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Abstract According to the classical shell theory and considering torsional stress
wave, buckling of functionally graded material cylindrical shells under torsional
impact load are studied by the symplectic method. Considering the radial, circum-
ferential, and axial displacements of the shells, the original variables and the dual
variables are established. Then the symplectic method is introduced, which converts
the problem into obtaining the eigenvalues and eigenvectors in Hamilton system.
After that, the corresponding buckling loads and buckling modes are obtained
respectively relevant to the eigenvalues and eigensolutions via the bifurcation
conditions. Finally, the influences of material gradient and parameters of structural
geometry on buckling loads are analyzed and discussed.
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1 Introduction

As composite materials, the properties of functionally graded materials (FGM)
change continuously and smoothly in a specific direction [1, 2]. The analyses of
the mechanical behaviors of FGM structures are more difficult than conventional
homogeneous structures. Up to now, considerable research works on the buckling of
the FGM structures have been published, but most of them are only limited to static
problems. For example, thermal buckling and post-buckling for the FGM plates
were investigated in [3–5]. Li et al. [6] and Zhang et al. [7] researched the buckling
and post-buckling of FGM Timoshenko beams and imperfect FGM plates.
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The research on dynamic buckling of the FGM structures is much fewer
compared to it on static buckling. The works of [2, 8, 9] investigated the dynamic
buckling of FGM thin cylindrical shells under axial compression, a longitudinal
constant velocity or thermal load. Additionally, two-dimensional analysis of FGM
partial annular disks subjected to radial thermal shock was presented by Mehrian
and Naei [10]. All of the above research uses traditional methods, such as the finite
element method, Galerkin method, etc. However, it is difficult to solve the complex
partial differential equations of the dynamic buckling problems using these methods.
In contrast, based on the symplecticity method in the Hamilton system [11], the
equations of structural stability will be easily solved by variable separation approach
and symplectic eigenfunction expansion. Xu et al. [12] studied the buckling and
post-buckling behaviors of homogeneous cylindrical shells based on the symplectic-
ity method. Sun et al. [13] studied the static buckling behaviors of FGM cylindrical
shells combined thermal and compressive loads by the symplecticity method, too.
They showed this method is very efficient and accurate in solving the problem of
structural stability.

To the best of the authors’ knowledge, few researches study on impact buckling
of FGM structures by the symplecticity method. Therefore, it is meaningful to exam
the torsional impact buckling of FGM cylindrical shells in Hamilton system. In
symplectic space, a canonical equation will be established, then buckling mode
equations and bifurcation conditions will be solved by analytical methods. Finally,
critical buckling loads and buckling modes will be obtained and discussed.

2 Mathematical Formulas

The thin-walled FGM cylindrical shell with length l, mid-surface radius R, and
thickness h is considered, which is fixed at one end and subjected to a torsional
impact load at the other end. A coordinate system (x, θ , z) is referred, in which the
x-axis coincides with the generatrix of the middle surface, measured from the left
end. θ is in the circumferential direction and z is in the transverse direction. The
corresponding displacements in the mid-surface are designated as u, v, and w. No
initial displacement or velocity exists at any point.

For the FGM cylindrical shell [14], the linear rule of mixtures is used to describe
the variations in material properties P [15, 16]; and the power law function is used
to describe the variation of volume fractions V1 and V2, expressed as

P = P1V1 + P2V2, V1 =
(

h − 2z

2h

)k

, V2 = 1 − V1 (1)

where k is the power law index used to quantify the inhomogeneous properties
of FGM. Since Poisson’s ratio μ does not significantly vary in material gradient
direction, so μ(z) is taken as a constant μ.
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2.1 Fundamental Equations

Based on the classical thin shell theory, the strains ε
(z)
xx , ε

(z)
θθ , ε

(z)
xθ at any point are

expressed as

ε(z)
xx = εxx + zκxx, ε

(z)
θθ = εθθ + zκθθ , ε

(z)
xθ = εxθ + zκxθ (2)

where strains εxx, εθθ , εxθ and curvatures κxx, κθθ , κxθ on the middle surface are

εxx=∂u

∂x
, εθθ= 1

R

∂v

∂θ
−w

R
, εxθ= 1

R

∂u

∂θ
+∂v

∂x
, κxx= − ∂2w

∂x2
, κθθ = − 1

R2

∂2w

∂θ2
,

κxθ = − 1

R

∂2w

∂x∂θ
(3)

Considering linear elastic deformations, the constitutive equations are expressed
as:

σxx= E

1−μ2
ε(z)
xx + μE

1−μ2
ε
(z)
θθ , σθθ= μE

1−μ2
ε(z)
xx + E

1−μ2
ε
(z)
θθ , σxθ= E

2 (1+μ)
ε
(z)
xθ

(4)

where σ xx and σθθ are normal stresses, σ xθ is shear stress.

2.2 Canonical Equations

Taking the geometric equations into account, the density of strain energy U of the
shell is expressed as

U = A
2

(
∂u
∂x

+ 1
R

∂v
∂θ

− w
R

)2 − (1 − μ)
[
A∂u

∂x

(
1
R

∂v
∂θ

− w
R

)
+ C ∂2w

∂x2
1

R2
∂2w
∂θ2

]

+ C
2

(
∂2w
∂x2 + 1

R2
∂2w
∂θ2

)2 − B ∂u
∂x

∂2w
∂x2 − B

R2

(
1
R

∂v
∂θ

− w
R

)
∂2w
∂θ2 − μB ∂u

∂x
1

R2
∂2w
∂θ2

− μB
(

1
R

∂v
∂θ

− w
R

)
∂2w
∂x2 − 2 (1 − μ)

[
B
R

(
1
R

∂u
∂θ

+ ∂v
∂x

)
− C

(
1
R

∂2w
∂x∂θ

)2
]

in which A = ∫ h/2
−h/2

E
1−μ2 dz, B = ∫ h/2

−h/2
Ez

1−μ2 dz, and C = ∫ h/2
−h/2

Ez2

1−μ2 dz are
stiffness coefficients. Assuming the shells under torsional impact loading, it is
expressed as

NT =
{

T 0 ≤ x ≤ Cet, t ≤ L/Ce

0 Cet ≤ x ≤ L, t ≤ L/Ce
(5)
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where Ce ≈
√

(1−μ)A
2I0

is wave velocity; I0 = ∫ h/2
−h/2ρ(z)dz is mass per unit area;

xe = Cet is elastic transverse wavefront position. Then the density of Lagrange
function can be expressed as

L = 1

2
I0

(
∂u

∂t

)2

+ 1

2
I0

(
∂v

∂t

)2

+ 1

2
I0

(
∂w

∂t

)2

− U − NT

∂w

∂x

∂w

∂θ
− NT

∂v

∂x
w

(6)

The torsional wave equation can be obtained by variation with respected to v

∂2v

∂t2 − C2
e
∂2v

∂x2 = 0 (7)

Define dimensionless variables X = x
R

, W = w
R

, α = AR2

C
, β = BR

C
, T = Cet

R
,

Tcr = NT R2

C
. Introduce the original variables q =

{
q1

q2

}
=

{
W

ψ

}
and the dual

variables p =
{

p1

p2

}
= ∂L

∂q̇ =
{ −...

q 1 − q̇ ′′
1

q1
′′ − q̇2 + βq1

}
, where q̇ = 1

R
∂q̇
∂θ

, ψ = −q̇1,

q′ = ∂q
∂X

.
The canonical equation can be obtained by the Hamiltonian variational principle

⎧⎪⎪⎨
⎪⎪⎩

q̇1

q̇2

ṗ1

ṗ2

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

0 −1 0 0
− ∂2

x − β 0 0 1
− 2∂4

x − [2 (1 + μ) β] ∂2
x − β2 − α −Tcr∂x 0 ∂2

x + β

− Tcr∂x 0 1 0

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

q1

q2

p1

p2

⎫⎪⎪⎬
⎪⎪⎭
(8)

Introducing a state vector ϕ̇ = {q1, q2, p1, p2}T, then the canonical equation
becomes

ϕ̇ = Hϕ (9)

The solution of Eq. (9) is written as the following variable separation form

ϕ (X, θ) = ϕn(X)eλnθ (10)

where λn is the eigenvalue of the function; ϕn is the eigenvector, and they satisfy the
following eigenequation

Hϕ = λnϕ (11)
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For the FGM cylindrical shell, the eigenvalue can be obtained from the sealing
condition ϕ (X, 0) = ϕn(X) = ϕ (X, 2π) = ϕn(X)e2λnπ , expressed as

λn = in (12)

where i = √−1, the values of n are 0, ±1, ±2 . . . . For λn �= 0, the eigensolutions
ϕn(X) are nonzero. Solving Eq. (11) gives the eigenvector ϕ

ϕn = c1

⎡
⎢⎢⎣

eλ1X

− ineλ1X

inξeλ1X

ξ1eλ1X

⎤
⎥⎥⎦ + c2

⎡
⎢⎢⎣

eλ2X

− ineλ2X

inξeλ2X

ξ2eλ2X

⎤
⎥⎥⎦ + c3

⎡
⎢⎢⎣

eλ3X

− ineλ3X

inξeλ3X

ξ3eλ3X

⎤
⎥⎥⎦ + c4

⎡
⎢⎢⎣

eλ4X

− ineλ4X

inξeλ4X

ξ4eλ4X

⎤
⎥⎥⎦

(13)

where c1~c4 are constants; ξ j = λj
2 + β + n2; λj (j = 1–4) are solutions of equation

λ4 + 2
(
βμ + i2n2

)
λ2 + 2T inλ + α − i4n4 = 0 (14)

2.3 Bifurcation Conditions

Since the shell is considered to be fixed at one end, there are no displacement and
rotation, i.e., w = 0, ∂w

∂θ
= 0. By introducing the boundary conditions and continuity

conditions into Eq. (10), homogeneous algebraic equations are obtained. The
condition for buckling is the equations have nonzero solutions, and the determinant
of coefficient equals to zero

∣∣∣∣∣∣∣∣

1 1 1 1
λ1 λ2 λ3 λ4

eλ1Xe eλ2Xe eλ3Xe eλ4Xe

λeλ1Xe λeλ2Xe λeλ3Xe λeλ4Xe

∣∣∣∣∣∣∣∣
= 0 (15)

Using the above bifurcation conditions Eq. (15), the torsional buckling loads Tcr
for FGM shell buckling can be determined. After obtaining the buckling loads, the
corresponding buckling modes can be solved by Eq. (13).

3 Numerical Results and Discussions

In this chapter, FGM cylindrical shells are made from ceramic SiC and metal Ni.
The material properties of the constituents can be found in [17]. The Poisson’s ratio
is μ = 0.3.
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1, 1.84n T  2, 1.85n T  3, 2.55n T  4, 1.96n T  5, 2.14n T  6, 2.22n T 

Fig. 1 Buckling modes of the shells with different circumferential order (m = 1)

1, 2.84n T  2, 2.2n T  3, 2.69n T  4, 2.99n T  5, 2.97n T  6, 3.17n T 

Fig. 2 Buckling modes of the shell with different circumferential order (m = 2)

Table 1 Variation of
torsional critical loads with
circumferential order

n 1 2 3 4 5 6

Present 612.5 317.3 195 131.8 92.3 65.1
[18] 600 303.8 179.8 130.8 97.6 71.6

The torsional shock buckling modes of the shells with different wavefronts are
shown in Figs. 1 and 2. It can be seen that the buckling modes are different for the
wavefronts, the more the axial wavenumberm is, the larger the wavefront is. At the
same time, they are all local buckling that occurs in areas disturbed by stress waves.
Comparing with the torsional buckling modes of homogeneous cylindrical shell in
[18], it is found that the buckling modes of the homogeneous FGM cylindrical shells
are identical, that is, the material changes do not affect the mode pattern.

Let k = 0, FGM reduce to homogeneous material. Table 1 shows comparisons
between the torsional buckling loads of the homogeneous cylindrical shell calcu-
lated in this chapter and the corresponding results in [18]. It can be found the present
results are very close to the corresponding results in the literature, indicating that the
theoretical derivation and numerical calculation are correct and reliable. Since the
critical loads are obtained by numerically solving bifurcation conditions through the
Newton iterative method, some differences arise.

If not specified, the geometries of the cylindrical shells are chosen to be
h = 0.05 m, R = 1 m in the subsequent calculation. Table 2 gives the first sixth-
order buckling loads for different wavefronts. It can be seen from the table that
as the axial mode order increases, the buckling loads increase. And the longer the
wavefront is selected, the smaller the buckling load is.

Table 3 lists the first sixth-order critical loads of FGM shells with different
k when the circumferential wave is n = 4 and wavefront is T = 4. Figures 3
and 4 further show the variations of the first sixth-order circumferential and the
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Table 2 First sixth-order
buckling loads for different
wavefronts (n = 1)

m 1 2 3 4 5 6

T = 0.9 804 827 1570 1603 2835 2850
T = 1.3 687 720 1100 1112 1730 1752
T = 3.2 516 523 558 570 632 638
T = 4.8 509 513 526 531 557 559

Table 3 Buckling loads of FGM cylindrical shells with different axial waves (unit: N)

m 1 2 3 4 5 6

SiC 4.69 × 108 4.7 × 108 4.91 × 108 4.96 × 108 5.36 × 108 5.46 × 108

k = 0.5 3.87 × 108 3.91 × 108 4.11 × 108 4.19 × 108 4.56 × 108 4.62 × 108

k = 1 3.47 × 108 3.49 × 108 3.72 × 108 3.77 × 108 4.14 × 108 4.23 × 108

k = 2 3.08 × 108 3.09 × 108 3.33 × 108 3.35 × 108 3.74 × 108 3.8 × 108

k = 10 2.51 × 108 2.53 × 108 2.71 × 108 2.75 × 108 3.05 × 108 3.11 × 108

Ni 2.26 × 108 2.27 × 108 2.37 × 108 2.39 × 108 2.59 × 108 2.64 × 108

Fig. 3 Variations of the first
sixth-order circumferential
buckling loads with the
wavefront (m = 1)
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first eighth-order radial buckling loads with the wavefront. It can be seen that the
torsional buckling loads decrease as the order of the buckling modes increase.
Additionally, the buckling loads drop when the power law index k increases, i.e.,
the ability of the shells to withstand dynamic torsional loads decreases. This is due
to the fact that the constituents of the ceramics decrease with the increasing k. And
the longer the wavefront of the action is selected, the smaller buckling loads are.

Finally, the variations of critical buckling loads are presented in Table 4 with the
changes of k and some specified ratios γ representing ratios of radius to thickness.
When the wavefront is T = 4, the circumferential and axial orders are n = 4 and
m = 1, respectively. It shows that the critical buckling loads generally decrease as
the ratios of radius to thickness γ increase. This is because that the bending stiffness
decreases as γ increases.
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Fig. 4 Variations of the first
eighth-order axial buckling
loads with the wavefront
(n = 3)
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Table 4 The critical buckling loads for FGM shells with some specified ratio γ (unit: N)

γ 16 20 24 28 32

SiC 4.91 × 108 4.69 × 108 4.58 × 108 4.44 × 108 4.28 × 108

k = 0.5 3.82 × 108 3.87 × 108 3.8 × 108 3.68 × 108 3.51 × 108

k = 1 3.4 × 108 3.47 × 108 3.43 × 108 3.32 × 108 3.17 × 108

k = 2 2.99 × 108 3.08 × 108 3.04 × 108 2.91 × 108 2.84 × 108

k = 5 2.62 × 108 2.7 × 108 2.65 × 108 2.54 × 108 2.48 × 108

k = 10 2.46 × 108 2.51 × 108 2.47 × 108 2.42 × 108 2.3 × 108

Ni 2.37 × 108 2.26 × 108 2.21 × 108 2.14 × 108 2.06 × 108

4 Conclusions

In this chapter, the torsional impact buckling of the ceramic-metal FGM cylindrical
shell is investigated in Hamilton system by symplectic method. The canonical
equations are established, and a complete buckling mode space is given. The
relationship between the critical loads and the eigenvalues has been revealed, so
has it between the buckling modes and eigensolutions. It is found that the gradient
properties of FGM have significant effect on the buckling loads. The buckling
loads of the metal/ceramic FGM shells are intermediate to those of metal and
ceramic shells, and decrease monotonously with the increasing of power law index,
furthermore, the ratio of radius to thickness also have great influences on the critical
buckling loads.
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