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Abstract A mechanical model is constructed for the stability analysis of two-
wheeled suitcases and trailers. The main assumptions of the model are summarized
and the linearized equations of motion are presented. The linear stability of the
rectilinear motion is investigated, critical parameter values are determined for the
different level of complexity of the model. Numerical simulations are used to verify
the applicability of the model for the nonlinear analysis of the rocking motion of
trailers.

Keywords Two-wheeled suitcase · Trailer · Non-smooth system ·
Non-holonomic system

1 Introduction

The instability of towed vehicles (e.g. trailers, semi-trailers) is a relevant safety risk
in road transport. Namely, under certain conditions (badly chosen load conditions
and speed), a snaking motion may appear (see [1, 2]), which can even lead to the
rocking motion of the trailer when it jumps from one of its wheels to the other. As
a final result, the linear instability of the rectilinear motion of the trailer may cause
the roll-over of the vehicle. This phenomenon can also be observed in case of a
towed two-wheeled suitcase (see [3–6]), moreover similar mechanical models can
be composed for the investigations of the stability behaviour. The analogies of the
problems and the mechanical models are illustrated in Fig. 1.
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Fig. 1 Illustration of the analogy between rocking suitcases and snaking trailers with respect to
their mechanical models

In our former study, we used the mechanical model of the rocking suitcase shown
in the right top panel of Fig. 1 to analyse the linear stability and the basis of attraction
of the rectilinear motion by means of numerical simulations and experiments (see
[7]). The most exciting problem in the analysis of the mechanical model arises in
the fact that governing equations of the mechanical model are non-smooth since
different equations of motion describe the motion states of the suitcase (namely,
when both wheels are on the ground, left or right wheel is on the ground, none of
the wheels is on the ground). In addition, a kinematic constraint can be defined
for the rolling wheels having point-like contact with the ground. The switching
between the motion states is a complex task since switching appears when one
of the wheels has an impact with the ground or when one of the wheels leaves
the ground. Nevertheless, by implementing the mechanical model with its intricate
non-smooth properties in a simulation code, one can investigate the effects of the
initial conditions (e.g. initial tilting angle) and the different parameters (e.g. towing
speed v, geometrical parameters e and f ).

Of course, similar investigation can be done experimentally. A model-based
experimental setup was also built and placed on a conveyor belt in [7]. The towed
suitcase was perturbed at its left wheel by placing a cylindrical obstacle (with
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a) b)

Fig. 2 (a) The trajectories of the retro-reflective markers attached to the suitcase at left and the
right wheels, the centre of mass and the towing point, (b) basis of attraction of the rectilinear
motion identified by experiments.

diameter d0) onto to conveyor belt, and the motion of the suitcase was recorded
by a motion capturing system using retro-reflective markers (see the left panel of
Fig. 2). The detected basis of attraction of the rectilinear motion and its dependence
on the towing speed can be seen in the right panel Fig. 2, where blue dots refer
to the measurement points and dashed line illustrates the boundary of the basis of
attraction. Both the numerical and experimental results confirmed that the attractive
domain is smaller for larger speeds. In this study, we modify the mechanical model
of the rocking suitcase to make it suitable for the analysis of the stability problem
of trailers. In order to do this, the elasticities of the tyres and the wheel suspension
system are taken into account. Although these modifications increase the degrees
of freedom and the number of the parameters of the model, the mechanical model
turns to be holonomic and the motion can be described uniquely with the same
generalized coordinates independently from the actual motion state. After the short
summary of the derivation of the equations of motion, the linear stability of the
rectilinear motion is shown in the paper and numerical simulations are carried out
to verify the applicability of the constructed mechanical model for the investigation
of the nonlinear dynamics of rocking trailers.

2 Mechanical Model of Snaking Trailers

The mechanical model of snaking trailers can be seen on the left panel of Fig. 3. The
motion of the trailer can be described with the yaw angle ψ , the pitch angle ϑ , the
roll angle ϕ and the lateral displacement u of the joint at point A. Thus, the system
has n = 4 degrees of freedom (DoF), the vector of the generalized coordinates is

q = [
ψ ϑ ϕ u

]T
. (1)
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Fig. 3 (a) The mechanical model, (b) active forces acting on trailer

The towing length and the track width of the trailer are denoted by l and 2b,
respectively. The position of the centre of mass C can be described with parameters
e and f . The overall stiffness and damping of the wheel suspension and tyres are
denoted by k and c, while the lateral stiffness and damping at point A are kl and cl.
The equations of motion can be derived with the Lagrange equation of the second
kind:

d

dt

∂T

∂q̇k

− ∂T

∂qk

= Qk, k = 1, . . . , n , (2)

where T is the kinetic energy, qk is the kth generalized coordinate and Qk is the kth
component of the generalized force. The kinetic energy is calculated as

T = 1

2
mvC

2 + 1

2
ωTΘCω , (3)

where the velocity of point C is vC = |vC| = |vA + ω × rAC|. The velocity of
the towing point is vA = [ v u̇ 0 ]T given in the ground fixed (X, Y,Z) coordinate
system. The angular velocity of the trailer given in the trailer fixed (x, y, z)

coordinate system is

ω =
⎡

⎣
ϕ̇ − ψ̇ sin ϑ

ϑ̇ cos ϕ + ψ̇ cos ϑ sin ϕ

ψ̇ cos ϑ cos ϕ − ϑ̇ sin ϕ

⎤

⎦

(x,y,z)

. (4)

Let us consider the mass moment of inertia matrix as

ΘC =
⎡

⎣
ΘC,x 0 0

0 ΘC,y 0
0 0 ΘC,z

⎤

⎦

(x,y,z)

. (5)
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Fig. 4 The characteristics of
the tyre forces in case of
Fz = 15,000 N. The factors:
B = 10 (stiffness factor),
C = 1.9 (shape factor),
D = 1 (peak factor),
E = 0.97 (curvature factor)

The generalized force can be obtained from the virtual power:

δP = G · δvC + FRtyre · δvTR + FRsusp · δvR + FLtyre · δvTL

+ FLsusp · δvL + FAlat · δvA , (6)

where G is the gravitational force, FRtyre and FLtyre represent the forces acting on the
tyres at points TR and TL. FRsusp and FLsusp are the forces acting on the chassis of
the trailer at points R and L due to the elastic deformation of the suspensions. FAlat

is the lateral force acting at point A. These forces are shown in the right panel of
Fig. 3.

The tyre forces can be calculated with the help of the Magic Formula of Pacejka
(see [8]):

Ftyre,lat(α, Fz) = FzD sin (C arctan (Bα − E (Bα − arctan(Bα)))) , (7)

where B,C,D,E are the tyre parameters and Fz is the vertical load on the tyre. The
tyre force characteristics can be seen in Fig. 4. The side slip angle of the right wheel
can be calculated as

αR = − arctan

(
vTR · elat

vTR − (vTR · elat)elat

)
, (8)

where unit vector elat refers to the lateral direction of the trailer projected to the
ground. The side slip angle of the left wheel can be calculated similarly.
The force originated in the wheel suspension acts on the trailer in the z direction, its
magnitude is

FR susp = (
(LR,0 − dR)k + (vTR,z − vR,z)c

) · H(LR,0 − dR)

· H((LR,0 − dR)k + (vTR,z − vR,z)c)
(9)

for the right wheel, where the Heaviside-function H(x) = (1 + tanh (x/ε)) /2 with
the smoothing parameter ε is used to make the system to be smooth. The parameter
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LR,0 is the free length of the spring while dR is the actual length of the spring
(see panel (b) in Fig. 3). The force originated in the left wheel suspension can be
calculated similarly.

3 Linear Stability Analysis

The rectilinear motion of the trailer corresponds to: ψ(t) ≡ ψ0 = 0,
ϑ(t) ≡ ϑ0 = 0, ϕ(t) ≡ ϕ0 = 0, u(t) ≡ u0 = 0 in case of the spring free
length LR,0 ≡ LL,0 = h + mg(l − e)/(2kl). The linearized equation of motion can
be written as

Mq̈ + Cq̇ + Kq = 0 , (10)

where the mass matrix is

M =

⎡

⎢⎢
⎣

m(e − l)2 + ΘC,z 0 mf (l − e) m(e − l)

0 mf 2 + m(e − l)2 + ΘC,y 0 0
mf (l − e) 0 mf 2 + ΘC,x −mf

m(e − l) 0 −mf m

⎤

⎥⎥
⎦ ,

(11)
the damping matrix is

C =

⎡

⎢⎢⎢
⎣

BCDmgl(l−e)
v

0 BCDmgh(e−l)
v

BCDmg(e−l)
v

0 2cl2 0 0
BCDmgh(e−l)

v
0 2b2clv+BCDmgh2(l−e)

lv
BCDmgh(e−l)

lv
BCDmg(e−l)

v
0 BCDmgh(e−l)

lv
cllv+BCDmgh2(l−e)

lv

⎤

⎥⎥⎥
⎦

(12)

and the stiffness matrix is

K =

⎡

⎢⎢⎢
⎣

BCDmg(l − e) 0 mg(e − l) 0
0 2l2k − mgf 0 0

BCDmgh(e−l)
l

0 2b2k − mgf 0
BCDmgh(e−l)

l
0 mg(l−e)

l
kl

⎤

⎥⎥⎥
⎦

. (13)

It is worth to notice that the stiffness matrix is asymmetric. As it can be seen,
the system can be separated into two subsystems: the second component of (10)
corresponding to the pitch motion can be separated, the other equations are coupled
(n = 3 DoF subsystem).
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3.1 The Pitch Motion of the Trailer

The equation of motion of the separable subsystem is a second-order ordinary
differential equation, from which the critical value of the stiffness k can be
expressed:

kcr = mgf

2l2 . (14)

This critical value corresponds to static loss of stability, namely the trailer overturns
about the lateral axis for k < kcr.

3.2 The Yaw and Roll Motion of the Trailer

The equations of motion of the coupled subsystem consist of three second-order
ordinary differential equations. By using the trial solution

q = Aeλt (15)

with the characteristic root λ, the characteristic equation becomes

det
(
λ2M + λC + K

)
= 0 . (16)

The stability of the rectilinear motion can be investigated by Routh–Hurwitz
criteria. Unfortunately, no closed form expression can be given for the critical
parameter values in general case. But for kl → ∞ (i.e. when the joint at A is laterally
rigid), the system simplifies to a n = 3 DoF system and critical stiffness values can
be determined for the undamped (c = 0) case:

kcr,1 = mg(l(f + h) − eh)

2b2l
, (17)

and

kcr,2 = mgl2
(
l(e − l)ΘC,x + f hΘC,z

)

2b2l2
(
me2h − mel(f + 2h) + mf l2 + h

(
ΘC,z + ml2

))

− mgBCDh(e − l)
(
me2h2 − 2mehl(f + h) + h2ΘC,z + ml2(f + h)2 + ΘC,x l2

)

2b2l2
(
me2h − mel(f + 2h) + mf l2 + h

(
ΘC,z + l2m

)) .

(18)

Static stability loss occurs if k < kcr,1, namely the trailer falls over. Dynamic loss
of stability happens if kcr,1 < k < kcr,2, and the rectilinear motion is stable for
kcr,2 < k. These critical values can be also identified by the numerical calculation
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Fig. 5 The real part of the rightmost characteristic root of the linearized system. (a) Critical
spring stiffness values for the 3 DoF model, (b) unstable speed range in case of the 4 DoF
model. Parameter values: l = 3 m, b = 0.8 m, e = 1 m, f = 1 m, h = 0.5 m, m = 3000 kg,
k = 60,000 N/m, c = 6000 Ns/m, B = 10, C = 1.9, D = 1, E = 0.97, (a) kl → ∞, (b)
kl = 10,000 N/m, cl = 100 Ns/m

of the characteristic roots, see panel (a) of Fig. 5, where the real part of the rightmost
characteristic root is plotted versus the stiffness.

Of course, the linear stability of original four degree-of-freedom mechanical
model can also be investigated numerically. Panel (b) of Fig. 5 shows the real part
of the rightmost characteristic root versus the towing speed v. For a certain velocity
range (approx. between 10 and 26 m/s), the rectilinear motion is unstable.

4 Simulation

Numerical simulations were run in order to verify the critical parameter values given
by the linear stability analysis and to check the nonlinear dynamics of the trailer.
Fourth order Runge–Kutta method was used with fix time step. The simulations
were run for different initial conditions and for different spring stiffness values (3
DoF model) or for different towing velocity values (4 DoF model). Here we present
only a simulation result for kl → ∞ and for k = 75,000 N/m. As it can be seen, the
motion tends to a large amplitude rocking motion, see Fig. 6.

Based on the numerical simulations, one can also draw the bifurcation diagram of
the four degree-of-freedom system. The top left panel of Fig. 7 depicts the amplitude
of the roll angle with respect to the bifurcation parameter v. Subcritical Hopf
bifurcation is suspected, which could be validated by using a bifurcation software.
Panel (b) of Fig. 7 shows the effects of parameters f and e on the linear stability
of the rectilinear motion. The red areas correspond to linearly unstable rectilinear
motion (snaking, rocking, roll-over of the trailer may appear), while the green areas
correspond to linearly stable rectilinear motion.
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Fig. 6 The time histories of the generalized coordinates and the vertical forces acting on the left
or the right wheel in case of k = 75,000 N/m

a) b)

Fig. 7 (a) The bifurcation diagram of the four degree-of-freedom system, in case of k =
75,000 N/m (top panel) and the real part of the rightmost characteristic root of the linearized
system (bottom panel). (b) The effects of parameters f and e on the linear stability of the rectilinear
motion. The green areas correspond to linearly stable, the red areas correspond to linearly unstable
motion

5 Conclusions

A mechanical model was introduced by which both the stability of two-wheeled
suitcases and trailers can be investigated. It was shown that the linear stability
of the rectilinear motion depends on the speed if the lateral displacement of the
towing joint is considered. Critical stiffness values were also determined for the
wheel suspensions. Simulation results also confirmed that the model can exhibit the
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large amplitude rocking motion and the nonlinear analysis of the model may lead to
relevant information about the instability of the trailer.
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