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Preface

This volume is part of three volumes collecting the Proceedings of the First
International Nonlinear Dynamics Conference (NODYCON 2019) held in Rome,
February 17–20, 2019. NODYCON was launched to foster the tradition of the
conference series originally established by Prof. Ali H. Nayfeh in 1986 at Virginia
Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA, as
the Nonlinear Vibrations, Stability, and Dynamics of Structures Conference. With
the passing in 2017 of Prof. Nayfeh, who was also the founder of the Springer
journal Nonlinear Dynamics in 1990, NODYCON 2019 was organized as a collec-
tive tribute of the community to Prof. Nayfeh for being one of the most influential
leaders of nonlinear dynamics. NODYCON 2019 was also established to look to
and dream about the future. The call for papers attracted contributions dealing with
established nonlinear dynamics research topics as well as with the latest trends and
developments. At the same time, to reflect the rich spectrum of topics covered by
the journal Nonlinear Dynamics, the call included diverse and multidisciplinary
topics, to mention a few, multi-scale dynamics, experimental dynamics, dynam-
ics of structures/industrial machines/equipment/facilities, dynamics of adaptive,
multifunctional, metamaterial structures, dynamics of composite/nanocomposite
structures, reduced-order modeling, nonsmooth dynamics, fractional-order system
dynamics, nonlinear interactions and parametric vibrations, computational tech-
niques, nonlinear system identification, dynamics of NEMS/MEMS/nanomaterials,
multibody dynamics, fluid/structure interaction, influence of nonlinearities on vibra-
tion control systems, human–machine interaction, nonlinear wave propagation in
discrete and continuous media, chaotic map-based cryptography, ecosystem dynam-
ics, social media dynamics, complexity in engineering, and network dynamics.

For NODYCON 2019, the organizers received 450 two-page abstracts and
based on 467 reviews from the Program Committee, the Steering and Advisory
Committees, and external reviewers, 391 papers and 17 posters were accepted,
published in the Book of Abstracts (NODYS Publications, Rome, ISBN 978-88-
944229-0-0), and presented by nearly 400 participants from 68 countries. The
diverse topics covered by the papers were organized along four major themes to
organize the technical sessions:

v
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(a) Concepts and methods in nonlinear dynamics
(b) Nonlinear dynamics of mechanical and structural systems
(c) Nonlinear dynamics and control
(d) Recent trends in nonlinear dynamics

The authors of a selection of approximately 60 papers were invited to publish
in the Special Issue of Nonlinear Dynamics entitled “NODYCON 2019 First Inter-
national Nonlinear Dynamics Conference.” Over 200 full papers were submitted
to the Proceedings of the First International Nonlinear Dynamics Conference
(NODYCON 2019) and only 121 of them were accepted. These papers have been
collected into three volumes, which are listed below together with a sub-topical
organization.

Volume 1: Nonlinear Dynamics of Structures, Systems,
and Devices

(a) Methods for nonlinear dynamics
(b) Bifurcations and nonsmooth systems
(c) Nonlinear phenomena in mechanical systems and structures
(d) Experimental dynamics, system identification and monitoring
(e) Fluid–structure interaction, multibody system dynamics
(f) Turning processes, rotating systems, and systems with time delays

Volume 2: Nonlinear Dynamics and Control

(g) Vibration absorbers and isolators
(h) Control of nonlinear systems
(i) Sensors and actuators
(j) Network synchronization

Volume 3: New Trends in Nonlinear Dynamics

(k) Smart materials, metamaterials, composite and nanocomposite materials, and
structures

(l) MEMS/NEMS and energy harvesters
(m) Nonlinear phenomena in bio- and ecosystem dynamics
(n) Chaos in electronic systems
(o) Fractional-order systems
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Volume 3 of the NODYCON 2019 Proceedings includes 33 papers on new trends in
nonlinear dynamics and is organized in five parts.

The first part includes 12 papers and explores the mechanical properties and
dynamical response of smart materials, metamaterials, composite and nanocom-
posite materials. A. Elhady, M. Basha, and E. Abdel-Rahman present an electric
permittivity sensor based on the Bleustein–Gulyaev waves. The modeling suggests
that under a bias of only a few volts, the sensor can be driven into a nonlinear
regime where its sensitivity can be tuned to match that of aqueous solutions, thus
making it suitable for biomedical applications. M. Bukhari and O. Barry examine
the role of stiffness nonlinearity on a periodic one-dimensional chain with multiple
local resonators. The dispersion equation for the system is derived analytically
by the method of multiple scales. The nonlinearity shows enhancement in the
bandgap regions, especially with increasing number of local resonators. S. Zhu,
J. Li, J. Zhou, and T. Quan investigate the nonlinear dynamic response of a simply
supported concave hexagonal honeycomb sandwich plate with negative Poisson’s
ratio. The results provide theoretical guidance towards nonlinear vibration control
for the metamaterial honeycomb sandwich structures. F. Mezzani, A. Rezaei, and
A. Carcaterra provide a general method to deal with nonlinear integro-differential
equations by using the statistical linearization and Fredholm’s approach. The
elastic metamaterial is characterized by long-range nonlocal interactions besides a
nonlinear short-range constitutive relationship. The analytical results are obtained to
unveil the onset of unconventional propagation. F. Coppo, F. Mezzani, S. Pensalfini,
and A. Carcaterra present a numerical investigation of a metamaterial in the
form of a one-dimensional elastic waveguide, equipped with nonlocal, nonlinear
interactions. Numerical simulations, comparing the linear vs. nonlinear models,
unveil wave-stopping and backward propagation phenomena. M. Taló, B. Carboni,
G. Formica, G. Lanzara, M. Snyder, and W. Lacarbonara investigate the nonlinear
dynamic response of carbon nanotube (CNT) nanocomposite cantilevers, both
experimentally and theoretically. Nanocomposite cantilevers made of a thermo-
plastic polymer and high aspect ratio CNTs are subject to a primary resonance
base excitation. The CNT/polymer frictional sliding hysteresis described by a

ix
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hysteretic restoring force in the context of a nonlinear beam theory is shown
to be responsible for a peculiar softening-hardening frequency response trend.
L. Leonetti, G. Formica, D. Magisano, M. Taló, G. Garcea, and W. Lacarbonara
suggest an efficient continuation strategy based on the Riks method to describe
the stable and unstable branches of the response of CNT/polymer nanocomposite
shells. The equilibrium paths and the static bifurcations of CNT nanocomposites
are investigated and numerically described highlighting the effects of material
parameters such as the CNT orientation and weight fraction. K. Lidiya, S. Tetyana,
and J. Awrejcewicz study the buckling behavior and parametric vibrations of
sandwich plates with arbitrary forms and made of isotropic and functionally
graded materials (FGM). To calculate the mechanical characteristics for different
lamination schemes, the analytical expressions are obtained in the context of first-
order shear deformation theory. F. Silva, P. Rodrigues, and P. Gonçalves explore
the influence of the elastic foundation discontinuities on the nonlinear response
of a functionally graded cylindrical shell with internal flowing fluid. Different
discontinuities of elastic foundation and axial fluid flow velocities are considered,
and the influence of these parameters on the stable branches of the resonance curves
is confirmed. V. Burlayenko, T. Sadowski, and S. Dimitrova investigate double
cantilever beam interlaminar fracture toughness sandwich specimens under different
kinds of dynamic loading and loading rates. Cohesive finite elements are used
to simulate the dynamic fracturing of the specimens. The influence of inertia on
interfacial crack propagation in the specimens is evaluated as a direct outcome of the
finite element analysis. A. Nabarrete, E. Araujo, J. Balthazar, and A. Tusset discuss
the dynamic buckling of a sandwich plate to identify the response signals and to find
the relevant frequencies and amplitudes. The nonlinear variation of the response for
the out-of-plane displacements is analyzed with the continuous wavelet transform
method for characterizing the observed behavior. J. Zhang, S. Chen, and L. Chen
study torsional stress waves, buckling of functionally graded material cylindrical
shells under torsional impact load by the symplectic method. The influence of the
material gradient and the geometric parameters on buckling loads is analyzed and
discussed.

The second part includes four papers dealing with model setting and esti-
mation of micro-electromechanical systems and energy harvesters. S. Arakelian,
I. Chestnov, A. Istratov, T. Khudaiberganov, and O. Butkovskiy study laser-induced
nanocluster structures of different types. The problem of optical response and high
temperature superconductivity, due to topological surface structures with correlated
states, is considered in the frame of nonlinear dynamic modeling. The quantum
mobility of electrons over different trajectories in the spatially inhomogeneous
structures/nanocluster systems is presented in accordance with the path integral the-
ory approach. K. Khorkov, D. Kochuev, R. Chkalov, V. Prokoshev, and S. Arakelian
adopt a nonstationary technique for the laser-induced functional elements synthesis
based on micro- and nanostructures in graphite samples. Carbon nanostructures
such as graphene, nanopeaks, and crystals are obtained. The nonlinear formation
mechanisms of nanostructures and microcrystals under femtosecond laser radiation
for graphite in liquid nitrogen are analyzed. K. Chinnam, A. Casalotti, E. Bemporad,
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and G. Lanzara estimate the influence of the electrical and mechanical coupling
on the dynamic response of an electrospun piezoelectric microfiber. Particular
focus is given to the piezoelectric response dependence on the applied voltage.
The results highlight the possibility of making materials characterized by tunable
stiffness and resonance frequency. R. Mohamed, A. El-Badawy, A. Moustafa,
A. Kirolos, M. Soliman, and E. Abdel-Rahman obtain an analytical model of an
electromagnetic levitation energy harvester and validate it by comparing its result
with FEM simulations and experimental measurements. The model is based on
dipole moment approximations of magnetic fields and interaction forces. The level
of agreement of both models with measurements is discussed.

The third part of this volume includes nine papers and analyzes biological
and ecological systems. P. Feng, R. Wang, and Y. Wu study the role of regular
waves in cortical information processing in the mammalian neocortex. A variety
of spatiotemporal patterns can be induced for selecting plane waves, spiral and
irregular waves, and even chaotic spatial patterns by changing the coupling strength
between neurons connected by chemical synapses. The results indicate that the
stability of neural network depends on the coupling function and type. E. Kaslik
and R. Muresan analyze the dynamical behavior of the interplay of homeostatic
regulation and coupling time delay in a pair of reciprocally coupled Wilson–
Cowan networks. The occurrence of rich dynamical behavior is explored both
theoretically and numerically. X. Mao, X. Zhou, T. Shi, and L. Qiao evaluate the
effects of the autaptic connection on the behaviors of ring-coupled FitzHugh–
Nagumo neurons. Different transmission time delays between neurons and one
autaptic time delay on the self-connection are considered. Several examples reveal
phenomena such as stability switches, different multi-periodic oscillation patterns,
chaotic motions, and coexisting attractors. E. Kaslik, M. Neamtu, and A. Radulescu
present a nonlinear model of dopamine-modulated prefrontal–limbic interactions in
schizophrenia, including discrete time delays. A stability and bifurcation analysis
is carried out in the neighborhood of the system positive equilibrium. The results
reveal the importance of time delays in modulating dopamine reactivity. E. Kaslik,
E. Kokovics, and A. Radulescu generalize the Wilson–Cowan model of excitatory
and inhibitory interactions in localized neuronal populations by taking into consid-
eration distributed time delays. The stability region in the characteristic parameter
plane is determined and a comparison is given for several types of delay kernels.
Important differences are also highlighted by comparing the generalized model with
the original Wilson–Cowan model without time delays. T. Trifonova, S. Arakelian,
D. Trifonov, S. Abrakhin, V. Koneshov, A. Nikolaev, and M. Arakelian propose
a scheme to explain and predict the process of a flood and/or mudflow (debris)
formation and spreading out over the river beds in mountain conditions taking into
account nonlinear dynamics. The approach can enable more reasonable forecast
and early warning for the natural water hazard/disaster taking into account the
groundwater nonlinear flow contribution as a dominant factor under some conditions
to the land surface water. H. Zhao, J. Yu, J. Cao, and W. Liao address the complexity
quantification of human gait and physiologic signals. The study calculates a refined
weighted-permutation entropy by assigning fewer weights to outliers and more
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weights to regular spiky patterns according to the normal distribution function.
The human gait and ECG experimental data are analyzed by the proposed method.
J. Simonović analyzes the bone cell communication dynamics using the bone cell
population model by means of a system of coupled ordinary differential equations
with power-law nonlinearities. The work explores several in silico experiments and
provides more realistic approaches for interpreting the development of interventions
for patients with bone trauma and diseases. S. George, R. Misra, and G. Ambika
consider the nonlinear dynamics of RRc Lyrae variable stars, using intensity data
from the Kepler space telescope. The results support the existence of two distinct
subcategories of RRc Lyrae stars and indicate a link between the nonlinear and
astrophysical properties of RRc Lyrae variable stars.

The fourth part includes three papers with focus on resonance phenomena, the
emergence of chaos in circuits with finite variables, and the multistability property
that can be induced in circuits with memristor. M. Bucolo, A. Buscarino, C. Famoso,
L. Fortuna, and M. Frasca describe the existence of multi-jump resonance for the
driven Chua circuit. Multi-jump resonance is investigated to characterize its onset
as a function of system parameter values. A physical implementation of the driven
Chua circuit in which jump and multi-jump resonances occur is presented and
discussed. S. Seth studies robust chaos occurring in piecewise smooth dynamical
systems. The first experimental observation of this phenomenon in a 3D electronic
switching system is reported and the region of its parameter space is determined
experimentally. C. Li selects a chaotic system with amplitude/frequency parameter
that controls the scale and speed of oscillations without changing its basic feature
of chaos. By introducing a memristor into the feedback for amplitude/frequency
control, a special regime of homogenous multistability emerges, where the initial
condition of the internal variable only determines the amplitude of the variables
without changing the essential chaotic oscillation.

The fifth and last part includes five papers dealing with fractional-order and
nonsmooth systems. Here, researchers analyze dynamical effects, such as stability,
bifurcations, and complex vibrations. M. Shitikova and B. Ajarmah investigate
nonlinear damped vibrations of a cylindrical shell embedded into a fractional
derivative medium. They consider the case of the combinational internal reso-
nance, resulting in modal interactions, using two different numerical methods. The
damping properties of the surrounding medium are described by the fractional
derivative Kelvin–Voigt model adopting the Riemann–Liouville fractional deriva-
tives. O. Brandibur, E. Kaslik, D. Mozyrska, and M. Wyrwas discuss the stability
of the Caputo-type linear fractional variable-order discrete-time equations known
as biquadratic equations. Linear equations with constant coefficients and variable-
order differences defined by functions with values from the interval (0, 2] are
considered, and some sufficient conditions for the asymptotic stability are presented.
O. Brandibur, E. Kaslik, D. Mozyrska, and M. Wyrwas find the necessary and
sufficient conditions for the asymptotic stability and instability of two-dimensional
linear autonomous noncommensurate systems of fractional-order Caputo difference
equations. The results are applied to the fractional-order version of the Rulkov
neuronal model. K. Hedrih addresses the topic of independent fractional-type modes
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of free oscillations and hybrid modes of forced vibrations. The paper describes
the hybrid forced fractional-type vibration modes and the corresponding analytical
approximate solution expressed by convolution integral. Y. Yu and Z. Wang propose
two fractional-order Chua’s memristive circuits. The first is a fractional-order
memristive circuit with only the memristor described by a fractional-order derivative
due to the memory loss which is observed experimentally. The second is a direct
fractional-order generalization of integer-order Chua’s memristive circuit without
considering the physical background. Numerical simulations show that both models
exhibit multistability and different steady states switch via grazing bifurcation.

We hope that the multifaceted state-of-the-art contributions collected in this
volume will provide fruitful inspiration for new advances in the relevant challenging
areas of research.

Rome, Italy Walter Lacarbonara
College Park, MD, USA Balakumar Balachandran
Lanzhou, China Jun Ma
Porto, Portugal J. A. Tenreiro Machado
Budapest, Hungary Gabor Stepan
August 2019
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Nonlinear Dynamics of RRc Lyrae Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Sandip V. George, Ranjeev Misra, and G. Ambika

Part IV Chaos in Electronic Systems

Multijump Resonance with Chua’s Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Maide Bucolo, Arturo Buscarino, Carlo Famoso, Luigi Fortuna,
and Mattia Frasca

Experimental Observation of Robust Chaos in a 3D Electronic Circuit . . . 265
Soumyajit Seth

Homogenous Multistability in Memristive System . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Chunbiao Li

Part V Fractional-Order Systems

Numerical Study of Nonlinear Vibrations of Fractionally Damped
Cylindrical Shells Under the Additive Combinational Internal
Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Marina V. Shitikova and Basem Ajarmah

Stability of Caputo-Type Fractional Variable-Order Biquadratic
Difference Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Oana Brandibur, Eva Kaslik, Dorota Mozyrska, and Małgorzata Wyrwas



xviii Contents

Stability of Systems of Fractional-Order Difference Equations
and Applications to a Rulkov-Type Neuronal Model . . . . . . . . . . . . . . . . . . . . . . . . 305
Oana Brandibur, Eva Kaslik, Dorota Mozyrska, and Małgorzata Wyrwas

Independent Fractional Type Modes of Free and Forced Vibrations
of Discrete Continuum Hybrid Systems of Fractional Type
with Multi-Deformable Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Katica R. (Stevanović) Hedrih
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Tunable Bleustein–Gulyaev Permittivity
Sensors

Alaa Elhady , Mohamed Basha, and Eihab M. Abdel-Rahman

Abstract We present a novel electric permittivity sensor based on Bleustein–
Gulyaev (BG) waves. We also demonstrate a mechanism by which biasing can be
used to modulate the sensitivity of permittivity sensors to match different electric
permittivity ranges. We formulate the nonlinear electromechanical differential
equations governing the dynamics of BG waves. Model results suggest that under
a bias of only a few volts, the sensor can be driven into a nonlinear regime where
its sensitivity can be tuned to match that of aqueous solutions, thereby allowing for
biomedical applications.

Keywords Bleustein–Gulyaev waves · Permittivity sensors

1 Introduction

This work proposes a novel miniature permittivity sensor with a large dynamic range
that can operate in the MHz range. Dielectric permittivity sensors are widely used in
industrial applications, such as oil characterization [1], environmental applications
such as soil testing [2] and sea water salinity testing [3], and biological applications,
such as DNA and tissue discrimination [4, 5], cancer cell identification [6], and
blood analysis [7, 8]. They are typically RF devices with operating frequencies
set in excess of 100 GHz in order to limit the sensor size [5]. The use of high
frequency signals introduces additional complexity and the attendant challenges
of cost, reliability, and overall device size. Indeed, operating sensors at lower
frequencies inflate their size to a few centimeters [9].

Bleustein–Gulyaev (BG) waves [10, 11] are coupled acoustic-electromagnetic
waves that propagate exclusively along the surface of shear poled piezoelectric
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materials at acoustic speeds. These waves have been used in viscosity sensors
[12, 13] and telecommunication filters [14]. We exploit the wave’s acoustic speed to
develop sensors that detect disturbances to the electromagnetic field at the shorter
wavelength of BG waves, thereby reducing the device size and operating frequency
by several orders of magnitude. Prototypes ranging in size from a few hundred
micrometers to a few millimeters are under fabrication. Further, we present a novel
technique to deploy the nonlinear properties of dielectrics to tune the sensors’
sensitivity on-the-fly, thereby extending its dynamic range.

2 Model

BG waves couple an electromagnetic component, made of a transverse electric
field and a magnetic field perpendicular to it, with a surface acoustic shear wave.
It propagates along the surface of shear poled piezoelectrics.

The wave constituent electric, magnetic, and displacement fields, Fig. 1, can be
written as:

u(x, y, t) =
⎡
⎣

0
0
u

⎤
⎦, E(x, y, t) =

⎡
⎣
Ex

Ey

0

⎤
⎦, H(x, y, t) =

⎡
⎣

0
0
Hz

⎤
⎦. (1)

The wave is governed by the equation of motion for a piezoelectric element in
the lower half-space

∇ · σ = ρü; y > 0 (2)

Fig. 1 Propagation of BG
waves
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where ρ is the piezoelectric density. Further, Maxwell’s equations in the lower and
upper half-spaces [10] are

∇ × E = −μḢ y > 0 , ∇ × Eu = −μḢu y < 0 (3)

∇ × H = Ḋ y > 0 , ∇ × Hu = Ḋu y < 0. (4)

These equations are subject to a compatibility condition on the electromagnetic and
mechanical fields:

∇ · D = 0; y > 0 (5)

and boundary conditions at the interface plane (y = 0) between the two half-spaces,
as well as reflector boundary conditions placed at both ends of the propagation
direction (x-axis) to create a standing wave.

In the upper half-space, the relevant relations are only the linear Maxwell
equations. In the lower half-space, we adopt a binomial expansion of the crystal’s
Gibbs free energy (PE) to capture the piezoelectric and electrostrictive material
nonlinearities.

PE = α1E
2 +α2σ

2 +α3σE+α4E
3 +α5σ

3 + α6σ
2E + α7E

2σ + α8σ
4 + α9E

4

+ α10E
3σ + α11σ

3E + α12σ
2E2 +H.O.T . (6)

To represent the relative orders of the shear deformation and electric fields, we
scale the electric field E at O(ε̂) and the stress tensor σ at O(ε̂ 2), where ε̂ is a
small bookkeeping parameter. Retaining terms up to orderO(ε̂ 4), Gibbs free energy
reduces to:

PE = α1E
2 + α2σ

2 + α3σE + α4E
3 + α7σE

2 + α9E
4 +O(ε̂ 5). (7)

The mechanical strain and electric displacement can then be derived as:

S = ∂PE

∂σ
= 2α2σ + α3E + α7E

2 (8)

D = ∂PE

∂E
= 3α1E + α3σ + 3α4E

2 + 2α7σE + 4α9E
3. (9)

Using the field definitions in Eq. (1), the material definitions for the coefficients in
Eqs. (8) and (9) for y > 0, and rearranging we obtain:

σyz = G∂u
∂y

− ξEy −GME2
x +GME2

y (10)

σxz = G∂u
∂x

− ξEx − 2GMExEy (11)
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Dx = εEx + ξ ∂u
∂x

+ 2GM
∂u

∂y
Ex + 4GM

∂u

∂x
Ey − 6ξMExEy

− 6GM2ExE
2
y − 2GM2E3

x (12)

Dy = εEy + ξ ∂u
∂y

− 4ξME2
x + 2ξME2

y − 2GM
∂u

∂y
Ey + 4GM

∂u

∂x
Ex

− 6GM2E2
xEy − 2GM2E3

y, (13)

where G is the shear modulus, ξ is the shear piezoelectric coefficient, M is the
electrostrictive coefficient, and ε is the zero strain electric permittivity of the
piezoelectric material.

3 Permittivity Sensor

Substituting with Eqs. (10)–(13) into Eqs. (2), (3), and (4), we obtain the governing
system of equations. We set M = 0 to obtain the linear wave equations and solve
the corresponding eigenvalue problem for the fundamental natural frequency:

ω = mπ

L

√√√√√G+ ξ2

ε

ρ

(
1 − ξ4

(Gε + ξ2)2

1

(1 + r)2
)
,

wherem is the number of interdigitated transducer (IDT) fingers along the propaga-
tion direction, r is the ratio of the permittivity of the material-under-test εu to that
of the piezoelectric material ε, and L is the length of the sensor. Since all of these
parameters are known except for εu, the natural frequency can be used as a measure
of the sample electric permittivity.

The sensitivity of the sensor can be expressed as the shift in natural frequency
for a unit change in permittivity:

Sω = ∂ω

∂εu
. (14)

The black colored curve in Fig. 2 shows the sensitivity of 400 µm long permittivity
sensor made of shear-poled Lead-Zirconium-Titanate Navy Type-I (PZT4) with
m = 10 actuation fingers along the propagation direction as a function of the
relative permittivity of the material-under-test εu/ε◦. Sensitivity reaches an optimal
value for materials with relative permittivity similar to ∼400. On the other hand,
aqueous media have a relative permittivity similar to ∼80. It is impractical to address
this mismatch by changing the sensor material, rather we explore the possibility of
addressing it by exploiting the electrostrictive properties of piezoelectrics.

For piezoelectrics where the electrostrictive constant is not negligible (M �= 0),
we can estimate the effective permittivity ε̃ by linearizing Eq. (12) around a given
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Fig. 2 Sensitivity of 400 μm long permittivity sensor made of PZT4 with m = 10 actuation
fingers under no bias (black) and a DC electric field of Ex◦ = 6 MV/m and Ey◦ = 0 (blue).
The dotted line tracks the maximum position

DC electric field (Ex◦, Ey◦) and zero pre-strain (S◦ = 0), by taking the derivative
of electric displacement Dx with respect Ex :

ε̃ = ∂Dx

∂Ex

∣∣∣
(Ex◦,Ey◦)

= ε − 6ξMEy◦ − 6GM2(Ey
2
◦ + Ex2◦).

Therefore, it is possible to tune the permittivity of a piezoelectric material with non-
negligible electrostriction by applying a DC electric field to it. The blue colored
curve in Fig. 2 shows the sensitivity of the sensor described above as a function of
the relative permittivity of the material-under-test where an electrostrictive constant
of M = 9.2 × 10−18 m2/V2 was introduced under a biasing electric field of Ex◦ =
6 MV/m and Ey◦ = 0. We note that the applied field has resulted in tuning the
optimal sensitivity to a similar range of that for aqueous media and increased the
sensor sensitivity, thereby opening the door to potential biomedical applications.

4 Nonlinear System Analysis

The right-hand side of Eqs. (3) is of order O(ε̂4) and, therefore, negligible. As a
result, we adopt a quasi-static representation of the magnetic component of the field:

Hz(x, y, t) = H◦(x, y) (15)
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and reduce Eq. (3) to:

∂Ex

∂y
− ∂Ey

∂x
= 0.

The electric field can, thus, be expressed purely in terms of the scalar potential
ψ(x, y) representing the voltage:

Ex = ∂ψ

∂x
, Ey = ∂ψ

∂y
. (16)

Using Eqs. (10), (11), (15), and (16) to substitute for the field variables in Eq. (2),
we obtain the governing equation of motion as:

ü+ β1∇2u+ β2∇2ψ + β3ψ,y(ψ,xx − ψ,yy)− 2β3ψ,xψ,xy = 0, (17)

where the i subscript indicates partial derivative with respect to the i coordinate.
The corresponding magnetic field is found from Eq. (4) as the time derivative of the
electric displacement vector D:

H◦,x = ∂

∂t

(
β4u,y + β5ψ,y + β6u,xψ,x + β7u,yψ,y + β8ψ

2
,xψ,y

+β9ψ
2
,x + β10ψ

2
,y + β8ψ

3
,y

)
(18)

H◦,y = − ∂

∂t

(
β4u,x + β5ψ,x + β6u,xψ,y − β7u,yψ,x + β8ψ,xψ

2
,y

+β11ψ,yψ,x + β8ψ
3
,x

)
. (19)

Differentiating equation (18) with respect to y and Eq. (19) with respect to x and
subtracting the result, we eliminate the magnetic field to obtain:

∂

∂t

(∇ · D
) = ∂

∂t

(
β4∇2u+ β5∇2ψ + 2β6u,xψ,xy + β7u,y(ψ,yy − ψ,xx)

+ (β6 − β7)u,xyψ,x + (β6u,xx + β7u,yy)ψ,y + β11ψ,xxψ,y

+ 2β10ψ,yψ,yy + (2β9 + β11)ψ,xyψ,x + β8(3ψ,xx + ψ,yy)ψ2
,x

+ β8(ψ,xx + 3ψ,yy)ψ
2
,y + 4β8ψ,yψ,xyψ,x

)
= 0. (20)

We rewrite the displacement and electric fields as the summation of static and
dynamic components:

u(x, y, t) = us(x, y)+ ud(x, y, t) (21)

ψ(x, y, t) = ψs(x, y)+ ψd(x, y, t). (22)
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The static displacement field us(x, y) can be found by setting the time derivative in
Eq. (17) equal to zero and solving the equilibrium equation:

β1∇2us + β2∇2ψs + β3ψ
s
,y(ψ

s
,xx − ψs,yy)− 2β3ψ

s
,xψ

s
,xy = 0 (23)

subject to ψs(x, y) the spatially distributed potential field imposed by the DC
voltage applied to the metallic electrodes patterned along the sensor surface.
As a first approximation, it is represented by an empirically fitted function in the
propagation x-direction and an exponentially decaying function in the y-direction:

ψs(x, y) = e−κ2
v y
(

1.115 cos
(πmx
L

)
− 0.103 cos

(
3πmx

L

)

− 0.019 cos

(
5πmx

L

)
+ 0.005 cos

(
7πmx

L

))
.

We substitute with Eqs. (21) and (22) in Eqs. (17) and (20) and use Eq. (23) in
the result to obtain the equations of motion around the static equilibrium (us, ψs).
In order to solve this dynamic system, we use a Galerkin expansion to express the
system variables in terms of its mode shapes φj (x) as:

ud(x, y, t) =
N∑
j=1

qj (t)κuj e
−κ2

uj
y
φj (x) (24)

ψd(x, y, t) =
N∑
j=1

pj (t)κψj e
−κ2

ψj
y
φj (x)+ V (t)

2
e−κ2

v yφ1(x) (25)

where V (t) is the AC component of the applied voltage. We found the mode shapes
by solving the eigenvalue problem of the system (Eqs. (17) and (20)) as:

φj (x) = eijmπ xL + e−ijmπ xL , (26)

where j is an integer mode number.
In this work, the number of modes was taken to be N = 2. Multiplying the

resulting Galerkin residuals with the corresponding left eigenfunctions and setting
the integral over the domain equal to zero, we obtained a reduced-order model of
the system in terms of the modal amplitudes as follows:

q̈1 + γ4q1 + γ1p1 + γ2p2 + γ3p1p2 + γ6p2V = γ5V (27)

q̈2 + γ10q2 + γ7p1 + γ9p2 + γ8p
2
1 + γ12p1V = γ11V + γ13V

2 (28)

γ14ṗ1 + γ17ṗ2 + γ21q̇1 + γ23q̇2 + 2γ15ṗ1p1 + 3γ16ṗ1p
2
1 + γ18ṗ2p1

+ γ18ṗ1p2 + 2γ19ṗ2p2 + γ20ṗ1p
2
2 + 2γ20ṗ2p1p2 + γ22p2q̇1 + γ22ṗ2q1
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+ γ24p1q̇2 + γ24ṗ1q2 + γ32ṗ1V
2 + γ26ṗ1V + 2γ27ṗ1p1V + γ28ṗ2V

+ 2γ29ṗ2p2V + 2γ32p1V̇ V + γ26p1V̇ + γ27p
2
1V̇ + γ28p2V̇ + γ29p

2
2V̇

+ γ30q̇2V + γ30q2V̇ = 3γ33V̇ V
2 + 2γ31V̇ V + γ25V̇ (29)

γ34ṗ1 + γ36ṗ2 + γ40q̇1 + γ42q̇2 + 2γ35ṗ1p1 + γ37ṗ2p1 + γ37ṗ1p2

+ γ38ṗ2p
2
1 + 2γ38ṗ1p1p2 + 3γ39ṗ2p

2
2 + γ41p1q̇1 + γ41ṗ1q1 + γ49ṗ2V

2

+ γ44ṗ1V + γ45ṗ2V + γ46ṗ2p1V + γ46ṗ1p2V + 2γ49p2V̇ V + γ44p1V̇

+ γ45p2V̇ + γ46p1p2V̇ + γ47q̇1V + γ47q1V̇ = 2γ48V̇ V + γ43V̇ (30)

5 Conclusion

We propose a permittivity sensor based on the propagation of Bleustein–Gulyaev
waves along the surface of a piezoelectric layer. It is designed to sense the
permittivity of an aqueous medium via a wave propagating at a speed close to sound
speed, thereby allowing us to reduce the sensor size, and operating frequencies by
several orders of magnitude. We found that it is not feasible to realize piezoelectric
materials with optimal sensitivity in a range corresponding to that of aqueous
media. Instead, we propose to tap into the electrostriction material nonlinearities
of piezoelectrics to tune the sensor in order to realize optimal sensitivity in aqueous
media range.
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Nonlinear Metamaterials with Multiple
Local Mechanical Resonators: Analytical
and Numerical Analyses

Mohammad Bukhari and Oumar Barry

Abstract This paper examines the role of stiffness nonlinearity on a periodic
one-dimensional chain with multiple local resonators. The cells of the chain consist
of lumped masses connected through nonlinear springs. Each cell is embedded
with multiple local resonators having different parameters. In one case the local
resonators are assumed to be linear and in another case they are nonlinear.
The dispersion equation for the system is derived analytically by the method of
multiple scales (MMS). The results are validated via comparison with those in the
literature and numerically via Matlab. The nonlinearity shows enhancement in the
bandgap regions, especially with increasing number of local resonators.

Keywords Acoustics metamaterial · Perturbation techniques · Wave propagation

1 Introduction

The study of metamaterials has gained lots of attention in recent years due to
their exceptional material properties and characteristics and their wider engineering
applications. Metamaterials are a new class of artificial composites that derive
their unique dynamic properties from both engineered local configurations and
material constituents [1]. They were originally developed for electromagnetic
and optical wave propagation and later the technology was extended to acoustic and
mechanical waves. Most if not all metamaterials required the presence of periodic
features with the potential of exhibiting interesting dynamic phenomena such as
resonance or instability within the host structure. These interesting dynamic features
can be judiciously employed for suppressing noise and vibration, harvesting energy,
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non-destructive testing structures for defects, improving image resolution, and
ameliorating the performance of antennas and many other engineering structures
and devices [3].

Numerous investigators have examined the linear behavior of metamaterials
focusing on acoustic-induced vibration suppression. Some metamaterials can be
represented as discrete or continuous systems with embedded local mechanical
resonators consisting of mass-spring-damper systems. These mechanical locally
resonant metamaterials exhibit bandgap formation at wavelengths much larger than
the lattice size [2]. The bandgaps can be made wider by embedding multiple
resonators inside the cells [4, 5]. Beyond their linear interesting properties, nonlinear
metamaterials may show superior performance in terms of wave propagation
properties [6]. The weakly nonlinear discrete periodic structures shift the dispersion
curves. This shift may result in wider bandgaps associated with softening or
hardening nonlinearity [7]. The derivation of nonlinear dispersion equations can
be carried out using different perturbation techniques [8] such as the Lindstedt–
Poincare or multiple scales techniques [9].

In this work, we study the effect of stiffness nonlinearity on one-dimensional
wave propagation in a periodic structure (i.e., spring-mass chain) with multiple local
resonators. The parameters of the local resonators are different in order to realize
multiple bandgap formations. We investigate two different cases of nonlinearity:
cubic spring nonlinearity connecting the chains and cubic spring nonlinearity in
the local resonators. We also study both hardening and softening nonlinearities
and investigate their roles on bandgap formations. Closed-form expressions are
presented for the nonlinear dispersion equation for any number of local resonators.
This is achieved using the method of multiple scales (MMS) to solve the weakly
nonlinear system of governing equations of motion. The obtained expressions can
serve as a benchmark for predicting the bandgap formations of weakly nonlinear
acoustic metamaterials. This work also provides general guidelines for exploiting
nonlinearity in order to achieve better vibration mitigation.

2 Derivation of the Dispersion Equation

Figure 1 shows a schematic diagram of the proposed nonlinear acoustics metama-
terial that is represented by a chain of mass-spring systems with embedded local
resonators. Each unit cell consists of a rigid mass, m, connected to other cells
through linear and nonlinear spring coefficients, k, and εΓ , respectively. Inside
each cell, there are multiple local resonators with a mass,mi , and linear or nonlinear
spring with linear coefficient, ki , and nonlinear coefficient, εΓi . The nondimensional
free oscillation equations for each cell with s number of local resonators can be
expressed as
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Fig. 1 The nonlinear acoustics metamaterial

ün + 2un − un−1 − un+1 + εΓ̄ ((un − un−1)
3 + (un − un+1)

3)

+
s∑
i=1

k̄i (un − vni)+
s∑
i=1

εΓ̄i(un − vni) = 0 (1)

ω2
n

ω2
di

v̈ni + (vni − un)+ εΓ̄i(vni − un)3 = 0, (2)

where the dimensionless parameters are

τ = ωnt; Γ̄ = Γ

ω2
nm

; k̄i = ki

ω2
nm

(3)

and ωn and ωdi are defined as ωn = √
k/m and ωdi = √

ki/mi .
Using MMS, we can assume expansions for the displacements in the form of

un(t, ε) = un0(T0, T1)+ ε un1(T0, T1) (4)

vni(t, ε) = vni0(T0, T1)+ ε vni1(T0, T1), (5)

where T0 = τ is the fast time scale and T1 = ετ is the slow time scale. Since the
time is expressed in two independent variables, the time derivative can be presented
by using the chain rule as

(¨) = D2
0 + 2εD0D1 + · · · , (6)

where Dn = ∂
∂Tn

.
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2.1 Nonlinear Chain

In this case, we are only interested to study the effect of spring nonlinearity
connecting the cells (i.e., the case of nonlinear resonator is discussed in the next
section since its dispersion relation is different from that of the nonlinear chain
case). Consequently, we set Γ̄i = 0 (i.e., nonlinear springs in the local resonators
are zero). Substituting Eqs. (4)–(6) into Eqs. (1)–(2) and collecting the similar
coefficients of ε, one can get

Order ε0

D2
0un0 + 2un0 − u(n−1)0 − u(n+1)0 +

s∑
i=1

k̄i (un0 − vni0) = 0 (7)

ω2
n

ω2
di

D2
0vni0 − (un0 − vni0) = 0 (8)

Order ε

D2
0un1 + 2un1 − u(n−1)1 − u(n+1)1 +

s∑
i=1

k̄i (un1 − vni1)

= −2D0D1un0 − Γ̄ ((un0 − u(n−1)0)
3 + (un0 − u(n+1)0)

3) (9)

ω2
n

ω2
di

D2
0vni1 − (un1 − vni1) = −2

ω2
n

ω2
di

D0D1vni0. (10)

At order ε0 the problem is linear; therefore, the solution can be expressed as

un = Aei(nk−ωT0) + c · c (11)

vni = Biei(nk−ωT0) + c · c, (12)

where c · c denotes complex conjugate, k = qa is the dimensionless wave number,
and q represents the wave number. A and Bi stand for the wave amplitude of the
outer and inner masses, respectively. By substituting Eqs. (11)–(12) into Eqs. (7)–
(8), the linear dispersion equation can be expressed as

−ω2 + (2 − 2 cos k)+
s∑
i=1

k̄i (1 −Kωi) = 0, (13)

where Kωi = 1
1−ω2

nω
2/ω2

di

. This linear dispersion equation represents both cases;

however, the nonlinear dispersion relations are different. For nonlinear problem, we
need to study the equations at order ε.
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By rearranging the equations at order ε, we obtain

X(D2
0un1 + 2un1 − u(n−1)1 − u(n+1)1)+

s∑
i=1

Xk̄iω
2
n/ω

2
di

1 − ω2
nω

2/ω2
di

D2
0un1

= −2
s∑
i=1

Xk̄iω
2
n/ω

2
di

1 − ω2
nω

2/ω2
di

D0D1vni0 +X(−2D0D1un0

− Γ̄ ((un0 − u(n−1)0)
3 + (un0 − u(n+1)0)

3), (14)

where X =∏si=1(ω
2
n/ω

2
diD

2
0 + 1). Introducing Eqs. (11)–(12) into Eq. (14) yields

X(D2
0un1 + 2un1 − u(n−1)1 − u(n+1)1)+

s∑
i=1

Xk̄iω
2
n/ω

2
di

1 − ω2
nω

2/ω2
di

D2
0un1

=
[

2iω
s∑
i=1

Xk̄iω
2
n/ω

2
di

1 − ω2
nω

2/ω2
di

A′Kωi +X(2iωA′

−12Γ̄ A2Ā(1 − cos k)2
]
ei(nk−ωT0) +NST, (15)

where NST denotes non-secular terms, A′ = dA
dT1

, and Ā is the complex conjugate

of A. We note here that X becomes X = ∏s
i=1(1 − ω2ω2

n/ω
2
di) after applying the

operator D0. The left-hand side of Eq. (15) has a nontrivial solution; therefore, the
secular terms on the right-hand side must be eliminated by solving the solvability
conditions [8] defined as the coefficients of ei(nk−ωT0).

Substituting the polar form A = 1
2αe

iβ into the solvability condition and
separating the real and imaginary part, the modulation equations for the amplitude
and phase can be expressed as

ω

s∑
i=1

k̄iXω
2
n/ω

2
di

1 − ω2
nω

2/ω2
di

α′Kωi +Xωα′ = 0 (16)

− ω
s∑
i=1

k̄iXω
2
n/ω

2
di

1 − ω2
nω

2/ω2
di

αβ ′Kωi −Xωαβ ′ − 3

2
XΓ̄ α3(1 − cos k)2 = 0. (17)

From the amplitude equation above, one can find that α is constant (i.e., α = α0).
From the phase equation, we can obtain

β = − 3Γ̄ α2(1 − cos k)2

2ω

(
1 +∑s

i=0
k̄iω

2
n/ω

2
di

1−ω2
nω

2/ω2
di

Kωi

)T1. (18)
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Since T1 = ετ , the nonlinear frequency, ωnl , associated with k is

ωnl = ω + εβ ′. (19)

2.2 Nonlinear Local Resonators

For this case, we are only interested in the nonlinearity from the local resonators
hence we ignore the nonlinear spring coefficient of the cells (i.e., Γ̄ = 0). Following
the techniques described in the previous section, one can express the phase as

β = −
∑s
i=1

[
3
8α

2(1 −Kωi )3Γ̄i
(

k̄i
1−ω2

nω
2/ω2

di

− 1

)]

ω

(
1 +∑s

i=1
k̄iω

2
n/ωdi

1−ω2
nω

2/ω2
di

Kωi

) T1. (20)

Unlike the case of nonlinear chain, one should note here that the correction β is not
explicitly a function of wave number. Moreover, the expression is different from that
obtained in [10]. This is because the contribution of the resonators on the left-hand
side from the equations at order ε was taken into account [6, 7].

3 Results and Discussion

For the numerical simulations, we select ω0 = ωd1 = 103 for the case of single
resonator. For the case of two local resonators we set ωd2 = 1.5 ω0 to obtain
multiple bandgaps. The values of the nondimensional stiffness of the resonator are
chosen to be k̄i = ω2

di/ω
2
0. Also, the numerical simulation is based on εα2Γ̄ =

εα2Γ̄i = 0.06. The band structure can be obtained by numerically integrating a
chain (i.e., 100 cells were used in the simulation) excited at the middle (i.e., at
n = 50) by a harmonic force. Then, we determine the wave number by picking the
maximum value of the 2-D spectrum; such that the wave number is associated with
the spatial frequency at the excitation frequency. Since the expression is derived for
plane waves, the end condition is chosen to be a perfectly matched layer (PML);
such that no reflected waves exist in the simulation. Following [9], this can be
achieved by defining a linear viscous damping in the chain such as

c(n) = Cmax

( n
N

)3
, (21)

where N is the number of simulated cells.
Figure 2a compares the results of the multiple scales method to those obtained

using direct numerical integration, as well as, to those obtained in the literature using
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(a) (b)

Fig. 2 Bandgap structure for single local resonator. (a) A chain connected by nonlinear spring.
(b) Nonlinear resonators

Lindstedt–Poincare (L–P). The results show good agreement between the dispersion
curves obtained by MMS and the results obtained by Lindstedt–Poincare (L–P) [6].
The comparison of the MMS results to the numerical results also shows a very good
agreement in terms of detecting the boundaries of the bandgaps. But MMS fails
to capture the rich dynamic region (i.e., inside the red patch), which is referred to
pseudo-gap region [6]. It should be noted that pseudo-gap region here appears for
different ranges as that observed in [6] because the input here is not wave packet.
The wave indeed propagates through the structure, but the output appears at different
multiple frequencies due to nonlinear interaction of the cells.

Figure 2b shows the analytical approximation (i.e., MMS) and numerical results
of the band structure for the case of a single nonlinear local resonator. We can
observe that the two methods slightly differ; particularly, when the frequency of
the local resonator ω = ωd1. Also, the comparison in terms of wider bandgap
formation between nonlinear and linear local resonators is inconclusive in Fig. 2b.
Higher order approximations or different analytical approximation methods such as
the complexification averaging or the homotopy method may be required to obtain
better accuracy and help provide better insight into the performance of the nonlinear
local resonators.

Figure 3a shows the band structure of a chain connected by nonlinear springs
with multiple local resonators. The results indicate that the MMS is a good predictor
of the bandgap boundaries for multiple local linear resonators embedded in cells
with nonlinear spring connections. The accuracy of the MMS approximation can
even be further improved if higher order perturbation is considered. The results
in this figure also show that the pseudo-gap almost vanishes; however, a narrow
rich dynamic region still exists. For the case of multiple nonlinear local resonators,
the same conclusion from Fig. 2b can be drawn. In that, Fig. 3b also reveals that
the MMS is not very accurate in predicting the bandgap boundaries at frequencies
confined between the resonators frequencies. The first order approximation of the
MMS fails to predict the dynamic in the case of multiple nonlinear local resonators
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(a) (b)

Fig. 3 Bandgap structure for two local resonators. (a) A chain connected by nonlinear spring.
(b) Nonlinear local resonators

(a) (b)

Fig. 4 Utilizing nonlinear chain toward vibration attenuation. (a) Softening nonlinearity. (b) Fre-
quency shift

embedded in cells with linear spring connections. Hence, higher order perturbations
or other analytical methods may be required to provide better approximations.

Finally, Fig. 4a shows that softening nonlinearity in the spring connecting the
chain with multiple local linear resonators can be used to widening the bandgap.
Therefore, the type of nonlinearity can be utilized in tuning the bandgap boundaries.
Although softening nonlinearity is more desirable for vibration attenuation, solitary
waves can only be realized with hardening nonlinearity [11]. In Fig. 4b, we can
observe how the wave can appear at different secondary resonances due to softening
or hardening nonlinearity. This frequency shift can be exploited in designing
acoustics diode or acoustics rectifier [6, 12].

In the present study, we only handled the cubic type of nonlinearity. For other
types of nonlinearities, one can approximate the nonlinearity by using Taylor
expansion and rewrite the equation in terms of cubic polynomial. Similar procedures
can then be used to derive the corresponding dispersion relations.
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4 Conclusion

In this paper, we derived closed-form expressions of the dispersion equations
describing the wave propagation in one-dimensional nonlinear acoustics metama-
terial using the method of multiple scales. The obtained equations can be used in
studying the dispersion curves for multiple local resonators unlike the one in the
literature, which is limited to a single local resonator. The numerical simulations
showed that these closed-form expressions accurately predict the band structure in
the case of a chain with nonlinear spring connections and linear local resonators;
whereas they fail to accurately predict the case of nonlinear local resonators
embedded in cell with linear spring connection, particularly near the local resonator
frequency. Numerical examples also demonstrate that wider forbidden regions can
be achieved with multiple local resonators. This is an indication that superior
vibration mitigation can be realized by the proposed softening or hardening
nonlinearity.
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Nonlinear Vibration Analysis
of Metamaterial Honeycomb Sandwich
Structures with Negative Poisson’s Ratio

Shaotao Zhu, Jing Li, Ji Zhou, and Tingting Quan

Abstract The research on existence, bifurcation, and number of periodic solutions
is closely related to Hilbert’s 16th problem. The main goal of this chapter is to
investigate the nonlinear dynamic response and periodic vibration characteristic of
a simply supported concave hexagonal honeycomb sandwich plate with negative
Poisson’s ratio. The plate is subjected to its in-plane and transverse excitation.
The curvilinear coordinate frame, Poincaré map, and improved Melnikov function
are proposed to detect the existence and number of the periodic solutions. The
theoretical analyses indicate the existence of periodic orbits and can guarantee at
most four periodic orbits under certain conditions. Numerical simulations are per-
formed to verify the theoretical results. The relative positons as well as the vibration
characteristics can also be clearly found from the phase portraits. The periodic
motion for the equation is closely related to the amplitude modulated periodic
vibrations of the plate. The results will provide theoretical guidance to nonlinear
vibration control for the metamaterial honeycomb sandwich structures.

Keywords Metamaterials · Honeycomb sandwich structures · Nonlinear
vibration · Bifurcation of multiple periodic solutions · Negative Poisson’s ratio
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1 Introduction

The theory of nonlinear dynamics has developed rapidly in the past half century.
The theory of periodic solutions for nonlinear dynamic systems deals with periodic
vibrations of practical problems that appear in almost all disciplines of science
and engineering. The research on existence, bifurcation, and number of periodic
solutions is closely related to Hilbert’s 16th problem which is not only significant
for its theoretical development, but also plays an important role in solving practical
problems.

In practical applications, the metamaterials with negative Poisson’s ratio, known
as “auxetic” [1], have attracted great interest nowadays [2, 3]. Chen and Feng
[4] investigated the dynamic behaviors of a thin laminated plate embedded with
auxetic layers subject to in-plane excitation. Duc and Cong [5] studied the nonlinear
dynamic response of auxetic sandwich plates subjected to blast and mechanical
loads. Li et al. [6] investigated the nonlinear bending behavior of sandwich beams
with functionally graded negative Poisson’s ratio honeycomb core in thermal
environments.

In this chapter, we focus on the nonlinear dynamics of a simply supported
concave hexagonal aluminum matrix honeycomb sandwich plate subjected to its
in-plane and transverse excitation. The Melnikov function [7] is improved to detect
the existence and number of the periodic solutions. The upper bound of the number
of periodic solutions as well as their relative positions and vibration patterns can be
clearly found from the numerical results.

2 Existence of Periodic Motions for Metamaterial
Honeycomb Sandwich Plate

2.1 Dynamic Model, Averaged Equation, and Melnikov
Function

A simply supported four-edge metamaterial honeycomb sandwich plate subjected to
the transverse and in-plane excitations is shown in Fig. 1. A Cartesian coordinate is
located in the middle surface of the plate as shown in Fig. 1a. The core of the plate
is chosen as concave hexagonal honeycomb with negative Poisson’s ratio and the
unit cell of the core is shown in Fig. 1b. The length of the inclined and horizontal
cell rib are l1 and l2, respectively, and the inclined angle is θ , assuming that the unit
cell has uniform thickness t and t/l2 is small.

We mainly focus on the transverse motion of the plate. A two degrees of freedom
nonlinear differential equation for the dimensionless is obtained as follows [8].
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Fig. 1 The model of the metamaterial plate and the unit cell of the core: (a) mechanical model of
the plate; (b) unit cell of the core with inclined rib length l1, horizontal rib length l2, inclined angle
θ , and thickness t

ẅ1 + ω2
1w1 + α1μẇ1 + α2w1 cos (�2t)+ α3w

3
1 + α4w

3
2

+ α5w1w
2
2 + α6w

2
1w2 = f1 cos (�1t)

ẅ2 + ω2
2w2 + β1μẇ2 + β2w2 cos (�2t)+ β3w

3
2 + β4w

3
1

+ β5w
2
1w2 + β6w1w

2
2 = f2 cos (�1t)

(1)

where w1 and w2 represent the amplitudes of the first two modes, respectively, ω1
and ω2 are two different linear natural frequencies, μ is the damping coefficient,
f1, f2 are forcing excitations, Ω1 and Ω2 are the frequencies of transverse and in-
plane excitation, αi, β i (i = 1, · · · , 6) are nondimensional coefficients denoted
as α = (α1, · · · , α6), β = (β1, · · · , β6) for convenience. We focused on the case
of 1:1 internal resonance and primary parametric resonance. In this resonant case,
ω2

1 = �2
1 +εσ 1, ω2

2 = �2
2 +εσ 2, where σ 1 and σ 2 are two detuning parameters and

we assume that Ω1 = Ω2 = 1. Introducing the scales transformations, αi → εαi,
β i → εβ i, fj → εfj, i = 1, 2, · · · , 6; j = 1, 2 where ε is a small parameter.
Therefore, by the methods of multiple scales, we will obtain the four dimensional
averaged equation.

ẋ = Ax + F (x, y) , ẏ = By + G (x, y) (2)

where x = (x1, x2)T ∈ R2, y = (y1, y2)T ∈ R2, F = (F1, F2)T and G = (G1, G2)T

are vector-valued polynomials in variables of (x1, x2, y1, y2).

A=
(

0 m

−m 0

)
, B=

(
0 n

− n 0

)
, m=1

8

(
σ 2

1 +μ2α2
1

)
, n=1

8

(
σ 2

2 +μ2β2
1

)

Introducing the rescaling transformations F → εF, G → εG, where 0 < ε < < 1.
Then system (2) can be rewritten as

ẋ = J DH 1 (x)+ εF (x, y) , ẏ = J DH 2 (y)+ εG (x, y) (3)
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where J =
(

0 1
− 1 0

)
, Hi : R2 → R (i = 1, 2), and DH1(x) = (∂H1/∂x1, ∂H1/∂x2)T,

DH2(y) = (∂H2/∂y1, ∂H2/∂y2)T. When ε = 0, system (3) degenerates to two
uncoupled Hamilton systems with Hamilton function H 1 (x) = m

(
x2

1 + x2
2

)
/2,

H 2 (y) = n
(
y2

1 + y2
2

)
/2. Then each system has a family of periodic orbits, �h1 ={

xh1 |H1 (x) = h1
}

and �h2 = {yh2
|H2 (y) = h2

}
, (h1, h2 ∈ K, an open interval in

R). Suppose that the family of periodic orbits �h1 and �h2 can be expressed as

x1 = √
2h1/m cos(mt), x2 = √

2h1/m sin(mt)

y1 = √
2h2/n cos (n (t + t0)) , y2 = √

2h2/n sin (n (t + t0))
(4)

The corresponding periods of the orbits are T1(h1) = 2π /m, T2(h2) = 2π /n.
Introducing the curvilinear coordinates in the neighborhood of the invariant torus
�h1 × �h2 , define a global cross section � in the phase space, and construct
the kth iteration of Poincaré map Pk : � → �. Then the Melnikov function
M = (M1, M2, M3)T is

M1 = m∫ 2π
0 (x1F1 + x2F2) dt, M2 = n∫ 2π

0 (y1G1 + y2G2) dt

M3 = ∫ 2π
0
(y2G1−y1G2)h1−(x2F1−x1F2)h2

2h1h2
dt

(5)

2.2 Existence of Periodic Motions

Given that n = 2m = 2, thus T1(h1) = 2T2(h2) = 2π . Let M be zero, yields

2a13h
2
1 + 2a9h1h2 − a5h1

√
h2 sin (2t0) = 0

4b11h1h2 + b7h
2
2 − 2b4h1

√
h2 sin (2t0) = 0

kh1 + lh2 + 2 (b4h1 + a5h2) h
−1/2
2 cos (2t0)+ C = 0

(6)

where k = b15 + 2b10 − 4a12, l = b6 − a14 − 2a8, C = 2(b2 − 2a2), ai, bi are
respectively the coefficients of the terms of Fj, Gj (i = 2, · · · , 17; j = 1, 2). Suppose
that b4 = 0 and a13b7 − 4a9b11 �= 0, thus Eq. (6) is equivalent to

√
h1 = 2a

√
b sin (2t0) ,

√
h2 = 2a sin (2t0)

4
(
A2 + B2

)
sin4 (2t0)− 4

(
B2 − AC) sin2 (2t0)+ C2 = 0

(7)

where a = a5b11
4a9b11−a13b7

, b = − b7
4b11

, A = 2a2(l + kb), B = 2a5a. Denote

f (x) = 4
(
A2 + B2

)
x2 − 4

(
B2 − AC

)
x + C2 = 0, x = sin2 (2t0) (8)

the number of positive solutions of Eq. (8) may be 0, 1, or 2. Correspondingly, the
number of solutions for (t0, h1, h2) of Eq. (7) may be 0, 2, or 4. So, if we choose
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some appropriate parameters, the number of periodic solutions of system (3) will
reach the upper bound. To obtain the maximum number of solutions, A2 + B2 and
B2 − AC should not be zero, and Δ = 16B2(B2 − C2 − 2AC) > 0. Furthermore,
according to the relations between roots and coefficients, the two solutions of the
quadratic Eq. (8) are both positive if and only if B2 − AC > 0 and C �= 0.

From the above analysis, the condition for Eq. (8) to have two positive solutions
is obtained as follows.

α1β1β3β5 < 0, β2
2 − 2α2

2 �= 0, 3β4f1 + β5f2 = 0

α6f1+α5f2
4α5β5−9α3β3

> 0, f 2
1 >

64a2
5β

2
5

(
AC+√

(A2+B2)C2
)

B2(α6β5−3α5β4)
2

(9)

It is just the condition that system (3) has four periodic orbits (under this
condition, the number of periodic solutions reach the upper bound).

3 Numerical Simulations

In this subsection, we will choose a group of parameters to perform the numerical
simulations to verify the theoretical result and present the distributions of the
periodic orbits. The group of parameters is chosen as ε = 0.001, μ = 0.2, σ 1 = 2,
σ 2 = 0, α = (10, 2, −2, −1, 3, 1), β = (20, 1, −5, 0.5, 3, 1).

From (9), we will calculate that f2 = − f1/2 and f1 > 8
√

7. For a general
case, we choose f1 = 24 > 8

√
7. The phase portraits of the periodic motions as

well as the orbits in their neighborhoods are shown in Fig. 2, where (a) and (b)
represent the phase portraits projected on x and y plane, respectively. There are
four periodic orbits which are distinguished clearly in Fig. 3. Figure 3a represents
the phase portraits of the periodic orbits projected on plane (x2, y2), while (b)–(d)
represent the phase portraits projected into various spaces. The moving patterns as
well as the relative positions of the periodic orbits can also be recognized. Figure 4
shows the portraits of the wave propagation in different directions. Apparently, the
moving period of x1 and x2 is twice that of y1 and y2.

4 Conclusions

In this chapter, nonlinear dynamic behaviors of a simply supported concave hon-
eycomb sandwich plate subjected to its in-plane and transverse excitation are
investigated. The novelty of this chapter is that the honeycomb core is chosen as
metamaterial with negative Poisson’s ratio which is widely applied in aircraft and
aerospace engineering. The multiple periodic motions can be clearly found from
both the theoretical and numerical results under certain conditions. The upper bound
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Fig. 2 Phase portraits of distributions of orbits projected on different planes: (a) projections on
(x1, x2) plane; (b) projections on (y1, y2) plane
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Fig. 3 Phase portraits of the four periodic orbits: (a) projections on (x2, y2) plane; (b) projections
in (x1, x2y2) space; (c) projections in (x1, y1y2) space; (d) projections in (x1, x2y1) space
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Fig. 4 Portraits of the wave propagation: (a) in x1 direction; (b) in x2 direction; (c) in y1 direction;
(d) in y2 direction

of the number of periodic orbits is 4. The periodic motion of averaged equation
may lead to amplitude modulated periodic oscillations for the model under certain
conditions. Results obtained will provide theoretical guidance to nonlinear vibration
control for metamaterials honeycomb sandwich structures. In further study, we
should pay attention to the stabilities of periodic solutions for the system.
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Appendix

Assuming that H1, j = Fj, H2, j = Gj, c1, k = ak, c2, k = bk (j = 1, 2; k = 1, 2, · · · ,
17). Then F = (F1, F2)T and G = (G1, G2)T of Eq. (2) can be expressed as

Hi,1 = ci,16 − ci,2 ((2 − i) x2 + (i − 1) y2)+ 2ci,3y1y2 + ci,5 (x2y1 + x1y2)

+ 2ci,4x1x2 + (ci,6y2 + ci,7y1 + ci,8x2 + ci,9x1
) (
y2

1 + y2
2

)

+ (ci,10y2 + ci,11y1 + ci,12x2 + ci,13x1
) (
x2

1 + x2
2

)

+ (ci,14y2 + 2ci,9y1 + ci,15x2 + 2ci,11x1
)
(x1y1 + x2y2)
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Hi,2 = ci,17 − 5ci,2 ((2 − i) x1 + (i − 1) y1)+ ci,3
(
y2

1 + 3y2
2

)+ ci,4
(
x2

1 + 3x2
2

)

+ ci,5 (x1y1 + 3x2y2)+
(
ci,7y2 − ci,6y1 + ci,9x2 − ci,8x1

) (
y2

1 + y2
2

)

+ (ci,11y2 − ci,10y1 + ci,13x2 − ci,12x1
) (
x2

1 + x2
2

)

+ (2ci,9y2 − ci,14y1 + 2ci,11x2 − ci,15x1
)
(x1y1 + x2y2)

where the coefficients are respectively

a2 = α2
2/24 a3 = (α5f1 + 3α4f2)/16 a4 = (3α3f1 + α6f2)/16

a5 = (α6f1 + α5f2)/8 a6 = 3α4(σ 1 + σ 2)/8 a7 = 3μα4(3β1 − α1)/8
a8 = α5(2σ 1 − σ 2)/4 a9 = μα5β1/4 a10 = α6(3σ 2 − σ 1)/8
a11 = μα6(α1 + β1)/8 a12 = 3α3σ 1/4 a13 = 3μα1α3/4
a14 = α5σ 2/2 a15 = α6(3σ 1 − σ 2)/4 a16 = μα1f1/16

a17 = σ 1f1/16 b2 = β2
2/24 b3 = (β6f1 + 3β3f2)/16

b4 = (3β4f1 + β5f2)/16 b5 = (β6f2 + β5f1)/8 b6 = 3β3σ 2/4
b7 = 3μβ1β3/4 b8 = β6(3σ 1 − σ 2)/8 b9 = μβ6(α1 + β1)/8
b10 = β5(−σ 1 + 2σ 2)/4 b11 = μα1β5/4 b12 = 3β4(σ 1 + σ 2)/8
b13 = 3μβ4(3α1 − β1)/8 b14 = β6(−σ 1 + 3σ 2)/4 b15 = β5σ 1/2
b16 = μβ1f2/16 b17 = σ 2f2/16
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Wave Propagation Phenomena
in Nonlinear Elastic Metamaterials

Federica Mezzani, Amir Sajjad Rezaei, and Antonio Carcaterra

Abstract The present chapter provides a general method to deal with nonlinear
integro-differential equations, based on statistical linearization and Fredholm’s
approach. In this context, the elastic metamaterial is characterized by long-range
nonlocal interactions besides a nonlinear short-range constitutive relationship.
Results are analytically obtained and unveil the birth of unconventional propagation.

Keywords Elastic metamaterials · Nonlinearity · Long-range interaction · Wave
propagation · Nonlocality

1 Introduction

This work is aimed at presenting a general approach to nonlinear and long-range
constitutive elastic relationships, based on statistical linearization and Fredholm’s
equation that enable the investigation of the dispersion relationship. Eventually,
a simple example is introduced to show a first digression about the potential
application of the method.

Metamaterials enjoy widespread attention due to the unexpected results they
produce in many applications. In electromagnetics, metamaterials are frequently
related to anomalous dissipation and diffraction properties of electromagnetic media
that lead to negative group velocity, light stopping, and fast light [1]. Superlu-
minal propagation has been observed through an acoustic experimental setup [2,
3]. In mechanics, metamaterials change the connectivity scheme of a structure
and induce micropolar, higher-gradient, and nonlocal elasticity. In this context,
metamaterials are thought as conventional elastic materials equipped with long-
range interactions, the source of integral contributions, and nonlinear constitutive
relationships. The effect of these long-range interactions has been investigated
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in [4–7], but never tackling the nonlinearity. Long-range interactions change the
topology of the connections and represent a breakthrough in the conventional
concept of particle–particle interaction between closest neighbors, which leads to
classical wave propagation. When the connection is extended either to one-to-all
particles or to all-to-all particles, the introduced modification becomes source of a
more sophisticated propagation behavior. Similar effects have been noticed only in
quantum physics [8, 9], in Vlasov’s theory [10]. Another remarkable example is
in acoustics, where long-range electrical interactions can control the acoustic fields
and well-known examples are plasmas and charged gases. In any case, the relation
between nonlocality and wave propagation has not been intensively developed, and
unconventional propagating phenomena are not as common as those appearing in
electromagnetic applications.

Statistical linearization is a known procedure [11–13], often applied to random
and complex systems [14]. An example is the analysis of a catenary anchor
leg mooring (CALM) systems [15]. The chance to obtain analytical solutions is
achieved by the definition of a specific kernel for the long-range interactions:
indeed, they are modeled as elastic connections between far particles; however,
the range of interaction is limited by a rectangular window, as in [7], but here
analyzed for its one-dimensional counterpart. Eventually, the obtained parametric
problem is treated as a Fredholm’s equation [16] and the dispersion relationship is
calculated accordingly. Remarkable insights can be derived: (1) the applied random
force affects the propagation characteristics, namely the background noise modifies
the phase and group velocity of the waveguide, (2) after stochastic linearization, the
system shows periodic variation of the elastic parameters along the waveguide axis,
and (3) the nonlinear properties generate the wavenumbers coupling.

2 Prototype Equation and Statistical Linearization

A mathematical model, based on the nonlocal elasticity theory of Eringen, is
considered. For a three-dimensional, continuous, unbounded medium, equipped
with long-range interactions, the Navier-Cauchy equation of motion becomes:

ρut t (x, t)+ E

2 (1 + ν)
[
∇2u (x, t)− 1

1 − 2ν
∇ (∇·u (x, t))

]

+g (u)+
∫

ξ∈R3
F (x, ξ) dV = f (x, t) (1)

The long-range interaction appears as an integral term. It represents the summa-
tion of the long-range interaction forces, exerted on the particle originally at x, due
to all the particles at ξ . g(x) resembles the possible sources of local nonlinearities
and has differential nature.
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Nonlinear equations can be attacked by the statistical linearization-SL approach
[11, 12]. Equation (1) can be written as:

L (u)+ g (u) = f (t) (2)

where L and g are a linear integro-differential and a nonlinear differential operator,
respectively, u(x, t) is the displacement of the elastic system, f(t) a random external
force. The SL approach replaces the nonlinear term g(u) term with an equivalent
linear operator Leq, leading to:

L (u)+ Leq (u,p) = f (t). (3)

The vector p is a set of parameters that can be suitably selected to make Eq. (3) as
close as possible to Eq. (2). A direct comparison between Eqs. (2) and (3) produces
the error equation:

e (u,p) = Leq (u,p)− g (u) (4)

The SL requires the minimization of the mean-square E{•} of the error equation
in terms of the parameters p:

∂E
{
eT (p) e (p)

}

∂p
= 0. (5)

The solution of this last equation determines the optimal vector p∗and one can
analyze the equivalent linear integro-differential equation L(u) + Leq(u, p∗ ) = f(t),
instead of the nonlinear integro-differential Eq. (2).

3 Statistical Linearization of the Navier-Cauchy Equation
with Long-Range Forces

The analysis in the previous section leads to Eq. (5) the form of which is specifically
investigated here under some simplified assumptions.

The equation of motion, for a one-dimensional system, with kernel H(x − ξ )
satisfying the action-reaction principle, i.e., H(x − ξ ) = − H(ξ − x), and decaying
with the distance, namely lim|x−ξ |→+∞H (x − ξ) = 0, is of the form:

ρutt (x, t)+ E0uxx (x, t)− 3E1u
2
x (x, t) uxx (x, t)

−
∫
k̃ [u (x, t)− u (ξ, t)]H (x − ξ) dξ = f (t)δ(x) (6)
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meaning:

L (u) ≡ ρutt (x, t)+ E0uxx (x, t)−
∫
k̃ [u (x, t)− u (ξ, t)]H (x − ξ) dξ (7)

g (u) ≡ −3E1u
2
x (x, t) uxx (x, t) (8)

where * indicates the convolution operation, and we assume:

Leq (p) ≡ puxx (x, t) (9)

k̃ resembles the stiffness modulation of the elastic connections. About the form
of the kernel H(x), it is not necessary at the moment to introduce any further
specification.

The nonlinear term 3E1u
2
x (x, t) uxx (x, t) is derived considering a nonlinear

stress-strain relationship:

σ (ε) = E0ε + E1ε
3 (10)

It is apparent then that the error equation is:

e (p) ≡ puxx (x, t)− 3E1u
2
x (x, t) uxx (x, t) (11)

and it is immediate to evaluate the parameter p through Eq. (5), which leads to:

p = 3E1
E
{
u2
xu

2
xx

}

E
{
u2
xx

} (12)

The complete characterization of the parameter p requires the definition of the
coefficients E

{
u2
xu

2
xx

}
and E

{
u2
xx

}
, which becomes simpler when it is reasonable

to assume those variables equipped with a Gauss-like type of probability density
function. For this reason, we limit our attention to the case f is a random force
with flat power spectral density SF and a Gauss-like distribution. Additionally, it is
assumed to be a point force applied at the origin of the x axis.

A modal expansion of the solution helps in finding simpler results. Without loss
of generality we assume u(x, t) = φ(x)q(t), including only one single mode. Under
these conditions, Eq. (12) provides p = 3E1φ

′2(x)σ 2
q .

Therefore, Eq. (3) assumes the form:

ρφ(x)q̈(t)−
[
E0 + 3E1φ

′2(x)σ 2
q

]
φ′′(x)q(t)

− q(t)
∫
k̃ [φ(x)− φ (ξ)]H (x − ξ) dξ = f (t)δ(x). (13)
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To evaluate the coefficient σ 2
q , the following expression can be considered [17]:

σ 2
u (x)=φ2(x)σ 2

q=
1

2π

∫ +∞

−∞
Su

(
x, ω, σ 2

q

)
dω= SF

2π

∫ +∞

−∞

∣∣∣FRF
(
x, ω, σ 2

q

)∣∣∣2dω
(14)

with σ 2
q the variance of q(t), Su the power spectral density of u, FRF(x,ω) the

complex frequency response of the system at x when the input force is at x = 0.
The frequency response can be easily obtained by Eq. (13). Eventually, Eq. (14)
appears to be an equation in terms of the variance σ 2

q .

4 Parametric Problem and Fredholm’s Equation

Once Eq. (14) is solved, the value σ 2
q can be substituted into Eq. (13). Replacing in

it u(x, t) = φ(x)q(t), and for a rectangular window on length a, around the origin, we
obtain:

ρü (x, t)−
[
E0+3E1φ

′2(x)σ 2
q

]
u′′ (x, t)−2k̃au (x, t)+H(x) ∗ u (x, t)=f (t)δ(x)

(15)

This is a linear integro-differential equation. However, the term 3E1φ
′2(x)σ 2

q u
′′

(x, t) exhibits a parametric dependence on x. This can be regarded as an extra-
stiffness Ep = 3E1φ

′2(x)σ 2
q that superimposes to E0. For example, if φ(x) is the

first mode, then φ
′2(x) is a square of a sinusoid, and it perturbates the constant

stiffness E0, as in Fig. 1.

Fig. 1 Effective stiffness Ẽ
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We present here a method based on the Fredholm’s integral equation to approach
Eq. (15). Applying the Fourier transform both in space and time, we obtain:

−ρω2 ˆ̂u+ k2E0
ˆ̂u+ 3E1φ̂

′2σ 2
q ∗
(
k2 ˆ̂u
)

− 2k̃a ˆ̂u+ k̃ ˆ̂uĤ = F̂ (16)

where Ĥ = 2k̃ sin(ka)/k for the chosen window. For any x �= 0 we have the
homogeneous integral equation:

−ρω2 ˆ̂u+ k2E0
ˆ̂u+ 3E1φ̂

′2σ 2
q ∗
(
k2 ˆ̂u
)

− 2k̃a ˆ̂u+ k̃ ˆ̂uĤ = 0 (17)

whose explicit form is:

3E1σ
2
q

∫ +∞

−∞
φ̂′2 (k − k′) k′2 ˆ̂u (k′) dk′ =

[
ρω2 − k2E0 + 2k̃a − k̃Ĥ

] ˆ̂u. (18)

The discretization of the previous equation leads to:

∑
j

3E1σ
2
q φ̂

′2 (ki − kj
)
k2
j
ˆ̂u (kj

)
Δk −

[
ρω2 − k2

i E0 + 2k̃a − k̃Ĥ
] ˆ̂u (ki) = 0

(19)

namely,

Au = 0, where u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u (k1)

u (k2)
...

u (kn)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, with

[A]ij = 3E1σ
2
q φ̂

′2 (ki − kj
)
k2
jΔk −

(
ρω2 − k2

jE0 + 2k̃a − k̃Ĥ
)
δij (20)

We are interested in nontrivial and not identically to zero solutions. This
technically happens if the Fredholm determinant associated to A vanishes, from
which we can derive the dispersion relationship.

The condition for the determinant to vanish does not lead to equations indepen-
dent for each ki and the wavenumbers mix up. Given a value for the frequency,
the vanishing determinant condition does not imply each ki is determined. The
determinant expression is:

detA = f
(
k1, k2, .., kn, ω, σ

2
q , Ĥ

)
= 0 (21)
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This means that, assigned a value for ω, σ 2
q and Ĥ , the values for the wavenum-

bers are not uniquely determined. Rather, one can select arbitrarily N − 1
wavenumber values and determine consequently the value for the N-th remaining
wavenumber. Since, at any frequency, the values for the N − 1 wavenumbers can
be arbitrarily assigned, the N-th can range in a set, describing a segment at each
frequency.

The dispersion relationship depends on: (1) the presence of Ĥ due to long-range
interactions, (2) the presence of σ 2

q as an effect of the background noise in the
structure.

From Eq. (21) we can learn what follows: firstly it is not possible to excite indi-
vidual and independent wavenumbers with a given frequency, and this is reminiscent
of nonlinear systems (e.g., super-harmonics and sub-harmonics); secondly, the level
of the random excitation f affects the propagation characteristics since it alters the
value of the coefficient by σ 2

q . Accordingly, Fig. 2 shows the effect of this coefficient
on the parametric stiffness, Ep.

A last consideration can be extrapolated by both Figs. 1 and 2. The effective
stiffness Ẽ, taking into account both the standard elastic modulus E0 and its
modulation Ep due to the nonlinearities, is a periodic function. This suggests a
localization phenomenon, namely the Anderson localization, related to stop band,
low pass and high pass behaviors.

Fig. 2 Effect of σ 2
q on Ẽ
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5 Homogenization of the Stiffness and Parametric
Dispersion Relationship

To complete the investigation, we report here the analysis of the dispersion
relationship associated to Eq. (15). The aim is to highlight the effect of the random
external force on the propagation characteristics. It is then reasonable to consider the
homogenized value of the effective stiffness Ẽ, i.e., its average value E, deduced
by Fig. 1. Using the same type of long-range interactions, the nondimensional
dispersion relationship is:

�2 = K2 − 2χ (1 − sincK) (22)

where � = ωa
√
ρ/E is the nondimensional frequency, K = ka the nondimensional

wavenumber, and χ = k̃a3/E is the nondimensional parameter comparing the effect
of the long-range interactions and of the nonlinearities. The advantage of such type
of formulation stands in the chance to discuss the dynamic behavior in terms of the
parameter χ only. Figure 3 shows the trend of the dispersion relationship varying
with χ , compared with the standard one. All curves start with a very high slope to
converge, for high values of the nondimensional wavenumber, to the conventional
D’Alembert propagation. Since the derivative of the dispersion relationship is the
group velocity, this implies that the steeper the slope, the higher the group velocity,
disclosing superfast propagation of the envelope, till the limit of superluminal
propagation when the curve has a vertical tangent, i.e., the case of σ 2

q4. Moreover,

since E is a function of the random force, through the coefficient σ 2
q , it can be

Fig. 3 Nondimensional dispersion relationship
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discussed also in terms of σ 2
q : the higher the value of σ 2

q , the higher the homogenized

stiffness E and the higher the value of σ 2
q , the closer is the behavior to the standard

propagation. Eventually, the smaller is σ 2
q , the higher is the group velocity.

6 Conclusions

In this chapter, the case of a one-dimensional waveguide, in which the presence
of long-range interactions together with the nonlinear nature of the constitutive
law, is investigated. The long-range interactions are modeled as elastic connections
occurring between distant particles but only within a delimited region of length a.
The nonlinear constitutive law accounts not only for the first order of the strain
but it includes also the third. The resulting equation of motion, approached with
the statistical linearization process, has space-dependent coefficients. To analyze the
obtained parametric problem, the Fredholm’s approach is applied and by solving the
associated determinant the dispersion relationship is found. It depends on the nature
of the long-range interaction, through the term Ĥ , and of the nonlinearity, related
to the coefficient σ 2

q . This brings to light important insights: (1) the level of the
random excitation directly affects the propagation characteristics, (2) as recurring of
nonlinear systems, it is not possible with a single frequency to excite independent
and individual wavenumbers. Moreover, the shape of the equivalent stiffness unveils
Anderson localization and thus, possible wave-stopping phenomena.
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Numerical Simulations in Nonlinear
Elastic Metamaterials with Nonlocal
Interaction

Francesco Coppo, Federica Mezzani, Sara Pensalfini, and Antonio Carcaterra

Abstract The paper presents a numerical investigation of an elastic metamaterial,
i.e., a one-dimensional elastic waveguide, equipped with nonlocal (long-range) and
nonlinear interactions. The dynamic behavior of the newly defined structure is
described by nonlinear integro-differential equation of motion. Numerical simula-
tions, comparing the linearized model and the nonlinear one, unveil the arising of
wave-stopping and backward propagation phenomena.

Keywords Elastic metamaterials · Nonlinear · Wave stopping · Negative group
velocity · Long-range interactions

1 Introduction

Metamaterials are finely designed materials capable of achieving unusual behaviors
thanks to the particular geometries and connection topologies in which they are
arranged. Besides, thanks to the fast development, in the last decades, of micro-
and nano-manufacturing technologies [1, 2], the fields of possible applications
have rapidly increased. Under the name metamaterials, several kinds of materials
can be classified and, among many, electromagnetic [3], acoustic [4], and elastic
[5] are the ones enjoying a wider attention from the scientific community. The
singular emerging phenomena involve fast light propagation [6], wave-stopping [7–
9], unusual dissipation [10], and backward propagation [11–13]. The complexity
of the models describing such systems, usually involving convolution terms and
integral-differential equations, prevented thorough analytical dissertations on the
propagation behavior, in a general panorama in which even literature provides only
few examples of works dealing with nonlocal interactions [14, 15].
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This work completes the investigation presented in [16], confined within the
hypothesis of the linearization. Without the chance of achieving analytical solutions,
this paper presents numerical simulations aimed at comparing the linear model and
the nonlinear one, expanding the concept of a linear, wider connectivity [17] to a
nonlinear one. The idea is not only to confirm the remarkable results obtained in
[16] and in [18, 19], but also to establish them as general description of the dynamic
behavior of an elastic metamaterial, since no linearization procedure is here applied.

2 Model for a Long-Range Waveguide

In a classical D’Alembert waveguide, modelled according to the principles of
the local elasticity theory, each elementary particle is connected with its closest
neighbors only. However, as the interaction length increases, nonlocal interactions
emerge and the assumptions of the elastic theory are not effective anymore.

This work, following the guidelines presented in [16], wants to interpret the
effects of nonlocal connections, beyond the linearized model, through the mean of
numerical simulations.

Nonlocal connections, i.e., distance-dependent interactions, which can appear in
the shape of magnetostatic, electrostatic, as well as gravitational forces, alter the
intrinsic pattern of a system, with direct consequences on its dynamic response. The
equation of motion for a one-dimensional, continuous, infinite waveguide, modified
because of the introduction of long-range forces, already presented in [16], assumes
the form:

ρ
∂2w

∂t2
− E∂

2w

∂x2 −
∫ +∞

−∞
F(r)dξ = 0, (1)

wherew is the displacement, ρ andE are the mass density and the Young’s modulus,
respectively, F(r) is the force exerted on the particle at x, due to the interaction with
the particle at ξ , and r is the actual distance between the particles and specifically:

r(x, ξ, t) = x|t=0 +w(x, t)− [ξ |t=0 + w(ξ, t)] = x− ξ +w(x, t)−w(ξ, t). (2)

The analysis of the dynamic behavior demands the definition of a model for the
interaction forces, which, even for a three-dimensional system, are chosen to be
parallel to the distance vector and so that the action–reaction principle holds:

F (r) = f (|r|)r. (3)

The sign of f (|r|) rules the nature of the interaction: attractive for negative f (|r|),
repulsive if positive. Moreover, among many possibilities, a Gauss-like trend is
selected for f (|r|), which, for a one-dimensional domain, becomes:
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Fig. 1 Gauss-like force as function of the distance

f (|r|) = μe−
(
r
β

)2

, (4)

where μ and β represent the magnitude and the characteristic length of the long-
range forces, respectively. This shape, more than guaranteeing the antisymmetric
configuration of F(r), implies a force vanishing with the distance, property common
to many physical long-range forces, as the previously mentioned gravitational,
Coulomb, etc.

Figure 1 shows the trend of f (|r|) varying with μ and β.
For this model of nonlocal interactions and assuming ε(x, ξ, t) = w(x, t) −

w(ξ, t), Eq. (1) becomes:

ρ
∂2w

∂t2
− E∂

2w

∂x2 −
∫ +∞

−∞
μ(x − ξ + ε)e−

(
x−ξ+ε
β

)2

dξ = 0. (5)

Since Eq. (1) is strongly nonlinear, it cannot be solved analytically and no closed
form solutions can be provided. In fact, the investigation presented in [16], aimed at
finding analytical solutions, is bounded to the linearized problem discussion.
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Next sections examine the numerical approach adopted to extract the propagation
characteristics of both the linearized and the nonlinear models.

3 Numerical Simulations

To perform numerical simulations, the finite counterpart of the waveguide is
considered. The rod is assumed clamped at the ends and subjected to a repulsive
Gauss-like long-range interactions, as shown in Fig. 2.

Table 1 reports the physical properties of the system.
The simulations look at the free problem under initial conditions capable of

exciting several wavelength of the system.
The results of the simulations in terms of displacement w(x, t) are collected in

a space-time map. A double discrete Fourier transform is applied [20] transforming
the space-time variable w(x, t) into the wavenumber-frequency dependent variable
W(k, ω).

The contour lines of W(k, ω) are plotted and from the exam of its crest, a curve
emerges interpreted as the equivalent of a dispersion relationship.

3.1 Linearized Model

Under the hypothesis of small ε, namely for w  β (see [16]), the system
represented in Eq. (5) can be simplified as:

ξ x

w(x, t)

l

w(ξ, t)

F [x − ξ + w(x, t)− w(ξ, t)]

Fig. 2 Longitudinal finite waveguide model

Table 1 Physical parameters Mass density ρ 1320 kg/m3

Young’s modulus E 1.6 MPa

Rod length l 100 m

Long-range interaction magnitude μ 1.05 · 106 N/m4

Long-range interaction length β 6.36 m



Numerical Simulations in Nonlinear Elastic Metamaterials with Nonlocal Interaction 45

Table 2 Simulations
parameters

Δx 0.5 m

Δt 2.9 ms

Tsim 22.98 s

Fig. 3 Dispersion relationship of the simplified model: analytic result (left) and simulations (right)

ρ
∂2w

∂t2
− E∂

2w

∂x2 + h ∗ w = 0, (6)

where h = μ

[
1 − 2

(
x
β

)2
]
e
−
(
x
β

)2

, and ∗ is the convolution operator (space

domain), where for the simulation we use (Table 2).
The convolution term leads to the presence of an additional stiffness, and the

system is simulated with finite differences approach for the space discretization,
and with Runge–Kutta algorithms for the study of the time evolution.

Figure 3 shows a comparison between analytical and numerical solutions for the
dispersion relationship in the linear case, where the numerical analysis uses also the
double Fourier transform method described above.

3.2 Nonlinear Simulations

The system response is simulated without any small displacement hypothesis.
Figure 4 on the right, with ripples traveling apart of the envelope, shows a highly

dispersive propagation.
The dispersion relationship, depicted in Fig. 5, is obtained by applying the double

FFT to the equation of motion. It describes the propagation behavior and being
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Fig. 4 Displacement map of nonlinear model (left), and some frame-shots (right)

Fig. 5 Dispersion relationship (surface plot) of the nonlinear model

related to the group velocity cg , it is straightforward to identify the different regimes.
In fact, the dispersion curve shows the presence of three main branches, indicated
with the letters A, B, and C in Fig. 5.

Since cg = ∂Ω
∂K

, where Ω = Ω(K) is the general expression of the non-
dimensional dispersion relationship, the AB segment, characterized by a positive
slope, is associated to a positive group velocity; in B, the curve exhibits a maximum,
related to wave-stopping. From B to C, since the slope is negative, so is the group
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velocity. In C, corresponding to the minimum of the dispersion relationship, cg = 0
and a new wave-stopping condition emerge. Beyond C, the curve converge to the
standard propagation regime, typical of the D’Alembert waveguide.

From the comparison between these two curves, it is apparent how these
phenomena do not occur in a standard D’Alembert waveguide, whose propagation
regime is well depicted by the straight line in Fig. 5. As the system consists of
a simple longitudinal waveguide, but further equipped with nonlinear long-range
forces, it is possible to conclude that the variations in the propagating behavior,
with respect to the conventional one, can only be addressed to the introduction of
such forces.

4 Conclusions

The paper describes the onset of unconventional propagation phenomena in long-
range nonlinear elastic metamaterials, continuing the investigation presented by the
authors in [16]. The physics of such media leads to strongly nonlinear and nonlocal
integral-differential models. In general, these equations do not admit analytical
solutions and only numerical simulations can provide insights into the dynamic
response.

Numerical simulations are performed for the linearized model, corroborating
the achievements analytically obtained for the simplified model in [16], and for
the nonlinear problem, verifying the assumption that nonlocal interactions lead to
unusual propagation regimes. Forward propagation occurs at a speed higher than
the one proper of conventional D’Alembert waveguide, wave-stopping phenomenon
appears for two specific combinations of (Ωi,Ki), eventually backward propagation
occurs when a regime of negative group velocity is established.
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Nonlinear Dynamic Response of
Nanocomposite Cantilever Beams

Michela Talò, Biagio Carboni, Giovanni Formica, Giulia Lanzara,
Matthew Snyder, and Walter Lacarbonara

Abstract The nonlinear dynamic response of carbon nanotube (CNT) nanocom-
posite cantilevers is experimentally and theoretically investigated. Nanocomposite
cantilevers made of a thermoplastic polymer and high aspect ratio CNTs are subject
to a primary resonance base excitation. The experimentally obtained frequency-
response curves highlight the effects of the CNT/polymer stick-slip energy dissipa-
tion on the nonlinear macroscopic dynamic response of the nanocomposite beams.
The hysteresis arising from the nanostructural stick-slip gives rise to a change
of nonlinearity dominated by the flexural curvature hardening effect towards a
softening behavior at low amplitudes. The CNT/polymer frictional sliding hysteresis
is here described by a hysteretic restoring force in the context of the nonlinear Euler–
Bernoulli beam theory. An initial parametric analysis shows the capability of the
model to capture qualitatively the softening–hardening frequency response trend.

Keywords Frequency response · Softening/hardening · Carbon nanotube
nanocomposite · Bouc–Wen model of hysteresis · Path following
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1 Introduction

Due to their multifunctionality, CNT nanocomposites are drawing a great deal
of attention as high performance structural materials for a variety of applications
in dynamic environments. Ultra-lightweight nanocomposites, made of engineering
polymers integrated with carbon nanofillers, are already employed to realize
dynamic devices, such as micro-resonators, micro-accelerometer, chemical and bio-
sensors [1–4], to mention but a few.

In the perspective of a wider exploitation of CNT-reinforced polymer materials
in aerospace, automotive, and civil engineering, this work aims to highlight some
interesting nonlinear properties of these materials.

This paper is primarily focused on the nonlinear dynamic response of nanocom-
posite cantilever beams excited near the primary resonance of their lowest bend-
ing modes. The study investigates the effects of hysteresis arising from the
CNT/polymer interfacial sliding on the macroscopic nonlinear dynamic response.
The primary energy dissipation source in nanocomposites is represented by the
stick-slip frictional sliding motion of the polymer chains surrounding the CNTs
[5, 6]. The hysteretic behavior of CNT/polymer nanocomposites becomes increas-
ingly more significant as more interfacial surface area becomes available for the
frictional slippage. The interfacial surface area increases with the CNTs content
and the CNTs aspect ratio as observed in [7, 8]. Such hysteretic phenomenon
combined with the linear viscous damping of the polymer system may yield a
softening nonlinearity in the material dynamic response, as also shown for a variety
of physical/mechanical systems [9] or structures with initial curvature [10]. To
this end, the nonlinear dynamic response of the nanocomposite cantilevers is here
experimentally investigated and compared with the response of a neat polymer
beam. The nanocomposite beams are made of the thermoplastic polybutylene
terephthalate polymer (PBT) with the addition of single-walled CNTs. The exper-
imental frequency-response curves are compared with those numerically obtained
by implementing a path following algorithm. The nonlinear Euler–Bernoulli beam
theory and the Galerkin discretization method are employed to derive the equation
of motion of the cantilevers exhibiting a hardening nonlinearity. In addition, the
nanostructural stick-slip energy dissipation shows its effects through a softening-
type nonlinearity at low oscillation amplitudes followed by a hardening response
at higher amplitudes. To model such response, observed here for the first time, a
modification of the reduced-order equation of motion is sought by adding a modal
restoring force according to a modified Bouc–Wen model of hysteresis.

2 Experimental Dynamic Response

To investigate the dynamic response of polymer and nanocomposite beams, an
experimental study is carried out subjecting the beams to a transverse harmonic base
excitation. The frequency-response curves for the primary resonance of the lowest
bending mode are experimentally acquired.
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Fig. 1 (a) Experimental setup with the mounted polymer cantilever beam and (b) the nanocom-
posite cantilever beam

2.1 Experimental Setup and Testing

The adopted test sequences involve a frequency sweep around the first natural
frequency of the cantilever beams at different base excitation amplitudes. The
pure polymer and nanocomposite beams are manufactured according to the pro-
cedure described in [11] considering a 2% nanofiller weight fraction. Pictures of
the samples and of the experimental setup are shown in Fig. 1. Both polymer
and nanocomposite beams exhibit a uniform rectangular cross section with area
A = bh = 9.78 × 0.79 mm2 and length L = 34.5 mm. The PBT polymer
mass density is ρm = 1,310 kg/m3. The addition of 2 wt% CNTs with a mass
density of ρc = 1,750 kg/m2 does not significantly affect the mass of the samples,
therefore ρmA is assumed as the mass per unit length for all beams. The beams
are clamped to an electrodynamic shaker equipped with a head expander which can
apply a harmonic excitation with a maximum acceleration amplitude of 10.3 g and
a maximum frequency of 2 kHz.

The shaker excitation is controlled and monitored by means of two piezoelectric
accelerometers (maximum acceleration of 50 g) placed on the shaker head expander.
The response of the cantilevers is measured using a laser displacement sensor
pointing at the tip of the beams and acquiring displacements within the range
of ±10 mm with a resolution of 0.02%. The accelerometer and laser signals are
monitored in the time and frequency domains by the signal analyzer LabView.

The frequencies of the vibration modes of the cantilever beams are estimated
through an experimental modal analysis in order to identify the frequency ranges
of interest. The lowest natural frequency is found to be fm = 135.7 Hz for the
pure polymer beam, and fnc = 153.2 Hz for the 2 wt% CNT/PBT nanocomposite
beam, respectively. This step yields the identification of the materials elastic moduli.
Backward and forward frequency sweeps are carried out in the frequency bandwidth
[120−150] Hz for the pure polymer, and [140−170] Hz for the nanocomposite
beams, respectively. The frequency-response curves are acquired for acceleration
amplitudes set to [1, 2, 3]g with a linear sweep rate of 0.025 Hz/s.
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Fig. 2 Frequency-response curves for the PBT polymer cantilever beams experimentally obtained
for different base excitation amplitudes

2.2 Experimental Results

The experimentally obtained frequency-response curves for the neat polymer and
2 wt% CNT/PBT nanocomposite beams are reported in Figs. 2 and 3, respectively.
The nonlinear dynamic responses around the lowest natural frequency feature a
positive stiffness variation when increasing the base excitation amplitude, thus
giving rise to the expected hardening-type nonlinearity. Such emerging nonlinearity
is exhibited by both the polymer and nanocomposite cantilevers. However, while
the response of the neat polymer beam is of the hardening-type throughout the
whole investigated range of excitation amplitudes, the observed flexural behavior
of the nanocomposite beam suggests that when the beam oscillates in bending
at low amplitudes, the loss of stiffness caused by the nanostructural interfacial
sliding yields a softening feature while, at larger amplitudes, the nonlinear bending
curvature effects prevail making the beam behave as a hardening-type oscillator.
Such response demonstrates the onset of hysteresis in the material due to the stick-
slip energy dissipation phenomenon at the CNT/polymer interfaces. The interfacial
frictional sliding between the CNTs and the surrounding polymer chains collectively
causes a macroscopic loss of stiffness.
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Fig. 3 Frequency-response curves for the 2 wt% CNT/PBT nanocomposite cantilever beams
experimentally obtained for different base excitation amplitudes

3 Modeling the Nonlinear Dynamic Response

To describe the flexural motion of the neat polymer as well as the nanocomposite
cantilever beams, the inextensible Euler–Bernoulli beam theory [10] is employed.
By letting L denote the beam span, s the arclength along the beam centerline, ρm
the mass density, J the moment of inertia, A the cross sectional area, Em and Enc
the elastic moduli of the polymer and the nanocomposite materials, respectively, and
ωm the frequency of the polymer beam lowest bending mode, the nonlinear equation
of motion expressed in terms of the transverse deflection v(s, t) is cast in a suitable
nondimensional form [10] by rescaling variables and parameters as follows:

s∗ = s

L
, t∗ = ωmt, ωm = ω2

1

√
EmJ

ρmAL4
, v∗ = v

L
,

c∗ = cL2

ω2
1

√
EmJρmA

, k
E

= Enc

Em
, f ∗ = f L3

EmJω
4
1

with ω1 = 1.875 being the first root of the characteristic equation associated with
the boundary-value problem for free vibrations of a cantilever beam with unitary
mass and bending stiffness, and c = 2ξωmAρm representing the viscous damping
coefficient of the beam. For ease of notation, the stars will be dropped in the
subsequent equations.
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The cantilever is subject to a harmonic base motion y whose acceleration is ytt =
YΩ2 cosΩt with frequencyΩ near the frequency of the lowest bending mode. Such
base excitation yields an equivalent force per unit reference length f = −ρmAytt
which, in nondimensional form, reads f = YΩ2 cosΩt where Y andΩ are rescaled
by the beam length and the frequency ωm, respectively.

The resulting nondimensional equation of motion for the pure polymer cantilever
is given by the following integral-partial differential equation truncated to third-
order terms [10]:

vtt + cvt + vs
∫ s

0
(v2
ξ t + vξ vξtt ) dξ − 1

2v
2
s vtt

− vss
∫ 1

s

(− vtt vξ +
∫ ξ

0
(v2
ζ t + vζ vζ tt ) dζ

)
dξ

+ k
E

(
vss + 1

2v
2
s vss

)
ss

− k
E
vss

∫ 1

s

vξξ vξξξ dξ = −ytt (1)

with boundary conditions given by

v(0, t) = 0, vs(0, t) = 0, vss(1, t) = 0, vsss(1, t) = 0. (2)

By employing the Galerkin discretization method, a reduced-order model of the
beam is derived. The deflection is expressed in the form v(s, t) =∑n

j=1 qj (t)Φj (s)

where Φj(s) are the mode shapes and qj (t) are the modal coordinates.
Retaining one mode only, for example, the j th mode, and multiplying Eq. (1) by

Φj(s) and integrating over the span of the beam yield the following reduced-order
equation of motion:

q̈j +m2,j q̇
2
j qj +m3,j q̈j q

2
j + cj q̇j + kjqj + k3,j q

3
j = pj cosΩt, (3)

where the parameters kj and k3,j denote the nondimensional j th linear and
nonlinear modal stiffness, respectively; m2,j and m3,j are the coefficients of the
nonlinear inertia terms; cj is the modal damping coefficient, and pj is the equivalent
modal force magnitude.

When the beam is made of nanocomposite material, the reduced-order model
looks the same as Eq. (3) except for the replacement of the linear modal restoring
force kjqj with the hysteretic restoring force fj given in rate form [12] by

ḟj = kj
{

1 −
(

1 − km,j

kj

) [
β + γ sign((hj − km,j qj )q̇j )

] (hj − km,j qj
fo,j

)n}
q̇j ,

(4)

where kj is the linear modal stiffness, km,j is the post-elastic stiffness, fo,j controls
the onset of the CNT/polymer stick-slip in the j th mode, highlighting the transition
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from the elastic to the post-elastic behavior. The nondimensional parameters γ, β,
and n regulate the shape and smoothness of the loading and unloading branches as
in the Bouc–Wen model of hysteresis [7, 12]. The nondimensional coefficients are
found by defining the geometric and constitutive parameters of the cantilever beams.

3.1 Frequency-Response Curves via Path Following

A pseudo-arclength path following scheme is implemented to construct the
frequency-response curves given by Eqs. (3) and (4). From the experimental tests,
the resulting elastic moduli estimated according to E = (ρmAL

4ω2)/(ω4
1Jm)

for the polymer and the 2 wt% CNT/PBT nanocomposites beams are found to
be Em = 2,100 MPa, and Enc = 2,675 MPa, respectively. Accordingly, the
nondimensional coefficients of the Galerkin-reduced model are evaluated. The
coefficients m2,1, m3,1, and p1 do not vary with the material of the cantilevers
since they are independent of the beams constitutive features and are estimated to
be m2,1 = 4.60, m3,1 = 2.44, p1 = 12.36. The nondimensional coefficients c1,
k3,1, and k1,1 are found to vary for the investigated materials, being kE=1 for the
neat polymer beam, and kE = 1.2738 for the 2 wt% CNT/PBT beam. Therefore,
c1 = 2ξ , k3,1 = 13.81, and k1 = 12.36 for the polymer beam; c1 = 2.26ξ ,
k3,1 = 17.59, and k1 = 15.75 for the 2 wt% CNT/PBT beam. The equivalent
damping ratio ξ is experimentally found to range 1.1–2.6%. Note that the nonlinear
stiffness coefficient is positive and larger than the linear stiffness.

The ad hoc implemented path following algorithm [2] allows to trace the
branch of stable and unstable periodic solutions for the investigated nanocomposite
cantilevers. By restricting the analysis to the lowest mode (i.e., j = 1), and setting
k3,1/k1 = 0.8, γ = 0.5, fo,1 = 0.1, the obtained frequency-response curves in
Fig. 4 are found to be in qualitative agreement with the experimentally obtained
curves showing the peculiar softening behavior at low amplitudes and the hardening
behavior at larger amplitudes. As shown in Fig. 4 (right), a significant increase of the
cubic coefficient with respect to the linear stiffness turns the nanocomposite beam
behavior into hardening also at low amplitudes. However, k3,1 is associated with
the nonlinear bending effects and cannot be directly controlled while the degree of
hysteresis is controlled by the CNTs content.

4 Conclusions

The nonlinear dynamic response of nanocomposite cantilevers to a base harmonic
excitation was studied experimentally. The obtained frequency-response curves
clearly show an interesting nonlinear behavior, namely, softening at low amplitudes
and hardening at larger amplitudes. These nonlinear trends are the result of two
concurrent nonlinearities of the opposite sign, the stiffness-degrading CNT/polymer
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Fig. 4 Theoretically obtained nondimensional frequency-response curves for 2 wt% CNT/PBT
nanocomposite cantilever beam for different base acceleration amplitudes ag (left), and nonlinear
stiffness coefficients k3 (right). The damping ratio is set to ξ = 2%

stick-slip and the stiffness-augmenting nonlinear bending curvature effects. The
influence of the stick-slip energy dissipation on the nonlinear dynamic nanocom-
posites behavior is highlighted and clearly identified in the experimental results.
Therefore, a model of the restoring force mimicking the Bouc–Wen model of
hysteresis was introduced as an additional internal force in the equation of motion.
The modification shows to be a promising strategy to describe the dynamic response
of nanocomposite materials. The nonlinear flexural behavior was described by
the nonlinear, inextensible Euler–Bernoulli beam theory treated by the Galerkin
method. The predicted frequency-response curves are in good agreement with the
experimental results. Ongoing efforts are targeted towards the identification of the
nanocomposite material properties using the generated dynamic data and a genetic-
type system identification method.
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A Numerical Strategy for Multistable
Nanocomposite Shells

Leonardo Leonetti, Giovanni Formica, Domenico Magisano, Michela Talò,
Giovanni Garcea, and Walter Lacarbonara

Abstract This work presents an efficient continuation strategy based on the Riks
method to describe the stable and of unstable branches of the response of carbon
nanotubes (CNT)/polymer nanocomposite shells. Exploiting the superior properties
of this class of nanostructured materials in the context of elastic instabilities and
multistability has the potential to pave the way towards a variety of novel smart
engineering applications. The equilibrium paths and the static bifurcations of CNT
nanocomposites are numerically investigated highlighting the effects of material
parameters such as the orientation and weight fraction of high aspect ratio CNTs
integrated in a thermoplastic polymer.

Keywords Carbon nanotube nanocomposite · Multistability · Shells · Finite
element method · Path following · Riks incremental method

1 Introduction

Over the last decades, elastic instabilities have no longer been regarded necessarily
as a failure but as an additional functionality for a variety of smart engineering
applications. Multistable composite shell structures made of a polymer matrix
and reinforcing fibers, such as carbon, or glass fibers to mention but a few, have
recently drawn attention as lightweight adaptive structures ensuring multiple stable
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configurations when purposefully manufactured [1]. Composite laminates can be
made to be bistable or even multistable by stacking plies of fiber-reinforced polymer
in a designed nonsymmetric sequence.

Thanks to thermal effects induced during the manufacturing processes,
multistable composites are able to snap from one stable configuration to another
[2]. As a step forward in the field of morphing, multistable shell structures can
be made of polymer matrices reinforced with a strengthening nanofiller, i.e.,
carbon nanotubes (CNT). CNT/polymer nanocomposites belong to the class of
high-performance multifunctional materials. Nanocomposites have already been
proved to be lightweight, resistant to corrosion and to high temperatures thanks
to the use of engineering thermoplastic polymer matrices integrated with CNTs
which makes them well reinforced, but also highly damped and electrically
conductive [3–5]. Therefore, adding multistability to the desirable features of
nanocomposite structures may represent a step forward towards the development
of new smart structures. Thermoplastic polymer nanocomposites in the shape of
shallow shells can be obtained through a manufacturing process that involves
cooling from a high temperature. Thermally induced stresses occur during cooling
and, as a result of these residual stresses combined with material imperfections,
the initially flat laminates turn out to become curved upon final cooling [6]. The
cooled equilibrium shape represents the shape which minimizes the potential
energy of the nanocomposite shell. In addition, the shell may also have other
stable configurations, thus showing bi-stability as in the case of the nanocomposite
shell here investigated. As a result, if conveniently designed and manufactured,
nanocomposite shells may exhibit nonlinear precritical load paths and undergo a
snap-through or snap-back instability at their limit points [7].

Large efforts have been made to devise continuation strategies with the capability
of finding limit (and more general bifurcation) points as well as tracing the
equilibrium paths connecting these points. A relevant contribution was provided
by the work of Riks in 1979 [8]. Based on the Newton method, the Riks incre-
mental method introduces the arclength along the equilibrium path as a path
following parameter. The present work aims to describe the equilibrium paths
of CNT/polymer nanocomposite shallow shells. The nanocomposites are made of
the high-performance thermoplastic polybutylene terephthalate (PBT) polymer and
high aspect ratio, single walled carbon nanotubes.

The influence of the CNT orientation and CNT weight fraction on the shell bi-
stability is investigated. In order to obtain the equilibrium paths describing both
stable and unstable equilibrium states, the adopted numerical strategy implements a
method based on the Riks scheme [8] thus allowing to trace the pre- and post-critical
equilibrium paths. Such a method has been validated in several previous works and
efficiently employed in nonlinear shell problems (see, e. g., [9, 10]). In addition,
for the finite element implementation, a non standard formulation is here adopted,
namely, the mixed solid-shell finite element, first proposed by Sze et al. in 1993
[11], and later developed and utilized in composite shells in [12, 13].
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2 Constitutive Nanocomposites Behavior

The constitutive elastic response of the CNT/PBT nanocomposites is described
through an updated micromechanical model based on the Eshleby–Mori–Tanaka
approach and presented in [14]. By denoting the constitutive elastic tensors of
the polymer matrix and the CNT nanofiller as Lm and Lc, respectively, the
nanocomposite equivalent elastic tensor is given by the expression

L = Lm + φc〈(Lc − Lm) : Ac〉(φmI + φc〈Ac〉)−1, (1)

where φm and φc are the matrix and CNT volume fractions, respectively, I is the
identity tensor, and Ac is the dilute mechanical strain concentration tensor defined

as Ac = [
I + S : (Lm)−1 : (Lc − Lm)

]−1
, in which S denotes the Eshelby tensor,

and accounts for the shape, geometry, and variability of the CNTs length within
the same nanocomposite [14]. To introduce the CNT orientation, which may be
random or aligned along a preferential direction, the terms enclosed by angle
brackets indicate the tensor transformation from the local nanofiller coordinates to
the global coordinates system (〈Ac〉 = T�AcT accounting for the relative rotation
about a prescribed coordinate axis in case of CNTs aligned along a given direction)
as well as the additional averaging operation over all orientations in the case of
randomly dispersed CNTs. The rotation tensor T = T[ϕ, β, γ ] represents the
rotation tensor provided as a function of the Euler angles {ϕ, β, γ }. The resulting
equivalent elastic tensor of the nanocomposite material proves to have transversely
isotropic symmetry (with the isotropy plane being orthogonal to the longitudinal
axis of the nanotubes), as also validated by molecular models [15].

3 Numerical Strategy

We consider a solid finite element and denote with ζ = {ξ, η, ζ } the convective
coordinates as the natural coordinates for the finite element interpolation. The
initial configuration is assumed as the reference configuration, described by X[ζ ] ≡
{X[ζ ], Y [ζ ], Z[ζ ]}, while x[ζ ] denotes the position in the current configuration. Let
d[ζ ] denote the displacement field so that x[ζ ] = X[ζ ] + d[ζ ]. The position vector
of a point inside the element and its displacement are interpolated within a trilinear
8-node hexahedron as follows:

X[ζ ] = Nd [ζ ]Xe, d[ζ ] = Nd [ζ ]de (2)

where de and Xe are vectors collecting the element nodal displacements and
coordinates, respectively, and Nd [ζ ] represents the matrix collecting the trilinear
interpolation functions. Adopting Voigt notation, the Green-Lagrange covariant
strain components are collected in the vector ε̄ ≡ [ε̄ξξ , ε̄ηη, 2ε̄ξη, ε̄ζ ζ , 2ε̄ηζ , 2ε̄ξζ ]�,
which turns out to be
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ε̄ =
(
L[ζ ] + 1

2
Q[ζ ,de]

)
de, (3)

where L[ζ ] ≡ Q[ζ ,Xe] and Q are the linear and quadratic part of the Green-
Lagrange strain measure, respectively, expressed in terms of the finite element
interpolation. In order to avoid shear and trapezoidal locking phenomena, both
natural transverse normal strain and shear strain are actually defined by an assumed
natural strain (ANS) formulation. By assuming here and henceforth that the Z-
axis and the X-Y -plane are parallel to the ζ -axis and mid-surface of the shell,
respectively, the covariant strains can be linearized with respect to ζ in the following
form:

ε̄ ≈
⎡
⎣

ē[ξ, η] + ζ χ̄[ξ, η]
ε̄ζ ζ [ξ, η]
γ̄ [ξ, η]

⎤
⎦ with

ē[ξ, η] = [ε̄ξξ ε̄ηη 2ε̄ξη]
χ̄[ξ, η] = [ε̄ξξ ,ζ ε̄ηη,ζ 2ε̄ξη,ζ ]
γ̄ [ξ, η] = [2ε̄ηζ 2ε̄ξζ ].

(4)

Denoting with σ̄ ≡ [σ̄ξξ , σ̄ηη, 2σ̄ξη, σ̄ζ ζ , 2σ̄ηζ , 2σ̄ξζ ]� the vector collecting the
contravariant stress components, from the stress-strain work we define the quantities
conjugate with the above strain components, i.e.:

W =
∫
V

ε̄�σ̄dV =
∫
Ω

(
N̄�

ē + M̄�
χ̄ + s̄ζ ζ ε̄ζ ζ + T̄ �

γ̄
)
,

where we used
∫
Ω
(· · · ) = 2

∫ 1
−1

∫ 1
−1(· · · ) det(J)dξdη, J being the Jacobian matrix

J[ξ, η] = [
X,ξ X,η X,ζ

]
, that is assumed to be constant with respect to ζ . The

evaluation of the generalized constitutive relations stems out from the integration of
the stresses across the thickness direction to obtain the generalized stress resultants.
The properties of the elastic nanocomposite material (either isotropic or transversely
isotropic) are given in a local reference frame {i1, i2, i3}, with i1 collinear with
the nanofiller orientation defined by a rotation angle θ around i3 parallel to the Z
axis. The material stiffness matrix in the Cartesian element reference frame can be
evaluated through a rotation tensor:

σ = Lε with L = R[θ ]�L′R[θ ] =
⎡
⎢⎣

Lp Lpz Lpt
L�
pz Lz, Lzt

L�
pt L�

zt Lt

⎤
⎥⎦ , (5)

where

L′ =
⎡
⎢⎣

L′
p L′

pz L′
pt

L′T
pz L

′
z L′

zt

L′T
pt L′T

zt L′
t

⎤
⎥⎦ L′

p ≡
⎡
⎣
L′

1111 L
′
1122 L

′
1112

L′
1122 L

′
2222 L

′
2212

L′
1112 L

′
2212 L

′
1212

⎤
⎦ L′

pz ≡
⎡
⎣
L′

1133
L′

2233
L′

1233

⎤
⎦

L′
pt ≡

⎡
⎣
L′

1123 L
′
1113

L′
2223 L

′
2213

L′
1223 L

′
1213

⎤
⎦ L′

zt ≡
[
L′

3323 L
′
3313

]
L′
t ≡

[
L′

2323 L
′
2313

L′
1323 L

′
1313

]
L′
z=L′

3333.
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The generalized stress resultants are obtained according to the following expression:

⎡
⎢⎢⎣

N
sζζ

M
T

⎤
⎥⎥⎦ = 1

2

∫ 1

−1

⎡
⎢⎢⎢⎣

Lp Lpz ζLp Lpt
L�
pz L�

zz ζLzp Lzt
ζL�

p ζL�
zp ζ

2Lp ζLpt
L�
pt L�

zt ζL�
pt Lt

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

e
εzz

χ

γ

⎤
⎥⎥⎦ dζ.

4 Numerical Results

As case study, stable and unstable solutions of a 2 wt% CNT/PBT nanocomposite
disk that has the shape of a shallow dome are investigated. The assumed CNT
weight fraction wt was experimentally proven to be sufficiently high to provide
a reinforcement effect and at the same time sufficiently low to guarantee a good
CNT dispersion degree [14]. Based on experimental data, the CNTs length is
assumed to vary in the range [0.09–2.54] μm, while the Young moduli and Poisson
ratios employed to define the elastic tensors for the PBT matrix and the CNTs are
Em = 2.47 GPa, Ec = 850 GPa, νm = 0.36, and νc = 0.1, respectively. The
carbon nanotubes are assumed to be aligned in the shell plane (axes {x1, x2})
along direction ϕ = 45◦, which is a counterclockwise angle with respect to x1
(see Fig. 1). The nanocomposite shell equilibrium path is obtained according to a
continuation strategy [7, 8]. The equilibrium path, depicted in Fig. 2, exhibits a loss
of stability when reaching the first limit point denoted by (b) (Fig. 2 left). Before
such limit point the shell is stable and occupies equilibrium states as those shown
at point (a) of Fig. 2 (left). By increasing the adimensional load, the limit point
is approached when the effective stiffness vanishes (one of the eigenvalues of the
tangent stiffness coalesces to zero and, subsequently, becomes negative). At such
limit point the structure suffers a snap-through instability associated with a sudden
jump to a far-away equilibrium state. Hence, the bi-stable shell undergoes a large
deformation and reaches another stable configuration indicated as point (c). Once
the shell reaches the new stable configuration, if the adimensional load is decreased,
the nanocomposite shell reaches the deformed state shown at point (d), which
denotes the second limit point (Fig. 2 right). The structure suffers a reverse snap-
through, thus jumping to the previous stable state. The intermediate path delimited
by the two limit points represents the unstable branch denoted by the dashed line.

Thus, the adopted computational strategy allows to describe the unstable equilib-
rium states by tracing the branch where the negative geometric stiffness overcomes
the elastic stiffness [7]. As a result, between the two red and blue dashed lines,
defining the two limit loads, the nanocomposite shell may occupy one of the two
stable configurations separated by the unstable equilibrium.
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Fig. 1 Reference
configuration of a shallow
nanocomposite shell having a
diameter d = 60 mm, and the
carbon nanotubes aligned
along the direction rotated by
ϕ in the shell plane described
by axes {x1, x2}. The shell is
constrained by four supports
described by the four circles

Fig. 2 Different deformed shapes of the 2% wt CNT/PBT shell for the same adimensional load of
1.675. Comparison between two configurations of the equilibrium path, corresponding to point (a)
(left), and to point (d) (right), respectively
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4.1 Sensitivity to CNT Weight Fraction and Orientation

The influence of the CNT weight fraction on the equilibrium path of the nanocom-
posite shell is investigated by varying the nanotubes content from 0.5 wt% to
5 wt%. Figure 3 shows the remarkable effect of the CNT weight fraction on the
bi-stability of the nanocomposite. As expected, the limit load enabling the snap-
through mechanism of the bi-stable structure grows with the CNT weight fraction
and the snapping from one stable state to the other involves larger deflections for
larger CNT contents. In addition, the effects of the CNTs alignment, denoted by the
angle ϕ, on the equilibrium path of the nanocomposite shell are investigated together
with the effect of random orientations of the CNTs in the shell plane (2D random) or
in all directions (3D). Figure 4 shows the equilibrium path for the 2 wt% CNT/PBT
nanocomposite in four significant cases. If the nanotubes are aligned along axis x1
or for symmetry reasons, along axis x2, i.e., ϕ = 0◦ or ϕ = 90◦, the multistability
of the nanocomposite shell vanishes and the structure becomes mono-stable. On the
other hand, a 2D and even more a 3D random orientation of the CNTs make the bi-
stability more relevant. Such behavior may be due to the asymmetry (with respect
to the mid-plane of the shell) in the spatial arrangement of the nanofiller randomly
dispersed in the hosting polymer matrix.

Fig. 3 Equilibrium paths for nanocomposite shells having CNTs aligned with ϕ = 45◦ w.r.t. axis
x1 featuring various CNT weight fractions, wt = {0.5, 1.0, 2.0, 5.0}%
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Fig. 4 Equilibrium paths for 2% wt CNT/PBT nanocomposite shells. Comparison between the
most significant cases for the CNT orientation in the nanocomposite

5 Conclusions

Bistable nanocomposite shell structures are investigated and the material features
found to be mostly influential on the onset of snap-through are identified. By
tuning the CNT weight fraction and the CNT orientation in the hosting polymer
matrix, significantly different equilibrium paths for the nanocomposite shells can
be obtained. In particular, by increasing the CNT weight fraction and achieving a
3D random orientation of the CNTs, the deflection suffered by the nanocomposite
shell to snap from one stable configuration to the other may be amplified. On the
other hand, the alignment of the nanofiller along one of the in-plane main axes
of the shell can cause the loss of bi-stability. The Riks method together with the
use of mixed solid-shell finite elements enables the computation of the equilibrium
paths. Changes of shape of the nanocomposite shell and both stable and unstable
states are accurately described through numerical path following analysis. There-
fore, multistability exhibited by such lightweight multifunctional nanocomposite
structures—here efficiently predicted—turns out to be extremely promising in the
perspective of new shape-adaptive applications, such as aerodynamic morphing
applications.
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Parametric Vibrations of Functionally
Graded Sandwich Plates with Complex
Forms

Kurpa Lidiya, Shmatko Tetyana, and Jan Awrejcewicz

Abstract Buckling behavior and parametric vibrations of sandwich plates with
arbitrary forms and made of isotropic and functionally graded materials (FGM)
are studied. Different types of lamination schemes were considered: a sandwich
plate with FGM face sheets and isotropic (metal or ceramic) core and a plate
with a FGM core and ceramics or metal on top and bottom face sheets. Effective
material properties are computed according to Voigt’s rule in thickness direction. To
calculate mechanical characteristics for different types of lamination schemes, the
analytical expressions were obtained. The formulation of the problem was carried
out using the first-order shear deformation theory (FSDT) of the plate. A subcritical
state of the plate was taken into account.

Keywords Parametric vibrations · Functionally graded sandwich plates ·
The R-functions theory

1 Introduction

Nowadays, functionally graded materials (FGM) are widely used in many fields
of industry as heat-resistant thin-constructed elements. There are many published
papers devoted to studying the dynamic and static behavior of FGM plates and
shells as designed objects [1, 2] and others. The application of FGM can help reduce
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mechanically and thermally induced stresses caused by the material properties
mismatch as well as improves the bonding strength in the case of coatings and
laminated facings. This explains the growing interest in studying laminated com-
posite and sandwich plates often used in modern engineering applications. Many
theories and methods for the mathematic modeling and analysis of such elements
have been proposed [3–5]. Among these methods, one of an important method is
Ritz’s method. It is known that one of the main difficulties related with the use of
Ritz’s method in case of the complex plate geometry is a choice of a basic system of
functions that satisfy the boundary conditions. In this work, the R-functions theory
[6] is used for solving this problem. Earlier, Ritz’s variational method and the R-
functions theory (RFM) have been effectively applied for investigation of vibration
of layered plates and shallow shells [7, 8].

In this study, we first develop RFM to research of linear and parametric vibrations
of FG sandwich plates using the first-order shear deformation theory (FSDT). The
plate is composed of three layers, one or two of which are functionally graded in the
thickness direction. Material properties of the FGM are calculated by power law.
Pre-buckling state is taken into account. Proposed algorithm is applied to square
plate with two cut outs. Initial nonlinear system with partial derivatives is reduced
to Mathieu equation by method proposed authors earlier in [8].

2 Mathematical Problem

Let us consider a sandwich plate with a metal core and FGM facing (Type A) and
a sandwich plate with a FGM core and the lower layer made of ceramic and upper
layer made of metal (Type B). It is considered that the FGM layers are made of a
mixture of ceramics and metals. The thickness of the layers from the bottom to the
top h(1), h(2), h(3) can be varied. The general thickness h is a constant defined as
a sum h = h(1) + h(2) + h(3). Let us assume that the plate is subjected to periodic
in-plane load pN = pst + pdyn cos θ t, where pst is a static component, pdyn is the
amplitude of the periodic part, and θ is the frequency of the load. Note that all
external forces are varied proportionally to the parameter λ. The material properties
of the plate vary continuously and smoothly in the thickness direction. Effective
material properties Peff, like Young’s modulus E, Poisson’s ratio ν, and mass density
ρ for FGM can be estimated by the following Voigt’s law:

P
(r)
eff = (Pu − Pl) V

(r)
c (z)+ Pl, (1)

where Pu and Pl are corresponding properties of the upper and lower surfaces of the
r-layer, respectively; V (r)c (z) is the volume fraction of ceramics.

Parametric excitation of the plate subjected to periodic loads is investigated by
the first-order shear deformation theory (FSDT) [9] taking into account a shear
deformation. In this case, the governing differential equations of equilibrium for
free vibration of a plate subjected to external in-plane loading can be expressed as
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N11,x +N12,y = I0u,tt + I1ψx,tt , N12,x +N22,y = I0v,tt + I1ψy,tt , (2)

M11,x+M12,y −Qx=I2ψx,tt + I1u,tt , M12,x +M22,y −Qy=I2ψy,tt+I1v,tt ,
(3)

Qx,x +Qy,y +
(
N0

11w,xx + 2N0
12w,xy +N0

22w,yy

)
= Iow,tt , (4)

where I0, I1, I2 are defined as follows

(I0, I1, I2) =
3∑
r=1

zr+1∫

zr

(
ρ(r)
) (

1, z, z2
)
dz,

where ρ(r) is the mass density of r-th layer, and the values {N} = {N0
11, N

0
22, N

0
12

}T

denote the force resultant in the pre-buckling state.
The in-plane force resultant vector {N} = {N11, N22, N12}T, bending and twisting

moments resultant vector{M} = {M11, M22, M12}T, and transverse shear force
resultant {Q} = {Qx, Qy}T are calculated by integration along Oz-axes and can be
recast to the following form:

{N} = [A] {ε} + [B] {χ} , {M} = [B] {ε} + [D] {χ} , (5)

where [A], [B], [D] are square matrices of the third order with elements Aij, Bij,
Dij, (i, j = 1, 2, 6) defined in the following way:

Aij =
3∑
r=1

zr+1∫

zr

Q
(r)
ij dz, Bij =

3∑
r=1

zr+1∫

zr

Q
(r)
ij zdz, Dij =

3∑
r=1

zr+1∫

zr

Q
(r)
ij z

2dz,

where z1 = − h/2, z2 = h1, z3 = h2, z4 = h/2. Values h1, h2 are correspond-
ing lower and upper borders of the middle layer. Expressions of integrand functions
Q
(r)
ij (i, j = 1, 2, 6) have the following form

Q
(r)
11 = Q(r)22 = E(r)

1 − (ν(r))2
, Q

(r)
12 = ν(r)E(r)

1 − (ν(r))2
, Q

(r)
66 = E(r)

2
(
1 + ν(r)) ,

where E(r), ν(r) are defined by formulas (1).
Strain components {ε} = {ε11, ε12, ε22}T, {χ} = {χ11,χ12,χ22}T at an arbitrary

point of the plate are as follows:

ε11 = u,x + 1

2
w,2x, ε22 = v,y + 1

2
w,2y, ε12 = u,y + v,x + w,xw,y (6)



72 K. Lidiya et al.

ε13=w,x+ψx, ε23=w,y + ψy, χ11=ψx,x, χ22=ψy,y, χ12=ψx,y + ψy,x.

The transverse shear force resultants Qx, Qy are as follows:

Qx = K2
sA33ε13, Qy = K2

sA33ε23, (7)

where K2
s denotes the shear correction factor. In this chapter, we take K2

s = 5/6.
Coefficients Aij, Bij, Dij were obtained in an analytical form [8].

3 Method of Solution

Since the pre-buckling state can be inhomogeneous, first, we should determine the

parameters {N} = {
N0

11, N
0
22, N

0
12

}T
. It is possible to prove that this problem can

be reduced to a variational problem related to finding the minimum of the following
functional:

I
(
u, v,w,ψx,ψy

) = 1
2

∫∫
�

(
N
(L)
11 ε

(L)
11 +N(L)22 ε

(L)
22 +N(L)12 ε

(L)
12 +

+M(L)
11 χ11 +M(L)

22 χ22 +M(L)
12 χ12+Qxε13+Qyε23

)
d�+ ∫

∂�1

N
(L)
n (ul+vm) d�1,

(8)

where the terms with superscripts L correspond to the linear terms in formulas (5).
To find the buckling load the dynamical approach is applied. Then the problem

is reduced to an equivalent variational problem of the minimization of the following
functional

I
(
u, v,w,ψx,ψy

) = 1
2

∫∫
�

[
N
(L)
11 ε

(L)
11 +N(L)22 ε

(L)
22 +N(L)12 ε

(L)
12 +

+M(L)
11 χ11 +M(L)

22 χ22 +M(L)
12 χ12 +Qxε13 +Qyε23+

+ pst

(
N0

11

(
w,x
)2 +N0

22

(
w,y
)2 +N0

12w,xw,y

) ]
d�−

− 1
2ω

2
L

∫∫
�

(
I0
(
u2 + v2 + w2

)+ I1
(
ψ2
x + ψ2

y

))
d�.

(9)

The value of the parameter pst increases when the natural frequency ωL is a real
number. The value of the buckling load Ncr is defined by the value of the parameter
pst corresponding to the smallest nonnegative value of the frequency. Minimization
of the functionals (8 and 9) is performed using Ritz’s method. The sequence of
coordinate functions is constructed by the R-functions theory [6].

In order to solve the nonlinear vibration problem we develop the approach
proposed in [7, 8]. As a result, we get ordinary differential equation, investigation
of which is performed by Bolotin’s approach. The equation has the following form:
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ÿ(t)+ 2εy(t)+�2
L (1 − 2k cos θt) y(t)+ y2(t)β + y3(t)γ = 0, (10)

where 2k = αpdyn

�2
L

, �
2
L = ω2

L − pstα is the frequency of the plate compressed by the

static load pst, ωL stands for the natural frequency of free vibration, ε is the damping
ratio of the plate, and the expressions for the coefficients α, β, and γ are obtained
in an analytical form, similarly as it has been done in the paper [8].

4 Numerical Results

In order to show the possibilities of the proposed method we investigate vibration
and buckling analysis of a plate shown in Fig. 1. Consider the plate with fixed
geometrical parameters: b/a = 1; Ô/2a = 0.3; d/2a = 0.25; h/2a = 0.1. The
material properties of the FGM mixture Al/Al2O3 used in the study are as follows:

Al : Em = 70 GPA, νm = 0.3, ρm = 2707 kg/m;
Al2O3 : Ec = 380 GPA, νc = 0.3, ρc = 3800 kg/m.

Suppose that the plate is simply supported and uniformly compressed on the
border of the region. Boundary conditions take the following form:

w = 0, ∀ (x, y) ∈ ∂�, u = 0, ∀ (x, y) ∈ ∂�(u),
∂�(u) : (y = −b, |x| ≤ a) ∪ (y = d, c ≤ x ≤ a ∪ −a ≤ x ≤ −c)

∪ (y = b, |x| ≤ c) ,

v=0, ∀ (x, y) ∈ ∂�(v), ∂�(v) : (x= ± a, −b≤y≤d) ∪ (x= ± c, d ≤ y ≤ b ) ,

Fig. 1 Form of the plate (a) and its planform (b)
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ψx = 0, ∀ (x, y) ∈ ∂�(ψx),
∂�(ψx) : (y = −b, |x| ≤ a) ∪ (y = d, c ≤ x ≤ a ∪ −a ≤ x ≤ −c)

∪ (y = b, |x| ≤ c) ,

ψy = 0, ∀ (x, y) ∈ ∂�(ψy), ∂�(ψy) : (x = ±a, −b ≤ y ≤ d)
∪ (x = ±c, d ≤ y ≤ b ) .

In order to construct the admissible functions by the RFM [6], we should build
the solution structure satisfying at least main boundary conditions. It can be chosen
in the following way:

w = ω(w) 1, u = ω(u) 2, v = ω(v) 3, ψx = ω(ψx) 4, ψy = ωψy 5,

(11)

where functions ω(u), ω(v), ω(w), ω(ψx), ω(ψy) are constructed by the RFM.
They have to vanish on those parts of the boundary, where the corresponding
functions u, v, w, ψx, ψy are equal to zero. Indefinite components
Φ i ∈ C2(Ω ∪ ∂Ω), i = 1, 2, . . . , 5 of the structure are presented as an expansion in
a series of a complete system (power polynomials). In order to check the reliability
of the obtained results in case of a complex geometry, let us change the size of the
domain in such a way that the domain will be close to a square. For example, let us
put Ô/2a = 0.48, d/2a = 0.48, h/2a = 0.1. A comparison of the obtained values

of buckling
!

Ncr = Ncr
100E0h

3 for the plate of the Type A and p = 0.5 with available
results [10–12] for the square plate is shown in Table 1.

The values of results are almost the same. As can be seen from Table 1, the
buckling load is slightly higher for the complex plate than for the square one, what
is in agreement with the physical meaning.

The values of the buckling load and the natural frequency"=ωL(2a)2
√
ρ0/E0/h

for a plate with geometrical parameters c/2a = 0.3, d/2a = 0.25 for Type A and B
are presented in Table 2. The power law exponent p is varied.

Table 1 Buckling load
!

Ncr (Al/Al2O3, E0 = 1 GPa, ρ0 = 1 kg/m3, Type A)

Ô/a = d/a Method Ratio of the thickness of layers h(1) − h(2) − h(3)

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0.96 RFM 3.673 3.961 4.104 4.210 4.398 4.603
1 RFM 3.667 3.958 4.101 4.205 4.392 4.597

[10] 3.6828 3.9709 4.1127 4.2185 4.4052 4.6083
[11] 3.6783 3.9676 1.1000 4.2162 4.4030 4.6076
[12] 3.5810 3.8581 3.9948 4.0964 4.2759 4.4711
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Table 2 Effect of the power law exponent p on the buckling load and the natural frequency FG
plate (1-2-1; c/2a = 0.3, d/2a = 0.25, h/2a = 0.1, E0 = 1 GPa, ρ0 = 1 kg/m3)

Type
!

Ncr," p = 0 p = 0.5 p = 1 p = 5 p = 10 p = 100

A
!

Ncr 9.915 7.205 5.966 3.905 3.560 3.245
Λ 2.375 2.080 1.919 1.599 1.537 1.477

B
!

Ncr 5.864 4.841 4.381 3.754 3.685 3.625
Λ 1.902 1.773 1.709 1.624 1.619 1.617

Fig. 2 Zones of dynamic instability (Type A)

Figure 2 shows zones of dynamic instability of the plate (Type A) for
different values of the static load. The ratio of layers thickness is taken as
h(1) − h(2) − h(3) = 1 − 2 − 1, power low exponent p = 1.

From Fig. 2 one can observe that static constituent of the load pst influences
essentially on placement and size of the instability regions. Increase of this
parameter causes to a shift of the instability domains toward the smaller values of
exciting frequency.

Figure 3 shows backbone curves for the plate (Type B) with the same ratio of
layers thickness, power law exponent p = 1. The effect of the static component of
the load on the behavior of backbone curves is investigated. It can be concluded
that all curves have the monotonically increasing character. The bigger values of the
static component of the compression load causes the bigger increasing the value of
ratio of nonlinear frequency to linear one.
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Fig. 3 Backbone curves of the plate (Type B)

5 Conclusions

The first time the R-functions theory and variational Ritz’s method are used and
developed to study buckling and parametric vibrations of three-layered FGM plates
with an arbitrary geometry. Considered specific examples of sandwich plates with
complex planform and different arrangement of layers compressed by load in
the middle surface demonstrate the possibility of application of the R-functions
theory to such class of problems. Effect of the layers thickness and arrangement
of the material and gradient index in power law on the buckling critical load and
frequencies of the plates are investigated. Instability regions and backbone curves
are presented for different value of compressing load.

Conflict of Interest The authors declare that they have no conflict of interest.

References

1. Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M., Carrera, E.: Stress, vibration and
buckling analyses of FGV plates—a state-of-art review. J. Compos. Struct. 120, 10–31 (2015)

2. Thai, H.-T., Kim, S.-E.: A review of theories for the modelling and analysis of plates and shells.
J. Compos. Struct. 128, 70–86 (2015)

3. Kumar, Y.: The Rayleigh-Ritz method for linear dynamic, static and buckling behavior of
beams, shells and plates: a literature review. J. Vib. Control. 24(7), 1205–1227 (2017). https://
doi.org/10.1177/1077546317694724

http://dx.doi.org/10.1177/1077546317694724


Parametric Vibrations of Functionally Graded Sandwich Plates with Complex Forms 77

4. Li, Q., Iu, V.P., Kou, K.P.: Three-dimensional vibration analysis of functionally graded material
sandwich plates. J. Sound Vib. 311, 498–515 (2008)

5. Lei, Z.X., Zhang, L.W., Liew, K.M.: Buckling analysis of CNT reinforced functionally graded
laminated composite plates. J. Compos. Struct. 152, 62–73 (2016)

6. Rvachev, V.L., Sheiko, T.I.: The R-functions in boundary value problems in mechanics. Appl.
Mech. Rev. 48(4), 151–188 (1995)

7. Awrejcewicz, J., Kurpa, L., Mazur, L.: Dynamical instability of laminated plates with external
cutout. Int. J. Non Linear Mech. 81, 103–114 (2016)

8. Awrejcewicz, J., Kurpa, L., Shmatko, T.: Analysis of geometrically nonlinear vibrations of
functionally graded shallow shells of a complex shape. Lat. Am. J. Solids Struct. 14, 1648–
1668 (2017)

9. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells. Theory and Analysis, 2nd
edn. CRC Press, Boca Raton (2004)

10. Zencour, A.M.: A comprehensive analysis of functionally graded sandwich plates: part 2—
buckling and free vibration. Int. J. Solids Struct. 42, 5243–5258 (2005)

11. Meiche, N.E., Tounsi, A., Ziane, N., Mechab, I., Bedia, A.A.: A new hyperbolic shear
deformation theory for buckling and vibration of functionally graded sandwich plate. Int. J.
Mech. Sci. 53(4), 237–247 (2011)

12. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Jorge, R.M.N., Soares, C.M.M.:
Buckling analysis of sandwich plates with functionally graded skins using a new quasi-3D
hyperbolic sine shear deformation theory and collocation with radial basis functions. J. Appl.
Math. Mech. 92, 749–766 (2012)



Nonlinear Oscillation of a FG Cylindrical
Shell on a Discontinuous Elastic
Foundation

Frederico M. A. Silva , Patrícia C. Rodrigues , and Paulo B. Gonçalves

Abstract The aim of the present work is to investigate the influence of the
elastic foundation discontinuities on the nonlinear response of a functionally graded
cylindrical shell with internal flowing fluid. The fluid is assumed to be inviscid and
incompressible and the flow, isentropic and irrotational. Nonlinear Donnell shallow
shell theory is used to obtain the nonlinear partial differential equations of motion
and the elastic foundation is described by the Pasternak model. Resonance curves
are obtained to identify the nonlinear forced behavior of the FG cylindrical shell
conveying fluid and surrounded by a discontinuous elastic foundation. Different
configurations of discontinuities of elastic foundation and axial fluid flow velocities
are considered, showing the influence of these parameters on the stable paths of
resonance curves.

Keywords Cylindrical shell · FGM · Partial elastic foundation · Nonlinear
vibrations

1 Theoretical Formulation

Typically, functionally graded (FG) cylindrical shells are composed of metallic and
ceramic materials varying through the shell thickness. In the last two decades,
several research works have been published on the dynamic behavior of FG
structures. Recently, a complete review of various theories for modeling and analysis
of FG shells has been presented [1]. In the literature, few research works evaluates
the influence of discontinuous elastic foundation in FG shells. Kim [2] investigated
the behavior of a FG cylindrical shell partially resting on elastic foundation at
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an oblique angle. The parametric analysis focused on the influence of the elastic
foundation stiffness and the oblique angle on the results. In another work Kim
[3] studied a FG cylindrical shell with discontinuous elastic foundation, exploring
the discontinuities along the circumferential angle and along the shell length [3].
However, both works were focused on the linear analysis. Thus, there is a lack of
information on the influence of a discontinuous elastic medium on the nonlinear
shell response.

Consider a simply supported circular cylindrical shell of radius R, length L, and
thickness h. The shell material is assumed to be elastic and isotropic with Young’s
modulus E, Poisson ratio ν, and density ρ varying its properties along the shells
thickness. The axial, circumferential, and radial coordinates are denoted by x, θ ,
and z, respectively, and the corresponding mid-surface displacements are denoted
by u, v, and w, as shown in Fig. 1. The shell is resting on an elastic Pasternak
foundation with reaction Pk and subjected to a time-dependent lateral pressure p
and a hydrodynamic internal fluid pressure PH.

The nonlinear Donnell shallow shell theory is used to obtain the nonlinear
partial differential equation of motion, which is given in terms of the transversal
displacement w(x,θ ) and Airy stress function f (x,θ ) by:

ρt ẅ+2η1ρthωẇ+η2
EMh

3

12(1−νM
2)

∇4ẇ+ 1
R
f,xx+ 1

R2

[
f,θθw,xx−2f,xθw,xθ+f,xxw,θθ

]

− 2
R
Mxθ,xθ −Mx,xx − 1

R2Mθ,θθ + PH − p + Pk = 0
(1)

where ρt is the average density, η1 and η2 are, respectively, the linear viscous
damping and the viscoelastic material damping coefficients.

Airy stress function reduces a system with three equations to one single equation
with two variables, w(x,θ ) and f (x,θ ). So it is necessary to obtain a second equation
to solve the problem. The compatibility and continuity conditions are obtained using
geometric compatibility equation for a plane deformation state. Using the relations
f,xx = Nθ , f,θθ = R2Nx and f,xθ = −RNxθ , it takes the form:

Fig. 1 (a) Geometry and system coordinates of a circular cylindrical shell. (b) Discontinuity
elastic foundation along the length. (c) External applied loads and the internal hydrodynamic
pressure
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(
2A12
R2c1

+ 1
R2A66

)
f P,xxθθ + A11

c1
f P,xxxx + A22

R4c1
f P,θθθθ= − 1

R
w,xx

(
w,θθ − 1

)+ 1
R2w

2
,xθ

+ A12B11−A11B12
c1

w,xxxx + A11A22B66−A11A66B22−A2
12B66+2A12A66B12−A22A66B11

R2A66c1
w,xxθθ

+ A12B22−A22B12
R4c1

w,θθθθ

(2)

where c1 is a constant defined as c1 = A11A12 − A12 and Aij, Bij and Cij (i, j = 1, 2,
6) are, respectively, the extensional, coupling and bending stiffness defined as:

{
Aij , Bij , Cij

} =
h/2∫

−h/2
Qij

{
1, z, z2

}
dz with Q11 = E

1 − ν2
,Q22 = Q11,

Q12 = Eν

1 − ν2
and Q66 = E

2 (1 + ν) (3)

The moment resultants for a FG cylindrical shell are obtained from stress-strain
relations and can be written as a function of displacements as Eq. (4). These
moments are used to evaluate the equation of motion in Eq. (1).

⎧⎨
⎩
Mx

Mθ

Mxθ

⎫⎬
⎭ =

⎡
⎣
B11 B12 0 C11 C12 0
B21 B22 0 C21 C22 0
0 0 B66 0 0 C66

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u,x + w,x2/2(
v,θ + w) /R + w,θ 2/2R2

u,θ /R + v,x + (w,xw,θ
)
/R

− w,xx
− w,θθ/R2

− w,xθ/R

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4)

In the present work, the variation of constituent materials across the FGM shell
thickness is given by a power law distribution, written as [5]:

VM(z) =
[(

1 − 2z

h

)(
1 + 2z

h

)]2N+1

VC(z) = 1 − VA(z) (5)

where VM and VC are, respectively, the volume fraction of metal and ceramic; z is
the distance from the shell middle surface, and N is the volume fraction index. The
Young’s modulus E, Poisson ratio ν, density ρ varies with the volume fraction as
P = (PM − PC)VM(z) + PC, where PM and PC are the material properties of the
metal and ceramic, respectively.

Pasternak model is used to evaluate the reaction of the surrounding medium Pk
on the cylindrical shell, described as Pk = (KW w + KP ∇2w) Hx, where KW and
KP are the radial and transverse stiffness of the spring layer, respectively; ∇2 is the
Laplace operator and Hx is the Heaviside step function in x direction, expressed as
Hx = H(x) − H (x − a) + H (x − b) − H (x − L). For Hx = 1, elastic foundation
becomes complete.
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The hydrodynamic pressure is described by [4]:

PH = ρFIn(qr)
(
ẅ + 2Uẇ,x + U2w,xx

)
/qI ′

n(qr) (6)

where U is the mean axial flow velocity, ρF is the fluid density; In is the modified
Bessel function of the first kind of order n; I ′

n is the derivative of In with respect to
the argument and q = mπ/L.

2 Numerical Results

Consider a simply supported cylindrical shell of radius R = 2 m, length L = 2 m,
and thickness h = 0.01 m. The FGM shell is composed of nickel and silicon
nitride, the metal and ceramic material, respectively. The nickel properties are:
EM = 2.051 × 1011 N/m2, ρM = 8900 kg/m3 and νM = 0.3 while the silicon
nitride are: EC = 3.222 × 1011 N/m2, ρC = 2370 kg/m3 and νC = 0.24. The
shell is subjected by a time-dependent lateral pressure with the same shape as the
fundamental vibration mode and is given by:

p(t) = PL sin (mπx/L) cos (nθ) cos (ωt) (7)

The nonlinear partial differential equation of motion, Eq. (1), is discretized
using a transversal displacement field which is obtained by applying a perturbation
technique [6] and describes the main modal couplings due to quadratic and cubic
nonlinearities. The obtained modal solution has five degrees of freedom and is
expressed by:

wp = W 11(t)h cos (nθ) sin (mπx/L)+W c
11(t)h sin (nθ) sin (mπx/L)

+W 13(t)h cos (nθ) sin (3mπx/L)+W c
13(t)h sin (nθ) sin (3mπx/L)

+W 02(t)h [(3/4)− cos (2mπx/L)+ (1/4) cos (4mπx/L)]
(8)

where m and n are the number of longitudinal half-waves and the number of
circumferential waves, respectively. Also, due to discontinuity of elastic foundation
along of longitudinal direction, additional linear vibration modes are considered to
better discretize the displacement field generated by this discontinuity in the axials
direction:

wd =
8∑

j=2,4,6

W 1j (t)h cos (nθ) sin (jmπx/L)+W c
1j (t)h sin (nθ) sin (jmπx/L)

(9)
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The obtained modal solution satisfy the following boundary conditions for a
simply supported cylindrical shell:

w = Mx = 0 at x = 0, L. (10)

A convergence analysis of the nonlinear response is conducted considering the
initial expansion described by Eq. (8) and an increasing number of modes in Eq. (9)
up to j = 8, as show in Table 1. The complete modal expansion corresponds to
Model X5. Adding the companion modes, the transversal displacement field has 13
degrees of freedom and is given by w = wp + wd.

Substituting the chosen modal expansion in Table 1 into the compatibility
equation, Eq. (2), and solving it analytically, a compatible stress function is
obtained. Substituting the obtained stress function and transversal displacement
expansion into Eq. (1) and employing the standard Galerkin method, a system
of ODEs in time domain with is obtained. The resonance curves are obtained
employing the continuation software “AUTO” [7]. The resonance curve relates the
magnitude of permanent nonlinear time response, for each modal amplitude, with
external excitation frequency.

The numerical results are obtained considering the following parameters: founda-
tion stiffnesses KW = 2.7 × 107 N/m2 and KP = 2.7 × 105 N, volume fraction index
N = 0.1, fluid velocity U = 20 m/s, magnitude of the lateral load PL = 5000 N/m
and damping coefficients η1 = 0.003 and η2 = 0.0001. It is important to notice
that all these chosen values for geometrical parameters, material properties, and
foundation stiffness were used as academic purposes. However these used values
allow us to evaluate qualitatively the influence of discontinuous elastic foundation
on resonance curves of FG cylindrical shells. Figure 2 illustrates the four types
of discontinuous elastic foundation considered in the analysis. The lowest natural
frequency for Cases A and D occurs for wave numbers (m, n) = (1, 7) and, for
Cases B and C, for wave numbers (m, n) = (1, 8).

Table 1 Proposed modal expansions for transversal displacements field

Model Modal amplitudes present in modal expansion
Number of
degree-of-freedom (K)

Model X1 W11(t), W11c(t), W13(t), W13c(t), W02(t) 5
Model X2 W11(t), W11c(t), W13(t), W13c(t), W02(t),

W12(t), W12c(t)
7

Model X3 W11(t), W11c(t), W13(t), W13c(t), W02(t),
W12(t), W12c(t), W14(t), W14c(t)

9

Model X4 W11(t), W11c(t), W13(t), W13c(t), W02(t),
W12(t), W12c(t), W14(t), W14c(t), W16(t),
W16c(t)

11

Model X5 W11(t), W11c(t), W13(t), W13c(t), W02(t),
W12(t), W12c(t), W14(t), W14c(t), W16(t),
W16c(t), W18(t), W18c(t)

13
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(a) (b) (c) (d)

Fig. 2 Variation of elastic foundation along the longitudinal direction. (a) Case A. (b) Case B.
(c) Case C. (d) Case D

(a) (b)

(c) (d)

Fig. 3 Convergence of resonance curves for (a) Case A, (b) Case B, (c) Case C and (d) Case D

Figure 3, where the normalized maximum modal amplitude (W11/h) is plotted as
a function of the normalized frequency parameter (ω/ω0), exhibits the convergence
of the resonance curves for each elastic foundation configuration as the number of
modes in Table 1 increases. It is shown Model X5 guarantees the convergence of
the response in all cases up to large vibration amplitudes. The participation of the
asymmetric terms on the nonlinear response is analyzed by plotting their maximum



Nonlinear Oscillation of a FG Cylindrical Shell on a Discontinuous Elastic Foundation 85

(a) (b)

(c) (d)

Fig. 4 Resonance curves for all cases of configuration of elastic base to linear vibration modes
(a) W12(t), (b) W14(t), (c) W16(t), and (d) W18(t). (Model X5)

vibration amplitude as a function of the frequency parameter (ω/ω0) in Fig. 4. Their
influence decreases as the number of linear modes increase. The maximum vibration
amplitude W12(t), considering all four cases of elastic foundation configuration, is
lower than 20% of the shell thickness, while the maximum vibration amplitude
W14(t), W16(t), and W18(t), reached approximately 10%, 2.5%, and 0.5% of the shell
thickness, respectively. Thus, model MX5 is used in all subsequent analyses.

Figure 5 presents in detail the obtained resonance curves of Fig. 4, using Model
X5, identifying clearly the stable and unstable paths, where LP means a limit points
bifurcation and BP, a flip bifurcation. The right column in Fig. 5 shows the frequency
range associated with each solution branch and where coexistent stable solutions
occur.

Cases A, C, and D display a softening behavior with two frequency limit points.
Along the resonant branch, for low values of the vibration amplitude a stable flip
bifurcation occurs and the resonant branch becomes unstable for higher vibration
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(a)

(b)

(c)

(d)

Fig. 5 Resonance curves and their respective diagrams for each stable and unstable paths for
(a) Case A, (b) Case B, (c) Case C, and (d) Case D of discontinuity of elastic base. (Model X5)
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(a) Time response (b) Poincaré sections

Fig. 6 (a) Time response for Case D in unstable region (ω/ω0 = 0.9883) and (b) the correspondent
Poincaré sections

amplitudes. The ensuing stable path (in blue) becomes unstable due to a saddle
node bifurcation with the subsequent unstable path connecting this point to the
upper saddle node bifurcation along the original resonance curve. This unstable
branch also exhibits a frequency limit point. Thus there are two points where
the slowly evolving system jumps to another attractor. Case B shows a slight
hardening behavior with the same bifurcation sequence. Case D, Fig. 5d, presents
a small frequency range where low order periodic orbits are not found by the
continuation algorithm, indicated as “unstable region.” Figure 6 shows the time
response and Poincaré sections for a frequency in this region (ω/ω0 = 0.9883),
where a nonperiodic solution is identified, Fig. 6a, as corroborated by the Poincaré
section, Fig. 6b.

3 Conclusions

In this work, the nonlinear behavior of FG cylindrical shells with internal flowing
fluid, resting on a partial elastic foundation, is investigated. Applying Donnell’s
nonlinear shallow shell theory, the resultant nonlinear partial differential equation
of motion is discretized as a set of nonlinear differential equations in time domain
by the application of standard Galerkin method. Convergent low order models are
obtained for different discontinuous foundation geometries, allowing a detailed
nonlinear bifurcation analysis of the shell in the main resonance region. The results
show that the foundation discontinuities have a palpable influence on the nonlinear
resonance curves and bifurcation sequences. The competing coexisting solutions
lead to dynamic jumps that may lead to stress peaks and shell damage. Thus a
detailed parametric analysis of this problem is necessary, especially in the design
of partially buried shells conveying fluid.
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Nonlinear Fracture Dynamic Analysis
of Double Cantilever Beam Sandwich
Specimens

Vyacheslav N. Burlayenko, Tomasz Sadowski, and Svetlana D. Dimitrova

Abstract Double cantilever beam interlaminar fracture toughness sandwich speci-
mens under different kind of dynamic loading and loading rates are investigated.
The nonlinear dynamic response of those sandwich specimens being fractured
during the test is numerically examined using the finite element method within
the ABAQUS™ code. In such virtual tests, the dynamic displacement and stress
fields are calculated and the components of the dynamic stress intensity factor
are extracted from the two-dimensional finite element solutions by means of the
interaction integral method. Cohesive finite elements are used for simulating the
dynamic fracturing of the specimens. The influence of inertia on interfacial crack
propagation in the specimens is evaluated as a direct outcome of the finite element
analysis.

Keywords Double cantilever beam · Face sheet/core debonding · Dynamic
fracture · Finite element analysis

1 Introduction

The interfacial debonding between the core and the face sheets arising due to either
manufacturing or in-service reasons is a damage often encountered in sandwich
composites. The debonding problem under dynamic loading is an important issue in
engineering applications of sandwich structural components [1]. It has already been
proved by both experimental and theoretical studies that due to debonding the vibra-
tion characteristics of sandwich composites are altered [2] and nonlinear effects
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appear in their dynamics [3]. Moreover, dynamic loads may provoke a debonding
propagation. That is dynamic failure of sandwich structures by debonding may
occur [4].

Since the debonding poses a threat to the structural integrity of a whole sandwich
construction, a considerable attention of the engineering community has been paid
to fracture mechanics methods. The latter are able to validate sandwich composites
in terms of damage tolerance and possible failure. In doing so, interlaminar
fracture toughness specimens are used to supply necessary information regarding
the fracture resistance of the material. One of the most commonly used experimental
methods for studying the mode I interlaminar fracture is a double cantilever beam
(DCB) sandwich specimen [5]. The fracture parameters such as stress intensity
factors (SIFs) or strain energy release rate (ERR) controlling a fracture process are
inferred from the test method. A literature search showed that experimental studies
on the analysis of interface cracks in DCB sandwich specimens are mostly limited
to quasi-static cases, because of a lack of reliable test set-ups for proper generating
and, then, accurate tracking a fast crack propagation [6]. Some existing analytic
results are confined by simple loading cases, e.g., in [7].

The aim of this research is to present an accurate and efficient finite element
model of the DCB sandwich specimen for predictions of a nonlinear dynamics of
sandwich composites in virtual fracture tests. The influence of dynamic loading on
the overall dynamic response and strength of the DCB sandwich specimen based
on this model is studied and discussed to gain a conceptual understanding of the
dynamic fracture phenomenon.

2 Formulation of the Model

A general dynamic framework of the finite element method (FEM) with cohesive
elements is used to formulate a model in the present work. Let us consider a two-
dimensional (2-D) continuum composed of two or more dissimilar materials. The
continuum contains a crack at one or more of material interfaces. At a time instant t ,
the medium occupies a space V with an external boundary ∂V , and the presence of
crack is associated with two internal surfaces ∂V +

c ∪ ∂V −
c = ∂Vc of the continuum.

We assume that the cracked medium is subjected to infinitesimal deformations.
Then, neglecting body forces and accounting for cohesive and contact forces along
∂Vc, the principle of virtual work can be stated as [4]:

∫
V \∂Vc

(σ : ∇δu + ρü · δu) dV +
∫
∂Vc

T · δΔdA+
∫
∂Vc

(tNδgN + tT · δgT ) dA−
∫
∂Vt

t̄ · δudA = 0

(1)
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for all kinematically admissible displacement fields δu and with prescribed displace-
ments ū at a boundary ∂Vu and traction t̄ at a boundary ∂Vt , where ∂Vu∪∂Vt = ∂V .
The Cauchy stress σ caused by the displacement field u is related to strains in
accordance with the linear elastic Hooke’s relations, whereas at the crack tip within
the surface ∂Vc with a normal nc, the cohesive zone reflecting fracture due to
material damage accumulation is invoked. The latter can be expressed by a bi-
linear constitutive relation between the components of displacement jump Δ and
the cohesive traction T = σ · nc across ∂Vc, which are associated with single-mode
loading (i = I, II ) for a 2-D case as follows [8]:

Ti =
kiΔi, Δi ≤ Δ0

i

(1 −Di)kiΔi, Δ0
i ≤ Δi ≤ Δfi

0, Δi ≥ Δfi ,
(2)

where Di =
(
Δ
f
i (Δi −Δ0

i )
)
/
(
Δi(Δ

f
i −Δ0

i )
)

is a damage variable for each

fracture mode. At the beginning of this traction-separation law (TSL), a linear
response is defined by a penalty stiffness ki ; the softening part starts from the value
Δ0
i , where the traction reaches a maximum normal or shear cohesive value T 0

i and,

then, it evolves linearly tillΔfi , where complete failure occurs. In the case of mixed

modes, an effective displacement jump Δm =
√∑M

j=1Δ
2
j , where M = I, II is

introduced. Consequently, all the fracture parameters of the TSL are to be expressed
in terms of equivalent mixed-mode values instead the pure mode components [8].
In doing so, we suppose the quadratic stress criterion for the fracture onset, and the
Benzeggagh–Kenane (B–K) criterion for the fracture evolution [9]. Nevertheless,
the knowledge of the pure mode components at the crack tip is a prerequisite to the
understanding of the material strength.

The near-tip stress field of an interface bi-material crack can be quantified by the
complex SIF, K = K1 + iK2 = |K| eiψ withK1 andK2 used instead ofKI andKII
adopted for homogeneous materials. This emphasizes a coupling between tensile
and shear stresses at the crack tip, which also oscillate depending on a distance r
from the crack tip and the bi-material constant ε because of the term riε , [10]. The
SIF components can be evaluated using the interaction integral method (IIM):

KM = H

2KauxM

IM, (3)

where H = (2 cosh2 πε)/(1/Ē1 + 1/Ē2) with Ēk = Ek for in plane stress and
Ēk = Ek/(1 − νk) for in plane strain, k = 1, 2; ‘aux’ stands for auxiliary factors
known from the asymptotic Williams type’ solutions; the 2-D domain interaction
integral IM for a straight crack growing in x1-axis direction is presented as [11]:

IM =
∫
A

{[
σ · ∂uauxM

∂x1
+ σ auxM · ∂u

∂x1

]
: ∂q1

∂x
− σ : εauxM

∂q1

∂x1
+ ρü · ∂uauxM

∂x1
q1

}
dA

(4)



92 V. N. Burlayenko et al.

where A is a domain enclosed by the contour around the crack tip; q1 is a weighting
function with values 0 and 1 within this domain.

In addition to the cohesive fracture, contact and friction along ∂Vc are also
parts of the solution. The normal tN = tNnc and tangential tT components of
the contact traction are interrelated with appropriate normal gN and tangential gT
gap functions of the displacement jump field Δ, [12]. Then, the impenetrability
and friction constraints imposed on ∂V +

c and ∂V −
c are expressed in terms of these

variables as the Karush–Kuhn–Tucker conditions:

tN ≤ 0, gN ≥ 0, tNgN = 0, ‖tT ‖ ≤ τcrit , ‖gT ‖ ≥ 0, (‖tT ‖ − τcrit ) ‖gT ‖ = 0.
(5)

Coulomb friction model assumes, τcrit = μtN and μ is the coefficient of friction.
In the context of the FEM, Eq. (1) is to be transformed to the discrete system of

equations with respect to nodal displacements {U} at a time instant t as:

[M] ¨{U}t + {Rint }t + {Rcoh}t + {Rcont }t = {Rext }t , (6)

where {Rint }, {Rext }, {Rcoh}, and {Rcont } are nodal internal, external, cohesive,
and contact forces, respectively; [M] is the mass matrix. Either central difference
explicit or Hilber–Hughes–Taylor (HHT) implicit time-stepping schemes available
in ABAQUS [9] are used for solving the system (6).

3 Results of Simulations

A DCB sandwich specimen of length of L = 270 mm and width of b = 10 mm
with a pre-existing debonding of length of a = 90 mm is considered. The specimen
consists of laminated face sheets of thicknesses of 2.4 mm and a foam core of
thickness of 50 mm which are bonded with a very thin glue layer. The specimen
is subjected to bending moments,M1 andM2 at neutral lines of the specimen arms.
The properties of the specimen constituents are summarized in Table 1.

Table 1 Material properties of the DCB sandwich specimen

Constituents Material constants

GFRP face sheet Ex = Ez = 16.5 GPa; Ey = 3.8 GPa; Gxy = Gxz = 1.3 GPa;
Gyz = 6.6 GPa; νxy = 0.05; νxz = νyz = 0.25;
ρ = 1650 kgm−3

PVC H 100 foam core Ex = Ey = Ez = 105 MPa; Gxy = Gxz = Gyz = 78 MPa;
νxy = νxz = νyz = 0.325; ρ = 100 kgm−3

G-VE/H 100 interface kI = kII = kIII = 100 GPa; GIc = 400 Jm−2;
GIIc = GIIIc = 500 Jm−2; T 0

I = 10 MPa;
T 0
II = T 0

III = 20 MPa
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A 2-D finite element model of the DCB specimen was developed using 8-node
reduced integration plane strain finite elements (CPE8R) available in ABAQUS. The
mesh contained a refinement of the near-tip region as shown in Fig. 1. Quarter-point
singular elements were placed around the crack tip to model square-root singularity.
The implicit dynamic analysis has been carried out. The ‘hard contact’ model and
frictionless conditions, associated with the constraints (5) have been tackled by
the penalty contact algorithm. For a stationary debonding, the dynamic SIFs were
computed by ABAQUS built-in IIM, while cohesive elements have been used to
simulate nonlinear dynamics of debonding growth.

First, the specimen is subjected to impact loading in the form: Mi = M0
i H(t),

where the moment amplitudesM0
1 = 1.512 Nm andM0

2 = −0.076 Nm inducing the
static ERR about 400 J/m2. Figure 2 shows the dimensionless DSIFs separated by
the IIM. A strong mixed-mode stress state due to a bi-material nature of the interface
crack is clearly seen. Also, the instantaneous loading leads to dynamic effects in the
DCB due to generated stress waves. The DSIFs exceed their static counterparts,
especially at the beginning of loading. Herewith, the mode II state prevails for the
first few milliseconds because the shear stress waves arrive at the crack tip faster
than the longitudinal ones, but later the major response is the mode I dominated
state. The picks and dips in the DSIF curves are related to the effects of reflected
and scattered waves interacting with the crack tip.

Second, the specimen under harmonic loading Mi = M0
i sinΩt with various

driving frequencies is considered. A long-term behaviour of the DSIFs is illustrated

Fig. 1 FE model of the DCB specimen: (a) FE mesh; (b) mesh refinement

Fig. 2 DSIFs, K∗
i (t) = Ki(t)b2√a/M0

1 due to step loading: (a) analysis time; and (b) a zoom
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Fig. 3 DSIFs, K∗
i (t) = Ki(t)b

2√a/M0
1 due to harmonic loading at a driving frequency: (a) ζ =

1/6; (b) ζ = 1/2; (c) ζ = 3/2; (d) ζ = 2

in Fig. 3, where the unsteady oscillations have been discarded. One can see that
the behaviour of the DSIFs highly depends on the driving frequency, accepted as
a fraction ζ = Ω/ω1 (1/6, 1/2, 3/2, 2) of the fundamental frequency ω1 of the
DCB. At the higher driving frequencies, the DSIFs have bigger amplitudes and
more complicated responses than at the lower ones. This could be attributed to an
additional contribution of stress waves generated from irregular contacts within the
debonded region as studied, e.g., in [13, 14].

The effect of impulsive loading on the transient DSIFs of the DCB is demon-
strated in Fig. 4, where different forms and rates of the loading impulses with the
same load amplitudes are examined. It follows from the plots that both the pulse
duration and the pulse form affects the DSIFs. All the pulses of very short durations
induced the near-tip stresses not exceeding those in the case of static loading.
The same situation has been revealed for the triangular and sinusoidal pulses of
relatively long durations. For these pulses, only the loading during 1 and 10 ms
results in the increasing of the dynamicK2 andK1, respectively, over the analogous
static SIFs. However, the rectangular pulse produces the DSIFs which are bigger
than analogous static ones and identical to the step load with increasing the pulse
duration. Thus, such pulses with abrupt ascending and descending paths of loading
are more dangerous in terms of the dynamic strength.
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Fig. 4 DSIFs, K∗
i (t) = Ki(t)b

2√a/M0
1 due to: (a–b) rectangular pulse; (c–d) triangular pulse;

and (e–f) sinusoidal pulse

Finally, to simulate the nonlinear fracture dynamics of the specimen, four-
node cohesive elements (COH2D4) satisfying the TSL (2) were inserted into the
finite element mesh of the DCB model, Fig. 1. Explicit dynamic analyses with the
frictionless hard contact model, handled by the kinematic contact algorithm [9]
have been performed. The debonding propagation under a step load with a linear
ascending path (a ramp time t0) of different slops is shown in Fig. 5a. It is seen that
the debonding increases with decreasing the ramp time, and for the shortest one a
disintegration of the specimen occurs. In the cases without fracture, the debonding
was extending with a relatively constant speed after a short time of fast growing.
Unlike this relatively stable debonding growth, the stick-slip debonding propagation
has been observed in the DCB under harmonic loading with a driving frequency
ratio, ζ = 3/2 as illustrated in Fig. 5b. Also, the simulations revealed that the
debonding was intensively growing when a mode II dominated regime took place at
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Fig. 5 Debonding propagation under: (a) impulsive loading; (b) harmonic loading

the crack tip of the DCB. Such the dynamic fracture behaviour during harmonic
loading could be explained by the generation of additional stress waves due to
contact. This is unlike fracture under impulse loading, where the stress wave effect
disappears after a while.

4 Conclusions

The FEM calculations revealed that there is a large dynamic effect in dynamic DCB
tests, primarily due to stress waves from both the loading and crack face contact.
Such waves interact with the crack tip and strongly affect the fracture parameters
and the debonding behaviour of the DCB sandwich specimens.
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Nonlinear Vibration Analysis
of a Sandwich Beam and Assessment
of the Dynamic Behavior

Airton Nabarrete, Eduardo Francisco Rocha de Araujo,
Jose Manoel Balthazar, and Angelo Marcelo Tusset

Abstract The aim of the current work is to discuss the dynamic buckling of a
sandwich plate, to identify the response signals, and to find the relevant frequencies
and amplitudes. The analyses consider the thin face-sheets of the sandwich plate
which are subject to in-plane compressive load lower than the estimated critical
value for the local buckling, but the plate is also subject to vibration in specific
frequency causing variation of the load amplitude. The dynamic variation of the in-
plane stress stiffening changes the natural frequencies representing the out-of-plane
modes dynamically. The nonlinear variation of the response for the out-of-plane
displacements is analyzed with the continuous wavelet transform (CWT) method
for characterizing this behavior.

Keywords Nonlinear vibration · Sandwich beam · Dynamic buckling ·
Dynamic behavior

1 Introduction

Light and very light slender structures are present in different industries, for
instance, in aerospace and aeronautic industries, since a high ratio of strength
and low weight are a necessity. Components as helicopter blades, satellite panels,
airplane control surface skins, upper and lower wing panels, leading edges, trailing
edges are among these light structures. These components are subject to different
nature of dynamic loading. One may realize a rectangular plate under in-plane
compressive load with value insufficient to cause a local instability of buckling
type. An additional compressive load due to vibration may yield the panel to buckle

A. Nabarrete (�) · E. F. R. de Araujo
Department of Aerospace Engineering, Instituto Tecnológico de Aeronáutica, São José dos
Campos, SP, Brazil
e-mail: nabarrete@ita.br

J. M. Balthazar · A. M. Tusset
Department of Electronic Engineering, UTFPR, Ponta Grossa, SP, Brazil

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), New Trends in Nonlinear Dynamics,
https://doi.org/10.1007/978-3-030-34724-6_11

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34724-6_11&domain=pdf
mailto:nabarrete@ita.br
https://doi.org/10.1007/978-3-030-34724-6_11


100 A. Nabarrete et al.

periodically. Thus, many structure parts may be subject to this dynamic compressive
loading. Furthermore, some natural frequencies change with the vibration. This is
the scenario to be studied.

The estimative of parameters that characterize this state and the answer to
vibration loading can help to prevent situations with loss of stability of the structure.
This phenomenon requires nonlinear dynamic analyses. It is observed that there are
equations with analytical solutions for some classical nonlinear dynamic problems,
usually for few degrees of freedom (DOFs). It is a challenge to consider a large
number of DOFs even for the solution or post-processing the nonlinear results.
Simplified tools as phase portraits diagrams and Poincaré Maps are not well suited
to evaluate these results.

1.1 Nonlinear Behavior

Sandwich plates composed by a honeycomb structure for the core and metallic
or laminated composites for the face-sheets are usually analyzed using simplified
theories or by the finite element method with accurate load predictions. The use
of soft core materials implies additional difficulties to the analytical analysis due to
large differences between face-sheet and core stiffness. In these cases, finite element
analyses with solid elements are usually used, but large number of elements must be
employed for a model with thin face-sheets and thicker core, since the aspect ratio
constraint raises the cost of the numerical solutions [1].

The model of a structural element is simplified to a sandwich plate with soft
core subject to in-plane compressive loads, as depicted in Fig. 1. The finite element
formulation is chosen for stability analyses in order to put some complexities in a

sandwich beam
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11,6mm
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2

A
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bottom face-sheet

upper face-sheet

11
,6

 m
m

10
 m

m

A

60 mm

Fig. 1 Specimen sandwich clamped at face edge and free in the others
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near future. Analytical models yet published in the literature are available [2]. The
in-plane compressive load in one direction and the small width of the symmetric
plate may allow the result comparison with analytical formulations of sandwich
beams [3, 4]. The compressive load is composed by a major value representing
the static in-plane equilibrium of the structural system. The vibration of the loaded
system is done by in-plane harmonic loads applied in the model [5]. Different load
values are applied in separated analyses.

The compressive load yields stress stiffening of the sandwich structure. The
estimative of parameters through linear analyses uses the static in-plane equilibrium
to characterize the level of stability, but it cannot prevent the dynamic response with
loss of stability for the structure [6]. The behavior of the structure when low values
of out-of-plane natural frequencies are achieved claims for a nonlinear stability
analysis and depending on the dynamic load level a nonlinear response is expected.

1.2 Model Description

A structural finite element model was built with hexahedral solid elements C3D8R
[7] to perform a dynamic simulation. The sandwich plate dimensions, constraints,
and loading are depicted in Fig. 1 and characterize it as a sandwich beam. Clamped-
free constraint conditions are considered for both ends of the sandwich beam with
constraints applied to top and bottom face-sheets. The dynamic axial loading N(t)
is applied on the free end of the beam, distributed on top and bottom faces. The
mechanical properties of the face-sheets, laminated with Carbon Epoxy AGP370-
5H/2501-6s, as well as, the core constructed with rigid foam Divinycell

®
H-200 are

tabulated by Daniel and Ishai [8].

1.3 Equation of Motion

Equation (1) expresses the equation of motion. [M], [D], and [K] are mass, damping,
and stiffness matrices which are constant for a linear analysis. {N(t)},{u},{u̇}, ¨{u} are
the in-plane dynamic load, displacement, velocity, and acceleration vectors.

[M] ¨{u} + [D] {u̇} + [K] {u} = {N(t)} (1)

Damping [D] is considered as proportional to the stiffness [D] = β [K]. Stiffness
[K] is constant for the linear elastic problem. This is the case for small displacements
and small strain. In this chapter, the stress stiffening and the curvature after
buckling are taken into account. Thus, [K] may be written as Eq. (2), where [Kelast],
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[Klarge], [KG] are elastic, large displacement, and geometric stiffness matrices,
respectively.

[K] = [Kelast] + [KG] + [Klarge
]

(2)

1.4 Buckling Problem

The variational formulation of the linear buckling of a sandwich plate requires the
minimization of a functional Π = U − �W, where U is the sum of the face-sheet
and core strain energies. �W is the change of the potential energy due to the applied
in-plane forces. The stress stiffening can be calculated for linear buckling analysis
and strongly affects the vibration frequencies of the sandwich structure with thin
face-sheets. Equation (3), represents the linear buckling problem, where [KG] is
the geometric matrix referring to a coupling between in-plane stress and lateral
displacements associated with bending [9].

[[Kelast] + λ [KG]] {u} = 0 (3)

Large compressive in-plane stress reduces the bending stiffness. One can con-
sider the calculation of natural frequencies for unloaded plate, as well as, for
stress-stiffened sandwich face-sheets. The buckling load is calculated as Pcr = λ N0,
where N0 is the arbitrarily chosen in-plane static load applied for both sandwich
face-sheets. This buckling load is used as reference for choosing the amplitude of
the harmonic excitation function. The first global buckling mode is considered, i.e.,
in Eq. (3) the buckling load is calculated as Pcr = 5433.2 N.

The free vibration problem includes the stress stiffening. In Eq. (4), ωi is the i-th
undamped natural frequency and {φi} is the i-th modal shape.

(
[K]elas + [KG] − ω2

i [M]
)
. {φi} = 0 (4)

The pretension load P is applied as proportional to Pcr. Thus, the ratio P/Pcr
varies from 0.1 up to 1.0. Figure 2 shows the linear buckling analysis for the
sandwich plate with variation of the three first natural frequencies as function of
the ratio P/Pcr.

1.5 Dynamic Loading

The dynamic excitation N(t) is described in terms of the ratio P/Pcr. Initially, the
compressive load varies from zero to 0.8 for P/Pcr, during a half second of time.
For the next half second, the load is kept constant (P/Pcr = 0.8). After that, a
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sinusoidal load with amplitude P/Pcr = 0.1 is added for more 2 s. The total time
of the numerical simulation is t = 3 s for this chapter. From one test to other the
excitation frequency changes looking at different dynamic responses. The dynamic
excitation is expressed by Eqs. (5), (6), and (7).

N(t) = 3.2 t Pcr, t ≤ 0.5 s (5)

N(t) = 0.8 Pcr, 0.5 < t ≤ 1.0 s (6)

N(t) = 0.8 Pcr + 0.1 Pcr sin (2πf t) , t > 1.0 s (7)

It is interesting to note that the natural frequency of the pretensioned sandwich
plate is f = 72.2 Hz considering the ratio P/Pcr = 0.9.

2 Results

Time responses are obtained from a nonlinear transient analysis of the finite element
model with the dynamic loading described above. The transverse displacement U3
of a sandwich plate node on the upper face-sheet is used in this chapter.

The buckling load of the sandwich plate, as well as, the undamped natural
frequencies for unloaded conditions and pretensioned vibration are calculated using
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Fig. 3 Transverse displacement U3: (a) f = 21 Hz; (b) f = 65 Hz; (c) f = 70.12 Hz

the finite element solver at Abaqus 6.5 [7]. In this chapter, an explicit time
integration scheme is used for the transient analysis. The nonlinear transient analysis
takes into account a nonconstant stiffness.

Figure 3 shows the transverse displacement U3 on the sandwich plate tip for
frequencies f = 21 Hz, f = 65 Hz and f = 70.12 Hz.

The responses in Fig. 3 show different behaviors of the sandwich plate depending
on the excitation frequency. It is important to note that for the three responses the
applied excitation has the same loading scheme with different harmonic frequencies.
The high level compressive in-plane load reduces the bending stiffness promoting
a transverse response with expressive amplitude. It is observed that the transverse
displacement is not always stationary after damping the transient response. Variable
amplitude is observed, in special for f = 70.12 Hz, as depicted in Fig. 3(c). In
this case, a large amplitude value is achieved. One may observe that the excitation
frequency is very close to the natural frequency for the pretensioned sandwich
beam. Also, a nonstationary response indicates possibly variable frequencies,
characterizing nonproportionality, i.e., nonlinearity.

The stress stiffening of the sandwich plate is considerable high and varies
with the dynamic loading. Therefore the bending stiffness reduction is variable
depending on the loading scheme, which implies in a variation of the natural
frequencies of the sandwich beam. As a matter of fact, this problem is related to
the parametric excitation equated by Mathieu–Hill [10].

The observation of the frequency contents of the time response is very useful
in vibration analysis. In this chapter, the understanding of frequency content
is necessary for a stability evaluation of the sandwich plate. The Fast Fourier
Transform (FFT) is a very used tool to verify the frequency components of the
time response. The magnitude and phase is obtained considering the frequency
resolution. This allows the identification of the frequency content of the response
considering a linear combination of harmonic functions with magnitude and phase
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in order to reproduce the original response. Figure 4 depicts the FFT for the
transverse displacement U3 on the sandwich plate tip for frequencies f = 21 Hz,
f = 65 Hz and f = 70.12 Hz.

Another method used to obtain the frequency contents of the time response is the
continuous wavelet transform (CWT) [11]. CWT is a function expansion, analogous
to a Fast Fourier Transform. Meanwhile FFT is based on a combination of harmonic
functions, and from these functions, amplitudes and phases are obtained, CWT
is based on combination of continuous time and space functions, not necessarily
harmonic ones. It allows an accurate local description of the signal of plate response
in this chapter, and it allows the separation of the signal characteristics. Also in this
chapter, the time response having transient and stationary behaviors is transformed
to obtain the frequency contents. These results are depicted in Figs. 5, 6, and 7.
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Table 1 Summary of frequencies calculated from FFT and CWT

Freq.
contents FFT 21 Hz FFT 65 Hz

FFT
70.1 Hz

CWT
21 Hz

CWT
65 Hz

CWT
70.1 Hz

f1 [Hz] 21.49 64.94 69.9 21.5 65.98 70.54
f2 [Hz] 42.5 129.9 140 43.26 131.7 139.8
f3 [Hz] 64 195.8 210 64.3 NaN NaN
f4 [Hz] 85.5 NaN NaN 87 NaN NaN

Table 1 presents a summary of frequency results obtained from FFT and CWT.
The excitation frequencies are 21, 65, and 70.12 Hz. The frequencies f1 as well as
the subharmonics f2, f3 and f4 are present. The response amplitudes for f3 and f4 are
very small in some cases if compared with the amplitudes for f1 and f2 (negligible).
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3 Discussion and Conclusions

A refined finite element model of the sandwich beam is constructed for getting the
necessary accuracy on nonlinear analysis response. In the analysis the response
of a clamped-free sandwich plate excited with compressive vibration loading is
evaluated. Transient results as displacements are obtained from the finite element
analysis. Due to stress stiffening, changes on the sandwich natural frequencies
are observed in Fig. 4 as function of the dynamic loading. Variable amplitude
and frequencies are observed, characterizing nonlinear behavior. A large change in
amplitude is observed for 70.12 Hz. Fast Fourier Transform (FFT) and continuous
wavelet transform (CWT) are used for characterizing this behavior [11], as showed
in Fig. 6. CWT and FFT transforms are used to obtain relevant frequencies. One
may observe different responses: harmonic frequency, as well as, subharmonic
frequencies, presented in parametric excited plate. Response frequencies were
captured by both FFT and CWT method. CWT provides additionally the time
frequency displacement visualization as shown in Fig. 7 that helps to identify abrupt
changes in frequency along the time event.

References

1. Nabarrete, A., Almeida, S.F.M., Hansen, J.: Sandwich-plate vibration analysis: three-layer
quasi-three-dimensional finite element model. AIAA J. 41(8), 1547–1555 (2003)

2. Abou-Rayan, A.M., Nayef, A.H., Mook, D.T., Nayfeh, M.A.: Nonlinear response of a
parametrically excited buckled beam. Nonlinear Dyn. 4(5), 499–525 (1993)

3. Sokolinsky, V.S., Nutt, S.R., Frostig, Y.: Boundary condition effects in free vibrations of
higher-order soft sandwich beams. AIAA J. 40(6), 1220–1227 (2002)

4. Yomayusa Agredo, C.E.: Análise estática de estabilidade e dinâmica não linear de vigas san-
duiche pelo método dos elementos finitos (In Portuguese). M.Sc. Thesis, Instittuto Tecnológico
de Aeronaútica (2009)

5. Yaffe, R., Abramovich, H.: Dynamic buckling of cylindrical stringer stiffened shells. Comput.
Struct. 81(8–11), 1031–1039 (2003)

6. Carbonara, W.: A theoretical and experimental investigation of nonlinear vibrations of buckled
beams. M.Sc. Thesis, Virginia Polytechnic Institute and State University (1997)

7. Dassault System Abaqus, release 6.5, Finite Element Software (2005)
8. Daniel, I.M., Ishai, O.: Engineering Mechanics of Composite Material. Oxford University

Press, New York (2006)
9. Cook, R.D.: Finite Element Modeling for Stress Analysis. Wiley, New York (1995)

10. Dwivedy, S.K., Sahu, K.C., Babu, S.K.: Parametric instability regions of three layered soft-
cored sandwich beam using higher order theory. J. Sound Vib. 304, 326–344 (2007)

11. Burrus, C.S., Gopinath, R., Guo, H.: Introduction to Wavelets and Wavelet Transforms.
Prentice Hall, Upper Saddle River (1998)



Dynamic Buckling of FGM Cylindrical
Shells Under Torsional Impact Loads

Jinghua Zhang, Shuai Chen, and Like Chen

Abstract According to the classical shell theory and considering torsional stress
wave, buckling of functionally graded material cylindrical shells under torsional
impact load are studied by the symplectic method. Considering the radial, circum-
ferential, and axial displacements of the shells, the original variables and the dual
variables are established. Then the symplectic method is introduced, which converts
the problem into obtaining the eigenvalues and eigenvectors in Hamilton system.
After that, the corresponding buckling loads and buckling modes are obtained
respectively relevant to the eigenvalues and eigensolutions via the bifurcation
conditions. Finally, the influences of material gradient and parameters of structural
geometry on buckling loads are analyzed and discussed.

Keywords Functionally graded materials · Cylindrical shell · Torsional impact ·
Dynamic buckling

1 Introduction

As composite materials, the properties of functionally graded materials (FGM)
change continuously and smoothly in a specific direction [1, 2]. The analyses of
the mechanical behaviors of FGM structures are more difficult than conventional
homogeneous structures. Up to now, considerable research works on the buckling of
the FGM structures have been published, but most of them are only limited to static
problems. For example, thermal buckling and post-buckling for the FGM plates
were investigated in [3–5]. Li et al. [6] and Zhang et al. [7] researched the buckling
and post-buckling of FGM Timoshenko beams and imperfect FGM plates.
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The research on dynamic buckling of the FGM structures is much fewer
compared to it on static buckling. The works of [2, 8, 9] investigated the dynamic
buckling of FGM thin cylindrical shells under axial compression, a longitudinal
constant velocity or thermal load. Additionally, two-dimensional analysis of FGM
partial annular disks subjected to radial thermal shock was presented by Mehrian
and Naei [10]. All of the above research uses traditional methods, such as the finite
element method, Galerkin method, etc. However, it is difficult to solve the complex
partial differential equations of the dynamic buckling problems using these methods.
In contrast, based on the symplecticity method in the Hamilton system [11], the
equations of structural stability will be easily solved by variable separation approach
and symplectic eigenfunction expansion. Xu et al. [12] studied the buckling and
post-buckling behaviors of homogeneous cylindrical shells based on the symplectic-
ity method. Sun et al. [13] studied the static buckling behaviors of FGM cylindrical
shells combined thermal and compressive loads by the symplecticity method, too.
They showed this method is very efficient and accurate in solving the problem of
structural stability.

To the best of the authors’ knowledge, few researches study on impact buckling
of FGM structures by the symplecticity method. Therefore, it is meaningful to exam
the torsional impact buckling of FGM cylindrical shells in Hamilton system. In
symplectic space, a canonical equation will be established, then buckling mode
equations and bifurcation conditions will be solved by analytical methods. Finally,
critical buckling loads and buckling modes will be obtained and discussed.

2 Mathematical Formulas

The thin-walled FGM cylindrical shell with length l, mid-surface radius R, and
thickness h is considered, which is fixed at one end and subjected to a torsional
impact load at the other end. A coordinate system (x, θ , z) is referred, in which the
x-axis coincides with the generatrix of the middle surface, measured from the left
end. θ is in the circumferential direction and z is in the transverse direction. The
corresponding displacements in the mid-surface are designated as u, v, and w. No
initial displacement or velocity exists at any point.

For the FGM cylindrical shell [14], the linear rule of mixtures is used to describe
the variations in material properties P [15, 16]; and the power law function is used
to describe the variation of volume fractions V1 and V2, expressed as

P = P1V1 + P2V2, V1 =
(
h− 2z

2h

)k
, V2 = 1 − V1 (1)

where k is the power law index used to quantify the inhomogeneous properties
of FGM. Since Poisson’s ratio μ does not significantly vary in material gradient
direction, so μ(z) is taken as a constant μ.
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2.1 Fundamental Equations

Based on the classical thin shell theory, the strains ε(z)xx , ε
(z)
θθ , ε

(z)
xθ at any point are

expressed as

ε(z)xx = εxx + zκxx, ε
(z)
θθ = εθθ + zκθθ , ε

(z)
xθ = εxθ + zκxθ (2)

where strains εxx, εθθ , εxθ and curvatures κxx, κθθ , κxθ on the middle surface are

εxx=∂u
∂x
, εθθ= 1

R

∂v

∂θ
−w
R
, εxθ= 1

R

∂u

∂θ
+∂v
∂x
, κxx= − ∂2w

∂x2
, κθθ = − 1

R2

∂2w

∂θ2
,

κxθ = − 1

R

∂2w

∂x∂θ
(3)

Considering linear elastic deformations, the constitutive equations are expressed
as:

σxx= E

1−μ2
ε(z)xx+ μE

1−μ2
ε
(z)
θθ , σθθ=

μE

1−μ2
ε(z)xx+ E

1−μ2
ε
(z)
θθ , σxθ=

E

2 (1+μ)ε
(z)
xθ

(4)

where σ xx and σθθ are normal stresses, σ xθ is shear stress.

2.2 Canonical Equations

Taking the geometric equations into account, the density of strain energy U of the
shell is expressed as

U = A
2

(
∂u
∂x

+ 1
R
∂v
∂θ

− w
R

)2 − (1 − μ)
[
A∂u
∂x

(
1
R
∂v
∂θ

− w
R

)
+ C ∂2w

∂x2
1
R2
∂2w
∂θ2

]

+ C
2

(
∂2w
∂x2 + 1

R2
∂2w
∂θ2

)2 − B ∂u
∂x
∂2w
∂x2 − B

R2

(
1
R
∂v
∂θ

− w
R

)
∂2w
∂θ2 − μB ∂u

∂x
1
R2
∂2w
∂θ2

− μB
(

1
R
∂v
∂θ

− w
R

)
∂2w
∂x2 − 2 (1 − μ)

[
B
R

(
1
R
∂u
∂θ

+ ∂v
∂x

)
− C

(
1
R
∂2w
∂x∂θ

)2
]

in which A = ∫ h/2
−h/2

E
1−μ2 dz, B = ∫ h/2

−h/2
Ez

1−μ2 dz, and C = ∫ h/2
−h/2

Ez2

1−μ2 dz are
stiffness coefficients. Assuming the shells under torsional impact loading, it is
expressed as

NT =
{
T 0 ≤ x ≤ Cet, t ≤ L/Ce

0 Cet ≤ x ≤ L, t ≤ L/Ce
(5)
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where Ce ≈
√
(1−μ)A

2I0
is wave velocity; I0 = ∫ h/2

−h/2ρ(z)dz is mass per unit area;
xe = Cet is elastic transverse wavefront position. Then the density of Lagrange
function can be expressed as

L = 1

2
I0

(
∂u

∂t

)2

+ 1

2
I0

(
∂v

∂t

)2

+ 1

2
I0

(
∂w

∂t

)2

− U −NT ∂w
∂x

∂w

∂θ
−NT ∂v

∂x
w

(6)

The torsional wave equation can be obtained by variation with respected to v

∂2v

∂t2
− C2

e
∂2v

∂x2 = 0 (7)

Define dimensionless variables X = x
R

, W = w
R

, α = AR2

C
, β = BR

C
, T = Cet

R
,

Tcr = NT R
2

C
. Introduce the original variables q =

{
q1

q2

}
=
{
W

ψ

}
and the dual

variables p =
{
p1

p2

}
= ∂L

∂q̇ =
{ −...

q 1 − q̇ ′′
1

q1
′′ − q̇2 + βq1

}
, where q̇ = 1

R
∂q̇
∂θ

, ψ = −q̇1,

q′ = ∂q
∂X

.
The canonical equation can be obtained by the Hamiltonian variational principle

⎧⎪⎪⎨
⎪⎪⎩

q̇1

q̇2

ṗ1

ṗ2

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

0 −1 0 0
− ∂2

x − β 0 0 1
− 2∂4

x − [2 (1 + μ) β] ∂2
x − β2 − α −Tcr∂x 0 ∂2

x + β
− Tcr∂x 0 1 0

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

q1

q2

p1

p2

⎫⎪⎪⎬
⎪⎪⎭
(8)

Introducing a state vector ϕ̇ = {q1, q2, p1, p2}T, then the canonical equation
becomes

ϕ̇ = Hϕ (9)

The solution of Eq. (9) is written as the following variable separation form

ϕ (X, θ) = ϕn(X)e
λnθ (10)

where λn is the eigenvalue of the function; ϕn is the eigenvector, and they satisfy the
following eigenequation

Hϕ = λnϕ (11)
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For the FGM cylindrical shell, the eigenvalue can be obtained from the sealing
condition ϕ (X, 0) = ϕn(X) = ϕ (X, 2π) = ϕn(X)e

2λnπ , expressed as

λn = in (12)

where i = √−1, the values of n are 0, ±1, ±2 . . . . For λn �= 0, the eigensolutions
ϕn(X) are nonzero. Solving Eq. (11) gives the eigenvector ϕ

ϕn = c1

⎡
⎢⎢⎣

eλ1X

− ineλ1X

inξeλ1X

ξ1eλ1X

⎤
⎥⎥⎦+ c2

⎡
⎢⎢⎣

eλ2X

− ineλ2X

inξeλ2X

ξ2eλ2X

⎤
⎥⎥⎦+ c3

⎡
⎢⎢⎣

eλ3X

− ineλ3X

inξeλ3X

ξ3eλ3X

⎤
⎥⎥⎦+ c4

⎡
⎢⎢⎣

eλ4X

− ineλ4X

inξeλ4X

ξ4eλ4X

⎤
⎥⎥⎦

(13)

where c1~c4 are constants; ξ j = λj
2 + β + n2; λj (j = 1–4) are solutions of equation

λ4 + 2
(
βμ+ i2n2

)
λ2 + 2T inλ+ α − i4n4 = 0 (14)

2.3 Bifurcation Conditions

Since the shell is considered to be fixed at one end, there are no displacement and
rotation, i.e., w = 0, ∂w

∂θ
= 0. By introducing the boundary conditions and continuity

conditions into Eq. (10), homogeneous algebraic equations are obtained. The
condition for buckling is the equations have nonzero solutions, and the determinant
of coefficient equals to zero

∣∣∣∣∣∣∣∣

1 1 1 1
λ1 λ2 λ3 λ4

eλ1Xe eλ2Xe eλ3Xe eλ4Xe

λeλ1Xe λeλ2Xe λeλ3Xe λeλ4Xe

∣∣∣∣∣∣∣∣
= 0 (15)

Using the above bifurcation conditions Eq. (15), the torsional buckling loads Tcr
for FGM shell buckling can be determined. After obtaining the buckling loads, the
corresponding buckling modes can be solved by Eq. (13).

3 Numerical Results and Discussions

In this chapter, FGM cylindrical shells are made from ceramic SiC and metal Ni.
The material properties of the constituents can be found in [17]. The Poisson’s ratio
is μ = 0.3.
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1, 1.84n T  2, 1.85n T  3, 2.55n T  4, 1.96n T  5, 2.14n T  6, 2.22n T 

Fig. 1 Buckling modes of the shells with different circumferential order (m = 1)

1, 2.84n T  2, 2.2n T  3, 2.69n T  4, 2.99n T  5, 2.97n T  6, 3.17n T 

Fig. 2 Buckling modes of the shell with different circumferential order (m = 2)

Table 1 Variation of
torsional critical loads with
circumferential order

n 1 2 3 4 5 6

Present 612.5 317.3 195 131.8 92.3 65.1
[18] 600 303.8 179.8 130.8 97.6 71.6

The torsional shock buckling modes of the shells with different wavefronts are
shown in Figs. 1 and 2. It can be seen that the buckling modes are different for the
wavefronts, the more the axial wavenumberm is, the larger the wavefront is. At the
same time, they are all local buckling that occurs in areas disturbed by stress waves.
Comparing with the torsional buckling modes of homogeneous cylindrical shell in
[18], it is found that the buckling modes of the homogeneous FGM cylindrical shells
are identical, that is, the material changes do not affect the mode pattern.

Let k = 0, FGM reduce to homogeneous material. Table 1 shows comparisons
between the torsional buckling loads of the homogeneous cylindrical shell calcu-
lated in this chapter and the corresponding results in [18]. It can be found the present
results are very close to the corresponding results in the literature, indicating that the
theoretical derivation and numerical calculation are correct and reliable. Since the
critical loads are obtained by numerically solving bifurcation conditions through the
Newton iterative method, some differences arise.

If not specified, the geometries of the cylindrical shells are chosen to be
h = 0.05 m, R = 1 m in the subsequent calculation. Table 2 gives the first sixth-
order buckling loads for different wavefronts. It can be seen from the table that
as the axial mode order increases, the buckling loads increase. And the longer the
wavefront is selected, the smaller the buckling load is.

Table 3 lists the first sixth-order critical loads of FGM shells with different
k when the circumferential wave is n = 4 and wavefront is T = 4. Figures 3
and 4 further show the variations of the first sixth-order circumferential and the
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Table 2 First sixth-order
buckling loads for different
wavefronts (n = 1)

m 1 2 3 4 5 6

T = 0.9 804 827 1570 1603 2835 2850
T = 1.3 687 720 1100 1112 1730 1752
T = 3.2 516 523 558 570 632 638
T = 4.8 509 513 526 531 557 559

Table 3 Buckling loads of FGM cylindrical shells with different axial waves (unit: N)

m 1 2 3 4 5 6

SiC 4.69 × 108 4.7 × 108 4.91 × 108 4.96 × 108 5.36 × 108 5.46 × 108

k = 0.5 3.87 × 108 3.91 × 108 4.11 × 108 4.19 × 108 4.56 × 108 4.62 × 108

k = 1 3.47 × 108 3.49 × 108 3.72 × 108 3.77 × 108 4.14 × 108 4.23 × 108

k = 2 3.08 × 108 3.09 × 108 3.33 × 108 3.35 × 108 3.74 × 108 3.8 × 108

k = 10 2.51 × 108 2.53 × 108 2.71 × 108 2.75 × 108 3.05 × 108 3.11 × 108

Ni 2.26 × 108 2.27 × 108 2.37 × 108 2.39 × 108 2.59 × 108 2.64 × 108

Fig. 3 Variations of the first
sixth-order circumferential
buckling loads with the
wavefront (m = 1)
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first eighth-order radial buckling loads with the wavefront. It can be seen that the
torsional buckling loads decrease as the order of the buckling modes increase.
Additionally, the buckling loads drop when the power law index k increases, i.e.,
the ability of the shells to withstand dynamic torsional loads decreases. This is due
to the fact that the constituents of the ceramics decrease with the increasing k. And
the longer the wavefront of the action is selected, the smaller buckling loads are.

Finally, the variations of critical buckling loads are presented in Table 4 with the
changes of k and some specified ratios γ representing ratios of radius to thickness.
When the wavefront is T = 4, the circumferential and axial orders are n = 4 and
m = 1, respectively. It shows that the critical buckling loads generally decrease as
the ratios of radius to thickness γ increase. This is because that the bending stiffness
decreases as γ increases.
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Fig. 4 Variations of the first
eighth-order axial buckling
loads with the wavefront
(n = 3)
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Table 4 The critical buckling loads for FGM shells with some specified ratio γ (unit: N)

γ 16 20 24 28 32

SiC 4.91 × 108 4.69 × 108 4.58 × 108 4.44 × 108 4.28 × 108

k = 0.5 3.82 × 108 3.87 × 108 3.8 × 108 3.68 × 108 3.51 × 108

k = 1 3.4 × 108 3.47 × 108 3.43 × 108 3.32 × 108 3.17 × 108

k = 2 2.99 × 108 3.08 × 108 3.04 × 108 2.91 × 108 2.84 × 108

k = 5 2.62 × 108 2.7 × 108 2.65 × 108 2.54 × 108 2.48 × 108

k = 10 2.46 × 108 2.51 × 108 2.47 × 108 2.42 × 108 2.3 × 108

Ni 2.37 × 108 2.26 × 108 2.21 × 108 2.14 × 108 2.06 × 108

4 Conclusions

In this chapter, the torsional impact buckling of the ceramic-metal FGM cylindrical
shell is investigated in Hamilton system by symplectic method. The canonical
equations are established, and a complete buckling mode space is given. The
relationship between the critical loads and the eigenvalues has been revealed, so
has it between the buckling modes and eigensolutions. It is found that the gradient
properties of FGM have significant effect on the buckling loads. The buckling
loads of the metal/ceramic FGM shells are intermediate to those of metal and
ceramic shells, and decrease monotonously with the increasing of power law index,
furthermore, the ratio of radius to thickness also have great influences on the critical
buckling loads.
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Nonlinear Dynamic Modeling for High
Temperature Superconductivity
in Nanocluster Topological Structures
on Solid Surface

Sergei M. Arakelian, Igor Yu. Chestnov, Alexander V. Istratov,
Timur A. Khudaiberganov, and Oleg Ya. Butkovskiy

Abstract We studied laser-induced nanocluster structures of different types in both
topology and the element compositions due to the nonlinear interaction of laser
radiation with the condensed matter taking into account the correlations in nanopar-
ticle ensemble by quantum states. The problem of both optical response and high
temperature superconductivity, due to topological surface structures with correlated
states, is under our consideration in the frame of nonlinear dynamic modeling
resulting, e.g., in the electronic Cooper pairs appearance. Random temporal and
spatial variations in selected topological parameters may result in large variations
of such functional properties. The analogy with nonlinear dynamics of system
under external noise takes place in the case. Quantum mobility of electrons over
different trajectories in the spatially inhomogeneous structures/nanocluster systems
is presented in accordance with the path integral-theory approach.

Keywords High temperature superconductivity · Nonlinear dynamics ·
Nanoclusters · Topology structures

1 Introduction

The achievements of modern nonlinear dynamics determine both the behavior and
universal processes in highly excited trigger-like systems of different types [1]. In
particular, they are used for predictive modeling of the development of phenomena
in many branches of physics and its applications [2]. Especially, this concerns
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the space-time description and forecast of consequences due to development of
complex nonlinear threshold interactions under laser radiation [3]. In fact, e.g., the
transformation of topological charge of optical singularities in both amplitude and
polarization characteristics is under intensive study at present time (see e.g., [4]).

In this aspect, for such specific objects as quantum units, the development of
nonlinear wave processes may be described in analogy with nonlinear dynamics
[5]. Therefore, it is of considerable interest to analyze the fundamental quantum
phenomena and their macroscopic manifestations in real experiments. We explore
these possible effects, in particular in electrophysics and optics, for nanostructured
systems with controlled topology induced by laser radiation.

However, in practical aspect, this requires a prior consideration of the technology
of synthesizing in a given direction such nanostructures in a laser experiment [6].
Our chapter is devoted to such type of interdisciplinary direction on the basis
of nonlinear dynamics achievements. We briefly review as well the nonlinear
dynamic modeling for necessary conditions in a high temperature superconductivity
problem for the thin film nanocluster topological structures on solid surface in
the above complex procedure. We are talking about the following approach being
implemented.

The physical properties of nanocluster systems are very sensitive to the form,
size, and distance/spatial distribution between their components. The fact is well
known for any material in general, but to change these parameters and carry
out the stable conditions for ordinary monolith solid objects we need to put the
objects under extremal conditions (cf. [7]). In contrast, nanocluster structures can
be easily modified in the necessary way in femto-nanophotonics laser experiments
(cf. [6]). They may be presented as a grid ensemble of a single-electron system
(with a certain effective mass meff) demonstrating a nonlinear quantum dynamic
behavior, and the nonlinear spectroscopic effects manifestation around the forbidden
gap occur. In superconductor problem, the main question is how to fabricate the
coupling states for charged particles being responsible for electroconductivity. For
a cluster system, we discuss some alternative mechanisms of electronic coupling
(in equilibrium states), but not via a standard Cooper phonon coupling only. In
our early experiments, we used a multilayer film formation by two-stage dynamic
nonlinear process: first, laser-induced nanoparticles arise in colloidal solution by
ms/ns-laser pulses (106–107 W/cm2) acting on the solid target in liquid; and second,
the creation of thin films due to laser deposition of nanoparticles from colloid
on a solid surface under cw-radiation. By such technique we obtained a dramatic
enhancement (in several orders) of electroconductivity due to the variation of
topological peculiarities of an induced nanocluster thin film system (cf. [8]). The
process may be interpreted as a nonlinear phase transition in topological structure
with bifurcations in functional properties.

Such hopping/bifurcation behavior in electrical conductivity is extremely impor-
tant for applications. Indeed, it allows one to realize two different states with a
controlled transition between them in a nonlinear system. This results in develop-
ment of new physical principles for creating of topological elements and devices for
modern photonics and nanoelectronics.
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2 Physical Basis and Reasonable Models

We obtained nanostructures and thin films with controllable topology under the
development of different nonlinear processes in the system: thermodiffusion, gas-
dynamic evaporation in pore-like structures with bubbles, ablation products, and
ballistic movement of the particles in liquid [6]. All these processes can be analyzed
in accordance with different nonlinear hydrodynamic regimes. We discuss both
some possible nonlinear mechanisms being responsible for a high electroconduc-
tivity and the features of obtaining a hopping conductivity in such inhomogeneous
thin film surface structures (with the thickness of up to 100 nm) when the charged
particles are propagating along the boundary surface of granulated structures.

In terms of discussion, first, it is obvious that electrophysics strongly depends on
the topology of nanostructured films on the solid surface. Such nonlinear electrical
transport properties are due to the quantum correlated states resulting in the tunnel
and hopping electrical conductivity. There is a competition between the bulk and
surface electrical conductivity contributions, controlled (to a great extent) by a
deposited cluster topology/temperature [9].

Second, optical spectra of thin films (produced layer by layer) result in some new
physical states of the system, particularly, in optical response (cf. [10]).

Below, we discuss the problems in different aspects with more details for the
nanocluster topology models mentioned above.

3 The Topology Cluster Shape Variations and Functional
Characteristics of the Objects vs Different Key Parameters

Different topological structures for nanoobjects, obtained by computer simulation
in arbitrary units in spherical coordinate system (R, θ, φ), were modeled by us.

From the very beginning, the shape of the body was spherical (radius R0) which
is perturbed by variation of some key parameters: the ratio of the values of both
azimuthal (k1) and zenithal (k2) distortions (0 ≤ k1 ≤ 1, 0 ≤ k2 ≤ 1, respectively);
as well as the number of distortions for the same parameters (p1 = 0, 1, 2, . . . ;
p2 = 0, 1, 2, . . . ).

In the case, a surface deformation model is defined by:

R (θ, φ)=R0

[
(1+k1 cos (θ) cos (p1φ))+
+ k2

(
(−1)

p2−1
2 mod (p2, 2) sin (p2θ)+ mod (p2+1, 2) cos (p2θ)

)
]
, p1 �= 0,

R0k2

(
(−1)

p2−1
2 mod (p2, 2) sin (p2θ)+ mod (p2 + 1, 2) cos (p2θ)

)
, p1 = 0.

(1)

We analyzed the following cases for the deformation parameters: k1 = k2 = 0.4
and p2 = 0, 1, 2, . . . ; p1 = 0, 1, 2. Soft Mathcad programming has been used for
the modeling.

Several selected results in accordance with formula (1) are shown in Fig. 1a.
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Fig. 1 (a) Several topological structures controlled by the key parameters (see text Eq. (1)).
(b) Spectra of deformed nanoclusters. The split energy levels are shown for different distortions
when we fixed k1 = k2 = α and variable magnitudes of p1, p2 (see Eq. (1)). Numerical parameters
are: valent electron density Ne = 40; Wigner–Seitz parameter rs = 2.1 (being ∼1/N1/2

e ); electron
effective mass m∗

eff = 1.4me = 0.708 MeV



Nonlinear Dynamic Modeling for High Temperature Superconductivity. . . 125

The energetic parameters, relying on the fact that the obtained nanoobject
complex structures result in the modification of the potential energy distribution
for quantum wells, can be discussed in a standard quantum mechanics approach.

In this case, the energy levels are split as follows (see Fig. 1b). We used
the simplest case in approximation of the first order linearization in the small
deformations vs geometric parameters which result in perturbation of the energy

levels as δEn,l,m =
2π∫
0

π∫
0

R0∫
0
ψ∗
n,l,m (r, θ, φ) δHψn,l,m (r, θ, φ) r

2 sin θdrdθdφ, where

n, l, m are the standard quantum numbers in the atomic spectrum of quantum system,
δH—perturbation of Hamiltonian, ψ—wave function.

We note that the transformations of the energy spectra (determined by depth and
width of the potential wells) become more significant for electrons especially at
higher energy levels. Therefore, the processes of their going beyond the cluster
boundaries of the potential wells occur. Then, the problem should be considered as
the travelling of electrons through the ensemble of potential barriers with different
parameters. However, it is now of fundamental importance for us, that the movement
of electrons in a nanostructured system under external voltage leads to electrical
conductivity (see Fig. 2a). Thus, the problem can be reduced to a dynamic model
of the electrons motion, being nonlinear in a general case (e.g., with a hopping
behavior) but we should latter discuss the problem in accordance with the path
integrals over quantum trajectories (cf. [11])—see below division 4.

Transmission optical spectra T for different conditions are shown in Fig. 2b.

4 Enhancement Electroconductivity Physics: Nonlinear
Dynamic Model

In the electrical conductivity for bound (Cooper) electrons (N), a spectral picture
determines the opportunity of the superconducting state, in principle [12]. There-
fore, it is possible that the two alternative processes be realized (the pair production
and their decay) with some certain ratios of the energy parameters for such systems.
As for semiconductors, we are speaking about the generation (production)—gN of
pairs and their recombination (decay)—rN in the presence of a forbidden band.

This problem can be reduced, e.g., to a well-known nonlinear dynamic Ferhulst
model of the growth of biological population [1, 2]. Thus, the nonlinear dynamics
of the emergency of the Cooper pair density (N) may be used in the frame of such
model.

The main recognized mechanism for the emergence of superconductivity is
considered to be the electron–phonon interaction [13], when the attraction arises
between two electrons under the influence of lattice vibrations. But in cluster system
the topological parameters may be responsible for the coupling [8].
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Fig. 2 (a) Volt-ampere characteristics of thin films vs the distance (S) between the conducting
islands and radius (R) of deposited particles; τ—time of laser deposition; H—thickness of the
thin film; W—distance between microcontacts. (b) Modeling the optical transmission spectra
of deposited bimetallic films for noble metal compositions Au:Ag (concentration 1:1): (1)
2R = 50 nm, one layer, the distance between the particles (gap)—5 nm; (2) 2R = 10 nm, five
layers, a gap—4 nm; (3) 2R = 10 nm, five layers, a gap—2 nm. The FDTD method has been used
for the modeling
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For studying a bifurcation in the system behavior under presence of fluctuations,
as in [2], the condition N > 0 occurs in respect of the some critical noise value σ 2

c —
see Fig. 3. In our case, it is a question of a specific topology structure in nanocluster
system being controlled by laser radiation.
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5 Electroconductivity in a Granulated Metallic Film
in Terms of the Path Integral-Theory Approach

Quantum mobility of electrons over different trajectories in a spatially inhomo-
geneous structure, i.e., in a nanocluster network system, may be presented in
accordance with the path integral-theory approach [11].

We analyzed the problem in frame of standard model of harmonic oscillator (with
frequency ω and quantum numbers l, m) in an external electric field E with an offset
(x − xlm) in the one-dimensional case.

Propagator K for the moving of charge particles between two space-localized
states with normal coordinates (q

′ − q′′) at the corresponding time points (t
′ − t′′) are

written in the form:

K = 〈q ′′∣∣ U (t ′′, t ′) ∣∣q ′〉 =
∫

exp

⎛
⎜⎝ i
�

t ′′∫

t ′
Ldt

⎞
⎟⎠Dq, (2)

with U as an evolution operator,Dq = 1
A

∏n−1
j=1

1
A
dq j
(
tj
)

is a path integral measure,
and Lagrangian L is represented in quadratic form:

L = 1

2

∑
l,m

{
x′2
2N

− ω2(x − xlm)2 + Ex
}
, (3)

where A—cross-section of the structure, N—number of the time sections due to
fragmentation of (t

′ − t′′)-interval (transfer matrix approach [14]).
Finally, our results for electrical conductivity in the simple model of Kronig–

Penney [7] are presented in Fig. 4. It depends on relationship between electron
energy (E) and Fermi-energy (EF). Region 1—shown on a small scale—is a
dependence in accordance with Ohm’s law. With a positive charge shift to the
right microcontact relative to the left one due to the applied voltage, the level of
Fermi energy (EF) on the left corresponds to the resonant level. This leads to a
significant increase in current (region 2). With a larger value of the charge bias,
the current stops flowing when the EF level falls below the edge of the width of
the conduction band. The result is a noticeable decrease in the current value with
increasing voltage, which corresponds to the emergence of a region of negative
differential resistance and/or a mode with significant current suppression (region 3).
With a larger value of the charge displacement, the current increases again as the
charge particles (electrons) acquire sufficient kinetic energy (region 4).
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Fig. 4 Different regimes of electroconductivity in cluster systems (for Kronig–Penney model of
superlattice—see on the right). Vertical axis—current I, horizontal axis—voltage U. The values of
the numerical parameters are the same as in Fig. 1b; EF = 6 eV

6 Conclusions

The main problem is how to determine the specific numerical values of the
control parameters of a nanocluster system relying on these general relations for
the achievement of the desired final result in the experiment. This requires a
detailed research (both in theory and in experiment) of the influence of nanocluster
topological parameters on the functional properties of the substances used. It is a
very complicated problem, and is still far from being solved.

Nevertheless, the observed phenomena give us an opportunity to establish the
basis of new physical principles to create the functional elements for topological
photonics in hybrid set-up (optics + electrophysics) being controlled by nonlinear
dynamic processes (cf. [6]). In fact, we have obtained in the experiment [8, 9]
several unusual effects, both in optical characteristics and in electroconductivity.
The study of the subject in the future should introduce to the analysis the methods
of the stochastic nonlinear dynamic approach based on exact data obtained from
experiment in the aspect of connection of topological parameters of nanocluster
system (in both space and time domains) with observed functional properties.

Acknowledgements The chapter was prepared within the framework of the state task of VlSU No
16.1123.2017/4.6, and was partially supported by the Ministry of Science and Higher Education
of Russia – Agreement No. 075-15-2019-1838.
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Nonlinear Dynamic Processes
in Laser-Induced Transitions
to Low-Dimensional Carbon
Nanostructures in Bulk Graphite Unit

Kirill Khorkov , Dmitriy Kochuev, Ruslan Chkalov, Valery Prokoshev,
and Sergei Arakelian

Abstract Development of nonstationary technique for the laser-induced functional
elements synthesis based on micro- and nanostructures in graphite samples is under
study. Carbon nanostructures such as graphene, nanopeaks, and crystals have been
obtained in our experiments. The nonlinear formation mechanisms of nanostructures
and microcrystals under femtosecond laser radiation for graphite in liquid nitrogen
are analyzed. Femtosecond laser pulses with high power allow achieving the local
transient conditions for the nonstationary material processing resulting in ablation,
sufficient modification of the structure, and/or changing of the phase composition
of the materials. Liquid nitrogen as a cryogenic and/or reaction liquid contributes to
additional fast cooling and stabilization of the fabricated micro- and nanostructures.

Keywords Femtosecond lasers · Nanostructures · Graphene · Carbon
microcrystals · Liquid nitrogen · Qualitative model

1 Introduction

Development of synthesis methods of functional elements based on micro- and
nanostructures is one of the most important and promising areas of modern
technologies. One of the manifestations of unique properties of carbon is the
presence of a large number of its crystal modifications, ranging from superhard
forms to various variations of graphite. Carbon nanostructures such as graphene,
nanotubes, and nanodiamonds are widely used in various fields of photonics, micro-
, and optoelectronics as the detectors of individual gas molecules [1, 2], the material
of supercapacitors electrodes with a high specific surface area and internal capacity
[3], the saturated absorbers [2, 4], etc.

Using intense laser radiation with ultrashort duration allows to reaching the local
conditions in the area of impact and sufficiently change the phase composition
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of the material, including dielectrics, semiconductors, and metals [5–7]. The use
of ultrashort-duration laser radiation is widely used for nanostructuring [8–11],
modification and processing of various materials [12, 13], thin films deposition,
production of colloidal solutions, and many others [14, 15]. Research and develop-
ment of new laser synthesis methods of nanostructures and microcrystals in liquid
nitrogen is an actual task of creating a modern element base of photonics, micro-,
and optoelectronics.

2 Experimental Technique

In our experiments, we used two femtosecond laser systems: Ytterbium laser system
(wavelength λ = 1030 nm, radiation pulse duration τ = 280 fs, pulse repetition
rate f = 10 kHz, pulse energy Emax = 150 μJ) and Titanium-sapphire laser system
(wavelength λ = 800 nm, radiation pulse duration τ = 50 fs, pulse repetition rate
f = 1 kHz, pulse energy Emax = 1 mJ). Surface processing of graphite was carried
out in liquid nitrogen, which covered it with a layer thickness of 10 mm. The laser
spot diameter was up to 100 μm. As the samples we used target of highly oriented
pyrolytic graphite HOPG-1,7-10 × 10 × 1 and glassy carbon GC-2000.

For experiments of processing and micro-nanostructuring of materials by ultra-
short laser pulses, a hardware–software laser complex was developed, combining
a number of required technical components and having a single interface for
controlling the component elements of the setup. Also the software was developed
and the scheme of precision controlled treatment by femtosecond laser radiation of
materials for the formation of micro- and nanostructures was implemented [16].

3 Physical Processes of Laser-Induced Carbon Structures
Formation

All currently known methods of obtaining graphene can be divided into two groups:
synthesis (chemical vapor deposition, obtaining graphene in the electric arc, the
epitaxial growing on the metal surface, etc.) and separation (micromechanical exfo-
liation of graphite, liquid-phase exfoliation of graphite the oxidation of graphite,
etc.). Today, there are many methods of liquid-phase graphene separation. Proposed
method is based on the intercalation of foreign atoms or molecules into the interlayer
space of graphite. As a result of the introduction of impurities weakens the energy
of interaction between the layers by increasing the distance between them [17].

Development the laser-induced graphene exfoliation method at the interaction
of femtosecond laser radiation with carbon samples in liquid nitrogen allows to
eliminate two serious drawbacks of existing implementations of the liquid-phase
separation method: duration of treatment and contamination by impurities. For
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graphene exfoliation in this method, laser photomechanical effects are used, which
are more pronounced, the shorter pulse duration of laser radiation. It is known that
rapid laser heating leads to appearance of strong thermoelastic stresses, so that the
front surface of the irradiated sample can spall in the area of femtosecond laser
radiation [6, 18]. Some thermal effects, accompanying laser exposure, prevent the
direct formation of nanostructures with clear boundaries, as shown by researches
in the field of interaction of laser radiation with carbon materials [19], including
nanostructuring. A strong smoothing effect has a slow cooling process of the
irradiated area and the impact of formed plasma plume.

In the interaction of ultrashort laser pulses with a graphite sample in a liquid
nitrogen medium, several variants of the course of the processes of structural
changes in the material can be identified (Fig. 1a). When the laser radiation power
is insufficient for laser ablation processes to occur, the photon energy is absorbed
by the carbon lattice and intercalated nitrogen. In view of the sharp increase in the
lattice vibrations and nitrogen molecules, weak interplane π-bonds break. Cleavage
of graphite layers occurs mainly on defects of the processed structure (cracks, chips,
and scratches, including dissimilar lattice defects in the form of gaps) conducive to
the penetration of liquid nitrogen molecules. Accordingly, increasing a number of
nitrogen atoms in the lattice of a material contributes to a more intense exfoliation
of graphene sheets.

Using intense laser radiation of ultrashort duration allows reaching the local
conditions in the area of impact and sufficiently changing the phase composition
of the material. Femtosecond laser radiation provides nonlinear ultrafast transfer
of target energy—laser energy is localized and absorbed by the substance; the use

Fig. 1 Schematic representation of the flow processes: (a) (1) liquid nitrogen, (2) carbon target,
(3) exfoliating graphene, (4) propagation front of vapor-gas region, (5) evaporated nitrogen, (6)
vapor-gas area, (7) front of high-pressure region, (8) high-pressure area (the heating of intercalated
nitrogen, laser ablation), (9) exfoliated graphene; (b) (1) liquid nitrogen, (2) vapor-gas area, (3)
near-surface layer, (4) formed carbon crystals, (5) carbon target, (6) the area of heat removal into
the volume of the material, (7) the region of subterranean overheating, (8) front of spreading/rising
pressure, (9) front of temperature propagation due to thermal conductivity, (10) evaporated nitrogen
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of liquid nitrogen as a cryogenic liquid accelerates the cooling process of sharply
heated target material and contributes to the stabilization of crystalline forms.

Processes, accompanied by a rapid increase in temperature and pressure, as well
as their rapid decrease, are highly unsteady. In this case, it is difficult to talk about
the carbon phase diagram, which makes sense only for equilibrium states. Under the
conditions of exposure accompanied by an additional laser-induced mechanism—
subsurface overheating of the substance, the formation of an intermediate metastable
state is possible. It is possible to form a local layer of liquid carbon at high
pressure, which makes permissible to synthesize crystalline carbon structures.
Subsurface heating up to several thousand degrees and the achievement of critical
pressure values during the action of laser pulses train allow creating nonequilibrium
conditions that initiate a phase explosion accompanied by the formation of single-
crystal carbon micro- and nanostructures. Rapid cooling is necessary to stabilize the
resulting forms.

Heating of the subsurface regions of the target from pyrolytic graphite and glass
carbon was successfully used to produce graphene. To achieve conditions sufficient
to change the phase composition of the material, experiments were carried out using
a more powerful femtosecond Ti:Sapphire laser.

Based on the experiments results [20], we can conclude about a sharp increase
in temperature and pressure, accompanied by a change in the phase composition
at a certain depth of the sample, followed by the expansion of the formed bulk
crystal structures to the surface. It can be assumed that the time of formation of
crystal structures is much longer than the time of exposure to a single femtosecond
laser pulse. The energy contribution from a single pulse is also insufficient for the
growth of such a structure, consequently, there is an energy accumulation in the
subsurface layer, stimulating the growth of crystals to a certain point (the expansion
of structures at the opening of the surface as a result of overcoming the threshold
of the pressure difference, a significant excess of stresses, etc.). It can be assumed
that some calculations [18] made for nanosecond laser ablation are also valid in our
case.

Figure 1b schematically shows the dynamics of physical processes at the
femtosecond laser exposure at carbon sample in liquid nitrogen. During the action
of a femtosecond laser pulse, energy is transferred to the electronic subsystem of
the material. The duration of this process is comparable to the laser pulse duration.
A photoelectron avalanche is formed, followed by energy transfer through electron–
phonon interaction. The growth of the stress state of the crystal lattice is caused by
the unsteady growth of temperature and pressure in the redistribution of electron–
phonon energy. The process of expansion of this area develops uniformly in all
directions relative to the conditional center, but this does not occur due to the highly
nonequilibrium conditions of the system. The growth of this area deep into the
material is limited by the “mobility” of the lattice due to the strong “cooling” of
the sample volume. Heat removal, in turn, is limited by the thermal conductivity.
The bulk expansion of the material into the liquid nitrogen medium is more intense
due to the lower density of the medium. Thus, in the direction of the medium
(liquid nitrogen), conditions are formed that contribute to the cooling of the sample
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surface (pressure drop, expansion of the material area into a less dense medium, heat
exchange with the medium, etc.). In the direction of the volume of the main material,
due to the small heat sink and the inability to expand deep into, the conditions for
a significant increase in temperature and pressure are formed, which in turn leads
to structural changes in the lattice of the material. The described mechanism of the
processes accompanying the energy exchange in the system correlates well with the
results of experimental studies.

4 Results

At the laser processing with Ytterbium system, the speed of movement of the
laser beam along the surface of the target was from 10 to 100 cm/s. Accordingly,
depending on the scanning speed of the beam, each region of the target surface
was exposed from 1 to 10 femtosecond pulses. Graphene splitting occurs at a laser
beam velocity of 25 cm/s, when the graphite surface is exposed to four laser pulses
(overlapping—75%). With a larger overlap, a strong destruction of the surface of
the target and at the same time an exfoliated carbon material begins [21].

Microscopic studies of the carbon material detached from the surface of HOPG
under the influence of femtosecond laser radiation confirmed the production of
graphene sheets of various shapes. Graphene tapes with a width of up to 50 μm
and a length of more than 150 μm have been identified, as well as graphene plates
of arbitrary shape with a characteristic size of more than 150 μm (Fig. 2b).

Graphene structures obtained by laser treatment of the surface of glassy carbon
have a fundamentally different shape (Fig. 2d). Graphene sheets form lumps with a
complex folded structure. Clumps with a characteristic size of the order of 1 μm are
recorded.

At the laser processing with Ti:Sapphire system, the scanning electron micro-
scope were revealed nanostructures and crystal structures of carbon in various forms
(Fig. 3). It should be noted that when selecting a sample (HOPG or glassy carbon)
similar types of nanostructures are formed. However, when processing a sample
of glassy carbon, an ordered formation of nanopics is observed (Fig. 3a). Arrays

Fig. 2 SEM images of graphene, formed under the action of femtosecond laser radiation on carbon
samples in liquid nitrogen: (a) graphene plates, (b) the edge region is highlighted and shown by an
arrow, (c) edges of graphene sheets, (d) crumpled graphene
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Fig. 3 SEM images of formed nanostructures on the surface of carbon samples: (a) glassy carbon,
(b) HOPG, (c) formation of pores on the surface

Fig. 4 SEM images of different forms of carbon crystal structures formed under the influence of
femtosecond laser radiation on carbon samples in liquid nitrogen

of nanostructures with characteristic sizes from 30 to 100 nm are obtained on the
surface of pyrolytic graphite modified by laser radiation.

At the modes of influence accompanied by the subsurface overheating of the
substance initiating phase explosion, formation of an intermediate liquid state is
possible. The effect of laser radiation on the sample leads to the separation of
sufficiently thick layers of pyrographite. Carbon nanostructures in the form of
nanopeaks and similar to them are registered on the surface of the target, released as
a result of the break of the surface layers. There were also found larger structures,
clearly having a crystalline nature with dimensions of the order of 1÷10 microns
(Fig. 4). The crystal structures registered after the laser-induced break of the surface
layer of glassy carbon also have comparable dimensions. This is much larger than
the size of nanodiamonds. Nevertheless, it can be assumed that the synthesis of both
nanodiamonds and larger crystals is based on general principles. First of all, it is
providing the necessary temperature and pressure. A more detailed examination of
the sample separation areas allowed us to see the places where the remains of the
surface layer cover some crystals and the space next to them. Removal of the surface
layer cannot be associated with traditional laser ablation. In this case, the material
must be removed from the entire surface within the laser spot. The remaining areas
of the surface layer indicate that its removal is more nonstationary. A subsurface
phase explosion can have this character [22].

The developed model of subsurface overheating allows making a qualitative
assessment of the temperature distribution in the volume of the material. The
temperature distribution as a result of energy transfer to the target material and the
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imposition of the thermal effect in the sample volume from a series of femtosecond
laser pulses is simulated. The simulation results confirm the phenomenon of
subsurface overheating. It is possible to adapt the model to different experimental
conditions and phenomena under study in accordance with the observed experimen-
tal data [23, 24].

The use of an additional term describing the spatial region ($x—the region near
the boundary at which the heat exchange between the sample and liquid nitrogen
occurs) in the simulation allows achieving such a balance of energies at which the
subsurface overheating occurs. $x-zone affects the temperature profile inside the
target.

Thus, the final formula in the form of the sum of solutions of the base scenario
and the summand of $x-zone is as follows:

T (x, t−τ) = T0 (x, t−τ)+ (2γ−1)
1

2a
√
π (t − τ)

∫ +∞

0
e
− (x+x

′+2Δx)
2

4a2(t−τ ) ϕ
(
x′) dx′

(1)

where ϕ(x) = (1 − R)I0αe−αx—the function forming a model initial condition, α—
absorption coefficient, γ—parameter of the distribution profile, $x—local area of
interaction and thermoexchange.

Figure 5a shows the time dependence of the temperature at some depth within the
sample. Figure 5b presents a graph of the temperature dependence on the depth of
the sample under the influence of a series of femtosecond laser pulses, constructed
in accordance with the proposed model.

In Fig. 5b digit 1 marked the temperature at which the possible phase transforma-
tion of carbon (melting). Upon reaching values of temperature 2 is the development
phase of the explosion, the formation of carbon crystals in particular. The digit
3 indicates the location of the zones of possible phase transformations at some
distance from the surface when the required temperature conditions are reached.

Fig. 5 Graphs of temperature versus time (a) and sample depth (b) when exposed to a series of
femtosecond laser pulses
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5 Conclusions

Formation of carbon nanostructures/microcrystals in liquid nitrogen under fem-
tosecond laser beams, as a complicated nonlinear process, was under study in
respect of both fundamental research and possible application in topological
photonics. Obtained controllable low size structures have a perspective for creation
of different functional elements. Physical processes are described and possible
mechanisms of graphene layers splitting under the influence of femtosecond
laser radiation in liquid nitrogen are proposed. The mechanisms of single crystal
formation consisting in subsurface overheating under laser action on carbon samples
in liquid nitrogen are described and confirmed by experimental data and simulation
results.
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Electromechanical Characterization
of an Electrospun Piezoelectric
Microfiber

Krishna Chytanya Chinnam, Arnaldo Casalotti, Edoardo Bemporad,
and Giulia Lanzara

Abstract In this chapter, the influence of the electrical and mechanical coupling
on the dynamic response of an electrospun piezoelectric microfiber is investigated.
Particular focus is given to the fiber response dependence on the applied voltage. A
frequency shift of the order of 5–9% in resonance frequency is observed when the
microfibers are actuated with an alternating field. It is believed that this observed
shift toward higher frequencies is related to the increasing alignment of polar
crystallites that probably increases the polymer stiffness. This result highlights the
possibility of making materials characterized by tunable stiffness and resonance
frequency.

Keywords PVDF (polyvinylidene fluoride) · Microfiber · Actuation · Primary
piezoelectric fiber resonance · Frequency shift · AC voltage excitation

1 Introduction

Piezoelectric sensors and actuators are widely used in several industrial fields
(e.g., energy harvesting, structural health monitoring systems, morphing materials,
stretchable sensors) thanks to their interesting electromechanical properties. While
piezo-ceramics have the disadvantage of being stiff and brittle, their polymeric
competitors are characterized by ultrahigh flexibility and lightness. For this reason,
they are considered among the best candidates wherever large deformations cou-
pled with low weight represent key application-driven requirements. Electrospun
(PVDF) piezoelectric membranes represent the frontier in this field (see e.g.,
[1–7]).

While standard processes typically require a time-consuming polarization step
that follows the material fabrication, in the electrospinning case this step is not
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necessary. In this process the membranes are formed by nano/microfibers that are
spilled-out of a needle under high electric fields. During this electric flight the
fibers turn out to be stretched forming membranes that are readily intrinsically
polarized as the non-electroactive α phase transforms into the electroactive β phase
[8] demonstrated with the help of Fourier-transform infrared spectroscopy (FTIR)
[9]. The remnant polarization (Pr) is a critical parameter which dictates the realistic
piezo response of the material upon removal of the electric field. Pr was assessed
with the help of well-known ferroelectric hysteresis curves [10]. These interesting
PVDF membranes have mostly been actuated with DC input voltages; however, their
usage under dynamic conditions (e.g., ultrasound sensors/actuators [11]) requires a
thorough understanding of the material response under AC inputs.

PVDF membranes are often made of an aggregation of randomly distributed
nano/microfibers formed during the electrospinning process. This implies the need
to understand the response of the single fibers and then understand how these
fibers interact with each other as an ensemble. The electromechanical properties
of single electrospun PVDF fibers and of fiber bundles were characterized in
a previous work by the authors for actuation applications [7, 8]. It was found
that the response to an electrical stimulus on a bundle of fibers is a collective
response of all fibers forming the bundle. An extensive experimental campaign
was conducted in [12, 13] to study the actuation capability of single electrospun
PVDF fibers fabricated with a direct-write method. Single poly[(vinylidenefluoride-
co-trifluoroethylene] (PVDF-TrFE) fibers were also investigated with respect to
their sensing capability and in terms of their intrinsic dielectric properties [14,
15]. Localized electromechanical interactions of single PVDF-TrFE fibers have also
been investigated using a scanning probe microscope [16]. The mechanical and
acoustic (sensing) properties of single PVDF fibers were also investigated [17, 18].

To the authors’ best knowledge, despite the large effort in understanding the
response of single PVDF fibers, no studies have been performed so far with respect
to the actuation capability of a single fiber under dynamic AC inputs. In this work,
the response of a single PVDF fiber under an alternating electric field is investigated.

2 Fabrication Process and Test Setup

Piezoelectric PVDF mats were fabricated via electrospinning. The electrospinning
process parameters were tuned to control the diameter of the single fibers. A
21 wt%–25 wt% of PVDF in DMAc/Acetone, flow rate 0.08 mL/h and needle tip
to collector distance 15 cm were adopted as process parameters. It is worth to note
that the main parameter governing the fiber diameter is the solution concentration.
In this case, the 21 wt% leads to a 65 μm, while the 25 wt% leads to a 75 μm fiber
diameter.

Once the fiber mats were prepared, single fiber samples were manually extracted
and installed on a testing rig that was specifically designed for this scope, see Fig. 1.
The rig consisted of a highly insulating and robust Teflon plate comprising holes
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Fig. 1 Schematic of the test
setup (top) and actual picture
(bottom) to study the
frequency response of a
constrained PVDF fiber by
actuating it via an alternating
voltage signal

of different diameters. The fibers were placed across the diameter of the holes and
then the electrical connections were realized using copper wires and conductive
tape. The wires and the conductive tapes were carefully insulated using a duct tape.
This reduced any loose connections and it very well supported the fiber from pre-
stretching.

The free length of the fiber was defined by the hole of the Teflon substrate
and in this case two different measures were selected: 3 mm and 10 mm for the
75 μm and 65 μm fibers, respectively. Moreover, the fixing system adopted for the
electrical connections can at the same time provide the mechanical retaining system,
resembling a clamped-clamped configuration.

As previously mentioned, the focus of the present work is to investigate the
behavior of the single fibers under dynamic loading conditions, with the final
objective of studying their sensitivity to applied voltages and frequencies. To this
aim, the fiber is connected to an external signal generator, providing the AC input
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at selected voltages and frequencies. The top part of Fig. 1 depicts a schematic
diagram of the test setup that was used for the electromechanical characterization,
while the bottom part shows a picture of the actual setup. An electric field was
applied across the fiber length that directly activates a bending motion with ensuing
vibrations in the vertical direction. A laser scanning vibrometer allows to focus
directly at the center of the fiber and detects the velocity of the point subject to the
highest deformations. The following section discusses the results of the experiments
in detail.

3 Results and Discussion

Fiber mats with a diameter of 7–8 cm were obtained by electrospinning for 3 min.
Figure 2 shows the obtained mat (a) and its corresponding microscopic image (b).
It is observed that the microstructure formed by the fibers is coherent with the
literature [8, 10] where a similar fabrication process was adopted.

Fig. 2 Fabricated PVDF fiber mat (a) and its microscopic image (b). Microscopic images of the
electrospun PVDF fibers of the two adopted diameters, 65 and 75 μm (c, d)
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The tuned process parameters delivered fibers characterized by a diameter of
65 μm and 75 μm. These sizes were chosen to be compatible with the spot size of
the laser in order to allow an accurate monitoring of the out-of-plane displacement.
Single fibers were then extracted from the mat and analyzed under an optical
microscope, see Fig. 2c, d, showing a good quality of the fibers without any
significant imperfections. The study of the dynamic behavior of the manufactured
microfibers is mainly focused on their flexural motion induced by the piezoelectric
effect. A voltage is driven through the fiber length thus inducing flexural vibrations
in the vertical plane in agreement with the fiber morphology. The main objective
is to investigate the sensitivity of the fibers to the applied voltage and the selected
frequency in ambient environment.

Preliminary tests are performed to identify the first flexural vibration mode of the
microfiber. The resonance frequencies are identified by inducing a free vibration to
the microfiber which was done by applying an impulsive load. The results are shown
in Fig. 3, where the acquired time history is reported together with the Fast Fourier
Transform (FFT) of the signal. The test is conducted on fibers with different lengths
and diameter to highlight the effects that geometry can induce in the response. The
first natural frequency, f0, turned out to be ∼ 2.3 kHz and 1.2 kHz for the 3 mm
and 10 mm long fibers, respectively. The definition of the main natural frequency

Fig. 3 Time history (a, b) of free vibration test and corresponding FFT (c, d) on the single PVDF
fiber to obtain the resonance frequency of the fiber. Left part: 3 mm fiber. Right part: 10 mm
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Fig. 4 Time history (a, b) and corresponding FFT (c, d) of forced vibration test on the single
PVDF fiber, by applying sinusoidal voltage (20 V peak-to-peak) at three selected frequencies close
to the resonance condition, namely, (2.134, 2.650, 2.870) kHz. Left part: 3 mm fiber. Right part:
10 mm fiber

allows to properly set the frequency bandwidth in which the fibers can be excited
and experience a primary resonance when subject to an electromechanical external
excitation.

As shown in Fig. 4, the fibers are subjected to a sine wave signal with fixed
amplitude equal to 20 V (peak-to-peak) while the frequency is varied around the first
natural frequency. Though a significant noise is affecting the quality of the signal,
it can be noticed that when a sinusoidal voltage is applied to the fiber it experiences
harmonic oscillations with an amplitude that is strictly related to the voltage, but
also to the selected frequency. The results allow to observe that the response of the
fiber experiences an increase in amplitude as the applied frequency, f, approaches
its natural frequency, thus resulting in a primary resonance condition. It is observed
that the frequency of oscillation is equal to that of the applied signal without any
lags or losses in time domain while the electrical energy is being converted into the
mechanical energy.

The test is extended by performing a refined frequency sweep at different applied
voltages and the results are illustrated in Fig. 5 for the 3 mm fiber and in Fig. 6 for the
10 mm fiber, respectively. The selected voltages are set in the range 5–20 V (peak-
to-peak) while the frequency bandwidth is extended to [0.75–1.30] f0. As observed
in the previous test, the response of the fibers increases when the applied frequency
approaches f0, giving rise to a primary resonance.
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Fig. 5 Frequency response curves of the 3 mm long PVDF fiber by applying a sinusoidal voltage
at different amplitudes (5–20 V)

Fig. 6 Frequency response curves of the 10 mm long PVDF fiber by applying a sinusoidal voltage
at different amplitudes (5–20 V)

Moreover, a considerable shift in the resonance frequency is also observed: the
resonance frequency corresponds to f0 at very low voltages, but as the voltage
increases the resonance condition is achieved at different frequencies. As shown
in Fig. 5, the 3 mm fiber experiences a slight decrease of the resonance frequency
at 10 V and then shifts toward higher frequencies at larger voltages. The overall
frequency shift range is around 9%. On the other hand, the response of the 10 mm
fiber experiences directly an increase of the resonant frequency with a final shift
of around 4.5% increasing applied voltage. This shift can be attributed to the
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increased orientation of polar crystallites due to the additional charges induced into
the polymer when the amplitude of the AC input increases. Due to this effect the
polymer probably stiffens and this is observed as a shift in the resonance frequency
at higher fields.

There are a lot of factors that are affecting the whole measurement. The
measurements were done in atmospheric conditions and it was observed that air
flow, background noise, temperature, humidity, etc., have an influence on the fiber
response. Further studies will be performed in controlled environment to avoid the
influence of external factors on the microfiber response.

4 Conclusions

The results of the conducted experiments revealed a strong sensitivity of the PVDF
fibers to the applied voltage. The increase in excitation amplitude causes a variation
in the material response that leads to a shift in the resonance frequency. This
response is probably related to the increasing changes in crystallites orientation with
increasing voltage, which, as a result, increases the fiber rigidity.
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On Modeling of Springless
Electromagnetic Energy Harvesters

Ramy A. Mohamed, Ayman El-Badawy, Ahmed Moustafa, Andrew Kirolos,
Mostafa Soliman, and Eihab M. Abdel-Rahman

Abstract We present an analytical model of an electromagnetic levitation energy
harvester and validate it by comparing its result with FEM simulations and
experimental measurements. The model is based on dipole-moment approximations
of magnetic fields and interaction forces. The level of agreement of both models
with measurements is discussed.

Keywords Energy harvesting · Electromagnetic

1 Introduction

Electromagnetic energy harvesting has been used to power a wide-range of devices,
such as mobile electronics, wearable devices, and biomedical implants [1, 2].
Accurate modeling of energy transduction is essential for practical harvester design,
but challenging because of the highly nonlinear nature of magnetic fields and
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forces. In this paper, we assess two modeling approaches and compare them with
experimental measurements from a fabricated electromagnetic energy harvester.
The first approach utilizes the analytical point-dipole model of magnets widely
adopted to describe magnetic fields. It allows us to calculate the interaction forces
between the magnets as well as the coupling factor of the harvester. The second
approach uses a finite element model and simulates the energy harvester in the
commercial package COMSOL Multiphysics to calculate the magnetic interaction
forces, seismic mass displacements, and output voltage.

2 Electromagnetic Energy Harvester

The energy harvester, depicted in Fig. 1, is composed of two identical magnets fixed
at the top and bottom of a tubular track and a freely moving cylindrical magnet
with radius rm and height hm acting as seismic mass m. The polarity of the three
magnets is set such that the end magnets exert repulsive restoring forces on the
moving magnet as it translates along the track. A coil made of copper wire with
radius rw is wound around the tube to make Nx turns in the axial direction and Nr
turns in the radial direction.

As external vibrations y(t) move the tube in a vertical direction aligned with
gravity, the seismic mass moves by x(t) inside the tube with respect to the center
point along the tube axis at rest. This movement creates a varying magnetic field
with respect to the coil, which in turn induces voltage across its terminals. The
design parameters of the fabricated harvester are listed in Table 1.

Fig. 1 A schematic of the
electromagnetic energy
harvester showing the field
lines computed using the
point dipole-moment model
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Table 1 Harvester design
parameters

Parameter Value

Track length L 46 mm

Moving magnet radius rm 9.525 mm

Moving magnet height hm 12.7 mm

Seismic mass m 27 g

Fixed magnet radius 2.38 mm

Fixed magnet height 2.38 mm

Residual magnetism (N40) 1.275 T

Copper wire radius rw 0.075 mm

Coil outer radius 18.5 mm

Coil inner radius 12.5 mm

Coil height 8.5 mm

Number of turns N 2200

3 Analytical Model

The dynamics of the energy harvester can be reduced to the rigid-body motions
of the moving magnet under the gravitational field, the magnetic fields of the end
magnets, and the electromagnetic field of the coil. The equilibrium position of the
seismic mass under the resulting force is shown in Fig. 1.

When the harvester casing (tube) experiences an acceleration ÿ(t), the suspended
mass will oscillate with an acceleration ẍ(t) both are with respect to a fixed frame
of reference [3]. The relative displacement of the seismic mass with respect to the
tube, can therefore be written as the difference between the absolute displacements
of the tube and mass:

z(t) = x(t)− y(t). (1)

Similarly, the equation of motion of the seismic mass can be written in terms of the
relative displacement as:

mz̈+ (bm + be(z)
)
ż+ Fms +mg = −mÿ, (2)

where Fms is the resultant restoring force applied by the two end magnets to the
seismic mass, bm is a viscous damping coefficient representing mechanical losses,
and be is an electrical damping coefficient representing the energy dissipated by the
Lorentz force imposed by the coil and is expressed as

be(z) =
(

dφ
dz

)2

Rc + RL , (3)

where Rc is the coil resistance, RL the load resistance, and φ the magnetic flux [4].
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3.1 Magnetic Restoring Force

Permanent magnets can be modeled as magnetic dipoles [5] located at the magnet
center. The magnetic flux density of a dipole with a moment mp, expressed in
cylindrical coordinates, is

Bζ (ρ, ζ ) = μ◦
4π

2ζ 2−ρ2

(ζ 2+ρ2)5/2
mp (4)

Bρ(ρ, ζ ) = 3μ◦
4π

ζρ

(ζ 2+ρ2)5/2
mp, (5)

where (ρ, ζ ) are the radial and axial coordinates, respectively. Accordingly, Bζ
and Bρ represent the flux densities in the axial and radial directions, and μo is the
permeability of free space. The magnetic field is computed and visualized as shown
in Fig. 1. The interaction potential energy between another magnet, with magnetic
moment mf , and this magnet is given by

U = Bf · Bp = μ◦
4π

2ζ 2 − ρ2

(ρ2 + ζ 2)5/2
mpmf + 3μ◦

4π

ζρ

(ζ 2 + ρ2)5/2
mpmf . (6)

Since the end magnets are placed along the tube axis and the moving magnet
translates along the same axis, the radial component of the position vector locating
the dipole of an end magnet with respect to the moving magnet is negligible
throughout motion. Setting the radial component equal to zero (ρ = 0) and using
Castigliano’s theorem, we obtain the axially exerted interaction force between the
moving magnet and an end magnet as:

Fζ = ∂U

∂ζ
= 3μompmf

2πζ 4 . (7)

3.2 Coupling Factor

The field passing through the coil depends on the magnet’s relative position with
respect to the coil z(t). The induced voltage in a single coil turn is equal to variation
in the magnetic flux crossing it:

Vi(t) = dΦ

dt
, (8)

where

Φ = B(ρ, z) · A

and A is the coil area crossed by the field. Using the chain rule, we can write for a
magnet moving axially with respect to a coil turn located at point z◦ along the tube
axis:
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Fig. 2 The coupling factor Θ(x) as a function of the relative position of the magnet with respect
to the center point along the harvester axis

Vi(t) = ż ∂
∂z
(B · A)

∣∣∣∣
z=z◦

. (9)

The voltage across the coil terminals can be written as

V (t) = ż Θ(z), (10)

where Θ(z) is a “coupling factor” representing the flux across the coil [6, 7]:

Θ(z) = 2π
Nx∑
k=1

Nr∑
j=1

∫ rj

0

∂

∂z
Bz(ρ, z)ρdρ (11)

rj is the radial coordinate of the center of the j th turn located at the kth rung of the
coil. Figure 2 shows the coupling factor for the fabricated energy harvester.

4 Finite Element Model

The fabricated energy harvester was also simulated using the multi-physics module
in the commercial FEM software COMSOL to obtain the open circuit voltage across
the coil terminals. An axisymmetric model, Fig. 3a, of the harvester, including the
magnets and coil, and the air box surrounding it was developed. The model was
meshed using triangular elements, Fig. 3b. The maximum element edge length was
set to 3.7 mm. The complete mesh consisted of 1153 domain elements and 113
boundary elements, corresponding to 2394 degrees-of-freedom. Figure 3c shows
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(a) (b) (c)

Fig. 3 FEM model. (a) Axisymmetric model. (b) The mesh. (c) Magnetic flux density at z = 0
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Fig. 4 Comparison of the magnetic restoring force Fms(z) obtained from FEM simulations (red
line) and the analytical model (blue line)

the magnitude of the magnetic flux density B(ρ, z) when the centers of the moving
magnet and tube axis are coincident.

First, the magnetic restoring force Fms was calculated through a parametric
sweep simulation. The position of the moving magnet z was varied along the tube
axis, the magnetic field was evaluated for each static position B(ρ, z), and the net
force acting on moving magnet at that position Fms(z) was calculated. Figure 4
shows the resulting FEM magnetic restoring force in red. In addition, the blue line
in the figure shows the magnetic restoring force Fms(z) calculated through Eq. (12).
This equation is derived from (7) by substituting ζ with the distance between the
moving magnet and each fixed magnet. The resulting Eq. (12) is therefore the net
magnetic restoring force acting on the moving magnet due to its interaction with
both fixed magnets.
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Fms = −3μ◦
2π
mpmf sgn(z)

(
1

(L/2 − z)4 + 1

(L/2 + z)4
)
. (12)

The FEM simulations and analytical model are in qualitative agreement. When
the moving magnet is located at the center point of the tube axis, the magnetic
restoring force vanishes due to symmetry. As it moves towards either end of the tube,
the restoring force increases in an antisymmetric fashion to oppose that motion. The
two models are also in good quantitative agreement within the limits of tube length.

Next, the solid mechanics model was coupled to the FEM model. The forces
acting on the moving magnet, namely weight, mechanical damping, and mag-
netic restoring force, were defined in the former model and the harvester’s base
acceleration ÿ was defined in a moving mesh. Finally, the magnet was allowed
to move inside the tube governed by the simultaneous simulations of the magnet
displacement in the solid mechanics model and the magnetic field in the FEM model
and the mesh was updated accordingly. The coupled model was used to calculate the
induced voltage due to variations in the magnetic field cutting the coil as the magnet
move past it.

5 Results and Discussion

We compare predictions of the seismic mass displacement under a base acceleration
amplitude and frequency of 0.1 g m/s2 and 8 Hz in Fig. 5. The result of FEM sim-
ulations appears in red-colored line and those obtained from numerical integration
of the analytical model, Eq. (2), appears in blue-colored line. The discrepancy in
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Fig. 5 The relative displacements of the moving magnets from both approaches



158 R. A. Mohamed et al.

Fig. 6 Experimental setup (a) Schematic diagram (b) Experimental setup
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Fig. 7 FEM of no-load voltage compared with experimental results

both the equilibrium position and the amplitude of oscillation is an indicator of the
inaccuracy of the dipole-moment model of the permanent magnet.

The fabricated harvester was tested using the experimental setup shown in Fig. 6.
The harvester was rigidly attached to an electromagnetic shaker that delivered base
accelerations with amplitude and frequency of 0.1 g m/s2 and 8 Hz. The shaker was
closed-loop controlled to maintain the base acceleration constant throughout the
experiment.

Figure 7 shows a much better agreement between the experimental measurements
and the FEM model results regarding the no-load voltage, thus confirming the
inadequacy of the dipole-moment model for the permanent magnet.
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6 Conclusions

The dipole-moment approach for modeling permanent magnets may be sufficient
for the design of the springless energy harvesters, yet based on the comparison with
a more detailed studies based on the FEM method. The steady state oscillations
suffer from a loss of prediction accuracy. This is due to the point-dipole model being
inaccurate for small distances. The experimental measurement compared with both
the FEM results and the point-dipole moment confirms the above conclusion.
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Critical Behaviors of Regular Pattern
Selection in Neuronal Networks with
Chemical Synapses

Peihua Feng, Rong Wang, and Ying Wu

Abstract Regular waves play an important role in cortical information processing
in mammalian neocortex. Spatiotemporal patterns change not only among plane
waves, spiral, and irregular waves, but also among different types of regular patterns.
Neuronal network is composed by two kinds of neurons, respectively, namely
neurons coupled by fast excitatory and fast inhibitory synapse. The scenario of
pattern transition seems completely different with these two types of synapse.
Specifically, phenomenon called critical slowing down exists in pattern transition
when neurons are connected by fast excitatory synapses, but there is no labyrinth
pattern in this case. However, in the case of fast inhibitory synapse, regular pattern
loses its stability and becomes labyrinth pattern. Patterns become more and more
chaotic respect to coupling strength between neurons. The results indicate the way
neurons couples determines the way in which pattern loses its stability.

Keywords Neuronal network · Chemical synapse · Critical slowing down

1 Introduction

Regular spatiotemporal pattern, as a typical collective behavior of large amount of
neurons or other somatic cells, is of great significance to biological systems, like
mammalian cortex [1] and cardiac tissue [2], etc. A great number of experimental
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studies show that the formation, duration, and breakup of regular patterns are
related to modulate electrical activities closely [3]. It is believe that many cardiac
arrhythmias are usually characterized by spiral waves [4], therefore, the nature of
defibrillation is elimination of spiral waves [5]. Spiral waves also exist in rat cortex
when the rat is in a sleep-like state [1]. Also, spiral waves are discovered in epileptic
seizures, which implies that spiral wave may promote or terminate the process of
epilepsy [6]. All these truths indicate that regular wave as a pacemaker is able to
organize and modulate cortical population activities both normal and pathological
cortical processing [7].

Given the importance of spiral wave formation, several technologies are devel-
oped to induce spiral waves. White noise [8] and electric field [9] as external
stimulus are able to produce spiral waves when the amplitude of external force
is beyond threshold. Brown motion of spiral wave could also be caused by
spatiotemporal structured noise [10, 11]. Besides, a defect in the neural network
as an initial condition is often used, inducing a spiral wave growing and rotating
around it. A line defect is proved to give birth to spiral wave and change its
stability [7, 12, 13]. A spiral tip, as a singular point mathematically, is another type
of topological defect. Wang adopts a spiral tip to realize the pattern transition in
neuronal networks with chemical synapses considered [14]. Therefore, a spiral tip
is also used as the initial condition in our study.

Beside the model selection of neuron, the coupling type between neurons mainly
determines the dynamical properties of neuronal network. The linear electrical
synapses (by gap junction) and the nonlinear chemical synapses are the two cases by
which signals transfer among neurons. Although (linear) electrical synapses connect
voltage of the two neurons at all times, chemical synapses are more efficient in
achieving stochastic coherence of the system [15] and weak signal propagation [16].
Compared to electrical synapses, chemical synapses are more beneficial to give
birth to firing transition in time-delayed network [17]. More important, chemical
synaptic coupling is more efficient for weak and local signal input, which is more
common in biological systems [18]. However, little attention has been paid to
spatiotemporal pattern formation in neuronal network when neurons are coupled
by chemical synapses.

Fortunately, pattern transition is discovered in neuronal network with chemical
coupling. And Wang [14] discusses different mechanisms of pattern selection of
two types of chemical synapses, namely fast inhibitory synapses and fast excitatory
synapses. Spatiotemporal pattern only alternate in regular patterns in case of
fast excitatory synaptic coupling but labyrinth pattern is achieved in the case
of fast inhibitory synaptic coupling when the coupling strength is large enough.
However, temporal properties of regular pattern formation are missed in previous
researches. In this paper, we start from Wang’s work and study carefully the critical
phenomenon in pattern formation and transition with the same neuronal network
model, identical parameter values in Ref. [14].
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2 Neuron Model and Neuronal Network

Morris–Lecar model [19] is employed, in which membrane potential V and
conducting probability n of potassium channels of the neuron with a position
number (i, j) are governed by

CM
dVij

dt
= I ion

ij + I ext
ij + I syn

ij , (1)

dnij

dt
= λ(n∞(Vij )− nij )/τnij (Vij ), (i, j = 1, . . . , N), (2)

where CM is the membrane capacitance per unit area; λ is the decay rate of nij ;
and I ion

ij , I ext
ij , and I syn

ij are the ionic current, external current, and synaptic currents,
respectively. I ext

ij is an adjustable constant, which can be considered a parameter to
control nonlinear behavior like Hopf bifurcation and saddle-node bifurcation [20].
It is assumed that leaks, potassium, and calcium currents contribute to ionic current
which is described consequently by

I ion
ij = −gL(Vij − VL)− gKnij (Vij − VK)− gCam∞(Vij )(Vij − VCa), (3)

where gL, gK, and gCa are leaks, potassium, and calcium conductance, and VL, VK,
and VCa are the corresponding reversal potentials.

The synaptic current I syn
ij is coupling term which determines the construction of

neuronal network, given by Li et al. [21]

I
syn
ij = −D(si−1,j + si+1,j + si,j−1 + si,j+1)(Vij − Vsyn), (4)

whereD is the channel conductance of the chemical synapse. Vsyn is the correspond-
ing reversal potential, which is a constant in our simulation. And sij are synaptic
variables for the fraction of open channels. Eq. (4) shows that every neuron couples
with its four nearest neurons and the intensity of every coupling is the same. The
synaptic variable sij can be reduced as follows [21]:

sij = − 1

ad
ṡij V

pre
ij < VQ,

1 otherwise.

sij quickly jumps to 1 when V pre
ij � VQ according to Ref. [21]. Different

synapses have different neurotransmitters and receptors, whose kinetic properties
are described by the values of parameters in Eq. (4). In particular, an excitatory
synapse has high reversal potential Vsyn, while an inhibitory synapse has low
(typically sub-threshold) reversal potential. In Ref. [14], the roles of both of two
types of synapses are discussed carefully. The fast excitatory and fast inhibitory
synapses are termed as AMPA and GABA, respectively, as their neurotransmitters.



166 P. Feng et al.

But our study just focuses on formation of regular spatiotemporal pattern, therefore
we pay more attention on the networks whose neurons are coupled by fast excitatory
synapses. Other functions in Eqs. (1)–(3) are defined Ref. [14]. The values of
parameters are also displayed in Ref. [14]. The network composes 101 × 101
neurons. The position number of neurons from lower-left corner to upper-right
corner is from (1, 1) to (101, 101). The initial conditions are taken as: Vij =
−33.35 mV, nij = 0.46 for i = 41:43, j = 1:50; Vij = 0.03 mV, nij = 0.51
for i = 44:46, j = 1:50; Vij = 33.32 mV, nij = 0.31 for i = 47:49, j = 1:50,
and Vij = −50.33 mV, nij = 0.31 for the rest of neurons. We apply periodic
boundary condition and use Euler forward difference algorithm to integrate the set
of differential equations with time steps of 0.01 ms.

3 Regular Pattern Formation and Critical Behaviors

In order to present the entire process of pattern formation in detail, we display
several series of snapshots of spatiotemporal patterns at two coupling strength
(synaptic conductance D), see Fig. 1a–h for D = 3.0 and (A)∼(H) for D = 3.3.
The final spatiotemporal pattern when the coupling strength equals 3.0 is rectangle
spiral wave (RSW). The entire process of formation of it can be divided into two
stages roughly. In the first stage, a circular spiral wave (CSW) generates from
the end of the rod of non-uniform initial condition, and grows from the center to
boundary of the network. At the same time, rectangular spiral wave generates from
the boundary to center. These two kinds of the spiral waves spread in the opposite
direction and encounter each other at about 3000 ms. The difference of Fig. 1c and
(C) is so small that one cannot distinguish one of them from another because spiral
waves develop very slowly after generation of face-off situation of the two regular
waves. Figure 1d–h shows that CSW shrinks steadily and slowly and vanishes at
about 50,000 ms (Fig. 1h), which is termed the second stage of pattern formation.
And after that the rectangular spiral wave exists and rotates steadily.

WhenD equals 3.3, it seems that the first stage is almost the same as the situation
when D = 3.0. But in second stage, CSW seems much “stronger” and encroaches
on the RSW slowly and occupies the whole domain finally.

The process of rectangular pattern formation can also be considered as the
diminution of the separatrix of two types of the pattern. Therefore it is equivalent
to study the motion of separatrix when one studies the law of spiral wave evolution.
The first question is to determine the time instant at which the separatrix sweeps
past the appointed neuron. Take the neuron with the position number (35, 35), for
example (the red dot in Fig. 2a), its membrane potential history is shown in Fig. 2b.
The entire history obviously comprises two stages and an interim stage between
them. Previous study shows that amplitude of membrane potential jumps at a critical
value of D. The reason is that the neuron firing at different domains of spiral waves
obeys periodic motions with different amplitudes and periods.
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Fig. 1 Snapshots at a series of instants during coexistence of RSW and CSW, the time instants the
snapshots from (a) to (h) are 1000, 2000, 3000, 10,000, 20,000, 30,000, 40,000, and 50,000 ms as
D = 3.0. And snapshots from (a) to (h) are 1000, 2000, 3000, 10,000, 20,000, 30,000, 40,000, and
50,000 ms as D = 3.3
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Fig. 2 Studied neuron and its membrane potential history. (a) The red dot is the neuron with the
position number (35, 35), the snapshot is at t = 5000 ms with D = 3.0. (b) History of membrane
potential of neuron (35, 35), the red circle indicates the interim period between the two kinds of
oscillation
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Fig. 3 Time index respect to neuron position number at D = 3.0

Between the two periodic motions, there is an interim period during which one
periodic motion becomes to another. In this period, the amplitude of oscillation
drops so that the membrane potential achieves the minimum (see the red circle
in Fig. 2b) through the whole time history. We check all the neurons and find the
interim period and minimum value of membrane potential in every one of them.
Therefore, the time at which the potential achieves the minimum can be considered
as the time index for distinguishing the two kinds of oscillation, and also as the
index for the time at which the separatrix passes the studied neuron.

We choose half of diagonal line from the lower-left corner to the center of
network, namely neurons (i, i), i = 1, 2, . . . , 51 (see the black rod in Fig. 2a). We
plot the time index of neurons along the rod in Fig. 3. In order to make the whole
trend clear, we actually plot 101 neurons along the diagonal line from (1, 1) neuron
at the lower-left corner to (101, 101) at the upper-right corner. The vertical axis is
time at which the separatrix passes the neuron and the horizontal axis is the number
of neurons. For example, i = 1 indicates the neuron in lower-left corner and i = 51
indicates the neuron in the center of the network.

The time index line is axisymmetric about vertical axis i = 51. Therefore, we
only study left half of the time index line. It includes two parts, the line with small
slope and line with much greater slop. The connection point of the two parts of
line divides vertical axis into two stages and the horizontal axis into two domains.
Consistent with our previous observations, in the first stage, the face-off situation
of two types of spiral wave is established, and RSW encroaches the CSW until it
vanishes in the second stage. Correspondingly, when the face-off situation has come
into being (the connection point), the rectangular spiral wave occupies the domain
1 and circular occupies domain 2. From the line with greater slope, it is discovered
that the CSW shrinks steadily for a long time. But when it is getting small, the
velocity of RSW drops a little (compared to the dashed line).
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(a) (b)

Fig. 4 Time index curves withD = 2.8, 2.9, 3.0, 3.07, 3.1, 3.13, 3.15 from bottom to top (a), and
their distribution in double logarithmic coordinates (b)

We plot several time index curves in one figure to reveal the evolution
speed of spiral waves. The curves from bottom to top correspond to D =
2.8, 2.9, 3.0, 3.07, 3.1, 3.13, 3.15, respectively (Fig. 4a). Apparently with all these
values of D, CSW shrinks and the network is occupied by the rectangular wave
at last. It is worth noting that the first stages and first domains overlap with each
other. The truth implies two facts at least: (a) the time durations the network need
to generate face-off situation of two types of regular patterns are the same no
matter what value of D takes as long as rectangular spiral waves occupy the entire
network, (b) once the face-off situation forms, the areas the two patterns occupy do
not change with D varying.

With D getting greater, the whole time duration of rectangular spiral wave
formation grows very fast. But there exists a critical value ofDcr at which transition
of patterns occurs. It is reasonable to assume that when the parameter D gets
approach to critical value Dcr , the time duration of pattern formation tends to
infinity. If power law of time duration and absolute value |D − Dcr | holds, the
phenomenon called critical slowing down is discovered.

T ∼ |D −Dcr |−λ, (5)

where λ > 0 is the critical slowing down index. We plot the time duration and
absolute of |D −Dcr | in double logarithmic coordinates in Fig. 4b. The blue line is
the fitted curve whose slope gives exact value of the critical slowing down index λ.
In our simulation λ is 0.92. And the critical value ofDcr is about 3.172 by carefully
checking. As a matter of fact, the phenomenon of critical slowing down exists in
both sides of the critical value of Dcr . Similarly, λ of D > Dcr is determined as
0.91, which is close to that of D < Dcr .
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4 Conclusions

In previous studies, researchers only focused on the spatial characteristics of
patterns during their transition in AMPA network. In our study we investigated the
temporal properties of regular pattern formation.

Before one type of spiral wave forms in the network, coexistence of two types of
spiral waves called face-off situation occurs. After that CSW spreads to the whole
domain of network as synaptic conductance is greater than the critical value Dcr ,
otherwise it shrinks and RSW is left in the entire network as D < Dcr .

Both below and above the critical value Dcr , the time duration of pattern
formation with respect to D obeys the power law relation given by Eq. (5), which is
a convincing proof of the critical slowing down phenomenon. The critical slowing
down index does not change much near Dcr . It seems that critical slowing down is
ubiquitous during the regular pattern transition.
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Dynamics of a Homeostatically Regulated
Neural System with Delayed Connectivity

Eva Kaslik and Raluca Mureşan

Abstract In this work, we explore the effect on the dynamical behavior of the
interplay of homeostatic regulation and coupling time delay in a pair of reciprocally
coupled Wilson–Cowan networks. The occurrence of rich dynamical behavior is
explored both theoretically and by means of numerical simulations.

Keywords Coupled Wilson–Cowan networks · Neural networks · Delayed
differential equations · Homeostatic regulation · Coupling delay · Stability ·
Bifurcations

1 Introduction

Low-dimensional dynamics are known to occur in different regions of the human
brain, including theta and gamma oscillations in the hippocampus [3, 4] or low
dimensional chaotic dynamics during different sleep phases or epileptic seizures
[1]. In spite of low-dimensionality, the emergence of these dynamical behaviors
remains unexplained at present time. The general mechanism that might produce
these dynamical regimes could be explained by plasticity in the synaptic coupling
weights between neurons [9].

Homeostatic plasticity [12, 13] is assumed to be responsible for preventing run-
away excitation in the circuit which could produce pathological states such epileptic
seizures, but also for countering a catastrophic loss of neuronal activity which
may lead to network quiescence. Even though homeostasis has been traditionally
considered to have an overall stabilizing effect on neuronal activity [12], recent
work revealed that these homeostatic mechanisms may produce complex dynamics,
such as neuronal avalanches, in large networks [7].
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In this work, our aim is to analyze the effect of both homeostatic plasticity
and synaptic transmission delays [5] by analyzing a pair of coupled Wilson–
Cowan networks [2, 14]. The case without delayed connectivity has been very
recently investigated in [9], where three separate situations have been considered:
single-nodes, reciprocally coupled dual-nodes, and large coupled networks, with
connection strengths derived from functional neuroimaging data [7]. However, it is
important to note that transmission delays unavoidably exist in virtually any type of
dynamic network, being responsible for the occurrence of rich dynamic behavior
and hence, they should be incorporated in the considered mathematical models
[8, 10, 11, 15].

2 Mathematical Model

We consider the following symmetric double-node system of Wilson–Cowan
networks with delayed coupling:

E′
1 = −E1 + φ(αE2τ −W1I1)

I ′
1 = −I1 + φ(βE1)

W ′
1 = γ I1(E1 − p)

E′
2 = −E2 + φ(αE1τ −W2I2)

I ′
2 = −I2 + φ(βE2)

W ′
2 = γ I2(E2 − p),

(1)

where Ei , Ii represent the subpopulations of excitatory and inhibitory neurons
in each node, Wi represent the excitatory–inhibitory synaptic weight which are
considered to be homeostatically regulated [7], with the homeostatic set point p.
For simplicity, the time scales of the excitatory and inhibitory populations are
considered equal to 1. The coupling terms α, β as well as the learning rate γ are
assumed to be positive, while the self-inhibition weights of each node are assumed
to be zero. The function φ is assumed to be a sigmoid threshold function (e.g.,
φ(x) = (1 + exp(−ax))−1 with a > 0). The terms Eiτ (t) = Ei(t − τ), i = 1, 2
represent the time-delayed connectivity between the two nodes, with τ ≥ 0.

It can be easily seen that

Σ = {(E1, I1,W1, E2, I2,W2) : E1 = E2, I1 = I2, W1 = W2}

is an invariant synchronization subspace to system (1).
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3 Local Stability Analysis

The unique equilibrium state S' of system (1) has the components:

E'1 = E'2 = p, I'1 = I '2 = φ(βp), W'
1 = W'

2 = αp − φ−1(p)

φ(βp)
.

Linearizing the system at the equilibrium point S' we obtain the following
system of delay differential equations:

ẋ(t) = Ax(t)+ Bx(t − τ), (2)

where

x(t)= [E1(t)−E'1, I1(t)−I '1 , W1(t)−W'
1 , E2(t)−E'1, I2(t)−I '1 , W2(t)−W'

1

]ᵀ

and

A =
(
A0 0
0 A0

)
, B =

(
0 B0

B0 0

)

A0 =
⎛
⎝

−1 −W'Φ ′(Φ−1(p)) −I 'Φ ′(Φ−1(p))

βΦ ′(βp) −1 0
γ I' 0 0

⎞
⎠,

B0 =
⎛
⎝
αΦ ′(Φ−1(p)) 0 0

0 0 0
0 0 0

⎞
⎠.

The characteristic equation of system (2) is

det(sI − A− Be−τs) = 0. (3)

Denoting J (s) = A + Be−τs =
(
A0 B0e

−τs
B0e

−τs A0

)
, based on the special form

of this matrix, we deduce that:

det(sI − J (s)) =
∣∣∣∣
sI − A0 −B0e

−τs
−B0e

−τs sI − A0

∣∣∣∣
= det(sI − A0 − B0e

−τs) det(sI − A0 + B0e
−τs).
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Therefore, s is a root of the characteristic equation (3) if and only if it is the root of
one of the following equations:

det(sI − A0 − B0e
−τs) = 0

det(sI − A0 + B0e
−τs) = 0.

(4)

Computing the determinants from (4), the stability and bifurcation analysis of the
equilibrium state S' given above is reduced to the investigation of the roots of the
characteristic equation

±e−τss(s + 1) = c1s(s + 1)2 + c2s + γ c3(s + 1), (5)

where δ = Φ ′(Φ−1(p)), c1 = (αδ)−1, c2 = W ∗βΦ ′(βp)α−1 and c3 = (I ∗)2α−1

are positive constants that do not depend on the parameters γ and τ .
In the following, we first explore sufficient conditions for the asymptotic stability

and instability of the equilibrium point S' of system (1).

Proposition 1

(a) In the non-delayed case (τ = 0) the equilibrium point S' of system (1) is locally
asymptotically stable if and only if the following inequalities hold:

2c1 > 1 and γ c3(1 − c1) < (2c1 − 1)(c1 + c2 − 1).

(b) If c1 > 1, the equilibrium point S' of system (1) is locally asymptotically stable
for any τ ≥ 0 and γ > 0.

(c) If the following inequality is fulfilled:

τγ c3 + c1 · τ + 1

τ
+ c2 · τ

τ + 1
< e−1 (6)

then the equilibrium point S' of system (1) is unstable.

Proof

(a) If τ = 0, the characteristic equation (5) becomes

±s(s + 1) = c1s(s + 1)2 + c2s + γ c3(s + 1)

which is equivalent to

c1s
3 + (2c1 ± 1)s2 + (c1 + c2 + γ c3 ± 1)s + γ c3 = 0.
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Taking into account that the constants ci , i = 1, 3 and γ are positive, by the
Routh–Hurwitz criterion it follows that all the roots of the above equation have
negative real part if and only if

2c1 ± 1 > 0 and (2c1 ± 1)(c1 + c2 + γ c3 ± 1) > γ c1c3.

From the positivity of c1, c2, c3, it can be easily seen that if the plus sign is
taken into consideration, the above inequalities hold. Hence, the inequalities of
the Routh–Hurwitz criterion are fulfilled if and only if

2c1 > 1 and (2c1 − 1)(c1 + c2 + γ c3 − 1) > γ c1c3.

The latter inequality can be rewritten as

γ c3(1 − c1) < (2c1 − 1)(c1 + c2 − 1).

(b) Let c1 > 1. The characteristic equation (5) can be rewritten as

±e−τs = c1(s + 1)+ c2

s + 1
+ γ c3

s
.

Assuming that the characteristic equation has a root s in the right half-plane, i.e.,
�(s) ≥ 0, taking the real part in both sides of the above equation, we deduce:

±e−τ�(s) cos(τ�(s)) = c1(�(s)+ 1)+ c2(�(s)+ 1)

|s + 1|2 + γ c3�(s)
|s|2 .

As c1 > 1 and �(s) ≥ 1, it is easy to see that the left-hand side of this equation
is subunitary, while the right-hand side is larger than 1. Hence, a contradiction
is obtained, leading to statement b.

(c) We rewrite the characteristic equation (5) as

se−τs − γ c3 = c1s(s + 1)+ c2
s

s + 1
.

We denote the left- and right-hand side terms of the above equation as

f (s) = se−τs − γ c3 and g(s) = c1s(s + 1)+ c2
s

s + 1
,

where f, g : [0,∞) → R. We observe that the function f has a maximum at
s' = τ−1, f (0) = f (∞) = −γ c3, and the function g is increasing on [0,∞),
with g(0) = 0, g(∞) = ∞.
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Therefore, a sufficient condition for the characteristic equation of (1) to have
a real positive root is f (τ−1) ≥ g(τ−1), which is equivalent to inequality (6).

��

4 Hopf Bifurcation Analysis

Proposition 1 gives us a tool to assess the occurrence of rich dynamical behavior in
system (1). If c1 > 1, Proposition 1(b.) shows that oscillatory behavior cannot be
expected in a neighborhood of the equilibrium point, regardless of the time delay
τ considered in the system. On the other hand, if inequality (6) is fulfilled, the
unique equilibrium of system (1) is unstable, and hence, complex dynamic behavior
is to be observed. The transition from asymptotic stability to instability involves the
occurrence of bifurcation phenomena. The following result characterizes the Hopf
bifurcation curves in the (γ, τ ) parameter plane.

Proposition 2 If c1 ∈ (0, 1), then the characteristic equation (5) has a pair of pure
imaginary roots if and only if there exists k ∈ Z+ such that (γ, τ ) ∈ Γk , where Γk
is the parametric curve defined by

Γk : γ = 1
c3

(
2c1−(−1)k cos(ω)

hk(ω)
2 + (−1)k sin(ω) 1

hk(ω)

)

τ = ωhk(ω)

for ωk ∈ (kπ − arccos(c1), kπ + arccos(c1)), where

hk(ω) =
√

(−1)k cos(ω)− c1

c1 + c2 − (−1)k cos(ω)
.

Proof The parametric equations of the curves Γk are easily deduced by imposing
that the characteristic equation (5) has a pair of complex conjugated imaginary roots
of the form ±i ω

τ
. ��

Proposition 2 gives the critical values for the parameters (γ, τ ) where Hopf
bifurcations [6] may occur in a neighborhood of the equilibrium point. The curves
Γk given by Proposition 2 are plotted in Fig. 1.

5 Numerical Simulations

For the numerical simulations, the following parameter values have been chosen:
α = 1.5, β = 2.5; p = 0.2 and the sigmoid function is
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Stability region in the (γ,τ)-plane
20

15

10

5

0
0 2 4 6 8

Fig. 1 Stability region (cyan) in the (γ, τ )-plane for the equilibrium of system (1), for α = 1.5,
β = 2.5; p = 0.2 and φ(x) = (1 + exp(−5x))−1. The blue curves represent the Γk Hopf
bifurcation curves provided by Proposition 2

φ(x) = 1

1 + exp(−5x)
.

The equilibrium point of system (1) is

S' = {0.2, 0.924142, 0.624643, 0.2, 0.924142, 0.624643}.

The stability region in the (γ, τ ) parameter plane of this equilibrium point is rep-
resented in Fig. 1. It can be observed that if the learning rate γ is sufficiently small
(γ < 1.28529 computed numerically), the equilibrium state S' is asymptotically
stable, for any value of the coupling delay τ ≥ 0.

For a fixed value of the learning rate γ (e.g., γ = 6 such as in Figs. 2 and 3), as
the coupling time delay τ increases, several critical values are encountered which
produce a cascade of Hopf bifurcations. In Fig. 2, the dynamics on the invariant
subspace Σ has been explored, for different values of the coupling delay τ .

On the other hand, in Fig. 3, the trajectories of system (1) have been represented
in the (E1, E2)-phase plane, for different valued of the coupling time delay,
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Fig. 2 Evolution of Ei (red), Ii (blue) andWi (green) in time for γ = 6 and τ = 5.5, τ = 20 and
τ = 40, respectively (top to bottom). An initial condition from the invariant subspace Σ has been
chosen

choosing a random initial condition in a neighborhood of the equilibrium point
S', not belonging to the invariant subspace Σ . Rich dynamical behavior can be
observed, ranging from periodic and quasi-periodic orbits to chaotic attractors.

6 Conclusions

The effect on the dynamical behavior of homeostatic regulation versus coupling time
delay has been explored for a pair of reciprocally coupled Wilson–Cowan networks.
Necessary and sufficient conditions have been established in terms of the system
parameters which guarantee the stability or instability of the unique equilibrium
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Fig. 3 Trajectories of system (1) in the (E1, E2)-phase plane for different values of the coupling
time delay τ , with fixed α = 1.5, β = 2.5; γ = 6, p = 0.2 and φ(x) = (1 + exp(−5x))−1. The
initial condition has been chosen randomly from a neighborhood of the equilibrium S'

point. Hopf bifurcation curves have been described analytically in the parameter
plane consisting of the learning rate and coupling delay. Numerical simulations
reveal rich dynamical behavior in the coupled system.
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Autapse-Induced Complicated
Oscillations of a Ring FHN Neuronal
Network with Multiple Delayed
Couplings

Xiaochen Mao, Xiangyu Zhou, Tiantian Shi, and Lei Qiao

Abstract This chapter studies the effects of the autaptic connection on the behav-
iors of ring-coupled FitzHugh–Nagumo (FHN) neurons. Different transmission time
delays between neurons and one autaptic time delay on the self-connection are
considered. The delay-independent and delay-dependent stability and Hopf bifur-
cation are analyzed. Illustrative examples are given and interesting phenomena are
observed, such as stability switches, different patterns of multi-periodic oscillations,
chaotic motions, and coexisting attractors.

Keywords Neuronal networks · Time delays · Autapse · Coexisting attractors

1 Introduction

Over the past few decades, numerous studies have been made on the dynamical
mechanisms of neural systems since the pioneering work of the Hodgkin and
Huxley [1]. By extracting the excitability of the dynamics in the Hodgkin–Huxley
model, FitzHugh and Nagumo presented a two-dimensional system to describe the
electrical properties of neural activities [2, 3]. Neural systems can often be described
by networks consisting of many neurons and connections. The behaviors arising
from the interactions of the neurons are often different from those in isolation [4–6].

Due to the finite time of information transformation occurring in both synapse
and dendrite, time delays are unavoidable in neuronal networks. Time delays are
also associated with a finite response period to internal signal processing and derived
from the closed-loop feedback, such as autapses. It is known that time delay can give
rise to a variety of interesting phenomena for a single neuron and neuronal networks
[6–11].

X. Mao (�) · X. Zhou · T. Shi · L. Qiao
Department of Engineering Mechanics, College of Mechanics and Materials, Hohai University,
Nanjing, China
e-mail: maochen@hhu.edu.cn

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), New Trends in Nonlinear Dynamics,
https://doi.org/10.1007/978-3-030-34724-6_19

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34724-6_19&domain=pdf
mailto:maochen@hhu.edu.cn
https://doi.org/10.1007/978-3-030-34724-6_19


184 X. Mao et al.

In neural systems, innumerable neurons are interconnected via synapses among
them. The topological structures of these reciprocal interactions are important and
diverse, including catenulate, starlike, annular, latticed, random, small-world, scale-
free, and many others [12]. For example, the real cortical connectivity pattern is
extremely sparse: most connections are between nearby cells [13]. Ring-shaped
networks are common and ubiquitous in many neural structures such as nematodes
C. elegans, sea stars, hippocampus, cerebellum, neocortex, etc [13–17].

Biological and anatomical experiments have shown that some neurons connect
not only to neighboring cells but also to its own soma or dendrite via a specific
loop. This self-connection structure, which is named by autapse, has been found in
cerebral cortex, neocortex, cerebellum, rat hippocampus, pyramidal cells, substantia
nigra, the visual cortex of cats, etc [8, 18, 19]. For example, in the cerebral cortex,
“fast-spiking cells” can generate rich autapses [19]. The autaptic connection could
establish a time-delayed feedback mechanism at the cellular level. In addition, it can
modulate the behaviors of neurons and regulate the brain function [8, 20–23]. For
example, experimental evidence shows that autaptic connections have the capacity
to improve the precision of spike times in neocortical fast-spiking interneurons [23].

The purpose of this paper is to study the dynamical properties of a delayed
FitzHugh–Nagumo (FHN) neural network with a single autaptic connection. This
network can be described by a set of delay differential equations as follows:

ẋ1(t) = a1x1(t)− x3
1(t)− y1(t)+ cnfn (xn (t − τn))+ k (x1 (t − σ)− x1),

ẏ1(t) = x1(t)− b1y1(t),

ẋ2(t) = a2x2(t)− x3
2(t)− y2(t)+ c1f1 (x1 (t − τ1)),

ẏ2(t) = x2(t)− b2y2(t),

· · · · · · · · · · · ·
ẋn(t) = anxn(t)− x3

n(t)− yn(t)+ cn−1fn−1 (xn−1 (t − τn−1)),

ẏn(t) = xn(t)− bnyn(t)

(1)

where xi denotes the membrane potential of the i-th neuron, yi represents the slow
refractory variables, which model the time dependence of several physical quantities
related to electrical conductances of the relevant ion currents across the membrane,
ai and bi are positive constants, k and σ represent the gain and time delay in the
electric autapse of the neuron 1, ci and τ i are the coupling strength and time delay,
fi is the activation function of neuron, i = 1, 2, . . . , n. Without loss of generality,
these functions are absolutely smooth and assumed to satisfy fi(0) = 0.

The rest of this chapter is organized as follows. In Sect. 2, the local stability of
the network equilibrium and the existence of the periodic oscillations are analyzed.
Case studies of numerical simulations are given to support the obtained results and
abundant activities are shown in Sect. 3. Finally, conclusions are drawn in Sect. 4.
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2 Stability Analysis

This section focuses on the stability of the trivial equilibrium position of the system
(1). The analysis for other equilibrium positions is similar after a simple variable
translation. The characteristic equation of the linearization of Eq. (1) at the trivial
equilibrium of the network can be written as follows:

Δ(λ, σ, τ ) =

∣∣∣∣∣∣∣∣∣

λI − A1 0 · · · −Bn
− B1 λI − A2 · · · 0
...

...
. . .

...

0 0 · · · λI − An

∣∣∣∣∣∣∣∣∣
= 0 (2)

where I is a 2×2 identity matrix, γ i = cifi
′
(0), i = 1, 2, . . . , n, j = 2, . . . , n, and

A1 =
[
a1 + ke−λσ − k −1

1 −b1

]
, Aj =

[
aj −1
1 −bj

]
, Bi = γie−λτ i

[
1 0
0 0

]

After some calculations, one arrives at

Δ(λ, σ, τ ) =
n∏
i=1

|λI − Ai | −
n∏
i=1
(λ+ bi) γie−λτ i

= [(λ−a1+k−ke−λσ
)
(λ+b1)+1

] n∏
j=2

[(
λ−aj

) (
λ+bj

)+1
]−γ e−λτ

n∏
i=1
(λ+bi)

= S (λ)− kQ (λ) e−λσ − γR (λ) e−λτ = 0
(3)

where S(λ) = P(λ) + kQ(λ), P (λ) =
n∏
i=1

[(λ− ai) (λ+ bi)+ 1], Q(λ) =

(λ+ b1)
n∏
j=2

[(
λ− aj

) (
λ+ bj

)+ 1
]
, R (λ) =

n∏
i=1
(λ+ bi), τ =

n∑
i=1
τi , and

γ = γ 1γ 2· · · γ n.To determine the boundary of the stability, the analysis begins
with the case when σ = 0. The necessary and sufficient conditions for all roots of
$(λ, 0, 0) = 0 having negative real parts can be determined by the Routh–Hurwitz
criteria. As τ varies, let λ = ± iυ (υ > 0) be a pair of purely imaginary roots of
$(λ, 0, τ ) = 0. Then, one has

Δ(iυ, 0, τ ) =PR (υ) + iPI (υ) −γ [RR (υ)+ iRI (υ)] [cos (υτ)− i sin (υτ)] = 0
(4)

where PR(υ) = Re [P(iυ)], PI(υ) = Im [P(iυ)], RR(υ) = Re [R(iυ)], and
RI(υ) = Im [R(iυ)].

By separating the real and imaginary parts of Equation (4) and eliminating the
harmonic terms, one arrives atD (υ) = P 2

R (υ)+P 2
I (υ)−γ 2

[
R2
R (υ)+ R2

I (υ)
] =

0. If D(υ) = 0 has a number of positive and simple roots υj, then $(λ, 0, τ ) = 0 has
sets of critical time delays τ j, k = (θ j + 2kπ)/υj, j = 1, 2, . . . , k = 0, 1, 2, . . . ,
where θ j ∈ [0, 2π) and θ j satisfies
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cos θj = PR
(
υj
)
RR
(
υj
)+ PI

(
υj
)
RI
(
υj
)

γ
[
RR

2
(
υj
)+ RI 2

(
υj
)] ,

sin θj = PR
(
υj
)
RI
(
υj
)− PI

(
υj
)
RR
(
υj
)

γ
[
RR

2
(
υj
)+ RI 2

(
υj
)] (5)

The following analysis turns to the case when the autaptic time delay is taken
into account, i.e., σ > 0. In this case, the autaptic time delay can be regarded as a
parameter for fixed value of τ . When the characteristic equation of the system has a
pair of purely imaginary roots λ = ± iω (ω > 0), one obtains

Δ(iω, σ, τ) = SR (ω) + iSI (ω)− k [QR (ω)+ iQI (ω)] [cos (ωσ)− i sin (ωσ)]
− γ [RR (ω)+ iRI (ω)] [cos (ωτ)− i sin (ωτ)]

(6)

where SR(ω) = Re [S(iω)], SI(ω) = Im [S(iω)], QR(ω) = Re [Q(iω)],
QI(ω) = Im [Q(iω)], RR(ω) = Re [R(iω)], and RI(ω) = Im [R(iω)]. Separating the
real and imaginary parts of $(iω, σ , τ ) = 0 yields,

SR (ω)− k [QR (ω) cos (ωσ)+QI (ω) sin (ωσ)]
−γ [RR (ω) cos (ωτ)+ RI (ω) sin (ωτ)] = 0,
SI (ω)− k [QI (ω) cos (ωσ)−QR (ω) sin (ωσ)]
−γ [RI (ω) cos (ωτ)− RR (ω) sin (ωτ)] = 0

(7)

Eliminating the autaptic time delay in the above equation gives

F (ω) = S2
R (ω)+ S2

I (ω)− 2γ SR (ω) [RR (ω) cos (ωτ)+ RI (ω) sin (ωτ)]
−2γ SI (ω) [RI (ω) cos (ωτ)− RR (ω) sin (ωτ)] + γ 2R2

R (ω)

+γ 2R2
I (ω)− k2

[
Q2
R (ω)+Q2

I (ω)
] = 0

(8)

If F(ω) = 0 has any positive and simple roots ωj, then $(λ, σ , τ ) = 0 has sets
of critical time delays σ j, l = (ϕj + 2lπ)/ωj, j = 1, 2, . . . , l = 0, 1, 2, . . . , where
ϕj ∈ [0, 2π) and ϕj satisfies

cos
(
ϕj
) = 1

N

{
SR
(
ωj
)
QR
(
ωj
)+SI

(
ωj
)
QI
(
ωj
)−γQR

(
ωj
)
RR
(
ωj
)

cos
(
ωjτ

)

−γQR
(
ωj
)
RI
(
ωj
)

sin
(
ωjτ

)− γQI
(
ωj
)

× [RI
(
ωj
)

cos
(
ωjτ

)− RR
(
ωj
)

sin
(
ωjτ

)] }
,

sin
(
ϕj
) = 1

N

{
SR
(
ωj
)
QI
(
ωj
)− SI

(
ωj
)
QR
(
ωj
)− γQI

(
ωj
)
RR
(
ωj
)

cos
(
ωjτ

)

−γQI
(
ωj
)
RI
(
ωj
)

sin
(
ωjτ

)+ γQR
(
ωj
)

× [RI
(
ωj
)

cos
(
ωjτ

)− RR
(
ωj
)

sin
(
ωjτ

)] }

(9)

where N = k|Q(iωj)|2.
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By differentiating λ with respect to the autaptic time delay σ in $(λ, σ , τ ) = 0,
one has Re[λ(σ )|λ = iω]’ = [MR(iω)TR(iω) + MI(iω)TI(iω)]/|T∓(iω)|2, where
M(iω) = − k(iω)Q(iω)e−iωσ , MR(iω) = Re M(iω), MI(iω) = Im M(iω) ,
T(iω) = S

′
(iω) − γR

′
(iω)e−iωτ + γ τR(iω)e−iωτ − kQ

′
(iω)e−iωσ + kσQ(iω)e−iωσ ,

TR(iω) = Re T(iω), and TI(iω) = Im T(iω).
After some calculations and from Eq. (9), the numerator of Re[λ(σ )|λ = iω]’ can

be written as follows:

ωSI (ω){S′
I (ω)− γ [R′

I (ω) cos(ωτ)− R′
R(ω) sin(ωτ)] + γ τRR(ω) cos(ωτ)

+γ τRI (ω) sin(ωτ)]} − ωγS′
I (ω)[RI (ω) cos(ωτ)− RR(ω) sin(ωτ)]

− ωSR(ω){−S′
R(ω)+ γ [R′

R(ω) cos(ωτ)+ R′
I (ω) sin(ωτ)] + γ τRI (ω) cos(ωτ)

−γ τRR(ω) sin(ωτ)]} − ωγS′
R(ω)[RR(ω) cos(ωτ)+ RI (ω) sin(ωτ)]

+ ωγ 2[RR(ω)R′
R(ω)+ RI (ω)R′

I (ω)] − ωk2[QR(ω)Q′
R(ω)+QI (ω)Q′

I (ω)]
= 0.5ωF ′(ω)

Thus, sgn Re [λ(σ )|λ = iω]’ = sgn F’(ω) holds.
When F(ω) = 0 has only one positive simple root, one can check that the system

has a new pair of conjugate roots with positive real parts when the autaptic time
delay is crossing a critical value determined by Eq. (9). Thus, if the system free
of the autaptic time delay is asymptotically stable, there exists a constant σ c such
that the system remains stable for σ ∈ [0, σ c) and it undergoes a Hopf bifurcation
for σ = σ c. When F(ω) = 0 has at least two simple positive roots, a finite number
of stability switches occur as the autaptic time delay increases from zero to the
infinity, and the system will become unstable at last [7]. Moreover, if F(ω) = 0 has
no positive root, then the system is delay-independent stable or unstable for any
given autaptic time delay, depending on whether or not the system free of autaptic
time delay is stable.

3 Illustrative Examples

In this section, the activation function is taken as fi(x) = tanh (x), which is often
used in neuronal networks.

1. n = 4, a1 = 0.3, a2 = 0.4, a3 = 0.2, a4 = 0.5, b1 = 1.5, b2 = 0.9, b3 = 0.6,
b4 = 1.2, c1 = 0.5, c2 = 0.4, c3 = 0.3, c4 = 1, τ 1 = 0.2, τ 2 = 0.3, τ 3 = 0.1,
τ 4 = 0.4, and k = − 0.2. In this case, the network free of the autaptic time
delay is locally stable for τ = 1 ∈ [0, τ 1, 0), where τ 1, 0 = 1.36 based on Eq. (5).
After some calculations and from Equation (9), the network always adds a new
pair of conjugate roots with positive real parts for each crossing at σ 1, l = 0.78,
6.97, . . . and σ 3, l = 4.66, 30.43, . . . , but reduces a pair of conjugate roots
with positive real parts for each crossing at σ 2, l = 3.72, 10.29, . . . . Thus, the
network is locally asymptotically stable when σ ∈ [0, σ 1, 0) ∪ (σ 2, 0, σ 3, 0) and
unstable for σ ∈ (σ 1, 0, σ 2, 0) ∪ (σ 3, 0, +∞).
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(a) (b) (c)

Fig. 1 The phase trajectories on x1 − y1 plane of four coupled neurons. (a) σ = 0.5; (b) σ = 2;
(c) σ = 4

Fig. 2 The phase trajectories on x1 − y1 plane of six coupled neurons. (a) k = − 0.2; (b)
k = − 0.1; (c) k = − 0.02

Figure 1a illustrates that the phase trajectories converge to the stable rest state
when σ = 0.5. Figure 1b gives a stable limit cycle arising from Hopf bifurcation
when σ = 2. Figure 1c shows that the trivial rest point becomes stable again
when σ = 4. The responses of the network, as shown in Fig. 1, well coincide
with the theoretical assertions.

2. n = 6, ai = 1.1, b1 = 1.2, b2 = 0.6, b3 = 0.5, b4 = 0.9, b5 = 0.6, b6 = 0.8,
ci = 0.2, τ i = 0.5, and i = 1, 2, . . . , 6. To discuss the effects of the gain of
the autapse on the dynamics of the network, the autaptic time delay is chosen
as σ = 0.1. Figure 2a gives a period-3 orbit for k = − 0.2. When k = − 0.1,
as displayed in Fig. 2b, the period-3 oscillation loses its stability and a chaotic
attractor comes into being. Figure 2c illustrates a period-7 oscillation when
k = − 0.02.

Figure 3a gives a complicated chaotic attractor when k = 0.1. Figure 3b
illustrates that the chaotic attractor separates into two strange attractors when
k = 0.15. When k = 0.19, as shown in Fig. 3c, the chaotic attractors disappear
and two period-8 oscillations come into being. With a slight increase of the
gain of the autapse, two coexisting period-4 orbits arise for k = 0.2, as shown
in Fig. 3d. Figure 3e gives that the period-4 orbits lose their stability and two
period-2 solutions occur when k = 0.3. When k = 0.5, two separated period-1
solutions appear, as shown in Fig. 3f. As shown in Fig. 3, the red and blue lines
represent the responses of the system under different initial conditions. When the
gain of the autapse varies, the system exhibits the process of periodic-doubling
bifurcation.
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(a) (b) (c)

(d) (e) (f)

Fig. 3 The phase trajectories on x1 − y1 plane of six coupled neurons. (a) k = 0.1; (b) k = 0.15;
(c) k = 0.19; (d) k = 0.2; (e) k = 0.3; (f) k = 0.5

Fig. 4 The bifurcation diagram on the Poincaré section of six coupled neurons for k = 0.2

The following study turn to the case when the autaptic time delay varies
and the gain of the autapse is fixed as k = 0.2. Figure 4 shows the detailed
bifurcation diagram as the function of the autaptic time delay under different
conditions IC1 and IC2, where the Poincaré section is defined by Σ =
{(σ, x1) : (x2 = 0, ẋ2 > 0)}. By changing the value of the autaptic time delay,
the system can exhibit chaotic phenomena and different coexisting multi-periodic
oscillations. As shown in Fig. 4, the system undergoes the periodic-doubling
bifurcation that leads to chaos.
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4 Conclusions

In this paper, the behaviors of a delay-coupled ring FitzHugh–Nagumo network with
one autaptic connection are studied. The stability switches and periodic responses
of the network are discussed. Case studies of numerical simulations are given and
various phenomena are observed, such as multi-periodic oscillations and chaos. The
detailed bifurcation diagram as the function of the autaptic time delay on Poincaré
section is given. It is shown that the autaptic connection plays important roles in the
dynamics of the network and can give rise to abundant behaviors, such as quiescent
state, periodic and chaotic firing patterns, and multistability.
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A Time-Delay Nonlinear Model of
Dopamine-Modulated Prefrontal-Limbic
Interactions in Schizophrenia

Eva Kaslik, Mihaela Neamţu, and Anca Rădulescu

Abstract We present a nonlinear mathematical model of dopamine-modulated
prefrontal-limbic interactions in schizophrenia, including discrete time delays. An
extensive stability and bifurcation analysis is undertaken in a neighborhood of the
positive equilibrium of the system. The results reveal the importance of time delays
in modulating dopamine reactivity.

Keywords Schizophrenia · Mathematical model · Time delay · Stability ·
Bifurcations

1 Introduction

Schizophrenia is an incurable neuropsychiatric illness, with dramatic personal
and social implications [2, 4, 6, 11]. Its diagnosis and treatment are currently
based on clinical symptoms rather than on the neurophysiological basis (which
remains unknown). The “stress-diathesis model” remains a popular hypothesis
that attributes stress vulnerability in schizophrenia to a pre-existing impairment in
hippocampal and prefrontal inhibitory control of the limbic arousal response. The
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subsequent exacerbated fear reaction raises cortisol levels, with toxic effects on the
hippocampus, further deepening the pre-existing impairment of the inhibitory unit.
This is a possible trigger for the main neurodegenerative cycle in schizophrenia.
While empirical work cannot fully explain the complex mechanics of the prefrontal-
limbic system, a mathematical model can approach system dysregulation with
analytical techniques, quantifying the nonlinear components of a self-interacting
network. It can be used to test hypotheses that bridge connectivity with functional
dynamics and subsequently with behavior observed empirically.

It has been proposed that schizophrenia symptoms constitute an end-stage of
a cyclic and neurodegenerative process [1], in which a hereditary predisposition
reduces the individual psychological threshold toward stimuli to the point where
even minor daily stresses will directly trigger psychotic experiences. However, the
etiology of this systemic degeneration has been challenging any simple explanation,
and current antipsychotic medications are likely treating the outward symptoms
rather than their cause.

2 Modeling Methods

One of our earlier studies on empirical fMRI time series from human subjects
suggested that key dynamic differences between patients with schizophrenia and
healthy controls can be captured in the existence and geometry of oscillations in
a two-dimensional subspace of prefrontal-limbic regions [13]. This inspired us to
consider, in our subsequent modeling work [12], a two-dimensional prefrontal-
amygdala system, and understand analytically how the coupled dynamics can play
the major role that had been demonstrated empirically in regulation of emotional
arousal. In the current paper, we refine the model with a focus on the dopamine
regulatory aspect, which in previous work was represented mathematically by non-
linear terms. New literature shows that dopamine-modulated mechanisms, unlike
those mediated by other neurotransmitters, operate based on a system of actual
biophysical delays. It has been suggested that the three different timescales across
which dopamine operates [14, 15] (fast, intermediate and low) may underlie the
broadness of dopamine’s effects on executive, cognitive, and motivational function
(disrupted in schizophrenia). In particular, at the lowest timescale, “dopamine exerts
an almost tonic influence on postsynaptic structures.” Deficits in this delayed/tonic
dopamine release have been shown to affect post-synaptic function (which cannot
be otherwise explained by reductions in phasic dopamine changes) and may
further lead to the deficits in movement, attention, and cognition—characteristic
of pathologies like Parkinson’s disease or schizophrenia.

A realistic model of brain function which encompasses the regulatory effect
of dopamine must therefore take into consideration delays, which may have been
crucial, if subtle effects that go beyond the nonlinearities are included and discussed
in our original framework. The use of nonlinear delayed equations as a distinct
and important approach in modeling schizophrenia-like neural patterns has been
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recently investigated in [15]. In this paper, we improve our previous work to address
dopamine delay mechanisms, by introducing a delayed neural response in the target
regions of dopamine-mediated pathways.

Our model represents the time activations of the amygdala, the hippocampus,
and the prefrontal cortex as three distinct variables a, p, and h, while a fourth
variable δ stands for the activation of the dopamine system, controlled via the
nucleus accumbens and the ventral tegmental area. The system of equations reads

ȧ = −μ1a − k1p − γ1h+ I,
ṗ = k2a − μ2f (p, δτ )+ γ2

a1C(a)+ 1
h,

ḣ = k3f (p, δ
2
τ )− a2C(a),

δ̇ = −ξ1f (a, δ)+ ξ2f (p, δ)+ ξ3f (h, δ)

(1)

Here, the function f is of the form f (x, δ) = xg(δ), where x can be a, p, or
h, and the function g is increasing, such that g(0) = 1. The term δτ (t) = δ(t − τ)
represents the delay term, where the parameter τ is the delay in the dopamine action.
The linear coefficients are positive system parameters, representing the strengths of
the connections between the respective brain areas. As in prior works [3, 10, 12],
the dependence of cortisol on arousal levels (measured as amygdala activation) is
represented as C(a) = αea

ea+1 .
In prior work [12], we investigated the dependence of the system’s temporal

dynamics on a larger set of physiological parameters, representing connectivity
strengths between the same key brain areas, but also including vulnerability to
stress-induced cortisol, dopamine regulation, and autoimmunity.

3 Results

We performed stability analyses studying the system sensitivity to parameter
perturbations, and we computed the bifurcations. We obtained analytical conditions
for the existence of a positive stable equilibrium, and for this equilibrium to
undergo a supercritical Hopf transition into stable oscillations. Hopf bifurcations
are illustrated in the presence and the absence of delays, with respect to different
parameters.

3.1 Nonlinear Model

For the system without delays, we focused on locating Hopf bifurcation curves
in the parameter plane defined by μ1 (level of anxiety) and a2 (vulnerability
to stress cortisol). Our results suggest that varying a2 for fixed μ1 can readily
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Fig. 1 Transitions in
between dynamic regimes in
the (a2, μ1) parameter plane.
The Saddle Node (green),
Hopf (blue), and Fold (red)
curves delimit the plane into
the parameter regions (1)–(4),
with different asymptotic
behaviors, as explained in the
text

push the system through qualitative changes in asymptotic dynamics (see Fig. 1),
while changing μ1 and keeping a2 fixed, is more likely to introduce more subtle
quantitative/kinetic changes in the convergence to the equilibrium, or in the duty
cycle. A small sensitivity to stress cortisol in the system is necessary to stabilize
the system to the equilibrium characteristic to a healthy functional (region 2). When
this sensitivity is increased past a “vulnerability” threshold, the system crosses the
Hopf curve and enters oscillations (region 3), exhibiting out of phase swings in
the amygdala arousal reaction to the stimulus I , and in the prefrontal activation,
attempting to (unsuccessfully) provide appropriate inhibition. When a2 is increased
past a “pathological” value, the system loses the oscillatory stability, and enters
unstable oscillations, with escaping trajectories (region 4).

3.2 Delay Model

The equilibrium states of the model (1) are the solutions of the following system:

μ1a + k1p + γ1h = I,
k2a − μ2pg(δ)+ C2(a)h = 0,

k3pg(δ
2)− a2C(a) = 0,

ξ1a = ξ2p + ξ3h

(2)
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with C2(a) = γ2

a1C(a)+ 1
.

In the delayed case, the linearization of system (1) at an equilibrium state E =
(a', p', h', δ') has the form:

ẋ(t) = Ax(t)+ Bx(t − τ),

where x(t) = (a(t)− a', p(t)− p', h(t)− h', δ(t)− δ')T and

A =

⎛
⎜⎜⎝

−μ1 −k1 −γ1 0
k2 + C′

2(a
')h' −μ2g(δ

') C2(a
') 0

−a2C
′(a') k3g((δ

')2) 0 0
−ξ1g(δ') ξ2g(δ

') ξ3g(δ
') 0

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 −μ2p

'g′(δ')
0 0 0 2k3p

'δ'g′(δ')
0 0 0 0

⎞
⎟⎟⎠

Therefore, the characteristic equation is of the form:

Δ(λ, τ) := λP3(λ)− P2(λ)e
−τλ = 0 (3)

where

P3(λ) = λ3 + r2λ2 + r1λ+ r0 = λ−1 det(λI4 − A),
P2(λ) = s2λ2 + s1λ+ s0

with ri and si expressed in terms of the elements of the matrices A and B.

Proposition 1 (Local Asymptotic Stability in the Non-delayed Case) In the
non-delayed case, if the following inequalities are satisfied:

r2 > 0, r1 > s2, r0 > s1, s0 < 0,
r2(r1 − s2)(r0 − s1) > (r0 − s1)2 − s0r2

2 ,
(4)

then the equilibrium point E of system (1) is locally asymptotically stable.

Following [5, 7–9], we obtain:

Theorem 1 Assume that inequalities (4) are satisfied and consider

τ+
0 = 1

ω0
arccos

(
1

ω0
· �
(
P2(iω0)

P3(iω0)

))
(5)

where ω0 > 0 is the smallest positive solution of the equation |P2(iω)| =
ω|P3(iω)|.

The equilibrium point E is asymptotically stable for τ ∈ [0, τ+
0 ). At τ = τ+

0 ,
system (1) undergoes a Hopf bifurcation at the equilibrium point E.
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Proof The characteristic equation (3) has a pair of complex conjugate roots z =
±iω (with ω > 0) on the imaginary axis if and only if

iωP3(iω) = P2(iω)e
−iωτ . (6)

Taking the absolute value in (6) we obtain |P2(iω)| = ω|P3(iω)|. The roots of this
equation are the solutions of the equation R(ω) = 1 where

R(ω) =
( |P2(iω)|
ω|P3(iω)|

)2

.

The continuous function R satisfies R(0) = ∞ and R(∞) = 0; therefore, there
exists at least one ω0 > 0 such that R(ω0) = 1. If ω0 denotes the smallest such
solution, it can easily be seen that R′(ω0) < 0, i.e.,

R′(ω0) = − 2

ω0

(
1 + ω0�

[
P ′

2(iω0)

P2(iω0)
− P ′

3(iω0)

P3(iω0)

])
< 0.

From Eq. (6), we obtain the critical value τ+
0 given by (5). Based on Proposi-

tion 1, the equilibrium point E is asymptotically stable when τ = 0, and therefore,
due to the continuous dependence of the roots of the characteristic equation on the
parameter τ , we have that E is asymptotically stable for any τ ∈ (0, τ+

0 ).
Let λ(τ) denote the root of the characteristic equation (3) satisfying λ(τ+

0 ) =
iω0. Therefore

λ′(τ+
0 ) = −∂Δ/∂τ

∂Δ/∂λ

∣∣∣
τ=τ+

0

= − λP2(λ)e
−τλ

P3(λ)+ λP ′
3(λ)− P ′

2(λ)e
−τλ + τP2(λ)e−τλ

∣∣∣
τ=τ+

0

and hence, a straightforward computation leads to

sign
(� [λ′(τ+

0 )
])=sign

(
1 + ω0�

[
P ′

2(iω0)

P2(iω0)
− P ′

3(iω0)

P3(iω0)

])
=sign

(−R′(ω0)
)=1.

This nondegeneracy condition for the Hopf bifurcation shows that the equilibrium
point E is asymptotically stable if τ ∈ [0, τ+

0 ) and at τ = τ+
0 , system (1) undergoes

a Hopf bifurcation at the equilibrium point E. ��
We conclude that the parameter dependence observed in the nonlinear system

is further modulated by the degree of delay, in the sense that: (1) the system will
be prompted to cross from a regime of stable equilibrium into a stable oscillation
one at lower levels of stress vulnerability a2 and/or anxiety μ1 for slower dopamine
reactivity τ , and will be more “resilient” for higher dopamine reactivity; (2) for
given stress vulnerability and anxiety, the lack of appropriate dopamine reactivity
(too large τ ) may in and of itself push the system into oscillations.
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4 Numerical Simulations

For the numerical simulations, we have chosen the following parameter values:

μ1 = 3, μ2 = 1, k1 = 2, k2 = 1, ξ = 1,

γ2 = 1, a1 = 2, a2 = 1, α = 0.8, I = 0.83.

For these values, we find the positive equilibrium state of system (1):

E = (a', p', h', δ') = (0.2075, 0.146798, 0.0607023, 0.015552).

The set of inequalities (4) are satisfied and the equilibrium E is therefore asymp-
totically stable when there is no delay in system (1), i.e., when τ = 0. Based on
Theorem 1, we compute ω0 = 0.209336 and we obtain the critical value of the
time delay for the occurrence of a Hopf bifurcation: τ+

0 = 0.08416. In Figs. 2
and 3, the trajectories of system (1) are shown for two different values of the time
delay: τ = 0 and τ = 0.1 (after the Hopf bifurcation). The appearance of a stable
limit cycle is observed numerically, suggesting a supercritical Hopf bifurcation. A
theoretical investigation of the criticality of the Hopf bifurcation and the stability of
the resulting limit cycle will be provided in a future paper.

5 Conclusions

Dopamine reactivity is a crucially determinant factor of prefrontal-limbic systemic
behavior, and subsequently of emotional regulation. The timing factor involved in
dopamine-regulated pathways seems to have in particular a strong effect on the
regulation efficiency. This effect could only be captured by a theoretical model

Fig. 2 Trajectories of system (1) when τ = 0 (left) and τ = 0.1 (right). When τ = 0 (shown
on the left), the solution of (1) converges to the asymptotically stable equilibrium state E. In the
second case, τ = 0.1 (shown on the right), the solution of (1) converges to the stable limit cycle,
occurring due to the Hopf bifurcation which takes place at τ = τ+

0 = 0.08416
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Fig. 3 Evolution of the trajectories of system (1) in the phase-plane (a, p) when τ = 0 (left) and
τ = 0.1 (right). When τ = 0 (shown on the left), the solution of (1) converges to the asymptotically
stable equilibrium state E. In the second case, τ = 0.1 (shown on the right), the solution of (1)
converges to the stable limit cycle, occurring due to the Hopf bifurcation which takes place at
τ = τ+

0 = 0.08416

incorporating dopamine reactivity as a time delay, and was invisible in a classical
nonlinear model of prefrontal-limbic interactions.

For the considered nonlinear mathematical model of dopamine-modulated
prefrontal-limbic interactions in schizophrenia with time delay, we performed a
thorough local asymptotic stability and bifurcation analysis. The critical value
of the time delay corresponding to a Hopf bifurcation in a neighborhood of the
equilibrium point has been determined theoretically. Numerical simulations have
been presented to substantiate the theoretical results, which show that the resulting
limit cycle due to the Hopf bifurcation is asymptotically stable. The theoretical
analysis into the stability of this limit cycle will be explored in a future work.
Moreover, the effect of different types of distributed time delays on the system
dynamics will also be investigated.
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Abstract A generalization of the well-known Wilson–Cowan model of excitatory
and inhibitory interactions in localized neuronal populations is presented, by taking
into consideration distributed time delays. A stability and bifurcation analysis is
undertaken for the generalized model, with respect to two characteristic parameters
of the system. The stability region in the characteristic parameter plane is deter-
mined and a comparison is given for several types of delay kernels. It is shown that if
a weak Gamma delay kernel is considered, as in the original Wilson–Cowan model
without time-coarse graining, the resulting stability domain is unbounded, while in
the case of a discrete time delay, the stability domain is bounded. This fact reveals
an essential difference between the two scenarios, reflecting the importance of a
careful choice of delay kernels in the mathematical model. Numerical simulations
are presented to substantiate the theoretical results. Important differences are also
highlighted by comparing the generalized model with the original Wilson–Cowan
model without time delays.
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1 Introduction

The original mathematical model describing excitatory and inhibitory interactions
in localized neuronal populations has been derived in 1972 by Wilson and Cowan
[11]. In this model, denoting by E(t) and I (t) the proportions of excitatory and
inhibitory cells firing per unit of time, at the time instant t , it has been assumed that
E(t + τ) and I (t + τ ′) are equal to the proportion of cells which are sensitive (i.e.,
not refractory) and which also receive at least threshold excitation at the moment of
time t . Therefore, as a first step, the following system of integral equations has been
obtained:

E(t + τ) =
(

1 −
∫ t

t−r
E(s)ds

)
· Se

[∫ t

−∞
h(t−s) (c1E(s)−c2I (s)+Pe(s)) ds

]
,

I (t + τ ′) =
(

1 −
∫ t

t−r ′
I (s)ds

)
· Si

[∫ t

−∞
h(t−s) (c3E(s)−c4I (s)+Pi(s)) ds

]

(1)

In this system, the first factors in the right-hand side represent the proportion of
sensitive excitatory/inhibitory cells, where r is the absolute refractory period (msc),
the functions Se, Si are sigmoid threshold functions, their arguments denoting the
mean field level of excitation/inhibition generated in an excitatory/inhibitory cell
at time t (assuming that individual cells sum their inputs and that the effect of the
stimulation decays exponentially with a time course h(t)). Moreover, ci > 0 are
connectivity coefficients representing the average number of excitatory/inhibitory
synapses per cell and Pe, Pi denote external inputs.

Applying time-coarse graining, the well-known Wilson–Cowan model [11] has
been obtained and analyzed, consisting of a system of ordinary differential equations
without time delays. Generalizations of this model including discrete time delays
have been investigated in several papers, often considering refractory periods r, r ′
being equal to zero. Based on the integral terms appearing in the original model (1)
as arguments of the threshold functions, the following model with distributed delays
will be analyzed in this paper:

u̇(t) = −u(t)+ f
[
θu +

∫ t

−∞
h(t − s) (au(s)+ bv(s)) ds

]
,

v̇(t) = −v(t)+ f
[
θv +

∫ t

−∞
h(t − s) (cu(s)+ dv(s)) ds

] (2)

where u(t) and v(t) represent the synaptic activities of the two neuronal populations,
a, b, c, d are connection weights and θu, θv are background drives. The activation
function f is considered to be increasing and of class C1 on the real line.



Wilson–Cowan Models with Distributed Delays 205

In system (2), the delay kernel h : [0,∞) → [0,∞) is a probability density
function representing the probability that a particular time delay occurs. It is
assumed to be bounded, piecewise continuous and satisfy

∫ ∞

0
h(s)ds = 1, with the average time delay τ =

∫ ∞

0
sh(s)ds <∞.

The particular case of discrete time delays (Dirac kernels) has been discussed in
[4]. However, there are other important classes of delay kernels often used in
the literature, such as Gamma kernels or uniform distribution kernels. It is worth
mentioning that in the original Wilson–Cowan model [11], a weak Gamma kernel
h(t) = τ−1 exp(−t/τ ) has been used, so this case should be the original reference
point. Analyzing mathematical models with particular classes of delay kernels (e.g.,
weak Gamma kernel or strong Gamma kernel h(t) = 4τ−2t exp(−2t/τ )) may
shed a light on how distributed delays affect the dynamics differently from discrete
delays. However, in the modeling of real world phenomena, one usually does not
have access to the exact distribution, and approaches using general kernels may be
more appropriate [1–3, 5–7, 9, 10, 12].

Initial conditions associated with system (2) are of the form:

u(s) = ϕ(s), v(s) = ψ(s), ∀ s ∈ (−∞, 0],

where ϕ,ψ are bounded real-valued continuous functions defined on (−∞, 0].

2 Main Stability and Bifurcation Results

The equilibrium states of system (2) are the solutions of the following algebraic
system:

u = f (θu + au+ bv),
v = f (θv + cu+ dv) (3)

The linearized system at an equilibrium state (u', v') is

u̇ = −u+ φ1

∫ t

−∞
h(t − s) (au(s)+ bv(s)) ds,

v̇ = −v + φ2

∫ t

−∞
h(t − s) (cu(s)+ dv(s)) ds

(4)

where φ1 = φ1(u
', v') = f ′(θu + au' + bv') > 0 and φ2 = φ2(u

', v') = f ′(θv +
cu' + dv') > 0.
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Applying the Laplace transform to the linearized system (4), we obtain

zU(z)− u(0) = −U(z)+ φ1H(z) (aU(z)+ bV (z)),
zV (z)− v(0) = −V (z)+ φ2H(z) (cU(z)+ dV (z))

(5)

where U(z) and V (z) represent the Laplace transforms of the state variables u and
v, respectively, while H(z) is the Laplace transform of the delay kernel h.

System (5) is equivalent to

(
z+ 1 − aφ1H(z) −bφ1H(z)

−cφ2H(z) z+ 1 − dφ2H(z)

)(
U(z)

V (z)

)
=
(
u(0)
v(0)

)
(6)

and hence, the characteristic equation associated to the equilibrium state (u', v') is

Δ(z) = (z+ 1)2 − αH(z)(z+ 1)+ βH 2(z) = 0, (7)

where

α = aφ1(u
', v')+ dφ2(u

', v') = af ′(θu + au' + bv')+ df ′(θv + cu' + dv');
β = (ad − bc)φ1(u

', v')φ2(u
', v') = (ad − bc)f ′(θu + au' + bv')

× f ′(θv + cu' + dv').

The following delay-independent stability and instability results are easily
obtained, based on the properties of the Laplace transform and the particularities
of the characteristic equation (7):

Theorem 1 (Delay-Independent Stability and Instability)

1. In the non-delayed case, the equilibrium state (u', v') of system (2) is locally
asymptotically stable if and only if

α < min{2, β + 1}. (8)

2. If the following inequality holds

|α| + |β| < 1, (9)

then the equilibrium state (u', v') of system (2) is locally asymptotically stable
for any delay kernel h(t).

3. If the following inequality holds

β < α − 1, (10)

then the equilibrium state (u', v') of system (2) is unstable for any delay kernel
h(t).
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It is important to note that the characteristic equation (7) has a root z = 0 if
and only if β = α − 1. To investigate for which combinations of parameters (α, β)
the characteristic equation will have complex conjugated roots of the form ±iω, we
further assume that Ĥ (z) = H(z/τ) does not depend on the average time delay τ .
In fact, for the most important classes of delay kernels we have

(a) Dirac kernel: Ĥ (z) = e−z;
(b) p-Gamma kernel: Ĥ (z) =

(
p

p + z
)p

;

(c) Uniform kernel: Ĥ (z) = e−z · sinh(ρz)

ρz
.

We will further define Ĥ (iω) = ρ(ω)e−iθ(ω). The following equation will play an
important role in the bifurcation analysis to follow:

τ sin θ(ω)+ ω cos θ(ω) = 0. (11)

A careful and lengthy theoretical investigation [8] leads to the following the-
orems which characterize the stability region S(α, β) of the equilibrium (u', v')

from the (α, β)-plane (see Fig. 1).

Theorem 2 Assuming that Eq. (11) has at least one positive real root, let us denote:

ωτ = min{ω > 0 : τ sin θ(ω)+ ω cos θ(ω) = 0} and μτ = (ρ(ωτ ) cos θ(ωτ ))
−1 .

The boundary of the stability region S(α, β) of the equilibrium state (u', v') of
system (2) is given by the union of the line segments and curve given below:

(l0) : β = α − 1, α ∈ [1 + μτ , 2] ;
(lτ ) : β = μτ (α − μτ ), α ∈ [2μτ , 1 + μτ ] ;

(γτ ) :
α = 2

ρ(ω)

[
cos θ(ω)− ω

τ
sin θ(ω)

]

β = 1

ρ2(ω)

(
1 + ω2

τ 2

) , ω ∈ (0, ωτ ).

At the boundary of the stability domain S(α, β), the following bifurcation phenom-
ena take place in a neighborhood of the equilibrium (u', v') of system (2):

(a) Saddle-node bifurcations take place along the open line segment (l0);
(b) Hopf bifurcations take place along the open line segment (lτ ) and curve (γτ );
(c) Bogdanov–Takens bifurcation at (α, β) = (2, 1);
(d) Double-Hopf bifurcation at (α, β) = (2μτ , μ2

τ

)
;

(e) Zero-Hopf bifurcation (α, β) = (1 + μτ , μτ ).
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Theorem 3 If Eq. (11) does not admit any positive real root, the boundary of the
stability region S(α, β) of the equilibrium state (u', v') of system (2) is given by the
union of the half-line and curve given below:

(l0) : β = α − 1 , α ∈ (−∞, 2];

(γτ ) :
α = 2

ρ(ω)

[
cos θ(ω)− ω

τ
sin θ(ω)

]

β = 1

ρ2(ω)

(
1 + ω2

τ 2

) , ω > 0.

At the boundary of the stability domain S(α, β), the following bifurcation phenom-
ena take place in a neighborhood of the equilibrium (u', v') of system (2):

(a) Saddle-node bifurcations take place along the open half-line (l0);
(b) Hopf bifurcations take place along the curve (γτ );
(c) Bogdanov–Takens bifurcation at (α, β) = (2, 1).

In Fig. 1, the stability domains given by the previous theorems are represented
for four different delay kernels with the same average time delay τ = 1. In each
subfigure, the blue rhombus represents the delay-independent part of the stability
domain given by Theorem 1. It is important to note that compared to discrete time
delays, the stability domains in the case of Gamma delay kernels are much larger.
Moreover, in the case of a weak Gamma kernel (as it was the one included in the
original Wilson–Cowan model [11], and therefore it produces the behavior of the
model in its pure form, before the coarse-grain approximation), the stability region
is unbounded, as in Theorem 3.

Fig. 1 Stability domain S(α, β) for different types of delay kernels, with a fixed average time
delay τ = 1. The stability domains are obtained based on Theorem 2 (left and right) and Theorem 3
(middle). The blue shaded region represents a delay-kernel-invariant subset of S(α, β). Along the
blue curves and line segments Hopf bifurcations take place, while the red line corresponds to
saddle-node bifurcations
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3 Numerical Simulations

The sigmoid activation function is chosen as in [4]: f (x) = (1 + exp(−δx))−1.
For all numerical simulations, the following values of the system parameters are
chosen: θu = 0.1, θu = 0.2, a = d = −6, b = c = 3, and δ = 40. The
following equilibrium is computed: (u', v') = (0.0660694, 0.076733), with the
characteristic parameters: α = −31.8118 and β = 188.846. Based on Theorem 2,
the critical value of the average time delay τ ' responsible for the occurrence of a
Hopf bifurcation which causes the loss of asymptotic stability of the equilibrium
(u', v') is determined in the case of a Dirac kernel τ '0 = 0.0674893 and a strong
Gamma kernel τ '2 = 0.202917. The Hopf bifurcations are supercritical, causing the
appearance of stable limit cycles, as it can be seen in Fig. 2.

On the other hand, in the case of a weak Gamma kernel, from Theorem 3 it
follows by numerical computations that for the specific values of α and β given
above, the equilibrium (u', v') is asymptotically stable, for any τ > 0. Therefore,
no oscillations or bursting behavior is expected to occur in a neighborhood of the
equilibrium if a weak Gamma kernel is considered in the mathematical model. This
reflects an important difference between the different types of behavior that can
be observed for different types of delay kernels. The weak Gamma kernel has a
particular importance as it has been included in the original Wilson–Cowan model
before applying time-coarse graining.

Fig. 2 Evolution of state variables u(t) and v(t) of system (2) with discrete time delay (left) and
strong Gamma kernel (right) for valued of the average time delay τ ∈ {0.07, 0.1, 0.5, 1} (top to
bottom). The values of the parameters are fixed: θu = 0.1, θu = 0.2, a = d = −6, b = c = 3, and
δ = 40. The same initial condition has been chosen in a neighborhood of the equilibrium
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Fig. 3 Periodic, quasi-periodic, and chaotic orbits shown in the (u, v)-phase-plane for the Wilson–
Cowan model with discrete time delay, obtained for different values of τ
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Numerical simulations also reveal complex bursting and quasi-periodic behavior
in the Wilson–Cowan model with a discrete time delay (see Fig. 3), suggesting
a series of limit cycle bifurcations. Interestingly, these phenomena could not be
observed for strong Gamma kernels with the same system parameters.

4 Conclusions

A local stability and bifurcation analysis has been presented for a generalization
of the Wilson–Cowan model of excitatory and inhibitory interactions in localized
neuronal populations, incorporating general distributed delays. Essential differences
have been pointed out for different scenarios involving diverse delay kernels,
emphasizing the importance of a careful choice of delay kernels in the mathematical
model.
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Vyacheslav Koneshov, Alexei Nikolaev, and Mileta Arakelian

Abstract The chapter suggests an original approach to explain and predict the
process of a flood and/or mudflow (debris) formation and spreading out over the
river beds in mountain conditions taking into account the nonlinear dynamics. The
phenomena are under the flash increase of water masses involved (being strongly
above the precipitations intensity measured) due to the groundwater possible impact.
For the case a collection of different scenarios in conceptual nonlinear dynamic
models is under our brief consideration. The 3D crack-Net in the frame of unified
rivershed basin in a mountain massif is a natural transportation system (varied by
some dynamic stress factors) for a groundwater due to hydrostatic/hydrodynamic
pressure redistribution by different reasons (e.g., earthquakes as well). The process
has a nonlinear wave character with obvious signs of self-organization and, espe-
cially, for surface discharge of water from underground aquifers. It can be described
within the soliton model of nonlinear hydrodynamics for propagation of the surface
water mass. The approach can result in more reasonable forecast and early warning
for the natural water hazard/disaster taking into account the groundwater nonlinear
flow contribution as a dominant factor under some conditions to the land surface
water.
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1 Introduction

Motivation of this chapter is established on the problem that the knowledge level
for catastrophic mudflow/debris and floods has still many problems, and there is
no reasonable forecast for the process development to prevent the catastrophic
consequences [1]. A forward problem here entails solving the 3D-governing liquid
flow equations for head in both time and space over a solution domain (i.e., a
river basin or an arbitrary-defined field site) with given model input parameters,
boundary, and initial conditions [2, 3].

In frame of concept of flow through heterogeneous geologic media the model is
under Poiseuille’s law for flow through a bundle of cylindrical capillary tubes of
radius R being an analog of porous rock core. In the case a discharge parameter ∼
R4 and results in dramatic increase of the pressure parameters map in the geological
system, especially for a groundwater dislocation (cf. [4]).

For that we have three types of the flow regimes in terms of specific water
discharge vs. hydraulic gradient, i.e., linear laminar, nonlinear laminar, and turbu-
lent. In the last case, we have a nonlinear dynamics flow regime when streamlines
crossing each other takes place and the flow exhibits chaotic behavior [3, 5]. Under
this scenario the analysis should be carried out numerically [6]. Our simplest and
most conventional model for the water balance estimation for disastrous floods
shows the greater (up to 75%) water mass discharge observed during the events
than it could be expected from the rainfall process only in the area under study
[7]. The fact gives us the founding to take into account the groundwater possible
contribution to the events. This is especially true for long standing water on the land
surface during the events. In this aspect the principal item of the present chapter is
to recognize the impact of different phenomena taking place for that (cf. [8, 9]), in
particular of tectonic state.

The following processes in the Earth crust are considered: from microseismic
and local seismic shocks of various magnitudes to global movement of the tectonic
plates [10]. The Earth’s crust (and/or its particular parts) isn’t considered as stable
and immutable today, i.e., in this case we can’t speak about stable behavior
of groundwater regimes (cf. [11, 12]). The collection of different scenarios in
conceptual nonlinear dynamic models with saturated and/or unsaturated zones in
this aspect is presented, e.g., in [5, 9].

The key point of the proposed approach is the identification of the conditions of
earthquake influence on the river basins functioning (cf. [13, 14]). The possible role
of the preceding seismic activity for some certain disastrous floods of 2013–2017
is analyzed by us qualitatively. Usually, when the water balance of the river basin
is estimated, the soil permeability and its percolation component are considered
as the key characteristics [15]. On the one hand, it is the small-scale percolation,
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defined by the properties of specific soils, prevailing in the considered river basin.
But also it is the large-scale percolation, defined by the fracturing of the Earth crust.
Without going into details of the forming of the river basin geological structure we
highlight fracturing of the Earth crust which makes the intense interaction of surface
water and groundwater possible (cf. [6, 16]). The infiltration component of soil (and
deeper rock layers) permeability is significantly characterized by slower vertical
and lateral movement of water masses but in some cases can be turbulent [17]. It is
obvious that present great and universal advantages of nonlinear dynamics should
be applied to these triggered processes.

The organization of the main material in this chapter is built according to
the following logic. First, we consider models in the framework of nonlinear
hydrodynamics with different types of soliton solutions for surface water flows
using the relevant key parameters and available data. Then, the possible reasons
for the development of such processes in actually registered catastrophic floods and
mudflows due to the influence of groundwater are discussed. Finally, an analysis of
the forecast conditions is carried out under which a sudden release of groundwater
to the surface of the Earth may occur due to seismic factors in the specific areas
where these water events occurred.

2 Physical Basis and Reasonable Models

We focus now our consideration on a mathematical modeling of the catastrophic
water flow exit on the land surface based on the conception of nonlinear hydro-
dynamics of the wave processes development with forming of solitons (within the
classes of solutions for the Korteweg-deVries (KdV)-equation) [2, 4]. In principle,
different regimes can occur, and should be under analysis in respect to the detailed
states of the water systems.

Let’s consider two general scenarios for the processes (cf. [18, 19]).

Scenario 1. Mathematical modeling of the flood/mudflow process formation as a
standard self-organization in soliton-like system.

Scenario 2. Generalized KdV-equation approach: the flood solitary propagation
process by groundwater discharge (both continuous and flash) as a multiple
soliton process vs. depth of the water channel.

This general approach and practical verification of the results were applied to
some water catastrophic events including the conditions for a solitary destructive
wave propagation, e.g., for the Krimsk-city fast event (Krasnodar region, Russia,
July 6–7, 2012) which occurred over the land surface under the trigger mechanism
(cf. [20]).

The results of such analysis for the Krimsk-city event are shown in Fig. 1 for a
manybody problem when there is a collision/convergence of the two solitons and
their further spread/distribution over the surface. From the point of view of the
theory of solitons, this instability and such decay occur starting with a certain critical
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value of the soliton amplitude (Fig. 1a(1) shows the beginning of this decay), i.e., we
are talking about the threshold effect. The number of born satellites is proportional
to the amplitude of the original soliton, and their partial propagation speeds are
proportional to the amplitude of each satellite. At the same time, according to
the proposed model for debris flow, the solitons should pass through each other
without changing their amplitude and shape (Fig. 1a(4)) after their divergence. As
a result, during the overlapping of the satellites, the profile of the ensemble/train of
solitons changes (Fig. 1a(2,3)), but eventually they are ordered (self-organized) in
space, which determines, the final character of the mudflow profile (Fig. 1a(4)). It
is important that the mudflow process (at the stage corresponding to Fig. 1a(4)) can
significantly enhance its one-time destructive impact on the objects on the earth’s
surface (localization of a large mass/energy of flow in one place). The qualitative

u,m

area and time
for the flash
discharge

x,m

t,s

Fig. 1 (a) Calculation profile of a propagating soliton wave (in arbitrary units) in
various/consecutive moments of time: t1<t2<t3<t4 for the some control parameters:
σ = $0(u0/γ2)1/2 = 9, u0 = 1.71, t = 0.84; both the space characteristics (horizontally—
x) and the amplitude characteristics (vertically—u) of the soliton are given in arbitrary units
for a manybody regime propagation. (b) Principal scheme for the stage development and
propagation of a mudflow wave: BB—collecting funnel; CB—mudflow wave; *—mudflow gate;

Δh—hydrostatic thrust/pressure head; —surface water with drainage process contribution;
—groundwater deep movement. (c) The 3D-soliton image mode by computer simulation for the

water-flow propagation in the river channel (from the very beginning (t = 0 s) the groundwater
flash discharge of amplitude U (in meters, m) comes to the land surface)
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analysis shows that a mudflow process can be schematically represented by a four
stage development and propagation for a mudflow soliton (see Fig. 1b): (I) there
occurs the main mudflow discharge (initial soliton width Δ0); (II) the process
falls into separate soliton satellites; (III) the stage of self-organization for these
satellites according to the values of their amplitudes in the process of propagation;
(IV) the soliton is breaking, i.e., turning over (great nonlinearity) γ1—contribution
of groundwater), and/or latter the decay (great dissipation/dispersion—γ2) process
takes place. In Fig. 1c, we have shown a fragment of a nonlinear dynamic process
of propagation of the soliton by the 3D-soliton mode computer simulation image in
the case.

We carried out, as well, some numerical analysis for process of the running
water flow by modeling of a sudden breakthrough of dam for an artificial water
reservoir in the Central Russian plain near the Vladimir city, i.e., a local Sodyshka
river (Fig. 2). We showed that the event duration is not more than several days
(∼100 h). Thus, a long standing water on the land surface during each catastrophic
event requires a separate analysis in respect of a specific water discharge source,
e.g., being groundwater under some conditions.

We carried out also some correlation analysis for the subject. The most accurate
correlation (the Pierson coefficient K) can be estimated for two principal parameters:
river-discharge during the flood and artesian water level in wells in some localized
river-basin areas (cf. [7, 12]). We had K� (−0.97) but with some optimal day
shift ∼10–20 days (for distance ∼200 km), e.g., for the Mississippi-river catas-
trophic flood (April-June, 2011; maximal level—on May). Thus, we can talk about
anticorrelation events, i.e., that means that increase/decrease of river discharge is
due to decrease/increase of the artesian water level. As to other correlations—
between the precipitation level, correspondingly and both the river discharge and
the groundwater level during the event—the maximal value of K was less: K �
+0.7. Thus, in fact, the groundwater probably plays a dominant role for the case.

3 The Principles of the Earthquake Influence on the River
Basin Functioning

The nonlinear dynamic processes, first, of the regional tectonics dynamic map and,
second, of three-dimension (3D) nonlinear/shock wave mobility for rock masses
and also mechanisms of structural-material reworking of the consolidated Earth’s
crust (under certain fundamental regularities of the consolidated crust nonlinear
geodynamics) [10] are out of the subject of this chapter. With regard to the
relationship of seismic and groundwater, then on this occasion there is an extensive
literature (see e.g., [11, 12, 21]). Usually, these issues are addressed with the help of
diagrams and drawings (cf. [10]).

There are at least two obvious mechanisms explaining how the earthquakes
occurred can influence the river basin functioning (cf. [18, 21]). On the one



218 T. Trifonova et al.

Fig. 2 (a) The sections considered for the river bed. The propagation of the water flow has
been analyzed by a system of Saint-Venant equations combining the continuity equation and the

convection-diffusion equation [15]: dh
dt

+ 1 dQ
b dx

= 0; dQ
dt

− 1
2

1 nh
10
3 d2Q

2n2Q dx2 = 0, here Q = vS, and

for initial conditionQ|t=t0 = Q(x);h|t=t0 = h(x); for the border conditions in both initial section
x0 and section xk of moving flow Q|x=x0

= Q(t);h|x=x0
= h(t);Q|x=xk = Qk(t);h|x=xk =

hk(t), where Q—water discharge in the specified section; h—depth of the stream; b—width of
the base of the channel; x—distance; t—time; n—roughness coefficient; v—flow velocity, S—
cross-section of the living flow. (b) Wave height graph vs. x coordinate and time t. (c) The
flooding area on the Sodyshka River after 15 min of simulation. A computational experiment
was conducted on the movement of water flow with the real parameters of the object: b = 400
m, x = 10 km, n = 0.041. The complete simulation time is 3 h, and the analyzed distance is

6 km. Initial conditions: (x)|t=t0 = 2 m3

s ; h(x)|t=t0 = 0.5 m and the boundary conditions:

Q(t)|x=x0
= 500 m3

s ;h(t)|x=x0
= 13.3 m. The final result (the flood is over): hk

(
t
)
|
x=xk

= 0.5 m,

tk = 10,800 s ∼ 3 h

hand, some parts of the transport-net may suddenly change during the topology
restructuring. On the other hand, when the cracks are blocked the dramatic growth
of pressure in other parts of the net occurs (cf. [22]).The basis of both is the impact
of the earthquakes seismic waves which can propagate to huge distances in the
Earth crust (up to several thousand km—cf. [10, 22]). We are now interested in their
influence on the topology of the existing groundwater transport ways (cf. [6, 23]).
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Fig. 3 The statistical data on
intensity (points—axis B (up
to IX), and magnitudes—axis
C (up to 7 – 5 × 1015 J)) for a
number of earthquakes
occurred taking into account
the localization of depth of
the earthquake
source—hypocenters/focuses
(up to 200 km)—axis A, from
the Earth’s surface. Relative
numbers of lines 1–6 mark
the specific events that
occurred. The data are taken
from the analysis of different
references—see text (cf.
[10]). It is obvious that the
most dangerous event is
classified by the parameter
marked by line 2 (i.e., large
force of the earthquake both
in depth and on surface)

It is important that after the breakout (which has opened a new channel) the
groundwater can flow continuously for a long time defining the long water staying
on the surface (until the local groundwater resource is exhausted).

The scale difference between groundwater response on the earthquake in both
time and distance is sufficiently complicated and depends on many factors being
not clear still: may vary in time—from immediate reaction to hours and weeks, and
in distance—up to thousands kilometers even [11, 12].

We showed [20] that a more substantial impact on the groundwater exit on
the land surface occurs for the earthquake hypocenter depth ∼10 km when the
magnitude value is about 5.0 (∼1012 J) which may be associated with VII points
in earthquake epicenter on the land surface (see Fig. 3).

4 Preliminary Recommendations for the Identification
of the Earthquakes Influence on Disastrous Floods in the
3D-River Basin

In framework of our conception we assume that marked by lines earthquakes in
Fig. 3 could influence on the emergence and development of subsequent disastrous
floods. Such change of the river basin functioning regime in the part of groundwater
dynamics results in its interaction with the surface water. However, the territories,
where the floods occur, are located in different areas of the wave path regarding
the epicenters of preceding earthquakes (Fig. 4). But the hypocenters localization is
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Fig. 4 Relative positions of groups of the earthquakes epicenters regarding the flooding area:
(a), (b)—one-directional arrangement; (c), (d)—two-directional arrangement; (e), (f)—many-
directional arrangement (white hexagons—the earthquakes epicenters; black ovals—the flooding
areas); (g) the Red River basin and the Southern Oklahoma Aulacogen: white hexagon—the
earthquake epicenter; black oval—the flooding area. Area with solid blue border—the Red River
basin; areas with dashed red border—the Southern Oklahoma Aulacogen. The areas that are
considered obvious on the maps
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more principal for the problem in accordance with Fig. 3. We will nevertheless talk
about epicenters as they are usually fixed in practice. We consider in particular three
cases for the flood events in the case.

The first case is the floods in Amur region, Russia (2013), and in Matabeleland
South, Zimbabwe (2016–2017) (Fig. 4a, b): the epicenters were located almost
in one direction from the flooding area. Second case is the floods in Western
Europe (2013) and in California, USA (2017) (Fig. 4c, d): two groups of epicenters
equidistant from the flooding area are clearly distinguished. Finally, the third case
is the floods in Colorado, USA (2013), and Assam, India (2015) (Fig. 4e, f): three
and more groups of epicenters located in different directions from the flooding area
can be distinguished.

In the second and the third cases, we clearly observed a strong kind of seismic
wave interference: the influence of waves going from different directions is maximal
in the area equidistant from the groups of epicenters. Herewith, the topology of
the groundwater transport-net is the subject of significant restructuring, and the
probability of the disastrous flood emergence grows dramatically (cf. [24]). In
addition, we should pay our attention to the geological structure due to maximal
amplitudes of seismic waves at the boundary between homogeneous media, e.g.,
for Red River basin where the disaster occurred (Louisiana, USA, May 2015)—see
Fig. 4g.

5 Conclusions

The development of adequate approaches and construction of algorithms for the
analysis of the reasons of disastrous floods emergence, and finally their forecast need
consideration of numerous factors and new methodological foundations. Because
the catastrophic floods (soliton like events) are associated with extremal conditions
in interaction of the different nature wave processes, a nonlinear dynamics approach
is a good candidate for that. One of the main problems here is the formalization
of the key factors of such nonlinear interaction including the role of precipitation,
seismic activity and/or local geological structure. For the practical verification of
the proposed approach our activity in the future should be focused on the simulation
modeling in the context of methods of stochastic nonlinear dynamic processes by
manipulation of the key uncertainty parameters for the events (precipitation, soil
and rock composition, etc).
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Refined Weighted-Permutation Entropy:
A Complexity Measure for Human Gait
and Physiologic Signals with Outliers
and Noise

Huan Zhao, Jian Yu, Junyi Cao, and Wei-Hsin Liao

Abstract The complexity quantification of human gait and physiologic signals has
received considerable interest for wearable healthcare. Permutation entropy is one
of the most prevalent algorithms for measuring the complexity of time series, but it
fails to account for amplitude information with outliers and noise in such time series.
Though weighted-permutation entropy aims to incorporate amplitude information
by counterweighing the motif with its variance, it mixes noise and outliers with
abrupt changes, which have a negative effect on the analysis result. To overcome this
problem, this chapter proposes a refined weighted-permutation entropy by assigning
fewer weights to outliers and more weights to regular spiky patterns according to
the normal distribution function. The refined weighted-permutation entropy is used
to analyze simulated synthetic signals with noise and outliers. The comparative
analyses with the permutation entropy and weighted-permutation entropy are also
performed. Moreover, human gait and ECG experimental data are analyzed by the
proposed method. The results demonstrate its better robustness and stability than
traditional methods in distinguishing different states of human gait and physiologic
signals.
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1 Introduction

Human gait and physiologic signals had been widely investigated because they can
be used for wearable healthcare monitoring. Due to complex multiple coupling
phenomenon in the physiological systems, much effort has been devoted to devel-
oping complexity measure methods. For the sake of dynamical evaluating models
generated from human gait [1, 2] and physiologic time series [3–5], the permutation
entropy (PE) method was proposed by Bandt [6]. PE provides the advantage of
increasing immunity to complex time series mixed with large artifacts and noise.
Moreover, it is suitable for noisy, chaotic, regular, or real-world time series. There
are a large number of successful applications such as mechanical fault diagnosis,
electroencephalography (EEG), and electrocardiography (ECG) [7, 8].

However, PE may be incapable of distinguishing different patterns of the same
motif. In order to address this issue, Fadlallah [9] incorporated amplitude informa-
tion through assigning weights to design the weighted-permutation entropy (WPE)
to achieve a complexity measure for time series. By assigning more weights to the
regular spiky pattern, WPE can sensitively track the abrupt changes in a complicated
signal regardless of noise effects. This method and its modified algorithms had been
successfully employed in many fields. Deng et al. [10] suggested WPE can become
a useful tool to detect brain dysfunction in Alzheimer’s disease (AD) and other
neural diseases. Their comparison results between WPE and PE showed that WPE
was more capable of distinguishing the AD patients from the normal controls.

Although WPE can reduce the noise effects and track abrupt changes of
amplitude information in the signal, there are many outliers processed as useful
amplitude information. In real experimental conditions, environmental, human,
and some other adverse factors may lead to unfavorable outliers. Moreover, some
outliers or ambiguous data may have a great negative impact on the analysis results.
Considering amplitude information and ordinal patterns of time series, a refined
weighted-permutation entropy (RWPE) is proposed in this chapter. The normal
distribution function is introduced to incorporate significant amplitude information
from the signal when computing the weights for each motif. Furthermore, the
Gaussian modulation sinusoidal signal as well as the sine signal with white noise
and pulses are respectively analyzed by PE, WPE, and RWPE. Results show that
WPE has a better performance in noise immunity and tracking abrupt changes of
amplitude. Finally, the RWPE calculation results of human gait and ECG signals
demonstrate its superiority in the complexity quantification and characteristics
extraction of real-world time series.

2 Refined Weighted-Permutation Entropy

For a given time series {x(i)}Ni=1, its time-delay embedding expression X(i) can be
reconstructed as follows,

X(i) = {x(i), x (i + τ) , · · · , x [i + (m− 1) τ ]} (1)
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where i = 1,2,···, N−(m−1)τ , τ is the time delay and m is the embedding dimension.
Then the reconstruction vectors X(i) are arranged in ascending order,

{x (i + (t1 − 1) τ ) ≤ x (i + (t2 − 1) τ ) ≤ · · · ≤ x (i + (tm − 1) τ )} (2)

where tm is the time index of the element in the reconstruction vector. When
x(i + (tk1 − 1)τ ) = x(i + (tk2 − 1)τ ), the value of index tm defines the sequence
which can be summed as x(i + (tk1 − 1)τ ) ≤ x(i + (tk2 − 1)τ ), tk1 < tk2. The

sequence is represented by motifs
{
π
m,τ
j

}m!
j=1

. Obviously, there are m different

symbols in {t1, t2, · · · , tm} and thus m! possible motifs. The probability distribution
of each motif is calculated and defined as:

pw

(
π
m,τ
j

)
=
∑
i≤n 1u:type(u)=πj (X(i)) wi∑
i≤n 1u:type(u)∈Π (X(i)) wi

(3)

where 1A(u) denotes the indicator function of set A, if u ∈ A, 1A(u)=1 and if u �∈ A,
1A(u)=0, type(.) denotes the map from pattern space to symbol space, P denotes

motifs
{
π
m,τ
j

}m!
j=1

, wi is the weight value calculated by the variance or energy of

each reconstruction vector. The normal distribution function is applied as:

wi = 1√
2πσ

e
− (x−μ)2

2σ2 (σ > 0) (4)

where σ is the standard deviation of time series, x is the standard deviation of
reconstruction vectors X(i), μ is not the mean value but μ = kσ (k>0, k<0 is
insignificant as k is the parameter to adjust the distance between x and σ .).

It can be seen from Eq. (4) that weight increases when x is close to μ. Therefore,
some motifs containing useful amplitude information can be assigned more weights
due to their standard deviation are close to the center of the normal distribution
function. On the contrary, motifs away from the central of standard deviations can
be assigned fewer weights. For example, due to fluctuations like noise and motifs
with higher standard deviations resulting from large outliers, motifs that have small
standard deviation can be weighted fewer toward the final value of RWPE. Conse-
quently, the proposed method assigns weights to each motif based on the proportion
of normal distribution function. Finally, the normalized RWPE is computed as:

RWPE (m, τ) = H (m, τ) / ln (m!) (5)

where H (m, τ) = − ∑
j :πm,τj ∈Π

p
(
π
m,τ
j

)
lnp

(
π
m,τ
j

)
. Generally, RWPE(m, τ ) vary

from 0 to 1 for any parameters, bigger RWPE(m, τ ) implies that the time series
is more complex and irregular while smaller RWPE(m, τ ) indicates that the time
series is more regular and periodic.

In this method, k is the parameter to adjust the location of normal distribution
function center, k can be adjusted based on data types to assign appropriate weights



226 H. Zhao et al.

toward possible motifs. For example, if the pulses contain useful information, k will
be increased to track the pulses, otherwise, k will be decreased. This method could
not only weaken the effects of outliers and noise by assigning smaller weights but
also help to track abrupt changes clearly by assigning larger weights.

3 Validation by Synthetic Data

3.1 The Gaussian Modulation Sinusoidal Signal
with White Noise

In this part, the Gaussian-modulated sinusoidal signal with a frequency of 10 kHz
and a pulse (or outlier) signal with 1 kHz and amplitude attenuation rate of 0.9 are
added together to simulate a real signal. The designed signal and with white noise
are analyzed by PE, WPE, and RWPE methods as shown in Fig. 1.

PE is unable to detect the pulses signal, but WPE can track the pulses sensitively
when there is no noise. Unfortunately, WPE fails to detect the Gaussian-modulated

Fig. 1 (a) The Gaussian-modulated sinusoidal signal with noise; (b) the Gaussian-modulated
sinusoidal signal without noise; (c) entropy calculation of PE, WPE, and RWPE with windows
of 50 samples slid by 10 samples. The embedding dimension m = 3 and time delay τ = 1
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sinusoidal signal with white noise when the value of the window is 26, as marked in
the red oval. It is obvious that RWPE can correctly sense periodical pulses when
k increased (especially k = 5,6), which shows the excellent immunity to noise.
Moreover, though PE and RWPE have a similar trend of entropy fluctuations, RWPE
has better anti-noise capability due to its smaller entropy.

3.2 The Sine Signal Without Noise and Impulses

To analyze the data without noise and impulse with PE, WPE, RWPE, the sine signal
as well as it with noise and outliers are analyzed respectively, as shown in Fig. 2.

Fig. 2 (a) The sine signal without noise and pulses; (b) the sine signal with noise and pulses; (c)
entropy calculation of PE, WPE, and RWPE
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Figure 2c shows distinct drops in the value of WPE corresponding to the
impulsive regions. Contrary to the WPE method, there is no obvious change in PE
at the same regions. As for RWPE, when k is larger (k = 4, 5, 6), it tracks more
remarkable drops of complexity than WPE in impulse regions. When k becomes
smaller (k = 2, 3), the value of RWPE is slightly smaller than that of PE and WPE
method which reflects good immunity to outliers and noise. Furthermore, for signals
without noise and pulses, analyses of PE, WPE, and RWPE show the similar trend
and characteristics to the original signal.

4 Analysis of Real Experiment Signals

4.1 Analysis of Human Gait Signals

To recognize whether the gait is healthy or pathological, human gait time-series
from PhysioNet database [11] are analyzed by RWPE. The records in this database
are from healthy control subjects as well as patients with Parkinson’s disease (PD),
amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD).

As shown in Fig. 3, RWPE can recognize the health and disease efficiently
when k ≥ 3.5 though there are some outliers exit in the gait signals. As for the
characterization of variability, the Mann–Whitney U test is applied, the p-value of
PE, WPE, and RWPE (k = 4) are calculated. The results are shown in Table 1, in
which p-value (p < 0.05) shows the comparison of statistical significance of PE,
WPE, and RWPE (k = 4) for the four states, “Yes” and “No” mean the statistical
difference are obvious and unobvious, respectively.

It is seen that PE fails to express the various complexities of those gait states
because of p > 0.05. For WPE, it only distinguishes the control and HD. However,
RWPE shows a better variety of complexity than PE and WPE. Therefore, it is

Fig. 3 RWPE analysis of four different human gait
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Table 1 Mann–Whitney U test of human gait

p-value (Mann–Whitney U test)
Methods Control vs. ALS Control vs. HD Control vs. PD

PE 0.6501 (No) 0.2114 (No) 0.4945 (No)
WPE 0.6193 (No) 0.0149 (Yes) 0.5453 (No)
RWPE (k = 4) 0.0448 (Yes) 0.0215 (Yes) 0.0267 (Yes)

Fig. 4 RWPE analysis of three physiological states

concluded that RWPE has a good immunity to the effect of outliers and noise, which
presents better performance in the characterization of signal complexity.

4.2 Analysis of Human ECG Signals

ECG time series from the Fantasia database and the BIDMC congestive heart failure
(CHF) database [12, 13] are also analyzed by the proposed method. There are some
ambiguous outliers in the ECG signals and the corresponding calculation results by
RWPE are shown in Fig. 4.

The analysis results of Mann–Whitney U test among the three groups are shown
in Table 2. They indicate that PE and WPE could not distinguish all three groups
(p > 0.05). However, RWPE has effective discrimination ability between young and
elderly, young and CHF when k = 3. Therefore, RWPE can reduce the effect of
outliers and noise by selecting the appropriate value of k, which has better robustness
and stability than PE and WPE.
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Table 2 Mann–Whitney U test of ECG

p-values (Mann–Whitney U test)
Methods Young vs. Elderly Young vs. CHF Elderly vs. CHF

PE 0.2888 (No) 0.2680 (No) 0.9354 (No)
WPE 0.1493 (No) 0.6098 (No) 0.3640 (No)
RWPE (k = 3) 0.0051 (Yes) 0.0105 (Yes) 0.9084 (No)

5 Conclusions

The refined weighted-permutation entropy is proposed for incorporating amplitude
information of nonlinear signals through weighted entropy based on normal distri-
bution function. For improving the robustness and stability, the proposed method
weights the motifs by selecting appropriate values of k to increase immunity to
outliers and noise effects. In addition to synthetic signals, real physiological and
human gait signals with outliers (or spiky features) and noise are selected to perform
experimental verifications of the RWPE. The results show that RWPE is capable of
weakening the effects of outliers and noise by assigning fewer weights to them
when compared with WPE and PE. Furthermore, the complexity measure of human
gait and ECG signals can be characterized distinctly for distinguishing different
pathophysiological states. It will be helpful for human wearable devices through the
monitoring of physiologic signals and personal healthcare in the future.
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Simultaneous Multi-Parametric Analysis
of Bone Cell Population Model

Julijana Simonović

Abstract Using the bone cell population mathematical model of the system of
coupled ordinary differential equations (ODEs) with power-law nonlinearities, it is
possible to properly interpret and analyze bone cell communication dynamics. The
system of bone cellular communication is complex and not yet properly described
and revealed. The structural analysis has been used here for stability analyses of the
problem, as like as for analyses of system sensibility to small parameters changes.
The usage of the multi-parametric synchronous analysis presented in this chapter is
the advantage of Mathematica ODE solver that provides the functional interpretation
of important parameters of dynamics. The models explored in numerous numerical
(in silico) experiments also provide the more realistic approaches to interpreting
the development of interventions for patients with bone trauma and diseases, but
also for those who want to prioritize the healthy and strong skeleton. This research
is a very practical and clear example of nonlinear theory application for bone cell
signalling processes modeling and interpretation.

Keywords Bone cell population model · Cell signalling · Nonlinear
multi-parametric analysis

1 Introduction

Mathematical modeling can be developed to characterize complex bone phenomena,
from intercellular signalling to cell division, proliferation, migration, and even
mutation; from bone remodeling to healing, from tumor growth to cancer metas-
tasis, from osteoarthritis to osteoporosis treatment. Mathematical interpretation
and models of this system become even more complex as the higher resolution
screening and high-throughput omics research discover the new players involved

J. Simonović (�)
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in the process, what puts demands on theories, methods, and assumptions used and
the efficiency of numerical methods employed for solving as well as managing of
parameters and data. Mathematical modeling is the tool for synthesis—the process
of combining separate elements in order to form a coherent whole—the tool of
inductive reasoning, allowing reconstruction of the function of bone as an organ
based on the acquired knowledge of elementary processes. Additionally, it is well
known from the phenomenological analogies and mathematical mapping that we
can use the same mathematical framework and formulations to describe phenomena
in the disparate sciences [1, 2]. Good example is nonlinear hysteresis phenomena
that can be described with simple phase lag between input and output but also
with Duffing differential equation amplitude jumps [3] and many more models in
different fields from ferromagnetism to biology [4].

The complexity of bone models depends not only on the number of parameters
describing different biochemistry and multi-physics influences but also on different
time scales, rate of the periodicity of involved processes and numerous delay
in transmission of the signal. These issues are challenging even for experienced
applied mathematicians and are difficult to be adequately communicated to a
biologist who has to accept and endorse the predictive vigor of mathematical
models. Thus, it is important to have a friendly model capable of understanding
from the point of view to both mechanistic and biologist approaches. Moreover,
another unresolved issue remains linked with ambiguities of mathematical results
from in silico experiments and their discrepancy with in vivo/vitro experimental
results in the modeling of bone tissue. The future advancement of bone biology
research will strongly rely on how well experimental and theoretical groups are
able to communicate and collaborate with each other. A unique bridge between
biological models and experimental validation is more realistic mathematical model
together with possibility of numerous in silico experiments. Once established
credible mathematical model helps us in decision-making while analyzing systems
perturbation, performing sensitivity analysis likewise to develop hypotheses to
guide and design new biological experiments.

Generalized form of predator–prey (S-System type) mathematical model,
described in next section, is used to analyze the dynamic interaction between several
bone cell lineages that are involved in the process of targeted bone remodeling.
Functional model, introduced in Sect. 3 aims to present interaction of the cellular
functions and activities. This kind of model is unique and different from System
Biology Graphical Notation BioModels of bone remodeling and in such a way closer
and friendly for communication to mathematicians and mechanics. In Sect. 4, a
hands-on and applicable multi-parametric analysis of presented system of equations
for specific ranges of parameter’s values is presented and discussed together with
a few steps of nonlinear structural analysis of system stability. Concluding remarks
contain also discussion about future directions and the latest stochastic analysis
findings that address S-system type models of bone remodeling.
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2 Functional Model

In the process of mathematical modeling of the particular biological processes,
it is necessary to interpret and ascertain the meaning of all parameters involved
in order to explain all the mutual correlations and sites of possible internal
miscommunication and conflicts between all the relevant actors and their functions.
In the process of bone cellular signaling at least three bone cell lineages are involved
and it is not clear enough and distinguished which of them are responsible for
certain functions. Most of them do their function at the same level of importance and
simultaneously so that is impossible to designate certain relevant parameter to just
one cell lineage, in neither time nor location. Many overlapping and instantaneous
processes merge with each other and as the bottom-goal determines the quality
and quantity of the new formed bone tissue. Proposing the structural models of
biological processes in the form of flow models that has been already published [5,
6] is useful in terms of understanding nominated names of bone cells lineage and
their relationship with cooperative binding effects of the large number of significant
proteins and molecules, ligands, receptors, and decoys. Nevertheless, it is more
important what function has certain cell lineage than how it is designated. No
matter how we named these cell lineages they will still serve for their different
functions: processes of bone resorbing and forming, receiving and sending the
signals, proliferating, differentiating, preserving viability, ageing or dying, which
are more important for the sake of balanced remodeling bone tissue process.
Defining the functions is also necessary for the purpose to form an appropriate
physical model for preparing mathematical models. If some function is properly
determined and defined with all aspects of inputs (I), outcomes (O), preconditions
(P), resources (R), controls (C), and time (T), noted as a corners of hexagons
on the Fig. 1, then it is a straightforward way to find its mathematical function.
For instance, using the FRAM (Functional Resonance Analysis Method) [7] it is
convenient to associate appropriate aspects having recognized the function to define
controllers, preconditions, resources, imputes, and outputs. The time is treated as
separate aspect even though it can be incorporated within other aspects. Using this
method it is easy to address upstream, downstream, and actual function and their
interconnections and mutual influences, even more it is easy to register and assign
which one of the functions can have possible conflicts with large number of outputs,
controllers, and connections with other functions and present the sources of the
internal resonance or dynamical absorption.

Figure 1 shows simple form of the phenomenological model of bone cell
signaling where the important function of bone mass qualitative (via initial and
total number of involved cells) and quantitative (via relative rate of formation or
resorption, parameters k1 and k2, respectively) changes. It depends on two functions:
“to form” which corresponds to OB lineage (with palette of green hues) and “to
resorb” corresponding to OC lineage (with palette of purple hues). These two
functions change number of cells from initial number to the total available number
of cells. Both of them are described with first two ODEs in the system (2). From



236 J. Simonović

Fig. 1 Functional model of the OC-OB communication processes that influence bone mass
changes on the level of bone multicellular unit representing the activities of the one cycle of the
targeted bone remodeling. The model corresponds to the system of Equations (2), (3), and (4)

Fig. 1, it is noticeable that these functions have form of fractal similarity of which
everyone increase with the number of differentiated cells (positive term in Equations
(2) and (3)) and decrease with the number of died cells (negative terms in Equations
(2) and (3)). Up and down self-regulation of the cell lineage is presented with
autocrine signaling function (determined by γ 11 = gcc and γ 22 = gbb parameters)
and mutual influence is assigned as paracrine signaling function (determined by
γ 12 = gcb and γ 21 = gbc parameters). Both influence differentiation stages of cells
activities. Although there exists far more complicated and complex descriptions of
bone cell signaling, this model is used as a good representative and elegant form to
describe connection with conceptual biological models and mathematical system of
Equations (2)-(4) generated for in silico experiments of this chapter.

3 Mathematical Model

The system of bone cellular communication, which involves at least three main
cellular lineages: forming-osteoblasts (OBs), resorbing-osteoclasts (OCs), and
orchestrating-osteocytes (OCYs) cells lineage, with their self (autocrine signalling)
and mutual (paracrine signalling) interactions and their interactions with the
environment, is complex and elucidate a number of parameters that detail the
psychological mechanism of bone tissue adaptation processes. One cycle of the
targeted bone remodeling consists of the bone resorbing activity of the OCs and the
bone forming activity of the OBs, which are both driven by the signals transduced
via OCYs from the external loading. The importance of this process goes with
the fact that after every ten years of adult life the whole skeleton is regained and
renewed due to this process. The following are the general form of models used by
several authors [5, 6, 8–11] representing the power of analytical approaches:
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dui
dt

= αifi (ui)+ k · fi (ui, μ(t))− βiui, i = 1, 2, 3

dz
dt

= −k1v1 + k2v2 for vj =
{
uj − uj , if uj > uj

0, if uj ≤ uj
}

j = 1, 2
(1)

where ui are the densities of OCs, OBs, and OCYs for i = 1, 2, 3, respectively,
and fi(ui) are the functions giving the growth rates which include the interaction
between cell populations by the biochemical regulators in the form of power law
approximation: f1 (u1, u2) = u

γ11
1 u

γ21
2 and f2 (u1, u2) = u

γ12
1 u

γ22
2 , where γ ij for

i, j = 1, 2 are defined by their autocrine and paracrine regulation. The last, so
called bone mass equation describes the activity of bone resorption and formation
where z is total bone mass, ki represents the normalized activities of bone resorption
and formation, μi represents the steady states for the OCs and OBs, and k is a
positive proportionality constant measured in cells day-1. The term μ(t) functions
as a regulator of the bone-remodeling process and includes external signaling
transduced via osteocyte activities that stimulate the production of OC and OB.
This input function μ(t) can model regulators production from osteocytes as well
as its regulation by the sclerostin inhibitor [6, 11]. An explicit functional form for
μ(t) linked to osteocytes activity is still to be established and justified by biological
experiments.

3.1 In Silico Experiment and Discussion

For the calculation, compliance and discussion in this chapter, the simple form of
system (1) is in use:

du1

dt
= α1u

γ11
1 u

γ12
2 − β1u1 (2)

du2

dt
= α2u

γ21
1 u

γ22
2 − β2u2 (3)

dz

dt
= −k1 max [0, u1 − u1] + k2 max [0, u2 − u2] (4)

The unique nontrivial steady states of μi could be calculated and in general
depends on relations of eight different parameters involved in this simple example.
The behavior of the solution of Equations (2) and (3) can be explored by sign of
the real part of the eigen values of Jacobian matric J (u1, u2) of the steady state
solutions. The nature of the Jacobian matrices’ eigen value depends on the following
functions:

trace J (u1, u2) = ψ = β1 (γ11 − 1)+ β2 (γ22 − 1),
det J (u1, u2) = Λ = β1β2 [(γ22 − 1) (γ11 − 1)− γ12γ21] = −β1β2Π

and Δ = trJ 2 − 4 det J = [β1 (γ11 − 1)− β2 (γ22 − 1)]2 + 4β1β2γ12γ21.



238 J. Simonović

Fig. 2 Phase portraits of OC-OB interaction dynamics for different γ 11 parameter (effectiveness
of osteoclast autocrine signaling) values: (a) γ 11 = 1.1, (b) γ 11 = 1.098 and (c) α2 = 1, (d)
γ 11 = 1.1 and β2 = βb = 0.028 and (e) γ 11 = 1.098 and β2 = βb = 0.028

The solution of systems (2) and (3) exhibit a limit cycle as ψ passes through 0
performing self-sustained oscillation of number of OC and OB, see Fig. 2a. Also, if
ψ > 0 and " > 0(- < 0) solution yields unstable oscillations diverging away from
the nontrivial steady state solutions μi what defines existence of unstable source
(repellers), see Fig. 2c and if ψ < 0 and " > 0(- < 0) solution yields damped
oscillations converging to the μi what defines existence of stable attractors (sinks),
Fig. 2b. Likewise if $ < 0 unstable saddle points can be find. The bifurcation
diagram for these parameters could be designed based on this analysis but more
applicable solution for biologist is a tool where they can simultaneously change
values of the parameters and track the shape of the phase diagram. In such a way
find the combination of parameters value that satisfy desirable dynamics of solution.
The multi-parametric analysis here is proposed where simply by moving sliders for
parameter‘s value we can follow the changes in the dynamics of the OC and OB,
and find out the same inferences as it comes from structural analysis (see Fig. 2).

The visualization of different system dynamics obtained by small changes of
only one parameter (effectiveness of osteoclast autocrine signaling γ 11 = gcc) are
presented at Fig. 2. γ 11 has been changed from the value of 1.1, Fig. 2a where
the solutions exhibit limit cycle, also presented at [10], to the value 1.089, Fig.
2b where yielding damped oscillations converging to the nontrivial steady states
ui is presented. The values for the other parameter are: γ 12 = gcb = − 0.5,
γ 22 = gbb = 0, γ 21 = gbc = 1 are dimensionless parameters and α1 = αc = 3,
α2 = αb = 4, β1 = βc = 0.2, β2 = βb = 0.02 have dimension day-1. In [10]
it has been claimed that this parameter is the primary factor in the regulation of
bone remodeling dynamics. The following parameter‘s range values are used in
this research: γ 11 = gcc ∈ (0; 1.2), γ 12 = gcb ∈ (−1; 0), γ 22 = gbb ∈ (0; 1),
γ 21 = gbc ∈ (0; 1), α1 = αc ∈ (0; 5), α2 = αb ∈ (0; 5), β1 = βc ∈ (0.1; 0.5),
β2 = βb ∈ (0.01; 1). Initial conditions are constantly [OC(0);OB(0)]=(11, 231)
in all simulations. However, having in mind the form of function ψ it is obvious
that changing, for instance value of parameter β2 = βb = 0.028 the response of the
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system dynamic no longer depend on the small changes of the value of γ 11 = gcc
with the same sensitivity, Fig. 2e, d. This is what underlines the importance of
such a multi-parametric analysis presented herein. As an overall outcome, we can
conclude that the right relation between parameters, not only value range of one
primary parameter, is valuable to be analyzed. This on the other side confirmed
that continuous therapies that targeted only one parameter most likely would not be
appropriate for a long-term period treatment.

Similar parameter analysis has been done in [11] for a more advanced model that
incorporates osteocyte signalling and two different stages of osteoblast maturity,
which gives five dependent equations in system (1) with at least eighteen differ-
ent parameters that describe autocrine and paracrine signaling more realistically.
Authors have analyzed the steady state of the bone mass and presented it as a
function of two parameters in the 3D diagram in parameter space which is a very
useful way of presentation but it is constrained with representation of dependence
on two parameters at most. With the multi-parametric analysis these findings are
confirmed, but also the influence of the other parameters is possible to be revealed.

It is possible to perform the changes of any parameter and even of all of them
simultaneously with this procedure in a very functional way. By performing similar
simulations with all involved parameters it is straightforward to decide which of
the parameter‘s relation is the most influential and most responsible for changes
of model dynamics, even if the number of parameters or equations in the model is
enhanced. Obtained conclusions and discussions for parameter values and ranges
are applicable for the justification of effectiveness of mathematical models and
their compliance with in vivo experiments of bone cells. Nevertheless, one should
bear in mind that the presented range of parameters for this chapter are chosen
only intuitively and further readouts from in vitro experiments could be extremely
important in order to further validate the model. Mention should also be made of
the fact that known histopathological samples suggest limited number of cells per
one cycle of remodeling what puts constraint to the maximal number of OC and OB
present in the simulations, e.g., OCmax < 20 and 80 < OBmax < 120 per one cycle of
bone remodeling. Parameters αi and β i, are responsible for bounding the number of
cells as they are cell’s growth and death rate coefficients. If the value of parameter
α2 = 1, then it is obvious from the Fig. 2c that number of OB is bonded between
200 and 500 cells.

This allows probability that the transition number of cells, in the beginning and
end of cycle, become small than 10 cells in which case predator–prey system yields
to population extinction after only one cycle. Reasonably, our current research is
the stochastic analogue of the system of equations where we run 1000 simulations
to explore these effects and perform cross-correlation simulation of parameters to
find out appropriate intervals of expected value of parameters. Both the stochastic
and deterministic trajectories can be found. Any individual stochastic trajectory does
not match the deterministic solution. However, the average of these 1000 stochastic
trajectories does correspond extremely well with the first peak of the deterministic
solution. These results will be published in the future and are not presented herein
as they are far beyond the scope of this chapter that has the aim to present
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the practical and applicable side of the multi-parametric simultaneous analysis.
However, comparative analysis of different mathematical approaches shows that
biological real event can be interpreted with a useful model depending on the
different real constraints from the biological experiment. If the simulated population
are large enough then the continuum deterministic approximation is appropriate,
while if the population number tends to fall below 10 cells then the stochastic
description is more apt.

4 Conclusions

Different types of external signals were observed in [6] and the nonlinear stability
analysis [8] was used for obtaining parameter’s ranges for steady state solutions,
the authors have proved that the modified model yields a positive non-oscillatory
solution. This behavior of the solution is consistent with the bone remodeling cycle
[5] returning to a quiescent state after 3 or 5 months. Additional quantitative and
qualitative analysis of model sensibility to parameter’s changes have been presented
with this chapter results. Based on a simultaneous multi-parametric analysis it is
possible to provide a parametric range where model exhibits periodic solutions and
to analyze their effects on model dynamics. The usage of Mathematica program
provides different visualization and animation technique of bone cell population
model dynamics. As being nonlinear with power law terms γ ij representing
autocrine and paracrine signaling pathways in bone cell communication process
system of ODEs (1) is highly sensitive on small changes of parameters (e.g., changes
in system dynamics for only one parameter shifting is presented on Fig. 2). The
models explored in numerous numerical (in silico) experiments also provide the
more realistic approaches to understanding the development of interventions for
patients with bone trauma and diseases. The good example is in [9] where this model
is adjusted and enhanced to description and explanation of bone myeloma diseases.
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Nonlinear Dynamics of RRc Lyrae Stars

Sandip V. George, Ranjeev Misra, and G. Ambika

Abstract In this work we consider the nonlinear dynamics of RRc Lyrae variable
stars, using intensity data from the Kepler space telescope. RRc Lyrae variables are
shown to exhibit rich nonlinear dynamical behavior, including strange nonchaotic
and quasiperiodic behaviors. We examine the intensity variations (or light curves) of
four confirmed RRc Lyrae stars (KIC 4064484, 5520878, 8832417, and 9453114)
in the Kepler field of view. Earlier work has classified two of the four stars as
quasiperiodic with noise contamination and two as exhibiting strange nonchaotic
dynamics George et al. (Nonlinear Dyn 89(1):465, 2017). We explore the recurrence
network properties and bicoherence of these stars. We find the groups of stars that
show the same dynamical behavior also show similar nonlinear properties. We also
do a comparison of the metallicities and pulsation periods of these stars to their
nonlinear properties. Our results support the existence of two distinct subcategories
of RRc Lyrae stars and indicate a link between the nonlinear and astrophysical
properties of RRc Lyrae variable stars.

Keywords RR Lyrae stars · Chaos · Recurrence plots · Recurrence networks ·
Bicoherence
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1 Introduction

Pulsating variable stars are stars whose light variation is primarily due to oscillations
in the star. A prominent class of pulsating variables is the RR Lyrae class. These
are evolved He burning stars located in the boundary between the instability strip
and horizontal branch, on the H-R diagram. The pulsations are thought to be due
to the κ mechanism operating in the partial ionization zone. RR Lyrae stars are
further classified based on the mode in which they pulsate in. RRab Lyrae stars
pulsate in the radial fundamental mode, whereas the RRc Lyrae stars oscillate in the
first overtone and RRd variables pulsate simultaneously in the radial fundamental
and first overtone modes [1]. RRab stars also have slightly longer periods than
RRc Lyrae variables, with the former having pulsation periods ranging between
0.3 and 1 days, and the latter having periods between 0.2 and 0.5 days. Many
RRc Lyrae variables are shown to have a secondary pulsation mode that is about
0.6 times the fundamental [2]. The closeness of this ratio to the golden ratio has
invoked considerable interest in these stars. RRc Lyrae variable stars are also the
first astrophysical objects where strange nonchaotic dynamics were detected [3].

We calculate the nonlinear quantifiers of the time series of intensity variations
(light curves) of the stars that were measured using the Kepler space telescope [4].
Nonlinear time series analysis techniques are useful in uncovering the underlying
dynamics of the system from which the time series is derived. Knowing the
underlying dynamics can help in modeling and classification of astrophysical
systems. A very popular nonlinear time series measure is the bicoherence function,
which is a higher order spectrum. It examines the extent of quadratic coupling
between the different frequencies present in the time series. Unlike the phase blind
power spectrum, the ability to retain phase information makes the bicoherence an
attractive tool to analyze nonlinear time series [5]. This has led to the widespread
use of the bicoherence function in a large number of fields [6, 7]. The use of the
bicoherence to analyze dynamical states arising in nonlinear dynamical systems has
been demonstrated previously [8, 9]. In this work, we use two measures, namely
the mean bicoherence over the plane and the fraction of frequency pairs having
significant bicoherence, to quantify the bicoherence plane.

A recurrence plot is a method that quantifies the underlying patterns in a phase
space trajectory. The recurrence plot represents the extent to which phase space
vectors are adjacent to each other. A network constructed using the recurrence
plot as an adjacency matrix is called an ε recurrence network. The properties of
these networks, constructed from time series, are used to determine the underlying
dynamical properties of the time series themselves. Both recurrence plots and
networks have been put to considerable use to analyze datasets from a large number
of fields [10, 11].

One of the most popular methods used to identify strange nonchaotic behavior in
real systems is through the scaling behavior of peaks in the strobed power spectrum.
Recent work has, however, shown that it is difficult to distinguish between noise
contaminated quasiperiodicity and strange nonchaotic behavior using this approach.
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A bicoherence based filter was shown to be effective in distinguishing between the
two states. It has been shown that the four RRc Lyrae variable stars in the Kepler
field of view may be classified into two distinct groups showing noise contaminated
quasiperiodic and strange nonchaotic behaviors [12]. We analyze the recurrence
network and bicoherence plane measures of the two groups. Finally, we look for
common astrophysical characteristics of the two RRc Lyrae groups. The effective
temperature, period, and metallicities seem to be distinctly different for the two sets
of stars.

2 Bicoherence Analysis

The bicoherence is a higher order spectrum which checks the extend of quadratic
coupling between every pair of frequencies present in the measured light curve. The
light curve is initially segmented into k evenly sampled segments of 1024 points
each, the global mean is then reduced from the time series. The bicoherence is
defined as

b(f1, f2) =
∣∣∣∑k

i=1Ai(f1)Ai(f2)A
∗
i (f1 + f2)

∣∣∣
∑k
i=1

∣∣Ai(f1)Ai(f2)A
∗
i (f1 + f2)

∣∣ , (1)

where A(f ) is the Fourier transform of the signal at frequency, f , and A∗(f ) is its
complex conjugate [5]. The full bicoherence planes, corresponding to the four stars
considered, are shown in Fig. 1.

The bicoherence plane is quantified using the mean bicoherence of the plane and
the fraction of significant pairs in the plane. The former is calculated by averaging
over the bicoherence in the entire plane and the latter is found by counting the
relative number of pairs with bicoherence greater than the 99% significance level.

For k-segments, the 99% significance level is given by
√

9.2
2k [9]. These quantifiers

are listed in Table 1. We see that the characteristics of the bicoherence plane is
distinctly different for the two categories identified using the spectral scaling with
bicoherence based filtering technique developed in [12].

3 Recurrence Analysis

In this section, we construct ε recurrence networks from the measured light curves
of the RRc Lyrae variable stars. We start by reconstructing the phase space using the
method of delay embedding. To eliminate differences that arise from the amplitude
distributions of the different light curves, we first take the uniform deviate of the
light curves. A delay time (τ ) equal to the time at which the auto-correlation falls to
1
e

is chosen. If Iu(t) is the light curve after taking uniform deviates, a vector in an
M-dimensional reconstructed phase space is given as
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Fig. 1 Full bicoherence plots corresponding to the four RRc Lyrae stars (a) KIC 4064484, (b)
KIC 5520878, (c) KIC 8832417, and (d) KIC 9453114. The planes for the strange nonchaotic stars
shown in (a) and (d) seem to be distinctly different from the quasiperiodic stars in (b) and (c)

vi = [Iu(ti), Iu(ti + τ), . . . , Iu(ti +Mτ)].

This embedding dimension M is chosen as the maximum of the nearest integer
greater than the correlation dimension (D2). In our case the dimension is chosen
as 4, which is larger than the value for D2 for all four stars. The delay time (τ ),
saturated correlation dimension (D2), and deviation of data from surrogates [13]
(square difference) are shown in Table 2. The square difference is calculated as
follows:

sq.diff . = 1

Mmax − 1

Mmax∑
M=2

D2(M)− < Dsurr
2 (M) >2 . (2)

Here,M is the embedding dimension,Mmax is the maximum embedding dimension
till which the saturation of the correlation dimension was checked, D2(M) is the
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Table 1 Number of
segments (k), mean
bicoherence (Bavg), and
fraction of significant number
of bicoherence pairs (SPF)
for the RRc Lyrae stars
considered

Kepler ID k Bavg SPF

4064484 22 0.64 0.77

5520878 27 0.40 0.31

8832417 27 0.33 0.24

9453114 27 0.55 0.70

The two subcategories have distinctly
different values for Bavg and SPF. The
mean for all the cases is calculated with
22 segments only, the minimum num-
ber of segments present across the four
datasets

Table 2 Table showing the
delay time (τ ), saturated
correlation dimension (D2),
and mean square difference
(sq.diff .) for the four RRc
Lyrae stars

KID τ (days) D2 sq.diff .

4064484 0.08 3.05 0.43

5520878 0.06 3.58 0.25

8832417 0.06 2.87 0.52

9453114 0.08 2.89 0.54

All the stars showD2 less than 4, which
is the embedding dimension used for
constructing the recurrence plots and
networks

correlation dimension at embedding dimensionM for the data, and Dsurr
2 (M) is the

correlation dimension at embedding dimensionM for the surrogates. The delay time
(τ ), saturated correlation dimension (D2), and mean square difference (sq.diff .) for
the four RRc Lyrae stars are listed in Table 2.

Every pair of vectors in this reconstructed 4 dimensional phase space is a point in
the recurrence plot. If the vectors are within ε distance of each other, the recurrence
point is 1, otherwise it is 0. In our case ε is chosen to be 0.14 following the criteria
described in [14] for embedding dimension, M = 4. This is chosen to be large
enough such that above 95% of the nodes in the network form part of its largest
component, and small enough such that the network does not become over con-
nected. The recurrence plots are shown in Fig. 2. Two important characterizers of the
recurrence plot are the laminarity (LAM) and the determinism(DET ). The former
is a measure of the vertical structures in the recurrence plot, whereas the latter
measures diagonal lines. The vertical lines are indicative of the tangential motion in
phase space, while the diagonal lines are associated with greater correlations in the
process [10]. These characteristics are listed in Table 3. We see distinctly different
laminarities and laminarity to determinism ratios for the two groups of RRc Lyrae
stars identified in [12].

One can use the recurrence plot as an adjacency matrix to construct a network
(the diagonal elements are set to zero to avoid self-loops). Such a network is called a
recurrence network [11]. We look at three main properties of the recurrence network,
namely the average degree (davg), the characteristic path length (CPL), and the
average clustering coefficient (CCavg). The average degree is defined at the number
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Fig. 2 Recurrence plots corresponding to the four RRc Lyrae stars (a) KIC 4064484, (b) KIC
5520878, (c) KIC 8832417, and (d) KIC 9453114. While difficult to distinguish visually, the plots
are quantified using recurrence quantification analysis (RQA) in Table 3

of neighbors a node has on an average. The characteristic path length (CPL) is
calculated to be the average of shortest paths between every possible node pair.

CPL = 1

N · (N − 1)
·
∑
i �=j
d(vi, vj ). (3)

Here vi and vj are nodes in the network and d(vi, vj ) is the shortest path between
them. The average clustering coefficient is the average of the local clustering
coefficients of individual nodes. Let N be the set of all nodes and E be the set
of all links. The local clustering for a node i is then given by

Ci = 2|{ejk : vj , vk ∈ Ni, ejk ∈ E}|
(ki)(ki − 1)

. (4)

Here ki is the degree of the node vi and ei,j is the link between two nodes vi and vj .
This local clustering is a measure of how close a node is to being a complete graph
[15]. The values for the four light curves for these properties are listed in Table 3.
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Table 3 Table showing the recurrence plot and recurrence network quantifiers for the four RRc
Lyrae stars

KID RR DET LAM LAM
DET

davg CPL CCavg

4064484 0.02 0.71 0.07 0.1 92.6 10.22 0.73

5520878 0.02 0.61 0.02 0.04 69.8 15.0 0.75

8832417 0.01 0.60 0.02 0.04 60.5 15.77 0.75

9453114 0.02 0.61 0.08 0.13 104 7.95 0.80

Recurrence rate (RR), Determinism (DET), Laminarity (LAM), Laminarity determinism ratio(
LAM
DET

)
, Average degree (davg), Characteristic path length (CPL), and average clustering (CCavg)

for the RRc Lyrae stars considered. We see that the two subcategories of the RRc Lyrae stars can
be identified using LAM, LAM

DET
, davg, and CPL

Fig. 3 CPL-davg plot for the four RRc Lyrae stars considered. We see that the noisy quasiperiodic
stars and strange nonchaotic stars fall into distinct regions of the CPL-davg plane

The strange nonchaotic stars, KIC 4064484 and KIC 9453114, show higher average
degree and lower path length while the noisy quasiperiodic stars, KIC 5520878 and
KIC 8832417, are characterized by lower average degree and higher path length (see
Fig. 3).

4 Results and Summary

We conduct a detailed nonlinear time series analysis of the measured light curves
of the four RRc Lyrae stars in the Kepler field of view, using the bicoherence,
recurrence plots, and recurrence networks. Earlier work had suggested that RRc
Lyrae stars may be classified into two different categories, depending on the
underlying dynamical state [12]. This work probes to see whether other nonlinear
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Table 4 Astrophysical and nonlinear parameters that show distinct difference for the two
categories of RRc Lyrae stars

Kepler ID P0 Teff [Fe/H ] Bavg SPF LAM LAM
DET

davg CPL

4064484 0.34 6500 −1.58 0.64 0.77 0.07 0.01 92.6 10.22
5520878 0.27 7250 −0.18 0.40 0.31 0.02 0.04 69.8 15.0

8832417 0.25 7000 −0.27 0.33 0.24 0.02 0.04 60.5 15.77

9453114 0.37 6500 −2.13 0.55 0.70 0.08 0.13 104 7.95

The strange nonchaotic stars are shown in boldface

time series measures also show differences between the two categories of RRc Lyrae
stars. The mean of the bicoherence across the plane (Bavg) and the significant pair
fraction (SPF ) both are high for the strange nonchaotic stars, while they are low for
the noise contaminated quasiperiodic stars. The recurrence quantification analysis
(RQA) using the recurrence plots shows that the laminarity (LAM) and laminarity-
determinism ratio

(
LAM
DET

)
are distinctly different for the two groups. Finally, for

the corresponding recurrence networks we find that strange nonchaotic stars show
higher average degree and lower path length while the noisy quasiperiodic stars
show lower average degree and higher path length.

The two categories identified through nonlinear time series analysis correspond
to similar properties in the pulsation period, effective temperature, and metallicity
[2]. The quasiperiodic stars appear to be more metal rich than the strange nonchaotic
stars. Moreover, the former have lower pulsation periods and higher effective
temperature than the latter. A comprehensive table of nonlinear and astrophysical
properties that differ for the four stars considered is shown in Table 4. These results
seem to conclusively establish the existence of two separate subcategories of RRc
Lyrae variable stars that differ in nonlinear and astrophysical properties, and provide
a number of quantifiers that can be used to identify these subcategories.

5 Conclusions

Using the bicoherence and the properties of the recurrence plots and networks
constructed from the measured light curves, we can clearly distinguish between
the different categories of RRc Lyrae stars identified previously in [12]. KIC
4064484 and KIC 9453114 were identified as being strange nonchaotic, whereas
KIC 5520878 and KIC 8832417 were shown to be exhibiting noise contaminated
quasiperiodicity. This paper goes beyond the previous work by explicitly identifying
differences in the nonlinear properties and the astrophysical properties of these
two classes. The differences that were shown in the nonlinear properties of the
RRc Lyrae stars cement the idea that there are indeed two subgroups with distinct
physical and dynamical behaviors. Further, this paper also demonstrates that these
differences can be established using relatively fewer datapoints using recurrence
based analysis. The estimates of the bicoherence were made using datasets that
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contained between 20,000 and 30,000 datapoints, whereas all the calculations for
recurrence plots and networks were done with just 3000 points. This order of
magnitude improvement suggests that the two subcategories of RRc Lyrae stars can
be distinguished using much smaller datasets. Finally this paper explicitly shows
that the astrophysical properties of RRc Lyrae stars in different dynamical states are
different. While this may not be entirely surprising, this link between astrophysics
and nonlinear dynamics has been largely under-utilized. As newer space missions
like the Transiting Exoplanet Survey Satellite (TESS) sends richer data, nonlinear
time series analysis must be exploited to explore the links between dynamical
behavior and astrophysical properties in greater depth.
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Part IV
Chaos in Electronic Systems



Multijump Resonance with Chua’s
Circuit

Maide Bucolo, Arturo Buscarino, Carlo Famoso, Luigi Fortuna,
and Mattia Frasca

Abstract In this paper the existence of multijump resonance is described for the
driven Chua circuit. Multijump resonance is a phenomenon observable in driven
nonlinear systems which leads to a multi-valued frequency response, showing
several hysteresis windows with respect to the increase/decrease of the driving
frequency. The phenomenon is here investigated in order to characterize its onset
as a function of system parameter values. Finally, a physical implementation of the
driven Chua circuit, in which jump and multijump resonance occur, is presented and
discussed allowing to verify the robustness of such nonlinear phenomenon.

Keywords Jump resonance · Chua’s circuit · Nonlinear dynamics

1 Introduction

The phenomenon of jump resonance is an appealing topic in the field of nonlinear
oscillators. It identifies a hysteretic behavior which occurs in the frequency response
of forced nonlinear systems leading to sudden jumps in the amplitude of the
output signal [1]. The jump resonance has been widely investigated in mechanical
systems [2] and in control applications. In particular, the phenomenon is classically
considered as negative since its occurrence is detrimental for the performance of
the control actions. Therefore techniques to mitigate jump resonance have been
introduced. From a different perspective, looking at jump resonance from a system
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theory point, it may be represented as a “memory” effect, due to presence of the
hysteresis. Under this perspective it is necessary a strategy to intentionally design
electronic circuits with jump resonance [3]. Furthermore, with the term “multijump”
resonance, we indicate a frequency response where more frequency hysteresis
windows are present, even in different ranges or within the same range leading to
multiple jump paths [4]. In this paper we show that the Chua’s circuit allows the
realization of electronic circuits with this peculiarity.

2 The Chua Circuit

The Chua’s circuit [5] is represented in Fig. 1. Let x indicate the voltage v1 across
C1, y the voltage v2 across C2, z the current iL in the inductor, and ψ(x) the
Chua diode nonlinear characteristic. The classical normalized equations of the Chua
circuit are

ẋ = α (y − ψ(x)),
ẏ = x − y + z,
ż = −βy,

(1)

where α and β are system parameters, and ψ(x) may assume either a piece-wise
linear or continuous form. We assume a forcing signal r(t) = A sinωt acting on the
first equation of the system [6].

3 Describing Function Approach to Determine
the Frequency Response

The system in Eq. (1) can be rewritten according to the closed-loop scheme shown
in Fig. 2, better known as Lur’e form. In this representation, F(s) is the transfer
function of the linear part of the Chua’s circuit, which can be calculated as:
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Fig. 2 Lur’e representation
of the Chua circuit dynamics

F(s) = α
(
s2 + s + β)

s3 + (1 + α) s2 + βs + αβ (2)

and φ(X) represents an approximation of the nonlinearity ψ(x) in the sinusoidal
domain, i.e., the so-called describing function [1]. The describing function approach
assumes that each dynamical variable of the system can be approximated as a
finite sum of sinusoidal terms. Under this assumption, and the further condition
of the presence of filtering effect in the loop, the nonlinear elements of the system
are then represented by blocks that are functions of the input amplitude X and,
in case, its frequency ω, as their action on each sinusoidal term were linear. The
describing function approach, thus, introduces a quasi-linear approximation of the
system under the assumption of the periodicity of the involved signals. Assuming
ψ(x) = ax5 + bx3, being an odd symmetric polynomial, we can use the following
describing function:

φ(X) = AX4 + BX2, (3)

where A = 5
8a and B = 3

4b [7].

4 Jump Resonance in Chua’s Circuit

Taking into consideration the scheme of Fig. 2, the input signal r(t) = r̄ sin (ωt) is
a solution for closed-loop system of Fig. 2 if it satisfies:

[
φ(X)+ F−1(jω)

]
X = r̄e−jψ . (4)

Assuming ψ = 0, and defining R and I as the real and imaginary part of
F−1(jω), calculating the modulus we have

[Xφ(X)+ RX]2 + I 2 = r2. (5)
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Fig. 3 Multijump resonance in Chua’s circuit: frequency response for α = 6.881, β = 14, A =
0.1, B = −0.378

A polynomial of tenth order with only even coefficients in X is thus obtained. A
jump resonance window is obtained searching for values of α, β, A, B for which
the polynomial in Eq. (5) assumes five positive real solution for a given ω. As an
example, setting α = 6.881, β = 14, A = 0.1, B = −0.378 the frequency response
shown in Fig. 3 is obtained assuring us that in the range of 3.3 < ω < 3.45 a
multijump resonance window is achieved.

In order to establish the region of α − β parameter space in which jump
or multijump resonance occurs, we performed extensive numerical simulations,
investigating the behavior of the circuit varying the parameters α and β. In Fig. 4
we report the number of positive real solutions retrieved for Eq. (5) with respect
to different values of α and β. The area of the parameter space in which three
solutions are retrieved, depicted in green, corresponds to the region of single-jump
resonance, i.e., a single hysteresis window can be observed and two jump occurs
in the frequency response. The red dark area in Fig. 4 indicates the occurrence of
multijump resonance, i.e., more nested hysteresis windows within the same range
of frequency. It appears clearly that the jump resonance can be retrieved in a wide
area of the parameter space.

In the example reported in Fig. 3, the multijump range is narrow. Therefore,
the width of the frequency range in which multiple solutions can be retrieved is
a further numerical indication of the robustness of the phenomenon. In order to
investigate such aspect, we define the parameters Δω3 and Δω5 as the width of the
range corresponding to three and five positive real solutions, respectively. The two
parameters are reported in the maps shown in Figs. 5 and 6, color-coded according
to the reported color bar.
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Fig. 4 Multijump resonance in Chua’s circuit: number of multiple solutions for Eq. (5) in the
parameter space α − β. Other parameters as: A = 0.1, B = −0.378
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Fig. 5 Width of the jump resonance (three solutions) frequency range in the parameter space α−β.
Other parameters as: A = 0.1, B = −0.378

The trend of hysteresis width are also nontrivial with respect to α and β. To
account for this, we report the trend of Δω3 and Δω5 in two cross sections of Fig. 5
and 6. In Fig. 7a, the dependence on α, fixing β = 10, is reported, while in Fig. 7b,
the dependence on β, when α = 6, is shown. In both cases, we can observe non-
monotone behavior of Δω.
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Fig. 6 Width of the multijump resonance (five solutions) frequency range in the parameter space
α − β. Other parameters as: A = 0.1, B = −0.378
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Fig. 7 (a) Width of the jump resonance (three solutions) frequency range in the parameter space
α − β; (b) Width of the multijump resonance (five solutions) frequency range in the parameter
space α − β. Other parameters as: A = 0.1, B = −0.378

5 Experimental Analysis

The investigation described in the previous section allows to assess that jump and
multijump resonance can be retrieved in the Chua circuit in a wide region of
the parameter space. This robustness to parametric mismatched encouraged us to
retrieve jump and multijump resonance in the physical implementation of Chua’s
circuit.

Two main points have to be faced when dealing with the experimental observa-
tion of nonlinear resonance phenomena. First of all, the frequency range in which
jump resonance is retrieved is scaled according to the temporal rescaling introduced
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by integrators implemented to realize the dynamical equations of the circuit.
Therefore, choosing the time-constant of integrators, frequency range is suitably
rescaled. Moreover, the analysis carried out is based on the harmonic balance
method which approximates the solution of the closed-loop system neglecting
higher frequency. Although the linear part of the Chua circuit has a low-pass effect,
the approximation may fail for some values of the amplitude and the frequency of
the driving signal. Despite this, jump and multijump resonance can be still observed
in the physical implementation according to the prediction based on the harmonic
balance.

We adopted the State Controlled Cellular Nonlinear Network (SC-CNN) imple-
mentation of the Chua circuit [5], so that temporal rescaling can be obtained fixing
the capacitors value. In Fig. 8, the schematic of the realized system is reported,
component values can be found in the figure caption. The two potentiometers allow
to change the parameter α and β values. As concerns the nonlinearity ψ(x), it has
been implemented by using three analog multipliers, as reported in the schematic of
Fig. 9.

Fig. 8 SC-CNN based circuit implementation of the Chua circuit. Components: R1 = 4 k�, R2 =
13.3 k�, R3 = 5.6 k�, R4 = 20 k�, R5 = 20 k�, Rnl = 20 k�, Ru = 20 k�, R6 = 380�
(potentiometer), R7 = 112 k�, R8 = 112 k�, R9 = 1 M�, R10 = 1 M�, R11 = 8.2 k�, R12 =
1 k�, R13 = 51.1 k�, R14 = 100 k�, R15 = 100 k�, R16 = 100 k�, R17 = 100 k�, R18 = 1 k�,
R19 = 8.2 k�, R20 = 100 k�, R21 = 100 k�, R22 = 7.8 k�, R23 = 1 k�, C1 = C2 = C3 =
100 nF, Vcc = 9 V
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Fig. 9 Implementation of the nonlinearity ψ(x). Components: R = 10 k�, R1 = 20 k�, R2 =
62.5 k�, AD633 analog multipliers, Vcc = 9 V

Fig. 10 Experimental observation of multijump resonance in the driven Chua circuit: state
variables x and y when driving the system with a sinusoidal signal u(t) = R sin(2πf (t)t) with
R = 200 mV and frequency f sweeping upwards (a), or downwards (b), between 700 Hz and
1.3 kHz in a time window of T = 5 s. Oscilloscope scales: (a) 500 ms/div (X-axis), 500 mV/div
(Y-axis), (a) 500 ms/div (X-axis), 500 mV/div (Y-axis, x variable), 1 V/div (Y-axis, y variable)

The circuit is now driven by a sinusoidal signal u(t) = R sin(2πf (t)t) whose
amplitude R = 200 mV is kept constant, while its frequency f (t) varies in time
performing a sweep upwards and downwards between 700 Hz and 1.3 kHz. The
state variables x and y are shown in Fig. 10a, b, reporting the response when the
frequency sweeps upwards and downwards, respectively. It is possible to retrieve
that the amplitude of the output signal undergoes sudden jumps, either up or down,
indicating the existence of jump resonance. Moreover, the presence of multiple
jumps in Fig. 10b indicates the existence of a multijump resonance.

In order to further assess the validity of the experimental results, we report here
the numerical simulation of the Chua circuit as in Fig. 2 when driven by a sinusoidal
input signal u(t) = R sin(2πf (t)t)withR = 0.2 and f (t) varies in time performing
a sweep upwards and downwards. The output of the system, namely state variable x
of the Chua circuit, is reported in Fig. 11. The evidence of multijump resonance
behavior are clearly confirmed, moreover the experimental realization is able to
reproduce the peculiar features of the driven Chua circuit.
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Fig. 11 Numerical simulation of the driven Chua circuit with α = 6.881, β = 14, A = 0.1, B =
−0.378: state variable x when driving the system with a sinusoidal signal u(t) = R sin(2πf (t)t)
with R = 0.2 and frequency f sweeping upwards (a), or downwards (b), between 0.3 and 1 Hz in
a time window of T = 10 s

6 Conclusions

In this paper we presented the first evidence of multijump resonance in the driven
Chua circuit. Furthermore, we discuss the robustness of the observed phenomenon
proposing a circuit implementation able to show a multijump resonance behavior.

A complete characterization of the occurrence of the phenomenon allows to
determine the existence of family of curves with the same peculiarity as that shown
in Fig. 3 in a wide range on the parameter space. The existence of jump and
multijump resonance in the Chua’s circuit make this simple device suitable for the
implementation of analog multi-state memory. In fact, providing to the circuit input
signals with specific sweeping frequencies, it is possible to drive the system towards
different states. This novel scenario makes further impressive the capabilities of the
Chua circuit.
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Experimental Observation of Robust
Chaos in a 3D Electronic Circuit

Soumyajit Seth

Abstract Robust chaos occurring in piecewise smooth dynamical systems is very
important in practical applications. It is defined by the absence of periodic windows
and coexisting attractors in some neighborhood of the parameter space. In earlier
works, the conditions of stability and region of parameter space of robust chaos
were reported in the context of piecewise linear 1D and 2D maps, and have been
demonstrated in 1D and 2D switching circuits. In this brief, the first experimental
observation of this phenomenon in a 3D electronic switching system is reported and
the region of its parameter space is determined experimentally.

Keywords Border collision bifurcation · Piecewise smooth dynamical systems ·
Robust chaos · Electronic switching systems

1 Introduction

Chaos has many practical applications nowadays in different physical and engineer-
ing systems [1]. Therefore, it is very important to use a system which generates
chaos. But due to the existence of coexisting periodic attractors, the system toggles
between the attractors [2], and due to the periodic windows, any slight fluctuation
of the parameter values may take the system out of chaos [3]. So, a robust chaos
generator system is very much required.

A chaotic attractor is robust if, for its parameter values, there exists a neigh-
borhood in the parameter space with no periodic attractor as well as coexisting
attractors and the chaotic attractor is unique in that neighborhood [4]. Robust chaos
generally occurs in piecewise smooth dynamical systems [5] where the so-called
border collision bifurcation occurs.

S. Seth (�)
Indian Institute of Science Education and Research Kolkata, Mohanpur, India
e-mail: ss14rs057@iiserkol.ac.in

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), New Trends in Nonlinear Dynamics,
https://doi.org/10.1007/978-3-030-34724-6_27

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34724-6_27&domain=pdf
mailto:ss14rs057@iiserkol.ac.in
https://doi.org/10.1007/978-3-030-34724-6_27


266 S. Seth

The possibilities of occurrence of this phenomenon have been explored the-
oretically in case of 1D and 2D piecewise linear maps and have been shown
experimentally in case of 1D and 2D switching electronic circuits. Gardini et al.
[6] have shown the conditions of stability and region of parameter space of this
phenomenon theoretically in a 1D piecewise smooth map. Mandal et al. [7] have
shown the occurrence of robust chaos in a 1D switching circuit. Banerjee et al.
[4] have obtained the conditions of stability and the region of occurrences of
robust chaos in a 2D piecewise linear map and have demonstrated it experimentally
in boost and buck converters [8]. One needs to check whether robust chaos can
occur in higher dimensional systems. In this brief, it is shown that with the proper
arrangements of the circuit parameter values, this phenomenon does occur in a 3D
switching system.

2 System Description

Figure 1a is the electronic circuit which is used to check the occurrence of the robust
chaos in a 3D electronic system. Here, the current i, voltages V1 and V2 across the
capacitors C1 and C2, respectively, are the three state variables. The clock pulse
(CLK) with small ON period is applied at the RESET input of the S–R latch. When
the system starts, the current i is very low. So, the voltage drop across RL is VRL =
iRL < Vref. This makes the comparator output zero and at this time, the ON period
of clock pulse just arrives, the Q output of the S–R latch is zero and Q̄ is high.
This makes the analog switches S1, S3 close and S2 opens. At this time, as shown in
Fig. 1b, the current in the L increases and energy is stored in it. When the current i
reaches iref = Vref

RL
, the comparator output changes the state; therefore, the outputs

of the latch reverse, and the switches S1, S3 become OFF and S2 becomes ON (in
Fig. 1c). So, the stored energy in the inductor drops and also current decreases unless
the next clock pulse arrives. After that, the current in the inductor rises again and
the system repeats its operation.

Here, Vin and R2 are used as bifurcation parameters in order to observe robust
chaos in this system.

Fig. 1 (a) The switching circuit under consideration. (b) The subsystem for iRL < Vref, (c) The
subsystem for iRL = Vref
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3 Mathematical Model

Assuming all the components to be ideal, the system can be described by ODEs,
given by

di
dt

= 1
L
(Vin − iRL)

dV1
dt

= V2−V1
C1R1

dV2
dt

= V1
C2R1

− V2
C2
( 1
R1

+ 1
R2
)

if i < iref

di
dt

= 1
L
(V1 − iRL)

dV1
dt

= − i
C1

dV2
dt

= − V2
C2R2

otherwise

(1)

(2)

Note that, in this system, when the switches S1 and S3 are ON and S2 is OFF
(Fig.1b), the system obeys a set of differential equations which is denoted as Eq. (1)
and for the other condition, the system obeys Eq. (2).

4 Simulation Results

The bifurcation diagrams for the different parameter values of the above system
(Fig. 1a) can be observed in “switch-on sampling” where the peaks of the output
waveform of one state variable are identified and depending upon the peaks, the
periodicity of the system can be determined.

4.1 Vin as Bifurcation Parameter

The bifurcation diagram of the circuit (Fig. 1a) with input voltage as parameter is
shown in Fig. 2a. Input voltage is varied from 7.0 V to 20.0 V with a step of 0.04 V
with other parameters fixed (as shown in Fig. 2b). The circuit shows bifurcation from
period 1 to chaos as the input voltage is decreased from 20.0 V. The first bifurcation
takes place around 19.0 V, where period 1 bifurcates to period 2 through normal
bifurcation. Period 2 orbit goes to period 2 through a border collision bifurcation
around 16.8 V. Then period 2 orbit again bifurcates to 4-piece chaotic orbit around
16.4 V and the system gradually goes to chaos. The dense set of points in the
bifurcation diagram signifies chaos in the system.

Time series waveform for the chaotic attractor at Vin = 8.0 V is shown in Fig. 2b.
The frequency spectrum at input voltage 8.0 V clearly shows that the orbit is chaotic.
From the bifurcation diagram it can be said that chaos is robust because the chaotic
attractor will exist up to 7.0 V without any co-existing attractor (as from Fig. 2a).
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Fig. 2 (a) Bifurcation diagram for the system with input voltage as parameter, and (b) Time series
waveform of switch-on sampling from simulation: the parameters are Vref = 1 V, L = 100 mH,
C1 = 100 μF, C2 = 220 μF, R1 = RL = 50�, R2 = 125�, and clock frequency f = 5000 Hz.
Chaotic time series occurred at Vin = 8.0 V. The upper trace is the voltage across RL in volt, where
x-axis is the time in second and y-axis is the voltage in volt, and the lower trace is the frequency
spectrum where x-axis is the frequency in Hz and y-axis is the no of counts, i.e., distribution of
counts of the frequencies and plot them in frequency axes

Fig. 3 (a) Bifurcation diagram for the system with resistance R2 as parameter, and (b). Time
series waveform from simulation; x-axis is the time in second and y-axis is the voltage in volt. The
parameters are Vref = 1 V, Vin = 4.0 V, L = 100 mH, C1 = 100 μF, C2 = 220 μF, R1 = RL =
50�, and clock frequency f = 5000 Hz, R2 = 1000�. The upper trace is the voltage across RL in
volt, and the lower trace is the frequency spectrum where x-axis is the frequency in Hz and y-axis
is the no of counts

4.2 R2 as Bifurcation Parameter

The bifurcation diagram of the above system (Fig. 1a) with load resistance R2 as
parameter are shown in the Fig. 3a. The load resistance is to be varied from 100�
to 1000� with a step of 3� with other parameters fixed which is shown in Fig. 3b.
The dense set of points in the bifurcation diagram confirms that only the chaotic
orbit exists in the whole parameter range. In that sense, we can say that chaotic orbit
is robust after R2 is 145�. Figure 3b shows the time series as well as the frequency
spectra of the chaotic attractor at R2 = 1000�.

4.3 Conditions of Occurrence of Robust Chaos

The time period of the clock pulse needs to be very less than the characteristic times
of the two capacitors C1 and C2 in order to achieve the robust chaos phenomenon of
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the inductor current for a particular parameter range. Furthermore, the characteristic
time of C1 should be less than the characteristic time of C2.

5 Experimental Results

In order to validate the aforementioned results, an experimental setup was fabricated
with approximately the same parameters (this cannot be done exactly to specifica-
tion). Figure 4 gives the circuit implementation. Here, we have used a 555-timer
as an “astable multivibrator” to generate a square wave pulse. RA, RB, and C have
been chosen with proper values (as mentioned in the caption of Fig. 4) to generate
a frequency 5000 Hz. The output of the timer is passed through a comparator
comparing with a DC signal Vref1. The output of the comparator is the clock pulse
of small ON period (10% of the total waveform). There is also another comparator
which is connected with the inductor which compares voltage (VRL ) across RL and
Vref. When Vref = VRL , the comparator goes into the ON state. HEF4013BP and
HEF4016BP are used as S–R latch and an analog switch, respectively. The voltage
across the RL is taken as VRL .

Fig. 4 Circuit implementation of the experimental system. LM311P is comparator and
HEF4013BP is S–R Flip Flop, HEF4016BP is an analog switch. The parameters are: RA =
23 580�, RB = 2620�, C = 9.75 nF, C1 = 97.8 μF, C2 = 218.6 μF, R1 = RL = 50�,
Vref = 1.0 V, Vref1 = 5.0 V. (1) For the first bifurcation, R2 = 125�, Vin is to be varied from 6.0 V
to 20.0 V, (2) For the second bifurcation, Vin = 4.0 V and R2 is to be varied from 100� to 1000�
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5.1 Vin as Bifurcation Parameter

The experimentally obtained bifurcation diagram is shown in the Fig. 5a when the
input voltage is used as the bifurcation parameter. One can notice that there is only
higher density of dots corresponding to a chaotic orbit. The experimentally obtained
waveform and its corresponding FFT presented in Fig. 5b show that the chaotic orbit
exists at Vin = 8.0 V.

5.2 R2 as Bifurcation Parameter

As the bifurcation parameter here is the load resistance R2, we cannot draw the
bifurcation diagram directly in experiment. But we can verify the bifurcation
diagram which has been obtained numerically as shown in Fig. 3 by analyzing the
time series in the parameter ranges.

The experimentally obtained time series waveforms and their corresponding FFT
presented in Fig. 6 show that for R2 = 100�, there is period 1 orbit (Fig. 6a). As
the load resistance R2 is increased further, the border collision bifurcation occurs
and a four-piece chaotic orbit (Fig. 6b) emerges at R2 is 200�. At R2 = 1000�,
the chaotic orbit is generated. The FFT confirms that the orbit is chaotic.

Fig. 5 (a) Experimentally obtained bifurcation diagram of the system with input voltage Vin as
parameter: x-axis is the input voltage in volt and y-axis is the voltage across RL in volt. Vin is
varied from 7 V to 20 V. Along the x-coordinate, the grid division is 500 mV and along the y-
coordinate it is 200 mV, and (b) Upper trace is the time series waveforms: x-axis is time in second
and y-axis is the voltage in volt and lower trace is the Fast Fourier Transform. Chaotic orbit at
Vin = 8.0 V. Green (grid division 200 mV)—voltage across RL in volt and purple—fast Fourier
transform obtained from digital oscilloscope. Time division 200 μs
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Fig. 6 Upper trace is the time series waveforms: x-axis is time in second and y-axis is the voltage
in volt and lower trace is the Fast Fourier Transform. (a). Period 1 orbit at R2 = 100�, (b)
Four piece chaotic orbit at R2 = 200�, and (c) Chaotic orbit at R2 = 1000�. Green (grid
division 100 mV)—voltage across RL in volt and purple—fast Fourier transform obtained from
digital oscilloscope. Time division for (a) and (b) are 100 μs, and for (c), it is 500 μs.

6 Conclusions

The occurrence of robust chaos was so far predicted theoretically and observed
experimentally in case of 1D and 2D piecewise smooth systems. It was predicted
using piecewise linear maps and the conditions of stability and region of parameter
space have been demonstrated in case of the 1D and 2D electronic switching
circuits. The condition of occurrences and the region of parameter spaces of this
phenomenon have not yet been investigated in case of a 3D system. In this paper,
an electronic switching system has been constructed whose discrete time gives rise
to a 3D piecewise smooth map which can be approximated as a 3D piecewise linear
map. This system exhibits “robust” chaos for a particular parameter setting after
bifurcation. This paper offers the first experimental observation of this phenomenon
in case of a 3D system.

In order to understand this phenomenon in a 3D piecewise linear map, it is
important to know how it occurs in a physical system. The system described in
this paper will be helpful in understanding the occurrence of the robust chaos from
a theoretical point of view. Also, the effect of smoothness of robust chaos for this
system can be shown later.
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Homogenous Multistability
in Memristive System

Chunbiao Li

Abstract Many dynamical systems may have special parameters to control the
amplitude sometimes concomitantly with frequency or offset. In this chapter, we
select a chaotic system with amplitude-frequency parameter, which controls the
scale and speed of the oscillation without changing its basic property of chaos.
By introducing a memristor into the feedback for amplitude/frequency control, a
special regime of homogenous multistability shows up in memristive system where
the initial condition of the internal variable only determines the amplitude (here
combined with frequency) of the variables without changing the essential oscillation
of chaos. This phenomenon can exist in other systems with scale parameter. Unlike
other regular multistability, the coexisting attractors share the same shape of phase
trajectory except with different scales. Following this routine, a new pattern of
homogenous multistability is also demonstrated where the stable oscillation stands
in phase space with different offset in the dimension of x without changing the
fundamental oscillation. To our best knowledge, it is reported firstly on homogenous
multistability in memristive system systematically.

Keywords Amplitude control · Homogenous multistability · Memristive
system · Offset boosting · Regular multistability

1 Introduction

Multistability has received great attention in nonlinear science since it may pose
great threat or merit in engineering applications. Several studies on multistability
show such systems with different attractors [1–6]. However, in a memristive system
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different initial conditions may lead to different attractors of the same shape
(sometimes with different amplitude and/or frequency or offset). This special regime
of multistability is defined as homogenous multistability [7]. In this chapter, we
discuss this newly-found regime of homogenous multistability, which appears in
memristive systems and is relatively rare compared with other regular multistability.

In this work, a chaotic system is applied for hosting memristor(s) for hatching
coexisting attractors with growing amplitude/frequency or growing offset. In Sect. 2,
a new memristive model is proposed for demonstrating homogenous multistability.
In Sect. 3, regular multistability is discussed for comparison. Conclusions are given
in the last section.

2 Special Regime of Multistability

2.1 Homogenous Multistability

As suggested in [7], here we select a system with single parameter for amplitude
and frequency control for hosting memristor [8],

ẋ = y − xz− yz,
ẏ = axz,
ż = y2 − bz2,

(1)

When a = 4, b = 0.3, system (1) has a chaotic solution. System (1) has three

equilibrium points, two of which are
(

0,±√
b, 1
)

, and another is a line equilibria

(x, 0, 0). When a memristor is introduced in the coefficient for amplitude-frequency
control, the corresponding system can exhibit chaotic signal with increasing fre-
quency and amplitude according to the time [7]. A memristor is introduced into the
coefficient for amplitude control as,

ẋ = W(u)y − xz− yz,
ẏ = axz,
ż = y2 − bz2,

u̇ = y,
(2)

As predicted, when a = 4, b = 0.3, W(u) = 0.1 � u � − 0.1, the above memristive
system has coexisting attractors of the same type since the memristor brings the
information of the variable y. And therefore, the initial condition can be used to
control the amplitude and frequency of the chaotic signals.

As shown in Fig. 1, when the initial condition varies, most of the coexisting
attractors are of the same type but with different frequency and amplitude. System
(2) has a plane of equilibria now (x, 0, 0, u), whose eigenvalue is (0, 0, 0, 0)
showing the equilibria is of critical stability and further study shows that the system
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Fig. 1 Phase trajectories with different initial condition [1, 0, −1, u0] under the same time duration
(T = 500)

is nonlinearly unstable. Figure 1 also shows that system (2) also has coexisting point
attractor. System (2) is of inversion symmetry, which can be proved by x → − x,
y → − y, z → z, u → − u. System (2) retains the rotational symmetry with a rate
of hypervolume contraction given by the Lie derivative,

∇V = ∂ẋ

∂x
+ ∂ẏ

∂y
+ ∂ż

∂z
+ ∂u̇

∂u
= − (2b + 1) z (3)

To further investigate how the initial condition of u0 changes the amplitude and
frequency of the chaotic signal, we obtain the average value of signals and Lyapunov
exponents when u0 varies in [−8, 8], which is similar to what was shown in [7]. The
average of system variables grows with the absolute value of u0. There is a wide
window of non-chaos where the initial condition draws the system to a stable point
which is a state of suspended animation. The initial condition of other variables can
also change the amplitude and frequency of the signals since all system variables are
connected as a whole by the governing equation [7]. However, as compared, when
random disturbance is applied in the flux-controlled or charge-controlled memristor
in other cases, transition in formation of attractors and mode transition from chaotic
to periodical oscillation occurs since in those cases memristor changes the value of
bifurcation parameter [9].
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Fig. 2 Phase trajectory evolvement with various durations of time under the same initial condition
[1, 0, −1, 2]

2.2 Growing Scale of Attractor

More distinctively the amplitude and frequency of the variables are also modified
according to the time duration, as shown in Fig. 2. The mechanism is from the fact
that longer time duration may lead to larger value of W(u). Here the increase of
variable u leads to an increase of y. Larger y gives larger signal of u and m in turn,
yields larger variables with higher frequency. It is proven that there is an identical
trend where the time duration and the initial condition are two effective ways to
influence the integral value.

The increasing speed of the amplitude and frequency over the time duration is
not constant. It is due to the fact that the hysteresis property of the memristor is
associated with the frequency of the input signal. Here the flux-controlled memristor
is defined as

i = W(u)y,
W(u) = 0.1 | u | −0.1,
u̇ = y,

(4)

The flux-controlled memductance is a function of internal state of u, which is
associated with the voltage y,

W(u) = 0.1 |u| − 0.1 = 0.1

∣∣∣∣
∫ t

−∞
y

∣∣∣∣− 0.1 = W0 + 0.1

∣∣∣∣
∫ t

0
yds

∣∣∣∣− 0.1 (5)
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Fig. 3 The memductance and pinched hysteresis loop

where,

W0 = 0.1

(∣∣∣∣
∫ t

−∞
yds

∣∣∣∣−
∣∣∣∣
∫ t

0
yds

∣∣∣∣
)

(6)

The memductance and the theoretical pinched hysteresis loop are shown in Fig. 3.
Here the input sinusoidal function reads

ν(t) = 5 sin(2πf t) (7)

We can see the mechanism of homogenous multistability clearly by revising the
memristor to be a simple function as the following:

ẋ = 0.1yu− xz− yz,
ẏ = axz,
ż = y2 − bz2,

u̇ = 1,

(8)

In Eq. (8), the variable u is linearly increasing with a constant slope. The initial
condition of the variable u changes the oscillation starting point, and therefore
produce the same type of attractors with different scale of amplitude and frequency,
as shown in Fig. 4. Note that the variable u(t) here is different from the signal in
system (2), and so results in a continuous increase of amplitude and frequency in
the signals x, y, z.

Offset boosting is another helpful control for chaotic signal in electronic
engineering [10–13]. Following the routine above mentioned, we predict that
homogenous multistability may also be induced by offset boosting in memristive
system. Suppose there are two memristors being introduced into the above system
(1) as,
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Fig. 4 Signals of system (8) with different initial condition over a time duration of 200

Fig. 5 Memristor-resulted offset boosting from different initial condition [1, 0, −1, u0] over a
time duration of 500

ẋ = y − (x −W(u)) z− yz,
ẏ = a (x −W(u)) z,
ż = y2 − bz2,

u̇ = 0.001z,

(9)

Here the flux-controlled memductance is also a function of internal state of u, which
is defined as

i = W(u)z,
W(u) = 0.1 | u | −0.1,
u̇ = 0.001z,

(10)

Now the chaotic oscillation in system (9) shows different offset in the dimension
of x even under the same parameters, which is another pattern of homogenous
multistability. As shown in Fig. 5, different initial conditions of the variable u lead
the oscillation towards different location space in the dimension of x.
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3 Regular Multistability

3.1 Different Types of Coexisting Attractors

To understand the homogenous multistability in memristive system further, here
we try to introduce the memristor into a different position of feedback. Suppose a
memristor is introduced in the position of bifurcation parameter in the following,

ẋ = y − xz− yz,
ẏ = axz+W(u)x,
ż = y2 − bz2,

u̇ = x,
(11)

When a = 4, b = 0.3, W(u) = 4u2 + 1, system (11) has coexisting limit cycles
and strange attractors with different Lyapunov exponents, as shown in Fig. 6.
Note that compared with the above system all these coexisting attractors are no
longer changing with the time which shows that it belongs to a class of regular
multistability. When the initial condition of u0 varies in [−8, 8], corresponding
Lyapunov exponents and bifurcation diagram are shown in Fig. 7.

System (11) is of symmetric structure, which can be proved by x → − x,
y → − y, z → z, u → − u. Unlike other memristive system, now system (11)

has three lines of equilibria (0, 0, 0, u) and
(

0,±√
b, 1, u

)
. Here coexisting strange

attractors are common but are still rare in other symmetric systems [14–16].

Fig. 6 Coexisting attractors with different initial condition [1, 0, −1, u0]
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Fig. 7 Bifurcation diagram and the corresponding Lyapunov exponents of system (11) with the
initial condition of [1, 0, −1, u0], u0 varies in [−8, 8]

3.2 Multistability Comparison

Coexisting attractors may have different properties, some of which share the same
type or shape but with different amplitude (sometimes with frequency) or offset,
while some of which have totally different shape of phase trajectories. These two
types of multistability come from different mechanisms. Memristor can be applied
as a special feedback, and its existence can definitely define the dynamics in system.
The integration of the internal variable will change the bifurcation parameter or
non-bifurcation parameter, and therefore breeding different types of multistabilities.
Further exploration shows that sometimes two types of coexisting attractors may
exist in a normal system, but it is difficult to divide them clearly and find which the
dominant factor is. When the system is constructed in circuit [17–22], the increasing
process of the chaotic signal may be hidden for the saturation of the IC chip.

4 Conclusions

A memristor may exhibit different multistability depending on the system param-
eters. Two positions are selected to host the memristor for producing different
coexisting attractors with a similar shape of phase trajectories. Homogenous
multistability is a new regime of multistability, where coexisting attractors stay at
different stages of development. It is clear that the occurrence of multistability in
the proposed memristive system can account for multiple modes in neural activities.
Furthermore, to a certain extent, a memristor-involved neuron model may explain
the effect of electromagnetic induction and even radiation which deserves further
research.
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Fractional-Order Systems



Numerical Study of Nonlinear Vibrations
of Fractionally Damped Cylindrical
Shells Under the Additive Combinational
Internal Resonance

Marina V. Shitikova and Basem Ajarmah

Abstract In the present chapter, nonlinear damped vibrations of a cylindrical shell
embedded into a fractional derivative medium are investigated for the case of the
combinational internal resonance, resulting in modal interaction, using two different
numerical methods with further comparison of the results obtained. The damping
properties of the surrounding medium are described by the fractional derivative
Kelvin–Voigt model utilizing the Riemann–Liouville fractional derivatives. Within
the first method, the generalized displacements of a coupled set of nonlinear
ordinary differential equations of the second order are estimated using numerical
solution of nonlinear multi-term fractional differential equations. Adopting the
second procedure based on the generalized method of multiple time scales, the
governing nonlinear differential equations describing amplitude-and-phase modu-
lations for the case of the combinational internal resonance have been derived, and
the envelopes of amplitudes have been constructed.
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1 Introduction

Cylindrical shells are widely used as structural elements in pipes and ducts, bodies
of cars, space shuttles, aircraft fuselages, ship hulls, submarines, and building
structures. Recent investigations on dynamic response of cylindrical shells are based
on nonlinear theories, and a comprehensive review can be found in [1–3].

In recent years, much attention is given to the damping features of mechanical
systems subjected to the conditions of different internal resonances. Damping
properties of nonlinear systems are described mainly by the first-order time-
derivative of a generalized displacement [3, 4]. However, the analysis of free
damped vibrations of a suspension combined system under the conditions of the
one-to-one internal resonance has revealed that for good fit of the theoretical
investigations with the experimental results it is better to describe the damping
features of nonlinear mechanical systems in terms of fractional time-derivatives of
the generalized displacements [5].

Nowadays, fractional calculus models are widely spread in mechanics of solids
and structures [5, 6] for modeling viscoelastic properties of such structures as
beams, pipes, plates, and bridges. However, there are a few papers dealing with
fractionally damped shells. The first attempt was made in 2001 to study the linear
dynamic response of an elastic circular cylindrical shell in a fractional derivative
medium [7]. Recently the fractional derivative standard linear solid model has been
utilized to model the viscoelastic features of a core in a cylindrical [8] and conical
[9] shells.

As for the nonlinear response of fractionally damped cylindrical shells, then a
new approach has been suggested recently [10] for the case when the dynamic
response of the shell is described by a set of three coupled nonlinear differential
equations of the Donnell–Mushtari–Vlasov type [11]. The procedure resulting
in decoupling linear parts of equations is proposed with the further use of the
generalized method of multiple scales for solving nonlinear governing equations
of motion involving fractional derivative terms.

This procedure has been utilized for the analytical analysis of free vibrations of
cylindrical shells subjected to the conditions of the different internal resonances,
resulting in the interaction of two (in the case of 2:1, 1: or 3:1 internal resonance
[10]) or three modes corresponding to the mutually orthogonal displacements (in the
case of combinational internal resonances of additive or difference type [12, 13]).

In this chapter, we first analyze parameter values resulting in nonlinear vibrations
of a fractionally damped cylindrical shell subjected to the combinational additive
internal resonance, when a certain natural frequency of vibration is equal to the
sum of two other natural frequencies. Then the generalized displacements are
found via the numerical solution of nonlinear multi-term fractional differential
equations by the procedure based on the reducing of the problem to a system
of fractional differential equations [14, 15]. Utilizing the generalized method of
multiple timescales [5], the governing nonlinear differential equations defining
the amplitude-and-phase modulations for the case of the combinational internal
resonance are solved by the fourth order Runge–Kutta algorithm, and the envelopes
of amplitudes are constructed.
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2 Problem Formulation

The dynamic response of a free supported nonlinear elastic circular cylindrical shell
of radius R and length l vibrating in a fractionally damped surrounding medium are
described by the Donnell–Mushtari–Vlasov equations in terms of three mutually
orthogonal displacements [11, 12]:

uxx + 1−ν
2 β2

1uϕϕ + 1+ν
2 β1vxϕ − νβ1wx + wx

(
wxx + 1−ν

2 β2
1wϕϕ
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(
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dt
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ux + νβ1vϕ − νβ1w

)

− β2
1wϕϕ

(
νux + β1vϕ − β1w
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(
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(3)

subjected to the initial

u|t=0 = v|t=0 = w|t=0 = 0, u̇|t=0 = v̇|t=0 = ẇ|t=0 = 0, (4)

and the boundary conditions

w|x=0 = w|x=l = 0, v|x=0 = v|x=l = 0, ux |x=0 = ux |x=l = 0,

wxx |x=0 = wxx |x=l = 0, (5)

where the x-axis is directed along the axis of the cylinder, r and ϕ are the polar
radius and angle, respectively, u = u(x, ϕ, t), v = v(x, ϕ, t), and w = w(x, ϕ, t) are the
displacements of points in the shell’s middle surface in three mutually orthogonal
directions x, ϕ, r, β1 = l/R and β2 = h/l are parameters defining the dimensions of
the shell, h is its thickness, t is time, ν is the Poisson’s ratio, æi = εμiτ γi (i = 1,2,3)
are coefficients of small viscosity, 0 < ε < 1, μi are modal damping coefficients,
τ i are modal retardation times, over dot denotes the time-derivative, lower indices
label the derivatives with respect to the corresponding coordinates, and γ is the
fractional order of the operator of differentiation

(
d
dt

)γ
which is equivalent to the

Riemann–Liouville fractional derivative of the γ -order [5]
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DγF = d

dt

t∫

0

F
(
t − t ′)

Γ (1 − γ )dt
′. (6)

For solving the partial differential equations (1)–(3) subjected to the initial (4)
and boundary (5) conditions, we will adopt the procedure [10] for the decoupling
linear parts of Eqs. (1)–(3) with further utilization of the generalized method of
multiple timescales [12], utilizing the solution of the Navier type

u (x, ϕ, t) =
∞∑
m=1

∞∑
n=1

x1mn(t)η1mn (x, ϕ), (7)

v (x, ϕ, t) =
∞∑
m=1

∞∑
n=1

x2mn(t)η2mn (x, ϕ), (8)

w (x, ϕ, t) =
∞∑
m=1

∞∑
n=1

x3mn(t)η3mn (x, ϕ), (9)

where ximn(t), ηimn(x, ϕ) (i = 1, 2, 3) are, respectively, the generalized time-
dependent displacements and eigen functions corresponding to the free supported
shell.

Following the idea [10] to model nonlinear damped vibrations of shells in a
viscoelastic medium by representing viscous resistance forces via fractional order
time derivatives, as distinct to the traditional way [1–3] when damping forces are
assumed to be proportional to first order time-derivatives of displacements, i.e.,
to utilize the fractional derivative Kelvin–Voigt model and the procedure [10] for
decoupling the linear parts of fractional-order differential equations of motion of the
cylindrical shell, the set of equations of three predominating modes of vibrations,
which could be coupled by some conditions of internal resonance, have been derived
in [12] and written in the following dimensionless form:
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where m and n are integers, Fimn are nonlinear terms involving cubic nonlinearities
[12], Ω1mn, Ω2mn and Ω3mn are the square roots of eigenvalues of the matrix Smnij
and LIimn, LIIimn and LIIIimn are eigenvectors of the same matrix with the elements

Smnij =
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(13)

3 Methods of Solution

Equations (10)-(12) for the case of the combinational internal resonance
Ω3 =Ω1 +Ω2, when the frequency of flexural vibration is approximately equal to
the sum of frequencies of two other orthogonal modes, could be solved numerically
by two different methods.

The first method is based on the Diethelm’s discretizing procedure [14] of all
derivatives involved in (10)–(12). Introducing the following notation

Y1 = X1, Y2 = DγX1 = Dγ Y1, Y3 = DX1 = DY 1,

Ẍ1 = DDX1 = DY 3 = −
3∑
i=1
F1 mnL

I
i mn − æ1Y2 −�2

1Y1,
(14)

the first time-derivative is discretized using the trapezoidal rule

DY 1 = Y3 → Y1 i = Y1 i−1 + 1

2
h (Y3 i + Y3 i−1) , (15)

or

Y1 i − 1

2
hY 3 i = Y1 i−1 + 1

2
h (Y3 i−1) = s2i−1. (16)

As for the fractional derivative, then it could be represented as [14, 15]

DγY1 = 1
αχi

(
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γ

)
= Y2, (17)

therefore
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γ

)
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Letting s1i−1 =
i∑
k=1

γ ωk,iY1i−k+ Y10
γ

, and adopting the above procedure to other

two equations, Eqs (10)–(12) could be written in the following matrix form:
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(19)

To find the Y column, it is a need to inverse the left matrix and multiply it by
s (the right column which represents the already known values or initial conditions
from the previous iteration step).

The second method of solution is based on the fractional derivative expansion
procedure [5], resulting in a set of six nonlinear differential equations in terms of
amplitudes ai and phases ϕi for the case Ω3 = Ω1 + Ω2:

(
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where δ = ϕ3 − (ϕ1 + ϕ2) is the phase difference, si = μiτ
γ

i �
γ−1
i sinψ ,

ψ = πγ /2, and σi = μiτγi �γ−1
i cosψ .

Reference to Eqs. (20)–(22) shows that damping coefficients of nonlinear
vibrations si depend on natural frequencies Ω i and retardation times τ i, and only at
γ = 1, i.e., in the case of the conventional viscosity, they are frequency-independent.
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4 Numerical Results

Since our aim is to study the additive combinational internal resonance
Ω3 = Ω1+Ω2, then first it is necessary to reveal the geometrical parameters
of the shell that could lead to such a resonance. In other words, it is a need
to find parameters β2 and β1 which could initiate the condition of the additive
combinational resonance Ω3 = Ω1+Ω2, and the results are shown in Fig. 1.
Figure 2 represents the interdependency between the shell’s parameters and the
natural frequencies satisfying the condition Ω3 = Ω1+Ω2 at fixed magnitudes of
interacting modes numbers: m1 = 1, n1 = 1, m2 = 1, n2 = 4, n2 = 1, m3 = 4,
n3 = 1, i.e., for one curve from Fig. 1. From Fig. 2a it is evident that the shell
parameters β2 and β1 are exponentially interrelated, while from Fig. 2b, c it is seen
that magnitudes of β2 vary linearly with every frequency of combinational internal
resonance in the case of Ω3 = Ω1+Ω2, and β1 are exponentially related to them.
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Fig. 1 Shell’s parameters satisfying the condition Ω3 = Ω1+Ω2
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Fig. 2 Correlation between parameters β1, β2 and frequencies Ω1, Ω2, Ω3: (a) β1 − β2
dependence, (b) β2-dependence of frequencies, (c) β1-dependence of frequencies, where orange
filled circle—Ω1, blue filled circle—Ω2, black filled circle—Ω3
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Fig. 3 Time-history of the generalized displacements Xi (i = 1, 2, 3) calculated via the Diethelm’s
multi-term method according to Eq. (19)

Fig. 4 T1-dependence of amplitudes’ envelopes via Eqs. (20)–(22)

The numerical solution of (19) via the multi-step method has been done for the
following dimensionless parameters: β1 = 2.0095, β2 = 0.00672, Ω1 = 3.9151,
m1 = n1 = 1, Ω2 = 8.8242, m2 = 1, n2 = 4, Ω3 = 12.7393, m3=4, n3 = 1,
æ = 0.25, and ν = 0.33, which correspond to the point indicated by an arrow in
Fig. 2a. The time-history curves for the generalized displacements X1, X2, and X3
are constructed at the fractional parameter γ = 0.25 in Fig. 3.

The solution of (20)–(22) has been carried out numerically using the Runge–
Kutta fourth-order algorithm at τ = 1, μ = 2.5, γ = 0.25, and the envelopes
of amplitudes corresponding to the same case of the combinational resonance are
shown in Fig. 4.

From Figs. 3 and 4, it is seen that energy transfer takes place between the three
coupled modes of vibration, and the amplitude of flexural vibrations attenuates more
rapidly as compared with other two modes. The comparison of the results obtained
by two methods shows their good correlation.

5 Conclusions

In the present chapter, the nonlinear dynamic response of a fractionally damped
cylindrical shell was studied, when its motion is governed by a set of three
coupled nonlinear fractional differential equations subjected to the occurrence
of the additive combinational internal resonance, resulting in the interaction of
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three coupled orthogonal modes. The nonlinear set of resolving fractional-order
differential equations was obtained in terms of the generalized displacements and
in terms of the amplitudes and phases. The two systems were solved numerically by
two different methods. A good agreement between the results obtained by the two
methods was found.

The numerical procedures presented could be used for the analysis of all types
of internal resonances which may occur during nonlinear vibrations of rods, beams,
plates, shells, bridges, and other structures.
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Stability of Caputo-Type Fractional
Variable-Order Biquadratic Difference
Equations

Oana Brandibur, Eva Kaslik, Dorota Mozyrska, and Małgorzata Wyrwas

Abstract The problem of stability of the Caputo-type linear fractional variable-
order discrete-time equations known as biquadratic equations is discussed. We study
linear equations with constant coefficients and variable-order differences defined
by functions with values from the interval (0, 2]. For the stability analysis of
the considered equations, the Z-transform is used. Sufficient conditions for the
asymptotic stability are presented.

Keywords Fractional order difference equations · Variable-order · Stability ·
Biquadratic equations

1 Introduction

In this paper we discuss the stability property of linear fractional variable-order
discrete-time equations with the Caputo-type operator. A thorough understanding
of the stability of dynamic systems is essential, because it provides important rela-
tionships among process dynamics, controller tuning, and achievable performance.
These relationships are used in a variety of ways, such as selecting controller modes,
tuning controllers, and designing processes that are easier to control.

The following new aspects are discussed: fractional differences, discrete-time
operators. About fractional derivatives or differences we can think that they are
operators introducing into the system/equation part of the memory effects. However,
the paper is about stability issue, and it is not based on data and does not fit
models to data. The reader can treat the proposed model as one of the possible
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to be used in the modelling. The pioneer paper introducing fractional calculus
in the area of viscoelastically damped structures is [1]. During the last decades
fractional calculus has been noticed as a useful tool in modelling various processes
and in hereditary physics. There are plenty of examples of deep analysis presented
for damping behaviour of viscoelastic media, see, for example, [4–6, 12]. Mainly,
there are used continuous-time models with fractional derivative changing the first
order derivatives, for example, as the following equation:

(
D2 + aDν + b) x(t) =

f (t), where ν is fractional order from interval (0, 1) or (0, 2). And where Dν

introduces memory into the system, changing the operator D1 in the ordinary
differential equations conventional biquadratic equations. In [4] the authors claim
that some viscoelastic materials, such as silicone gel and rubber, show a particular
weak frequency dependence and they do not obey classical viscoelastic models
with integer-order derivative operators. For that they proposed to use fractional
differential operators.

In this paper, we show in the sequel the descriptions of the linear Caputo-type
difference fractional variable-order equations and we analyse the stability of the
considered equations. We formulate and prove stability conditions for generalised
form of equations known in the literature as biquadratic systems/equations. Stability
conditions for difference systems of Caputo-type or Grünwald–Letnikov-type with
positive constant orders were previously analysed in paper [7, 8] and for variable
orders with values from (0, 1] in [9, 11, 14, 15]. Very interesting attempts have
also been made regarding stability concepts in two-dimensional systems involving
Caputo-type differences for incommensurate fractional-order, see [2]. We study
linear equations with constant coefficients and fractional variable-order differences
with variable-order defined by a function with values ν(k) ∈ (0, 1], while the
higher order is 1 + ν(k) ∈ (1, 2]. We consider discrete-time equations with the
Caputo-type fractional variable-order difference operator of convolution type. In the
discrete-time case, the Grünwald–Letnikov fractional operator is usually used, with
variable-order backward difference. Here, we propose the convolution operator of
the Caputo-type, defined originally in [11]. However, if we consider zero initial
condition, both definitions (Grünwald–Letnikov-type and Caputo-type) are then
equivalent. The Caputo-type operator allows nonzero stationary points to equations,
while equations or systems with the Grünwald–Letnikov operator can have only
zero as the stationary point. As a sequence of coefficients as the oblivion function
defined for variable-order we use coefficients defined, for example, in [10, 13].
Moreover, considering the convolution type operators it is possible to solve initial
value problems for linear equations using the Z-transform.

The paper is organized as follows: Preliminary information about the fractional
variable-order operators is given in Sect. 2. The main results of the paper are
presented in Sect. 3, where the solutions of the considered equations are provided.
Moreover, in Sect. 3 the conditions that guarantee the stability of the considered
equation are presented. Finally, Sect. 4 provides brief conclusions.
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2 Preliminaries

Firstly, let us introduce definitions of oblivion function with variable-order and the
Caputo-type difference operator.

Definition 1 Let k, l ∈ Z and ν(·) be a given order function. Then, we define the
oblivion function by the following:

a[ν(l)](k) =
0 for k < 0
1 for k = 0

(−1)k ν(l)[ν(l)−1]···[ν(l)−k+1]
k! for k > 0

. (1)

In this paper we use order functions ν(·) with values in (0, 1].
Let y : Z → R, then the difference operator on y(·) we understand as ([3])

(Δy)(k) = y(k + 1)− y(k) .

Let q ∈ N0 := {0, 1, 2, . . .} andΔq := Δ ◦ · · · ◦Δ is q-folded operatorΔ. Then,

(Δqy)(k) =
q∑
i=0

(−1)q−i
(
q

i

)
y(k + i) .

Definition 2 Let ν : Z → R+ ∪ {0}. For a function y : Z → R the fractional
variable-order sum of convolution type is defined by

(
Δ−ν(·)y

)
(k) :=

(
a[−ν(·)] ∗ y

)
(k) =

k∑
i=0

a[−ν(i)](i)y(k − i) ,

where k ∈ N0 and “∗” means the convolution operator.

The definition, that uses a convolution operator, it is possible to use Z-method.
Hence one gets

Z
[
Δ−ν(·)y

]
(z) = Y (z)Z

[
a[−ν(·)]] (z) , (2)

where Y (z) := Z [y] (z) and Z [a[−ν(·)]] (z) = ∑∞
i=0(−1)i

(−ν(i)
i

)
z−i are the Z-

transforms of the sequences y and a[−ν(·)], respectively. Then, one can show that
the following properties hold

(a) For ν(k) ≡ α Eq. (2) takes form

Z
[
Δ−ν(·)y

]
(z) =

(
z

z− 1

)α
Y (z).
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(b) Let ν1, ν2 : Z → R+ ∪ {0}. Then,
(
Δ−ν1(·)

(
Δ−ν2(·)y

))
(k) =

(
Δ−ν2(·)

(
Δ−ν2(·)y

))
(k) .

In what follows, we define the Caputo fractional variable-order difference
operator of convolution type.

Definition 3 Let ν : Z → (q−1, q], q ∈ N1. Then, the Caputo fractional variable-
order difference operator of convolution type Δν(·) with order function ν(·), for a
function y : Z → R is defined by

(
Δν(·)y

)
(k) =

(
Δ−(q−ν(·)) (Δqy)

)
(k). (3)

It is easy to see that

(a) If q = 1, then
(
Δν(·)y

)
(k) = (Δ−(1−ν(·)) (Δy)

)
(k);

(b) If ν(k) ≡ q ∈ N1, then we have
(
Δν(·)y

)
(k) = (Δqy) (k).

(c) For q = 1: Z [Δν(·)y] (z) = ((z− 1)Y (z)− zy(0))Z [a[ν(·)−1]] (z) , where

Y (z) = Z[y](z) and Z [a[ν(·)−1]
]
(z) =∑∞

i=0(−1)i
(
ν(i)−1
i

)
z−i .

3 Biquadratic Equations and Their Solutions

Let ν : Z → (0, 1]. Then, (1 + ν) : Z → (1, 2]. In the considered equations we use
two different operators of higher orders: Δ1+ν(·) and Δν(·). Then,

(
Δ1+ν(·)y

)
(k) =(

Δν(·)−1
(
Δ2y

))
(k).

Let us consider equations with a variable-order in the form similar to the classical
biquadratic equations mentioned in the Introduction:

(
Δ1+ν(·)y

)
(k)+ 2ξω

(
Δν(·)y

)
(k)+ ω2y(k) = ω2u(k) , k ≥ 0, (4)

with initial values y(0), y(1) ∈ R, where ν : Z → (0, 1] is a variable-order function,
function u : N0 → R is an input function, y : N0 → R is a response and ξ >
0, ω > 0 are given real constants. The following proposition shows that Eq. (4) has
the unique solution for the given initial values y(0) and y(1):

Proposition 1 The recursive solution to Eq. (4) is as follows:

y(2) = ω2u(0)+ (2ξω − ω2 − 1)y(0)+ 2(1 − ξω)y(1)
y(k) = ω2u(k − 2)− 2ξω

(
Δν(·)y

)
(k − 2)− (ω2 + 1)y(k − 2)+ 2y(k − 1)

−
k−3∑
i=0

a[ν(k−2−i)−1](k − 2 − i)
(
Δ2y

)
(i) , k ≥ 3, (5)

where values y(0), y(1) ∈ R are given.
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Proof Let the values of order function ν(·) be from (0, 1]. As we have that

(
Δ1+ν(·)y

)
(k) =

(
Δν(·)−1

(
Δ2y

))
(k) =

k∑
i=0

a[ν(k−i)−1](k − i)
(
Δ2y

)
(i)

and

(
Δν(·)y

)
(k) =

(
Δν(·)−1 (Δy)

)
(k) =

k∑
i=0

a[ν(k−i)−1](k − i) (Δy) (i),

then to prove the recurrence formula we need to rewrite both operators in Eq. (4)
and then solve the equation according to y(k + 2) and recalculate the formula for
y(k).

Dealing with linear difference equations, one of the best tools is the Z-transform
method. It is also possible to use it in the field of fractional variable-order operators.
As the definitions of summations or differences are based on the convolution of the
oblivion function, let us state the following notation:

A(z) := Z
[
a[ν(·)−1]

]
(z) =

∞∑
i=0

(−1)i
(
ν(i)− 1

i

)
z−i . (6)

Then since ν(k) ∈ (0, 1] for k ∈ Z, we have that

Z
[
Δν(·)y

]
(z) = ((z− 1)Y (z)− zy(0))A(z). (7)

Moreover,

Z
[
Δ2y

]
(z) = (z− 1)2Y (z)− zy(1)− z(z− 2)y(0) (8)

and then

Z
[
Δ1+ν(·)y

]
(z) = Z

[
Δ2y

]
A(z) =

= (z− 1)2Y (z)A(z)− (zy(1)+ z(z− 2)y(0))A(z).
(9)

From Eqs. (7)–(9) we see that generally

(
Δ
(
Δν(·)y

))
(k) �=

(
Δ1+ν(·)y

)
(k). (10)

The equality holds only for zero initial conditions. Hence, taking into account only
such situations, we can obtain the same conditions of stability for two cases of higher
order operators.



300 O. Brandibur et al.

Now, taking y(0) = y(1) = 0 and applying Z-transform to Eq. (4) we get the
following image:

Y (z) = ω2W−1(z)U(z) , (11)

where W(z) = (z − 1)2A(z) + 2ξω(z − 1)A(z) + ω2. Observe that W(1) = ω2,
W(−1) = 4(1 − ξω)∑∞

i=0

(
ν(i)−1
i

)+ ω2,W(0) = (ω − ξ)2 + 1 − ξ2.

Proposition 2 Solutions to (4) are

(a) unstable if {z ∈ C : W(z) = 0, |z| > 1} �= ∅;
(b) asymptotically stable if {z ∈ C : W(z) = 0, |z| > 1} = ∅.

Proof Using the same arguments as in [8] one can show that because {z ∈ C :
W(z) = 0} is the set of all poles of (z− 1)Y (z), so one gets

(a) If there is an element from {z ∈ C : W(z) = 0} that |z| > 1, then
lim supk→∞ y(k) = ∞ and system (4) is unstable.

(b) If all elements from {z ∈ C : W(z) = 0} are strictly inside the unit circle, then
lim
k→∞ y(k) = lim

z→1
(z− 1)Y (z) = 0.

Proposition 3 If in Eq. (4) parameters ξ > 0, ω > 0 satisfy conditions

ξ >
1√A(−1)

, 0 < ω < 2

(
ξA(−1)−

√
ξ2A2(−1)− A(−1)

)
, (12)

then the solutions are asymptotically stable.

Proof Let us consider zeros ofW(z), then we can treat equationW(z) = 0, i.e.

ω2 + 2ξ(z− 1)A(z)ω + (z− 1)2A(z) = 0 (13)

as quadratic equation with respect to ω. Taking into account that ω ∈ R+, we need
to take the assumption for ξ , that ξ ≥ 1 as δω = 4(z−1)2(ξ2A2 −A), and the roots

of quadratic equation are ω1,2 = (z− 1)
(
ξA(z)±√ξ2A2(z)− A(z)

)
.

Then, for z = −1 we obtain the maximum for ω, for which solutions are stable
in the form ωmax = 2

(
ξA(−1)−√ξ2A2(−1)− A(−1)

)
.

Example 1 Let us consider a response of unit signal from Eq. (4) with parameters

for stable responses ξ = 1√
A

+ 1, ω = 2
(
ξA−√A2ξ2 − A

)
∗ 0.9 and for the

following different order functions:

(1) ν1(k) = 0.1, see Fig. 1, ξ = 2.130367, ω = 0.457303.
(2) ν2(k) = 1 − 1

k+1 , see Fig. 2, ξ = 2.242281, ω = 0.4380649.
(3) ν3(k) = 0.5 + 0.5 exp(−0.01k), see Fig. 3, ξ = 1.997183, ω = 0.482884.
(4) ν4(k) = 0.7 + 0.3 cos2(k/6), see Fig. 4, ξ = 2.000846, ω = 0.482136.

Calculations of A(−1) and parameters ξ , ω are made for T = 1200 steps.
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Fig. 1 Graphs of unit response of Eq. (4) for variable-order function ν1(k) = 0.1, T = 100 steps

Fig. 2 Graphs of unit response of Eq. (4) for variable-order function ν2(k) = 1 − 1
k+1 , T = 100

steps

The example illustrates the behaviour of the solutions for different order
functions. We can observe that behaviours of four considered order functions are
slightly different, as well as values of the border of proposed parameters, as this
depends on monotonicity of order functions. It is not possible to compare to another
methods, as our definitions are new and it is not connected with direct discretization
of factional derivative of continuous-time. We use directly discrete-time version of
operators. In Figs. 1, 2, 3 and 4, the unit step for t is equal to 1, as we work only
with differences.
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Fig. 3 Graphs of unit response of Eq. (4) for variable-order function ν3(k)= 0.5 + 0.5
exp(−0.01k), T = 200 steps

Fig. 4 Graphs of unit response of Eq. (4) for variable-order function ν4(k) = 0.7 + 0.3 cos2(k/6),
T = 200 steps

4 Conclusions

The goal of this chapter was to study the behavior of the Caputo-type linear
fractional variable-order biquadratic difference equations. We showed the existence
of the solutions of the considered equations and subseqeuntly, based on the Z-
transform, we presented the conditions that guarantee asymptotic stability.
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Stability of Systems of Fractional-Order
Difference Equations and Applications to
a Rulkov-Type Neuronal Model

Oana Brandibur, Eva Kaslik, Dorota Mozyrska, and Małgorzata Wyrwas

Abstract Necessary and sufficient conditions for the asymptotic stability and insta-
bility of two-dimensional linear autonomous incommensurate systems of fractional-
order Caputo difference equations are presented. Moreover, the occurrence of
discrete Flip and Hopf bifurcations is also discussed, choosing the fractional
orders as bifurcation parameters. The theoretical results are then applied to the
investigation of the stability and instability properties of a fractional-order version of
the Rulkov neuronal model. Numerical simulations are further presented to illustrate
the theoretical findings, revealing complex bursting behavior in the fractional-order
Rulkov model.

Keywords Fractional-order difference equation · Caputo fractional difference ·
Fractional-order Rulkov model · Neuronal model · Incommensurate
fractional-order system

1 Introduction

As fractional-order derivatives are known to reflect both memory and heredi-
tary properties of different processes, numerous recent results have proven that
fractional-order systems provide more realistic results in practical applications.
Stability properties and linearization theorems for both continuous-time fractional
systems [2, 3] and discrete-time fractional systems [6, 7] were recently obtained.
Regarding the stability analysis of linear discrete-time fractional-order systems, the
most used and effective tool is the Z-transform. Due to the fact that fractional
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derivatives can be approximated by fractional h-differences of corresponding types,
we can establish the relationship between the stability of fractional-order differential
systems and the stability of their discrete-time counterparts.

In this work, we present general stability and instability results for two-
dimensional systems of fractional-order difference equations. As an application to
the theoretical findings, we investigate the stability of a fractional-order version
of the Rulkov neuronal model [8, 9], providing extensive numerical simulations,
where discrete Hopf bifurcations that occur can also be observed, in conjunction
with complex and chaotic bursting behavior.

Experimental neuronal research [1, 5] has recently suggested that the mathemat-
ical modeling of neuronal dynamics should incorporate fractional-order derivatives
or fractional-order differences. Fractional-order membrane potential dynamics have
been shown to introduce capacitive memory effects [10], proving their utility in
reproducing the electrical activity of neurons. Furthermore, [4] suggests that the
index of memory could be a possible physical interpretation of the fractional order,
which is in accordance with the use of fractional-order derivatives and differences
in mathematical models arising from neuroscience.

2 Preliminaries on Fractional-Order Difference Operators

Let h > 0, (hN)0 = {0, h, 2h, . . .} and a function x : (hN)0 → R. The operator

(Δhx)(t) := x(t + h)− x(t)
h

, t ∈ (hN)0

is called the forward h-difference operator.
Let us introduce the family of binomial functions on Z parameterized by q > 0

and given by the values

ϕ̃q(j) =
(
j + q − 1

j

)
= (−1)j

(−q
j

)
, for j ∈ N0, ϕ̃q(j) = 0, if j < 0.

Definition 1 For a function x : (hN)0 → R, the fractional h-sum of order q > 0
is given by (Δ−q

h x)(t) := hq(ϕ̃q ∗ x̄)(j), t = jh, x̄(s) := x(sh), s ∈ N, where “∗”
denotes the convolution operator.

Definition 2 Let q ∈ (0, 1]. The Caputo-type h-difference operator cΔq of order q
for a function x : (hN)0 → R is defined by

(cΔqx)(t) = (Δ−(1−q)
h (Δhx))(t), t ∈ (hN)0.

Proposition 1 For q ∈ (0, 1], let us define y(j) = (cΔqx)(t), where t ∈ (hN)0 and
t = jh. Then the Z-transform of y(j) is
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Z[y](z) = h−q
(

z

z− 1

)1−q (
(z− 1)X(z)− zx(0)

)
,

where X(z) = Z[x̄](z) and x̄(j) = x(jh).

3 General Stability Results for Two-dimensional Systems
of Fractional-Order Difference Equations

Let us consider the n-dimensional fractional-order system

cΔqx(nh) = f (nh, x(nh)), (1)

where q = (q1, q2, . . . , qn) ∈ (0, 1)n and f : (hN)0 × R
n → R

n is continuous on
the whole domain of definition and Lipschitz-continuous with respect to the second
variable, such that f (nh, 0) = 0 for any nh ∈ (hN)0. Let ϕ(nh, x0) denote the
unique solution of (1) which satisfies the initial condition x(0) = x0.

Definition 3

(a) The trivial solution of (1) is called stable if for any ε > 0 there exists δ = δ(ε) >
0 such that for every x0 ∈ R

n satisfying ‖x0‖ < δ we have ‖ϕ(n, x0)‖ ≤ ε for
any n ≥ 0.

(b) The trivial solution of (1) is called asymptotically stable if it is stable and there
exists ρ > 0 such that lim

n→∞ϕ(n, x0) = 0 whenever ‖x0‖ < ρ.

(c) The trivial solution of (1) is called O(n−q)-asymptotically stable if it is stable
and there exists ρ > 0 such that for any ‖x0‖ < ρ one has ‖ϕ(n, x0)‖ =
O(n−q) as n→ ∞.

Consider the following two-dimensional linear autonomous incommensurate
fractional-order system:

{
cΔq1x(nh) = a11x(nh)+ a12y(nh)
cΔq2y(nh) = a21x(nh)+ a22y(nh)

, (2)

where A = (aij ) is a real two-dimensional matrix, q1, q2 ∈ (0, 1) are the fractional
orders of Caputo forward difference operators, and h is the discretization step.

Applying the Z-transform to system (2) and denoting Z[x] = X and Z[y] = Y

the Z-transforms of x and y, respectively, we deduce
([
h−q1z(1 − z−1)q1 0

0 h−q2z(1 − z−1)q2

]
− A

)[
X(z)

Y (z)

]
=
[
F1(z)

F2(z)

]
,

where

F1(z) = x(0)h−q1z(1 − z−1)q1−1 and F2(z) = y(0)h−q2z(1 − z−1)q2−1.
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The following characteristic equation is obtained:

det
(

diag
(
h−q1z(1 − z−1)q1, h−q2z(1 − z−1)q2

)
− A

)
= 0.

Hence, the characteristic function of the system (2) is

ΔA(z)=z2(1−z−1)q1+q2 −a11h
q1z(1−z−1)q2 −a22h

q2z(1−z−1)q1 +hq1+q2 det(A).

As in the continuous-time case [2, 3], the following basic result is obtained for
the characterization of the stability and instability properties of system (2), in terms
of the distribution of the roots of the characteristic function.

Theorem 1

1. Denoting q = min{q1, q2}, system (2) is O(n−q)-globally asymptotically stable
if and only if all the roots of ΔA(z) are inside the unit circle (|z| < 1).

2. If det(A) �= 0 and ΔA(z) has a root outside the closed unit circle, system (2) is
unstable.

The following sufficient conditions for the instability of system (2), which do not
depend on the fractional orders q1 and q2 can be obtained using basic mathematical
tools:

Theorem 2 (Fractional-Order Independent Instability Results) System (2) is
unstable regardless of the fractional orders q1 and q2 if one of the following
conditions hold

1. det(A) < 0;
2. det(A) > 0 and (1 − h)(a11 + a22) ≥ (1 − h)2 det(A)+ 1;
3. a11 > 0 and a11a22 ≥ det(A) > 0.

In the following, let δ = det(A) > 0 and q1, q2 ∈ (0, 1], h > 0 arbitrarily fixed.
With the aim of establishing easily applicable stability conditions, we introduce the
following notations in the (a11, a22)-plane:

– the line

l(δ, q1, q2, h) : a11

(
h

2

)q1

+ a22

(
h

2

)q2

+ δ
(
h

2

)q1+q2

+ 1 = 0

– for q1 �= q2, the smooth parametric curve

Γ (δ, q1, q2, h) : a11 = ρ2(q1, q2, θ)u(θ, h)
q1 − δρ1(q1, q2, θ)u(θ, h)

−q2

a22 = δρ2(q1, q2, θ)u(θ, h)
−q1 − ρ1(q1, q2, θ)u(θ, h)

q2
,

where θ ∈ (0, π2
)
, ρk(q1, q2, θ) = sin(2−qk)θ

sin(q2−q1)θ
for k = 1, 2, u(θ, h) = 2

h
cos θ .
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– for q1 = q2 =: q, the line

Λ(δ, q, h) : a11 + a22 = −2
√
δ cos

[
(2 − q) arccos

(
h

2
δ1/2q

)]
.

With these notations, the following stability result is obtained:

Theorem 3 (Fractional-Order-Dependent Stability Results)

Let q1, q2 ∈ (0, 1], h > 0 arbitrarily fixed and 0 < δ = det(A) <
(

2
h

)q1+q2
.

1. If q1 �= q2, system (2) is O(n−q)-asymptotically stable (q = min{q1, q2}) if and
only if (a11, a22) are in the domain above the line l(δ, q1, q2, h) and below the
curve Γ (δ, q1, q2, h).

2. If q1 = q2 := q, system (2) is O(n−q)-asymptotically stable if and only if

−δ
(
h

2

)q
−
(
h

2

)−q
< a11 + a22 < −2

√
δ cos

[
(2 − q) arccos

(
h

2
δ1/2q

)]
.

It is worth noting that if (a11, a22) ∈ Γ (δ, q1, q2, h), the characteristic function
ΔA(z) has a pair of complex conjugated roots on the unit circle, which is a
requirement for the discrete Hopf bifurcation in the classical theory of discrete
dynamical systems. On the other hand, if (a11, a22) ∈ l(δ, q1, q2, h), the character-
istic function ΔA(z) has a root z = −1, which is associated with the occurrence
of a flip bifurcation in discrete dynamical systems. However, it is important to
emphasize that the bifurcation theory of systems of fractional-order difference
equations remains yet to be investigated.

The results obtained in Theorem 3 are exemplified in Fig. 1 for different values
of the discretization step h, while fixing δ = det(A) = 5 and the fractional orders
q1 = 0.8 and q2 = 0.4.
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Fig. 1 Stability regions in the (a11, a22)-plane, for different values of the discretization step h.
The green curve represents the limiting case when h → 0, i.e., it represents the boundary of the
stability region corresponding to the continuous-time counterpart [3]
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4 Applications to a Fractional-Order Rulkov-Type Neuronal
Model

As an application to the theoretical results presented above, we analyze the
following discrete-time fractional-order Rulkov-type model, describing the spiking
behavior of a biological neuron:

cΔq1x(n) = α

1 + x(n)2 − x(n)+ y(n)
cΔq2y(n) = −μ(x(n)− σ)

, (3)

where x represents the membrane potential, y is a gating variable, with 0 < μ 1,
σ acts as an external current applied to the neuron, and α > 0 is a nonlinearity
parameter. We will assume for simplicity that 0 < q1 < q2 ≤ 1.

The unique fixed point of system (3) is (x∗, y∗) =
(
σ, σ − α

1 + σ 2

)
. The

Jacobian matrix of system (3) at (x∗, y∗) is

J =
⎛
⎝−1 − 2ασ

(1 + σ 2)2
1

−μ 0

⎞
⎠ .

With the notations from the previous section, we observe that

a11 = −1 − 2ασ

(1 + σ 2)2
< 0, a22 = 0, 0 < δ = μ 1 < 2q1+q2 , h = 1.

Theorem 3 implies that the fixed point (x∗, y∗) is asymptotically stable if and
only if

−2−q2μ− 2q1 < −1 − 2ασ

(1 + σ 2)2
< ρ2(q1, q2, θ

∗)(2 cos θ∗)q1

− μρ1(q1, q2, θ
∗)(2 cos θ∗)−q2 ,

where θ∗ = θ∗(q1, q2) ∈ (0, π2
)

is the unique solution of the equation

sin(2 − q1)θ
∗

sin(2 − q2)θ∗ · (2 cos θ∗)q1+q2 = μ. (4)

Based on the above inequalities, we deduce that a sufficient condition for the
instability of the fixed point (x∗, y∗), regardless of the choice of fractional orders q1
and q2, is the fulfillment of one of the following inequalities:
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− 2ασ

(1 + σ 2)2
< −μ

2
− 1 or − 2ασ

(1 + σ 2)2
> M(μ)+ 1

where

M(μ) = sup
0<q1<q2<1

[
ρ2(q1, q2, θ

∗)(2 cos θ∗)q1 − μρ1(q1, q2, θ
∗)(2 cos θ∗)−q2

]
,

with θ∗ = θ∗(q1, q2) given by (4).
For the numerical simulations, μ = 0.001 is fixed. Figure 2 shows the stability

region in the (α, σ )-plane for system (3) with fixed values of the fractional orders
q1 = 0.6 and q2 = 1 (Fig. 3). Furthermore, fixing σ = −1, we find the critical value
α∗ = 2.09278 where a Hopf bifurcation is expected to occur (see Fig. 4).

On the other hand, as our aim is observing neuronal bursting behavior in the
fractional-order model, we search for values of the parameters α and σ for which
the unique equilibrium of system (3) is guaranteed to be unstable, for every choice
of the fractional orders q1 and q2. Numerical evaluation ofM(μ) given above using
differential evolution or random search returns the value 1.0083. Therefore, the
fractional-order independent instability region plotted in Fig. 3 is obtained. Different
types of bursting behavior can be observed in Fig. 5 for α = 4.5, σ = −1 belonging
to the instability region from Fig. 3, by varying q1 between 0.01 and 1, for fixed
q2 = 1.

Fig. 2 Stability region in the (α, σ )-plane for system (3) with μ = 0.001, q1 = 0.6, and q2 = 1
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Fig. 3 Fractional-order independent instability region in the (α, σ )-plane for system (3) with μ =
0.001

Fig. 4 A Hopf bifurcation occurs in the Rulkov model (3) with μ = 0.001, σ = −1, q1 = 0.6,
q2 = 1 at the critical value α∗ = 2.09278. The equilibrium state (x∗, y∗) is asymptotically stable
for α < α∗ and it loses its stability for α > α∗. An asymptotically stable limit cycle appears for
α > α∗, suggesting the occurrence of a supercritical Hopf bifurcation
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Fig. 5 Bursting behavior in the Rulkov model (3) with μ = 0.001, α = 4.5, σ = −1 and the
fractional orders q2 = 1 and q1 varying from 0.01 to 1

5 Conclusions

Theoretical results concerning the asymptotic stability and instability of two-
dimensional incommensurate systems of autonomous linear fractional-order Caputo
difference equations has been presented and applied in the investigation of a
fractional-order Rulkov neuronal model. Numerical simulations reveal that chaotic
bursting can be modulated by varying the fractional orders of the system.
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Independent Fractional Type Modes
of Free and Forced Vibrations of Discrete
Continuum Hybrid Systems of Fractional
Type with Multi-Deformable Bodies

Katica R. (Stevanović) Hedrih

Abstract Hybrid systems of fractional type with multi-deformable bodies exhibit
very complex dynamics. In this chapter, an advanced analysis of independent
fractional type modes of free and hybrid modes of forced vibrations of these
hybrid systems is performed. The analyses are based on author’s previous published
results of the analytical dynamics and vibrations of the fractional type discrete
and discrete continuum hybrid systems. A hybrid discrete continuum system of
fractional type with multi-deformable bodies consists of ideal elastic bodies (belts,
beams, membranes or plates) with equal boundary conditions, coupled by standard
light fractional type discrete continuum layers in transversal direction permitting
the system transversal vibrations. Independent fractional type hybrid forced modes
appear in each of the eigen time functions of each of the eigen amplitude forms in
both, free and forced regimes of transversal vibrations of discrete continuum system.
Number of the independent fractional type modes in each of the eigen time function
of each of the eigen amplitude shape is equal to number of the coupled deformable
bodies in hybrid fractional type system (HFS) plus number of the external forced
excitation frequencies.

The main new result, presented in this chapter, is the description of the hybrid
forced fractional type vibration modes with corresponding analytical approximate
solution expressed by integral of the convolution.

On the basis of this result it is possible to define independent fractional type
hybrid modes in HFS with two characteristic numbers and a corresponding number
of external excitation forced frequencies. One of these characteristic numbers
corresponds to the square of eigen frequencies. The other characteristic number
corresponds to fractional type system properties.
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Keywords Discrete continuum hybrid systems of multi-deformable bodies ·
Fractional type hybrid forced modes · Generalized function of fractional type
dissipation of the energy · Functions in convoluting · Theorem

1 A Brief Historical Introduction to Fractional Calculus

Fractional calculus was initiated by Leibniz and L’Hopital as a result of a correspon-
dence which lasted several months during 1695. That year, Leibniz wrote a letter to
L’Hopital raising the following question [1]: “Can the meaning of derivatives with
integer order be generalized to derivatives with non-integer orders?” L’Hopital was
somewhat curious about the above question and replied by another simple one to
Leibniz: “What if the order will be 1/2?”. Leibniz in a letter dated September 30,
1695, replied: “It will lead to a paradox, from which one day useful consequences
will be drawn.”

Since the nineteenth century, the theory of fractional calculus has developed
rapidly, mostly as a foundation for a number of applied disciplines, especially
for applications in rheology and viscoelasticity, to define constitutive stress-strain
relations of the material with dissipation. All fractional order differential operators
in fractional calculus are therefore an excellent set of tools for describing the
memory and hereditary properties of various materials and viscoelastic processes
[2–5].

Between numerous definitions and forms of the fractional order derivatives, in
this chapter, a differential fractional order operator denoted by Dαt [•] is used. This
operator is fractional order differential operator of the αth derivative, with respect
to time in the following form (see [1–11]):

Dαt [x(t)] =d
αx(t)

dtα
=x(α)(t)= 1

Γ (1−α)
d

dt

t∫

0

x (τ)

(t−τ)α dτ, α ∈ (0.1), t ∈ (0.b)

(1)

where α is a rational number between 0 and 1, 0 < α < 1, determined experimentally
and �(1 − α) is the Gamma function. In this chapter, independent fractional type
modes are based on the known two ordinary fractional order differential equations
in the following forms:

ξ̈+ω2
(α)D

α
t [ξ ] +ω2

0ξ= 0, for free vibrations
h0 sin (�0t + ϑ0) , for forced vibrations

,

α ∈ (0.1), t ∈ (0.b) (2)
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where ξ is coordinate-function of time, ω∗
0 and ω(α) are constant coefficients of

ordinary fractional order differential equation, and α is a rational number between
0 and 1, 0 < α < 1. Analytical approximate solution of the first ordinary fractional
order homogeneous differential equation in (2) is known from literature [2–4, 9].
Analytical approximate particular solution of the second ordinary fractional order
non-homogeneous differential equation in (2) can be obtained by use Laplace
transform and inverse of Laplace transform and properties of Laplace transform
of the two functions in convolution.

2 Fractional Type Oscillator with One Degree of Freedom
and Generalized Function of Fractional-Type Dissipation
of the Energy

Consider a mechanical fractional-type system, with one degree of freedom, pre-
sented in Fig. 1a*. A simple mechanical fractional type oscillator contains a mass
particle, mass m, moving translator along a line trace and coupled by a standard
light fractional type element at one fixed point in same direction of mass particle
displacement ξ . Constitutive relation between reactive force P (ξ,D [ξ ]) and axial
extension deformation–elongation ξ of the standard light fractional type element is
in the form [1, 6–11]:

P (ξ,D [ξ ]) = P(t) = − {c0ξ(t)+ cαDαt [ξ(t)]
}

(3)

Fig. 1 (a*) Fractional order oscillator with one degree of freedom. Qualitative and mathematical
analogous fractional-type chains: (d*) mechanical fractional-type chain system and (e*) electrical
fractional-type chain system; (b*) hybrid multi-circular membrane fractional-type system and
(c*) hybrid multi-rectangular membrane fractional-type system on the fractional-type discrete
continuum foundation
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where Dαt [•] is fractional order differential operator of the α derivative with
respect to time t in the form (1), and where c0 and cα are rigidity coefficients—the
momentary and the prolonged one, α is a rational number between 0 and 1, 0 < α < 1,
determined experimentally. All these parameters depend of the material properties,
whose theoretical abstraction is the standard light fractional type element [1, 9].
Expressions for the kinetic Ek and potential Ep energies and generalized function
 α, 0 < α < 1 of fractional type dissipation of system energy of the mechanical
fractional type oscillator with one degree of freedom, presented in Fig. 1, are in
the following forms: Ek = 1

2mξ̇
2, Ek = 1

2c0ξ
2 and Φα,0<α<1 = 1

2cα
{
Dαt [ξ ]

}2 [1,
6]. Mass particle in the considered oscillator is loaded by the following active and
fictive forces: P(ξ , D[ξ ]) —reactive force in the form (3), F(t) = F0 sin (Ω0t + ϑ0)
—external active force with amplitude F0 and circular frequency Ω0, and phase
ϑ0, and Finer

(
ξ̈
) = −mξ̈—fictive force of inertia, and on the basis by principle of

dynamical equilibrium of mass particle, we can write the ordinary fractional order
differential equation in the form (2), where the following denotation ω2

0 = c0
m

and
ω2
(α) = c(α)

m
, are introduced. Analytical approximate solution for free regimes of

oscillations is solution of the ordinary fractional order differential equation, the first
one in (2), and known from literature, see [1, 2, 5, 10, 11]. For obtaining analytical
approximate solution for forced regimes of oscillations it is necessary to determine
particular solution of the ordinary fractional order differential equation, the second
one in Eq. (2). For that reason, Laplace transform noted by operator L{•}, is applied
to the ordinary fractional order differential equation, second in Eq. (2). Taking into
account that necessary Laplace transformations are:

L
{
ξ̈
} = p2L {ξ} − [pξ(0)+ ξ̇ (0)] ,

L
{
Dαt [ξ ]

} = pαL {ξ} − dα−1

dtα−1 ξ(0), for
dα−1

dtα−1 ξ(0) = 0

it follows L
{
Dαt [ξ ]

} = pαL {ξ} and L {sin (�0t)} = �0
p2+�2

0
, where p is a complex

variable, with real and imaginary part, and the solution for L{ξ} is in the following
form:

L {ξ} =
[
pξ(0)+ ξ̇ (0)]〈

p2 + ω2
(α)p

α + ω2
0

〉 + �0h0(
p2 +�2

0

) 〈
p2 + ω2

(α)p
α + ω2

0

〉 (4)

Then, it is necessary to apply the inverse Laplace transform L−1L{•} to determine
the general solution ξ (t) = L−1L{ξ}{ξ} of ordinary fractional order differential
equation (2).

The obtained solution along L{ξ} in the form (4) can be separated in two terms:
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* first term in solution (4) corresponds to solution ξ free(t,α,ω0,ω(α)) of ordinary
fractional order differential equation, first in (2) and describes free fractional type
vibrations. Analytical approximate solution ξ free(t,α,ω0,ω(α)) is in the form:

ξfree
(
t, α, ω0, ω(α)

) = ξ(0)
∞∑
k=0

(−1)kω2k
(α)t

2k
k∑
j=0

(
k

j

)
(∓1)jω−2j

(α) t
−αj

ω
2j
0 Γ (2k + 1 − αj)

+ ξ̇ (0)
∞∑
k=0

(−1)kω2k
(α)t

2k+1
k∑
j=0

(
k

j

)
(∓1)jω−2j

(α) t
−αj

ω
2j
0 Γ (2k + 2 − αj)

,

α ∈ (0.1), t ∈ (0.b) (5)

where ξ (0) and ξ̇ (0) are integral constants. In previous approximate solution (5)
of the ordinary fractional order differential equation, first in (2), it is possible to
separate two particular approximate solutions, as fractional type free modes, which
look like cosine ξ cos(t,α,ω0,ω(α)) and look like sine ξ sin(t,α,ω0,ω(α)), (for details
see [1, 9, 10]):

* second term in solution (4) corresponds to Laplace transform L{ξp, sin} of
particular solution ξp, sin of the ordinary fractional order differential equation,
second in (2), and describes one forced mode of a fractional type forced vibrations.
Let us start by components of two Laplace transforms of two functions in the forms:

L {f1(t)} = Ω0h0(
p2+Ω2

0

) = h0L {sinΩ0t} , L {f2(t)} = 1〈
p2+ω2

(α)
pα+ω2

0

〉 = L {ξsin(t)}

L {f2(t)} = L

{ ∞∑
k=0
(−1)kω2k

(α)t
2k+1

k∑
m=0

(
k

m

)
ω−2m
(α)

t−αm

ω2m
0 Γ (2k+2−αm)

}
(6)

The particular solution corresponds to one of the modes of forced vibrations
which is in the function f3(t) whose Laplace transform L{f3(t)} is in the
product of Laplace transforms of the two previous terms L{f1(t)} and
L{f2(t)} : L{f3(t)} = L{f1(t)} * L{f2(t)}. Three functions f3(t), f1(t), and f2(t) are in
convolution (denoted by *). Then, the particular solution ξp, sub(t,α,ω0,ω(α),Ω0) of
the ordinary fractional order differential equation, second in (2), which corresponds
to one forced mode of fractional-type vibrations under the external sinusoidal single
frequency excitation h0 sin (Ω0t), is given by

ξp,sin
(
t, α, ω0, ω(α),Ω0

)

= 〈h0 sin (Ω0t)〉 ∗
〈 ∞∑
k=0

(−1)kω2k
(α)t

2k+1
k∑
m=0

(
k

m

)
ω−2m
(α) t

−αm

ω2m
0 Γ (2k + 2 − αm)

〉
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ξp,sub
(
t, α, ω0, ω(α),Ω0

)

=
∫ t

0
〈h0 sin(Ω0 (t − τ))〉

〈 ∞∑
k=0

(−1)kω2k
(α)τ

2k+1
k∑
m=0

(
k

m

)
ω−2m
(α) τ

−αm

ω2m
0 Γ (2k+2−αm)

〉
dτ

(7)

General approximate solution ξ (t,α,ω0,ω(α)) for forced vibrations of a
fractional-type oscillator, with one degree of freedom, loaded by a single-frequency
external excitation is in the form of sum of analytical approximate solutions for free
vibrations modes ξ free(t,α,ω0,ω(α)) and the particular solution for a forced mode
ξp, sub(t,α,ω0,ω(α),Ω0), and for α ∈ (0.1), t ∈ (0. b), is in the following form:

ξ
(
t, α, ω0, ω(α)

) = ξ(0)
∞∑
k=0

(−1)kω2k
(α)t

2k
k∑
j=0

(
k

j

)
(∓1)jω−2j

(α) t
−αj

ω
2j
0 Γ (2k + 1 − αj)

+

+ ξ̇ (0)
∞∑
k=0

(−1)kω2k
(α)t

2k+1
k∑
j=0

(
kj
) (∓1)jω−2j

(α) t
−αj

ω
2j
0 Γ (2k + 2 − αj)

+

+
∫ t

0
〈h0 sin (Ω0 (t − τ))〉
〈 ∞∑
k=0

(−1)kω2k
(α)τ

2k+1
k∑
m=0

(
k

m

)
ω−2m
(α) τ

−αm

ω2m
0 Γ (2k + 2 − αm)

〉
dτ

(8)

3 Description of the Hybrid Discrete Continuum Systems
of Fractional Type with Multi-Deformable Bodies

The hybrid discrete continuum systems of fractional type with multi-deformable
bodies are composed by finite number of deformable ideally elastic bodies (strings,
belts, beams, membranes, or plates) with equal contours and equal boundary
conditions, see Fig. 1b*, c*. Deformable bodies are coupled by standard light
fractional type discrete continuum layers in transversal direction permitting the
system transversal vibrations. A fractional type discrete continuum layer contains
homogeneous distributed standard light fractional type element determined by
constitutive stress-strain relation expressed by fractional order differential operator
Dαt [•]. The force which defines the interactions between two deformable bodies is
in the form:

Qα,k(t) = − {c0(k,k+1) [wk+1 (x, y, t)− wk (x, y, t)]
}

− {cα(k,k+1)D
α
t [wk+1 (x, y, t)− wk (x, y, t)]

} = −Qα,k+1(t)
(9)



Independent Fractional Type Modes of Free and Forced Vibrations of Discrete. . . 321

In the previous expression, wk(x, y, t) and wk + 1(x, y, t) are transversal displace-
ments of the middle surface points of thin ideal elastic plates (or membranes,
see Fig. 1b*, c*), where x and y are the coordinates of plate (or membrane)
middle surface points, and k and k + 1 are order of the plates (or membranes)
in hybrid fractional type system (for details see [8, 9]). Taking into account
the previously published system of coupled partial fractional order differential
equations of transversal vibrations of the hybrid discrete continuum systems of
fractional type with multi-deformable bodies containing, in the considered case, in
each particular case three deformable bodies (strings, belts, beams, membranes, or
plates) in listed [8, 9] with corresponding solutions for free vibrations, it can be seen
that each eigen amplitude form Wnm(x, y), n, m = 1, 2, 3, 4, . . . . , ∞ contains three
eigen time functions Tk(nm)(t), k = 1, 2, 3, n, m = 1, 2, 3, 4, . . . . , ∞ with three eigen
frequencies and three eigen characteristic numbers expressing fractional type of
eigen time functions, for free vibrations. On the basis of these mathematical results,
it is visible and it is possible to produce new additional frequency analysis and to
conclude/determine according properties for free as well as for forced transversal
vibrations of considered hybrid multi-deformable body system dynamics.

Each subsystem of the obtained series, contains three independent ordinary
fractional order differential equations, along eigen main coordinates ξ (nm)s(t), s = 1,
2, 3, n, m = 1, 2, 3, 4, . . . . , ∞ for each of eigen time functions, for free or forced
vibrations, independent hybrid modes of three plate- or three-membrane system.
One of that independent ordinary fractional order differential equation, describing
independent fractional type hybrid mode of forced vibrations is in the following
form (see [9]):

〈
ξ̈(nm)1(t)+ ω̃2

nm(1)ξ(nm)1(t)+ ω̃2
α(nm)(1)D

α
t

[
ξ(nm)1(t)

]〉

=

∣∣∣∣∣∣∣

h01,nm sin
(
�1,nmt + ϑ1,nm

)
K
(2)
(nm)31 K

(3)
(nm)31

h02,nm sin
(
�2,nmt + ϑ2,nm

)
K
(2)
(nm)32 K

(3)
(nm)32

h03,nm sin
(
�3,nmt + ϑ3,nm

)
K
(2)
(nm)33 K

(3)
(nm)33

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

K
(1)
(nm)31 K

(2)
(nm)31 K

(3)
(nm)31

K
(1)
(nm)32 K

(2)
(nm)32 K

(3)
(nm)32

K
(1)
(nm)33 K

(2)
(nm)33 K

(3)
(nm)33

∣∣∣∣∣∣∣

(10)

and is a representation of other two OFODEs for forced transversal vibrations of a
considered hybrid three plate- or three-membrane system.

New analytical approximate solution of the previous independent ordinary
fractional order differential equation (10) on the basis of the expression (8) is in
the form:
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ξ(nm)1
(
t, α, ω0, ω(α)

)

= ξ(nm)1(0)
∞∑
k=0

(−1)kω̃2k
α(nm)(1)t

2k
k∑
j=0

(
k

j

)
(∓1)j ω̃−2j

α(nm)(1)t
−αj

ω̃
2j
nm(1)Γ (2k + 1 − αj)

+ ξ̇(nm)1(0)
∞∑
k=0

(−1)kω̃2k
α(nm)(1)t

2k+1
k∑
j=0

(
k

j

)
(∓1)j ω̃−2j

α(nm)(1)t
−αj

ω̃
2j
nm(1)Γ (2k + 2 − αj)

+
∫ t

0

〈
h̃01,nm sin

(
Ω1,nm (t − τ)+ ϑ1,nm

)〉

〈 ∞∑
k=0

(−1)kω̃2k
α(nm)(1)τ

2k+1
k∑
m=0

(
k

m

)
ω̃−2m
α(nm)(1)τ

−αm

ω̃2m
nm(1)Γ (2k + 2 − αm)

〉
dτ

+
∫ t

0

〈
h̃02,nm sin

(
Ω2,nm (t − τ)+ ϑ2,nm

)〉

〈 ∞∑
k=0

(−1)kω̃2k
α(nm)(1)τ

2k+1
k∑
m=0

(
k

m

)
ω̃−2m
α(nm)(1)τ

−αm

ω̃2m
nm(1)Γ (2k + 2 − αm)

〉
dτ

+
∫ t

0

〈
h̃03,nm sin

(
Ω3,nm (t − τ)+ ϑ3,nm

)〉

〈 ∞∑
k=0

(−1)kω̃2k
α(nm)(1)τ

2k+1
k∑
m=0

(
k

m

)
ω̃−2m
α(nm)(1)τ

−αm

ω̃2m
nm(1)Γ (2k + 2 − αm)

〉
dτ

(11)

Previously new derived approximate general solution (11) is the analytical
approximate description of one independent eigen fractional type hybrid forced
mode, one of three forced hybrid modes of an eigen time function of transversal
vibrations of a deformable body (plate or membrane) in the considered hybrid
system. It is visible that this forced hybrid mode contains three frequencies of
the forced external excitations applied as surface distributed three single frequency
excitations along each of the three deformable bodies. Then this independent mode
is like the fourth frequency mode of forced vibrations. Independent fractional
type forced hybrid modes appear in each of eigen time functions of each of the
infinite number of eigen amplitude modes in regimes of the forced vibrations of
the forced transversal vibrations of the discrete continuous system. A number of the
independent fractional type hybrid modes in each of the eigen time functions of each
eigen amplitude mode is equal to the number of the coupled deformable bodies in
hybrid fractional type system.
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4 Concluding Remarks

Solutions (8) and (11) representing the new results obtained for fractional-type
forced transversal vibrations for three coupled deformable bodies (beam, plate, or
membrane) with the same contour and boundary conditions, in hybrid fractional-
type system, can be generalized to hybrid systems with any finite number of coupled
deformable bodies. This particularly applies to kinetic parameters of the eigen time
functions and eigen hybrid forced modes. As final remark a theorem is formulated
in the following form:

Theorem Dynamics of hybrid fractional-type system, which contains N deformable
bodies (beams, plates, or membranes), with equal boundary conditions, each
excited by surface external single-frequency excitation with frequency �k, nm

k = 1, 2, . . . , K, and coupled by discrete continuum fractional order layers,
and with displacements wk(x, y, t) and wk + 1(x, y, t) described by the corresponding
system of coupled partial fractional order differential equations, and in each
of the eigen amplitude form Wnm(x, y), from the set of infinite numbers is
described by corresponding like N + K frequency eigen time functions Tk(nm)(t) =
s=N∑
s=1

K(s)(nm)Nkξ(nm)s(t), where ξ (nm)s(t) s = 1, 2, 3 . . . , N, are independent eigen

main fractional-type time hybrid forced modes of corresponding subsystem in one
eigen amplitude form Wnm(x, y). These eigen main fractional-type time hybrid
modes ξ (nm)s(t), s = 1, 2, 3 . . . , N, are described by the system of the solutions of
independent ordinary fractional order differential equations in the forms (2) or (10)
with approximate solution in the form (8) or (11), with two sets of characteristic
numbers: ω̃2

nm(s) and ω̃2
α(nm)(s), and one set with external excitation frequencies

Ωk, nm k = 1, 2, . . . , K. The first set contains characteristic numbers ω̃2
nm(s)

which are the squares of eigen frequencies, the same as for corresponding linear
system free vibrations, and the second set ω̃2

α(nm)(s) corresponds to eigen frequency
fractional-type modes.

In a fractional type system dynamics with independent fractional-type modes,
no interactions between independent fractional type modes can occur. Also, transfer
energy between independent fractional types modes does not appear. But, in each
independent hybrid forced mode fractional-type dissipation of energy during the
system oscillations occurs. In general, the dynamics of a fractional-type system is
nonlinear and no independent fractional type modes for free as well as for forced
vibrations exist. Knowledge about independent fractional-type modes can have an
important role for investigation of nonlinear dynamics of general fractional-type
system dynamics.
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3. Bačlić, B.S., Atanacković, T.M.: Stability and creep of a fractional derivative order viscoelastic
Rod, Bulletin T, CXXI de L’Academie Serbe des Sciences st de Arts - 2000. Class Sci. Math.
Nat. Sci. 25, 115–131 (2000)

4. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional
order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum
Mechanics, vol. 1997, pp. 223–276. Springer Verlag, Berlin (2000)

5. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of
solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63(1), 010801 (2010)
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Non-Smooth Bifurcation in Two
Fractional-Order Memristive Circuits

Yajuan Yu and Zaihua Wang

Abstract Two fractional-order Chua’s memristive circuits named Model 1 and
Model 2 are proposed. Model 1 is a fractional-order memristive circuit with only
the memristor described by a fractional-order derivative due to the memory loss
observed experimentally, while Model 2 is a direct fractional-order generalization
of integer-order Chua’s memristive circuit without considering the physical back-
ground. Both models are non-smooth systems with a line equilibrium depending
on the memristor’s initial state. Numerical simulation shows that both models
exhibit multi-stability and different steady states switch via “grazing bifurcation”
or “tangent bifurcation,” “intermittent chaos” is found in Model 1 as the fractional
order is close to 0 or 1, but no “intermittent chaos” is found in Model 2 as the
fractional order is between 0 and 1.

Keywords Tangent bifurcation · Fractional-order memristor · Stability ·
Non-smoothness

1 Introduction

Capacitor, inductor, and resistor are known as three traditional circuit elements
for more than one century. As the fourth basic circuit element with an adjustable
resistance or conductance, memristor was fabricated for the first time as a physical
device without internal power supply in HP Laboratory [1] in 2008, 37 years after
it was originally introduced by Lenon O Chua [2] in 1971. A memristive circuit
stands for a circuit with a memristor. It is essentially a nonlinear system, thus, loss of
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stability, various kinds of bifurcation and even chaos can be observed in memristive
circuits. By introducing different nonlinearities, memristive circuits exhibit self-
excited attractors [3, 4], hidden attractors [5, 6], coexisting multiple attractors [7],
and coexisting infinitely many attractors [8]. In these cases, the circuit systems
diversify in performance with unchanging parameters, and switch between different
coexisting states. On the one hand, such complicated dynamics can lead to unex-
pected and even catastrophic behaviors in engineering applications, such as multiple
attractors are the source of unpredictability [9]. On the other hand, chaotic systems
with multiple attractors increase the confidentiality in the communications [10], and
using memristor to construct chaotic circuits with multiple attractors is a new control
strategy in such applications. Interestingly, memristor’s stateful logic property and
similarity to synapse can be potentially applied to neuromorphic computing [11].
Thus, it is highly required to study nonlinear dynamics of memristive circuits.

Memristor and memristive circuits can be modeled mainly in three different
ways. Firstly, memristor and memristive circuits are described by using integer-
order derivatives. Secondly, the work [1] shows that there is a memory loss of the
HP TiO2 linear model for memristor, the width of the doped layer of HP TiO2
model cannot be equal to zero or the whole width [1], thus, HP TiO2 memristor
with the edge memory loss can be mathematically modeled by a fractional-order
derivative with the order between 0 (no memory) and 1 (full memory), and the
memristor in the series circuits has capacitive properties or inductive properties
[12]. Thirdly as given in [13–15], some fractional-order memristive models are
generalization of the traditional ones, simply replacing the integer-order derivative
with the fractional-order derivative without considering the physical background.
For fractional-order memristive models, the memory strength of the memristor can
be adjusted by changing the order, as shown in [12].

Many features can be kept from integer-order memristive models to fractional-
order ones. There are also differences in the nonlinear dynamics between the
fractional-order memristive circuits and the corresponding integer-order systems.
For example [16], both the fractional-order and its corresponding integer-order
systems exhibit chaotic behavior, but the trajectory of the fractional-order system
exhibits a single-scroll attractor while in the corresponding integer-order system the
trajectory is a double-scroll attractor. Thus, there comes a question: what difference
can be found between two kinds of fractional-order memristive circuits obtained in
the second way and the third way above?

This paper studies the non-smooth bifurcation in two fractional-order Chua’s
memristive circuits, with a comparison between the one proposed in [17] and the
other to be discussed below. It begins with the modeling of the memristive circuits
in Sect. 2, then stability and bifurcation analysis of the two models are displayed in
Sect. 3. Finally it ends with a summary in Sect. 4.
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2 Models

2.1 Integer-Order Chua’s Memristive Circuit

Figure 1 is a Chua’s circuit including a flux-controlled memristor M , where the
memristor’s equivalent circuit is realized in Fig. 2 [18] with the state equations

iM(t) = W(v0)vM(t),

C0
dv0

dt
= − v1

R0
,

(1)

where W(v0) = −a + b|v0| is the memductance with a = 0.6667 mS, b =
0.403 mS/Wb. The memristor’s flux ϕM(t) = −C0R0v0(t), derived from Fig. 2.
The following set of nonlinear differential equations are state equations of circuit
displayed in Fig. 1

C1
dv1

dt
= v2 − v1

R
−W(v0)v1,

C2
dv2

dt
= v1 − v2

R
− i3,

L
di3
dt

= v2,

C0
dv0

dt
= − v1

R0
,

(2)

Fig. 1 The Chua’s circuit with a fractional-order memristor

Fig. 2 Memristor equivalent circuit realization
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where R = 2 k�, C1 = 6.8 nF, C2 = 68 nF, L = 17.2 mH, R0 = 2 k�, and
C0 = 68 nF.

Let t = RC2τ , and

v1(t) = v1(RC2τ) = x1(τ ), v2(t) = v2(RC2τ) = x2(τ ),

Ri3(t) = Ri3(RC2τ) = x3(τ ), v0(t) = v0(RC2τ) = x4(τ ),

m = C2

C1
, n = R2C2

L
, p = RC2

R0C0
= 1, A = aR, B = bR,

then Eq. (2) is changed into

dx1

dτ
= m(x2 − x1)−m(B|x4| − A)x1,

dx2

dτ
= x1 − x2 − x3,

dx3

dτ
= n x2,

dx4

dτ
= −p x1,

(3)

where A = 1.3334, B = 0.8060,m = 10, n = 15.814, p = 1. For Eq. (2),
the phenomenon of extreme multi-stability revealing the coexistence of infinitely
many attractors was shown in [18], where the emergence of extreme multi-stability
depended on the initial state of the memristor.

2.2 Fractional Model 1

With the memory loss taken into consideration, the state equations of α-order (0 <
α < 1) flux-controlled memristor are described as below

iM(t) = W(v0)vM(t),

C0(
C
0D

α
t v0) = − v1

R0
, α ∈ (0, 1), (4)

where the α-order derivative of v0(t) in the sense of Caputo’s definition is given by
[19]

C
0D

α
t v0(t) = 1

Γ (1 − α)
∫ t

0

v̇0(τ )

(t − τ)α dτ. (5)
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Replacing the memristor in Eq. (3) by fractional-order memristor Eq. (4), one has
Model 1 [17]

dx1

dτ
= m(x2 − x1)−m(B|x4| − A)x1,

dx2

dτ
= x1 − x2 − x3,

dx3

dτ
= n x2,

C
0 D

α
τ x4 = −pα x1, α ∈ (0, 1),

(6)

where pα = (RC2)
α/R0C0. Equation (6) has line equilibrium x∗ = (0, 0, 0, c)T

and c is any real number.

2.3 Fractional Model 2

A mathematical or logical generalization of the model (3) is to replace all the first-
order derivatives with fractional derivatives of the same order, namely not only the
capacitor, but also the inductor and the resistor in Fig. 2 are governed by a set of
fractional differential equations of the same order. That is Model 2, described by

C
0 D

α
τ x1 = m(x2 − x1)−m(B|x4| − A)x1,

C
0 D

α
τ x2 = x1 − x2 − x3,

C
0 D

α
τ x3 = n x2,

C
0 D

α
τ x4 = − x1,

(7)

where A = 1.3334, B = 0.8060, m = 10, n = 15.814, 0 < α < 1. Again, Eq. (7)
has also line equilibrium x∗ = (0, 0, 0, c)T and c is any real number.

3 Analysis of Stability and Bifurcation

The fractional Model 1 and Model 2 have the same line equilibrium x∗ =
(0, 0, 0, c)T, which exhibits stability and non-smooth bifurcation. Below the numer-
ical simulation is made by using the predictor-corrector algorithm developed in
[20–22]. The sum of the orders of Model 2 is smaller than that of Model 1, thus
it is expected that Model 2 has simpler nonlinear dynamics than Model 1.
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3.1 The Characteristic Function

Let f (x1, x2, x3, x4) = m(x2 − x1)−m(B|x4| − A)x1, then

∂f

∂x1
= −m−m(B|x4| − A), ∂f

∂x2
= m, ∂f

∂x3
= 0

At x4 �= 0, it holds ∂f
∂x4

= −mBx1sgn(x4). At x4 = 0, one has

∂f

∂x4
(0, 0, 0, 0) = lim

Δx→0

f (0, 0, 0,Δx)− f (0, 0, 0, 0)
Δx

= 0.

Thus, the Jacobian matrix of the vector composed of the right-hand functions of
Eq. (7) with respect to x1, x2, x3, x4 at x∗ is a lower triangle matrix given by

J (x∗) =

⎛
⎜⎜⎝

m(A− B | c |)−m m 0 0
1 − 1 − 1 0
0 n 0 0

−1 0 0 0

⎞
⎟⎟⎠ , (8)

where m(A − B | c |) − m is non-smooth at c = 0. The characteristic
function of the fractional Model 2 is the determinant of the matrix Δ(λ) =
diag(λα, λα, λα, λα)− J (x∗) given by

det(Δ(λ)) = λα(λ3α + d2λ
2α + d1λ

α + d0) = λα Π(λ, α), (9)

where d0 = n(m − m(A − B | c |) + 1) − n, d1 = n − m(A − B | c |), d2 =
m−m(A− B | c |)+ 1. The characteristic function of the fractional Model 1 is

det(Δ(λ)) = λα Π(λ, 1) (10)

which is defined by the determinant of the matrix Δ1(λ) = diag(λ, λ, λ, λα) −
J 1(x

∗), where Δ1(λ) is almost the same as Δ(λ) except for the first element in
the fourth row of Δ(λ). Here λα is a multi-valued function when α is a fractional
number. It becomes a single-valued function if a cut on the negative real axis with
the real part �(λ) < 0 is made, so as to have arg(λ) ∈ (−π, π ] which denotes
the principal argument of λ. In this case, λ = 0 is the unique root of λα = 0. The
root λ = 0 comes from the steady state of the fourth differential equation, which
gives x4 = c for some real number c if the sub-state (x1, x2, x3)

T = (0, 0, 0)T is
asymptotically stable, a case when all the roots of

Π(λ, α) = λ3α + d2λ
2α + d1λ

α + d0
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have negative real parts only, for α = 1 or 0 < α < 1, respectively. The sub-state
(x1, x2, x3)

T = (0, 0, 0)T is not stable if there is at least one root of Π(λ, α) has
positive real part.

3.2 Fractional Model 1

When α = 1, the critical stable condition Π(iω, 1) = 0 gives that there are ω �= 0
at c = ±1.4433, c = ±0.5006 referring to Fig. 3, where “s,” “us” are pointed to
stable and unstable, respectively. After its stability loss, a non-smooth bifurcation of
the fractional Model 1 can occur and it is studied with details in [17]. Below is the
summary of the main conclusions given in [17].

1. As c changes in (−1.5, 1.5), there are four stable regions: (−1.5,−1.4433),
(−0.5006,−0.4136), (0.4136, 0.5006), and (1.4433, 1.5). In the bifurcation
diagrams of x4(t) shown in Fig. 4a, the four overlaps denoted by P1, P2, P3, P4
between the bifurcation diagram and the red line x4 = c correspond to these four
stable regions. As long as c is in the four stable regions, x∗ = (0, 0, 0, c)T is
stable.

2. Figure 4a shows that three kinds of steady states, namely chaotic attractor, limit
cycle, and stable equilibrium, switch via tangent bifurcation, rather than period-
doubling bifurcation occurred in the integer-order memrisive circuit system [18].

3. For fixed initial value taken in unstable regions, chaos occurs only when the
fractional-order is close to 0 or 1, refer to Fig. 4c. When the fixed fractional-order
is close to 1, the circuit system exhibits “intermittent chaos” (Fig. 4b) resulted

Fig. 3 The stable region of c
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Fig. 4 Bifurcation diagrams of x4(t) with respect to c or α. (a) α = 0.98, red dashed line: x4 = c.
(b) c ∈ [−1.129,−1]. (c) c = 0
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from “tangent bifurcation” or “grazing bifurcation,” for which limit cycle and
chaotic attractor switch with very high frequency. When the fractional-order is
not close to 0 or 1, the fractional-order memristive circuit has simple dynamical
behaviors compared with the integer-order circuit.

4. With fixed initial states (10−9, 0, 0, 0), as α changes in (0, 1), two kinds of
steady states are found: namely chaotic attractor and limit cycle, which switch
via tangent bifurcations, shown in Fig. 4c.

3.3 Fractional Model 2

When 0 < α < 1, the critical stable condition Π(iω, α) = 0 gives

(iω)3α + d2(iω)
2α + d1(iω)

α + d0 = 0.

Using Euler’s formula iω = ωeiπ/2, separating the real part and the imaginary part
yields

ω3α cos(3απ/2)+ d2ω
2α cos(3απ/2)+ d1ω

α cos(3απ/2)+ d0 = 0

ω3α sin(3απ/2)+ d2ω
2α sin(3απ/2)+ d1ω

α sin(3απ/2) = 0.
(11)

By solving Eqs. (11) with Matlab, the critical values c for different α are displayed
in Table 1. When α ≤ 0.95, there are only two critical values c = ±0.4136.

Alternatively, let γ = λα , Π(λ, α) = 0 is changed into

Π(γ ) = γ 3 + d2γ
2 + d1γ + d0 = 0. (12)

Then the sub-state (x1, x2, x3)
T = (0, 0, 0)T is asymptotically stable if and only if

|arg(γ )| > απ/2 of all roots γ of Eq. (12) or Z = min(|arg(γ )|)− απ/2 > 0 [23],
where arg(γ ) ∈ (−π, π ] is the principal argument of λ. Figure 5 shows three plots
of Z = min(|arg(γ )|) − απ/2 for α = 0.98, α = 0.95, and α = 0.7. These plots
are in accordance with Table 1. The order α in the model changes the stable region
of Π(λ, α) = 0. The smaller the order α is, the larger the stable region satisfying
arg(γ ) > απ/2 is. Thus, Model 2 has a larger stable region than Model 1.

Table 1 Critical value ci for different order α

α c−3 c−2 c−1 c1 c2 c3

0.99 −1.2653 −0.5144 −0.4136 0.4136 0.5144 1.2653

0.98 −1.1106 −0.5326 −0.4136 0.4136 0.5326 1.1106

0.97 −0.9680 −0.5589 −0.4136 0.4136 0.5589 1.9680

0.96 −0.8179 −0.6081 −0.4136 0.4136 0.6081 0.8179

0.95 / / −0.4136 0.4136 / /
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Fig. 6 (a) Bifurcation diagram of the local maxima of the state x4 with respect to c, when α =
0.98; (b) Bifurcation diagram of the local maxima of the state x4 with respect to α, when c = 0;
(c) Phase-portrait in the (x2, x4)-plane, when α = 0.98 and c = 0

Let c ∈ (−1.5, 1.5), as 0.95 < α < 1, there are four stable regions: c ∈
(−1.5, c−3), c ∈ (c−2, c−1), c ∈ (c1, c2), and c ∈ (c3, 1.5); as 0 < α ≤ 0.95,
there are two stable regions: c ∈ (−1.5,−0.4136) and c ∈ (0.4136, 1.5).

Figure 6a, b are the bifurcation diagrams of the local maxima of the variable x4.
In Fig. 6a, α = 0.98 and x1(0) = 10−9, x2(0) = x3(0) = 0. As c increases from
−1.5 to 1.5, two steady states of chaotic attractor and stable equilibrium switch
via tangent bifurcation at c±3 = ±1.1106, c±2 = ±0.5326, and c±1 = ±0.4136,
respectively. As long as c is in four stable regions: c ∈ (−1.5,−1.1106), c ∈
(−0.5326,−0.4136), c ∈ (0.4136, 0.5326), and c ∈ (1.1106, 1.5), the equilibrium
(0, 0, 0, c) is stable. While c changes in unstable regions, unstable equilibrium
(0, 0, 0, c) stabilizes at two steady states of chaotic attractor and a stable point.
For example, as c ∈ (−1.1106,−0.5325), unstable equilibrium (0, 0, 0, c) with
−1.1106 < c < −0.7 stabilizes at chaotic attractor, and unstable equilibrium
(0, 0, 0, c) with −0.6 < c < −0.5325 stabilizes at a stable equilibrium. Figure 7a
shows Eq. (7) with initial state x∗ = (10−9, 0, 0,−0.54) stabilizes at a stable equi-
librium. Furthermore, Fig. 7b shows Eq. (7) with initial state x∗ = (10−9, 0, 0, c)
stabilizes at a stable equilibrium, where c = ±1.4433 and c = ±0.51.

In Fig. 6b, the initial state is x∗ = (10−9, 0, 0, 0). As α changes in (0.7, 1),
there are three steady states of chaotic attractor, limit cycle, and stable equilibrium.
Figure 6c is a chaotic attractor resulted from the initial states x∗ = (10−9, 0, 0, 0).
Figure 7c is a limit cycle as order α = 0.8 and a stable equilibrium as order α = 0.9.
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Fig. 7 (a) Time-history of the state x4 when α = 0.98 and c = −0.54; (b) Time-history of the
state x4 with α = 0.98 and different c; (c) Phase-portrait in the (x2, x4)-plane when c = 0

In addition, Model 2 has two kinds of steady states: chaotic attractor and stable
equilibrium (when 0.95 < α < 1) or limit cycle and stable equilibrium (when
0 < α ≤ 0.95). The numerical simulation of the fractional Model 2 shows “tangent
bifurcations” still exist due to the non-smoothness of the absolute function of c, but
“intermittent chaos” is not observed.

4 Summary

Two fractional-order models of Chua’s memristive circuits are generalized from the
integer-order Chua’s memristive circuit, and they are non-smooth systems with a
line equilibrium depending on the memristor’s initial state. It is found numerically
that both models switch between steady states according to “grazing bifurcation”
or “tangent bifurcation” resulted from the non-smoothness of the absolute function
of c and the fractional order, the stable region of Model 2 increases as the order
decreases. For fixed order, Model 2 has a lager stable region and has simpler
nonlinear dynamics than Model 1. Three steady states of chaotic attractor, limit
cycle, and stable equilibrium coexist for Model 1, and “intermittent chaos” occurs.
However, only two kinds of steady states of chaotic attractor and stable equilibrium
coexist in Model 2, and no “intermittent chaos” is found. The order of fractional-
order derivative in the memristive Chua’s circuits can be used to create complexity
or to eliminate complexity of nonlinear dynamics of the two fractional-order
models.
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Vuković, M., 214, 215, 218

W
Wagg, D., 60
Wahl, L.M., 236, 238
Wakita, H., 214, 217
Walkup, J., 193
Wan, Y.H., 178, 197
Wan, Y.W., 178, 197
Wang, B.Y., 164
Wang, C., 164, 273, 280



Author Index 347

Wang, C.N., 164
Wang, G., 3, 273, 279
Wang, H., 24
Wang, J., 164, 224
Wang, N., 279, 326
Wang, Q., 183
Wang, R., 163–170, 224
Wang, S., 142, 144
Wang, T., 214, 217, 219
Wang, T.J., 109
Wang, W., 3
Wang, X., 83, 141, 273, 326
Wang, X.J., 173
Wang, Y., 131, 141
Wang, Y.S., 14, 18–20
Wang, Z., 306, 325–334
Wang, Z.H., 183, 187, 326, 329, 331
Wang, Z.L., 142
Warkiani, M.E., 141
Watkins, J., 41
Watson, A.C., 193
Weaver, P., 60
Webb, G.F., 236, 240
Wegener, M., 41
Wei, J.Y., 228
Wei, X., 224
Wei, Y., 174, 224
Weinberg, S.H., 306
Wentz, F.J., 3
Wessel, J., 3
Wikswo, J.P., 236, 240
Wilcox, Paul, D., 155
Williams, R.S., 325, 326
Wilson, H.R., 174, 204, 205, 208
Wise, K.E., 61
Wolkowicz, G.S., 205
Wright, R.F., 229
Wu, C., 132
Wu, C.J., 326
Wu, D., 109, 110
Wu, F., 275
Wu, J.Y, 163, 164
Wu, J.Y., 164
Wu, L., 32, 33
Wu, L.L., 24
Wu, M., 224
Wu, Y., 163–170
Wylie, E.B., 214, 218
Wyrwas, M., 295–302, 305–313

X
Xia, H., 132, 280
Xibilia, M.G., 256, 261

Xie, S., 174
Xin, L., 142
Xing, H., 277
Xu, B., 164
Xu, C., 326
Xu, J., 174, 183
Xu, M., 224
Xu, Q., 273, 326–328, 331
Xu, W., 163, 164
Xu, X., 184
Xu, X.S., 110, 114
Xu, Y., 277, 280

Y
Yaffe, R., 101
Yan, J., 224
Yan, X., 142
Yang, B., 151
Yang, J., 50, 109
Yang, K., 174
Yang, N.N., 326
Yang, Q., 164
Yang, Z., 14
Yanik, M.F., 41
Yao, W., 224
Yas, M.H., 50
Yeh, T.-C.J., 214
Yellen, B.B., 20
Yilmaz, E., 184
Yin, G., 141
Yomayusa Agredo, C.E., 101
Yonatan, C., 142
Yong, Z., 142
Yongtai, C., 214, 217, 219
Yorke, J.A., 265, 266, 326
Yoshizawa, S., 183
Yu, H., 224
Yu, J., 223–230
Yu, L.C., 184
Yu, X.L., 24
Yu, Y., 325–334
Yu, Y.J., 326, 329, 331
Yu, Z., 131
Yuan, F., 273
Yuan, G., 326
Yuan, Y., 205
Yuan, Z., 279
Yue, Y.W., 184

Z
Zabotnov, S.V., 132
Zavestovskaya, I.N., 132



348 Author Index

Zboril, R., 133
Zelensky, A., 244, 245
Zencour, A.M., 74
Zendehrouh, S., 194, 195
Zeng, H.Z., 326
Zenke, F., 173
Zenkour, A.M., 69
Zhan, M., 164
Zhang, D., 142
Zhang, H., 131
Zhang, J., 109–116, 165
Zhang, J.H., 109, 113
Zhang, L.W., 70
Zhang, R., 280
Zhang, W., 24
Zhang, X., 14
Zhang, Y.L., 132

Zhao, H., 223–230
Zhao, Y.G., 109
Zheng, F., 3
Zheng, J., 277
Zheng, Y., 183
Zhou, J., 23–29
Zhou, L., 273, 280
Zhou, W.J., 14, 18–20
Zhou, X., 183–190
Zhu, R., 14
Zhu, S., 23–29
Zhu, Y.Y., 14
Ziane, N., 74
Zorica, D., 316–318
Zou, Y., 244, 247
Zvyagin, M.Y., 134
Zykov, V.S., 164



Subject Index

A
Acoustic-induced vibration suppression, 14
Actuation, 142
Actuators, 141
AC voltage excitation, 143–144
Alzheimer’s disease (AD), 224
Amplitude control, 274
Amyotrophic lateral sclerosis (ALS), 228
Anderson localization, 37
Astrophysical properties, 250
Asymptotically stable, 307
Autapse, 183, 184, 188, 189
“Auxetic”, 24

B
Bicoherence function, 244–247, 250
Bifurcation of multiple periodic solutions, 24,

27, 55, 87, 240
Bifurcations, 122, 127

dopamine-modulated prefrontal-limbic
interactions, 195, 197–199

Hopf bifurcation analysis, 178, 179
and stability analysis, 176
Wilson–Cowan model, excitatory and

inhibitory interactions, 205–208
Biquadratic equations, 298–302
Bleustein–Gulyaev (BG) waves

Maxwell’s equations, 5
natural frequency, 6
nonlinear system analysis (see Nonlinear

system analysis)
piezoelectrics, 6–7
propagation, 4
prototypes, 3–4

sensitivity, 6
shear modulus, 6

Bone cell population model
biochemistry, 234
functional model, 235–236
mathematical mapping, 234
mathematical model

autocrine and paracrine regulation, 237
cellular lineages, 236
power of analytical approaches,

236–237
sclerostin inhibitor, 237
in silico experiment and discussion,

237–240
mathematical modeling, 233–234
multi-physics influences, 234
phenomenological analogies, 234
predator–prey (S-System type)

mathematical model, 234
Bone mass qualitative, 235
Bouc–Wen model, 50

C
Canonical equations, 111–113
Caputo fractional difference, 298
Carbon microcrystals, 132, 138
Carbon nanostructures, 131, 136, 138
Carbon nanotube (CNT) nanocomposite, 50

equilibrium paths, 66
frequency-response curves, 53
hysteretic behavior, 59
polymer interfaces, 52
volume fractions, 61
weight fraction, 65–66

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), New Trends in Nonlinear Dynamics,
https://doi.org/10.1007/978-3-030-34724-6

349

https://doi.org/10.1007/978-3-030-34724-6


350 Subject Index

Catastrophic floods, 214, 215, 217, 220, 221
Cell signalling, 236
Cerebral cortex, 184
Chaos, 210
Chaotic oscillation, 278
Chemical synapse, 164, 165
Chua’s circuit

classical normalized equations, 256
closed-loop system, 257
Lur’e representation, 257
multijump resonance, 258–260
numerical simulation, 262, 263
parameter space, 258, 259
polynomial, 258

Circular spiral wave (CSW), 166–170
Clock pulse (CLK), 266
Coexisting attractors, 188, 265, 274, 279, 280
Combinational internal resonance, 286, 289,

291, 292
Congestive heart failure (CHF), 229
Continuous wavelet transform (CWT),

105–106
and FFT, 107

Coulomb friction model, 92
Coupled Wilson–Cowan networks, 174, 180
Coupling delay, 179, 181
Coupling factor, 152, 154–155
Crack-Net, 218
Critical slowing down, 169, 170
Cylindrical shell

damping properties, 286
fractional calculus models, 286
generalized displacements, 286
internal resonances, 286
mechanical systems, 286
methods of solution, 289–291
numerical results, 291–292
problem formulation, 287–289
structural elements, 286
See also Functionally graded (FG)

cylindrical shells

D
Deficits, 194
Delayed differential equations, 175
3D electronic circuit

bifurcation diagram
R2, 268
V in, 267–268

border collision bifurcation, 265
1D and 2D piecewise linear maps, 266
experimental results

astable multivibrator, 269

bifurcation parameter, 270–271
circuit implementation, 269

mathematical model, 267
physical and engineering systems, 265
robust chaos, 268–269
system description, 266

Describing function, 257
Disastrous floods, 214, 219–220
Dispersion equation

nondimensional, 38–39
nonlinear chain, 16–18
nonlinear local resonators, 18

Distributed delays, 204, 205, 211
Donnell–Mushtari–Vlasov equations, 287
Donnell–Mushtari–Vlasov type, 286
Dopamine, 194, 195, 198, 199
Dopamine reactivity, 198–200
Double cantilever beam (DCB)

bi-material constant, 91
Cauchy stress, 91
2-D finite element model, 93
DSIFs, 94
dynamic fracture behaviour, 96
experimental methods, 90
FE model, 93
finite element model, 90
kinematic contact algorithm, 95
sandwich composites, 89–90
sandwich specimen, 92

3D-river basin, 219–221
Dynamic behavior, 24, 38, 42, 145, 172
Dynamic buckling, see Functionally graded

(FG) cylindrical shells
Dynamic fracture, 90, 96

E
Earth crust, 214, 215, 217
Earthquake, 214, 217–221
Elastic metamaterial, 42
Electrical conductivity, 122, 123, 125, 128
Electrocardiography (ECG), 224
Electroconductivity, 122, 125–129
Electroencephalography (EEG), 224
Electromagnetic, 4, 13, 31, 41, 151–153
Electronic coupling, 122
Electronic switching systems, 271
Electron–phonon interaction, 125
Electrophysics, 123
Electrospinning, 141, 142, 144
Electrospun piezoelectric microfiber, 141–148
Energetic parameters, 125
Energy, 317–320

See also Energy harvesting



Subject Index 351

Energy harvesting
coupling factor, 152, 154–155
electromagnetic energy harvester, 152–153
fabricated, 155, 158
FEM, 155–159
harvester design parameters, 152, 153
Lorentz force, 153
magnetic restoring force, 154, 156–157
usage, 151

Energy spectra, 125
Euler–Bernoulli beam theory, 50

F
Face-off situation, 166, 168–170
Face sheet/core debonding, 100
Fast Fourier Transform (FFT), 104–107,

145–146
Femtosecond lasers

energy contribution, 134
graphene exfoliation, 132–133
graphene splitting, 135
nonlinear ultrafast transfer, target energy,

133–134
physical processes, 134
temperature dependence, 137
titanium-sapphire laser system, 132
ytterbium laser system, 132, 135

Finite element method (FEM), 90, 92, 96, 100,
155–159

First-order shear deformation theory (FSDT),
70

FitzHugh–Nagumo (FHN) neural network
activation function, 187–189
delay-coupled ring, 190
delay differential equations, 183
stability analysis, 185–187

Flood/mudflow process formation, 215
Flux-controlled memductance, 278
Flux-controlled memristor, 276
Fnctionally graded materials (FGM)

bifurcation conditions, 113
buckling loads, 115–116
canonical equations, 111–113
cylindrical shells, 113–114
echanical behaviors, 109
fundamental equations, 111
mathematical formulas, 110
static buckling behaviors, 110
structures, 110

Fourier-transform infrared spectroscopy
(FTIR), 142

Fractional calculus, 316–317
Fractional derivative, 286–290

Fractional differential equations, 286, 292
Fractional order difference equations

biquadratic equations and solutions,
298–302

Caputo-type operator, 295
deep analysis, 296
discrete-time equations, 296
dynamic systems, 295
forward h-difference operator, 306
linearization theorems, 305
memory effect, 295
neuronal dynamics, 306
neuroscience, 306
preliminaries, 297–298
Rulkov-type model, 310–313
stability conditions, 296
stability properties, 305
two-dimensional systems, 306–309
viscoelastic materials, 296

Fractional-order memristor
chaotic systems, 326
engineering applications, 326
fractional model 1, 328–329
fractional model 2, 329
integer-order Chua’s memristive circuit,

327–328
integer-order memristive models, 326
memristor and memristive circuits, 326
nonlinear system, 325–326
non-smooth bifurcation, 326
stability and bifurcation

characteristic function, 330–331
fractional model 1, 331–332
fractional model 2, 332–334

traditional circuit elements, 325
Fractional type, 320–322
Fractional type hybrid forced modes, 322
Fractional type oscillator, 317–320
Fredholm’s equation, 32
Frequency-response curves, 51, 53
Frequency shift, 20, 147
Functionally graded (FG) cylindrical shells

airy stress function, 80
circular, 80
coupling and bending stiffness, 81
elastic foundation, 79–80, 84
hydrodynamic pressure, 82
longitudinal half-waves, 82
metal and ceramic material, 82
power law distribution, 81
resonance curves, 84–85
saddle node bifurcation, 87
softening behavior, 86
transversal displacements field, 83



352 Subject Index

Functionally graded materials (FGM)
application, 69–70
dynamic and static behavior, 69
material properties, 70
and metal core, 70
numerical results, 73–76
solution, method, 72–73

Functional Resonance Analysis Method
(FRAM), 235

Functions in convoluting, 317

G
Galerkin discretization method, 50, 54
Galerkin method, 110
Gamma kernel, 205, 208, 209
Gaussian-modulated sinusoidal signal,

226–227
Generalized function of fractional type

dissipation of the energy, 317–320
Generalized KdV-equation approach, 215
Graphene

flow processes, 133
laser-induced exfoliation method, 132
laser radiation power, 133
liquid-phase separation, 132
photonics, micro-, and optoelectronics, 131
physical processes, 138
SEM images, 135
splitting, 135
synthesis and separation, 132

Groundwater
Earth crust, 214
earthquake hypocenter depth, 219
generalized KdV-equation approach, 215
intense interaction, surface water, 215
transport-net, 221

Grünwald–Letnikov operator, 296

H
Hamilton function, 26
Heat removal, 133, 134
High temperature superconductivity, 122, 125
Hilber–Hughes–Taylor (HHT), 92
Homeostatic plasticity, 173, 174
Homeostatic regulation, 174
Homogenous multistability

amplitude and frequency control, 274
chaotic signals, 274
coexisting attractors, 279–280
definition, 274
engineering application, 273
growing scale of attractor, 276–278

Lie derivative, 275
memristor, 280
phase trajectories, 275, 276

Hopf bifurcation, 178, 311, 312
Human gait, 224
Huntington’s disease (HD), 228
Hybrid discrete continuum systems, 320–322

I
Incommensurate fractional-order system, 307,

313
Innumerable neurons, 184

J
Jacobian matrices, 237
Jump resonance

Chua’s circuit, 256
experimental analysis, 260–263
field of nonlinear oscillators, 255
frequency response, 256–257
mechanical systems and control

applications, 255
“memory” effect, 256

K
Karush–Kuhn–Tucker conditions, 92
Kelvin–Voigt model, 288
Kepler space telescope, 244
Korteweg-deVries (KdV)-equation, 215
Kronig–Penney model, 128, 129

L
Laplace transformations, 318, 319
Laser energy, 133–134
Laser-induced graphene exfoliation method,

132
Laser photomechanical effects, 133
Lindstedt–Poincare (L–P), 19
Liquid nitrogen

carbon nanostructures/microcrystals, 138
as cryogenic liquid, 134
flow processes, 133
laser-induced graphene exfoliation method,

132–135
spatial region, 137
surface processing, graphite, 132

Liquid-phase graphene separation, 132
Local stability analysis, 175–178
Longitudinal finite waveguide model, 44
Long-range interactions, 31–32, 38, 39, 44



Subject Index 353

Long-rangewaveguide, 42–44
Low-dimensional dynamics, 173

M
Magnetic restoring force, 154, 156–157
Mass-spring-damper systems, 14
Mathematical model

dopamine-modulated prefrontal-limbic
interactions, 194, 200

Maxwell’s equations, 5
Mechanical fault diagnosis, 224
Melnikov function, 24
Memristive system, see Homogenous

multistability
Metamaterial honeycomb sandwich plate

dimensional averaged equation, 25
mechanical model, 25
periodic motions, 26–27
transverse and in-plane excitations, 24

Metamaterials, 13–14, 31, 41
Method of multiple scales (MMS), 14
Microfiber, 142, 145, 148
Morris–Lecar model, 165
Multi-deformable bodies, 320–322
Multi-parametric analysis, 238–239
Multi stability, 60, 65, 190, 328
Multi-stable nanocomposite shells

CNT/PBT shell, 63–65
CNT/polymer nanocomposites, 60
contravariant stress components, 62
material stiffness, 62
nanocomposites behavior, 61
nanocomposite shell equilibrium path, 63
solid finite element, 61
thermal effects, 60

N
Nanocluster network system, 128
Nanoclusters

control parameters, 129
energetic parameters, 125
femto-nanophotonics laser experiments,

122
physical properties, nanocluster systems,

122
topological structures, 123, 124, 127

Nanocomposite
accelerometer and laser signals, 51
Bouc–Wen model, 50
cantilever beam, 51
CNT, 50
polymer, 50

Nanocomposites behavior, 61
Nanoobjects, 123
Nanostructures

carbon, 131
in laser experiment, 122
and microcrystals, 132
movement of electrons, 125
and thin films, 123

Navier-Cauchy equation
action-reaction principle, 33
Gauss-like distribution, 34
power spectral density, 35

Negative group velocity, 31, 47
Negative Poisson’s ratio, see Metamaterial

honeycomb sandwich plate
Neural diseases, 224
Neural networks

coupled Wilson-Cowan networks, 174, 180
homeostatic plasticity, 173

Neuronal avalanches, 173
Neuronal model, 306, 313
Neuronal networks

biological and anatomical experiments,
184

chemical synapses, 164
FHN, 183, 184, 190
innumerable neurons, 184
neuron model, 165–166
pattern formation and critical behaviors,

166–169
pattern transition, 164
spatiotemporal pattern, 163
spiral tip, 164
time delays, 183

Nondimensional dispersion relationship, 37, 38
Nonlinear acoustics metamaterial, 15
Nonlinear chain

linear dispersion equation, 16
phase equation, 16

Nonlinear damped vibrations, 288
Nonlinear delayed equations, 194–195
Nonlinear dynamic Ferhulst model, 125
Nonlinear dynamic processes, 217
Nonlinear dynamic response

boundary-value problem, 53
cantilever, 54
frequency-response curves, 55
motion, 54
reduced-order model, 54

Nonlinear dynamics, 24, 125–127
Nonlinearity, 14, 16, 18, 20, 32, 37–39, 50, 52,

82, 104
Nonlinear local resonators, 19
Nonlinear multi-parametric analysis, 234



354 Subject Index

Nonlinear properties, 250
Nonlinear simulations

D’Alembert waveguide, 47
dispersion relationship, 45
displacement map, 45–46
propagation behavior, 45

Nonlinear system analysis
integer mode number, 9–10
magnetic field, 8
metallic electrodes, 9
quasi-static representation, 7–8

Nonlinear vibration, see Metamaterial
honeycomb sandwich plate;
Sandwich beam

Nonlinear wave processes, 122
Nonlocality, 32
Non-smoothness, 334
Numerical simulations, 27

analytical and numerical solutions, 45
Gauss-like long-range interactions, 44
linearized model, 44–45
nonlinear, 45–47

O
Offset boosting, 277, 278

P
Parametric problem and Fredholm’s equation,

35–37
Parametric stiffness, 37
Parkinson’s disease (PD), 228
Particle–particle interaction, 32
Pasternak model, 81
Path following algorithm, 50, 55, 66
Path integral-theory approach, 128–129
Perfectly matched layer (PML), 18
Permittivity sensor, 10
Permutation entropy (PE) method

Gaussian-modulated sinusoidal signal,
226–227

human ECG signals, 229–230
human gait and physiologic signals, 224
human gait signals, 228–229
physiological systems, 224
RWPE, 224–226
sine signal without noise and impulses,

227–228
Perturbation techniques, 14
Physiologic signals, 224
Piecewise smooth dynamical systems, 265,

271
Piezoelectric sensors, 141

Polyvinylidene fluoride (PVDF)
electromechanical properties, 142
electrospun piezoelectric membranes, 141
fabrication process, 142–144
PVDF-TrFE fibers, 142
test setup, 142–144

Poly[(vinylidenefluoride-co-trifluoroethylene]
(PVDF-TrFE) fibers, 142

Predator–prey system, 239
Primary piezoelectric fiber resonance, 146
Probability density, 34, 127, 205

Q
Qualitative assessment, 136–137, 157

R
Rectangle spiral wave (RSW), 166–170
Recurrence networks, 244, 245, 247, 249, 250
Recurrence plots, 244, 247–250
Recurrence quantification analysis (RQA), 250
Refined weighted-permutation entropy

(RWPE), 224–226
Regular multistability, 274, 279–280
Remnant polarization (Pr), 142
Resonance frequency, 145, 148
R-functions theory (RFM), 70
Riks incremental method, 60
Ring-shaped networks, 184
Ritz’s method, 70
Robust chaos, 265, 266, 268–269, 271
RR Lyrae stars

astrophysical and nonlinear parameters,
250

bicoherence analysis, 245
bicoherence based filter, 245
bicoherence function, 244
nonlinear time series analysis techniques,

244
partial ionization zone, 244
pulsating variable, 244
recurrence analysis

CPL-davg plot, 249
delay embedding, 245
embedding dimension, 246, 247
full bicoherence plots, 246
phase space, 245
recurrence plot and recurrence network

quantifiers, 247–249
recurrence plot, 244

Rulkov neuronal model, 306
Rulkov-type model, 310–313
Runge–Kutta algorithm, 45, 286



Subject Index 355

S
Sandwich beam

buckling load, 102
CWT, 105–106
dynamic loading, 102–103
equation of motion, 101–102
model description, 101
nonlinear behavior, 100–101
slender structures, 99
time response, 104–105
transverse displacement, 103–104
vibration loading, 100

Schizophrenia
diagnosis and treatment, 193
and healthy controls, 194
neurodegenerative cycle, 194
“stress-diathesis model”, 193

Seismicity, 214, 215, 217, 221
Shells, see Functionally graded (FG)

cylindrical shells
Sigmoid function, 178–179
Significant pair fraction (SPF), 250
Single local resonator, 19
Softening nonlinearity, 20
Spatiotemporal pattern, 163, 164, 166
Spiral waves, 164, 166, 168–170
Stability, 175–178, 326, 329–334

delay-independent stability and instability,
206–207

“vulnerability” threshold, 196
State Controlled Cellular Nonlinear Network

(SC-CNN), 261
Statistical linearization, 32
Stress-diathesis model, 193
Superconductivity, 122, 125
Surface deformation model, 123
Synthesis, 132
System Biology Graphical Notation

BioModels, 234

T
Tangent bifurcation, 331–333
Temperature distribution, 137–138
Theorem, 323

Thermodiffusion, 123
Time-coarse graining, 204, 209
Time delays

autaptic connection, 184
autaptic time delay, 186–189
Hopf bifurcation, 200
in neuronal networks, 183
stability analysis, 187

Titanium-sapphire laser system, 132
Topology structures, 122, 123, 127
Torsional impact, 110, 112, 115–116
Transiting Exoplanet Survey Satellite (TESS),

251
Two-stage dynamic nonlinear process, 122

V
Variable-order, see Fractional order difference

equations
Vlasov’s theory, 32

W
Wave propagation, 13, 14, 21, 29

linear integro-differential, 33
long-range interactions, 32, 33
metamaterials, 31
statistical linearization, 32

Wave stopping, 39, 41, 46, 47
Weighted-permutation entropy (WPE), 224
White noise, 164, 226–227
Wilson–Cowan model

excitatory/inhibitory cells, 204
Gamma kernels/ uniform distribution

kernels, 205
integral equations, 204
numerical simulations, 209–211
stability and bifurcation, 205–208
time-coarse graining, 204

Y
Young’s modulus, 70
Ytterbium laser system, 132, 135


	Preface
	Volume 1: Nonlinear Dynamics of Structures, Systems, and Devices
	Volume 2: Nonlinear Dynamics and Control
	Volume 3: New Trends in Nonlinear Dynamics

	Preface for Volume 3: New Trends in Nonlinear Dynamics
	Contents
	Contributors
	Part I Smart Materials, Metamaterials, Composite and Nanocomposite Materials, and Structures
	Tunable Bleustein–Gulyaev Permittivity Sensors
	1 Introduction
	2 Model
	3 Permittivity Sensor
	4 Nonlinear System Analysis
	5 Conclusion
	References

	Nonlinear Metamaterials with Multiple Local Mechanical Resonators: Analytical and Numerical Analyses
	1 Introduction
	2 Derivation of the Dispersion Equation
	2.1 Nonlinear Chain
	2.2 Nonlinear Local Resonators

	3 Results and Discussion
	4 Conclusion
	References

	Nonlinear Vibration Analysis of Metamaterial Honeycomb Sandwich Structures with Negative Poisson's Ratio
	1 Introduction
	2 Existence of Periodic Motions for Metamaterial Honeycomb Sandwich Plate
	2.1 Dynamic Model, Averaged Equation, and Melnikov Function
	2.2 Existence of Periodic Motions

	3 Numerical Simulations
	4 Conclusions
	Appendix
	References

	Wave Propagation Phenomena in Nonlinear Elastic Metamaterials
	1 Introduction
	2 Prototype Equation and Statistical Linearization
	3 Statistical Linearization of the Navier-Cauchy Equation with Long-Range Forces
	4 Parametric Problem and Fredholm's Equation
	5 Homogenization of the Stiffness and Parametric Dispersion Relationship
	6 Conclusions
	References

	Numerical Simulations in Nonlinear Elastic Metamaterialswith Nonlocal Interaction
	1 Introduction
	2 Model for a Long-Range Waveguide
	3 Numerical Simulations
	3.1 Linearized Model
	3.2 Nonlinear Simulations

	4 Conclusions
	References

	Nonlinear Dynamic Response of Nanocomposite Cantilever Beams
	1 Introduction
	2 Experimental Dynamic Response
	2.1 Experimental Setup and Testing
	2.2 Experimental Results

	3 Modeling the Nonlinear Dynamic Response
	3.1 Frequency-Response Curves via Path Following

	4 Conclusions
	References

	A Numerical Strategy for Multistable Nanocomposite Shells
	1 Introduction
	2 Constitutive Nanocomposites Behavior
	3 Numerical Strategy
	4 Numerical Results
	4.1 Sensitivity to CNT Weight Fraction and Orientation

	5 Conclusions
	References

	Parametric Vibrations of Functionally Graded Sandwich Plates with Complex Forms
	1 Introduction
	2 Mathematical Problem
	3 Method of Solution
	4 Numerical Results
	5 Conclusions
	References

	Nonlinear Oscillation of a FG Cylindrical Shell on a Discontinuous Elastic Foundation
	1 Theoretical Formulation
	2 Numerical Results
	3 Conclusions
	References

	Nonlinear Fracture Dynamic Analysis of Double Cantilever Beam Sandwich Specimens
	1 Introduction
	2 Formulation of the Model
	3 Results of Simulations
	4 Conclusions
	References

	Nonlinear Vibration Analysis of a Sandwich Beam and Assessment of the Dynamic Behavior
	1 Introduction
	1.1 Nonlinear Behavior
	1.2 Model Description
	1.3 Equation of Motion
	1.4 Buckling Problem
	1.5 Dynamic Loading

	2 Results
	3 Discussion and Conclusions
	References

	Dynamic Buckling of FGM Cylindrical Shells Under Torsional Impact Loads
	1 Introduction
	2 Mathematical Formulas
	2.1 Fundamental Equations
	2.2 Canonical Equations
	2.3 Bifurcation Conditions

	3 Numerical Results and Discussions
	4 Conclusions
	References


	Part II MEMS/NEMS and Energy Harvesters
	Nonlinear Dynamic Modeling for High Temperature Superconductivity in Nanocluster Topological Structures on Solid Surface
	1 Introduction
	2 Physical Basis and Reasonable Models
	3 The Topology Cluster Shape Variations and Functional Characteristics of the Objects vs Different Key Parameters
	4 Enhancement Electroconductivity Physics: Nonlinear Dynamic Model
	5 Electroconductivity in a Granulated Metallic Film in Terms of the Path Integral-Theory Approach
	6 Conclusions
	References

	Nonlinear Dynamic Processes in Laser-Induced Transitions to Low-Dimensional Carbon Nanostructures in Bulk Graphite Unit
	1 Introduction
	2 Experimental Technique
	3 Physical Processes of Laser-Induced Carbon Structures Formation
	4 Results
	5 Conclusions
	References

	Electromechanical Characterization of an Electrospun Piezoelectric Microfiber
	1 Introduction
	2 Fabrication Process and Test Setup
	3 Results and Discussion
	4 Conclusions
	References

	On Modeling of Springless Electromagnetic Energy Harvesters
	1 Introduction
	2 Electromagnetic Energy Harvester
	3 Analytical Model
	3.1 Magnetic Restoring Force
	3.2 Coupling Factor

	4 Finite Element Model
	5 Results and Discussion
	6 Conclusions
	References


	Part III Nonlinear Phenomena in Bio- and Ecosystem Dynamics
	Critical Behaviors of Regular Pattern Selection in NeuronalNetworks with Chemical Synapses
	1 Introduction
	2 Neuron Model and Neuronal Network
	3 Regular Pattern Formation and Critical Behaviors
	4 Conclusions
	References

	Dynamics of a Homeostatically Regulated Neural Systemwith Delayed Connectivity
	1 Introduction
	2 Mathematical Model
	3 Local Stability Analysis
	4 Hopf Bifurcation Analysis
	5 Numerical Simulations
	6 Conclusions
	References

	Autapse-Induced Complicated Oscillations of a Ring FHN Neuronal Network with Multiple Delayed Couplings
	1 Introduction
	2 Stability Analysis
	3 Illustrative Examples
	4 Conclusions
	References

	A Time-Delay Nonlinear Model of Dopamine-Modulated Prefrontal-Limbic Interactions in Schizophrenia
	1 Introduction
	2 Modeling Methods
	3 Results
	3.1 Nonlinear Model
	3.2 Delay Model

	4 Numerical Simulations
	5 Conclusions
	References

	Wilson–Cowan Neuronal Interaction Models with Distributed Delays
	1 Introduction
	2 Main Stability and Bifurcation Results
	3 Numerical Simulations
	4 Conclusions
	References

	Nonlinear Hydrodynamics and Numerical Analysis for a Seriesof Catastrophic Floods/Debris (2011–2017): The Tectonic WaveProcesses Possible Impact on Surface Water and Groundwater Flows
	1 Introduction
	2 Physical Basis and Reasonable Models
	3 The Principles of the Earthquake Influence on the River Basin Functioning
	4 Preliminary Recommendations for the Identification of the Earthquakes Influence on Disastrous Floods in the 3D-River Basin
	5 Conclusions
	References

	Refined Weighted-Permutation Entropy: A Complexity Measure for Human Gait and Physiologic Signals with Outliers and Noise
	1 Introduction
	2 Refined Weighted-Permutation Entropy
	3 Validation by Synthetic Data
	3.1 The Gaussian Modulation Sinusoidal Signal with White Noise
	3.2 The Sine Signal Without Noise and Impulses

	4 Analysis of Real Experiment Signals
	4.1 Analysis of Human Gait Signals
	4.2 Analysis of Human ECG Signals

	5 Conclusions
	References

	Simultaneous Multi-Parametric Analysis of Bone CellPopulation Model
	1 Introduction
	2 Functional Model
	3 Mathematical Model
	3.1 In Silico Experiment and Discussion

	4 Conclusions
	References

	Nonlinear Dynamics of RRc Lyrae Stars
	1 Introduction
	2 Bicoherence Analysis
	3 Recurrence Analysis
	4 Results and Summary
	5 Conclusions
	References


	Part IV Chaos in Electronic Systems
	Multijump Resonance with Chua's Circuit
	1 Introduction
	2 The Chua Circuit
	3 Describing Function Approach to Determine the Frequency Response
	4 Jump Resonance in Chua's Circuit
	5 Experimental Analysis
	6 Conclusions
	References

	Experimental Observation of Robust Chaos in a 3D Electronic Circuit
	1 Introduction
	2 System Description
	3 Mathematical Model
	4 Simulation Results
	4.1 Vin as Bifurcation Parameter
	4.2 R2 as Bifurcation Parameter
	4.3 Conditions of Occurrence of Robust Chaos

	5 Experimental Results
	5.1 Vin as Bifurcation Parameter
	5.2 R2 as Bifurcation Parameter

	6 Conclusions
	References

	Homogenous Multistability in Memristive System
	1 Introduction
	2 Special Regime of Multistability
	2.1 Homogenous Multistability
	2.2 Growing Scale of Attractor

	3 Regular Multistability
	3.1 Different Types of Coexisting Attractors
	3.2 Multistability Comparison

	4 Conclusions
	References


	Part V Fractional-Order Systems
	Numerical Study of Nonlinear Vibrations of Fractionally Damped Cylindrical Shells Under the Additive Combinational InternalResonance
	1 Introduction
	2 Problem Formulation
	3 Methods of Solution
	4 Numerical Results
	5 Conclusions
	References

	Stability of Caputo-Type Fractional Variable-Order Biquadratic Difference Equations
	1 Introduction
	2 Preliminaries
	3 Biquadratic Equations and Their Solutions
	4 Conclusions
	References

	Stability of Systems of Fractional-Order Difference Equationsand Applications to a Rulkov-Type Neuronal Model
	1 Introduction
	2 Preliminaries on Fractional-Order Difference Operators
	3 General Stability Results for Two-dimensional Systems of Fractional-Order Difference Equations
	4 Applications to a Fractional-Order Rulkov-Type Neuronal Model
	5 Conclusions
	References

	Independent Fractional Type Modes of Free and Forced Vibrations of Discrete Continuum Hybrid Systems of Fractional Type with Multi-Deformable Bodies
	1 A Brief Historical Introduction to Fractional Calculus
	2 Fractional Type Oscillator with One Degree of Freedom and Generalized Function of Fractional-Type Dissipation of the Energy
	3 Description of the Hybrid Discrete Continuum Systems of Fractional Type with Multi-Deformable Bodies
	4 Concluding Remarks
	References

	Non-Smooth Bifurcation in Two Fractional-Order Memristive Circuits
	1 Introduction
	2 Models
	2.1 Integer-Order Chua's Memristive Circuit
	2.2 Fractional Model 1
	2.3 Fractional Model 2

	3 Analysis of Stability and Bifurcation
	3.1 The Characteristic Function
	3.2 Fractional Model 1
	3.3 Fractional Model 2 

	4 Summary
	References


	Author Index
	Subject Index

