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Abstract In this paper, we describe an ε2-order normal form decomposition
for a two-degree-of-freedom oscillator system that has a mass supported with
horizontal and vertical support springs. This system has nonlinear terms that are
not necessarily ε1-order small when compared to the linear terms. As a result,
analytical approximate methods based on an ε expansion would typically need
to include higher-order components in order to capture the nonlinear dynamic
behaviour. In this paper we show how this can be achieved using a direct normal
form transformation up to order ε2. However, we will show that the requirement for
including ε2 components is primarily due to the way the direct normal form method
deals with quadratic coupling terms rather than the relative size of the coefficients.
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1 Introduction

Normal form transformations are a classical method for studying dynamical sys-
tems first introduced by Poincaré [1]. The historical background of normal form
transformations can be found in a number of texts including [2–4]. This work is
motivated by vibration problems involving coupled nonlinear oscillators, where the
objective of a normal form transformation is to both simplify the system, but also
to identify potential nonlinear resonances that might occur. For vibration problems,
Jezequel and Lamarque [5] proposed a normal form decomposition for a system of
two coupled oscillators with cubic nonlinearities and both forcing and damping. The
relationship between the normal form transformation and nonlinear normal modes
was established by Touzé and co-workers [6, 7], based on examples of coupled
oscillator systems that included both quadratic and cubic nonlinear terms.
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In this paper, we will consider an oscillator system consisting of a mass supported
by vertical and horizontal springs that are attached to solid supports. This system is
shown schematically in Fig. 1. The equations of motions of this example system, as
derived by Touzé et al. [6], are taken to be

ẍ1 + 2ζ1ω1ẋ1 + ω2
1x1 + a1x

2
1 + a2x1x2 + a3x

2
2 + a4x

3
1 + a5x1x

2
2 = f1 cos(Ωt),

ẍ2 + 2ζ2ω2ẋ2 + ω2
2x2 + b1x

2
1 + b2x1x2 + b3x

2
2 + b4x

2
1x2 + b5x

3
2 = f2 cos(Ωt),

(1)
where the coefficients of the nonlinear terms ai, bi for i, j = 1, 2, . . . , 5 are of
the same size order as the natural frequencies ω1 and ω2, respectively. The other
coefficients are damping ratios ζi , and forcing amplitudes fi , for each degree of
freedom i = 1, 2 and the external forcing frequency is Ω .

This system has been studied in depth by several previous authors [6–8]. In
particular, Touzé and Amabili [7] showed how a single-linear-mode approximation
to the system dynamics would predict hardening instead of softening behaviour for
a specific set of parameter values, whereas a nonlinear normal mode type analysis
predicts the correct softening resonance, behaviour. Furthermore, in Touzé and
Amabili [7] backbone curves for the system were computed, and these curves were
compared with forced-damped simulations of the system. In [8] a detailed study
of methods for computing backbone curves was carried out. As part of their study
Breunung and Haller, [8], used the current example to make a comparison between a
spectral sub-manifold method and the methods of Touzé and Amabili [7] and Neild
and Wagg [9]. This comparison showed that the ε1 direct normal form proposed
by Neild and Wagg [9] gave the incorrect approximations for this example. In fact,
using the ε1 version gave a result similar to the linear-mode approximation first
discussed by Touzé and Amabili [7]—predicting hardening instead of softening
behaviour. In this paper, we will show that the ε2 terms are required in the direct

Fig. 1 The example system
considered in this paper
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normal form method of Neild and Wagg [9] to give the correct solutions. Typically
the direct normal form method, [9], is applied to systems where the nonlinear,
damping and forcing terms are assumed to be of order ε1 small (or higher orders
of ε) when compared to the linear terms [10–14]. The linear terms are the natural
frequencies, taken to be of order ε0, meaning that the ε1 nonlinear terms are
typically an order smaller than the natural frequencies. In Eq. (1) this is not the
case, and it is possible for the nonlinear coefficients to be of the same size order as
the natural frequencies. As a result, the normal form approximation would typically
need to be extended to include higher-order terms. Here, we show that an ε2-order
analysis is sufficient to capture the required behaviour, although in fact the need for
the ε2-order terms is actually because of the quadratic coupling terms, as will be
explained below.

2 ε2-Order Normal Form Analysis

We follow the method set out in Chapter 4 of [15] for a ε2 direct normal form
method. The coefficients of the nonlinear terms in Eq. (1) are taken to be

a1 = 3
2ω2

1 a2 = ω2
2 a3 = 1

2ω2
1 a4 = 1

2 (ω2
1 + ω2

2) a5 = 1
2 (ω2

1 + ω2
2)

b1 = 1
2ω2

2 b2 = ω2
1 b3 = 3

2ω2
2 b4 = 1

2 (ω2
1 + ω2

2) b5 = 1
2 (ω2

1 + ω2
2).

(2)

As the conservative form of Eq. (1) is naturally linearly decoupled, it can be
described in the matrix form as q̈ + �q + Nq(q) = 0 by setting q = [q1, q2]ᵀ =
[x1, x2]ᵀ, where

� =
[
ω2

1 0
0 ω2

2

]
, and Nq(q) =

(
a1q

2
1 + a2q1q2 + a3q

2
2 + a4q

3
1 + a5q1q

2
2

b1q
2
1 + b2q1q2 + b3q

2
2 + b4q

2
1q2 + b5q

3
2

)
,

(3)
although as noted above Nq(q) is not ε1 small in this example. Here the non-
internal-resonant case is considered, such that the detuned response frequencies
ωri �= nωrj for i, j = 1, 2 with i �= j and n = 1, 2, · · · . Note that other rational
resonances, such as n = 3/5 are not considered here. The exact detuning mechanism
is explained in detail in [15].

Next we carry out a ε2 near identity transformation q = u+εh(1)(u)+ε2h(2)(u).
The first step in this process is to substitute q = [q1, q2]ᵀ = [u1p + u1m, u2p +
u2m]ᵀ into Eq. (3). This then leads to a [30 × 1] dimension u∗ vector, which is used
to redefine Nq(u) = n1u∗ and h(1)(u) = h1u∗, such that n1 and h1 are coefficient
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matrices for the ε1 terms. The objective is to obtain a normal form of ü + �u +
Nu(u) = 0, with Nu = εnu(1) + ε2nu(2). To find the transformed vectors nu(1) and
nu(2), solutions to the following equations are required

ε1 : ḧ(1)(u) + ϒh(1)(u) + n(1)(u) = nu(1)(u), (4a)

ε2 : ḧ(2)(u) + ϒh(2)(u) + n(2)(u) = nu(2)(u), (4b)

where ϒ is a {N × N} diagonal matrix of the square of the response frequencies,
ω2

ri such that � = ϒ + ε�, and

n(1)(u) = Nq(q = u), (5a)

n(2)(u) =
(

� + ∂Nq(q)

∂q

∣∣∣∣
q=u

)
h(1)(u). (5b)

Solving Eq. (4a) we can first obtain the ε1 terms as

nu(1) =
(

3a4(u
2
1pu1m + u1pu2

1m) + 2a5(u1pu2pu2m + u1mu2pu2m)

2b4(u1pu1mu2p + u1pu1mu2m) + 3b5(u
2
2pu2m + u2pu2

2m)

)
. (6)

For the ε2 terms, we must determine Eq. (5b) up to cubic order which should
provide an accurate solution for this example, and thus the nonlinear terms vector
n(2) is truncated at O(u4). As a result we can simplify Nq because we only need
terms up to order O(u2) in the partial derivative, and so we write Nq(u) = Ñq(u) +
O(u3). Then we have

� =
[
ω2

n1 − ω2
r1 0

0 ω2
n2 − ω2

r2

]
=

[
δ1 0
0 δ2

]
, and (7a)

∂Ñq(u)

∂u
=

[
2a1(u1p + u1m) + a2(u2p + u2m) a2(u1p + u1m) + 2a3(u2p + u2m)

2b1(u1p + u1m) + b2(u2p + u2m) b2(u1p + u1m) + 2b3(u2p + u2m)

]
.

(7b)

Therefore we can compute n(2) using

n(2) =
[

δ1 0
0 δ2

]
h1u∗ + ∂Ñq(u)

∂u
h̃1ũ∗ + O(u4), (8)

where h̃1 and ũ∗ are the respective projections of h1 and u∗ to O(u2). This allows
the vector of nonlinear terms up to order ε2 to be obtained as
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nu(2) =
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+
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2

ω3
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(9)

Now using Nu = nu(1) + nu(2), the direct normal form for the system (for the non-
internally resonant case) is given by

ü1 + ω2
1u1 + A(u2

1pu1m + u1pu2
1m) + B(u1pu2pu2m + u1mu2pu2m) = 0,

ü2 + ω2
2u2 + C(u2

2pu2m + u2pu2
2m) + D(u1pu1mu2p + u1pu1mu2m) = 0,

(10)
where

A = 3a4 − 10

3ω2
r1

a2
1 + 3ω2

r2 − 8ω2
r1

(4ω2
r1 − ω2

r2)ω
2
r2

a2b1, (11a)

B = 2a5 + 2

ω3
r2 − 4ω2

r1

a2
2 − 4

ω2
r1

a1a3 + 4

ω2
r1 − 4ω2

r2

a3b2 − 2

ω2
r2

a2b3, (11b)

C = 3b5 − 10

3ω2
r2

b2
3 + 3ω2

r1 − 8ω2
r2

(4ω2
r2 − ω2

r1)ω
2
r1

a3b2, (11c)

D = 2b4 + 2

ω3
r1 − 4ω2

r2

b2
2 − 4

ω2
r2

b1b3 + 4

ω2
r2 − 4ω2

r1

a2b1 − 2

ω2
r1

a1b2. (11d)

Substituting u1p = (U1
2 e−iφ1)eiωr1t and u1m = (U1

2 eiφ1)e−iωr1t into Eq. (10)
enables expressions for the backbone curves to be obtained as

[
−ω2

r1 + ω2
1 + 1

4
AU2

1 + 1

4
BU2

2

]
U2

1

2
= 0, (12a)
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[
−ω2

r2 + ω2
2 + 1

4
CU2

1 + 1

4
DU2

2

]
U2

2

2
= 0, (12b)

where Ui is the displacement amplitude of ui , for i = 1, 2. Successively setting U2
and U1 to zero will give the S1 and S2 backbone curves

S1 : ω2
r1 = ω2

1 + 1

4
AU2

1 , (13a)

S2 : ω2
r2 = ω2

2 + 1

4
CU2

2 . (13b)

Note that these are now implicit expressions for ω2
r1 and ω2

r2, respectively, which
can be solved numerically to find the backbone curves.

Finally, the physical displacement responses may be computed using the corre-
sponding reverse transform u1 → q1 = x1, and u2 → q2 = x2 such that

x1 = q1 = u1 + h1,1u∗ + h+
2,1u+,

x2 = q2 = u2 + h1,2u∗ + h+
2,2u+,

(14)

where hi,j are row vectors taken from the h1 and h+
2 coefficient matrices based on

the fact that h(2) has been redefined as h(2) = h+
2 u+—see Chapter 4 of [15] for full

details of this procedure.

3 Numerical Results

The simulation uses the parameters ω1 = 2, ω2 = 4.5, ζ1 = 0.001, ζ2 = 0.001,
fk = 0.0015 and f	 = 0 for the two different forcing cases k = 1, 	 = 2 and
k = 2, 	 = 1. The results for the S1 and S2 backbone curves computed using
Eqs. (13) are shown as the red lines in Figs. 2 and 3. For comparison, the order
ε1 backbone curves are shown as blue lines in the figures. In order to verify the
analytically approximated ε2 backbone results, resonance response curves for the
corresponding forced, damped case are computed using the continuation Matlab
toolbox—COCO [16]. These are shown as black lines in Figs. 2 and 3.

The plots in Fig. 2 are presented in the projection of the response amplitude of the
physical coordinates, Xi , against the forcing frequency, Ω (or ωr for the undamped
backbone curves). In each figure X1 against Ω is shown in plot (a) and X2 against
Ω is shown in plot (b). Consequently, in Fig. 2 where the forcing is applied to the
x1 equation, the dominant response is in the X1 amplitude (plot Fig. 2a), and the
response in plot (b) of X2 vs Ω is primarily due to the harmonic terms via Eq. (14).

Values of ωi are chosen as they are exactly the same as those used by previous
studies [6, 8] to demonstrate the non-internally resonant dynamics of the system.
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Fig. 2 The backbone curves S1, and resonance response curves of the two-degree-of-freedom
example system described in Eq.(1) for the case where its horizontal mode is dominant. The red
and black lines denote the backbone curves and numerically computed forced response curves
using COCO, respectively. Parameters: ω1 = 2, ω2 = 4.5, ζ1 = 0.001, ζ2 = 0.001. There are
three different forcing amplitude curves f1 = 0.001, 0.0016, 0.0025 and f2 = 0. Note that the
stability of the solution curves is not indicated on this figure
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Fig. 3 The backbone curves S2, and resonance response curves of the two-degree-of-freedom
example system described in Eq. 1 for the case where its horizontal mode is dominant. The red and
black lines denote the backbone curves and numerically computed forced response curves using
COCO, respectively. Parameters: ω1 = 2, ω2 = 4.5, ζ1 = 0.001, ζ2 = 0.001. Here there are three
different forcing amplitude curves shown f2 = 0.002, 0.004, 0.006, and f1 = 0. Note that the
stability of the solution curves is not indicated on this figure

For the damping values, ζ1 = 0.001 was used previously by Touzé et al. [6], but
here we have used ζ2 = 0.001 as well so that the COCO continuation curves are
very close to the undamped case. It can be seen that the analytical backbone curves
correctly predict the softening dynamics of the example system which is consistent
with the findings in [6]. However, it is important to note that the backbone curve
expression computed with just the ε1 terms gives a hardening response, which does
not match the system behaviour correctly, as shown by the blue lines in Figs. 2 and 3
(and also the comparison presented by Breunung and Haller [8]).

The specific reason for this can be seen in Eq. (11) which gives the coefficients
for the S1 and S2 backbone curves in Eqs. (13). Specifically for the S1 backbone
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the coefficient producing curvature is A. In the ε1 case, A = 3a4, which will give
a hardening S1 curve. However in the ε2 case, A is given by Eq. (11a) and there
are two additional terms that reverse the curvature of S1, for the given parameters,
to produce a softening backbone curve. In fact reducing the ω2 value to a value
of 3.8rad/s (whilst keeping all other parameters the same ) results in the backbone
curve switching to hardening.

This is consistent with the finding of [7] that the quadratic terms of the type found
in this example will generate cubic terms in the nonlinear coordinate transformation.
As we have shown, in the direct normal form method of Neild and Wagg [9], these
generated terms from the quadratics are only captured in the ε2 expansion not the
ε1 version. This explains why the ε1 version of the direct normal form will not
show the correct softening nonlinear behaviour—as also shown in the comparison
by Breunung and Haller [8]. It is also clear from the results presented above that this
can be rectified by the inclusion of the ε2 terms.

Although not the specific cause (and therefore less important) we note that the
direct normal form method does rely on the nonlinear terms being small in the
sense that they should be significantly smaller than the ω2

ni values. However, in this
example the nonlinear coefficients are of the same order as the ω2

ni values, and yet
despite this, by adding ε2 terms, the direct normal form method gives a very good
approximation to the solution. Specifically, the maximum response position of the
COCO curves is very close to the backbone curves for both S1 and S2.

4 Conclusions

In this paper, ε2-order approximate analytical expressions for the backbone curves
of a coupled two-degree-of-freedom system have been obtained using the direct
normal form method proposed by Neild and Wagg. The motivation for this study
was the observation that the ε1 version of the direct normal form method did not
predict the correct softening type of behaviour for this example. In fact, we have
shown in this paper that the primary cause of this discrepancy is due to how the
direct normal form treats the quadratic coupling terms of the type found in this
example.

This is because during the backbone curve approximation process quadratic
terms actually generate terms up to cubic order. These terms are significant in
obtaining a representative model for the backbone curve. In the method proposed
by Neild and Wagg, these additional cubic terms are captured only in the ε2 part
of the approximation. As a result, if using this method for a system with quadratic
nonlinearities, then the ε2 version is needed to fully capture the relevant dynamic
behaviour.

In addition to this, and despite the fact that the direct normal form assumes small
nonlinear terms, which are not the case in this example, the results obtained from
the ε2 version and the numerical method agree well.
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