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Abstract This paper presents a novel rate-independent model to predict the
hysteretic response of Wire Rope Isolators along their two principal transverse
directions, namely Roll and Shear directions. Employing the proposed model,
the device restoring force can be evaluated by solving an algebraic equation that
requires a set of only five parameters directly related to specific graphical features
of the hysteresis loop. To verify such a model, some experimental results, obtained
during several experimental tests recently performed at the Department of Industrial
Engineering of the University of Naples Federico II, are predicted analytically.
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1 Introduction

Wire Rope Isolators are devices manufactured by embedding a stainless steel cable,
having a helix shape, into two metal retainer bars [1].

These devices generally exhibit a kinematic hardening hysteretic behavior when
a displacement time history is applied along one of their two principal transverse
directions, denominated Roll and Shear directions, respectively. Indeed, the distance
between the two parallel curves, that typically limit their hysteresis loops, remains
constant during the entire deformation process and the device restoring force
increases when a transverse displacement with increasing amplitude is applied.

Several differential rate-independent models are currently available in the lit-
erature to accurately reproduce the complex transverse response characterizing
such metal devices [2–6]. Unfortunately, these phenomenological models suffer
from some limitations such as the unclear mechanical significance of the adopted

N. Vaiana (�) · F. Marmo · S. Sessa · L. Rosati
Department of Structures for Engineering and Architecture,
University of Naples Federico II, Naples, Italy
e-mail: nicolo.vaiana@unina.it

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), Nonlinear Dynamics of Structures,
Systems and Devices, https://doi.org/10.1007/978-3-030-34713-0_31

309

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34713-0_31&domain=pdf
mailto:nicolo.vaiana@unina.it
https://doi.org/10.1007/978-3-030-34713-0_31


310 N. Vaiana et al.

parameters and the limited computational efficiency due to the need of numerically
solving a differential equation to predict the device response.

This paper presents a novel rate-independent model, formulated by specializing
a general class of models recently proposed by Vaiana et al. [7–9], to reproduce
the response of Wire Rope Isolators along the Roll and Shear directions. In
particular, this model offers several advantages, such as the use of a small number
of parameters, which have a precise mechanical significance, as well as a significant
computational efficiency due to the solution of an algebraic equation, rather than a
differential one, to compute the device restoring force.

2 Proposed Hysteretic Model

The Proposed Hysteretic Model (PHM) has been formulated by specializing a
recently developed family of uniaxial models [7–9].

Such a general formulation assumes the generalized displacement u (generalized
rate-independent hysteretic force fri) as input (output) variable, and describes a
generalized rate-independent force-displacement hysteresis loop by adopting four
different curves: the upper cu and the lower cl limiting curves and the generic
loading c+ and unloading c− curves.

Figure 1 illustrates the four curves describing a hysteresis loop limited by two
parallel curves; note that the generic loading (unloading) curve, defined by a positive
(negative) sign of the generalized velocity u̇, is identified by an arrow plotted on the
curve.

As shown in Fig. 1, the upper (lower) limiting curve intersects the vertical axis
at the point with coordinates 0 and f̄ (−f̄ ). Furthermore, the generic loading
(unloading) curve intersects the lower (upper) limiting curve at a point having

Fig. 1 An example of hysteresis loop described by the curves cu, cl , c+, and c−
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abscissa u+
i (u−

i ), and the upper (lower) limiting curve at a point having abscissa
u+

j (u−
j ), with u+

i = u+
j − 2u0 (u−

i = u−
j + 2u0).

In the following subsections, we first describe the PHM formulation by introduc-
ing the proposed expressions of the generalized rate-independent hysteretic force
and of the history variable; then, we show how each PHM parameter affects the size
and/or the shape of a hysteresis loop.

2.1 PHM Formulation

The PHM requires the calibration of only five parameters, that is, ka , kb, α, β1, and
β2. In addition, it also adopts two additional parameters, namely u0 > 0 and f̄ > 0,
that can be computed after selecting ka , kb, α taking into account the following
conditions: ka > kb, ka > 0, α > 0, and α �= 1.

2.1.1 Generalized Rate-Independent Force

According to Fig. 1, during a generic loading (unloading) phase, fri = c+ (fri =
c−) if u+

i ≤ u < u+
j (u−

j < u ≤ u−
i ), whereas fri = cu (fri = cl) if u > u+

j

(u < u−
j ).

In particular, in the PHM, the expressions of cu and cl are

cu (u) = β1u
3 + β2u

5 + kbu + f̄ , (1)

cl (u) = β1u
3 + β2u

5 + kbu − f̄ , (2)

whereas the ones of c+ and c− are

c+ (
u, u+

j

)
= β1u

3 + β2u
5 + kbu

+ (ka − kb)

⎡
⎢⎣

(
1 + u − u+

j + 2u0

)(1−α)

1 − α
− (1 + 2u0)

(1−α)

1 − α

⎤
⎥⎦ + f̄ ,

(3)

c− (
u, u−

j

)
= β1u

3 + β2u
5 + kbu

+ (ka − kb)

⎡
⎢⎣

(
1 − u + u−

j + 2u0

)(1−α)

α − 1
− (1 + 2u0)

(1−α)

α − 1

⎤
⎥⎦ − f̄ .

(4)
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Furthermore, the expression of f̄ , required in Eqs. (1)–(4), is

f̄ = ka − kb

2

[
(1 + 2u0)

(1−α) − 1

1 − α

]
. (5)

Since ka > kb, α �= 1, and u0 > 0, Eq. (5) gives a positive value of f̄ .

2.1.2 History Variable

In the PHM, the expression of u+
j is

u+
j = 1 + uP + 2u0 −

{
1 − α

ka − kb

[
fP − β1u

3
P − β2u

5
P − kbuP

−f̄ + (ka − kb)
(1 + 2u0)

(1−α)

1 − α

]}(
1

1−α

)

,

(6)

whereas the one of u−
j is

u−
j = −1 + uP − 2u0 +

{
α − 1

ka − kb

[
fP − β1u

3
P − β2u

5
P − kbuP

+f̄ + (ka − kb)
(1 + 2u0)

(1−α)

α − 1

]}(
1

1−α

)

.

(7)

2.2 Parameter Sensitivity Analysis

Figure 2 shows how the size and (or) the shape of hysteresis loops, obtained by
imposing a full sinusoidal cycle of generalized displacement having amplitude of 1,
change(s) due to the variation of each PHM parameter. In particular, it can be noted
that:

– ka affects the hysteresis loop size (Fig. 2a);
– kb produces a rotation of the hysteresis loop and a slight variation of its size

(Fig. 2b);
– α affects the hysteresis loop size (Fig. 2c);
– β1 affects the hysteresis loop shape (Fig. 2d).

Since the variation of the hysteresis loop shape due to β2 is similar to the one
produced by β1, the related figure is not presented for brevity.
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Fig. 2 Variation of the hysteresis loop size and/or shape associated with each PHM parameter

3 Experimental Verification

In this section the PHM, illustrated in Sect. 2, is validated by comparing the
analytical results with those obtained from several dynamic tests performed on
a Wire Rope Isolator (WRI) at the Department of Industrial Engineering of the
University of Naples Federico II (Italy) by Vaiana et al. [10].

3.1 Tested Wire Rope Isolator

Figure 3a shows the geometrical characteristics of the tested WRI having two
principal transverse directions, denominated Roll and Shear directions. Such a metal
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(a) (b)

Fig. 3 Tested wire rope isolator (a) and adopted testing machine (b)

device, manufactured by Powerflex S.r.l. (Limatola, Italy), has been constructed by
assembling two types of elements: a Stainless Steel Type 316 wire rope and two
aluminum alloy retainer bars. Specifically, the wire rope, constituted by six strands
wrapped around a central one, has been wound in the shape of a helix and embedded
into the two retainer bars. Each external strand of the wire rope is made of 25 steel
wires, whereas the inner one is made of 49 steel wires.

Figure 3b shows the Testing Machine (TM) adopted to perform the experimental
tests. Such a machine allows one to impose a transverse displacement or force,
by means of a horizontal hydraulic actuator, under the effect of a constant axial
compressive force, applied by means of a vertical hydraulic actuator [11–13]. The
tested WRI has been installed by fixing its retainer bars to the lower and upper rigid
steel plates of the TM.

During the experimental tests, conducted at room temperature, the time history
of the relative transverse displacement between the TM lower and upper plates and
the time histories of the axial and transverse forces have been measured by sampling
the data at 250 Hz.

3.2 Simulation of the Experimental Behavior

Figure 4 (5) illustrates both the analytical and experimental hysteresis loops that
have been obtained by imposing, to the tested WRI, five cycles of sinusoidal
transverse displacement, having frequency of 1 Hz; in particular, such results have
been obtained for three different amplitude levels, that is, 0.25, 0.50, and 1 cm, and
by applying a constant axial compressive force, fv , of 0 kN (2 kN). Note that Figs. 4a
and 5a show the results along the Roll direction, whereas Figs. 4b and 5b present the
results along the Shear direction.
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Fig. 4 Analytical and experimental hysteresis loops obtained in roll (a) and shear (b) directions
for fv = 0 kN

Fig. 5 Analytical and experimental hysteresis loops obtained in roll (a) and shear (b) directions
for fv = 2 kN

A satisfactory agreement can be observed between the experimental hysteresis
loops and the analytical ones, simulated by adopting the PHM parameters listed in
Table 1 (2). Such model parameters have been calibrated through a simple analytical
fitting of the experimental data. Note that, although in this case it has been possible
setting β2 = 0, all five model parameters are typically required for accuracy reasons.

Thus, it has been demonstrated that the PHM can well reproduce the stiffening
behavior occurring in the tested WRI and that it requires only one set of parameters
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Table 1 PHM parameters used for reproducing the hysteresis loops in Fig. 4

fv = 0 kN ka

[
Nm−1

]
kb

[
Nm−1

]
α β1

[
Nm−3

]
β2

[
Nm−5

]

(a) Roll 28 × 105 30 × 104 8 × 102 10 × 108 0

(b) Shear 28 × 105 32 × 104 11 × 102 10 × 108 0

Table 2 PHM parameters used for reproducing the hysteresis loops in Fig. 5

fv = 2 kN ka

[
Nm−1

]
kb

[
Nm−1

]
α β1

[
Nm−3

]
β2

[
Nm−5

]

(a) Roll 28 × 105 26 × 104 10 × 102 10 × 108 0

(b) Shear 28 × 105 30 × 104 13 × 102 10 × 108 0

to simulate the device response obtained at various levels of amplitude in the
presence of a constant axial compressive force.

Finally, the comparison of Tables 1 and 2 shows that the set of model parameters
has to be suitably calibrated, based on the experimental results, in order to account
for a different value of the applied constant axial compressive force.

4 Conclusions

We have illustrated a novel rate-independent model capable of predicting the
hysteretic response of WRIs along their Roll and Shear transverse directions in the
presence of a constant axial compressive force.

Adopting the PHM, the device restoring force can be computed by solving an
algebraic equation requiring a set of only five parameters which are characterized
by a clear mechanical significance, as shown in Sect. 2.2.

According to the experimental verification, it can be concluded that:

– the WRIs hysteretic behavior obtained at various amplitude levels, including the
stiffening behavior, can be simulated by means of the PHM using only one set of
parameters;

– the WRIs hysteretic behavior obtained for a different value of the constant axial
compressive force can be simulated by conveniently recalibrating the set of five
model parameters.

Forthcoming papers will show the numerical accuracy as well as the computa-
tional efficiency of the PHM by performing nonlinear time history analyses [14]
on hysteretic mechanical systems and comparing the results with those obtained by
using the celebrated Bouc–Wen model [15, 16] or its modified version [3, 4].
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