
The Occurrence of Zero-Hopf Bifurcation
in a Generalized Sprott A System

Marcelo Messias and Alisson C. Reinol

Abstract From the normal form of polynomial differential systems in R
3 having

a sphere as invariant algebraic surface, we obtain a class of quadratic systems
depending on ten real parameters, which encompasses the well-known Sprott A
system. For this reason, we call them generalized Sprott A systems. In this paper, we
study the dynamics and bifurcations of these systems as the parameters are varied.
We prove that, for certain parameter values, the z-axis is a line of equilibria, the
origin is a non-isolated zero-Hopf equilibrium point, and the phase space is foliated
by concentric invariant spheres. By using the averaging theory we prove that a small
linearly stable periodic orbit bifurcates from the zero-Hopf equilibrium point at the
origin. Finally, we numerically show the existence of nested invariant tori around
the bifurcating periodic orbit.

Keywords Sprott A system · Invariant sphere · Zero-Hopf bifurcation · Linearly
stable periodic orbit · Invariant torus

1 Introduction

Consider the polynomial differential system in R
3 defined by

ẋ = P(x, y, z), ẏ = Q(x, y, z), ż = R(x, y, z), (1)

where P , Q, and R are relatively prime real polynomials in the variables x, y, z and
the dot denotes derivative with respect to the independent variable t . We say that
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m = max{deg(P ), deg(Q), deg(R)} is the degree of system (1). If m = 2, it is a
quadratic polynomial differential system.

For m ≥ 2, the dynamical behavior of system (1) is in general very difficult to
be studied, especially when it exhibits chaos. In the last decades, chaotic differential
systems have been intensively studied, as the Lorenz system, Chen system, Lü
system, and many others [1]. Recently, there is an increasing interest in finding
and studying three categories of chaotic systems: without equilibrium points, with
an infinity of equilibria, and with only stable equilibrium points. In these systems
are frequently found attractors whose basin of attraction does not intercept with
points in small neighborhoods of equilibrium points. These kinds of attractors are
called hidden attractors and have theoretical and applied interests. They allow,
for instance, unexpected and potentially disastrous responses to perturbations in
structures like bridges and airplane wings, for details see [2, 3] and references
therein.

The oldest and best-known chaotic differential system having no equilibrium
points is the Sprott A system [4], given by

ẋ = y, ẏ = −x − yz, ż = y2 − a, (2)

where a ∈ R. This system was shown to be chaotic for a = 1, even without
having equilibrium points for this parameter value. From the physical point of
view, the Sprott A system is a special case of the well-known and widely studied
Nosé–Hoover oscillator [5, 6] as pointed out in [7]. Moreover, it plays an important
role in nonlinear dynamics studies, since its structure became source of inspiration
for the study of many new quadratic chaotic differential systems in R

3. Chaotic
systems without equilibrium points, as the Sprott A system, appear naturally in the
mathematical modeling of some electromechanical problems with rotation and in
electrical circuits with cylindrical phase space, as presented for instance in [8]. In
this way, the bifurcation analysis of these kind of systems helps to better understand
the phenomena described by them.

In this context and motivated by the studies developed in [9, 10], we propose
and study a more general class of quadratic polynomial differential systems which
contains the Sprott A system and have similar, and even richer, dynamical behavior.
Here we call these systems generalized Sprott A systems, which are given by

ẋ = −y P1 + z P2, ẏ = x P1 − z P3, ż = −x P2 + y P3 − α, (3)

where Pi = Pi(x, y, z) = ai x + bi y + ci z + di with α, ai, bi, ci , di ∈ R, for
i = 1, 2, 3. Taking d1 = −1, b3 = 1, α = a, and the other parameters equal to zero
into system (3), we obtain the Sprott A system (2).

In this paper, we study the dynamical behavior of system (3) as the parameter
value α varies and under certain conditions on the other parameters. The paper
is organized as follows. In Sect. 2 we prove that system (3) is the most general
quadratic differential system in R

3 having a family of concentric invariant spheres
and give some additional properties of its phase space. In Sect. 3, for the sake of
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completeness and to fix the notation we present a result of the averaging theory of
first order, then we use it to prove the existence of a small linearly stable periodic
orbit bifurcating from the origin of system (3). In Sect. 4 we present some numerical
simulations from which we show the existence of nested invariant tori around the
bifurcating periodic orbit. Finally, in Sect. 5 some concluding remarks are given.

2 Invariant Spheres of Generalized Sprott A System

In [11], the authors determined the normal form of all polynomial differential
systems in R

3 having a sphere as an invariant algebraic surface. More precisely,
they proved the following result.

Theorem 1 Assume that a sphere S = 0 is an invariant algebraic surface of
the polynomial differential system (1). Then, after an affine change of coordinates,
system (1) can be written as

ẋ = S Q1 − y P1 + z P2, ẏ = S Q2 + x P1 − z P3, ż = S Q3 − x P2 + y P3,

(4)
where Qi = Qi(x, y, z) and Pi = Pi(x, y, z), for i = 1, 2, 3, are arbitrary real
polynomials and S = x2 + y2 + z2 − 1 = 0 is the invariant sphere of system (4).

The following result holds.

Theorem 2 For α = 0, system (3) is the most general class of quadratic polynomial
differential systems whose phase space is foliated by concentric invariant spheres.
In this case, if d1 �= 0 and ci = di = 0, for i = 2, 3, then the z-axis is a line of
equilibrium points, the origin is a non-isolated zero-Hopf equilibrium point and it
is the center of the invariant spheres.

Proof Suppose that system (1) has degree m = 2 and S = 0 is an invariant sphere
of this system. By Theorem 1, after an affine change of coordinates, system (1)
can be written as (4), with Qi = qi and Pi = ai x + bi y + ci z + di , where
ai , bi , ci , di , qi ∈ R, for i = 1, 2, 3, and the equation of the invariant sphere is
S = x2 + y2 + z2 − 1 = 0, with cofactor K = 2q1 x + 2q2 y + 2q3 z. If K ≡ 0 then
the phase space of system (4) is foliated by concentric invariant spheres. Observe
that it is equivalent to take q1 = q2 = q3 = 0, from which we obtain system (3)
with α = 0.

Now considering the flow of system (3), with α = 0, restricted to the z-axis, we
obtain

ẋ = z (c2 z + d2), ẏ = −z (c3 z + d3), ż = 0.

Then taking ci = di = 0, for i = 2, 3, the z-axis is a line of equilibrium points
of system (3). The eigenvalues of the linear part of system (3) at the origin are
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λ1 = 0 and λ2,3 = ±i d1. Hence, for d1 �= 0, the origin is a non-isolated zero-Hopf
equilibrium point. This proves Theorem 2. �
Remark 1 The eigenvalues of the linear part of system (3) at the equilibrium points
in the z-axis are λ1 = 0 and λ2,3 = β z ± √

γ , where

β = 1

2
(a2 − b3) and

γ = 1

4
z2 (a2 + b3)

2 − (c1 z + d1)
2 + z [(a3 + b2) (z c1 + d1) − a3 z b2].

Hence, if γ �= 0 and β2 z2 > |γ |, then the equilibrium points (0, 0, z) with z < 0
and z > 0 have opposite stability, as it occurs in the Sprott A system, as shown in
[9, 10].

3 Zero-Hopf Bifurcation via Averaging Theory

Recall that an equilibrium point of a differential system in R
3 is a zero-Hopf

equilibrium if the Jacobian matrix at this point has one zero and a pair of purely
imaginary eigenvalues. It is known that, generically, a zero-Hopf bifurcation takes
place in this kind of equilibrium point and, in some cases, this type of bifurcation
can imply a local birth of chaos [12]. For α = 0, di �= 0 and ci = di = 0, i = 2, 3,
the origin is a zero-Hopf equilibrium point of system (3), as stated in Theorem 2.
In this section we will use the averaging theory to prove the existence of a periodic
orbit bifurcating from the origin of system (3). For the sake of completeness and
to fix the notation which will be used ahead, in the next subsection we present the
main result from averaging theory, whose proof can be found in [13].

3.1 Averaging Theory of First Order

Consider the initial value problems

ẋ = ε F1(t, x) + ε2 F2(t, x, ε), x(0) = x0, (5)

and

ẏ = ε g(y), y(0) = x0, (6)

with x, y, and x0 in some open subset Ω of Rn, t ∈ [0,∞), and ε ∈ (0, ε0], for
some fixed ε0 > 0 small enough. Suppose that F1 and F2 are periodic functions of
period T in the variable t , and set
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g(y) = 1

T

∫ T

0
F1(t, y)dt.

Denote by Dxg and Dxxg all the first and second derivatives of g, respectively.
Under these assumptions, the following result is proved in [13].

Theorem 3 Let F1, DxF1, DxxF1, and DxF2 be continuous and bounded by a
constant, which does not depend on ε, in [0,∞) × Ω × (0, ε0] and assume that
y(t) ∈ Ω for t ∈ [0, 1/ε]. Then, the following statements hold.

1. For t ∈ [0, 1/ε], we have x(t) − y(t) = O(ε) as ε → 0.
2. If p �= 0 is an equilibrium point of system (6) such that det[Dyg(p)] �= 0, then

system (5) has a periodic solution φ(t, ε) of period T , which is close to p and
such that φ(0, ε) − p = O(ε) as ε → 0.

3. The stability of the periodic solution φ(t, ε) is given by the stability of the
equilibrium point p.

Based on Theorem 3, in the next subsection we provide necessary conditions
under the parameters of system (3) for the existence of a periodic orbit bifurcating
from the origin.

3.2 Existence of a Periodic Orbit

Theorem 4 Consider system (3) with d1 �= 0 and ci = di = 0, for i = 2, 3. If
b2 = a3 and b3 − a2 �= 0, then, for α > 0 sufficiently small, there exists a periodic
orbit γα in the phase space of system (3), which tends to the non-isolated zero-Hopf
equilibrium point at the origin as α → 0. Moreover, γα is linearly stable if a2 < b3
and it is unstable (of saddle type) if a2 > b3.

Proof Consider system (3) with ci = di = 0, for i = 2, 3, b2 = a3, and d1 �= 0.
Without loss of generality, take d1 = 1. In order to apply Theorem 3, we write the
obtained system in cylindrical coordinates (r, θ, z), where x = r cos θ and y =
r sin θ . Then it becomes

ṙ = [−b3 + (a2 + b3) cos2 θ ] r z,

θ̇ = 1 − (a3 − c1) z + b1 r sin θ + [a1 r − z (a2 + b3) sin θ ] cos θ, (7)

ż = b3 r2 − (a2 + b3) r2 cos2 θ − α.

Introduce the variable ε > 0 into system (7) considering α = ε2 and doing the
change of coordinates (r, θ, z) → (R, θ, Z), where r = ε R and z = ε Z. Then,
taking θ as the independent variable and doing the Taylor expansion of order 2 of
the obtained equations at ε = 0, we get
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dR

dθ
= −R Z [b3 − (a2 + b3) cos2 θ ] ε + O(ε2),

dZ

dθ
= −[1 − b3 R2 + (a2 + b3) R2 cos2 θ ] ε + O(ε2).

(8)

Using the notation of Theorem 3, consider

x =
(

R

Z

)
, t = θ, T = 2π,

F1(θ, x) =
( −[b3 − (a2 + b3) cos2 θ ] R Z

−[1 − b3 R2 + (a2 + b3) R2 cos2 θ ]
)

.

In this way we have

g(y) = 1

2π

∫ 2π

0
F1(θ, x) dθ = 1

2

( −(b3 − a2) RZ

−2 + (b3 − a2) R2

)
.

Hence, g(y) = 0 has the unique real solution

p = (R,Z) =
(√

2

b3 − a2
, 0

)
,

which satisfies det[Dyg(p)] = b3 − a2 �= 0. Then, by Theorem 3, for ε > 0
sufficiently small, system (8) has a periodic solution φ(θ, ε) = (R(θ, ε), Z(θ, ε))

such that φ(0, ε) → p as ε → 0. Moreover the eigenvalues of the matrix [Dyg(p)]
are ±√

a2 − b3. Thus, the obtained periodic orbit is linearly stable if a2 − b3 < 0
and unstable (of saddle type) if a2 − b3 > 0.

Changing back the coordinates to system (3), we have that, for α > 0 sufficiently
small, such system has a periodic solution γα of period approximately 2π given by

xα(t) =
√

2α

b3 − a2
cos t+O(α), yα(t) =

√
2α

b3 − a2
sin t+O(α), zα(t) =O(α).

Note that γα tends to the origin, which is a non-isolated zero-Hopf equilibrium point,
as α → 0. �

4 Existence of Nested Invariant Tori

Under generic assumptions, the presence of a linearly stable periodic orbit implies
the occurrence of rich dynamics: it forces, for example, the existence of a subset of
positive measure in the phase space filled by invariant tori, as stated for instance in
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Fig. 1 (a) Periodic orbit and nested invariant tori of system (3) with c2 = c3 = d2 = d3 = 0,
a1 = a2 = a3 = b1 = b2 = c1 = d1 = 1 and b3 = 2. (b) Respective 2π–Poincaré map of
system (3). In both cases α = 10−4

[12]. In this context, in [9, 10] the authors showed the existence of nested invariant
tori surrounding a bifurcating linearly stable periodic orbit in the phase space of the
Sprott A system. Performing a detailed numerical study, we obtained the following
similar result for the more general differential system (3).

Numerical Result Around the linearly stable periodic orbit γα of differential
system (3) with α > 0 small, described in Theorem 4, there exist nested invariant
tori, as shown in Fig. 1.

In Fig. 1a is shown the nested invariant tori around the periodic orbit γα of
system (3) for α > 0 small and, in Fig. 1b, its respective 2π–Poincaré map,
which was obtained as follows. We consider system (3) in cylindrical coordinates
(r, θ, z) and take θ as the independent variable, obtaining a system in the variables
(r(θ), z(θ)), 2π -periodic in θ . We compute the solutions of the obtained system,
taking initial conditions near of the periodic orbit γα, for discrete values θ = 2kπ ,
where k = 0, 1, . . . , N , with N sufficiently large, obtaining Fig. 1b. The fixed point
representing the periodic orbit γα, given in Theorem 4, is surrounded by concentric
circles, suggesting the existence of nested invariant tori around it.

It is also possible to explain the existence of invariant tori as a deformation of
invariant spheres. Indeed, for α = 0, di �= 0 and ci = di = 0, i = 2, 3, we proved
in Theorem 2 that the phase space of system (3) is foliated by invariant spheres and
the z-axis is a line of equilibria. For suitable choices of the parameter values (see
Remark 1) and for z small, the equilibrium points in the z-axis are foci with opposite
stability for z < 0 and z > 0. In this case, there exist heteroclinic orbits on each
invariant sphere, connecting the (unstable) south pole to the (stable) north pole, see
Fig. 2a. For α > 0 sufficiently small, a linearly stable periodic orbit γα bifurcates
from the origin of system (3), as stated in Theorem 4 and shown in black color in
Fig. 2b. Based on the numerical simulations performed, it is possible to observe that
the concentric invariant spheres evolve to nested invariant tori around the periodic
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Fig. 2 Periodic orbit γα of system (3) (black) and orbit with initial condition (
√

2α/(b3 − a2), 1.2·
10−2, 0) for t < 0 (blue) and t > 0 (red), with c2 = c3 = d2 = d3 = 0, a1 = a2 = a3 = b1 =
b2 = c1 = d1 = 1 and b3 = 2. For the parameter α we consider: (a) α = 0, (b) α = 10−5, and (c)
α = 10−4

orbit γα, as the parameter α increases, as shown in Fig. 2a–c, considering one of the
concentric invariant spheres.

5 Concluding Remarks

Whereas the Sprott A system is claimed to be the simplest conservative differential
system presenting chaotic behavior, in this paper we consider system (3), which
is a more general and comprehensive class of differential systems containing and
presenting similar dynamical behavior to the Sprott A system, for small values of the
parameter α. In this way, system (3) can contain other nonlinear oscillators besides
the Nosé–Hoover oscillator (or the Sprott A system). For appropriate choices of
parameters values in system (3), we proved that for α > 0 small enough a linearly
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stable periodic orbit bifurcates from a zero-Hopf equilibrium point located at the
origin and we numerically show the existence of nested invariant tori around the
periodic orbit. These elements can generate complex and interesting dynamical
behavior, as shown in [4, 6, 9, 10] for Sprott A system, where the existence of a
linearly stable periodic orbit and nested invariant tori around it play an important
role in the formation of chaotic behavior in that system. We believe that the same is
true for the more general system (3). It will be studied in future works.

Acknowledgements The first author was supported by State of São Paulo Foundation (FAPESP)
grant number 2019/10269-3 and by CNPq-Brazil grant number 311355/2018-8.

References

1. Lassoued, A., Boubaker, O.: On new chaotic and hyperchaotic systems: a literature survey.
Nonlinear Anal. Model. Control 21, 770–789 (2016)

2. Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N., Leonov, G.A., Prasad, A.: Hidden
attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)

3. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems: from hidden oscilla-
tions in Hilbert–Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in
Chua circuits. Int. J. Bifurcation Chaos Appl. Sci. Eng. 23, 1330002 (2013)

4. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50, R647–R650 (1994)
5. Nosé, S.: A unified formulation of the constant temperature molecular-dynamics methods. J.

Chem. Phys. 81, 511–519 (1984)
6. Posch, H.A., Hoover, W.G., Vesely, F.J.: Canonical dynamics of the Nosé oscillator: stability,

order, and chaos. Phys. Rev. A 33, 4253–4265 (1986)
7. Hoover, W.G.: Remark on ‘some simple chaotic flows’. Phys. Rev. E 51, 759–760 (1995)
8. Kiseleva, M.A., Kuznetsov, N.V., Leonov, G.A.: Hidden attractors in electromechanical

systems with and without equilibria. IFAC-PapersOnLine 49, 51–55 (2016)
9. Messias, M., Reinol, A.C.: On the formation of hidden chaotic attractors and nested invariant

tori in the Sprott A system. Nonlinear Dyn. 88, 807–821 (2017)
10. Messias, M., Reinol, A.C.: On the existence of periodic orbits and KAM tori in the Sprott A

system—a special case of the Nosé–Hoover oscillator. Nonlinear Dyn. 92, 1287–1297 (2018)
11. Llibre, J., Messias, M., Reinol, A.C.: Normal forms for polynomial differential systems in R

3

having an invariant quadric and a Darboux invariant. Int. J. Bifurcation Chaos Appl. Sci. Eng.
25, 1550015 (2015)

12. Scheurle, J., Marsden, J.: Bifurcation to quasi-periodic tori in the interaction of steady state
and Hopf bifurcations. SIAM J. Math. Anal. 15, 1055–1074 (1984)

13. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems.
Springer, New York (2007)


	The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System
	1 Introduction
	2 Invariant Spheres of Generalized Sprott A System
	3 Zero-Hopf Bifurcation via Averaging Theory
	3.1 Averaging Theory of First Order
	3.2 Existence of a Periodic Orbit

	4 Existence of Nested Invariant Tori
	5 Concluding Remarks
	References


