller (20) are chosen as
w2 = 0.7, ρ = 0.15. The estimate of uncertain actuation matrix A(x) equals

Â(x) = A(x)+
⎡

⎣
0.9 −0.6 0.9 −0.6
−0.6 −0.9 0.6 −0.9
−14 14 14 −14

⎤

⎦ . (23)

The task is to track a desired trajectory (flower trajectory) expressed by the following
equation:

xd(t) = (10 sin(0.3t−π) sin(0.2t−π), 10 sin(0.3t−π) cos(0.2t−π), 0)T . (24)
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Moreover, our aim is to show that (instantaneously) optimal controller (20)
is robust against disturbance signal D �= 0. For this purpose, the discontinuous
bounded term D of the form D = (0, 0, 0)T for t ∈ [0, 7], D = (0, 1, 1)T for
t ∈ (7, 10], D = (0, 0, 0)T for t ∈ (10, 20], D = (0.5, 0, 0)T for t ∈ (20, 26],
D = (0, 0, 0)T for t ∈ (26, 40], D = (0, 0.5 sin(2t), 0)T for t ∈ (40, 60],
D = (0, 0.5 sin(2t), 0.5 sin(2t))T for t ≥ 60 has been added to dynamic equations.
In order to attain the convergence of task error e less than 10−3, the following
numerical values of gain coefficients are taken: λ0 = 10; λ1 = 5; c′ = 1; c = 1.2,
α1 = 3

5 and ε = 0.1, respectively. The results of the simulation are given in Figs. 1
and 2, which indicate a good tracking performance of controller (20) (see Fig. 1).
The corresponding torques u are depicted in Fig. 2. The peaks in Figs. 1 and 2 are
result of acting the discontinuous disturbance signal D.

Fig. 1 Task errors e versus
time
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Fig. 2 Controls u versus
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5 Conclusions

A new class of robust and optimal task space controllers for FMWMRs has been
proposed. Applying the Lyapunov stability theory, control strategies (9), (21)–(22)
are shown to be finite-time stable. Although our controllers need knowledge about
the system equation of the FMWMR, the approach is able to handle uncertainties in
dynamics and disturbances occurring in the holonomic system. Let us observe that
our controller seems to be superior to the flatness-based control from work [1] in the
accuracy of the trajectory tracking. Moreover, the control scheme given by Eq. (20)
results also in significantly smaller torques than those obtained in [1] for the same
desired trajectory. It is also worth to note that optimal control law (20) utilizes only
estimated actuation matrix Â(x) while control algorithms from works [1–3] require
the full knowledge of dynamic equations. Finally, the values of controller gains in
[1–3] are found by means of off-line time consuming optimization procedure while
coefficients λ0, λ1, c and c′ are directly given from Theorem 1.
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Fast Moving of a Population of Robots
Through a Complex Scenario

Leandro Nesi, Dario Antonelli, Gianluca Pepe, and Antonio Carcaterra

Abstract Swarm robotics uses a large number of coordinated autonomous robots,
or agents, to accomplish one or more tasks, using local and/or global rules.
Individual and collective objectives can be designed for each robot of the swarm.
Generally, the agents’ interactions exhibit a high degree of complexity that makes
it impossible to skip nonlinearities in the model. In this chapter, both a collective
interaction using a modified Vicsek model where each agent follows a local group
velocity and the individual interaction concerning internal and external obstacle
avoidance are implemented. The proposed strategies are tested for the migration
of a unicycle robot swarm in an unknown environment, where the effectiveness and
the migration time are analyzed. To this aim, a new optimal control method for
nonlinear dynamical systems and cost functions, named Feedback Local Optimality
Principle—FLOP, is applied.

Keywords Swarm robotic · Swarm migration · Adaptive velocity strategy

1 Introduction

Swarm robotics is aimed at using the coordination of many robots. It is generally
inspired by the observation of the natural world, such as a flock of birds, ant
colonies, and school of fishes. The study of collective animal behavior is still
a source of inspiration for scientists and engineers, who, by imitating biological
processes, seek solutions to complex problems.

Among many, the study and analysis of the migration and transport of swarm of
robots are of interest. Through the study of stigmergy [1], it is possible to identify
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the interaction processes that give rise to intelligent cooperative systems, capable of
performing complicated collective operations.

In nature, agents follow very simple rules, and even without the need for central-
ized control, global behavior emerges, unknown to the individual agents, who can
find efficient methods of transport and migration. One of the first efficient collective
transport is given by the Vicsek particle model in which each agent follows a
collective group velocity [2, 3]. This model is widely used to imitate the movement
of shoals of fish and swarms of birds that manage to move in a coordinated
way, following environmental stimuli. Based on this model, many studies have
been developed concerning the coordinated collective transport of robots [3–6]. In
particular, the generalization of the Vicsek model to robot movement concerns two
types of models: (a) a first class does not involve anti-collision rules allowing for
collisions between robots [5] and (b) a second class uses sophisticated sensors and
communication hardware that make the swarm collision-free [6].

In this chapter, the used communication template presents simplifications with
respect to a fully all-to-all connected system, balancing short-range and long-
range transmission of information within the swarm. This gives the possibility
to equip the robots with exteroceptive sensors present on the market in such
a way as to analyze the state of the agents around them and implement the
actions provided by the control strategy. Furthermore, appropriate control logics
introduce effective anti-collision rules between agents. For this reason, a method
of analyzing information from neighboring agents is proposed, which combines
the most significant aspects of the simplified analysis of the first neighbors only
and the complete global analysis. The proposed navigation system of a swarm of
robots is divided into two main categories: collective exploration and coordinated
motion. Here, unicycle robots [7] move in an unknown environment and navigate
without internal collisions with other agents, trying to migrate from a start to a
target zone using the information provided by the neighbors’ agents to reduce the
migration time. These different tasks are achieved by using innovative feedback
controls developed by authors, named Feedback Local Optimality Principle (FLOP)
and Variational Feedback Controls (VFC) [8–10]. The FLOP method controls linear
and nonlinear dynamical systems, through the introduction of a nonlinear penalty in
the cost function. This permits to apply simultaneously the collective exploration
and the coordinated motion strategies. The environment is made by lowlands and
hills, as the case, for example, of sand dunes. Robots are subjected to attractive and
repulsive forces dependent on the terrain orography. The distributed control uses
only local velocity information to drive the members of the swarm in a small region
where the signal velocity is captured. The agents follow a nonlinear control strategy
where each of them is tracking a target velocity resulting in a directional averaging
operation. This process is mimicking the behavior of ant colonies in which the
information travels with pheromones permitting to move around obstacles of various
types together with a high migration speed.

This chapter intends to show the ability of the FLOP method to control a large
population of cooperative agents to complete the exploration within an unknown
scenario.
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The FLOP logic has the advantage of operating in pure feedback, ensuring a local
minimum result. The present method, although does not reach the global minimum
of the cost function, exhibits large computational advantages when compared to
predictive control strategies. This has been already tested in complex systems like
autonomous drive terrestrial and marine vehicles [8, 11].

2 Resume of FLOP theory

Feedback Local Optimality Principle, or FLOP [8, 9], is based on the variational
approach aimed at the minimization or maximization of a given functional J. The
Lagrangian multiplier technique is used to include in the optimization process a
differential constraint. In fact, the two pillars of the variational approach are the cost
function E(x, u), the base to build the cost functional J, and the dynamical evolution
of the system represented by the differential nonlinear equation ẋ = f (x,u), with
x, u the input and the control vectors, respectively. The constrained optimization is
introduced by the Lagrangian multiplier λ as follows:

J = ∫ T
0 L (ẋ, x,u,λ) dt

L (ẋ, x,u,λ) = E (x,u)+ λT (ẋ − f (x,u))
(1)

where the optimization is performed over the entire time interval [0, T]. The FLOP
method introduces a different optimality criterion, switching from a global to a local
principle. With this aim, the original functional is split into N sub-integrals:

J =
N∑

i=1

Ji =
N∑

i=1

∫ UBi

LBi
L (ẋ, x,u,λ) dt (2)

The general optimization problem expressed by Eq. (1) requires to find the
minimum cost function J∗ . FLOP, splitting the general problem in subintervals, finds
a local minimum result J

∗
where the following inequality is true:

J ∗ ≤ J ∗ =
N∑

i=1

min Ji (3)

Equation (1), when subjected to the local optimality criterion, and using the first-
order Euler discretization technique, produces a set of three equations:

∂E
∂x

∣
∣
LBi

−
(
λT

∂f
∂x

)∣∣
∣
LBi

+ λLBi
Δτ

= 0,

∂E
∂u

∣
∣
LBi

−
(
λT

∂f
∂u

)∣∣
∣
LBi

= 0,
xUBi−xLBi

Δτ
= f

(
xLBi ,uLBi

)
∀i ∈ [1, N] (4)
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The continuous counterpart of Eq. (4) leads to an augmented form to the
Pontryagin’s formulation:

∂E
∂x
− λT

∂f
∂x
− λ̇ = 0,

∂E
∂u
− λT

∂f
∂u
= 0,

ẋ = f (x,u, t) ,

λ̇ = Gλ

∀t ∈ [0, T ] (5)

Equation (5) represents the basis of the FLOP solution technique. Matrix G
is assumed as G = − (N

T

)
I = − 1

Δτ
I , and its form is related to the size

of N subintervals. The FLOP method introduces the hypothesis of affine system
dynamics, i.e., f= φ(x)+ Bu is linear in the control vector u, but it can be nonlinear
in the state vector x. The remarkable result, in this case, is that an explicit feedback
control u(x) is determined in the form:

J = ∫ T
0

1
2uTRu+ g (x)+ λT (ẋ − (φ (x)+ Bu)) dt,

ẋ = φ (x)+ Bu,

u = R−TBT
[∇xφ(x)T − I

Δτ

]−1∇xg (x)

(6)

in which no special assumption is required about the function g(x).

3 System Dynamics and Cost Function

The single agent, represented on the left of Fig. 1, is intended as a unicycle model
[7], and its dynamics are expressed by:

Fig. 1 Schematic representation of the unicycle model and internal avoidance strategy
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⎡

⎢⎢⎢
⎢⎢
⎣

Ẋ

Ẏ

ψ̇

v̇

ω̇

⎤

⎥⎥⎥
⎥⎥
⎦
= M−1

⎡

⎢⎢⎢
⎢⎢
⎣

v cos (ψ)
v sin (ψ)
ω

fT − clv − ∇Xh (X, Y ) sin (ψ)+∇Y h (X, Y ) cos (ψ)
fM − crω

⎤

⎥⎥⎥
⎥⎥
⎦

(7)

where M = diag [1; 1; 1; m; I]. X, Y, ψ , v, ω, m, I, cl, cr and h(X, Y) are the
spatial coordinates of each agent, the heading orientation, the longitudinal speed,
the rotational speed, the mass, the rotational inertia, the two-speed resistance
coefficients (longitudinal and rotational), and the potential function representing the
unknown environment, respectively. In this example, the robots are controlled by
the thrust force fT and the yaw moment fM. ∇Xh(X, Y), ∇Yh(X, Y) represents the
external gravity force. Moreover, defining the vector state as x = [x1, . . . , xN], the
control vector u = [u1, . . . , uN] for the N-robots system, and considering for the
ith robot xi = [Xi; Yi;ψ i; vi;ωi] and ui =

[
fTi ; fMi

]
is simple to organize the full

nonlinear dynamic system as:

ẋ = φ (x)+ Bu (8)

The cost function is expressed as:

E (x,u) = 1

2
uTRu+ g (x) (9)

where g(x) = gCE(x) + gCM(x), and these two terms represent the collective
exploration and the cooperative motion task, respectively. The collective exploration
task regarding every single agent: every agent has the information to migrate from
one zone to another by having an assigned target location xT and must avoid all other
agents through an internal avoidance rule. The coordinated motion strategy has the
aim to increase the performance of the migration of the swarm, by giving to each
agent some information of the velocities of its surrounding agents, as illustrated
later.

The collective exploration provides two effects:
Rendezvous: all agents must reach the assigned location xT. This task is here

often referred also as Go to Target:

gT (x) = (x − xT )
TQT (x − xT ) (10)

Internal avoidance: each agent must not collide with any of the other agents, here
written as gIA(x). The internal avoidance penalty function is written as the sum of
two terms, one for the relative positions between agents pij = pj − pi and one for
their respective velocities ṗij = ṗj−ṗi with pi = [Xi, Yi] the ith agent coordinates:
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gIA (x) =
Ndrones∑

i=1

Ndrones∑

j=1
j �=i

(
KIA√

2π |Σ IA| exp−
[(

pij

)T
Σ−1

IA

(
pij

)]+ γ ṗTijQIAṗij

)

γ = 1
2

(
1+ tanh

(−kp1
(
pij · ṗij

))
tanh

(−kp2
(∥∥pij

∥∥−DIA
)))

(11)

The first addend of the gIA is a Gaussian function, and its gradient is depicted
in the right of Fig. 1, where the repulsive elastic force Fel between agents is
represented. The Gaussian parameters �IA, |�IA|, KIA, i.e., the variance–covariance
matrix, its determinant, and a gain factor respectively are studied, so that the
maximum Fel is high enough to avoid any kind of crash between agents. The second
addend is a quadratic potential function of the relative speed ṗij .

Its gradient represents a dissipation force Fd that is activated and deactivated as
a function of gamma. In particular (see example in Fig. 1), the dissipation force is
turned on when two agents find themselves at a distance closer than DIA and have
a relative speed that identifies a collision given by the sign of the scalar product of
pij · ṗij . Tuning positive parameters kp1, kp2 permit to obtain a smooth slope for γ .

The cooperative motion here introduced provides an adding term, which
expresses the ability of every single drone to go to the area near him with the
highest average speed in the direction of the target, and its cost function is written
by si = [ψ i, vi,ωi] as:

gCM (x) =
Ndrones∑

i=1

(
si − s∗i

)T
QCM

(
si − s∗i

)
(12)

where s∗i is determined by the strategy proposed below. The ith agent can observe
a portion of the surrounding environment, called Si . Si is assumed as a sector of
the circle of radius Rmax, centered at the agent position, and delimited by the two
lines associated with the angles α0 and αEND measured with respect to the x-axis
of the ith agent. Si is further divided into Nzones sub-sectors or zones, named Zk

(k = 1, Nzones), so that each zone is a sector of angle α̂ = αEND−α0
Nzones

. In Si , the agent
searches for all the agents currently within Zk, the number of which is denoted by
Jk. For each agent j therein, its velocity component in the direction of the target vjk, T

is observed. Here, the chosen direction of the target is along the Y direction. If rijk

is the distance of the jth agent within Zk from the ith observer agent, the weighing
numbers are defined:

wijk = −rijk + Rmax (13)

The weighted velocity Vik, T is estimated by the ith observer for the zone Zk as:

Vik,T =
∑Jk
j=1wijkvjk,T
∑Jk
j=1wijk

(14)
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Fig. 2 Coordinated motion
strategy for the ith agent Vi4,T = ViT
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and the highest value within the sector is selected as:

Vi,T = max
{
Vik,T

} ∀k ∈ [1, Nzones] (15)

Once the sector with the highest velocity is found, the agent steers its velocity in
the direction of the bisector of the zone k∗ with the highest velocity.

In Fig. 2 the coordinated motion strategy is represented if the target is positioned
along the vertical axes. In the case depicted in Fig. 2, the highest weighted velocity
is in the zone Z4, so k∗i = 4. The angle of the desired maximum velocity vmax is

ψ∗i = α0 +
(
k∗i − 1

2

)
α̂, so s∗i in (12) becomes:

s∗i =
[
ψ∗i ; vmax; 0

]
(16)

4 FLOP Application for Coordinated Motion Strategy

In this section, the benefits of the discussed strategy on the migration of robot
swarms are discussed. Simulations are performed with and without the velocity-
based strategy. Different simulations in the same environment (Fig. 3) are performed
through the FLOP control: first, the number of robots N is assigned. Then, many
simulations are generated by varying the initial conditions of the swarm. The mean
of the arrival time in the target area of the last entering agent is kept with and
without using the velocity-based strategy. The simulations are then repeated for
different numbers of agents, from 1 to 40, as shown on the left in Fig. 4. Finally, the
probability density function (PDF) of the arrival time for N = 85 for 60 simulations
is shown on the right of Fig. 4. The arrival time and the success of the strategy is
strongly dependent on the number of obstacles. The collective motion strategy is
not expected to have more success in the individual strategy in the case of a low
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Fig. 3 Map of the environment

Fig. 4 Arrival time for N = [1, 40] (left); PDF of the arrival time of the last of 85 agents in 60
simulations (right)

number of obstacles. In Fig. 3 some screenshots for different ti time windows of one
simulation are shown.

As can be seen in Fig. 4, the proposed strategy provides a remarkable decrease
in the arrival time with a lower variance for the last agent.

5 Conclusions

In this chapter, the application of an innovative feedback control named Feedback
Local Optimality Principle for the coordinated motion strategy of a robot swarm is
presented. The strategy is based on the Vicsek model, but it changes some paradigms
to add internal avoidance and to localize the interaction between agents of the
swarm. The FLOP application to the proposed strategy gives promising results in
terms of the total time of the migration. Further developments will be the subject of
future investigations, as for example the correlation between the migration time and
the number of obstacles in the environment.
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Feedback Local Optimality Principle
Applied to Rocket Vertical Landing
(VTVL)

Dario Antonelli, Gianluca Pepe, Leandro Nesi, and Antonio Carcaterra

Abstract Vertical landing is becoming popular in the last 15 years, a technology
known under the acronym VTVL, Vertical Takeoff and Vertical Landing. The
interest in such landing technology is dictated by possible cost reductions, which
impose spaceship’s recycling. The rockets are not generally designed to perform
landing operations, rather their design is aimed at takeoff operations, guaranteeing a
very high forward acceleration to gain the velocity needed to escape the gravitational
force. In this chapter, a new control method based on Feedback Local Optimality
Principle, named FLOP, is applied to the rocket landing problem. The FLOP belongs
to a special class of optimal controllers, developed by the mechatronic and vehicle
dynamics lab of Sapienza, named Variational Feedback Controllers (VFC), that are
part of an ongoing research and are recently applied in different field: nonlinear
system and marine and terrestrial autonomous vehicles, multi-agent interactions,
and vibration control. This chapter is devoted to show the robustness of the nonlinear
controlled system, comparing the performances with the LQR, one of the most
acknowledged methods in optimal control.

Keywords Vertical landing · Optimal control · Nonlinear dynamics

1 Introduction

Landing, as for the Apollo 11 mission to the Moon, is an operation deputed to a
lander module of the rocket body, the Lunar Excursion Module (LEM). As a new
frontier of space discovery, space vehicles are today required to be able to land with
reliability on different surfaces. Among the multiple complexities implied by the
vertical landing, the control strategy plays a critical role to obtain reliability and
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robustness. While takeoff operations are better predictable and can be specifically
designed by using suitable launch infrastructures, the landing phase is affected by
higher uncertainties due to weather disturbances and ground surface imperfections.
The launch umbilical tower, evacuation vanes, shockwaves dissipation, vibrations
insulation, and accurately designed attitude during the first phases of the launch help
much in facilitating the takeoff operations. The return trajectory is instead weakly
stable due to the presence of random disturbances. Hence, to improve the landing
success probability, a feedback optimal trajectory is to be identified. The “Moon
landing problem” is one of the prototype problems included in many control books,
and it is an excellent example of a two-boundary optimization problems, that is
difficult to approach by a feedback control strategy. Moreover, the vertical landing
is a nonlinear problem with instabilities, analogous to the challenging control of the
inverse pendulum. The Feedback Local Optimality Principle (FLOP) approach [1,
2] represents an interesting alternative to more classical solutions, as the LQR. The
aim of this chapter is to define a robust and reliable control to land the vehicle safely.
The quality of the control law is investigated considering the landing approach
maneuver, starting from an assigned altitude, and varying the initial conditions,
namely attitude and speed. The control actions involve the magnitude and the
direction of the thrust, and orientable grid fins mounted on the top of the vehicle
controlling the aerodynamic forces. The model of the system also includes actuators
saturation effects.

2 FLOP: A New Local Optimality Principle

A new control strategy based on classical variational approach has been recently
developed by the authors and named Feedback Local Optimality Principle or FLOP
[1–5, 8, 9]. The method relies on a local optimality criterion, replacing the global
one used in the optimal control theory based on the Pontryagin approach. By using
this idea, the chance to obtain a feedback control law for nonlinear dynamic system
is supported. In classical variational problem the performance index J , represented
by the integral of the cost function E(x, u) subjected to the dynamic differential
constraint, ẋ = f (x,u) (representing the system dynamics) has to be minimized
(or maximized) along the entire time interval [0, T]:

min J =
∫ T

0
E (x,u)+ λT (ẋ − f (x(t),u(t))) dt (1)

In Eq. (1), x is the system state, u the control vector, and x(0) = x0 the initial
condition. The differential constraint is introduced through Hamilton’s formulation
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using the Lagrange multiplier λ(t). The solution of Eq. (1) provides both the optimal
control u∗ (t) and the corresponding optimal trajectory x∗ (t). The Feedback Local
Optimality Principle, or FLOP approach, starts splitting the original integral (Eq. 1)
into N = T/�τ integrals, where �τ represents the time horizon of each of them
(Eq. 2). The FLOP method requires a weaker minimization concept, based on the
extremal value for each individual integral within the related time horizon �τ :

J =
N∑

i=1

Ji =
N∑

i=1

∫ UBi

LBi
L (ẋ, x,u,λ) dt (2)

where L (ẋ, x,u,λ) = E (x,u)+ λT (ẋ − f (x(t),u(t))). J is minimized follow-
ing the optimality criterion:

min (Ji) ∀i

where UBi and LBi limits indicate the upper bound and lower bound, respectively.
Each integral solution satisfies the boundary conditions:

xLBi = xUBi−1

λUBi = 0
(3)

This approach provides three main advantages, with respect to the classical
variational approach:

• The considered dynamic system can be described by a nonlinear model, namely
belonging to the class of the affine systems ẋ = φ (x)+ Bu.

• A more general class of nonlinear penalty functions, with respect to the classical
quadratic forms of the state x, can be included into the cost function and
represented by g(x)

• The FLOP approach provides a feedback solution for the control vector u. This
allows to overcome the main engineering drawback of the Pontryagin or the
Bellman approaches. In fact, they both provide feed-forward control law, taking
into account only one single information related to the initial state of the system,
not using the information coming out, as the time marches, from the sensor
measurements of the system state evolution.

The FLOP approach, in general, provides a solution, with a performance that
depends on the choice of the variable �τ that acts as a tuning parameter.
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2.1 Resume of FLOP Technicality

The continuous counterpart of Eqs. (2) and (3) as shown in Refs. [5–9], leads to an
augmented form of the variational set of equations. In fact, solving each integral of
Eq. (2) with its boundary conditions (3), is equivalent to solve the integral Eq. (1)
for the entire time interval [0–T], where the final constraint for λ(T) = 0 is replaced
with a first-order differential equation λ̇ = Gλ as in the following:

∇xE −∇xf T λ− λ̇ = 0,
∇uE − ∇uf T λ = 0,
ẋ = f (x,u, t) , ∀t ∈ [0, T ]
λ̇ = Gλ

(4)

where G = − (N
T

)
I , i.e., the chosen horizon time interval �τ . The set of Eq. (4)

can be, in general, explicitly solved for a penalty function E(x, u) that is required to
be quadratic in the control u and with any degree of nonlinearities in x, with g(x)
being differentiable. For affine systems, Eq. (4) leads to:

J = ∫ T
0

1
2uTRu+ g (x)+ λT (ẋ − (φ (x)+ Bu)) dt

uFLOP = R−TBT
[∇xφ(x)T −G

]−1∇xg(x)T
(5)

The cost function 1
2uTRu + g (x) exhibits a more general form than quadratic

cost function in terms of the control variable, where additionally very weak
hypotheses are required on g(x), since it is sufficient if its differential at the first
order exists.

3 Dynamic Model

In this section, the rocket dynamic model depicted in Fig. 1 is presented. The
dynamic of the system is described by a six DOF rigid body motion with an
additional equation describing the fuel mass consumption. The origin of the mobile
frame is placed in the geometric center of the vehicle body, since the CoG
longitudinal position changes during the flight, due to the mass variation of the
system. As usual for aerial vehicles, the x axis is aligned along the longitudinal axis,
the y axis is set on the wing’s plane, and the z axis is orthogonal to the previous two
(see Fig. 1).

The equations of motion are written within this frame in terms of the vehicle
longitudinal, transverse, and vertical speed components ν = [u, v, w], along x, y and
z, respectively, and in terms of the angular speed components ω = [p, q, r], along
the axes, associated to the roll, pitch, and yaw motions, respectively. The absolute
position η = [X, Y, Z] of the rocket is described within an earth fixed, NED (North-
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Fig. 1 Rocket main systems, body reference, and NED reference

East-Down) reference frame. To avoid gimbal lock when the rocket approaches the
vertical attitude, the quaternion q = [q0, q1, q2, q3] description is used. The state
vector is arranged as x = [η, q, ν, ω, mfuel(t)] and the vehicle dynamic equation can
be shortly written as:

M(t)ẋ + C (x) x = τ (6)

where M(t), C(x) are the time variable, inertia, and the generalized Coriolis matrices,
respectively. The mass variation due to fuel consumption is described by adding the
equation:

ṁfuel(t) = −γ Ttot (7)

where the total thrust is Ttot = T1 + T2 + T3 + T4 + T5, sum of the individual forces
provided by the main engines and γ is a suitable engine constant.

The external forces τ collect the gravity action τ g, the aerodynamic forces τAero
acting on the vehicle body, the ith main thrusters forces τTi , the jth cold gas thrusters
actions τPj , and the kth forces generated by the trimmable grid fins τAGFk :

τ = τ g + τAero +
5∑

i=1

τTi +
3∑

j=1

τPj +
4∑

k=1

τAGFk (8)

where the generic τ� = [07, 1; F�; M�; 0]. The gravity action is Fg = JT (q0, q1, q2,
q3)[0, 0, mfuelg]T , where J is the transformation matrix from the vehicle to
the NED Earth reference. Since the dynamic equations are written in the
body frame, the CoG position varies during the flight, and the gravity action
generates torque Mg = [xCoG, 0, 0] × Fg. Analogously, for aerodynamic action
FAero, MAero. These last depend on the angle of attack α = atan(w/u), and
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β = atan(v/u), the sideslip angle. Drag and Lift coefficients CD, CL for the
forces acting in the two planes xy and xz are introduced, together with the
effective cross section areas A, the position of the center of pressure cp, and
are expressed through nonlinear function of the attack and sideslip angles
as CDxz (α) , CLxz (α) , CDxy (β) , CLxy (β) , Axz (α) ,Axy (β) , cpxz (α) , cpxy (β),
while dependences from α̇ and β̇ are neglected. These permit to evaluate the
aerodynamic forces due to the airflow around the rocket body, with i = y, z and
V 2
xy = u2 + v2, V 2

xz = u2 + w2 the quadratic speed modulus in the x–y and x–z
plane, respectively.

Dxi = −1/2ρair(Z)AxiCDxi V
2
xi , Lxi = 1/2ρair(Z)AxiCLxi V

2
xi (9)

The air density ρair(Z) is a nonlinear function of the height Z. Torque associated
to the set of forces (10) is:

MAero =
[
cpxy , 0, 0

]× (R (β)F Aeroxy

)+ [cpxz , 0, 0
]× (R (α)F Aeroxz

)
(10)

where R(α) and R(β) are the rotation matrices around y and z, respectively, and
F Aeroxi = [Dxi; 0;Lxi]. Analogous expressions follow for τTi and τPj , and these
last due to cold gas thrusters P1, P2, P3 are designated to control the vehicle attitude
in the LEO (Low-Earth-Orbit).

When the vehicle approaches the atmosphere during the descent phase, the cold
gas thrusters have not enough power to control the vehicle attitude. Hence, the
action τAGFk becomes predominant by suitable variations of their angles of attack
δk stabilizing the vehicle’s flight.

The forces and torques (FAGF, MAGF) are born because of the trimmable fins,
and they are:

F AGF =
4∑

k=1
F AGFk

(
Dfink

)
, MAGF =

4∑

k=1
bk × F AGFk

(
Dfink

)

Dfink = −1/2ρair(Z)AfinkCDk (δk + φ) V 2
k q (φ)

(11)

where for the kth fin, Afink is the wing section area, CDk (δk + φ) is its drag
coefficient, depending on δk and on the angle φ equal to α or β depending on the
considered fin. Vk represents the component of the CoG velocity along the x axis, the
parameter q(φ) is the shadowing coefficient that varies between 0 and 1 depending
on its configuration, and finally bk is the position vector of the kth fin.

4 Control

The simulations were carried out considering a control frequency loop of 100 Hz.
The control action is performed introducing specific penalty functions, for each
phase of the flight, this is represented by a quadratic penalty function of the state x
and target xT:
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g (x) = 1

2
(x − xT)

TQ (x) (x − xT) (12)

The matrix Q is suitably varied during the flight. The vehicle flight is
composed of three main phases as shown in Fig. 2: the first is the attitude
correction in LEO. The vehicle actuates the FLIP maneuver to reach the
desired pitch. The state target is referred to a specific attitude and null
angle rates xTFLIP = [

03×1, qT , 03×1, 03×1, 0
]
, with suitable k-gains for

QFLIP = diag ([03 × 1, Kq14 × 1, 03 × 1, Kω13 × 1, 0]).
In the second phase, the vehicle reaches the reentry speed and pitch angle. The

target is xTreentry =
[
03×1, qT , νT , 03×1, 0

]
, and Qreentry = diag ([03 × 1, Kq14 × 1,

Kν13 × 1, Kω13 × 1, 0]).
The third phase is the atmospheric flight terminating with the vertical

landing operation. The target is xTlanding = [
03×1, qT , νT , 03×1, 0

]
, and

Qlanding = diag ([Kη13 × 1, Kq14 × 1, Kν13 × 1, Kω13 × 1, 0]).
The variation of the set g(x) in dependence of the actual state of the vehicle is

widely used in control application, such as the gained scheduled technique used for
MPC.

5 Results

The simulations consider a rocket with the following characteristics (Table 1):

Fig. 2 Rocket flight phases

Table 1 Rocket’s parameters

Characteristics Value Characteristics Value

Rocket mass 20,000 kg Number of lateral thrusters 8
Fuel mass 150,000 kg Max lateral thrust 400 [N]
Number of main thrusters 5 Number of grid fins 4
Max thrust T 1521.4 kN Max grid trim angle ±60 [◦]
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In the FLIP maneuver, the vehicle flies at 100 km above the earth surface at
a speed of 10,000 km/h, with initial pitch 45◦. The lateral thrusters provide the
required force for the rotation that sets the vehicle at the desired pitch. Figure 3
shows the pitch evolution in time, its rate, and the thrust provided by the lateral
thruster responsible of the pitch control.

In the second phase, the rocket is still in LEO, flying 100 km above earth surface,
traveling at 10,000 km/h, with initial pitch 180◦. The value required for the pitch
to safely approach the atmosphere is 80◦. Moreover, the vehicle approaches the
atmosphere reducing the effect of gravity using the main engines (Fig. 4).

Eventually, the landing phase is shown in Fig. 5. Here the vehicle is traveling
through the atmosphere starting from a height of 30 km at 4320 km/h, thanks to the
grid fins and the main thrusters, and it safely performs the vertical landing.

Fig. 3 FLIP maneuver

Fig. 4 Reentry maneuver
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Fig. 5 Vertical landing maneuver

6 Conclusions

The FLOP control shows good performances in all phases that characterize the
vehicle flight and landing, in a compound complex control operation. These results
are possible thanks to the FLOP formulation, which allows to take into account
the nonlinearities, typical of the rocket model. Further tests will be performed,
introducing random disturbances, with state estimation algorithm in order to validate
the performance shown in the present chapter.
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Time-Delayed Feedback Control Applied
in a Nonideal System with Chaotic
Behavior

Angelo M. Tusset , Jose M. Balthazar , Rodrigo T. Rocha ,
Mauricio A. Ribeiro , Wagner B. Lenz , and Frederic C. Janzen

Abstract This chapter considers the application of time-delayed feedback control
in a nonideal system. The system has as main characteristic the additional cubic
nonlinearity. An electric DC motor with limited power supply that is driven by an
unbalanced rotating mass provides a nonideal excitation to the system. To suppress
the chaotic behavior presented by the nonideal system, the time-delayed feedback
control is proposed, by considering the velocity of the rotating angle as a parameter
to determine the time delay. In addition, it is considered a control for suppressing
the chaotic behavior. Therefore, two control signals are considered in which one is
the nonlinear feedforward controller to maintain the system in periodic orbit and
the other one is the feedback controller obtained by the SDRE, which takes the
system trajectory to the desired periodic orbit. Numerical simulations demonstrated
the effectiveness of the control strategy in conducting the system from any initial
condition to the desired orbit and the control of chaos by time-delayed feedback
control.

Keywords Time-delayed feedback control · SDRE control · Nonideal system

1 Introduction

The study of problems that involve multiphysics couplings or coupling of several
systems has attracted many researchers. Changes in structural characteristics of
machines and dynamical systems were explored in [1]. Consequently, some phe-
nomena were observed in dynamical systems due to supporting structures and
rotating machines, where additional degrees of freedom and unbalancing of the
rotating parts are the main causes of mechanical vibrations. In such systems, there
is a need to consider a more realistic formulation including the action of an energy
source with limited power supply (nonideal motor). In particular, the influence of
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the oscillatory system on the driving force and vice-versa should be considered.
The time-delayed feedback controller was originally suggested by Pyragas [2]
for ideal systems and considering a continuous control input U which stabilized
a chaotic oscillation given by the difference between the current output and the
previous one. Therefore, this work presents the application of the time-delayed
feedback controller applied to a nonideal system case. Additionally, we considered
a controller in order to inhibit the chaotic behavior and to control the system, i.e., a
control signal is introduced in the system dynamics. The controller strategy involves
the application of two signals, a nonlinear feedforward to maintain the controlled
system in a periodic orbit, and other state feedback controller, obtained by the state-
dependent Riccati equation (SDRE), to bring the system trajectory into the desired
periodic orbit.

2 Mathematical Model

Figure 1 illustrates a nonideal oscillator that consists of a structure of mass m1
connected to a damper and to a nonlinear spring with a nonlinear cubic stiffness. The
proposed system is excited by a nonideal DC motor characterized by the moment of
inertia JM and the unbalanced mass m0 with eccentricity r. The physical schematics
of the DC motor is shown in Fig. 1a.

The equations of motion of the nonideal system are given in Ref. [3]:

m1ẍ + μẋ − k1x + k2x
3 = m0r

(
ϕ̇2 sinϕ − ϕ̈ cosϕ

)
,(

J +mor2
)
ϕ̈ = CMφI −m0rẍ cosϕ,

İm = −RtLt Im −
CEφ
Lt
ϕ̇ + Um

Lt

(1)

where CM and CE are mechanical and electrical constants, respectively. The
magnetic flux is represented by φ. And in Fig. 1b ω(t) is the angular velocity of
the rotor. It is assumed that the external exciting current Im and voltage Um are
constants, and then the magnetic flux φ is also constant. It is convenient to work

Fig. 1 (a) Nonideal oscillator and (b) the DC motor in the electrical schematics
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with dimensionless position and time, namely x1 = x
x0

and τ = ω0t, respectively,

where x0 is the static displacement, and introducing the following variable Ĩ = I
I0

,

where I0 is a rated current in the armature, and x2 = ẋ1, x3 = ϕ, x4 = ϕ̇, and x5 = Ĩ .
Then, the state-space formulation of the equations of motion becomes

ẋ1 = x2,

ẋ2 = A
(
w1
(
x2

4 sin x3 − p3x5 cos x3
)− βx2 + x1 − δx3

1

)+ U
ẋ3 = x4,

ẋ4 = A
(
p3x5 − w2w1x

2
4 sin x3 cos x3 + w2βw cos x3 − w2 cos x3

(
x1 − δx3

1

))
,

ẋ5 = −p1x5 − p2x4 + U1

(2)

where U is the control signal, and the dimensionless parameters are denoted by:
ω2

0 = k1
m1+m0

, β = μ
m1ω0

, δ = k2
k1
x2

0 , w1 = m0r
m1x0

, w2 = m0rx0
(J+m0r

2)
, p1 = Rt

Lt I0ω0
,U1 =

U
Lt I0ω0

, p2 = CEφ
Lt I0

, p3 = CMφI0

(J+m0r
2)ω2

0
and A = 1

1−w1w2(cos x3)
2 .

3 Numerical Results

The numerical simulations of the nonideal system were carried out by considering
the parameters of the DC motor and mechanical parameters. The dimensionless
parameters are defined as δ = 0.1, w1 = 0.2, w2 = 0.3, p1 = 0.3, p2 = 3,
p3 = 0.15,β = 0.0337, ω0 = 46.3934, U1 = 4, x1(0) = 0, x2(0) = 0, x3(0) = 0,
x4(0) = 0, and x5(0) = 0, where the integration step is considered by h = 0.001 [3].
In Fig. 2, the chaotic behavior of the system (2) is observed.

Analyzing the numerical results, it was observed that for the parameters used the
system has a chaotic behavior, being used in the positive δ simulations that represent
a harder beam. For the cases in which a more flexible beam is desired, one can use
a negative δ. These δ signal variations significantly alter the dynamical behavior of
the system.

4 Time-Delayed Feedback Control

The time-delayed feedback control (TDF control) is proposed by Ref. [2]. The
objective of the control is to stabilize a chaotic oscillation by the difference between
the current output and the previous one [2, 4, 5]:

U = κ {g [x1 (τ − T ) , x2 (τ − T )]− g [x1 (τ ) , x2 (τ )]} (3)



240 A. M. Tusset et al.

(a)

(c)

0.25

0.2

0.15

0.1

0.05

0
0 0.2 0.4 0.6 0.8 1

Frequency (Hz)

|x
2(

f)
|

(b)

5 4

2

0

-2

-4

0

-5
0 200 400 600 800 1000 -5 0 5

x1

x 2x 1

Fig. 2 (a) Displacement of the structure without control. (b) Phase portraits of the structure
without control. (c) Power spectral density (FFT) to x2

where T = 2π
�

is the time delay, κ the feedback gain, and Ω is the excitation
frequency in rad/s, and signal U is given by

U = κ [x2 (τ − T )− x2 (τ )] (4)

In Fig. 3, system (2) with time-delayed feedback control (4), and parameters
κ = 5 and Ω = 4.364, is observed.

5 Suppression of Chaotic Behavior

Considering a nonlinear system represented in the following way [6]:

ẋ = A (x) x+ Γ + U (5)

where USDRE = uff + ufd. The feedforward control uff and the feedback control
ufd are obtained from uff = − � and ufd = − R−1BTP(x)x, respectively. The
control ufd is determined by using K = lqr(A(x), B, Q, R) which is a command of
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Fig. 3 (a) Displacement of the structure with control. (b) Phase plane of the structure with control.
(c) Power spectral density (FFT) to x2. (d) Signal control (U)

MATLAB®. Since x(0) = x0, substituting uff = − � in Eq. (5), system (5) can be
represented in the following way:

ẋ = A (x) x+ Bufd (6)

The quadratic cost function for the regulator problem is given by:

J = 1

2

∫ ∞

τ0

[
xTQx+ uT

fdRufd

]
dτ (7)

where Q is a semi-positive-definite matrix and R is positive-definite. Assuming full
state feedback, the control law is given by

ufd = −R−1BTP (x) e (8)

where e =
[
x1 − x∗1
x2 − x∗2

]
, and x∗j is a desired trajectory.

The state-dependent Riccati equation is solved to obtain P(x), which is given by:

AT (x)P (x)+ P (x)A (x)− P (x)BR−1BTP (x)+Q = 0 (9)



242 A. M. Tusset et al.

For controllability, the matrix [B
...AnB] has to be determined and different from

zero.
For the SDRE method, we consider the algorithm proposed in [1].

5.1 Application of SDRE Control

The objective is to find the control such that x1 stays in asymptotically stable
periodic orbit (x∗1 = 3.127 + 0.0585 cos (2.5736τ), with frequency and amplitude
similar to that obtained with TDF control). Introducing the control USDRE = U in
system (2):

ẋ1 = x2,

ẋ2 = A
(
w1
(
x2

4 sin x3 − p3x5 cos x3
)− βx2 + x1 − δx3

1

)+ USDRE,

ẋ3 = x4,

ẋ4 = A
(
p3x5 − w2w1x

2
4 sin x3 cos x3 + w2βw cos x3 − w2 cos x3

(
x1 − δx3

1

))
,

ẋ5 = −p1x5 − p2x4 + U1

(10)

Considering system (10), we see that the feedforward control is given by

uff = −A
(
w1

(
x2

4 sin x3 − p3x5 cos x3

))
(11)

As the objective is to control the displacement of x1, only the first two equations
of system (9) will be considered, a control strategy similar to that used in [7]. Then,
substituting Eq. (10) into Eq. (9), system (9) can be described in the following way:

ẋ = A (x) x+ Γ + Bufd (12)

where

A (x) =
[

0 1
A
(
1− 2δx2

1

) −Aβ
]

, Γ =
[

0
A
(
w1
(
x2

4 sin x3 − p3x5 cos x3
))
]

and

B =
[

0
1

]
.

Defining Q = 103
[

1 0
0 1

]
and R = 10−3, in Fig. 4, we can observe system (2)

with the application of SDRE control.



Time-Delayed Feedback Control Applied in a Nonideal System with Chaotic Behavior 243

(a)  (b)

 (c)

Fig. 4 (a) Desired trajectory error. (b) Phase portraits of the structure with control. (c) Signal
control (U).

6 Conclusions

For control of chaos induced by a nonideal system, the delayed feedback control
was designed and applied. Results were obtained by means of numerical analysis to
inhibit the chaotic behavior of the system and maintain the amplitude of the nonideal
system in a periodic orbit. With the proposal of feedforward and feedback controls,
it is possible to control the oscillations in periodic orbits with the control signal close
to that obtained with the TDF controller. The time-delayed control is not designed to
take the system to any previously defined orbit, it is interesting to apply the SDRE
control. As shown in Fig. 4, the SDRE control was efficient in taking the system
to the next periodic orbit obtained by the time-delayed control. However, when
the control signals of Figs. 3d and 4c are compared, it is observed that the SDRE
control must maintain a signal to keep the system in the periodic orbit, generating
high values of the cost for the time-delayed control. Thus, we conclude that the
TDF is a great option, with the objective of leading the system to a periodic orbit
with the lowest control effort. In addition, the SDRE control is also an option to be
considered to enforce the desired orbit.
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Distributed Event-Triggered Output
Feedback Control for Semilinear Time
Fractional Diffusion Systems

Fudong Ge and YangQuan Chen

Abstract This paper describes how to design distributed event-triggered output
feedback controllers for the Mittag-Leffler stability of semilinear time fractional
diffusion systems (TFDSs) under the Robin boundary conditions (BCs). To this end,
an extended Luenberger-type observer is presented to solve the limitations caused
by the impossible availability of full-state information. With this, we propose the
distributed output feedback event-triggered controllers via backstepping technique
under which the considered systems admit Mittag-Leffler stability. It is shown that
the given event-triggered control strategy could significantly reduce the amount of
transmitted control inputs while guaranteeing the desired system performance with
the Zeno phenomenon being excluded. A numerical illustration is finally included.

Keywords Event-triggered control · Semilinear time fractional diffusion
systems · Mittag-Leffler stabilization · Robin boundary conditions ·
Backstepping

1 Introduction

Over the past two decades, considerable attention has been attracted towards event-
triggered control so as to deal with control issues such as state feedback control [1],
output feedback control [2], and robust adaptive control [3] for lumped parameter
systems governed by ordinary differential equations. This is due to the fact that
event-triggered control could reduce workload of the network, slow down the actu-
ators wear, save both computation and energy resources, and increase robustness to
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unexpected disturbances [4]. In recent years, the studies on event-triggered control
have been extended to infinite-dimensional systems, e.g., reaction-diffusion systems
[5], semilinear diffusion partial differential equations [6], and 1-dimensional linear
hyperbolic systems [7]. For more knowledge in this direction, we refer the reader to
[8, 9].

Nowadays, we recall that significant contributions to the study of anomalous
subdiffusion phenomena observed in many spatially inhomogeneous environments
have been made (see, e.g., [10, 11]). Due to the fact that fractional derivative is
defined by using a kind of convolution and good at modeling the inverse power-law
decay processes, TFDSs have been widely applied to describe these subdiffusion
phenomena [11–13]. Therefore, it should be both interesting and challenging to
discuss the distributed event-triggered control problems for semilinear TFDSs.

Motivated by these above considerations, the purpose of this paper is to study
the event-triggered control problems of semilinear TFDSs. Notice that the full-state
information, which is required to evaluate the triggering event and to conduct the
control action, is not available in many practical applications due to the difficulties
of measuring. To this end, we here design an extended Luenberger-type observer.
A dynamic distributed event-triggered output feedback controller is then proposed
to achieve the desired performance of the closed-loop system at hand. In addition,
it is important to guarantee the existence of a positive lower bounded minimum
inter-event time so as to avoid the occurrence of Zeno phenomenon [4].

As one of the most important notions in system analysis, stabilization is to
determine a control law that forces the closed-loop system at hand to be stable. Since
the solution of TFDS is usually expressed with respect to Mittag-Leffler functions,
the Mittag-Leffler stabilization problem should be correspondingly discussed. As
shown in [14], the backstepping technique was extended to efficiently stabilize the
linear unstable TFDS with Dirichlet and Neumann BCs under time-triggered control
strategy. In [15], both the event-triggered boundary state and output feedback
control problems were investigated for linear TFDSs with unknown time-varying
input uncertainties. Based on these, we continue to use the backstepping approach
to obtain our main results. To the best of our knowledge, no related result is available
on this topic.

The rest of this paper is organized as follows. In Sect. 2, we formulate our
problems. The detailed observer-based event-triggered controller design and imple-
mentation for the considered system are given in Sect. 3. At last, we work out a
numerical example to illustrate our results.

2 Problem Formulation

Let L2(0, l), l > 0 be the usual square integrable function space endowed with the
inner product (·, ·) and the norm ‖ · ‖. In this paper, we deal with semilinear TFDSs
under Robin BCs of the form:
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C
0 D

α
t y(x, t) = �y(x, t)+ f (y(x, t), x, t)+ Bu(t) in (0, l)× (0,∞),

p1yx(0, t)− p2y(0, t) = 0, q1yx(l, t)+ q2y(l, t) = 0 in (0,∞),
y(x, 0) = y0(x) in (0, l),

(1)

where � = ∂2

∂x2 is the Laplace operator, p1 > 0, p2 � 0 and q1, q2 � 0 with

q1 + q2 > 0 are four constants, C0 D
α
t , α ∈ (0, 1] and 0I

α
t denote, respectively,

the Caputo fractional derivative and the Riemann–Liouville fractional integral with
respect to t given by

C
0 D

α
t y(·, t) = 0I

1−α
t

∂y

∂t
(·, t), α ∈ (0, 1] and 0I

α
t y(·, t) =

∫ t

0

(t − s)α−1

Γ (α)
y(·, s)ds.

Let (λn, ξn(x))n�1 be the eigenvalue-eigenfunction paring of operator Δ under
the domain D(A) = {

φ ∈ L2(0, l) : satisfies the Robin BC in (1)
}
. By Lemma 2

of [16], if λn �= 0, there exists a constant c0 > 0 such that λn � −c0 < 0 for all
n = 1, 2, · · · and besides, the set {ξn(x)}n�1 forms a Riesz basis of space L2(0, l).

Then, any φ ∈ L2(0, l) can be expressed as φ(x) =
∞∑
n=1
(φ, ξn)ξn(x).With these, we

obtain that system (1) (with u ≡ 0) possesses arbitrarily many unstable eigenvalues
if the semilinear function f is large enough.

Besides, let E � L2
(
0,∞;L2(0, l)

)
be endowed with the norm ‖y‖E =√∫∞

0 ‖y(·, t)‖2dt . The function f : E× (0, l)× (0,∞)→ E is assumed to satisfy

Assumption 1 Given a constant R > 0, y, y∗ ∈ E with ‖y‖E, ‖y∗‖E � R, there
exists a constant c = c(R) > 0 such that

(f (y(·, t), ·, t)− f (y∗(·, τ ), ·, τ ), ξn) � c (y(·, t)− y∗(·, τ ), ξn) (2)

holds true for all ξn ∈ L2(0, l) and t, τ � 0.

In addition, u ∈ L2 (0,∞;U) denotes the control input, U is Hilbert space, and
B : U → L2(0, l) represents the control operator. The measurement is given by

z(t) = y(0, t) with y(0, t) �≡ 0. (3)

3 Event-Triggered Output Feedback Control

3.1 Observer Design

Herein, we propose the following semilinear extended Luenberger observer
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C
0D

α
t ŷ(x, t) = ŷxx(x, t)+ f (ŷ(x, t), x, t)+ Bu(t)

+ k1(x)[z(t)− ẑ(t)] in (0, l)× (0,∞),
p1ŷx(0, t)− p2ŷ(0, t) = k2[z(t)− ẑ(t)] in (0,∞),
q1ŷx(l, t)+ q2ŷ(l, t) = 0 in (0,∞),
ŷ(x, 0) = ŷ0(x) in (0, l),

(4)

where ẑ(t) = ŷ(0, t), ŷ0 ∈ L2(0, l), k1(x) and k2 are two observer gains to be
determined to ensure the stability of observer error e(x, t) � y(x, t) − ŷ(x, t).
Besides, we get that e(x, t) with e0(x) = y0(x)− ŷ0(x) is governed by

C
0D

α
t e(x, t) = exx(x, t)+ f (e(x, t)+ ŷ(x, t), x, t)

− f (ŷ(x, t), x, t)− k1(x)e(0, t) in (0, l)× (0,∞),
p1ex(0, t)− (p2 − k2) e(0, t) = 0 in (0,∞),
q1ex(l, t)+ q2e(l, t) = 0 in (0,∞),
e(x, 0) = e0(x) in (0, l).

(5)

Taking into account the integral transformation

ω(x, t) = e(x, t)−
∫ x

0
g(x, ς)e(ς, t)dς (6)

with ω0(x) = e0(x) −
∫ x

0 g(x, ς)e0(ς)dς , we obtain the following equivalent
transform, whose proof can be found in [17].

Proposition 1 Let k1(x) and k2 be chosen as

k1(x) =
∫ x

0 g(x, ς)k1(ς)dς − gς (x, 0)+ g(x, 0) (g(0, 0)+ r2/r1) (7)

and

k2 = p2 − p1g(0, 0)− p1r2/r1. (8)

Then if g is governed by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

gxx(x, ς)− gςς (x, ς) = μg(x, ς), 0 < ς < x < l,
2 d
dx
g(x, x) = −μ, 0 < x < l,⎧

⎪⎨

⎪⎩

G(L, ς) = 0, if q1, s1 = 0;{
s1gx(l, ς)+ s2g(l, ς) = 0,
g(l, l) = q2

q1
− s2
s1
,

if q1, s1 �= 0,

the transformation (6) can equivalently convert the error dynamic (5) into

⎧
⎪⎪⎨

⎪⎪⎩

C
0D

α
t ω(x, t) = ωxx(x, t)− μω(x, t)+ ϕ in (0, l)× (0,∞),

r1ωx(0, t)− r2ω(0, t) = 0 in (0,∞),
s1ωx(l, t)+ s2ω(l, t) = 0 in (0,∞),
ω(x, 0) = ω0(x) in (0, l),

(9)
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where r1 > 0, r2, s1, s2 � 0 are four constants, μ > 0 is a constant and

ϕ � ϕ(e(x, t), ŷ(x, t), x, t)
= f (e(x, t)+ ŷ(x, t), x, t)− f (ŷ(x, t), x, t)
− ∫ x0 g(x, ς)

(
f (e(ς, t)+ ŷ(ς, t), ς, t)− f (ŷ(ς, t), ς, t))dς.

(10)

For the observer-based event-triggered control, observer (4) is rewritten as

C
0D

α
t ŷ(x, t) = ŷxx(x, t)+ f (ŷ(x, t), x, t)+ Bu(t)

+ k1(x)e(0, t) in (0, l)× [tk, tk+1),

p1ŷx(0, t)− p2ŷ(0, t) = k2e(0, t) in [tk, tk+1),

q1ŷx(l, t)+ q2ŷ(l, t) = 0 in [tk, tk+1),

ŷ(x, 0) = ŷ0(x) in (0, l),

(11)

where {tk}k∈N denotes the certain instants when the actuator signal is updated.
Let the observer-based event-triggered controller be defined as follows:

Bu(t) = −f (ŷ(x, tk), x, tk), ∀t ∈ [tk, tk+1) , k ∈ N. (12)

Similarly, by the integral transformation ρ(x, t) = ŷ(x, t) − ∫ x0 h(x, ς)ŷ(ς, t)dς ,
the following proposition holds, whose proof is given in [17] too.

Proposition 2 Suppose that k1(x) and k2 satisfy (7) and (8), respectively. Let
H(x) = k1(x)−

∫ x
0 h(x, ς)k1(ς)dς + k2

p1
and

ψ � ψ(ŷ(x, t), ŷ(x, tk), x, t, tk)
= f (ŷ(x, t), x, t)− ∫ x0 h(x, ς)f (ŷ(ς, t), ς, t)dς
− f (ŷ(x, tk), x, tk)+

∫ x
0 h(x, ς)f (ŷ(ς, tk), ς, tk)dς.

(13)

Then if h solves the equation

⎧
⎪⎨

⎪⎩

hxx(x, ς)− hςς (x, ς) = σh(x, ς), 0 < ς < x < l,
h(x, x) = −σ

2 x, 0 < x < l,
hς (x, 0) = h(x, 0)p2

p1
, 0 < x < l

with h(0, 0) = 0, the observer (11) is equivalent to

C
0D

α
t ρ(x, t) = ρxx(x, t)− σρ(x, t)+H(x)e(0, t)+ ψ in (0, l)× [tk, tk+1),

r1ρx(0, t)− r2ρ(0, t) = k2e(0, t) in [tk, tk+1),

s1ρx(l, t)+ s2ρ(l, t) = 0 in [tk, tk+1),

ρ(x, 0) = ρ0(x) in (0, l)
(14)

for some constant σ ∈ (0, μ).
Remark 1 Here σ ∈ (0, μ) is used to shown that the convergence speed of the
observer is higher than that of the controller so as to Mittag-Leffler stabilize the
considered closed-loop system.
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Definition 1 The solution of system (1) is said to be Mittag-Leffler stable if there
exist constants c > 0, ε > 0, s > 0 such that

‖y(·, t)‖ � c {Eα(−εtα)
}s ‖y0‖, t � 0, (15)

where Eα(t) =
∞∑
k=0

tk

Γ (αk+1) , α > 0, t � 0 denotes the Mittag-Leffler function in

one parameters.

3.2 Stability of the Closed-Loop Control System

Based on (a) of Fig. 1, assume that t0 = 0 and ‖ŷ(·, t)‖ �≡ 0, the event-triggered
condition which depends explicitly on the observer state is designed as

tk+1 = min
{
t > tk :

∥∥ŷ(·, t)− ŷ(·, tk)
∥∥ � ĕ‖ŷ(·, t)‖} , k ∈ N, (16)

where ĕ > 0 is the event threshold.

Remark 2 As cited in [4, 18], the zero-order-hold (ZOH), which is very common in
computer-controlled systems, is to convert the discrete-time control signal into the
continuous-time signal simply by holding it constant over the sampling intervals.
In this paper, ZOH unit in (a) of Fig. 1 aims to convert discrete event-triggered
control signal governed by Eq. (12) to be continuous. More precisely, when the
inequality (16) is breached, it will invoke a transmission. If there are no control
signal received, then the last received sensor value will be used since the sensor data
just fluctuate within a small range from the previous data. With this, ZOH has the
advantages that it can be used for non-periodic sampling and besides, to significantly
reduce the burden of the network communication.

From Proposition 1 and 2, we have max
0�ς�x�l

|g(x, ς)| � Cg, max
0�ς�x�l

|h(x, ς)| �
Ch and there exists a constant ν > 0 satisfying

‖e(·, t)‖ � ν‖ω(·, t)‖,‖ω0‖ � ν‖e0‖,‖ŷ(·, t)‖ � ν‖ρ(·, t)‖,‖ρ0‖ � ν‖ŷ0‖. (17)

The following is our main result and we present the detailed proof in [17].

Theorem 1 Suppose that Assumption 1, all conditions of Proposition 1 and 2 hold.
Let ‖e0‖ + ‖ŷ0‖ � R0 for some constant R0 > 0. If r−1

1 r2 � 1
4 , r1r2 � 2 and there

exist two constants σ , ε > 0 satisfying

2σ � c∗ + ε (18)
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Fig. 1 Evolution of the closed-loop event-triggered control system. (a) The structure of event-
triggered control. (b) Plots of considered system with u ≡ 0. (c) L2−norm of the error. (d) The
observer gain k1(x). (e) L2−norm of the observer. (f) Event-triggered instants

with c∗ � max
{
ν + Cgl

3/2
√

3
ν, 2‖H‖2 + ĕν + Chl

3/2√
3
ĕν
}
, then the system consisting

of the plant (1), observer (11), and controller (12) under the event-triggered
rule (16) is closed-loop Mittag-Leffler stable in L2(0, l) and ‖y‖E � R with
R = √2ν2R0.

3.3 Minimum Inter-Event Time

To avoid the Zeno phenomenon, a positive lower bounded minimum inter-event
time should be guaranteed. For this purpose, we give the following results, whose
detailed proof can be found in [17].

Theorem 2 Assume that all conditions of Theorem 1 are satisfied. Then the
minimum inter-event time Tmin given by

Tmin = min
k=0,1,2,···{tk+1 − tk} (19)

is lower bounded provided that tk is defined as (16).
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4 Numerical Simulation

Consider the TFDSs with α = 0.5, l = 1 and f (y, x, t) = 5y +
5e−t

[√
y2 + 1− 1

]
. Given R such that ‖y‖E � R, clearly, Assumption 1 holds

true for c = 10R. The initial condition is assigned as y0(x) = 2x(1− x)2e−2x and
the coefficients of the BCs are p1 = 3, p2 = q1 = 1 and q2 = 2. According to (b)
of Fig. 1, the solution of the considered TFDS with u ≡ 0 is unstable.

From Sect. 3, an extended Luenberger observer should be designed to estimate
the system. Let ŷ0(x) = x(1 − x)2e−2x and the target system is parameterized as
r1 = 3, r2 = s1 = 1 and s2 = 2. Then e0(x) = x(1− x)2e−2x . Let μ = 10. (c) of
Fig. 1 implies that error system (5) with observer gain k1 shown in (d) of Fig. 1 and
k2 = 3 is Mittag-Leffler stable.

To test our event-triggered control approach, we take ĕ = 0.05 in (16) and set
σ = 5. Then max {|g(x, ς)| , |h(x, ς)|} � Ne2Nx, where N = σ(1 + e−2) [19].
Then (18) holds true for ε = 0.1. As a result, we compare the spatial L2-norm of
ŷ(x, t) with event-trigged controller in (e) of Fig. 1. Moreover, (f) of Fig. 1 shows
the event-triggered instants when the control input is updated.

5 Conclusions

In this paper, the idea of using observer-based event-triggered control to Mittag-
Leffler stabilizef TFDS is presented via backstepping. To address the problems
caused by the lack of full-state measurement, the observer-based distributed output
feedback event-triggered controllers under which the considered closed-loop sys-
tems admit Mittag-Leffler stability are proposed with the Zeno phenomenon being
excluded. Moreover, since the use of event-triggered control strategy could degrade
the performance of controllers and then enlarge the value of control inputs, if we,
however, want to figure out how many values of the improvement of control inputs
caused by event-triggered control strategy for semilinear TFDSs, more constraints
on systems are required. This is beyond the scope of this paper. We conclude
that event-triggered control for more complex nonlinear TFDSs as well as further
investigations on the effect of event-triggered strategy to control inputs are of great
interest.
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Control Performance Assessment of the
Disturbance with Fractional Order
Dynamics

Kai Liu, YangQuan Chen, and Paweł D. Domański

Abstract The fractional order system is the generalization of the conventional
integer order control system. In this paper, we have shown that there is an effect
of the controller tuning on the Hurst exponents as well as crossover points in
different time scales. Error signals from the control system subject to the disturbance
with fractional order dynamics are analyzed by multiple Hurst fitting lines with
crossovers. Simulation results and real industry data are given to assess the perfor-
mance of the control system with proposed detrended fluctuation analysis (DFA)
method with crossover points.

Keywords Control performance assessment · Fractional order dynamics · Hurst
exponent · Crossover point

1 Introduction

The statistical control quality measures are widely used in the current industry to
assess control loops, which are based on the classical Gaussian approach. However,
non-Gaussian signals and noises tend to produce large-amplitude fluctuations from
the average value more frequently than Gaussian ones do, such as long range
dependency (LRD), self-similarity, power-law of autocorrelation, infinite variance,
spiky signals. In reality, most industrial data are not compliant with the prevailing
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assumption about the Gaussian properties of the variables. These complicated
phenomena originated from the fractional calculus.

Due to the complexity, correlation, time varying delays, and human interventions,
the majority of the real life industrial process data has the fat-tailed property
after reviewing of data from industrial process [1]. Liu et al. proposed a novel
control performance assessment (CPA) method with the fractional order signal
processing (FOSP) techniques in [2]. Strong correlations between process variables
at different time instants characterize scenarios of long range dependence, non-
stationary and spiky signals. Such time non-Gaussian series may be precisely
described with auto-regressive fractionally integrated moving average (ARFIMA)
models, rather than arbitrarily ignored as outliers.

In this paper, we will discuss and assess the control system under the disturbance
with fractional order dynamics. A novel FOSP technique is proposed to better
understand and assess the system with fractional Gaussian behaviors. The detrended
fluctuation analysis (DFA) is modified with multiple crossover points, where the
crossover points in the scaling-law curve are located and made use of dividing the
whole scaling-law curve into several different scaling regions, in each of which
a single Hurst exponent can be estimated. Finally, the estimated double Hurst
exponents in different scaling ranges as well as the crossover points are used as
feature parameters for assessing the control performance of the fractional order
system.

The remainder of this paper is structured as follows: Sect. 2 introduces the DFA
methods and the relation with the Hurst exponent. Section 3 gives some simulation
examples to illustrate the method. Section 4 presents a real chemical industry case
study with the proposed algorithm. Section 5 concludes the whole article.

2 DFA Method with Crossover Points

2.1 Hurst Exponent

In general, the Hurst exponent H is the indication of the smoothness of the
time series: the smaller the H , the rougher the time series [3]. LRD, which
is characterized by the Hurst exponent, means that there is a strong coupling
effect between values at different time separations. For practical purposes, process
engineers are usually interested in the possibility of using substantially shorter time
series. Although this asymptotic scaling exponent may serve as a useful index for
selected diagnostic purposes, a drawback is that very long data sets are required for
statistically robust results. It is probably due to the fact that on very short time scales
the transient control signals are dominated by the relatively smooth fluctuation, thus
leading to a large local value H . For longer scales, the repeatable signals reflect the
intrinsic dynamics of a complex system. Therefore, the Hurst exponent H is a good
indicator to characterize the dynamics of a system in different time scales.
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2.2 Algorithm of the DFA with Crossover Points

The DFA algorithm is a robust and powerful tool for detecting long range correla-
tions buried in non-stationary data [3]. For a series xi with the length N , the DFA
process is as follows.

1. Construct a cumulative series X(i)

X(i) =
i∑

j=1

(xj − x̄),

x̄ = 1

N

N∑

i=1

xi.

(1)

2. Divide the whole series into non-overlapping segments with equal length s. Since
the total length N may not be divisible by s, some portion of X(i) will be
left unused. In order to take the advantage of the whole range series, the same
operation will be carried out from the end side of the series X(i). Thus, 2K
segments are obtained accordingly.

3. Use the least squares regression algorithm to fit the local polynomial trend for
each of the 2K segments and calculate the variance:

F 2(v, s) = 1

s

s∑

i=1

(X[(v − 1)s + i] − xv(i))2 . (2)

Thus, for the vth segment, v = 1, 2, 3 . . . K

F 2(v, s) = 1

s

s∑

i=1

(X[N − (v −K)s + i] − xv(i))2 . (3)

4. Compute the root-mean-square deviation (RMSD) fluctuation function F(s)

F (s) =
√√√√ 1

2K

2K∑

v=1

F 2(v, s). (4)

5. Modify the scale s and repeat the above 4 steps. If xi is long range depen-
dence (correlated), the Hurst exponent can be illustrated by the following power
law:

F(s) ∼ sH . (5)
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6. Use the polynomial curves to fit the two parts of F(s) separated by the moving
crossover point c in a log–log plot, respectively. Then select the crossover point
c∗ with the minimum summed fit error squares E of two polyfitted parts:

Ec∗ = min

(
c∑

k=1

e2
k +

s∑

k=c
e2
k

)

. (6)

2.3 The Fractional Gaussian Noise

In time series analysis, the auto-regressive (AR) model is to build the short memory
of the previous data and moving average (MA) is to model the random noise.
The fractional integrated (FI) is to characterize the long memory properties. The
ARFIMA (p, d, q) model of a time series Xt is defined as follows [4]:

(

1−
p∑

i=1

φiB
i

)

(1− B)d (Xt − μ) =
(

1+
q∑

i=1

θiB
i

)

εt , (7)

where φ1, · · · , φp are AR parameters, θ1, · · · , θq are MA parameters, μ is the
expectation of Xt , εt is the white noise, and B denotes the unit delay. In contrast
to the ordinary auto-regressive integrated moving average (ARIMA) process,
the difference operator d in ARFIMA (p, d, q) is allowed to take non-integer
(fractional) values. Hosking defined the fractional difference operator by a binomial
series ∇d [5]:

∇d = (1− B)d =
∞∑

k=0

(
d

k

)
(−B)k =

∞∑

k=0

Γ (d + 1)

Γ (k + 1)Γ (d + 1− k) (−B)
k. (8)

To the best of our knowledge, the control system under the LRD noise has not yet
been studied in the CPA. In this paper, we will build the control system simulation
with the fractional order Gaussian noise by changing the value of d in the fractional
order difference filter (1− B)d in Eq. (7). In the following sections, we are targeting
these two major questions: How does the LRD noise affect the control system? How
to assess the control performances based on different tunings of the PID controller?

3 Simulation Analysis

In the simulation, the first order plus time delay (FOPTD) system 1
2s+1e

−0.5s is
used to simulate the process model in Fig. 1. Discrete PID controller parameters:
P = 1.5, I = 1.0, D = 0.1; Sampling rate: 50 Hz. Control errors et = y∗ − yt are
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Controller Process

Setpoint

wGn

Disturbance model

OutputControl error

Fractional order filter

fGn

Fig. 1 The control system under the fractional order disturbances. The disturbance is modeled by
the fractional Gaussian noise (fGn), which is driven by the white Gaussian noise (wGn)

used to assess the control performance, where y∗ is the setpoint (target) and yt is
the feedback signal. The fractional Gaussian noise is modeled and simulated by the
ARFIMA(0,d,0) with LRD disturbances d ∈ [−0.5, 0.5]. d = 0 corresponds to the
white noise and fractional order integral (derivative) coefficient d changes the slope
H in the DFA plot.

Since the original DFA Hurst fitting method does not consider the LRD (cou-
pling) property of the time series, it should be modified to the multiple Hurst fitting
algorithm with multiple polynomial lines. The fractional order difference parameter
d affects the Hurst exponent H shown in the DFA plot. A larger fractional order d
results in a higher H , meaning a more sluggish control. For LRD disturbance with
larger d values, CPA should choose the multiple Hurst fitting results in different
ranges. The crossover points move to the smaller range with increasing PID gains in
Fig. 2. The DFA results with multiple Hurst exponents under different PID tunings
are summarized in Table 1. This explains the response of the systems becoming
faster with high PID tunings. From Table 2, it shows exactly the fact that the
crossover points are moving towards shorter memories with aggressive tunings. In
addition, the crossover points are moving upwards with the increasing fractional
integrated order filter d, since the Hurst exponents (i.e., the slope of DFA plot) are
increased accordingly in the small range. The sluggish control relates to the larger
crossover, which indicates longer control and longer transient periods.
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Fig. 2 DFA plots with crossover points in different PID tunings: From (a) to (e), with the
increasing PID gains, the crossover points move to the small range. In each plot d ∈ [−0.5, 0.5],
the upper fitting line represents the DFA plot with d = −0.5, while the lower fitting line is the
DFA plot with d = 0.5. (a) 0.2 PID Controller tuning under the fGn. (b) 0.5 PID Controller tuning
under the fGn. (c) 1.0 PID Controller tuning under the fGn. (d) 1.5 PID Controller tuning under
the fGn. (e) 2.0 PID Controller tuning under the fGn

Table 1 PID tunings results with multiple Hurst exponents

0.2 PID 0.5 PID 1.0 PID 1.5 PID 2.0 PID

d H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

−0.5 1.829 0.836 1.791 0.513 1.749 0.360 1.787 0.448 1.817 0.436

−0.4 1.777 0.787 1.777 0.588 1.709 0.326 1.767 0.436 1.775 0.371

−0.3 1.694 0.641 1.721 0.550 1.701 0.398 1.726 0.396 1.738 0.329

−0.2 1.624 0.594 1.627 0.411 1.642 0.368 1.674 0.361 1.693 0.292

−0.1 1.545 0.546 1.553 0.379 1.574 0.340 1.613 0.328 1.631 0.246

0.0 1.421 0.323 1.472 0.332 1.496 0.264 1.525 0.231 1.597 0.257

0.1 1.354 0.346 1.370 0.245 1.417 0.288 1.467 0.271 1.498 0.194

0.2 1.266 0.305 1.283 0.215 1.322 0.237 1.383 0.245 1.420 0.173

0.3 1.177 0.270 1.194 0.188 1.217 0.164 1.280 0.185 1.336 0.154

0.4 1.085 0.241 1.099 0.143 1.129 0.144 1.190 0.165 1.247 0.138

0.5 0.992 0.220 1.008 0.122 1.038 0.125 1.098 0.145 1.154 0.123
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Table 2 Crossover positions at different PID tunings

d 0.2 PID 0.5 PID 1.0 PID 1.5 PID 2.0 PID

0.5 (2.695, 1.529) (2.820, 1.651) (2.820, 1.573) (2.598, 1.254) (2.473, 1.116)

0.4 (2.695, 1.302) (2.695, 1.306) (2.820, 1.372) (2.519, 0.986) (2.519, 0.986)

0.3 (2.820, 1.252) (2.695, 1.094) (2.695, 1.040) (2.519, 0.812) (2.519, 0.812)

0.2 (2.820, 1.032) (2.820, 1.018) (2.695, 0.844) (2.519, 0.640) (2.519, 0.640)

0.1 (2.820, 0.814) (2.820, 0.807) (2.695, 0.643) (2.519, 0.466) (2.519, 0.466)

0.0 (3.075, 0.856) (2.820, 0.593) (2.732, 0.506) (2.607, 0.365) (2.607, 0.365)

−0.1 (2.996, 0.580) (2.950, 0.520) (2.695, 0.237) (2.519, 0.117) (2.519, 0.117)

−0.2 (2.996, 0.372) (2.950, 0.310) (2.732, 0.085) (2.519, −0.058) (2.519, −0.058)

−0.3 (2.996, 0.163) (2.950, 0.102) (2.820, −0.039) (2.607, −0.175) (2.607, −0.175)

−0.4 (2.996, −0.048) (2.996, −0.058) (2.820, −0.231) (2.607, −0.347) (2.607, −0.347)

−0.5 (2.996, −0.260) (2.996, −0.257) (2.820, −0.419) (2.607, −0.517) (2.519, −0.525)

4 Case Study: Real Industry Data

4.1 Non stationarity Tests

Process industry data show that the majority of the available measurements and
process disturbances time series exhibits non-linear, non-Gaussian, non-stationary,
self-similar properties. The authors have reviewed a lot of industrial data for the
validation of the above hypothesis. Some exemplary time series for real process
data are presented in Fig. 3.

Visual inspection of the sketched time series shows rapid changes, unexpected
significant spikes (outlier values), oscillations, and noises. As the visual impressions
may be misleading further statistical analysis is performed. The prepared diagrams
present histograms together with fitted probabilistic density functions (PDF) for
three distributions, i.e., classical bell-shaped Gaussian, fat-tailed α-stable, and the
robust (Huber) one.

The fractional dynamics hypothesis may be validated using stationarity tests for
one or many samples, estimation of the memory parameter based on sample using
wavelets and resampling, estimation of the self-similarity index based on sample
p-variation, or by ARFIMA parameter estimation.

The stationarity tests have been run to verify the non-stationarity hypothesis
for the considered exemplary time series. Running the augmented Dickey–Fuller
test (DF-GLS) and Kwiatkowski–Phillips–Schmidt–Shin test (KPSS) tests over the
considered data confirms in all the cases the non-stationarity hypothesis. As these
tests are important tools useful in the context of the ARFIMA model, the hypothesis
that industrial variables perform similarly to the fractional processes is true. This
observation forms a strong rationale for the presented work.
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Fig. 3 Examples of the real industrial process variables time series. (a) Time trend of process gas
flow. (b) Time trend of inlet gas flow. (c) Time trend of column inlet. (d) Time trend of separator
level

4.2 DFA Method with Multiple Hurst Exponents Applied to the
Real Data

Following the algorithm introduced in Sect. 2, the DFA method with multiple Hurst
exponents has been applied to the real data in Fig. 4. In this regard, it should be
noted that apparent crossovers are exhibited for the scaling behavior indicated with
black circles.

Figure 4a, the DFA fitting line is straight with no significant crossover point,
indicating the consistency of the control performances. From the perspective of
control engineers, this control behavior is acceptable. The most interesting result
is Fig. 4b. It seems that DFA fitting plot should be separated into 3 segments, since
periodicities or repeated signals may be contained in the original series. It can be
observed from the original series plot Fig. 3b.

In Fig. 4c, the overall DFA results are in the convex form, i.e.,H1 > H2 meaning
the system controller performance is going to be stabilized in the long run. In
contrast, the badly controlled data set shows a very different crossover pattern. In
Fig. 4d, the overall DFA results are in the concave form, i.e.,H1 < H2, meaning the
control performance is degrading (worse). For very short time scales, the fluctuation
is quite random since H ≈ 0.5, while for the larger time scale, the fluctuation
becomes smoother and asymptotically approaching Brownian noise, H ≈ 1.5.
These findings are consistent with the previous report in [6]. Thus, the proposed
method in this paper is a good quantitative description and can monitor the short
term and long term of the control system.
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Fig. 4 DFA method with multiple Hurst exponents applied to the real data. (a) Time trend of
process gas flow. (b) Time trend of inlet gas flow. (c) Time trend of column inlet. (d) Time trend
of separator level

5 Conclusions

The paper analyzes the control system subject to the disturbance with fractional
dynamics by using the FOSP techniques. The original DFA method is modified
with multiple Hurst fittings with crossover points. In the simulation results, we have
shown that there is an effect of the controller tuning on the crossover points and
Hurst exponents. The industrial data validate the fact that the proposed CPA method
for the system with the fractional order dynamics is helpful and may be applied in
various situations.
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1. Domański, P.D.: Non-Gaussian properties of the real industrial control error in SISO loops. In:
19th International Conference on System Theory, Control and Computing (ICSTCC), pp. 877–
882. IEEE, Piscataway (2015)

2. Liu, K., Chen, Y.Q., Domanski, P. D., Zhang, X.: A novel method for control performance
assessment with fractional order signal processing and its application to semiconductor manu-
facturing. Algorithms 11(7), 90 (2018). https://doi.org/10.3390/a11070090

3. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents
and crossover phenomena in nonstationary heartbeat time series. Chaos Interdisciplinary J.
Nonlinear Sci. 5(1), 82–87 (1995)

https://doi.org/10.3390/a11070090


264 K. Liu et al.

4. Granger, C.W., Joyeux, R.: An introduction to long memory time series models and fractional
differencing. J. Time Ser. Anal. 1(1), 15–29 (1980)

5. Hosking, J.R.: Fractional differencing. Biometrika 68(1), 165–176 (1981)
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Model Correction-Based Multivariable
Predictive Functional Control for
Uncertain Nonlinear Systems

Weiqiang Tang, Yongda Qi, Mengke Guo, and Haiyan Gao

Abstract An improved multivariable predictive functional control algorithm is
proposed for a class of uncertain nonlinear systems. The system nonlinear dynamics
are firstly transformed into a linear-like structure via the extended linearization
method. And then the uncertainty acting on the system is identified using a
disturbance observer. The identified value is used to improve the accuracy of the
prediction model. Finally, the control input is obtained through receding horizon
optimization. The proposed scheme is applied to the tracking control of a hypersonic
vehicle, the results show that the scheme is effective, and the robustness of the
closed-loop system is enhanced.

Keywords Uncertain nonlinear systems · Predictive functional control ·
Extended linearization · Disturbance observer · Robustness

1 Introduction

Model predictive control (MPC) or receding horizon control (RHC) is a class of
advanced computer algorithms that utilize an explicit model to predict the future
response to a plant. At each sampling instant, an optimal control sequence is
yielded by optimizing a quadratic performance index subjected to constraints over a
future horizon, and its first component is applied to the plant. This characteristic of
receding optimization in MPC is the main difference from other control algorithms
which adopt pre-computed control laws [1]. However, receding optimization of
MPC requires a lot of computing resources, which could be an obstacle to its
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applications. A simplified MPC method, named predictive functional control (PFC),
is an effective alternative for the conventional MPC [2]. While retaining the merits
of MPC, PFC can greatly reduce online computational burden.

In practice, the robustness of the closed-loop system is very important to
ensure the normal operation of the system due to the uncertainties. However, some
approaches, for example, robust control [3], remove the effects caused by the
uncertainties on the systems in a negative way, i.e., the controller design based
on boundaries of the uncertainties. As a result, the performances of the closed-
loop systems may greatly fluctuate facing heavy uncertainties due to the limited
regulatory capacity of these controllers.

In order to enhance the robustness of the closed-loop systems, the uncertainties
should be considered in the controller design, i.e., an active way. It is well known
that the disturbance observer-based control strategy provides a feasible way to treat
the heavy uncertainties. In Ref. [4], the unmeasured disturbances were identified by
disturbance observers (DOs), and then they were incorporated into the prediction
model in the control of a missile. The same idea is applied to dry clutch control
[5] and permanent magnet synchronous motor system control [6]. In essence, this
scheme aims to improve the accuracy of the prediction model accommodating the
effects of uncertainty on the system. Although the above-mentioned PFC schemes
achieve satisfactory uncertainty rejection for single-input single-output (SISO)
systems, multi-input multi-output (MIMO) systems have been not involved yet. As
we know that most industrial plants exhibit multivariable characteristics. Therefore,
it is very necessary to investigate multivariable predictive function control based on
the idea of model correction.

In fact, most plants are not only multivariable but nonlinear. In order to facilitate
the application of linear system theory for the controller design, the nonlinear
dynamics generally are linearized in advance. In the state-dependent Riccati control
theory, a nonlinear system should be expressed as a linear-like structure through
state-dependent coefficient technique, i.e., extended linearization [7]. The extended
linearization parameterizes nonlinear dynamics into the state vector and the product
of a matrix-valued function, which can fully capture the nonlinearity of a system in
a more intuitive way.

Motivated by the merits of the DO and the extended linearization, an improved
multivariable predictive functional control (IMPFC) algorithm is proposed for a
class of uncertain nonlinear MIMO systems.

2 Improved Multivariable Predictive Functional Control

Consider the following uncertain nonlinear affine system:

ẋ = f1(x)+ g1(x)u+ g2(x)d (1)
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where x in Rn is the state, u in Rm is the input, y in Rq is the output, and d in Rn is
the uncertainty.

A nonlinear DO for identifying d is given for the system (1) [8], as

d̂ = z+ p(x)
ż = −l(x)g2(x)z− l(x) [g2(x)p(x)+ f1(x)+ g1(x)u]

(2)

where d̂, z, p(x), and l(x) are the estimate of the uncertainty, the internal state of
the nonlinear observer, the nonlinear function, and the nonlinear observer gain,
respectively. As stated in Ref. [8], d̂ can approach d exponentially as long as p(x) is
chosen appropriately.

According to the principle of extended linearization, the system (1) can be
linearized as

ẋ = f (x)x + g1(x)u+ g2(x)d (3)

with f (x)x = f1(x). This is a linear-like structure widely used in the state-dependent
Riccati equation control approach. The design of predictive controller usually
involves output prediction, reference trajectory, optimization, and so on.

By discretizing the system (3) at each sampling instant, the prediction model can
be acquired as

x (k + 1) = Ax(k)+ Bu(k)+Nd(k),
y(k) = Cx(k) (4)

where A = ef (x)Ts , B = ∫ Ts
0 e
f (x)Tsg1(x)dt , and N = ∫ Ts

0 e
f (x)Tsg2(x)dt . C and

Ts are the output matrix and discrete sample period, respectively. It is assumed that
f (x), g1(x), and g2(x) keep unchanged in the prediction horizon. This assumption
is reasonable because model (4) is only used to find the control input at time k. In
PFC, the control input is supposed to be a linear combination of several simple base
functions. Therefore, in case of multi-input situation, a component of the control
input at time k + i can be described as

uj (k + i) =
[
bj1(i) · · · bjnb(i)

]
⎡

⎢
⎣

μj1
...

μjnb

⎤

⎥
⎦ = bj (i)μj (5)

where nb is the number of base functions, μjl is the weighting coefficient corre-
sponding to the base function bjl(·)(j = 1, . . . , m, l = 1, . . . , nb). Based on this
description, the control input can be expressed as



268 W. Tang et al.

u (k + i) =
⎡

⎢
⎣

u1 (k + i|k)
...

um (k + i|k)

⎤

⎥
⎦ =

⎡

⎢
⎣

b1(i)μ1
...

bm(i)μm

⎤

⎥
⎦ = b(i)μ (6)

with b(i) =
⎡

⎢
⎣

b1(i) · · · o
... · · · ...

o · · · bm(i)

⎤

⎥
⎦, μ =

⎡

⎢
⎣

μ1
...

μm

⎤

⎥
⎦.

By iterating system (4), the state at time k + i can be written as

x (k + i) = Aix(k)+
i−1∑

l=0

AlBu (k + i − 1− l)+
i−1∑

l=0

AlNd (k + i − 1− l) (7)

Usually, the future d(k + i − 1 − l)(k + i − 1 − l > 1) cannot be available. For
ease of calculation, it is assumed that the future d(k + i − 1 − l) equals the present
d(k), i.e., d(k + i− 1− l)= d(k) (k + i− 1− l > 1). As a result, the state prediction
(7) can be given by

x (k + i) = Aix(k)+
i−1∑

l=0

AlBu (k + i − 1− l)+
i−1∑

l=0

AlNd(k) (8)

Thus, the output prediction at time k + i can be expressed as

y (k + i) = CAix(k)+
i−1∑

l=0

CAlBu (k + i − 1− l)+
i−1∑

l=0

CAlNd(k) (9)

As shown in Eq. (9), the future output y(k + i) consists of three parts,
namely the free output CAix(k) caused by the present state, the forced output
i−1∑

l=0
CAlBu (k + i − 1− l) caused by the control input, and the additional output

i−1∑

l=0
CAlNd(k) caused by the uncertainty. Obviously, the additional output term will

have a noticeable effect on the output prediction under the serious uncertainty.
Substituting Eq. (6) into Eq. (9) gives

y (k + i) = v(i)x(k)+ w(i)μ+ s(i) (10)

where v(i) = CAi, w(i) =
i−1∑

l=0
CAlBb (k + i − 1− l), and s(i) =

i−1∑

l=0
CAlNd(k).

Besides, a first-order exponential reference trajectory model is used, i.e.,
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yr (k + i) = yc (k + i)−
⎡

⎢
⎣

βi1 · · · 0
...
. . .

...

0 · · · βiq

⎤

⎥
⎦
[
yc(k)− yp(k)

]
(11)

where βil , yc(·), and yp(·) denote the softness factor, the set point, and the process
output, respectively.

Minimizing the following performance index finds the coefficient vector μ.

J =
∑

ai∈Ac

q (ai) [y (k + ai)− yr (k + ai)]2 (12)

where Ac = {a1, a2, . . . , ac} is a coincidence set, and its elements selected from the
prediction horizon q(·) is the weighting coefficient. By introducing several symbolic
variables, the performance index can be written in vector-matrix form:

J = ‖V x(k)+Wμ+ S − Yr‖2
Q (13)

where V =
⎡

⎢
⎣

v (a1)
...

v (ac)

⎤

⎥
⎦, W =

⎡

⎢
⎣

w (a1)
...

w (ac)

⎤

⎥
⎦, S=

⎡

⎢
⎣

s (a1)
...

s (ac)

⎤

⎥
⎦, Q=

⎡

⎢
⎣

q (a1)

. . .

q (ac)

⎤

⎥
⎦,

Yr=
⎡

⎢
⎣

yr (k + a1)
...

yr (k + ac)

⎤

⎥
⎦. Furthermore, define ξ = Yr − Vx(k) − S, then Eq. (13) can be

rewritten as

J = ‖Wμ− ξ‖2
Q = μTLμ− 2μTM + ξTQξ (14)

with L = WTQW,M = WTQξ . By finding the gradient of J with respect to μ and
setting it to zero, one can obtain the weighting vector μ = (L)−1M. Finally, the
control input can be represented as

u(k) = f (0)μ = f (0)(L)−1M (15)

In implementation, d(k) should be replaced by d̂(k) shown in Eq. (2).

3 Mathematical Model of a Hypersonic Vehicle

Consider the longitudinal dynamics of a typical hypersonic vehicle developed by the
NASA Langley Research Center [9]. The mathematical model of the vehicle can be
described by a set of five first-order differential equations as follows:
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V̇ = T cosα −D
m

− μ sin γ

r2 (16)

γ̇ = L+ T sinα

mV
−
(
μ− V 2r

)
cos γ

V r2 (17)

ḣ = V sin γ (18)

α̇ = q − γ̇ (19)

q̇ = Myy
Iyy

(20)

where V, γ , h, α, and q are the velocity, the flight-path angle, the altitude, the angle
of attack, and the pitch rate, respectively. More information about this model can be
found in [9].

Consider the parameter variations, the dynamics of the hypersonic vehicle Eqs.
(16)–(20) can be rewritten as

ẋ = [f1(x)+Δf ]+ [g1(x)+Δg] u (21)

where u = [β, δe]T and �f and �g are the parameter variations. Further operation
on Eq. (21), it can be expressed as

ẋ = f1(x)+ g1(x)u+ d (22)

where d = �f + �g · u is the lumped uncertainty.
The control objective for the vehicle is that the velocity and altitude can quickly

track the desired commands around the trimmed cruise flight.

4 Simulation Results

The control parameters were chosen as Ac =
[

50 100 150 200
]
, Ts = 0.01 s, and

f11(·) = 1, f21(·) = 1. In order to highlight the advantage of the proposed IMPFC,
a comparative study was carried out against the conventional multivariable PFC
(CMPFC) in the presence of parameter variations. The additive variations were set
to be −10% for parameters of

(
m, c, Iyy, S, ρ, ce, CMα

)
, i.e. Δ = − 10%. The

simulation results were described in Fig. 1, where the velocity stepped from 15,060
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Fig. 1 Response curves of
system outputs and inputs in
the presence of parameter
variations under IMPFC and
CMPFC, Δ = − 10%
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Fig. 2 Response curves of
system outputs and inputs in
the presence of output
uniform noises under IMPFC
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to 15,160 ft/s and the altitude tracked the step change with magnitude 500 ft. It
can be seen that IMPFC achieves better tracking performance in settling time and
steady-state error. To be specific, the altitude tracking has a steady error under the
CMPFC. In addition, there need less efforts for the elevator deflection under the
IMPFC.

Furthermore, in order to test the robustness of the system to parameter variations
more comprehensively, assume that the output is subjected to uniform noise,
specifically the interval

[−2.5 2.5
]

ft/s for the velocity and the interval
[−4 4

]
ft

for the altitude. The simulation results were described in Fig. 2 where it can be
observed that the system outputs can well track the reference commands. However,
there are slight high-frequency oscillations in the throttle setting and elevation
deflection. It is because the control inputs have to adapt to changes in noises.

According to the simulation results, it can be inferred that the closed-loop system
under the IMPFC has strong robustness to parameter variations and measurement



272 W. Tang et al.

noises. It is due to the fact that the improved prediction model takes account of the
uncertainty, which can greatly reduce the effects of the uncertainty on the system.

5 Conclusions

In combination with the disturbance observer and extended linearization approach,
an improved multivariable predictive functional control algorithm is presented for
uncertain nonlinear systems. The accuracy of the prediction model is effectively
improved by taking the estimated uncertainty into account, which can greatly
enhance the disturbance rejection ability of the closed-loop system. Additionally,
the design process can be shortened by using the extended linearization method.
Therefore, the proposed predictive functional control scheme is promising for
nonlinear uncertain systems. The simulation results of a hypersonic vehicle show
that the closed-loop system under the presented controller has some robustness at
the presence of parameter variations.
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Part III
Sensors and Actuators



Compensation Strategies for Actuator
Rate Limit Effect on First-Order Plus
Time-Delay Systems

Jie Yuan, Shumin Fei, and YangQuan Chen

Abstract Rate limit of system actuators is one of the major restrictions in the physi-
cal world. However, the actuator rate limit has always been neglected in classical and
modern control design. The rate limiter generates amplitude attenuation and phase
delay, which will deteriorate control performance and may even lead to system
instability. In this study, the Bode step control method was applied to first-order plus
time-delay (FOPTD) systems to mitigate the magnitude reduction and phase caused
by the rate limiter. An illustrative example was given to show the effectiveness of
the Bode step compensation method.

Keywords Actuator rate limit · Bode step concept · First-order plus time-delay
system
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1 Introduction

Restrictions are ubiquitous in most of the control systems; for instance, the plant has
no capacity to act aggressively due to mechanical limitations, and the control signal
cannot exceed to a specific value to guarantee system safety. Actuator saturation is
one of the most concerned issues by engineers and it includes amplitude saturation
and rate limit. Amplitude saturation has drawn various researchers’ attention, and
many control strategies have been developed to compensate the amplitude saturation
[1]. However, the controller design methods which consider the actuator rate limit
effect have not been extensively developed. Li et al. reshaped the control signal
according to rate saturation in time domain [2]. Hanke developed the describing
function of the rate limiter as a theoretical basis to analyze the handling qualities
of the open-loop and closed-loop systems in frequency domain [3]. It has been
found that the fully saturated rate limiter may lead to system instability, and one
of the evidence is the Pilot-in-the-Loop Oscillation (PIO) in aircrafts and unmanned
vehicle systems. Thus, it is essential to compensate the rate limit effect in aggressive
systems or precision control systems. In [4], a nonlinear filter was proposed to
compensate the phase delay of the control signal after a rate limiter to prevent the
PIO. In [5], the fractional-order proportional–integral (PI) controller was applied to
FOPTD process and was found to have benefit to the rate limit effect compared with
traditional proportional–integral–derivative (PID) controller.

The Bode step method is a robust feedback controller design approach which was
first produced by Bode in [6]. It is developed to maximize the feedback area with
the highest possible gain in low frequency. The gain curve of the ideal loop transfer
function has a constant magnitude at a certain frequency range which provides a
better system robustness. The steep roll-off in high frequency improves the noise
rejection capacity.

Motivated by the benefits of the aforementioned Bode step feedback controller
design method, this strategy will be applied to FOPTD systems to mitigate the
actuator rate limit effect. The flat gain curve in the middle frequency range is able to
mitigate the magnitude reduction and phase delay resulting from actuator rate limit.

The main contributions of the paper are to (1) introduce the concept of the Bode
step method, which is one of the effective loop shaping methods; (2) utilize the
advantages of the Bode step to mitigate the rate limit effect. The remainder of the
paper is organized as follows: The nature of the rate limiter and the concept of Bode
step method are given in Sects. 2 and 3, respectively. An illustrative example is given
in Sect. 4, where the Bode step controller is first designed based on the specifications
of gain margin, phase margin, and gain crossover frequency. A classical PI controller
is also designed for a fair comparison. The results have shown that Bode step
controller generates more robust performance under different actuator rate limit
values and is able to mitigate the rate limit effects. Conclusions are drawn in the
last section.
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2 The Nature of the Rate Limiter

The rate limiter saturates the rate of the output signal within a specific value. For the
sinusoidal input

x(t) = A sin(ωt),

the rate of the input is

ẋ(t) = ωA cos(ωt).

The rate of output signal f (t) cannot exceed a specific value R, which satisfies
∣∣ḟ (t)

∣∣ ≤ R,
whereR is called the rate limit value. When the actuator is fully saturated, the output
signal becomes a pure triangular wave and contains magnitude reduction and phase
delay compared with the input signal.

3 Asymptotic Bode Step Method

Bode proposed a desired asymptotic gain plot of the open-loop system which is
shown in Fig. 1. The Bode step response achieves the highest possible gain in the
low frequency range over a given bandwidth ωb. The high gain in low frequency is
beneficial for disturbance rejection. The constant gain at a certain frequency range
from ωd to ωc contributes to the strong robustness to the parameter perturbation
and noise interference, and this flat gain curve is called “Bode step.” The Bode
gain plot also has a steep roll-off with −20n dB/dec in high frequency range which
improves the system noise rejection capacity. n is the relative order of the ideal loop
transfer function.

Fig. 1 The Bode gain plot of
the ideal Bode step open-loop
system
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In order to make the system robust to the plant parameter perturbation and
disturbance effect, two frequency performance indices are specified in the Bode
step method, which are gain margin x dB and relative phase margin y (y =
ϕm/180◦, ϕm isthephasemarginindegree). To guarantee the system response speed,
the gain crossover frequency ωb rad/sec is set to be the third design specification
in this method. Based on these design specifications, the corner frequencies of the
Bode step open-loop gain curve can be calculated by the following equations:

ωc

ωd
= n+

π
2 |Bn(ωc)|

2(1− y) , (1)

ωd = 10
x

40(1−y) ωb, (2)

where Bn(ωc) is the nonminimum phase lag at ωc.
In the frequency range below ωd , the slope of the gain curve is −40(1 − y)

dB/dec, which means the order of the operator s is a fraction rather than an integer.
The desired constant slope can be decomposed into a rational part and an irrational
part: s−2(1−y) = s−1s−1+2y . This irrational slope can be implemented by a rational
function which contains several pairs of real poles and zeros. The average slope of
the approximated rational function should equal 20(−1+ 2y) dB/dec.

The rational approximation of the Bode step and steep roll-off in high frequency
can be implemented by cascading a second order function

Gb(s) = s
2 + 2ξ1ωds + ω2

d

s2 + 2ξ2ωcs + ω2
c

,

where, ξ1 ad ξ2 are damping coefficients.
For an FOPTD process in the form of

G(s) = G0(s)e
−Ls = K

T s + 1
e−Ls,

whereK , T ,L are the steady-state gain, time constant, and delay, respectively. Once
the ideal loop transfer function H(s) is obtained, the compensator can be easily
calculated as

C(s) = H(s)

G0(s)
= H(s)(T s + 1)

K
,

where the delay part cannot be reversed due to physical feasibility. The closed-
loop system response based on the Bode step method is expected to have a large
overshoot. An additional notch prefilter is cascaded to the closed-loop system to
reduce the response overshoot:

Q(s) = s2 + ωbs + ξ2
3ω

2
b

s2 + aωbs + ξ2
3ω

2
b

,
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where a and ξ3 are tuning parameters to determine the notch position and notch
depth.

In this study, the objective is to design a controller to mitigate the actuator rate
limit effect. Motivated by the benefits of the Bode step concept, the Bode step
controller is applied to the FOPTD process. Four specifications are required: gain
margin x∗ dB, relative phase margin y∗, gain crossover frequency ω∗b rad/sec, and
relative order of the ideal loop transfer function n. An asymptotic Bode magnitude
plot of the ideal loop transfer function is firstly obtained and implemented by using
the above method, as shown in Fig. 1.

The detailed design procedures of the Bode step controller are:

1. Specify the design performance: gain margin x∗ dB, relative phase margin y∗,
gain crossover frequency ω∗b rad/sec, and the relative order of the ideal loop
transfer function n.

2. Calculate corner frequencies based on Eqs. (1)–(2) and draw asymptotic Bode
magnitude plot of the ideal loop transfer function.

3. Implement the asymptotic Bode plot with H(s), which is composed of several
cascaded rational loop transfer functions.

4. Cascade the H(s) with the inverse of minimum part of the plant G0(s), then the
controller is obtained as H(s)

G0(s)
.

5. Choose parameters of the prefilterQ(s) by trial and error to reduce the overshoot
of the closed-loop response.

4 An Illustrative Example

In this section, an illustrative example will be given to show the effectiveness of
Bode step method in control systems which is affected by the rate limit. The FOPTD
system is considered as

G(s) = 1

2s + 1
e−0.1s .

The controller design specifications are chosen as: gain margin x∗ = 10 dB, phase
margin ϕ∗ = 30◦ (y∗ = 1

6 ), and the crossover frequency ω∗b = 1 rad/sec. The
relative order of the desired open-loop system is chosen as n = 3. According to
Eqs. (1) and (2), the corner frequencies are obtained: ωd = 2 rad/sec and ωc =
4.28 rad/sec. Approximated with several rational links, the ideal open-loop transfer
function based on the Bode step method is obtained as

H(s) = 6.47

s + 0.058

s + 0.042

s + 1.4

2.33

s + 2.33

s2 + 2.4s + 4

s2 + 3.42s + 14.83

1

s
. (3)

The controller is
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C(s) = 6.47

s + 0.058

s + 0.042

s + 1.4

2.33

s + 2.33

s2 + 2.4s + 4

s2 + 3.42s + 14.83

2s + 1

s
.

The achieved frequency characteristics of the open-loop system (3) are: gain
crossover frequency ωb = 1.00 rad/sec, gain margin x = 11.33 dB, phase margin
ϕm = 30.91◦, which satisfied the design requirements. An additional prefilter is
cascaded to the closed-loop system to reduce the response overshoot:

Q(s) = s2 + s + 0.81

s2 + 2s + 0.81
.

In order to fairly illustrate the effectiveness of the Bode step method, a PI controller
is designed based on two specifications: ω∗b = 1 rad/sec and ϕ∗m = 30◦. The
corresponding PI controller is

CPI (s) = 0.356+ 2.21

s
.

The Bode plots of the open-loop system containing the Bode step controller or the
PI controller are shown in Fig. 2. The closed-loop step response without the rate
limit of these two systems is shown in Fig. 3. From Fig. 2, the gain curve of the
Bode step controlled system in low frequency is much higher than the one employs
PI controller, which means the Bode step controller has better disturbance rejection
ability. The lower gain plot for the Bode step method in high frequency increases the
capacity of noise reduction. In the middle frequency range, the Bode step method
generates a flat gain curve, thus the system has better performance robustness to the
parameter perturbations and noise contamination. As shown in Fig. 3, the Bode step

Fig. 2 The Bode plot of the
open-loop system
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Fig. 3 The closed-loop step
response without considering
the rate limit
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Reference

Bode step
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method generates stable output with slight oscillations while PI controller results in
a more aggressive response.

When taking actuator rate limit into consideration, the step responses based on
the Bode step method and the corresponding control signals with respect to different
rate limit values are shown in Fig. 4a, b. The step responses with the PI controller and
corresponding control signals under different rate limit values are given in Fig. 4c,
d. It can be observed that the Bode step controller generates more robust system
performance than the PI controller under different rate limit values. For R ≥ 1, the
system response based on PI controller is unstable, and the control signal is fully
saturated. While based on the Bode step method, the system is still stable when
R = 0.8. As an observation, the Bode step controller can stand lower rate limit
value which results from the better performance robustness.

5 Conclusions

This paper employs the Bode step controller design method to the FOPTD process
containing the rate limit and has found that the Bode step controller enables to
mitigate the rate limit effect. The flat Bode step gain curve of ideal open-loop
transfer function contributes to the performance robustness. The illustrative example
has demonstrated that the Bode step controller allows for lower rate limit value
and improves performance robustness compared with traditional PI controller. In
our future research, we will focus on compensating magnitude reduction and phase
delay of the rate limiter directly in ideal Bode step gain plot. More flat gain curves
can be alternatively added to achieve for different robustness requirements.
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Fig. 4 Simulation results under different rate limit values with the Bode step controller: step
responses (a), control signals (b); with the PI controller: step responses (c), control signals (d)
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Reliable Output-Feedback Control for
Markovian Jump Descriptor Systems
with Sensor Failure and Actuator
Saturation

Chan-eun Park, Nam Kyu Kwon, and PooGyeon Park

Abstract This paper proposes dynamic output-feedback networked control
with actuator saturation and sensor failure for Markovian jump descriptor
systems (MJDS). First, the mode-dependent dynamic output-feedback controller
is described as a quasi-linear parameter varying system. Then, the stochastic
admissibility criterion for the closed-loop system with sensor failure and actuator
saturation is obtained as matrix inequalities. To obtain the feasible solution of
the non-convex condition, this paper successfully obtains the equivalent condition
in terms of strict linear matrix inequalities (LMIs) and the controller gains. A
numerical example shows the validity of the proposed result.

Keywords Singular system · Markovian jump system · Input saturation · Sensor
failure

1 Introduction

Descriptor systems, which are also called singular systems or generalized state-
space systems, are models that express both dynamic behavior and non-dynamic
properties of the system state. Therefore, descriptor system has received consider-
able attention because it can be a useful tool to express many real plants. Otherwise,
Markovian jump systems (MJSs), which are a type of stochastic jump system,
have been studied extensively for over few decades and widely used in practical
applications due to its ability to represent the unexpected changes or sudden changes
in the plant. Therefore, there has been an increasing interest in the issue of both
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descriptor system and MJS, which are known as Markov jump descriptor systems
(MJDSs).

On the other hand, networked control systems (NCSs), which is a control scheme
that sensor-controller and controller-actuator share a common communication
signal, has been one of the hot topic in not only academia but also industry for many
decades [1]. This is evidenced by Google Scholar searches of the term “Networked
control systems,” which returns over 45,000 items until May 2019. However, there
are some critical issues in NCS such as sensor failure and actuator saturation. These
factors generate the system non-linearity which degrades the performance of system
or even causes the instability of system. To consider this phenomena, [2] dealt with
dissipative control for MJDS with sensor failure, and [3] solved filtering problem
for MJSs with sensor failure. The research on control problem with time-varying
delay and actuator saturation was also published [4]. Recently, the authors of [5]
considered H∞ filtering for MJDS with time-varying delays and sensor failures.
However, to the best of the authors’ knowledge, there is no study that considers
reliable control problem for MJDS with sensor failure and actuator saturation.
This is the motivation behind this paper. Further, since output-feedback control can
handle the system with immeasurable states, this paper designs a dynamic output-
feedback control for MJDS.

This paper suggests the dynamic output-feedback control for continuous-time
MJDS. To consider the actuator saturation, the proposed control is designed in
the form of quasi-linear parameter varying (QLPV) system. First, the stochastic
admissibility criterion for the closed-loop system is obtained as matrix inequalities
with time-varying components which come from sensor failure. Next, with the help
of sensor failure model, the upper bound of the matrix inequalities are taken. Then,
by applying congruence transformation to the matrix inequalities, the equivalent
condition is derived in terms of strict linear matrix inequalities (LMIs). A numerical
example verifies the validity of the result. The notation in this paper is fairly
standard. For a matrix X, XT means the transpose matrix of X. If X is square, the
notation sym(X) = X + XT is defined. For a vector x, [x]k denotes k−th element
of x. The set N+k = {1, 2, · · · , k}. In symmetric matrix, (∗) is used as an ellipsis for
terms that are induced by symmetry.

2 Problem Statement

Consider the following continuous-time singular Markovian jump systems with
input saturation:

Eẋ(t) = A(qt )x(t)+ B(qt )σ (u(t)),
y(t) = C(qt )x(t), (1)

where the notations x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p denotes the state, control

input, and the measurement output, respectively. The saturation operator σ(·) is
defined as follows:
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[σ(u)]k �=
{
sgn([u]k)μ |[u]k| ≥ μ,

[u]k |[u]k| < μ, (2)

where sgn(·) is signum function andμ > 0 is a saturation level. The operation mode
{qt } is a continuous-time Markov process which takes values in a finite set N+N with
transition rates πij given by

Pr(ηt+δt = j |ηt = i) =
{

πij δt + o(δt), if j �= i,
1+ πiiδt + o(δt), otherwise,

where δt > 0, limδt→0 (o(δt)/δt) = 0, πij is the transition rate from mode i at time
t to mode j at time t + δt , and πij ≥ 0 if i �= j ,

∑
j∈N πij = 0. To simplify the

notation, the mode-dependent matrix can be rewritten with the subscription i when

the Markov process qt stays at mode i, i.e., A(qt = i) �= Ai . Also, to describe the
singular system, the matrix E ∈ Rn×n is supposed to have rank r < n. Without
loss of generality, the matrix E = diag{Ir , 0} ∈ Rn×n will be used. To treat the
singular matrix E, we define the matrices: the full-rank matrices R, S and matrices
EL,ER such that RE = 0, ES = 0, and ETLER = E. The goal of this note is to
design a dynamic output-feedback control which works normally under the sensor
failure and input saturation (see Fig. 1). To deal with this problem, we assume the
following conditions:

Assumption 1 The pairs (Ai, Bi, Ci) are minimal for all i ∈ N
+
N .

Assumption 2 When there exist failures in the sensor which receive the system
output y(t), it can be modeled as yF (t) = Fy(t), where yF (t) means the adopting
signal in control system sent from sensors and F = diag(f1, f2, · · · , fp) with
0 ≤ fk ≤ 1 for all k ∈ N

+
p . Also, the lower and upper bound of fk is known [6].

The following lemmas will be used in the next section.

Lemma 1 ([7]) The input saturation σ(u(t)) can be expressed as a convex combi-
nation of control input u(t) and a virtual input v(t), where all components of the
virtual input should be bounded by saturation level, i.e., |[v(t)]k| ≤ μ,

Fig. 1 System description
with sensor failure and input
saturation problem
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σ(u(t)) =
∑

l∈N+2m
ζl{Hlu(t)+H−

l v(t)}, (3)

where Hl denotes a diagonal matrix whose diagonal elements are either 0 or 1,
H−
l = I −Hl ,

∑
l∈N+2m ζl = 1, and ζl ≥ 0.

Next, due to the Assumption 2, the sensor failure model can be rewritten such that
yF (t) = (F̂ +Δt F̌)y(t), where

F̂ = diag

(
f̄1 + f 1

2
, · · · ,

f̄p + f p
2

)

, F̌ = diag

(
f̄1 − f 1

2
, · · · ,

f̄p − f p
2

)

,

(4)

andΔt is a diagonal matrix whose all elements are varying in the range between−1
and 1.

Remark 1 As shown in Fig. 1, both the actuator saturation and sensor failure
generate the system non-linearity. In the case of actuator saturation problem,
Lemma 1 introduces a virtual input to represent the nonlinear input signal to be
linear combination of input signals. Otherwise, the time-varying sensor failure
model in Assumption 2 can be remodeled as the convex combination of the bounds
of sensor failure components.

3 Main Result

We suggest the dynamic output-feedback controller such that

Eẋc(t) =∑
l∈N+2m ζl(xc(t))Aci,lxc(t)+ BciyF (t),

u(t) = Ccixc(t),
(5)

where xc(t) is the control state, Aci,k, Bci and Cci are mode-dependent controller
gain at mode i. When the control input u(t) in (5) is saturated, with the help of
Lemma 1,

σ(Ccixc(t)) =
∑

l∈N+2m
ζl{HlCci +H−

l Kci}xc(t), (6)

where Kci is the virtual input gain. This expression is valid under the region such
that L(Kxc(t)) = {xc(t) | |[Kxc(t)]k| ≤ μ, ∀ k ∈ N

+
m}.Here, the convex parameter

ζl in (5), (6) depends on xc(t). The way how to determine ζl is stipulated in Lemma 2
of [8]. Then the closed-loop system is obtained as follows:
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Ē ˙̄x(t) =
∑

l∈N+2m
ζlĀi x̄(t), (7)

where Āi =
[

Ai Bi(HlCci +H−
l Kci)

BciFCi Aci

]
, x̄(t) = [xT (t) xTc (t)]T , and Ē =

diag(E,E). From [9], the stochastic admissibility of (7) is guaranteed if there exist
symmetric matrix Pi , and non-singular matrixQi for all i ∈ N

+
N, l ∈ N

+
2m such that

0 < ĒTLPiĒL, (8)

0 > sym(ĀTi (PiE + RTQiST ))+
∑

j∈N+N
πij Ē

T Pj Ē, (9)

where ĒL = diag(EL,EL). Next, we formulate the set invariant condition. Let us

define an ellipsoid such as E(ĒT PiĒ)
�= {x̄(t) | x̄T (t)ĒT P Ēx̄ ≤ 1}. To hold the

region L(Kxc(t)), the ellipsoid should be in the region of L(Kxc(t)) which means

x̄T (t)K̄Ti eke
T
k K̄i x̄(t) ≤ μ2x̄T (t)ĒT PiĒx̄(t), ∀i ∈ N

+
N, k ∈ N

+
m, (10)

where ek ∈ Rn is column vector whose k−th element is 1 and others are 0, and
K̄i = [0 Ki]. Also, we can use the upper bound of (8).

0 > sym(ĀTciΣi)+
∑

j∈N+N
πij Ē

T Pj Ē +ΣTi B̄ciB̄TciΣi + C̄Ti C̄i , (11)

where Σi = PiĒ + R̄T QiS̄T , Āci =
[

Ai Bi(HlCci +H−
l Kci)

BciF̂Ci Aci

]
, B̄ci =

[
0
Bci

]
, C̄i =

[
CTi F̌T

0

]T
, S̄(R̄) = diag(S(R), S(R)). However, since (11) is

expressed in terms of non-convex condition, we have to convert it into convex
conditions to find the controller gains.

Theorem 1 For the states in invariant set E(ĒT PiĒ), the following statements are
equivalent.

(A) There exist symmetric matrix Pi , non-singular matrix Qi , and matrix Ki such
that for all i ∈ N

+
N, l ∈ N

+
2m

0 <

[
ĒTLPiĒL Ē

T
L K̄

T
i el

eTl K̄iĒL μ2I

]
, (12)

0 > sym(ĀTciΣi)+
∑

j∈N+N
πij Ē

T Pj Ē +ΣTi B̄ciB̄TciΣi + C̄Ti C̄i . (13)
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(B) There exist P1i , P̄1i ,Q1i , Q̄1i , B1i , B2i , C1i , C2i and K1i such that for all i ∈
N
+
N, l ∈ N

+
2m

0 <

⎡

⎣
ETRP̄1iER (∗) (∗)

I ETLP1iEL (∗)
eTl K1iER 0 μ2I

⎤

⎦ , (14)

0 >

[
(1, 1)a ET B1i + SB2i

(∗) −I
]
, (15)

0 >

⎡

⎢
⎣

(1, 1)b (P̄1iE + SQ1iR)
T CTi F̌T

[√
πijEP̄1iER

]
j∈N+N/{i}

(∗) −I 0
(∗) (∗) −diag [ETRP̄1jER

]
j∈N+N/{i}

⎤

⎥
⎦ ,

(16)

where

(1, 1)a = sym((P1iE + RTQ1iS
T )T Ai + (ET B1i + SB2i )F̂Ci)

+
∑

j∈N+N
πijE

T P1jE + CTi F̌T F̌Ci,

(1, 1)b = sym((Ai + Bi(HlCci +H−
l Ki))(P̄1iE

T + SQ̄1iR))+ πiiEXiE.

Proof The equivalent of (12) and (14) is already shown in [10]. Therefore, we only
proof the others.

(A)→(B) Let us divide Pi, Qi,Σi in (12),(13) into the following block matrices:

Pi =
[
P1i P2i

PT2i P3i

]
, Qi =

[
Q1i Q2i

Q3i Q4i

]
,Σi =

[
Σ1i Σ2i

Σ3i Σ4i

]
. (17)

By [11], Σi is non-singular and its inverse is defined as Σ−1
i = P̄i Ē

T + S̄Q̄R̄,
where P̄i and Q̄i are the block matrices such that ĒTR P̄iĒR = (ĒTLPiĒL)−1, Q̄i =
(S̄T S̄)−1Q−1

1i (R̄R̄
T )−1. Let us set the block matrix P̄i as follows:

P̄ =
[
P̄1i P̄2i

P̄ T2i P̄3i

]
. (18)

Note that ĒTR P̄iĒR = (ĒTLPiĒL)−1 holds that

ETRP̄1iER =
{
ETLP1iEL −

(
ETLP2iEL

) (
ETLP3iEL

)−1 (
ETLP

T
2iEL

)}−1

. (19)
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By considering the above condition, set the following invertible matrices:

T1i =
⎡

⎢
⎣

ETRP̄1iER I 0

− (ETLP3iEL
)−1
ETLP

T
2iEP̄1iER 0 0

0 0 I

⎤

⎥
⎦ , T2i =

[
Σ−1

1i I

Σ−1
1i −Σ1i 0

]
. (20)

Then applying congruence transformation to (12) and (13) by T1i and T2i . Then it
is easily shown that (12) and (13) guarantee (14), (15), and (16), respectively.

(B)→(A) Let us construct the following matrices:

Pi =
[

P1i P2i − P1i

PT2i − PT1i P1i − P2i

]
,Qi =

[
Q1iQ2i −Q1i

QT2i −QT1i Q1i −Q2i

]
, (21)

ETRP2iER =
(
ETL P̄1iEL

)−1
, Q2i =

(
ST S

)−1
Q̄−1

1i

(
RRT

)−1
. (22)

Then we can define the following non-singular matrices:

T̄1i =
⎡

⎣
ETRP̄1iER I 0
ETRP̄1iER 0 0

0 0 I

⎤

⎦ , T̄2i =
[
Σ̄1i I

Σ̄1i 0

]
, (23)

where Σ̄i = P̄1iE
T + SQ̄1iR. Note that since we set the condition (22), Σ̄i is

guaranteed by in [11]. Next applying congruence transformation to (12) by T̄1i .
Then, the condition (12) can be rewritten as (14) by Schur complement. In the
condition (13), the result of congruence transformation by T̄2i is

0 >

[
L1i (P̄1i , Q̄1i , C1i , C2i ) (∗)

LT2i (P1i , P̄1i ,Q1i , Q̄1i , Aci, Bci, Cci) L3i (P1i ,Q1i , B1i , B2i )

]
. (24)

Here, we can set Aci, Bci, Cci to hold L2i (·) = 0. Then the above condition is
equivalent to (15), (16) by Schur complement.

4 Numerical Example

Consider the following system matrices:

A1 =
[−2 3

1 1

]
, A2 =

[−1.7 1.5
1 1

]
, B1 =

[
0
−1

]
, B2 =

[
0
−1

]
, (25)

C1 =
[−1.5

1

]T
, C2 =

[
2
−2

]T
,Π =

[−3 3
5 −5

]
. (26)
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Fig. 2 State trajectories with
the proposed dynamic
output-feedback control

Fig. 3 Euclidean norm of state from Monte Carlo simulation result

The lower and upper bound of sensor failure model are given as f1 = 0.05, f2 =
0.1, f̄1 = 0.8, f̄2 = 1. The saturation level μ = 1 is considered. The state
trajectories with the proposed controller, mode transition, and saturated input signals
are shown in Fig. 2. Also, in order to generalize the result, the Euclidean norm of
state trajectories for Monte Carlo simulation with 100 rounds is also provided (see
Fig. 3). It can be seen that the closed-loop system with the proposed controller is
stable for 100 rounds simulations.

5 Conclusions

This paper designed a dynamic output-feedback control for Markovian jump
descriptor systems under input saturation and sensor failure. By introducing virtual
control input which is in the range of saturation level and sensor failure model,
the closed-loop system is expressed in the form of quasi-linear parameter varying
systems. Since the stochastic admissibility criterion for the closed-loop system
is obtained in terms of matrix inequality, the equivalent condition of non-convex
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condition is derived in terms of strict linear matrix inequalities. The dynamic output-
feedback controller is constructed from the solution of proposed LMIs. A numerical
example is provided to show the effectiveness of the result.
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Part IV
Network Synchronization



Synchronization Analysis of Coupled
Oscillatory Network with Different Node
Arrangement

Li-xin Yang and Xiao-jun Liu

Abstract This chapter studies the impacts of node arrangement on the frequency
synchronization of coupled oscillatory network. We mainly focus on the oscil-
latory model with chain-like and tree-like topologies. Moreover, we address the
numerical simulations on the role of node arrangement in the phenomenon of
onset of frequency synchronization in power network modeled by second-order
Kuramoto oscillators. It is revealed that coupling strategies play an important role
in collective behavior of coupled oscillatory network. It is also discovered that the
threshold of coupling strength for frequency synchronization may be different for
different arrangements of the consumer and generator nodes. More specifically,
the closer to each other the nodes which are more heterogeneous, the stronger the
synchronizability of oscillatory network is. In particular, the closer to each other the
nodes which are less heterogeneous, the weaker the synchrony ability of the coupled
oscillatory network is.

Keywords Oscillatory network · Critical coupling strength · Synchronization

1 Introduction

It is well known that the frequency synchronization in coupled oscillatory network
is one important issue in the nonlinear dynamics and complex networks [1–3].
Generally, the successful model for studying the synchronization problem was
introduced by Kuramoto oscillators. During the last decades, the oscillator model
has simulated various studies from many fields [4–7]. The Kuramoto model shows
the evolution of coupled oscillators via a set of time differential equations,
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θ̇i = ωi +K
N∑

j=1

βij sin
(
θj − θi

)
, i = 1, 2, . . . , N, (1)

where θ i denotes instantaneous phase of the ith oscillator, ωi is its natural frequency,
K is the global coupling strength and matrix B = (β ij)N × N is the adjacency matrix
of network. If oscillators i and j are connected, then β ij = 1, otherwise β ij = 0.

On the other hand, in order to characterize the degree of synchrony of oscillatory
network, the order parameter is defined within the formula

z(t) = r(t)ei"(t) = 1

N

N∑

j=1

eiθj (t), (2)

where z(t) denotes a complex valued vector on the complex plane, r(t) is the
collective amplitude. When r ≈ 1 indicates that all the oscillators come to a single
tight clump, and when r ≈ 0 denotes that the system exhibits low synchrony. As
the coupling strength K increases, then a cluster of phase-locked oscillators appear,
characterized by an order parameter 0 < r(t) < 1.

More importantly, second-order Kuramoto oscillatory network can be interpreted
as a realistic physical model of consumers and generators working in a power
network [8–11]. Researchers provided the physical motivation via the Kruamoto
oscillator to model power grids [12]. They distinguish between two kinds of
oscillators: The generator nodes that deliver electrical power and the consumer
node that consume the power. Thus, it is important that all the nodes in the power
network operate at the same frequency to guarantee a steady power flow, otherwise
severe problems like large blackouts are bound to occur. To keep energy balance,
synchronization between distributed nodes of a power grid is an essential aspect
for its proper operation. As known, collective behavior of oscillatory network is
mainly determined by the topology structure and the coupling strength. In fact,
node arrangements play crucial roles on the topology structure of oscillatory
network [13–15]. However, existing results have discussed the dynamics of power
networks composed of equal coupled oscillators. But power network is composed
of nodes with different physical and dynamical properties. Hence, for coupled
oscillatory power network, if node arrangements are different, then the critical
coupling strength may be different. For this reason, we pay our particular attention
to understand what features of a network inhibit or enhance the ability to support
collective dynamics. The objective of this chapter is to study the influence of
node arrangements in the coupled network with chain topology and tree topology
structures.

This chapter is organized as follows. A coupled oscillatory power network model
and synchronous conditions are presented in Sect. 2. Then, in Sect. 3, firstly,
synchronous state of a simple power network model is studied. This allows us
to investigate the synchronization ability of coupled power network with complex
coupling strategies in the following subsection, exploring the relationship between



Synchronization Analysis of Coupled Oscillatory Network with Different Node. . . 297

synchronizability and the node arrangement schemes. The conclusions of this work
are drawn in Sect. 4.

2 Model for Synchronous Oscillatory Power Network

Following Ref. [11], a coupled oscillatory power network with the dynamics
described by the second-order Kuramoto model, the system equations can be written
as:

⎧
⎪⎨

⎪⎩

φ̇i = ωi,
ω̇i = −αωi + Pi +K

N∑

j=1
aij sin

(
φj − φi

)
, i = 1, 2, . . . , N.

(3)

This equation can be derived from a power-conservation law in the generator. The
parameter α is the damping parameter and K is the coupling strength. Two kinds of
oscillators are considered.

Each element of the power network either generates (Pi > 0) or consumes
(Pi < 0). This means that the electrical power distribution of the oscillatory
power network should be bimodal. The phase of each element is then written
as θ j(t) = Ωt + ωi. Notably, the total consumption equals the total amount of

generation, i.e.,
N∑

i=1
Pi = 0.

In this chapter, we assume the power distribution with the binary form

Pi = (−1)i+1P, i = 1, 2, . . . , N − 1. (4)

That is, the power is generated at the odd modes and the power is consumed at
the even nodes.

2.1 The Stability Condition of Coupled Oscillatory Power
Network

As known, the power network keeps synchronous state of generators is essential. To
get the stability conditions of the synchronous state, we linearize Eq. (3) around a
steady state

(
θ∗i , ω∗i

)
. Perturbations around the equilibrium are expressed as θi =

θ∗i + δθi, ωi = ω∗i + δωi . Vectors X1 and X2 are introduced, which are defined as

Ẋ1 = X2,

Ẋ2 = −LX1 − AX2,
(5)



298 L.-x. Yang and X.-j. Liu

where L denotes a Laplacian matrix of representing the topology of power network,
defined as

Lij =

⎧
⎪⎨

⎪⎩

−Kij cos
(
θ∗i − θ∗j

)
, i �= j,

−
n∑

l �=i
Lil, i �= j. (6)

and A denotes the damping matrix.
Because L is the Laplacian matrix, one can diagonalize by substituting

J=QLQ−1, where Q is composed of the eigenvectors of L and J is the diagonalized
matrix composed of uj. Then Eq. (5) can be rewritten in the following form via the
transformation Y1 = Q−1X1, Y2 = Q−1X2.

[
Ẏ1j

Ẏ2j

]
=
[

0 1
− J −A

] [
Y1j

Y2j

]
. (7)

It is well known that the synchronous state stability is determined by the
following eigenvalues:

λ±,j =
−λA ±

√
λ2
A − 4uj

2
, for j = 1, 2, . . . , n. (8)

So the synchronous state of the system is stable if and only if the real parts of the
eigenvalues are negative, that is,

max (λ±,j
)
< 0. (9)

3 Synchronization Analysis of Coupled Oscillatory Network

In this section, we focus our attention on the analysis of the synchronization state
in coupled oscillatory power network with different node arrangement schemes. For
simplicity, we refer the node with different frequency as the heterogeneous node
and the node with identical frequency as the homogeneous node. In this chapter,
the results are derived in the following sections via numerical simulations. Also, we
will mainly perform simulations by sweeping up and down the coupling strength,
following two different node arrangements.
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3.1 Coupled Oscillatory Power Network with Chain-Like
Topology

Firstly, a simple model composed of four oscillators is considered. Two generators
and two consumers are placed on a ring. Different node arrangements are described
as shown in Fig. 1a, b. Moreover, in Fig. 1a, generator nodes and consumer nodes are
cross distributed, but in Fig. 1b, two generator and two consumer nodes are adjacent,
respectively. In what follows, the critical coupling strengths of two networks with
different structural correlations are presented. The initial phases of the oscillators
are selected as θ i(0)= 0, i= 1, 2 and the natural frequencies having values as either
−1 or +1.

First of all, the process of evolution of order parameter r is depicted, as shown
in Fig. 4. The coupling strength is increased in steps of �K = 0.5. In Fig. 2,
we see that there exists a critical value of the coupling strength KC, above which
the network can achieve synchronization. As the coupling strength K continues to
increase, the order parameter is growing. Furthermore, it can be observed that the
critical values of the coupling strength are different for adjusting node arrangement
schemes. The blue line denotes the order parameter of the network with generator
nodes and consumer nodes severally distributed. Meanwhile, the red line shows the
order parameter of the network with generator nodes and consumer nodes that are

P1 > 0 P2 < 0 P3 > 0 P4 < 0 P1 > 0 P3 > 0 P2 < 0 P4 < 0

(a) (b)

Fig. 1 The chain oscillatory networks with different node arrangements. Circle nodes denote
generators and square nodes are consumers

Fig. 2 Order parameter r
versus the coupling strength
K. For cross arrangement
scheme, the critical strength
KC = 0.8. For adjacent
arrangement, the critical
strength KC = 1, order
parameter cannot reach 1
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adjacently distributed. It is remarkable that the critical coupling strength KC of the
adjacently arranged strategy is larger than the scheme that is in cross arrangement.
Certainly, the larger the critical strength is, the weaker the synchronous ability is.
In fact, the shorter the distance between homogeneous nodes is, the weaker the
synchronizability of the chain power network is. On the contrary, the closer to each
other the nodes that are more heterogeneous, the stronger the synchronizability of
the chain power network is.

In order to further investigate the impacts of node arrangement on synchronous
ability of the oscillatory power network with the chain topology, we expand the
network scale N = 10, then we select typically arranged strategies selected for
simulation. The first scheme is the generator nodes and consumer nodes arranged
in a staggered formation with heterogeneous and homogeneous nodes adjacently
arranged on the chain. The second strategy is all the nodes are classified into two
different groups, where the homogeneous nodes and the heterogeneous nodes are
separated from each other. Analogously, we investigate the changes in the evolution
of order parameter caused by topological adjust within the network. In Fig. 3, it is
found that the longer the distance between the heterogeneous nodes on the chain,
the worse the synchronizability the power network will have. Also, the longer the
distance between the homogeneous nodes, the better the synchronizability the power
network will have.

As found from Figs. 2 and 3, the larger scales of N = 10 come to the same
observations. On average, the closer to heterogeneous nodes, the smaller the critical
coupling strength needed for oscillatory power network to realize synchronization
is; the closer to homogeneous nodes, the larger the critical coupling strength needed
for oscillatory network to achieve frequency synchronization is.

Fig. 3 When the network
scale N = 10, for cross
arrangement scheme, the
critical coupling strength
KC = 1.3. For adjacent
arrangement, the critical
coupling strength KC = 1.8
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3.2 Coupled Oscillatory Power Network with Tree-Like
Topology

In this subsection, we consider the network with tree structure and investigate the
influence of node arrangement on synchronizability. Hence Fig. 4a, b can be served
as the scheme of generator and consumer connected with different schemes. It is
clearly found that the heterogeneous node is connected in Fig. 4a,

In what follows, to further reveal the underlying mechanism of dynamics in
power network with different arrangement strategies, collective dynamics of oscil-
latory tree networks with different scales and different arrangement are investigated.

From Figs. 5 and 6, it can be observed that the synchronizability for cross
arrangement is indicated to be stronger than the case of adjacent arrangement
schemes. It is noteworthy that the process of evolution of order parameter r with
coupling strength K varies with arrangement strategy.

According to the above results, node arrangement plays important role on the
synchronous dynamics of oscillatory network with chain and tree structures.

(a) (b)

Fig. 4 The tree oscillatory networks with different nodes arrangements. Circle nodes denote
generators and square nodes are consumers

Fig. 5 The evolution of order
parameter r, and each of the
arrangement schemes
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Fig. 6 The evolution of order
parameter of system, r, and
each of the arrangement
schemes
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4 Conclusions

We have studied the influence of different node arrangement categories in syn-
chronizability of oscillatory power network with chain and tree structures. Our
study presented the following results obtained via numerical simulations. First, we
established that the closer to the heterogeneous nodes, the better the synchronous
ability of oscillatory network is. Nevertheless, the closer to homogeneous node,
the weaker the synchronizability of network is. Furthermore, the critical coupling
strength of achieving synchronous state is nonidentical for different node arrange-
ment schemes. The work may provide a framework to design the topology of future
power networks and will enhance our understandings of the collective behavior in
oscillatory network with heterogeneous coupling strategies.
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On the Synchronization of Unbalance
Vibration Exciters, Mounted
on a Resiliently Supported Rigid Body,
Near Resonance

Grigory Panovko and Alexander Shokhin

Abstract This chapter presents the results of an experimental analysis of the self-
synchronization effect of two asynchronous-type unbalance exciters installed on
an oscillating system in the resonance frequency range. The amplitude-frequency
responses of the system, as well as the speed and phase of the debalance rotation
depending on the frequency of the voltage supplying the electric motors are
analyzed. It is shown that in the close vicinity of the resonance frequencies of the
linearized system, instability in average angular velocity of the debalance rotation
arises and an increase in their mutual phase shift is observed, up to an abrupt change
in both the type of synchronization and the system oscillation mode during passage
through resonance.

Keywords Oscillating system · Vibration exciter · Self-synchronization ·
Resonance · Experiment

1 Introduction

The tasks of several unbalance exciters self-synchronization are of great practical
importance in modern vibration engineering [1–4]. Under the self-synchronization
of two or more unbalance exciters, their rotation with the same or multiple angular
velocities of the debalances and a strictly defined ratio between their angles of
rotation are implied. This effect appears in case of the presence of the so-called
weak coupling between vibration exciters mounted on an oscillatory system [5–8].
It is known that the type of synchronization of debalance rotation and the form
of system oscillations have a mutual influence on each other [5, 9, 10]. Ensuring
the synchronous rotation of debalances with the given phase relations is one of the
principal tasks in vibration machine development [1, 3, 11–13]. In most cases, the
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analysis is focused on the self-synchronization beyond the resonance oscillation
modes as the least sensitive to possible fluctuations of the system parameters and
process loads [2, 4, 14].

Currently, much attention is paid to the use of resonant vibration modes [4, 8, 9,
15]. The main problem is to ensure the stability of these modes. Under the conditions
of varying parameters of the system and technological load, the control systems are
used [9, 15, 16]. At the same time, the issues of synchronization of debalances
driven by asynchronous electric motors near the resonances have not been studied
in sufficient detail, which makes it difficult to estimate the frequency of oscillation
jump into beyond-resonant region and reduces efficiency of the control system.

This chapter describes the results of an experimental study of the self-
synchronization effect of two unbalance asynchronous-type vibration exciters
installed on a planar single-mass oscillatory system, near resonances. Special
attention is paid to the analysis of the rotational speeds and phase angles of the
debalances near the resonant frequencies.

2 Experimental Model

The experimental model consists of a rigid metal plate attached to a fixed base by
springs, and two motor vibrators mounted symmetrically on the plate (see Fig. 1).
Corresponding design scheme is shown in Fig. 2. Debalances with equal imbalance
values and the same initial arrangement are installed at both the ends of shaft of
each asynchronous-type motors. The model has the following main parameters: the
mass and moment of inertia of the plate with the motor vibrators are m = 12 kg
and J = 0.106 kg•m2, reduced stiffness of the springs in horizontal direction
cx = 480 kN/m, in vertical direction cy = 600 kN/m, and in angular direction
cϕ = 1750 N· m, imbalanced mass of each vibration exciter me1 = me2 = 0.067 kg,
eccentricity r1 = r2 = 0.005 m, the rated power of each motor 0.18 kW, and the
nominal speed of rotation 1500 rpm at power supply frequency of 50 Hz.

The motors are powered from a single inverter, and their shafts rotate in opposite
directions. The vectors of inertia forces arising from rotation of each of the
vibrators are located in a vertical plane perpendicular to the axes of rotation. Thus,
the system’s oscillations are only excited in a vertical plane. Depending on the
frequency of excitation, three main resonances and different types of debalance self-
synchronization with a phase shift of 0◦ or 180◦ appear in the system.

To measure the angular position and the rotational speed of the debalances, there
are encoders installed at one of the shaft ends of each of the motor vibrators. Three
accelerometers are used to measure plate oscillations: two for measuring vertical
oscillations installed in the center and at the edge of the plate, and one for measuring
horizontal vibrations of the plate’s center. For test control and data processing,
a software and hardware complex based on the NI-cRIO real-time controller and
LabVIEW software was used.
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Fig. 1 Experimental model

Fig. 2 Design scheme

3 Experimental Methods

The experimental methods include determining the amplitude–frequency responses
of the system by vibration signals measured by accelerometers, establishing rela-
tionships between the frequency fe of the supply voltage and the rotational speed f
of the debalances, and determining mutual angular position �ϕ of the debalances.
The tests were carried out with a discrete change in power supply frequency in the
range from 20 to 86 Hz, and, accordingly, the rotational speeds of the debalances
in the range from 10 to 43 rev/s. In order to identify possible nonlinearities of
the system, the studied characteristics were obtained with both increasing and
decreasing rotational speed of the debalances. The frequency step was 0.5 Hz with
an exposure time of 5 s, which is necessary for establishing steady oscillations. Near
the first resonant frequency, it decreased to 0.1 Hz. Thus, the necessary accuracy
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of building the studied characteristics was achieved. The oscillation forms were
determined from the comparison of the accelerometers’ oscillation phases. The
measurement of the mutual phase shift of the debalance rotation was carried out
by the time interval between the leading edges of the pulses from optical encoders
of each motor vibrators

4 Main Results

Figures 3 and 4 show amplitude–frequency responses of the system, obtained
respectively at increasing and decreasing the power supply frequency fe. Three
resonance frequencies at 20.5, 32, and 35 Hz are found in the investigated frequency
range. With increasing frequency, there are jumps in the amplitudes and oscillation
frequencies from 20.5 to 21.2 Hz when passing through the first resonance, from 32
to 34.5 Hz when passing through the second resonance, and from 35 to 36 Hz when
passing through the third resonance. In case of test at decreasing frequency, there is
a sharp increase in the oscillations amplitudes and a decrease in their frequency
from 36.2 to 35.4 Hz when passing through the third resonance, from 32.6 to
31.7 Hz when passing through the second resonance, and from 20.7 to 20.4 Hz when
passing through the first resonance. The amplitudes of vertical oscillations near the
second resonance frequency, measured at the center and at the edge of the plate, are
almost identical, which indicates the excitation of only unidirectional oscillations
and complete self-synchronization of the debalances with zero mutual phase angle.
Characteristic jumps in amplitude and frequency when passing through resonances

Fig. 3 Amplitude frequency responses at increasing power supply frequency: 1—vertical oscilla-
tions of the plate’s center, 2—vertical oscillations of the plate’s edge, 3—horizontal oscillations of
the plate’s center
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Fig. 4 Amplitude frequency responses at decreasing power supply frequency: 1—vertical oscilla-
tions of the plate’s center, 2—vertical oscillations of the plate’s edge, 3—horizontal oscillations of
the plate’s center

Fig. 5 Rotor’s averaged speed depending on the power supply frequency

indicate the nonlinear behavior of the system in these frequency ranges due to the
interaction of the system with the asynchronous electric drive of unbalance vibration
exciters

Figure 5 shows the graphs of the debalance averaged rotational speed f̂

depending on the frequency of the power supply at its increasing (solid line) and
decreasing (dashed line). The rectangular areas highlight the resonant regions shown
on an enlarged scale. One can see that with an increase in power supply frequency
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near the resonant frequencies, a slowdown in the rate of rotational speed change is
observed. Moreover, this deceleration is more noticeable near the second resonance
frequency. This is due to the slip in asynchronous motors, when their rotational
speed practically does not change with increase in power supply frequency. When
decreasing power supply frequency, the slip phenomenon is less noticeable.

The results of measuring the debalance rotational speeds during the passage
of the second resonance as a function of time t, with increasing and decreasing
supply frequency are shown in Figs. 6 and 7, respectively. Each step change in the
average speed corresponds to a change in the frequency of the supply voltage. One
can see that at each step in power supply frequency after attenuation of transients,
the debalances rotate on average with the same frequency. As approaching to the
frequency of jump to beyond-resonance region (point A in Fig. 6), the unevenness in
rotational speeds of the debalances increases. Jumps in the speed of left-hand-side

Fig. 6 Rotor’s speed jump when passing through second resonance at increasing frequency

Fig. 7 Rotor’s speed jump when passing through second resonance at decreasing frequency
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and right-hand-side motors do not occur simultaneously, causing a sharp change
in the type of the debalance synchronization, and lead to the appearance of speed
oscillations relative to the new average value. These speed oscillations occur in
antiphase and fade out in time. In case of decreasing frequency, as approaching
to the frequency of jump to pre-resonant area (point B in Fig. 7), an increase in
unevenness of the debalance rotation frequency is also observed. As in the previous
case, the speed jumps occur non-simultaneously, leading to their oscillations with
the subsequent stabilization near the new average value. In this case, the antiphase
mode of the speeds oscillations is replaced by the in-phase mode, which can be
explained by a change in the oscillation mode of the system.

Figures 8 and 9 show the results of measuring the mutual phase shift of the
left-hand-side and right-hand-side debalance rotation as a function of the power

Fig. 8 Phase shift at increasing frequency

Fig. 9 Phase shift at decreasing frequency
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supply frequency, respectively, as it increases and decreases. Each point on the
graph corresponds to magnitude of the debalance mutual phase shift �ϕ measured
successively through one complete turn of the left-hand-side debalance. Thus, the
height of “column” of these points characterizes the change in the debalance mutual
phase at a given power supply frequency, and accordingly the degree of synchronism
of their rotational speeds—the smaller the height of the column, the closer the
debalance rotational speeds to each other. When �ϕ = 0◦ the debalances rotate
in opposite directions in-phase synchronously, and when�ϕ= 180◦ the debalances
rotate synchronously in anti-phase.

One can see in Fig. 8 that in the frequency range almost up to the first resonance,
there is no stable synchronization of the debalances, which is explained by the small
amplitudes of the excited oscillations. Starting from the power supply frequency of
38 Hz, the phase shift stabilizes near 180◦. At the same time, intensive angular
oscillations of the plate, accompanied by relatively small horizontal oscillations, are
excited. As the power frequency increases, the height of the “columns” increases
immediately before the jump, indicating a degradation of synchronization. A sudden
change in the type of the debalances self-synchronization (�ϕ ≈ 180◦) is observed
immediately after the oscillations jump during the passage of the first resonance.
With a further increase in power supply frequency, the phase difference stabilizes
near 0◦, which indicates the presence of synchronous in-phase rotation of the
debalances. When approaching the second resonant frequency, immediately before
the jump, an increase in the height of the “columns” is observed, indicating violation
of the debalance synchronization. A further increase in power supply frequency
leads to a jump and a sharp change in the type of the debalance synchronization
(�ϕ ≈ 180◦). When approaching the third resonant frequency, the phase difference
is set near 180◦, but there is no high phasing stability, which is apparently due to the
narrow frequency range between the second and third resonances.

With a decreasing power supply frequency (Fig. 9), when approaching the second
resonance frequency, the phase shift stabilizes near 180◦. With a further decrease in
power supply frequency, an increase in phasing instability is observed, followed
by an abrupt change in the type of synchronization by �ϕ ≈ 180◦. The passage
through the first resonance is also preceded by an increase in instability of the
debalance mutual phasing and is accompanied by a sharp change in its magnitude
by �ϕ ≈ 180◦. In the frequency range below the first resonance, stable phasing is
not observed.

Note that in the presented graphs, there is one more resonance region near 83 Hz
in terms of power supply frequency, which appears due to inaccuracies made in the
manufacturing of the model. However, these inaccuracies do not significantly affect
the results in the frequency ranges including the first three resonance frequencies.
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5 Conclusions

As a result of the experiments performed, the character of changes in the debalance
mutual phase shift and its velocities in the close vicinity of resonance frequencies
was revealed. It was found that when approaching the resonance frequency near the
frequency of the oscillation jump, a violation of the debalances rotational speeds
synchronization is observed, leading to the instability of their mutual phase shift. It
was found that with a jump in oscillations, the change in the debalance rotational
speeds does not occur simultaneously. The features of self-synchronization of
unbalance vibration exciters in the resonance frequency ranges require additional
consideration when developing resonance vibrating machines
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Mixed Synchronization in
Unidirectionally Coupled Chaotic
Oscillators

Jonatan Pena Ramirez and Joaquin Alvarez

Abstract This work is focused on a particular type of synchronization observed
in coupled systems interacting via unidirectional coupling, namely mixed syn-
chronization: part of the state variables of the coupled systems achieve complete
synchronization, whereas the remaining state variables exhibit anti-phase synchro-
nization. This chapter paper presents a modified master–slave scheme, in which the
master system interacts with the slave system via a second order dynamic coupling.
In the analysis, the stability of the mixed synchronous solution is investigated by
using the well-known master stability function approach. A classical chaotic system,
namely the Lorenz system, is considered as a particular example.

Keywords Mixed synchronization · Dynamic coupling · Lorenz system

1 Introduction

An interesting phenomenon occurring in coupled systems is synchronization—the
behavior of the systems eventually coincides in time [1]. There exists, however,
a particular type of systems—namely chaotic systems—for which the onset of
synchronization is not evident at first sight. This is in part due to the fact that chaotic
systems are very sensitive to small variations in their initial conditions and therefore,
two uncoupled chaotic systems starting arbitrarily close to each other will quickly
diverge. However, as originally demonstrated by Fujisaka and Yamada [2], chaotic
systems can be enforced to synchronize by using diffusive-like couplings.
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A particular type of synchronization occurring in certain chaotic systems with
axial symmetry is mixed synchronization: part of the state variables of the cou-
pled systems converge to complete synchronization while the remaining variables
synchronize in anti-phase [3]. At this point it is worth mentioning that mixed
synchronization may find interesting applications in, for example, the study of the
creation and interaction of counter-rotating vortices in the atmosphere or in the
ocean [4], in secure wireless communications [5], and in the design of controllers
for humanoid robots, where some of the components of the robot should move in
complete synchrony, whereas other components should move in anti-phase [6].

There exist several works addressing the occurrence of mixed synchronization,
see e.g. [7] and the references therein. A common feature in these works is that
the coupling between the systems is static, i.e., (part of) the state variables are
used to construct a coupling signal for interconnecting the systems. In contrast,
this work proposes the use of a second order dynamic coupling for inducing mixed
synchronization in chaotic systems. The obtained results suggest that the use of
dynamic coupling enhances the onset of mixed synchronization, and it has the
advantage that a faster convergence to the mixed synchronous solution is achieved,
compared to the static case.

The stability of the mixed synchronous state is investigated by using the master
stability function formalism. Specifically, a variational equation is derived and the
corresponding largest transverse Lyapunov exponent is computed in order to deter-
mine the local stability of the synchronous solution. A traditional chaotic system,
namely the Lorenz system, is considered as a particular example. Furthermore, a
comparison between the classical static coupling reported in the literature and the
dynamic coupling considered in this work is provided.

This manuscript is organized as follows. First, the unidirectional coupling
scheme via dynamic coupling is introduced in Sect. 2. Then, Sect. 3 presents the
tools for investigating the local stability properties of the mixed synchronous
solution. Next, in Sect. 4, the proposed coupling scheme is applied to the Lorenz
system. Finally, some conclusions are provided in Sect. 5.

2 Proposed Coupling Scheme

Recently, a modified master–slave synchronization scheme has been presented in
[8]. The novelty in this scheme is that the master and the slave oscillators are not
connected through common signals. Instead, the slave system interacts with the
master system through a dynamical system. Consequently, the interaction between
the systems is indirect.

The coupling scheme is described by

ẋm = F (xm), (1)

ẋs = F (xs)− B1h, (2)
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ḣ = Ah− kB2(xm − xs), (3)

where xm, xs ∈ R
n denote the state vectors of the master and slave oscillators,

respectively, h ∈ R
2, is the state vector of the dynamic coupling, k is the coupling

strength, and B1 ∈ R
n×2 and B2 ∈ R

2×n are suitably chosen coupling matrices.
The vector field F is assumed to be sufficiently smooth and nonlinear and matrix
A ∈ R

2×2 is given by

A =
[ −α 1
−γ1 −γ2

]
, (4)

where γ1, γ2, and α are positive constants, to be chosen.
In order to investigate the onset of mixed synchronization in the coupled

systems (1)–(3), it is convenient to perform the following partition of the state
vectors corresponding to the master and slave systems

xm =
[

xma
xmc

]
, xs =

[
xsa
xsc

]
, (5)

where xma ∈ R
m and xsa ∈ R

m denote the part of the state vector of the master
and slave, respectively, that converge to anti-phase synchronization, whereas the
vectors xmc ∈ R

(n−m) and xsc ∈ R
(n−m) contain the variables that reach complete

synchronization. Furthermore, to be consistent with the partition of the state, see
Eq. (5), the function F and the coupling matrices B1 and B2 in Eqs. (1)–(2) are also
partitioned as follows:

F (xj ) =
[

F a(xja , xjc )

F c(xja , xjc )

]
, j = m, s, B1 =

[
B1a
B1c

]
B2 =

[
B2a B2c

]
, (6)

where F a : Rm × R
(n−m) → R

m, F c : Rm × R
(n−m) → R

(n−m), B1a ∈ R
m×2,

B1c ∈ R
(n−m)×2, B2a ∈ R

2×m, and B2c ∈ R
2×(n−m). Furthermore, it is assumed

that functions F a(·) and F c(·) satisfy

F a(xja , xjc )=−F a(−xja , xjc ) and F c(xja , xjc )=F c(−xja , xjc ), for j =m, s.
(7)

As discussed in [3], Eq. (7) guarantees the existence of the mixed synchronization
manifold.

Next, it will be assumed that the coupling term h can only be applied to the
equations describing the dynamics of the xsc part and likewise, it is assumed that
only the xmc and xsc variables are available for measurement. In other words, it will
be assumed that the matrices B1a and B2a are zero matrices.
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Under these assumptions and using (5)–(6), system (1)–(3) takes the form

Master :
{

ẋma = Fa(xma , xmc),
ẋmc = Fc(xma , xmc),

(8)

Slave :
{

ẋsa = Fa(xsa , xsc ),
ẋsc = Fc(xsa , xsc )− B1ch,

(9)

Dynamic coupling : { ḣ = Ah− kB2c (xmc − xsc ). (10)

This coupling scheme is considered through this work. Specifically, the occurrence
of mixed synchronization in the dynamically coupled systems (8)–(10) is investi-
gated as a function of the coupling strength k.

Finally, a formal definition of mixed synchronization is provided.

Definition 1 The unidirectionally coupled systems (8)–(9) with dynamic cou-
pling (10) is said to achieve asymptotic mixed synchronization if

lim
t→∞ xsa = −xma , lim

t→∞ xsc = xmc, lim
t→∞h ≡ 0. (11)

3 Local Stability Analysis

The local stability of the mixed synchronous solution (11) is investigated by using
the master stability function (MSF) approach presented in [9].

As a first step, the following synchronization errors are defined:

ea = xma + xsa , ec = xmc − xsc , and h, (12)

where ea and ec denote the anti-phase and complete synchronization errors,
respectively, and h is considered as an “error” because it should vanish when the
master and slave systems achieve mixed synchronization, see Eq. (11).

Then, by using the MSF formalism [9], the following variational equation is
obtained:

ė = De, D =
⎡

⎣
DxsaF a −DxscF a O

−DxsaF c DxscF c B1c
OT −kB2c A

⎤

⎦ , e =
⎡

⎣
ea

ec

h

⎤

⎦ , (13)

where O ∈ R
m×2 is a zero matrix and

DxsvF u =
∂F u

∂xsv

∣
∣∣∣
xsa=−xma ,xsc=xmc

, u, v = a, c. (14)
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Finally, the local stability of the mixed synchronous solution (11) is determined by
the largest transverse Lyapunov exponent λ⊥max,

λ⊥max = lim
t→∞

ln |e(t)| − ln |e(0)|
t

, (15)

which is determined from Eq. (13). If λ⊥max < 0, then the mixed synchronous
solution (11) is (locally) stable, i.e., small disturbances will vanish. On the other
hand, if λ⊥max > 0, the synchronous solution is unstable [9].

Remark 1 Note that the parameter values of the dynamic coupling (10), including
the coupling strength k, should be chosen such that the largest transverse Lyapunov
exponent (15), computed from the variational equation (13), is negative. However,
it is still necessary to derive a formal procedure for tuning the parameters in the
dynamic coupling. This, however, is the topic of our ongoing research.

4 Application to the Lorenz System

A classical chaotic system is the Lorenz system, which is described by [10]

ẋ = σ(y − x), ẏ = ρx − xz− y, ż = xy − βz, (16)

where σ, ρ, and β are positive parameters. This system is invariant under the
transformation

(xj , yj , zj )→ (−xj ,−yj , zj ), (17)

and consequently, the Lorenz system has the symmetry properties necessary for the
onset of mixed synchronization, see Eq. (7).

In this part, the occurrence of mixed synchronization in a pair of Lorenz system
interacting through the proposed scheme (8)–(10) is investigated. As a first step,
the state vectors and the nonlinear functions corresponding to the master and slave,
respectively, are defined as follows:

xja =
[
xj

yj

]
, xjc = zj , F a =

[
σ(yj − xj )

ρxj − xj zj − yj
]
, F c = xjyj − βzj , (18)

for j = m, s. Furthermore, the coupling terms B1c and B2c in (9)–(10) are chosen
as follows:

B1c =
[

0 1
]
, and B2c =

[
0 1

]T
. (19)
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The choice of B1c indicates that only the second variable of the dynamic cou-
pling (10) will be applied to the slave, and likewise, B2c is chosen such that only
the second equation of the dynamic coupling is affected.

Then, by replacing (4), and (18)–(19) into (8)–(10) yields

Master:

⎧
⎨

⎩

ẋm = σ(ym − xm),
ẏm = ρxm − xmzm − ym,
żm = xmym − βzm,

(20)

Slave:

⎧
⎨

⎩

ẋs = σ(ys − xs),
ẏs = ρxs − xszs − ys,
żs = xsys − βzs − h2,

(21)

Dynamic
coupling:

{
ḣ1 = −αh1 + h2,

ḣ2 = −γ1h1 − γ2h2 − k(zm − zs). (22)

The local stability of the mixed synchronous solution xs = −xm, ys = −ym,
zs = zm, and h1 = h2 = 0 in system (20)–(22) is investigated by using the results
presented in Sect. 3. First, note that the corresponding variational equation is as
given in (13), with

ea =
[
xm + xs
ym + ys

]
, ec = zm − zs, D̃ =

⎡

⎢⎢⎢⎢
⎢
⎣

−σ σ 0 0 0
ρ − zm −1 −xm 0 0
ym xm −β 0 1
0 0 0 −α 1
0 0 −k −γ1 −γ2

⎤

⎥⎥⎥⎥
⎥
⎦
. (23)

Next, the largest transverse Lyapunov exponent λ⊥max is computed, as a function
of k and γ2, from the variational equation (13) with D̃ as given in (23). For the
computation, the following parameter values are used: σ = 10, ρ = 28, β = 8/3.
For these parameter values, the uncoupled Lorenz systems exhibit chaotic behavior
[10]. On the other hand, the parameters of the dynamic coupling, see Eq. (4), are
chosen as follows: α = γ1 = 1. The coupling strength k is varied in the interval
k ∈ [0, 200] in steps of 1 and the parameter γ2 of the dynamic coupling is also
varied in the interval γ2 ∈ [0, 200] in steps of 1.

Figure 1 shows the obtained results. Clearly, there exists a large region (dark
gray area) on the (k, γ2)−plane for which the mixed synchronous solution is locally
stable.
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Fig. 1 λ⊥max as a function of
the coupling strength k and
parameter γ2. In the dark gray
region, the mixed
synchronous solution is
locally stable

4.1 Comparison to the Classical Scheme

Finally, a comparison between the dynamic coupling scheme (8)–(10) is introduced
here, and the results obtained when using the classical master–slave scheme with
static coupling are presented for the case of Lorenz system. First, note that the static
version of the dynamically coupled Lorenz systems (20)–(22) is simply described by

M:

⎧
⎨

⎩

ẋm = σ(ym − xm),
ẏm = ρxm − xmzm − ym,
żm = xmym − βzm,

S:

⎧
⎨

⎩

ẋs = σ(ys − xs),
ẏs = ρxs − xszs − ys,

żs = xsys − βzs + k(zm − zs),
(24)

and the corresponding variational equation is

⎡

⎣
ėx

ėy

ėz

⎤

⎦ =
⎡

⎣
−σ σ 0

(ρ − zm) −1 −xm
ym xm −β − k

⎤

⎦

⎡

⎣
ex

ey

ez

⎤

⎦ . (25)

As a next step, the largest transverse Lyapunov exponent λ⊥max is computed for the
dynamic and static case. For the former, the variational equation (13)–(23) is used,
whereas for the latter the variational equation (25) is considered. For both cases,
the following parameter values are used: σ = 10, ρ = 28, β = 8/3, γ1 = 1, and
k = 200. Additionally for the dynamic coupling we take: α = γ1 = 1, and γ2 = 30.
The obtained results are shown in Fig. 2, from which it is clear that the dynamic
coupling has a better performance: λ⊥max is more negative and consequently, the
synchronous state is achieved faster. Additionally, system (20)–(22) and system (24)
have been numerically integrated by using the same parameter values mentioned
above. The initial conditions xm(0) and xs(0) are varied in the interval [−10, 10]
in steps of 0.02, and the remaining initial conditions are set to zero. The simulation
time is 300 [s] and, in the computations, the Runge–Kutta method with a time step
of 0.001 has been considered. The obtained results are shown in Fig. 3, where panel
(a) corresponds to the dynamic coupling and panel (b) to the static coupling. Clearly,
the regions of in-phase and mixed synchronization have a well-defined pattern for
the proposed scheme, whereas for the static configuration the obtained pattern is
rather scattered.
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Fig. 2 λ⊥max. Green: dynamic
coupling. Red: static coupling

Fig. 3 Onset of mixed
synchronization in a pair of
coupled Lorenz systems. (a)
Proposed coupling
scheme (20)–(22). (b)
Standard master–slave
configuration (24). Yellow
areas: mixed synchronization.
Blue areas: complete
synchronization

5 Discussion and Conclusions

We have presented a synchronization scheme for inducing mixed synchronization in
unidirectionally coupled chaotic oscillators. The novelty in the proposed scheme is
that the interaction between the systems is indirect via a dynamic coupling. One
of the advantages of the proposed scheme is that the convergence to the mixed
synchronous state is achieved faster than in the traditional scheme with static
coupling.

Although here we have discussed the particular case of Lorenz system, the pro-
posed synchronization scheme is applicable to other systems having the symmetry
properties given in Eq. (7), as is the case with the Chen system [11] and the Sprott
system [12]. For these systems, we have verified that the synchronization scheme
presented here successfully induces mixed synchronization (although the results
have not been included in this manuscript).

Also, it should be emphasized that further studies are required. For example, it
is still necessary to conduct a formal analysis in order to determine the “optimal”
parameters in the proposed dynamic coupling (10) and also, stronger stability
conditions should be derived.

Finally, it is worth mentioning that the mixed synchronization phenomenon
does not restrict to chaotic systems but it can be observed in several systems. For
example, in the human body one can distinguish both in-phase and anti-phase cor-
relations—i.e., mixed synchronization—in the motions of its components namely,
arms, legs, knees, hips, anti-phase rotation of upper and lower body, among others.
Furthermore, the phenomenon also finds interesting engineering applications, like
for example, in synchronizing a network of heterogeneous mechanical systems [13].
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Synchronized Hopping Induced by
Interplay of Coupling and Noise

V. Manaoj Aravind, K. Murali, and Sudeshna Sinha

Abstract We explore the behaviour of coupled bistable systems subject to noise
from two independent uncorrelated noise sources, over a range of coupling and noise
strengths. We find that the interplay of coupling and noise leads to the emergence of
four behavioural regimes: no synchrony and no hopping; unsynchronized hopping;
synchronized hopping; synchrony without hopping. We show the occurrence of this
phenomenon in a variety of bistable systems including the synthetic genetic network
model, in the presence of both uniform and Gaussian noise, indicating the generality
of this phenomenon. Further, we experimentally verify the different regimes of
behaviour in coupled bistable electronic circuits, thus establishing its robustness.

1 Introduction

Synchronization has emerged as a very significant phenomenon in fields as diverse
as electronic circuits and biological systems. The key element in synchronization is
the coupling. It has been observed in a large class of systems that, increasing the
coupling strength induces the onset of synchronization [1].

In another direction, the phenomena of escape from locally stable states induced
by noise have seen long-standing attention. It has crucial bearing on fields ranging
from chemical kinetics to diffusion in solids.

The central focus of this work is to combine these two important threads:
first, noise induces hopping in bistable systems and the second is the onset of
synchronization in the presence of sufficient coupling. The question we investigate
is the following: when does the random hopping events induced by noise become
synchronous in coupled bistable systems? Importantly, the systems here are subject

V. M. Aravind (�) · S. Sinha
Indian Institute of Science Education and Research Mohali, Punjab, India
e-mail: manaojaravind@iisermohali.ac.in; sudeshna@iisermohali.ac.in

K. Murali
Department of Physics, Anna University, Chennai, India
e-mail: kmurali@annauniv.edu

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), Nonlinear Dynamics and Control,
https://doi.org/10.1007/978-3-030-34747-5_33

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34747-5_33&domain=pdf
mailto:manaojaravind@iisermohali.ac.in
mailto:sudeshna@iisermohali.ac.in
mailto:kmurali@annauniv.edu
https://doi.org/10.1007/978-3-030-34747-5_33


326 V. M. Aravind et al.

to independent random influences. This uncorrelated noise is expected to hinder
synchronization, as it is does not provide a common drive to the sub-systems. On
the other hand, noise will aid frequent switches between the locally stable wells. A
balance of these two opposing trends may yield synchronized switching of states.
The aim of this work is to explore this possibility in a range of bistable systems,
under different kinds of noise.

Note that the phenomenon we are exploring is distinct from the phenomenon of
stochastic resonance, and also distinct from the phenomenon of synchronization
aided by common noise. In stochastic resonance, the effect of increasing noise
on a bistable system has revealed counterintuitive phenomena: it has been found
that noise can enhance the response of the bistable system to weak sub-threshold
signals, periodic driving or wide-band input signals. This phenomenon, known as
stochastic resonance [2], has been demonstrated in many natural and engineered
systems, and has also been utilized to increase reliability of computations [3, 4].
However, here we have no external signal driving the coupled bistable systems, and
so if synchronized hopping emerges in our system, its origin cannot be understood
in terms of an external drive.

The phenomena here is also distinct from noise-aided synchronization, which
arises in systems experiencing common noise or the parameters of the system
experience common random fluctuations [5]. Here on the other hand the noise
on the two sub-systems is uncorrelated, and is therefore expected to inhibit
synchronization.

2 Model

Consider a system of coupled bistable systems whose dynamical equations have the
general form:

ẋ1 = F(x1)+ c(x2 − x1)+D η1(t), (1)

ẋ2 = F(x2)+ c(x1 − x2)+D η2(t)

where F is a nonlinear function that gives rise to a bistable potential, and the
coupling is linear and bidirectional.

We consider the additive noise η1(t) and η2(t) in the two sub-systems to be
independent and uncorrelated, and we have considered both (a) uniform noise drawn
from a uniform distribution in the range [−1 : 1], and (b) zero mean Gaussian noise
with variance 1, with the parameter D indicating the noise strength, with D ∈ [0 :
1].

We start with the illustrative example where F in Eq. 2 is a simple nonlinear
function of the form

F(xi) = a1(xi − a2x
3
i ) (2)
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Specifically, with no loss of generality, we choose the values a1 = 4 and a2 = 5.
This system gives rise to two stable fixed points x+ > 0 and x− < 0, separated by
an unstable fixed point (the “barrier”) at zero. We denote the state characterized by
positive-valued state variables as the “positive well”, and the state characterized by
negative-valued state variables as the “negative well”.

We focus on two features of the dynamical patterns of the state variables x and y
of the two sub-systems. First is the propensity of the sub-systems to jump between
the two wells, i.e. the probability of hopping. The second feature of significance
is synchrony. Note that synchrony here does not imply complete synchronization,
where x1(t) = x2(t) for all t after transient time. Rather it implies that the two
sub-systems are confined to the same well, with both x1 and x2 being in the
neighbourhood of the same fixed point, i.e both sub-systems are in the basin of
attraction of x+, or both are in the basin of x−. The combination of these two
features dictates the different classes of dynamical patterns.

Our central observation in this system is the following:
Depending on the noise strength and coupling strength four behavioural regimes

emerge:

1. The first regime occurs when both coupling and noise are low, and is character-
ized by no hops at all during the time of observation (which was very long) and
additionally there was no synchrony either.

2. The second type of behaviour arises for low coupling strengths and high noise
strengths, and is characterized by the sub-systems switching between the wells.
However, this hopping is not synchronized. So when one sub-system is in the
positive well, the other sub-system may be in the negative well.

3. Thirdly, for strong coupling and weak noise one finds that the two sub-systems
are synchronized and remain confined to the same well during the entirety of
the long run-time, i.e. there is synchrony without hopping.

4. Lastly, for a specific range of noise strength D and coupling constant c, the
system exhibits random hopping between the two wells in a synchronous
manner. That is, the two sub-systems jump together from one well to another.
We label this special dynamical pattern as synchronized hopping.

Figure 1 displays these different behaviours, observed in different ranges of
coupling c and noise strength D. In this work we explore the range c ∈ [0, 6] and
D ∈ [0, 1].

Note that an early result on coupled bistable systems driven by independent
noise sources [6] had indicated that the stochastic processes in the sub-systems
become coherent when the strength of coupling achieves a critical value (namely,
the dynamical pattern 4. However, the full implications of the interplay of coupling
strength and noise strength on the emergence of synchronized hopping were not
explored. Also, the dynamical patterns in the regions outside synchronized hopping,
in the extended parameter space of coupling strength and noise strength, were
not obtained. In this work we will address these open questions. We will also
obtain an understanding of the range of coupling, as well the range of noise, that
yields synchronized hopping, and the relationship between them. This will allow



328 V. M. Aravind et al.

0.6

0.5

0.4

0.3

0.2

0.1

0.0

–0.1

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8
0 200 400 600 800 1000 0 200 400 600 800 1000

0 200 400 600 800 10000 200 400 600 800 1000

(a)

(c) (d)

(b)

Fig. 1 Timeseries of the two state variables x1 (blue) and x2 (green) of the two sub-systems, for
four illustrative values of noise strength D and coupling strength c, displaying different dynamical
patterns: (a) no synchronization and no hopping, when D = 0.2, c = 0.1; (b) unsynchronized
hopping, whenD = 0.3, c = 0.2; (c) synchronized hopping, whenD = 0.32, c = 1; (d) synchrony
without hopping, when D = 0.1, c = 1

us to judge the prevalence of the phenomena. Lastly, we will verify our results in
electronic circuit experiments.

3 Characterization

Now we will attempt to quantify the qualitative behaviour observed above, using
a measure analogous to synchronization error, along with an estimate of the
probability of hopping. The aim here was to precisely characterize the observed
synchronized hopping in the system by finding the window of coupling strengths
and noise strengths where there is a concurrence of reasonable synchrony and
sufficiently frequent switching.

First we introduce a variant of synchronization error Z, defined as the probability
of the states of the two systems to be in different wells. This is estimated by
following the states of the two systems over long times, and finding the fraction
of time the two systems reside in different wells.

When Z = 0, the states of the two systems are always in the basin of attraction
of the same fixed point, namely the states of the systems are on the same side of
the barrier, i.e., both states are in the “positive well” or both in the “negative well”.
Note that our measure of synchronization error is not the usual measure reflecting
deviation from complete synchronization. Rather it reflects the degree to which the
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two multi-stable systems reside in the same well. Note that when the systems are in
the same well (i.e. either both are positive, or both negative) the sign of the product
of the state variables of the two sub-systems x1 and x2 at a given instant of time
is positive. On the other hand, if the systems are in different wells, the sign of the
product of the state variables of the two sub-systems at a given instant of time is
negative. So our synchronization error Z is easily defined mathematically as,

Z = 1

N

N∑

i=1

H(x1[i] × x2[i]) (3)

This quantity then serves as an order parameter that can reflect the transition from
the case where both systems are in the same well at all times, to the case where they
inhabit different wells for significant amounts of time.

The second important quantity is the probability of hopping h, which is estimated
through the number of jumps between the two wells, in either system, over a
prescribed very long (though necessarily finite) period of time. The key feature to
note when the systems switch between positive and negative wells is that the sign
of the product of the state variables just before the hop and just after the hop is
negative. So the hopping probability can be estimated readily by

h = 1

N − 1

N∑

i=1

H(x1[i] × x1[i − 1]) (4)

where N is the total number of timesteps in the observed timeseries, with N being
very large, and H given as

H(xi) =
{

1 xi < 0
0 xi ≥ 0

Both Z and h are averaged over a large sample of initial conditions, chosen
randomly from the interval [−1, 1].

Figure 2a, b shows the dependence of the synchronization error on coupling and
noise strengths. It is clear that for low coupling and low noise, the states of the
sub-systems are almost uncorrelated. Since the synchronization order parameter is
averaged over a sample of initial conditions uniformly distributed across the two
wells, the two sub-systems maybe in the same well, or in different wells, with equal
probability. So Z is close to 0.5 when c and D are very small. As coupling strength
increases (cf. Fig. 2a), synchronization between the sub-systems is induced. It is
also evident from Fig. 2b that for high coupling strengths the synchronization error
increases monotonically after a minimum noise threshold. However, interestingly,
for low coupling strengths the degree of synchronization varies non-monotonically
with noise strength. For low noise strengths the system is largely unsynchronized,
after which there is a window of moderate noise where the synchronization error is
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Fig. 2 Dependence of the synchronization error Z on (left) coupling strength c, and (right) noise
strength D

Fig. 3 (a) and (b) Dependence of the probability of hopping on coupling constant c, for various
noise strengths D. (c) Different dynamical behaviors in the parameter space of coupling strength
and noise strength. The colours indicate the following: BLACK—No synchrony, and extremely
low probability of hopping; RED—No synchrony, with reasonable probability of hopping;
ORANGE—Synchronized hopping, namely where there is reasonable synchronization as well
as reasonable probability of hopping; WHITE—Synchronized sub-systems with extremely low
probability of hopping

very low. For noise strengths beyond this window the synchronization error again
rises, as is intuitively expected.

The second measure, the probability of switches, simply reflects how often the
sub-systems switch between the two wells. This gives a measure of the average
amount of time spent in a particular well, under varyingD and c. As clearly evident
from Fig. 3, the hopping probability varies non-monotonically with increasing
coupling strengths. That is, there exists an optimal value of coupling strength c for
which the probability of switches in maximized. The value of the optimal coupling
strength is dependent on noise strength D. The switching is significant only after a
minimum noise threshold. This is expected, since a minimum strength of noise is
needed in order to drive a system to cross the barrier to the other well. So there is a
monotonous increase in the probability of hopping with increasing noise strength
D. The threshold of noise strength D after which synchronization error Z and
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probability of hopping assume significant finite values is the same (within statistical
error).

So, for sufficiently large noise strengths, the noise can push the sub-systems to
hop between the two wells. At these high noise strengths, if the coupling is also
sufficiently high, the sub-systems switch between wells in synchrony: namely, we
observe synchronized random hops. Such a phenomena will be seen only if the
system lies in the window of noise where synchronization error is small and the
probability of hopping is sufficiently large, provided these two windows have a
reasonable overlap. Further the system has to simultaneously lie in the window of
coupling strengths that is sufficiently high to induce approximate synchronization
between the sub-systems, and the window of coupling where the probability of
hopping is sufficiently large. Again if this intersection of parameter regions is a
null set, we will not obtain the synchronized hopping phenomena. Note that the
synchronized hopping phenomena is also non-trivial as the dependence of both
synchronization and the hopping probability is non-monotonic with respect to
coupling and noise strength. In general, the synchronized hopping phase lies on the
boundary of the dynamical phase of unsynchronized hopping and synchrony with
(almost) no hopping.

To quantitatively demarcate the different behaviours in parameter space, we first
introduce a threshold for both synchrony and hopping probability. We consider
the following: if synchronization error Z < 0.01 then the two systems are
considered synchronized, and if the probability of switching h > 5 × 10−5

then we consider the system to be “hopping”. Using these conditions the various
behaviours in parameter space are shown in Fig. 3c. We see synchronized hopping
occurs in a somewhat narrow region of parameter space (marked by orange). The
exact boundaries of the region are dependent of the synchronization and hopping
probability threshold chosen to describe the phase. However, qualitatively the
phenomena emerge independent of the exact thresholds employed in the definition
of the dynamical phase.

We have checked the generality of the observations above for the case of
uniformly distributed noise. The synchronized hopping again occurs in a region of
moderate noise and sufficiently high coupling, as evident from the results displayed
in Fig. 4.

Lastly, we study the dynamics of two other bistable systems, in order to check the
robustness and generality of our observations above. First we consider a single gene
synthetic genetic network model developed in [7]. It describes the regulation of the
operator region of a λ phage, whose promoter region consists of three operator sites.
With suitable rescaling and considering the total concentration of DNA promoter
sites to be constant, the reactions describing this network attain the form,

ẋ = m(1+ x2 + ασ1x
4)

1+ x2 + σ1x4 + σ1σ2x6
= F(x) (5)

where, x is the concentration of the repressor. σ1 = 2, σ2 = 0.08 and α = 11 for
the operator region of the λ phage and number of plasmids m = 1.
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Fig. 4 (a) Dependence of the synchronization error Z in the coupled bistable system under
uniform noise, on coupling strength c and noise strength D. (b) Dependence of the probability
of hopping h on the coupling strength c and noise strength D. (c) Different dynamical behaviors
in the parameter space of coupling strength and noise strength. The colours scheme is the same as
indicated in Fig. 3c. (d), (e) and (f) present the corresponding plots for the synthetic gene network
model in Eq. 5. (g), (i) and (h) present the same for the piecewise linear model in Eq. 7

This biological model exhibits bi-stability and given that biological systems are
intrinsically noisy, it is of considerable interest to see if synchronized hopping
emerges here as well.

We further investigate another coupled system, relevant for electronic circuits
(Eq. 7). It is clearly evident from Fig. 4a–i that our results hold for these bistable
systems as well. This suggests that the phenomenon of synchronized hopping is
quite general and occurs whenever coupling is sufficiently high and noise is in a
moderate window.
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4 Experimental Implementation

In order to establish the robustness of the observed phenomena we constructed two
simple bistable piecewise linear circuits and coupled them via a resistor. Figure 5
shows the schematic representation of the constructed circuit. The non dimensional
equation governing the circuit reads:

ẋ1 = F(x1)+ c(x2 − x1)+D η1(t), (6)

ẋ2 = F(x2)+ c(x1 − x2)+D η2(t)

where F is a piecewise linear function given by

F(xi) =
⎧
⎨

⎩

−(xi + 1) xi < −0.5
xi −0.5 ≤ xi ≤ 0.5
−(xi − 1) xi > 0.5

The time trails of the two capacitor voltages for various values coupling and
noise strength are also shown in Fig. 5. The four dynamical regimes of behaviour are
clearly evident, thus establishing the wide real world prevalence of the phenomenon.

Fig. 5 Left: Schematic representation of the circuit. Here, resistances R1, R5 = 70Ω , R2, R3,
R4, R6, R7, R8 = 10kΩ and capacitances C1, C2 = 470μF. Right: Experimental observation
of the four different behavioral patterns, including synchronized hopping, for different values of
coupling resistance Rc and noise amplitude D. (a) Rc = 1kΩ , D = 450mV (b) Rc = 9.15kΩ ,
D = 950mV (c) Rc = 180Ω , D = 1.30V (d) Rc = 180Ω , D = 700mV
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5 Conclusions

We explored the behavior of coupled bistable systems subject to noise from two
independent noise sources, over a range of coupling and noise strengths. We found
that the interplay of coupling and noise leads to the emergence of four behavioral
regimes: no synchrony and no hopping; unsynchronized hopping; synchronized
hopping; synchrony without hopping. We demonstrated the occurrence of this
phenomenon in a variety of bistable systems, in the presence of both uniform
and Gaussian noise. Further, we experimentally verified the different regimes of
behavior in coupled bistable electronic circuits, thus establishing its robustness.
Different theoretical approaches to analyze the phenomena is an open problem.
Information theoretic measures to characterize the observed phenomena and solving
the relevant Fokker–Planck equations [8] would be useful directions for future work.
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Kl’účik, M., 138
Koivumäki, J., 169
Kokosy, A., 208
Kolovsky, M., 305
Komodromos, P., 120
Konapure, C.G., 60
Kononenko, V.O., 79
Korkmaz, I., 60
Koruba, Z., 177–178, 180, 184, 187,

190–196
Korzeniowski, D., 158
Kou, C., 246
Kovacic, I., 114
Kowal, J., 138
Krause, M., 295
Krestnikovskii, K., 306
Krsti’c, M., 252
Krzysztofik, I., 177, 178, 187–196
Kundur, P.S., 296
Kuran, B., 45, 49
Kwok, K.C.S., 44
Kwon, N.K., 283–288, 291

L
Lacabonara, B., 13–21
Lacarbonara, W., 13, 89–90, 97, 99–101, 104,

106, 129–135
Lam, J., 138, 284
Lang, Z., 14
Lanzerotti, M., 129–135
Lavendelis, E., 305, 306
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