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Abstract We explore the effect of a common external system, which may be
considered as a common environment, on the oscillation death(OD) states of a
group of Stuart–Landau(SL) oscillators. It was found in Chaurasia et al. (Phys
Rev E 98:032223, 2018), that the group of oscillators, when uncoupled to the
common environment, yield a completely symmetric oscillation death state, i.e.
there is an equal probability of occurrence of positive and negative oscillation death
states. However, remarkably, this symmetry is significantly broken, when coupled
to a common external system. For exponentially decaying common environment,
the symmetry breaking of the OD states was found to be very pronounced for
low environmental damping and strong oscillator-environment coupling. Here we
consider the effect of disconnections of the oscillator-environment links on this
asymmetry in the basin stability of the OD states. Interestingly, we find that the
asymmetry induced by environmental coupling decreases with increase in fraction
of such disconnections, and at some intermediate fraction close to half the symmetry
is restored. However, further increase in disconnections induces asymmetry in the
OD state again, until all oscillator-environment links are switched off. This suggests
that a balance of on-off oscillator-environment links restores the symmetry of the
OD state, and when half of the environmental connections are switched off one
obtains the positive and negative OD states with almost equal probability.
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1 Introduction

In the context of many real world systems, interactions can occur through a
common medium. For instance, chemical oscillations of catalyst-loaded reactants
have been found in a medium of catalyst-free solution, where the coupling is
through exchange of chemicals with the surrounding medium [1]. Similarly, in the
context of genetic oscillators coupling occurs by diffusion of chemicals between
cells and extracellular medium [2]. Further, in a collection of circadian oscillators,
the concentration of neurotransmitter released by each cell can induce collective
behaviour [3]. In general, such cases occur due to the common medium, referred
to as a common environment, interacting with the dynamical systems. In this work
we will investigate a generic model that unifies many specific models of particular
systems such as biochemical oscillators coupled through an environment, and allows
us to obtain some basic general results which potentially apply to all of them.

It was found in [4] that coupling a group of oscillators to a common external
medium [5] destroyed the symmetry in occurrence of the oscillation death (OD)
states [6–8], also known as inhomogeneous steady states (IHSS), in the system.
That is, the oscillator death states in the presence of environmental coupling are
no longer symmetrically distributed. Rather the distribution of the emergent OD
states is significantly skewed. This implies that the basin stability of the OD states
is no longer the same. Instead there is coupling induced asymmetry in the basin
stability [9] which leads to the system evolving preferentially towards one of the
OD states. This manifests as a remarkable asymmetric distribution of the OD states,
though both states are linearly stable. So one observes that the average fraction of
oscillators going to a particular OD state is not the same.

Specifically, here we will study a group of globally coupled oscillators. The
oscillators will be considered in the oscillation death regime, by setting appropriate
values of the control parameters of the individual oscillators [10]. Each oscillator
is also connected with the common external medium. This environmental coupling
effectively pushes all the oscillators towards negative OD-state. We then go on to
investigate the dynamics as the environment-oscillator links are disconnected one
by one. We will show how cutting off the environment-oscillator links leads to a
restoration of symmetry in the distribution of OD states. We will further demonstrate
that one can use the external medium coupling strength and the environmental
damping constant to control the distribution of oscillators in the different OD-states
for a given fraction of environment-oscillator links.

2 Coupling via Common Environment

Our representative model is described by the generalized equation given below in
Eq. (1) and schematically elucidated with Fig. 1:
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Fig. 1 Schematic diagram of group of oscillators connected to a common external environment

Ẋi = F(Xi) + εintraα(qX̄ − Xi) + εextβu,

u̇ = −ku + εext

N
βT

N∑

i=1

Xi (1)

Xi is the column vector representing an m-dimensional nonlinear oscillator, each
of the oscillators are connected within the group with mean-field diffusive coupling
and with an external common environment (u). All the oscillators are connected
with each other with the given global mean-field diffusive coupling with coupling
parameter εintra and the mean diffusion is controlled by the diffusion coefficient
q within this group. α is the (m × m) matrix with elements 0 and 1 to represent
the components of m-dimensional oscillator taking part in the intra-group coupling.
Here, we are taking α to be a diagonal matrix; α = diag(α1, α2, . . . , αm). For
external coupling of each of the oscillators with common environment we use εext

as coupling parameter and again to decide the component of oscillator to receive the
external coupling we use β as the m-dimensional column matrix.

In this paper, we use Stuart–Landau oscillators (m = 2; x and y variables) as the
unit component of the group and a damped environment as the external common
medium (with damping constant k). We are taking α to be α = diag(1, 0) such
that only x-variable will take part in within the group coupling. We take β = (0, 1),
i.e. the y-variable of each Stuart–Landau oscillator gives and receives signals from
the damped common medium. So the dynamics of the full system comprised of the
group of Stuart–Landau oscillators and the common external medium is:
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Fig. 2 Time series of x variable (red) and y variable (blue) with εintra = 6, q = 0.4 (a) without
external coupling and (b) with externally coupled with εext = 0.5, k = 0.1 for N = 64 oscillators
in the group

ẋi = (1 − x2
i − y2

i )xi − ωyi + εintra(qx̄ − xi)

ẏi = (1 − x2
i − y2

i )yi + ωxi + εextu (2)

u̇ = −ku + εext ȳ

The mean-field diffusive coupling has been observed to show oscillation death
(OD) states in limit cycle oscillators in the parameter space of coupling parameter
ε and control parameter q. Here we consider the group in the OD-state, with ε = 6
and q = 0.4 (cf. time series shown in Fig. 2a). Our aim here is to analyse the effects
of the common external environment on the stable OD-states. So we connect each
oscillator of the group to the common external medium according to Eq. (1). The
time series of the group in the presence of the common environment is shown in
Fig. 2b, with εext = 0.5 and the intrinsic environment damping constant k = 0.1.
It is clearly evident that the presence of such a damped common medium results in
all the oscillators of the group evolving to one of the OD states. This gives rise to a
very asymmetric distribution of the oscillators among the two OD states as most
oscillators now preferentially go to one particular state. Now, in the subsequent
sections we will analyse mechanisms that restore this broken symmetry in the
probability of obtaining an OD state in the oscillator group induced by the common
medium.

3 Fractionally Disconnected Links

Previously, in Fig. 2 we saw that coupling to an external damped environment lead
all the oscillators to one particular OD state, thereby breaking the symmetry of the
distribution of the OD states. Now, we will disconnect the oscillator-environment
links one at a time till all of the oscillators in the group are uncoupled to the external
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Fig. 3 Histogram showing the probability of the fraction of oscillators in positive state when the
coupling of the oscillator group to the environment εext = 0

medium and look for the changes in distribution of oscillators in the oscillation
death states. In our case, we have two OD states on either side of the origin i.e.
positive x which we will call x+ and another on the negative side which we name
x− from now on. Without any external environment the oscillators occur almost
equally (statistically speaking) in the positive and negative OD states. To quantify
this observation we show in Fig. 3 the probability distribution of the oscillators in
the positive x+ steady state, obtained by sampling over 50,000 initial conditions,
uniformly distributed over phase space volume [−1, 1], of globally coupled SL
oscillators without external environment.

In Fig. 4 we plot the fraction of oscillators that go to the positive OD state (x+)
with respect to varying number of oscillator-environment links. In particular, we
disconnect one environment-oscillator link at a time, and we denote the fraction
of disconnected links by fdisc. So fdisc = 0 corresponds to the case where all
oscillators in the group are connected to the external environment, while fdisc = 1
corresponds to the limit of a group of SL oscillators having no interactions with
the common environment. We observe changes in the fraction of oscillators in the
positive OD-state, averaged over different initial conditions, denoted by 〈f +〉, as
a function of fdisc. That is, we investigate how the distribution of the oscillators
between the two available OD states changes as the number of environment-
oscillator links changes. The results of the dependence of 〈f +〉 on fdisc for different
values of external environment coupling (εext = 0.2 and 0.5) are displayed. It is
clear that this dependence is non-monotonic and has several non-trivial features. For
instance, if we consider the case of ε = 0.5 in Fig. 4, we find that at fdisc � 0.2 the
oscillators are predominately in the negative OD state and 〈f +〉 is � 0.2, i.e. around
20% of the oscillators in the group go to the positive OD state, while the rest are
attracted to the negative OD state. As we change fdisc the probability of being in the
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Fig. 4 Average fraction of oscillators in positive OD-state (〈f +〉), obtained by sampling over
10,000 initial conditions, with respect to the fraction of oscillators-environment links for εext = 0.2
(blue) and 0.5 (red). Here N = 64 and k = 0.1

positive OD state increases to a maximum of 〈f +〉 � 0.7 at fdisc � 0.7. After that,
〈f +〉 decreases again and reaches 0.5, namely the completely symmetric situation,
in the limit of fdisc = 1 where we have completely disconnected the oscillator group
from the environment. One remarkable observation is that at fdisc � 0.5 the value
of 〈f +〉 is 0.5. This implies that when half of the oscillators are connected with the
external common medium the statistical symmetry of the OD states returns i.e. both
the positive and negative OD states are equally occupied by the oscillators. So when
half of the oscillators in the group are connected to the environment (fdisc = 0.5)
we obtain a dynamical outcome that is equivalent to the case of the oscillator group
being completely unconnected to the external environment (fdisc = 1).

Further, we examine the effect of the damping constant k of the external
environment on the distribution of the oscillators between the positive and negative
OD-states, i.e. the dependence of 〈f +〉 and 〈f −〉 on k for different values of
fdisc. To illustrate this, we show results for three values of external coupling
(εext = 0.25, 0.5, and 0.7) in Fig. 5. For fdisc = 0.25 (blue), the fraction of
positive OD-state (〈f +〉) always remains less than 50% for the entire range of k

sampled, and it slowly increases to ∼ 50% for k ≥ 0.85. The oscillator distribution
tends to maintain its symmetry (i.e. 〈f +〉 ∼ 0.5) for all values of k when only
half of the oscillators are connected/disconnected with the external environment
(i.e. fdisc = 0.5). For fdisc = 0.7 (green) the oscillator distribution reaches its
most skewed position when 〈f +〉 becomes maximum at ∼ 0.7 (cf. Fig. 4). On
increasing k, this again approaches 〈f +〉 ∼ 0.5 as k approaches 1. This suggests
that the environmental damping constant can be utilized as a parameter to control
the distribution of oscillators in the positive and negative OD-states.

The coupling strength between the external medium and the oscillators in the
group (εext ) is vital in controlling the flow of information between the group of
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Fig. 5 Average fraction of oscillators in positive OD-state (〈f +〉), obtained by sampling over
10,000 initial conditions, with respect the damping constant of the common external environment
k, for fdisc = 0.25 (blue), 0.5 (red), and 0.7 (green). Here εext = 0.5 and N = 64
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Fig. 6 Average fraction of oscillators in positive OD-state (〈f +〉), estimated by sampling over
10,000 initial conditions, in the parameter space of εext − k for fdisc (a) 0.0, (b) 0.25, (c) 0.5 and
(d) 0.75, with N = 64

oscillators. So we look for changes in 〈f +〉 in the parameter space of εext − k.
Figure 6a shows 〈f +〉 when all oscillators are connected to the environment (i.e.
fdisc = 0.0). This will act as a reference for comparison with the case where some
fraction of environment-oscillator links are disconnected. For higher εext values
and lower damping constant (k) the fraction 〈f +〉 is almost 0 (or 〈f −〉 � 1).
Interestingly, at this particular region of the εext −k parameter space, 〈f +〉 increases
for increasing fdisc. This demonstrates that as increasing number of disconnections
of the environment-oscillator links, the number of oscillators going to the positive
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Fig. 7 Average fraction of oscillators in positive OD-state (〈f +〉), estimated by sampling over
10,000 initial conditions, with respect to εext, for fdisc = 0.25 (blue), 0.5 (red), and 0.7 (green),
with k = 0.1 and N = 64
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Fig. 8 Histogram showing the probability of the fraction of oscillators in positive state when
the coupling of the oscillator group to the environment εext = 0.5 and damping constant of the
environment k = 0.1, with fraction of disconnected links (a) fdisc = 0.25, (b) fdisc = 0.5, (c)
fdisc = 0.7

OD state increases, leading to a more symmetric distribution of oscillators among
the two OD states. Further we consider the variation of 〈f +〉 with respect to εext

at fixed k in Fig. 7, for k = 0.1. Three scenarios become clearly evident from
the figure, corresponding to three different fractions of disconnected links. So
we can conclude that along with environmental damping constant (k), oscillator-
environment coupling strength (εext ) is also an important parameter controlling the
distribution of oscillators between the positive and negative OD-states.

We had shown the histogram of the probability of obtaining fraction f + in the
positive OD state, in Fig. 3, for globally coupled SL oscillators in OD-state without
environmental coupling, and seen a symmetric distribution of the oscillators around
0.5. Similarly, we now estimate the distribution of oscillators in the positive OD-
state in the presence of a common environment. We explore cases with different
fractions of disconnected environment-oscillator links. In Fig. 8a we show the
distribution for fdisc = 0.25, with εext = 0.5 and k = 0.1. Interestingly, there
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is no spread in the distribution of oscillators, as is clearly seen from the single
pronounced peak in the distribution at 0.5 for Fig. 8b and around 0.7 in Fig. 8c.
This sharp localization of oscillators in one of the two available stable states is in
contradistinction to the usual statistical spread observed in Fig. 3. This is especially
remarkable for the case of the symmetric distribution that arises in Fig. 8b, vis-a-vis
the statistically symmetric case seen in Fig. 3. So we can infer that one can tailor
the distribution of oscillators in positive and negative OD-states by disconnecting
a suitable number of environment-oscillator links (fdisc) and adjusting the control
parameters εext and k.

4 Discussion

We investigated the impact of a common environment, which acts as a common
external system, on a group of Stuart–Landau oscillators. First, we considered
the group of oscillators completely disconnected from the external environment.
When there is no coupling to an external system, and the group of Stuart–Landau
oscillators are only coupled to each other via mean-field interaction, one obtains
a completely symmetric distribution of oscillation death states, i.e. half of the
oscillators attain positive OD states and other half attain negative OD states.
This symmetry is significantly broken, when the same group of oscillators are
connected to an external common environment. The symmetry breaking depends
on damping constant of the external system k, environment-oscillator coupling
strength εext and the fraction of oscillators connected to the external system.
When very few oscillators are connected to the environment, the OD states are
almost symmetrically distributed. On the other hand when a large fraction of
oscillators are coupled to the environment, the symmetry is broken to a very high
extent, for high environment-oscillator coupling strengths and low environmental
damping constants. Interestingly, when half the environment-oscillator links are
disconnected, the symmetry is restored, independent of the damping constant of
the environment and the environment-oscillator coupling strength. In fact in this
case, exactly half of the oscillators attain positive OD states and the other half attain
negative OD states. So our work here suggests a potent method to control the basin
stability of the oscillation death states.
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