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Abstract An oscillator under the influence of high-frequency harmonic excitation
with the amplitude and phase depending on the coordinate, velocity, and slow time
is considered. Within the framework of the concept of vibrational mechanics, an
equation is derived for the averaged motion of this system, containing an additional
so-called vibrational force. In this case, a modification of the method of direct
separation of motions is used that involves the introduction of a small parameter
and considers the idea of two-scale decomposition. The resulting general formula
for the vibrational force makes it possible to reveal some regularities connecting the
original and averaged systems. Numerical verification of the method is performed
for the example of a mechanical vibrator under the action of a high-frequency
kinematic excitation with phase modulation.
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1 Introduction

The concept of vibrational mechanics was proposed by Blekhman [1] and developed
in a number of studies, a survey of which can be found, for example, in [1–
5]. Vibrational mechanics, including the method of direct separation of motions,
represents a compact and efficient calculation tool, which has been used in the
development of many new vibrating machines and technologies [3].
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It is known that for many processes and systems, such as, for example, the
vibrational transportation of bulk material [1], the most interesting is averaged
motion, and the details of high-frequency oscillations are not essential. Meanwhile,
the high-frequency component in the excitation cannot generally be neglected,
although it has a zero mean. How should such systems be analyzed? Of course,
there is always the possibility of calculating the total motion, followed by averaging
the result. However, such an approach is obviously uneconomic, since most of the
information obtained in this way is unnecessary and discarded in the process of
averaging.

Vibrational mechanics offers another way: replacing the original system with
some system equivalent to the original one with respect to slow motions, the so-
called averaged system. This results in a system that does not contain fast oscillating
forces and simultaneously its motion coincides with the averaged motions of the
original system. To obtain the averaged system, Blekhman proposed a method of
direct separation of motion [1] and showed that, instead of the rapid excitation, the
averaged system involves a certain additional slow force known as the vibrational
force. This force is the price for hiding the fast motions. The appearance of a
vibrational force leads to interesting and unexpected physical effects in averaged
systems. Among them are Chelomei’s pendulum, the Stephenson–Kapitza pendu-
lum, the Indian rope, vibrational transportation, and many other phenomena, a large
collection of which are described in [1]. Thomsen [2] selected three groups of
effects, stiffening, biasing, and smoothing, which appear in different systems with
fast excitation, independent of their physical nature. Another direction of vibrational
mechanics, along with the analysis of specific physical systems, is the analysis of
the causes and the structure of vibrational forces for different classes of systems [4,
5]. Thus, in [4], a system with amplitude modulation of excitation is analyzed. The
term “amplitude modulation” is used here, as in signal processing, for a variation of
the amplitude: a sinusoidal high-frequency excitation has amplitude that depends on
the coordinate, velocity, and slow time. As shown in this chapter, the nature of the
dependence of the excitation amplitude on these quantities determines five different
scenarios for the generation of a vibrational force:

• the nonlinearity of the initial slow force with respect to velocity;
• the dependence of the modulation amplitude on the coordinate;
• the dependence of the modulation amplitude on the velocity;
• the dependence of the modulation amplitude on the velocity and on the coordi-

nate; and
• the explicit dependence of the modulation amplitude on the slow time and on the

velocity

These results were extended in [5] to the case of modulated stochastic excitation
and applied to the problem of stochastic resonance.

The purpose of the present chapter is to further generalize these results and to
extend them to the case of amplitude phase and in particular phase modulation,
i.e., to the case of a high-frequency sinusoidal excitation with a variation of its
phase in dependence on the coordinate, velocity, and slow time. This problem is of
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interest in connection with the search for new effective controlled vibro-exciters for
vibrational technologies.

2 Vibrational Forces for a System with Amplitude and Phase
Modulation

2.1 Formulation of Problem

A system with a modulated fast single-frequency excitation with equation

d2x

dt2
= Θ

(
x,

dx

dt
, t, ωt

)
(1)

is considered. The force Θ has the following form
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with θ = ωt, and ω � 1. The continuous functions F, B and α of the coordinate
x, velocity dx/dt, and slow time t are the “slow” force, the amplitude and the phase
of the fast excitation, respectively. The variables are assumed to be normalized, so
that the mass (or more generally the inertia matrix) is unity. The problem consists
in finding the averaged system for the variable X = 1

2π

∫ 2π

0 x dθ in the form
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(
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)
+ V

(
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)
(3)

In other words, the task is to find the vibrational force V.

2.2 The Formula for Vibrational Force

To determine the vibrational force, a method similar to that applied in [4] is used.
This is a modification of the method of the direct separation of movements that
involves the introduction of a small parameter 1/ω and some elements of a two-
scale technique [6]. The solution to Eq. (1) can be presented as a superposition of
the time-dependent mean value X and the fast oscillation ψ :

x = X(t) + ψ (t, θ) , 〈ψ〉 = 1

2π

∫ 2π

0
x dθ = 0 (4)
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Following the method of direct separation of motions [1], we replace Eq. (1) by
two integral-differential equations for X and ψ as follows:

d2X
dt2 =

〈
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dt
+ dψ

dt
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)〉
d2ψ

dt2 = Θ
(
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)
−
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)〉 (5)

with dψ
dt

= ψ̇ + ωψ ′, d2ψ

dt2 = ψ̈ + 2ωψ̇ ′ + ω2ψ ′′, ḟ = ∂f
∂t

and f ′ = ∂f
∂θ

We search ψ as ψ(t, θ )= ξ (t, θ )/ω2 and introduce Φ = Bs sin (θ ) + Bc cos (θ )
with Bs = cos (α) and Bc = sin (α). Then, Eq. (5) takes the form
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∂Ẋ2

)
+ 1

ω

(
ξ ′ ∂�

∂Ẋ
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In accordance with the method of the direct separation of motions, the averaged
motion X and its derivatives are considered initially as given and the second
equation (6) is solved with respect to ξ . This solution is obtained asymptotically
as ξ = ξ0 + ξ1/ω with balancing the terms of the same order and integrating the
corresponding equations related to θ . The integration constants are chosen such that
ξ0 and ξ1 are periodical with respect to θ . In this case, the appropriate particular
solution has the form

ξ = ξs + ξc (7)

with

ξs = −Bs sin (θ) + 1
ω

(
−2Ḃs cos (θ) + ∂F

∂Ẋ
Bs cos (θ) − 1

8
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where
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The obtained function ξ is substituted in the first equation (6). Calculation of the
integrals in this equation and solving it with respect to Ẍ leads to the following final
expression for the vibrational force

V = (HB + Hα + HN) B2/
(

2ω2
0

)
(8)
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where the values HB, Hα and HN are calculated with σ = ln B as follows
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)2
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Hα = F
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HN = 1

2
∂2F/∂Ẋ2 (11)

2.3 Analysis and Main Regularities

Analysis of Eqs. (3) and (4) allows us to identify the following regularities.
The vibrational force is proportional to the square of the excitation amplitude

with the coefficient consisting of three terms HB, Hα and HN which respond,
respectively, to the amplitude modulation, to the phase modulation, and to a
nonlinearity of the slow force F as a function of the velocity. In this case, the
occurrence of a vibrational force is possible only if at least one of the following
conditions is fulfilled:

• The slow force F is a nonlinear function of velocity. This causes additional
dissipative effects.

• The amplitude modulation depends on the coordinate. In this case, the vibrational
force is potential.

• The amplitude modulation depends on speed. Only under this condition, the
explicit dependence of the amplitude on the slow time can influence the
vibrational force.

• The phase modulation depends on velocity. Only under this condition, the explicit
dependences of the phase on the slow time and coordinate can influence the
vibrational force.

2.4 Example

Let us consider, as an example, a mechanical vibrator under the action of a high-
frequency kinematic excitation with phase modulation described by Eq. (1) with

F = −λ2x − 2D
dx

dt
, α = γ sin t + κ

dx

dt
, B = 1 (12)

where the dimensionless parameters λ, D, γ and κ are obtained from the physical
parameters by some scaling.



40 E. Kremer

Fig. 1 Phase excitation

According to Eqs. (3), (8)–(11), the averaged system is a usual linear oscillator
with a low-frequency harmonic excitation and a reduced mass

1

χ

d2x

dt2
= F + A sin t (13)

The amplitude of the low-frequency excitation A is equal to A = λ4κγ /
(
2ω2

0χ
)
.

The reduced mass 1/χ is calculated with the parameter χ = 1 + λ4κ2/
(
2ω2

0

)
.

The test simulations for the original (12) and for the averaged system (13) were
fulfilled with the following values of the parameters: λ2 = 0.98, D = 0.03, κ = 10,
γ = 10 and ω = 8.

The high-frequency phase modulated excitation is presented in Fig. 1.
The motion x(t) of the original (blue) and of the averaged (red) vibrator is shown

in Fig. 2.
The coincidence of the results for the original and for the averaged system is

good, even though the “small parameter” 1/ω = 0.125 is not very small.
The given example is of interest not only for verification of the proposed method

but also in connection with the search for new effective controlled exciters for
vibratory technologies.

3 Conclusions

For the first time, the formula for the vibrational force in the general case of the
amplitude and phase modulation of excitation was obtained (Eq. 8). This formula
shows that the vibration force consists of three components connected with the effect
of the amplitude modulation, the effect of the nonlinearity of the slow forces, and
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Fig. 2 Coordinate run of the original (blue) and the averaged (red) vibrator

the effect of the phase modulation. Unlike the first two effects, the effect of the
phase modulation is considered for the first time. It was found that its occurrence
is possible only if the excitation phase depends on the velocity. Only under this
condition can the explicit dependences of the phase on the slow time and coordinate
be detected in the vibrational force.

The verification of the results is performed using the example of a mechanical
vibrator under the action of a high-frequency kinematic excitation with phase
modulation. This example is of practical interest in connection with the vibratory
technologies.
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