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Abstract Buckling behavior and parametric vibrations of sandwich plates with
arbitrary forms and made of isotropic and functionally graded materials (FGM)
are studied. Different types of lamination schemes were considered: a sandwich
plate with FGM face sheets and isotropic (metal or ceramic) core and a plate
with a FGM core and ceramics or metal on top and bottom face sheets. Effective
material properties are computed according to Voigt’s rule in thickness direction. To
calculate mechanical characteristics for different types of lamination schemes, the
analytical expressions were obtained. The formulation of the problem was carried
out using the first-order shear deformation theory (FSDT) of the plate. A subcritical
state of the plate was taken into account.

Keywords Parametric vibrations · Functionally graded sandwich plates ·
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1 Introduction

Nowadays, functionally graded materials (FGM) are widely used in many fields
of industry as heat-resistant thin-constructed elements. There are many published
papers devoted to studying the dynamic and static behavior of FGM plates and
shells as designed objects [1, 2] and others. The application of FGM can help reduce
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mechanically and thermally induced stresses caused by the material properties
mismatch as well as improves the bonding strength in the case of coatings and
laminated facings. This explains the growing interest in studying laminated com-
posite and sandwich plates often used in modern engineering applications. Many
theories and methods for the mathematic modeling and analysis of such elements
have been proposed [3–5]. Among these methods, one of an important method is
Ritz’s method. It is known that one of the main difficulties related with the use of
Ritz’s method in case of the complex plate geometry is a choice of a basic system of
functions that satisfy the boundary conditions. In this work, the R-functions theory
[6] is used for solving this problem. Earlier, Ritz’s variational method and the R-
functions theory (RFM) have been effectively applied for investigation of vibration
of layered plates and shallow shells [7, 8].

In this study, we first develop RFM to research of linear and parametric vibrations
of FG sandwich plates using the first-order shear deformation theory (FSDT). The
plate is composed of three layers, one or two of which are functionally graded in the
thickness direction. Material properties of the FGM are calculated by power law.
Pre-buckling state is taken into account. Proposed algorithm is applied to square
plate with two cut outs. Initial nonlinear system with partial derivatives is reduced
to Mathieu equation by method proposed authors earlier in [8].

2 Mathematical Problem

Let us consider a sandwich plate with a metal core and FGM facing (Type A) and
a sandwich plate with a FGM core and the lower layer made of ceramic and upper
layer made of metal (Type B). It is considered that the FGM layers are made of a
mixture of ceramics and metals. The thickness of the layers from the bottom to the
top h(1), h(2), h(3) can be varied. The general thickness h is a constant defined as
a sum h = h(1) + h(2) + h(3). Let us assume that the plate is subjected to periodic
in-plane load pN = pst + pdyn cos θ t, where pst is a static component, pdyn is the
amplitude of the periodic part, and θ is the frequency of the load. Note that all
external forces are varied proportionally to the parameter λ. The material properties
of the plate vary continuously and smoothly in the thickness direction. Effective
material properties Peff, like Young’s modulus E, Poisson’s ratio ν, and mass density
ρ for FGM can be estimated by the following Voigt’s law:

P
(r)
eff = (Pu − Pl) V (r)

c (z) + Pl, (1)

where Pu and Pl are corresponding properties of the upper and lower surfaces of the
r-layer, respectively; V

(r)
c (z) is the volume fraction of ceramics.

Parametric excitation of the plate subjected to periodic loads is investigated by
the first-order shear deformation theory (FSDT) [9] taking into account a shear
deformation. In this case, the governing differential equations of equilibrium for
free vibration of a plate subjected to external in-plane loading can be expressed as
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N11,x + N12,y = I0u,tt + I1ψx,tt , N12,x + N22,y = I0v,tt + I1ψy,tt , (2)

M11,x+M12,y − Qx=I2ψx,tt + I1u,tt , M12,x + M22,y − Qy=I2ψy,tt+I1v,tt ,

(3)

Qx,x + Qy,y +
(
N0

11w,xx + 2N0
12w,xy + N0

22w,yy

)
= Iow,tt , (4)

where I0, I1, I2 are defined as follows

(I0, I1, I2) =
3∑

r=1

zr+1∫

zr

(
ρ(r)

) (
1, z, z2

)
dz,

where ρ(r) is the mass density of r-th layer, and the values {N} = {
N0

11, N
0
22, N

0
12

}T

denote the force resultant in the pre-buckling state.
The in-plane force resultant vector {N} = {N11, N22, N12}T, bending and twisting

moments resultant vector{M} = {M11, M22, M12}T, and transverse shear force
resultant {Q} = {Qx, Qy}T are calculated by integration along Oz-axes and can be
recast to the following form:

{N} = [A] {ε} + [B] {χ} , {M} = [B] {ε} + [D] {χ} , (5)

where [A], [B], [D] are square matrices of the third order with elements Aij, Bij,
Dij, (i, j = 1, 2, 6) defined in the following way:

Aij =
3∑

r=1

zr+1∫

zr

Q
(r)
ij dz, Bij =

3∑
r=1

zr+1∫

zr

Q
(r)
ij zdz, Dij =

3∑
r=1

zr+1∫

zr

Q
(r)
ij z2dz,

where z1 = − h/2, z2 = h1, z3 = h2, z4 = h/2. Values h1, h2 are correspond-
ing lower and upper borders of the middle layer. Expressions of integrand functions
Q

(r)
ij (i, j = 1, 2, 6) have the following form

Q
(r)
11 = Q

(r)
22 = E(r)

1 − (
ν(r)

)2 , Q
(r)
12 = ν(r)E(r)

1 − (
ν(r)

)2 , Q
(r)
66 = E(r)

2
(
1 + ν(r)

) ,

where E(r), ν(r) are defined by formulas (1).
Strain components {ε} = {ε11, ε12, ε22}T, {χ} = {χ11, χ12, χ22}T at an arbitrary

point of the plate are as follows:

ε11 = u,x + 1

2
w,2

x, ε22 = v,y + 1

2
w,2

y, ε12 = u,y + v,x + w,xw,y (6)



72 K. Lidiya et al.

ε13=w,x+ψx, ε23=w,y + ψy, χ11=ψx,x, χ22=ψy,y, χ12=ψx,y + ψy,x.

The transverse shear force resultants Qx, Qy are as follows:

Qx = K2
s A33ε13, Qy = K2

s A33ε23, (7)

where K2
s denotes the shear correction factor. In this chapter, we take K2

s = 5/6.
Coefficients Aij, Bij, Dij were obtained in an analytical form [8].

3 Method of Solution

Since the pre-buckling state can be inhomogeneous, first, we should determine the

parameters {N} = {
N0

11, N
0
22, N

0
12

}T
. It is possible to prove that this problem can

be reduced to a variational problem related to finding the minimum of the following
functional:

I
(
u, v,w,ψx,ψy

) = 1
2

∫∫
	

(
N

(L)
11 ε

(L)
11 + N

(L)
22 ε

(L)
22 + N

(L)
12 ε

(L)
12 +

+M
(L)
11 χ11 + M

(L)
22 χ22 + M

(L)
12 χ12+Qxε13+Qyε23

)
d	+ ∫

∂	1

N
(L)
n (ul+vm) d	1,

(8)

where the terms with superscripts L correspond to the linear terms in formulas (5).
To find the buckling load the dynamical approach is applied. Then the problem

is reduced to an equivalent variational problem of the minimization of the following
functional

I
(
u, v,w,ψx,ψy

) = 1
2

∫∫
	

[
N

(L)
11 ε

(L)
11 + N

(L)
22 ε

(L)
22 + N

(L)
12 ε

(L)
12 +

+ M
(L)
11 χ11 + M

(L)
22 χ22 + M

(L)
12 χ12 + Qxε13 + Qyε23+

+ pst

(
N0

11

(
w,x

)2 + N0
22

(
w,y

)2 + N0
12w,xw,y

) ]
d	−

− 1
2ω2

L

∫∫
	

(
I0

(
u2 + v2 + w2

) + I1

(
ψ2

x + ψ2
y

))
d	.

(9)

The value of the parameter pst increases when the natural frequency ωL is a real
number. The value of the buckling load Ncr is defined by the value of the parameter
pst corresponding to the smallest nonnegative value of the frequency. Minimization
of the functionals (8 and 9) is performed using Ritz’s method. The sequence of
coordinate functions is constructed by the R-functions theory [6].

In order to solve the nonlinear vibration problem we develop the approach
proposed in [7, 8]. As a result, we get ordinary differential equation, investigation
of which is performed by Bolotin’s approach. The equation has the following form:
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ÿ(t) + 2εy(t) + 	2
L (1 − 2k cos θt) y(t) + y2(t)β + y3(t)γ = 0, (10)

where 2k = αpdyn

	2
L

, 	2
L = ω2

L − pstα is the frequency of the plate compressed by the

static load pst, ωL stands for the natural frequency of free vibration, ε is the damping
ratio of the plate, and the expressions for the coefficients α, β, and γ are obtained
in an analytical form, similarly as it has been done in the paper [8].

4 Numerical Results

In order to show the possibilities of the proposed method we investigate vibration
and buckling analysis of a plate shown in Fig. 1. Consider the plate with fixed
geometrical parameters: b/a = 1; Ô/2a = 0.3; d/2a = 0.25; h/2a = 0.1. The
material properties of the FGM mixture Al/Al2O3 used in the study are as follows:

Al : Em = 70 GPA, νm = 0.3, ρm = 2707 kg/m;
Al2O3 : Ec = 380 GPA, νc = 0.3, ρc = 3800 kg/m.

Suppose that the plate is simply supported and uniformly compressed on the
border of the region. Boundary conditions take the following form:

w = 0, ∀ (x, y) ∈ ∂	, u = 0, ∀ (x, y) ∈ ∂	(u),

∂	(u) : (y = −b, |x| ≤ a) ∪ (y = d, c ≤ x ≤ a ∪ −a ≤ x ≤ −c)

∪ (y = b, |x| ≤ c) ,

v=0, ∀ (x, y) ∈ ∂	(v), ∂	(v) : (x= ± a, −b≤y≤d) ∪ (x= ± c, d ≤ y ≤ b ) ,

Fig. 1 Form of the plate (a) and its planform (b)
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ψx = 0, ∀ (x, y) ∈ ∂	(ψx),

∂	(ψx) : (y = −b, |x| ≤ a) ∪ (y = d, c ≤ x ≤ a ∪ −a ≤ x ≤ −c)

∪ (y = b, |x| ≤ c) ,

ψy = 0, ∀ (x, y) ∈ ∂	(ψy), ∂	(ψy) : (x = ±a, −b ≤ y ≤ d)

∪ (x = ±c, d ≤ y ≤ b ) .

In order to construct the admissible functions by the RFM [6], we should build
the solution structure satisfying at least main boundary conditions. It can be chosen
in the following way:

w = ω(w)�1, u = ω(u)�2, v = ω(v)�3, ψx = ω(ψx)�4, ψy = ωψy �5,

(11)

where functions ω(u), ω(v), ω(w), ω(ψx), ω(ψy) are constructed by the RFM.
They have to vanish on those parts of the boundary, where the corresponding
functions u, v, w, ψx, ψy are equal to zero. Indefinite components
Φ i ∈ C2(Ω ∪ ∂Ω), i = 1, 2, . . . , 5 of the structure are presented as an expansion in
a series of a complete system (power polynomials). In order to check the reliability
of the obtained results in case of a complex geometry, let us change the size of the
domain in such a way that the domain will be close to a square. For example, let us
put Ô/2a = 0.48, d/2a = 0.48, h/2a = 0.1. A comparison of the obtained values

of buckling
�

Ncr = Ncr
100E0h

3 for the plate of the Type A and p = 0.5 with available
results [10–12] for the square plate is shown in Table 1.

The values of results are almost the same. As can be seen from Table 1, the
buckling load is slightly higher for the complex plate than for the square one, what
is in agreement with the physical meaning.

The values of the buckling load and the natural frequency �=ωL(2a)2√ρ0/E0/h

for a plate with geometrical parameters c/2a = 0.3, d/2a = 0.25 for Type A and B
are presented in Table 2. The power law exponent p is varied.

Table 1 Buckling load
�

Ncr (Al/Al2O3, E0 = 1 GPa, ρ0 = 1 kg/m3, Type A)

Ô/a = d/a Method Ratio of the thickness of layers h(1) − h(2) − h(3)

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0.96 RFM 3.673 3.961 4.104 4.210 4.398 4.603
1 RFM 3.667 3.958 4.101 4.205 4.392 4.597

[10] 3.6828 3.9709 4.1127 4.2185 4.4052 4.6083
[11] 3.6783 3.9676 1.1000 4.2162 4.4030 4.6076
[12] 3.5810 3.8581 3.9948 4.0964 4.2759 4.4711
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Table 2 Effect of the power law exponent p on the buckling load and the natural frequency FG
plate (1-2-1; c/2a = 0.3, d/2a = 0.25, h/2a = 0.1, E0 = 1 GPa, ρ0 = 1 kg/m3)

Type
�

Ncr,� p = 0 p = 0.5 p = 1 p = 5 p = 10 p = 100

A
�

Ncr 9.915 7.205 5.966 3.905 3.560 3.245
Λ 2.375 2.080 1.919 1.599 1.537 1.477

B
�

Ncr 5.864 4.841 4.381 3.754 3.685 3.625
Λ 1.902 1.773 1.709 1.624 1.619 1.617

Fig. 2 Zones of dynamic instability (Type A)

Figure 2 shows zones of dynamic instability of the plate (Type A) for
different values of the static load. The ratio of layers thickness is taken as
h(1) − h(2) − h(3) = 1 − 2 − 1, power low exponent p = 1.

From Fig. 2 one can observe that static constituent of the load pst influences
essentially on placement and size of the instability regions. Increase of this
parameter causes to a shift of the instability domains toward the smaller values of
exciting frequency.

Figure 3 shows backbone curves for the plate (Type B) with the same ratio of
layers thickness, power law exponent p = 1. The effect of the static component of
the load on the behavior of backbone curves is investigated. It can be concluded
that all curves have the monotonically increasing character. The bigger values of the
static component of the compression load causes the bigger increasing the value of
ratio of nonlinear frequency to linear one.
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Fig. 3 Backbone curves of the plate (Type B)

5 Conclusions

The first time the R-functions theory and variational Ritz’s method are used and
developed to study buckling and parametric vibrations of three-layered FGM plates
with an arbitrary geometry. Considered specific examples of sandwich plates with
complex planform and different arrangement of layers compressed by load in
the middle surface demonstrate the possibility of application of the R-functions
theory to such class of problems. Effect of the layers thickness and arrangement
of the material and gradient index in power law on the buckling critical load and
frequencies of the plates are investigated. Instability regions and backbone curves
are presented for different value of compressing load.
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