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Preface

This volume is part of three volumes collecting the Proceedings of the First
International Nonlinear Dynamics Conference (NODYCON 2019) held in Rome,
February 17–20, 2019. NODYCON was launched to foster the tradition of the
conference series originally established by Prof. Ali H. Nayfeh in 1986 at Virginia
Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA, as
the Nonlinear Vibrations, Stability, and Dynamics of Structures Conference. With
the passing in 2017 of Prof. Nayfeh, who was also the founder of the Springer
journal Nonlinear Dynamics in 1990, NODYCON 2019 was organized as a collec-
tive tribute of the community to Prof. Nayfeh for being one of the most influential
leaders of nonlinear dynamics. NODYCON 2019 was also established to look to
and dream about the future. The call for papers attracted contributions dealing with
established nonlinear dynamics research topics as well as with the latest trends and
developments. At the same time, to reflect the rich spectrum of topics covered by the
journal Nonlinear Dynamics, the call included diverse and multidisciplinary topics,
to mention a few, multi-scale dynamics, experimental dynamics, dynamics of struc-
tures/industrial machines/equipment/facilities, dynamics of adaptive, multifunc-
tional, metamaterial structures, dynamics of composite/nanocomposite structures,
reduced-order modeling, nonsmooth dynamics, fractional-order system dynamics,
nonlinear interactions and parametric vibrations, computational techniques, non-
linear system identification, dynamics of NEMS/MEMS/nanomaterials, multibody
dynamics, fluid/structure interaction, influence of nonlinearities on vibration control
systems, human–machine interaction, nonlinear wave propagation in discrete and
continuous media, chaotic map-based cryptography, ecosystem dynamics, social
media dynamics, complexity in engineering, and network dynamics.

For NODYCON 2019, the organizers received 450 two-page abstracts and
based on 467 reviews from the Program Committee, the Steering and Advisory
Committees, and external reviewers, 391 papers and 17 posters were accepted,
published in the Book of Abstracts (NODYS Publications, Rome, ISBN 978-88-
944229-0-0), and presented by nearly 400 participants from 68 countries. The
diverse topics covered by the papers were organized along four major themes to
organize the technical sessions:
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(a) Concepts and methods in nonlinear dynamics
(b) Nonlinear dynamics of mechanical and structural systems
(c) Nonlinear dynamics and control
(d) Recent trends in nonlinear dynamics

The authors of a selection of approximately 60 papers were invited to publish
in the Special Issue of Nonlinear Dynamics entitled “NODYCON 2019 First Inter-
national Nonlinear Dynamics Conference.” Over 200 full papers were submitted
to the Proceedings of the First International Nonlinear Dynamics Conference
(NODYCON 2019) and only 121 of them were accepted. These papers have been
collected into three volumes, which are listed below together with a sub-topical
organization.

Volume 1: Nonlinear Dynamics of Structures, Systems,
and Devices

(a) Methods for nonlinear dynamics
(b) Bifurcations and nonsmooth systems
(c) Nonlinear phenomena in mechanical systems and structures
(d) Experimental dynamics, system identification and monitoring
(e) Fluid–structure interaction, multibody system dynamics
(f) Turning processes, rotating systems, and systems with time delays

Volume 2: Nonlinear Dynamics and Control

(g) Vibration absorbers and isolators
(h) Control of nonlinear systems
(i) Sensors and actuators
(j) Network synchronization

Volume 3: New Trends in Nonlinear Dynamics

(k) Smart materials, metamaterials, composite and nanocomposite materials, and
structures

(l) MEMS/NEMS and energy harvesters
(m) Nonlinear phenomena in bio- and ecosystem dynamics
(n) Chaos in electronic systems
(o) Fractional-order systems



Preface vii

I wish to acknowledge the work of the Co-Editors of the NODYCON 2019
Proceedings: Prof. Balakumar Balachandran (University of Maryland, College Park,
MD, USA), Prof. Jun Ma (Lanzhou University of Technology, China), Prof. J.
A. Tenreiro Machado (Instituto Superior de Engenharia do Porto, Portugal), Prof.
Gabor Stepan (Budapest University of Technology and Economics, Hungary).

The success of NODYCON 2019 relied primarily on the efforts, talent, energy,
and enthusiasm of researchers in the field of nonlinear dynamics who wrote and
submitted these papers. Special praise is also deserved for the reviewers who
invested significant time in reading, examining, and assessing multiple papers, thus
ensuring a high standard of quality for this conference proceedings.

Rome, Italy Walter Lacarbonara
August 2019



Preface for Volume 1: Nonlinear
Dynamics of Structures, Systems,
and Devices

Volume 1 of the NODYCON Proceedings is composed of 55 papers, which are
spread across the following groupings: (a) methods for nonlinear dynamics (8
papers), (b) bifurcations and nonsmooth systems (8 papers), (c) nonlinear phenom-
ena in mechanical systems and structures (12 papers), (d) experimental dynamics,
system identification, and monitoring (8 papers), (e) fluid–structure interaction and
multibody system dynamics (9 papers), and (f) turning processes, rotating systems,
and systems with time delays (10 papers). It is acknowledged that a paper placed
in one grouping could have easily been placed in another grouping as well. As
one reads through these 55 contributions, one will note the use of a wide range
of experimental, analytical, and numerical techniques for study of the nonlinear
dynamics of a wealth of systems across different length and time scales.

In the work of N. Potosakis, E. Paraskevopoulos, and S. Natsiavas, an augmented
Lagrangian formulation is used to construct models of nonlinear mechanical sys-
tems such as vehicle systems subjected to bilateral scleronomic motion constraints.
A. O. Belyakov and A. P. Seyranian study domains of stability for parametrically
excited systems by using high-order approximations of the monodromy matrix.
A. Liu and D. Wagg examine normal form analysis for a two-degree-of-freedom
system. E. Kremer investigates system vibratory responses to amplitude-modulated
and phase-modulated excitations. A. M. Bersani, A. Borri, A. Milanesi, G. Tomas-
setti, and P. Vellucci summarize some recent results obtained from studies of the
asymptotic properties of important enzyme reactions. Z. Wang, Z. Tang, J. H. Park,
and Y. Wang study system modeling for the Hammerstein nonlinear model with
unknown but bounded noise. For strongly nonlinear systems, H.-E. Du, G.-K. Er,
and V. P. Iu consider construction of frequency-response curves and determination
of unstable response regions. Soliton solutions of the Korteweg-de Vries equation
are investigated by S. Carillo, M. L. Schiavo, and C. Schiebold.

Two types of bifurcations related to limit directions of nonsmooth vector fields
are examined by M. Anatali and G. Stepan. S. Natsiavas and E. Paraskevopoulos
study dynamics of multibody systems experiencing impacts with friction. H. Xu
and J. Ji use state feedback control to create Neimark–Sacker bifurcation in a vibro-
impact system. H. Z. Horvath and D. Takacs consider the stability of suitcases

ix



x Preface for Volume 1: Nonlinear Dynamics of Structures, Systems, and Devices

and trailers that are subjected to non-holonomic constraints. I. D. Atanasovska, K.
R. Hedrih, and D. B. Momcilovic study the vibro-impact dynamics of spur gears
with wear. M. Ramírez, J. Collado, and F. Dohnal provide an efficient means for
computing the stability transition curves of coupled Mathieu equations. M. Yadav,
S. S. Chaurasia, and S. Sinha study the symmetry in a group of Stuart–Landau
oscillators; in particular, with regard to oscillation death states. Dynamics and
bifurcations of solutions of the so-called Sprott A system are studied by M. Messias
and A. C. Reinol.

J. Awrejcewicz, R. Starosta, and G. Sypniewska-Kamińska examine the dynam-
ics of a three-degree-of-freedom pendulum-spring-damper system in the presence
of an external resonance and a two-to-one internal resonance. In the presence of
internal resonances, the influence of initial geometric imperfections on the dynamics
of a slender cylindrical panel nonlinear response is investigated by F. M. A. Silva,
W. A. Vaz, and P. B. Gonçalves. M. Farid and O. V. Gendelman treat sloshing
dynamics in partially filled storage tanks. Free oscillations of arbitrarily sagged
and inclined cables oscillating around a catenary static profile are studied by A.
Mansour, G. Rega, and O. B. Mekki. Nonlinear interactions between flexural and
sway oscillations of a laterally braced column are examined by D. Orlando, J. M. P.
Raimundo, and P. B. Gonçalves. The influence of temperature on cable dynamics
under different excitations is considered by Y. Zhao, H. Lin, L. Chen, and Z.
Guo. Behavior of a harmonically forced nonlinear system with a shape memory
alloy-based spring is investigated by S. Ramnarace and J. Bridge. Static behavior
and free oscillations of shallow circular arches are treated by U. Eroglu and G.
Ruta. G. Liu and W. Zhang investigate the response of a composite cantilever plate
placed in a subsonic air flow and study the frequency response of this system. A
hysteresis damper is examined by D. Li and H. Fang. Nonlinear oscillations of an
axially excited beam embedded in a viscoelastic medium are treated by E. Babilio.
Energy localization in a chain of coupled, nonlinear oscillators is investigated by A.
Kovaleva.

N. Barbieri, M. J. Mannala, R. Barbieri, and G. Barbieri use experimental data
based on torsional response to tune nonlinear models of transmission line cables.
Nonlinear, stochastic dynamics of a Duffing oscillator are studied by L. G. G.
Villani, S. Silva, and A. Cunha, Jr. Hysteretic behavior of wire rope isolators is
considered by N. Vaiana, F. Marmo, S. Sessa, and L. Rosati. Nonlinear behavior
of rubber shear springs is experimentally examined by S. Gong, S. Oberst, and X.
Wang. Experimental studies on the responses of a six-degree-of-freedom parallel
manipulator are reported by K. Ringgaard and O. Balling. N. Cavalagli, M. Ciano,
G. Fagotti, M. Gioffrè, V. Gusella, and C. Pepi discuss experimental investigations
into the dynamic response of a two-storey masonry structure mounted on a shaker
table and subjected to a transient excitation with a strong vertical component. Rate
dependence of a hysteretic device is experimentally investigated and characterized
by M. Antonelli, B. Carboni, W. Lacarbonara, D. Bernardini, and T. Kalmár-Nagy.
K. R. Hedrih, S. V. Brčić, and S. Paunović discuss the use of photoelasticity for
nonlinear dynamic studies for different applications, including dams.
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A combined analytical, experimental, and numerical investigation is used to
explore the dynamics of an acoustically levitated sphere by A. Dolev and I.
Bucher. Vortex-induced vibrations are studied by V. Kurushina, E. Pavlovskaia,
A. Postnikov, G. R. Franzini, and M. Wiercigroch. C. Mannini studies vortex-
induced vibrations and galloping dynamics of a cylinder with a rectangular cross
section. Dynamics of an aeroelastic system is investigated by C. Demartino, G.
Matteoni, and C. T. Georgakis. Computational dynamics of a multibody system
in a vertical fluid flow is the subject of the work of Z. Terze, V. Pandža, and D.
Zlatar. M. Eugeni, F. Mastroddi, and F. Saltari examine damping models used in
flutter analysis of highly flexible aircraft. P. Rosatelli, W. Lacarbonara, A. Arena,
and D. J. Inman examine morphing wing dynamics by using computational means.
Multibody dynamic studies are carried out by P. Masarati, A. Zanoni, V. Muscarello,
R. Paolini, and G. Quaranta to understand how the interactions between the vehicle
dynamics and human biomechanics affect helicopter’s handling qualities. The use of
absolute nodal coordinate formulation for studies of thin plate dynamics is examined
by K.-W. Kim, J.-W. Lee, J.-S. Jang, J.-H. Kang, and W.-S. Yoo.

Chatter in turning process is the subject matter of the work presented by B. Beri
and G. Stepan. Aperiodic dynamics of spinning shafts with varying rotation speeds
are studied by F. Georgiades. M. A. AL-Shudeifat and C. Nataraj study backward
whirling of a rotor with fatigue cracks. Inner race defects in rolling element bearings
are treated by T. H. Mohamad, S. Ilbeigi, and C. Nataraj. Turning process dynamics
are studied by A. Gouskov, G. Panovko, and D. D. Tung. A. Wang, W. Jin, and
Q. Lin investigate regenerative effects and friction force effects on chatter during
turning operations. Y. Jin and P. Xu study noise-induced transitions in a triple well
potential system with a time delay. Dimension reduction for rotor dynamic studies is
the topic of the work of K. Lu, H. Zhang, H. Zhou, Y. Jin, Y. Yang, and C. Fu. Drum-
type washing machines are studied by C. Baykal, E. Cigeroglu, and Y. Yazicioglu.
Wear effects in hydrodynamic bearings used in rotating systems are examined by T.
J. Machado and G. C. Stroti.

In conclusion, this volume represents a multifaceted cross section of recent
advances in computational methods for nonlinear dynamics, bifurcations, nonlinear
phenomena in mechanical systems and structures, experimental dynamics, nonlinear
system identification, fluid–structure interaction and multibody system dynamics,
turning processes, rotating systems, and nonsmooth system dynamics including
systems with time delays. We hope that readers will benefit from the rich work
portrayed here on nonlinear dynamics of structures, systems, and devices and that
new ideas and future contributions will be inspired.

Rome, Italy Walter Lacarbonara
College Park, MD, USA Balakumar Balachandran
Lanzhou, China Jun Ma
Porto, Portugal J. A. Tenreiro Machado
Budapest, Hungary Gabor Stepan
August 2019
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Uğurcan Eroğlu and Giuseppe Ruta

Nonlinear Vibration Responses of Laminated Composite Cantilever
Plate in Subsonic Air Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Gen Liu and Wei Zhang

Adaptation of Energy Dissipation in a Laminated Module
with Tunable Twin Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Dejian Li and Hui Fang

The Duffing–Mathieu Equation Arising from Dynamics
of Post-Buckled Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Enrico Babilio

Resonance-Induced Energy Localization in Weakly Dissipative
Anharmonic Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Agnessa Kovaleva

Part IV Experimental Dynamics, System Identification
and Monitoring

Torsional Analysis of Transmission Line Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Nilson Barbieri, Marcos José Mannala, Renato Barbieri, and Gabriel de
Sant’Anna Vitor Barbieri

Application of a Stochastic Version of the Restoring Force Surface
Method to Identify a Duffing Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Luis G. G. Villani, Samuel da Silva, and Americo Cunha Jr.

Modeling of the Hysteretic Behavior of Wire Rope Isolators Using
a Novel Rate-Independent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Nicolò Vaiana, Francesco Marmo, Salvatore Sessa, and Luciano Rosati

A Non-linear Model of Rubber Shear Springs Validated
by Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Sanpeng Gong, Sebastian Oberst, and Xinwen Wang



xvi Contents

Operational Modal Analysis on a Six-Degree-of-Freedom Parallel
Manipulator: Reproducibility, Excitation and Pose Dependency. . . . . . . . . . . 329
Kasper Ringgaard and Ole Balling

Shaking Table Investigation on the Masonry Structures Behaviour
to Earthquakes with Strong Vertical Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Nicola Cavalagli, Matteo Ciano, Gianluca Fagotti, Massimiliano Gioffrè,
Vittorio Gusella, and Chiara Pepi

Quantifying Rate-Dependence of a Nonlinear Hysteretic Device . . . . . . . . . . . 347
Marco Antonelli, Biagio Carboni, Walter Lacarbonara, Davide Bernardini,
and Tamás Kalmár-Nagy

Application of Photoelasticity to Some Nonlinear Dynamic
Problems and Stress State Analysis in Dams: A Brief Overview
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Nonlinear Dynamics of Multibody
Systems Using an Augmented Lagrangian
Formulation

Nikolaos Potosakis, Elias Paraskevopoulos, and Sotirios Natsiavas

Abstract A class of multibody systems subject to bilateral scleronomic motion
constraints is investigated. The formulation is based on a new set of equations of
motion, expressed as a coupled system of strongly nonlinear second-order ordinary
differential equations. After putting these equations in a weak form, the position,
velocity, and momentum type quantities are assumed to be independent, leading to
a three-field set of equations of motion. Next, an equivalent augmented Lagrangian
formulation is set up by introducing a set of penalty terms. This final set of equations
is then used as a basis for developing a new time integration scheme, which is
applied to several example systems. In those examples, special emphasis is put on
illustrating the advantages of the new method when applied to mechanical systems,
involving redundant constraints or singular configurations.

Keywords Analytical mechanics · Multibody dynamics · Bilateral motion
constraints · Weak form of equations of motion · Augmented Lagrangian

1 Introduction

Research on multibody dynamics helps in developing more efficient and robust
numerical techniques for solving challenging engineering problems. This in turn
yields useful design gains in many areas, including mechanisms, robotics, biome-
chanics, automotive, railway, and aerospace structures [1–4]. Typically, the equa-
tions of motion for this class of systems are derived and cast in the form of a set
of differential-algebraic equations (DAEs) of high index. Earlier attempts to solve
these equations are based on index reduction or coordinate partitioning techniques
[3, 4]. In contrast, the main objective of this chapter is to first create and employ
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a better theoretical foundation and then proceed to development of more advanced
numerical schemes.

In the new approach, the equations of motion employed are second-order
ordinary differential equations (ODEs). This is achieved by combining concepts of
Analytical Dynamics and differential geometry and leads to a natural elimination
of singularities associated with DAE formulations from the onset [5]. Since the
ulterior motive is the development of an efficient numerical integration scheme,
these equations are first put in a convenient weak form. Moreover, the position,
velocity, and momentum type quantities are assumed to be independent, forming
a three-field set of equations [6]. Finally, the set of equations obtained is solved
by application of an augmented Lagrangian formulation, which is set up after
introducing appropriate penalty terms [7]. Next, the validity and efficiency of this
scheme is tested and illustrated by applying it to a number of characteristic example
mechanical systems.

The set of equations of motion employed is included in Sect. 2. Originally, they
appear in a strong form and are subsequently put in a three-field weak form. After
introducing penalty terms, they are cast eventually in an augmented Lagrangian
form. Then, a temporal discretization scheme is developed and numerical results
are presented for two mechanical examples in Sect. 3.

2 Equations of Motion: Augmented Lagrangian Formulation

This chapter employs a new set of equations of motion, obtained for a class
of multibody mechanical systems subject to equality constraints. The motion is
described by a finite number of generalized coordinates q = (q1 . . . qn), at any time
t [1, 2]. In this way, it can be represented by the motion of a fictitious point, say
p, along a curve on the n-dimensional configuration manifold M of the system.
Moreover, the tangent vector v to this curve belongs to an n-dimensional vector
space TpM, the tangent space of manifold M at p [2]. The systems examined are
subject to a set of k motion constraints. For simplicity, these constraints are assumed
to be scleronomic, with form

ψ̇R ≡ aR
i (q)q̇i = 0. (1)

When a constraint is holonomic, its equation can be integrated in the algebraic
form

φR(q) = 0. (2)

The equations of motion of the class of systems examined can be cast in the form

h∼
∗ ≡ h∼

∗
M − h∼

∗
C = 0∼ (3)
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on manifold M, where

h∼
∗
M = hi e∼

i with hi =
(
gij v

j
)• −Λm

�igmjv
j v� − fi (4)

and

h∼
∗
C =

∑k

R=1
hRa

R
i e∼

i with hR =
(
mRRλ̇

R
)• + cRRλ̇

R + kRRλ
R − f R. (5)

In Eq. (5), the summation convention on repeated indices does not apply to
index R. Moreover, the coefficients mRR, cRR, kRR, and f R are determined by the
constraints [5]. Equation (3) represents a set of n second-order coupled strongly
nonlinear ODEs in the n + k unknowns qi and λR. A complete mathematical
formulation is obtained by incorporating the k equations of the constraints, which
are expressed originally by Eqs. (1) and (2). In particular, these equations are
replaced eventually by

gR =
(
mRRφ̇

R
)• + cRRφ̇

R + kRRφ
R = 0 and gR =

(
mRRψ̇

R
)• + cRRψ̇

R = 0,

(6)

respectively, for R = 1, . . . , k [5].
Taking into account Eq. (3) leads first to

∫ t2

t1

(
h∼
∗
M − h∼

∗
C

) (
w
)

dt = 0, ∀w ∈ TpM, (7)

along a natural trajectory on the manifold and within any time interval [t1, t2].
Moreover, as variation of a function f is defined the derivative of f along vector
w, by

δf ≡ w(f ) = fiw
i. (8)

Then, wi = δqi for each holonomic coordinate, while a little more involved rela-
tion is obtained in case of nonholonomic coordinates [6]. In addition, the position,
velocity, and momentum variables are considered as independent quantities in the
sequel. For this, a new velocity field υ is introduced on manifold M, which should
eventually be forced to become identical to the true velocity field v. This means that

υi = vi ⇒ δυi = δvi, (9)

with variations defined through Eq. (8) by δυi = w
(
υi

)
and δvi = w

(
vi
)
. In

analogy to the action leading to Eq. (7), conditions (9) are imposed by
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∫ t2

t1

[
δπi

(
υi − vi

)
+ πi

(
δυi − δvi

)]
dt = 0, (10)

where the quantities δπ i and π i are components of co-vectors belonging to the
cotangent space T ∗pM . In the same spirit, by considering the motion constraints
expressed by Eq. (6), the following relation must also be satisfied

∫ t2

t1

gR δλRdt = 0, (11)

for an arbitrary multiplier δλR and each R= 1, . . . , k. Then, integrating by parts the
first term in the integrand for a holonomic constraint yields

(
mRRφ̇

RδλR
)∣∣∣

t2

t1
−

∫ t2

t1

[
mRRφ̇

R
(
δλR

)• −
(
cRRφ̇

R + kRRφ
R
)
δλR

]
dt = 0,

(12)

while a similar result is also obtained for a nonholonomic constraint.
Next, a similar action is also taken for the velocity components λ̇R , by introduc-

ing a new vector field on TpR
MR for each constraint manifold MR, with components

μR, together with a new set of Lagrange multipliers σR, belonging to the cotangent
space T ∗pR

MR . As a consequence, the weak formulation is augmented by the terms

∫ t2

t1

[
δσR

(
μR − λ̇R

)
+ σR

(
δμR − δλ̇R

)]
dt = 0, (R = 1, . . . , k) , (13)

where δσR represents the component of a co-vector on Tp
∗
R
MR . Then, one can

relate the strong time derivatives vi (of qi or ϑi, for a true or a pseudo-coordinate,
respectively) and λ̇R of the position type variables to weak velocities, denoted by
υi and μR, through two new sets of Lagrange multipliers, denoted by δπ i and δσR,
respectively.

Finally, appending the terms in Eqs. (10)–(13) to Eq. (7) and performing lengthy
manipulations leads eventually to an involved three-field set of equations [6]. Then,
since the variations wi, δλR, δυi, δμR, δπ i, and δσR are independent, collecting the
terms in these equations multiplied by these quantities leads to a coupled set of
nonlinear algebraic equations. In fact, by adding suitable penalty terms due to the
constraints, it is found that the form of these equations remains unaffected, making
the substitution

μR = μR − ξRφ̇
R and λ

R = λR − ξRφ
R, (14)

when μR and λR is multiplied by mRR or cRR and kRR, respectively. This provides
a convenient and strong basis for developing an appropriate temporal discretization
of the equations of motion. For the purposes of the present chapter, this task was
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performed within the framework of the augmented Lagrangian formulation, leading
to a convenient block-type iterative technique within each time step.

3 Numerical Results

Some characteristic results are presented next for two selected examples. The first
example is of academic interest, while the second corresponds to an industrial
application.

3.1 Planar Slider-Crank Mechanism

First, in Fig. 1 are compared results obtained by applying the new method with
similar results reported for a typical benchmark problem [8]. The planar slider-crank
mechanism shown in the inset of Fig. 1b is examined. This represents multibody
systems passing through a singular configuration. The two rods have an equal length
of 1 m and a uniformly distributed mass of 1 kg, while the slider has a negligible
mass and is constrained to move along the ground axis Ox. Consequently, the
number of degrees of freedom increases instantaneously from one to two when
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Fig. 1 Results for a slider-crank mechanism: (a) values of mRR as a function of θ , (b) time step
variation for mRR and mRR/10, (c) mechanical energy for mRR and mRR/10, and (d) changes in
the values of the penalty factors leading to convergence up to about 16 s for mRR/10
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θ = nπ /2, with n= 0, 1, . . . . The mechanism starts from the position with θ = π /4,
so that the initial velocity of point P3 is 4 m/s along the −x direction and executes
oscillations due to the action of gravity, acting along the −y direction, with gravity
acceleration equal to 9.81 m/s2.

Based on standard modeling requirements, the model employed consists of four
rigid bodies, corresponding to 24 dof. In addition, it is subject to a total of k = 26
bilateral constraints. This means that three of these constraints are redundant. First,
in Fig. 1a are presented the values of all the mRR parameters, obtained over a full
rotation of the two members. A significant variation is observed to occur in the value
of mRR for some of the constraints over the complete rotation. In addition, a much
bigger difference is observed in the values from one constraint to another. Next, in
Fig. 1b is shown the time step history. When the correct values were selected for
mRR the step was found to remain constant and equal to the initial selection. Also,
some of the penalty factors kept their initial value (ξR = 1000), while some other
were increased up to 2000. However, when a wrong value of mRR/10 was selected,
instead, the time step decreased occasionally and eventually fell below the minimum
allowable value. In Fig. 1c is shown the corresponding mechanical energy of the
system, showing an observable drop in its value at times where a decrease in the
time step is performed. Also, the penalty values had to be increased by two orders
of magnitude when mRR/10 was selected, as depicted in Fig. 3d. Moreover, even
that increase was not sufficient to guarantee continuation of the simulation beyond
the first 16 s of the motion.

Next, in Fig. 2a, b are shown the time step and the mechanical energy of the
mechanism, by using the correct values of mRR but keeping the same constant
penalty values for all the constraints. The results indicate that a convergence is
possible to occur in the numerical solution, within the time interval examined,
provided that the penalty values lie within a specific interval (here 103–104). The
explanation for this behavior is that for an excessive value of the penalty value,
the part associated with the corresponding constraint term dominates the Jacobian
matrix of the resulting set of linear algebraic equations at each iteration step, leading
to ill-conditioning. On the other hand, relatively small values of the penalty factors
make a small contribution to the Jacobian matrix and this implies that a larger
number of iteration is required for convergence at each step.

Likewise, in Fig. 2c, d are shown the same quantities, obtained as a function
of time for the correct values of mRR, by keeping constant all the penalty factors
to their initial values, again. Moreover, the results of the new method, represented
by the dashed line, are compared to those obtained by applying the same method
after setting mRR = 0, cRR = 0, kRR = 1 and f R = 0 in Eq. (5), so that
hR = λR. In addition, it was also set mRR = 1 in Eq. (6). In this way, the set of
equations employed is reduced to the set of equations of motion employed by current
multibody dynamics formulations [9, 10]. This case is referred to as a modified
augmented Lagrangian formulation (M-ALF). Comparison of the results shows that
the numerical performance gets worse, demonstrating the advantages associated
with the new set of equations of motion.
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of relative velocity

3.2 Complex Model of a Ground Vehicle

In the second example, a model of a real ground vehicle was examined, shown in
Fig. 3a. Many of its components exhibit strongly nonlinear behavior. For instance,
in Fig. 3b are shown the forces developed in the front and rear shock dampers as a
function of the relative velocity. Finally, the tires were modeled using the Pacejka
tire model. In total, the model consists of 53 rigid bodies, interconnected with
49 kinematical constraints, 29 bushings, 9 spring-damper systems, and 9 action-
reaction force elements. As a consequence, the total number of degrees of freedom
of the final model is 134.
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Fig. 4 Results for a repeated swept steering maneuver: (a) history of the longitudinal velocity of
the car, (b) size of the time step, (c) comparison of trajectories, and (d) comparison of tire lateral
forces obtained with two BDF solvers

The vehicle was subjected to a repeated swept steering maneuver, by applying
a torque at the car’s differential and imposing the steering angle imposed on the
steering wheel during the motion. First, in Fig. 4a is shown the history of the
longitudinal velocity of the car. The results of the new method are represented
by the continuous curve. These results are first compared with those obtained by
applying the modified augmented Lagrangian formulation (M-ALF), as was defined
in Sect. 3.1. In the latter case, a sudden interruption of the time integration occurred
after about 17 s of motion, as indicated by the broken curve. The reason for this
interruption is explained by the results of Fig. 4b, where the size of the time step
employed by the two methods is shown. Besides this, the results illustrate that the
new method, using variable penalty factors and correct values for the parameters
mRR, cRR, kRR, and f R , leads to substantially smaller time steps, especially as
the duration of the event increases. Next, in Fig. 4c is shown a comparison of
the resulting car trajectories on the horizontal plane, obtained by two state of the
art commercial codes [11, 12]. These codes set up the equations of motion and
solves them numerically as a system of index-3 DAEs by employing a classical
integration scheme, based on backward differentiation formulas (BDF). Likewise,
Fig. 4d presents a comparison of the corresponding lateral force developed in the
front left tire. Here, the deviations observed between the results of the new method
and the codes grow gradually and become large at the final stages of the maneuver.
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Stability Boundary Approximation
of Periodic Dynamics

Anton O. Belyakov and Alexander P. Seyranian

Abstract We develop here the method for obtaining approximate stability bound-
aries in the space of parameters for systems with parametric excitation. The
monodromy (Floquet) matrix of linearized system is found by averaging method.
For system with two degrees of freedom (DOF) we derive general approximate
stability conditions. We study domains of stability with the use of fourth order
approximations of monodromy matrix on example of inverted position of a pendu-
lum with vertically oscillating pivot. Addition of small damping shifts the stability
boundaries upwards, thus resulting in both stabilization and destabilization effects.

Keywords Floquet multipliers · Monodromy matrix · Parametric pendulum ·
Averaging method

1 Introduction

Let us study the stability of the equilibrium y ≡ 0 of a nonlinear system governed
by ordinary differential equations ẏ = J(t) y + f (t, y), where for nonlinear vector-
function f exist constants c and ν > 1, such that |f (t, y)| ≤ c |y|ν for all t ≥ 0
and y ∈ R

n. Vector-function f (t, y) and matrix J(t) are piecewise continuous in t .
Moreover J(t) is bounded and T -periodic.

According to Lyapunov’s theorem the trivial solution of such a nonlinear system
is asymptotically stable if all Lyapunov exponents of the linear system ẋ(t) =
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J(t) x(t) are strictly negative and the solution is unstable if at least one Lyapunov
exponent is strictly positive.1 Asymptotic stability of the periodic linear system
determines the asymptotic stability of the nonlinear system equilibrium and vice
versa.2 Stability of linear systems with time-periodic coefficients was also studied
by Gaston Floquet [1]. Lyapunov exponent λ of the linear periodic system can be
expressed via its corresponding Floquet multiplier ρ as λ = ln |ρ|. The theorem
can also be reformulated to compare absolute values of Floquet multipliers with
1. Floquet multipliers are the eigenvalues of the monodromy matrix which is the
fundamental matrix of the linear system taken at time T .

Monodromy matrix and Floquet multipliers can always be numerically calcu-
lated. Stability can also be checked by studying solutions of the system, see, e.g.
[2–4] and references therein. But in practice it is often useful to have analytical
approximations of stability regions in parameter space. To obtain a straightforward
technique for deriving such analytical stability boundary approximations of any
order we combine Floquet theory with asymptotic method of averaging, [4].

This technique yields same results as expansion of monodromy matrix in series
in [5] up to the terms of higher order than the order of approximation. These terms
are automatically eliminated in the averaging scheme making the technique more
convenient in practice.

We demonstrate the proposed technique on the example of inverted pendulum,
where destabilizing effect of damping (shift of the lower stability boundary) is
manifested in the fourth approximation, see [6], though it would be natural to
expect stabilization by damping, see, e.g. [2, 7]. But there is also stabilizing effect
(shift of the upper boundary) demonstrated numerically in [8]. Here we obtain
approximations of both stability boundaries and study analytically both effects of
stabilization and destabilization by damping. Moreover, the fourth approximation
yields in addition boundaries of another stability domain.

2 Statement of the Problem

Consider linearization, ẋ(t) = J(t) x(t), of a nonlinear system about its equilibrium,
where x(t) is the vector of state variable perturbations and J(t) is piecewise
continuous, T -periodic and thus integrable Jacobian matrix of the original nonlinear
system. Solution of the matrix differential equation with the initial value being the
identity matrix I

Ẋ(t) = J(t) · X(t), X(0) = I, (1)

1Lyapunov regularity condition of the linear system holds when its matrix is periodic.
2Periodic linear system is asymptotically stable if, and only if, it is exponentially stable.
Exponential stability of ẋ(t) = J(t) x(t) results in exponential stability, and hence asymptotic
stability, of the nonlinear system solution y ≡ 0.
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yields fundamental matrix and the monodromy matrix F = X(T ). If all eigenvalues
of the monodromy matrix, Floquet multipliers, have absolute values smaller than
one, then the equilibrium of the nonlinear system is asymptotically stable, and if
at least one eigenvalue has absolute value greater than one, then the equilibrium
is unstable, see, e.g. [5]. To have analytical approximations of stability regions in
parameter space we apply the following.

3 Averaging Scheme

Let the Jacobian matrix J(t) be expended into the series

J(t) = J0(t)+ J1(t)+ J2(t)+ J3(t)+ · · · , (2)

where the lower index denotes the order of smallness. Suppose we know solution
X0(t) of the matrix initial value problem Ẋ0(t) = J0(t) · X0(t), where X0(0) = I.
Then the change of variable X(t) = X0(t) · Y(t) converts (1) to the standard form:

Ẏ(t) = H(t) · Y(t), Y(0) = I, (3)

where matrix H(t) := X−1
0 (t) · (J(t)− J0(t)) · X0(t) is small for t ∈ [0, T ].

Approximate solution of (3) can be found with averaging method as follows. Let

H(t) = H1(t)+H2(t)+H3(t)+ · · · , (4)

where Hj (t) := X−1
0 (t) · Jj (t) · X0(t) for all j ≥ 1. We will find solution as

Y(t) = (I+ U1(t)+ U2(t)+ · · · ) · Z(t), (5)

where Uj (t) are matrix-functions, such that Uj (0) = Uj (T ) = 0 and Z(t) is the
solution of the autonomous averaged differential equation:

Ż(t) = A · Z(t), Z(0) = I, (6)

where A = A1 + A2 + A3 + · · · , which can be written via the matrix exponential:

Z(t) = exp ([A1 + A2 + A3 + · · · ] t) . (7)

The matrices Aj and matrix-functions Uj (t) can be found one by one using the
following expressions.3

3The expressions are derived by differentiating (5) w.r.t. time

Ẏ(t) = (
U̇1(t)+ U̇2(t)+ · · ·

) · Z(t)+ (I+ U1(t)+ U2(t)+ · · · ) · Ż(t),
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For the first order approximation we calculate A1 as the average of H1(t)

A1 = 1

T

∫ T

0
H1(t) dt, (8)

under assumption that A1 and H1(t) are of the same order of smallness. In particular
we assume that H1(t) does not contain periodic functions with small frequencies,
which would appear in the denominator during integration and could cause high
value of A1, thus violating the assumption of its smallness.

For the second order approximation we have to calculate

U1(t) =
∫ t

0
(H1(τ )− A1) dτ, (9)

A2 = 1

T

∫ T

0
(H2(t)+H1(t) · U1(t)− U1(t) · A1) dt, (10)

using matrix A1 already obtained in (8).
For the third order approximation we have

U2(t) =
∫ t

0
(H2(τ )− A2 +H1(τ ) · U1(τ )− U1(τ ) · A1) dτ, (11)

A3 = 1

T

∫ T

0
(H3(t)+H2(t) · U1(t)− U1(t) · A2

+H1(t) · U2(t)− U2(t) · A1) dt. (12)

and so on for the n+ 1-th order approximation we calculate

substituting there expressions for time derivatives from (3) and (6)

(H1(t)+H2(t)+ · · · ) · (I+ U1(t)+ U2(t)+ · · · ) · Z
= (

U̇1(t)+ U̇2(t)+ · · ·
) · Z+ (I+ U1(t)+ U2(t)+ · · · ) · (A1 + A2 + · · · ) · Z,

collecting there terms of the same order, and canceling non-degenerate matrix Z, which yield the
following equalities:

First order: H1(t) = U̇1(t)+ A1.

Second order: H2(t)+H1(t) · U1(t) = U̇2(t)+ U1(t) · A1 + A2,

Third order: H3(t)+H1(t) · U2(t)+H2(t) · U1(t) = U̇3(t)+ U2(t) · A1 + U1(t) · A2 + A3,

Fourth order: H4(t)+H1(t) · U3(t)+H2(t) · U2(t)+H3(t) · U1(t) = U̇4(t)+ U3(t) · A1 +
U2(t) · A2 + U1(t) · A3 + A4, and so on.
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Un(t) =
∫ t

0
(Hn(τ )− An +Hn−1(τ ) · U1(τ )− U1(τ ) · An−1

. . .

+H1(τ ) · Un−1(τ )− Un−1(τ ) · A1) dτ, (13)

An+1 = 1

T

∫ T

0
(Hn+1(t)+Hn(t) · U1(t)− U1(t) · An

. . .

+H1(t) · Un(t)− Un(t) · A1) dt. (14)

4 Monodromy Matrix Approximation

Due to Y(T ) = Z(T ) we have

F = X(T ) = F0 · Y(T ) = F0 · Z(T ) = F0 · (I+ Z1(T )+ Z2(T )+ · · · ) , (15)

where we denote F0 := X0(T ) as the zero order approximation of monodromy
matrix, F ≈ F0. Hence, we can write expressions to find terms of the expansion
F = F0 + F1 + F2 + F3 + F4 + · · · , where Fj = F0 · Zj (T ) with Z0(T ) = I.
Expansion of the matrix exponential in (7) yields expressions for Fj via Ak , where
k ≤ j .

For the first order approximation we have Z1(T ) = A1T , so that

F1 = F0 · Z1(T ) = F0 · A1T . (16)

For the second order approximation the expansion of the matrix exponential
in (7) up to the second order terms yields Z2(T ) = A2T + 1

2 A2
1T

2 and

F2 = F0 ·
(

A2T + 1

2
A2

1T
2
)
. (17)

For the third order approximation we have

F3 = F0 ·
(

A3T + 1

2
(A1 · A2 + A2 · A1) T

2 + 1

6
A3

1T
3
)
. (18)
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For the fourth order approximation we calculate

F4 = F0 ·
(

A4T + 1

2

(
A1A3 + A2

2 + A3A1

)
T 2

+ 1

6
(A2

1A2 + A1A2A1 + A2A2
1)T

3 + 1

24
A4

1T
4
)
, (19)

and so on.

5 Stability Conditions in 2-Dimensional Case

The eigenvalues of the monodromy matrix, Floquet multipliers, determine the
stability of the solution x = (0, 0)′ of the linearized system. Since F is the
2× 2 matrix its eigenvalues can be found analytically as roots ρ1 and ρ2 of the
characteristic polynomial:

ρ2 − tr(F) ρ + det(F) = 0. (20)

Stability conditions (|ρ1| ≤ 1 and |ρ2| ≤ 1) written in the case of real roots as
ρ ∈ [−1, 1] and in the case of complex conjugate roots as ρ1ρ2 ≤ 1, with the use
of (20) and Vieta’s formula ρ1ρ2 = det(F) correspondingly, take the form

| tr(F)| − 1 ≤ det(F) and det(F) ≤ 1, (21)

where for asymptotic stability all inequalities should be strict, see, e.g. [9, p. 213].
For instability, it is sufficient that at least one of the conditions in (21) is violated.

Let us find approximations of stability conditions. Trace can be written as

tr(F) = tr(F0)+ tr(F1)+ tr(F2)+ tr(F3)+ tr(F4)+ · · · , (22)

with F1, F2, F3, and F4 calculated by (16), (17), (18), and (19).
Notice that due to Liouville’s formula, see, e.g. [10], we have

det(F) = e
∫ T

0 tr(J(τ )) dτ = e
∫ T

0 tr(J0(τ )) dτ e
∫ T

0 (tr(J1(τ ))+tr(J2(τ ))+tr(J3(τ ))+··· ) dτ

and since F = F0 · Z(T ) and (7) determinant can be written as

det(F) = det(F0) det(Z(T )) = e
∫ T

0 tr(J0(τ )) dτ etr(A1) T+tr(A2) T+tr(A3) T+···,

so that for any dimension for all j ≥ 1 we have

tr(Aj ) = 1

T

∫ T

0
tr(Jj (τ ))dτ. (23)
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Then expansion of the matrix exponential yields

det(F) = e
∫ T

0 tr(J0(τ )) dτ
(

1+ tr(A1)T + tr(A2)T + 1

2
(tr(A1)T )2 + · · ·

)
. (24)

The first order approximation of stability conditions | tr(F)| − 1 ≤ det(F) ≤ 1 can
be written with the use of (22) and (24) as

| tr(F0)+ tr(F1)| − 1 ≤ e
∫ T

0 tr(J0(τ )) dτ (1+ tr(A1)T ) ≤ 1

and so on.

6 Two DOF System with Impulse Parametric Excitation

6.1 High Frequency Stabilization of Inverted Pendulum

Let us show that motion of an inverted pendulum can be stable if we supply to the
suspension point rather high frequency vibrations in vertical direction lϕ̈ + blϕ̇ +
(g ± c) sin(ϕ) = 0, where l is the length of the pendulum, a � l is the amplitude
of the vibrations of the pivot. The period of the pivot vibrations is normalized to
T = 2π . Moreover, in any semi-period the acceleration of the pivot is constant and
is equal ±c, whose sign changes after each semi-period. We assume linear viscous
friction with coefficient b. It turns out that for rather low relative eigenfrequency
ω � 1 the inverted position becomes stable. The equation of motion can be written
in the form

ϕ̇ = s, (25)

ṡ = −βωs −
(
ω2 ± ε

)
sin(ϕ), (26)

where ω2 = g/l is the relative eigenfrequency, ε = c/l is the relative excitation
acceleration, and β = b/g is the new damping coefficient. Stability condition for
this problem without damping can be found in [11]. The linearized case without
damping coincides with the Meissner equation, [12].

This system, linearized about inverted vertical position (φ, s) = (π, 0), has the
form ẋ(t) = J(t) x(t), with vector x(t) corresponding to the perturbation of vector
(ϕ(t), s(t))′ and J(t) being the piecewise constant Jacobian matrix of the original
system: J(t) = J+ if t ∈ [0, π) and J(t) = J− if t ∈ [π, 2π), where

J+=
(

0 1
ω2 + ε −βω

)
, J−=

(
0 1

ω2 − ε −βω

)
. (27)
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It is easy to find exact stability conditions to which approximate conditions converge
as we shall demonstrate.

6.2 Exact Stability Conditions

We have the following explicit expression of the monodromy matrix via matrix
exponentials

F = exp
(
π J−

) · exp
(
π J+

)
. (28)

Since the determinant of a matrix product equals the product of the determinants,
we have from (28)

det(F) = eπ tr(J−)eπ tr(J+) = e−2πβω, (29)

where we take into account that det(exp
(
π J±

)
) = e2π tr(J±). The same expression

as (29), det(F) = e−2πβω, can be obtained by Liouville’s formula for any piecewise
continuous integrable 2π -periodic modulation function, see [10]. So with positive
damping coefficient, β > 0, asymptotic stability can only be lost when the first
condition in (21) is violated, i.e., when

| tr(F)| − 1 > e−2πβω. (30)

We compare exact stability borders, determined by (27), (28), and (30) as

∣∣∣∣tr
(

exp

[
π

(
0 1

ω2−ε −βω

)]
· exp

[
π

(
0 1

ω2+ε −βω

)])∣∣∣∣− 1 = e−2πβω, (31)

with approximate stability boundaries obtained for this example.

6.3 Approximate Stability Conditions

We expend this matrix in the series J± = J0 + J±1 + J2, where

J0 =
(

0 1
0 0

)
, J±1 =

(
0 0
±ε 0

)
, J2 =

(
0 0
ω2 −βω

)
, (32)

assuming that ε, ω, and β have the same order of smallness.
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X0(t) = exp(J0t) =
(

1 t

0 1

)
, X−1

0 (t) = exp(−J0t) =
(

1 −t

0 1

)
. (33)

According the formula Hj (t) := X−1
0 (t) · Jj (t) · X0(t) we have

H±1 (t) = ±ε

(−t −t2

1 t

)
. (34)

Formula (8) reads as

A1 = 1

2π

π∫

0

H+1 (t) dt + 1

2π

2π∫

π

H−1 (t) dt = ε

2π

(
π2 2π3

0 −π2

)
. (35)

The zero order approximation of monodromy matrix is the following:

F0 = X0(2π) = exp(J02π) =
(

1 2π
0 1

)
. (36)

With (16) we find the first order adjustment of monodromy matrix

F1 = F0 · A12π = π2ε

(
1 0
0 −1

)
. (37)

Thus tr(F0) = 2, tr(F1) = 0, and tr(A1) = 0.

For the second order approximation we take H2(t) =
(−tω2 −t

(
ω2t − βω

)
ω2 ω2t − βω

)

and obtain with (9) and (10) the matrix

A2 = 1

2π

[
2
3 ε2π4 − 2π2ω2 4 ε2π5

15 − 8
3 π3ω2 + 2π2 β ω

− 2
3 ε2π3 + 2π ω2 − 2

3 ε2π4 + 2π2ω2 − 2π β ω

]
.

We calculate according (17) the second order adjustment of monodromy matrix

F2 =
[− 1

6 π4ε2 + 2π2ω2 − 1
15 π5ε2 + 4

3 π3ω2 − 2π2β ω

− 2
3 π3ε2 + 2π ω2 − 1

6 π4ε2 + 2π2ω2 − 2π β ω

]
, (38)

Thus tr(F2) = − 1
3 π4ε2 + 4π2ω2 − 2π β ω and tr(A2) = −2π β ω.

Second order approximation of stability border written from (30) as

| tr(F0)+ tr(F1)+ tr(F2)| − 1 = 1− 2πβω
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yields 4π2ω2 − ε2
pπ

4/3 = 0 and 4 − 4π β w + 4π2ω2 − ε2
nπ

4/3 = 0 in cases
of positive and negative value of the sum tr(F0)+ tr(F1)+ tr(F2) correspondingly.
Hence, we have the corresponding stability borders denoted by indexes p and n

εp = 2
√

3

π
ω, εn = 2

√
3

π

√
ω2 − βω

π
+ 1

π2 ,

same as in the third approximation, see dashed lines in Fig. 1 on the left,
because (11)–(18) yield tr(F3) = 0 and tr(A3) = 0.

Fourth order approximation, where stability boundary equation reads as

| tr(F0)+ tr(F1)+ tr(F2)+ tr(F3)+ tr(F4)| − 1 = 1− 2πβω + 1

2
(2πβω)2 ,

yields in cases of positive and negative sums of traces the following two equations:

π8ε4
p

1260
− π4

3

(
1+ 4π2ω2

15
− πβω

)
ε2
p + 4π2ω2

(
1+ π2ω2

3
− βωπ

)
= 0,

π8ε4
n

1260
− π4

3

(
1+ 4π2ω2

15
− πβω

)
ε2
n + 4

(
1− βπω + π2ω2

×
(

1+ π2ω2

3
− βωπ + β2

))
= 0.

Solutions of these two equations with respect to ε2 give us four borders, drawn in
Fig. 1 with solid lines, while the two exact stability domains determined by (31) are
marked in gray.

2.5

2

1.5

1

0.5

0
0 0.1

third order approximation
fourth order approximation
fourth order approximation

0.2 



0.3 0.4 0.5

Fig. 1 Comparison of approximate stability boundaries of the third (dashed lines) and fourth
(solid lines) orders with exact stability domains (gray areas) on the left. Damping stabilization
and destabilization of the inverted vertical pendulum position on the right



Stability Boundary Approximation of Periodic Dynamics 23

7 Conclusion

We develop a convenient algorithm for obtaining approximate stability boundaries
of parametrically excited systems. We demonstrate how this algorithm can be
applied to the particular case of parametric pendulum for obtaining approximate
stability domains even in the case of damping and impulse parametric excitation.
Stabilizing and destabilizing effects of damping on inverted equilibrium of the
parametric pendulum are revealed with the use of the fourth order approximation
of stability boundaries.

In Fig. 1 on the right we showed approximate stability boundaries of inverted
vertical pendulum position. Addition of small linear viscous friction β shifts
both stability boundaries upward. Thus, at the lower boundary additional friction
destabilizes the inverted pendulum while at the upper boundary friction stabilizes
the pendulum position.

Acknowledgement A.O. Belyakov received funding from the Russian Science Foundation grant
19-11-00223.
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ε2-Order Normal Form Analysis for a
Two-Degree-of-Freedom Nonlinear
Coupled Oscillator

Xuanang Liu and David J. Wagg

Abstract In this paper, we describe an ε2-order normal form decomposition
for a two-degree-of-freedom oscillator system that has a mass supported with
horizontal and vertical support springs. This system has nonlinear terms that are
not necessarily ε1-order small when compared to the linear terms. As a result,
analytical approximate methods based on an ε expansion would typically need
to include higher-order components in order to capture the nonlinear dynamic
behaviour. In this paper we show how this can be achieved using a direct normal
form transformation up to order ε2. However, we will show that the requirement for
including ε2 components is primarily due to the way the direct normal form method
deals with quadratic coupling terms rather than the relative size of the coefficients.

Keywords Nonlinear oscillator · Normal form · ε2-order

1 Introduction

Normal form transformations are a classical method for studying dynamical sys-
tems first introduced by Poincaré [1]. The historical background of normal form
transformations can be found in a number of texts including [2–4]. This work is
motivated by vibration problems involving coupled nonlinear oscillators, where the
objective of a normal form transformation is to both simplify the system, but also
to identify potential nonlinear resonances that might occur. For vibration problems,
Jezequel and Lamarque [5] proposed a normal form decomposition for a system of
two coupled oscillators with cubic nonlinearities and both forcing and damping. The
relationship between the normal form transformation and nonlinear normal modes
was established by Touzé and co-workers [6, 7], based on examples of coupled
oscillator systems that included both quadratic and cubic nonlinear terms.
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In this paper, we will consider an oscillator system consisting of a mass supported
by vertical and horizontal springs that are attached to solid supports. This system is
shown schematically in Fig. 1. The equations of motions of this example system, as
derived by Touzé et al. [6], are taken to be

ẍ1 + 2ζ1ω1ẋ1 + ω2
1x1 + a1x

2
1 + a2x1x2 + a3x

2
2 + a4x

3
1 + a5x1x

2
2 = f1 cos(Ωt),

ẍ2 + 2ζ2ω2ẋ2 + ω2
2x2 + b1x

2
1 + b2x1x2 + b3x

2
2 + b4x

2
1x2 + b5x

3
2 = f2 cos(Ωt),

(1)
where the coefficients of the nonlinear terms ai, bi for i, j = 1, 2, . . . , 5 are of
the same size order as the natural frequencies ω1 and ω2, respectively. The other
coefficients are damping ratios ζi , and forcing amplitudes fi , for each degree of
freedom i = 1, 2 and the external forcing frequency is Ω .

This system has been studied in depth by several previous authors [6–8]. In
particular, Touzé and Amabili [7] showed how a single-linear-mode approximation
to the system dynamics would predict hardening instead of softening behaviour for
a specific set of parameter values, whereas a nonlinear normal mode type analysis
predicts the correct softening resonance, behaviour. Furthermore, in Touzé and
Amabili [7] backbone curves for the system were computed, and these curves were
compared with forced-damped simulations of the system. In [8] a detailed study
of methods for computing backbone curves was carried out. As part of their study
Breunung and Haller, [8], used the current example to make a comparison between a
spectral sub-manifold method and the methods of Touzé and Amabili [7] and Neild
and Wagg [9]. This comparison showed that the ε1 direct normal form proposed
by Neild and Wagg [9] gave the incorrect approximations for this example. In fact,
using the ε1 version gave a result similar to the linear-mode approximation first
discussed by Touzé and Amabili [7]—predicting hardening instead of softening
behaviour. In this paper, we will show that the ε2 terms are required in the direct

Fig. 1 The example system
considered in this paper
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normal form method of Neild and Wagg [9] to give the correct solutions. Typically
the direct normal form method, [9], is applied to systems where the nonlinear,
damping and forcing terms are assumed to be of order ε1 small (or higher orders
of ε) when compared to the linear terms [10–14]. The linear terms are the natural
frequencies, taken to be of order ε0, meaning that the ε1 nonlinear terms are
typically an order smaller than the natural frequencies. In Eq. (1) this is not the
case, and it is possible for the nonlinear coefficients to be of the same size order as
the natural frequencies. As a result, the normal form approximation would typically
need to be extended to include higher-order terms. Here, we show that an ε2-order
analysis is sufficient to capture the required behaviour, although in fact the need for
the ε2-order terms is actually because of the quadratic coupling terms, as will be
explained below.

2 ε2-Order Normal Form Analysis

We follow the method set out in Chapter 4 of [15] for a ε2 direct normal form
method. The coefficients of the nonlinear terms in Eq. (1) are taken to be

a1 = 3
2ω

2
1 a2 = ω2

2 a3 = 1
2ω

2
1 a4 = 1

2 (ω
2
1 + ω2

2) a5 = 1
2 (ω

2
1 + ω2

2)

b1 = 1
2ω

2
2 b2 = ω2

1 b3 = 3
2ω

2
2 b4 = 1

2 (ω
2
1 + ω2

2) b5 = 1
2 (ω

2
1 + ω2

2).

(2)

As the conservative form of Eq. (1) is naturally linearly decoupled, it can be
described in the matrix form as q̈ + �q + Nq(q) = 0 by setting q = [q1, q2]ᵀ =
[x1, x2]ᵀ, where

� =
[
ω2

1 0
0 ω2

2

]
, and Nq(q) =

(
a1q

2
1 + a2q1q2 + a3q

2
2 + a4q

3
1 + a5q1q

2
2

b1q
2
1 + b2q1q2 + b3q

2
2 + b4q

2
1q2 + b5q

3
2

)
,

(3)
although as noted above Nq(q) is not ε1 small in this example. Here the non-
internal-resonant case is considered, such that the detuned response frequencies
ωri �= nωrj for i, j = 1, 2 with i �= j and n = 1, 2, · · · . Note that other rational
resonances, such as n = 3/5 are not considered here. The exact detuning mechanism
is explained in detail in [15].

Next we carry out a ε2 near identity transformation q = u+εh(1)(u)+ε2h(2)(u).
The first step in this process is to substitute q = [q1, q2]ᵀ = [u1p + u1m, u2p +
u2m]ᵀ into Eq. (3). This then leads to a [30× 1] dimension u∗ vector, which is used
to redefine Nq(u) = n1u∗ and h(1)(u) = h1u∗, such that n1 and h1 are coefficient
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matrices for the ε1 terms. The objective is to obtain a normal form of ü + �u +
Nu(u) = 0, with Nu = εnu(1) + ε2nu(2). To find the transformed vectors nu(1) and
nu(2), solutions to the following equations are required

ε1 : ḧ(1)(u)+ϒh(1)(u)+ n(1)(u) = nu(1)(u), (4a)

ε2 : ḧ(2)(u)+ϒh(2)(u)+ n(2)(u) = nu(2)(u), (4b)

where ϒ is a {N ×N} diagonal matrix of the square of the response frequencies,
ω2
ri such that � = ϒ + ε�, and

n(1)(u) = Nq(q = u), (5a)

n(2)(u) =
(

�+ ∂Nq(q)
∂q

∣∣∣∣
q=u

)
h(1)(u). (5b)

Solving Eq. (4a) we can first obtain the ε1 terms as

nu(1) =
(

3a4(u
2
1pu1m + u1pu

2
1m)+ 2a5(u1pu2pu2m + u1mu2pu2m)

2b4(u1pu1mu2p + u1pu1mu2m)+ 3b5(u
2
2pu2m + u2pu

2
2m)

)
. (6)

For the ε2 terms, we must determine Eq. (5b) up to cubic order which should
provide an accurate solution for this example, and thus the nonlinear terms vector
n(2) is truncated at O(u4). As a result we can simplify Nq because we only need
terms up to order O(u2) in the partial derivative, and so we write Nq(u) = Ñq(u)+
O(u3). Then we have

� =
[
ω2
n1 − ω2

r1 0
0 ω2

n2 − ω2
r2

]
=

[
δ1 0
0 δ2

]
, and (7a)

∂Ñq(u)
∂u

=
[

2a1(u1p + u1m)+ a2(u2p + u2m) a2(u1p + u1m)+ 2a3(u2p + u2m)

2b1(u1p + u1m)+ b2(u2p + u2m) b2(u1p + u1m)+ 2b3(u2p + u2m)

]
.

(7b)

Therefore we can compute n(2) using

n(2) =
[
δ1 0
0 δ2

]
h1u∗ + ∂Ñq(u)

∂u
h̃1ũ∗ +O(u4), (8)

where h̃1 and ũ∗ are the respective projections of h1 and u∗ to O(u2). This allows
the vector of nonlinear terms up to order ε2 to be obtained as
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nu(2) =

(
− 10

3ω2
r1

a2
1 +

3ω2
r2 − 8ω2

r1(
4ω2

r1 − ω2
r2

)
ω2
r2

a2b1

)(
u2

1pu1m + u1pu
2
1m

)

(
− 10

3ω2
r2

b2
3 +

3ω2
r1 − 8ω2

r2

(4ω2
r2 − ω2

r1)ω
2
r1

a3b2

)(
u2

2pu2m + u2pu
2
2m

)

+
(

2

ω3
r2 − 4ω2

r1

a2
2 −

4

ω2
r1

a1a3 + 4

ω2
r1 − 4ω2

r2

a3b2 − 2

ω2
r2

a2b3

)

× (
u1pu2pu2m + u1mu2pu2m

)

+
(

2

ω3
r1 − 4ω2

r2

b2
2 −

4

ω2
r2

b1b3 + 4

ω2
r2 − 4ω2

r1

a2b1 − 2

ω2
r1

a1b2

)

× (
u1pu1mu2p + u1pu1mu2m

)

.

(9)

Now using Nu = nu(1) + nu(2), the direct normal form for the system (for the non-
internally resonant case) is given by

ü1 + ω2
1u1 + A(u2

1pu1m + u1pu
2
1m)+ B(u1pu2pu2m + u1mu2pu2m) = 0,

ü2 + ω2
2u2 + C(u2

2pu2m + u2pu
2
2m)+D(u1pu1mu2p + u1pu1mu2m) = 0,

(10)
where

A = 3a4 − 10

3ω2
r1

a2
1 +

3ω2
r2 − 8ω2

r1

(4ω2
r1 − ω2

r2)ω
2
r2

a2b1, (11a)

B = 2a5 + 2

ω3
r2 − 4ω2

r1

a2
2 −

4

ω2
r1

a1a3 + 4

ω2
r1 − 4ω2

r2

a3b2 − 2

ω2
r2

a2b3, (11b)

C = 3b5 − 10

3ω2
r2

b2
3 +

3ω2
r1 − 8ω2

r2

(4ω2
r2 − ω2

r1)ω
2
r1

a3b2, (11c)

D = 2b4 + 2

ω3
r1 − 4ω2

r2

b2
2 −

4

ω2
r2

b1b3 + 4

ω2
r2 − 4ω2

r1

a2b1 − 2

ω2
r1

a1b2. (11d)

Substituting u1p = (U1
2 e−iφ1)eiωr1t and u1m = (U1

2 eiφ1)e−iωr1t into Eq. (10)
enables expressions for the backbone curves to be obtained as

[
−ω2

r1 + ω2
1 +

1

4
AU2

1 +
1

4
BU2

2

]
U2

1

2
= 0, (12a)
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[
−ω2

r2 + ω2
2 +

1

4
CU2

1 +
1

4
DU2

2

]
U2

2

2
= 0, (12b)

where Ui is the displacement amplitude of ui , for i = 1, 2. Successively setting U2
and U1 to zero will give the S1 and S2 backbone curves

S1 : ω2
r1 = ω2

1 +
1

4
AU2

1 , (13a)

S2 : ω2
r2 = ω2

2 +
1

4
CU2

2 . (13b)

Note that these are now implicit expressions for ω2
r1 and ω2

r2, respectively, which
can be solved numerically to find the backbone curves.

Finally, the physical displacement responses may be computed using the corre-
sponding reverse transform u1 → q1 = x1, and u2 → q2 = x2 such that

x1 = q1 = u1 + h1,1u∗ + h+2,1u+,

x2 = q2 = u2 + h1,2u∗ + h+2,2u+,
(14)

where hi,j are row vectors taken from the h1 and h+2 coefficient matrices based on
the fact that h(2) has been redefined as h(2) = h+2 u+—see Chapter 4 of [15] for full
details of this procedure.

3 Numerical Results

The simulation uses the parameters ω1 = 2, ω2 = 4.5, ζ1 = 0.001, ζ2 = 0.001,
fk = 0.0015 and f� = 0 for the two different forcing cases k = 1, � = 2 and
k = 2, � = 1. The results for the S1 and S2 backbone curves computed using
Eqs. (13) are shown as the red lines in Figs. 2 and 3. For comparison, the order
ε1 backbone curves are shown as blue lines in the figures. In order to verify the
analytically approximated ε2 backbone results, resonance response curves for the
corresponding forced, damped case are computed using the continuation Matlab
toolbox—COCO [16]. These are shown as black lines in Figs. 2 and 3.

The plots in Fig. 2 are presented in the projection of the response amplitude of the
physical coordinates, Xi , against the forcing frequency, Ω (or ωr for the undamped
backbone curves). In each figure X1 against Ω is shown in plot (a) and X2 against
Ω is shown in plot (b). Consequently, in Fig. 2 where the forcing is applied to the
x1 equation, the dominant response is in the X1 amplitude (plot Fig. 2a), and the
response in plot (b) of X2 vs Ω is primarily due to the harmonic terms via Eq. (14).

Values of ωi are chosen as they are exactly the same as those used by previous
studies [6, 8] to demonstrate the non-internally resonant dynamics of the system.
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Fig. 2 The backbone curves S1, and resonance response curves of the two-degree-of-freedom
example system described in Eq.(1) for the case where its horizontal mode is dominant. The red
and black lines denote the backbone curves and numerically computed forced response curves
using COCO, respectively. Parameters: ω1 = 2, ω2 = 4.5, ζ1 = 0.001, ζ2 = 0.001. There are
three different forcing amplitude curves f1 = 0.001, 0.0016, 0.0025 and f2 = 0. Note that the
stability of the solution curves is not indicated on this figure
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Fig. 3 The backbone curves S2, and resonance response curves of the two-degree-of-freedom
example system described in Eq. 1 for the case where its horizontal mode is dominant. The red and
black lines denote the backbone curves and numerically computed forced response curves using
COCO, respectively. Parameters: ω1 = 2, ω2 = 4.5, ζ1 = 0.001, ζ2 = 0.001. Here there are three
different forcing amplitude curves shown f2 = 0.002, 0.004, 0.006, and f1 = 0. Note that the
stability of the solution curves is not indicated on this figure

For the damping values, ζ1 = 0.001 was used previously by Touzé et al. [6], but
here we have used ζ2 = 0.001 as well so that the COCO continuation curves are
very close to the undamped case. It can be seen that the analytical backbone curves
correctly predict the softening dynamics of the example system which is consistent
with the findings in [6]. However, it is important to note that the backbone curve
expression computed with just the ε1 terms gives a hardening response, which does
not match the system behaviour correctly, as shown by the blue lines in Figs. 2 and 3
(and also the comparison presented by Breunung and Haller [8]).

The specific reason for this can be seen in Eq. (11) which gives the coefficients
for the S1 and S2 backbone curves in Eqs. (13). Specifically for the S1 backbone
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the coefficient producing curvature is A. In the ε1 case, A = 3a4, which will give
a hardening S1 curve. However in the ε2 case, A is given by Eq. (11a) and there
are two additional terms that reverse the curvature of S1, for the given parameters,
to produce a softening backbone curve. In fact reducing the ω2 value to a value
of 3.8rad/s (whilst keeping all other parameters the same ) results in the backbone
curve switching to hardening.

This is consistent with the finding of [7] that the quadratic terms of the type found
in this example will generate cubic terms in the nonlinear coordinate transformation.
As we have shown, in the direct normal form method of Neild and Wagg [9], these
generated terms from the quadratics are only captured in the ε2 expansion not the
ε1 version. This explains why the ε1 version of the direct normal form will not
show the correct softening nonlinear behaviour—as also shown in the comparison
by Breunung and Haller [8]. It is also clear from the results presented above that this
can be rectified by the inclusion of the ε2 terms.

Although not the specific cause (and therefore less important) we note that the
direct normal form method does rely on the nonlinear terms being small in the
sense that they should be significantly smaller than the ω2

ni values. However, in this
example the nonlinear coefficients are of the same order as the ω2

ni values, and yet
despite this, by adding ε2 terms, the direct normal form method gives a very good
approximation to the solution. Specifically, the maximum response position of the
COCO curves is very close to the backbone curves for both S1 and S2.

4 Conclusions

In this paper, ε2-order approximate analytical expressions for the backbone curves
of a coupled two-degree-of-freedom system have been obtained using the direct
normal form method proposed by Neild and Wagg. The motivation for this study
was the observation that the ε1 version of the direct normal form method did not
predict the correct softening type of behaviour for this example. In fact, we have
shown in this paper that the primary cause of this discrepancy is due to how the
direct normal form treats the quadratic coupling terms of the type found in this
example.

This is because during the backbone curve approximation process quadratic
terms actually generate terms up to cubic order. These terms are significant in
obtaining a representative model for the backbone curve. In the method proposed
by Neild and Wagg, these additional cubic terms are captured only in the ε2 part
of the approximation. As a result, if using this method for a system with quadratic
nonlinearities, then the ε2 version is needed to fully capture the relevant dynamic
behaviour.

In addition to this, and despite the fact that the direct normal form assumes small
nonlinear terms, which are not the case in this example, the results obtained from
the ε2 version and the numerical method agree well.
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Vibrational Mechanics of Systems
with Amplitude and Phase Modulation
of Excitation

Eugen Kremer

Abstract An oscillator under the influence of high-frequency harmonic excitation
with the amplitude and phase depending on the coordinate, velocity, and slow time
is considered. Within the framework of the concept of vibrational mechanics, an
equation is derived for the averaged motion of this system, containing an additional
so-called vibrational force. In this case, a modification of the method of direct
separation of motions is used that involves the introduction of a small parameter
and considers the idea of two-scale decomposition. The resulting general formula
for the vibrational force makes it possible to reveal some regularities connecting the
original and averaged systems. Numerical verification of the method is performed
for the example of a mechanical vibrator under the action of a high-frequency
kinematic excitation with phase modulation.

Keywords Vibrational mechanics · Amplitude modulation · Phase modulation ·
Method of direct separation of motion · Averaged motion

1 Introduction

The concept of vibrational mechanics was proposed by Blekhman [1] and developed
in a number of studies, a survey of which can be found, for example, in [1–
5]. Vibrational mechanics, including the method of direct separation of motions,
represents a compact and efficient calculation tool, which has been used in the
development of many new vibrating machines and technologies [3].
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It is known that for many processes and systems, such as, for example, the
vibrational transportation of bulk material [1], the most interesting is averaged
motion, and the details of high-frequency oscillations are not essential. Meanwhile,
the high-frequency component in the excitation cannot generally be neglected,
although it has a zero mean. How should such systems be analyzed? Of course,
there is always the possibility of calculating the total motion, followed by averaging
the result. However, such an approach is obviously uneconomic, since most of the
information obtained in this way is unnecessary and discarded in the process of
averaging.

Vibrational mechanics offers another way: replacing the original system with
some system equivalent to the original one with respect to slow motions, the so-
called averaged system. This results in a system that does not contain fast oscillating
forces and simultaneously its motion coincides with the averaged motions of the
original system. To obtain the averaged system, Blekhman proposed a method of
direct separation of motion [1] and showed that, instead of the rapid excitation, the
averaged system involves a certain additional slow force known as the vibrational
force. This force is the price for hiding the fast motions. The appearance of a
vibrational force leads to interesting and unexpected physical effects in averaged
systems. Among them are Chelomei’s pendulum, the Stephenson–Kapitza pendu-
lum, the Indian rope, vibrational transportation, and many other phenomena, a large
collection of which are described in [1]. Thomsen [2] selected three groups of
effects, stiffening, biasing, and smoothing, which appear in different systems with
fast excitation, independent of their physical nature. Another direction of vibrational
mechanics, along with the analysis of specific physical systems, is the analysis of
the causes and the structure of vibrational forces for different classes of systems [4,
5]. Thus, in [4], a system with amplitude modulation of excitation is analyzed. The
term “amplitude modulation” is used here, as in signal processing, for a variation of
the amplitude: a sinusoidal high-frequency excitation has amplitude that depends on
the coordinate, velocity, and slow time. As shown in this chapter, the nature of the
dependence of the excitation amplitude on these quantities determines five different
scenarios for the generation of a vibrational force:

• the nonlinearity of the initial slow force with respect to velocity;
• the dependence of the modulation amplitude on the coordinate;
• the dependence of the modulation amplitude on the velocity;
• the dependence of the modulation amplitude on the velocity and on the coordi-

nate; and
• the explicit dependence of the modulation amplitude on the slow time and on the

velocity

These results were extended in [5] to the case of modulated stochastic excitation
and applied to the problem of stochastic resonance.

The purpose of the present chapter is to further generalize these results and to
extend them to the case of amplitude phase and in particular phase modulation,
i.e., to the case of a high-frequency sinusoidal excitation with a variation of its
phase in dependence on the coordinate, velocity, and slow time. This problem is of
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interest in connection with the search for new effective controlled vibro-exciters for
vibrational technologies.

2 Vibrational Forces for a System with Amplitude and Phase
Modulation

2.1 Formulation of Problem

A system with a modulated fast single-frequency excitation with equation

d2x

dt2
= Θ

(
x,

dx

dt
, t, ωt

)
(1)

is considered. The force Θ has the following form

Θ

(
x,

dx

dt
, t, ωt

)
= F

(
x,

dx

dt
, t

)
+ B

(
x,

dx

dt
, t

)
sin

(
θ + α

(
x,

dx

dt
, t

))
,

(2)

with θ = ωt, and ω � 1. The continuous functions F, B and α of the coordinate
x, velocity dx/dt, and slow time t are the “slow” force, the amplitude and the phase
of the fast excitation, respectively. The variables are assumed to be normalized, so
that the mass (or more generally the inertia matrix) is unity. The problem consists
in finding the averaged system for the variable X = 1

2π

∫ 2π
0 x dθ in the form

d2X

dt2
= F

(
X,

dX

dt
, t

)
+ V

(
X,

dX

dt
, t

)
(3)

In other words, the task is to find the vibrational force V.

2.2 The Formula for Vibrational Force

To determine the vibrational force, a method similar to that applied in [4] is used.
This is a modification of the method of the direct separation of movements that
involves the introduction of a small parameter 1/ω and some elements of a two-
scale technique [6]. The solution to Eq. (1) can be presented as a superposition of
the time-dependent mean value X and the fast oscillation ψ :

x = X(t)+ ψ (t, θ) , 〈ψ〉 = 1

2π

∫ 2π

0
x dθ = 0 (4)
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Following the method of direct separation of motions [1], we replace Eq. (1) by
two integral-differential equations for X and ψ as follows:

d2X
dt2 =

〈
Θ

(
X + ψ, dX

dt + dψ
dt , t, θ

)〉

d2ψ

dt2 = Θ
(
X + ψ, dX

dt + dψ
dt , t, θ

)
−

〈
Θ

(
X + ψ, dX

dt + dψ
dt , t, θ

)〉 (5)

with dψ
dt = ψ̇ + ωψ ′, d2ψ

dt2 = ψ̈ + 2ωψ̇ ′ + ω2ψ ′′, ḟ = ∂f
∂t

and f ′ = ∂f
∂θ

We search ψ as ψ(t, θ )= ξ (t, θ )/ω2 and introduce Φ = Bs sin (θ ) + Bc cos (θ )
with Bs = cos (α) and Bc = sin (α). Then, Eq. (5) takes the form

Ẍ = F + ξ ′ 2
2ω2

∂2F

∂Ẋ2 + 1
ω2 ξ

∂�
∂X
+ 1

ω2 ξ̇
∂�

∂Ẋ
+ 1

ω
ξ ′ ∂�

∂Ẋ
+ 1

2ω2 ξ ′2 ∂2�

∂Ẋ2 ξ
′′

+ 2
ω
ξ̇ ′ + 1

ω2 ξ̈ = �+ ξ

ω2
∂F
∂X
+

(
ξ ′
ω
+ ξ̇

ω2

)
∂F

∂Ẋ
+ 1

2ω2

(
ξ ′ 2 − ξ ′2) ∂2F

∂Ẋ2

+ 1
ω2

(
ξ ∂�
∂X
− ξ ∂�

∂X
+ ξ̇ ∂�

∂Ẋ
− ξ̇ ∂�

∂Ẋ
+ 1

2ξ
′ 2 ∂2�

∂Ẋ2 − 1
2ξ
′ 2 ∂2�

∂Ẋ2

)
+ 1

ω

(
ξ ′ ∂�

∂Ẋ
− ξ ′ ∂�

∂Ẋ

)

(6)

In accordance with the method of the direct separation of motions, the averaged
motion X and its derivatives are considered initially as given and the second
equation (6) is solved with respect to ξ . This solution is obtained asymptotically
as ξ = ξ0 + ξ1/ω with balancing the terms of the same order and integrating the
corresponding equations related to θ . The integration constants are chosen such that
ξ0 and ξ1 are periodical with respect to θ . In this case, the appropriate particular
solution has the form

ξ = ξs + ξc (7)

with

ξs = −Bs sin (θ)+ 1
ω

(
−2Ḃs cos (θ)+ ∂F

∂Ẋ
Bs cos (θ)− 1

8
∂Bs

∂Ẋ
Bs sin (2θ)

)

ξc = −Bc cos (θ)+ 1
ω

(
2Ḃc sin (θ)+ ∂F

∂Ẋ
Bc sin (θ)− ∂Bc

∂Ẋ
Bc sin (2θ)

)

where

Ḃs = Ẋ
∂Bs

∂X
+ Ẍ

∂Bs

∂Ẋ
+ ∂Bs

∂t
, Ḃc = Ẋ

∂Bc

∂X
+ Ẍ

∂Bc

∂Ẋ
+ ∂Bc

∂t

The obtained function ξ is substituted in the first equation (6). Calculation of the
integrals in this equation and solving it with respect to Ẍ leads to the following final
expression for the vibrational force

V = (HB +Hα +HN)B2/
(

2ω2
0

)
(8)
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where the values HB, Hα and HN are calculated with σ = ln B as follows

HB = F

(
∂σ

∂Ẋ

)2

− ∂σ

∂Ẋ

∂F

∂Ẋ
− ∂σ

∂X
+ Ẋ

∂σ

∂Ẋ

∂σ

∂X
+ ∂σ

∂Ẋ

∂σ

∂t
, (9)

Hα = F

(
∂α

∂Ẋ

)2

+ Ẋ
∂α

∂Ẋ

∂α

∂X
+ ∂α

∂Ẋ

∂α

∂t
, (10)

HN = 1

2
∂2F/∂Ẋ2 (11)

2.3 Analysis and Main Regularities

Analysis of Eqs. (3) and (4) allows us to identify the following regularities.
The vibrational force is proportional to the square of the excitation amplitude

with the coefficient consisting of three terms HB, Hα and HN which respond,
respectively, to the amplitude modulation, to the phase modulation, and to a
nonlinearity of the slow force F as a function of the velocity. In this case, the
occurrence of a vibrational force is possible only if at least one of the following
conditions is fulfilled:

• The slow force F is a nonlinear function of velocity. This causes additional
dissipative effects.

• The amplitude modulation depends on the coordinate. In this case, the vibrational
force is potential.

• The amplitude modulation depends on speed. Only under this condition, the
explicit dependence of the amplitude on the slow time can influence the
vibrational force.

• The phase modulation depends on velocity. Only under this condition, the explicit
dependences of the phase on the slow time and coordinate can influence the
vibrational force.

2.4 Example

Let us consider, as an example, a mechanical vibrator under the action of a high-
frequency kinematic excitation with phase modulation described by Eq. (1) with

F = −λ2x − 2D
dx

dt
, α = γ sin t + κ

dx

dt
, B = 1 (12)

where the dimensionless parameters λ, D, γ and κ are obtained from the physical
parameters by some scaling.
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Fig. 1 Phase excitation

According to Eqs. (3), (8)–(11), the averaged system is a usual linear oscillator
with a low-frequency harmonic excitation and a reduced mass

1

χ

d2x

dt2
= F + A sin t (13)

The amplitude of the low-frequency excitation A is equal to A = λ4κγ /
(
2ω2

0χ
)
.

The reduced mass 1/χ is calculated with the parameter χ = 1+ λ4κ2/
(
2ω2

0

)
.

The test simulations for the original (12) and for the averaged system (13) were
fulfilled with the following values of the parameters: λ2 = 0.98, D = 0.03, κ = 10,
γ = 10 and ω = 8.

The high-frequency phase modulated excitation is presented in Fig. 1.
The motion x(t) of the original (blue) and of the averaged (red) vibrator is shown

in Fig. 2.
The coincidence of the results for the original and for the averaged system is

good, even though the “small parameter” 1/ω = 0.125 is not very small.
The given example is of interest not only for verification of the proposed method

but also in connection with the search for new effective controlled exciters for
vibratory technologies.

3 Conclusions

For the first time, the formula for the vibrational force in the general case of the
amplitude and phase modulation of excitation was obtained (Eq. 8). This formula
shows that the vibration force consists of three components connected with the effect
of the amplitude modulation, the effect of the nonlinearity of the slow forces, and
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Fig. 2 Coordinate run of the original (blue) and the averaged (red) vibrator

the effect of the phase modulation. Unlike the first two effects, the effect of the
phase modulation is considered for the first time. It was found that its occurrence
is possible only if the excitation phase depends on the velocity. Only under this
condition can the explicit dependences of the phase on the slow time and coordinate
be detected in the vibrational force.

The verification of the results is performed using the example of a mechanical
vibrator under the action of a high-frequency kinematic excitation with phase
modulation. This example is of practical interest in connection with the vibratory
technologies.
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Singular Perturbation Techniques and
Asymptotic Expansions for Some
Complex Enzyme Reactions

Alberto Maria Bersani, Alessandro Borri, Alessandro Milanesi,
Giovanna Tomassetti, and Pierluigi Vellucci

Abstract We summarize some recent results concerning the study of the asymp-
totic properties of four important enzyme reactions, which are ubiquitous in every
intracellular enzyme reaction network. Mainly following the fundamental ideas by
Nayfeh, after ad hoc adimensionalizations, we apply classical singular perturbation
techniques in order to determine the matched expansions of the solutions, in terms
of a suitable parameter, up to the first order. We show some numerical results, for
the different mechanisms and different parameter values.

Keywords Singular perturbation techniques · Michaelis–Menten kinetics ·
Asymptotic expansions

1 Introduction

The information processing within the cell involves an intricate network of inter-
acting “modules,” each with a well-defined role and molecular interactions. The
long-term aim of our past and current studies is the integration of the “modules” in
a “virtual cell,” in order to reproduce the global behavior of a specific cell type and
to use it for basic, pharmacological, and medical research. This approach is within
the systems biology program [16], which takes into account the implementation of
mathematical models for the study of the emerging network properties of the cell. In
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this sense, a reliable mathematical modeling can be a valid tool for pharmacological
pre-clinical research [4, 8, 31].

The mathematical models of enzymatic processes have been proposed at the
beginning of the last century [6, 14, 15, 17] and have been used for the quantitative
study of several metabolic processes. The Michaelis–Menten (MM) kinetics repre-
sents a fundamental milestone in biochemistry, as it gives a very good description of
the dynamics of the different enzymes involved. Since then, several researches have
been involved in the mathematical study of MM kinetics (see, for example, [2, 9],
for a review).

A key step in the MM kinetics is represented by the standard quasi-steady
state approximation (sQSSA) [18], which consists in the assumption that the
complex concentration is approximately constant after a short transient phase.
However, the approximation may lead to many misinterpretations of the model
and, in order to overcome them (see, for example, the review [2]), other researchers
[5, 32, 33] have introduced and explored a new approximation, called total quasi-
steady state approximation (tQSSA), which has been shown to be always roughly
valid for a broader range of parameter values covering both high and low enzyme
concentrations, in the case of an isolated reaction (as revisited in [2]).

The tQSSA has been recently applied to more complex mechanisms,
like the completely reversible enzyme kinetics [32], the antagonist tog-
gle switch [28], the completely competitive inhibition [3, 25], the double
phosphorylation [25], the Goldbeter–Koshland switch, which models the
single phosphorylation—dephosphorylation cycle [7, 24, 26], the double
phosphorylation—dephosphorylation cycle and the ubiquitous MAPK cascade,
which is one of the most important mechanisms present in the great majority of the
reaction networks in eukaryotic cells [1, 10, 23].

In the context of mathematical modeling of chemical reactions our contribution
falls under the area of ODEs system. The ODEs system describing the behavior
of a (sub)network depends on a set of parameters, i.e., the initial concentration
of dynamical molecular species and the kinetic constants which quantitatively
describe the velocity of every single reaction. The fundamental step is modeling
all of the intermediate reactions, including binding, dissociation, and release of the
product, using mass action and conservation laws. This leads to an ODE for each
involved complex and substrate, where the concentration variation for each reactant
is proportional to the reactant concentrations. We refer to this as the full system.

The application of these models to the study in silico of the complex intracellular
mechanisms, in view of the so-called virtual cell, implicates approximations which
must be as much precise as possible. In this framework, the tQSSA is much more
efficient than the sQSSA. This is the most important reason for our studies, where
the application of even standard perturbation techniques can bring to important
improvements of the models.

In the fully competitive inhibition [27, 29] two substrates S1 and S2 compete
for the same enzyme E. For example, competitive inhibitors are used to make
drugs such as methotrexate that is a chemotherapy drug acting as a competitive
inhibitor which prevents the cancer cells to grow and divide. In the linear double
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phosphorylation reaction [22] the substrate S is phosphorylated by the enzyme E

(usually a kinase) to form the phosphorylated substrate S∗; then S∗ is activated by
the same enzyme E to form S∗∗, so that S is actually activated twice by E, i.e., S
is double-phosphorylated. In the Goldbeter–Koshland switch [13] a substrate S is
modified by an enzyme to the form P and, vice versa, P is transformed back to S

by another enzyme. An example of this process is given by the phosphorylation-
dephosphorylation cycle, where the substrate S is activated by phosphorylation to
the form S∗ and S∗ is transformed back (i.e., inactivated by dephosphorylation) to
S by a phosphatase. In the auxiliary reactions [12] a primary substrate S1 binds with
an enzyme E1, releasing an auxiliary substrate S2, which then binds with a second
enzyme E2, synthesizing a product P .

Here below we give the schemes of the four mechanisms, which are the topics of
our recent research results.

Completely competitive inhibition (where two substrates S1 and S2 compete for
the same enzyme E):

S1 + E
a1−⇀↽−
d1

C1
k1−→ E + P1

S2 + E
a2−⇀↽−
d2

C2
k2−→ E + P2. (1)

Double phosphorylation (where the same enzyme E binds with the substrate S

and its activated form Sp):

S + E
a1−⇀↽−
d1

C1
k1−→ E + Sp

Sp + E
a2−⇀↽−
d2

C2
k2−→ E + Spp. (2)

Goldbeter–Koshland switch (where the substrate S is activated by the enzyme E,
while its activated product P is inactivated by another enzyme F ):

S + E1
a1−⇀↽−
d1

C1
k1−→ E1 + P

P + E2
a2−⇀↽−
d2

C2
k2−→ E2 + S. (3)

Auxiliary reaction (which is very similar to the double phosphorylation reaction,
but in this case the activated substrate S2 binds with a second enzyme E2):

S1 + E1
a1−⇀↽−
d1

C1
k1−→ S2 + E1

S2 + E2
a2−⇀↽−
d2

C2
k2−→ P + E2. (4)
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2 Auxiliary Enzyme Reactions—Theoretical Framework

Just as an example, here we recall the main passages of the mechanism described
by (4). Using the mass action law (which states that the rate of any chemical
reaction is proportional to the product of the masses or concentrations of the reacting
substances), we arrive at the following system:

dS1

dt
= −a1E1S1 + d1C1

dCi

dt
= aiSiEi − (di + ki)Ci = ai (SiEi −KiMCi)

dS2

dt
= k1C1 − a2E2S2 + d2C2

dEi

dt
= − [aiSiEi − (di + ki)Ci] = −ai (SiEi −KiMCi)

dP

dt
= k2C2 (5)

(where KiM = di + ki

ai
are the so-called Michaelis constants), with initial condi-

tions S1(0) = ST , E1(0) = E1T , E2(0) = E2T , Ci(0) = 0, (i = 1, 2), S2(0) = 0,
P(0) = 0. Introducing the total substrates S1 = S1 + C1, S2 = S2 + C2, by
conservation laws we have

S1 + S2 + P = ST , Ei + Ci = EiT (i = 1, 2) . (6)

Replacing (6) in the system (5) leads to a system of four ODEs:

dS1

dt
= −k1C1

dS2

dt
= k1C1 − k2C2

dC1

dt
= a1

[(
S1 − C1

)
(E1T − C1)−K1MC1

]

dC2

dt
= a2

[(
S2 − C2

)
(E2T − C2)−K2MC2

]
. (7)

In order to expand the solutions of the system in asymptotic series [19], we have
to choose a suitable perturbation parameter. According to Palsson’s theory [21, 22],
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we have a sufficient condition for the separation of the reaction time scales and then
we can choose

ε = max

{
εi := KiEiT

(EiT +KiM + ST )2 , i = 1, 2

}

(
where Ki = ki

ai

)
as perturbation parameter. Let us observe that, differently from

the parameters used in the application of the sQSSA, this parameter is not
immediately related to biological properties of the system. It is a limit for the
parameter, which is present in every application of the tQSSA [5, 11, 20, 30, 33].
Nevertheless, its usefulness is mainly related to the fact that, differently from the

other parameters used in literature, it easy to show that εi <
1

4
for every choice of

data. As in this case the situation between the substrates is not symmetric, we should
have to focus our attention on two cases, ε = ε1 and ε = ε2. However, for the sake
of simplicity, in this paper we will consider only the case ε = ε1. With this choice
the following change of variables

Si = ST si (i = 1, 2) , Ci = βici =
(

EiT ST

EiT +KiM + ST

)
ci,

t = γ τ = 1

a1(E1T +K1M + ST )2 ,

provides the following adimensionalization of the model equations for the inner
solution, related to the initial, transient phase [19]:

ṡ1 = −εc1

ṡ2 = ε

[
c1 − c2

k2

k1

η2

η1

]

ċ1 = σ1η1c
2
1 − (η1 + κ1M + σ1s1)c1 + s1

ċ2 = a2

a1

[
σ1η2c

2
2 −

σ1

σ2
(η2 + κ2M + σ2s2)c2 + σ1

σ2
s2

]
(8)

with initial conditions s1(0) = 1, ci(0) = s2(0) = 0 (i = 1, 2) and where (·)· =
d(·)
dτ

and

σi = ST

EiT +KiM + ST

, ηi = EiT

EiT +KiM + ST

,

κiM = KiM

EiT +KiM + ST

(i = 1, 2) ,
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(note that σi + ηi + κiM = 1). We now write the system of equations that gives the
outer solutions, related to the quasi-steady phase [19]. To this aim we set γ := 1

k1η1

and, putting T = t
γ
= ετ and denoting (·)′ = d(·)

dT
, we see that

s′1 = −c1

s′2 = c1 − c2
k2

k1

η2

η1

εc′1 = σ1η1c
2
1 − (η1 + κ1M + σ1s1)c1 + s1

εc′2 =
a2

a1

[
σ1η2c

2
2 −

σ1

σ2
(η2 + κ2M + σ2s2)c2 + σ1

σ2
s2

]
.

(9)

Let us now expand asymptotically the solutions of the inner and outer systems (8)
and (9) with respect to the perturbation parameter ε. Taking a value ε ∼= 0.0008 �
1, it will be sufficient to stop our expansion at the 0-th order. Introducing Δ =
1− 4η1σ1 ; c±10 =

1±√Δ

2η1σ1
, we obtain

s10(τ ) = 1 ; s20(τ ) = 0 ; c10(τ ) = 1

η1σ1

[
e
√
Δτ − 1

c+10e
√
Δτ − c−10

]
; c20(τ ) = 0 (10)

for the inner solution, and

dΣ10
dT

= −Γ10

η1σ1Γ
2

10 − (σ1Σ10 + κ1M + η1)Γ10 +Σ10 = 0

dΣ20
dT

= Γ10 − k2η2
k1η1

Γ20

η2σ2Γ
2

20 − (σ2Σ20 + κ2M + η2)Γ20 +Σ20 = 0

(11)

for the outer system, with initial conditions

Σ10(0) = lim
τ→∞ s10(τ ) =: sas10 = 1; Σ20(0) = lim

τ→∞ s20(τ ) =: sas20 = 0;

Γ10(0) = lim
τ→∞ c10(τ ) =: cas10 = c−10; Γ20(0) = lim

τ→∞ c20(τ ) =: cas20 = 0.

The matching between the inner and the outer solutions gives us the matched
expansion at order 0:

sun10 (τ ) = s10(τ )+Σ10(ετ )− sas10(τ ) = Σ10(ετ )

sun20 (τ ) = s20(τ )+Σ20(ετ )− sas20(τ ) = Σ20(ετ )
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cun10 (τ ) = c10(τ )+ Γ10(ετ )− cas10(τ ) =
1

η1σ1

[
e
√
Δτ − 1

c+10e
√
Δτ − c−10

]
+ Γ10(ετ )− c−10

cun20 (τ ) = c20(τ )+ Γ20(ετ )− cas20(τ ) = Γ20(ετ ) . (12)

3 Numerical Results and Conclusion

In the following we show some numerical examples of the matched expansions
obtained for the four mechanisms taken into consideration. In Fig. 1 we show only
the 0-th order expansion for the auxiliary reactions, because ε = 0.0008 � 1. In
Figs. 2, 3, and 4 we consider the expansions up to 1-st order for the inhibition (ε =
0.045), the Goldbeter–Koshland switch (ε = 0.12), and the double phosphorylation

(a) (b)

(c) (d)

Fig. 1 Auxiliary reactions. Comparison between the solutions of the full system and their matched
0-th order asymptotic expansion beyond the tQSSA. Parameters: a1 = k1 = 1, d1 = 1, K1 =
1, K1M = 2, a2 = k2 = 1, d2 = 0.01, K2 = 1, K2M = 1.01, E0 = 2, S0 = 0.01, ε =
0.0008. (a) c1 zoom. (b) c2. (c) s1. (d) s2
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(a) (b)

(c) (d)

Fig. 2 Fully competitive inhibition. Comparison between the solutions of the full system and their
matched 1-st order asymptotic expansion beyond the tQSSA. Parameters: a1 = 3, k1 = 1, d1 =
0.7, K1 = 0.33, K1M = 0.57, a2 = 3, k2 = 0.7, d2 = 1, K2 = 0.23, K2M = 0.57, ET =
0.7, S1T = S2T = 1, ε = 0.045. (a) c1. (b) c2. (c) s1. (d) s2

(ε = 0.22), respectively. In every case considered in this paper, the approximation is
absolutely satisfactory, even in the last case, where we have stressed the parameter
values, but where we can appreciate the improvement of the approximation, passing
from the 0-th order to the 1-st order approximation.

These preliminary results allow us to continue our research in this direction,
in order to give, for every module composing any reaction network, approximate
formulas which can be very useful to analytically predict the cell functioning in
several physiological situations.



(a) (b)

(c)

Fig. 3 Goldbeter–Koshland switch. Comparison between the solutions of the full system and their
matched 1-st order asymptotic expansion beyond the tQSSA. Parameters: a1 = 1, k1 = 0.1, d1 =
0.01, K1 = 0.1, K1M = 0.11, a2 = 0.2, k2 = d2 = 1, K2 = 5, K2M = 10, ET = 5, FT =
10, ST = 0.1, ε = 0.12. (a) c1 zoom. (b) c2. (c) s

(a) (b)

Fig. 4 Double phosphorylation. Comparison between the solutions of the full system and their
matched 1-st order asymptotic expansion beyond the tQSSA. Parameters: a1 = k1 = d1 =
1, K1 = 1, K1M = 2, a2 = k2 = 1, d2 = 0.1, K2 = 1, K2M = 1.1, ET = 1, ST =
0.01, ε = 0.22. (a) c1. (b) s1
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A Novel Two-Stage Ellipsoid Filtering
Based System Modeling Algorithm for a
Hammerstein Nonlinear Model with an
Unknown Noise Term

Ziyun Wang, Ze Tang, Ju H. Park, and Yan Wang

Abstract This paper considers the system modeling problem for the Hammerstein
nonlinear model with unknown but bounded noise. A two-stage ellipsoid filtering
based modeling algorithm is proposed and the unknown noise term is wrapped in
an ellipsoid during each recursive step. The normalized ellipsoid is varying and
its center, as well as its volume, is updated by using the volume minimization
criteria of the ellipsoid. Finally, the given simulations visually illustrate the feasible
parameter set variation process and the motion trail of the ellipsoids, which shows
the effectiveness and the accuracy of the proposed algorithm.

Keywords Ellipsoidal space · Filtering method · Hammerstein system ·
Nonlinear model · Unknown noise term

1 Introduction

System modeling [1, 2] is one of the most common methods to find the true value of
the complex models and analyze the relation between the input and output signals.
In the recent years, the set membership modeling algorithm is studied for estimating
the parameters of the systems with unknown but bounded noise term [3–5]. Some
geometric spaces with regular structures are commonly used for describing the
bounded noise terms, i.e., the ellipsoidal space is usually adopted for the simplicity
of its formulation [6, 7]. However, the space sets listed in the previous works are
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commonly fitted for the linear system identification field, rather than in the system
modeling for the nonlinear ones, i.e., the Hammerstein system. Considering the
computational complexity and the estimation accuracy, in this paper, the ellipsoidal
space is employed for constructing the known boundary of the noise term.

Differing from the works in [6, 7], in order to diminish the impact of unknown
but bounded colored noise term, this paper considers the modeling problem of
Hammerstein models and a two-stage ellipsoid filtering modeling algorithm is
studied. The main contributions of this paper are listed as follows: (1) a two-stage
filtering method is proposed for the Hammerstein system modeling by filtering the
nonlinear model with unknown noises into two different subsystems, one contains
the noise term and the other includes the system parameters; (2) the minimization
criteria is adopted to determine the recursive step and find the minimum value of the
ellipsoid volume; (3) the simulation results show the motion trail of the ellipsoidal
sets via the sample time, which can directly illustrate the parameter estimation
process.

Briefly, the rest of this paper is organized as follows. Section 2 gives the
Hammerstein system with an unknown but bounded noise term and its identification
model. Section 3 presents a two-stage ellipsoid volume minimization based filtering
algorithm by adopting different ellipsoids to wrap the boundary of the feasible
parameter sets. Section 4 provides an example to illustrate the accuracy and
the effectiveness of the proposed algorithm. Finally, the conclusions and some
future works are offered in Sect. 5.

2 Problem Statement

The following single input/single output nonlinear system is further considered:

y(t) = B(z)

nc∑
i=1

cifi(u(t))+D(z)v(t), ‖v(t)‖ � δ, δ > 0, (1)

where {u(t), y(t)} is the pair of the signal sequences at time t , v(t) is the unknown
but bounded noise term with a priori bound δ. B(z) and D(z) are combinations of

negative powers that are defined by B(z) := 1+
nb∑
i=1

biz
−i and D(z) := 1+

nd∑
j=1

diz
−j

in the unit delay operator z−1 [z−1y(t) = y(t − 1)].
The aim of identifying this nonlinear Hammerstein system is to propose a

geometrical recursive algorithm to consistently estimate the unknown parameter
vectors b := [b1, b2, · · · , bnb

]T ∈ R
nb , c := [c1, c2, · · · , cnc ]T ∈ R

nc and
d := [d1, d2, · · · , dnd

]T ∈ R
nd , from the measured data {u(t), y(t)}Lt=1. From

Eq. (1), the identification model can be rewritten as
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y(t) = B(z)ū(t)+D(z)v(t)

=
nb∑
i=1

biū(t − i)+
nc∑
i=1

cifi(u(t))+
nd∑
i=1

div(t − i)+ v(t)

= ϕT(t)θ + v(t), (2)

where

ϕ(t) := [ū(t − 1), ū(t − 2), · · · , ū(t − nb), f1(u(t)), f2(u(t)), · · · , fnc (u(t)),

v(t − 1), v(t − 2), · · · , v(t − nd)]T ∈ R
nb+nc+nd ,

θ := [bT, cT, dT]T ∈ R
nb+nc+nd .

From Eq. (2), since the error bound of the model is known, the parameters belong
to the membership set S(L) := {θ |y(t) − δ � ϕT(t)θ � y(t) + δ, t ∈ [1, L]}.
In the geometry, the set S(L) is delimited by L pairs of parallel hyperplanes, i.e.,
H1(t) := {θ |ϕT(t)θ = y(t)− δ} and H2(t) := {θ |ϕT(t)θ = y(t)+ δ}. In the whole
parametric space, the hyperplanes are the boundaries of different subspaces.

3 The Ellipsoid Volume Minimization Based
Filtering Algorithm

Based on the input and output signals, the identification model in Eq. (2) can be
changed into a controlled autoregressive model by adopting the unknown filter
D−1(z). The filtered model can be written as

yf(t) = B(z)ūf(t)+ v(t), (3)

where ūf(t) :=
nc∑
i=1

ciUi(t) and yf(t) := 1
D(z)

y(t). The intermediate variable Uj(t) is

defined by Uj(t) := 1
D(z)

fj (u(t)), j = 1, 2, . . . , nc. Then, Eq. (3) can be written as

yf(t) =
nc∑
i=1

ciUi(t)+
nb∑
i=1

biūf(t − i)+ v(t), ‖v(t)‖ � δ, δ > 0. (4)

Define the filtered information vector and two parameter vectors:

ϕf(t) := [ūf(t − 1), ūf(t − 2), · · · , ūf(t − nb),

U1(t), U2(t), · · · , Unc (t)]T ∈ R
nb+nc , (5)

θ s := [bT, cT]T = [b1, b2, · · · , bnb
, c1, c2, · · · , cnc ]T ∈ R

nb+nc , (6)

θn := d = [d1, d2, · · · , dnd
]T ∈ R

nd . (7)
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From Eq. (4), the parameters ci and bj are determined by a feasible set and the two
parallel hyperplanes H1,f(t), H2,f(t) that divide the n-dimensional space, are listed
as follows:

H1,f(t) =
{

θ s|
nc∑
i=1

ciUi(t)+
nb∑
i=1

biūf(t − i) = yf(t)+ δ

}
,

H2,f(t) =
{

θ s|
nc∑
i=1

ciUi(t)+
nb∑
i=1

biūf(t − i) = yf(t)− δ

}
.

However, the true values of the parameters are all in a part of the space instead of
the whole space, i.e.,

H+
f (t) = H+

1,f(t) ∩H+
2,f(t), (8)

H+
1,f(t) =

{
θ s|

nc∑
i=1

ciUi(t)+
nb∑
i=1

biūf(t − i) � yf(t)+ δ

}
, (9)

H+
2,f(t) =

{
θ s|

nc∑
i=1

ciUi(t)+
nb∑
i=1

biūf(t − i) � yf(t)− δ

}
. (10)

Since the unknown but bounded noise term v(t) = yf(t) − ϕT
f (t)θ s determines the

spatial distance between the two parallel hyperplanes H1,f(t), H2,f(t), the ellipsoidal
set membership idea [8, 9] can be adopted in estimating θ̂(t) as the first stage in
solving all the parameter estimates. The filtered model in Eq. (4) can be rewritten in
a vector form:

yf(t) = ϕT
f (t)θ s + v(t), (11)

or

v(t) = yf(t)− ϕT
f (t)θ s, (12)

where yf(t) = y(t) −
nd∑
i=1

diyf(t − i). Because of the unknown parameters di , it is

impossible to use ūf(t) to construct the known parameter vector ϕf(t) in Eq. (5). The
solution here is to use their estimates to derive the following filtering based ellipsoid
recursive algorithm for the Hammerstein models. For the filtered model in Eq. (11),
the normalized ellipsoidal set is [7]

E(P−1
s , θ̂ s) = {θ s ∈ R

ns : (θ s − θ̂ s)
TP−1

s (θ s − θ̂ s) � σ 2
s }. (13)
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The a priori assumed noise bound σs also represents the radius of the ellipsoid
E(P−1, θ̂ s) and the error bound of feasible parameter θ s is lower than θ , that
is, σs � σ . The estimates B̂(t, z) and D̂(t, z) are constructed by B̂(t, z) := 1 +
nb∑
i=1

b̂i (t)z
−i and D̂(t, z) := 1+

nd∑
j=1

d̂j (t)z
−j , respectively.

In the first stage, the intermediate variable estimates are ŵ(t) := ϕ̂
T
n (t)θ̂n(t −

1)+ v̂(t), where the ϕ̂n(t) is determined by the estimates v̂(t− i), i = 1, 2, · · · , nd .
Similarly to the procedure of forming the normalized ellipsoid in Eq. (13), the set of
feasible parameter vectors θn is defined as follows:

E(P−1
n , θ̂n) = {θn ∈ R

nn : (θn − θ̂n)
TP−1

n (θn − θ̂n) � σ 2
n }. (14)

Using the ellipsoid volume minimization principle, we list the ellipsoid volume
minimization based filtering (EVMF for short) algorithm in the first stage to
compute θ̂n(t):

θ̂n(t) = θ̂n(t − 1)+ βn(t)Pn(t)ϕ̂n(t)rn(t),

rn(t) = ŵ(t)− ϕ̂
T
n (t)θ̂n(t − 1),

Pn(t) = 1

αn(t)

[
Pn(t − 1)− βn(t)Pn(t − 1)ϕ̂n(t)ϕ̂

T
n (t)Pn(t − 1)

αn(t)+ βn(t)gn(t)

]
,

σ 2
n (t) = 1+ qn(t)− αn(t)βn(t)r

2
n (t)

αn(t)+ βn(t)gn(t)
,

gn(t) = ϕ̂
T
n (t)Pn(t − 1)ϕ̂n(t),

αn(t) = 1

σ 2
n (t − 1)

,

βn(t) = qn(t)

δ2(t)
.

The intermediate variable qn(t) is the positive real root of the equation

λn,2(t)q
2
n (t)+ λn,1(t)qn(t)+ λn,0(t) = 0, (15)

where λn,2(t) := (nd − 1)σ 4
n (t − 1)g2

n(t), λn,1(t) := [(2nd − 1)δ2(t) − σ 2
n (t −

1)gn(t)+r2
n (t)]σ 2

n (t−1)gn(t), λn,0(t) := [nd(δ
2(t)−r2

n (t))−σ 2
n (t−1)gn(t)]δ2(t).

If Equation (15) does not have any positive real root, i.e., the sampling data at time
t does not update the ellipsoid E(P−1

n , θ̂n), let qn(t) = 0 at time t .
In the second stage, the other ellipsoidal set in Eq. (13) is to be formed. The

filter D̂−1(t, z) is obtained after running the first stage of the EVMF algorithm

and it is easy to compute the estimates, such as ˆ̄uf(t) =
nc∑
i=1

ĉi (t)Ûi(t), ŷf(t) =
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−
nd∑
j=1

d̂j (t)ŷf(t − j) + y(t). The intermediate term Ûk(t) can be computed by

Ûk(t) := 1
D(z)

fk(u(t)) = −
nd∑
l=1

d̂l(t)Ûk(t − l)+ fk(u(t)). Construct the estimate of

ϕf(t) with ˆ̄uf(t) and Ûj (t):

ϕ̂f(t) = [ ˆ̄uf(t − 1), ˆ̄uf(t − 2), · · · , ˆ̄uf(t − nb), Û1(t), Û2(t), · · · , Ûnc (t)]T.

Similar to the first stage of EVMF algorithm, by using the ellipsoid volume
minimization principle, the estimation of θ̂ s(t) can be obtained in the second stage.
By replacing v(t), yf(t), ϕf(t), and θ s in Eq. (12) with their estimates v̂(t), ŷf(t),
ϕ̂f(t), and θ̂ s(t) at time t , the filtered noise vector can be computed as

v̂(t) = ŷf(t)− ϕ̂
T
f (t)θ̂ s(t).

4 Example

Consider the simplified wind turbine model in Fig. 1. The hydraulic pitch system
can be modeled as in [10].

[
β̇

β̇a

]
=

[
0 1
−ω2

n −2ζωn

] [
β

βa

]
+

[
0
ω2

n

]
βr, (16)

Fig. 1 The wind turbine system structure
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where β and βa are the pitch angle and angular velocity, respectively. βr is the pitch
angle reference value, ωn and ζ are the nominal system’s bandwidth and the nominal
system’s damping, respectively. In this paper, we set ωn = 11.11rad/s and ζ =
0.6 be the system natural frequency and the damping factor, respectively [11]. The
hydraulic pitch system of the wind turbine model can be approximated to a second-
order transfer function [11, 12]:

y

ū
= ω2

n

s2 + 2ζωns + ω2
n
, (17)

where y = β and ū = βr. Set the discrete time Ts = 0.01s [10]. Define s = 2
Ts

z−1
z+1

and we use the bilinear transformation method and discretize the given model in
Eq. (17), the given model in Eq. (17) can be transformed to

y(t)

ū(t)
= ω2

n

( 2
Ts

z−1
z+1 )

2 + 2ζωn
2
Ts

z−1
z+1 + ω2

n

(18)

= ω2
nT

2
s z

2 + 2ω2
nT

2
s z+ ω2

nT
2
s

αz2 + βz+ γ
,

where α = 4+ 4ζωnTs + ω2
nT

2
s , β = 2ω2

nT
2
s − 8, γ = 4− 4ζωnTs + ω2

nT
2
s .

Thus, Eq. (17) can be rewritten as

y(t)

ū(t)
= 0.0029z2 + 0.0058z+ 0.0029

z2 − 1.8638z+ 0.8754
. (19)

The above function can be changed to the model y(t) = B(z)ū(t) via the long
division method. After the regularization step that set b0 = 1, and consider the
disturbance from the noise term v(t), the hydraulic pitch system can be described
by the finite impulse response model as follows:

y(t) = B(z)ū(t)+D(z)v(t), (20)

where B(z) = 1 + 0.0112z−1 + 0.0213z−2, ū(t) = −0.4802u(t), D(z) =
1 − 0.2678z−1 + 0.0505z−2. In the simulation, the input and noise signals are
uniform random numbers that are randomly distributed in the interval [−1, 1]. When
adopting the proposed EVMF algorithm, the ellipsoidal set of the noise terms via
sampling time are shown in Fig. 2.

From Fig. 2, it can be seen that the parameters of the hydraulic pitch system
are quickly estimated, which shows the given EVMF algorithm also has a good
performance on estimating the wind turbine system structure under the available
benchmark data.
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Fig. 2 Variation of the feasible noise term parameter ellipsoidal sets of the hydraulic pitch system

5 Conclusions

This paper presents a two-stage ellipsoid estimation algorithm for the Hammerstein
nonlinear system with unknown noises. The probability distribution of the noise
term is unknown and ellipsoidal sets are formed to contain the feasible noise
parameters. This work can be also extended to deal with other types of nonlinear
system modeling problems, such as the Wiener nonlinear system modeling and
parameter estimation for the error-in-variables systems.
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A New Method for the Frequency
Response Curve and Its Unstable Region
of a Strongly Nonlinear Oscillator

Hai-En Du, Guo-Kang Er, and Vai Pan Iu

Abstract In order to determine the frequency response curve and its unstable
region of a strongly nonlinear oscillator, a new method is proposed. This method is
based on splitting the system parameters and introducing some unknown parameters
into the system. The evaluation of the introduced parameters is done by optimizing
the cumulative equation error induced by multiple-scales solution. The Duffing
oscillator, the Helmholtz–Duffing oscillator, and an oscillator with both nonlinear
restoring and nonlinear inertial forces are analyzed as examples to reveal the validity
of the proposed method. The frequency response curves obtained by numerical
continuation method are adopted to compare with those obtained by the proposed
method and the conventional multiple-scales method. The unstable regions obtained
by the harmonic balance method are adopted to examine those obtained by the
conventional multiple-scales method and the proposed method. The efficiency of the
proposed method is tested by comparing the computational time of each method.

Keywords Strong nonlinearity · Multiple-scales method · Frequency response ·
Unstable region

1 Introduction

The identification of the frequency response curve (FRC) and its unstable region
to nonlinear oscillators is important as the FRC is not only able to reflect the
nonlinear characteristics of the system but also the steady-state response of the
system at each excitation frequency. However, many methods are not able to obtain
an accurate FRC and an unstable region if the nonlinearity of the oscillator is
strong. In recent years, some analytical methods were developed for the solutions
to strongly nonlinear oscillators. They are harmonic balance method (HBM),
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homotopy analysis method (HAM), and various modified versions of perturbation
methods. However, some shortcomings can be found in each method. They are
reviewed and discussed in the following prior to presenting the proposed method.

Harmonic Balance Method The HBM assumes the solution can be represented by a
linear combination of sinusoids, then balances each sinusoid to construct nonlinear
algebraic equations. Baily and Lindenlaub firstly conducted the HBM in 1968 and
1969 to analyze the nonlinear circuits, respectively [1, 2]. Generally speaking,
there are no explicit solutions to the nonlinear algebraic equations. In such a case,
numerical methods are adopted to search for a numerical solution to these nonlinear
algebraic equations. In other words, if the systems are too complicated, the HBM
suffers from the efficiency problem as the numerical methods are inefficient in such
a case. Moreover, only the steady-state response can be obtained by HBM method
as an original assumption of the method.

Homotopy Analysis Method The HAM was first devised in 1992 by Liao for
obtaining the approximate solutions to strongly nonlinear problems [3] based on
homotopy theory. Further modifications of the HAM can be found in [4]. However,
the selection of the “auxiliary parameter” h̄ has a significant influence on the
convergence of the solution given by the HAM [5]. To overcome this problem, an
updated version of HAM was proposed by Liao in 2010 [6] by introducing k + 1
unknown “convergence-control parameter” (c0, . . . , ck) to control the convergence
of the HAM. However, it is computationally inefficient to obtain the k + 1
convergence-control parameter by solving k + 1 nonlinear algebraic equations.

Modified Perturbation Methods As the secularities can be eliminated by using
the multiple-scales (MS) method or the Lindstedt–Poincaré (LP) method to solve
nonlinear problems, there are many versions of perturbation methods formulated
by modifying these two improved perturbation methods. However, the above-
mentioned methods are not valid for strongly nonlinear systems. To overcome the
weakness of the MS method, a modified MS method is devised and applied to solve
the forced vibration of an oscillator with cubic nonlinear term or an oscillator with
quintic nonlinear term by Burton and Rahman [7]. To overcome the weakness of LP
method, a three-dimensional nonlinear autonomous dynamic system is studied and
a modified LP method is proposed for obtaining its analytical solution by Chen et
al. [8]. However, the above-mentioned methods are only feasible for the oscillators
with odd nonlinearity. A new expanding parameter was introduced to the LP method
by Cheung et al. in [9]. In Cheung’s method, the large perturbation parameter in the
strongly nonlinear oscillator is transformed into a small one. With this method, the
transformation form is assumed in a different way for different oscillators [10].

Motivation In this paper, a new method is proposed for improving the solutions
obtained by the perturbation methods that can also be regarded as a modified
version of the MS method. The strategy of this method is that the coefficients of
the parameters are split by introducing some unknown parameters. Based on the
solution obtained by the MS method, the evaluation of the introduced parameters is
done by minimizing the cumulative residual error of the original equation of motion.
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Therefore, the whole solution procedure is named parameter-splitting multiple-
scales (PSMS) method in the following discussions. Three examples including the
Duffing oscillator, the Helmholtz–Duffing oscillator, and an oscillator with both
nonlinear restoring force and nonlinear inertial force are analyzed to show the
validity of the PSMS method. For brevity, an oscillator with both nonlinear restoring
force and nonlinear inertial force is named “an oscillator with complex nonlinearity”
in the following. The FRCs obtained by the numerical continuation method (NCM)
are adopted to compare to those obtained by the MS method and the PSMS method.
The solutions by the NCM were obtained with the software “MATCONT.” Also,
the unstable regions of the FRCs obtained by the HBM are adopted to compare
to those obtained by the MS method and the PSMS method. The efficiency of the
PSMS method is examined by comparing the computational time of each mentioned
method.

2 Parameter-Splitting-Multiple-Scales Method

In the following, a damped and harmonically forced Duffing oscillator is adopted
to show detailed procedures of the PSMS method. The procedures of applying the
PSMS method to the Helmholtz–Duffing oscillator or to an oscillator with complex
nonlinearity are similar to those described in the following when considering
some other types of nonlinearity. Considering a non-dimensional, damped, and
harmonically forced Duffing oscillator as follows:

q̈ + uε2q̇ + ω2
0q + ηεq3 = Fε2 cos(Ωt), (1)

where q is the response, Ω is the excitation frequency, ω0 is the natural frequency
of oscillator, u is the damping coefficient, ε is the perturbation parameter, η is the
coefficient of cubic term, F is the excitation amplitude, and t is the time.

2.1 Parameter Splitting

The natural frequency ω0 and the nonlinear parameter η are split and represented as

ω2
0 = ω2

00 + ω2
01ε + ω2

02ε
2 +O(ε3) and η = η1 + η2ε +O(ε2). (2)

Then the equation of motion can be rewritten as

q̈ + uε2q̇ + ω2
00q + ω2

01εq + ω2
02ε

2q + η1εq
3 + η2ε

2q3 = Fε2 cos(Ωt) (3)

up to corrections of order O(ε2).
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2.2 The Solution to the Split System by the MS Method

With the MS method, the response of the oscillator is assumed to be

q = q0(T0, T1, T2)+ εq1(T0, T1, T2)+ ε2q2(T0, T1, T2)+O(ε3), (4)

where T0, T1, and T2 are the fast and slow time scales expressed by

T0 = t, T1 = εt and T2 = ε2t. (5)

By chain rule, the operators of time derivatives are

d

dt
= D0 + εD1 + ε2D2 + · · · , (6)

d2

dt2 = D2
0 + 2εD0D1 + ε2(D2

1 + 2D0D2)+ · · · , (7)

where Dn = ∂/∂Tn and D2
n = ∂2/∂T 2

n . Substituting Eqs. (4), (6), and (7) into
Eq. (3) and equating the coefficients of εm(m = 0, 1, 2) to zero lead to the following
equations:

O(ε0) : D2
0(q0)+ ω2

00q0 = 0, (8)

O(ε1) : D2
0(q1)+ ω2

00q1 = −ω2
01q0 − 2D0D1(q0)− η1q

3
0 (9)

O(ε2) : D2
0(q2)+ ω2

00q2 = F cos(Ωt)− ω2
01q1 − ω2

02q0 − 2D0D1(q1) (10)

−D2
1(q0)− 2D0D2(q0)− uD0(q0)− 3η1q

2
0q1 − η2q

3
0 .

The solution to the O(ε0) equation is expressed as

q0 = C(T1, T2)e
iω00T0 + C̄(T1, T2)e

−iω00T0 , (11)

where C is a function of time scales T1 and T2 which can be determined by omitting
the secular terms in the O(ε1) equation. Substituting Eq. (11) into the right-hand
side of the O(ε1) equation and eliminating the secular terms yield

3C2η1C̄eiω00T0 + 2iD1(C)ω00e
iω00T0 + Cω2

01e
iω00T0 = 0 (12)

and

q1 = Λe3iω00T0 + Λ̄e−3iω00T0 in which Λ = η1C
3

8ω2
00

. (13)
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Substituting the expressions of q0 and q1 into the O(ε2) equation, eliminating the
secular terms, and using the expression Ω = ω00 + ε2σ where σ is a detuning
parameter that can be determined if Ω is given, yield

D2(C) = FeiσT2

4iω00
− uC

2
− Cω2

02

2iω00
+ Cω4

01

8iω3
00

− 15iη2
1C

3C̄2

16ω3
00

− 3η2C
2C̄

2iω00
+ 3η1C

2C̄ω2
01

4iω3
00

(14)

and

q2 = Γ1e
3iω00T0 + Γ2e

5iω00T0 + Γ̄1e
−3iω00T0 + Γ̄2e

−5iω00T0 , (15)

in which

Γ1 = η2C
3

8ω2
00

− η1C
3ω2

01

8ω4
00

− 21η2
1C

4C̄

64ω4
00

and Γ2 = η2
1C

5

64ω4
00

. (16)

It is noted that the expression of the nearness of the excitation frequency to the
resonance frequency is specially selected due to different kinds of nonlinearity
[7, 9]. For example, in Cheung’s method, if the oscillator studied is of cubic
nonlinearity, the nearness of the excitation frequency to the resonance frequency
is assumed to be ω2 = ω2

0 +
∑∞

n=1 εnωn; if the oscillator studied is of quadratic
nonlinearity, the nearness of the excitation frequency to the resonance frequency
is assumed to be ω4 = ω4

0 +
∑∞

n=2 εnωn. If the problem to be investigated is
a mixture of different nonlinearities, a valid expression of the nearness of the
excitation frequency to the resonance frequency is still unknown. In conclusion,
the general form of the expression of the nearness of the excitation frequency to the
resonance frequency is missing.

2.2.1 Frequency Response Curve

The derivative of C with respect to time can be expressed as

dC

dt
= εD1(C)+ ε2D2(C)+O(ε3). (17)

The expression of C is assumed to be in the polar form as

C = 1

2
Aeib, (18)
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where A is the response amplitude and b is the phase of oscillator response.
Substituting Eqs. (12), (13), and (18) into Eq. (17) and separating the real and
imaginary parts yield

Ȧ = Fε2

2ω00
sin γ − uAε2

2
and γ̇ = Ω − ω00 − εω2

01

2ω00
− ε2ω2

02

2ω00
+ ε2ω4

01

8ω3
00

− 3A2η2ε
2

8ω00
+ 15A4η2

1ε
2

256ω3
00

− 3A2η1ε

8ω00
+ ε2F cos(γ )

2Aω00
+ 3A2η1ε

2ω2
01

16ω3
00

,

(19)

where γ = σT2−b. In steady state, the time derivatives of A and γ are equal to zero.
Eliminating γ and σ in Eq. (19) yields the FRC. The relation between the excitation
frequency and the response amplitude at steady state is then obtained to be

Ω = ω00 + εω2
01

2ω00
+ ε2ω2

02

2ω00
− ε2ω4

01

8ω3
00

− 15A4η2
1ε

2

256ω3
00

+ 3A2ηε

8ω00
− ε2F cos(γ )

2Aω00

− 3A2η1ε
2ω2

01

16ω3
00

. (20)

2.2.2 Unstable Region

By the definition, the unstable region can be derived by setting equal to zero the
denominator of dA

dΩ
and its expression is given as

[
4Ωω00A− 4ω00A
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−15ε2η2
1A
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256ω3
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+ 3εηA2
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2
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)
+ 2ω00A

(
− 3εηA
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+ 15ε2η2

1A
3

64ω3
00

+ 3ε2η1ω
2
01A

8ω3
00

)]

+ 2ε4u2ω2
00A = 0. (21)

2.2.3 Approximate Response

Approximated response of the oscillator is obtained to be

qa = A1 cos
(
Ωt − γ

)+ 2A3 cos
(
3Ωt − 3γ

)+ 2A5 cos
(
5Ωt − 5γ

)
, (22)

in which A1 = A, A3 = ηεA3

64ω2
00
− 21η2

1ε
2A5

2048ω4
00
− A3ε2η1ω

2
01

64ω4
00

and A5 = η2
1ε

2A5

2048ω4
00

.
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2.2.4 Determination of Split Parameters

The split parameters (ω00, ω01, ω02, η1, η2) in Eqs. (20)–(22) are determined by
optimizing the error given in Eq. (23) with constrains given by Eq. (2).

Re =
∫ T

0

[
q̈a + uε2q̇a + ω2

0qa + ηεqa
3 − Fε2 cos(Ωt)

]2
dt, (23)

where T = 2π
Ω

. From Eq. (23) it is seen that the expression of qa can be considered
as a function of f (ω01, ω02, η1) once the system parameters ω0, u, η, Ω , and F are
given. The determination of ω01, ω02, and η1 is done by minimizing the value of
Re expressed by Eq. (23) via interior point method for a given value of excitation
frequency.

3 Illustrative Examples

Three oscillators with different kinds of nonlinearity are analyzed to examine the
validity of the PSMS method in determining the FRC and the unstable region
if the system nonlinearity is strong. Firstly, a strongly nonlinear, damped, and
harmonically forced Duffing oscillator is analyzed. It is commonly used for testing
the feasibility of methods for analyzing strongly nonlinear systems and can be
found in many applications. Moreover, a strongly nonlinear, damped, and harmoni-
cally forced Helmholtz–Duffing oscillator is analyzed. Due to the co-existence of
quadratic nonlinearity and cubic nonlinearity, many interesting phenomena of it
were reported in [11]. Also, a damped and harmonically forced Helmholtz–Duffing
oscillator can be found in the planar motion of a suspended cable or a Duffing
oscillator with a harmonic force as well as a constant force [12], etc. Last but
not least, an oscillator with both strongly nonlinear restoring force and strongly
nonlinear inertial force is analyzed. It can be used to model the planar motion
of a cantilever beam by using inextensible assumption. The FRCs of these three
oscillators obtained with the conventional MS method and the PSMS method are
compared with those obtained by the NCM to reveal the capability of the PSMS
method in determining the FRC of the oscillator. Moreover, the unstable regions
of these three oscillators obtained by the conventional MS method and the PSMS
method are compared with that obtained by the three-term harmonic balance method
to examine the capability of the PSMS method in determining the unstable region.
They are shown in Figs. 1, 2, and 3, respectively. Besides for the comparisons of
frequency response curves and unstable regions, the efficiency of the PSMS method
is examined. The computational time of each method is listed in the figure captions.
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Fig. 1 FRCs and their unstable regions of a Duffing oscillator given as q̈ + 0.02q̇ + q + q3 =
0.05 cos(Ωt). (The computational time needed by NCM and the PSMS method for obtaining the
shown FRCs is 181.39 s and 20.32 s, respectively. The computational time needed by TTHBM and
the PSMS method for obtaining the shown unstable regions is 72.48 s and 27.36 s). (a) Frequency
response curves. (b) Unstable regions
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Fig. 2 FRCs and their unstable regions of a Helmholtz–Duffing oscillator given as q̈ + 0.02q̇ +
q + q2 + q3 = 0.05 cos(Ωt). (The computational time needed by NCM and the PSMS method
for obtaining the shown FRCs is 156.67 s and 141.92 s, respectively. The computational time
needed by TTHBM and the PSMS method for obtaining the shown unstable regions is 593.94 s
and 178.39ṡ). (a) Frequency response curve. (b) Unstable region

4 Conclusions

A new method named PSMS method is proposed for determining the FRCs and its
unstable regions of some strongly nonlinear oscillators. A strongly nonlinear Duff-
ing oscillator, a strongly nonlinear Helmholtz–Duffing oscillator, and an oscillator
with complex nonlinearity are analyzed as examples to examine the capability of
the PSMS method in determining the FRCs and its unstable regions of the strongly
nonlinear oscillators. Through analyzing these three oscillators, it can be concluded
that the PSMS method can give a valid and accurate solution to these strongly
nonlinear oscillators. Unlike the modified version of MS method or LP method
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Fig. 3 FRCs and their unstable regions of an oscillator with complex nonlinearity given as (1 +
q2)q̈ + 0.02q̇ + q + qq̇2 + q3 = 0.05 cos(Ωt). (The computational time of NCM and the PSMS
method for obtaining the shown FRCs is 172.08 s and 186.98 s, respectively. The computational
time of TTHBM and the PSMS method for obtaining the shown unstable regions is 139.97 s and
154.63 s). (a) Frequency response curve. (b) Unstable region

proposed by Burton, Chen, and Cheung in [7–9], PSMS method imposes less
restrictions on system nonlinearity type. Moreover, the description of the nearness
of the excitation frequency to the resonance frequency is not limited as in [7, 9].
The nearness of the excitation frequency to the resonance frequency can be chosen
in general to be Ω = ω00 + ε2σ where ω00 is one of the split parameters. As seen
via the solution procedure, it is easy to implement the PSMS method. As seen from
the efficiency examination of the PSMS method, the PSMS method is faster than the
NCM and the three-term harmonic balance method in the first oscillator when the
number of split parameters is five. With a larger number of split parameters, such
as seven or nine, in the second and third oscillators, respectively, the computational
time of the PSMS method is still acceptable and slightly faster than the NCM and
much faster than the HBM in the second oscillator. However, the PSMS method is
slightly slower than the NCM and the HBM in the third oscillator.
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Abstract Nonlinear non-abelian Korteweg–de Vries (KdV) and modified
Korteweg–de Vries (mKdV) equations and their links via Bäcklund transformations
are considered. The focus is on the construction of soliton solutions admitted by
matrix modified Korteweg–de Vries equation. Matrix equations can be viewed as a
specialisation of operator equations in the finite dimensional case when operators
admit a matrix representation. Bäcklund transformations allow to reveal structural
properties (Carillo and Schiebold, J Math Phys 50:073510, 2009) enjoyed by non-
commutative KdV-type equations, such as the existence of a recursion operator.
Operator methods combined with Bäcklund transformations allow to construct
explicit solution formulae (Carillo and Schiebold, J Math Phys 52:053507, 2011).
The latter are adapted to obtain solutions admitted by the 2 × 2 and 3 × 3 matrix
mKdV equation. Some of these matrix solutions are visualised to show the solitonic
behaviour they exhibit. A further key tool used to obtain the presented results is an
ad hoc construction of computer algebra routines to implement non-commutative
computations.
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1 Introduction

The so-called soliton equations are widely investigated since the late 1960s when the
first exact solution of the Korteweg–de Vries equation was obtained, as reported, for
instance, in the well-known book by Calogero and Degasperis [2]. The name soliton
equations is generally used to indicate nonlinear evolution equations which admit
exact solutions in the Schwartz space of smooth rapidly decreasing functions.1 The
relevance of Bäcklund transformations in studying nonlinear evolution equations
is well known both under the viewpoint of finding solutions to given initial
boundary value problems, see [25–27] as well as in giving insight in the study
of their structural properties, such as symmetry properties, admitted conserved
quantities and Hamiltonian structure, see, e.g., [6] and the references therein.
The important role played by Bäcklund transformations to investigate properties
enjoyed by nonlinear evolution equations is based on the fact that most of the
properties of interest are preserved under Bäcklund transformations [16, 17]. Thus,
the construction of a net of Bäcklund transformation to connect nonlinear evolution
equations allowed to prove new results both in the case of scalar equations [3–
5], [18, 19], as well as in the generalised case of operator equations [7–12]2. A
comparison between the scalar (Abelian) and the operator (non-Abelian) cases
referring to third-order KdV-type equations, Bäcklund transformations connecting
them and related properties is comprised in [9]. Notably, Bäcklund transformations
indicate a way to construct solutions to nonlinear evolution equations [20] and
also to nonlinear ordinary differential equations [13] and [14]. Then, the operator
approach [1, 15, 24, 28, 29], allows to construct solutions admitted by the whole
hierarchies of nonlinear operator equations which are connected via Bäcklund
transformations, see [3–11] and the references therein. The special case under
investigation concerns solutions of the 2×2 and 3×3 mKdV matrix equation. Matrix
equations are studied in [23] and in [21], where, respectively, solutions admitted by
Burgers and KdV equations are obtained. A motivation for investigations on matrix
equations is connected to quantum mechanics.

The material is organised as follows. Section 2 briefly reminds the needed notions
on Bäcklund transformation, recalling also the links among KdV-type equations.
In the subsequent Sect. 3, a short overview is provided on the method to obtain
matrix solutions in the finite dimensional case. Then, some solutions of the matrix
mKdV equation are graphically represented and, finally, relevant remarks and
research perspectives are in the closing Sect. 4.

1It is generally assumed that M is space of functions u(x, t) which, ∀ fixed t , belong to the
Schwartz space S of rapidly decreasing functions on RI n, in the, i.e., S( RI n) := {f ∈ C∞( RI n):
||f ||α,β <∞,∀α, β}, where ||f ||α,β := sup

x∈ RI n

∣∣xαDβf (x)
∣∣, Dβ := ∂β/∂xβ .

2An overview on non-commutative equations is given in [22].
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2 Non-commutative Potential KdV, KdV
and Modified KdV Hierarchies

The well-known potential Korteweg–de Vries (pKdV), Korteweg–de Vries (KdV)
and modified Korteweg–de Vries (mKdV) equations, in turn

wt = wxxx+3w2
x, ut = uxxx+6uux and vt = vxxx+6v2vx (1)

are nonlinear evolution equations in the unknown real functions, respectively w, u
and v. All the equations (1) admit soliton solutions, see, among a wide literature,
e.g., [2], namely solutions which represent nonlinear waves which propagate
preserving energy and shape. The aim of the present investigation is to consider a
generalisation of equations (1), on introduction of operator-valued equations accord-
ing to the approach in [1, 15]. Thus, the non-commutative equations, counterpart,
respectively, of (1), are given by

Wt = Wxxx+3W 2
x , Ut = Uxxx+3{U,Ux}, and Vt = Vxxx+3{V 2, Vx}, (2)

where the square and curly brackets denote, in turn, the commutator and the anti-
commutator, that is ∀T , S, [T , S] := T S − ST and {T , S} := T S + ST .

According to the definition, [16, 17], two different evolution equations, e.g., (1)1
and (1)2, are termed connected via the Bäcklund transformation B(u, v) = 0
whenever given two solutions they admit, say, u(x, t) and v(x, t), if

B(u(x, t), v(x, t))|t=0 = 0 implies B(u(x, t), v(x, t))|t=τ = 0,∀τ > 0.
(3)

Well-known examples of Bäcklund transformations are the introduction of a bona
fide potential and the Miura transformation which, respectively, relate the pKdV to
the KdV and the latter to the mKdV equation. The non-commutative extensions are

B1 : U −Wx = 0 M : U − iVx − V 2 = 0 . (4)

Notably, [10, 31], the links via Bäcklund transformations, combined with the
knowledge of the hereditary recursion operator of the KdV equation, allow to
construct the recursion operator admitted by the pKdV as well as by mKdV equation
and, hence, to extend the same links to the whole corresponding hierarchies (see [7]
and the references therein for details).

That is, given the KdV recursion operator Φ(U) then, the mKdV recursion
operator and the pKdV recursion operator are obtained [10]. All the corresponding
members in the three hierarchies of pKdV, KdV and mKdV equations follow to be
linked via the transformations (4). Remarkably, these connections [10] allow, given
a solution of the non-commutative pKdV equation, to construct the corresponding
solutions of the non-commutative KdV and mKdV equations.
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3 Matrix Soliton Solutions

This section aims to summarise the essential steps in the construction of solutions on
application of the operator method devised in [1, 15], further developed in [29, 30]
and extended to hierarchies in [11]. A very short outline on how this method can
be adopted to construct solutions of the matrix mKdV equation is provided. Indeed,
the study in [7, 8, 10] is devoted to study nonlinear evolution equations in which the
unknown is an operator on a Banach space. The idea of the method can be sketched
as follows:

• Consider the operator method to obtain pKdV solutions.
• Use the links, via Bäcklund transformations, between the pKdV, KdV and mKdV

equations to construct solutions of the KdV and mKdV equations.
• Implementation and visualisation of the explicit solutions via computer algebra

routines.

The quite involved technical details can be found in [11]. The following first
two subsections provide the schematic idea of the adopted method. In the third
subsection some explicit soliton solutions of the 2 × 2 and 3 × 3-matrix mKdV
equation are presented.

3.1 Operator Method

The solution method, [1, 29], can be sketched via the following diagram

original
soliton equation

solution
u = u(x, t; a), a ∈ C

solution formula with
an operator-valued

parameter

û = τ(U(x, t;A))

operator-valued
soliton equation

solution
U = U(x, t;A), A ∈ L(E)

appropriate
translation

scalarization

�

��

����

where a and A are parameters which, in turn, represent a generally complex number
and an operator.
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3.2 Soliton Solutions of mKdV Matrix Equation

The following theorem (cf. Theorem 11 b) in [11] where the matrix mKdV hierarchy
is treated allows to construct non-commutative soliton solutions of the mKdV
equation

Vt = Vxxx + 3{V 2, Vx}. (5)

More precisely, (5) is to be read as an equation in which the dependent variable
V = V (x, t) takes values in the d × d-matrices. For the proof and the notation
related to Banach spaces we refer to [11].

Theorem 1 Let E be a Banach space and A a quasi-Banach ideal equipped with
a continuous determinant δ. Let A ∈ L(E) with spec(A) ⊆ {λ ∈ C| Re(λ) > 0}.
Moreover, assume that B ∈ A(E) satisfies the d-dimensionality condition

AB + BA =
d∑

j=1

d(j) ⊗ c(j) (6)

with linearly independent d(j) ∈ E′ and c(j) ∈ E, j = 1, . . . , d. Then the matrix-
function

V = i

2

(
δ
(
I + i(L+ L(i,j))

)

δ
(
I + iL

) − δ
(
I − i(L+ L(i,j))

)

δ
(
I − iL

)
)d

i,j=1
,

where

L(i,j) = d(i) ⊗
(

exp
(
Ax + A3t

)
c(j)

)
, L = exp

(
Ax + A3t

)
B, (7)

and I = IE denotes the identity operator on E, solves the matrix mKdV (5) with
values in the d × d-matrices on every product domain (−∞, c) × G (c ∈ R, G a
domain in R

n−1) on which δ(I ± iL) �= 0.

3.3 Some Explicit Solutions of the Matrix Modified
KdV Equation

The final step consists in the implementation, via computer algebra, of suitable
routines amenable to visualise the matrix solutions of the mKdV equation. Indeed,
multisoliton solutions admitted by the matrix KdV equation are given by Gon-
charenko in [21]: these solutions are obtained via a generalisation of the inverse
scattering method. As shown in [11], the solution class of the matrix KdV equation
that corresponds to the class constructed in Theorem 1 comprises Goncharenko’s
multisoliton solutions. In the present subsection, soliton solutions of the matrix
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modified KdV are visualised using Mathematica. Some of such explicit 2-soliton
solutions of the matrix mKdV, in the present subsection, are visualised using
Mathematica.

Without going into details, we briefly explain the choices in Theorem 1 to realise
2-soliton solutions of the d × d-matrix mKdV. To reflectionless spectral data with
discrete eigenvalues k1, k2 and spectral matrices B1, B2 of size d× d, we associate

A =
(
k1Id 0

0 k2Id

)
, B =

(
i

ki+kj
Bj

)2

i,j=1
, in particular, E = C

2d. In the plots

below the case B1 = B2 is considered (Fig. 1).
The examples of solutions of the mKdV equation, graphically represented in the

Figs. 2, 3, and 4, represent different 3 × 3 matrix solutions: the elements of the
spectral matrices are indicated in the caption. The pictures show the behaviour of
two-soliton solutions admitted by the matrix mKdV equation.

Note that the crucial features of interaction between two different solitons
well known on the scalar case seem to characterise also matrix solutions. These

Fig. 1 Two examples of two-soliton solutions of 2 × 2 matrix mKdV equation; the elements of
the spectral matrices B := B1 = B2 are specified as follows: Bh,k = 1,∀h, k, on the l.h.s. and
B1,1 = B1,2 = B2,2 = 1, B2,1 = 0, on the l.h.s.

Fig. 2 Two-soliton solutions of 3 × 3 matrix mKdV equation; all the matrix elements in
B := B1 = B2 are equal to zero expect the two diagonal elements B1,1 = B3,3 = 1
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Fig. 3 Two-soliton solution of 3 × 3 matrix mKdV equation; all the matrix elements in
B := B1 = B2 are equal to one, i.e. Bh,k = 1, 1 ≤ h, k ≤ 3

Fig. 4 Two-soliton solution of 3 × 3 matrix mKdV equation; Bh,h = 1, 1 ≤ h ≤ 3 and
Bh,h+1 = 1, 1 ≤ h ≤ 2 all the other matrix elements in B := B1 = B2 are equal to zero

pictures represent only an example of a study, currently in progress, aiming to
construct additional solutions as well as their interpretation. In particular, if the
spectral matrices are diagonal, then also the solution enjoys the same property, see
Fig. 2. Conversely, Fig. 4, shows that, when off diagonal elements in the spectral
matrix are different from zero, the situation changes. For example, given the
initial datum B1,3 = 0, in the spectral matrices, the corresponding element of
the two-soliton solution, depicted in Fig. 4, is not zero. A detailed study on these
solutions is currently under investigation. One of the main issues concerns the
energy conservation and its partition among the matrix elements. The appropriate
functional which represents the energy of the interacting solitons is expected to play
a crucial role to understand the phenomenology under investigation.
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4 Concluding Remarks

The aim of the present study is to emphasise some of the properties of solutions
admitted by matrix mKdV equation. Notably, depending on the spectral data, a
variety of soliton solutions may be observed. The crucial feature seems to be the
appearance, also in the matrix case, of localised solutions which can be termed
solitons on the basis of their interaction properties. A much richer interaction
phenomenology, with respect to the scalar case, can be observed when matrix
solutions are investigated. Indeed, as soon as the spectral matrices have non-zero off-
diagonal terms, the solution exhibits non-zero solutions in further matrix elements.
In addition, a variety of different solutions can be observed. However, in all cases, a
form of energy distribution seems to be observed: the most appropriate way to define
a functional suitable to represent the energy related to a matrix soliton solution
is, in the authors opinion, one of the interesting questions this work arises. The
obtained results motivate further investigations to provide a better understanding of
the interesting phenomenology already observed.
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Part II
Bifurcations and Nonsmooth Systems



Bifurcations of Limit Directions at
Codimension-2 Discontinuities of Vector
Fields

Mate Antali and Gabor Stepan

Abstract In this paper, nonsmooth vector fields are considered, where the discon-
tinuity is located in a codimension-2 subset of the phase space (called extended
Filippov systems). Although there are continuously many directions which are
orthogonal to the discontinuity set, the trajectories of the system typically tend to
the discontinuity along a few specific directions (called limit directions). During
the current research, we present two types of bifurcations related to these limit
directions: the tangency bifurcation and the fold of two limit directions. The analysis
of this type of discontinuity is motivated by three-dimensional contact of rigid
bodies in the presence of Coulomb friction.

Keywords Bifurcations · Limit direction · Codimension-2 discontinuity ·
Extended Filippov systems

1 Introduction

Filippov systems are nonsmooth dynamical systems which possess codimension-
1 discontinuities in the phase space (see [1] or [2] for an overview). One of the
physical sources of these systems is dry friction with the assumption of the Coulomb
friction model. But when spatial (three-dimensional) contact of rigid bodies is
modelled by dry friction, the resulting dynamical system contains more complicated
discontinuities in their phase space.

In the limit case where the contacting bodies are completely rigid and the contact
area is infinitesimally small, the simple three-dimensional Coulomb friction leads
to codimension-2 discontinuities (see [3]). This type of vector field can be called
an extended Filippov system, whose basic definitions and properties have been
published recently (see [4]). Note that the assumption of finite contact area with
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drilling friction and rolling resistance (see [5, 6]) would lead to higher codimen-
sional discontinuities, which systems are not covered by the present analysis.

In the present work, we focus on the bifurcations of the so-called limit directions
of extended Filippov systems. These objects are the possible directions where the
trajectories of the system are connected to the discontinuity set.

2 Extended Filippov Systems

2.1 Definition of Extended Filippov Systems

Consider the vector field F(x) where x = (x1, x2, . . . , xn) and n ≥ 3. Assume that
F(x) is defined everywhere in R

n except for the set

Σ = {x : x1 = x2 = 0} = {(0, 0, x3, . . . , xn)} . (1)

As the vector field F(x) is not defined in Σ , the n−2 dimensional space Σ is called
a codimension-2 discontinuity set of F .

There are continuously many unit vectors orthogonal to Σ , denoted by

n(φ) := (cosφ, sinφ, 0, . . . , 0), (2)

where φ ∈ [0, 2π) shows the angle around the discontinuity set. Let us formally
calculate the directional limit depending on the angle φ at a point x0 ∈ Σ :

F ∗(x0)(φ) = lim
ε→0+

F(x0 + εn(φ)). (3)

At a chosen x0, we denote the limit vector field shorty by F ∗(φ).

Definition 1 (Extended Filippov System) A system

ẋ = dx

dt
= F(x), F : Rn \Σ → R

n (4)

is called an extended Filippov system, if the following three properties are satis-
fied:

(a) The vector field F(x) is smooth on R
n \Σ .

(b) The limit (3) exists for all x0 ∈ Σ and φ ∈ [0, 2π).
(c) For all x0∈Σ , there exist φ1, φ2 ∈ [0, 2π) such that F ∗(x0)(φ1) �=F ∗(x0)(φ2).

In other words: the discontinuity is restricted to Σ (see (a)), there is indeed a
discontinuity in all points of Σ (see (c)), and the discontinuity is regular in some
sense (see (b)).
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In the definition of extended Filippov systems, the state space could be an open
set in R

n and Σ could be a smooth n − 2 dimensional manifold (see [4]), but the
restricted definitions above can be used without loss of generality. Note that F(x) is
not defined on Σ . By using a convex combination (see [4]), the vector field can be
extended to some parts of Σ , but this is not covered by the current paper.

2.2 Limit Directions

Consider a point x0 ∈ Σ of the discontinuity set. The orthogonal complement of Σ
at x0 is a plane defined by

OΣ(x0) :=
{
x0 + (x1, x2, 0, . . . , 0)

}
, (5)

which is referred simply as orthogonal space. Let us write the limit vector field
F ∗(φ) into the form

F ∗(φ) = F ∗O(φ)+ F ∗T (φ) = R(φ) · n(φ)+ V (φ) · n(φ + π/2)︸ ︷︷ ︸
orthogonal to Σ

+ F ∗T (φ)︸ ︷︷ ︸
tangent to Σ

,

(6)
where F ∗O(φ) lays in the orthogonal space and F ∗T (φ) is tangent to Σ . The scalar-
valued, 2π -periodic functions R(φ) and V (φ) are defined by

R(φ) := F ∗1 (φ) cosφ + F ∗2 (φ) sinφ,

V (φ) := F ∗2 (φ) cosφ − F ∗1 (φ) sinφ,
(7)

where F ∗1 and F ∗2 are the first two components of F ∗. The component R(φ)

describes the radial part of the limit vector around the discontinuity set Σ . The
component V (φ) describes the circumferential dynamics around Σ . This structure
gives the idea to transform the system into polar coordinates (see the next section).

To describe the structure of the dynamics in the vicinity of the discontinuity set
Σ , we look for the trajectories which are connected to Σ . Although the vector field
F(x) is not defined in Σ , the trajectories of F(x) can tend to Σ in forward or in
backward time. Assume that a trajectory of F tends to a point x0 ∈ Σ and the
trajectory has a well-defined asymptote at x0 with a direction of φ0 measured
around the discontinuity set. Along the line of the asymptote, the orthogonal part
F ∗O(φ) must be parallel to n(φ). Then, we can see from (6) that the circumferential
dynamics V (φ0) vanishes. This motivates the following definition:

Definition 2 (Limit Direction) Consider a point x0 ∈ Σ with the functions defined
in (7). If V (φ0) = 0 for φ0 ∈ [0, 2π), then the angle φ0 is called a limit direction
of x0.
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Fig. 1 Example of different types of limit directions. Left panel: the phase portrait of the system
F(x) = (−x1/(x

2
1 + x2

2 )
1/2 + 2x2

1/(x
2
1 + x2

2 ) − 1/2, −x2/(x
2
1 + x2

2 )
1/2, −x3) projected into
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components of the dynamics and the phase portrait of the associated system (11). Attracting direc-
tions: φ2, φ3, φ4, φ5, φ6, repelling direction: φ1. Dominant directions: φ3, φ5, isolated directions:
φ1, φ2, φ4, φ6

The limit directions have important role in organizing the dynamics in the
vicinity of Σ (see Fig. 1). If x0 possesses limit directions then all trajectories of
F(x) connected to x0 must tend to x0 along one of these limit directions. In some
sense, the limit directions are similar to the eigenvectors of nodes and saddles of
smooth systems, but there are some fundamental differences: The limit directions
are uni-directional, and it can be shown that the trajectories reach the discontinuity
in finite time along a limit direction. It is possible that x0 does not have any limit
directions, that is, V (φ) �= 0 for all φ ∈ [0, 2π).

2.3 Types of Limit Directions

Let us categorize the limit directions according to the structure of the surrounding
trajectories. According to the radial component, the trajectories either tend towards
the discontinuity set Σ (attracting) or they move outwards from Σ (repelling). These
two cases can be separated according to the sign of the radial component R(φ) of the
dynamics:

Definition 3 (Attracting and Repelling Limit Directions) Consider a point x0 ∈
Σ and a corresponding limit direction φ0 satisfying V (φ0) = 0. The limit direction
is called attracting if R(φ0) < 0 and it is called repelling if R(φ0) > 0.

The sign of the derivative V ′ := dV/dφ(φ0) decides whether the nearby
trajectories are getting closer or further to each other in the circumferential direction
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as the time is evolving. If the sign of R(φ0) is considered, as well, we can decide
whether the trajectories are contracting in the direction towards the discontinuity set:

Definition 4 (Dominant and Isolated Limit Directions) Consider a point x0 ∈ Σ

and a corresponding limit direction φ0 satisfying V (φ0) = 0. The limit direction is
called dominant if R(φ0)·V ′(φ0) > 0 and it is called isolated if R(φ0)·V ′(φ0) < 0.

The change of the type of a limit direction causes structural change in the
dynamics in the vicinity of the discontinuity set. In the next section, we create a
2D system by projecting F(x) into the orthogonal space OΣ(x0). The analysis of
that system helps to explore the bifurcations of limit directions.

3 Analysis of the Associated Smooth System

3.1 The Associated Smooth System in Polar Coordinates

For each point x0 of the discontinuity set Σ , we create an associated smooth system,
whose equilibrium point corresponds to the limit direction of the original system.
Let us express the variables x1 and x2 in polar coordinates in the form

x1 = r cosφ, x2 = r sinφ, (8)

where r > 0 is the distance from the discontinuity set Σ and φ ∈ [0, 2π) is the
angle around Σ which we have already used. The dynamics of these variables is
given by

ṙ = F1(x) cosφ + F2(x) sinφ, φ̇ = 1

r
·
(
F2(x) cosφ − F1(x) sinφ

)
, (9)

where F1 and F2 are the first two components of F .
Let us restrict (9) to the orthogonal space OΣ(x0) (see (5)) and take the

projection of F(x) into this orthogonal space. Then (9) leads to a planar dynamical
system of the variables r and φ in the form

ṙ = Fr(r, φ), φ̇ = 1

r
Fφ(r, φ), (10)

where Fr and Fφ are smooth functions on (r, φ) ∈ [0,∞)× [0, 2π).
Note that (10) is singular at r = 0, which corresponds to x = x0 ∈ Σ . Let us

introduce a new time variable τ defined by dr/dτ = ṙ ·r , where the dash denotes the
differentiation with respect to the new time variable. Then, it can be shown that (10)
becomes
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dr/dτ = R(φ) · r + S(φ) · r2 +O(r3),

dφ/dτ = V (φ)+W(φ) · r +O(r2),
(11)

where R(φ) and V (φ) are the same functions we defined in (7), S(φ) and W(φ)

are 2π -periodic functions, and O denotes the higher order terms in r . Note that the
terms R(φ) and V (φ) originate from the discontinuous part of F(x), while the terms
S(φ) and W(φ) originate from the linear part of F(x).

The equilibrium points of the system (11) are strongly related to those of the limit
directions of the original system. As (11) is a smooth 2D system, a usual bifurcation
analysis can be applied to its equilibrium points.

3.2 Equilibrium Points and Bifurcations

The trivial equilibrium points of (11) are (r, φ) = (0, φ0) where V (φ0) = 0. The
Taylor expansion around an equilibrium (0, φ0) is given by

(
dr/dτ
dφ/dτ

)
=

(
R(φ0) 0
W(φ0) V ′(φ0)

)
·
(

r

φ − φ0

)
+O(r2, (φ − φ0)

2). (12)

It can be seen from the Jacobian matrix that the eigenvalues of the equilibrium are
λ1 = R(φ0) and λ2 = V ′(φ0).

Bifurcations of the equilibrium points can occur when one of these eigenval-
ues becomes zero. These are expressed in the following two theorems. The theorems
can be proved by careful but straightforward application of the general conditions
of the basic bifurcations (see, e.g., [7, p. 338]).

Theorem 1 (Transcritical Bifurcation) Consider a family of the systems in the
form (11) depending smoothly on a scalar parameter p. At p = 0, consider an
equilibrium point (r, φ) = (0, φ0) satisfying V (φ0) = 0, and assume that the
following statements are true:

R(φ0) = 0, V ′(φ0) �= 0, S(φ0) · V ′(φ0)−W(φ) · R′(φ0) �= 0. (13)

Moreover, assume that by considering the dependence of the parameter p, the
derivative ∂R/∂p is non-zero. Then, a transcritical bifurcation occurs at (r, φ) =
(0, φ0) and p = 0.

In the case of this transcritical bifurcation, the examined trivial equilibrium
passes over a non-trivial equilibrium with r �= 0 for p �= 0. The coordinate r

of this non-trivial equilibrium would change sign at the critical parameter value
p = 0. However, the region r < 0 is not part of the phase space of the system, that
is, the non-trivial equilibrium exists either below or above of the critical parameter
value p = 0.
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Theorem 2 (Saddle-Node Bifurcation) Consider a family of the systems in the
form (11) depending smoothly on a scalar parameter p. At p = 0, consider an
equilibrium point (r, φ) = (0, φ0) satisfying V (φ0) = 0, and assume that the
following statements are true:

V ′(φ0) = 0, R(φ0) �= 0, V ′′(φ0) �= 0. (14)

Moreover, assume that by considering the dependence of the parameter p, the
derivative ∂V/∂p is non-zero. Then, a saddle-node bifurcation occurs at (r, φ) =
(0, φ0) and p = 0.

In this saddle-node bifurcation, two trivial equilibria are involved on the line
r = 0. Due to this bifurcation, the number of the trivial equilibria changes by two,
which is simply the number of roots of the function V (φ) on [0, 2π).

4 Bifurcations of the Limit Directions

4.1 Relation Between the Associated System
and the Original System

Based on the results of the associated smooth planar system presented above, we
can analyse the bifurcations of the limit directions in extended Filippov systems.

The line r = 0 in the system (11) corresponds to the selected point x0 of the
discontinuity set in the original system (4). Moreover, the location of the trivial
equilibria of (11) is determined by V (φ0) = 0, which coincides with the condition
of Definition 2. That leads to the following statement:

Proposition 1 Each limit direction φ0 of x0 ∈ Σ , corresponds to an equilibrium
point of the associated system (11) at (r, φ) = (0, φ0).

When we want to transfer the results about the bifurcations to the original
system (4), we should not forget about the effect of the projection performed at
the creation of the associated system (11). It is possible to repeat the calculations
of the previous section in the whole space R

n, where the polar coordinates r and
φ are complemented by coordinates x3, . . . , xn of x0 ∈ Σ (see (1)). Then, it can
be showed that the bifurcations presented in the previous section do not suffer a
qualitative change by the projection.

Consequently, we can transfer the bifurcations declared in Theorems 1–2 to
the limit directions of the extended Filippov system (4). Note that the parametric
dependence of the system (4) is not considered. However, the choice of x0 modifies
the associate system (11) as a dependence of n − 2 parameters. Therefore, the
simple codimension-1 bifurcations of (11) become n − 3 dimensional bifurcation
surfaces in the discontinuity set Σ . These surfaces divide Σ into parts according to
the structurally different kinds of behaviour of the trajectories in the vicinity of the
discontinuity.
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In case of both bifurcations, we first define the new type of bifurcation and then
state a theorem about the structural properties of the bifurcation. The proof of these
theorems are the direct consequences of Theorems 1–2 and Definitions 2–4.

4.2 Tangency Bifurcation

Definition 5 (Tangency Bifurcation) Consider a point x0 ∈ Σ with the functions
defined in (7). Assume that there exists φ0 ∈ [0, 2π) such that V (φ0) = 0, R(φ0) =
0, V ′(φ0) �= 0 and (S · V ′ − W · R′)(φ0) �= 0. Then, we say that a tangency
bifurcation occurs at x0.

Theorem 3 (Structural Changes at the Tangency Bifurcation) In the tangency
bifurcation, one limit direction of x0 is changing from attracting to repelling or vice
versa. In the meantime, the limit direction is changing from dominant to isolated
or vice versa. The corresponding limit vector F ∗(φ0) is tangent to the discontinuity
set Σ .

Note that the non-trivial equilibrium involved to the transcritical bifurcation
of (11) corresponds to the intersection of the nullclines of F1(x) and F2(x), which
causes the tangency of F ∗(φ0) field to Σ at x0. The phrase tangency bifurcation is
based on the strong analogy to the tangency bifurcation of classical Filippov systems
(see [1]). Note that for the evaluation of the conditions of Definition (5), the linear
part of the vector field F(x) is required (contained in S(φ) and W(φ)).

4.3 Fold of Limit Directions

Definition 6 (Fold of Limit Directions) Consider a point x0 ∈ Σ with the
functions defined in (7). Assume that there exists φ0 ∈ [0, 2π) such that V (φ0) =
V ′(φ0) = 0, R(φ0) = 0 and V ′′(φ0) �= 0. Then, we say that a fold of limit directions
occurs at x0.

Theorem 4 (Structural Changes at the Fold of Limit Directions) In the fold of
limit directions, two limit directions are joined and destroyed. Both limit directions
are either attracting or repelling. One of the involved limit directions is dominant
and the other one is isolated.

The term fold (or saddle-node) bifurcation is a natural choice based on the
corresponding bifurcation in Theorem 2. Independently on the linear and higher
order terms of F(x), this type of bifurcation depends on the limit vector field
F ∗(φ) only.



Bifurcations of Limit Directions at Codimension-2 Discontinuities of Vector Fields 95

5 Conclusion

Limit directions have an important role in understanding the structure of trajectories
tending to the codimension-2 discontinuities in extended Filippov systems. At each
point of the discontinuity set, an associated planar smooth system was created in
polar coordinates. The results of the bifurcation analysis of this smooth system were
transferred to the original nonsmooth system. A bifurcation of the limit directions
can occur either when the limit direction turns around (tangency bifurcation) or
when two limit directions merge (fold bifurcation). Both types of these bifurcations
have been identified in mechanical systems containing dry friction between rigid
bodies (see [3]). Further research will explore the detailed mechanical consequences
of these bifurcations.
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Boundary Layer Dynamics of Multibody
Systems Involving Impact and Friction

Sotirios Natsiavas and Elias Paraskevopoulos

Abstract A new method is presented on the dynamics of multibody systems subject
to a combination of bilateral constraints and a unilateral constraint, related to a fric-
tional impact. The analysis is performed by using concepts of Analytical Dynamics
and differential geometry. This sets a strong foundation for applying Newton’s
law of motion and leads to an illuminating description of the dynamics. Using
the unilateral constraint, a boundary is first defined on the original configuration
manifold, surrounding a subspace of possible motions. Then, the emphasis is shifted
on the dynamic action within the boundary layer. A set of numerical results is also
presented, which is obtained for two characteristic examples.

Keywords Analytical dynamics · Unilateral constraint · Manifold with
boundary · Frictional contact

1 Introduction

Studies on the dynamics of constrained mechanical systems span over a large
research domain and are part of a long tradition in mechanics [1–3]. Specifically,
systems with impact and friction appear in many applications and are associated to
a lot of theoretical challenges [3–7]. Two main approaches are employed in this area.
The first is based on the principles of linear and angular momentum, together with
a definition of restitution coefficients and development of impact laws in order to
predict post-impact velocities and impulsive reactions. This includes a considerable
body of literature where contact events are studied by using tools from Non-smooth
Mechanics [5–7]. The second approach is known as a Darboux–Keller method and
leads to a set of ordinary differential equations (ODEs), describing dynamics of
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particles or rigid bodies during the impact time interval, by employing the normal
impulse as an independent variable [3, 4, 8].

This chapter is based on previous studies of the authors on constrained systems
[9, 10]. An Analytical Dynamics framework is adopted, together with some basic
results from the theory on manifolds with boundary [11]. The manifold boundary
is first determined by using the unilateral constraint. This defines a subspace of
the original configuration manifold where the figurative particle, representing the
motion of the system, is allowed to move. Then, each bilateral constraint causes a
correction in the direction of the main impulse in the configuration manifold. When
friction effects are negligible, the dominant action occurs along this direction and is
described by a nonlinear ODE. The presence of friction converts this to a system of
three ODEs, capturing the essential dynamics in a subspace, arising by bringing the
image of the friction cone from the physical to the configuration space.

The present chapter is organized as follows. First, the basic geometric properties
(i.e., metric and connection) of a manifold with boundary are summarized in Sect. 2.
The effect of bilateral constraints is considered in Sect. 3. Next, the analytical part
is completed by including friction. Finally, a set of numerical results is presented in
Sect. 4.

2 Mechanical Systems with a Single Frictionless Impact

The motion of the systems examined is described by a set of generalized coordi-
nates, q = (q1, . . . , qn) [1, 2]. These entities determine the position of a point p,
moving as a function of time t, on an n-dimensional configuration manifold M.
When a contact occurs, the allowable motions on M are restricted by an inequality

ρ(p) ≥ 0. (1)

Function ρ defines a constrained manifold

X = {p ∈ M : ρ(p) ≥ 0} , (2)

with boundary ∂X and interior Xo = X\∂X, so that X = Xo ∐
∂X. Then, the motion is

represented by a curve on X. The tangent vector to such a curve at a point p belongs
to the n-dimensional tangent space TpX at p. Then, if Be =

{
e1 . . . en

}
is a basis

of TpX and using the summation conventions

uI eI =
∑n

I=1
uI eI and uiei =

∑n

i=2
uiei,

the elements of TpX appear in the form

u = uI eI = u1e1 + uiei . (3)
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Each element u∼
∗ of the corresponding cotangent space T ∗pX , known as a co-

vector, is related to a vector u by using the duality pairing

u∼
∗ (w) = 〈

u,w
〉
, ∀w ∈ TpX, (4)

where 〈·, ·〉 is the inner product of TpX . Also, a dual basis B∗
e = { e∼

1 . . . e∼
n} to Be

is obtained for T ∗pX , by applying the conditions e∼
I
(
eJ

) = δIJ [2]. Vector spaces

TpX and T ∗pX are needed in obtaining the tangent and cotangent vector bundles over
X, by TX = ∐

p∈X
TpX and T ∗X = ∐

p∈X
T ∗pX.

Next, if V(X) represents the space of all smooth vector fields on X, their subset
Vb(X) includes only those which are tangent to the boundary. Also, there exists a
new vector bundle over X, denoted by bT X, where the component vector space bTpX
is n-dimensional even at points of the boundary. A companion b-cotangent bundle
bT ∗X can also be defined. The b-bundles bTX and bT ∗X coincide with the ordinary
bundles TX and T ∗X, respectively, away from the boundary [11].

The geometric properties of manifold X can be determined by employing two
special coordinate bases in bTpX. The first one is related to a set of coordinates
x = (x1, . . . , xn) introduced at a boundary point p with x1 = ρ ≥ 0, while the
second is related to the original q-coordinate system. Then, any vector in bTpX is
expressed as

bv = ẋI eI = q̇I ′eI ′ , (5)

where Be′ =
{
e1′ . . . en′

}
is the basis of the q-coordinate system, with

eI ′ = AI
I ′ eI or eI = BI ′

I eI ′ , (6)

for I, I′ = 1, . . . , n, where B =
[
BI ′

I

]
= A−1. Then, the components of the

b-metric tensor in the x-coordinate system can be put in matrix G, with elements

gIJ = gIJ + ĝIJ , (7)

so that gIJ = gIJ over Xo, where G = [gIJ] is the metric matrix away from the
boundary. Inside the boundary, term g11 is replaced by

ĝ11 =
(
b/x1

)2
g11, (8)

where b is the width of the boundary layer [10], while ĝi 1 = ĝ1j = ĝij = 0. Next,
in analogy to Eq. (7), the b-affinities are also decomposed in the form

Λ
K

IJ = ΛK
IJ + AK

IJ , (9)
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in a basis of the x-coordinate system, so that Λ
K

IJ = ΛK
IJ over Xo. The terms AK

IJ

are negligible away from ∂X [11], but component A1
11 has the form

A1
11 = Λ

1
11 = −1/x1. (10)

The true path on the configuration manifold is determined by Newton’s second
law [9]. On manifold X, this law appears in the form

bh∼
∗ ≡ b∇vp∼

∗ − f
∼
∗ = 0∼, (11)

where the components of the generalized momentum are given by

pI = gIJ v
J , (12)

the covariant differential appears in the form

b∇vp∼
∗ =

(
ṗI −Λ

L

JI pLv
J
)
e∼
I , (13)

while f
∼
∗

represents the generalized applied forces on the system examined.

Obviously, the metric components and the affinities are affected in a significant
way only within a layer starting at ∂X. This layer has a relatively small width b,
while the law of motion expressed by Eq. (11) within the interior Xo of X is identical
to that in the original configuration manifold M. These are illustrated in Fig. 1. First,
Fig. 1a shows the constrained configuration manifold X, defined by condition (1), as
a subset of manifold M. Then, while Fig. 1b presents a magnified picture around a
point p on the boundary ∂X.

Next, keeping only the dominant terms, Eq. (11) is replaced by

Fig. 1 (a) Constrained configuration manifold X as a subset of the original manifold M for a
system with a single inequality constraint. (b) Magnified picture around a boundary point p
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bh1 ≈ ˙̂p1 −Λ
1
11p̂1v

1 − f̂1 = 0 (14)

in a local x-coordinate system and points at the boundary, together with

bhi ≈ ṗi −Λ�
jip�v

j − f i = 0, for i = 2, . . . , n, (15)

where p̂1 = ĝ11v
1, pi = gijv j and f I ≡ fI + f̂I . For a contact without friction, all

the terms f̂i in the last equation are equal to zero, while

f̂1

(
x1, ẋ1

)
=

[
k1

x1 −
c1ẋ

1

(
x1

)2

]
ŝ
(
x1; a, b

)
(16)

The first term in the right side represents a force pushing the figurative point
away from the boundary. The second term is associated with the dissipation of
energy during the motion within the boundary layer [10]. Function ŝ

(
x1; a, b) was

introduced to guarantee a smooth transition of the boundary force from the inner to
the outer region of the layer.

3 Addition of Bilateral Constraints and Friction Effects

Next, introduce a new set of motion constraints in the q-coordinate system with
form

ψ̇R (q, q̇) ≡ aR
I ′(q)q̇

I ′ = 0,
(
I ′ = 1, . . . , n and R = 1, . . . , k

)
. (17)

In some cases, these equations can be integrated and put in the algebraic
(holonomic) form φR(q) = 0. Then, the equations of motion can be written as

hI ′ =
∑k

R=1
aR
I ′hR, (18)

for I
′ = 1, . . . , n , with components in the q-coordinate system of M determined by

hI ′ = ṗI ′ −ΛL′
J ′I ′pL′v

J ′ − fI ′ and hR =
(
mRRλ̇

R
)• + cRRλ̇

R + kRRλ
R − f R,

(19)

where the terms mRR, cRR, kRR and f R can be determined explicitly for each
constraint [9]. This is a set of n second order ODEs in the n + k unknowns qI ′

and λR. The additional information is obtained by the k equations of constraints, put
in the form
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(
mRRψ̇

R
)• + cRRψ̇

R = 0 or
(
mRRφ̇

R
)• + cRRφ̇

R + kRRφ
R = 0. (20)

First, the normal vector to the new boundary ∂XC, induced within manifold M by
the action of all the constraints, is selected to be the representative of the co-vector

e∼
1 = dρ −

∑k

R=1
γR a∼

R. (21)

Co-vector a∼
R has components aR

I ′ , while dρ is the differential of ρ in T ∗pM , with

η
∼

1 ≡ dρ = ∂ρ/∂qI ′ e∼
I ′ . (22)

Then, B∗
e = {e∼

I } ≡ { e∼
1 g
∼

2 . . . g
∼
m a∼

1 . . . a∼
k } is chosen as a dual basis of an

x-coordinate system, where g
∼
γ are chosen as linearly independent and orthogonal

to e∼
1 and all a∼

R . Also, e∼
1 is orthogonal to all a∼

R , providing γ R in Eq. (21). Finally,

the equations of motion inside the boundary layer appear in the component form

(
ĝ11v

1
)• −Λ

1
11ĝ11v

1v1 − f̂1 = 0, for I = 1, (23)

(
gγ δv

δ
)• −Λ�

j γ g�kv
kvj − fγ = 0, for γ = 2, . . . , m, (24)

(∑k

S=1
g
R̂Ŝ

vŜ

)•

−Λ�

j R̂
g�kv

kvj − f
R̂
= hR, for R = 1, . . . , k, (25)

where R̂ = m+R and Ŝ = m+ S [10], while the constraints expressed by Eq. (17)
yield

vR̂ ≡ aR̂
I vI = 0, for R = 1, . . . , k. (26)

This eliminates the first term in Eq. (25) Then, Eq. (23) can be solved inde-
pendently for v1, while Eq. (24) yields the components vγ , with γ = 2, . . . , m.
Finally, solution of Eq. (25) furnishes the corresponding multipliers λR, for each
R = 1, . . . , k .

The terms in Eq. (23) are O(1/x1), while the terms of Eq. (24) are O(1). This
means that the essential dynamics takes place along a single direction, as in the case
with no equality constraints [10]. Here, the impulse occurs along the direction e∼

1

of bT
∗
pX and is affected by the bilateral constraints. Also, the impulse is transferred

to the directions a∼
R . Finally, the impulse is diffused to all the directions of the

q-coordinates.
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When friction is present, the relative velocity V at the contact point is written in
terms of the generalized velocities in the configuration space through a mapping

V = Dq̇. (27)

Then, the dual mapping between the contact force F∼ = Fαn∼
α (α = 1, 2, 3), in

the physical space and the generalized forces is expressed by

f
∼
∗ = F∼D =

(
Fαn∼

α
)
D = Fαη∼

α. (28)

This shows that f
∼
∗

belongs to a subspace of bT
∗
pX, at each point of the

configuration manifold, spanned by three special co-vectors only. These convectors
are defined by

η
∼

1 = n∼
1D = dρ, η

∼
2 = n∼

2D and η
∼

3 = n∼
3D. (29)

Since terms f̂ ∗2 and f̂ ∗3 are O(1/x1), while the terms Λ�
jγ p�v

j of Eq. (24) are
O(1), the only way to balance them inside the boundary layer is to assume that the
terms ṗ2 and ṗ3 vary rapidly there. This means that they are O(1/x1) within the
layer. Then, the first two equations in Eq. (24) separate from the rest and become

ṗ2 − f̂ ∗2 = 0 and ṗ3 − f̂ ∗3 = 0. (30)

Then, Eqs. (23) and (30) form a set of three ODEs, describing the dynamics in
the three dimensional cotangent distribution of the configuration space where the
contact action is important.

4 Numerical Results

Next, a set of numerical results is presented for two example systems, shown in
Fig. 2.

First, the example shown in Fig. 2a includes a massless bar of length �, having
one end pinned at point O through a spherical joint. At the other end, a mass m is
attached, which can hit a rigid wall, at a distance s below O. The position of the free
body is located by the Cartesian coordinates q1′ , q2′ and q3′ . Then, M = R

3, with

Gq = [gI ′J ′ ] = mI3 and ΛK ′
I ′J ′ = 0,

(
I ′, J ′,K ′ = 1, 2, 3

)
. (31)

Moreover, the system is subject to a holonomic equality constraint

φ1(q) =
(
q1′

)2 +
(
q2′

)2 +
(
q3′

)2 − �2 = 0 (32)
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Fig. 2 Collision of: (a) a pendulum and (b) a double planar pendulum, with a rigid wall

and an inequality constraint

ρ(q) = q3′ + s ≥ 0. (33)

Using Eqs. (32) and (33) with Eqs. (17) and (22) yields

a∼
1 = [a1

I ′ ] =
(

2q1′ 2q2′ 2q3′ ) and η
∼

1 = dρ = (
0 0 1

)
.

Here, the boundary ∂X induced by the inequality constraint is the plane q3′ = −s.
Also, the boundary ∂XC, arising by the combined action of all the constraints, is a
circle on this plane [10]. It can be shown that the equations of motion obtained for
large values of the force parameter k are identical to those arising after application
of the Darboux–Keller approach [4]. Consequently, for Coulomb friction with a
coefficient of friction μ, there exist two special values, μc and μ. The first leads to
straight trajectories of the contact point on the contact plane, while the second value
gives a lower limit of μ for a stick to insist [4].

In Fig. 3 are shown results corresponding to θ = π /4, which lead to μc =
√

2
and μ = 1. First, in Fig. 3a are presented hodographs of the contact point on plane
(V1, V2), resulting for k= 1 and c= 0. All these hodographs originate from the same
point, with V1(0) = − V2(0) = − V3(0) and evolve for a selected set of values of
μ. In all cases, it is apparent that the slip direction changes continuously (swerves)
when friction is present. Then, in Fig. 3b are depicted similar results for k = 10.
The results of the last case are almost coincident with those derived by applying the
Darboux–Keller (D-K) approach [4]. No permanent stick occurs within the interval
0 ≤ μ < μ. However, when the trajectory reaches point (0, 0) and μ > μ, the stick
insists until the end of the impact. Also, for the case with μ = μc, the hodograph
tends to become an isocline as the value of k increases.
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Fig. 3 Slip trajectories of a spherical pendulum for θ = π /4 and (a) k = 1, (b) k = 10

The second example includes two rigid bars, with mass m and length �, as
shown in Fig. 2b. Here, the motion takes place in the Oxy plane, while all the joints
are cylindrical. In particular, the free end of the second bar can hit a rigid wall
at a distance s from O. The position of the first bar is located by two Cartesian
coordinates, q1′ = x1 and q2′ = y1 plus a rotational coordinate q3′ = θ1, while the
second bar is located by coordinates q4′ = x2, q5′ = y2 and q6′ = θ2. This implies
that the configuration manifold M has a dimension of six, with

Gq = diag
(
m m m�2/12 m m m�2/12

)
and ΛK ′

I ′J ′ = 0. (34)

Also, the system is subjected to the following motion constraints

φ1(q) = q1′ − �

2
cos q3′ = 0, φ2(q) = q2′ − �

2
sin q3′ = 0,

φ3(q) = q1′ + �

2
cos q3′ −

(
q4′ − �

2
cos q6′

)
= 0,

φ4(q) = q2′ + �

2
sin q3′ −

(
q5′ − �

2
sin q6′

)
= 0,

ρ(q) = −
(
q4′ + �

2
cos q6′

)
+ s ≥ 0.

Again, it can be shown that for large values of the force parameter k, the equations
of motion are identical to Eqs. (23) or (30) in [4], obtained by the Darboux–Keller
method.

Finally, the set of results shown in Fig. 4 refer to loss in mechanical energy during
impact. The ratio (To − Tf )/To, with To and Tf representing kinetic energy of the
system just before and after impact, respectively, is depicted versus μ. First, in Fig.
4a are shown results for c = 0, with k = 1 and k = 10. Then, a similar set of results
is included in Fig. 4b, obtained for no dissipation in the contact force (c > 0).
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Fig. 4 Energy loss during impact of a double pendulum with a rough wall for: (a) c = 0 and (b)
c > 0
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Creation of Neimark-Sacker Bifurcation
for a Three-Degree-of-Freedom
Vibro-Impact System with Clearances

Huidong Xu and Jinchen Ji

Abstract The impulsive state feedback control is used to create Neimark-Sacker
bifurcation for a three-degree-of-freedom vibro-impact system with clearances. The
linear control gains are determined to guarantee the existence of Neimark-Sacker
bifurcation by using the explicit criteria of Neimark-Sacker bifurcation without
directly using eigenvalues. Differently, the nonlinear control gains are selected
to determine the direction and stability of Neimark-Sacker bifurcation by using
center manifold reduction theory and normal form approach. The amplitude of the
created invariant cycle from Neimark-Sacker bifurcation is analytically obtained
to achieve the control of the amplitude by selecting appropriate nonlinear control
gains. Numerical experiments are provided to show the effectiveness of the proposed
control method.

Keywords Bifurcation control · Neimark-Sacker bifurcation · Vibro-impact
system · Impulsive state feedback control

1 Introduction

The motions with impacts widely exist in engineering applications such as rattling
gears, vibration absorbers, and pile driving machines. The complex and rich
dynamical behaviors caused by the strong nonlinearity of impacts have been
investigated by many researchers. The bifurcations of vibro-impact systems can be
modified using an appropriate control, which was referred to as bifurcation control
[1]. Impulsive control is a discrete-in-time feedback control method, which has been
used for the control of chaos and chaos synchronization [2, 3] due to its simplicity.
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The impulsive control with variable time is a state-dependent feedback control
method, i.e., the pulse time varies depending on the state variables. This method
has been successfully applied to the control of the stability and existence of periodic
solution of smooth systems. It would be more suitable to implement the strategy
for the bifurcation control of the vibro-impact system based on the fact that the
impact causes the discontinuity of the system state variables. To the authors’ best
knowledge, little literature has been focused on studying impulsive control problems
of bifurcation in the vibro-impact system.

The main objective of this chapter is to create Neimark-Sacker bifurcation
with certain desired characteristics in the vibro-impact system by developing an
impulsive state feedback control method. The linear control gains are selected to
guarantee the existence of Neimark-Sacker bifurcation, and the nonlinear control
gains to ensure the direction and stability of Neimark-Sacker bifurcation created.
The novelty of this chapter lies in the design of the impulsive state feedback control
for the vibro-impact systems, the analytical construction of the amplitude of the
created invariant cycle, and the use of the nonlinear control gains to adjust the
amplitude of the cycle.

2 Vibro-Impact System Under Impulsive State
Feedback Control

The vibro-impact system under the impulsive state feedback control in Fig. 1 can be
expressed as:

Mẍ + Cẋ +Kx = F0 sin (ωt + τ) , x1 − x2 < δ

ẋ+ = R (ẋ−) ,
ΔX

∣∣
t=πi(X) = Ii(X), i = 1, 2, · · · , x1 − x2 = δ

(1)

Fig. 1 A three-degree-of-freedom vibro-impact system with clearances
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where M, C, andK represent the mass, damping, and stiffness matrixes, respec-
tively. F0 is the amplitude vector of external excitations. x = (x1, x2, x3)T is
the displacement of the masses. ẋ− and ẋ+ denote the instant velocities of
the masses just before and immediately after the impact. R is the function of
restitution of impact. X = (x1, ẋ1, x2, ẋ2, x3, ẋ3)

T is the impulsive variables.
Define ΔX

∣∣
t=πi(X) = X

(
π+i

) − X
(
π−i

)
as the jump operator for a function

X(t). X
(
π+i

) = lim
h→0+X (πi + h) is the right limit position of the trajectory and

X
(
π−i

) = lim
h→0−X (πi − h) is the left limit of the position of the trajectory

at the moment π i. The impulse function has the explicit expression Ii(X) =

A (KL) (X −X∗) +
n∑

j=2
Bi

⎛
⎝KNL,X −X∗ . . . X −X∗︸ ︷︷ ︸

j

⎞
⎠ with the linear control

gain KL and nonlinear control gain KNL. Bi is the higher order terms. X∗ is a fixed
point that is different from the following fixed point X̃∗.

In order to generate the Neimark-Sacker bifurcation by impulsive control, it is
convenient to establish a Poincaré map as

X̃ �→ F̃
(
X̃, μ;K

)
(2)

where the variable X̃ = (ẋ1, x2, ẋ2, x3, ẋ3, τ )
T and the parameter K includes the

linear control gain KL and nonlinear control gain KNL.

3 Creation of a Stable Neimark-Sacker Bifurcation

3.1 Design of Linear Control Gains for the Existence
of Neimark-Sacker Bifurcation

The primary task of creating Neimark-Sacker bifurcation in the impact system is to
determine the linear control gain KL to guarantee the existence of bifurcation at a
specified system parameter location. Here, the explicit criteria without directly using
eigenvalues are employed to induce a Neimark–Sacker bifurcation in the vibro-
impact system.

The characteristic polynomial of the linearization matrix D
X̃
F̃

(
X̃∗, μ;KL

)
of

map (2) at fixed point X̃∗ is assumed to have the following form:

pμ,KL (λ) = λ6 + a1λ
5 + a2λ

4 + a3λ
3 + a4λ

2 + a5λ+ a6 (3)
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where the linearization matrix D
X̃
F̃

(
X̃∗, μ;KL

)
is a combination of the part of

linearization of smooth map, switch map of impact, and impulse control map.

Lemma 1 The Neimark–Sacker bifurcation [4] of map (2) occurs at the bifurcation
point μ = μ0 if and only if the following conditions (H1)–(H3) are satisfied,

(H1) Eigenvalue assignment:

g1 (μ0,KL) = Δ−5 (μ0,KL) = 0 (4a)

g2 (μ0,KL) = 1+ a6 > 0 (4b)

g3 (μ0,KL) = 1− a6 > 0 (4c)

g4 (μ0,KL) = 1+ a6 + a4 + a4a6 − a1a5 − a6a2 − a2
5 − a2

6
+ a6a

2
1 − a2

6a2 − a3
6 + a6a1a5 > 0

(4d)

g5 (μ0,KL) = 1− a6 − a4 + a4a6 + a1a5 + a6a2 − a2
5 − a2

6
− a6a

2
1 − a2

6a2 + a3
6 + a6a1a5 > 0

(4e)

g6 (μ0,KL) = 1+ a1 + a2 + a3 + a4 + a5 + a6 > 0 (4f)

g7 (μ0,KL) = 1− a1 + a2 − a3 + a4 − a5 + a6 > 0 (4g)

g8 (μ0,KL) = Δ+5 (μ0,KL) > 0 (4h)

(H2) Transversality condition:

G(μ0,KL) = dg1 (μ,KL)

dμ

∣∣∣∣
μ=μ0

�= 0 (5)

(H3) Non-resonance condition:

ηm (μ0,KL) = cos (2π/m)− ρ �= 0, ρ = 1− pμ0,KL
(1)Δ−3 (μ0,KL)

2Δ+4 (μ0,KL)
,

m = 3, 4, 5, . . .

(6)
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From Lemma 1, the explicit criteria formulated by the coefficients of the char-
acteristic polynomial (3) are not involved with the direct calculation of eigenvalues.
Thus the control gains can be explicitly formulated. This is more convenient to
create Neimark–Sacker bifurcation than the classical criteria, especially for high
dimensional maps with uncertain control parameters.

3.2 Design of Nonlinear Control Gains for Stabilizing
Neimark-Sacker Bifurcation

The direction and stability of Neimark-Sacker bifurcation of map (2) can be
determined by σ (KNL)as [5]

σ (KNL) =

Re
[
〈p,C (q, q, q)〉 − 2

〈
p,B

(
q,A−1B (q, q)

)〉

+
〈
p,B

(
q, (2iw0I − A)−1B

(
q, q ))

〉]

2ω0
(7)

Based on the stability criterion [5], a stable invariant cycle can appear in
the vibro-impact system through a supercritical Neimark-Sacker bifurcation if
σ (KNL) < 0, and a unstable invariant cycle arises in the system if σ (KNL) > 0.
Therefore, the stability control of Neimark-Sacker bifurcation can be achieved by
adjusting the nonlinear control gains KNL to change the sign of σ (KNL).

3.3 Nonlinear Control Gains Chosen for Adjusting
the Amplitude of the Creating Invariant Cycle

The resultant bifurcating solution from Neimark-Sacker bifurcation presents an
invariant cycle on the Poincaré section. The amplitude of the cycle can be controlled
by selecting the nonlinear gain KNLafter a stable invariant cycle is created by
impulsive control in Sects. 3.1 and 3.2. The amplitude of the invariant cycle will
be obtained by studying the normal form under the complex coordinate system and
polar coordinate system.

Through using center manifold reduction theory and normal form approach, the
map (2) can be simplified into the normal form as [5]

z �→ F̃ (z, ε;KL,KNL) = λ (ε;KL) z+ η (ε;KL,KNL) z
2z+O

(
|z|4

)
(8)

where η (ε;KL,KNL) = g21
2 + |g11|2

1−λ
+ |g02|2

2
(
λ2−λ

) + 2λ−1
2λ[1−λ]g11g20.
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By introducing the polar transformation

z = re2π iφ, F̃ (z, ε;KL,KNL) = Re2π iΦ, (9)

map (8) can be transformed into the form as

r �→ R (r, φ, ε;KL,KNL) = (1+ bε) r + ar3 +O
(|ε|2r + |ε| r3 + r4

)

φ �→ �(r, φ, ε;KL,KNL) = φ + θ0 + θ1ε + ω1r
2 +O

(|ε|2 + |ε| r2 + r3
)

(mod 1)
(10)

where a = Re
(
η (0;KL,KNL) λ (0;KL)

)
, b = d|λ(ε;KL)|

dε

∣∣∣
ε=0

=
dg1(ε+μ0,KL)

dε

∣∣∣
ε=0

−2
1···6∏
l<q

(1−λlλq)
.

Based on the truncated form of map (10) at a small scale of ε = 0, the amplitude
is obtained as

r (KNL) =
√√√√√√

dg1 (μ0,KL) /dμ

2 Re
(
η (0;KL,KNL) λ (0;KL)

) 1···6∏
l<q

(
1− λlλq

) (μ− μ0) (11)

It can be seen from Eq. (11) that the amplitude of the invariant cycle is not
involved in the calculation of the derivatives of eigenvalues. This is convenient for
controlling the amplitude by selecting the nonlinear gains. In addition, the nonlinear
control gains should also be chosen in the stability region determined by σ (KNL) < 0
given in Sect. 3.2 when the amplitude of invariant cycle is adjusted.

4 Numerical Experiments

The non-dimensional parameters m2 = 1.47, m3 = 1.5, k2 = 1.21, k3 = 2.5,
δ = 0.01, R = 0.8, γ = 0.06, f10 = 0.2, f20 = 0.6, f30 = 0 are taken as an example,
and the parameter μ= ω is chosen as the bifurcation parameter. ω = 3.3 (μ0 = 3.3)
is chosen as a specified system parameter location.

By implementing conditions (H1) and (H3) in Lemma 1, the bifurcation diagram

with the linear control parameters KL =
(
k11 0
0 k12

)
is shown in Fig. 2a.

The inequalities gi(μ0, k11, k12) (i = 2, · · · 8) are all satisfied in the blank area
surrounded by the yellow curve AE, blue curve ED, cyan curve DC, and blue curve
CA in Fig. 2a, whereas at least one inequality of gi(μ0, k11, k12) fails in other gray
regions. This means that the blank area is the parameter region for selecting potential
control gains. The red curve l1 and l2 are obtained by equation g1(μ0, k11, k12) = 0.
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Fig. 2 Linear control for the existence of Neimark-Sacker bifurcation; (a) The bifurcation diagram
in the plane of linear control gains, (b) The curve of the transversality condition

Fig. 3 The control region of
stability of the
Neimark-Sacker bifurcation

The points on the red curves in gray regions cannot ensure that the other eigenvalues
λj(μ) (j = 3, . . . , 6) are within the unit circle. Therefore the points on red curves
in blank region are reasonable control parameter points. The black dashed lines are
obtained by the resonance condition η3(μ0, k11, k12) = 0(m = 3). The intersection
points B and E of the red curves and black dashed lines are third-order resonance
points. The control gains should be chosen to avoid these resonance points.

The gain k11 on the red curve l1 is fixed as k∗11 = −0.5. The curve of
the transversality condition determined by equation G

(
μ0, k

∗
11, k12

) = 0 in the
condition (H2) is shown in Fig. 2b. The value of the curve in the vertical axis is not
equal to zero when k12 is in a region e = (0.2, 0.7)from Fig. 3, which indicates that
the transversality condition is satisfied. Thus the other gain k12 can be determined
as k∗12 = 0.63725823 in the region e = (0.2, 0.7).
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Based on the expression (7) in Sect. 3.2, the equation determining stability of

the Neimark-Sacker bifurcation with the quadratic terms KNL,2 =
(
k21 0
0 k22

)
and

cubic terms KNL,3 =
(
k31 0
0 k32

)
is obtained as

σ (k21, k22, k31, k32) = −0.36598214k2
21 − 0.01187005k2

22

− 0.24911456k21k22 − 0.66998610k21

− 0.09899298k22 − 0.02630618k31

+ 0.00038485k32 − 1.83409593

(12)

The nonlinear gains k22 = − 10 and k32 = 10 are fixed and the other two
nonlinear gains k21 and k31 are chosen as control parameters. By using Eq. (12),
the control region of stability of the Neimark-Sacker bifurcation is shown in Fig. 3.

The black curve % in Fig. 3 is obtained by the equation σ (k21, k22, k31, k32) = 0
with k22 = − 10 and k32 = 10. The green field & represents the stability region of
the Neimark-Sacker bifurcation.

The amplitude of the created stable invariant cycle can be modified by adjusting
the nonlinear gains. From the expression (11) in Sect. 3.3, the amplitude of the
invariant cycle at k22 = − 10 and k32 = 10 is obtained as

r (k21, k31) =
√

0.00132315 (μ− μ0)

0.36598214k2
21 − 1.82115953k21 + 0.02630618k31 + 2.02732285

(13)

On the basis of Eq. (13), when the gain k31 = 0.3 is fixed, the variation of the
amplitude of the invariant cycle with the nonlinear control gain is shown in Fig. 4a.

Fig. 4 The effect of the nonlinear gains on the amplitude of the created invariant cycle; (a) The
variation of the amplitude with the control gain k21, (b) The invariant cycles created by adjusting
the gain k21
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The amplitude of the invariant cycle increases with the increase of the gain k21
from Fig. 4a when the gain k31 is fixed. This indicates that the effect of the control
gain k21on the amplitude has a positive relationship. Thus different gains can be
chosen to achieve the control of amplitude according to control requirements. The
effect of the nonlinear gains on the amplitude of the invariant cycle is further shown
in Fig. 4b on the phase diagrams of Poincaré section.

5 Conclusion

In this chapter, an impulsive state feedback control method for creating Neimark-
Sacker bifurcation has been proposed for a three-degree-of-freedom vibro-impact
system with clearances. The linear control gains for guaranteeing the existence
of Neimark-Sacker bifurcation were determined by using the explicit criteria of
bifurcation without directly using eigenvalues. The nonlinear control gains for
adjusting the stability of Neimark-Sacker bifurcation and the amplitude of the
creating invariant cycle were determined by using center manifold reduction theory
and normal form approach. Numerical experiments have been carried out to validate
the feasibility of the proposed control method.
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Analogue Models of Rocking Suitcases
and Snaking Trailers

Zoltan Horvath and Denes Takacs

Abstract A mechanical model is constructed for the stability analysis of two-
wheeled suitcases and trailers. The main assumptions of the model are summarized
and the linearized equations of motion are presented. The linear stability of the
rectilinear motion is investigated, critical parameter values are determined for the
different level of complexity of the model. Numerical simulations are used to verify
the applicability of the model for the nonlinear analysis of the rocking motion of
trailers.

Keywords Two-wheeled suitcase · Trailer · Non-smooth system ·
Non-holonomic system

1 Introduction

The instability of towed vehicles (e.g. trailers, semi-trailers) is a relevant safety risk
in road transport. Namely, under certain conditions (badly chosen load conditions
and speed), a snaking motion may appear (see [1, 2]), which can even lead to the
rocking motion of the trailer when it jumps from one of its wheels to the other. As
a final result, the linear instability of the rectilinear motion of the trailer may cause
the roll-over of the vehicle. This phenomenon can also be observed in case of a
towed two-wheeled suitcase (see [3–6]), moreover similar mechanical models can
be composed for the investigations of the stability behaviour. The analogies of the
problems and the mechanical models are illustrated in Fig. 1.
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Fig. 1 Illustration of the analogy between rocking suitcases and snaking trailers with respect to
their mechanical models

In our former study, we used the mechanical model of the rocking suitcase shown
in the right top panel of Fig. 1 to analyse the linear stability and the basis of attraction
of the rectilinear motion by means of numerical simulations and experiments (see
[7]). The most exciting problem in the analysis of the mechanical model arises in
the fact that governing equations of the mechanical model are non-smooth since
different equations of motion describe the motion states of the suitcase (namely,
when both wheels are on the ground, left or right wheel is on the ground, none of
the wheels is on the ground). In addition, a kinematic constraint can be defined
for the rolling wheels having point-like contact with the ground. The switching
between the motion states is a complex task since switching appears when one
of the wheels has an impact with the ground or when one of the wheels leaves
the ground. Nevertheless, by implementing the mechanical model with its intricate
non-smooth properties in a simulation code, one can investigate the effects of the
initial conditions (e.g. initial tilting angle) and the different parameters (e.g. towing
speed v, geometrical parameters e and f ).

Of course, similar investigation can be done experimentally. A model-based
experimental setup was also built and placed on a conveyor belt in [7]. The towed
suitcase was perturbed at its left wheel by placing a cylindrical obstacle (with
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a) b)

Fig. 2 (a) The trajectories of the retro-reflective markers attached to the suitcase at left and the
right wheels, the centre of mass and the towing point, (b) basis of attraction of the rectilinear
motion identified by experiments.

diameter d0) onto to conveyor belt, and the motion of the suitcase was recorded
by a motion capturing system using retro-reflective markers (see the left panel of
Fig. 2). The detected basis of attraction of the rectilinear motion and its dependence
on the towing speed can be seen in the right panel Fig. 2, where blue dots refer
to the measurement points and dashed line illustrates the boundary of the basis of
attraction. Both the numerical and experimental results confirmed that the attractive
domain is smaller for larger speeds. In this study, we modify the mechanical model
of the rocking suitcase to make it suitable for the analysis of the stability problem
of trailers. In order to do this, the elasticities of the tyres and the wheel suspension
system are taken into account. Although these modifications increase the degrees
of freedom and the number of the parameters of the model, the mechanical model
turns to be holonomic and the motion can be described uniquely with the same
generalized coordinates independently from the actual motion state. After the short
summary of the derivation of the equations of motion, the linear stability of the
rectilinear motion is shown in the paper and numerical simulations are carried out
to verify the applicability of the constructed mechanical model for the investigation
of the nonlinear dynamics of rocking trailers.

2 Mechanical Model of Snaking Trailers

The mechanical model of snaking trailers can be seen on the left panel of Fig. 3. The
motion of the trailer can be described with the yaw angle ψ , the pitch angle ϑ , the
roll angle ϕ and the lateral displacement u of the joint at point A. Thus, the system
has n = 4 degrees of freedom (DoF), the vector of the generalized coordinates is

q = [
ψ ϑ ϕ u

]T
. (1)
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a) b)

Fig. 3 (a) The mechanical model, (b) active forces acting on trailer

The towing length and the track width of the trailer are denoted by l and 2b,
respectively. The position of the centre of mass C can be described with parameters
e and f . The overall stiffness and damping of the wheel suspension and tyres are
denoted by k and c, while the lateral stiffness and damping at point A are kl and cl.
The equations of motion can be derived with the Lagrange equation of the second
kind:

d

dt

∂T

∂q̇k
− ∂T

∂qk
= Qk, k = 1, . . . , n , (2)

where T is the kinetic energy, qk is the kth generalized coordinate and Qk is the kth
component of the generalized force. The kinetic energy is calculated as

T = 1

2
mvC

2 + 1

2
ωTΘCω , (3)

where the velocity of point C is vC = |vC| = |vA + ω × rAC|. The velocity of
the towing point is vA = [ v u̇ 0 ]T given in the ground fixed (X, Y,Z) coordinate
system. The angular velocity of the trailer given in the trailer fixed (x, y, z)

coordinate system is

ω =
⎡
⎣

ϕ̇ − ψ̇ sinϑ

ϑ̇ cosϕ + ψ̇ cosϑ sinϕ

ψ̇ cosϑ cosϕ − ϑ̇ sinϕ

⎤
⎦

(x,y,z)

. (4)

Let us consider the mass moment of inertia matrix as

ΘC =
⎡
⎣

ΘC,x 0 0
0 ΘC,y 0
0 0 ΘC,z

⎤
⎦

(x,y,z)

. (5)
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Fig. 4 The characteristics of
the tyre forces in case of
Fz = 15,000 N. The factors:
B = 10 (stiffness factor),
C = 1.9 (shape factor),
D = 1 (peak factor),
E = 0.97 (curvature factor)

The generalized force can be obtained from the virtual power:

δP = G · δvC + FRtyre · δvTR + FRsusp · δvR + FLtyre · δvTL

+ FLsusp · δvL + FAlat · δvA , (6)

where G is the gravitational force, FRtyre and FLtyre represent the forces acting on the
tyres at points TR and TL. FRsusp and FLsusp are the forces acting on the chassis of
the trailer at points R and L due to the elastic deformation of the suspensions. FAlat

is the lateral force acting at point A. These forces are shown in the right panel of
Fig. 3.

The tyre forces can be calculated with the help of the Magic Formula of Pacejka
(see [8]):

Ftyre,lat(α, Fz) = FzD sin (C arctan (Bα − E (Bα − arctan(Bα)))) , (7)

where B,C,D,E are the tyre parameters and Fz is the vertical load on the tyre. The
tyre force characteristics can be seen in Fig. 4. The side slip angle of the right wheel
can be calculated as

αR = − arctan

(
vTR · elat

vTR − (vTR · elat)elat

)
, (8)

where unit vector elat refers to the lateral direction of the trailer projected to the
ground. The side slip angle of the left wheel can be calculated similarly.
The force originated in the wheel suspension acts on the trailer in the z direction, its
magnitude is

FR susp =
(
(LR,0 − dR)k + (vTR,z − vR,z)c

) ·H(LR,0 − dR)

·H((LR,0 − dR)k + (vTR,z − vR,z)c)
(9)

for the right wheel, where the Heaviside-function H(x) = (1+ tanh (x/ε)) /2 with
the smoothing parameter ε is used to make the system to be smooth. The parameter
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LR,0 is the free length of the spring while dR is the actual length of the spring
(see panel (b) in Fig. 3). The force originated in the left wheel suspension can be
calculated similarly.

3 Linear Stability Analysis

The rectilinear motion of the trailer corresponds to: ψ(t) ≡ ψ0 = 0,
ϑ(t) ≡ ϑ0 = 0, ϕ(t) ≡ ϕ0 = 0, u(t) ≡ u0 = 0 in case of the spring free
length LR,0 ≡ LL,0 = h+mg(l − e)/(2kl). The linearized equation of motion can
be written as

Mq̈+ Cq̇+Kq = 0 , (10)

where the mass matrix is

M =

⎡
⎢⎢⎣

m(e − l)2 +ΘC,z 0 mf (l − e) m(e − l)

0 mf 2 +m(e − l)2 +ΘC,y 0 0
mf (l − e) 0 mf 2 +ΘC,x −mf

m(e − l) 0 −mf m

⎤
⎥⎥⎦ ,

(11)
the damping matrix is

C =

⎡
⎢⎢⎢⎣

BCDmgl(l−e)
v

0 BCDmgh(e−l)
v

BCDmg(e−l)
v

0 2cl2 0 0
BCDmgh(e−l)

v
0 2b2clv+BCDmgh2(l−e)

lv
BCDmgh(e−l)

lv
BCDmg(e−l)

v
0 BCDmgh(e−l)

lv
cllv+BCDmgh2(l−e)

lv

⎤
⎥⎥⎥⎦ (12)

and the stiffness matrix is

K =

⎡
⎢⎢⎢⎣

BCDmg(l − e) 0 mg(e − l) 0
0 2l2k −mgf 0 0

BCDmgh(e−l)
l

0 2b2k −mgf 0
BCDmgh(e−l)

l
0 mg(l−e)

l
kl

⎤
⎥⎥⎥⎦ . (13)

It is worth to notice that the stiffness matrix is asymmetric. As it can be seen,
the system can be separated into two subsystems: the second component of (10)
corresponding to the pitch motion can be separated, the other equations are coupled
(n = 3 DoF subsystem).
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3.1 The Pitch Motion of the Trailer

The equation of motion of the separable subsystem is a second-order ordinary
differential equation, from which the critical value of the stiffness k can be
expressed:

kcr = mgf

2l2
. (14)

This critical value corresponds to static loss of stability, namely the trailer overturns
about the lateral axis for k < kcr.

3.2 The Yaw and Roll Motion of the Trailer

The equations of motion of the coupled subsystem consist of three second-order
ordinary differential equations. By using the trial solution

q = Aeλt (15)

with the characteristic root λ, the characteristic equation becomes

det
(
λ2M+ λC+K

)
= 0 . (16)

The stability of the rectilinear motion can be investigated by Routh–Hurwitz
criteria. Unfortunately, no closed form expression can be given for the critical
parameter values in general case. But for kl →∞ (i.e. when the joint at A is laterally
rigid), the system simplifies to a n = 3 DoF system and critical stiffness values can
be determined for the undamped (c = 0) case:

kcr,1 = mg(l(f + h)− eh)

2b2l
, (17)

and

kcr,2 = mgl2
(
l(e − l)ΘC,x + f hΘC,z

)

2b2l2
(
me2h−mel(f + 2h)+mf l2 + h

(
ΘC,z +ml2

))

− mgBCDh(e − l)
(
me2h2 − 2mehl(f + h)+ h2ΘC,z +ml2(f + h)2 +ΘC,x l

2
)

2b2l2
(
me2h−mel(f + 2h)+mf l2 + h

(
ΘC,z + l2m

)) .

(18)

Static stability loss occurs if k < kcr,1, namely the trailer falls over. Dynamic loss
of stability happens if kcr,1 < k < kcr,2, and the rectilinear motion is stable for
kcr,2 < k. These critical values can be also identified by the numerical calculation
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a) b)

Fig. 5 The real part of the rightmost characteristic root of the linearized system. (a) Critical
spring stiffness values for the 3 DoF model, (b) unstable speed range in case of the 4 DoF
model. Parameter values: l = 3 m, b = 0.8 m, e = 1 m, f = 1 m, h = 0.5 m, m = 3000 kg,
k = 60,000 N/m, c = 6000 Ns/m, B = 10, C = 1.9, D = 1, E = 0.97, (a) kl → ∞, (b)
kl = 10,000 N/m, cl = 100 Ns/m

of the characteristic roots, see panel (a) of Fig. 5, where the real part of the rightmost
characteristic root is plotted versus the stiffness.

Of course, the linear stability of original four degree-of-freedom mechanical
model can also be investigated numerically. Panel (b) of Fig. 5 shows the real part
of the rightmost characteristic root versus the towing speed v. For a certain velocity
range (approx. between 10 and 26 m/s), the rectilinear motion is unstable.

4 Simulation

Numerical simulations were run in order to verify the critical parameter values given
by the linear stability analysis and to check the nonlinear dynamics of the trailer.
Fourth order Runge–Kutta method was used with fix time step. The simulations
were run for different initial conditions and for different spring stiffness values (3
DoF model) or for different towing velocity values (4 DoF model). Here we present
only a simulation result for kl →∞ and for k = 75,000 N/m. As it can be seen, the
motion tends to a large amplitude rocking motion, see Fig. 6.

Based on the numerical simulations, one can also draw the bifurcation diagram of
the four degree-of-freedom system. The top left panel of Fig. 7 depicts the amplitude
of the roll angle with respect to the bifurcation parameter v. Subcritical Hopf
bifurcation is suspected, which could be validated by using a bifurcation software.
Panel (b) of Fig. 7 shows the effects of parameters f and e on the linear stability
of the rectilinear motion. The red areas correspond to linearly unstable rectilinear
motion (snaking, rocking, roll-over of the trailer may appear), while the green areas
correspond to linearly stable rectilinear motion.



Analogue Models 125

Fig. 6 The time histories of the generalized coordinates and the vertical forces acting on the left
or the right wheel in case of k = 75,000 N/m

a) b)

Fig. 7 (a) The bifurcation diagram of the four degree-of-freedom system, in case of k =
75,000 N/m (top panel) and the real part of the rightmost characteristic root of the linearized
system (bottom panel). (b) The effects of parameters f and e on the linear stability of the rectilinear
motion. The green areas correspond to linearly stable, the red areas correspond to linearly unstable
motion

5 Conclusions

A mechanical model was introduced by which both the stability of two-wheeled
suitcases and trailers can be investigated. It was shown that the linear stability
of the rectilinear motion depends on the speed if the lateral displacement of the
towing joint is considered. Critical stiffness values were also determined for the
wheel suspensions. Simulation results also confirmed that the model can exhibit the
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large amplitude rocking motion and the nonlinear analysis of the model may lead to
relevant information about the instability of the trailer.
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A Theoretical Model for Vibro-Impact
Dynamics of Spur Gears with Tooth
Flanks Wear

Ivana D. Atanasovska, Katica R. (Stevanović) Hedrih,
and Dejan B. Momcilovic

Abstract The main performance of involute gears operation leads to the appear-
ance of nonlinear dynamic behavior and impact. In this chapter the influence of mild
wear of the tooth flanks of gears without machine finishing and surface hardening
on the vibro-impact behavior is considered. For this purpose, a new theoretical
model for vibro-impact dynamics of spur gears with mild wear on tooth flanks is
developed and described. The developed theoretical model is based on the main
postulates of a model of the central centric collision of two fictive rolling disks with
radii equal to the radii of kinematic diameters of the pinion and the wheel, as well
as on a combined analytical/numerical approach used finite element analysis for
the calculation of contact deformations, contact pressure, and wear on tooth flanks
surfaces. A particular gear pair for earth moving machine is used for presenting the
developed model. The conclusions about the influence of mild wear on the vibro-
impact oscillations during running-in period are described.

Keywords Vibro-impact oscillations · Spur gears · Wear

1 Introduction

The wear is one of the most frequent types of gear tooth damages, which appears
in different forms [1, 2]. In some specific cases of gear pairs with high value of
transmission ratio and large diameter of the wheel, mainly designed for low angular
velocities, a quality of the surface manufacturing of tooth flanks of a pinion and
a wheel are not the same. In such cases, the wheel tooth flanks are manufactured
without final surface machining and surface hardening and therefore it is expected
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that these surfaces are more susceptible to the mild wear process resulting in a vibro-
impact excitation parameter. This is a general case for geared transmissions on earth
excavators and some other machines with large gear pairs not placed in gear boxes.
These gears work mainly in the un-lubricated conditions and are specially subjected
to different kinds of wear process.

The spur involute gears during operation are characterized with total deforma-
tions variation, which is in first place a result of the variable number of teeth pairs in
contact. These variations in combination with other sources of the tooth profile pitch
deviations during operation (profile deviations, wear, damages, etc.) is the main
source of backlash, generation of internal dynamic forces and impacts [3]. In special
cases of tooth profile shape and dimensions, a vibro-impact phenomenon could
appear during spur gear operation. The vibro-impact dynamics of spur gear pair is
characterized with successive collisions of series of teeth pairs in forward-backward
collision contacts, which can cause a serious noise in the geared transmission
system.

In this chapter, occurrence of mild wear on the wheel teeth of spur gear pairs
is analyzed. The new theoretical model of a vibro-impact dynamics of spur gears
with tooth flanks wear is developed as an extension of the model of vibro-impact
dynamics of spur gears [3], which used the main postulates of the model of the
central centric collision of two fictive rolling disks with radii equal to the radii of
the kinematic diameters of pinion and wheel, and with the current rolling axes in
collision coincided with the rotation axis of the pinion and the wheel [4].

2 A Mechanism of Mild Wear at Gears Tooth Flanks

The mild wear in gears is a slow process in general, which could be a part of the
running-in period and can initially lead to the smoother contact surfaces on the tooth
flanks. From the point of vibro-impact appearance, only the initial part of wear
process is important, because the vibro-impact phenomenon is impossible in the
case of deeply worn out teeth.

The theoretical model of a mild wear in spur gear teeth can be described by the
generalized Archard’s wear law [2]. The generalized Archard’s wear equation [5]
determines the wear depth by integrating the product of sliding distance and contact
pressure during the time of contact. It can be expressed with the following relation:

dh

dt
= kpv (1)

where k is a wear coefficient, p is a local contact pressure, and v is a sliding velocity
in contact point.

The wear coefficient k is a characteristic of the contact and depends primarily
on the materials in contact, but also depends on the operating conditions, the tooth
flank manufacturing process, and on the lubricant in case of lubricated contacts [6].
The research presented in this chapter is devoted to the gear pairs which operate
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Fig. 1 Schematic
presentation of real tooth
profile with mild wear

in special conditions without lubrication. Therefore, the gears material can be
considered as a main influential characteristic for selection of the wear coefficient.
The wear coefficient has a value of 5·10−16 m2/N for the contact surfaces made from
steel [5]. In Fig. 1, the schematic presentation of the tooth flank with mild wear is
presented.

The real tooth profile deviates from the theoretical involute profile in accordance
with the standard defined deviations values. These deviations can be removed during
the running-in period as a result of the mild wear phenomenon. In the presented
research this period is modeled with N cycles of wear in order to analyze the
variations in vibro-impact oscillations as a result of wearing process.

3 A Vibro-Impact Model of Spur Gears with Tooth Flanks
Wear

3.1 The Analytical Procedure Description

The approximately constant transmission ratio is the main characteristic of the
involute cylindrical gears, which leads to their wide application. The transmission
ration is in the general case defined as i = ω1/ω2. But, as a result of the deviation
previously mentioned, a disturbance of angular velocities ration can appear and
leads to a vibro-impact dynamics. The disturbance angular velocity of a pinion can
be defined as [3]:

Δω1 = ω1 − iω2 > 0 (2)
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and could be studied as a source for vibro-impact vibrations in the gear pairs with
characteristics which lead to possible vibro-impact appearance. The mechanism of
vibro-impact of spur gears is described in detail in the previous chapter [3].

The developing of formulae for calculation the disturbance pinion angular veloc-
ity is the main task within the analytical procedure for vibro-impact oscillations of
spur gears. The disturbance pinion angular velocity depends from the tooth profile
pitch deviation, which is a result of deformations, manufacturing deviations and
wear:

b = Kbmn + bw (3)

where: mn is a standard normal tooth profile module, Kb is an error coefficient due to
contact deformations and other sources of profile pitch deviations and bw is a profile
pitch deviation due to wear.

The coefficient Kb can be very precisely determined by finite element analysis
(FEA) [3] by modeling the real contact geometry and operation loads or by
Hertz contact theory, and bw can be determined by integrating the product of
sliding distance and contact pressure during the time of contact on the base of the
generalized Archard’s wear equation (1):

dbw
dt

= kwσyv (4)

where kw is a wear coefficient, σ y is a local contact pressure obtained by FEA
calculation and v is a sliding velocity which depends of the angular velocity and
the gears geometry.

The time which is required by a pinion tooth to pass the total tooth pitch deviation
can be expressed as:

T (b) = Kbmn + bw

r1

1

ω1
(5)

The pinion disturbance angular velocity can be calculated in accordance with the
postulate that the rotation time of a pinion gear will be the same in the cases with
and without deviation b [3]:

2π

ω1
= 2π + Kbmn+bw

r1

ω1 +Δω1
i.e. Δω1 = Kbmn + bw

2πr1
ω1 (6)

3.2 The Angular Velocities Variation During Vibro-Impact

The vibro-impact dynamics of gears with mild wear can be solved in accordance
with the relations (7) and (8) which define the new model of the central centric
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collision of two fictive rolling disks [4]. The solution take into consideration that
the radii of these disks are equal to the radii of pitch diameters of the pinion and the
wheel, as well as that the instantaneous rolling axes of these disks in collision are
coincided with the rotation axis of the pinion and the wheel [3].

ωP1 (t0 + τ) = ωP1 (t0)− 1+ ε

1+ a
(ωP1 (t0)− ωP2 (t0)) (7)

ωP2 (t0 + τ) = ωP2 (t0)+ 1+ ε

1+ b
(ωP1 (t0)− ωP2 (t0)) (8)

where: a = JP 1
JP 2

and b = JP 2
JP 1

are the ratios of axial mass inertia moments for
the pinion Jp1 and the wheel Jp2; ε is a coefficient of restitution for the case of
collision of two rolling disks, which is calculated as a ratio of the differences of
angular velocities of rolling disks before collision and after collision (this coefficient
depends on the material characteristics and for steel has a value of 5/9). The Mathcad
code is developed for the calculation of the angular velocities during vibro-impact
phenomenon at involute gears.

4 Results and Discussion: A Case Study

4.1 Determination of Input Parameters

The presented theoretical method has been used for calculation of the angular
velocities of the pinion and the wheel before and after every collision, and before
and after every successive collision impact [3, 4] for a particular spur gear pair.
The chosen gear pair has such characteristics of the tooth profile which can lead to
vibro-impact vibration behavior. The main characteristics of the case study gear pair
are: number of pinion teeth: 20; number of wheel teeth: 96, 80 and 60; transmission
ratio: 4.8, 4 and 3; the coefficient of profile modification: 0.7 and −0.2; facewidth:
350 mm; profile module: 24 mm; rpm for the wheel: 4.1596 min−1, wheel torque:
2526.8 KN·m; material: steel.

The tooth profile pitch deviations as a result of mild wear are calculated in
accordance with the equation (4). The local contact pressure values are calculated
with finite element analysis (FEA) developed for the chosen gear pair [7] for the
characteristic contact points during tooth pair contact. The obtained results are
shown at Fig. 2 for two external load cases. It can be concluded that the wear at
the zone with two tooth pairs in contact is lower than that at the zone with single
tooth pair in contact. This difference is greater for the cases with lower loads, which
is a reason to avoid the low-loaded gear pairs.
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a) b)

Fig. 2 Results for contact stresses along line of action obtained by finite element analysis and
Hertz theory for particular gear pair: (a) for full external load; (b) for quarter of full external load

Fig. 3 The CAD contact model for a tooth pair—point A at the Line of action

In accordance with the calculated pressures and acceptable manufacturing
deviations, the contact CAD models are created with nonuniform pitch deviation.
The CAD models developed for the critical contact positions of meshed tooth
pair with incorporated tooth profile pitch deviations as a result of deformations,
manufacturing process, and mild wear are shown at Figs. 3 and 4.

The first contact point along the Line of action—point A (Fig. 3) and the first
point of double contact period at the Line of action—point B (Fig. 4) are identified
as the critical contact points during every teeth pair contact period.

4.2 Results for Vibro-Impact Oscillations

In accordance with the obtained results for total pitch deviations, the disturbance
angular velocity defined with relation (6) is calculated. Then, the time periods
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Fig. 4 The CAD contact model for a tooth pair—point B at the Line of action

Fig. 5 The Mathcad code for a gear pair

between teeth collisions, as well as between teeth successive collision impacts after
each collision, have been calculated in accordance with the relations derived and
explained in [3]. The developed Mathcad code is then used for the calculation of the
angular velocities of the pinion and the wheel before and after every collision, and
before and after every successive collision impact, Fig. 5. Obtained results for the
variations of the pinion and the wheel angular velocities are presented with diagrams
at Figs. 6 and 7.
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Fig. 6 The results for the pinion angular velocity variation during two contact periods for
transmission ration of i = 4.8 (a) with zoom in points A (b) and B (c)

5 Conclusions

The new model for analyzing the vibro-impact of spur gears has potential to include
different sources of vibro-impact excitation (elastic deformations, profile deviations
and roughness, wear, damages, etc.). Presented model gives the possibility to
consider the vibro-impact phenomenon apart from overall gear dynamics. The future
research can be focused on the incorporating of this model to the approach for
stability analysis of whole system.

For the analyzed gear pair it is shown that the wear at the zone with two tooth
pairs in contact is lower than that at the zone with single tooth pair in contact, which
is consequence of the lower values of the contact pressure. Also, this difference
is larger in the case of low-loaded operation conditions, which can lead to the
extremely nonuniform wear on tooth flanks. The selection of optimal tooth profile
for defined real load conditions can overcome the nonuniform wear and shorten the
running-in time.
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Fig. 7 The results for the wheel angular velocity variation during a contact period for different
transmission ration: (a) i = 3; (b) i = 4 and (c) i = 4.8

The obtained results for the variations of the pinion and the wheel angular
velocities are presented with diagrams where the characteristic points on the Line
of action are easily recognized. The comparative analysis of the influence of the
different wear level during gears operation could result in the real benefits in
selection the optimal working conditions for gear pairs which are the part of
machines and other facilities within the power plants, in accordance with the results
of the periodical inspections. The presented research shows that for a particular
gear pair the wear level affects only the time periods between variations of angular
velocities within the vibro-impact phenomenon. After a few cycles of the mild
wearing, the conditions no longer lead to the vibro-impact occurrence, and this
emphasizes the importance of a uniform wear process.
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Stability of Coupled and Damped
Mathieu Equations Utilizing Symplectic
Properties

Miguel Ramírez Barrios, Joaquín Collado, and Fadi Dohnal

Abstract Several theoretical studies deal with the stability transition curves of
the Mathieu equation. A few others present numerical and asymptotic methods
to describe the stability of coupled Mathieu equations. However, sometimes the
averaging and perturbation techniques deal with cumbersome computations, and the
numerical methods spend considerable resources and computation time. This contri-
bution extends the definition of linear Hamiltonian systems to periodic Hamiltonian
systems with a particular dissipation. This leads naturally to a generalization of
symplectic matrices, to μ-symplectic matrices. This definition enables an efficient
way for calculating the stability transition curves of coupled Mathieu equations.

Keywords Hamiltonian systems · Parametric excitation · Symplectic matrices

1 Introduction

Dynamical systems represented by ordinary differential equations with periodic
coefficients are presented in many engineering problems. Therefore, using numer-
ical and asymptotic methods several theoretical studies deal with the stability
transition curves of the periodic systems, in particular with the Mathieu equation
[1, 2]. Sometimes the asymptotic perturbation techniques lead to cumbersome
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computations [3] and the numerical methods have a considerable computation time.
The present contribution extends the result presented in [4] where coupled Mathieu
equations are analyzed as a Hamiltonian system. The power of symplectic and
Hamiltonian matrices lies in the fact that the dynamics of Hamiltonian systems
are described by symplectic maps. In this contribution we attempt to define a
new type of linear periodic Hamiltonian systems with a particular dissipation. For
this purpose, the properties of the γ -Hamiltonian and μ-symplectic matrices are
introduced and developed. This enables a proof that the state transition matrix of any
γ -Hamiltonian system is μ-symplectic. μ-symplectic matrices possess a symmetry
property in its eigenvalues which is exploited to describe the stability of time-
periodic systems. Using this theory and the Floquet theory, two coupled Mathieu
equations are fully described which leads to an efficient calculation procedure of
the stability and instability regions.

2 Floquet Theory Review

In the following, the main results on linear periodic systems are summarized. More
details can be found in [1, 5].

Consider the linear periodic system

ẋ = B(t)x (1)

with B(t) = B (t +Ω) where x ∈ R
n, B ∈ R

n×n and Ω the fundamental period.

Theorem 1 (Floquet) The state transition matrix Φ (t, t0) of the system in Eq. (1)
may be factorized as Φ(t, t0) = P−1(t)eRt where P−1(t) = Φ(t, 0)e−Rt ,
P−1(t) = P−1(t + Ω) is a periodic matrix of the same period Ω and R is in
general a complex constant matrix [6].

Definition 1 The monodromy matrix M associated with the system in Eq. (1) is
defined as M = eRΩ = Φ(Ω, 0)

The eigenvalues λi of M are called characteristic multipliers. If we define a
coordinates change as z(t) = P(t)x(t) then the system Eq. (1) can be transformed
into a linear time invariant system ż(t) = Rz(t) where R is the constant matrix
defined in the Floquet theorem. Therefore, any periodic system Eq. (1) is reducible
to a system ż(t) = Rz(t) with constant coefficients [1, 5].

3 μ-Symplectic and γ -Hamiltonian Matrices

Let J =
[

0 In

−In 0

]
be a real square matrix where In is the n × n identity matrix. It

is clear that J T = −J = J−1, J 2 = −I2n, det (J ) = 1. The forthcoming definition
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and lemmas are a generalization of the symplectic matrices introduced in [7, 8].
From definition 2 the determinant of S reads det (S) = μn. Certainly, if μ = 1,
Eq. (2) defines a symplectic matrix [7, 8].

Definition 2 The matrix S ∈ R
2n×2n is said a μ-symplectic matrix if the equation

ST JS = μJ (2)

is fulfilled for μ ∈ (0, 1].
Lemma 1 The characteristic polynomial of S satisfies: PS

(
μ
λ

) = μn

λ2n PS (λ).

Proof From Eq. (2) J T = μJS−1J−1 then PS (λ) = det
[
λI2n − μJS−1J−1

] =
μn det

[(
− λ

μ

) (
μ
λ
I2n − S

)] = λ2n

μn PS

(
μ
λ

)
. �

From the last lemma, the eigenvalues of a μ-symplectic matrix S satisfy the
relation: λ ∈ σ(S) �→ (

μ
λ

) ∈ σ(S). Furthermore, if all eigenvalues have the

same magnitude, i.e., λi = r exp (θi) �⇒ ∏2n
i=1 |λ| =

∏2n
i=1

∣∣reθi ∣∣ = r2n =
det (S) = μn, from which we find that r = √

μ, independent of n. This fact
may be interpreted as a “symmetry” with respect to the circle of radius r = √

μ,
that we will name as “μ-circle.” Additionally, since S is a real matrix, if λ is an
eigenvalue then its conjugate λ̄, μλ−1, and μλ̄−1 are also eigenvalues. On the other
hand, the characteristic polynomial of S, PS (λ) = a2nλ

2n+· · ·+ a1λ+ a0 satisfies
a0 = a2nμ

n, a1 = a2n−1μ
n−1, . . . , a2n = 1 = a0μ

−n, i.e., PS (λ) is reciprocal and
depends on n coefficients only. Thus, performing the transformation

δ = λ+ μ

λ
, (3)

the characteristic polynomial PS(λ) of degree 2n, associated to a μ-symplectic
matrix, is reduced to an auxiliary polynomial QS(δ) of degree n. For instance, when
n = 2 these polynomials read

PS (λ) = λ4 + aλ3 + bλ2 + aμλ+ μ2, QS (δ) = δ2 + aδ + b − 2μ. (4)

The last computations can be generalized for any n, but in this contribution, we
focus on n = 2 only. In the following, the definition of γ -Hamiltonian matrices is
given briefly.

Definition 3 A matrix A ∈ R
2n×2n (A ∈ C

2n×2n) is called γ -Hamiltonian matrix
if the equation: AT J + JA = −2γ J is satisfied, for some γ ≥ 0.



140 M. Ramírez Barrios et al.

4 Linear γ -Hamiltonian Systems

Definition 4 Any linear system that can be written as

ẋ = J [H(t)+ γ J ] x, (5)

with x ∈ R
2n, HT (t) = H(t), and γ ≥ 0, is named as linear γ -Hamiltonian

system.

Lemma 2 The state transition matrix of a linear γ -Hamiltonian system of the form
in Eq. (5) is μ-symplectic with μ = e−2γ t .

Proof Let be N(t) = Φ (t, 0) the state transition matrix of Eq. (5) then d
dt

[N(t)] =
(J [H(t)+ γ J ])N(t). Additionally, the following holds1:

d

dt
NT JN = ṄT JN +NT J Ṅ = −2γNT JN. (6)

Since NT (0) JN (0) = J and from Eq. (6) we obtain NT (t)JN(t) = e−2γ tJ =
μJ . Therefore, N is μ-symplectic. �

4.1 Periodic γ -Hamiltonian Systems

Definition 5 Any linear periodic system that can be written as follows:

ẋ = J [H(t)+ γ J ] x with H(t) = H(t +Ω). (7)

We will name linear periodic γ -Hamiltonian system, where x ∈ R
2n, HT (t) =

H(t) is a 2n× 2n matrix and γ ≥ 0.

Then, according to the Lemma 2, the state transition matrix Φ (t, t0) of Eq. (7)
is μ-symplectic, in particular, the state transition matrix evaluated over one period
Ω , namely the monodromy matrix. Furthermore, based on the Floquet–Lyapunov
transformation, we conclude that any linear periodic γ -Hamiltonian system is
reducible into a linear time-invariant γ -Hamiltonian system ż(t) = Rz(t).

Corollary 1 The monodromy matrix M = Φ (Ω, 0) = eRΩ and the R matrix of
the periodic system (7) are μ-symplectic and γ -Hamiltonian matrices, respectively,
with μ = e−2γΩ .

1The matrix product
(

d
dt
NT JN

)
NT JN = NT JN

(
d
dt
NT JN

)
is commutative.
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Proof Based on the definition of the μ-symplectic matrix MT JM = μJ we

obtain eR
T Ω = μJ

{
I2n − RΩ + RRΩ2

2 − RRRΩ3

3! + · · ·
}
J−1 = μe−JRJ−1Ω and

consequently, RT J + JR = −2γ J. �
Theorem 2 The system in Eq. (7) for n = 2 is asymptotically stable if and only if
the following inequalities are fulfilled:

b ≥ −a (1+ μ)−
(

1+ μ2
)

(8)

b ≥ a (1+ μ)−
(

1+ μ2
)

(9)

(1+ μ)2 b ≤ μ4 + 2μ3 + 2μ2 + a2μ+ 2μ+ 1, (10)

where a and b are the coefficients of the characteristic polynomial of the monodromy
matrix associated with Eq. (7), namely PM(λ) = λ4 + aλ3 + bλ2 + aμλ+ μ2.

Proof Based on Corollary 1, the monodromy matrix of Eq. (7) is a μ-symplectic
matrix. Thus, for n = 2 its characteristic and the auxiliary polynomial are given in
Eq. (4) which finally results in

a = −tr(M) = λ1+ μ

λ1
+λ3+ μ

λ3
= δ1+ δ2, 2b = (tr (M))2− tr

(
M2

)
. (11)

According to the Floquet–Lyapunov theorem [1, 5, 6], the stability of periodic
systems is determined by the position of the multipliers related to the unit circle,
e.g., the system is unstable if at least one multiplier lies outside the unit circle. The
stability transition boundaries are characterized by having at least one eigenvalue
|λ| = 1. The simplest cases are if λ = 1 (or δ = 1 + μ) and λ = −1 (or
δ = −1 − μ). Substituting these two values into PM(λ) in Eq. (4) we have:
λ = 1 : b = −a (1+ μ)− (

1+ μ2
)

and λ = −1 : b = a (1+ μ)− (
1+ μ2

)
.

For the general case λ ∈ C, the stability transition boundary can be obtained by
considering the symmetry of the multipliers with respect to the real axis and with
respect to the μ-circle (with radius r = √μ). Then, for the four eigenvalues|λ| =√
x2 + y2 = 1 and read λ1,3 = x ± iy, λ2,4 = μ

λ1,3
= μ (x ∓ iy). Considering

the transformation in Eq. (3), results: δ1 = λ1 + μ
λ1
= x (1+ μ) + iy (1− μ)

and δ2 = λ3 + μ
λ3
= x (1+ μ) − iy (1− μ), then adding δ1 and δ2 we obtain

δ1+δ2 = 2x (1+ μ). On the other hand, solving the quadratic equation in Eq. (4) for

δ, δ1,2 = −a
2 ±

√
a2+8μ−4b

2 then δ1+δ2 = −a therefore δ1+δ2 = 2x (1+ μ) = −a.
Thus, we must find the real part x, solving for λ in Eq. (3) with δ1,2 it is obtained

4x = 4� {λ1} = −a + √
w − 4μ− 2b + a2 where w = 2

√
−4a2μ+ (b + 2μ)2,

then the inequality (10) holds. �
Two intersection points exist between the boundary lines Eqs. (8), (9), and (10)

and can be given explicitly
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(µ4+2µ3+2µ2+a2µ+2µ + 1)/(1+µ)2

µ2+4µ+1

(a2+8µ)/4

Fig. 1 Multiplier map in case of n = 2: Horizontal and vertical axes are the coefficients a and b

of the characteristic polynomial of the monodromy matrix M in Eq. (4). The solid lines represent
the borders of the inequalities in Theorem 2, Eqs. (8), (9), and (10). The dots indicate the position
of multipliers associated to the system in Eq. (7) in case of n = 2. The dashed circle depicts the
μ-circle

b = 1

μ

(
μ4 + μ3 + 2μ2 + μ+ 1

)
, b = μ2 + 4μ+ 1. (12)

The lines in Eq. (12) are visualized by dashed lines in Fig. 1
Following the procedure of the last proof, the multiplier positions in relation to

the unit circle and the μ-circle are determined by the inequalities in Theorem 2.
Thus, the parameter (a, b)-plane is split into six regions as it is highlighted in
Fig. 1. All possible positions of the multipliers with respect to the μ-circle and the
unit circle are visualized. The diagram is “symmetric” in terms of the multipliers
according that if λ is an multiplier λ̄, μλ−1 and μλ̄−1 are also.

5 Coupled Mathieu Equations with Damping

Consider two coupled and damped Mathieu equations of the following form:

[
z̈1

z̈2

]
+

[
Θ11 Θ12

Θ21 Θ22

] [
ż1

ż2

]
+

([
ω2

1 0
0 ω2

2

]
+ β

[
Q11 Q12

Q21 Q22

] [
z1

z2

]
cos (νt)

)[
z1

z2

]
= 0.

(13)
The system in Eq. (2) can be cast into the form in Eq. (7) iff Θ12 = Θ21 and

Q12 = Q21, i.e., the coefficient matrices Θ and Q are symmetric. The following
numerical values are chosen for the analysis of a specific system ω2

1 = 8, ω2
2 = 26,

Q11 = Q22 = 2, Q12 = Q21 = −2. Figure 2a depicts the multiplier chart
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(a)

(b)

(c)

(d)

Fig. 2 Multiplier map and stability charts for example system in Eqs. (2). Multiplier map corre-
sponds to Fig. 1 but now with colored regions for the different unstable multiplier configurations.
Stability charts are given for different values of damping. (a) Multiplier map: a and b are the
coefficients of the corresponding characteristic polynomial of the monodromy matrix. (b) Stability
chart of coupled Mathieu equations without damping: Θ12 = Θ21 = 0 and Θ11 = Θ22 = 0. Color
code is according to (a). (c) Stability chart of coupled Mathieu equations with small damping:
Θ12 = Θ21 = 0 and Θ11 = Θ22 = 0.1. (d) Stability chart of coupled Mathieu equations with high
dampingΘ12 = Θ21 = 0 and Θ11 = Θ22 = 0.3
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similar to Fig. 1. The unstable regions in the parameter space are colored, the stable
regions are kept white. Each color depicts a specific configuration of the multiplier
positions within the unit circle and the μ-circle according to the inequalities stated
in Theorem 2 and visualized in Figs. 1 and 2a. Yellow, magenta, and cyan colors
refer to the configuration of four real-valued multipliers, two of them inside and two
outside of the unit circle. These multipliers are either all negative (magenta region),
all positive (yellow region), or two positive and two negative (cyan region). The
blue and red regions indicate two complex conjugate multipliers on the μ-circle
while the other two are real with |λ| > 1. The two real multipliers are either positive
(blue) or negative (red). Then, all four multipliers are complex conjugate within
the green region. In this case, two multipliers lie inside and two outside of the
unit circle. On the other hand, parametric primary resonances occur at parametric
excitation frequencies ν = 2ωi/k (k ∈ N

+ and parametric combination resonances
of summation type occur at ν = (ω1 + ω2)/k [3, 5]. These frequencies are also
observed for the example system in Fig. 2b. The green regions mark parametric
combination resonances. The blue and red regions correspond to parametric primary
resonances.

The presented calculation technique can be categorized as a semi-analytical
method. After rewriting the original system into the form in Eq. (7), the monodromy
matrix is constructed by integrating the equations of motion using numerical
methods. Subsequently, the coefficients of the characteristic polynomial of the
monodromy matrix can be computed as: a = −tr(M) and 2b = (tr (M))2− tr

(
M2

)
.

This technique avoids the computation of the eigenvalues. The main advantage is
that numerical problems of computing the eigenvalues are avoided, e.g., numerically
sensitive multipliers. Additionally, the computation time is decreased. For instance,
the stability charts in Fig. 2 were calculated within a few seconds. An efficient
numerical implementation utilizing a GPU can be found in [9]. For comparison,
the stability chart corresponding to Eq. (2) is 64% faster by utilizing Theorem 2
compared to computing the stability chart based on eigenvalues computation. The
performance improvement by avoiding the computation of eigenvalues was checked
for a stability chart with a resolution of 800 × 800 points in the parameter space
(ν,β).

6 Conclusions

In this work, definitions of μ-symplectic and γ -Hamiltonian matrices are intro-
duced. These definitions allow the analysis of a linear periodic Hamiltonian system
with a particular dissipation. The main result of the proposed theory lies in Lemma 2
which states that the state transition matrix of any γ -Hamiltonian system is μ-
symplectic. The symmetry properties of the eigenvalues of μ-symplectic matrices
lead to an efficient calculation of the stability boundaries of this type of system. The
general framework is applied for the example analysis of two damped and coupled
Mathieu equations confirming the faster and robust computation of the stability
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chart. The procedure can be extended to a higher number of coupled Mathieu
equations which is subject of ongoing research.
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Asymmetry in the Basin Stability of
Oscillation Death States Under Variation
of Environment-Oscillator Links

Manish Yadav, Sudhanshu Shekhar Chaurasia, and Sudeshna Sinha

Abstract We explore the effect of a common external system, which may be
considered as a common environment, on the oscillation death(OD) states of a
group of Stuart–Landau(SL) oscillators. It was found in Chaurasia et al. (Phys
Rev E 98:032223, 2018), that the group of oscillators, when uncoupled to the
common environment, yield a completely symmetric oscillation death state, i.e.
there is an equal probability of occurrence of positive and negative oscillation death
states. However, remarkably, this symmetry is significantly broken, when coupled
to a common external system. For exponentially decaying common environment,
the symmetry breaking of the OD states was found to be very pronounced for
low environmental damping and strong oscillator-environment coupling. Here we
consider the effect of disconnections of the oscillator-environment links on this
asymmetry in the basin stability of the OD states. Interestingly, we find that the
asymmetry induced by environmental coupling decreases with increase in fraction
of such disconnections, and at some intermediate fraction close to half the symmetry
is restored. However, further increase in disconnections induces asymmetry in the
OD state again, until all oscillator-environment links are switched off. This suggests
that a balance of on-off oscillator-environment links restores the symmetry of the
OD state, and when half of the environmental connections are switched off one
obtains the positive and negative OD states with almost equal probability.
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1 Introduction

In the context of many real world systems, interactions can occur through a
common medium. For instance, chemical oscillations of catalyst-loaded reactants
have been found in a medium of catalyst-free solution, where the coupling is
through exchange of chemicals with the surrounding medium [1]. Similarly, in the
context of genetic oscillators coupling occurs by diffusion of chemicals between
cells and extracellular medium [2]. Further, in a collection of circadian oscillators,
the concentration of neurotransmitter released by each cell can induce collective
behaviour [3]. In general, such cases occur due to the common medium, referred
to as a common environment, interacting with the dynamical systems. In this work
we will investigate a generic model that unifies many specific models of particular
systems such as biochemical oscillators coupled through an environment, and allows
us to obtain some basic general results which potentially apply to all of them.

It was found in [4] that coupling a group of oscillators to a common external
medium [5] destroyed the symmetry in occurrence of the oscillation death (OD)
states [6–8], also known as inhomogeneous steady states (IHSS), in the system.
That is, the oscillator death states in the presence of environmental coupling are
no longer symmetrically distributed. Rather the distribution of the emergent OD
states is significantly skewed. This implies that the basin stability of the OD states
is no longer the same. Instead there is coupling induced asymmetry in the basin
stability [9] which leads to the system evolving preferentially towards one of the
OD states. This manifests as a remarkable asymmetric distribution of the OD states,
though both states are linearly stable. So one observes that the average fraction of
oscillators going to a particular OD state is not the same.

Specifically, here we will study a group of globally coupled oscillators. The
oscillators will be considered in the oscillation death regime, by setting appropriate
values of the control parameters of the individual oscillators [10]. Each oscillator
is also connected with the common external medium. This environmental coupling
effectively pushes all the oscillators towards negative OD-state. We then go on to
investigate the dynamics as the environment-oscillator links are disconnected one
by one. We will show how cutting off the environment-oscillator links leads to a
restoration of symmetry in the distribution of OD states. We will further demonstrate
that one can use the external medium coupling strength and the environmental
damping constant to control the distribution of oscillators in the different OD-states
for a given fraction of environment-oscillator links.

2 Coupling via Common Environment

Our representative model is described by the generalized equation given below in
Eq. (1) and schematically elucidated with Fig. 1:
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Fig. 1 Schematic diagram of group of oscillators connected to a common external environment

Ẋi = F(Xi)+ εintraα(qX̄ −Xi)+ εextβu,

u̇ = −ku+ εext

N
βT

N∑
i=1

Xi (1)

Xi is the column vector representing an m-dimensional nonlinear oscillator, each
of the oscillators are connected within the group with mean-field diffusive coupling
and with an external common environment (u). All the oscillators are connected
with each other with the given global mean-field diffusive coupling with coupling
parameter εintra and the mean diffusion is controlled by the diffusion coefficient
q within this group. α is the (m × m) matrix with elements 0 and 1 to represent
the components of m-dimensional oscillator taking part in the intra-group coupling.
Here, we are taking α to be a diagonal matrix; α = diag(α1, α2, . . . , αm). For
external coupling of each of the oscillators with common environment we use εext
as coupling parameter and again to decide the component of oscillator to receive the
external coupling we use β as the m-dimensional column matrix.

In this paper, we use Stuart–Landau oscillators (m = 2; x and y variables) as the
unit component of the group and a damped environment as the external common
medium (with damping constant k). We are taking α to be α = diag(1, 0) such
that only x-variable will take part in within the group coupling. We take β = (0, 1),
i.e. the y-variable of each Stuart–Landau oscillator gives and receives signals from
the damped common medium. So the dynamics of the full system comprised of the
group of Stuart–Landau oscillators and the common external medium is:



150 M. Yadav et al.

0 10 20 30
t

-0.8

-0.4

0.0

0.4

0.8 (a)
x
,y

0 10 20 30 40
t

-0.8

-0.4

0.0

0.4

0.8

1.2(b)

Fig. 2 Time series of x variable (red) and y variable (blue) with εintra = 6, q = 0.4 (a) without
external coupling and (b) with externally coupled with εext = 0.5, k = 0.1 for N = 64 oscillators
in the group

ẋi = (1− x2
i − y2

i )xi − ωyi + εintra(qx̄ − xi)

ẏi = (1− x2
i − y2

i )yi + ωxi + εextu (2)

u̇ = −ku+ εext ȳ

The mean-field diffusive coupling has been observed to show oscillation death
(OD) states in limit cycle oscillators in the parameter space of coupling parameter
ε and control parameter q. Here we consider the group in the OD-state, with ε = 6
and q = 0.4 (cf. time series shown in Fig. 2a). Our aim here is to analyse the effects
of the common external environment on the stable OD-states. So we connect each
oscillator of the group to the common external medium according to Eq. (1). The
time series of the group in the presence of the common environment is shown in
Fig. 2b, with εext = 0.5 and the intrinsic environment damping constant k = 0.1.
It is clearly evident that the presence of such a damped common medium results in
all the oscillators of the group evolving to one of the OD states. This gives rise to a
very asymmetric distribution of the oscillators among the two OD states as most
oscillators now preferentially go to one particular state. Now, in the subsequent
sections we will analyse mechanisms that restore this broken symmetry in the
probability of obtaining an OD state in the oscillator group induced by the common
medium.

3 Fractionally Disconnected Links

Previously, in Fig. 2 we saw that coupling to an external damped environment lead
all the oscillators to one particular OD state, thereby breaking the symmetry of the
distribution of the OD states. Now, we will disconnect the oscillator-environment
links one at a time till all of the oscillators in the group are uncoupled to the external
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Fig. 3 Histogram showing the probability of the fraction of oscillators in positive state when the
coupling of the oscillator group to the environment εext = 0

medium and look for the changes in distribution of oscillators in the oscillation
death states. In our case, we have two OD states on either side of the origin i.e.
positive x which we will call x+ and another on the negative side which we name
x− from now on. Without any external environment the oscillators occur almost
equally (statistically speaking) in the positive and negative OD states. To quantify
this observation we show in Fig. 3 the probability distribution of the oscillators in
the positive x+ steady state, obtained by sampling over 50,000 initial conditions,
uniformly distributed over phase space volume [−1, 1], of globally coupled SL
oscillators without external environment.

In Fig. 4 we plot the fraction of oscillators that go to the positive OD state (x+)
with respect to varying number of oscillator-environment links. In particular, we
disconnect one environment-oscillator link at a time, and we denote the fraction
of disconnected links by fdisc. So fdisc = 0 corresponds to the case where all
oscillators in the group are connected to the external environment, while fdisc = 1
corresponds to the limit of a group of SL oscillators having no interactions with
the common environment. We observe changes in the fraction of oscillators in the
positive OD-state, averaged over different initial conditions, denoted by 〈f+〉, as
a function of fdisc. That is, we investigate how the distribution of the oscillators
between the two available OD states changes as the number of environment-
oscillator links changes. The results of the dependence of 〈f+〉 on fdisc for different
values of external environment coupling (εext = 0.2 and 0.5) are displayed. It is
clear that this dependence is non-monotonic and has several non-trivial features. For
instance, if we consider the case of ε = 0.5 in Fig. 4, we find that at fdisc  0.2 the
oscillators are predominately in the negative OD state and 〈f+〉 is 0.2, i.e. around
20% of the oscillators in the group go to the positive OD state, while the rest are
attracted to the negative OD state. As we change fdisc the probability of being in the
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Fig. 4 Average fraction of oscillators in positive OD-state (〈f+〉), obtained by sampling over
10,000 initial conditions, with respect to the fraction of oscillators-environment links for εext = 0.2
(blue) and 0.5 (red). Here N = 64 and k = 0.1

positive OD state increases to a maximum of 〈f+〉  0.7 at fdisc  0.7. After that,
〈f+〉 decreases again and reaches 0.5, namely the completely symmetric situation,
in the limit of fdisc = 1 where we have completely disconnected the oscillator group
from the environment. One remarkable observation is that at fdisc  0.5 the value
of 〈f+〉 is 0.5. This implies that when half of the oscillators are connected with the
external common medium the statistical symmetry of the OD states returns i.e. both
the positive and negative OD states are equally occupied by the oscillators. So when
half of the oscillators in the group are connected to the environment (fdisc = 0.5)
we obtain a dynamical outcome that is equivalent to the case of the oscillator group
being completely unconnected to the external environment (fdisc = 1).

Further, we examine the effect of the damping constant k of the external
environment on the distribution of the oscillators between the positive and negative
OD-states, i.e. the dependence of 〈f+〉 and 〈f−〉 on k for different values of
fdisc. To illustrate this, we show results for three values of external coupling
(εext = 0.25, 0.5, and 0.7) in Fig. 5. For fdisc = 0.25 (blue), the fraction of
positive OD-state (〈f+〉) always remains less than 50% for the entire range of k

sampled, and it slowly increases to ∼ 50% for k ≥ 0.85. The oscillator distribution
tends to maintain its symmetry (i.e. 〈f+〉 ∼ 0.5) for all values of k when only
half of the oscillators are connected/disconnected with the external environment
(i.e. fdisc = 0.5). For fdisc = 0.7 (green) the oscillator distribution reaches its
most skewed position when 〈f+〉 becomes maximum at ∼ 0.7 (cf. Fig. 4). On
increasing k, this again approaches 〈f+〉 ∼ 0.5 as k approaches 1. This suggests
that the environmental damping constant can be utilized as a parameter to control
the distribution of oscillators in the positive and negative OD-states.

The coupling strength between the external medium and the oscillators in the
group (εext ) is vital in controlling the flow of information between the group of
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Fig. 5 Average fraction of oscillators in positive OD-state (〈f+〉), obtained by sampling over
10,000 initial conditions, with respect the damping constant of the common external environment
k, for fdisc = 0.25 (blue), 0.5 (red), and 0.7 (green). Here εext = 0.5 and N = 64
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Fig. 6 Average fraction of oscillators in positive OD-state (〈f+〉), estimated by sampling over
10,000 initial conditions, in the parameter space of εext − k for fdisc (a) 0.0, (b) 0.25, (c) 0.5 and
(d) 0.75, with N = 64

oscillators. So we look for changes in 〈f+〉 in the parameter space of εext − k.
Figure 6a shows 〈f+〉 when all oscillators are connected to the environment (i.e.
fdisc = 0.0). This will act as a reference for comparison with the case where some
fraction of environment-oscillator links are disconnected. For higher εext values
and lower damping constant (k) the fraction 〈f+〉 is almost 0 (or 〈f−〉  1).
Interestingly, at this particular region of the εext−k parameter space, 〈f+〉 increases
for increasing fdisc. This demonstrates that as increasing number of disconnections
of the environment-oscillator links, the number of oscillators going to the positive
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Fig. 7 Average fraction of oscillators in positive OD-state (〈f+〉), estimated by sampling over
10,000 initial conditions, with respect to εext, for fdisc = 0.25 (blue), 0.5 (red), and 0.7 (green),
with k = 0.1 and N = 64
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Fig. 8 Histogram showing the probability of the fraction of oscillators in positive state when
the coupling of the oscillator group to the environment εext = 0.5 and damping constant of the
environment k = 0.1, with fraction of disconnected links (a) fdisc = 0.25, (b) fdisc = 0.5, (c)
fdisc = 0.7

OD state increases, leading to a more symmetric distribution of oscillators among
the two OD states. Further we consider the variation of 〈f+〉 with respect to εext
at fixed k in Fig. 7, for k = 0.1. Three scenarios become clearly evident from
the figure, corresponding to three different fractions of disconnected links. So
we can conclude that along with environmental damping constant (k), oscillator-
environment coupling strength (εext ) is also an important parameter controlling the
distribution of oscillators between the positive and negative OD-states.

We had shown the histogram of the probability of obtaining fraction f+ in the
positive OD state, in Fig. 3, for globally coupled SL oscillators in OD-state without
environmental coupling, and seen a symmetric distribution of the oscillators around
0.5. Similarly, we now estimate the distribution of oscillators in the positive OD-
state in the presence of a common environment. We explore cases with different
fractions of disconnected environment-oscillator links. In Fig. 8a we show the
distribution for fdisc = 0.25, with εext = 0.5 and k = 0.1. Interestingly, there
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is no spread in the distribution of oscillators, as is clearly seen from the single
pronounced peak in the distribution at 0.5 for Fig. 8b and around 0.7 in Fig. 8c.
This sharp localization of oscillators in one of the two available stable states is in
contradistinction to the usual statistical spread observed in Fig. 3. This is especially
remarkable for the case of the symmetric distribution that arises in Fig. 8b, vis-a-vis
the statistically symmetric case seen in Fig. 3. So we can infer that one can tailor
the distribution of oscillators in positive and negative OD-states by disconnecting
a suitable number of environment-oscillator links (fdisc) and adjusting the control
parameters εext and k.

4 Discussion

We investigated the impact of a common environment, which acts as a common
external system, on a group of Stuart–Landau oscillators. First, we considered
the group of oscillators completely disconnected from the external environment.
When there is no coupling to an external system, and the group of Stuart–Landau
oscillators are only coupled to each other via mean-field interaction, one obtains
a completely symmetric distribution of oscillation death states, i.e. half of the
oscillators attain positive OD states and other half attain negative OD states.
This symmetry is significantly broken, when the same group of oscillators are
connected to an external common environment. The symmetry breaking depends
on damping constant of the external system k, environment-oscillator coupling
strength εext and the fraction of oscillators connected to the external system.
When very few oscillators are connected to the environment, the OD states are
almost symmetrically distributed. On the other hand when a large fraction of
oscillators are coupled to the environment, the symmetry is broken to a very high
extent, for high environment-oscillator coupling strengths and low environmental
damping constants. Interestingly, when half the environment-oscillator links are
disconnected, the symmetry is restored, independent of the damping constant of
the environment and the environment-oscillator coupling strength. In fact in this
case, exactly half of the oscillators attain positive OD states and the other half attain
negative OD states. So our work here suggests a potent method to control the basin
stability of the oscillation death states.
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The Occurrence of Zero-Hopf Bifurcation
in a Generalized Sprott A System

Marcelo Messias and Alisson C. Reinol

Abstract From the normal form of polynomial differential systems in R
3 having

a sphere as invariant algebraic surface, we obtain a class of quadratic systems
depending on ten real parameters, which encompasses the well-known Sprott A
system. For this reason, we call them generalized Sprott A systems. In this paper, we
study the dynamics and bifurcations of these systems as the parameters are varied.
We prove that, for certain parameter values, the z-axis is a line of equilibria, the
origin is a non-isolated zero-Hopf equilibrium point, and the phase space is foliated
by concentric invariant spheres. By using the averaging theory we prove that a small
linearly stable periodic orbit bifurcates from the zero-Hopf equilibrium point at the
origin. Finally, we numerically show the existence of nested invariant tori around
the bifurcating periodic orbit.

Keywords Sprott A system · Invariant sphere · Zero-Hopf bifurcation · Linearly
stable periodic orbit · Invariant torus

1 Introduction

Consider the polynomial differential system in R
3 defined by

ẋ = P(x, y, z), ẏ = Q(x, y, z), ż = R(x, y, z), (1)

where P , Q, and R are relatively prime real polynomials in the variables x, y, z and
the dot denotes derivative with respect to the independent variable t . We say that
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m = max{deg(P ), deg(Q), deg(R)} is the degree of system (1). If m = 2, it is a
quadratic polynomial differential system.

For m ≥ 2, the dynamical behavior of system (1) is in general very difficult to
be studied, especially when it exhibits chaos. In the last decades, chaotic differential
systems have been intensively studied, as the Lorenz system, Chen system, Lü
system, and many others [1]. Recently, there is an increasing interest in finding
and studying three categories of chaotic systems: without equilibrium points, with
an infinity of equilibria, and with only stable equilibrium points. In these systems
are frequently found attractors whose basin of attraction does not intercept with
points in small neighborhoods of equilibrium points. These kinds of attractors are
called hidden attractors and have theoretical and applied interests. They allow,
for instance, unexpected and potentially disastrous responses to perturbations in
structures like bridges and airplane wings, for details see [2, 3] and references
therein.

The oldest and best-known chaotic differential system having no equilibrium
points is the Sprott A system [4], given by

ẋ = y, ẏ = −x − yz, ż = y2 − a, (2)

where a ∈ R. This system was shown to be chaotic for a = 1, even without
having equilibrium points for this parameter value. From the physical point of
view, the Sprott A system is a special case of the well-known and widely studied
Nosé–Hoover oscillator [5, 6] as pointed out in [7]. Moreover, it plays an important
role in nonlinear dynamics studies, since its structure became source of inspiration
for the study of many new quadratic chaotic differential systems in R

3. Chaotic
systems without equilibrium points, as the Sprott A system, appear naturally in the
mathematical modeling of some electromechanical problems with rotation and in
electrical circuits with cylindrical phase space, as presented for instance in [8]. In
this way, the bifurcation analysis of these kind of systems helps to better understand
the phenomena described by them.

In this context and motivated by the studies developed in [9, 10], we propose
and study a more general class of quadratic polynomial differential systems which
contains the Sprott A system and have similar, and even richer, dynamical behavior.
Here we call these systems generalized Sprott A systems, which are given by

ẋ = −y P1 + z P2, ẏ = x P1 − z P3, ż = −x P2 + y P3 − α, (3)

where Pi = Pi(x, y, z) = ai x + bi y + ci z + di with α, ai, bi, ci , di ∈ R, for
i = 1, 2, 3. Taking d1 = −1, b3 = 1, α = a, and the other parameters equal to zero
into system (3), we obtain the Sprott A system (2).

In this paper, we study the dynamical behavior of system (3) as the parameter
value α varies and under certain conditions on the other parameters. The paper
is organized as follows. In Sect. 2 we prove that system (3) is the most general
quadratic differential system in R

3 having a family of concentric invariant spheres
and give some additional properties of its phase space. In Sect. 3, for the sake of
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completeness and to fix the notation we present a result of the averaging theory of
first order, then we use it to prove the existence of a small linearly stable periodic
orbit bifurcating from the origin of system (3). In Sect. 4 we present some numerical
simulations from which we show the existence of nested invariant tori around the
bifurcating periodic orbit. Finally, in Sect. 5 some concluding remarks are given.

2 Invariant Spheres of Generalized Sprott A System

In [11], the authors determined the normal form of all polynomial differential
systems in R

3 having a sphere as an invariant algebraic surface. More precisely,
they proved the following result.

Theorem 1 Assume that a sphere S = 0 is an invariant algebraic surface of
the polynomial differential system (1). Then, after an affine change of coordinates,
system (1) can be written as

ẋ = S Q1 − y P1 + z P2, ẏ = S Q2 + x P1 − z P3, ż = S Q3 − x P2 + y P3,

(4)
where Qi = Qi(x, y, z) and Pi = Pi(x, y, z), for i = 1, 2, 3, are arbitrary real
polynomials and S = x2 + y2 + z2 − 1 = 0 is the invariant sphere of system (4).

The following result holds.

Theorem 2 For α = 0, system (3) is the most general class of quadratic polynomial
differential systems whose phase space is foliated by concentric invariant spheres.
In this case, if d1 �= 0 and ci = di = 0, for i = 2, 3, then the z-axis is a line of
equilibrium points, the origin is a non-isolated zero-Hopf equilibrium point and it
is the center of the invariant spheres.

Proof Suppose that system (1) has degree m = 2 and S = 0 is an invariant sphere
of this system. By Theorem 1, after an affine change of coordinates, system (1)
can be written as (4), with Qi = qi and Pi = ai x + bi y + ci z + di , where
ai , bi , ci , di , qi ∈ R, for i = 1, 2, 3, and the equation of the invariant sphere is
S = x2+ y2+ z2− 1 = 0, with cofactor K = 2q1 x+ 2q2 y+ 2q3 z. If K ≡ 0 then
the phase space of system (4) is foliated by concentric invariant spheres. Observe
that it is equivalent to take q1 = q2 = q3 = 0, from which we obtain system (3)
with α = 0.

Now considering the flow of system (3), with α = 0, restricted to the z-axis, we
obtain

ẋ = z (c2 z+ d2), ẏ = −z (c3 z+ d3), ż = 0.

Then taking ci = di = 0, for i = 2, 3, the z-axis is a line of equilibrium points
of system (3). The eigenvalues of the linear part of system (3) at the origin are
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λ1 = 0 and λ2,3 = ±i d1. Hence, for d1 �= 0, the origin is a non-isolated zero-Hopf
equilibrium point. This proves Theorem 2. �
Remark 1 The eigenvalues of the linear part of system (3) at the equilibrium points
in the z-axis are λ1 = 0 and λ2,3 = β z±√γ , where

β = 1

2
(a2 − b3) and

γ = 1

4
z2 (a2 + b3)

2 − (c1 z+ d1)
2 + z [(a3 + b2) (z c1 + d1)− a3 z b2].

Hence, if γ �= 0 and β2 z2 > |γ |, then the equilibrium points (0, 0, z) with z < 0
and z > 0 have opposite stability, as it occurs in the Sprott A system, as shown in
[9, 10].

3 Zero-Hopf Bifurcation via Averaging Theory

Recall that an equilibrium point of a differential system in R
3 is a zero-Hopf

equilibrium if the Jacobian matrix at this point has one zero and a pair of purely
imaginary eigenvalues. It is known that, generically, a zero-Hopf bifurcation takes
place in this kind of equilibrium point and, in some cases, this type of bifurcation
can imply a local birth of chaos [12]. For α = 0, di �= 0 and ci = di = 0, i = 2, 3,
the origin is a zero-Hopf equilibrium point of system (3), as stated in Theorem 2.
In this section we will use the averaging theory to prove the existence of a periodic
orbit bifurcating from the origin of system (3). For the sake of completeness and
to fix the notation which will be used ahead, in the next subsection we present the
main result from averaging theory, whose proof can be found in [13].

3.1 Averaging Theory of First Order

Consider the initial value problems

ẋ = ε F1(t, x)+ ε2 F2(t, x, ε), x(0) = x0, (5)

and

ẏ = ε g(y), y(0) = x0, (6)

with x, y, and x0 in some open subset Ω of Rn, t ∈ [0,∞), and ε ∈ (0, ε0], for
some fixed ε0 > 0 small enough. Suppose that F1 and F2 are periodic functions of
period T in the variable t , and set
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g(y) = 1

T

∫ T

0
F1(t, y)dt.

Denote by Dxg and Dxxg all the first and second derivatives of g, respectively.
Under these assumptions, the following result is proved in [13].

Theorem 3 Let F1, DxF1, DxxF1, and DxF2 be continuous and bounded by a
constant, which does not depend on ε, in [0,∞) × Ω × (0, ε0] and assume that
y(t) ∈ Ω for t ∈ [0, 1/ε]. Then, the following statements hold.

1. For t ∈ [0, 1/ε], we have x(t)− y(t) = O(ε) as ε → 0.
2. If p �= 0 is an equilibrium point of system (6) such that det[Dyg(p)] �= 0, then

system (5) has a periodic solution φ(t, ε) of period T , which is close to p and
such that φ(0, ε)− p = O(ε) as ε → 0.

3. The stability of the periodic solution φ(t, ε) is given by the stability of the
equilibrium point p.

Based on Theorem 3, in the next subsection we provide necessary conditions
under the parameters of system (3) for the existence of a periodic orbit bifurcating
from the origin.

3.2 Existence of a Periodic Orbit

Theorem 4 Consider system (3) with d1 �= 0 and ci = di = 0, for i = 2, 3. If
b2 = a3 and b3 − a2 �= 0, then, for α > 0 sufficiently small, there exists a periodic
orbit γα in the phase space of system (3), which tends to the non-isolated zero-Hopf
equilibrium point at the origin as α → 0. Moreover, γα is linearly stable if a2 < b3
and it is unstable (of saddle type) if a2 > b3.

Proof Consider system (3) with ci = di = 0, for i = 2, 3, b2 = a3, and d1 �= 0.
Without loss of generality, take d1 = 1. In order to apply Theorem 3, we write the
obtained system in cylindrical coordinates (r, θ, z), where x = r cos θ and y =
r sin θ . Then it becomes

ṙ = [−b3 + (a2 + b3) cos2 θ ] r z,
θ̇ = 1− (a3 − c1) z+ b1 r sin θ + [a1 r − z (a2 + b3) sin θ ] cos θ, (7)

ż = b3 r2 − (a2 + b3) r
2 cos2 θ − α.

Introduce the variable ε > 0 into system (7) considering α = ε2 and doing the
change of coordinates (r, θ, z) → (R, θ, Z), where r = ε R and z = ε Z. Then,
taking θ as the independent variable and doing the Taylor expansion of order 2 of
the obtained equations at ε = 0, we get
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dR

dθ
= −RZ [b3 − (a2 + b3) cos2 θ ] ε +O(ε2),

dZ

dθ
= −[1− b3 R2 + (a2 + b3) R

2 cos2 θ ] ε +O(ε2).

(8)

Using the notation of Theorem 3, consider

x =
(
R

Z

)
, t = θ, T = 2π,

F1(θ, x) =
( −[b3 − (a2 + b3) cos2 θ ]RZ

−[1− b3 R2 + (a2 + b3) R2 cos2 θ ]
)
.

In this way we have

g(y) = 1

2π

∫ 2π

0
F1(θ, x) dθ = 1

2

( −(b3 − a2) RZ

−2+ (b3 − a2) R2

)
.

Hence, g(y) = 0 has the unique real solution

p = (R,Z) =
(√

2

b3 − a2
, 0

)
,

which satisfies det[Dyg(p)] = b3 − a2 �= 0. Then, by Theorem 3, for ε > 0
sufficiently small, system (8) has a periodic solution φ(θ, ε) = (R(θ, ε), Z(θ, ε))

such that φ(0, ε)→ p as ε → 0. Moreover the eigenvalues of the matrix [Dyg(p)]
are ±√a2 − b3. Thus, the obtained periodic orbit is linearly stable if a2 − b3 < 0
and unstable (of saddle type) if a2 − b3 > 0.

Changing back the coordinates to system (3), we have that, for α > 0 sufficiently
small, such system has a periodic solution γα of period approximately 2π given by

xα(t)=
√

2α

b3 − a2
cos t+O(α), yα(t)=

√
2α

b3 − a2
sin t+O(α), zα(t)=O(α).

Note that γα tends to the origin, which is a non-isolated zero-Hopf equilibrium point,
as α → 0. �

4 Existence of Nested Invariant Tori

Under generic assumptions, the presence of a linearly stable periodic orbit implies
the occurrence of rich dynamics: it forces, for example, the existence of a subset of
positive measure in the phase space filled by invariant tori, as stated for instance in
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Fig. 1 (a) Periodic orbit and nested invariant tori of system (3) with c2 = c3 = d2 = d3 = 0,
a1 = a2 = a3 = b1 = b2 = c1 = d1 = 1 and b3 = 2. (b) Respective 2π–Poincaré map of
system (3). In both cases α = 10−4

[12]. In this context, in [9, 10] the authors showed the existence of nested invariant
tori surrounding a bifurcating linearly stable periodic orbit in the phase space of the
Sprott A system. Performing a detailed numerical study, we obtained the following
similar result for the more general differential system (3).

Numerical Result Around the linearly stable periodic orbit γα of differential
system (3) with α > 0 small, described in Theorem 4, there exist nested invariant
tori, as shown in Fig. 1.

In Fig. 1a is shown the nested invariant tori around the periodic orbit γα of
system (3) for α > 0 small and, in Fig. 1b, its respective 2π–Poincaré map,
which was obtained as follows. We consider system (3) in cylindrical coordinates
(r, θ, z) and take θ as the independent variable, obtaining a system in the variables
(r(θ), z(θ)), 2π -periodic in θ . We compute the solutions of the obtained system,
taking initial conditions near of the periodic orbit γα, for discrete values θ = 2kπ ,
where k = 0, 1, . . . , N , with N sufficiently large, obtaining Fig. 1b. The fixed point
representing the periodic orbit γα, given in Theorem 4, is surrounded by concentric
circles, suggesting the existence of nested invariant tori around it.

It is also possible to explain the existence of invariant tori as a deformation of
invariant spheres. Indeed, for α = 0, di �= 0 and ci = di = 0, i = 2, 3, we proved
in Theorem 2 that the phase space of system (3) is foliated by invariant spheres and
the z-axis is a line of equilibria. For suitable choices of the parameter values (see
Remark 1) and for z small, the equilibrium points in the z-axis are foci with opposite
stability for z < 0 and z > 0. In this case, there exist heteroclinic orbits on each
invariant sphere, connecting the (unstable) south pole to the (stable) north pole, see
Fig. 2a. For α > 0 sufficiently small, a linearly stable periodic orbit γα bifurcates
from the origin of system (3), as stated in Theorem 4 and shown in black color in
Fig. 2b. Based on the numerical simulations performed, it is possible to observe that
the concentric invariant spheres evolve to nested invariant tori around the periodic
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Fig. 2 Periodic orbit γα of system (3) (black) and orbit with initial condition (
√

2α/(b3 − a2), 1.2·
10−2, 0) for t < 0 (blue) and t > 0 (red), with c2 = c3 = d2 = d3 = 0, a1 = a2 = a3 = b1 =
b2 = c1 = d1 = 1 and b3 = 2. For the parameter α we consider: (a) α = 0, (b) α = 10−5, and (c)
α = 10−4

orbit γα, as the parameter α increases, as shown in Fig. 2a–c, considering one of the
concentric invariant spheres.

5 Concluding Remarks

Whereas the Sprott A system is claimed to be the simplest conservative differential
system presenting chaotic behavior, in this paper we consider system (3), which
is a more general and comprehensive class of differential systems containing and
presenting similar dynamical behavior to the Sprott A system, for small values of the
parameter α. In this way, system (3) can contain other nonlinear oscillators besides
the Nosé–Hoover oscillator (or the Sprott A system). For appropriate choices of
parameters values in system (3), we proved that for α > 0 small enough a linearly
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stable periodic orbit bifurcates from a zero-Hopf equilibrium point located at the
origin and we numerically show the existence of nested invariant tori around the
periodic orbit. These elements can generate complex and interesting dynamical
behavior, as shown in [4, 6, 9, 10] for Sprott A system, where the existence of a
linearly stable periodic orbit and nested invariant tori around it play an important
role in the formation of chaotic behavior in that system. We believe that the same is
true for the more general system (3). It will be studied in future works.
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External and Internal Resonances
in a Mass-Spring-Damper System
with 3-dof

Jan Awrejcewicz, Roman Starosta, and Grażyna Sypniewska-Kamińska

Abstract The chapter deals with the analytical investigation of the physical
pendulum mounted on the spring-damper suspension. The pendulum exhibits three
degrees of freedom in plane motion. Three types of external loading and viscous
damping are considered. The method of multiple scales is used to solve the
initial value problem defined through Lagrange formalism. The proposed analytical
method allows for the prediction of resonance conditions. The amplitude-frequency
response curves have been determined for the external resonance, and their stability
has been assessed using the Routh–Hurwitz criterion. The modulation equations
of the amplitudes and phases are the basis for studying the impact of the chosen
parameters on the internal resonance 1:2.

Keywords Plane pendulum · Asymptotic analysis · Resonance

1 Introduction

The pendulum-like systems may serve as a reliable model for many machine and
measurement devices, manipulators, and the human body parts [1–3]. Moreover,
they can be used to develop, test, and validate the new approaches employed to
study the dynamics of multi-body systems. The pendulums could exhibit very
complicated behavior due to the strong nonlinearity of a geometrical nature and
coupling between their components [4].

Many pendulum-like systems are analytically studied in reference [5]. The
asymptotic approach aimed at analyzing the kinematically excited spring pendulum
near parametric resonances is presented in [6, 7].
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The application of the multiple-scale method (MSM) allows one to perform a
qualitative analysis of the behavior of the system, for instance, to recognize all
possible resonance conditions which can appear in the system. Here, we analyze the
external and internal resonances of the spring physical pendulum. The present work
extends the investigations presented in [6] by introducing a more reliable model of
damping at the joints, considering the internal resonance and using three time scales
in the MSM solution, which is not an easy task.

2 Description of the Problem

The physical model of the system is presented in Fig. 1. We assume that the spring
is massless and nonlinear. The nonlinearity of the spring is of a cubic type, where
k1 and k2 are constant elastic coefficients. L0 denotes the nominal length of the
spring. The viscous damper and the spring are set up in parallel to one another. The
distance between the point A and the body mass center C is denoted by S and called
the eccentricity. The body moment of inertia relative to the axis passing through
the center of mass C and perpendicular to the plane of motion is denoted by Ic.
The relative rotation around joints O and A is attenuated by viscous dampers. The
coefficients C1, C2, and C3 correspond to the damping forces. The motion is excited
by the harmonic force F acting along the direction OA, where F(t) = F0 cos Ω1t,
and by two torques M1(t) =M01 cos (Ω2t) and M2(t) =M02 cos (Ω3t).

Since the motion is considered in the vertical plane, the body has three degrees
of freedom. The total elongation of the spring X(t) and two angles Φ(t) and Ψ (t)
stand for the generalized coordinates. The spring elongation at the static equilibrium
denoted by Xr satisfies the following equation

Fig. 1 Spring physical
pendulum with 3-dof
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k2X
3
r + k1Xr = mg. (1)

The kinetic and potential energies of the system are as follows:

T = mS+̇
(
Ẋ sin (φ −+)+ �̇ (L0 +X) cos (�−+)

)

+m

2

(
R2

A+̇
2 + (L0 +X)2�̇2 + Ẋ2

)
, (2)

V = 1

2
k1X

2 + 1

4
k2X

4 −mg ((L0 +X) cos�+ S cos+) , (3)

where RA is the radius of gyration of the body with respect to the axis passing
through the joint A and perpendicular to the plane of motion.

3 Mathematical Model

The governing equations have been derived using Lagrange’s formalism. All
external and damping forces are treated as the generalized forces. The dimensionless
form of the equations of motion is as follows:

ξ̈ + c1ξ̇ + ξ + αξ3 + 3ξrαξ2 + 3ξ2
r αξ − w2

2 (cosϕ − 1)
− s cos (ϕ − γ ) γ̇ 2 + s sin (ϕ − γ ) γ̈ = f1 cos (p1τ) ,

(4)

ϕ̈(1+ ξ)2 + w2
2 sinϕ (1+ ξ)+ c2ϕ̇ + 2ξ̇ ϕ̇ + 2ξ ξ̇ ϕ̇

+ s (1+ ξ) γ̇ 2 sin (ϕ − γ )+ s (1+ ξ) γ̈ cos (ϕ − γ ) = f2 cos (p2τ) ,
(5)

γ̈ + w2
3 sin γ + c3γ̇ + 2

w2
3

w2
2
ξ̇ ϕ̇ cos (ϕ − γ )− w2

3
w2

2
(1+ ξ) ϕ̇2 sin (ϕ − γ )

+ w2
3

w2
2
ξ̈ sin (ϕ − γ )+ w2

3
w2

2
ϕ̈ cos (ϕ − γ ) = f3 cos (p3τ) ,

(6)

where τ = ω1t is the dimensionless time and ω1 = √k1/m.
The functions ξ (τ ), ϕ(τ ), and γ (τ ) correspond to the generalized coordinates

X(t), Φ(t), and Ψ (t), respectively. The dimensionless static elongation of the spring
ξr = Xr

L
and it satisfies the equilibrium equation

αξ3
r + ξr = w2

2. (7)
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Taking ω1 as a reference quantity, the other dimensionless parameters are defined
in the following manner.

c1 = C1
m ω1

, c2 = C2
mL2ω1

, c3 = C3
mL2ω1r

2
A

, f1 = F0
mLω2

1
, f2 = M01

mL2ω2
1
, f3 = M01

mL2ω2
1r

2
A

,

α = k2L
2

ω2
1m

,w2 = ω2
ω1

, w3 = ω3
ω1

, p1 = &1
ω1

, p2 = &2
ω1

, p3 = &3
ω1

, ω2
2 = g

L
, ω2

3 = Sg

R2
A

,

s = S
L
, ξ = X

L
and L = L0 +Xr.

Equations (4–6) are supplemented by the following initial conditions

ξ(0)=u01, ξ̇ (0)=u02, ϕ(0)=u03, ϕ̇(0)=u04, γ (0)=u05, γ̇ (0)=u06,

(8)

where the dimensionless quantities u01, . . . , u06 are known a priori.

4 Approximate Analytical Solution

The initial value problem (4–8) is solved using the method of multiple scales (MMS)
in the time domain. The trigonometric functions of the generalized coordinates in
Eqs. (4–6) are replaced by their power series, whereas the expansion is truncated up
to the third order (small oscillations around an equilibrium position are considered).

The functions ξ , ϕ, and γ are approximated by the power series with respect to
the small perturbation parameter ε in the following way

ξ =
3∑

k=1

xk (τ0, τ1, τ2)+O
(
ε4

)
,

ϕ =
3∑

k=1

φk (τ0, τ1, τ2)+O
(
ε4

)
,

γ =
3∑

k=1

χk (τ0, τ1, τ2)+O
(
ε4

)
,

(9)

where τ 0 = τ , τ 1 = ετ , τ 2 = ε2τ are time scales.
The amplitudes of the generalized forces, the damping coefficients, the eccen-

tricity, and the nonlinearity parameter are assumed to be small, and hence we take.

fk = ε3f̃k, ck = ε3c̃k, e = ε2ẽ, α = ε2α̃, k = 1, 2, 3. (10)

The above assumptions and the series (9) are introduced into governing Eqs.
(4–6), and the ordinary derivatives are replaced by the differential operators for
complex functions (9). In this way, we obtain three equations containing small
parameter ε of various powers. These equations should be satisfied for any value
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of ε, so after sorting them with respect to powers of the small parameter, we get
three sets of equations of the first-, second-, and third-order approximation, and
solve them recurrently. The solving procedure has been described in detail in [6, 7].
The solutions to the first-order approximation equations are as follows:

x1 = a1

2ε
ei(τ0+ψ1) + CC, φ1 = a2

2ε
ei(τ0+ψ2) + CC, χ1 = a3

2ε
ei(τ0+ψ3) + CC,

(11)

where real-valued functions ai(τ 1, τ 2) and ψ i(τ 1, τ 2) for i = 1, 2, 3 correspond to
amplitudes and phases, and CC denotes complex conjugates.

Apart from the approximate analytical solution to the problem (3–8), MSM
allows to indicate the conditions for:

1. main resonances: p1 ≈ 1, p2 ≈ w2, p3 ≈ w3
2. internal and combined resonances: w2 ≈ 1

2 , w2 ≈ w3, w3 ≈ 1
2 , p2 ≈ w3, w3 ≈

1, w2 ≈ 3w3, w3 ≈ 3w2, w2+w3 ≈ 1, w2−w3 ≈ 1, w2+w3 ≈ 2, w2−w3 ≈ 2

The satisfaction of a resonance condition means that the behavior of the system
becomes very complex due to a high level of energy exchange between several
modes or/and with the surrounding. A significant increase in the amplitude is usually
observed as a result of the interaction of various resonances.

5 External Resonance

Let us consider the case when three main resonances occur simultaneously, i.e.,
p1 ≈ 1, p2 ≈ w2, p3 ≈ w3. For this purpose, we introduce the so-called detuning
(small) parameters σ 1, σ 2, σ 3. Then, we introduce the following relations

p1 = 1+ σ1, p2 = w2 + σ2, p3 = w3 + σ3 (12)

into Eqs. (4–6). All secular terms should be eliminated because the bounded
solutions are expected. This demand leads to the solvability conditions, which allow
one to obtain the modulation equations for amplitudes and phases of the following
form

ȧ1 = 1

2
(−c1a1 + f1 sin (σ1τ − ψ1)) , (13)

ȧ2 = −c3w
4
2 + c2

(
w2

2 − w2
3

)2

2
(
w2

2 − w2
3

)2
a2 + f2

2w2
sin (σ2τ − ψ2) , (14)
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ȧ3 = −c3w
2
3

(
w6

2 − 2 (s + 1 ) w4
2w

2
3 + w2

2w
4
3 + sw6

3

)

2sw4
2

(
w2

2 − w2
3

)2 a3 + f3 sin (σ3τ − ψ3)

2w3
,

(15)

ψ̇1 = 3w2
2

(
w2

2 − 1
)

4
(
4w2

2 − 1
) a2

2 +
3ξ2

e α

2
− f1

2a1
cos (σ1τ − ψ1) , (16)

ψ̇2 =w2
(
w2

2 − 1
) (

12a2
1 −

(
1+ 8w2

2

)
a2

2

)

16
(
4 w2

2 − 1
)

+ sw2w
2
3

(
4w4

2 + (3s − 8) w2
2w

3
3 + (4− 7s)w4

3

)

8
(
w2

2 − w2
3

)3
− f2

2w2a2
cos (σ2τ − ψ2) ,

(17)

ψ̇3 =− c2
3w

3
3

8s2w4
2

− sw5
3

(
4w6

2 − 8w4
2w

2
3 + (4− 7s)w2

2w
4
3 + 3s w6

3

)

8w4
2

(
w2

2 − w2
3

)3

− w3
3a

2
1

4w4
2

(
4w2

3 − 1
) + w3

3

(
w2

3 − 2w2
2

)
a2

2

8
(
w2

2 − w2
3

)2 − w3a
2
3

16
− f3 cos (σ3τ − ψ3)

2w3a3
.

(18)

The modulation Eqs. (13–18) are crucial in the qualitative analysis of the steady
and unsteady motion near resonance. Some examples of the resonance curves for
the parameters: α = 0.01, f1 = f2 = f3 = 0.0001, c1 = c2 = 0.001, c3 = 0.0001,
w2 = 0.3676, w3 = 0.244, s = 0.02, σ 1 = − 0.01, σ 3 = − 0.01, are presented in
Fig. 2. The main resonant effect concerns the angle ϕ. Observe that the resonance
response curve is of the soft-type, and the maximal increase in the amplitude a2 is
more than four times. The values of other amplitudes decrease, while the change
is much smaller for the amplitude a3. Red and blue parts of the resonance curves
denote stable and unstable branches, respectively. The stability estimation is carried
out using the Routh–Hurwitz criterion for the perturbed linearized modulation
equations.

Fig. 2 Resonance curves for the external resonance
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6 Internal Resonance

Let us consider the internal resonance w3 ≈ 1 : 2 which occurs due to the coupling
between two generalized coordinates ξ and γ . For this purpose, we introduce the
detuning parameter σ in the following manner

w3 = 1

2
+ σ. (19)

The modulation equations which describe the internal resonance have the form

ȧ1 = 1

8

(
−4c1a1 + sa2

3 sin (ψ1 − 2ψ3)
)
, (20)

ȧ2 = −c2 − 8c2w
2
2 + 16 (c2 + c3) w

4
2

2
(
4w2

2 − 1
)2 a2, (21)

ȧ3 = c3
(−s − 4w2

2 + 32 (1+ s)w4
2 − 64w6

2

)
a3

32sw4
2

(
4w2

2 − 1
)2

+
(−s + 4 (s − 1) w2

2 + 4 (8+ s)w4
2 − 64w6

2

)
a1a3 sin (ψ1 − 2ψ3)

32w4
2

(
1− 4w2

2

)2 ,

(22)

ψ̇1 = 3w2
2

(
w2

2 − 1
)

4
(
4w2

2 − 1
) a2

2 +
3ξ2

e α

2
+ sa2

3 cos (ψ1 − 2ψ3)

8a1
, (23)

ψ̇2 = sw2
(
4− 7s + 4 (−8+ 3s)w2

2 + 64w4
2

)

8
(
4w2

2 − 1
)3

− w2
(
w2

2 − 1
) (−12a2

1 +
(
1+ 8w2

2

)
a2

2

)

16
(
4w2

2 − 1
) ,

(24)

ψ̇3 = 3a2
1

128w4
2

+
(
s − 4 (−1+ s)w2

2 − 4 (8+ s)w4
2 + 64w6

2

)
a1 cos (ψ1 − 2ψ3)

32w4
2

(
1− 4w2

2

)2

+
−3s4 − 4c2

3

(
4w2

2−1
)3+4s2w2

2

(
7s2−4s

(
4w2

2−1
)2+64w2

2

(
4w2

2−1
)3
σ
)

256s2w4
2

(
4w2

2−1
)3

+ 1

32

(
2
(
1− 8w2

2

)
a2

2(
1− 4w2

2

)2
− a2

3

)
.

(25)
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Fig. 3 Time histories of the general coordinates ξ and γ in the case of the internal resonance

The solution to Eqs. (20–25), obtained numerically, allows one to complement
the approximate solution obtained using MMS. Moreover, the modulation equations
can be used to study the internal resonance.

The time histories of the generalized coordinates ξ and γ , which interact with
each other in the case of the internal resonance, are presented in Fig. 3. The
calculations were carried out for the following values of the parameters: α = 0.03,
w2 = 0.243, s= 0.001, c1 = c2 = c3 = 0.00001, f1 = f2 = f3 = 0.0001, p1 = 0.287,
p2 = 0.105, p3 = 0.00893, σ = − 0.001, a10 = 0.012, a20 = 0.008, a30 = 0.03,
ψ10 = ψ20 = ψ30 = 0.

The red solid curves (envelopes) of the fast-changing oscillations represent the
amplitudes a1(τ ) and a3(τ ), respectively.

The graphs reported in Fig. 4 show the influence of some parameters on the shape
of the modulation curves. It turns out that damping at the joint A has the crucial
impact on the form of the amplitude modulation. From Fig. 4, one can note that there
is a critical value of the damping c3, for which the internal resonance is revealed by
just one peak of the amplitude a3. This peak is accompanied by a decrease in the
amplitude a1 occurring at the same time interval. However, for c3 = 5.2 · 10−6 (red
line), the second local maximum of the amplitude a3 appears.

When the value of c3 decreases more, the modulation process becomes oscillat-
ing, and the subsequent maxima start disappearing. The exclusion of the damping
coefficient c3 from the model yields periodic amplitude changes as shown in Fig. 5.

Any small damping in the joint A significantly weakens the resonance effects
between the generalized coordinates ξ and γ related to the longitudinal vibration
and the rotation of the body.

7 Concluding Remarks

The mathematical model governing the motion of the three-degree-of-freedom
physical spring pendulum has been derived. The solution to the initial value problem
has been solved using the method of multiple scales in the time domain. The
solutions have been achieved up to the third-order approximation. Their analytical
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Fig. 4 Influence of the detuning parameter σ and the damping coefficient c3 on the modulation
curves associated with the general coordinates ξ and γ in the internal resonance

Fig. 5 The resonant modulation curves related to the general coordinates ξ and γ for c3 = 0

form allows for a comprehensive analysis of the motion of the system for a wide
spectrum of parameters.

The pendulum exhibits complex behavior, especially near resonance. Two reso-
nant cases have been studied: three main simultaneous resonances and an internal
resonance coupling generalized coordinates ξ and γ . The modulation equations
allow for a qualitative and quantitative analysis of motion. In the steady state, which
is possible for the main resonance, the amplitude curves and their stability have
been presented. The correctness of the analytical results has been validated by the
numerical simulation.

The equations allow one to analyze the system behavior in the space of
amplitudes and phases (or modified phases) using the idea of the so-called limiting
phase trajectory, which has been discussed in [8].
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Internal Resonances in an Imperfect
Circular Cylindrical Panel

Frederico M. A. Silva , Wanclaine A. Vaz , and Paulo B. Gonçalves

Abstract The aim of the present work is to investigate the influence of initial geo-
metric imperfections on a slender cylindrical panel nonlinear response, considering
the presence of internal resonances. Nonlinear Donnell shallow shell theory is used
to obtain the nonlinear equations of motion. To obtain a consistent modal solution,
the transversal displacement field is obtained from a perturbation technique which
takes into account the phenomena of modal coupling and interaction in simply
supported cylindrical panels. Then, the standard Galerkin method is applied to
reduce the problem to a system of differential equations in time domain to obtain
the backbone curves, which is solved by using the shooting method. The resonance
curves are obtained by continuation methods displaying a complex bifurcation
scenario. The influence of the shape and amplitude of the geometrical imperfection
on the resonance curves is investigated.

Keywords Cylindrical panel · Modal coupling · Modal interaction ·
Geometrical imperfections · Nonlinear dynamics

1 Theoretical Formulation

Slender cylindrical panels are circular sectors of the cylindrical shells and can be
described by the theory of the slender shallow shells. Despite a simple geometry,
the slenderness of this element makes it susceptible to loss of stability and excessive
vibrations when subjected to static and dynamic loads, which can lead the structure
to damage or even collapse. Among the many important nonlinear phenomena
exhibited by cylindrical panels, modal coupling due to the geometric nonlinearities
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and modal interaction that occurs when different buckling modes have the same
critical load or different vibration modes have proportional natural frequency [1, 2].
Therefore, this study aims to contribute to the understanding of the phenomena of
modal coupling and modal interaction in simply supported cylindrical panels with a
geometrical imperfection [1, 6].

For the mathematical formulation, Donnell’s nonlinear shallow shell theory is
used, considering that the cylindrical panel is simply supported and subjected to a
time-dependent transversal load. The material is assumed as linear, homogeneous,
and isotropic. The transversal equation of motion and the compatibility equation
are given in terms of the transversal displacement w and Airy stress function f
respectively by:

ρhẅ + 2η1ρh&0ẇ +D
(
w,xxxx + 2

R2 w,θθxx + 1
R4 wxθθθ

)
− f,θθ

(
w,x + w0,x

)
,x

+ Rf ,xx − f,xx

(
w,θ + w0,θ

)
,θ
− 2fxθ

(
w,θx + w0,θx

)− p(t) = 0

(1)

∇4f

Eh
= 1

R4

(
w,xθ

2−w,xxw,θθ + Rw,xx + 2w,xθw0,xθ −w,xxw0,θθ −w,θθw0,xx

)

(2)

where D(=Eh3/12(1 – ν2)) is the flexural stiffness, η1 is the viscous damping
coefficient, E is the Young’s modulus, ν is the Poisson coefficient, ρ is the mass
density, Ω0 is the natural frequency of perfect cylindrical panel, R is the radius of
curvature, h is the cylindrical panel thickness. The initial geometrical imperfection
is described by a pre-defined function w0.

The transversal harmonic pressure load is given by:

p(t) = pl sin(nr) sin(mq) cos (&t) (3)

where r = πθ /Θ , q = π x/L, pl is load magnitude, Ω is the excitation frequency, Θ
is the opening angle of cylindrical panel, and m and n are the number of axial and
circumferential half-wave, respectively.

The following imperfection shapes are considered:

w01 = C1 sin(q) sin(r); w02 = C2 sin(q) sin(2r); w03 = C3 sin(2q) sin(r)
(4)

where Ci (i = 1, 3) is the imperfection magnitude.
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2 Numerical Results

In order to determine the geometries that may exhibit modal interaction, linear
free vibration results are obtained for a simply supported panel, using the classical
vibration modes of a simply supported cylindrical panel:

w (r, q, t) = wmn sin(nr) sin(mq) cos (&t) (5)

The adopted geometrical and material parameters are: R = 1 m, h = 0.001 m,
E = 2.06× 1011 N/m2, ρ = 7800 kg/m3, and ν = 0.3. Table 1 presents the data of a
cylindrical panel that exhibits 1:1 internal resonance, while Table 2 shows the data
of a cylindrical panel that exhibits 1:1:2 internal resonance.

The transversal displacement field is obtained by applying the perturbation
technique described in [1–8]. To start the perturbation procedure, it is necessary to
consider a seed solution, which in this work is the sum of the linear vibration modes
involved in the internal resonance (Tables 1 and 2) [3, 4]. The perturbation procedure
leads to a modal solution that considers naturally all modal coupling and interaction
concerning these modes. However, the obtained general modal solution is enormous
and for easy understanding purpose we show only the considered modes in this
work to analyze the influence of initial geometrical imperfections on the nonlinear
behavior of cylindrical panels with 1:1, or 1:1:2, internal resonances.

The modal solution for the cylindrical panel with 1:1 internal resonance is given
by:

w = [A111(t) sin(r)+ A113(t) sin(3r)+ A211(t) sin(2r)+ A213(t) sin(6r)] sin(q)
+ {A322(t) [3/4− cos(2r)+ 1/4 cos(4r)]
+A422(t) [3/4− cos(4r)+ 1/4 cos(8r)]} [3/4− cos(2q)+ 1/4 cos(4q)]

(6)

Table 1 Cylindrical panel with 1:1 internal resonance: geometry, imperfection magnitudes, and
natural frequencies (L = 0.1 m)

Axial half-wave Θ(rad)
Internal
resonance

Circumferential
half-wave C1/h C2/h

Natural
frequency (Hz)

m = 1 0.1658 1:1 n = 1 0.0 0.0 686.29

m = 1 n = 2 686.29
0.10 0.0 697.89

699.64
−0.10 0.0 673.46

676.77
0.0 0.10 664.66

709.63
0.0 −0.10 664.66

709.63
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Table 2 Geometry with modal interaction between three modes. (Θ = 0.169 rad)

Axial half-wave L (m)
Internal
resonance

Circumferential
half-wave C1/h C3/h

Natural
frequency (Hz)

m = 1 0.091 1:1:2 n = 1 0.0 0.0 741.88

m = 1 n = 2 741.88

m = 2 n = 1 1483.75
0.10 0.0 755.06

755.34

1493.18
−0.10 0.0 729.82

732.05

1474.97
0.0 0.10 742.22

745.37

1490.33
0.0 −0.10 742.22

745.37

1490.33

while the modal solution for the cylindrical panel with 1:1:2 internal resonance is

w= [A111(t) sin(r)+A211(t) sin(2r)+A213(t) sin(6r)+A313(t) sin(3r)] sin(q)
+ [A311(t) sin(r)+A313(t) sin(3r)] sin(2q)+{A422(t) [3/4− cos(2r)+1/4 cos(4r)]
+A522(t) [3/4− cos(4r)+ 1/4 cos(8r)]} [3/4− cos(2q)+ 1/4 cos(4q)]
+ A622(t) [3/4− cos(2r)+ 1/4 cos(4r)] [3/4− cos(4q)+ 1/4 cos(8q)]

(7)

These modal solutions, Eqs. (6 and 7), ensure the convergence of the backbone
and resonance curves up to vibration amplitudes of the same order as the shell
thickness. These expressions satisfy the following transversal boundary conditions:

w (0, θ) = w (L, θ) = w (x, 0) = w (x,-) = 0
Mx (0, θ) = Mx (L, θ) = Mθ (x, 0) = Mθ (x,-) = 0

(8)

To obtain the Airy stress function f, the modal expansion in Eq. (6), or Eq. (7),
is substituted into Eq. (2), together with the chosen geometrical imperfection
function, Eq. (4), and the compatibility equation is solved analytically. The obtained
stress function and the chosen modal expansion are then substituted into equation
of motion, Eq. (1), and discretized by using the standard Galerkin method. The
nonlinear frequency-amplitude relations are determined by applying the shooting
method to the reduced order discrete model [8].

Figure 1 shows the variation of the maximum normalized amplitude of the
vibration mode as a function of the frequency normalized with respect to the natural
frequency of perfect cylindrical panel (backbone curves). The black curve illustrates
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Fig. 1 Frequency-amplitude relation for (a, c) 1:1 and (b, d) 1:1:2 internal resonance cases,

considering different geometrical imperfection’s amplitude.(—Ci/h = 0.0; ˗˗˗Ci/h = 0.05;
˗˗˗Ci/h = 0.10; ˗˗˗Ci/h = 0.15; ˗˗˗Ci/h = −0.05, ˗˗˗Ci/h = −0.10, ˗˗˗Ci/h = −0.15, to i = 1,3).
(a) 1:1 internal resonance and imperfection in C1 (C2 = 0). (b) 1:1:2 internal resonance and
imperfection in C1 (C3 = 0). (c) 1:1 internal resonance and imperfection in C2 (C1 = 0). (d)
1:1:2 internal resonance and imperfection in C3 (C1 = 0)

the response of the perfect system with equal frequencies. For the imperfect shell,
the imperfection amplitude acts as a detuning parameter and the two frequencies
associated with the interacting modes split apart. The backbone curve for the
lowest frequency is identified by (-o-) while the backbones curves for the second
value of frequency is represented by (presented symbol -•-). Positive values of
C1 increase both natural frequencies while negative values of C1 decrease the
natural frequencies. In the perfect case, the shell displays a softening behavior. For
negative values of C1, a sudden change is observed with the first mode exhibiting a
softening nonlinearity and the second mode a hardening behavior. In this case, the
effect of modal interaction disappears. Positive imperfections also have a palpable
influence on the backbone curves and the influence of both modes on the nonlinear
response remains. Figure 1b shows the influence of the imperfection magnitude C1



184 F. M. A. Silva et al.

Fig. 2 Resonance curve for 1:1 internal resonance case. pl = 1 kN/m2, η1 = 0.001, considering

different geometrical amplitude of imperfection. (— C1(or 2)/h = 0.0; ˗˗˗C1(or 2)/h = 0.10;
˗˗˗C1(or 2)/h = −0.10). (a) Imperfections in C1. (b) imperfections in C2

on the natural frequencies and backbone curves for the panel with the 1:1:2 internal
resonance. For all analyzed imperfection amplitudes, the ratio between the natural
frequency of vibration modes remains close to the ideal case influencing the 1:1:2
internal resonances (see Table 2 for C1/h = ±0.10).

Figure 1c shows the influence of the positive and negative values of C2 on the
results. The imperfection decreases the frequency to the first mode and increases
the natural frequency of the second vibration mode, and the 1:1 internal resonance
is destroyed (see Table 1 for C2/h=±0.10). On the other hand, as shown in Fig. 1d,
positive and negative values of C3 increase the natural frequency of both modes
of vibration and the 1:1:2 internal resonance case is maintained (see Table 2 for
C3/h = ±0.10).

To evaluate the nonlinear forced vibrations of the simply supported cylindrical
panels, a lateral distributed harmonic load is applied in the form of the first vibration
mode, m= n= 1 in Eq. (3) is considered. The obtained resonance curves are shown
in Figs. 2 and 3 for each case of internal resonance studied here. These curves were
obtained by the continuation method, which allows the determination of the stable
and unstable branches of solutions. In these figures, the maximum amplitude of
vibration is plotted as a function of the forcing frequency. The stable paths of the
resonance curve are represented by the continuous line (—) and the unstable paths
are represented by the dashed line (---).

In Fig. 2a the resonece curves were obtained considering the imperfections with
C1/h = ±0.10 while in Fig. 2b the resonece curves were obtained considering the
imperfections with C2/h = ±0.10. It is observed in Fig. 2a that the geometric
imperfection changes the dynamic stability scenario, creating new stable and
unstable paths depending on the value of amplitude of imperfection (C1/h=±0.10).



Internal Resonances in an Imperfect Circular Cylindrical Panel 185

Fig. 3 Resonance curve for 1:1:2 internal resonance case. pl = 1.5 kN/m2, η1 = 0.001,

considering different geometric imperfection amplitudes. (— C1(or 3)/h = 0.0; ˗˗˗C1(or 3)/h = 0.10;
˗˗˗C1(or 3)/h = −0.10). (a) Imperfections in C1. (b) imperfections in C3

It is also observed in Fig. 2a that in the case of positive values of C1 the resonance
curves move to the right due to the increase in the natural frequency of cylindrical
panel while for negative values the resonance curves move to the left due to the
decrease in the natural frequency of cylindrical panel. In Fig. 2b, the negative and
positive amplitudes of C2 lead to coincident resonance curves but with two new
resonant peaks in the vicinity of the resonant peak of perfect cylindrical panel. These
changes are due to the competition of the backbones curves of both linear vibration
modes.

Figure 3 shows the resonance curves for a cylindrical panel with 1:1:2 internal
resonance, considering different values of imperfection magnitudes C1 and C3. In
Fig. 3a, the amplitude of the geometric imperfection C1/h changes the dynamic
stability of the system, the shape of the resonance curve, and the amplitude of
vibration for positive values and to negative values of C1. In Fig. 3b, it is verified
that the values of C3 also change the dynamic stability of the system, the shape
of the resonance curve, and the vibration amplitude, in addition to the coincident
resonance curves for positive and negative amplitudes of C3.

3 Concluding Remarks

This work investigates the influence of modal coupling and modal interaction on the
nonlinear free vibrations of an imperfect cylindrical panel. A new consistent modal
solution is developed, which takes into account the modal interaction between two
or three different modes of vibration. Significant changes in nonlinear free vibration
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can be observed. The geometric imperfection magnitude and sign may increase or
decrease the stiffness of the cylindrical panel, thus changing the natural frequencies.
Imperfection in the second mode always decreases the stiffness of the cylindrical
panel with 1:1 internal resonance case. However, the cylindrical panel displays a
hardening effect when the imperfection in the form of the third vibration mode
in the case of 1:1:2 internal resonances is considered. The modal interaction can
be destroyed with increasing imperfections. The forced response of the cylindrical
panel is also affected by the imperfection shape, size, and magnitude.
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Weakly Nonlinear Liquid Sloshing:
Modelling and Exploration of Response
Regimes

Maor Farid and Oleg V. Gendelman

Abstract This chapter describes both steady-state and quasi-periodic response
regimes in equivalent mechanical model of partially filled liquid storage tank
which is subjected to external ground excitation. Nonlinear and moderate amplitude
sloshing is considered. The sloshing mass is essentially smaller than the overall
mass of the tank, so the reduced-order model (ROM) is actually equivalent to the
thoroughly studied cubic nonlinear energy sink (NES). The dynamical responses
captured by the ROM are qualitatively in good agreement with previous experimen-
tal, computational, and theoretical results.

Keywords Liquid sloshing · Reduced-order model · Nonlinear energy sink

1 Introduction

Partially filled liquid tanks are commonly used in various engineering fields, such as
aircrafts and vehicles [1, 2]. During external excitation, sloshing takes place which
can lead to significant increase in mechanical stresses in the foundations of the
tank. Those resulting stresses may have significant effect of the robustness of the
tank. The most hazardous sloshing regime is associated with hydraulic impacts, also
referred to as vibro-impact sloshing, which usually occurs in vicinity of resonance.
High amplitude sloshing is the source of significant nonlinearities which lead to
richness in terms of dynamical regimes, for example, multiple periodic solutions
[3], quasi-periodic [4], and strongly modulated response (SMR) [5]. Previous
experimental results [6] point out that the aforementioned nonlinear regimes can
be described well by a cubic nonlinearity.

In the current study, we adopt an equivalent phenomenological model with cubic
nonlinearity in order to capture and describe the moderately nonlinear sloshing
regimes [7–9] taking place in a seismically excited liquid storage tank. This
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analysis gives one a better understanding about the occurrence of those regimes.
However, some regimes cannot be described using the current model, such as three-
dimensional regimes, i.e., rotary sloshing, or more violent sloshing behaviors, such
as vibro-impact sloshing.

Since the sloshing mass is much smaller than the overall mass of the overall
tank-liquid system, it is conceptually identical to the well-studied cubic NES [10,
11], in both mathematical description and dynamical behavior. The NES is a passive
device for vibration mitigation and includes a relatively small mass which is coupled
to the system via an essentially nonlinear attachment. The slow-flow dynamics of
several NES designs in vicinity of 1:1 resonance can be naturally described by the
slow invariant manifold (SIM). The different dynamical regimes emerging in the
current system are thoroughly described using analytical tools. Theoretical results
are verified numerically and compared to previous experimental and computational
studies.

2 Model Description

As one can see in Fig. 1, the overall system of the tank and the static liquid portion
is modelled by a primary structure (PS) with mass M, and the sloshing portion is
modelled by an internal particle (IP) with mass m, and their absolute displacements
are denoted by u(t) and v(t), respectively. Both masses are attached by linear and
cubic springs, and a linear dashpot. The PS is subjected to harmonic excitation,
with frequency Ω and amplitude A.

As a continuous system, the internal fluid of the partially filled liquid tank can
be modelled with help of an infinite series of pendula of mass-spring systems,
associated with the modal masses of the infinite sloshing modes. However, it was
shown [6] that those modal masses decrease drastically for higher modes. Hence, it
is reasonable to consider only the lowest sloshing modes as a first approximation.

The equations of motion are obtained using Lagrangian formalism, and
the following coordinate transformation is adopted: X(τ ) = u(τ ) + εv(τ ),
w(τ ) = u(τ ) − v(τ ):

Fig. 1 Mechanical scheme
of the system
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Ẍ + 1+εσ
1+ε

X + ε(1+εσ)
1+ε

w = εA cos (τ )

ẅ + 1+εσ
1+ε

X + εηw + (1+ ε) λẇ + k (1+ ε)w3 = εA cos (τ )
(1)

The relations between the dimensional and non-dimensional parameters are as
follows:

ω2
1 = k1

M
, ω2

2 = k2
m
, & = ω1√

1+εσ
, εA = A

M&2

εβ =
(

ω2
ω1

)2
(1+ εσ ) , k = k

m&2 , λ = c
m&

, η = 1+εσ
1+ε

+ β (1+ ε)

(2)

Differentiation with respect to dimensionless time scale τ = Ωt is denoted by
dot. The amplitude and frequency of the external excitation are denoted by εA and
Ω , respectively. The natural frequencies of the PS and the IP are ω1 and ω2. Non-
dimensional damping and nonlinear coupling are denoted by λ and k, respectively.

3 Dynamical Regimes

In the current section, the dynamical regimes which arise in the aforementioned
system will be analyzed analytically.

3.1 Periodic Responses

The following complex variable transformation, shown by Manevitch [12], is
applied on Eq. (1): Ẋ + iX = ϕ1eiτ , ẇ + iw = ϕ2eiτ . Since we are interested
in dynamical regimes associated with internal resonance of 1:1, we collect merely
the slow-varying terms as follows:

ϕ′1 + iε(1−σ)
2(1+ε)

ϕ1 − iε(1+εσ)
2(1+ε)

ϕ2 = εA
2

ϕ′2 + i
2 (1− εη) ϕ2 + λ(1+ε)

2 ϕ2 − i(1+εσ)
2(1+ε)

ϕ1 − 3ki(1+ε)
8 |ϕ2|2ϕ2 = εA

2

(3)

Bar and apostrophe represent complex conjugate and differentiation with respect
to time, respectively. Periodic responses correspond to stationary solutions of Eq.
(3). The complex modulation functions, associated with stationary responses, are
denoted by ϕ10 and ϕ20. After neglecting the derivatives, and substituting the second
equation into the first equation in Eq. (3), the following double-cubic polynomial is
obtained: α3Z

3
0 + α2Z

2
0 + α1Z0 + α4 = 0, when ϕ20 = N0eiθ0 , Z0 = N2

0 , and its
coefficients are given by the following expressions:
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Fig. 2 Boundaries of SN
(solid line) and Hopf (dashed
line) bifurcations on the (A, λ)
plane, for ε = 0.05, k = 4/3,
β = 5, σ = 5; Point 1:
A = 0.1 a unique periodic
solution; point 2: A = 1
coexistence of two periodic
solutions; point 3: A = 1.4
coexistence of both multiple
periodic solutions and weakly
quasi-periodic responses
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Existence of multiple solutions is associated with saddle-node (SN) bifurcation,
taking place when the discriminant of the aforementioned polynomial equals to zero.
The SN boundary (Fig. 2, solid line) is described by the following expression:

3α3(α1α2−9α3α4)
2+2α2 (α1α2−9α3α4)

(
6α1α3−2α2

2

)
+α1

(
6α1α3−2α2

2

)2=0

(5)

In Fig. 2, the area that surrounds the solid-line curve corresponds to a unique
periodic solution, while the inner corresponds to the multiple solutions. The
bifurcation values of λ and A are as follows:

λSN,cr = 1√
3

∣∣∣∣
σ

1− σ
+ εβ

∣∣∣∣ , ASN,cr = 4

9

√
2

|k (σ − 1)| (σ − εβ (σ − 1))3/2

(6)

3.2 Weak Quasi-Periodic Responses

Weak quasi-periodic solution is associated with loss of stability of the periodic
solution described above and formation of limit cycles via Hopf bifurcation.
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We add a small perturbation around ϕ10 and ϕ20 as follows: ϕ1 = ϕ10 + δ1,
ϕ2 = ϕ20 + δ2, and substitute these perturbed expressions to Eq. (3). Then, we
nullify the derivatives, obtaining the characteristic polynomial of the resulting
system, and express its roots. Hopf bifurcation takes place when those roots cross
the imaginary axis:

&H = ±1

2

√
ε (1+ εσ )

1+ ε
(7)

The boundary of Hopf bifurcation is marked by a dashed line in Fig. 2.
Critical λ value for occurrence of Hopf bifurcation λH, cr is as follows:

λH,cr = 1√
3

∣∣∣∣β +
εσ − 1

(1+ ε)

∣∣∣∣ (8)

3.3 Strongly Modulated Responses (SMRs)

When SMR takes place [11, 13], the modulation of the dynamical response changes
in both fast and slow time scales in vicinity of 1:1 resonance. Hence, in contradiction
to weakly modulated responses introduced above, SMR cannot be analyzed with the
help of perturbation methods.

We apply multiple-scales method on the second equation of Eq. (3):
ϕ2 = ϕ2(T0, T1), Tn = εnτ , n = 0, 1, . . . , d/dτ = D0 + εD1. Then, we nullify
the derivatives, and integrate the resulting equation with respect to T0, to yield the
following expression:

Z

(
λ2 +

(
1− 3k

4
Z

)2
)
= 4|C (T1)|2 (9)

Here �(T1) = N (T1) eiθ(T1), Z (T1) = N(T1)
2, and C (T1) is an arbitrary

function which is constant with respect to T0. This cubic polynomial can have
either one or three real solutions. The threshold value of damping between those
two regions is λ = 1/

√
3, which corresponds to a SN bifurcation. Equation (9)

represents the slow invariant manifold (SIM) of the system, which is presented in
Fig. 3. As shown in [14], fast transition between both stable branches of the SIM
corresponds to relaxation oscillations.
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Fig. 3 Projection of the SIM on (N, 4|C(T1)|2) plane, for: k = 4/3, λ = 0.2
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Fig. 4 Unique periodic solution, left: time history, right: the slow-flow of the system (red asterisk)
on the SIM (blue line), for: k = 4/3, σ = 5, ε = 0.05, β = 5 and zero initial conditions

4 Numerical Results

In the current section, the analytical prediction obtained in previous sections is
verified numerically. All numerical simulations are obtained by integrating the
equations of motion of system (1).

In Fig. 4, one can see that since the SIM is monotonous, existence of multiple
solution is impossible. One can see that a stationary periodic signal corresponds to
a single point on the SIM.

In Fig. 5, the SIM is not monotonous, and a multiple-solutions area emerges.
Hence, two stable solutions take place for different sets of initial condition.
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Fig. 6 Weakly quasi-periodic solution, left: time history, right: the slow-flow of the system (red
asterisks linked by black solid lines) on the SIM (blue line), for: k = 4/3, σ = 5, ε = 0.05, β = 5,
A = 1.4 and initial conditions: u0 = 0, v0 = 0, u̇0 = 0.5, v̇0 = 0

In Fig. 6, one can see that modulations in the time history correspond to an
alternating motion of the slow-flow dynamics on one of the stable branches of the
SIM.

In Fig. 7, one can see that the strong modulations correspond to transitions, or
“jumps,” of the slow-flow from one branch to the other. Rapid increase corresponds
to jump from the left branch to the right branch, while rapid decrease corresponds
to jump from the right branch to the left branch.
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Fig. 7 SMR regime, left: time history, right: the slow-flow of the system (red asterisks linked by
black solid lines) on the SIM (blue line), for: k = 4/3, σ = 5, ε = 0.05, β = 5, A = 0.3 and initial
conditions: u0 = 0.29, v0 = −0.5, u̇0 = 0.9, v̇0 = −0.15

5 Concluding Remarks

Simple and novel phenomenological model was suggested, aiming to capture and
describe the most dominant two-dimensional sloshing regimes taking place in
forced partially filled liquid storage tank, i.e., single and multiple periodic responses,
weakly quasi-periodic responses, and SMR. All response types were explained
with analytical tools, and theoretical results were verified numerically. However,
the current model is limited to two-dimensional regimes with moderate amplitude,
involving mainly a single sloshing mode. Further exploration will deal with three-
dimensional models with multiple sloshing modes.
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Catenary-Based Nonlinear Multimodal
Theory of Cable Free Vibrations

Achref Mansour, Giuseppe Rega, and Othman Ben Mekki

Abstract A new multimodal theory is developed analytically using the method of
multiple scales to investigate the dynamic behavior of arbitrarily sagged and inclined
cables oscillating around a catenary static profile. Fully non-condensed kinematics
are adopted to solve the eigenvalue problem and the enhanced modal properties
obtained at this stage are used as first inputs to the resolution of the nonlinear time
dependent problem leading to original results where the contribution of longitudinal
vibration is better captured and the modal coupling is accurately described in both
space and frequency domains.

Keywords Cable · Nonlinear vibrations · Multimodal · Catenary · Method of
multiple scales · Condensation

1 Introduction

Modeling and solution assumptions in the analysis of nonlinear cable vibrations
have been widely discussed in about the last decade. This is not surprising in the
case of such structures exhibiting rich and complex dynamic phenomena. It may
be cited the work of Arena [1] concerning the importance of flexural stiffness of
the modal properties of flexural torsional-extensible cables, as well as the studies of
Srinil et al. on the use of non-condensed models for the analysis of free oscillations
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of both arbitrarily sagged cables via numerical (finite difference) techniques [11, 12]
and of shallow cables via analytical (multiple scale) techniques [13]. On the other
hand, analytical frameworks were developed by Lacarbonara et al. to investigate the
role as well as the activation conditions of internal resonances and coupled nonlinear
normal modes [3, 4]. However, a detailed review of the literature found in [10] has
highlighted how the majority of existing models are based on several assumptions
related to cable geometrical and mechanical aspects, reducing consequently their
accuracy as well as their range of validity. In fact, most researches account for
the so-called “kinematic condensation” where longitudinal inertia and dynamic
deformation are neglected, leading to the reduction of the in-plane dynamics to
its transverse component. This is mainly due to the definition of the dynamic
equilibrium configuration with respect to the parabolic approximation of the real
cable static profile given by a catenary geometry: such assumption is justified
only in the case of small-sag cables, and may be considered as one of the most
critical factors leading to neglect important nonlinear features in cable dynamics.
Few efforts have been devoted to the oscillations of non-shallow cables where the
catenary geometry has been adopted to define the static reference configuration
[5, 6]. Recently, the linear modal properties of arbitrarily sagged and inclined cables
have been investigated in the light of a catenary-based model developed analytically
by Mansour et al. [8]. Taking into account the induced geometric nonlinearity effect,
a new modal spectrum characterized by ratios of internal resonances higher than the
ones classically reported in the literature (1:1, 2:1 and 3:1) has been highlighted,
where non-normal modes are continuously detected. The present work is pursued
in sequence with these recently obtained results. As a matter of fact, a catenary-
based theory of nonlinear free vibrations is developed analytically using the method
of multiple scales (MMS) [9] in order to solve the dynamic problem in its original
nonlinear form. The proposed solution refers to a fully non-condensed model and
takes into consideration the geometric nonlinearities induced by the multimodal
quadratic and cubic couplings between the dynamic displacement components.
Within the limited available space, a comparison with the results obtained by
existing models is also accomplished, in order to highlight some main differences
caused by the approximation of the initial catenary profile, and by the condensed or
classical non-condensed kinematics considered in the literature.

2 Equations of Motion and Discretization

In the present analysis, the attention is held on the free vibrations of a homoge-
neous linearly elastic cable hanged between two fixed supports at different levels,
characterized by a non-deformable cross section denoted by Ac and Young elastic
modulus Ec. Accounting for the sole axial extensibility, the cable dynamic motion
is governed by the nonlinear differential system:
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∂

∂s

[(
T + T D

) ∂ui

∂s
+ dXi

ds
T D

]
= m

∂2ui

∂t2
(1)

where i ∈ {1, 2, 3} refers to the first (longitudinal), second (transversal), and
third (out-of-plane) dynamic displacement component, respectively, with: T the
equivalent along-the-chord thrust, m the cable mass per unit length, Xi the ith
component of the static displacement (X3 = 0), ui the ith component of the
dynamic displacement, and T D the additional dynamic tension defined as follows:

T D = EcAc

[
∂ui

∂s

dXi

ds
+ 1

2

(
∂ui

∂s

)2
]

(2)

where summation is made over index i. It should be noted that the following
analytical developments aiming to solve system (1) are given in compact form due to
the conciseness of the paper. However, details related to mathematical aspects may
be found in [7]. In order to highlight geometric nonlinearities due to the coupling
between different dynamic displacements, the previous system may be reformulated
as:

üi + Liui + Liui∗ = G2,i (ui, ui)+G2,i (ui, ui∗)+G2,i (ui∗ , ui∗)

+G3,i (ui, ui, ui)+G3,i (ui, ui∗ , ui∗) (3)

where summation is performed over index i∗ �= i varying between 1 and 3, and

– Li is a linear, homogeneous, self-adjoint, positive-definite integral-differential
operator, with Liui∗ = 0 for i = 3 or i∗ = 3;

– G2,i , G3,i are respectively quadratic and cubic geometric operators defined
explicitly in [7], with G2,i (ui, u3) = 0 for i ∈ {1, 2, 3} and G2,i (ui∗ , ui∗) = 0
for i = 3.

According to the MMS formulation, the dynamic displacement components
ui (s, t) may be written as:

ui (s, t, ε) =
3∑

k=1

εkuik (s, T0, T1, T2) (4)

where ε is a dimensionless small bookkeeping parameter and Tk are the time
scales defined as Tk = εkt; k ∈ N. Thus, the first derivative with respect to time
is expressed as ∂/∂t = D0 + εD1 + ε2D2 + · · · where Dn = ∂/∂Tn. By adopting
Galerkin method, the additional dynamic displacements may be written in terms of
modal shapes and time coordinates, denoted respectively by ϕk,i (s) and qk,i (t), as
below:
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ui (s, t) =
N∑

k=1

ϕk,i (s) qk,i (t) (5)

leading to the following expression of the time contribution related to the kth mode
in the ith direction:

qk,i (t, ε) =
3∑

j=1

εj qk,ij (T0, T1, T2) (6)

The construction of an analytical solution to the nonlinear dynamic system
appears then to be deeply dependent on the accuracy of both modal shapes and
vibration frequencies obtained for the linear problem and determined according to
the adopted kinematics. For the sake of generality and different from the existing
models which are based on either condensed or solely spatially non-condensed
dynamics, as mentioned in the introduction, the modal functions adopted in the
following sections are derived as solutions of the fully non-condensed problem
formulated for small dynamic deformations and large static displacements in [7].
The obtained frequencies and modal functions are used as enhanced inputs to the
nonlinear dynamic problem defined by system (3): such strategy is characterized
by higher efficiency to detect the condensation effect in both space and frequency
domains since the longitudinal dynamic motion is treated as completely independent
of the transversal one, which is more appropriate especially in the case of large-
sagged cables.

3 Multiple Scale Solution

The attention is initially held on the determination of analytical expressions related
to the first order expansion of the 3D components of dynamic displacement. For
the sake of brevity, a compact form of governing equations as well as obtained
solutions is adopted. Accordingly, replacing the modal contributions given by (6) in
the differential system (3) leads to:

q̈k,i1ϕk,i + Li

(
ϕk,i

)
qk,i1 + Li

(
ϕk,i∗

)
qk,i∗1 = 0 (7)

with Li

(
ϕk,i∗

) = 0 for i∗ = 3 or for i = 3. In order to solve the previous system,
the integral-differential operators have to be expressed in function of the natural
frequencies and associated mode shapes. In fact, the relevant eigenvalue problem
reads:

ω2
k,iϕk,i = Li

(
ϕk,i

)+ Li

(
ϕk,i∗

)⇒ Li

(
ϕk,i

) = ω2
k,iϕk,i − Li

(
ϕk,i∗

)
(8)
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where ωk,i denotes the linear circular frequency of the kth mode. The modal contri-
butions of the dynamic displacement components are then obtained as solutions of
the following differential problem, for i∗ ∈ {1, 2} with i∗ �= i:

q̈k,i1 + qk,i1

[
ω2
k,i − rkj,i1

]
+ rkj,i1qk,i∗1 = 0; rkj,i1 = Ikj,ii∗ · I−1

kj,ii

Ikj,ii∗ =
∫ Lc

0
Li

(
ϕk,i∗ (s)

)
ϕj,i (s) ds; Ikj,ii =

∫ Lc

0
ϕk,i (s) ϕj,i (s) ds

(9)

where rkj,i1 represent the ratio between coefficients Ikj,ii∗ and Ikj,ii related,
respectively, to the spatial coupling between modes in different and same directions.
Such quantities may be then viewed as dimensionless parametrization of the intra(
Ikj,ii

)
and extra

(
Ikj,ii∗

)
modal spatial coupling. It is thus worth noting that

new in-plane spatial coupling terms ensue from the non-orthogonal modal shapes
also occurring in the relevant eigenvalue problem, in addition to the normal ones,
because of the catenary-induced effect on in-plane linear vibrations. In contrast,
since the out-of-plane linear vibrations are not affected by the catenary-induced
nonlinearities, then only normal modes exist and the term rkj,31 does not occur in the
out-of-plane equation (9). Furthermore, the time coordinate related to the projection
of the kth mode on the j th component of the enhanced basis used in the present
development is assumed to be expressed as follows:

qk,i1 (t) = exp
(
iΩkj,i t

)
(10)

where Ωkj,i are the kth nonlinear circular frequencies.
Thus, the circular frequencies in different in-plane directions are found to be

governed by the following relationship:

2∏
i=1

[
Ω2

kj,i +
(
rkj,i1 − ω2

k,i

)]
=

2∏
i=1

rkj,i1 (11)

and the out-of-plane frequencies are expressed as:

Ωkj,3 = ωk,3 (12)

Note that, while circular frequencies Ωkj,3 are directly derived from the out-of
plane modal properties, the in-plane oscillations are found to be highly dependent
on the degree of condensation considered in the formulation of the eigenvalue
problem. Furthermore, it appears that the linear circular frequencies constitute a
particular solution of Eq. (11) for initially small sagged cables: use is made in such
case of orthogonal modal functions, due to the condensation assumption, entailing
the cancellation of intra/extra modal coupling coefficients and consequently the
reduction of nonlinear frequencies to the linear ones. In opposition to the existing
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models where time coordinates depend on the linear frequencies ω, the harmonics
obtained according to the present development are expressed in terms of nonlinear
frequencies Ω characterized by their capacity to capture the effect of spatial
coupling between the different modes. In order to take into consideration such
dependency on the totality of modal spectrum components, spatial projection of the
kth mode is performed with respect to the time contribution of the rest of modes,
leading to:

qk,i(t) = exp
(
iΩk,i t

) ; Ωk,i = 1

N0

N0∑
j=1

Ωkj,i ∀i ∈ {1, 2, 3} (13)

where N0 denotes the number of non-orthogonal j th modes.
Accordingly, to the first order of expansion, the dynamic displacement is given

as below:

ui1 (s, t) =
N∑

k=1

δkMAk,i (T1, T2) exp
(
iΩk,i t

)
ϕk,i(s)+ cc (14)

where Ak,i denotes the complex-valued amplitude of the kth mode related to the
ith component of the dynamic displacement, M are the set of internally resonant
modes, and cc is the complex conjugate of the preceding terms.

Replacing ui1 (s, t) by its expression (14) in the higher order expansions of
system (3) and adopting the same previous strategy of resolution while paying
attention to secular terms present in the MMS-based formulation, a compact form
related to both second and third order expansions (m = 2, 3) of the dynamic
displacements may be written as follows:

uim (s, t) =
3∑

j=1

N∑
k=1

Ck,i (Λm−1, Γm−1, A) ϕk,j (s) exp

⎡
⎣

3∑
j=1

N∑
k=1

iΩk,j t

⎤
⎦ (15)

where Ck,i are correction functions depending on complex amplitudes A and:

– Λ1 (resp. Λ2) denoting coefficients specific to quadratic nonlinearity due to
spatial coupling between modes obtained at the first (resp. second) order of
perturbation.

– Γ1 = 0 and Γ2 denoting coefficients specific to cubic nonlinearity due to spatial
coupling between modes obtained at the second order of perturbation.

Letting the complex-valued amplitudes Ak,i = ak,i/2 exp
(
iψk,i

)
, and using

the method of reconstitution according to which the dynamic displacement

ui =
3∑

j=1

εjuij with ε = 1, the following expression of the 3D components of

dynamic displacement is obtained:
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ui (s, t) =
3∑

j=1

N∑
k=1

Ck,i (Λ, Γ, a) ϕk,j (s) cos

⎡
⎣

3∑
j=1

N∑
k=1

Ωk,j t + ψk,j

⎤
⎦ (16)

4 Numerical Results

Owing to lack of space, it is not possible to dwell here on the effects of the general
modeling framework considered in the present theory (catenary formulation in
the strained arclength coordinates, fully non-condensed model) on the extent and
features of nonlinear modal coupling in cable oscillations.

So, the numerical analysis is restricted to the comparison of some results
provided by the previously formulated theory with those obtained by Srinil et al.
in [11, 12], concerning the estimation of the cable final tension defined by
Tf = T + T D . The considered cable is characterized according to [11, 12] by a
horizontal cable length l = 850 m, a non-deformable cross section Ac = 0.1159 m2,
a cable density γc = 83.379 kN/m3, and a Young modulus of elasticity Ec =
1.794 × 107 kN/m2. By altering both cable inclination and static tension, different
configurations may be defined as reported in Table 1. It is worth noting that the non-
condensed kinematics adopted in the formulation of the models in [11, 12] is limited
to the sole spatial domain, by assuming that the longitudinal component oscillates
with the same frequency as the transversal one. The extreme values of cable total
tension Tf computed according to the previously mentioned models are presented
in Table 2.

In all considered cases, the model developed by Srinil et al. is found to
underestimate both extrema of cable final tension when compared to the fully non-
condensed model of the previously developed catenary-based theory. This does not

Table 1 Geometrical and mechanical characteristics corresponding to three different cable
configurations (α: angle between cable chord and its horizontal projection; λ: Irvine’s parameter
[2], T : cable static tension)

Cable 1 Cable 2 Cable 3

α (rad) 0 0 π/4

λ 0.72π 2π 2π

T (kN) 30,000 15,642 28,790

Table 2 Maximum
(
Tfmax/T

)
and minimum

(
Tfmin/T

)
of tension dimensionless ratio

Model Cable 1 Cable 2 Cable 3

Tfmax/T Srinil et al. 1.1 1.4 1.35

Present 1.32 1.6 1.55

Tfmin/T Srinil et al. 0.92 0.6 0.7

Present 0.935 0.935 1
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appear surprising: in fact, the condensation assumption entails an underestimation of
the cable tension since it reduces the spatial coupling between modal components,
and does not provide an accurate framework to detect the real cable dynamic
behavior, especially in the case of weakly tensioned cables. When moving to
non-condensed models of different generality, such trend is seen to persist, with
a difference between the cable tension provided by the space/frequency domain
condensation of the present theory and the corresponding one of the solely spatially
non-condensed model of about 20–25%. It should be noted that the focus is held
on the extreme values of cable tension because of their great importance from
the engineering design viewpoint, with the maximum tension governing the cable
material resistance and the minimum one affecting the needed non-compression
condition.

5 Conclusion

In the framework of a catenary-based formulation, a nonlinear multimodal theory
of cable nonlinear free vibrations has been developed via the multiple scale
method. Features of modal interaction and cable total tension of the present fully
non-condensed model, formulated in the strained arclength coordinate, have been
numerically investigated against the results exhibited by a spatially non-condensed
finite difference model. With respect to non-condensed models, frequency conden-
sation entails an underestimation of the cable maximum tension which is as larger
as the non-condensed model is formulated in the arclength coordinate and accounts
for both spatial and frequency modal independence of longitudinal and transversal
displacements. The new multimodal asymptotic theory may be considered as a
powerful tool to accurately describe the features of nonlinear modal coupling and
to determine the cable dynamic responses in terms of additional displacements and
tension. In further papers, work will focus also on the use of the present theory to
determine the activation conditions of internal resonances of M:1 order, different
from those discussed in classical literature, along with the associated stability
regions.
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Flexural and Sway Interaction in the
Nonlinear Vibrations
of a Phenomenological Model
of a Laterally Braced Column

Diego Orlando , Juliana M. P. Raimundo, and Paulo B. Gonçalves

Abstract In this work, an archetypal 2D of structural model exhibiting flexural-
sway interaction is considered. Although simple, the model exhibits the main
nonlinear features found in more complex structures. Depending on the relative
values of the flexural stiffness and lateral restraint, interactive buckling may occur.
In such case several coupled post-buckling paths appear, leading to multiplicity of
solutions for load levels lower than the static critical load and a complex energy
landscape. This leads to an intricate nonlinear dynamic behavior of the structure
under static and dynamic loads, a topic not investigated in previous literature on the
subject. Here, a detailed parametric analysis of the structural system is conducted
to study how the lateral stiffness influences the dynamic nonlinear behavior and
stability of the structure. The bifurcation analysis shows that the structure may
display several coexisting stable and unstable responses, leading to intertwining
basins of attraction, whose topology controls the dynamic integrity of the structure
in a dynamic environment.

Keywords Interactive buckling · Sway buckling · Nonlinear dynamics ·
Parametric instability

1 Introduction

As a consequence of recent technological advances, both in the area of new
materials and in numerical methods, structural elements with increasing slenderness
are observed, leading to lighter and more economic structures. Due to their
increasing slenderness, structural elements such as columns and portal frames may
lose stability before reaching the load capacity of the cross section. Also large
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amplitude vibrations may occur. Depending on the nonlinearities, they may also
display sensitivity to geometric and material imperfections, further reducing the
load carrying capacity of the structure. Therefore, when analyzing slender structural
systems, it is advisable to conduct a detailed nonlinear analysis of its post-critical
behavior and obtain the nonlinear equilibrium paths of the imperfect structures. The
stability analysis of reticulated structures has been investigated by [1, 2], among
others.

The instability of frames is affected by the adjacent members and involves the
determination of the critical load and the critical mode. In addition, the post-critical
behavior and sensitivity to initial imperfections must be investigated. Structural
systems liable to unstable symmetric or asymmetric bifurcation may be rather
sensitive to initial geometric imperfections [3–5], loading eccentricities and/or
dynamic perturbations and may buckle at load levels much lower than the theoretical
critical load.

Another important aspect when studying the stability of framed structures is the
phenomenon of modal coupling or modal interaction that may occur when different
buckling modes have equal or nearly equal critical loads, generating several post-
buckling coupled and uncoupled solutions, generally unstable. Several examples
can be found in [3–8], among others. The influence of modal coupling on the
nonlinear dynamics of structural systems liable to buckling was highlighted by [9],
who studied the static and dynamic instability of the Augusti model [10] and a guyed
tower model proposed by [11]. A detailed analysis of these systems can be found in
[12–14].

Different conceptual models explaining the phenomenon of modal coupling can
be found in [6]. Among the models presented by [6], the discrete column model
with two degrees proposed by Raithel and Clemente [15] illustrates the interaction
between flexural and lateral stiffness. Depending on the relation between the flexural
and lateral stiffness, modal coupling may occur, leading to several unstable coupled
and uncoupled post-buckling solutions. The present work studies the interaction
between flexural and lateral buckling of slender framed structures, using the
phenomenological model proposed by [15]. With the help of the analytical and
numerical tools of the static stability theory and nonlinear dynamics, a parametric
nonlinear analysis of the model under static axial load and dynamic excitations
(axial and base excitations) is conducted. The results show the complexity of the
model response and provide a new contribution to the understanding of the static and
dynamic instability of structural systems subject to modal coupling, an important
topic in the field of nonlinear dynamics [13].

2 Formulation, Static Analysis, and Natural Frequencies

Figure 1a illustrates the discrete model proposed by Raithel and Clemente [15]. It
is composed of two rigid bars of length l/2, with a mass per-unit length m, and
connected by a rotational spring with stiffness kr. It is pinned at the base and
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Fig. 1 (a) Undeformed column; (b) deformed column; (c) nonlinear equilibrium paths for
α = 0.10

supported at the top by a lateral spring with stiffness kt. P is the static axial load
and P(t) = f sin (Ωt) is a harmonic axial force. The angles θ1 and θ2 (Fig. 1b)
are chosen as the two degrees of freedom. The nondimensional kinetic energy, T ,
Rayleigh dissipation function, F r, and potential energy, 0, are given in terms of the
generalized coordinates θ1 and θ2 as [16, 17]:

T = T

ktl2
= 1

48

(
3θ̇1θ̇2 cos θ1 cos θ2 + 3θ̇1θ̇2 sin θ1 sin θ2 +

(
θ̇2
)2 + 4

(
θ̇1
)2
)
,

(1)

F r = Fr/ktl
2 = ξ1

(
θ̇2 − θ̇1

)2 + ξ2
(
θ̇1 cos θ1 + θ̇2 cos θ2

)2
, (2)

0 = U

ktl2
+ V

ktl2
= 1

2
α(θ2 − θ1)

2 + 1

8
(sin θ1 + sin θ2)

2

+ 1

2
(λ+ F sin (βτ)) (2− (cos θ1 + cos θ2)) ,

(3)

Here, τ = ωt, α = kr/ktl2, λ = P/ktl, ω2 = ktl2/Aρl3, 2ωξ1 = C1/Aρl3,
2ωξ2 = C2l2/4Aρl3, F = f /ktl, and β = Ω/ω is the relation between excitation
(Ω) and frequency parameter (ω).

The nonlinear equilibrium equations are

∂
(
0
)
/∂θi = 0; i = 1, 2, (4)
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and the equations of motion of the system are given by

d

dτ

∂
(
T
)

∂θ̇i
− ∂

(
T
)

∂θi
+ ∂

(
0
)

∂θi
+ ∂

(
F r

)

∂θi
= 0; i = 1, 2. (5)

From the linearized equilibrium equations (sin θ i = θ i and cos θ i = 1) and
solving the resulting eigenvalue problem, the two bifurcation loads are obtained:
λcr1 = 1.0 and λcr2 = 4α. For α = 1/4 (αcr), the two critical loads coincide and,
therefore, modal interaction may occur (λcr = 1.0). Figure 1c shows the fundamental
solution (θ1 = θ2 = 0.0) and the post-critical paths for α = 0.10. The fundamental
equilibrium path is stable up to the critical load (λcr). There are two post-critical
paths: a stable ascending path at −45◦ associated with λcr1 = 1.0 (in red) and an
unstable descending path at +45◦ associated with λcr2 = 4α (in blue). Another four
coupled unstable secondary paths emerge along the ascending post-critical path.
Considering the relative spring stiffnesses (α = kr/ktl2) [17]: when kr < ktl2 (α < αcr,
λcr = 4α, Pcr = 4kr/l) the stability of the fundamental solution is controlled by the
flexural stiffness. When kr > ktl2 (α > αcr, λcr = 1.0, Pcr = ktl), the stability of the
fundamental solution is controlled by the lateral stiffness and the system behaves
as a system of one degree of freedom with unstable symmetric bifurcation [3–5]. If
α � αcr (strong lateral bracing system), the secondary bifurcations occur far away
from the fundamental equilibrium position and the system behaves as a one degree
of freedom system with stable symmetric bifurcation [3–5].

Linearizing the equations of motion and solving the resulting eigenvalue prob-
lem, the natural frequencies ωi and the corresponding vibration modes Θ i are
obtained. Figure 2a shows for the unloaded structure (λ = 0.0) the variation of
the two natural frequencies as a function of the stiffness parameter α. The lowest
natural frequency increases from zero and tends asymptotically to a constant value
as α increases, while the second frequency increases in almost a linear manner. The
variation of the two natural frequencies with the load parameter λ for α = 0.10 and
α = 0.25 are shown in Fig. 2b, c, respectively. As λ increases, the fundamental
frequencies decrease and become null at the critical load. The second natural
frequency follows the same pattern, being zero at the second bifurcation load. For
α = 0.25, the two frequencies become zero simultaneously.

3 Nonlinear Dynamics Analysis

Figure 3 shows the bifurcation diagrams of the Poincaré map as a function of
the force parameter F for selected values of the excitation frequency β, and
considering α = 0.10 and λ = 0.0. These bifurcation diagrams highlight the
different bifurcation sequences that lead to parametric instability and escape from
the potential pre-buckling well. Continuous lines represent stable solutions and
dashed lines represent unstable solutions. These bifurcation diagrams were obtained
through the simultaneous use of brute force and continuation methods.
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Fig. 2 Variation of the two natural frequencies. (a) With the stiffness parameter α, λ = 0.0. (b)
With the load parameter λ, α = 0.10. (c) With the load parameter λ, α = 0.25

Fig. 3 Bifurcation diagrams for α = 0.10 and λ = 0.0. (a) β = 1.00, (b) β = 1.25, (c) β = 2.90

The initial solution corresponds to the stable trivial solution. This solution
becomes unstable, for a given value of the excitation frequency β, at a critical
excitation force, Fcr, which corresponds to the parametric instability. For β = 1.00
(Fig. 3a) and β = 1.25 (Fig. 3b), the trivial solution loses stability through a
subcritical pitchfork bifurcation (PSB), where two unstable solutions are born. For
β = 1.00, the unstable solutions becomes stable after a node-saddle bifurcations
(SN-A) (see detail in the inset Fig. 3a). After this a new saddle-node bifurcation
occurs at SN-B. The ensuing unstable paths become stable due to a third saddle-node
bifurcation (SN-C). The resulting stable two mirror solutions undergo a supercritical
flip (period-doubling) bifurcation (FSP) leading to escape from the pre-buckling
well. For β = 1.25, the unstable solutions become stable again through a node-
saddle bifurcation (SN-A) and followed by the supercritical flip bifurcation (FSP).
For β = 2.90 (Fig. 3c), the trivial solution loses stability through a supercritical flip
bifurcation (FSP), where a stable period two solution is born. The stable period two
solution is observed for a broad region of the forcing magnitude F and is followed
by a supercritical pitchfork bifurcation (PSP). Between F = 0.82 and F = 0.95
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Fig. 4 Stability boundaries for α = 0.10. (a) Escape, (b) parametric instability

several bifurcations leading to several coexisting solutions are observed, resulting
in a complex dynamic behavior and high sensitivity to initial conditions.

Figure 4 shows the escape and parametric instability boundaries in force
control space (forcing frequency vs. forcing magnitude), considering α = 0.10
and increasing values of λ. The escape load, Fesc, corresponds to escape from
the pre-buckling potential well in a slowly evolving system (dynamic buckling)
and the parametric instability load, Fcr, corresponds to the load where the trivial
solution becomes unstable. These boundaries are obtained, as exemplified in Fig.
3, by mapping all the bifurcations prior to escape for a large number of forcing
frequencies by increasing slowly the forcing amplitude while holding the frequency
constant. The procedure used to determine the escape load does not guarantee
that the load obtained corresponds to the load where the full erosion of the basin
of attraction occurs. As shown by Soliman and Thompson [18, 19], if at the
first point of catastrophic bifurcation (saddle-node or subcritical) there are other
solutions within the potential well, the escape becomes indeterminate. Therefore,
in the present numerical procedure, depending on the value of load increment and
the disturbance in the initial conditions, one may or may not escape in certain
regions. The escape and parametric instability boundaries present a similar behavior,
decreasing as the compressive static preload parameter λ increases. For the escape
boundary a critical region, where Fesc reaches a local minimum point, is found
between the first natural frequency (ω1) and twice the first natural frequency (2ω1),
see Fig. 5. The parametric instability boundary shows that Fcr reaches a local
minimum at twice the first natural frequency (2ω1), see Fig. 5. The behavior of the
model in these critical regions is due to the interaction between the two vibration
modes, which show a typical softening behavior [16, 17]. Other resonance regions
associated with ω1 and sub-multiples of ω1 (sub-harmonics) are also observed.
Figure 5 compares the escape and parametric instability boundaries for α = 0.10
and two values of λ. For some values of the excitation frequency, β, the parametric
and escape loads coincide. This occurs in regions where the bifurcation of the trivial
solution is subcritical and there are no other stable solutions for F > Fcr (Fig. 3a).
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Fig. 5 Stability boundaries, escape versus parametric instability, for α = 0.10. (a) λ = 0.0, (b)
λ = 0.2

Fig. 6 Basins of attraction for α = 0.10, λ = 0.0, and β = 2.90. (a) F = 0.60, (b) F = 0.827, (c)
F = 0.90

In order to evaluate the safety of a given structure, it is necessary to evaluate
the erosion of the basins of attraction as a function of a control parameter [20].
Figure 6 shows the basins of attraction for α = 0.10, λ = 0.0 and β = 2.90, and
increasing values of F, indicated in Fig. 3c. The grey region corresponds to solutions
that diverge to infinity or converge to attractors outside the bounds of the initial
conditions window. As F increases, the erosion and stratification of the basins of
attraction increase. For F = 0.60, Fig. 6a, the basin of attraction corresponds to the
stable period two solution originating from the supercritical flip bifurcation (FSP),
see Fig. 3c, showing the beginning of the erosion of the compact region of the basin
of attraction. In Fig. 6b, it is observed for F = 0.827, in addition to the period two
solution, there is coexisting stable period three solution which contributes to the
increasing erosion and stratification process of the compact region. For F = 0.90,
Fig. 6c, after the supercritical pitchfork bifurcation (PSP), Fig. 3c, there are two
stable period two solutions that begin to form a diffuse set of points, that is, a
situation that precedes a chaotic region by a cascade of doubling period bifurcations.
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4 Conclusion

In this chapter, the static and dynamic behavior of a 2D phenomenological model of
a structural system liable to flexural and sway buckling is studied through a detailed
parametric analysis. It is shown that, depending on the relative values of the flexural
and lateral stiffness, strong modal coupling may occur, leading to various unstable
post-buckling solutions that control the geometry of the safe pre-buckling potential
well and, consequently, the global behavior of the system under dynamic loads. For a
typical case in this region, the nonlinear vibration of the model under harmonic axial
force is analyzed. The parametric and escape instability boundaries are obtained
and the bifurcations preceding these phenomena are identified. Different types of
bifurcations are observed, leading to coexisting attractors and complex basins of
attraction, which illustrates the deleterious influence of modal coupling on the
dynamic integrity of the structure.
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Influences of Temperature on Dynamic
Behaviors of Suspended Cables Under
Primary and Sub-Harmonic Excitations
Simultaneously

Yaobing Zhao, Henghui Lin, Lincong Chen, and Zixiong Guo

Abstract A better understanding of thermal effects on the nonlinear dynamic
system would bring valuable benefits to engineering. Here, the primary and sub-
harmonic resonances for a typical nonlinear system, a suspended cable in thermal
environments, have been studied. Specifically, by using the perturbation method and
direct numerical integrations, one of the simultaneous resonances has been studied.
Numerical results demonstrate that the hardening, softening, or mixed hardening–
softening spring behaviors are switched owing to temperature variations. The
response amplitudes, velocities, and displacements are susceptible to temperature
changes, but their periodic motions seem to be independent of thermal effects.

Keywords Suspended cable · Thermal environment · Simultaneous resonance ·
Perturbation analysis · Vibration characteristic

1 Introduction

As to many engineering applications, structures are always not only subjected
to complex external dynamical loadings but also exposed to time changing envi-
ronmental conditions. In the last decades, environment conditions on vibration
characteristics of structures have gained increasing interest. One of the most critical
and significant environmental disturbances is the temperature [1]. Many researchers
addressed their efforts in investigating dynamic properties of some basic structural
elements with thermal effects, such as plates and beams [2–6].
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Due to its inherent flexibility, lightweight, and high-tension resistance, the
suspended cable has also aroused general concerns in the last few years [7]. In fact,
the suspended cable is susceptible to the ambient environment. The pre-stressed
situation is changed, and a new thermally stressed configuration is generated in ther-
mal environments [8]. The most common cause is the tension reduction/increment
owing to temperature variations. Specifically, the natural frequencies and mode
shapes derived from the eigenvalue analyzed of the model in different warming and
cool conditions are illustrated in [9–12], while extensions of nonlinear vibration
behaviors with thermal effects are presented in [13–16]. In view of these facts, there
is a growing interest in studying temperature effects on the nonlinear dynamics of
cables.

Actually, both in the engineering applications and the laboratory experiments,
the external excitation always contains many different types of resources. Under
multi-frequency excitations, the nonlinear systems exhibit abundant and complex
nonlinear vibration characteristics by using the analytical, numerical, and experi-
mental techniques [17–24].

The main goal of the work is to investigate how the vibration characteristics of
the nonlinear planar oscillations are influenced by temperature changes. Following
what has been done in [15, 16], some more in-depth analyses on temperature effects
on simultaneous resonance have been given by using the perturbation and numerical
methods.

This paper is structured as follows: in Sect. 2, taking into account temperature
effects, the partial and ordinary differential equations of motion of the suspended
cable are given. Then, the multiple time scales method is applied to obtain the non-
trivial solutions in Sect. 3. By plotting the perturbation and numerical solutions,
vibration behaviors in different temperature conditions are discussed in Sect. 4.
Finally, a set of conclusions round up the paper in Sect. 5.

2 Mathematical Modeling

As shown in Fig. 1, a vibrating suspended cable with span L and initial sag
b is considered, and there are three different configurations to the thermal and
mechanical loads. ΔT = T−T0, where T0 is the initial temperature, and ΔT denotes
the temperature variation before loadings. bΔT denotes the sag in the thermally
stressed configuration. The reference coordinate system (O − xy) is presented in
Fig. 1, and the displacements are denoted by v(x, t)(v̄(x, t)) and u(x, t)(ū(x, t))
along the transverse and longitudinal directions, respectively.

Generally, a suspended cable in thermal environments is affected by temperature
changes in many resources, e.g., tension forces (sag-to-span ratios) and material
properties. By using the direct force method, a cubic equation is obtained [8, 9]
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Fig. 1 A schematic figure of a suspended cable in thermal environments
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(
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(2)

where h is an increment/reduction of the tension force induced by temperature
changes; H is the initial horizontal tension force; α is the thermal expansion
coefficient; m is the mass per unit length; AΔT , EΔT , and λ2

ΔT are the cross-
section area, Young’s modulus, and Irvine parameter considering thermal effects,
respectively. ΔT = T −T0, where T0 is the initial temperature, and ΔT denotes the
temperature variation before loadings.

Hence, the variation of the tension force and sag could be described by the
following non-dimensional parameter [10]

χ2
ΔT = 1+Δh = h+H

H
= HΔT

H
= b

bΔT

, (3)

where bΔT (b) and HΔT (H) are the cable sag and tension force with (without)
thermal effects, respectively.

Neglecting temperature effects, by using a kinematic condensation procedure,
the partial differential equation of the planar motion of the suspended cable could
be obtained [7]. Moreover, an analytical model, including the horizontal suspended
and inclined cables, incorporating the temperature effects, has been built by Lepidi
and Gattulli [10]. Here, some parameters are closely related to temperature changes,
e.g., H , c, E, A, and y (y′, y′′). Hence, the partial differential equation of motion
is expressed as follows:
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where the prime and overdot denote the partial differential with respect to x and t ;
cΔT is the viscous damping coefficient; y(x) is the cable initial profile. Two external
distributed loads are denoted by Km cos(Ωmt + θm), (m = 1, 2), where Km, Ωm

and θm are the excitation amplitudes, frequencies, and phases, respectively.
The following dimensionless parameters and variables are adopted:
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Here, considering the temperature effect, substituting Eqs. (5) into (4) and
neglecting asterisk notations, one obtains [10, 16]
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The in-plane displacement is decomposed by a sum of the generalized coordinate
qn(t) and mode shapes ϕn(x)

v̄(x, t) =
∞∑
n=1

qn(t)ϕn(x). (7)

Substituting Eqs. (7) into (6), multiplying the results with ϕn(x) and integrating
the outcomes from 0 to 1, the following discretized equation is obtained:
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Kmn cos(Ωmt + θm), (8)
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in which coefficients depending on the cable properties with thermal effects are
given in [16]. An eigenanalysis on the linear parts of the Eq. (8) is performed [15].

3 Perturbation Analysis

Considering the single-mode discretization, the analytic solutions of Eq. (8) are
obtained by using the multiple time scales method in the case of simultaneous
resonance (e.g., Ω1 ≈ ω1 and Ω2 ≈ 2ω1). Firstly, different time scales and
derivatives are defined, and the solution is represented from the zeroth order to the
second one. After that, the nonlinear and excitation terms are re-ordered, and three
ordinary differential equations are obtained and solved. Finally, following the same
procedure in [17], the equations governing the steady-state solutions are obtained

ω1a [μ1 + I21 sin(2γ + θ2)]−K11 sin(γ + θ1) = 0,

ω1a
[
σ + α11a

2 − I21 cos(2γ + θ2)
]
+K11 cos(γ + θ1) = 0,

(9)

where ω1, σ , a, and γ are the natural frequency, detuning parameter, response
amplitude, and phase, respectively, and α11, I21 and K11 are defined in [23].

4 Numerical Examples and Discussions

The following geometrical and material properties are used: ρ = 7800 kg/m3, μ1 =
0.005, E = 2.0× 1011 Pa, A = 7.069× 10−2 m2, α = 1.2× 10−5/◦C, L = 200 m,
and f = 0.01. In this simultaneous resonance case, two amplitudes of excitations
are 0.001 and 0.005, respectively, and both excitation phases are neglected (θ1 =
θ2 = 0).

The stable and unstable non-trivial responses are represented by solid and dotted
lines. Numerical analyses considering the direct integration of the original ODEs
are given by using the fourth-order Runge–Kutta method. Specifically, both forward
and backward variations in excitation frequencies which described by circles and
crosses are adopted.

Figure 2 shows the relationships between the excitation frequency and the
response amplitude in three different temperature conditions. As shown in Fig. 2,
one branch resembles these curves for the sub-harmonic resonance, and the other
two branches resemble those for the primary one. Two unstable and three stable
steady-state solutions are exhibited in a specific frequency domain.

As to the initial state (ΔT = 0 ◦C), the resonant frequency-amplitude diagrams
of the nonlinear system bend towards the left typical of a softening nonlinear behav-
ior. As shown in Fig. 2b, some good quantitative and qualitative agreements are
found in wide response amplitudes except the very large ones. Numerical integration
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Fig. 2 Vibration behaviors with thermal effects: (a) −40 ◦C; (b) 0 ◦C; (c) 40 ◦C

solutions demonstrate that the nonlinear system shows a mixed softening-hardening
type behavior in this case. There are two jump-up points and two jump-down ones.
Jumping phenomenon occurring from one stable branch to another stable one would
be observed at the saddle-node bifurcation.

Provided that the temperature increases (ΔT = 40 ◦C), the nonlinear frequency-
amplitude diagrams still bend towards the left side, but the peak value of the
response amplitude decreases, just as shown in Fig. 2c. It is noted that the softening
behavior becomes stronger with an increase in temperature. In this case, perturbation
solutions are found to be in a good agreement with those of direct numerical
integration.

However, in the case of −40 ◦C, the curves now bend towards the right side,
and the nonlinear system displays a definite hardening type nonlinearity. As shown
in Fig. 2a, comparisons between two types of solutions show a good agreement,
but some quantitative differences are observed for the large value of response
amplitudes. The peak value of the response amplitude obtained with the numerical
integration decreases, so the nonlinear system displays a stronger hardening behav-
ior compared with the perturbation solutions. However, the accuracy of the multiple
timescales method could be improved if a higher-order solution is adopted.

Furthermore, more nonlinear dynamics with thermal effects are exhibited by
investigating time domain response curves (Fig. 3a), phase-plane curves (Fig. 3b),
and Poincaré sections (Fig. 3c). For the sake of simplicity, only the case of σ = 0 is
illustrated for an example. Especially, in the case of 0 ◦C, there is a mixed softening-
hardening type behavior. There are two stable steady-state solutions (0, 0.00369)
and (0, 0.01247) in this case, but which one is finally determined depends on the
initial condition.

As shown in Fig. 3, effects of temperature variations produce some apparent
quantitative changes in time history curves and phase diagrams. Additionally, as
a useful and standard tool, Poincaré sections indeed preserve various characteristics
of periodic motions of the nonlinear systems. It is noted that the Poincaré sections
include the data between the displacements and the velocities of the suspended cable
in a compact form, and these two parameters seem to be sensitive to temperature. As
described in Fig. 3b,c, the stable periodic motion is illustrated by just one circle in



Influences of Temperature on Dynamic Behaviors 223

Fig. 3 Vibration behaviors with thermal effects when σ = 0: (a) time domain response curves;
(b) phase-plane diagrams; (c) Poincaré sections

phase-plane curves and by just one clustered point in Poincaré sections. Although
the considering temperature variation does slightly change the type of the phase-
plane curves and Poincaré sections, it does not change the number of the circle and
the clustered point formed by dots. It is noted that the periodic motion is independent
of temperature changes in this case.

5 Conclusions

Vibration characteristics are subjected to various changes in thermal environments.
These hardening, softening, or mixed softening–hardening type behaviors are
switched induced by temperature variations. The velocities and displacements are
susceptible to temperature effects. However, the number of the circle in phase-plane
diagrams and the cluster points in Poincaré sections seem to be independent of
temperature variations.
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Analysis of a Shape Memory Alloy Spring
System Under Harmonic Excitation

Shivan Ramnarace and Jacqueline Bridge

Abstract A shape memory alloy (SMA) spring system is analysed to determine its
response to harmonic forcing. In particular, the superelasticity effect of the system
is investigated. The shape memory alloy is modelled using a piecewise linear force–
displacement curve. The SMA spring is arranged so as to introduce a geometric
nonlinearity. The system of equations are numerically integrated and frequency
response curves are determined. Periodic, quasiperiodic and chaotic motions are
observed for different combinations of parameter values.

Keywords Shape memory alloy · Bifurcation · Superelasticity

1 Introduction

Attenuation of vibrations is essential in most engineering equipment. The reduction
of high-amplitude oscillations is of particular importance in aerospace structures,
civil engineering structures and mechanical machinery [1]. One classical means
of vibration control is by attaching a linear vibration absorber to the system.
However, this method is limited in that it is only effective over a very narrow
frequency bandwidth. The study of nonlinear vibration absorbers has become a field
of growing interest as they have been shown to have potential in overcoming this
shortcoming. One such case in particular is a nonlinear energy sink (NES). Under
certain conditions, an NES can reduce vibrations at multiple resonant (or broadband)
frequencies thus becoming far more effective than linear absorbers. Nonlinearity
may be imposed on such systems through different means. Some possible sources
of nonlinearity include the use of nonlinear springs (such as conical springs), the
use of nonlinear materials [2, 3] or the geometrical arrangement of the springs.
One simple means of obtaining a nonlinear force–displacement relationship for an

S. Ramnarace · J. Bridge (�)
Department of Mechanical and Manufacturing Engineering, The University of the West Indies,
St. Augustine, Trinidad and Tobago
e-mail: Jacqueline.Bridge@sta.uwi.edu

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), Nonlinear Dynamics of Structures,
Systems and Devices, https://doi.org/10.1007/978-3-030-34713-0_23

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34713-0_23&domain=pdf
mailto:Jacqueline.Bridge@sta.uwi.edu
https://doi.org/10.1007/978-3-030-34713-0_23


228 S. Ramnarace and J. Bridge

Fig. 1 Orientation of springs to obtain nonlinear stiffness relationship

NES is through the nonlinear geometric relationship obtained by the use of two
identical linear springs of stiffness, k and length, l attached to a mass, m oriented
perpendicular to the direction of vibration being considered as shown in Fig. 1. As a
precursor to examining the absorbing effects of such a nonlinear system, this paper
explores the responses that arise from arranging springs made out of shape memory
alloy (SMA) as shown in Fig. 1. In particular we explore the effect of superelasticity
of the SMA’s i.e. the response to the loads which cause the SMA spring to transform
between the austenitic and martensitic phases.

2 Mathematical Model

In this paper, the superelasticity relationship is approximated by a piecewise linear
force deflection relationship as depicted in Fig. 2, consistent with the works of
Madill and Wang [4] and Hu and Noh [5]. The governing equation for the system
under harmonic loading is given by:

mẍ + cẋ + 2FSMA sin θ = f0 sin(Ωt) (1)

where FSMA is the restoring force due to the springs and θ is the deviation in angle
between the extended spring and its original orientation. If the initial extension of
the spring is δ0, then the new length of the spring when the mass is displaced by x

from its initial condition is

L(x) =
√
((L0 + δ0)2 + x2

resulting in a spring extension, δ of

δ =
√
((L0 + δ0)2 + x2 − L0

and yielding

sin(θ) = x√
((L0 + δ0)2 + x2
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Fig. 2 Force deflection graph of SMA spring above Af

The force in the SMA spring is dependent on the displacement and velocity of the
SMA spring as shown in Fig. 2. The direction of the arrows indicates whether the
velocity is positive or negative.

The equations for the system are nondimensionalised using the following
relationships:

ω2
n =

k1

m
, ζ = c

2mωn

, κ = k2

k1
, τ = ωnt, ω = Ω

ωn

γ = f0

ftrans

, x̂ = x

δ+2
, δ̂

j
i =

δ
j
i

δ+2

Here ftrans is the force at which the transformation from austenite to martensite
begins. The resulting equation is

x̂′′ + 2ζ x̂′ + 2F(δ̂; δ̂0) sin θ = γ sin(ωτ) (2)
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Table 1 Relationships
between the system
parameters and the intercept
and slope in different
segments of the
force–displacement curve

Segment Fi ki

1 0 1

2 (1− κ)δ+1 κ

3 (1−κ)(δ+1 −δ+2 ) 1

4 (1− κ)δ−1 κ

5 0 1

6 −(1− κ)δ+1 κ

7 −(1−κ)(δ+1 −δ+2 ) 1

8 −(1− κ)δ−1 κ

where F(δ̂; δ̂0) represents the force–displacement curve and can be represented by

F(δ̂; δ̂0) = Fi + ki δ̂

where the values for Fi, ki within each segment are assigned as per Table 1,
and the ′ represents differentiation with respect to dimensionless time, τ . For
convenience, the ˆ has been dropped in the description that follows.

3 Numerical Simulation Method and Results

MATLAB 2018a was used to simulate the system; first the differential equation
was rewritten in differential-algebraic form to facilitate the abrupt changes in the
slope of the force vs deformation curve. The equation was then solved using an
implicit variable step, variable order solver, ode15s, along with a set of event
locators. The events correspond to (a) the beginning of the transition from austenite
to martensite while the deformation is increasing, (b) the beginning of the transition
from martensite to austenite while the deformation is decreasing, (c) the completion
of these transformations and (d) the state at which the velocity is zero i.e. the
deformation is at a local extremum.

The maximum displacement was plotted as a function of forcing frequency with
the initial extension of the spring, the initial displacement and the initial velocity
of the mass being held constant at δ0 = 0.1 and (x0, ẋ0) = (1e−6, 0), respectively.
The amplitude of the force was also constant at half the force required to initiate the
transformation from austenite to martensite. The system was undamped, i.e. ζ = 0
in Eq. (2) while the stiffness ratio κ = 0.06. The system was numerically integrated
for 250 periods of the forcing. In determining the maximum displacement, the
response during the first 150 periods was ignored to remove the transient effects.
The maximum displacement in the latter 100 periods was then recorded.

Figure 3 shows the corresponding frequency response of the system. A variety
of steady state solutions exist. These include regular symmetric period-1 motions
as seen in Fig. 4a for ω = 0.17, asymmetric regular period-1 limit cycles as per
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Fig. 3 Frequency response
curve for δ0 = 0.1,
(x0, ẋ0) = (1e−6, 0)

Fig. 4 Phase plots of (a) symmetric period-1 limit cycle at ω = 0.17. (b) Asymmetric period-1
limit cycle at ω = 0.2

Fig. 4b for ω = 0.2, symmetric regular period-2 limit cycles as shown in Fig. 5a, b
with ω = 0.869 as well as quasiperiodic responses (see Fig. 6 corresponding to
ω = 0.596) and chaotic motion at ω = 0.869 highlighted in Fig. 7.

The step discontinuities in the maximum displacement response (as illustrated at
ω ≈ 0.143) and the jagged nature of the curve in some regions (such as 0.57 < ω <

0.97) suggest that there are coexisting steady state solutions for specific parameters
of the system. To test this hypothesis, the system of equations was integrated for the
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Fig. 5 (a) Phase plots showing a symmetric period-2 limit cycle at ω = 0.896 and (b) Poincaré
map for limit cycle at ω = 0.896

Fig. 6 (a) Phase plots showing a quasiperiodic attractor at ω = 0.596 (b) and its Poincaré map

same initial extension of the springs and the same forcing frequency, but the initial
conditions were varied using (x0, ẋ0) = (p, 0) for 0 < p ≤ 0.5.

Figure 8 shows the frequency response curve for low frequencies. For ω = 0.1,
two stable period-1 orbits coexist. The limit cycle with the smaller amplitude,
σ1, is symmetric while the orbit with the larger amplitude, denoted by σ2, is
asymmetric. The form of σ1 remains unchanged while the format of σ2 varies; it
is hypothesised that this is the result of a sequence of period-adding bifurcations
following P1→P5 → P3 → P7 → P9 → P5 → P11 at ω ≈ 0.1034, 0.1042,
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Fig. 7 (a) Phase plots showing a chaotic attractor at ω = 0.869 (b) and its Fourier transform

Fig. 8 Bifurcation diagram
for δ0 = 0, γ = 0.5 for
0.1 < ω < 0.3

0.1088, 0.1115, 0.1122, 0.1139, respectively. Here Pk indicates that the period of
the response is k times the period of the forcing. This type of bifurcation sequence
occurs because of the piecewise nature of the dynamical system and is similar to the
period-adding phenomenon described in [6]. Other phenomena of interest include
coexistence of two period-1 symmetric orbits and one period-2 asymmetric orbit at
ω = 0.1925, with one of the period-1 orbits transitioning to an asymmetric limit
cycle by ω = 0.1955; the loss of stability of limit cycles at ω ≈ 0.2162 and
the change from an asymmetric period-1 cycle to a symmetric period-1 cycle at
ω ≈ 0.2333.

In the region 0.234 < ω < 0.54, only one stable solution exists. Over the interval
1 < ω < 1.4, the frequency response function reveals that there is coexistence of
quasiperiodic and chaotic responses (Fig. 9a). This is confirmed by the asymptotic
growth rate K0−1 from the 0–1 test [7], shown in Fig. 9b.
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Fig. 9 (a) Bifurcation
diagram for δ0 = 0, γ = 0.5
for 0.1 < ω < 0.3 (a)
bifurcation diagram for
δ0 = 0, γ = 0.5 for
0.95 < ω < 1.45 (b) 0–1 test
for chaos results

4 Conclusions

In this paper, a system of shape memory alloy springs geometrically arranged to
ensure nonlinearity was examined. Various steady state responses were observed
including periodic, quasiperiodic and chaotic behaviour. Future work will examine
the bifurcation properties of the system as well as experimentally verify the features
observed.
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Vibration of Pre-Loaded Shallow
Circular Arches

Uğurcan Eroğlu and Giuseppe Ruta

Abstract We study dynamics of pre-stressed pinned shallow slender circular arches
by one-dimensional field equations, simplified and solved by perturbation. The
static response to a uniform load and small imperfections is found: the transverse
displacement depends in closed form on the load. The first two frequencies of small
vibration about the deformed shape, plus possible bifurcations in terms of the initial
geometry and the pre-load are found.

Keywords Shallow arch · Perturbation · Vibration · Stability

1 Introduction

Circular arches find many applications. For some values of their geometrical
characteristics (e.g., the height-to-span ratio) linear models do not suffice to describe
their static and dynamic behavior at different scales [1, 2]; therefore, accurate
models are introduced, see e.g. [3–5]. More in detail, we may quote: [6] for
studies on boundary conditions; [7] for the effects of shear deformation and of
different loading conditions; [8, 9] for transient behavior and dynamic stability;
[10] for considerations on thermal effects; and [11] for effects of initial geometric
imperfections. A good source on statics of shallow arches is [12], focusing on the
effect of mathematical simplifications in the analysis.

Structural identification and health monitoring based on dynamic response has
led to studies on pre-loaded structures, since this models their actual operating
conditions [13–17]. Furthermore, slender curved structural members offer optimum
design solutions in many aspects [18]; hence, their vibration and stability character-
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istics deserve attention [9, 19]. Thence, we study dynamics of pre-loaded shallow
slender circular arches, for which the finite 1-D governing equations are simplified.
We find the nonlinear static response to a uniform line load; then, by a perturbation
approach we study linear elastic small vibration about the deformed shape. We
present closed-form results for the natural frequencies, nonlinearly depending on
initial deformation, and highlight possible pre- and post-buckling regimes.

2 Statics of Uniformly Loaded Shallow Arches

Let a segment of a circle represent the axis of an arch, seen as a curved beam.
Its reference shape is filled by the transverse cross-sections, copies of a prototype
compact plane figure attached to the axis and everywhere normal to it.

Let x, y be Cartesian coordinates in the plane of the arch, with relevant unit
orthogonal basis e1, e2, and origin at the mid-span of the arch. If f,R are the height
and the radius of the arch, the position vector of the axis is

r0 (x) = xe1 + y (x) e2, (y + R − f )2 = R2 − x2 (1)

The (uniform) curvature is k = 1/R. If the span has length 2l and we consider
shallow arches, i.e., f/l < 0.1, it is easy to prove that

kl ≈ 2
f

l
, ds = |dr0 (x)| = 1√

1− k2x2
dx ≈ dx (2)

By Eq. (2)2 the Cartesian coordinate x very well approximates the curvilinear
abscissa s; all fields on the arch may be thus expressed in terms of s. Let a prime
denote derivation with respect to s ≈ x; unit tangents to the arch axis, l(s), and their
derivative, with magnitude k and directed along the axis normal, are

l(s) = r′0(s), km(s) = l′(s) (3)

A new shape of the arch is described by the fields d(s), the vector of the axis
displacement, and R(s), the orthogonal tensor of the cross-sections rotation. Finite
strain measures pulled back to the reference configuration are [20–22]

u(s) = RT(s) [r0(s)+ d(s)]′ − l(s), U(s) = RT(s)R′(s) (4)

The vector u lists the axis elongation ε and the shearing γ between axis and cross-
sections; the component of the skew-symmetric tensor U is the variation of curvature
χ of the axis. If we skip the dependence of all fields on the place along the arch axis
for simplicity of notation, the finite strain components are
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γ = − sinϕ
(
u′ − kv + 1

)+ cosϕ
(
v′ + ku

)
,

ε = cosϕ
(
u′ − kv + 1

)+ sinϕ
(
v′ + ku

)− 1, χ = ϕ′
(5)

where u, v, ϕ are the displacement components along l,m, respectively, and the
rotation of the cross-section along the normal to the plane of the arch.

The external actions, defined along the axis and at its ends, are: a force vector
field, spending power on the displacement of the arch axis; a couple skew-symmetric
tensor field, spending power on the rotation of the cross-sections. They will be
denoted b,B, f,F, respectively. Actions by contact among parts of the arch consist
of a vector and a skew-symmetric tensor field, spending power on the incremental
strains; they will be denoted t,T, respectively. The dependence on s will be omitted,
as above. All actions are related to those defined in the referential configuration
(similar to Piola stress in Cauchy’s continua) by

b=Ra, B = RART, f = Rg, F = RGRT, t = Rs, T = RSRT (6)

By usual means and the virtual work principle, the referential balance [20–22]

s′ + Us+ a = 0, S′ + US− SU+ u ∧ s+ A = 0 ∀x ∈ (−l, l)

s = g, S = G x = ±l
(7)

holds; ∧ is the external product of vectors, providing skew-symmetric tensors.
If the arch is flexible and extensible (i.e., γ =0), its linear elastic response is

ε = N/(EA), χ = M/(EI) (8)

with E Young’s modulus of the material, A, I the cross-section area and second
moment of area with respect to the bi-normal.

To abstract from particular values of the geometrical and physical quantities of
the problem, let us introduce the non-dimensional quantities

κ = kl, α = f

l
, υ = u

l
, ζ = v

l
, θ = ϕ, ξ = x

l
≈ s

l
,

ν = Nl2

EI
, τ = T l2

EI
, μ = Ml

EI
, λ = l√

I
/
A

, Θm,l = am,l l
3

EI

(9)

Inserting Eq. (9) into Eqs. (5)–(8) and henceforth posing, with abuse of notation,
that a prime stands for a ξ−derivative, we obtain the governing equations

− sin θ
(
υ ′ − κζ + 1

)+ cos θ
(
ζ ′ + κυ

) = 0, ν′ − (κ + μ) τ +Θl = 0,
cos θ

(
υ ′ − κζ + 1

)+ sin θ
(
ζ ′ + κυ

)− 1 = ν
λ2 , τ

′ + (κ + μ) ν +Θm = 0,
μ− θ ′ = 0, μ′ + (1+ ε) τ = 0

(10)
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Let us now consider a shallow arch (α < 0.1) uniformly loaded by a “vertical”
uniformly distributed load. Following numerical and experimental evidence, the
transverse displacement v is of the same order of magnitude of f . Furthermore,
the tangential and normal components of the line load al, am are practically zero
and equal to the assigned load, respectively. Since the arch ends are pinned, the
tangential displacement u ∝ αf , i.e., it is at least an order smaller than f ; since the
arch is slender, the characteristic length of the section is at least an order smaller
than l. Under these reasonable and usual assumptions we estimate that

κ = O (α) , υ = O
(
α2

)
, ζ = O (α) , θ = O (α) , λ−1 = O (α)

(11)

We thus replace the trigonometric functions in strain measures by their series
expansions up to O(α2). Following Mettler’s assumptions [4], the normal force ν is
uniform along x≈s and shall be found by imposing pinned ends; moreover, ε � 1.
Then, if L is a symbolic differential operator, the system (10) becomes

L[ζ ] = ζ IV − ζ ′′ν − 2αν −Θm = 0, ν = λ2

2

∫ 1

−1

(
1

2
ζ 2 − 2αζ

)
dξ (12)

Galërkin’s technique requires to replace the actual solution ζ(ξ) with a sum of
admissible functions that verify only boundary conditions, weighted by unspecified
amplification factors ci , then evaluate the residuals obtained by inserting such
expression into the governing Eq. (12)

Rn(ξ) = L
[

i=n∑
i=1

ciζi(ξ)

]
(13)

The Rn in Eq. (13) are then projected onto the ζi , integrating the product of the
residual and each admissible function over [−1, 1]. These projections form a set of
linear algebraic expressions that are required to vanish.

The boundary conditions for pinned ends and admissible functions are

ζ(−1) = ζ(1) = ζ ′′(−1) = ζ ′′(1) = 0, ζ1 = cos[(πξ)/2], ζ2 = sin (πξ)

(14)

Let the transverse load be the sum of a uniform and a very small skew-symmetric
quantity, so to introduce possible initial imperfections:

Θl ≈ 0, Θm := Θ = Θ̄(1+ ε sin(πξ)) (15)

Performing Galërkin’s technique and using Eqs. (12), (14)5,6, (13), (15), in the
limit ε → 0 we find the closed-form expressions
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Fig. 1 Load–displacement curves for different geometries. (a) stable. (b) limit load. (c) snapping
after the limit load. (d) snapping before the limit load

Θ̄ = π6c3
1λ

2−96π3αc2
1λ

2+4c1
[
512α2λ2+π6(2c2

2λ
2+1)

]−128π3αc2
2λ

2

256π

c2 =
√

64c1αλ2−π3(16+c2
1λ

2)

2π3/2λ
, 16π3+c1(c1π

3−64α)λ2<0

0, 16π3+c1(c1π
3−64α)λ2>0

(16)
Eq. (16)1 provides a load-displacement relation; to have a non-vanishing c2 (i.e., a
non-trivial approximation of the transverse displacement), we investigated various
ranges of the arch parameters product αλ, which equals the ratio of the height of the
arch and the meaningful radius of gyration of the cross-sections. We thus highlighted
different qualitative behavior for the arch, see Fig. 1.

Figure 1a shows that for the indicated range of αλ the load–displacement curve is
monotonic, suggesting stable behavior. As αλ increases, the equilibrium path has a
point with zero slope and a limit load exists, Fig. 1b. Further increment of αλ results
in a snapping after the limit point (Fig. 1c), which is unlikely to be experienced
in real systems, or before the same limit point (Fig. 1d); see also [7]. Labels are
attached to the points highlighted in Fig. 1 after investigating small perturbations of
the equilibrium path, as described below.

3 Small Vibration About Nonlinear Equilibria

A series expansion of Eq. (10) up to the first order in a small evolution parameter ε
provides two sets of equations (see also [16]), of which one is identical to Eq. (12),
thus giving the equilibrium path presented in the previous section. The other
describes small perturbation about these equilibria, known as fundamental paths.
Considerations similar to those leading to Eq. (11), plus assuming the incremental
transverse displacement is now of order α2, provide

γ̄ = ζ̄ ′ − θ̄

ε̄ = ῡ ′ − (
κ + ζ ′′

)
ζ̄

χ̄ = θ̄ ′

ν̄′ − (
κ + ζ ′′

)
τ̄ − χ̄τ + Θ̄l = 0

τ̄ ′ + (
κ + ζ ′′

)
ν̄ + χ̄ν + Θ̄m = 0

μ̄′ + τ̄ + ε̄τ = 0
(17)
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a bar denoting first increments with respect to ε. The normal force may still be
considered constant, since in the deformed configuration the arch is still shallow,
and shearing strain is still negligible. If ρ is the material density, let the only non-
vanishing distributed load be transverse inertia due to a harmonic motion,

ζ̄ = ζ̂ cos (ωt)⇒ Θ̄m = −Ω2ζ̄ , Ω2 = (ω2ρAl4)/(EI) (18)

with ω,Ω the angular frequency and its non-dimensional counterpart, and ζ̂ the
amplitude of the transverse displacement. By Eqs. (18), (17) becomes

ζ̂ IV −ζ̂ ′′ν−(
2α+ζ ′′

)
ν̂+ ν̂

λ2
ζ IV −Ω2ζ̂ =0, ν̂= λ2

2

∫ 1

−1

[
− (

2α + ζ ′′
)
ζ̂
]
dξ

(19)

Boundary conditions are as in Eq. (14)1−4, thus for Galërkin’s technique we use
the same comparison functions. We obtain a homogeneous linear algebraic system
that must be singular to have non-trivial approximated ζ(ξ), giving

Ω4 + β1Ω
2 + β2 = 0,

β1 =
{

32π3αc1(28λ2 + π2)− c2
1(14π6λ2 + π8)

−8
[
512α2λ2 + c2

2(13π6λ2 + 8π8)+ 17π6
]}/(

128π2
)
,

β2 =
{

4π3c2
1

[
7168α2λ4 + 512π2α2λ2 + c2

2(12π6λ4 + 5π8λ2) + 26π6λ2 + 4π8
]

−128αc1

[
4(512α2λ4+13π6λ2+π8)+3c2

2(8π
6λ4+3π8λ2)

]
+ 32π3

×
[
4(512α2λ2+π6)+c2

2(512α2λ4+7π6λ2+2π8)+c4
2(3π

6λ4+2π8λ2)
]

− 96π6αc3
1λ

2
(

8λ2 + π2
)
+ π9c4

1λ
2
(

6λ2 + π2
)}/

(2048π) (20)

The solutions of Eq. (20)1 are the first two natural angular frequencies

(
Ω1,2

)2 =
−β1 ∓

√
β2

1 − 4β2

2
(21)

Since Eqs. (20)2,3, (21) are expressed in closed form, it is then possible to
provide, as in Fig. 2, plots of the values of Ω1,2 at each point of the equilibrium
paths. Figure 2 presents the result for a very shallow arch, for which α = 0.05,
and is organized as follows: the first and the second column present the plots of the
initial load parameter, i.e., a measure of the pre-stress and of the initial response,
versus the square of the first and the second natural angular frequency, respectively;
the third column shows the corresponding load–displacement curve, thus inserting
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Fig. 2 Natural frequencies and equilibria; solid (dashed): fundamental (bifurcated). (a) λ = 20
(blue), 30 (red). (b) λ = 50 (blue), 70 (red). (c) λ = 80 (blue), 90 (red). (d) λ = 100 (blue), 120
(red)

the description made for Fig. 1 into a general frame; each row presents the results
for various values of λ so to sweep the ranges indicated in Eq. (16). In particular,
Fig. 2a presents the results for λ = 20, 30 (blue and red lines, respectively); Fig. 2b
does the same for λ = 50, 70; Fig. 2c is about λ = 80, 90; Fig. 2d presents
the results for λ = 100, 120. Solid and dashed lines correspond to stable and
unstable behavior, respectively, while thin dashed lines represent the bifurcated path.
Roughly speaking, once the arch shallowness ratio α is fixed, increasing the value
of λ implies a progressive increase of the contribution of the axial stiffness with
respect to the bending one.

When the load is zero, i.e., when the circular reference shape remains unaltered,
the values of Ω1,2 are the natural angular frequencies of the arch. As physically
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motivated, these values increase with λ, since the axial contribution to the arch
stiffness increases. As the load grows and the initial geometry is altered, we see
from the first row of Fig. 2 that both frequencies exhibit a first branch with a
decreasing trend, which is also physically motivated, since the geometrical arch
effect is reduced with the deformation of the initial configuration. Correspondingly,
the equilibrium path exhibits a positive, yet decreasing, slope, implying a decreasing
global stiffness. The frequency curves tend to a cusp, then start increasing again with
the load, since now the deformed shape is such that the tangential force has turned
into traction and implies a stiffening effect, witnessed also by the load–displacement
curve that exhibits a monotonic growth with increasing slope; the paths, however,
are always stable. Starting from the second row, i.e., for increasing λ, the frequency
curves do not tend to a cusp but form a knot; for the first frequency, part of these
knots are in the negative half-space: the null of Ω2

1 corresponds exactly to the
limit load in the equilibrium path, followed by an unstable branch with negative
slope. In the third row, we see that still increasing λ the knots remain and also
the second frequency crosses the threshold of stability; in addition, unstable paths
(jumps, or snaps) occur after the limit point. In the fourth row, such a behavior
is somehow exalted, but the jump occurs before the limit point of the equilibrium
path. We remind that at the limit point of the fundamental path the real part of
first frequency vanish, and remains so until the arch has positive rigidity. Possible
bifurcation only alters the imaginary part of the first frequency, while it increases
the second frequency considerably, which is due to the change in the geometry.

4 Final Remarks

We examined small-amplitude vibration of shallow arches about a deformed state by
a perturbation approach and presented the nonlinear dependence of angular frequen-
cies on initial loading in closed form. The results presented herein may well be used
as benchmark solutions for the investigations of the structural characteristics of pre-
stressed elements, as well as for their design and optimization based on vibration
and stability behavior. The methodology and the results may be used as a means
for monitoring and identification of structural arch elements that find applications
in many fields of engineering, from actuators of microelectromechanical systems to
macro-scale civil realizations.
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Nonlinear Vibration Responses
of Laminated Composite Cantilever Plate
in Subsonic Air Flow

Gen Liu and Wei Zhang

Abstract The nonlinear vibrations of a laminated composite cantilever plate
under subsonic air flow are investigated in this chapter. According to the ideal
incompressible fluid condition and the Kutta–Joukowski lift theorem, the subsonic
aerodynamic lift on the lifting surface is calculated by using the Vortex Lattice (VL)
method. Then, the finite length plate is modeled as a laminated composite cantilever
plate based on the Reddy’s third-order shear deformation plate theory. Moreover, the
von Karman geometry nonlinearity is introduced. The nonlinear partial differential
governing equations of motion for the laminated composite cantilever plate sub-
jected to the subsonic aerodynamic force are established via Hamilton’s principle.
The Galerkin method is used to separate the partial differential equations into
two nonlinear ordinary differential equations, and the four-dimensional nonlinear
averaged equations are obtained by multiple scales method. Through comparing
the natural frequencies of the linear system with different material and geometry
parameters, the 1:2 internal resonance is considered here. Corresponding to several
selected parameters, the frequency-response curves are obtained. The hardening-
spring-type behaviors and jump phenomena are exhibited.

Keywords Subsonic air flow · Vortex Lattice method · High-order shear
deformation theory · Nonlinear dynamics

1 Introduction

The topic of the vibration of plate and shell structures owing to airflow is a matter
of interest because of its significant application in vehicle design and aircraft
[1]. Laminated composite plates and shells have been widely used in aerospace
field due to high strength-to-weight ratio, light weight, and long fatigue life. The

G. Liu (�) · W. Zhang
Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical, College of
Mechanical Engineering, Beijing University of Technology, Beijing, P. R. China
e-mail: liugen1991@hotmail.com

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), Nonlinear Dynamics of Structures,
Systems and Devices, https://doi.org/10.1007/978-3-030-34713-0_25

247

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34713-0_25&domain=pdf
mailto:liugen1991@hotmail.com
https://doi.org/10.1007/978-3-030-34713-0_25


248 G. Liu and W. Zhang

dynamic behavior of the laminated composite plates in airflow has been paid
attention by many researchers. However, there are few research works dealing
with the complex nonlinear dynamics of the lifting surface which is simplified
as a laminated composite cantilever plate under subsonic air flow. Therefore, the
nonlinear dynamics of laminated composite plate in subsonic flow will be worth
analyzing.

In the 1990s, the research on plate and shell structure has reached a high
level, and the vibration of plate has been studied comprehensively. Some literature
review works on the nonlinear vibrations of plates were given by Chia [2, 3] and
Sathyamoorthy [4]. The nonlinear vibrations of laminated plates were also entirely
investigated by Noor et al. [5–7], Abe et al. [8–10] and Nayfeh et.al. [11–13].

In this chapter, the nonlinear dynamics of the laminated composite cantilever
plate under subsonic air flow are investigated. Unlike a two-dimensional airfoil or
an infinite length wing, the aerodynamic force of a three-dimensional flat wing is
calculated. The subsonic aerodynamic lift on the three-dimensional finite length flat
wing is calculated using the Vortex Lattice method. Then, the finite length flat wing
is modeled as a laminated composite cantilever plate based on the Reddy’s third-
order shear deformation plate theory, and the von Karman geometry nonlinearity is
introduced. The nonlinear partial differential governing equations of motion for the
laminated composite cantilever plate subjected to the subsonic aerodynamic force
are established via Hamilton’s principle. Through comparing the natural frequencies
of the linear system with different material and geometry parameters, the 1:2 internal
resonance is considered here. Corresponding to several selected parameters, the
frequency-response curves are obtained. The hardening-spring-type behaviors and
jump phenomena are exhibited.

2 Derivation of the Subsonic Aerodynamic Force
on the Flat Plate

Unlike the two-dimensional flow around the airfoil, the main characteristic of
the three-dimensional flow around the wing is the variation of the lift along the
wingspan. In order to calculate the lift on the wing surface by using the Vortex
Lattice method, the Biot–Savart law is used to calculate the induced velocity on the
control point, the vortex strength of the vortex system is obtained, and the pressure
difference on the upper and lower surface of the wing surface is deduced.

The velocity induced by a vortex line with a strength of Γ n and a length of dl is
calculated by the Biot–Savart law as

d
−→
V =

%n

(
d
−→
l ×−→r

)

4πr3
(1)

As shown in the Fig. 1, this induced velocity is
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Fig. 1 Lifting surface
discretized by a Vortex
Lattice of horseshoe vortices

Fig. 2 Layout of the Vortex
Lattice on the flat wing
surface O
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dV = %n sin θdl

4πr2 (2)

The lift of the wing can be calculated by satisfying the boundary conditions
where the air flow is tangent to the object surface at each control point to determine
the strength of each vortex (Fig. 2). For any wing that does not have an upper counter
angle, the lift is produced by the free flow that crosses the vortex line, because
there is no side-washing speed or post-wash speed. According to a finite number of
elements, we can get

L0 = ρ∞V∞
5∑

n=1

%nΔyn (3)

Because the geometric relationship of each facet is 1yn = 0.1b, the lift on the
flat plate is

L0 = ρ∞V 2∞πb2α(0.238184) (4)
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where ρ∞ is the flow density, V∞ is the flow velocity, b is half length of the
wingspan, α is attack angle. Here we get the lift of the flat plate in the subsonic
airflow under the small angle of attack.

The attack angle is considered to be affected by a periodic disturbance
α = α0 + α1 cos Ω2t. Taking the periodic perturbation into the aerodynamic
force, the expression of the aerodynamic force containing the perturbation term is
obtained

L = L0 + L1 cos&2t (5)

3 Formulation

In this section, the dynamic equation of the laminated composite cantilever plate is
derived, which is subjected to the interaction between the plane excitation and the
subsonic aerodynamic load. As shown in Fig. 3, x is the spanwise direction, y is
the direction of the chord, and z is the vertical direction of the plate. The plate is
clamped at x = 0. the ply stacking sequence is [0 ◦ /90◦]S, and the layer number
is N. The in-plane excitation is F = F0 + F1 cos Ω1t, which is distributed along
the chord direction of the plate. The vertical of the plate along spanwise direction is
excited by subsonic aerodynamic force L.

The nonlinear governing equations are established in Cartesian coordinate
system. The Reddy’s third-order shear deformation plate theory is used, and the von
Karman nonlinear strain-displacement relation is introduced, so the displacements
and strain-displacement relation are given

Fig. 3 Mechanical model of cantilever laminated composite plate
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u (x, y, t) = u0 (x(t), y, t)+ zϕx (x(t), y, t)− z3 4

3h2

(
ϕx + ∂w0

∂x

)
(6a)

v (x, y, t) = v0 (x(t), y, t)+ zϕy (x(t), y, t)− z3 4

3h2

(
ϕy + ∂w0

∂y

)
(6b)

w (x, y, t) = w0 (x(t), y, t) (6c)

According to the Hamilton’s principle,

∫ T

0
(δK − δU + δW) dt = 0 (7)

The nonlinear governing equations of motion are given as follows:

Nxx,x +Nxy,y = I0ü0 + (I1 − c1I3) φ̈x − c1I3
∂ẅ0

∂x
(8a)

Nyy,y +Nxy,x = I0v̈0 + (I1 − c1I3) φ̈y − c1I 3
∂ẅ0

∂y
(8b)

Nyy,y
∂w0
∂y
+Nyy

∂2w0
∂y2 +Nxy,x

∂w0
∂y
+Nxy,y

∂w0
∂x
+ 2Nxy

∂2w0
∂x∂y

+Nxx,x
∂w0
∂x
+Nxx

∂2w0
∂x2

+ c1
(
Pxx,xx+2Pxy,xy+Pyy,yy

)+ (
Qx,x − c2Rx,x

)+ (
Qy,y − c2Ry,y

)+L− γ ẇ0

= c1I3

(
∂ü0
∂x
+ ∂v̈

∂y

)
+ c1 (I4 − c1I6)

(
∂φ̈x

∂x
+ ∂φ̈y

∂y

)
+ I0ẅ0 − c2

1I6

(
∂2ẅ0
∂x2 + ∂2ẅ0

∂y2

)

(8c)

Mxx,x +Mxy,y − c1Pxx,x − c1Pxy,y − (Qx − c2Rx) = (I1 − c1I3) ü0

+
(
I2 − 2c1I4 + c2

1I6

)
φ̈x − c1 (I4 − c1I6)

∂ẅ0

∂x

(8d)

Myy,y +Mxy,x − c1Pyy,y − c1Pxy,x −
(
Qy − c2Ry

)
(8e)

where γ is the damping coefficient.
The discrete equation is derived by Galerkin method, and the discrete function

adopts the following expression

w0 = w(t)1X1(x)Y1(y)+ w(t)2X2(x)Y2(y) (9)

where

Xi(x) = sin
λi

a
x − sinh

λi

a
x + αi

(
cosh

λi

a
x − cos

λi

a
x

)
(10a)
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Yj (y) = sin
βm

b
y + sinh

βm

b
y − αm

(
cosh

βm

b
y + cos

βm

b
y

)
(10b)

Similarly, the aerodynamic force is discretized by using the modal function.

L = l1X1(x)Y1(y)+ l2X2(x)Y2(y) (11)

where l1 and l2 represent the amplitudes of the aerodynamic force corresponding to
the two transvers modes, and they contain perturbed items.

The governing differential equation of transverse motion of the system is derived
as follows:

ẅ1 + γ11ẇ1 + ω2
1w1 + γ12f1 cos&1tw1 + γ13w2

− γ14w
3
1 − γ15w

2
1w2 − γ16w1w

2
2 − γ17w

3
2 = γ18l1

(12a)

ẅ2 + γ21ẇ2 + ω2
2w2 + γ22f1 cos&1tw2 + γ23w1

− γ24w
3
2 − γ25w

2
2w1 − γ26w2w

2
1 − γ27w

3
1 = γ28l2

(12b)

In order to study the relationship between different resonances of the laminated
composite plate, the finite element model of the cantilever laminated composite
plate is established.

The ply stacking sequence is [0 ◦ /90◦]3s. The thickness of each layer is hi

(i = 1, . . . , 6). The different model with span-chord ratio c is calculated, where
c= 1, 2 . . . , 4. The natural frequencies of bending vibration of laminated composite
cantilever plate with different span-chord ratio and different layer thickness are
calculated, and the results are shown in Fig. 4.

Based on the results of numerical simulations shown in Fig. 4, the first six orders
natural frequencies of the laminated composite cantilever plate are obtained. It is
obviously observed that there is a proportional relation between the frequencies of
bending vibration of each order, such as relation 1:1 in area c of Fig. 4, relation 1:2
and relation 1:3. We select 1:2 internal resonance relationship between two bending
mode, the nonlinear bending vibrations of the laminated composite cantilever plate
are considered in the following analysis.

We make ȧ1 = ȧ2 = ϕ̇1 = ϕ̇2 = 0 and ϕ1 = π
4 , ϕ2 = 3π

4 . The frequency-
response functions of the system are given as follow

0 = γ11a1 − 2σ1a1 − γ12a1f1 + 3

2
γ14a

3
1 + γ16a1a

2
2 (13a)

0 = γ21a2 + σ2a2 − 3

4
γ24a

3
2 +

1

2
γ26a2a

2
1 +

√
2γ28l2 (13b)

From the Eq. (13), we can find that the amplitude a1 and amplitude a2 are
coupled, the weak coupled form is considered here. Through introducing the
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Fig. 4 Natural frequencies with different thickness under the Span-chord ratio 1:1,2:1,3:1,4:1

proportional relation a1/a2 = ε, and analyze the frequency-responses between the
amplitudes and the tuning parameters.

According to the geometries and the material properties of the nonlinear system,
the basic parameters are chosen as γ 11 = 0.2, γ 12 = − 6, γ 14 = 5, γ 16 = − 5,
γ 21 = 0.6, γ 24 = 9, γ 26 = 9, γ 28 = − 2. The relationship between amplitude
and tuning parameter in different excited condition can be obtained. Figure 5 gives
the relationship between amplitude a1 and tuning parameter σ 1 in different internal
force amplitude f1, and Fig. 6 gives relationship between amplitude a2 and tuning
parameter σ 2 in different aerodynamic amplitude l2.

Next, the geometries and the material properties of the nonlinear system are
fixed, and the effects of different decoupling parameter ε are calculated and the
relationship between amplitude and tuning parameter can be found in Fig. 5.

The stiffness hardening phenomenon can be seen in the relationship between
the tuning parameters and the amplitude. With the increase of external excitation
amplitude, the stiffness hardening phenomenon of the system is gradually strength-
ened. The typical jump phenomenon of the nonlinear oscillations is also happened
in the system. The jump phenomenon appears in the frequency-response curves
at point A∗ and point B∗ with the increase of the tuning parameters in Fig. 5.
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The frequency-response curves have the wider resonance interval and the lager
oscillation amplitudes under the stronger external excitation amplitude l2.

4 Conclusion

The nonlinear dynamics of the laminated composite cantilever plate under subsonic
gas are investigated in this chapter. The subsonic air flow around the three-
dimensional cantilever rectangle laminated composite plate is considered based on
the lifting surface. The subsonic aerodynamic lift on the three-dimensional finite
length flat wing is calculated by using the Vortex Lattice method. Then, the finite
length flat wing is modeled as a laminated composite cantilever plate based on the
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Reddy’s third-order shear deformation plate theory, and the von Karman geometry
nonlinearity is introduced. The nonlinear partial differential governing equations
are established via Hamilton’s principle. The Galerkin method is used to separate
the partial differential equations and the 1:2 internal resonance is considered here.
Corresponding to several selected parameters, the frequency-response curves are
obtained. The hardening-spring-type behaviors and jump phenomena are exhibited
with the tuning parameters changing.
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Adaptation of Energy Dissipation
in a Laminated Module with Tunable
Twin Wells

Dejian Li and Hui Fang

Abstract Vibration energy dissipation in structural components has specific
requirements, and the low damping of structural metal favors a lasting dynamic
response. This chapter proposes a hysteresis damper realized with a specifically
designed laminated metal module consisting of a preloaded beam bimorph and
linear springs. Through continuous vibration modeling and simplification, the
dynamic governing equations of the laminated module are obtained. In the
solution process of the multiple scales method, we focus on the interwell motion
characteristics that bring about an order of magnitude increase in energy dissipation
compared to a linear module. Our studies employ analytical and numerical findings
to probe how the parameters of the system affect energy dissipation. When carefully
designed, a twin-well metal module can provide significant damping even for a
small excitation amplitude.

Keywords Hysteresis dissipation · Continuous module · Snap-buckling

1 Introduction

Dynamic excitation acting on an engineering structure can produce additional
stresses. An effective stiffness able to bear the stress and high energy dissipation
are indispensable for dynamic response reduction [1]. Conventionally, structural
damping can be achieved via high-damping material layers, typically polymers, and
the resulting composite structures have effective properties that are intermediate
between the properties of the base constituents. Energy dissipation of the damper
will be insufficient if the macroscopic displacement/strain varies locally or finitely
due to a high stiffness.

D. Li · H. Fang (�)
Institute of Coastal and Ocean Engineering, School of Engineering,
Ocean University of China, Qingdao, China
e-mail: lidejian@stu.ouc.edu.cn; fanghui@ouc.edu.cn

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), Nonlinear Dynamics of Structures,
Systems and Devices, https://doi.org/10.1007/978-3-030-34713-0_26

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34713-0_26&domain=pdf
mailto:lidejian@stu.ouc.edu.cn
mailto:fanghui@ouc.edu.cn
https://doi.org/10.1007/978-3-030-34713-0_26


258 D. Li and H. Fang

High damping in a metal module is desirable for vibration energy dissipation in
marine structures. Negative stiffness components have shown potential for signifi-
cant damping, primarily due to the energetic transitions between stable equilibrium
modes. Based on the shift in the elastic buckling mode of a uniform straight rod,
Dong et al. [2] tested a hysteretic member in which a displacement induced a force in
the opposite direction. A dissipation system with snap-through buckling features can
passively and drastically change depending on the response dynamics excited by the
input [3]. Kidambi et al. [4] optimized the relationship of snap-through components
combined with a positive stiffness structure, and experimental results indicated that
energy dissipation is improved under near resonance conditions. However, these
modules were deliberately designed as discrete systems, while continuous modules
are necessary for engineering structures.

A continuous metal module with an internal snap-buckling mechanism, consist-
ing of a preloaded beam bimorph and a linear spring layer laminated together, is
proposed. Through continuous vibration modeling and simplification, the govern-
ing equations of the module subjected to transverse excitations will be derived.
Numerical simulations are utilized to identify how the various dynamic states can
be leveraged to achieve large and adaptable dissipation properties. The module’s
potential function and axial preload are altered to delineate their important roles in
the damping behavior.

2 Model Development

Figure 1a shows that the proposed metal module consists of a preloaded beam
bimorph and a linear elastic layer laminated together. One side of the elastic layer is
constrained and connected to a vibration object. The constrained side is considered
non-deformable. The displacement excitation is Z(t), and the qualitative character of
the reaction force f (t) is evaluated on the constrained side of the linear elastic layer.
The elastic layer’s other side is bonded to the preloaded clamped-clamped beam,

Fig. 1 (a) Archetypal mechanical model that integrates a bimorph and an elastic layer, showing a
side view (P > Pcr) and the top view. (b) Twin-well potential of the modules
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which is directly subjected to a static axial loading P and subjected to a transverse
dynamic excitation via the elastic layer. When load P is beyond the critical buckling
load (Pcr), the bending beam exhibits two stable equilibrium positions (Sp1 and
Sp2). The laminated model may exhibit very different properties compared to the
individual elements.

According to the Euler-Bernoulli beam theory, the total strain at a point located
a distance z0 from the neutral axis can be written as follows:

ε (s, t, z0) =
(
u′ + w′2

2
− w′4

8
− u′w′2

2

)
− z0

(
w′′ − 2u′w′′ − u′′w′ − 3

2
w′2w′′

)

(1)

where s is the arc length, u is the longitudinal displacement, and w is the transversal
displacement. Hamilton’s principle is utilized to develop the governing equations of
the system. The potential energy U and kinetic energy T can be written as:

U = 1

2

∫ l

0
σεds, T =

∫ l

0

1

2
ρ
(
u̇2 + ẇ2

)
ds (2)

where ρ is the mass density the stress σ = Eε in Eq. (2), and E is the Young’s
modulus of the beam. The nonconservative virtual work term can be expressed as
follows:

δWnc =
∫ l

0
Kl [Z−w (s, t)] δw (s, t) ds+

∫ l

0
cẇδw (s, t) ds−Pδu (l, t) (3)

where c is the mechanical viscous damping coefficient, Z(t) = z cos
(
&t

)
is the

external excitation, P is the preloaded beam’s axial load, and δ is a variational oper-
ator. Substituting Eqs. (1)–(3) into Hamilton’s principle, the relationship between

the longitudinal and transversal deflections is solved as u′ (s, t) = − P
EA

− w′2
2 ,

which can be used to eliminate the longitudinal dynamics u(s, t) from the governing
equations. Based on Galerkin’s method, we assume w(s, t) to be in the form
w (s, t) = ∑∞

i=1φi(s)xi(t), where xi(t) are generalized temporal coordinates and
φi(s) are chosen as a set of orthonormal admissible functions. The system response
in terms of the first modal frequency is obtained as follows:

M1ẍ1 + c1ẋ1 +K1 (1− r) x1 +Λ1111x
3
1 = Klz cos

(
&t

)−Kx1 (4)

M1=
∫ l

0mφ2
1ds, c1=

∫ l

0cφ
2
1ds, K1=

∫ l

0EIφ′′21ds, Λ1111=
∫ l

0

(
EIφ′21φ′′

2
1−P

2 φ′41
)
ds,

Kl = Kl

∫ l

0φ1ds, K = Kl

∫ l

0φ
2
1ds, r = αP, α = 1

K1

∫ l

0φ
′2
1ds.

Then, the dimensionless equation can be written as follows:

x1
′′ + 2μ1x1

′ + (1− r + k) x1 + λ1111x
3
1 = klz cos (&τ) (5)
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Table 1 Physical parameters E [GPa] P [kg·m-3] l [mm] b [mm] h [mm]

190 8100 250 15 0.5

Table 2 Analytical model
parameters

kl r μ λ k

0.25 1.8 0.05 0.45 0.3

x1 = x1/rg , z = z/rg, τ = ω1t, & = &/ω1, rg =
√
K1/EAl, (•)

′ = d(•)/dτ ,

μ1 = c1
2M1ω1

, λ1111 = λ1111r
2
g

M1ω
2
1

, kl = Kl

K1
,, k = K

K1
, ω1 =

√
K1/M1.

In the following, numerical subscripts on the different variables will be omitted
for simplicity.

According to Eq. (5), the potential of this continuous laminated module has two
stable equilibria separated by a potential barrier. Modules with the same beam
bimorph and different linear springs are considered. The model parameters are
presented in Tables 1 and 2. When the stiffness per length of the spring layer is
1141 N/m, the equivalent stiffness is normalized as k = 0.3. The linear spring
contributes the primary term to the system’s stiffness, which dramatically affects the
distance between the wells as well as the height of the potential barrier (Fig. 1b).

3 Approximate Approaches

3.1 Intrawell Oscillations

By introducing xτ = x − xs into Eq. (5), we can expand the governing
equation around the stable nodes to obtain the single-well dynamics (xs =
±√(r − 1− k) /λ):

x′′τ + 2μx′τ + ω2xτ + γ x2
τ + λx3

τ = klz cos (&τ) (6)

where ω = √
2 (r − 1− k) represents the linearized oscillation frequency within

a single potential well, γ = 3
√
(r − 1− k) /λ is the quadratic coefficient, and xτ

represents the dynamic trajectories around the nontrivial equilibria. We expand the
time dependence into multiple time scales with the following form:

Tn = εnτ (7)

where ε is a bookkeeping parameter. The time derivatives are expressed as follows:

d

dτ
=D0 + εD1 + ε2D2 + · · · , d2

dτ 2 =D2
0 + 2εD0D1 + ε2D1 + 2ε2D0D2 + · · ·

(8)
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where Dn = ∂/∂Tn. Then, we can expand xτ into the following form:

xτ (τ ) = x0 (T0, T1, T2)+ εx1 (T0, T1, T2)+ ε2x2 (T0, T1, T2)+ · · · (9)

Equation (6) is rescaled with a small parameter, ε. The rescaled form is as
follows:

x′′τ + 2ε2μx′τ + ω2xτ + εγ x2
τ + ε2λx3

τ = ε2klz cos (&τ) (10)

To express the excitation frequency near the first modal frequency of a single
potential well, we let Ω = ω + ε2σ , where σ is a small detuning parameter. For
the sake of brevity, the solution process of the classical multiple scales method is
omitted. The final nonlinear frequency response equation is obtained as follows:

(μa0)
2 +

[
σa0 +

(
5γ 2

12ω3 −
3λ

8ω

)
a3

0

]2

= (klz)
2

4ω2 (11)

where a0 represents the steady-state amplitude. Equation (11) can be analytically
solved for the steady-state amplitude and any given displacement z.

3.2 Interwell Oscillations

Since the effective local stiffness about the unstable saddle is negative, we scale the
damping and external excitation at order ε [5]:

x′′ + (1− r + k) x + λx3 = O (ε) (12)

We assume that the first-order harmonic solution is x = A cos (&τ) and obtain:

−&2x + (1− r + k) x + λx3 = O (ε) (13)

This result implies that the left-hand side of the previous equation can be scaled
at order ε. Adding the term Ω2x to the left-hand side of Eq. (5) and using the scaling
of Eq. (12), we obtain:

x′′ + 2εμx′ +&2x + ε
(
−&2x + (1− r + k) x + λx3

)
= εklz cos (&τ) (14)

We can now apply the method of multiple scales in the traditional way and obtain
the following nonlinear frequency response equation:

(μa0)
2 +

(
&2 − (1− r + k)

2&
a0 − 3λ

8&
a3

0

)2

=
(
klz

2&

)2

(15)
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Fig. 2 Bifurcation diagram
for a twin-well module with
the parameters shown in
Table 1

x*

1

1.5

2

2.5

0.5

0.6 0.7 0.8 0.9 1 1.1 1.31.2
0

cf2

cf2

cf1

pd

pd

W

where a0 represents the steady-state amplitude. Equation (15) is used to analytically
construct the frequency response curve (Fig. 2) of the system.

4 Frequency Response Curves and Dissipation Investigation

A bifurcation diagram (i.e., the gray dotted line in Fig. 2) is generated by integrating
Eq. (6) for many different excitation frequency values (0.6 ≤ & ≤ 1.3). The model
parameters are presented in Tables 1 and 2, with k = 0.3; the normalized excitation
amplitude z is 0.7. Figure 2 shows that a large-amplitude solution branch appears
near the lower end of the frequency range, which represents the periodic interwell
responses. For the frequency range considered, this large-amplitude branch disap-
pears in a cyclic-fold bifurcation and exhibits complex multiple-period responses.
As the frequency decreases, a cyclic-fold bifurcation occurs on the intrawell branch,
disappears and is replaced by a period-doubling bifurcation. As the frequency
further decreases, a cascade of period-doubling bifurcations occurs, leading to a
window of chaotic motions, which disappears in a boundary crisis. Using the
equations in the last section, intra- and interwell analytical solutions are obtained,
which are presented as the blue circle and black triangle lines, respectively, in Fig.
2. The analytical solution overestimates the frequency when bifurcation occurs,
which can be attributed to the fact that the prediction method for the bifurcation
point involves approximating the stability loss through variational equations that
are linearized assuming small perturbations.

4.1 Excitation Frequency

When the normalized excitation frequency is relatively high, Ω = 1.2, the dynamic
trajectories (blue curve in Fig. 3a) remain confined to a single equilibrium position,
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Fig. 3 Dynamic and dissipation features when the excitation frequency is varied: (a) phase plots,
(b) force-displacement curve, (c) dissipation energy

which means that the system’s potential energy is too low to escape from the well.
The module’s reaction force (F = Klz cos

(
&t

) − Kx1 in Eq. (5))-global end
displacement curve behaves linearly (blue curve in Fig. 3b). Using W = ∫

Fdz,
the reaction force’s work W is calculated over excitation periods. The energy
dissipation in 100 periods (Ω = 1.2) is the lowest (blue curve in Fig. 3c). As the
frequency decreases, a period-doubling bifurcation occurs. When Ω = 0.95, the
module has a larger force-displacement range than when Ω = 1.2 because a large
trajectory (red curve in Fig. 3a) between the two potential wells occurs. Although
the amplitude is much larger than that when Ω = 1.2, the energy dissipation only
slightly increases because the reaction force and end displacement phase difference
remains small (red curve in Fig. 3b). As the frequency further decreases, a cascade
of period-doubling bifurcations occurs, leading to a window of interwell chaotic
motions (Fig. 2). The reaction force-end displacement curve (Ω = 0.8 for instance)
becomes chaotic (gray curve in Fig. 3b), which is consistent with the phase plot
(gray curve in Fig. 3a) and causes greater hysteresis damping than when Ω = 0.95.
In such situations, the amplitudes notably increase, but the curve slopes are positive,
which means that viscous damping (μ) still dominates the energy dissipation. When
the excitation is decreased to a critical frequency (cf1), a large-amplitude solution
branch appears (Fig. 2), which represents the periodic interwell responses (Ω = 0.7,
black curve in Fig. 3a). Since the excitation and response are periodic, the force-
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displacement trajectory forms a large loop, resulting from snap-through hysteresis,
with a negative mean slope (black curve in Fig. 3b). The snap-through behavior
is clearly confined to a large hysteresis loop, consequently resulting in a dozens
of times higher energy dissipation than that in the chaotic situation with a similar
amplitude (black curve in Fig. 3c). High energy dissipation is achieved for relatively
fixed excitation amplitudes due to the internal snap-buckling mechanism in the
bandwidth of periodic interwell oscillations.

4.2 Potential Function

Equation (6) is numerically integrated for modules with different linear springs
(k = 0.1, 0.3, and 0.5) (Fig. 4). The module (k = 0.1) with the deepest well
(Fig. 1b) restricts the oscillator to intrawell periodic motion with a wide bandwidth
because the potential energy cannot overcome the potential barrier. A periodic
motion (Ω = 0.9) with a small amplitude (Fig. 5a) cannot produce effective energy
dissipation. As shown in Eq. (6), an axial compressive load can permit tuning
of the module at the same frequency for different configurations. The simulated
module (Table 2 and k = 0.3) has an oscillation frequency of 39 Hz in the twin-
well configuration and in the monostable configuration when P = 5.8 N. Here, the
cubic term of Eq. (5) is neglected. The dissipation performance of the linear system

Fig. 4 Dynamic and dissipation features of models with different k values: (a) phase plots, (b)
force-displacement curve, (c) dissipation energy
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Fig. 5 Dynamic and dissipation features of models with different axial compressive loads (P): (a)
phase plots, (b) force-displacement curves, (c) dissipation energy

is compared to that of the twin-well system with the same resonance frequency,
and less energy is dissipated in the linear system than in the chaotic situation
because of the smaller amplitude. The potential wells of the module with k = 0.5
are shallow and close, which can help generate and maintain interwell motion of the
oscillator (Fig. 5a). As expected, the interwell oscillations result in very large energy
dissipation compared to the single-well, linear and chaotic situations. Equation (6)
is numerically integrated for modules (k = 0.3) with different constant compressive
loads (P = 27.0, 30.9, 34.7 N; r = αP = 1.4, 1.6, 1.8). When applying the same
excitation (Ω = 0.6), the module with the largest preload exhibits the highest energy
dissipation (Fig. 5). A higher preload reasonably results in a larger equilibrium
position value. More details about the role of the preload will be discussed in the
future.

5 Conclusion

This chapter explores the adaptable energy dissipation characteristics of a continu-
ous laminated metal module of a beam bimorph and a linear elastic layer based on
the snap-buckling mechanism. This continuous module exhibits a reaction force in
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the opposite direction to the displacement due to the internal snap-buckling behavior
of the interwell oscillator, which brings about an order of magnitude increase
in energy dissipation compared to the single-well and chaotic situations within a
certain bandwidth.
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The Duffing–Mathieu Equation Arising
from Dynamics of Post-Buckled Beams

Enrico Babilio

Abstract The nonlinear dynamics of a beam embedded in a viscoelastic continuous
medium is considered. The beam undergoes large deflections induced by an
axial harmonic excitation. The non-dimensional equation of motion describing the
problem is approximated by a Duffing–Mathieu equation. Some analytical and
numerical results are reported.

Keywords Duffing–Mathieu equation · Straight beams · Post-buckling
behavior · Single-mode approximation · Bifurcation scenario

1 Introduction

The present short contribution deals with nonlinear dynamics of a beam embedded
in a viscoelastic medium and follows previous works, whose results are partially
reported in [1–5]. Beams resting on, or embedded in, deformable media are suitable
models to describe different problems, starting from classical examples in the field
of civil engineering [6] up to modern applications in the emerging nanotechnology
science [7]. The beam we are dealing with undergoes moderately large deflections
in post-buckled regimes, induced by an axial harmonic excitation. To derive a
reduced-order model, the corresponding partial differential equation of motion,
in non-dimensional form, is discretized with a single-mode approximation. The
resulting equation is of Duffing–Mathieu type that is indeed a nonlinear version
of the celebrated Mathieu equation. This latter plays a central role in a number
of problems in engineering and physics [8], as vibration in elliptic membranes,
motion of an inverted pendulum with vertically vibrating suspension point, stability
of floating bodies, elastic oscillations of a ferromagnetic material, and many others,
whose dynamics is induced by a parametric excitation. It is well-known that in the

E. Babilio (�)
Department of Structures for Engineering and Architecture (DiSt), University of Naples
“Federico II”, Naples, Italy
e-mail: enrico.babilio@unina.it

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), Nonlinear Dynamics of Structures,
Systems and Devices, https://doi.org/10.1007/978-3-030-34713-0_27

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34713-0_27&domain=pdf
mailto:enrico.babilio@unina.it
https://doi.org/10.1007/978-3-030-34713-0_27


268 E. Babilio

linear case parametric excitation may induce unbounded oscillations, even for small
exciting terms, while, on the contrary, in the nonlinear case, the system response
may remain bounded, thanks to the detuning effect of the nonlinearities [9].

2 The Mechanical Model and Equation of Motion

Let us consider a slender, straight beam embedded in a viscoelastic medium, excited
by an axial harmonic load. Taken a Cartesian triad x, y, and z as reference frame,
the beam centerline of length L lays down with x, where principal cross-sectional
axes are along y and z. We consider planar, twistless deformed states into xy-plane,
with the rigid cross sections, of area A and second moment of area I, preserving
normality to deformed beam axis, which implies that the beam is unshearable. Right
and left edges of the beam are simply supported and the surrounding medium exerts
reaction forces along y-direction

R(x, t) = k1 v − k2 v,xx + c v,t , (1)

being k1 and k2 elastic stiffnesses and c the linear viscous dissipation parameter.
Here and hereafter, we use the comma notation for derivatives, meaning that a
subscript comma followed by letters stands for the partial derivative with respect
to (w.r.t.) the variables indicated by those letters.

A buckled configuration of the beam is shown in Fig. 1, where at a given abscissa
x, the transverse displacement v(x, t) and the internal generalized stresses, namely
axial force N(x, t), shear force T (x, t), and bending moment M(x, t), are reported.

−P (t)−P (t)

N(x, t)

T (x, t)

M(x, t)

v(x, t)

Fig. 1 The buckled beam. Transverse displacement and internal generalized stresses at a generic
abscissa are shown. Notice that since restraints on boundary edges (x = 0 or x = L) of the beam
imply simply supported boundary conditions, forces at x = 0 and x = L, acting along x-direction,
must be equal. Hence, since we are solely interested in transversal motion (i.e. along y-direction),
we do not need to make explicit where the axial restraint is located, nor distinguish if the force on
the left edge is the external excitation and that on the right is the reaction of boundary restraint or
vice versa
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The axial time-dependent harmonic load P(t), responsible for the beam vibrations
is also shown. The transversal equation of motion (i.e., along y-direction) is

ρA v,tt − Fy, x + R = 0 , (2)

where the internal force Fy = Fy(x, t) is given by Fy = T +N v,x and R is defined
in Eq. (1).

Being the beam unshearable, T is an internal reaction for which no constitutive
assumption can be assigned. However, the balance of moments of an infinitesimal
slice of the beam allows getting T = M,x. Furthermore, because of the boundary
conditions we are dealing with, N = P + T v,x = P +M,xv,x holds. Therefore,
we must consider a constitutive hypothesis only for the bending moment, for which
we assume the linear relationship M = −EIv,xx, where E = E(x) is the Young’s
modulus of the material.

Thus, the transversal motion equation is finally written as

ρA v,tt+c v,t+
(
EIv,xx

)
,xx
−(P+k2)v,xx+k1v = −2

(
EIv,xx

)
,x

v,xv,xx , (3)

where ρ = ρ(x) is the mass density of the material.

2.1 The Dimensionless Equation of Motion

A dimensionless version of Eq. (3) is deduced as

μẅ + 2ζ ẇ + (
Ew′′

)′′ − π2(P+ κ2)w
′′ + κ1w = −2

(
Ew′′

)′
w′w′′ , (4)

after the introduction of rescaled length, time, displacement, and force as

ξ = x

L
, τ = t

L2

√
E0I

ρ0A
, w = v

L
, P = PL2

π2E0I
= P

Pcrit
, (5)

and dimensionless mass density, Young’s modulus, foundation parameters, and
damping ratio as

μ = ρ

ρ0
, E = E

E0
, κ1 = k1L

4

E0I
, κ2 = k2

Pcrit
, ζ = c L2

2
√
ρ0 AE0 I

, (6)

where ρ0 and E0 are suitable reference parameters, Pcrit is the first buckling load,
and overdot and prime stand for partial differentiation of w w.r.t. τ and ξ.

Since attacking nonlinear partial differential equation can be very complicated
both analytically, even with perturbation methods, and numerically, in what follows
we consider a low-dimensional Galerkin discretization.
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2.2 The Galerkin Discretization and Duffing–Mathieu
Equation

In order to get a single-mode approximation of Eq. (4), we apply the standard
Galerkin method, after selecting as tentative solution

w(ξ, τ ) = ϕ(τ) sin(πξ), (7)

which resembles the first linear buckling mode shape, being ϕ a generalized
coordinate representing the transversal dimensionless displacement of the mid-span
cross section of the beam.

By substituting for Eq. (7) in Eq. (4), multiplying everything by sin(πξ) and
integrating in the unit interval, after a rearrangement of terms, we get

ϕ̈(τ )+ 2
ζ

M
ϕ̇(τ )+

(
K

M
+ π4P

M

)
ϕ(τ) = −Γ

M
ϕ3(τ ) , (8)

where

M = 2

1∫

0

sin2(πξ)μ(ξ) dξ, (9)

K = κ1 + π4κ2 + 2π4

1∫

0

sin2(πξ)E(ξ) dξ

− 2π3

1∫

0

sin(2πξ)E′(ξ) dξ − 2π2

1∫

0

sin2(πξ)E′′(ξ) dξ, (10)

Γ = π6

1∫

0

sin(2πξ)2E(ξ) dξ + 4π5

1∫

0

cos(πξ) sin(πξ)3E′(ξ) dξ. (11)

It is worth noting that Eq. (8), because of the single-mode Eq. (7), is a rough
approximation of Eq. (4), since it ignores higher modes. Instead, such modes, also
called passive modes, may be relevant to the dynamics, due to nonlinear couplings.
The way to represent higher modes by means of the lower ones is the essential
step in dimension reduction methods more sophisticated than the standard Galerkin
method that however proved to be efficient in constructing approximated solutions
for many continuous systems. Being beyond the scopes of this brief contribution,
we leave further investigation on this aspect for future work and we refer to [10] for
some detail on the subject. Here, we further manipulate Eq. (8). Indeed, by setting
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ω =
√

K

M
, ν = ζ

ωM
, ε = −π4P

2M
, γ = Γ

M
, (12)

and choosing the exciting force as

P = cos (2Ωτ) ,

Eq. (8) turns out to be the Duffing–Mathieu equation

ϕ̈ + 2νωϕ̇ +
(
ω2 − 2ε cos (2Ωτ)

)
ϕ = −γ ϕ3 . (13)

For γ = 0, we get the (linear) Mathieu equation, whose solution has the form

ϕ = e−νωτ

(
η1 C

(
ω2
d

Ω2 ,
ε

Ω2 ,Ωτ

)
+ η2 S

(
ω2
d

Ω2 ,
ε

Ω2 ,Ωτ

))
, (14)

where C(·, ·, ·) and S(·, ·, ·) are the even and odd Mathieu functions, ωd =
ω
√

1− ν2 is the damped frequency, η1 and η2 are constants defined as

η1 = S0(ϕ̇0 + νωϕ0)− Ṡ0ϕ0

S0Ċ0 − Ṡ0C0
, η2 = −C0(ϕ̇0 + νωϕ0)− Ċ0ϕ0

S0Ċ0 − Ṡ0C0
, (15)

being C0, S0, Ċ0, and Ṡ0 the Mathieu functions and their derivatives w.r.t. τ

evaluated at τ = 0.
Mathieu functions, and therefore the solution (14), are only periodic in τ for

certain so-called characteristic values of the ratio ω2
d/Ω

2, for ε �= 0. Such
characteristic values are denoted, in what follows, as ar(ε/Ω

2), first argument of
the even C function, and br(ε/Ω

2), first argument of the odd S function, with
r an integer or, more in general, although not used in what follows, a rational
number. Furthermore, Eq. (14) may be bounded or not, that is, stable or unstable,
respectively. In the undamped case (ν = 0), the transition curves between stable
and unstable domains are related to the characteristic values ar and br , as functions
that here we call fr and gr , respectively. In the damped case, fr and gr do not play
anymore the role of stability boundaries and are completely included in the stable
region. Relations between fr and ar and between gr and br are stated as

f (Ω,ν)
r (ε) = Ω2

1− ν2
ar

( ε

Ω2

)
, r = 0, 1, 2, . . . (16)

g(Ω,ν)
r (ε) = Ω2

1− ν2 br

( ε

Ω2

)
, r = 1, 2, 3 . . . (17)

and they will be computed through the harmonic balance method [11] in Sect. 3.
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3 On the Stability Charts and a Bifurcation Diagram

Stability charts for the Mathieu equation, which is, as already stated, indeed the
linear version of Eq. (13), are reported in Fig. 2, for the undamped case (ν = 0) and
two different values of the damping (namely ν set to 0.1 and 0.5). The gray-shaded
regions correspond to sets of parameters leading to unstable solutions. The functions
fr and gr can be computed, by exploiting a result from Floquet theory assuring that
periodic solutions exist along the transitions curves. Hence, the general periodic
solution is found substituting the trial Fourier expansion

ϕ(τ) = A0 +
∞∑
r=1

Ar cos (rΩτ)+ Br sin (rΩτ) , (18)

in a linear, undamped version of Eq. (13), namely

ϕ̈ +
(
ω2
d − 2ε cos (2Ωτ)

)
ϕ = 0, (19)

where ωd (indeed, the already defined damped frequency) replaces ω, as a dummy
variable. Actually, here we use ωd instead of ω in order to get results valid in
both the undamped and damped cases and, needless to say, ωd takes value ω

whenever ν vanishes. Upon inserting Eq. (18) in Eq. (19) and collecting coefficients
of each cos (rΩτ) and sin (rΩτ) (which is the rationale of the harmonic balance
method [11]), it becomes evident that to satisfy Eq. (19), apart the trivial solution, all
those coefficients must vanish. This leads to an infinite set of linear, homogeneous
equations for the coefficients Ar and Br, that is

ω2
dA0 − εA2 = 0 , (20)

(
ω2
d − 4Ω2

)
A1 − εA3 = 0 , (21)

(
ω2
d − 4Ω2

)
A2 − ε (A4 − 2A0) = 0 , (22)

(
ω2
d − 4Ω2

)
A2+r − ε (Ar + A4+r ) = 0 , r = 1, 2, 3, . . . (23)

(
ε + ω2

d −Ω2
)
B1 − εB3 = 0 , (24)

(
ω2
d − 4Ω2

)
B2 − εB4 = 0 , (25)

(
ω2
d − (2+ r)2Ω2

)
B2+r − ε (Br + B4+r ) = 0 , r = 1, 2, 3, . . . . (26)

To obtain f0, f2, f4, . . . , we must require that the determinant of coefficients of
a system made with Eqs. (20), (22), and (23), r = 2, 4, 6 . . . , vanishes. Similarly,
from Eqs. (21) and (23), with r = 1, 3, 5 . . . , we get f1, f3, f5, . . . ; from Eqs. (24)
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Fig. 2 Stability charts of Mathieu equation for different damping values. The curves fr and gr ,

respectively blue- and red-colored in the undamped diagram, are computed retaining 15 terms in
Eq. (18). The loading frequency is set to Ω = 0.5 in all the graphs. In the considered damped cases,
regions of parameters leading to stable or unstable solutions have been numerically evaluated, by
checking if, at a sufficiently large time (here, 5× 103π/Ω), Eq. (14) goes to zero (stable solution)
or diverges (unstable solution). By setting ϕ0 = 0.0, ϕ̇0 = 0.1, η1 and η2, given by Eqs. (15), are
determined for any ω

and (26), with r = 1, 3, 5 . . . , we compute g1, g3, g5, . . . ; and finally g2, g4, g6, . . .

are obtained by operating on Eqs. (25) and (26), r = 2, 4, 6 . . .. Approximated fr

and gr can be obtained by limiting the number of terms in Eq. (18) to that allowing
the desired precision. Results are reported in Fig. 2 and show the stabilizing role of
the damping: indeed, for the occurrence of the instability ε must be greater than zero,
while in the undamped case, the solution can be unstable even if ε = 0, for given
values of the frequency. However, in the linear case unbounded solutions can take
place in both damped and undamped cases. This situation changes in the nonlinear
case, as can be seen from Fig. 3, where the stability chart for the linear case, taken
up from Fig. 2, in the rectangle (0 ≤ ε ≤ 10) × (2.0 ≤ ω2 ≤ 4.5) as part of the
diagram for ν = 0.1 (top panel) is compared with the bifurcation diagram of Eq. (13)
(bottom panel), which summarizes the results of numerical computations performed
through a brute force integration algorithm. Numerical integrations are made over
time interval from τ0 = 0 to τf = 3000π/Ω, as the bifurcation parameter ε varies
in the interval from 0 to 10, forward and backward, with a step equal to 0.025. The
other mechanical data take values ω = √3, Ω = 0.5, ν = 0.1, and γ = 1. Initial
conditions at the first computational stage are set as ϕ

(1)
0 = 0.0, ϕ̇(1)

0 = 0.1, while

at any stage i > 1, ϕ(i)
0 = ϕ

(i−1)
f and ϕ̇

(i)
0 = ϕ̇

(i−1)
f (for further details on the code,

see [2]). Up to ε ≈ 1.6 the solution approaching zero is stable in both the linear and
nonlinear cases. After such a value, the linear solution is unbounded (apart for very
narrow intervals of ε), while the solution for the nonlinear problem remains bounded
and exhibits various bifurcations and transition to chaos (see, among others, the
doubling period cascade starting at ε ≈ 2.4). The finite amplitude is an effect of
the fact that as the amplitude of motion increases, the frequency increases and the
system falls out of resonance [9, 11]. Indeed, the period–amplitude relationship,
due to the nonlinearity, detunes the resonance. Finally, in Fig. 3, red (black) dots
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Fig. 3 A detail of stability chart reported in Fig. 2 for the damped linear equation, with ν = 0.1
(top panel), compared to the bifurcation diagram for the Mathieu-Duffing equation (bottom panel).
Notice that, up to ε ≈ 1.6 (see the first vertical dashed line between the two panels) the solution
approaching zero is stable in both the linear and nonlinear cases. After such a value, the linear
solution is unbounded (apart for very narrow intervals of ε, as that in correspondence with the
second vertical dashed line between the two panels), while the solution for the nonlinear problem
remains bounded, due to the detuning effect of nonlinearity. Red (black) dots refer to solutions got
for the bifurcation parameter ε varying forward (respectively, backward)

refer to solutions for forward (respectively, backward) varying ε. Forward and
backward paths appear very close to each other, although some little differences
can be found. For instance, a transition from chaotic to periodic behavior occurs at
ε2 ∈ (2.925, 2.95), when ε increases, while when it decreases the periodic response
remains stable up to ε2 ∈ (2.875, 2.9). Here, the size of both open intervals in which
the transition values are detected depends on the step chosen for the bifurcation
parameter.

4 Conclusions

The present contribution is focused on the study of nonlinear dynamics of a straight
beam embedded in a viscoelastic medium. The beam, assumed undergoing large
deflections, is axially loaded by a harmonic excitation. The results of a number of
numerical simulations are collected in a bifurcation diagram, qualitatively compared
with the stability chart for the linear case.
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Resonance-Induced Energy Localization
in Weakly Dissipative Anharmonic
Chains

Agnessa Kovaleva

Abstract This chapter studies the emergence of resonance and resonance-induced
localization in a weakly dissipative anharmonic chain subjected to a harmonic force
applied at one end. The system does not possess a linear spectrum, and resonance
is imposed by external forcing. It is shown that weak dissipation may be a key
factor preventing large-amplitude resonance. The resulting process in the dissipative
system represents resonant oscillations in a part of the chain adjacent to the source
of energy and escape from resonance of the distant oscillators. Conditions of the
emergence of resonance and energy localization are derived. An agreement between
the analytical and numerical results is demonstrated.

Keywords Nonlinear oscillations · Asymptotic methods · Localization

1 Introduction

Localization of responses in oscillator arrays has been of interest for recent decades,
with special attention to the role of nonlinearity and discreteness in the formation
of localized structures (see, e.g., [1–5] and references therein). However, the
influence of dissipation has not been addressed in the literature. The attention
was drawn to the so-called dissipative roto-breathers in pendulum-like models
forced by a constant torque [6], as well as to localized responses of harmonically
excited dissipative oscillators, such as coupled optical resonators [7] or micro- and
macroscale cantilever arrays [5, 8–11]. The recent work [12] studied the emergence
of resonance and resonantly induced localization in a weakly dissipative quasi-linear
chain, wherein intense energy transport is sustained by the cumulative effect of
internal and external resonances.
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In the present chapter, we extend the procedures presented in [12] to anharmonic
chains. The dynamics of the chain is studied assuming 1:1 (fundamental) resonance,
when the response of each nonlinear oscillator has a dominant harmonic with
frequency close to the frequency of the external excitation. It is shown that weak
dissipation may prevent the emergence of resonance in the entire array even if its
non-dissipative analogue is totally captured in resonance. Capture into resonance
and escape from resonance are illustrated by numerical simulations.

2 Equations of the Resonant Dynamics

We analyze the chain consisting of n identical weakly linearly coupled cubic
oscillators subjected to a harmonic force applied at one edge of the chain. The
equations of motion are given by

d2Ur

dt2
+χ

dUr

dt
+γU3

r +κ
[
ηr,r−1 (Ur − Ur−1)+ ηr,r+1 (Ur − Ur+1)

] = Ar sinωt.

(1)

In Eq. (1), the variable Ur denotes the absolute displacement of the rth oscillator
from its rest state, r ∈ [1, n]; γ is the cubic stiffness coefficient; κ denotes stiffness
of linear coupling; χ is the coefficient of dissipation; all parameters are reduced to
the unit mass. The coefficients ηr,k = {1, k∈[1, n]; 0, k = 0, k = n + 1} indicate
that the end oscillators are unilaterally coupled with the adjacent elements. Since
the harmonic excitation is applied to the first oscillator, we let A1 = A, Ar = 0 at
r ≥ 2. The chain is assumed to be initially at rest, i.e., Ur = 0, Vr = dUr/dt = 0 at
t = 0 for all oscillators.

Equation (1) is reduced to the dimensionless form, which has a simpler
structure than the original system. Assuming weak coupling, we introduce the
dimensionless coupling parameter ε = κ/ (2ω2) � 1. Taking into consideration
weak nonlinearity and weak dissipation, we define the rescaled parameters
χ /ω = 2εδ; α1/2Ar/ω2 = 2εfr; the dimensionless coefficient of nonlinearity is
given by γ /ω2 = 4α/3. Besides, the dimensionless space variables ur = α1/2Ur and
the dimensionless fast and slow time variables τ 0 = ωt and τ = ετ 0 are introduced.
Although the generating nonlinear system d2ur

dτ 2
0
+ 4

3u
3
r = 0 does not possess a

spectrum independent of energy of oscillations, energy transport can be studied
under the assumption of 1:1 (fundamental) resonance, i.e., under the condition that
the responses of the coupled oscillators have a dominant harmonic component with
a frequency close to the excitation frequency. Under these assumptions, Eq. (1) is
rewritten in the form
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d2ur

dτ 2
0

+ 2εδ
dur

dτ0
+ ur

+ 2ε

[
σ

(
4

3
u3
r − ur

)
+ ηr,r−1 (ur − ur−1)+ ηr,r+1 (ur − ur+1)

]
= 2εfr sin τ0,

(2)

where 2εσ = 1. Since only the dominant harmonic with frequency 1 remains in
the asymptotic analysis of the resonant system (2), it is convenient to introduce the
following single-frequency change of variables:

+r =
(
dur

dτ0
+ iur

)
e−iτ0 , +∗r =

(
dur

dτ0
− iur

)
eiτ0 . (3)

Substitution of Eq. (3) into Eq. (2) yields the following equations for the
envelopes Ψ r:

d+r

dτ0
= −εδ+r + iε

[
σ
(
|+r |2 − 1

)
+r + ηr,r−1 (+r −+r−1)

+ ηr,r+1 (+r −+r+1)− fr +Gr (τ0, +)
] (4)

and similar equations for the complex-conjugate variables Ψ r∗ , r ∈ [1, n], with
initial conditions Ψ r(0) = Ψ r∗ (0) = 0. The coefficients Gr(τ 0,Ψ ) include higher
harmonics in τ 0 from all components Ψ r, Ψ r∗ but explicit expressions of these
coefficients are insignificant for further analysis.

The asymptotic analysis is produced with the help of the multiple-scale expan-
sion:

ψr (τ0, τ, ε) = ψr (τ )+ εψ(1)
r (τ0, τ )+O

(
ε2

)
, (5)

where the main slow approximations ψ r(τ ) satisfy the averaged equations [13, 14]:

dψr

dτ
= −δψr

+ i
[
σ
(
|ψr |2 − 1

)
ψr + ηr,r−1 (ψr −ψr−1)+ ηr,r+1 (ψr −ψr+1)− fr

]

(6)

with initial conditions ψ r(0) = 0. The change of variables ψr = are
i1r , ar =

|ψr | , 1r = argr transforms Eqs. (6) into the differential equations for the real-
valued amplitudes ar and phases Δr
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dar

dτ
= −δar +

[
ηr,r−1ar−1 sin (1r−1 −1r)+ ηr,r+1ar+1 sin (1r+1 −1r)

]

−fr sin1r,

ar
d1r

dτ
= σ

(
a2
r − 1 )ar+[ ηr,r−1

(
ar − ar−1 cos

(
1r−1 −1r

)

+ηr,r+1

(
ar − ar+1 cos

(
1r+1 −1r

)
− fr cos1r. (7)

The accuracy of asymptotic approximations (5) is discussed in [13, 14]. Omitting
details, we recall that the error of approximations tends to zero as ε→ 0.

3 Resonance in Non-dissipative Chains

In this section, we examine the emergence of resonance in the non-dissipative chain
at δ = 0. The first parametric threshold can be found assuming resonance in the
excited oscillator accompanied by small oscillations of the attachment. Under these
assumptions, the equations of the excited oscillator are approximated as follows:

da1

dτ
= −f sin11,

a1
d11

dτ
= σ

(
a2

1 − 1
)
a1 + a1 − f cos11,

(8)

with initial conditions a1(0) = 0, Δ1(0) = − π /2, which determine the so-
called Limiting Phase Trajectory (LPT) corresponding to maximum possible energy
transfer from a source of energy to a receiver [15]. Referring to [15], we obtain the
following parametric boundaries between small and large oscillations of oscillator
(8):

(a) : f = f1ε =
√
(1− 2ε)3/54ε2; (b) : f2ε =

√
(1− 2ε)3/27ε2 = √2f1ε.

(9)

It was shown [15] that at f < f1ε the LPT of small oscillations represents an outer
boundary for a set of closed trajectories encircling the stable center on the axis
Δ1 = −π , while at f > f1ε the LPT of large oscillations depicts an outer boundary
for trajectories encircling the stable center on the axis Δ1 = 0. The transition from
small-amplitude to large-amplitude oscillations for a particle being initially at rest
occurs due to the loss of stability of the LPT of small oscillations at f = f1ε.

In the next step, motion of an n-particle chain is analyzed. Given that the excited
oscillator is captured into resonance, large-amplitude resonant oscillations of the
attachment may occur if the coupling strength is large enough to transfer the
required amount of energy. In order to evaluate the lower bound of the coupling
parameter ε, we calculate the steady states of Eqs. (7) at δ = 0. Since the steady
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states ar ,1r satisfy the conditions dar/dτ = 0, d1r/dτ = 0, the stationary
phases1rat δ = 0 are defined by the equations: sinΔ1 = 0, sin(Δr + 1 − Δr)
= 0, r ∈ [1, n]. In analogy to the results obtained for the Duffing oscillators [15,
16] and the quasi-linear oscillator chain [12], one can verify both analytically and
numerically that the solution 1r = 0 corresponds to the maximum stationary
amplitude of stable resonance for any r ∈ [1, n]. The corresponding equations for
stationary amplitudes are given by

σ
(
a2

1 − 1
)
a1 + (a1 − a2) = f,

σ
(
a2
r − 1

)
ar + 2 (2ar − ar−1 − ar+1) = 0, r ∈ [2, n− 1] ,

σ
(
a2
n − 1

)
an + (an − an−1) = 0.

(10)

The maximum solutions of Eqs. (10) at σ = 1
2 are approximated as

a1 = 1+ εf +O
(
ε2f

)
,

ar = 1+O (εrf ) , r ∈ [2, n] .
(11)

Solutions (11) formally exist even if the coupling strength 2ε is nearly negligible.
Now we define the coefficient ε, which yields the coupling response sufficient
to sustain resonance in the rth oscillator under the condition of resonance in the
preceding (r − 1)th oscillator and small-amplitude oscillations of the succeeding
(r + 1)th oscillator.

Assuming resonance in the (n − 1)th oscillator and ignoring higher-order
correction terms, the nth equation in Eqs. (10) is reduced to the following form:

a3
n − (1− 2ε) an = 2εan−1, (12)

where an−1 = 1. The roots of Eq. (12) are analyzed through the properties of the
discriminant Dn = 4[27ε2 − (1 − 2ε)3] [17]. If Dn < 0, then Eq. (12) has three
different real roots; if Dn = 0, two real roots merge; if Dn > 0, then there exists a
single real and two complex-conjugate roots. The condition Dn > 0 is transformed
into the inequality

ε > εcr = 0.125. (13)

Next, we analyze the rth oscillator (2 ≤ r ≤ n − 1) assuming large-amplitude
resonant response of the preceding (r − 1)th oscillator accompanied by negligibly
small oscillations of the (r + 1)th oscillator. Under these assumptions, the equation
for ar takes the form

a3
r − (1− 4ε) ar = 2εar−1, (14)
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where ar−1 = 1. The roots of Eq. (14) are analyzed through the properties of the
corresponding discriminants Dr = 4[27ε2 − (1 − 4ε)3], r ∈ [2, n − 1]. It can be
verified that Dr > 0 if > ε

(1)
cr = 0.0945, that is, ε(1)cr < εcr.

Finally, the first equation in Eqs. (10) is analyzed. Assuming small oscillations
of the second oscillator, the equation under consideration is given by

a3
1 − (1− 2ε) a1 = 2εf (15)

with the discriminant D1 = 4[27ε2f2 − (1 − 2ε)3]. The condition D1 > 0 is

equivalent to the inequality f > f2ε =
√
(1− 2ε)3/27ε2 > f1ε corresponding

to the vanishing of the stable center on the axis Δ1 =−π [15]. As shown above, the
transition from small oscillations about the center at Δ1 = −π to large oscillations
about the center at Δ1 = 0 occurs under the weaker condition f > f1ε. This implies
that the admissible parametric domain for the emergence of resonance in the entire
multiparticle chain is determined by the conditions: f > f1ε, ε > εcr (see Fig. 1).

As discussed above, oscillators with the parameters (ε, f ) ∈ D execute small
quasi-linear oscillations; the entire chain with the parameters (ε, f ) ∈ D0 is captured
into resonance; if the parameters (ε, f ) ∈ D1, then the forced oscillator is captured
into resonance but the dynamics of the attachment should be investigated separately.

Numerical results for the 4-particle chain are presented in Fig. 2. Numerical
simulations demonstrate small oscillations of the chain with parameters (ε = 0.07,
f = 0.7) ∈D and large-amplitude resonant oscillations of the chains with parameters
(ε = 0.07, f = 2) ∈ D1 and (ε = 0.13, f = 0.7) ∈ D0. Since all particles in the
chain with parameters from D exhibit small oscillations, the only amplitude a1(τ ) is
depicted in Fig. 2a. Figure 2b, c indicate that at large times the resonant amplitude
of the excited oscillator fluctuates near a1 = 1.13 at ε = 0.07, f = 2.5 and near
a1 = 1.08 at ε = 0.13, f = 0.7, respectively, while the amplitudes of the attached
oscillators in both systems remain close to 1. Note that the numerical solutions agree
with formulas (11).

Fig. 1 Parametric thresholds
(9) and (13)
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Fig. 2 Slowly-varying amplitudes in the 4-particle chain: — : a1; ••••••••: a2; −−−: a3; −•−: a4

4 Energy Localization in Weakly Dissipative Chains

In this section, we demonstrate that a weakly dissipative short-length chain may be
totally captured into resonance but the growth of dissipation as well as an increase
of the chain length may cause escape from resonance of the oscillators far removed
from the source of energy.

In order to evaluate the limiting dissipation coefficients, we calculate the steady
states ar ,1r of system (7). If dissipation is small enough, and the entire chain
is captured into resonance, then Eqs. (11) remain approximately valid for the
dissipative chain. In this case, the leading-order approximations to the stationary
phases 1r may be found from the following equations:

−δ + sin (12 −11)− f sin11 = 0,
− δ + [sin (1r−1 −1r)+ sin (1r+1 −1r)] = 0, r ∈ [2, n− 1] ,
− δ + sin (1n−1 −1n) = 0

(16)

provided that δ� 1, | sin11 |� 1, | sin
(
1r −1r−1

) |� 1. Solving Eqs. (16), we
find that

sin11 = −δn/f, sin1r = −
[
n/f +

(
r − 1

)
(2n− r) /2

]
, (17)

provided that | sin1r |� 1, r ∈ [1, n]. Let

δr = [n/f + (r − 1) (2n− r) /2]−1 (18)

be the critical coefficients of dissipation such that δ1 > δ2 > . . . > δn. It follows from
Eqs. (17) and (18) that the entire chain is captured into resonance if δ ≤ δn < δ1.

Expressions (17) demonstrate that, although the chain consists of identical
oscillators, the value of | sin1r | increases with an increase of the oscillator index r
as well as with an increasing number n of oscillators in the chain. These observations
suggest large-amplitude resonance either in a relatively short chain or in an initial
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Fig. 3 Oscillations of the 4-particle arrays with parameters (ε = 0.07, f = 2) ∈ D1 and different
coefficients of dissipation: — : a1; •••••••: a2; −−−: a3; −•−: a4

part of a protracted chain involving l < n particles, together with small oscillations
of the distant oscillators. In this case, the parameter l determines localization length.

Figure 3 illustrates oscillations of the 4-particle chain with parameters (ε = 0.07,
f = 2) ∈ D1; the critical coefficients of dissipation are δ1 = 0.5, δ4 = 0.125. It
is seen from Fig. 3a that the entire chain remains captured into resonance up to
δ = 0.125 = δ4; this corresponds to l = 4. In the next step, at δ = 0.126, the last
(forth) oscillator escapes from resonance (l = 3); this effect holds up to δ = 0.25
(Fig. 3b, c). At 0.26 ≤ δ ≤ 1 resonant energy localization occurs only in the forced
oscillator (l = 1) while all attached oscillators escape from resonance (Fig. 3d, e).
Finally, at δ = 1.2� δ1, the entire chain escapes from resonance (Fig. 3f).

5 Concluding Remarks

In this chapter, the emergence of resonance-induced energy localization in a weakly
dissipative nonlinear chain has been investigated for the first time. The chain under
consideration comprises n identical weakly linearly coupled cubic oscillators; an
external harmonic force is applied to the first oscillator. The dynamics of the chain
is studied under the assumption of 1:1 (fundamental) resonance, when the response
of each nonlinear oscillator has a dominant harmonic component with a frequency
close to the excitation frequency. As in the quasi-linear case, the equations for
the slow variables have been obtained with the help of the multiple-scale and
averaging procedures. The approximate solution defines parametric conditions of
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the emergence of resonance in the non-dissipative chain. Furthermore, the obtained
solutions indicate that the maximal concentration of energy in the excited oscillator
occurs together with equipartition of energy among other resonant oscillators. The
second part of the paper discusses resonant processes in a weakly dissipative chain.
It has been demonstrated that dissipation may prevent the emergence of resonance
in the entire array, even though its non-dissipative counterpart is totally captured in
resonance. The resulting process in the weakly damped chain represents localization
of energy in the initial segment against small-amplitude oscillations in rest of
the chain. Close agreement between the analytical and numerical results has been
demonstrated.
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Torsional Analysis of Transmission Line
Cables

Nilson Barbieri, Marcos José Mannala, Renato Barbieri, and
Gabriel de Sant’Anna Vitor Barbieri

Abstract In this work, torsion parameter values are experimentally derived as a
function of the tensile load for three commercial cables used in electric power
transmission lines. The analyzes were conducted using the experimental data
obtained from a test bench of transmission line components using samples with
a length of 54 m and subjected to different mechanical tension. The cables were
excited by a lever positioned at different positions along the samples and subjected
to dynamic forces. The tests were performed by varying the angular displacement
clockwise and counterclockwise. The results showed nonlinear variations according
to the applied load, position of the load application, and direction of rotation of the
lever. The experimental data will be used to adjust nonlinear mathematical models
of dynamic simulation of cables of electric transmission lines.

Keywords Cable · Torsion · Experimental data · Nonlinear parameters

1 Introduction

Many works have been developed in the attempt to analyze the effect of axial
tension and torsion coupling in transmission line cables. Some pioneering works
were developed by McConnell and Chang [1] and McConnell and Zemke [2]. In
the works, the behavior of ACSR (aluminum conductor steel reinforced) electrical
conductors were analyzed. At the same time [3], the mechanical behavior of ACSR
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conductors under static-loading conditions which may comprise any combination of
tension, torsion, and bending was investigated.

The behavior of nine different mathematical models [4] taking into account the
effects of traction and torsion for dynamic analysis of cables was implemented. The
analytical models give satisfactory estimations of the elastic stiffness constants for
lay angles below 20◦. For cables with larger lay angles, it was recommended the use
of 3D FE models for dynamic analyses of the system.

Nonlinear response of elastic cables with flexural-torsional stiffness was studied
in [5, 6]. Recently [6] the nonlinear dynamic analysis of high-voltage overhead
transmission lines using generalized Hamilton’s principle, three-dimensional (3D)
mathematical models, was used to analyze the vibration in-plane and out-of-plane.

Recursive models, based on Love’s general thin rod theory, for dynamic analysis
of cables, subjected to traction and torsion, can be used [7].

Barbieri et al. [8–10] investigated the dynamic behavior of transmission cables.
In these cases, several aspects were addressed: modal analysis using linear models,
reduced damping matrix adjustment and dynamic analysis using nonlinear models.
The analyses involved the acquisition of experimental data in cable test benches and
numerical data obtained through computational simulation of mathematical models
using the finite element method. The Irvine parameter and frequency response
function adjustment were used in the nonlinear analysis.

2 Material and Method

In this work, the tests were performed on a test bench of electrical transmission
line components shown schematically in Fig. 1.The lever was placed at positions
L/16, L/8, L/4, 3L/8, and L/2 (A1–A5) in the sample of length L. Three different
transmission line cables (Fig. 2) were used (CAA Tern, CAL Phosphorus, and CAL

2

3

5

7

6A1 A2
A3 A4 A5

1

4

Fig. 1 Schematic representation of the test bench. (1) Rigid structure, (2) data acquisition system
and load control, (3) load cell and mechanical load control, (4) anchorage (fixation) system, (5)
lever positioning (A1–A5), (6) anchorage, (7) cable sample
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Fig. 2 Transmission line cables

Fig. 3 The excitation system. (a) The position of loading coupled load cell and triaxial accelerom-
eter and (b) the lever with the instrumentation

Greeley) with variable mechanical load (9–30% of the ultimate tensile strength—
UTS).

The excitations were manually introduced using a lever as shown in Fig. 3.
The torsion lever consists of a metal part containing a cable connector up to

30 mm of diameter and a lug at the opposite end of the metal part, where there is a
Z-type (tension and compression) load cell with a capacity of 98.07 N (10 kgf) and
gain of 2 mV/V, with a hinged piece used for traction.

The traction was performed manually at the end of the lever, allowing the
torsional strain to be transferred to the cable. Under the load cell there is a triaxial
accelerometer, whose purpose is to measure the angle in relation to the vertical axis.

The accelerometer has an acceleration range of 3 g on each of the three axes and
is powered by 3 V (2.4–3.6 V range), the x and y axis with a voltage range of 1.35–
1.65 V (±1 g) and the z axis from 1.2 to 1.8 V (±1 g). The load cell is powered by a
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conditioner (HBM AE301) with a carrier frequency of 600 Hz and a supply voltage
of the 5 V bridge. The data acquisition rate of each channel is 4000 samples per
second. As the measurement is performed every 50 ms, each indicator is the result
of an average of 200 readings. The resolution of each channel is from 18 bits to
±5000 mV, that is, 38.15 μV for the accelerometer, whereas for the load cells it is
374.1 μN.

Figure 4 shows schematically the cable sample (deformed cable) with the
coupled lever and the reference system.

Figure 5 shows the initial position of the lever (solid line) and the position
with applied load (dashed line). In this figure, L represents the position of the load
application, a represents the position of the CG of the lever, p the gravitational force,
and F the applied load.

y

z

F

lever
x

deformed cable

accelerometer / load cell

X

Fig. 4 Schematic representation of cable sample with lever attached

Fig. 5 Reference system with lever coupled with and without load application
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Fig. 6 Schematic representation of the torque applied in the sample

Based on the acceleration measurement on the three axes of the triaxial
accelerometer, the angle is obtained around the z axis. The torsion angle
measurement is detailed in the reference [11] and the torque in the cable is given
by:

T = L F cos (γ )+ pa cos (γ ) (1)

Figure 6 shows the torque applied in the sample.
As the point of placement of the lever varies across half of the sample (Fig. 1),

it is necessary to obtain the torque value acting on the left and right ends of the
sample. Considering the torque acting on the left end of the sample and making the
balance with respect to the right end and considering the torsion angle null on the
right end support:

Δφ = T L

GJ
= TeL

GJ
− T b

GJ
= 0 (2)

Te = T b

L
(3)

where Te is the torque acting on the left side of the lever.

3 Results

The curves were adjusted by interpolation through third order polynomial fit. Figure
7 shows the experimental and adjusted curves obtained for the Greeley cable and the
lever positioned in the middle of the sample with 9.2% of UTS.

Figure 8 shows the adjusted curves for five different tensile loads of the Greeley
cable and the lever positioned in the middle of the sample. Note that there is a trend
of slope variation as the tensile load increases. In the extreme conditions of loading
(9.2% and 30% UTS), the curves present different behaviors from the others.
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Fig. 7 Torque versus twist angle curves (experimental and adjusted curves)

Fig. 8 Torque versus twist angle curves

The adjusted curves (third order polynomial) for the five loading conditions
shown in Fig. 8 are shown in Table 1. The curves were adjusted using the polyfit
routine of Matlab. The adjusted curves are of the form:

T = a1 θ3 + a2 θ2 + a3 θ + a4 (4)
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Table 1 The curve parameters

Parameters
Loading (UTS) (%) a1 a2 a3 a4

9.2 0.2999 −0.9373 10.9917 −0.7031
16 −0.4643 −0.2438 14.2861 −0.8924
20 −0.2667 0.0739 13.1519 −1.1790
26 −0.5815 0.3101 14.0847 −1.0241
30 −0.6062 −1.6589 12.3791 −0.4549

Fig. 9 Variation of torsional stiffness as a function of twist angle and variation of tensile load. (a)
clockwise and (b) counterclockwise

Fig. 10 Variation of torsional stiffness as a function of twist angle and lever position. (a) clockwise
and (b) counterclockwise

The torsional stiffness was adjusted according to the slope of the torque curve
versus twist angle. The values found considering the load variation are shown in
Fig. 9 and considering the variation of the positioning of the lever are shown in Fig.
10. Note that there are differentiated behaviors for small angular displacements and
for the extreme conditions of loading. In addition, the stiffness varies according to
the torque application position.

Figure 11 shows the torque curves as a function of the twist angle for the three
different cables and the lever at position L/2. Note that the curve for the Greeley
cable has a different slope than the curves of the other two cables that are similar.
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Fig. 11 Torque versus twist angle curves for three different cables

Fig. 12 Helical representation of wire

4 Conclusions

In this work, the results of torsional tests of transmission line cables are presented.
Although the results shown are for the Greeley cable, similar results were observed
for the Tern and Phosphorus cables. It was noticed that there are variations of
the torsional parameters according to the direction of rotation of the cable, the
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mechanical load of traction, and the position of application of the load. The
nonlinear behavior of the torsional parameters was evidenced.

In order to improve the nonlinear mathematical models [10], the combined axial
tension-torsion effect must be included through the isolated modeling of the wires,
taking the helical shape of the wires [4] (Fig. 12) or modeling the cable as a single
body [5].
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Application of a Stochastic Version of the
Restoring Force Surface Method to
Identify a Duffing Oscillator

Luis G. G. Villani, Samuel da Silva, and Americo Cunha Jr.

Abstract A stochastic version of the restoring force surface method is proposed
and used to identify the parameters of a clamped-free beam with nonlinear effects
induced by the presence of a magnet near to the free extremity. This system recalls
a Duffing oscillator, which is used as a single-degree-of-freedom mathematical
model to represent the mechanical system. Experimental and theoretical responses
are compared taking into account a probabilistic band of confidence. The results
show that the stochastic model identified can predict the beam’s vibration responses,
which ensure the robustness of the stochastic identification method.

Keywords Nonlinear dynamics · Stochastic model · Restoring force surface ·
Duffing oscillator

1 Introduction

It is known that many engineering structures can present nonlinear behavior caused
by geometric effects, operating conditions, materials with complex structure, and
others. So, to perform a reliable analysis of a structure, the nonlinear effects have
to be taken into account [1]. In this sense, Masri and Caughey [2] presented the
method of restoring force surface (RFS) that showed to be effective [3]. Many
other approaches can be used to describe nonlinear systems, such as Hilbert
transform, NARMAX models, high-order frequency response functions [4, 5],
Volterra series [6], harmonic balance, or artificial neural network [7]. However,
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once the approaches described above are deterministic, they are neither robust to
variations in the system parameters nor offer a confidence interval to the identified
model. Since any real system is uncertain with regard to the nominal project values
(due to material imperfections, noise, etc. [8]), a reliable system identification
technique must take into account the model parameters uncertainties, also known
as data uncertainties.

Techniques of stochastic system identification are available in the literature, for
instance, using convex analysis [9], Bayesian statistics [10–15] or a nonparametric
probabilistic approach [16–18]. These methods are very sophisticated and powerful
tools, generally used to identify a mechanical system with a large number of
degrees-of-freedom (DoFs). Although these techniques can be used to identify
systems with one or a few DoFs, the low dimension of these systems allows one
to develop a more simple framework for stochastic identification. It is proposed to
use a stochastic version of the RSF method to identify a single degree-of-freedom
(DoF) system, developed in a probabilistic framework, which models the system
parameters as random variables assuming underlying uncertainties. In this way, the
main contribution is to propose a stochastic version of the RFS method, where the
probability density functions (PDFs) of model parameters are identified, instead of
the parameters deterministic values, as made by conventional RFS methods. The
conclusions show that the method is simple and reaches useful results, so that it is
suitable for application in simple systems, with low order, where the use of more
sophisticated techniques may be complicated.

2 Experimental Apparatus

The experimental setup is composed of a clamped-free beam (300× 18× 3 [mm3])
with a steel mass glued in the free extremity, which is connected to cause a magnetic
interaction between the beam and a magnet (Fig. 1). A shaker is used to excite the
structure considering different levels of voltage amplitude. A vibrometer laser is
utilized to measure the beam free extremity velocity. It is important to note that

Fig. 1 Illustration of the experimental apparatus used. (a) Experimental apparatus. (b) Schematic
representation
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Fig. 2 Illustration of the system nonlinear behavior: (a) stepped sine test for different levels of
voltage applied in the shaker. Filled circle −0.01 V, blue filled square −0.10 V and red filled
triangle −0.15 V; (b) spectrogram of the system response

the input signal considered in this work is the voltage applied to the shaker. By
using this strategy, the input signal is kept constant over a range of frequencies. The
magnetic interaction of the system generates a hardening nonlinear behavior showed
in Fig. 2a, which presents the jump phenomenon that is represented by a sudden drop
in the amplitude of the response with a low increment in the excitation frequency.
Additionally, the spectrogram of the system response can be seen in Fig. 2b where
it is observed the presence of the second and third order harmonics in the response.

3 Mechanical–Mathematical Modeling

The experimental setup presents nonlinear behavior only for large displacements, so
a Duffing oscillator can well approximate its dynamic behavior [19]

m ẍ(t)+ c ẋ(t)+ k x(t)+ k2 x(t)2 + k3 x(t)3 = U(t), (1)

where m is the system equivalent mass, c is the damping coefficient, k is the linear
stiffness, k2 is the quadratic stiffness, k3 is the cubic stiffness, and U(t) is the
external force. The displacement, velocity, and acceleration in the free extremity
of the beam are represented, respectively, by x(t), ẋ(t) and ẍ(t). Once in the
application of the RFS method no form for the restoring force is assumed initially,
Eq. (1) is rewritten in terms of the restoring force F(x, t) as

m ẍ(t)+ c ẋ(t)+ F(x, t) = U(t). (2)

The parameters uncertainties are induced by measurement noise, variation in the
boundary conditions, the position of the shaker, sensor, and magnet, uncertainties
related to the methods of parameters estimation [8]. Thus, the model parameters are
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random variables or random processes, defined on the probability space (Θ,Σ,P),
where Θ is sample space, Σ is a σ -algebra over Θ , and P is a probability measure.
Thus, the stochastic equivalent of Eq. (2) is given by

m(θ) ẍ(θ, t)+ c(θ) ẋ(θ, t)+ F(x(θ, t), t) = U(t), (3)

where the random processes (θ, t) ∈ Θ × R �→ x(θ, t), (θ, t) ∈ Θ × R �→ ẋ(θ, t),
and (θ, t) ∈ Θ × R �→ ẍ(θ, t), respectively, represent the displacement, velocity,
and acceleration in the beam free extremity. The stochastic model of Eq. (3) is used
to describe the nonlinear random dynamics of the mechanical system emulated by
the experimental apparatus.

4 Stochastic System Parameters Identification

Two types of experimental tests were performed. The first one excites the mechan-
ical system with a chirp signal with a low level (0.01 V) of the constant voltage
amplitude, while in the second test, the level is high (0.15 V). The two tests were
executed in sequence, so that chirp signal range of frequencies varied with a rate of
10 Hz/s, from 10 to 50 Hz. Each test was repeated 200 times on different days.

The identification of system parameters m and c uses the underlying linear
dynamics of the beam assuming the low level of input amplitude. The sys-
tem equivalent mass and damping coefficients are estimated using the impulse
response function. After, identifying several realizations of these parameters (200
in fact), their PDFs are nonparametrically estimated through histograms and kernel
smoothed curves [20].

Then, using the nonlinear dynamics of the beam, obtained when the input signal
has a high level of amplitude (0.15 V), the restoring force F(x(θ, t), t) is estimated
to each realization θ . In this case, the RFS method defines the restoring force from
the equation

F(x(θ, t), t) = U(t)− [m ẍ(θ, t)+ c ẋ(θ, t)] , (4)

where all objects of the equation right-hand side are known. Note that the nonlinear
function F is a stochastic process, once it is defined as the difference between the
excitation U and the stochastic process mẍ + cẋ. In practice, realizations of F are
constructed utilizing realizations of the system parameters as well as from velocity
and acceleration time series. Additionally, the reader can observe that, for a fixed
time t , each experimental realization of F defines a three-dimensional surface, i.e.,
F = g(x, ẋ) for some scalar map g : R2 → R. Thus, the polynomial coefficients (k,
k2 and k3), to each realization, can be estimated through the polynomial regression
based on the minimization of the squared error (least squares method). As performed
with the mass and damping, the PDFs of k, k2, and k3 are nonparametrically
estimated.
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5 Results and Discussion

The nonparametric estimations for mass and damping coefficient PDFs can be seen
in Fig. 3. The figures show PDFs of normalized random variables, i.e., random
variables with zero mean and unit standard deviation, in addition to the nominal
values. The PDFs show that both parameters have unimodal behavior. It is possible
to observe that m has mean value of μm = 0.233 [kg] with low dispersion around
the nominal value. The coefficient of variation, standard deviation divided by the
mean, is δm = 2.44%. The damping coefficient c has concentration across the mean
value μc = 1.226 [Ns/m] and δc = 1.77%.

With the surfaces F = g(x, ẋ) nonparametric estimated, a parametric identifica-
tion of this force to fit a function whose shape resembles the curve raised by RFS
method. A polynomial form was chosen to describe the nonlinear force, as described
in the Duffing equation of Eq. (1). Since the nonlinear restoring force is random, it
should be assumed that the stiffnesses are also aleatory, being modeled by random
variables. The nonparametric estimations for the PDFs of k, k2, and k3 are present
in Fig. 4. It can be seen in Fig. 4a the PDF of the linear stiffness. The behavior is
unimodal with the values concentrated around the mean value μk = 4.954 × 103

N/m and δk = 2.21%. Figure 4b shows the PDF of the quadratic stiffness. The
mean value is equal to μk2

= −30.867 N/m2 and δk2
= 2.72%. The PDF of

the cubic stiffness, presented in Fig. 4c, has also unimodal distribution with μk3
=

39.859 × 107 [N/m3] and δk3
= 4.06%. The large variation of these parameters

is related with the uncertainties present in the RFS method applied considering
underlying variabilities (e.g., noise, the magnet, shaker and sensor position, etc.).
Finally, Fig. 4d shows the experimental F and the polynomial modeling identified
with 99% of confidence bands. The results are satisfactory considering that the
model can predict the behavior of the restoring force, mainly when it has high
amplitude.

Fig. 3 PDFs for mass and damping parameters of the mechanical system. The PDF is represented
by the solid line and the histogram by the bars. (a) Estimated PDF for m. (b) Estimated PDF for c
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Fig. 4 PDFs for mechanical system stiffnesses and the fitted restoring force. (a, b, and c) The PDF
is represented by the solid line and the histogram by the bars; (d) The model mean is presented as
blue lines, the confidence band as gray shown, and the experimental realization as red filled circle

Once the stochastic model of Eq. (3) is identified, it can be used to make pre-
dictions about the beam nonlinear dynamics behavior, offering probabilistic limits
of confidence in the response. The calculation of the model response is done using
Monte Carlo (MC) method [21]. First of all, the experimental nonparametric PDFs
estimated are used to generate samples of the system parameters. In the procedure,
the Metropolis–Hastings Markov Chain Monte Carlo (MCMC) algorithm is applied
[21]. Additionally, the sampling is made considering the correlation between the
random variables, through the Cholesky decomposition of the correlation matrix.
Comparisons between experimental and simulated beam velocity, in the time
domain, can be seen in Fig. 5, considering the same chirp signal used in the model
identification process. One can observe that the experimental response is inside
the limits with 99% of confidence that indicates the adequate performance of the
stochastic model.
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Fig. 5 System response comparison. The model mean is presented as blue lines, the confidence
band as gray fill, and the experimental realization as red line-red circle-red line. (a) Low level of
input (linear). (b) High level of input (nonlinear)

Fig. 6 Stepped sine curves comparison. The model mean is presented as −, the confidence band
as gray fill, and the experimental realization as − ◦ −. (a) Low level of input (linear). (b) High
level of input (nonlinear)

The model validation was performed considering the stepped sine test, and
the results are shown in Fig. 6. It is possible to see that the stochastic model
describes well the system behavior, both in linear as nonlinear regime of motion.
The difference between the curves seen in the linear case is related to the difficulty of
conducting the stepped sine test with very low excitation amplitude and the possible
influence of the second vibration mode shape; this can be confirmed observing
Fig. 2(a). In the nonlinear case, the stochastic model is also able to describe the
experimental behavior. The large data dispersion in the nonlinear regime of motion,
in consequence of the nonlinear restoring force variation, makes the nonlinear
stiffness varies, as seen in Figs. 4b, c.
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6 Final Remarks

A stochastic version of the restoring force surface method was proposed to
identify the parameters of a Duffing oscillator. The formulation of this method was
done in terms of a stochastic process and able to take into account the intrinsic
variability of the system parameters. In the analysis of non-complex nonlinear
systems, the proposed method can be applied without the use of more sophisticated
mathematical tools. The effectiveness of this methodology was tested and verified
in the parameters estimation of a clamped-free beam, presenting nonlinear behavior.
The results showed that the identified stochastic model is robust, once it describes
well the structure behavior and specifies a reliability envelope.
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Modeling of the Hysteretic Behavior of
Wire Rope Isolators Using a Novel
Rate-Independent Model

Nicolò Vaiana, Francesco Marmo, Salvatore Sessa, and Luciano Rosati

Abstract This paper presents a novel rate-independent model to predict the
hysteretic response of Wire Rope Isolators along their two principal transverse
directions, namely Roll and Shear directions. Employing the proposed model,
the device restoring force can be evaluated by solving an algebraic equation that
requires a set of only five parameters directly related to specific graphical features
of the hysteresis loop. To verify such a model, some experimental results, obtained
during several experimental tests recently performed at the Department of Industrial
Engineering of the University of Naples Federico II, are predicted analytically.

Keywords Wire rope isolator · Hysteretic behavior · Rate-independent model

1 Introduction

Wire Rope Isolators are devices manufactured by embedding a stainless steel cable,
having a helix shape, into two metal retainer bars [1].

These devices generally exhibit a kinematic hardening hysteretic behavior when
a displacement time history is applied along one of their two principal transverse
directions, denominated Roll and Shear directions, respectively. Indeed, the distance
between the two parallel curves, that typically limit their hysteresis loops, remains
constant during the entire deformation process and the device restoring force
increases when a transverse displacement with increasing amplitude is applied.

Several differential rate-independent models are currently available in the lit-
erature to accurately reproduce the complex transverse response characterizing
such metal devices [2–6]. Unfortunately, these phenomenological models suffer
from some limitations such as the unclear mechanical significance of the adopted
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parameters and the limited computational efficiency due to the need of numerically
solving a differential equation to predict the device response.

This paper presents a novel rate-independent model, formulated by specializing
a general class of models recently proposed by Vaiana et al. [7–9], to reproduce
the response of Wire Rope Isolators along the Roll and Shear directions. In
particular, this model offers several advantages, such as the use of a small number
of parameters, which have a precise mechanical significance, as well as a significant
computational efficiency due to the solution of an algebraic equation, rather than a
differential one, to compute the device restoring force.

2 Proposed Hysteretic Model

The Proposed Hysteretic Model (PHM) has been formulated by specializing a
recently developed family of uniaxial models [7–9].

Such a general formulation assumes the generalized displacement u (generalized
rate-independent hysteretic force fri) as input (output) variable, and describes a
generalized rate-independent force-displacement hysteresis loop by adopting four
different curves: the upper cu and the lower cl limiting curves and the generic
loading c+ and unloading c− curves.

Figure 1 illustrates the four curves describing a hysteresis loop limited by two
parallel curves; note that the generic loading (unloading) curve, defined by a positive
(negative) sign of the generalized velocity u̇, is identified by an arrow plotted on the
curve.

As shown in Fig. 1, the upper (lower) limiting curve intersects the vertical axis
at the point with coordinates 0 and f̄ (−f̄ ). Furthermore, the generic loading
(unloading) curve intersects the lower (upper) limiting curve at a point having

Fig. 1 An example of hysteresis loop described by the curves cu, cl , c+, and c−
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abscissa u+i (u−i ), and the upper (lower) limiting curve at a point having abscissa
u+j (u−j ), with u+i = u+j − 2u0 (u−i = u−j + 2u0).

In the following subsections, we first describe the PHM formulation by introduc-
ing the proposed expressions of the generalized rate-independent hysteretic force
and of the history variable; then, we show how each PHM parameter affects the size
and/or the shape of a hysteresis loop.

2.1 PHM Formulation

The PHM requires the calibration of only five parameters, that is, ka , kb, α, β1, and
β2. In addition, it also adopts two additional parameters, namely u0 > 0 and f̄ > 0,
that can be computed after selecting ka , kb, α taking into account the following
conditions: ka > kb, ka > 0, α > 0, and α �= 1.

2.1.1 Generalized Rate-Independent Force

According to Fig. 1, during a generic loading (unloading) phase, fri = c+ (fri =
c−) if u+i ≤ u < u+j (u−j < u ≤ u−i ), whereas fri = cu (fri = cl) if u > u+j
(u < u−j ).

In particular, in the PHM, the expressions of cu and cl are

cu (u) = β1u
3 + β2u

5 + kbu+ f̄ , (1)

cl (u) = β1u
3 + β2u

5 + kbu− f̄ , (2)

whereas the ones of c+ and c− are

c+
(
u, u+j

)
= β1u

3 + β2u
5 + kbu

+ (ka − kb)

⎡
⎢⎣

(
1+ u− u+j + 2u0

)(1−α)

1− α
− (1+ 2u0)

(1−α)

1− α

⎤
⎥⎦+ f̄ ,

(3)

c−
(
u, u−j

)
= β1u

3 + β2u
5 + kbu

+ (ka − kb)

⎡
⎢⎣

(
1− u+ u−j + 2u0

)(1−α)

α − 1
− (1+ 2u0)

(1−α)

α − 1

⎤
⎥⎦− f̄ .

(4)
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Furthermore, the expression of f̄ , required in Eqs. (1)–(4), is

f̄ = ka − kb

2

[
(1+ 2u0)

(1−α) − 1

1− α

]
. (5)

Since ka > kb, α �= 1, and u0 > 0, Eq. (5) gives a positive value of f̄ .

2.1.2 History Variable

In the PHM, the expression of u+j is

u+j = 1+ uP + 2u0 −
{

1− α

ka − kb

[
fP − β1u

3
P − β2u

5
P − kbuP

−f̄ + (ka − kb)
(1+ 2u0)

(1−α)

1− α

]}(
1

1−α

)

,

(6)

whereas the one of u−j is

u−j = −1+ uP − 2u0 +
{

α − 1

ka − kb

[
fP − β1u

3
P − β2u

5
P − kbuP

+f̄ + (ka − kb)
(1+ 2u0)

(1−α)

α − 1

]}(
1

1−α

)

.

(7)

2.2 Parameter Sensitivity Analysis

Figure 2 shows how the size and (or) the shape of hysteresis loops, obtained by
imposing a full sinusoidal cycle of generalized displacement having amplitude of 1,
change(s) due to the variation of each PHM parameter. In particular, it can be noted
that:

– ka affects the hysteresis loop size (Fig. 2a);
– kb produces a rotation of the hysteresis loop and a slight variation of its size

(Fig. 2b);
– α affects the hysteresis loop size (Fig. 2c);
– β1 affects the hysteresis loop shape (Fig. 2d).

Since the variation of the hysteresis loop shape due to β2 is similar to the one
produced by β1, the related figure is not presented for brevity.
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Fig. 2 Variation of the hysteresis loop size and/or shape associated with each PHM parameter

3 Experimental Verification

In this section the PHM, illustrated in Sect. 2, is validated by comparing the
analytical results with those obtained from several dynamic tests performed on
a Wire Rope Isolator (WRI) at the Department of Industrial Engineering of the
University of Naples Federico II (Italy) by Vaiana et al. [10].

3.1 Tested Wire Rope Isolator

Figure 3a shows the geometrical characteristics of the tested WRI having two
principal transverse directions, denominated Roll and Shear directions. Such a metal
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(a) (b)

Fig. 3 Tested wire rope isolator (a) and adopted testing machine (b)

device, manufactured by Powerflex S.r.l. (Limatola, Italy), has been constructed by
assembling two types of elements: a Stainless Steel Type 316 wire rope and two
aluminum alloy retainer bars. Specifically, the wire rope, constituted by six strands
wrapped around a central one, has been wound in the shape of a helix and embedded
into the two retainer bars. Each external strand of the wire rope is made of 25 steel
wires, whereas the inner one is made of 49 steel wires.

Figure 3b shows the Testing Machine (TM) adopted to perform the experimental
tests. Such a machine allows one to impose a transverse displacement or force,
by means of a horizontal hydraulic actuator, under the effect of a constant axial
compressive force, applied by means of a vertical hydraulic actuator [11–13]. The
tested WRI has been installed by fixing its retainer bars to the lower and upper rigid
steel plates of the TM.

During the experimental tests, conducted at room temperature, the time history
of the relative transverse displacement between the TM lower and upper plates and
the time histories of the axial and transverse forces have been measured by sampling
the data at 250 Hz.

3.2 Simulation of the Experimental Behavior

Figure 4 (5) illustrates both the analytical and experimental hysteresis loops that
have been obtained by imposing, to the tested WRI, five cycles of sinusoidal
transverse displacement, having frequency of 1 Hz; in particular, such results have
been obtained for three different amplitude levels, that is, 0.25, 0.50, and 1 cm, and
by applying a constant axial compressive force, fv , of 0 kN (2 kN). Note that Figs. 4a
and 5a show the results along the Roll direction, whereas Figs. 4b and 5b present the
results along the Shear direction.
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Fig. 4 Analytical and experimental hysteresis loops obtained in roll (a) and shear (b) directions
for fv = 0 kN

Fig. 5 Analytical and experimental hysteresis loops obtained in roll (a) and shear (b) directions
for fv = 2 kN

A satisfactory agreement can be observed between the experimental hysteresis
loops and the analytical ones, simulated by adopting the PHM parameters listed in
Table 1 (2). Such model parameters have been calibrated through a simple analytical
fitting of the experimental data. Note that, although in this case it has been possible
setting β2 = 0, all five model parameters are typically required for accuracy reasons.

Thus, it has been demonstrated that the PHM can well reproduce the stiffening
behavior occurring in the tested WRI and that it requires only one set of parameters
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Table 1 PHM parameters used for reproducing the hysteresis loops in Fig. 4

fv = 0 kN ka
[
Nm−1

]
kb

[
Nm−1

]
α β1

[
Nm−3

]
β2

[
Nm−5

]

(a) Roll 28× 105 30× 104 8× 102 10× 108 0

(b) Shear 28× 105 32× 104 11× 102 10× 108 0

Table 2 PHM parameters used for reproducing the hysteresis loops in Fig. 5

fv = 2 kN ka
[
Nm−1

]
kb

[
Nm−1

]
α β1

[
Nm−3

]
β2

[
Nm−5

]

(a) Roll 28× 105 26× 104 10× 102 10× 108 0

(b) Shear 28× 105 30× 104 13× 102 10× 108 0

to simulate the device response obtained at various levels of amplitude in the
presence of a constant axial compressive force.

Finally, the comparison of Tables 1 and 2 shows that the set of model parameters
has to be suitably calibrated, based on the experimental results, in order to account
for a different value of the applied constant axial compressive force.

4 Conclusions

We have illustrated a novel rate-independent model capable of predicting the
hysteretic response of WRIs along their Roll and Shear transverse directions in the
presence of a constant axial compressive force.

Adopting the PHM, the device restoring force can be computed by solving an
algebraic equation requiring a set of only five parameters which are characterized
by a clear mechanical significance, as shown in Sect. 2.2.

According to the experimental verification, it can be concluded that:

– the WRIs hysteretic behavior obtained at various amplitude levels, including the
stiffening behavior, can be simulated by means of the PHM using only one set of
parameters;

– the WRIs hysteretic behavior obtained for a different value of the constant axial
compressive force can be simulated by conveniently recalibrating the set of five
model parameters.

Forthcoming papers will show the numerical accuracy as well as the computa-
tional efficiency of the PHM by performing nonlinear time history analyses [14]
on hysteretic mechanical systems and comparing the results with those obtained by
using the celebrated Bouc–Wen model [15, 16] or its modified version [3, 4].
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A Non-linear Model of Rubber Shear
Springs Validated by Experiments

Sanpeng Gong, Sebastian Oberst, and Xinwen Wang

Abstract Vibrating flip-flow screens provide an effective solution for screening
highly viscous or fine materials. However, only linear theory has been applied to
their design. Yet, to understand deficiencies and to improve performance an accurate
model especially of the rubber shear springs equipped in screen frames is critical
for its dynamics to predict, e.g. frequency- and amplitude-dependent behaviour. In
this chapter, the amplitude dependency of the rubber shear spring is represented by
employing a friction model in which parameters are fitted to an affine function rather
constant values used for the classic Berg’s friction model; the fractional derivative
model is used to describe its frequency dependency and compared to conventional
dashpot and Maxwell models with its elasticity being represented by a non-linear
spring. The experimentally validated results indicate that the proposed model with a
non-linear spring, friction and fractional derivative model is able to more accurately
describe the dynamic characteristics of a rubber shear spring compared with other
models.

Keywords Non-linear dynamic model · Rubber shear spring · Stiffness ·
Damping

1 Introduction

Rubber shear springs (RSS) are widely used in numerous places as important
components in structures or machines to transmit vibrations. One example RSS are
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commonly used is in vibrating flip-flow screens (VFFS) which play an important
role in the dry screening of wet and fine materials such as gold deposited rocks, iron
or coal ore. One of the key aspects in VFFS is that the RSS can exhibit frequency-
and amplitude-dependent behaviour. Due to the frequency dependency, an increase
in frequency can result in an increased stiffness. The non-linear behaviour under-
lying non-linear spring characteristics may, however, largely affect the vibration
characteristics of VFFS, which is responsible for a screen’s performance [1–3] but
has rarely been studied in detail. The most widely used model when considering
frequency-dependent behaviour is that of the Kelvin-Voigt (KV) model in which a
linear spring is installed in parallel to a viscous dashpot [4]. Yet, even though widely
used, this model overestimates damping in the higher frequency regimes [5, 6].
Placing a spring in series with a viscous dashpot, a three-parameter Maxwell model
can be obtained [7]; while underestimating the damping, it better approximates the
dynamic stiffness at high frequencies. To improve the prediction of the frequency-
dependent dynamics, the use of a fractional derivative model has therefore been
suggested by Sjöberg [8], which is composed of not only a fractional derivative
element but also a linear spring and Berg’s friction element to better approximate
the dynamic behaviour of rubber springs. Berg [7] presented in 1998 a smooth
friction model with two constants, this simple analytical model describes the non-
linear relationship between friction force and displacement (frictional hysteresis
curve) in rubber materials using a “smooth Coulomb friction force”, and it can
better approximate the smoothness of measured curves than e.g. the stick-slip
component model [8]. However, this friction model underestimates stiffness and
damping relative to the measurements when the excitation amplitude is too small.
Zhu et al. [9] enhanced Berg’s friction model using a parameter estimation via
statistical methods and remedied the effect the friction force had on the amplitude-
dependent behaviour.

This chapter presents a novel RSS model composed of an elastic, an amplitude-
and a frequency-dependent model. For improved accuracy, a non-linear spring
replaces the linear spring. The friction model uses fitted parameters dependent
on an affine function by maintaining Berg’s smooth friction model philosophy.
The viscoelastic property is described as a fractional derivative model using only
two parameters. Experimental cyclic tests of RSS are carried out to verify the
reasonability of the proposed model.

2 Model Development

Based on the specific experimental results, the overall structure of the proposed
model consists of three different branches (see Fig. 1). An elastic sub-model (force
Fe) represents the static non-linear stiffness characteristic, the friction model (Ff)
accounts for the hysteresis and the amplitude dependency, and the viscous model
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Fig. 1 Model with viscous sub-models

(Fv) is responsible for the frequency-dependent dynamics. Hence, the total force F
is the combined results of these three elements and is given by

F = Fe + Ff + Fv. (1)

2.1 Elastic Model

The elastic model consists of a non-linear algebraic relationship between the
instantaneous displacement x = x0 sin (ωt) and the resulting elastic force Fe = Kex,
where ω and t represent the angular frequency and the time, respectively. The elastic
stiffness Ke is identified by analysing the hysteresis loop obtained in the quasi-
static test (see Fig. 2) and fitted to an affine formula (constant and linear part) using
different amplitudes: Ke = a + bx0 with x0 [mm] being the excitation amplitude.
The parameters a [N/mm] and b [N/mm2] are obtained by the method of curve fitting
using the available experimental data.

2.2 Friction Model

The friction model used here is not that of Berg, which provides erroneous results
especially when the excitation amplitudes are small. It rather uses the friction model
with the relationship between the displacement x and the corresponding friction
force Ff and can be mathematically described by:

For x = xs

Ff = Ffs, (2a)
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Fig. 2 Hysteresis loop

for x > xs

Ff = Ffs + x − xs

x2 (1− ε)+ (x − xs)
(Ffmax − Ffs) , (2b)

for x < xs

Ff = Ffs + x − xs

x2 (1+ ε)− (x − xs)
(Ffmax + Ffs) . (2c)

Here, the reference displacement xs and force Ffs form the starting points
(xs, Ffs) = (0,0) of an iterative process which is updated whenever the direction of
excitation velocity changes. The maximum friction force Ffmax and the displacement
x2 are identified through the hysteresis loop (Fig. 2) and fitted to an affine function
using different amplitudes x0 : Ffmax = (c + dx0) and x2 = (e + fx0); c [N], d
[N/mm], e [mm], and f [mm2] are obtained via curve fitting using the available
experimental data. The parameters Ffmax and x2 in the Berg’s friction model are
constants with its friction force being described by formula (2). The instantaneous
friction coefficient ε = Ffs/Ffmax ranges from −1 to 1.

2.3 Viscous Model

There are several ways to model the viscous properties of rubber elements. One
method of modelling the viscous properties is to introduce a linear viscous damper
with parameter c and viscous force cẋ. However, this model can neither accurately
represent the non-linear behaviour of rubber springs, nor can it accurately represent
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the frequency dependency of the energy loss mechanisms. An improved formulation
of viscous forces uses a Maxwell module, which is represented by a viscous damper
placed in series to a linear spring. The viscoelastic force amplitude is expressed as

FvM = ωCMx0/

√
1+ (ωCM/KM)2

, where KM, CM are the stiffness of the linear
spring and the damping of the linear damper, respectively. Due to the Maxwell
module underestimating the damping at higher frequencies, a so-called fractional
derivative model has been proven to be useful in describing the viscoelastic property
of a rubber spring over a larger frequency range [9]. To define Fv the fractional
derivative model generalizes the operation of differentiation to non-integer orders

Fv = bDαx = b
dαx

dtα
. (3)

Here, non-integer α ∈ ]0, 1[ and b > 0 are model constants, which represent
the order of the time derivative as well as the coefficient of the viscoelastic force,
respectively. For α = 0 or α = 1 the model becomes that of a linear spring or a
viscous damper, respectively. The fractional derivative can be simplified through a
fractional Riemann–Liouville integration as

dαx(t)

dtα
= 1

% (1− α)

d

dt

∫ t

α

x(t)

(t − τ)α
dτ (4)

with the Gamma function being defined as [8]

% (β) =
∫ ∞

0
tβ−t exp (−t) dt. (5)

Here, exp denotes the exponential function. For numerical approximation of the
fractional derivative, a more convenient form can be given using the Grünwald–
Letnikov definition [8]:

Fvf (tn) = bDαxn ≈ b
(Δt)−α

% (−α)

n−1∑
j=0

% (j − α)

% (j + 1)
xn−j (6)

with tn = n1t, xn = x(tn); and 1t, n are a constant time step and the truncation
number, respectively.

3 Experimental Cyclic Tests of Shear Rubber Springs

Two experiments were conducted using quasi-static and harmonic dynamic tests.
In the quasi-static test, harmonic displacement excitations of 1–6 mm amplitude in
1 mm step at 0.01 Hz were applied to the actuator, respectively. The viscous force
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Fig. 3 Dynamic stiffness and damping tests of the RSS: (a) schematic drawing of the RSS; (b)
experimental test; (c) experimental data

can be neglected as the frequency is rather low (0.01 Hz). This allows to extract
from hysteresis loops Ke in elastic model, Ffmax as well as x2 in the friction model
(see Fig. 2) [7]. The harmonic dynamic tests use different frequencies ranging from
1 to 15 Hz in 1 Hz steps at 4 mm to vary the viscous force. The parameters α

and β of the spring-spot, c of the dashpot, KM and CM of the Maxwell model are
retrieved through numerically fitting the results of the harmonic dynamic tests [11].
The quasi-static and harmonic dynamic tests were also used to verify the proposed
model.

In this study, the RSS (Tiangong, size 203 × 70 × 48 mm, China, Fig. 3a)
was tested on a dynamic testing machine (Instron, Type E10000, accuracy ±0.5%,
Massachusetts, USA) (Fig. 3b). During the measurement, two fixtures were used
to connect the tested rubber spring and the test instrument. One fixture was fixed
with the actuator bearing system with maximum displacement and velocity being
30 mm and 500 mm/s, respectively. Another fixture was installed on the load cell
(Instron, type 2527, capacity 10 kN, accuracy ±0.005%, Massachusetts, USA)
and used to measure the force signal. Force and the displacement signals were
recorded using the Instron testing software (Instron, Type WaveMatrix, America).
A thermal imager (Testo, Type 875, sensitivity <50 mK, accuracy ±2% ◦C, Baden-
Würtemberg, Germany) was used to test the temperature of RSS. We guaranteed
several minutes break between two consecutive measurements to make sure that
every test was carried out at a constant temperature of 23 ◦C. To test the dynamic
stiffness and damping, a controlled sine wave was imposed on the structure, and the
resulting force was measured. One hundred and fifty cycles of data of all cases were
recorded and only steady-state data of force and displacement were used to form the
hysteresis hoops (see Fig. 3c); the dynamic stiffness K (storage and loss stiffness)
and the damping ratio ζ can be calculated from the measured hysteresis loops:
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K = 1

n

n∑
j=1

Fmax,j −Fmin,j

xmax,j − xmin,j
and ζ = 1

n

n∑
j=1

Ej

π
(
Fmax,j −Fmin,j

) (
xmax,j −xmin,j

)
/4

,

(7)

where Fmax, j and Fmin, j are the maximum and minimum force of each force-
displacement hysteresis plot, respectively, xmax, j and xmin, j are defined as the related
displacement of forces, n is the number of hysteresis loops evaluated to obtain an
average value, and Ej =

∮
Fdx represents the energy loss and is a closed integration

along the hysteresis loop.

4 Results and Discussion

Parameters for the elastic and the force model are identified through the method
described in Sect. 2. Parameters for the viscous model can be obtained using the
least-squares technique discussed in [11], and the parameters for the newly proposed
model as well as that of Sjöberg’s model are presented in Table 1. Here, R2 is the
coefficient of determination (squared Pearson correlation coefficient). Parameter
values for the elastic and the force model in Sjöberg’s model are shown by their
values of mean ± standard deviation. The Sjöberg’s model as it is widely used to
describe the dynamic behaviour of rubber springs [8, 10] is compared here with our
proposed model.

The simulated results of the proposed RSS model and Sjöberg’s model were
compared with experimental data in the quasi-static conditions, see Figs. 4 and 5.
It can be found in Fig. 4 that the hysteresis loops of the simulation results of the
proposed model better match the experimental results than those of Sjöberg’s model
when the excitation amplitude is small (1 mm), especially at large displacements of
the hysteresis loops. In addition, the amplitude-dependent behaviour of RSS can
be seen in Fig. 5: with an initial increase of the amplitude, the measured stiffness
decreases while the damping increases, before it starts decreasing for amplitudes
ranging from 1 to 6 mm. The description of the amplitude dependency in the
experiments can be enhanced using the proposed model instead that of Sjöberg’s
model (Fig. 5). In detail, the mean squared error (MSE) between the experimental
and the numerical stiffness of the proposed and Sjöberg’s model are 0.68 and 23.80,

Table 1 Parameters for the proposed model and Sjöberg’s model

Symbol Proposed model Sjöberg’s model Unit

Ke 205.9 − 3.28x0 (R2 = 0.998) 186.45 ± 0.43 [N/mm]
Ffmax 4.31 + 10.56x0 (R2 = 0.995) 68.3 ± 0.26 [N]
x2 0.45x0 − 0.09 (R2 = 0.993) 2.64 ± 0.04 [mm]
α 0.16 0.16 [–]
β 9.9 9.9 [Nsα/mm]
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Fig. 4 Hysteresis loops compared between experiment and simulation with frequency of 0.01 Hz
for different amplitudes: (a) 1 mm, (b) 6 mm

Fig. 5 Dynamic behaviour versus excitation amplitude with frequency of 0.01 Hz: (a) stiffness,
(b) damping ratio

respectively, and the MSE of damping between experiment and simulation of the
proposed model and the Sjöberg’s model are 0.0085 and 0.053, respectively.

A displacement of excitation amplitude x0 = 4 mm was chosen for frequencies
from 1 to 15 Hz. Similarly, using the parameter identification method, parameters
for NFD model (non-linear spring + friction + dashpot model) and NFM model
(non-linear spring + friction + Maxwell model) can be obtained (Table 2).
Parameters for the newly proposed model (non-linear spring + friction + fractional
derivative model) are listed in Table 1. Plotting the hysteresis loops and frequency-
dependent results of the experiments and for these three models produces Figs.
6 and 7, respectively. The hysteresis loop of the experimental results is more
accurately described by our newly proposed model compared to that of NFD model
and NFM model. This is especially the case for large displacements (Fig. 6). It
can be found in Fig. 7 that NFD model performs poorly in approximating either
the measured stiffness or the damping. Using NFM model results in an enhanced
fit of the stiffness, but the damping is far off from the experiments. The newly
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Table 2 Parameters for the proposed Model 1 and Model 2

NFD model Unit NFM model Unit

Ke = 205.9 − 3.28x0
(R2 = 0.998)

[N/mm] Ke = 205.9 − 3.28x0(R2=0.998) [N/mm]

Ffmax = 4.31 + 10.56x0

(R2 = 0.995)
[N] Ffmax = 4.31+10.56x0(R2=0.995) [N]

x2 = 0.45x0 − 0.09
(R 2= 0.993)

[mm] x2 = 0.45x0 − 0.09(R2=0.993) [mm]

C = 0.06 [Ns/mm] CM = 3.45 [Ns/mm]
KM = 17.73 [N/mm]

Fig. 6 Hysteresis loops compared between experiment and simulation with amplitude of 4 mm
for different frequency: (a) 1 Hz, (b) 15 Hz

Fig. 7 Dynamic behaviour versus excitation frequency with amplitude of 4 mm: (a) stiffness, (b)
damping ratio

proposed model shows the best fit of both the measured stiffness and the damping
compared with NFD and NFM models. In detail, the mean squared errors (MSE)
of stiffness and damping between experiment and simulation of NFD and NFM
models and the proposed model are 308.36 and 2.75 and 0.12, and 0.59, 1.52 and
0.079, respectively.
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5 Conclusion

In this study, we developed a non-linear model of a RSS to illustrate the depen-
dency of the rubber friction to the amplitude and the frequency dependency as
consequence of the viscoelastic properties of the rubber. The model is validated
experimentally using quasi-static and harmonic tests. The elastic element in the
proposed model is represented by a non-linear spring, and the friction model uses
fitted parameters depending on an affine function by maintaining Berg’s smooth
friction. The fractional derivative model is then used to describe the viscoelastic
property of the RSS. Several models for the investigated rubber spring are compared
with experimental results under quasi-static and harmonic excitation tests. The
newly proposed model is capable in describing the amplitude and the frequency
dependency more accurately than the models, which are conventionally used. The
research work presented here not only forms the first step to study the dynamic of
VFFS but also potentially contributes to better understand the dynamic behaviour
of RSS. How the dynamics will be influenced by the stress–strain relationship in
rubber materials using e.g. the Ramberg–Osgood or the extended Masing model
needs to be studied in the future.
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Operational Modal Analysis on a
Six-Degree-of-Freedom Parallel
Manipulator: Reproducibility, Excitation
and Pose Dependency

Kasper Ringgaard and Ole Balling

Abstract In machining applications knowledge of structural response is key
when optimizing the productivity. For six degrees of freedom parallel kinematic
manipulators the response can be highly pose dependent. Mapping the response
throughout the workspace becomes excessively labour intensive using traditional
techniques, such as experimental modal analysis and so far accurate structural
dynamic models are not convincing. This contribution covers experimental work
using operational modal analysis with shaker excitation to map the response in
multiple poses in the workspace of a 6-UTU parallel manipulator. The future
prospects of applying output-only modal analysis are better and faster modal anal-
ysis which can support correct modelling of vibrational response. This contribution
provides insight regarding reproducibility of operational modal analysis results, how
excitation with shakers affect the results and whether pose dependent structural
response is measurable using the technique.

1 Introduction

Parallel kinematic manipulators are receiving increasing attention in the field
of robotic machining due to superior stiffness and accuracy compared to serial
manipulators [1]. Knowledge of the structural dynamics of the manipulator is
required to efficiently manufacture high precision parts, but the structural response
of the manipulator can be highly dependent on the kinematic configuration of the
manipulator, i.e., the pose. The pose dependent dynamic response is caused by
multiple non-linear phenomena such as [2]: position dependent inertia properties
due to relative motion of bodies; changing stiffness- and damping-properties of
prismatic actuators with changing joint coordinates; non-linearity of contacts and
friction in joints. Modelling of position dependent inertia properties is manageable,
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but modelling of complicated contact and friction phenomena in structural dynamics
is cumbersome. The non-linear nature of the models yields high computational
cost, and the models often struggle to accurately represent the physics of the
systems [3].

In machining applications the general trend is to approximate the non-linear
structural response of the system with linear dynamics for different states of static
equilibrium of the structure, i.e., for different poses of the parallel manipulator. Two
approaches are found in machining literature: Mapping of the structural response
experimentally in the workspace and using dynamic models of the structure for
prediction of the structural response for different poses. An example of the former
is Tunc et al. [4] who obtained the dynamic response of a parallel manipulator in the
workspace through experimental modal analysis (EMA) for a grid of manipulator
poses. Mapping of structural response using EMA is labour intensive and lacks
details between grid points. Tunc et al. also focused solely on response of the
tool tip, thereby excluding the opportunity of understanding the physics of the
structure through the normal mode shapes. The latter is not well covered in machine
tool literature, but an example is Law et al. [5], who modelled a serial-parallel
kinematic machine tool using flexible multibody dynamics and applied EMA for
one specific pose for validation. The modelled response is not in good agreement
with experimental results, and the model is only compared to experimental results
for one specific pose; hence, validation of the non-linear pose dependent dynamic
response is not addressed.

Experimental modal data for more poses is required to better understand the
physics of the pose dependent dynamic response. This contribution proposes appli-
cation of Operational Modal Analysis (OMA) to overcome the labour intensiveness
of EMA. OMA is an output-only modal analysis technique, i.e., the method only
requires measurement of structural response using, e.g., accelerometers which
simplify the experimental work tremendously. The method is widely applied to
identification for large structures such as bridges and buildings [6], but applications
to machine structures are sparse. Recent trends in modal analysis drift towards
development of automated OMA, where an automatic algorithm identifies modal
parameters of the structure at hand [7]. If applied for parallel manipulators the
methods can identify modal properties for a large selection of poses without
requiring large amounts of manual labour during both experimental work and
identification.

The scope of this contribution is application of OMA on a six degree of freedom
parallel manipulator of the 6-UTU type. Experimental results from an extensive
experimental campaign are presented, and answer questions related to application
of OMA on parallel manipulators such as are the experiments reproducible, is
excitation using shakers feasible and is it possible to gain knowledge about how
the dynamic response changes with varying manipulator pose.
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2 Experimental Setup

A six-degree-of-freedom motion simulation system from MOOG INC. of the type
MB-E-6DOF, shown in Fig. 1a, is experimentally investigated in this contribution.
The system consists of one steel tube hexagon frame and six identical struts, each
comprised of two universal joints and one linear ball screw actuator. The non-
linearities of the system can be caused by non-linear changes of the inertia of the
system with pose, non-linear variations of strut stiffness with length and friction
and contact phenomena in both universal joints and the screw spindle drives and
motors. Two LDS V406 shakers, mounted on the structure, are activated using a
white noise signal and a set of accelerometers attached to the steel frame are used
to record the response. The signals are recorded using a National Instruments data
acquisition system connected to a PC. Each experiment lasts approximately two
minutes and data is collected with a sampling frequency of 10 kHz. The duration
of the measurement campaigns are based on recommendations stated in [7]. A
total of 20 B&K 4508-B uni-axial accelerometers are attached to the steel frame of
the motion base using polycarbonate clips glued to the surface. The accelerometer
measuring range is up to 8 kHz, with a sensitivity of 10 mV/g, a weight of 4.8 g
and a residual noise level of 250 μg. Sensors are distributed with focus on making
deflection modes of the steel platform observable. Six different manipulator poses
shown in Fig. 1b are selected for experimental analysis.

Fig. 1 (a) MOOG motion base MB-E-6DOF with sensor nodes indicated by red dots. Two
accelerometers are mounted for each node. (b) Illustration of the six poses investigated. The steel
frame is the thick line, the universal joints are the circles and actuators are thin lines. Each pose is
plotted with a different shade of grey/black
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3 Results and Discussion

The randomness of the recorded time signals, which is a prerequisite for application
of OMA identification, is validated through comparison to Gaussian normal distri-
butions prior to modal analysis. The time signals are transformed to the frequency
domain, and the poles and mode shapes are identified using the Frequency Domain
Decomposition (FDD) [10] identification method. The FDD technique decomposes
the signal using Singular Value Decomposition (SVD) and the peaks in singular
values are identified as poles of the system. The singular vectors associated with
singular value peaks are representative of structural mode shapes.

3.1 Reproducibility

A series of experiments are conducted to clarify whether experiments are repro-
ducible. Two successive experiments are conducted for each of the six poses.
Figure 2 sums up results regarding reproducibility of experiments. Frequencies are

Fig. 2 Identification results for all reproducibility experiments. (a) Frequency comparison, (b)
damping ratio comparison, (c) mode complexity factor comparison [8], (d) sum of MAC diagonal
for each pose, (e) MAC plot [9] for the two tests in pose 1. For (a), (b) and (c) the identifications
correlate perfectly if all markers are on diagonal line. For (d) the modes correlate fully if a value of
one is obtained, and (e) shows full correlation if the diagonal is black and all off-diagonal elements
are white
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in general well re-identified. The damping ratios are re-estimated with considerable
variance, as is the mode complexity factors. The real part of the mode shapes is
well re-identified for all six poses. An example MAC [9] is shown in Fig. 2e. This
indicates that the three first modes in the 5–15 Hz region might be the same mode
and not three separate modes. In the 40–100 Hz region the off-diagonal elements
show considerable correlation.

3.2 Shaker Reorientation and Relocation

Attaching shakers to the structure changes the physics of the system by alternating
the mass distribution. The orientation of the shakers determine directions of
excitation forces applied to the structure. A series of test for one specific manipulator
pose is conducted to gain insight into the effect. Figure 3 presents results of shaker
manipulation tests. All three manipulation tests are compared to the same reference
test. Frequencies are in general well correlated, damping ratios are more widespread
and modal complexity factor have very little correlation. Mode shapes are not well
re-estimated except for a few cases. The results indicate that relocation of an exciter
changes the real parts (frequency and MAC) more than reorientation alone. The
results also show that reorientation of the excitation forces causes large changes in
complex parts of the signals (damping ratios and mode complexity factors).

Fig. 3 Identification results for shaker reorientation and relocation. See Fig. 2 for explanation of
plot content
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3.3 Pose Dependency

Pose dependency of the dynamic response is analysed through the identified modal
parameters for pose 1 to pose 6. The mode shapes identified for pose 1 are compared
to the mode shapes of pose 6 using MAC and six modes having MAC values above
0.80 are deemed comparable. Figure 4 illustrates how the identified frequencies
changes for the six modes for pose 1 to 6. Polynomial functions are fitted to the
data points to evaluate the nature of the variations, and for two modes the best
fit is non-linear (second order polynomial). By inspection Fig. 4 shows that modes
1, 2, 4 and 5 vary less than 1 Hz across the six poses, whereas mode 3 changes
approximately 6 Hz and mode 6 changes approximately 2 Hz. Thus, the only modes
varying significantly with the pose of the manipulator are mode 3 and mode 6 which
are visualized in Fig. 5.

By inspection of the mode shapes for mode 3 in Fig. 5a, b the mode can be
interpreted as bending of the steel platform and some level of axial deflection of the
struts. Thus, changing the strut stiffness will impose changes boundary conditions
on the platform and therefore change the frequency. The strut lengths increase going
from pose 1 to 6, which causes both axial and lateral stiffness of the struts to
decrease. Considering the fact that the lateral stiffness of a simply supported beam,
which is comparable to the UTU struts, decreases non-linearly with increasing beam
length could be the source of the non-linear decrease of the frequency for mode
number 3. The mode shapes of mode 6 in Fig. 5c, d show that mode shape 6 does not
involve large axial deflections of the struts, but some larger bending deflections of
the platform. In Fig. 4 the frequency of mode 6 is increasing, which is opposite to the
behaviour of mode 3. Based on this the change in frequency might be measurement

Fig. 4 Frequency variation with varying pose for six correlated modes. Modes 1, 2, 5 and 6 fitted
using first order polynomials and modes 3 and 4 are second order polynomials
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(a) Pose 1 @ 153.4 Hz (b) Pose 6 @ 147.1 Hz

(c) Pose 1 @ 283.7 Hz (d) Pose 6 @ 285.7 Hz

Fig. 5 Mode shape visualizations for (a), (b) mode 3 and (c), (d) mode 6, respectively. Black lines
represent the undeformed structure and red lines represent the deformed structure. Dots indicate
measured points

uncertainty. The remaining frequencies are independent of pose for the scenarios
tested in this case. This indicates that the modes are either related to, e.g., vibration
of the base of the manipulator, i.e., vibration of the entire manipulator, or that the
strut stiffnesses do not vary sufficiently with pose for any significant change to be
measured on the platform.

4 Conclusion

This contribution presents the findings of applying operational modal analysis with
shaker excitation to a MOOG MB-E-6DOF parallel manipulator. As presented in the
introduction the study is stepping stone for obtaining automated extraction of modal
parameters for large number of poses for parallel manipulators which can aid studies
on non-linear changes of modal parameters and modelling of systems. A set of
poles and mode shapes are found to be stable throughout the experiments, but some
variations are present in the complex parts of the parameters. Mounting shakers
alters the response significantly, and complex parts of the identified parameters are
sensitive to excitation directions and positions. The sensitivity of the parameters
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are caused by high correlation of the measured response and the excitation signal.
A subset of identifiable poles are traced across six different poses. Majority of the
modes do not vary with pose and are therefore concluded to either be related to, e.g.,
base vibration or simply not affected by varying strut stiffnesses to a measurable
extent for the poses investigated. One mode varies significantly and is concluded to
vary non-linearly with pose based on polynomial regression. The origin of the non-
linearity is assumed to be the changing length of the struts, which can physically
be interpreted as simply supported beams which has a non-linear change of lateral
stiffness with length.

The experimental results presented spurs continuation of research towards
application of automated operational modal analysis on parallel manipulators. The
application of shaker excitation needs re-evaluation based on the findings of the
extensive experimental campaign presented in this paper. A new excitation scheme
which does not interfere with the structure, and excites the structure more randomly
in space has to be developed. This has the potential of lowering the complexity of
the mode shapes, i.e., obtain normal mode descriptions instead of operational mode
shapes. Additionally, increasing the signal-to-noise ratio could aid clarification of
the results in the 40–100 Hz region, along with making other poles more clear and
less complex. Further studies of the non-linearities should be conducted through
investigation of more poses which causes larger changes of strut lengths and inertia
properties. Furthermore, an investigation of the lateral vibration of the struts is
proposed to clarify whether the lateral vibration modes of the struts are in fact a
part of the modes of vibration.
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Shaking Table Investigation on the
Masonry Structures Behaviour to
Earthquakes with Strong Vertical
Component

Nicola Cavalagli, Matteo Ciano, Gianluca Fagotti, Massimiliano Gioffrè,
Vittorio Gusella, and Chiara Pepi

Abstract In this paper an experimental investigation on the dynamic response
of masonry structures due to the combined effects of vertical and horizontal
seismic components is presented. The motivation of this study started with on-
site observations of a special damage state affecting some masonry buildings after
the Central Italy earthquake in 2016, which can be ascribed to the interaction
of vertical and horizontal components of the seismic action. For this purpose,
experimental tests on a two-storey building masonry structure were performed using
a shaking table in order to investigate its behaviour to earthquakes with strong
vertical component.

Keywords Masonry structures · Shaking table test · Seismic action · Vertical
acceleration

1 Introduction

In 2016 Central Italy and Umbria Region have been struck by a seismic sequence of
significance intensity highlighting the necessity to improve the knowledge regarding
the nonlinear dynamic response of masonry structures subjected to horizontal and
vertical loads. In particular, several buildings located in a restricted area near the
city of Norcia have shown special damage patterns that can be related to the
vertical component of the seismic action. It is well known that the understanding
of the nonlinear dynamic behaviour and damage accumulation process of masonry

N. Cavalagli (�) · M. Ciano · M. Gioffrè · V. Gusella · C. Pepi
Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
e-mail: nicola.cavalagli@unipg.it; matteo.ciano@unipg.it; massimiliano.gioffre@unipg.it;
vittorio.gusella@unipg.it; chiara.pepi@unipg.it

G. Fagotti
Ufficio Speciale Ricostruzione Umbria, Foligno, Italy
e-mail: fagotti@regione.umbria.it

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), Nonlinear Dynamics of Structures,
Systems and Devices, https://doi.org/10.1007/978-3-030-34713-0_34

337

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34713-0_34&domain=pdf
mailto:nicola.cavalagli@unipg.it
mailto:matteo.ciano@unipg.it
mailto:massimiliano.gioffre@unipg.it
mailto:vittorio.gusella@unipg.it
mailto:chiara.pepi@unipg.it
mailto:fagotti@regione.umbria.it
https://doi.org/10.1007/978-3-030-34713-0_34


338 N. Cavalagli et al.

material, under seismic sequences, is a very important topic [1, 2]. Nevertheless,
despite the important role played by the vertical acceleration, a few contributions
focused on it can be found in literature [3, 4].

In this context, a research programme aimed at improving the dynamic perfor-
mance of masonry structures by using confined masonry technique was started. An
experimental campaign on shaking table has been carried out at the ENEA labora-
tory in Casaccia, Rome, on both unreinforced and confined masonry buildings, in
order to compare the dynamic response provided by the two different construction
typologies. In order to highlight the significant role of the vertical component, this
paper is focused only to the case of unreinforced model. The main experimental
observations are presented and the preliminary results given by an analytical model
are shown.

2 Description of the Experimental Tests

2.1 Tested Masonry Building Model

The tested masonry building model is characterized by two storeys, having 3.00 ×
3.50 m plan dimensions and 2.20 m height for each storey (Fig. 1a and b). The
model shape and dimensions are similar to previous experimental tests available
in literature carried out on the same shaking table [5]. The masonry consists of
bearing clay blocks with 45% of core percentage, 25 × 18 cm size and 16 cm
thickness. The first floor is a hallow-core slab with reinforced concrete elements,
while the roof is made of steel frames designed in order to facilitate the positioning
of additional masses at both the levels. The façades of the model are characterized

Fig. 1 (a) and (b) Geometrical details of two model façades. (c) Two-storey masonry building
model tested on the shaking table



Shaking Table Tests on Masonry Structures. . . 339

by several openings having different dimensions and positioning, in order to confer
eccentricity to the global stiffness. Figure 1 reports the details of two model façades
(Fig. 1a and b) and an image of the model on the shaking table (Fig. 1c). For more
details about geometrical description and other characteristics see [6].

2.2 Experimental Setup

The experimental tests were carried out on a shaking table of 4×4 m2 in dimensions
and characterized by six degrees of freedom, a frequency range of [0–50]Hz,
maximum acceleration of 3.0 g, maximum velocity of 0.5 m/s and a maximum
allowed displacement of 0.25 m. The earthquake of October 30th 2016, called in
the following as N , recorded by a station of the national accelerometric network
(Italian Civil Protection Department) in the city of Norcia was used as input, being
characterized by a high intensity in all directions. Figure 2 shows the acceleration
time histories of the three components and the related acceleration spectra. The
shaking table tests have been carried out by applying all of the three components of
the seismic signals reported in Fig. 2 simultaneously and increasing/decreasing the
intensity level in three steps: 0.25N , N and 1.2N . Other intermediate steps with
intensity lower than N have not been used to avoid damage accumulation.

The dynamic response of the model during the test is evaluated by an acceleration
acquisition system and a 3D motion capture system. The first one consists of 10
uniaxial MEMS (Micro Electrical Mechanical Systems) accelerometers, installed
in seven points of the model (Fig. 3a): three at each level including the base and

Fig. 2 Acceleration time histories recorded at the base of the model corresponding to 100% of the
seismic intensity level (upper panels) and corresponding spectra (lower panels)
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Fig. 3 (a) Position scheme of uniaxial MEMS accelerometers during the tests. (b) Marker
positions on B façades

one for the vertical component. The sensors used are uniaxial accelerometers with a
sensitivity of 1V/g, a measuring range of± 2g and equipped with a linear analogue
output.

The motion capture system is a 3D light-based system consisting of 9 Near
InfraRed digital cameras for data acquisition [7]. The target points are identified
by several markers fixed on the model surfaces. The displacement data processing
has been carried out through specific procedures developed by the ENEA research
group. The markers are positioned in several points, particularly 66, on the
walls surfaces and used as three-dimensional single point optical displacement
measurements. The green dots in Fig. 3b indicate the positions of the markers.

2.3 Experimental Results

As previously described (Sect. 2.2), the dynamic input N has been applied at the
base of the model with three incremental scale factors: 0.25N , N and 1.2N . Each
dynamic test has been followed by a random noise input base acceleration to allow
for structural identification. For more details see [6].

The first dynamic test (0.25N ) did not cause any visible damage to the structure.
On the other hand, the test with 100% seismic intensity level caused a significant
damage scenario, mainly located in the lower part of the structure, due to combined
effects of the horizontal and vertical components of the seismic load. Figure 4 shows
two out of four elevation views of the model with the observed damage.

During the test, a vertical detachment of the crack B-1 and B-2 has been clearly
observed, followed by a small residual sliding between the upper and the lower parts
of the structure. As a consequence, a mixed mode of fracture has been observed on
the B façade: Mode I fracture, as the vertical opening if solid along a bed joint;
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Fig. 4 Damage scenario for 100% of the seismic intensity level input: (a) A façade Fig. 1a; (b)
B-façade Fig. 1b

Mode II fracture with a sliding on the bed joints due to shear loads. This aspect is
also highlighted by the displacement time series recorded during the tests by the
3D motion capture system. Figure 5 shows the vertical (Δz) and horizontal (Δx)
relative displacement time series extracted from the markers B61-B21, B51-B31,
B52-B32 and B62-B22. The vertical opening of fracture is highlighted by the peak
values in Δz graph, which reach almost 7 mm, while the residual sliding observed
in the Δx graph is of about 2 mm. It is worth noting that the input acceleration data
(Fig. 2) and the output displacement observations (Fig. 5) are not recorded with the
same acquisition system so that they appear asynchronized.

Finally, the test with 120% seismic intensity level did not cause any further
visible cracks in the model.

3 Simplified Rocking Model

The dynamic response of masonry structures is in some cases suitable to be analysed
through nonlinear dynamics of rigid bodies [8–11]. In this context, other papers
can be found in literature concerning the influence of the vertical acceleration on
the dynamics of rectangular rigid bodies [12, 13], in which the different motion
possibilities of liftoff and/or slip are explained.

In order to evaluate the influence of the vertical component in the described
shaking table test, a preliminary analytical rocking model has been investigated.
Starting from the observed damage, the idea is to verify the possibility of rocking
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Fig. 5 Dynamic measurement of Δx and Δz displacements between the targets B61-B21, B51-
B31, B52-B32 and B62-B22 of Fig. 1b for 100% of the seismic intensity level input

Fig. 6 (a) Displacements field detected by the 3D motion capture measurement system in the
instant frame related to rocking motion of the model upper part. (b) Reference scheme for the
rocking analysis of B-façade

motion activation with and without the presence of vertical action. The portion of
structure participating which was moved in rocking has been identified through
the analysis of the dynamic displacements field detected by the 3D motion capture
measurement system, together with the observation of the damage pattern (Fig. 6a).
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The model is referred only to the B-façade of the masonry building and is analysed
in its plane. With reference to Fig. 6b, the liftoff activating conditions of the detached
rigid body to horizontal and vertical ground motion are derived from the equilibrium
of the overturning moment and stabilizing moment around the indicated pivoting
edge

M(g + az)R sinα < M|ax |R cosα, (1)

where M is the mass of the block, g is the gravity acceleration, ax and az are the
horizontal and vertical ground acceleration, respectively. The values of ax are taken
in their absolute values to be in the safe side. Being the model analysed only in the
B-façade plane, the mass M has been estimated considering the right ratio of the
slabs’ weights, comprising the constituent materials and the additional masses fixed
on them. Finally, the relation (1) can be reduced in the following ratios ρ1 and ρ2
related to the activation conditions of liftoff motion, with and without considering
the vertical acceleration, respectively,

ρ1 = |ax |/
[
(g + az) tanα

]
> 1 (2)

ρ2 = |ax |/
[
g tanα

]
> 1 (3)

Figure 7 shows the values of the ratios ρ1 and ρ2 evaluated from the acceleration
time series and the geometrical properties of the model. The overcoming of the
threshold ρ1 = 1 in Fig. 7a points out the activation of the rocking motion in
presence of the vertical acceleration, while in Fig. 7b the value ρ2 = 1 is not be
reached. Finally, it is conceivable to believe that the particular dynamic response of
the masonry building model on shaking table can be ascribed to the presence of the
vertical component of the seismic action.

Fig. 7 Evaluation of the ratios ρ1 (a) and ρ2 (b) in presence and in absence of the vertical
acceleration, respectively,
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4 Conclusions

In this paper the first results obtained by shaking table experimental tests on a
two-storey masonry building model have been presented. The dynamic tests have
been performed using all three seismic input accelerations time series in order
to investigate the influence of the vertical component on the dynamic structural
response. A preliminary analysis of the experimental results has pointed out the
influence of the vertical acceleration component on the dynamic response. A
simplified analytical model based on the rocking behaviour of rigid bodies has
confirmed this result.
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Quantifying Rate-Dependence of a
Nonlinear Hysteretic Device

Marco Antonelli, Biagio Carboni, Walter Lacarbonara , Davide Bernardini,
and Tamás Kalmár-Nagy

Abstract Hysteretic systems are extensively used in vibration control and in a wide
range of mechanical problems. The first issue is to know whether the system is rate-
dependent or not. In order to address the problem for a specific device employed
for vibration isolation, laboratory measurements using a uniaxial testing machine
are performed. The device is represented by a wire rope spring. Different types of
tests are conducted in displacement control acquiring the device restoring force:
cyclic ramps with increasing amplitudes and displacement time histories reobtained
applying simple and random homeomorphisms to the ramp histories. The rate-
dependence is evaluated comparing the restoring forces measured for the different
tests and estimating a quantitative parameter which is chosen to measure the rate-
dependence degree.

Keywords Experimental hysteresis · Rate-dependence · Nonlinear device · Wire
rope testing · Asymmetric restoring force

1 Introduction

The hysteretic cycles exhibited by short wire ropes subject to coupled bending
tensile loads are currently exploited for applications in the field of vibration
control [7]. An important aspect consists in establishing the rate-dependence of the
restoring force to properly address the device modeling. By definition, a system
is rate-independent if the restoring force does not depend on the loading rate
and its responses are invariant with respect to invertible transformations of the
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time scale [1]. A survey of rate-independent systems can be found in various
sources [2]. The selection of a rate-dependent or rate-independent model is very
important for hysteretic systems [3, 4]. A quantification of rate-dependence is
crucial to understand the system behavior and which type of constitutive model best
represents its response. In order to check the rate-dependence of a system, a general
transformation of the time scale t is denoted by tnew = φ(t). According to [5], a
rate-dependence measure can be defined as follows:

ε = ∣∣∣∣βt [u (φ (t)) ; x0]− αφ(t) [u (t) ; x0]
∣∣∣∣ . (1)

In Eq. (1), ε represents a rate-dependence parameter, which lies in a neighborhood
of zero if the system is rate-independent, while αt [u (t) ; x0] and βt [u (φ (t)) ; x0]
indicate the original experimental output of the system and that obtained applying
the time transformation, respectively (i.e., the homeomorphism), or vice versa.
The rate-dependence parameter may be evaluated on the basis of two different
experimental outputs, by which another parameter is varied (i.e., velocity). Whereas
in [5] analytical and numerical tests about the accuracy of the measure (1) were
discussed, in this paper a possible way to estimate ε by means of experimental data
is proposed.

2 Test Apparatus and Experimental Campaign

The system under consideration is shown in Fig. 1a and it consists of two plates
connected at their edges with two steel continuous wire ropes. The device is
manufactured by Enidine [6] and is used for isolation purposes for vertical or
horizontal base excitations. The tests are performed with a Zwick Roell testing
machine under displacement control and are arranged in 4 groups for this study.

Fig. 1 (a) The specimen initial configuration and (b) Displacement time histories: the thin line
shows the ramp-periodic input, while the thick line shows the input displacement history obtained
with the simple homeomorphism applied to a single cycle and then repeated
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Fig. 2 Input displacement vs. time of Test18 in Group D

Table 1 Tests of Group A and B

Group ID A B

Test ID Test01 Test02 Test03 Test04 Test05 Test06 Test07 Test08 Test09

Amax [mm] 5 10 15 5 10 15 5 10 15

v [mm/s] 0.5 0.5 0.5 1.0 1.0 1.0 10.0 10.0 10.0

Group A consists of cyclic ramps with different amplitudes Amax = {5, 10, 15}mm
and constant velocity v = 0.5 mm/s (Fig. 1b thin line). Group B consists of ramps
with amplitudes Amax = {5, 10, 15}mm and velocities v = {1.0, 10.0}mm/s
which are obtained by applying simple linear homeomorphisms to the loading
histories of Group A. Group C consists of cycles obtained applying linear (Fig. 1b
thick line) and random homeomorphisms on the third test of Group A, which is
associated with Amax = 15 mm. Finally, Group D contains cyclic increasing-
decreasing ramp tests, characterized by different increment-decrement ΔAmax at
each cycle and velocities v (see Fig. 2).

2.1 Results of Group A and Group B Tests

The tests of Group A are assumed as reference tests and are listed, together with
Group B, in Table 1. The maximum velocity and displacement are chosen according
to the Zwick Roell machine and the device limits. Group B represents very simple
homeomorphisms applied to the reference tests of Group A.

The results of the Group A tests are presented in Fig. 3, for the three different
amplitudes. The outcomes show that the device has a strong hardening behavior
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Fig. 3 Experimental force-displacement cycles for Group A tests. (a) Amax = 5 mm. (b) Amax =
10 mm. (c) Amax = 15 mm

Table 2 Tests of Group C

Test ID Test10 Test11 Test12 Test13 Test14

Homeomorphism Simple Simple Simple Simple Random

Coefficient a 0.2 0.4 0.6 0.8 –

for positive displacements (i.e., coupled tensile and bending forces on the ropes)
which becomes more pronounced at larger amplitudes. For negative displacements
(i.e., coupled compression and bending forces on the ropes) the device exhibits
a softening behavior. The nonsymmetric restoring force is expected to provide a
global softening behavior for low amplitudes that evolves in hardening when a
threshold amplitude is exceeded.

2.2 Results of Group C

Tests of type C (see Table 2) are homeomorphic transformations of Test03 (see
Table 1) defined by the following time rescaling:

tnew = ti+1 − ti+1 − ti

1+ 1−a
a

t−ti
ti+1−t

. (2)

It turns out that when a < 0.5, the new transformed time is such that the
displacement history is stretched along the positive loading direction and it is
contracted in the remaining part of the cycles, while for a > 0.5 the opposite
behavior occurs. If a = 0.5, Eq. (2) reduces to the identity transformation, thus
the test reduces to the reference one.

All transformations are applied to the first cycle and then repeated 5 times as
for the tests of Group A. Figure 1b (thick line) shows the homeomorphism defined
by Eq. (2) for a = 0.2. Besides the simple homeomorphisms defined by (2), more
refined random homeomorphisms are used to test the rate-dependence. The random
homeomorphisms are defined by Eq. (3) where the reference time of Test03 is
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Fig. 4 Experimental force-displacement cycles for Group C tests

denoted by t and the rescaled time is t̃ . Vector r contains N − 1 scalars where
N represents the number of recorded time instants. The values assumed by r are
chosen according to a Gaussian distribution in the range [0, 1], so that the resulting
homeomorphisms are Gaussian random homeomorphisms:

t̃i+1 = t̃i + 2 ri (ti+1 − ti ) , i = 1, . . . , N − 1 (3)

Concerning the test results, as shown in Fig. 4, the restoring force histories
obtained with the simple homeomorphisms are very similar anticipating an essential
rate-independent behavior. Only the measurements performed taking into account
the random homeomorphism look a little different from the others.

2.3 Results of Group D

The tests within Group D are performed using an increasing-decreasing ramp
displacements time history. They are characterized by a number of growing cycles
with a constant amplitude variation ΔA at each cycle (see Fig. 2). All tests reach
the maximum amplitude of 15 mm and then reduce their amplitude with the same
ΔA. These displacement histories are repeated twice or five times. They are also
performed for different speeds according to Table 3.

The results of the Group D tests are presented in Fig. 5. Significant differences
of the restoring force between the homeomorphic tests cannot be appreciated by
the visual inspection of the plots. Whereas visual inspection of the plots which
describe the experimental results roughly suggests a rate-independent behavior of
the system under consideration, the problem of a precise, quantitative assessment
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Table 3 Tests of group D

Test ID Test15 Test16 Test17 Test18 Test19 Test20 Test21

ΔA [mm] 2.5 2.5 2.5 3 3 3 3

v [mm/s] 0.5 1.0 10.0 0.5 1.0 10.0 10.0

Repetitions 2 2 2 2 2 2 5

Fig. 5 Experimental force-displacement cycles for the tests of Group D. (a) ΔA = 2.5 mm. (b)
ΔA = 3.0 mm

according to measure (1), based on use of experimental data is addressed next. This
is thus a natural sequel of the approach presented in [5] which made use of numerical
simulations only.

3 Rate-Dependence Matrices

Having carried out several experimental tests, a rate-dependence test can be
performed for each pair of tests whose loading histories are related by a given
homeomorphism. A possible rate-dependence measure of the experimental tests (i,
j ) can be defined according to:

εij = 1

N

N∑
k=1

Fi(sk)− Fj (sk)

max
(|Fi(sk)| ,

∣∣Fj (sk)
∣∣) , (4)

where N is number of points in which the force-displacement records are interpo-
lated, sk represents the kth input displacement to which the force Fi(sk) of the ith
test is acquired. Interpolations are necessary to have vectors of the same length and
the restoring forces Fi and Fj must be computed at the same displacement sk .

Computing (4) for each pair of tests, the rate-dependence matrix ε is obtained.
Given the strong asymmetry between tensile and compressive responses of this
system, it is useful to compute the following two similar matrices:
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ε
C,T
ij = 1

N

N∑
k=1

Fi(sk)− Fj (sk)

max
(|Fi(sk)| ,

∣∣Fj (sk)
∣∣) , sk < 0, sk � 0. (5)

In Eq. (5) the displacement sign convention for sk assumes that they are positive
when the deformations are extending the wire ropes and vice versa. Therefore the
matrices εCij and εTij define the compression rate-dependence matrix and the tension
rate-dependence matrix, respectively (notice that the evaluation of rate-dependence
is done in terms of restoring forces). It turns out that all these matrices are skew-
symmetric by definition. Tables 4, 5 and 6 show the matrices computed from the
experimental results. Moreover, the tables show also an additional row defined
according to:

Ej =

m∑
i=1

∣∣εij
∣∣

m
, j = 1, . . . , m, (6)

where m denotes the number of tests considered in the comparison.

Table 4 Rate-dependence matrix containing the parameters εij : Fi , Fj interpolated with N =
2851; the matrix norm is equal to 6.16%

Test ID T03 T06 T09 T10 T11 T12 T13 T14

T03 0 0.049 0.014 −0.019 −0.044 −0.063 −0.100 0.083

T06 0 −0.028 −0.060 −0.081 −0.097 −0.130 0.044

T09 0 −0.027 −0.056 −0.075 −0.111 0.061

T10 0 −0.031 −0.051 −0.090 0.095

T11 0 −0.028 −0.071 0.113

T12 0 −0.053 0.126

T13 0 0.156

T14 0

E [%] 4.9 6.1 4.7 4.7 5.3 6.2 8.9 8.5

Table 5 Compression rate-dependence matrix containing the parameters εCij : Fi , Fj interpolated
with N = 2851; the matrix norm is equal to 5.91%

Test ID T03 T06 T09 T10 T11 T12 T13 T14

T03 0 0.058 0.046 −0.019 −0.042 −0.060 −0.101 0.054

T06 0 −0.005 −0.069 −0.089 −0.105 −0.141 −0.004

T09 0 −0.058 −0.077 −0.093 −0.129 0.006

T10 0 −0.028 −0.048 −0.090 0.071

T11 0 −0.025 −0.069 0.093

T12 0 −0.052 0.110

T13 0 0.150

T14 0

E [%] 4.7 5.9 5.2 4.8 5.3 6.2 9.1 6.1
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Table 6 Tensile rate-dependence matrix containing the parameters εTij : Fi , Fj interpolated with
N = 2851 points; the matrix norm is equal to 6.41%

Test ID T03 T06 T09 T10 T11 T12 T13 T14

T03 0 0.041 −0.015 −0.019 −0.045 −0.065 −0.099 0.109

T06 0 −0.048 −0.053 −0.075 −0.090 −0.120 0.088

T09 0 0.000 −0.037 −0.059 −0.096 0.109

T10 0 −0.034 −0.054 −0.089 0.117

T11 0 −0.032 −0.072 0.130

T12 0 −0.054 0.140

T13 0 0.161

T14 0

E [%] 4.9 6.4 4.6 4.6 5.3 6.2 8.6 10.7

The mean values Ej of the parameters εij indicate a norm of the rate-dependence
behavior. In fact, Eq. (6) provides the percent mean difference in terms of restoring
force of a given displacement history with respect to the associated homeomorphic
time transformed histories. The final norm of the rate-dependence matrix is defined
as the mean of the values Ej which turns out to be equal to 6.16%, 5.91%, and
6.41% for matrices Tables 4, 5 and 6, respectively. The averages of the parameters ε

show an upper bound close to 10%. The values obtained for the tensile branches
are slightly larger denoting a sensible rate-dependent behavior when the device
becomes hardening due to the coupled bending and tensile forces arising in the
ropes. However, in the range of the investigated velocities, the behavior of the
system can be considered practically rate-independent since the difference in terms
of restoring force is negligible for the overall system dynamics.

4 Conclusions

In this work the problem of obtaining a quantitative measure of the possible rate-
dependence behavior of a given system by means of experimental tests has been
addressed. The average value of Ej in (6) can be considered an experimental
counterpart of the measure (1) proposed in [5]. The application of this procedure
to the tension-compression tests of a wire rope device has shown that the method
can be successfully applied to other real systems. Refinements of the analysis by
focusing attention to restricted parts of the response (i.e., tension as opposed to
compression) were also explored. Further applications of this procedure to other
systems will be described in future works.
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Application of Photoelasticity to Some
Nonlinear Dynamic Problems and Stress
State Analysis in Dams: A Brief Overview
Inspired by the Results of Prof. Vlatko
Brčić

Katica R. (Stevanović) Hedrih, Stanko V. Brčić, and Stepa Paunović

Abstract Photoelasticity is a useful method for experimental testing of structures,
which can provide Ã direct visual insight into the stress state in a tested model.
Photoelastic method has been used in various types of problems, and this chapter
provides a brief overview of the development and application of this method, from
its early stages and static applications, to some problems of nonlinear dynamics and
stress state analysis in dams. Since there is relatively obscure literature on exper-
imental dam testing, and prof. V. Brčić (1919–2000) has published several papers
regarding this topic, although done several decades ago, these papers provide a solid
basis for photoelastic dam testing and are referenced here briefly. The improvements
of the method from its beginnings to its current state are also summarized, and
many recent researches on practical applications of the photoelastic method to some
nonlinear dynamics problems are pointed out.

Keywords Photoelastodynamics · Photoelastic testing · Dams

1 Introduction

Photoelasticity is one of the few methods for experimental testing of structures,
which provides a direct visual insight into the stress state in a tested specimen. It is
a very useful method with a broad application field. The aim of this chapter is to give
a brief overview of the development of the photoelasticity and its application to the
stress state analysis in some nonlinear dynamics problems, with a special emphasis
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on testing of dams, since it has played an important role in dam design in the past
and it is still a useful method for experimental testing of dams even today.

However, experimental testing and construction of dams are very costly and
relatively rare, thus the literature on this subject is relatively obscure. Still, in the
second half of the twentieth century many dams were built in Yugoslavia (now the
Western Balkans region) and many of them were designed and/or tested by prof.
Vlatko Brčić, a prominent researcher and engineer of that time, who afterwards
published several papers regarding experimental testing of dams, which have
influenced the development of the photoelastic method and its practical application.
Prof. Brčić was also one of the first researchers to combine photoelastic method with
holographic interferometry, but nevertheless, all these papers are only concerned
with static stress analysis, due to technical limitations of that time.

However, over the last several decades there has been a tremendous technological
advancement which has also enabled the improvement of photoelastic method. For
instance, now the maps of isoclinics and isochromatics can be captured in much
more detail [1] and also some new optically active materials are used [2], but
the main difference is that now digital polariscope is used and image acquisition
and processing is done automatically. Therefore, testing process has become much
more precise, significantly faster and almost completely automated through the use
of image acquisition and processing, RGB interferometry, and 3D printing (e.g.,
[3]). These advances, combined with the development of high-speed cameras, made
photoelastic analysis of dynamic problems possible.

In this chapter, a brief overview of the development and application of the
photoelastic method to the stress state analysis in dynamic problems is presented,
including the dynamic analysis of dams. However, although prof. Brčić published
papers regarding only static analysis of dams, these papers are also referenced here
because they present valuable material on the photoelastic dam testing. Therefore,
the chapter is organized as follows: first the key points of the invention and the
development of the method are presented, from its early stages and static stress
analysis applications, to its more recent state, pointing out the main advancements
and improvements. In the subsequent section the application to dynamics problems
including some complex phenomena and dynamic dam testing is presented, and at
the end the concluding remarks are given.

2 Photoelasticity: Development and Dam Testing
Applications

2.1 Invention and Early Development of Photoelasticity

Photoelasticity (in its current form) has been invented at the beginning of the
twentieth century, and it is based on birefringence and stress-optical activity of some
translucent materials. Since it is a very convenient experimental testing method,
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it quickly became widely used and developed in the middle of the last century.
However, since the image acquisition technology was relatively limited at that
time, the application of the photoelasticity was restricted to static analysis only.
Nevertheless, many practical applications of this method arose, one of which was in
the process of design and experimental testing of dams. And as it has been already
mentioned, many dams in Western Balkans were designed and tested by Professor
V. Brčić around the middle of the twentieth century.

2.2 Static Photoelastic Analysis of Dams and Prof. Brčić’s
Contribution

Prof. Dr. Eng. Sci. and Dipl. Math. Vlatko Brčić (September 16, 1919, Varaždin,
Croatia, Yugoslavia—August 22, 2000, Belgrade, Serbia) was a renowned and
very active mathematician, engineer, professor, researcher, and scientist, and he
was acknowledged worldwide (for instance, he held a course in holographic
interferometry at the International Centre for Mechanical Sciences in Udine, Italy,
in 1974). Prof. Brčić has conducted numerous researches of dams and published
some of these results, providing a solid foundation for dam research and design. A
more detailed review of these papers can be found in [4], while only the key points
of some of them are presented here.

In the beginning of his professional career, Prof. Brčić used photoelastic analysis
to investigate the stress concentrations in dams with openings, depending on the
opening position in the dam body [5]. The analyzed models and the corresponding
isochromatics are shown in Fig. 1a [4]. Afterwards he broadened this research
to analyze the influence of the foundation soil on the stress concentrations,
while treating the soil as a homogeneous elastic continuum [6]. Isochromatics are
presented in Fig. 1b.

Fig. 1 (a) The variant positions of the openings in a gravity dam and the corresponding maps of
isochromatics [4], (b) The isochromatics for the model of the dam and the elastic soil [6]
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Fig. 2 Isochromatics for Mratinje dam models; (a) photograph, (b) scheme [8]

Later on, he used the acquired knowledge to analyze the stress state in the buttress
dam of the hydroelectric power plant Bajina Bašta in detail [7]. This analysis
gave valuable insight in stress state inside the dam buttresses and improved the
dam design process. Later still, prof. Brčić used photoelasticity to investigate the
influence of discontinuities in bedrock supporting a dam [8]. Therein, two cases
were studied—the Grančarevo dam and the Mratinje dam (220 m high). The main
focus was modeling and examination of cracked (discontinuous) supporting bedrock
and its influence on the stress state inside the dams. The resulting isochromatics are
shown in Fig. 2.

As it can be seen, even in its beginnings, photoelasticity was successfully used
in solving some very complex engineering problems, including the design and
testing of several types of dams. However, these investigations were restricted
to static analysis in early stages of the method development, and it was only
after technological advancements took place that the photoelastic testing could be
broadened to dynamic problems.

2.3 Improvements of the Method and Its Contemporary State

Over the second half of the last century, photoelasticity was much improved, mainly
by combining it with other optical methods and incorporating some technological
advancements and inventions of that time, regarding materials as well as the image
capturing and processing methods. For instance, prof. Brčić contributed to combin-
ing the holographic interferometry with the photoelastic testing, thus overcoming
one of its main drawbacks [9]. Also, new artificial materials such as different
plastics, resins or alloys, even glass [2], made it possible to investigate some more
complex phenomena. This has led to the development of photoviscoelasticity and
photoplasticity [4], or even to the photoelastic testing of the influence of structures’
self-weight [10].

However, the main advances were made in the field of computer aided testing,
image acquisition and processing, greatly improving the quality and precision of
the results and efficiency of the testing process, which is now almost completely
automated [11]. Also, 3D printing is now used for model production, which enabled
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Fig. 3 (a) Isochromatics in a 3D printed specimen of concrete tested by stress freezing photoe-
lastic method [3], (b) isoclinics in the tested gravity dam for the three considered positions of a
discontinuity in the foundation soil [14]

detailed testing of highly complex structures, thus overcoming another major
drawback of early photoelasticity. This has been done for instance in [11], or in
[3], presented in Fig. 3a, where the photoelastic testing of a 3D model of highly
heterogeneous material such as concrete was conducted. All these improvements
made it possible to use photoelastic analysis in both materially and geometrically
nonlinear problems. It has been successfully applied to some complex problems
regarding fracture mechanics [12], composite and porous materials stress analysis
[13], but also dam testing—as has been done in [14] for instance, results of which are
shown in Fig. 3b. In that paper the influence of a bedrock on the stress state in one
gravity dam in China was investigated. Although done recently (2012), this research
highly resembles the work of Prof. Brčić done several decades ago. Photoelastic
method can also be used for nondestructive stress analysis of structures in situ,
by using some optically active coatings, which combined with modern computer
equipment allows for a real-time stress analysis of structures [15].

However, the main broadening of the field of application of the photoelastic
method was due to the invention of high-speed cameras, which enabled the
application of this method to dynamic and transient problems, while still having the
capacity to deal with both material and geometrical nonlinearities. This has made
photoelasticity an indispensable method for experimental stress testing in nonlinear
dynamics problems.

3 Contemporary Use of Photoelasticity in Nonlinear
Dynamics

In this century, photoelasticity has been used in different fields of dynamics. One
application example is the investigation of stress wave propagation in solids, as has
been done in [16–18] for instance. Figure 4a shows how a stress wave propagates
through a medium with discontinuities [11], and Fig. 4b shows how a stress wave
propagates through a series of disks [18]. Photoelasticity was also used to investigate
the dynamic fracture and crack propagation in material, as reported in [19] or in [20]
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Fig. 4 (a) Stress wave propagation in an elastic medium with a discontinuity (a hole), in the first
200 μs [11], (b) Stress wave propagation analysis in a chain of 3 disks, from 100 to 450 μs [18],
(c) the crack formation and its propagation in a concrete cylinder under dynamic load [20], (d)
Analysis of vibration and stress wave propagation in a massive concrete dam [21]

and presented in Fig. 4c. There were also photoelastic studies on how seismic waves
propagate through a gravity dam body (e.g., [21], presented in Fig. 4d).

Another complex nonlinear problem that photoelasticity has successfully been
applied to is the contact analysis. In fact, photoelastic testing is the only available
method to directly experimentally determine the contact stresses. Many forms of
contact analysis were performed with photoelastic method. For instance, in [22]
the influence of inclusions of different shapes on stress field in the surrounding
matrix of a composite material was investigated (Fig. 5a)). Also, simultaneous
multiple body contact can be analyzed by the photoelastic method, as shown in [23]
(Fig. 5b)). Moreover, photoelastic analysis has been used to solve the problems of
gear contact, one of very complex and highly nonlinear dynamic problems. There
are many papers on its application to the design process and model testing (e.g.,
[7, 15]), but through the use of reflexive polariscope, also the real parts and gears
can be tested by the photoelastic method, as has been reported in [24], for instance
(Fig. 5c, d). In addition, photoelasticity can be used to investigate some even more
complex phenomena such as contact stress analysis of cracked gears, where contact
analysis of elements with complex geometry is coupled with fracture mechanics
effects [25] (Fig. 5e)). There have even been reported investigations on the seismic
effects on a multistory building [26] (Fig. 5f)).
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Fig. 5 (a) Stress concentration in composite matrix around a stiff inclusion [22], (b) multiple body
contact stress analysis [23], (c) contact stresses in gears analyzed by reflexive polariscope [24], (d)
a detail of contact stresses in gears [24], (e) contact stresses in cracked gears [25], (f) photoelastic
testing of seismic impact on a part of a multistory building [26]

4 Concluding Remarks

From everything presented, it can be concluded that photoelasticity is a powerful
and reliable tool for experimental testing of structures and can greatly contribute
to solving some complex problems of nonlinear dynamics, as well as to validate
theoretical analyses of those problems. New technologies regarding materials and
3D printing enable its application to problems with both material and geometrical
nonlinearities. However, dynamic photoelastic testing is possible only in the case of
plane stress state, but with further advances in technology, this limitation could also
be overcome, broadening the method’s field of application even more.

On the other hand, recently, most attention is directed towards detailed numerical
modeling of structures, mostly by the finite element method (FEM). However,
numerical modeling cannot replace experimental testing entirely. There are some
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phenomena too complex or still not known and investigated enough for which there
are yet no appropriate mathematical models, and photoelasticity is irreplaceable
when it comes to the whole field evaluation and stress analysis of structures.
Therefore, photoelasticity and FEM should be used as complement methods, and the
same goes for other methods for experimental testing of structures, such as digital
image correlation technique. In this combination of experimental testing methods
lies another application potential. Namely, in DIC the deformations are measured
and stresses are deduced by applying the constitutive relations. On the contrary,
in photoelastic testing, stresses are obtained directly, while deformations should be
deduced based on the applied constitutive relations. Therefore, combining these two
methods provides a tool for validating the proposed constitutive relations, again
proving the efficiency and applicability of the photoelastic method in the process of
both experimental and theoretical analysis of structures.
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10. Brčić, V., Nešović, M. Primena niskomodulnih materijala kod ispitivanja uticaja sopstene
težine, Saopštenja Instituta “Jaroslav Černi”, pp. 23–36 (1968)
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Levitated and Parametrically Excited
Sphere Dynamics in a Single-Axis
Ultrasonic Levitator

Amit Dolev and Izhak Bucher

Abstract The dynamics of an acoustically levitated rigid small sphere subjected to
a parametric excitation is investigated analytically, experimentally, and numerically.
An axisymmetric single-axis ultrasonic (~28.56 kHz) levitator comprising an
emitter and a matching concave reflector was designed and built, and the complex
acoustic field generated by the emitter’s unique oscillation mode is estimated by the
boundary element method. The generated acoustic radiation forces counteracting
gravity are approximated using Gor’kov potential and are modulated by varying the
emitter oscillation amplitude. In addition, it is assumed that energy is dissipated
by a drag force acting on the smooth sphere. By fitting the nonlinear conservative
and dissipative forces, an analytical model was derived and analytically solved
using the method of multiple scales. The analytical solution, in case of principal
parametric resonance (PPR), predicts a softening behavior with a good agreement
to the numerical simulations. Moreover, it predicts the existence of up to three
solutions at a given frequency, where the trivial and a nontrivial solution are stable.
In addition, experimental results of a levitated sphere made of polystyrene foam
subjected to PPR are shown.

Keywords Acoustic levitation · Parametric excitation · Multiple scales

1 Introduction

The standing wave-based levitation phenomenon attracts much interest, and various
methods were developed over the years to allow free floatation of solid and
liquid matter [1] (e.g., magnetic, electric, optical, and acoustic levitation). Acoustic
levitation differs from other methods because it is materials-independent (i.e.,
it can be used to levitate any solids, liquids, and even heavy gases). In recent
years, there is a growing interest in technologies allowing contactless levitation
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and manipulation of particles, droplets, and small specimens. Apparatuses whose
underlying mechanism is standing wave acoustic levitation are already in use in
different fields (e.g., microassembly [2], analytical chemistry [3], and materials
science [4]). These acoustic levitation devices (ALDs) are mainly used to suspend
particles in fixed positions in space; however, there is a growing interest in ALDs
capable of particle manipulation. Currently, most particle manipulations are done
quasi-statically [5], i.e., particles are manipulated by slowly varying the acoustic
trap position while ignoring the dynamics.

To design faster and more accurate ALDs capable of particle manipulation, a
better understanding of the dynamics is required. In this work, an axisymmetric
single-axis ultrasonic levitator suspends a small rigid sphere, and its dynamics is
investigated when subjected to a PPR. The derived analytical model assumes that
energy is dissipated by the drag force, and the levitation forces are modeled using
Gor’kov potential [6].

2 Derivation of the Governing Equations of Motion

Acoustic radiation forces are generated by nonlinear phenomena occurring in strong
acoustic fields and can be used to counteract gravity and generate propulsion.
These forces can be expressed analytically for numerous cases; herein they are
approximated by computing the Gor’kov potential gradient (Eq. (1)). Gor’kov used
the linear acoustic wave equation solution to estimate the acoustic radiation forces
acting on a small rigid sphere. Given the potential, the force vector acting on the
sphere can be computed.

UG = 2πr3
s

[
1

3ρ0c
2
0

(
1− ρ0c

2
0

ρsc2
s

) 〈
p2

1

〉
− ρ0

(
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2ρs + ρ0

)
〈u1 · u1〉

]
, F = −∇UG.

(1)

where ρ0/s are the air and sphere densities, c0/s are the sound speeds in the air and
sphere, rs is the sphere’s radius, p1 is the linear pressure in the sphere’s location, u1
is the particle velocity at the location of the sphere, and 〈•〉 is the time average of •.

Assuming the ALD in Fig. 1 is axisymmetric, the governing equations in
the presence of gravity without dissipation are derived by employing Hamilton’s
principal. Considering only movement along the ALD z-axis as shown in Fig. 2,
and adding the drag force ad hoc (Fd see Eq. (2)), the governing equation is:

mz̈− Fd (ż)+ ∂UG
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= −mg, Fd (ż) = −ρπr2

s

2
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μ
|ż| .
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Fig. 1 (a) The single-axis ultrasonic levitator experimental system. (b) An acoustically levitated
rigid sphere (1.5 mm diameter) made of polystyrene foam

Fig. 2 (a) The single-axis ultrasonic levitator section view. The normalized pressure field and
matching normalized Gor’kov potential were numerically computed using the boundary elements
method. (b) The total normalized potential energy on the symmetry line along the z-axis and a
marker highlighting the selected equilibrium point zeq

Here μ is the air dynamic viscosity. Moreover, UG is linearly related to the second
power of the emitter’s velocity. Hence, by modulating it, the parametric excitation
is introduced into Eq. (2), which can be written in the following form:
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whereas
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Here, ε is a small positive parameter related to the linear damping, λ is the
acoustic wavelength, Ω = ωp/ωn is the scaled parametric excitation frequency, α < 1
is the parametric excitation magnitude, and zeq is the equilibrium position (shown
in Fig. 2b). The numerically computed conservative and drag forces were curves
fitted, and the parameters are in accordance with the experimental system. Once the
parameters were estimated, Eq. (3) in its dimensionless form reduces to:
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whereas
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(6)

3 Approximate Analytical Solution

In this section, the asymptotic solution is approximated using the method of multiple
scales [7]. A second-order uniform solution in the following form is sought:

u (ε, τ ) = u0 (τ0, τ1, τ2)+ εu1 (τ0, τ1, τ2)+ ε2u2 (τ0, τ1, τ2) , τ
i = εi t . (7)

The fast time scale is associated with changes occurring at frequency close to ωn,
which is scaled to unity. The other slow time scales are associated with amplitude
and phase modulations due to damping, resonances, and nonlinearities. Eliminating
u from Eq. (5) using Eq. (7), and collecting terms in the same order of magnitude in
ε, leads to:
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ε0 : D2
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The zero-order solution, expressed in complex form is u0 = A (τ1, τ2) eiτ0 + cc,
where cc stands for the complex conjugate of the proceeding terms. Next, u0 is
eliminated from Eq. (9). When the pumping frequency is approximately twice the
natural frequency, yielding PPR, the particular solution of Eq. (9) contains secular
and small divisor terms, hence the following detuning parameter, σ , is defined as
Ω = 2 + εσ . Therefore, the terms producing secular terms in u1 can be eliminated
by solving:
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2
γAeiσ τ 1 = 0, (11)

where A is the complex conjugate of A, and the particular solution is:
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Now, both u0 and u1 are eliminated from Eq. (10), and the terms D1A and D2
1A

are eliminated via Eq. (11). Eliminating the secular terms yields:
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]}
A+ γ

4

[
σ + 4Fκ2

(2+ εσ )2 − 1

]
Aeiεστ 0

+ 1

3

(
10κ2

2 − 9κ3 − 9iζ3

)
A2A− 2iD2A = 0

(13)

It can be shown that Eqs. (11) and (13) are the first two terms in a multiple scale
analysis of:

−2i
(
A′ + εζ 1A

)− γ ε

2
Aeiεστ 0 + ε2

96
× [

3
(
32ζ 2

1 A− 3γ 2
)
A+ 8

(
4Fγ κ2 + 3γ σ

)
Aeiεστ 0

+32
(
10κ2

2 − 9 (κ3 + iζ3)
)
A2A

] = 0

(14)
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Substituting the polar form A(τ ) = 0.5a(τ )eiφ(τ ) into Eq. (14), separating to real
and imaginary, and transforming the latter equation set to an autonomous system,
by defining ψ = εστ − 2φ, the steady-state solution (i.e., a′ = ψ ′ = 0) can be
computed:

u = a0 cos

(
ωp

2
t − ψ0

2

)
+O (ε) (15)

where a0 and ψ0 are the steady state amplitude and phase, accordingly.
It can be shown that γ should be larger than 4ζ 1 to achieve a nontrivial solution

[8, 9]; therefore, it was set approximately as 4.8ζ 1 (see Eq. (6)).

4 Numerical Simulation Verification

The approximate analytical solution is verified by comparing the dominant har-
monic amplitude of the responses a0, whose frequency is close to ωn. In what
follows, the analytically computed amplitudes are compared with four different
numerical simulations, during which the amplitude and velocity stayed in bounds
of the curve fitting (see Sect. 2). The simulations differ by the stiffness and damping
models that were used. The two stiffness models and two damping models are
according to Eq. (2) and Eq. (4). The appropriate models that were used in each
simulation are summarized in the table in Fig. 3, and the results are depicted in
Fig. 3. Lines show the analytically computed amplitudes, and markers show the
numerically computed results. Continuous and dashed lines show the stable and
unstable solution branches accordingly. The results shown in the Fig. 3 verify the
predicted softening behavior, which is due to the quadratic stiffness and negative
cubic stiffness [9, 11, 12].

The steady-state solution stability was determined in a standard procedure [7].
Good agreement between the analytical solution and numerical simulations was
obtained; however, at σ ≈ −45 the simulations depart from the analytical solution,
as the nontrivial solution is no longer stable in practice. It can be deduced from the
results that the simplified model suffices to capture the dynamics with high accuracy.

5 Preliminary Experimental Results

Using the experimental rig shown in Fig. 1a, a small rigid sphere made of
polystyrene foam (rs ≈ 1.5 mm, λ ≈ 1.2 cm) was levitated steadily (Fig. 1b).

As a first step towards parametric excitation, the natural frequency was estimated
from a step response (Fig. 4). The motion of the sphere was captured using a
high-speed camera, and the instantaneous frequency was estimated by applying
Hilbert transform [10], as shown in Fig. 4. The average value, which approximates
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Fig. 3 The dominant harmonic amplitude a0 vs. the detuning parameter σ . Continuous (dashed)
lines depict the stable (unstable) analytical solution, and markers depict the simulated results

Fig. 4 Measured step response. (a) The sphere’s displacement in the z direction. (b) The
instantaneous frequency, computed using the Hilbert transform [10]

the natural frequency, is ωn = 26.5 Hz. Once the natural frequency was known,
the velocity amplitude of the emitter was modulated according to Eq. (4), at
Ω = 52.3 Hz. The two leading terms of the Hilbert vibration decomposition (HVD)
[10] were extracted, and their average instantaneous frequencies are f1 = 26.13 Hz
and f2 = 52.3 Hz. It is shown in Fig. 5a that the first component is more than an order
of magnitude larger than the second term, and its frequency (Fig. 5b) is half of the
excitation frequency, while the frequency of the second term equals the excitation
frequency. Therefore, it can be deduced that the first component is due to principal
parametric resonance, and the second is due to the direct forcing (see Eq. (3)).
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Fig. 5 Measured response to PPR. (a) The two leading HVD (see [10]) components of the
displacements of the sphere in the z direction. (b) The instantaneous frequency of each component

6 Summary and Conclusions

The dynamics of a small rigid acoustically levitated sphere subjected to principal
parametric resonance was studied analytically and numerically. Moreover, the
ability to parametrically excite it was shown experimentally. The parameters for
the analytical models were estimated according to an experimental setup in the
laboratory (Fig. 1). This study is a preliminary stage prior to conducting experiments
and validating the derived results. According to the setup, a numerical simulation
was carried out to estimate the generated pressure field, from which the sound
radiation forces were computed (Fig. 2). The conservative acoustic force and drag
force were fitted in the close neighborhood of the equilibrium position, by which
a simplified nonlinear equation of motion was derived. The equation of motion
was analytically solved using the method of multiple scales, and the solution was
numerically verified (Fig. 3), as the numerical results are in good agreement with
analytical solution. According to the model, the system has a softening behavior due
to the quadratic stiffness and negative cubic stiffness terms. Moreover, up to three
solutions may coexist at a given frequency, where one is unstable, another is the
trivial solution, and the last one is nontrivial.

In the last section, experimental results of an acoustically levitated sphere
subjected to PPR were shown, hence validating the theory. However, these are
preliminary results, and further research is required. It is important to estimate
the stiffness and damping models as accurately as possible, in order to tune
the parametric excitation frequency and magnitude properly to yield principal
parametric resonance.
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Modelling VIV of Transversally
Oscillating Rigid Structures Using
Nonlinear Fluid Oscillators

Victoria Kurushina, Ekaterina Pavlovskaia, Andrey Postnikov,
Guilherme Rosa Franzini, and Marian Wiercigroch

Abstract This work is aimed to develop a series of wake oscillator models
to predict displacements of the single degree-of-freedom (1DOF) rigid structure
for a range of mass ratio. The work includes modification of the model with
alternative damping terms, calibration of the models with the “medium” mass ratio
(around 6.0), validation with the same experimental arrangement, validation with
the different set-up and definition of the application range.

Keywords Vortex-induced vibration · Wake oscillator · Rigid structure ·
Calibration · Validation

1 Introduction

Although a lot of work has been done on modelling of vortex-induced vibrations
(VIV) for both rigid and flexible structures, there is still a need to improve the
prediction accuracy of the existing models. The current study is focused on the
problem of the transversally oscillating rigid structure modelled using the semi-
empirical wake oscillator method. This class of models implies that fluctuations of

V. Kurushina (�)
Department of Transport of Hydrocarbon Resources, Institute of Transport, Industrial University
of Tyumen, Tyumen, Russia

Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen, Kings’
College, Aberdeen, Scotland, United Kingdom
e-mail: v.kurushina@outlook.com

E. Pavlovskaia · M. Wiercigroch
Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen,
Kings’ College, Aberdeen, Scotland, United Kingdom

A. Postnikov
School of Engineering, University of Lincoln, Lincoln, United Kingdom

G. R. Franzini
Offshore Mechanics Laboratory, Escola Politécnica, University of São Paulo, São Paulo, Brazil

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), Nonlinear Dynamics of Structures,
Systems and Devices, https://doi.org/10.1007/978-3-030-34713-0_38

379

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34713-0_38&domain=pdf
mailto:v.kurushina@outlook.com
https://doi.org/10.1007/978-3-030-34713-0_38


380 V. Kurushina et al.

the fluid drag and lift forces on the structure can be predicted using self-excited limit
cycle oscillators, and a number of empirical constants should be employed in order
to establish a link with the real phenomenon.

Wake oscillator method was developed primarily to model VIV during the
resonance (or lock-in state) between the fluid and the structure. Lock-in can be
observed in terms of the cross-flow/in-line displacement amplitudes depending
on the reduced velocity of the flow. Jauvtis and Williamson [1] proposed the
terminology for the elements of the lock-in peak: the lock-in of the low mass
ratio (below 6.0) 2DOF structures consists of the initial, super-upper and lower
branches, and the lock-in of the high mass ratio (above 6.0) 2DOF structures
and all 1DOF structures is formed by the initial, upper and lower branches. This
classification is based on the difference in both developed amplitudes and the peak
shape. At the present time, the mathematical apparatus of wake oscillator method
for lock-in modelling includes the relationship between the drag and lift coefficients
[2]; coupling terms between the structural and the fluid equation [3]; frequency-
dependent coefficients [4]; nonlinear structural equation [5]; various nonlinear
damping terms in the fluid equation [6, 7]; relationship between the mean drag and
the transverse oscillation amplitude [8, 9]. The calibration of empirical coefficients
using the constrained nonlinear minimization tool was developed in [10] to establish
a strong connection of the semi-empirical wake oscillator and the experimental data.

Comparing 1DOF and 2DOF rigid structures’ oscillations during lock-in, it is
possible to notice both similarities and differences. Lock-in of both 1DOF and
2DOF rigid structures is sensitive to the Reynolds number, mass and damping ratios,
as explicitly shown in the experimental study [11], and to other set-up parameters,
such as the influence of the aspect ratio [12] or the angle between the flow and the
structure [13].

The work [9] has observed the evolution of the super-upper branch of the 2DOF
rigid structures. Lock-in at the low mass ratio of 2.36 has the angular shape, and
there is the abrupt drop from the top displacement amplitude, that is significantly
higher than the one for 1DOF structure, to the lower branch. Increase in the mass
ratio leads to the almost circular upper branch at the mass ratio of 10.63 observed for
the 2DOF rigid structure, very close to the amplitudes of the 1DOF structure. It is
also possible to observe in [9] the similarity between the 1DOF and 2DOF lock-in:
the initial branch shifts to the higher values of the reduced velocity with the growing
mass ratio for both structures.

The study [10] shows that the beginning of lock-in in terms of the reduced veloc-
ity for a 2DOF rigid structure is similar throughout a few different experimental
arrangements, if the mass ratio is kept in the range of approximately from 2.0
to 4.0. Other case parameters, including Reynolds number and damping ratio, are
significantly different across the considered set-ups. On the contrary, the work [14]
shows that the shape of lock-in peak and the start point of lock-in in the reduced
velocity range of a transversally oscillating rigid structure (1DOF) is quite sensitive
to the experimental arrangement, especially to the end conditions.

In the current research, the authors aim to investigate the prediction accuracy of
the wake oscillator models in the case of a transversally oscillating rigid structure
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(1DOF). The research objectives include modification of the existing wake oscillator
model [3] with various nonlinear damping types; calibration with the experimental
data [9] for the mass ratio 6.54 which can be defined as “medium” mass ratio
according to the classification in [1]; identification of the most accurate model
options with the corresponding sets of coefficients and the approximate applicability
range, based on the comparison with the data for “low” and “high” mass ratios in [9].

The rest of the paper is structured as follows: Section 2 describes the considered
nonlinear damping terms for the wake oscillator model of a 1DOF rigid structure
oscillating in the uniform flow and the strategy for calibration. Section 3 presents
the calibration results and their discussion, and, finally, a summary of the conducted
research is given in Sect. 4.

2 Mathematical Model: Modification and Calibration

The influence of fluid nonlinearities on the quality of the VIV prediction is studied
in this work using the base model of a 1DOF rigid structure oscillating in the fluid
flow, as in [3, 15]. The model is designed to predict free vibrations of an elastically
mounted rigid cylinder oscillating in the cross-flow direction and restricted in the
in-line direction. The structure is shown in Fig. 1. It is characterized by structural
mass ms , diameter D, structural damping rs and stiffness of elastic support k in the
cross-flow (Y ) direction.

In the mathematical description of this system, the following non-dimensional
parameters are used:

ωst = ωn

ω0
; ξ = rs

2ω0m∗
; μ = 4ms

πρfD2 , (1)

where ωn is the natural frequency of the structure in still water according to
experimental data [9], ω0 is the reference frequency, ρf is the fluid density, ξ is

Fig. 1 One degree-of-freedom elastically supported rigid structure interacting with the uniform
flow of velocity U
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the dimensionless damping ratio, ωst is the dimensionless natural frequency of the
structure and μ is the mass ratio.

In all calculations conducted in this study, the reference frequency ω0 is kept
equal to the natural frequency of the structure ωn, therefore, the dimensionless
frequency is ωst = ωn

ω0
= 1. Mass m∗ includes the structural mass and the fluid

added mass as m∗ = 0.25
(
μ + CA

)
πρfD

2, where CA is the fluid added mass

coefficient. The coefficient CA is assumed to be equal to 1 in the majority of
VIV studies. However, in the current research the coefficient CA will be calibrated
together with the other dimensionless coefficients.

The time t and the cross-flow displacement y of the centre of the structure are
non-dimensionalized as τ = ω0t and Y = y/D, respectively.

The fluid flow is assumed to be uniform, with the velocity U and the vortex
shedding frequency Ωf . In the dimensionless form of the model, the reduced
velocity UR = (2πU) / (ωnD) and the vortex shedding frequency ΩR = Ωf /ω0 =
(2πStU) / (ω0D) are applied.

The reduced velocity from the experimental data available in the literature is used
in all calculations performed in this work. The Strouhal number St is assumed to be
constant and equal to 0.2 in this study for all considered cases.

The lift force acting on the cylinder is calculated using the fluctuating lift
coefficient CL which is represented as non-dimensional cross-flow wake coeffi-
cient q = 2CL/CL0. The amplitude of the lift coefficient observed for a fixed
cylinder CL0 and the initial drag coefficient CD0 are included in the dimensionless
coefficients d = (

CL0ρfD
2
)
/
(
16π2St2m∗

)
and e = (

CD0ρfD
2
)
/ (4πStm∗),

respectively.
The base equations of motion are

Ÿ + 2ξ Ẏ + ω2
stY = dΩ2

Rq − eΩRẎ ; (2)

q̈ + εyΩR(q
2 − 1)q̇ +Ω2

Rq = AyŸ . (3)

Here, Ay is the empirical coefficient in the acceleration coupling term proposed
in [3], and the Van der Pol oscillator is employed to model fluctuations of the lift
force, with the nonlinear damping εyΩR(q

2 − 1)q̇.
There are a few versions of damping in the fluid equation employed throughout

the history of the wake oscillator method, as proposed by Rayleigh, Van der Pol,
Landl [6] and Krenk and Nielsen [7]. The current study focuses on investigating
the effects of these options on the accuracy of prediction of the base model. The
equations of oscillators replacing Eq. (3) are presented in Table 1. In addition
to the classic Van der Pol and Rayleigh equations, it is suggested to investigate
also Modified Van der Pol and Modified Rayleigh equations where the damping
coefficient εy is split into separate coefficients for each damping term as εy1 and
εy2. Landl and Krenk-Nielsen equations contain also coefficient εy3 to regulate the
contribution of the third damping term of wake oscillator. Therefore, this study
considers the base model and 5 models with modified fluid oscillators, with 6–8
calibrated empirical coefficients.
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Table 1 Wake oscillator equations considered instead of Eq. (3) for one degree-of-freedom model

Oscillator Cross-flow equation

Modified Van der Pol q̈ − εy1ΩRq̇ + εy2ΩRq̇q
2 +Ω2

Rq = AyŸ

Classic Rayleigh q̈ − εyΩRq̇ + εy
ΩR

q̇3 +Ω2
Rq = AyŸ

Modified Rayleigh q̈ − εy1ΩRq̇ + εy2
ΩR

q̇3 +Ω2
Rq = AyŸ

Landl q̈ +ΩRq̇(εy1 − εy2q
2 + εy3q

4)+Ω2
Rq = AyŸ

Krenk-Nielsen q̈ − εy1ΩRq̇ + εy2ΩRq̇q
2 + εy3

ΩR
q̇3 +Ω2

Rq = AyŸ

Calibration of the considered models is performed using four different calibration
schemes as proposed in [10] utilising nonlinear minimization tool from the Matlab
Optimization Toolbox. To obtain the amplitudes of displacement for a range of the
flow velocities, the equations of motion described in this section are integrated using
the Matlab ode45 solver applying zero initial conditions to all variables apart from
the wake coefficient which initial value is set up to be small but non-zero.

Models are calibrated using the experimental data [9] for the mass ratio of 6.54,
the damping ratio of 0.006 and the Reynolds number ranging from 18,300 to 83,800.
The data are presented in [9] for the mass ratios from 2.36 to 12.96 and allow
validation with the same experimental arrangement. The structure has the diameter
of 0.0554 m, the aspect ratio of 8 and the natural frequency of 1.261 Hz for the
mass ratio of 6.54. The experimental data [9] are focused on the evolution of the
upper branch with the systematic variation of the mass ratio, implying that other
case parameters are kept the same throughout all the experiments. The same as in
the experimental study [9], the calculations were done independently for each flow
velocity value, and the effects of following the obtained solution with increasing or
decreasing flow velocity were not considered.

The preliminary calibrations of this set of 1DOF models allow to conclude that
the prediction of the initial branch can be significantly improved by introducing
the lock-in delay coefficient K , which is similar to the observations presented in
[10]. The coefficient K is the difference between the velocities of the lock-in start
according to the experimental data used for calibration URexp and according to the
model URm, or K = URexp − URm. Hence, the 1DOF rigid structure model with,
for example, Rayleigh damping is as follows:

Ÿ + 2ξ Ẏ + ω2
stY = d(ΩR − StK)2q − e(ΩR − StK)Ẏ ; (4)

q̈ + εy(ΩR − StK)(q̇2 − 1)q̇ + (ΩR − StK)2q = AyŸ , (5)

where StK corrects the frequency of vortex formation in order to tune the initial
branch of lock-in as in the experimental data.

The influence of a simple substitution of damping while keeping the same set of
coefficients is illustrated in Fig. 2. Here, CL0 = 0.84, CD0 = 2.03, εy = εy1 =
εy2 = εy3 = 0.019019, Ay = 5.28, CA = 0.87,K = 1.04. The classic Van der
Pol equation allows the modelled structure to develop the highest amplitudes of
displacement, and the Landl damping results in the lowest amplitudes. Also, the
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Fig. 2 Influence of fluid nonlinearities on prediction of the amplitude of cross-flow oscillations
through the lock-in region of velocity of the flow, if the empirical coefficients are kept the same:
CL0 = 0.84, CD0 = 2.03, εy = εy1 = εy2 = εy3 = 0.019019, Ay = 5.28, CA = 0.87,K = 1.04

highest displacement amplitude occurs at a slightly higher reduced velocity when
the Rayleigh or Landl oscillator is applied.

The calibration results presented in Sect. 3 with the target data [9] are obtained
with the 6 models modified with the lock-in delay coefficient K .

3 Results and Discussion

Results of the calibration with the medium mass ratio of 6.54 are summarized in
Table 2. These models with the corresponding sets of coefficients are short-listed
based on the lowest objective function obtained during the optimization. Table 2
does not reveal a preferable oscillator, but it shows that the simple Van der Pol and
Rayleigh oscillators are not at the top of the list in terms of the prediction accuracy.

The calibration results are presented in Fig. 3a. Here, Option 5 gives the most
accurate highest displacement amplitudes and a suitable initial branch, but the peak
predictions in the reduced velocity interval from 7.0 to 8.0 are much better with the
other model variations.

The validation of models from Table 2 with the experimental data from a different
set-up [12] is shown in Fig. 3b. This experimental case is very close to [9] in terms
of the mass and damping ratio, however, the Reynolds number range is significantly
lower. The calibrated models presented in Fig. 3b allow accurate prediction of the
upper branch, but they underestimate the lower branch of the lock-in peak. The
lock-in delay coefficient K , calibrated with the set-up [9], appears not applicable
for the set-up [12]. This suggests that the coefficient K should be calibrated for
each facility.
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Table 2 Calibrated coefficients for different models obtained using experimental results [9] for
the mass ratio of 6.54

Option
number Option Signal statistics CL0 CD0 εy Ay CA K

1 Krenk-
Nielsen

Standard deviation 0.61 1.75 0.081990, 0.016313,
0.012551

5.49 1.12 1.34

2 Modified
Rayleigh

Standard deviation 0.69 1.70 0.038019, 0.016162 5.14 0.95 1.22

3 Modified Van
der Pol

Maximum 0.58 1.22 0.696500, 0.367820 3.85 0.97 1.17

4 Landl Maximum 0.67 1.90 0.008562, 0.009240,
0.008891

5.08 1.00 1.17

5 Modified Van
der Pol

Maximum 0.48 2.22 0.035601, 0.026508 6.28 1.13 1.40
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Fig. 3 Displacement amplitudes generated by the considered model versions from Table 2 against
the experimental records [9]: (a) calibration results obtained for the mass ratio of 6.54 [9], including
K; (b) validation results obtained for the mass ratio of 2.5 [12], with K = 0; (c) validation results
obtained for the mass ratio of 3.68 [9], including K; (d) validation results obtained for the mass
ratio of 8.76 [9], including K . For the set-up [9], the damping ratio is ξ = 0.006, the Reynolds
number range is 18,300–83,800. For the set-up [12], the damping ratio is ξ = 0.005, the Reynolds
number range is 1320–6660
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The validation of calibrated models has also been conducted with the data from
the same experimental arrangement [9] for the mass ratios of 2.36–12.96. Figure 3c
and d provide the samples of these validation results for the low mass ratio of 3.68
and the high mass ratio of 8.76, respectively. Here, displacements are calculated
using already identified sets of coefficients (as given in Table 2), including the lock-
in delay coefficient K . It is possible to see that the calibrated models hold a suitable
quality of prediction for the mass ratio range from 3.68 to 8.76, which is consistent
with the results from [16] for the 2DOF rigid structure models calibrated with the
medium mass ratio.

Results for the mass ratio of 3.68 in Fig. 3c reveal that Option 4 provides
a relatively good estimate of the peak width. Options 2 and 3 can capture the
maximum of the displacement amplitude. For the mass ratio 8.76, the most
advantageous fit is provided by Options 1–3.

Based on the validations in Fig. 3b–d, it is possible to recommend Model 3
(Modified Van der Pol) for the practical application in the mass ratio range of 3.68–
8.76. The lock-in delay coefficient K should be calibrated for each experimental
facility for the medium mass ratio around 6.0. This would allow a suitable range
of the mass ratio to be covered, that brings the wake oscillator models closer to the
design practice.

4 Conclusions

The study presented in this paper included: modification of an already existing
model [3] of the transversally oscillating rigid structure with 5 alternative damping
types; calibration with the published experimental data [9] for the mass ratio of 6.54;
collection of the most accurate options with the corresponding sets of coefficients;
validation of the most accurate options with experimental data from the same set-up
[9] they were calibrated with; validation with the data [12].

This study shows that the results are consistent with the data presented in [16] for
the rigid structure with two degrees-of-freedom: wake oscillator models calibrated
with the medium mass ratio demonstrate a reasonably wide application range. The
models of 1DOF structure presented in Table 2 are applicable for the set-up [9]
for the mass ratios from 3.68 to 8.76, with no need for change of the calibrated
coefficients, including the coefficient K . If the models are applied to predict VIV
for a different arrangement, the lock-in delay coefficient K should be recalibrated
with the medium mass ratio around 6.0. This is different from the results for the
2DOF structure models calibrated with the low mass ratio [10] that are applicable
for other set-ups with no changes in K and from the results for the 2DOF structure
models calibrated with the medium mass ratio [16] that are applicable for the same
arrangement only.

Among the model options listed in Table 2, Model 3 (with the Modified Van
der Pol damping term) could be recommended as the most suitable for the practical
application.
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Asymptotic Analysis of a Dynamical
System for Vortex-Induced Vibration
and Galloping

Claudio Mannini

Abstract The present work presents an asymptotic analysis of a wake-oscillator
model for the transverse oscillation of a rectangular cylinder in a cross airflow
due to the interference of galloping instability and vortex shedding. Periodic
synchronized solutions of the dynamical system are sought with the method of
Krylov–Bogolyubov. The semi-analytical solutions are compared with the numer-
ical solutions for several values of the mass-damping parameter of the system,
showing a general agreement. Nevertheless, the study highlights the important role
of the strong nonlinearity of the wake equation and the quasi-periodicity of the
solution in some flow-velocity ranges. These features are not accounted for in the
asymptotic analysis and are responsible for the shortcomings of the semi-analytical
solutions.

Keywords Galloping · Wake-oscillator model · Autonomous system ·
Synchronization · Asymptotic analysis

1 Introduction

Many slender bluff bodies immersed in a cross flow are prone to both vortex-
induced vibration (VIV) and the purely self-excited instability known as galloping.
In the ideal case, the two phenomena occur in different flow speed ranges and
do not interact with each other. Nevertheless, it has been shown in [1] that in
many practical situations the two excitation mechanisms interfere giving rise to the
so-called unsteady galloping instability, showing peculiar features that cannot be
captured by the theories of VIV and galloping taken separately.
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Fig. 1 Schematic of the
near-wake oscillator

On this basis, a wake-oscillator model has been applied to the paradigmatic case
of a rectangular cylinder with a sectional side ratio of 1.5 [2] (Fig. 1). The model is
a modified version of the one proposed at the end of the 1970s by Prof. Y. Tamura
for the vortex-induced vibration of a circular cylinder and subsequently applied to
the case of a square cylinder [3]. It simply relies on the linear superposition of
unsteady forces due to the oscillation of the near wake and producing vortex-induced
vibration, and quasi-steady forces responsible for galloping. The major contribution
of the work in [2] was the removal of a crucial assumption to estimate one of
the model’s parameters, increasing significantly the amount of nonlinearity in the
wake equation and promoting the tendency of mechanical and wake oscillators to
synchronize. This allowed overcoming the major drawbacks of the results obtained
in [3]. The numerical solution of the equations revealed a rich nonlinear behavior,
confirmed by the experimental data in [4], showing supercritical and subcritical
bifurcations, periodic and quasi-periodic solutions, and hysteresis loops [2].

To shed some light on the behavior of the dynamical system and understand the
role of the fairly strong nonlinearity of the wake equation, the use of asymptotic
methods can be very useful. As a first step, the simple method of Krylov–
Bogolyubov is employed here to search for synchronized steady-state solutions. A
similar analysis has recently been carried out in [5] for a wake-oscillator model
for the vortex-induced vibration of a circular cylinder. In contrast, the method of
multiple scales was employed in [6] to study a different model for the combined
effect of vortex shedding and galloping.

2 Wake-Oscillator Model

The wake-oscillator model used to study unsteady galloping represents an
autonomous system of two coupled nonlinear equations; the nondimensional
transverse vibrations of the body (normalized with the cross-flow section dimension
D of the prism) are described by a linear oscillator subjected to a nonlinear force,
while a van der Pol equation is employed for the wake:
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y′′ + (2ζ + μU)y′ + y = βU2ϑ + U2CQS (1)

ϑ ′′ + εU(ϑ2 − 1)ϑ ′ + δ2U2ϑ = γy′′ + σUy′ (2)

With reference to Fig. 1, it has been posed ϑ = 2f ϑ̃/CL0, where f represents the
slope of the unsteady nondimensional transverse force with the wake inclination,
and CL0 the amplitude of such a force when the prism is stationary. U = V/ω0D is
the reduced flow speed and represents the control parameter (V is the dimensional
flow speed and ω0 the natural circular frequency of the mechanical oscillator). ζ
is the mechanical critical damping ratio. The prime denotes derivative with respect
to the nondimensional time τ = ω0t . μ represents the linear aerodynamic damping
coefficient due to unsteady wake forces, β is the force coefficient due to the coupling
with the near wake oscillation, ε is the nonlinear damping coefficient of the wake
oscillator, δ represents the ratio of the natural frequency of the wake oscillator to the
one of the mechanical oscillator for unit reduced flow speed; finally, γ and σ account
for the feedback effect of the body oscillation on the wake dynamics (acceleration
and velocity coupling):

μ = f

m∗
β = CL0

2m∗
ε = 16

√
2St3h∗f (3)

δ = 2πSt γ = 16πSt2h∗f
CL0

σ = 8π2St2f

CL0
(4)

CQS(α) = − secα

m∗
[CL(α)+ CD(α) tanα] =

4∑
k=1

(−1)k+1A2k−1

(
y′

U

)2k−1

(5)

where tanα = y′/U denotes the relative angle of attack, m∗ = 2m/ρD2 ∼= 1500
(m is the oscillator mass per unit length and ρ the air density) is the mass ratio;
h∗ = h/D, being h the depth of the near wake (see Fig. 1); St is the Strouhal
number, i.e., the nondimensional vortex-shedding frequency for the stationary body.
CQS is the quasi-steady force coefficient, defined as the projection in the transverse
direction of static lift, CL, and drag, CD , coefficients. In the dynamic case, it
is a nonlinear function of y′ and is assumed here as a seventh-order odd-power
polynomial (Fig. 2a). It is to note that this polynomial is a sharp simplification
of the more complicated experimental pattern reported in [2, 4]. According to
experimental evidences [2], CL0 is a function of the Reynolds number and therefore
of the nondimensional flow speed U (see Fig. 2b). Except for CQS , the values
assumed for the other aerodynamic parameters are the same as those employed in
[2] (St = 0.106, f = 9, h∗ = 1.8). All the details concerning the model and its
parameters can be found in [2].
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Fig. 2 (a) CQS and its linear approximation; (b) dependence of CL0 on reduced flow velocity.
m∗A1 = 5.50, m∗A3 = −31.93, m∗A5 = −4342.4, m∗A7 = −35,878

3 Asymptotic Analysis

Harmonic functions with fast-time frequency ω and slowly varying amplitude and
phase are assumed for the dependent variables in Eqs. (1)–(2):

[
y(τ)

ϑ(τ)

]
=

[
Y (τ)

Θ(τ)

]
eiωτ +

[
Ȳ (τ )

Θ̄(τ )

]
e−iωτ (6)

where Y and Θ are the slowly varying complex amplitudes, the overbar denotes
complex conjugate and i is the imaginary unity. Substituting Eq. (6) and its
derivatives into Eqs. (1)–(2) and averaging over the period 2π/ω, one obtains

Y ′ =
[
i
1− ω2

2ω
− ζ1

]
Y − 3

2

ω2

U
A3|Y |2Y + 5

ω4

U3 A5|Y |4Y

− 35

2

ω6

U5
A7|Y |6Y − i

βU2

2ω
Θ (7)

Θ ′ = −
[

1

2
εU

(
|Θ|2 − 1

)
+ i

ω2 − δ2U2

2ω

]
Θ + 1

2
(σU + iγ ω) Y + γ Y ′ (8)

where ζ1 = ζ + 1
2 (μ− A1) U .

Then, considering the polar form of the dependent variables, Y = 1
2 rye

iφy and
Θ = 1

2 rθ e
iφθ , posing ω = 1 (thereby accounting for frequency variation with

respect to the natural frequency of the mechanical oscillator through the derivative
of the slowly varying phases φy and φθ ), and introducing the phase difference
ψ = φθ − φy , one ends up with the following real-variable equations:
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r ′y = −ζ1ry − 3

8

A3

U
r3
y +

5

16

A5

U3 r
5
y −

35

128

A7

U5 r
7
y +

1

2
βU2rθ sinψ (9)

r ′θ = −
1

8
εU

(
r2
θ −4

)
rθ − 1

4
βγU2rθ sin2ψ+ 1

2
ry(σUcosψ + γ sinψ)+ γ r ′ycosψ

(10)

ψ ′ = δ2U2 − 1

2
+ 1

2

ry

rθ
(γ cosψ − σUsinψ)

+ 1

2
βU2 rθ

ry
cosψ − 1

2
βγU2cos2ψ − γ

r ′y
rθ

sinψ (11)

The fixed points of Eqs. (9)–(11) can be found by setting r ′y = 0, r ′θ = 0, ψ ′ = 0,
and represent synchronized steady-state periodic solutions of the system. To find
these equilibrium solutions with a simple procedure, in a first step the higher-order
powers of ry in the steady-state version of Eq. (9) are neglected:

ry = βU2

2ζ1
rθ sinψ (12)

This is equivalent to a linearization of the force coefficient CQS , which is a very
accurate approximation up to tanα ∼= 0.1 (Fig. 2a). Equation (12) is then substituted
into the steady-state equations derived from Eqs. (10)–(11), yielding

rθ = 2

[
1− βγU

2ε
sin2ψ + βU

2εζ1
sinψ(σUcosψ + γ sinψ)

] 1
2

(13)

[
βσU3 + 2ζ1(1− δ2U2)

]
tan3ψ −

(
βγU2 + 4ζ 2

1

)
tan2ψ

+ 2ζ1

(
1− δ2U2 + βγU2

)
tanψ − 4ζ 2

1 = 0 (14)

Once the solutions of Eqs. (12)–(14) have been determined, these can be considered
exact up to the line tanα = (2ω − 1)ry/U ∼= 0.1 reported in Fig. 3a. To
improve the accuracy of the solution beyond this limit, the higher-order terms in
ry are reintroduced. The previously mentioned results for (ry rθ ψ)T are taken as
initial guess, and the solutions are refined iteratively up to convergence (relative
difference in the values of ψ , rθ and ry between two consecutive iterations lower
than 10−4). It has also been verified that no additional solution appears for
tanα = (2ω − 1)ry/U ≤ 0.25, which represents the limit beyond which no
experimental data are available for CQS (see Fig. 2a). Finally, the circular frequency
of the synchronized steady-state solution can be obtained by

ω = 1+ φ′y = 1+ φ′θ = 1− 1

2
βU2 rθ

ry
cosψ (15)
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Fig. 3 Equilibrium solutions of Eqs. (9)–(11) and (15) for 2πζm∗ = 42.2 (solid and broken lines
denote, respectively, stable and unstable solutions): (a) nondimensional oscillation amplitude of
the cylinder; (b) oscillation amplitude of the wake oscillator; (c) phase difference between body
and wake oscillations; (d) synchronized oscillation frequency

4 Discussion of Results

For large mass ratios, the steady-state oscillations of a given cylindrical body
due to VIV and galloping are ruled by a mass-damping parameter 2πζm∗, often
known as Scruton number [1]. For a reference value of 2πζm∗ = 42.2, for which
the interaction of VIV and galloping is strong, Fig. 3 reports the semi-analytical
equilibrium solutions of Eqs. (9)–(11), compared with the numerical solutions of
the equations, obtained through a Runge–Kutta algorithm, as explained in [2]. The
agreement is good in terms of amplitude of the transverse oscillation (Fig. 3a),
though some small discrepancies can be observed, especially for large vibrations.
Larger deviations of the semi-analytical solution from the numerical one can be
detected for the wake oscillation amplitude (Fig. 3b) and for the phase lag of
prism to wake motion (Fig. 3c). These differences can be ascribed to the strong
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Fig. 4 Time history of wake oscillations for 2πζm∗ = 42.2 and U = 3.5: comparison between
semi-analytical and numerical solutions

nonlinear nature of wake oscillations, where the contribution of odd superharmonics
is significant, as explained in [2] and emphasized in Fig. 4. As for the synchronized
frequency, it can be noticed that after the instability onset at the vortex-resonance
velocity (2πSt)−1 both the prism and the wake oscillate nearly at the natural
frequency of the mechanical oscillator (ω ∼= 1), as is typical for fluid-structure
interaction problems with large mass ratios. In contrast, for values of U below the
bifurcation, the semi-analytical result is significantly different from the numerical
solution. This is caused by the limitation of having imposed a synchronized solution,
while the real behavior of the equations (and also the experimental evidence) shows
a small-amplitude forced oscillation of the body at the wake natural frequency (and
its odd superharmonics), except for the mild third-order superharmonic resonance
at U ∼= 0.5.

Figure 5 shows the results in terms of oscillation amplitude of the prism for
lower and higher values of the mass-damping parameter. For low values of 2πζm∗,
the semi-analytical solution is slightly less accurate for small vibration amplitudes,
slightly after the bifurcation close to U = (2πSt)−1 (Fig. 5a). The opposite
behavior is observed for large values of the mass-damping parameter (Fig. 5b–d).
Nevertheless, the most interesting discrepancy concerns the intermediate-amplitude
branch revealed by the numerical solution of system equations for 2πζm∗ =
62.2 and 77.2. While this remains unstable according to the asymptotic solution,
conversely it is stable in certain velocity ranges according to the numerical solution
(Fig. 5b and c). The oscillations along this branch are known to be quasi-periodic
[2] (Fig. 6), a feature that is not accounted for in the present simplified approach.
In addition, a key role is probably played by the strong nonlinearity of the wake
equation, which is neglected here. The latter issue is also likely to explain why,
for 2πζm∗ = 90, the semi-analytical approach does not exhibit the upper branch
solution in the range 2.5 � U � 4 but, instead, an amplitude death after the vortex-
resonance region (Fig. 5d).
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Fig. 5 Equilibrium solutions of the dynamical system in terms of vibration amplitude for different
values of the mass-damping parameter of the system
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Fig. 6 Phase-space plot of the asymptotic solution for 2πζm∗ = 77.2 and U = 3.5
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5 Concluding Remarks

The asymptotic analysis with the method of Krylov–Bogolyubov of the considered
nonlinear wake-oscillator dynamical system provided approximate synchronized
steady-state solutions of the equations for several values of the mass-damping
parameter. The semi-analytical solutions reproduce with reasonable accuracy some
important features of this complicated nonlinear system without the drawback of
the high computational cost of a numerical solution. Nevertheless, the analysis
also underscores the limitations of such an approach, which does not account
for the fact that the wake equation is not weakly nonlinear and that the solu-
tion in the intermediate-amplitude branch is quasi-periodic instead of perfectly
synchronized.
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A Quasi-Steady 3-DoFs Sectional
Aerodynamic Model: Preliminary Results

Cristoforo Demartino, Giulia Matteoni, and Christos T. Georgakis

Abstract A generalized quasi-steady three-degrees-of-freedom analytical model,
capable of predicting the aerodynamic instability of a cylinder with a generic cross-
section, is proposed. The three degrees-of-freedom refer to the two orthogonal
displacements, perpendicular to the body’s axis, plus the rotation about the longitu-
dinal body axis. It allows for the variation of the force coefficients, i.e., drag, lift, and
moment, with Reynolds number based on the relative flow velocity, with relative
angle-of-attack, and relative cable-wind angle. The aerodynamic forces acting on
the structure are linearized around the static equilibrium configuration. Based on
the analytical solution of the eigenvalue problem, an expression of the galloping-
and static divergence-type instability condition is derived. Finally, an application
of the model is proposed to study the galloping of a full-scale dry inclined/yawed
cable.
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1 Introduction

When a structure oscillates in steady flow, the flow field relative to the structure
also oscillates, thus producing fluctuating aerodynamic force components, which
can be coupled either linearly or non-linearly, to the body’s structural acceleration,
velocity, or displacement/rotation [1]. For wind engineering applications, the first
case is generally negligible since the air density is too low. In the second and
third cases, a variation of the body’s effective damping and an effective stiffness
(frequency) occur, respectively. This can eventually vanish when the flow field
generates negative aerodynamic damping, equal in absolute value to the structural
damping. The first phenomenon can initiate instabilities of dynamic types, such as
galloping, which is characterized by the occurrence of large amplitude vibrations,
mostly in the cross-wind direction, at low frequencies. The second is related to the
static divergence.

Bluff-body aerodynamic instabilities of galloping-type have been modeled, based
on the Quasi-Steady (QS) theory. QS models are quite important in the Bridge
Engineering field to predict the instability conditions of bridge cables. Three key
issues play a major role in the assessment of inclined cable galloping when using
the quasi-steady approach [2]: (1) the complex inclined flow aerodynamics, (2) the
geometric irregularities characterizing real stay cables, and (3) the sectional quasi-
steady stability galloping modeling in inclined flow conditions.

In real applications, circular cross-sections are never perfect. A cylinder featuring
small deviations from a perfect circular one can be defined a nominally circular
cylinder. These deviations, or irregularities, are classified into cylinder irregularities
or flow irregularities, and the former are further subdivided into surface irregulari-
ties, section irregularities, and spanwise irregularities [3, 4]. Operating bridge cables
proved to feature all these irregularities both in dry conditions [2, 5, 6] and in iced
conditions [4, 7–10], which heavily affect aerodynamics and aerodynamic stability.
These types of vibration were also observed during full-scale ambient vibration
measurements [11].

Following the QS theory, a number of models have been derived accounting for
the characteristics of the vibration phenomenon, such as: (1) flow conditions (cross
or inclined), (2) directions of vibration of the structure (acrosswind, alongwind
and/or torsional), (3) variation of the mean aerodynamic coefficients with Reynolds
number, angle of attack and yaw angle, and (4) dynamic conditions (tuning
and inertial coupling). These were reviewed and compared in Demartino and
Ricciardelli [10] and in Piccardo et al. [12]. Recently, a probabilistic framework for
the assessment of the minimum structural damping required to prevent galloping
of dry bridge hangers using a 2-DoFs model was proposed accounting for the
irregularities in a probabilistic way [13]. The available models are not proposing
a closed form solution of the stability for the generic 3-DoFs case being usually
based on the assessment of the eigenvalues. The proposed model overcomes
this problem by applying the Routh–Hurwitz criterion and the Lienard–Chipart
criterion and providing an expression of the galloping- and static divergence-type
instability.
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2 Aeroelastic Model

The equations of motion for the cylinder are (see Fig. 1)

Ms q̈(t)+ Cs q̇(t)+Ksq(t) = Fa(q̇(t), θ(t), U) (1)

where Ms , Cs , Ks are the structural mass, damping and stiffness matrices, respec-
tively, and Fa(q̇(t), θ(t), U) represents the aerodynamic force vector. q(t) is the
vector containing the sectional displacements: ηx(t) and ηy(t), the two orthogonal
displacements belonging to the cross-section plane and θ(t) the rotation about the
cylinder’s longitudinal axis. U is the vector containing mean wind speed.

For the purpose at hand, it is necessary to define different reference systems. (X,
Y , Z) is the global reference system with U oriented parallel to the X-axis and Z

the vertical, upward axis. The attitude to the flow of a cylinder is described by the
inclination Θ , i.e., the angle between the body’s longitudinal axis and its projection
in the horizontal plane, and the yaw angle β, i.e., the angle between the free-stream
velocity U and the projection of the body’s axis in the horizontal plane. (x′, y′, z)
is the wind reference system with the axis x′ parallel to the direction of the normal
wind velocity UN and y′ perpendicular to it; z is parallel to the cylinder axis. (x, y,
z) is the dynamic reference system where x, y belong to the cross-sectional plane of
the cylinder and the DoFs ηx(t) and ηy(t) are in these two directions, respectively.
x, y is rotated with respect to x′, y′ of an angle αS that is defined structural angle.

The aerodynamic forces in the (x, y, z) reference system are expressed as

Fa(q̇(t), θ(t), U) = 1

2
ρDU2

R(q̇(t), U)Rz(q̇(t), θ(t), U)C(q̇(t), θ(t), U) (2)

where ρ is the air density (usually 1.25 kg/m3), D is a characteristic size of the
cross-section, UR is the relative wind speed (accounting for q̇(t)), Rz is the rotation

Fig. 1 Sectional aeroelastic model
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matrix around the cable axis and C(q̇(t), θ(t), U) is the vector containing Cx′ and
Cy′ (the aerodynamic coefficients in x′ and y′ directions, respectively) and CMz

(torsional moment aerodynamic coefficient). U is the modulus of U.
The aerodynamic forces are non-linear functions of q̇(t) and θ(t). A first order

Taylor expansion of the aerodynamic forces about q̇(t) = 0 and q(t) = 0 (i.e.,
θ(t) = 0) is performed:

Fa(q̇(t), θ(t), U) = Fa|(0,0) + ∇q̇(t)Fa

∣∣
(0,0) q̇(t)+ ∇q(t)Fa

∣∣
(0,0) q(t) (3)

The first term of Eq. (3), Fa|(0,0), contains the steady components of the
aerodynamic forces per unit length and is neglected in the stability analysis and,
accordingly, it is not provided. The second and third terms of Eq. (3) are the
aerodynamic damping, and stiffness forces per unit length, respectively, and can
be rearranged as

∇q̇(t)Fa

∣∣
(0,0) =

ρν2

2D

{[
(Rz(αs)C)⊗

((
2Re

D

ν

)
∇q̇(t)UR

)]

+Re2
[ (

FC⊗∇q̇(t)αs

)+ Rz(αs)
[
(∇dC)

(∇q̇(t)d
)]] }∣∣∣∣

(0,0)

∇q(t)Fa

∣∣
(0,0) =

ρν2

2D

{
0︷ ︸︸ ︷[

(Rz(αs)C)⊗
((

2Re
D

ν

)
∇q(t)UR

)]

+Re2
[ (

FC⊗∇q(t)αs

)+ Rz(αs)
[
(∇dC)

(∇q(t)d
)]] }∣∣∣∣

(0,0)
(4)

where Re is the Reynolds number and ν is the air viscosity. F is a matrix defined as

F =
⎡
⎣
− sin(ϕ̄) − cos(ϕ̄) 0
cos(ϕ̄) − sin(ϕ̄) 0

0 0 0

⎤
⎦ with ϕ̄ = −

(
arctan

tanβ

sinΘ

)
(5)

d is a vector defined as

d(q̇(t), θ(t), U) = [
Re(q̇(t), θ(t), U)) α(q̇(t), θ(t), U)) Φ(q̇(t), θ(t), U))

]T
(6)

where Φ is the wind-cable angle defined as Φ = atan(tanΘ/ sinβ).
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3 Stability Conditions

In order to find the eigenvalues, the characteristic equation is solved by posing
the system in the state-space form (using Eq. (1) and substituting Eq. (4)) and by
neglecting the steady components:

det

([
0 I

−M−1
s Ks −M−1

s Cs

]
+

[
0 0

M−1
s ∇q(t)Fa

∣∣
(0,0) M−1

s ∇q̇(t)Fa

∣∣
(0,0)

]
− λI

)
=0

(7)

where I is the identity matrix and λ are the eigenvalues. Equation (7) is a monic
polynomial of 6th degree of the form:

p(λ) = λ6 + p1λ
5 + p2λ

4 + p3λ
3 + p4λ

2 + p5λ+ p6 = 0 (8)

where p1−p6 are the coefficients of the characteristic polynomial. The eigenvalues
found using the Eq. (8) are either real values or complex conjugate pairs. The system
is stable if the real parts of all eigenvalues are negative.

The Routh–Hurwitz criterion [14] allows to check the stability of the system
without solving the characteristic equation. The criterion establishes that a system
is stable, i.e., all roots of the characteristic polynomial have negative real parts, if
and only if all the leading principal minors of the Hurwitz matrix H , are positive.
The Hurwitz matrix is defined by

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p1 1 0 0 0 0
p3 p2 p1 1 0 0
p5 p4 p3 p2 p1 1
0 p6 p5 p4 p3 p2

0 0 0 p6 p5 p4

0 0 0 0 0 p6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9)

The principal diagonal minors of the Hurwitz matrix are

Δ0 = (p1p4 − p5) Δ1 = p1

Δ2 = p1p2 − p3 Δ3 = p3Δ2 − p1Δ0

Δ4 = p4Δ3 + (p1p6 − p2p5)Δ2 + p5Δ0 Δ5 = p5Δ4 − p6

Δ6 = p6Δ5

(10)

If Δ1 −Δ5 are positive, the stability condition on Δ6 reduces to imposing p6 >

0. The condition Δ6 = 0 represents a boundary of stability, then there are two
options:
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– p6 = 0. This condition corresponds to the case when one of the eigenvalues is
zero without imaginary part. The system is on the boundary of the aperiodic
stability. In fact, p6 = 0 corresponds to the case in which the aerodynamic
and structural stiffness are the same. This is the critical condition for static
divergence.

– Δ5 = 0. In this case, a complex conjugate pair of the eigenvalues at a fixed point
becomes purely imaginary. This is the critical condition for galloping. A single
Hopf bifurcation occurs.

If Δ1−Δ5 are not positive, in the 3-DoFs system the Hopf bifurcation can be single,
double, or triple. This is the critical condition for galloping.

In order to simplify the computational problem of the stability analysis, the
Lienard–Chipart criterion [17] can be used. The criterion has the advantage of pro-
viding a test for the system instability by means of a lower number of determinants
to be computed. According to the criterion, the system (necessary and sufficient
condition) is stable if

p2, p4, p6 > 0 and Δ1 = p1,Δ3,Δ5 > 0 (11)

Also in this case, the critical condition for static divergence is p6 = 0. In the
following, this criterion will be used in the application.

4 Application to a Full-Scale Dry Inclined/Yawed Cable

Quasi-steady drag, lift, and moment coefficients were measured by means of static
wind tunnel tests [9], for a model of a full-scale bridge stay cable, made of a plain-
surfaced HDPE tube, provided by bridge cable suppliers, with a nominal diameter of
160 mm. Tests were performed for varying yaw angles, β, in the range of 0 to 180◦,
and mean wind speeds, U , in the range of 8 to 29 m/s. In all the tests, the cable model
was oriented at a vertical inclination, Θ = 30◦. The aerodynamic coefficients are
depicted in Fig. 2.

Figure 3 shows the map of the galloping instability as a function of Re and
Φ. Table 1 illustrates the geometrical and structural properties of the cable model
adopted in the analysis. The grey areas represent the region of predicted stability and
the red areas represent the region of predicted instability. The galloping instability
is predicted for Re > 2.5 × 105 and in the range of Φ = 60 to 120◦. This is in
good agreement with predictions of Macdonald and Larose [18] done with a 1-DoF
model with similar characteristics validating the proposed model.
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Fig. 2 Aerodynamic force coefficients for a dry cable in inclined flow. (Details about the wind
tunnel tests are reported in [15, 16])
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instability; gray: stability)
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Table 1 Structural and aerodynamic parameters chosen to investigate the stability

Parameter Value Parameter Value Parameter Value

m [kg/m] 100 ωx [rad/s] 6.28 ξx [%] 0.02

D [m] 0.16 ωy [rad/s] 6.28 ξy [%] 0.02

J [kg m] 0.32 ωθ [rad/s] 50.2 ξθ [%] 0.02

m is the mass per unit length, J is the mass moment of inertia per unit length, ω is the angular
frequency, ξ is the damping ratio

5 Conclusions

A generalized quasi-steady 3-DoFs analytical model, capable of predicting the
galloping and static divergence instability of a cylinder with a generic cross-
section, was proposed. Based on the analytical solution of the eigenvalue problem,
an expression of the galloping- and static divergence-type instability condition is
derived. An application of the 3-DoFs analytical model was proposed in order to
study the galloping stability conditions of a full-scale dry inclined/yawed cable. It
was found that for selected ranges of angle-of-attack and Reynolds number, the dry
cable can undergo in galloping. The results of the proposed model are in agreement
with the findings of previous models for similar conditions providing a validation
of the proposed model. Future work should therefore include the evaluation of
the stability considering a complete parametric study in order to identify the main
influencing variables.
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Lie Group Dynamics of Multibody
System in Vortical Fluid Flow

Zdravko Terze, Viktor Pandža, and Dario Zlatar

Abstract This paper describes a computationally efficient method for simulating
dynamics of the coupled multibody-fluid system that utilizes symplectic and Lie-
Poisson reductions in order to formulate fully coupled dynamical model of the
multi-physical system by using solid variables only. The multibody system (MBS)
dynamics is formulated in Lie group setting and integrated with the pertinent Lie
group integration method that operates in MBS state space. The effects of fluid flow
on MBS dynamics are accounted for by the added masses to the submerged bodies,
calculated by boundary element method. The case study of coupled dynamics of
three rigid ellipsoid (blunt) bodies in fluid flow without circulation is presented.
In order to take into account additional viscous effects and include fluid vorticity
and circulation in the system dynamics (when motion of the kinematical chain with
sharp edges is considered), vortex shedding mechanism is incorporated in the overall
model by numerically enforcing Kutta condition.

Keywords Lie groups · Multibody dynamics · Fluid-structure interaction

1 Introduction

The conventional approach to simulating dynamics of multibody system (MBS)
moving in ambient fluid most commonly includes discretization of the large fluid
domain, using separate meshes for the fluid and solid part of the system. This leads
to the calculation of large amount of fluid data, that are usually not of the prime
interest, since we are mostly concerned with effects that the fluid exerts on the
MBS motion. In order to circumvent these deficiencies and obtain numerically more
efficient method for simulating system coupled dynamics, we adopt a geometric
modeling approach of fully coupled MBS-fluid system, incorporating boundary

Z. Terze · V. Pandža (�) · D. Zlatar
Chair of Flight Vehicle Dynamics, Faculty of Mechanical Engineering and Naval Architecture,
University of Zagreb, Zagreb, Croatia
e-mail: zdravko.terze@fsb.hr

© Springer Nature Switzerland AG 2020
W. Lacarbonara et al. (eds.), Nonlinear Dynamics of Structures,
Systems and Devices, https://doi.org/10.1007/978-3-030-34713-0_41

409

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34713-0_41&domain=pdf
mailto:zdravko.terze@fsb.hr
https://doi.org/10.1007/978-3-030-34713-0_41


410 Z. Terze et al.

integral method for calculating added masses, and time integrator in Lie group
setting.

The configuration space of an unconstrained multibody system (MBS) compris-
ing k rigid bodies is modeled as a Lie group G = R

3× SO(3)× · · · ×R
3× SO(3)

(k copies of R3× SO(3)) with the elements of the form p = (x1,R1, . . . , xk,Rk).
G is a Lie group of the dimension n = 6k, where k is the number of the rigid bodies.
The left multiplication in the group is given as Lp : G → G,p → p · p, where
origin of the group G is given as e = (01, I 1, . . . , 0k, I k). With G so defined, its
Lie algebra is given as g = R

3× so(3)× · · · ×R
3× so(3) with the elements of the

form v = (v1, ω̃1, . . . , vk, ω̃k), vi being velocity of ith body mass center and ω̃i ith
body angular velocity in skew symmetric matrix form [1].

By assuming inviscid and incompressible fluid, the configuration space of the
coupled MBS-fluid system is reduced by eliminating fluid variables via symplectic
and Lie-Poisson two stages reduction [2], without compromising any accuracy. The
first reduction exploits particle relabeling symmetry, associated with the conserva-
tion of circulation: fluid kinetic energy, fluid Lagrangian, and associated momentum
map are invariant with respect to this symmetry [3]. Consequently, the equations of
motion for the submerged MBS are formulated without explicitly incorporating the
fluid variables, while effect of the fluid flow to MBS overall dynamics is accounted
for by the added masses to the submerged bodies [4, 5]. In such approach, the added
masses are expressed as boundary integral functions of the fluid density and the flow
velocity potential. Further reduction of the system is associated with the symmetry
based on invariance of the dynamics under superimposed rigid motion [6]. The
similar approach is taken in [4], however, with an additional assumption of zero
vorticity, and applied to the multibody system consisting solely of smooth bodies
without sharp edges.

Here, in order to allow for simulations of bodies with non-smooth boundaries
(that include sharp edges), the point vortex shedding and evolution mechanism is
incorporated in the fluid-structure dynamical model. The vortices are assumed to
be irrotational, and are being shed in a way to ensure the satisfaction of the Kutta
condition at the sharp edges. By using the proposed framework it is possible to
include an arbitrary combination of smooth and sharp-edged bodies in a coupled
multibody-fluid system, as long as the major viscosity effects of the fluid on the body
can be described by shedding and evolution of the irrotational point vortices. This
broadens the possibilities for utilization of the presented method by removing the
necessity of having smooth shape of the moving bodies immersed in the ambiental
fluid, such as in the case of the models described in [4].

2 Multibody System Dynamics in Fluid Flow

We consider system of k articulated, constrained, and submerged bodies in ideal
fluid, which is at rest at the infinity. In other words, at any time t , the system
consisting of the solid bodies and the fluid occupies an open connected region M of
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the Euclidean space, which we identify with R
3. More specifically, the solid bodies

occupy regions Bi , i = 1, . . . , k and the fluid occupies a connected region F ⊂M
such that M can be written as a disjoint union of open sets as M = B1∪· · ·∪Bk∪F .
Configuration space Q of such a system is the set of all appropriately smooth maps
from M to M, where fluid part Qf ∈ Diffvol (F)—Lie group Diffvol (F) is the
set of volume-preserving diffeomorphisms of F that are the identity at infinity—
represents position field of the fluid particles. Bodies part QBi , i = 1, 2, . . . , k,
represents rigid body motion of the i-th solid body Bi ⊂ M with boundary ∂Bi ,
meaning that the configuration space of an unconstrained multibody system (MBS)
comprising k rigid bodies is modeled as Lie group G introduced in Sect. 1.

To this end, the MBS state space is introduced as S = G × g, i.e., S = R
3 ×

SO(3)×· · ·×R
3×SO(3)×R

3×so(3)×· · ·×R
3×so(3) ∼= TG with the elements

x = (x1,R1, . . . , xk,Rk, v1, ω̃1, . . . , vk, ω̃k) [1]. S is the left-trivialization of the
tangent bundle TG. This is a Lie group itself that possesses the Lie algebra S =
R

3 × so(3) × · · · × R
3 × so(3) × R

3 × R
3 × · · · × R

3 × R
3 with the element

z = (v1, ω̃1, . . . , vk, ω̃k, v̇1, ω̇1, . . . , v̇k, ω̇k).
It can be shown that—if kinematical constraints are imposed on the system

bodies—MBS dynamics in fluid flow can be expressed as DAE-index-1 problem
formulated as

[
M CT

C 0

][
ż

λ

]
=

[
Q

ξ

]
, (1)

where M represents inertia matrix and Q is the force vector. Inertia matrix M

contains standard inertial properties of the MBS in vacuum [1], supplemented by
added mass that the MBS perceives due to interaction with the fluid. The added mass
effects are calculated by BEM (described in the Sect. 3), after symplectic reduction
on Q is performed, see below.

The force vector Q can be written as

Q = Qext +Qideal +Qvort, (2)

where Qext represents a vector of general external forces and torques acting on a
body, Qideal represents a vector of forces and torques that potential and inviscid
fluid would exert on the MBS, while Qvort represents a vector of forces and torques
acting on a body due to the presence of the point vortices.

Other parts of the equation stem from the kinematical generalized position
constraint equation

Φ (q) = 0, (3)

which is differentiated to obtain a constraint equation at the velocity level

C (q) z = 0, (4)
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where C represents constraint Jacobian, and λ associated Lagrange multipliers, see
[1]. Further differentiation yields constraint equation at the acceleration level

C (q) ż = ξ (q, z) .

By inspecting (1) it is clear that dynamics of the coupled system MBS-fluid-
flow, expressed in this way, is basically governed by the MBS variables only, i.e.,
fluid terms vanish from the model, except for the vector Qvort (Qideal can also be
expressed in terms of MBS variables and added mass effects).

Indeed, if vorticity effects are excluded from the analysis, it can be shown that
symplectic reduction at zero vorticity yields

J−1
F (0) /Diffvol (F) = T ∗ (Q/Diffvol (F)) = T ∗G (5)

indicating that the whole dynamics of the system evolves in T ∗G (no fluid
variables!) and fluid influence on the MBS dynamics is reduced to added mass effect
only [4]. In (5), JF is momentum map associated with the action of Diffvol (F) on
Q.

Similarly as it is shown in [1], Lie group integrator that operates in S can
be utilized to obtain system velocities z, while constraint violation stabilization
algorithm for both constraint Eqs. (3) and (4) needs to be simultaneously performed
as well as BEM procedure (Sect. 3) for the added mass determination. After
obtaining system velocities, a reconstruction of the system translation is a trivial
task, while rotational part requires a non-linear (Lie group) update.

To this end, Munthe-Kaas Lie group method [7] is utilized, where kinematic
reconstruction is performed by seeking an incremental rotation vector θ in each
time step by integrating ODE equation in Lie algebra

θ̇ = dexp−1
−θ (ω) , θ (0) = 0.

The rotation matrix in time step i + 1 is then reconstructed as

Ri+1 = Ri exp (θ i+1) ,

where exp represents exponential mapping on SO (3) and dexp−1
−θ represents inverse

differential exponential operator (more details can be found in [1]).

3 Boundary Element Method

In the context of the coupled MBS-fluid-flow formulation described in Sect. 2, the
added mass effect is to be determined by BEM. This is due to the fact that bodies in
MBS are generally hydrodynamically coupled and added mass effect on each body
is the function of the motion of the whole MBS.
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As an example, the system of three ellipsoid rigid bodies linked by revolute joints
moving in a fluid is chosen. The domain of rigid bodies is defined as B = B1∪B2∪
B3, and the fluid domain is denoted as F . As the region F is connected, if the flow
is irrotational, the velocity field u can be written in terms of a potential u = ∇φ.
Incompressibility now implies that the Laplacian of φ is zero [3], i.e.:

Δφ = 0 in F .

After applying non-penetrating boundary condition, i.e., the condition that fluid
cannot past through the boundary of the rigid body, but may slip freely along the
edges, the Neumann conditions for the boundary value problem are obtained:

∇φ · ni = vi · ni on ∂Bi , for i = 1, 2, 3. (6)

This, together with condition that the fluid is at rest at infinity, i.e.:

∇φ = 0 at∞

completes the full description of the exterior Laplace boundary value problem
with the Neumann boundary conditions. Following approach proposed in [8], the
boundary value problem can be formulated as

H · γ ext
0 φ = −

(
1

2
I +K ′

)
· γ ext

1 φ, (7)

where H represents hypersingular boundary Laplace operator, γ ext
0 φ represents

unknown Dirichlet boundary condition, I is the identity boundary operator, K ′ is
the adjoint double layer boundary Laplace operator, and γ ext

1 φ represents Neumann
boundary conditions defined in (6).

The Eq. (7) can be solved by discretizing the surface of the MBS with boundary
elements. In the paper, the MBS is meshed with triangular elements by using an
open source software Gmsh [9]. The open source platform BEM++ [10] is used for
solving the above defined boundary element problem. BEM++ is an efficient code
that uses the hierarchical matrix technique to significantly speed up the process of
assembling the boundary operators in (7), which is one of the most time-consuming
operations in the formulation. In addition to that, the number of variables in the
model is reduced by the multiple orders of magnitude due to the solid boundary
discretization, as opposed to the conventional full 3D fluid domain discretization,
leading to significant reductions in computational time.

The Neumann boundary function (6) is described via discontinuous piecewise
constant values across the boundary elements, while the unknown Dirichlet function
is described as a continuous piecewise linear function across the elements. The
kinetic energy of the fluid, and subsequently the added mass effects in Eq. (1), can
be computed from the calculated values of the Dirichlet boundary conditions.
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Fig. 1 The velocity potential field for MBS consisting of 3 rigid bodies, with the leftmost body
rotating at 100 rad/s in ambient fluid. The images show the results for two different configurations.
In the left figure, leftmost body is in initial configuration, while the right figure depicts system with
leftmost body rotated by π/6 from initial configuration

If needed, the resulting velocity potential field can be reconstructed from the
Dirichlet and Neumann data as

φ = φ∞ − SLP · γ ext
1 φ +DLP · γ ext

0 φ, (8)

where φ∞ represents value of the velocity potential at infinity, SLP is the single layer
Laplace potential operator, and DLP is the double layer Laplace potential operator.

As a test case, the multibody system consisting of three rigid 3D ellipsoid bodies,
submerged in an incompressible and inviscid fluid and connected by a revolute
joints, is considered. The leftmost body of the MBS is articulated with an angular
velocity of 100 rad/s and the computation is performed for a boundary value problem
as defined in (7). The velocity potential is reconstructed from the Dirichlet and
Neumann data by using (8), and the results for the midplane through the ellipsoids
are shown in Fig. 1.

4 Point Vortices

By using the approach described up to this point in the paper, dynamics of MBS in
ambiental potential flow can be solved. This means that vorticity effects, represented
by Qvort in (1), are not considered in the analysis so far and—consequently—no
fluid variables (apart from BEM added mass determination) are included in the
solution. To this end, the discretization is required only at the boundary of the
MBS, as opposed to the conventional approach, which requires discretization of the
large fluid domain. However, by following this path, the extent of the applications
to which this method can be applied is limited, mainly due to the inviscid fluid
assumption. On the other hand, there is a number of application where viscosity
plays an important role, but can be reasonably well approximated by shedding and
evolution of the irrotational point vortices. One example of such applications are
insect-type flapping micro aerial vehicles, as described in [11] and [12].
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Modeling of viscosity effects via irrotational point vortices is especially useful
for the multibody systems with sharp edges, since such a shedding can be modeled
by applying Kutta condition at the edges, enforcing physical meaningfulness of the
velocities, i.e., velocity at the tip must be equal in magnitude and direction, when
analyzed from any surface [13]. However, calculation of the shed vortex initial
position, appropriate circulation and subsequent evolution and interaction of the
vortices with the environment presents a non-trivial task.

In the paper, the approach taken in [14] is followed, where the vortices are shed
at each time step, at the approximate midpoint between edge positions at two time
steps. The circulation of the vortex is taken to ensure a satisfaction of the Kutta
condition. Unlike test cases described in [14], where 2D problems are solved, in
this paper the simulation is performed in three dimensions, by assuming that the
vortex is constant along the direction colinear with the edge.

Since there are no external forces acting on the fluid-solid system the overall
linear P and angular momentum Π have to be preserved. Mathematically, this can
be formulated as (by following approach in [15] and [16])

dP

dt
= d

dt

(
k∑

i=1

mivi +
∮

∂B
x × (n× u)ds +

∫

F
x ×Ωda

)
= 0,

dΠ

dt
= d

dt

(
k∑

i=1

J iωi − 1

2

∮

∂B
||x||2(n× u)ds − 1

2

∫

F
||x||2Ωda

)
= 0,

where mi and J i represent i-th body mass and inertia matrix, x and n represent
position vector with respect to the inertial frame and normal to the surface of the
body, while Ω = ∇ × u is the fluid vorticity.

In the case of the irrotational point vortices as introduced in our model, the
vorticity is equal to zero everywhere except at the centerline of the vortex. In that
case, the expressions for the linear and angular momentum of the fluid-solid system
can be simplified and written in the form

P = P loc + P vort

Π = Πloc +Πvort.
(9)

Here P loc and Πloc account for the linear and angular momenta due to the
locomotion of the MBS in the ideal fluid, while P vort and Πvort correspond to the
linear and angular momenta caused by the presence of point vortices. By taking
derivative of the Eq. (9) and equaling it with zero, the system of Eq. (1), that also
includes Qvort, is obtained and solved as described in Sect. 2.

Apart from following approach in [14], the different techniques for modeling
vortical effects on the MBS motion can be incorporated in the presented framework.
When justified by the nature of the flow, the vortices can be shed in pair, with
equal magnitude of circulation, but opposite sign [16]. This ensures satisfaction of
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the Kelvin circulation theorem inherently, without any additional treatment. When
required, the models that more precisely describe the vortex dynamics can also be
utilized. One example of such model is presented in [17], where the numerical
procedure for computing a continuous vortex sheet is proposed. The procedure is
derived by enforcing satisfaction of the Kelvin’s circulation theorem, continuity of
the normal velocity across the body and the boundedness of the velocity field. The
future work will include comparison of the results for different treatments of the
vortical effects on the MBS motion.

5 Conclusions

By using approach described in this work it is possible to model the coupled
MBS-fluid system by discretizing boundary of the bodies, instead of conventional
discretization of the whole fluid domain, which reduces the numerical burden
significantly. In the case of potential flow with zero circulation, this leads to the
description of the coupled MBS-fluid system without explicit fluid variables. In the
case of MBS comprised of bodies with sharp edges, the fluid variables are needed
only to describe vortical effects. Because of the improved efficiency compared to the
conventional models which discretize large fluid domain, this model is well suited
for application in design optimization of the complex systems motion that includes
fluid flow.
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Damping Models in Aircraft Flutter
Analyses

Marco Eugeni, Franco Mastroddi, and Francesco Saltari

Abstract This paper aims to introduce a first-principle-based viscoelastic damping
formulation to be applied to aeroelastic systems describing highly flexible aircraft
in order to critically assess its influence into linear flutter and response analyses.

Keywords Viscoelastic damping · Aeroelasticity

1 Introduction

The modeling of viscoelastic materials is critical for aerospace industrial applica-
tions, Ref.[1, 2]. The damping behavior of viscoelastic materials depends on the
entire strain history [3]. Indeed, the relation between the viscous portion of the stress
tensor T, denoted by Tvis , and the strain rate tensor Ė, where E is the strain tensor
and the dot denotes the derivative with respect to time t , can be written as (Ref. [3])

Tvis(t) =
∫ +∞

0
Φ(τ )Ė(t − τ) dτ , lim

τ→+∞Φ(τ ) = 0 (1)

where Φ(τ ) is known as stress relaxation function that satisfies the fading property
in the second relationship of Eq. (1) and the causality condition Φ(τ ) = 0 for
τ < 0. Moreover it is assumed that Φ(τ ) = 0 for τ < 0, Ref.[4]. Usually
numerical calculation uses a frequency-domain characterization of the damping,
which even if easily evaluated experimentally requires a careful modeling in order
to provide a causal response. The aim of the present paper is to assess the damping
performances of different damping models when introduced into an advanced
aeroelastic framework.
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2 Theoretical Issues on Linear Viscoelastic Models and Their
Performances

A viscoelastic material is characterized by a stress state dependent on the entire
strain history. For a solid material, the stress tensor T can be split into a conservative
elastic term TE and a dissipative viscous term Tvis . The elastic portion of the stress
tensor is function of the strain tensor only, that is, it is given by the constitutive
elastic law TE = TE(E). The viscous portion depends on the strain rate history
according to Eq. (1), where 0 ≤ τ <∞ and the relaxation function Φ(τ ) is a fourth-
order tensor [3]. The strain and strain rate tensors are assumed to be linearized and
are written as E = Sym(∇u) and Ė = Sym(∇u̇), respectively, where u is the
displacement vector. Once the relation in Eq. (1) is assigned, the problem can be
solved for generic bodies using a FEM space discretization where the displacement
field is assumed to be a Hilbert space H spanned by a basis of independent vector
field shape functions φ(i) (i = 1, . . . ,∞), see Eq. (2).

u(x; t) ∼=
N∑
i=1

qi(t)φ
(i)(x) (2)

where the quantities qi (i = 1, . . . , N ) are nodal generalized displacement. In the
present work is assumed that, Ref. [4], the principal directions of TE and Tvis keep
parallel at any time is used. Thus,

Φ̇(τ ) = η(τ)C with η(τ) = 0 for τ < 0 (3)

where η(τ) is a scalar function describing the material memory satisfying the
causality condition. The above assumption brings to the general formulation of the
viscoelastic discretized problem:

Mq̈(t)+ Kq(t)+
Ne∑
e=1

Ke

∫ +∞

0
ηe(τ )q(t − τ)dτ = f(t) (4)

where q is the FEM nodal generalized displacement vector, M and K the correspond-
ing N × N mass, and stiffness matrices, Ke the N × N element stiffness matrix,
ηe(τ ) the element fading function, and f the generalized force vector. A frequency-
domain model can be obtained by applying the Borel theorem and the Fourier
transform to the time-domain model in Eq. (4), which for zero initial conditions
gives q̃(ω) = H(ω)f̃(ω), where ω is the Fourier variable and, using K = ∑Ne

e=1 Ke,
the system FRF is written as

H(ω) :=
{
−ω2M+

Ne∑
e=1

Ke[1+ η̃e(ω)]
}−1

(5)
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with

η̃e(ω) := F[ηe(τ )] = Re(ω)+ jXe(ω) (6)

where j is the imaginary unit and Re and Xe are, respectively, the real and imaginary
part of the Fourier transform of the element fading function. Note that the system is
Hermitian since the original time-domain response is real and Re(ω) and Xe(ω) are
a Hilbert pair, since the second relationship in Eq. (3) implies that the system has a
causal time-domain response.

In experimental practice, viscoelastic materials are characterized by measuring
η̃e(ω) rather than ηe(τ ). Therefore, when using FEM models, damping is typically
modeled in the frequency domain in terms of a complex stiffness matrix. However,
the constitutive damping model in the frequency domain needs to be assigned such
that the corresponding time-domain model be causal. This condition requires that
the real and imaginary parts of η̃e form a Hilbert pair, Refs. [5, 6]. Next, a general
performance indicator of the energy dissipated in the several damping models
is introduced in order to evaluate its effectiveness when introduced in a general
aeroelastic system. For that purpose, let us consider the energy dissipated in a cycle
T = 2π/ω of a permanent fully developed harmonic motion with angular frequency
ω for a continuum solid. Because of this position, the displacement field is

u(x, t) = f(x) sin(ωt) (7)

where f(x) represents an arbitrary assumed displacement field for the solids
satisfying its boundary conditions, and, consequently,

E(x, t) = Sym (∇f(x)) sin(ωt) Ė(x, t) = ωSym (∇f(x)) cos(ωt) (8)

Thus, the following dissipation index ID associated with the solid and with the
given angular frequency ω can be defined, by considering Eq. (1), the hypothesis of
linearly parallel-elastic viscosity, and Eq. (8),

ID(ω) :=
∫∫∫

V

∫ 2π/ω

0
Tvis : Ė dt dV = Fη(ω)FB (9)

with

Fη(ω) := ω

∫ 2π/ω

0

∫ ∞

0
η(τ) sin[ω(t − τ)]dτ cos(ωt)dt, (10)

FB :=
∫∫∫

V
Sym (∇f)CSym (∇f) dV (11)

It is worth noting that the factor Fη(ω) depends only by the damping characteriza-
tion of Eq. (3) linearly parallel-viscous material as given by the time function η(τ),
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whereas the factor FB by the elastic energy stored by the body as associated with
the displacement field f(x). Indeed, the factor Fη(ω) can also be expressed using
a frequency-domain description given by η̃(ω) by applying the Borel theorem to
Eq. (10) so obtaining:

Fη(ω) = ω

∫ 2π/ω

0
F−1

[
η̃(ω̄)

π

j
[δ(ω̄ − ω)− δ(ω̄ + ω)]

]
cos(ωt)dt

= πIm
[
η̃(ω)

]
(12)

where the symbol F−1 indicates the inverse Fourier transform. It is worth pointing
out that in the definition of the indicator of the energy dissipated ID(ω) in Eq. (9),
the factor Fη(ω) (see Eq. (10)) is independent from the solid geometry and gives
a direct measure of the dissipative effectiveness of material. Here in the following
three different expressions for the indicator ID(ω) will be presented for three widely
used damping models.

– Linearly viscous damping materials
In this case one has

η̃V (ω) = 2
jωζ

ω̄
(13)

where ζ is the so-called damping ratio and ω̄ is a reference angular frequency.
Since |η̃V (ω)| = 2ζω/ω̄ and ϕη̃V (ω) = π/2 (where |•| and ϕ• are the magnitude
and the phase of the complex number •, respectively), one has, applying Eq. (12),

ID(ω) = 2πζ

ω̄
ω FB (14)

– Standard hysteretic damping
In this case one has

η̃H (ω) = j η̄h sgn(ω) (15)

where η̄h is the so-called loss factor denoting the hysteretic damping. Since
|η̃H (ω)| = η̄h and ϕη̃H (ω) = π/2, one has, applying Eq. (12),

ID(ω) = πη̄h FB (16)

– Biot damping model
Biot model [7] is a two-parameter model (η̄b and εb) defined in frequency domain
as

η̃B(ω) = 2

π
η̄b

[
log

√
1+ ω

εb

2 + j atan

(
ω

εb

)]
(17)
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(a) (b)

Fig. 1 Comparison among different damping performances ID(ω). (a) Hysteretic vs Biot with
η̄h = η̄b. (b) Models as in Eq. (25) and Table 1

Thus, applying Eq. (12), one has

ID(ω) = 2

π
η̄b atan

(
ω

εb

)
FB (18)

In Fig. 1b a comparison among different damping performance for the viscous,
hysteretic, and Biot damping models is shown.

3 Aeroviscoelastic Model

In the previous sections the discretized equations of a viscoelastic continuum
(see Eq. (4)) have been obtained. These equations can be easily extended to the
aeroelastic case by including the aerodynamic and inertial forces. In order to
consider the effects of inertial and aerodynamic coupling, the rigid-body motion
uR and elastic motion uE can be studied separately, such that u = uR + uE.
Consequently, the elastic displacements can be expressed by means of the natural

mode shapes of the free-free structure φ̄
(n)

and the elastic modal coordinates ξn.

Let us assume q̄ = {
ΔxT ΔΘT ΔξT

}T
the vector collecting the perturbation of the

components of center of mass position and attitude of the aircraft with respect to

the inertial frame of reference and modal coordinates, and v̄ = {
ΔvT ΔωT Δξ̇T

}T
,

the vector of the perturbation of components of center of mass velocity and angular
velocity expressed with respect to the non-inertial frame of reference [8] and modal
velocities. The relationship between these two vectors is generally a nonlinear
function of the Euler angles, that can be linearized about level flight such as having˙̄q = Tv̄ (see [8] for the definition of matrix T).

Under the additional assumption of homogeneity of η̃ throughout the structure,
the integro-differential system in Eq. (4) specialized for the aeroviscoelastic case is
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thus recast by including the aerodynamic forces produced by the dynamics of the
aircraft e, and the perturbation of the projection of gravity on the reference frame
fw given by the aircraft attitude:

M̄ ˙̄v(t)+ D̄v̄(t)+ K̄q̄(t)+ K̄
∫ +∞

0
η(τ)q̄(t − τ)dτ = f̄(t)+ e(t)+ fw(t) (19)

where M̄ is the generalized mass matrix including inertial effects between rigid-
body and elastic modes, D̄ is a damping matrix that includes only inertial effects,
K̄ is the generalized stiffness matrix, and f̄ is the vector of the generalized external
forces, such as given by the gust. The aerodynamic forces (both given by aircraft
motion and gust) are expressed by means of the generalized aerodynamic forces
matrix in reduced frequency domain k = ωb/U∞ (where b is generally the half-
chord and U∞ is the aircraft speed) as a function of the dynamic pressure qD and
Mach number M∞.

ẽ = qDE(k,M∞) ˜̄q (20)

˜̄f = qDEg(k,M∞)w̃g (21)

where E is the generalized aerodynamic forces (GAF) matrix and wg is the vertical
gust component velocity. Furthermore, the projection of the gravity can be expressed
such as f̃w = −Kw ˜̄q, where Kw is a further stiffness contribution given to the rigid-
body DoFs by the weight projection. All the contributions above can be summarized
to express the aeroviscoelastic equations of motion in Laplace domain:

(
s2M̄T−1 + sD̄+ (1+ η̃(ω))K̄+ Kw − qDE(k,M∞)

) ˜̄q(s) = qDEg(k,M∞)w̃g

(22)

It is apparent that the obtained aeroviscoelastic equation is a transcendent function
of Laplace variable s. Nonetheless, the homogeneous solution of Eq. (22) can still
be expressed in time domain as:

q̄(t) =
N∑

n=1

cnw(n)esnt (23)

where w(n) and sn (n = 1, . . . 2Nmodes) are, respectively, the n-th complex
eigenvector and n-th pole of the aeroviscoelastic system above. The stability of the
system can thus be studied by solving a non-standard eigenvalue problem where the
relationships ω = Im(s) and k = Im(s)b/U∞ allow to close the iterative numerical
procedure (generally p-k method) to obtain the system poles and eigenvectors. On
the other hand, the frequency response function to gust input w̃g is given by

hg(ω) = qD

(
−ω2M̄T−1+jωD̄+ (1+ η̃(ω))K̄+Kw−qDE(ω)

)−1
Eg(ω) (24)
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4 Results

The effects of different damping models on stability and response analyses of a
Body-Freedom-Flutter (BFF) type aircraft (Ref. [8]) are presented. For a complete
aeroelastic analysis the reader may refer to Ref. [8]. The first bending and torsional
elastic mode shapes of the unrestrained structure are equal to f1 = 5.830 Hz and
f5 = 20.093 Hz. The root locus of the undamped aircraft in steady rectilinear flight
carried out for U∞ = 15 → 30 m/s, M∞ = 0, and sea level conditions showed a
body-freedom flutter speed equal to UF = 19.85 m/s [8] (see Fig. 2a). Moreover, the
flutter critical mode has a frequency of ωF = 26.82 Hz. All the considered damping
models (i.e., viscous, hysteretic, and Biot) have been tuned to have the same value
of η̃ at flutter speed and angular frequency, thus having

Iη̃V (ωF ) = Iη̃H (ωF ) = Iη̃B (ωF ) (25)

The parameters used for this analysis are listed in Table 1. The relative functions
η̃(ω) are shown in Fig. 1b for each damping model, whereas the stability scenarios
of all different aeroviscoelastic models are shown in Fig. 2b. It can be noticed
that: (1) the flutter speed does not differ too much between the different models,
thus having UF equal to 20.04, 20.1, and 20.78 m/s, respectively, for the viscous,
hysteretic, and Biot damping models (despite the damping is the same for flutter
frequency, the different damping models modify the system behavior globally so

Table 1 Parameters used for
the different damping models

ζ ω̄ η̄h η̄b εb

0.025 26.82 0.05 0.0646 10.

(a) (b)

Fig. 2 Root loci of damped and undamped systems. (a) Without damping. (b) With damping
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(a) (b)

Fig. 3 FRFs associated with modes 1 and 5 at speed 16.35 m/s at sea level condition. (a) ξ̃1(ω).
(b) ξ̃5(ω)

perturbing in different way the flutter margins); (2) viscous damping results in an
increase damping at higher frequencies due to its increasing damping effectiveness
with frequency; (3) Biot damping model results in an increase of both damping and
frequencies with respect to the hysteretic case. This behavior is due to the real part
of η̃B that produces an increase of stiffness as the frequency increases. Differences
between the aeroviscoelastic systems with different damping models arise also in
the frequency response functions to the vertical gusts at the speed U∞ = 16.35 m/s
at sea level conditions (see Fig. 3 for FRF of mode 1 and 5). In particular, the fifth
structural mode response denotes great differences at higher frequencies. Especially,
as it is shown from root locus, the Biot model produces a shift of the second peaks
at higher frequencies.

5 Concluding Remarks

In this paper different first-principle-based damping models have been introduced
into an aeroelastic framework to compare their effects to the stability and response
of flexible aircraft. In order to assess their performances, a parameter to evaluate
their effectiveness has been introduced based on the dissipation associated with a
fixed shaped mono-frequency motion. The aeroviscoelastic analysis involved a non-
standard study of the stability and response of a BFF flexible aircraft configuration
by tuning the different viscoelastic models to behave similarly at the flutter margin
of the undamped configuration. The stability scenarios and the gust frequency
responses marked the different behaviors of the investigated damping models when
included in the aeroelastic framework.
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Dynamic Response of a Morphing Wing

Patrizio Rosatelli, Walter Lacarbonara , Andrea Arena,
and Daniel J. Inman

Abstract This work aims to develope a computational framework to predict the
dynamic response of a morphing wing. Unlike conventional aerodynamic surfaces,
the investigated wing has the capability of continuously morphing its trailing edge
shape in order to improve the wing aerodynamic performance. The computational
tool here developed incorporates a structural wing linear model whose dynamics
are coupled with the unsteady aerodynamics generated by the wing interaction
with an incompressible airflow. The wing equations of motion are derived from the
theory of thin plates, while the airflow dynamics are described through an unsteady
formulation and solved by the vortex lattice method (VLM). The fluid–structure
interaction is then obtained by performing iterative simulation loops in which,
starting from a reference wing and airflow configuration, the mechanical unknowns
(i.e., the wing deflections and velocities) are used as input to modify the reference
geometry of the aerodynamic surface and thus to modify accordingly the airflow
dynamics around it. This allows the determination of the equivalent aerodynamic
loads acting on the wing and the calculation of its dynamic response. The critical
airflow speed leading to the flutter instability is evaluated for several trailing edge
shapes of the morphing wing and compared with the critical speed attained in the
unmorphed case.
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1 Introduction

Since the beginning of the aviation history, the capability of aircraft to adapt
themselves to several flight conditions was one of the main concerns for aeronautical
engineers. As a matter of fact, the idea of shape modification of the aerodynamic
surfaces was often employed in aircraft to accommodate the changes in the
aerodynamic effects so as to increase their efficiency over a variety of flight
conditions. In particular, the trailing edge is the portion of the wing whose motion is
the most commonly used to modify the aerodynamic loads, and over the years this
morphing capability has been exploited to get a wide range of favorable effects on
the aerodynamic performance of a wing.

The spanwise morphing trailing edge (SMTE) concept was realized for the first
time at the AIMS Laboratory of the University of Michigan [1]. The morphing
strategy aimed to vary locally the trailing edge camber of a wing or control surface
in order to work as a modular replacement for conventional ailerons without altering
the wing spar box.

Moosavian et al. [2] investigated the aerodynamic effects associated with the
change in geometry of morphing wings inspired by the wave-like camber variation
in the trailing edge feathers of large birds (just as the SMTE wing) and the
endurance capability was chosen as the measure of the flight efficiency (c3/2

L /cD)
(here cL and cD indicate the lift and drag coefficients). The unmorphed NACA
0012 wing, including a variable angle of attack, is able to match the performance
of the best morphed configurations at lower cL values, although the morphed
configurations outperform the unmorphed profile for cL > 0.6. Given that this
kind of configuration for the wing showed better aerodynamic performance, a
preliminary structural and aeroelastic analysis for the finite half-wing is the subject
of this study.

Several papers over the years addressed aeroelastic analysis of morphing wings;
in [3] the aeroelastic roll performance of a morphing wing was studied by adopting
a one-dimensional (1D) beam model, discretized by means of the finite element
method (FEM), coupled with unsteady aerodynamics modeled via the vortex
lattice method (VLM). The VLM was used also in [4] to simulate the unsteady
aerodynamics of wings in order to evaluate the roll performance, although the wing
structural behavior was modeled by an equivalent plate whose equation of motion
was solved by the Ritz method. In [5] the dynamic aeroelastic stability of a morphing
wing was evaluated by employing both CFD and FEM analyses. In the present
study, a novel Matlab-based numerical tool is proposed to study the aerodynamic
stability of morphing wings including parametric studies to evaluate the effects of
the wing trailing edge shape towards improving the flutter speed. To this end, the
wing structure is modeled as an equivalent thin plate whose equation of motion is
solved via the Galerkin approach, while the aerodynamics of the airflow are modeled
via an unsteady, non-standard VLM including the wake effect.
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2 Problem Formulation

Before delving into the details of the aerodynamic and structural modeling, it is
important to provide some context on the type of morphing employed for the studied
SMTE wing. The shape changing of the trailing edge of the SMTE is parameterized
via a sinusoidal law, and the position of the wing trailing edge in the vertical
direction z is described as a function of its location y along the wing span expressed
as z(y) = A sin(2kπy + ϕ), where A is the constant amplitude of the wave, k is
the spatial frequency, and ϕ is the phase shift. By assuming an incompressible, non-
viscous, non-detached, initially irrotational and isentropic airflow, the aerodynamic
loads generated by the flow–structure interaction can be evaluated starting from the
well-known potential flow theory. In particular, by introducing the potential function
ϕ, such that the airflow velocity vector v can be expressed as v = ∇ϕ, the continuity
equation in the airflow space domain (x, y, z), away from the wing surface, can be
written as

∇2ϕ = 0, (1)

together with the boundary conditions ∂ϕ
∂n
= v · n at the wing surface (with n being

the unit vector normal to the wing surface), ϕ = 0 at the far field (i.e., at x, y →
±∞), and the Kutta condition at the trailing edge.

It is well known that in incompressible potential flows the points in contact with
the aerodynamic surface represent a singularity for the Kelvin theorem. Moreover,
the flow field near the wing surface is necessarily characterized by the presence
of the wake which is a surface of discontinuity in the velocity potential ϕ. In this
context, a singularity in the solution of Eq. (1) is given by the so-called vortex
line. An ideal, infinite vortex line spins the flow around the line itself and the
velocity of each material point of the flow decreases its intensity in a way inversely
proportional to the distance from the vortex line. One of the most interesting
applications of this singular solution is that many vortices can be generated so as
to simulate more realistic flow dynamics in the wake [6]. Using vortex rings, the
flow boundary conditions can be satisfied on the wing reference surface (i.e., on
some “control points” over the surface) and the wake mechanism can be described.
A three-dimensional thin lifting surface problem can be solved by using vortex ring
elements.

The present study aims at capturing the aeroelastic interaction between the
dynamics of the wing and those of the flow across the aerodynamic surface. To this
end, the unsteady formulation within the VLM is based on a different expression for
the boundary conditions, the addition of the wake mechanism, and the utilization of
the unsteady Bernoulli equation.

On the other hand, the mechanical behavior of the wing is described using the
classical thin plate theory. In this context, the wing structure (i.e., the wingbox)
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is modeled as an equivalent Kirchhoff–Love cantilever plate whose inertial and
stiffness properties are determined so as to reflect the static and dynamic flexural–
torsional behavior of the actual (truss-like) wing structure. In the fixed Cartesian
frame (ex, ey, ez) having its origin in the leading edge corner of the fixed boundary,
the position vector x = xex + yey is adopted to describe the reference planar
configuration of the plate mid-surface, while w(x, t) represents the out-of-plane
flexural displacement of the plate. The geometry of the plate reference configuration
is provided by the length l, the width b, and the thickness h of the equivalent
cantilever plate. Denoting by D = E h3/12(1− ν2) the plate flexural stiffness, with
E and ν being the equivalent Young modulus and Poissons ratio, respectively, and
denoting by ρ the equivalent mass density of the plate, the Kirchhoff–Love equation
describing the plate bending is cast as

ρhẅ(x, t)+ cẇ(x, t)+D∇4w(x, t) = f (x, w, ẇ; t), (2)

together with the cantilever-type boundary conditions (zero deflection and slopes
on the clamped edge and zero moment and shear force on the stress-free edges)
and the initial conditions. In Eq. (2), the overdot indicates time differentiation
and f (x, w, ẇ; t) is the force per unit surface acting on the plate, including the
aerodynamic loads.

The Galerkin approach is adopted to solve the partial differential equation
governing the motion of the wing by choosing the eigenfunctions φn(x) of the
equivalent cantilever thin plate as the basis of orthogonal trial functions. The
following expression of the plate transverse deflection w(x, t) is adopted:

w(x, t) =
N∑

n=1

qn(t)φn(x), (3)

where qn are the generalized coordinates and N is the number of trial functions
in the Galerkin discretization. It is easy to show that only the lowest mode shapes
provide significant contributions since the flutter instability is generated from an
interaction between the lowest bending mode and the lowest torsional mode. To
obtain a more accurate analysis, also the second torsional mode and the second and
third bending modes are chosen to be included in the deflection description. By
substituting Eq. (3) into Eq. (2) and enforcing the minimization of the residual force
per unit area across the wing midplane, the following discrete form of the wing
equation of motion is obtained:

M q̈+ C q̇+K q = f(q, q̇, t), (4)

where M, C, and K are the mass, damping, and stiffness matrices, respectively, and
q is the vector collecting the generalized coordinates qn. On the other hand, the N×1
vector f(q, q̇, t) represents the generalized forces associated with the aerodynamic
loads provided by the VLM.
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The Newmark-beta method (a generalized modification of the original Newmark
method [7]) for time integration of a forced differential system is used in this
study. The Newmark-beta method is based on substituting expressions for velocity
and acceleration at each time step, thus generating an easier linear system to
solve for obtaining the deflections. A Matlab-based VLM code was developed in
collaboration with the University of Michigan [8], tailored to take into account
morphing capabilities of the trailing edge. The time-dependent, fluid–structure
interaction is implemented via a CSS procedure [9]. The algorithm consists in the
following steps performed at each time step: (1) the motion of the wet boundary
is transferred, by extrapolation, to the aerodynamic mesh which is then updated;
(2) the fluid subsystem advances to the next time step and the new pressure field is
computed; (3) the pressure field is then converted into a new load and transferred to
the structure by interpolation; (4) the dynamic response of the structural subsystem
is evaluated and the simulation moves to the next time step. All of these coupling
capabilities were developed from scratch using the VLM code described in [8] as the
starting point. As a result, a novel optimized tool was obtained in Matlab to perform
calculations for coupled, structural, and aerodynamic analyses on wings with the
possibility of arbitrarily varying the trailing edge shape. The code executes several
functions written “ad hoc” in a loop and described next. First, the wing shape, the
aerodynamic mesh, and the flow properties are given as input: the wing span, the
chord length, the incidence, sweep, taper ratio, dihedral, as well as the number of
panels to discretize the wing, and the free stream velocity are some of the parameters
that can be changed to carry out parametric analyses. Then, the routine for structural
analysis calculates the plate mesh deflection. The plate transversal deflection is then
extrapolated to find the displacements of the aerodynamic mesh and to compute the
orientation of each flow panel (taking into account the morphing capabilities). A
routine implementing the unsteady VLM is then used to calculate the flow potential
across the field and also the wake is first generated and its position is advanced at
each time step. Finally, the forces acting over the wing are computed before applying
them over the structural mesh, thus starting a new step of the loop.

3 Numerical Results

The equivalent plate has the following properties: chord=0.3 m, half-span= 0.912 m,
E=5.1 GPa, thickness=0.005 m, density=38.15 kg/m3. The aeroelastic flutter condi-
tion is found by observation of the dynamic response of the wing lying in a free
stream flow. First of all, the behavior of the wing with non-morphing capabilities is
investigated to obtain a general starting point for comparison with the subsequent
results. Most importantly, the main goal of the study is to highlight the different
aeroelastic performance of a conventional wing as opposed to a SMTE morphing
wing. As discussed in this section, important differences are found which may
represent the starting point of more refined analyses and experimental testing



434 P. Rosatelli et al.

Fig. 1 Aeroelastic response of the wing at different airflow speeds: (left) U∞ < UF (stable
behavior), (center) U∞ = UF (flutter critical condition), (right) U∞ > UF (unstable behavior)

Table 1 Flutter speeds for
different morphing
configurations

k ϕ UF k ϕ UF

0.15 315° 26 m/s 0.1 315° 28 m/s

0.05 315° 32 m/s 0.25 225° 34 m/s

campaigns. A representative set of dynamic responses of the conventional wing
vibrating in different regimes is reported in the following figures.

In particular, the vertical deflections of the mid-chord point of the cross section
at the wing tip and of an off-center point are evaluated at each time step to
understand the overall dynamic behavior of the wing. The off-center point is chosen
such that its motion well represents the initial bending of the wing; moreover, at
later times, it is possible to observe the interaction between bending and torsional
motion, a crucial aspect to understand aeroelastic phenomena. When damping is
large enough to reduce the amplitude of this coupled motion, the wing achieves a
deflected equilibrium after a transient behavior (Fig. 1 (left)). If this motion cannot
be damped out, flutter occurs as shown in Fig. 1 (center) (Hopf bifurcation) and in
Fig. 1 (right). The free stream velocity leading to this unstable behavior is the flutter
speed. Specifically, for the non-morphing configuration, an unbounded growth of
the response can be obtained at the lowest speed U∞ = UF =24.5 m/s. The flutter
speed is also computed for some of the morphing configurations which yield the best
performance as discussed in [2]. All behaviors found in these cases are similar to
the behavior observed for the unmorphed configuration, but the flutter speeds for the
morphed configurations are considerably different. Table 1 gives the flutter speeds
for the wing configurations depicted in Fig. 2; in particular, the trailing edge was
morphed according to the shape provided by the expression z(y) = A sin(2kπy+ϕ),
where A = 0.019 m and the extension of the trailing edge shape morphing along
the chord-wise direction x is assumed to be one-fourth of the chord length.

Figure 3 shows the vertical aerodynamic pressure distribution on the morphing
wing when k=0.15 and ϕ=315° at an airflow speed below the flutter speed. As
expected, the vertical pressure exhibits its peak value at the wing root and along
the leading edge and is increased with respect to the unmorphed case because of the
presence of the morphing trailing edge. A remarkable result is that morphing has a
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Fig. 2 Wing morphing configurations: in red the morphed trailing edge

Fig. 3 Vertical aerodynamic pressure acting on the morphing wing for k=0.15 and ϕ=315° at the
airflow speed U ≈10 m/s

considerable, nontrivial effect on the flutter speed. As a general rule, the flutter speed
is lower for morphing wings as opposed to the conventional non-morphing designs.
Moreover, in the present case, morphing is effected by deflecting an aileron, thus
increasing lift on the wing because of the increased curvature of the wing profile.
For these reasons a lower flutter speed for this morphing wing was expected, but
the opposite trend is observed. Indeed, the more the aileron increases lift, the more
aerodynamic forces in percentage are applied on the rear chord-wise part of the
wing. Also, the elastic center of the plate-like wing is exactly in the mid-chord
(unlike most of the aircraft wings). The combination of increased forces acting on
the rear part of the wing and the collocation of the elastic center seems to be the
reason why the more the SMTE increases lift, the higher the flutter speed. In fact,
if the forces are increased in the rear part of the wing, the “center of the chord-wise
lift distribution” moves backwards. In this way the “torsional” lever arm is reduced
and the twisting moment is reduced accordingly. Actually, the chord-wise center of
lifting forces acting on the inner part of the wing (the first four panels chord-wise
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Fig. 4 Forces are applied away from the elastic center for lower flutter speeds

near the wing root) was evaluated for a stationary load at the flutter speed for each
of the above configurations. The results showed that the flutter speed increases if
the center of forces is closer to the mid-chord (see Fig. 4). Since lower twisting
moments are generated, this may be the explanation for increased flutter speeds.

It should be noted that the described phenomenon is strictly connected to the
plate-like representation of the wing. For more realistic wing geometries, the elastic
center of the wing is placed near the aerodynamic center so that the effect described
above may influence flutter differently.

4 Conclusions

FEM models of the wing, wingbox, and plate were constructed to validate the
Matlab code tackling the wing equivalent plate problem. The Newmark-beta
method was employed for time integration. Concerning the aerodynamics, flow
unsteadiness and morphing capabilities were implemented in the context of a VLM
approach. Fluid–structure interaction was tackled by accounting for displacements
and aerodynamic load transfer. Several analyses allowed the flutter speed to be
calculated for the morphing and non-morphing wing configurations. Moreover,
an interesting explanation for the flutter speed variation for different morphing
configurations was provided.
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Helicopter Pilot Biomechanics by
Multibody Analysis

Pierangelo Masarati, Andrea Zanoni, Vincenzo Muscarello, Rita Paolini,
and Giuseppe Quaranta

Abstract Helicopter handling qualities can be affected by the voluntary and invol-
untary interaction between the vehicle dynamics and the human body biomechanics.
To investigate the possible couplings, a first-principles approach has been taken:
biomechanical multibody models of the pilot upper limbs and spine have been
developed along with generation procedures that can be used to represent human
bodies of broadly varying anthropometric parameters. The models have been
used both for the identification of the linearized behavior about arbitrary steady
conditions and for full nonlinear analysis of helicopter transient maneuvers, through
direct and inverse dynamics analyses.

Keywords Rotorcraft · Biomechanics · Multibody

1 Introduction and Motivation

The standard layout of helicopter control inceptors comprises the cyclic stick, the
collective lever, and the pedals. The helicopter pilot’s control action on the cyclic
and collective inceptors (Fig. 1, left) is exerted through the action of their hands,
commanded by the activity of their muscles in the upper limbs and torso. At
the same time, their bodies are subjected to the inertial effects of the rotorcraft
dynamics. The resulting induced motion of the control inceptors, which actuates
the control surfaces, thus producing loads that amplify the motion of the vehicle,
is at the roots of several possible adverse interactions between the voluntary and
involuntary action of the pilot and the handling qualities of rotorcraft [1–3]. These
problems are well known and have been investigated in the past with reference
to fixed wing aircraft [3]. However, there is a lack of understanding of specific
problems arising in rotorcraft [1]. Although relatively sophisticated, yet lumped
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pedals

collectivecyclic

Fig. 1 Schematic view of helicopter control inceptors (left), and upper limbs and trunk multibody
models (right)

parameter biomechanical models were developed [4], the typical approach is based
on using transfer functions of the pilot’s biodynamics, obtained experimentally,
often in flight [1]. Such approach limits the validity of the analysis to existing
cockpit and control inceptor configurations, and hides the influence of fundamental
biomechanics. To investigate these phenomena, generally collected under the
acronym (RPCs, Rotorcraft Pilot Couplings) from a first-principles perspective,
an enduring effort has been carried out at Politecnico di Milano Department of
Aerospace Science and Technology towards the development, implementation, and
validation of biomechanical multibody models of the human upper body. They are
implemented in the general-purpose, free multibody analysis software MBDyn [5]
(https://www.mbdyn.org/), which is also developed by the authors. This
work presents an overview of the research activities carried out in this field during
the last several years, and an outlook into envisaged development.

2 Multibody Models

2.1 Upper Limb Model

The model of each upper limb is composed of 6 rigid bodies representing the
scapula, clavicle, humerus, ulna, radius, and hand, constrained by 7 ideal kine-
matic constraints that model the sternoclavicular, acromioclavicular, glenohumeral,
humeroulnar, humeroradial, radioulnar, and radiocarpal joints. The scapulothoracic
joint is modeled through a deformable element. Twenty-eight muscle bundles act on
the remaining 13 degrees of freedom. Each is modeled using a nonlinear viscoelastic
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element that can be actuated, following the model proposed by Pennestrì et al. in [6],
that falls in the general scheme of Hill-type muscular actuators (Fig. 2). The internal
force produced by each single muscle bundle is in the form

f̃m(l̂, v̂, a) = F0

(
f1(l̂)f2(v̂)a + f3(l̂)

)
(1)

where F0 is the peak isometric contraction force of the muscle bundle, l̂ = l/ l0 is
its nondimensional length, including the portion related to tendons, v̂ = l̇/v0 is its
elongation velocity divided by a reference velocity that can be set to 4l0 ms−1 for
skeletal muscles [7], a is the activation level, varying between 0 and 1. The nonlinear
functions f1 and f2 therefore describe the dependency of the active contribution,
while f3 is related to the passive contribution, largely represented by the axial strain
response of the tendons.

Each limb can be considered as a kinematically underdetermined, overactuated
manipulator. To cope with the kinematic indeterminacy, the problem is solved
directly at the position level. The motion of the degrees of freedom of the model, q,
is restrained by (nonlinear) “ergonomy” springs that impose a penalty on the motion
of the relative degrees of freedom, θ(q), they connect. The problem is equivalent
to a nonlinear optimization problem, seeking the minimization of a cost function
Jp represented by the potential energy of the ergonomy springs, subjected to the
kinematic constraints, both scleronomic, φ(q) = 0, and rheonomic, ψ(q) = α(t),
the latter used to prescribe the motion of parts through the function α(t),

Jp(θ) = 1

2

(
θ − θergo

)T K
(
θ − θergo

)+ λT φ(q)+ μT (ψ(q)− α(t)) (2)

Fig. 2 The upper limb multibody model: location of the nodes on the respective bones (left);
schematic representation of the kinematic constraints (right)
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where K is the matrix of joint rotations ergonomic penalization, λ and μ are
Lagrange multipliers vectors, θ is the joint angles vector, and θergo are assumed
equal to the average of the minimum and maximum angle of the individual articular
joint.

At the velocity and acceleration levels, the underdeterminacy is solved by
minimizing the error between the actual velocity/acceleration and reference values,
obtained by differentiating the solution at the position level:

Jv(q̇) = 1

2

(
q̇− q̇0

)T M
(
q̇− q̇0

)+ λT φ/qq̇+ μT
(
ψ/qq̇− α̇(t)

)
(3a)

Ja(q̈) = 1

2

(
q̈− q̈0

)T M
(
q̈− q̈0

)+ λT
(
φ/qq̈+ (

φ/qq̇
)
/q q̇

)

+ μT
(
ψ/qq̈+ (

ψ/qq̇
)
/q q̇− α̈(t)

)
(3b)

where M is the mass matrix.
Once the complete kinematics of the problem is determined, the joint torques

required to produce it can be directly found, since at this level the problem is
fully determined. To estimate the muscular forces required to produce the computed
torques, a constrained minimization problem must be solved, seeking the activations
ai that minimize a cost function (e.g., the total norm, among the many that have
been proposed in the literature) that can vary according to the task, constrained by
the admissibility conditions 0 ≤ ai ≤ 1, i.e., the saturation limits for the muscle
bundles [8]. The problem can be stated as

c =
(
θ+/q

)T

Bf̃m(l̂, v̂, a) =
(
θ+/q

)T

(Mq̈− f) (4)

where B is the matrix of the moment arms of muscle forces with respect to the
rigid bodies they are attached to, f is the external forces resultant, and the “+”
superscript denotes pseudoinversion. Please note however that the two problems
are currently solved independently, i.e., the muscular activations are computed after
the joint torques are known. Furthermore, the first equivalence represents a linear
underdetermined problem in the activations; therefore, to the minimal contribution
coming from the minimization of the objective function, an additional contribution
can be added, using combinations of activations that do not produce a change in joint
torques. These torque-less activation modes (TLAM) can be found decomposing
matrix A = (θ+/q)

T B [8]. The resulting activations are associated with the passive
pilot input. To them, a reflexive (voluntary) contribution is added, considering a
quasi-steady approximation of the activation dynamics, and introducing an activa-
tion contribution proportional to the variation of length and contraction velocity of
the muscle actuator:

a = a0 + kp

(
l

l0
− lref

l0

)
+ kd

(
l̇

v0

)
(5)
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where lref is the reference length of the muscle from inverse kinematics. This latter
procedure can also be used to simulate complete maneuvers.

2.2 Trunk Model

In several cases, the dynamics of the pilot body mid-section has been proven
important to adequately model the biodynamic interaction between the body and the
vehicle. For this purpose, also a complete model of the trunk has been developed [9]
(Fig. 3, left). The model comprises 34 rigid bodies, associated with vertebræ from
S1 to C1, the head, and 8 bodies in which visceral masses are lumped. Each vertebral
mass is connected to the neighboring ones by algebraic constraints that do not
constrain rotation, but only allow relative displacement along the local longitudinal
axis of the spine, and by 3D viscoelastic elements acting on the remaining linear and
angular degrees of freedom. The head and the sacrum, to which the masses of the
pelvis and a portion of the masses of the thighs are associated, are modeled as rigid
bodies and are also connected, respectively, to C1 and L5 by algebraic joints and
viscoelastic elements. The visceral masses are connected to the respective vertebræ
through linear viscoelastic elements as well (Fig. 3).

The model is adapted for both direct and inverse dynamics analyses, following
the same procedure outlined in the previous section for the upper limb model. In
this case, the elastic elements that connect the vertebræ bodies are used to impose
the penalty coefficients on the corresponding relative degrees of freedom when
inverting the model kinematics. The model is generally used to identify reduced
order models (ROMs) that are then combined with the upper limb models in the
form of component mode synthesis (CMS) elements, but can also be used in full
joint simulations, effectively reproducing the entire upper body dynamics of the
pilot.

Fig. 3 The upper limbs and torso multibody models (left) and the intervertebral (middle) and
vertebra-viscera constraints (right) in the torso model
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2.3 Models Parameterization

Since the context in which the models are used does not require subject-specific
tailoring—as is often the case, for example, in biomechanical simulations aimed
at predicting the outcome of surgical procedures—the geometrical, inertial, and
structural parameters of the two models are generated following a generalized
procedure, starting from just four anthropometric parameters (age, gender, height,
and weight). From these input data, the most probable geometry of the subject’s
rib cage is generated relying on a statistical model published by Shi et al. [10].
The positions of thoracic vertebræ and of the center of the glenoid fossa (the
center of the glenohumeral joint) are directly estimated on the rib cage model.
Geometric and inertial parameters for the upper limb segments are then estimated
using regression coefficients, while structural parameters (stiffnesses, damping
factors) are scaled making use of geometrical scaling coefficients derived from the
comparison between the generated rib cage geometry and the reference one.

3 Examples

The models can be utilized to estimate activation patterns during entire maneuvers:
Fig. 4 shows the results of a simple simulation based on Eqs. (2–3), in which a
reference sinusoidal motion has been applied to the collective lever. The correspond-
ing activation patterns of selected muscular fascicles in the upper limb are reported
alongside the lever rotation. It can be noted that synergic muscles are activated with
similar patterns.

Experiments, including the acquisition of limb motion via motion capture and
of muscular activation via electromyography (EMG) in a flight simulator, have
been recently carried out. The most recent experimental activity was carried out
considering a ship landing task (Fig. 5), performed by an experienced test pilot [11].
The workload of the pilot was varied modifying the ship motion according to the
sea state, between 0 (calm) and 5 (rough). EMG signals of two left forearm muscles,
the Extensor Carpi Radialis and the Flexor Carpi Ulnaris, and two upper arm
muscles, the Biceps Brachii and the Triceps Brachii are shown in Fig. 6 (top row).

Fig. 4 Imposed collective lever rotation (left) and corresponding muscular activations in the upper
arm (right)
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Fig. 5 Example of ship-landing maneuvers executed during simulator tests: descent towards the
ship is followed by straight-in landing when the ship motion allows it. Otherwise, hovering
alongside the naval unit is performed, waiting for quiescence
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Fig. 6 Measured EMG signals (top row) and predicted activation levels (bottom row) of two upper
arm and two forearm muscles during a ship landing simulator test

The forearm muscles show an increasing level of co-contraction during the descent
and in particular in the final approach phase, signaling an increasing effect of the
workload on the stiffness of wrist flexion–extension articulation. The upper arm
muscles, instead, show very low level of EMG activity throughout the test. The
levels of activation predicted by the multibody models are shown in the bottom row
graphs of Fig. 6. While the absolute values of EMG and activation should not be
directly compared [12], it can be noted that the order of magnitude of the computed
activations compares favorably with the registered value. The time variation of the
activation levels of the forearm muscles was captured to a certain degree enriching
the baseline activation with a contribution proportional to TLAMs. However, at this
very preliminary stage of the analysis, the effect of TLAMs is also important in the
muscles of the upper portion of the limb, a behavior that was not observed during
experiments. Further investigations are therefore needed to better understand how to
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correctly reproduce the observed patterns. More test, involving pilots with different
levels of experience, are also needed to assess the variability of the EMG patterns.

4 Conclusions

There is practical evidence of adverse RPC phenomena that evolve in diverging
oscillations, often culminating in limit cycles, at frequencies that are too high for a
human operator to control. Sources of nonlinearities can be found in the kinematics
and constitutive properties of the limbs, in friction and nonlinear constitutive
properties intentionally designed in the control inceptors, and in the aeromechanics
and servodynamics of the vehicle. These phenomena typically surface during flight
testing; they can be rather dangerous as well as elusive, as their appearance is often
related to subjective characteristics of the pilots. A better understanding of RPCs,
and the capability to model and anticipate their insurgence, can be of extraordinary
importance in terms of safety and, from an industrial standpoint, of savings in
development time and resources.
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Derivation of Non-dimensional Equation
of Motion for Thin Plate in Absolute
Nodal Coordinate Formulation

Kun-Woo Kim, Jae-Wook Lee, Jin-Seok Jang, Ji-Heon Kang,
and Wan-Suk Yoo

Abstract The absolute nodal coordinate formulation was developed in the mid-
1990s to express large deformations and large rotations in flexible multi-body
dynamics. It is a non-incremental finite-element procedure wherein the mass matrix
is expressed as a constant while the stiffness matrix carries highly nonlinear features.
The formulation for a thin plate can be developed on the basis of continuum
or structural mechanics similar to that for a beam. Absolute nodal coordinate
formulation necessarily uses the global slope vector, and this results in an increase
in the degree of freedom. In this study, to reduce analysis time, the non-dimensional
equation of motion of a thin plate is derived from the dimensional equation of
motion using non-dimensional variables. An example of a thin cantilever plate is
used to present the improved efficiency of analysis due to the non-dimensional
equation of motion, and the simulations are shown with various numbers of
elements. The non-dimensional equation of motion is thus verified by demonstrating
the similarities of the solutions for both the dimensional and non-dimensional
equations of motion.

Keywords Absolute nodal coordinate formulation · Non-dimensional equation of
motion · Thin plate

1 Introduction

The absolute nodal coordinate formulation (ANCF) was developed in the mid-
1990s to express large deformations and large rotations in flexible multi-body
dynamics [1]. The ANCF is a non-incremental finite-element procedure wherein
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the mass matrix is expressed as a constant while the stiffness matrix contains highly
nonlinear features. The mass matrix that is expressed as a constant suggests the
absence of a transformation matrix. This is distinguishable from the floating frame
of reference formulation in which the mass matrix is expressed as a nonlinear object
while the stiffness matrix is expressed as a constant [1, 2]. As one of the studies
concerning ANCF, Kim et al. [3] have proposed a non-dimensional equation of
motion to reduce the time required for analysis. Their proposed method converts the
dimensional equation of motion into the non-dimensional equivalent by introducing
non-dimensional variables [4]. The solution to the converted equation was verified
with an example of a cantilever beam whose exact solution exists, its applicability
to equations of motion based on continuum and structural mechanics was also
presented.

The formulation for a plate in ANCF was also developed in the mid-1990s [1].
For a fully parameterized element based on continuum mechanics, there are 12
degrees of freedom for each node, resulting in a total of 48 degrees of freedom per
element with four nodal points [5]. This is disadvantageous as the time required
for analysis increases [1]. Further, the time for analysis increases compared to
the equation of motion based on structural mechanics, which uses the gradient-
deficient element [6]. This study intends to convert the equation of motion studied by
Dufva and Shabana [6] into its non-dimensional equivalent using non-dimensional
variables to reduce the time required for analysis. To demonstrate the improved
efficiency of analysis and to verify the non-dimensional equation of motion, a thin
cantilever plate will be used as an example. Its analysis efficiency is expected to
increase with increasing number of elements. The originality of the present study
would be ascribable to following points:

• An introduction of the newly defined non-dimensional shape function and nodal
coordinate for the thin plate in absolute nodal coordinate formulation.

• Derivation of the non-dimensional equation of motion for a thin plate using non-
dimensional variables.

• Verification of the non-dimensional equation of motion and improved efficiency
of analysis.

2 Derivation of Non-dimensional Equation of Motion

Non-dimensionalization of the equation of motion can be achieved using the
variable TND, which non-dimensionalizes the dimension of time, as shown in Eq.
(1).

t = TNDt∗
(
TND = L2

ND

√
ρ

FND

)
(1)
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Fig. 1 Four-node rectangular thin plate in ANCF

Here, t and ρ denote the time and density. LND and FND denote the arbitrary
length and force on the thin plate. The symbol “*” is the non-dimensionalized
variable.

As shown in Fig. 1, the general coordinates used to express the position vectors
of four nodes with a total of 36 degrees of freedom for a rectangular thin plate can be
expressed as combinations of the global position vectors and in-plane global slope
vectors. In Fig. 1, the subscripts A, B, C, and D signify anticlockwise nodal points. x
and y are the coordinates along the plane of the thin plate before deformation. l and
w denote the length and width of the thin plate, respectively. In this study, the shape
function Ŝ was determined to be non-dimensional, whereas the nodal coordinate
−̂→e was defined as a dimension of length. Therefore, the non-dimensional position
vector −→r ∗is defined as Eq. (2), from the dimensional position vector −→r .

−→r = Ŝ−̂→e = LNDŜ−̂→e ∗ → −→r ∗ = Ŝ−̂→e ∗ (2)

where −̂→e ∗ is the newly defined non-dimensional nodal coordinate. Therefore, the
non-dimensional equation of motion can be derived as in Eq. (3).

M∗
(
d2−̂→e ∗
dt

∗2

)
+K∗

(−̂→e ∗
) −̂→e ∗ = −→F ∗

C (3)

where M∗ and K∗ are the non-dimensional mass and stiffness matrices.
−→
F
∗
C is the

non-dimensional conservative force vector.

2.1 Non-dimensional Mass Matrix

Using the non-dimensional variables, the kinetic energy can be written as Eq. (4).
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T = 1
2

∫
V
ρ
(

∂
−→r
∂t

)T (
∂
−→r
∂t

)
dV

= L5
ND

T 2
ND

1
2 t
∗∫ l∗

0

∫ w∗
0 ρ

(
∂
−→r ∗
∂t∗

)T (
∂
−→r ∗
∂t∗

)
dy∗dx∗

(4)

From Eq. (4), the non-dimensional kinetic energy can be expressed as Eq. (5).

T ∗ = 1
2 t
∗∫ l∗

0

∫ w∗
0

(
∂
−→r ∗
∂t∗

)T (
∂
−→r ∗
∂t∗

)
dy∗dx∗

=
(

∂
−̂→e ∗
∂t∗

)T
1
2h
∗∫ l∗

0

∫ w∗
0 ŜTŜdy∗dx∗

(
∂
−̂→e ∗
∂t∗

) (5)

Therefore, the non-dimensional mass matrix can be defined as Eq. (6).

M∗ = h∗
∫ l∗

0

∫ w∗

0
ŜTŜdy∗dx∗ (6)

2.2 Non-dimensional Stiffness Matrix

The strain energy can be defined as Eq. (7) using the Kirchhoff shell theory based
on structural mechanics [6]. The first term in Eq. (7) is related to membrane stretch
and shear. The second term is associated with bending and twisting along the plane
of the element.

U = 1

2

∫ h/2

−h/2

∫ l

0

∫ w

0

−→
ε

T
E−→ε dy dx dz+ 1

2

∫ h/2

−h/2

∫ l

0

∫ w

0

−→
κ

T
E−→κ dy dx dz

(7)

where −→ε is the non-linear Green-Lagrange strain vector, E is the matrix of
coefficients for linearly elastic isotropic materials, and −→κ is the curvature vector.
The strain energy can be defined as a non-dimensional strain energy, as given in Eq.
(8).

U = (FNDLND) U∗

→ U∗ = 1

2

∫ h∗/2

−h∗/2

∫ l∗

0

∫ w∗

0

−→
ε
∗T

E∗−→ε ∗ dy∗ dx∗ dz∗

︸ ︷︷ ︸
U∗1

+ 1

2

∫ h∗/2

−h∗/2

∫ l∗

0

∫ w∗

0

−→
κ
∗T

E∗−→κ ∗ dy∗ dx∗ dz∗

︸ ︷︷ ︸
U∗2

(8)
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Stiffness Matrix for the First Term U∗1 . The stiffness matrix for the first term
U∗1 can be derived using the non-dimensional strain vector and the matrix of
coefficients. In the plane stress problem, the non-dimensional strain vector can be
expressed as Eq. (9).

−→
ε
∗=

[
ε∗x∗x∗ ε∗y∗y∗ 2ε∗x∗y∗

]T
where ε∗ij=

1

2

(
−̂→e ∗T

ŜT
i Ŝj

−̂→e ∗−δij

) (
i, j = x∗, y∗

)

(9)

The matrix of coefficients can be expressed as Eq. (10).

E∗ = E∗

1− ν2

⎡
⎣

1 ν 0
ν 1 0
0 0 1−ν

2

⎤
⎦ (10)

where E∗ is the non-dimensional modulus of elasticity, and ν is the Poisson’s ratio.
From Eqs. (9) and (10), U∗1 can be expressed as Eq. (11).

U∗1=
1

2
h∗ E∗

1−ν2

∫ l∗

0

∫ w∗

0

(
ε∗xxε∗xx+νε∗xxε∗yy+νε∗yyε∗xx+ε∗yyε∗yy+

1−ν

2
γ ∗xyγ ∗xy

)
dx∗dy∗

(11)

Using Eq. (11), the non-dimensional stiffness matrix can be defined as Eq. (12).

∂U∗1
∂
−̂→e ∗

= −̂→e ∗T
K∗1

(−̂→e ∗
)

(12)

Stiffness Matrix for the Second Term U∗2 . To derive the stiffness matrix for the
second term U∗2 , the non-dimensional curvature vector can be derived as in Eq. (13).

−→
κ
∗ = z∗

[
κ∗x∗x∗ κ∗y∗y∗ 2κ∗x∗y∗

]T
where κ∗ij =

(−̂→e ∗ŜT
ij

)T
n∗

‖n∗‖3

(
i, j = x∗, y∗

)

(13)

where the vertical vector n∗ is perpendicular to the plane of the element, and ‖n∗‖
is defined as ‖n∗‖ = √

n∗T n∗. From Eqs. (10) and (13), U∗2 can be expressed as
Eq. (14).

U∗2 =
h∗3E∗

24
(
1−ν2

)

×
∫ l∗

0

∫ w∗

0

(
κ∗xxκ∗xx+νκ∗xxκ∗yy+νκ∗yyκ∗xx+κ∗yyκ∗yy+2 (1−ν) κ∗xyκ∗xy

)
dx∗dy∗

(14)
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The partial derivatives of the curvature vector with respect to the non-
dimensional nodal coordinate can be expressed as Eq. (15).

∂κ∗ij
∂
−̂→e ∗

≈ 1∥∥n∗
∥∥3 n∗TŜij

(
i, j = x∗, y∗

)
(15)

where n∗ denotes the average value of the vertical vector perpendicular to the plane
of the element, as obtained from each nodal point. Therefore, the non-dimensional
stiffness matrix can be defined as Eq. (16).

∂U∗2
∂
−̂→e ∗

= −̂→e ∗T
K∗2

(−̂→e ∗
)

(16)

2.3 Non-dimensional Force Vector

The gravity corresponding to the conservative force can be derived from the
principle of virtual work using Eq. (17).

δWC = h

∫ l

0

∫ w

0
ρ
−→
G

T
Ŝdy dxδ

−̂→e (17)

where
−→
G = [

0 0 −g
]T

denotes the vector containing the gravitational acceleration
g in the z direction. Therefore, from Eq. (17), the non-dimensional conservative
force vector can be defined as Eq. (18).

−→
F
∗T

C = 1

FND
h

∫ l

0

∫ w

0
ρ
−→
G

T
Ŝdy dx (18)

3 Numerical Solution of Non-dimensional Equation
of Motion

The efficiency of the non-dimensional equation of motion will be presented through
a comparison with the dimensional equation of motion by using an example of thin
cantilever plate, as shown in Fig. 2. The properties of the thin cantilever plate are
presented in Table 1. Based on Table 1 and Eq. (1), the value of TND increases with
an increasing number of elements. The specification of the personal computer used
for the analysis and information regarding the commercial software used are shown
in Table 2.

The simulation time of the dimensional and non-dimensional equation of motion
to physical time of 0.3 s are presented in Fig. 3. When the number of elements
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Fig. 2 Thin cantilever plate

Table 1 Properties of thin
cantilever plate

Density (kg/m3) 7810
Young’s modulus (N/m2) 1.0E + 05
Poisson’s ratio (.) 0.3
Length and width (m) 0.3
Thickness (m) 0.001

Table 2 Workstation
performance for the analysis

CPU Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60 GHz
Memory
capacity

64 GB

Commercial
software

MATLAB R2019a—64bit

is 32 or greater, the non-dimensional equation of motion is more efficient than the
dimensional equation of motion. In particular, the efficiency of analysis increases
with an increasing number of elements. The positions of point C at the physical
time of 0.3 s are presented in Fig. 4, in which the solutions converge in accordance
with the increasing number of elements.

To validate the efficiency of the non-dimensional equation of motion, the solution
of the non-dimensional equation of motion should be identical to that of the
dimensional equation of motion. The positions of point C in the case of 12 element
and 82 elements are presented in Figs. 5 and 6, respectively. The positions in both
the cases correspond to each other, and the numerical results obtained from both the
dimensional and non-dimensional equations of motion also correspond. Therefore,
the correct transformation of the non-dimensional equation of motion from the
dimensional equation of motion is validated, and the analysis efficiency can be
secured.

Based on the results presented in Figs. 5 and 6, the three-dimensional behaviors
of the thin cantilever plate are presented in Figs. 7 and 8. The black solid line
represents the position of point C plotted along the time. By considering the
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Fig. 3 Simulation time

Fig. 4 Position of point C at 0.3 s
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Fig. 5 Position of point C with 12 element

Fig. 6 Position of point C
with 82 elements
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Fig. 7 Three-dimensional
motion with 12 element

Fig. 8 Three-dimensional
motion with 82 elements
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solutions of the finite element analysis that would converge in accordance with an
increasing number of elements, it can be inferred that the solution resulting from the
analysis of 82 elements is more correct than those resulting from the analysis of 12

element.

4 Conclusions

The absolute nodal coordinate formulation to express large deformations and large
rotations in flexible multi-body dynamics necessarily uses the global slope vector,
and this results in an increase in the degree of freedom. The increase in the time
required for analysis because of an increase in the number of degrees of freedom
in thin plate has been regarded to be disadvantageous in absolute nodal coordinate
formulation. In this study, the dimensional equation of motion studied by Dufva
and Shabana [6] was converted into the non-dimensional equation of motion by
using non-dimensional variables. A thin cantilever plate was used to validate the
non-dimensional equation of motion. An improvement in the analysis speed in
accordance with an increase in the number of elements was presented.
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Systems with Time Delays



Approximated Dynamics of Chatter in
Turning Processes

Bence Beri and Gabor Stepan

Abstract The nonlinear behaviour of the turning process is analysed, which is
described by a one degree-of-freedom dynamical system. The model takes the
form of a delay differential equation that is non-smooth when the cutting tool
leaves contact with the surface. The delay equation is approximated by means of
a power series with respect to the delay to reveal the geometric structure of the
relevant dynamics in a low dimensional phase space. The bifurcation diagram of
the non-smooth system is calculated and compared to the existing theoretical and
experimental results of the literature.

Keywords Chatter · Turning · Relevant dynamics · Lorenz map

1 Motivation

During machining, unexpected vibrations called chatter might occur due to the
regeneration effect especially at high material removal rates. This is because either
the cutting tool or the workpiece (or both) are compliant and the chip thickness
varies due to the relative vibrations of the tool and the workpiece. Chatter generally
results in noise or tool breakage and leads to poor surface quality, so in practice,
there is a need to prescribe boundaries on technological parameters such as spindle
speed and chip width. During chatter, the tool repeatedly loses contact with the
surface and soon restores the contact again. In case of turning, the regeneration
effect is modelled by a time delay system. The tool cuts the surface that was formed
in the previous cut and the chip thickness is defined by the difference of the current
and the previous positions of the tool. The time delay between two succeeding cuts
corresponds to reciprocal value of the period of the workpiece rotation [1].
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The objective of this study is to describe the geometric structure of a three-
dimensional phase space of a non-smooth dynamical model that is reduced from
the original infinite dimensional time delay system. Experiments demonstrate that
large-amplitude chattering motions may appear above a certain value of chip width
[2]. There have been some related results in the literature: Stepan and Kalmar-Nagy
[3] investigated the nonlinear delay system of turning by means of analytical tools
and gave an estimation for the parameter point where the cutting tool loses contact
with the workpiece. The authors of [4] analysed the global dynamics of chatter in
orthogonal cutting by taking into account the loss of contact between the tool and
the workpiece and constructed a non-smooth mechanical model.

In this paper, the non-smoothness is considered but the delayed term is approxi-
mated by a power series with respect to the time delay. Since this Taylor expansion is
not uniformly convergent, the stability analysis shows that the approximate system
is valid only at the higher spindle speed range. According to the bifurcation diagram
of the system, the global behaviour of the low dimensional system represents
essential similarities with the delayed model.

2 Modelling and Analysis

2.1 Model Formulation

A simple model developed for turning operations can demonstrate the chattering
phenomenon. The motion of the tool is described by a one degree-of-freedom
dynamical model. As it is shown in Fig. 1a, the tool vibrates in the y direction
and Fy is the normal component of the cutting force (see Fig. 1b). Here, m, cy
and ky are the modal mass, modal damping and modal stiffness, respectively. The
dimensionless governing equation of motion is given by

Fig. 1 Panel (a) shows the chip removal in turning processes in case of a compliant tool. Panel
(b) depicts the surface regeneration
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y′′(T )+ 2ζy′(T )+ y(T ) = Fy(T )

ω2
n

, (1)

where ζ = cy/(2mωn) is the damping ratio, ωn =
√
ky/m is the natural angular

frequency of the undamped system and T = ωnt is the dimensionless time. In
practice, we find that the cutting force is linearly proportional to the chip width w

but there is a nonlinear dependence on the chip thickness h. Thus, it is given by the
empirical formula

Fy(T ) = Kywhq(T ), (2)

where Ky is the cutting force parameter and q is the cutting force exponent. This
represents a nonlinearity that highly influences the evolving large-amplitude motion.
In the literature, many suggestions can be found related to the cutting force exponent
q to accurately estimate the cutting force characteristics [5, 6]. A simple but still
reasonable approximation is suggested by [7] for h > 0, the cutting force is
linearised at the desired chip thickness h0:

Fy(T ) = Kywh
q

0 + qKywh
q−1
0 (h(T )− h0)+O(h2(T )) . (3)

When surface regeneration effect develops, the chip thickness h is defined by the
present and the previous positions of the tool (see Fig. 1b)

h(T ) = h0 + y(T − ωnτ)− y(T ), (4)

where τ = 2π/& is the time delay given by the spindle speed &.
In this model, the tool loses contact with the surface of the workpiece when h = 0

and moves as a free damped oscillator until it reaches the workpiece again. The
governing equation of motion of the piecewise-linearised smooth system is given
by the linearised equation

η′′(T )+ 2ζη′(T )+ η(T ) =
k1

ω2
n
(η(T − ωnτ)− η(T )) h > 0

0 h ≤ 0,

(5)

where k1 = qKywh
q−1
0 /m is the specific cutting force coefficient and η(T ) =

y(T ) − y0 is the small perturbation around the equilibrium position y0. The
switching function takes the form h0 = ω2

nτ
2η(T )/2 + ωnτ(1 + ωnτζ )η

′(t) at
h = 0. Equation (5) describes that the tool is in cut when the chip thickness h > 0
and it starts flying when h ≤ 0. By using Taylor expansion with respect to the time
delay τ , the dimensional reduction of Eq. (5) for h > 0 gives
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1

6
k1τ

3ω3
nη
′′′(T )+

(
1− 1

2
k1τ

2
)
ω2

nη
′′(T )+ (2ζωn + τk1) ωnη

′(T )

+ ω2
nη(T ) = 0 . (6)

Insperger [8] analysed the stability properties and the validity of Taylor expansion
of the time delayed terms with respect to the time delay. It is stated that Taylor
expansion properly approximates the asymptotic nature of the system till the order
of the expansion does not exceed the leading order of the equation by two.

Note that Eq. (6) is coupled to a second-order differential equation that describes
a free damped oscillator (see Eq. (5) for h ≤ 0).

2.2 Stability

In the industry, the technological parameters w and & are assumed to be the most
relevant. Thus, if there is an intention to approach the prescribed surface quality,
stable parameter region of cutting needs to be calculated. The stability chart of
the approximate system can be determined by using the Routh–Hurwitz criterion
for Eq. (6). The stability boundary of the cutting operation is shown in Fig. 2a

Delayed
Approx.

Fig. 2 Panel (a) shows the stability diagrams of Eq. (1) for h > 0 and Eq. (2). Panel (b) illustrates
the spectrum of the delay and the approximate system at the parameter point denoted by a circle
in Panel (a). The dots correspond to the roots of the delay equation (see Eq. (5) for h > 0) and
the circles belongs to the three-order system described by Eq. (6). The numerical values that were
used: h0 = 0.001 m, q = 3/4, Ky = 108 N/m1+q , ζ = 0.08, m = 10 kg, ωn = 515.5 rad/s
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by the dashed line. Since Taylor expansion is not uniformly convergent, further
investigation is restricted only to small time delays τ that correspond to higher
spindle speeds &.

Equation (6) allows us to investigate the problem in the three-dimensional phase
space. It has roots of a complex conjugate pair and a real root in contrast to the
infinite number of roots of the delay system. The investigation of the roots of the
delay equation (for h > 0) has been accomplished by using the MatLab package
called DDE-BIFTOOL [9]. In the vicinity of the stability boundary of the third-
order model, the value of the real root and the imaginary part of the complex
conjugate pair of the approximate system matches within 6% with the corresponding
roots of the delay system (see Fig. 2b). Since the stability boundary of the delay
system is approached from below by the approximate system, the real parts of the
corresponding complex conjugate pairs show somewhat larger deviation.

This means that in case of unstable cutting operation when the tool may lose
contact with the surface of the workpiece, the large-amplitude oscillations can be
represented in a three-dimensional phase space. The corresponding eigenvector
of the real root of Eq. (6) defines a one-dimensional stable subspace of R

3 and
the eigenvectors belonging to the complex conjugate pair span an unstable two-
dimensional subspace of R3. So the trajectory starts spiralling outwards till it meets
the switching surface h = 0, then it suddenly jumps down to a two-dimensional
subspace spanned by the corresponding eigenvectors of Eq. (5) for h ≤ 0. Since this
subspace is stable, the tool gets back to cutting after a while, that is, the switching
surface is crossed again (see Fig. 3) and this process is repeated again and again.

2.3 Bifurcation Analysis

As it was mention in Sect. 2.2, the stability of the system is frequently given as a
function of the chip width w and the spindle speed &. To perform the bifurcation
analysis of the system, a certain value of the spindle speed & is fixed and the effect of

Fig. 3 Three-dimensional phase space where the motion of the cutting tool is illustrated
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Fig. 4 Panel (a) shows the bifurcation diagram calculated by numerical integration of the
approximated non-smooth system. Panel (b) depicts Lorenz maps corresponding to the given
sections and panel (c) shows the corresponding trajectories in the phase space where the switching
function is denoted by the red line

the variation of the chip width w on the global dynamics of the system is observed.
The bifurcation diagram is shown in Fig. 4a where wcr means the bifurcation point
that corresponds to the stability boundary at & = 3300 rad/s (see Fig. 2a).

As long as the cutting process is stable, that is, the technological parameters
are chosen from the stable parameter region w < wcr shown in Fig. 2a, no
vibrations arise. As the bifurcation point wcr (stability boundary) is approached,
large-amplitude oscillations occur. The tool may lose contact with the surface at
wcr = 0.01 m (see the bifurcation diagram of Fig. 4a) and starts the chattering
motion with amplitude at P as it was observed and proved by measurements
shown in [2]. These vibrations can highly affect the quality of the surface of the
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workpiece by leaving a wavy pattern behind. Since linear cutting force characteristic
is considered, there is a sudden jump in the amplitude at wcr without any additional
transition such as subcritical Hopf-bifurcation in [2, 4]. By increasing the chip width
w, stable periodic solution occurs, which continues to chaotic motion through the
sequence of period-doubling bifurcations (see Fig. 4b, c).

Since the attractor is very flat in the direction of the stable subspace of Eq. (6)
(see Fig. 3), the so-called Lorenz map can be constructed with one-dimensional
projection. Based on this one-dimensional mapping, the different periodic attractors
can be also identified as shown in Fig. 4b. At section A, period-1 window exists
that bifurcates at around w = 0.04 m. Section B and C depict further periodic
windows, a period-2 solution and a period-4 solution. As the bifurcation parameter
w increases, chaotic motion can also be identified by using the Lorenz map (see the
cobweb diagrams at section D in Fig. 4b). The corresponding state space trajectories
are projected to the (η , η′) plane and shown in Fig. 4c.

3 Conclusion

This paper deals with the approximated dynamics of chatter in turning processes.
The problem can be described by a one degree-of-freedom damped oscillator that
models the motion of the cutting tool. The tool is excited by the cutting force that
also introduces the so-called surface regeneration effect. So, the cutting tool meets
the surface that was formed in the past. In case of unstable cutting, because of the
waviness of the surface of the workpiece, it can happen that the tool loses contact
with the surface and moves as a free damped oscillator. This phenomenon introduces
non-smoothness in the governing delay equations.

To achieve dimensional reduction, Taylor expansion has been used with respect
to the time delay τ . This allows us to investigate the dynamical model in a three-
dimensional phase space. By using the so-called Lorenz map, periodic windows can
be identified, which leads to chaotic motion by increasing the bifurcation parameter.

The results showed qualitative correspondence to the global dynamical behaviour
of the delay system and the measurements [2, 4].

Acknowledgements The research leading to these results has received funding from the European
Research Council under the European Unions Seventh Framework Program (FP/2007–2013)/ERC
Advanced Grant Agreement No. 340889.

References

1. Stepan, G.: Retarded Dynamical Systems: Stability & Characteristic Functions. Longman
Scientific & Technical, New York (1989)

2. Shi, H., Tobias, S.: Theory of finite-amplitude machine-tool instability. Int. J. Mach. Tools
Manuf. 24(1), 45–69 (1984). https://doi.org/10.1016/0020-7357(84)90045-3

https://doi.org/10.1016/0020-7357(84)90045-3


470 B. Beri and G. Stepan

3. Stepan, G., Kalmar-Nagy, T.: Nonlinear regenerative machine tool vibrations. In: Paper No.
DETC97/VIB-4021. ASME Design Engineering Technical Conferences, Sacramento (1997)

4. Dombovari, Z., Barton, D.A.W., Wilson, R.E., Stepan, G.: On the global dynamics of chatter in
the orthogonal cutting model. Int. J. Non-Linear Mech. 46(1), 330–338 (2011). https://doi.org/
10.1016/j.ijnonlinmec.2010.09.016

5. Taylor, F.W.: On the art of cutting metals. Trans. Am. Soc. Mech. Eng. 28, 31350 (1907)
6. Kienzle, O.: Spezifische schnittkrafte bei der metallbearbeitung. Werkstattstechnik und Maschi-

nenbau 47, 224225 (1957)
7. Altintas, Y.: Manufacturing Automation. Cambridge University Press, New York (2012)
8. Insperger, T.: On the approximation of delayed systems by Taylor series expansion. J. Comput.

Nonlinear Dyn. 10, 024503 (2015)
9. Engelborghs, K., Luzyanina, T., Samaey, G.: DDE-Biftool v.2.00: a Matlab package for

bifurcation analysis of delay differential equations. Technical Report TW330, Department of
Computer Science 10, 024503 (2001)

https://doi.org/10.1016/j.ijnonlinmec.2010.09.016
https://doi.org/10.1016/j.ijnonlinmec.2010.09.016


Chaotic Dynamics in Spinning Shafts
with Non-constant Rotating Speed
Described by Variant Lyapunov
Exponents

Fotios Georgiades

Abstract The dynamics of spinning shafts with nonconstant rotating speed is
described by a nonlinear system that under certain conditions might exhibit also
chaotic behavior. In this chapter, chaotic dynamics of the spinning shaft is examined.
Initially, the trajectories in phase space around the equilibrium manifolds are
determined. Then by choosing a set of initial conditions, nearby to an equilibrium,
corresponding to eigenvalues of the Jacobian with a nonzero real part, identification
of chaos is examined. Approximations of the trajectory, with the linearization curves
around the equilibria, are defined and they are good in a region very close to the
associated equilibrium point. It is shown that the eigenvalues, as Lyapunov exponent
indicators, are not parameter dependent but state dependent. The eigenvalues of
the linearized system within an orbit are varying from positive to zero; therefore,
the Lyapunov exponent is not defined through this limit as an explicit number but
variant. The existence of eigenvalues with positive real parts in certain parts of the
orbit is an indication of chaos since it shows a divergence of nearby orbits. One orbit
starting from an initial condition which corresponds to eigenvalues with positive
real part is crossing the threshold and pass to points that the eigenvalues with
zero real parts; therefore, this “threshold” is not discriminating chaotic with regular
regions as expected. The variant positive Lyapunov exponents have been examined
also with numerical investigations, and it is an indication of chaos. The Poincare
section indicates irregular motion and the approximated information entropy is
relatively high, and both are indicating chaos. It should be highlighted that this is
a mechanical system with variant real parts of eigenvalues as Lyapunov exponents
within one orbit, and the threshold is insufficient to distinguish chaotic from regular
regions. Further work is needed to determine the chaotic regions of the spinning
shaft. Further developments in the mathematics of nonlinear dynamical systems
associated with the equilibrium manifolds are needed to examine the significance
of variant Lyapunov exponents for this kind of systems. Also, the necessity to
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reexamine the validity of existing algorithms and the development of new ones for
the determination of variant Lyapunov exponents become evident.

Keywords Variant Lyapunov exponent · Chaos · Spinning shaft

1 Introduction

A number of articles have focused on dynamics of rotating structures with constant
rotating speed, but the examination of dynamics of rotating structures with a non-
constant rotating speed which occurs during spin-up/down operation is very limited
[1–5]. In Ref. [4], the equations of motion of a spinning shaft as Euler–Bernoulli
isotropic beam has been derived, and dynamic analysis is performed. This model
has a similar form with the one obtained in Ref. [3] about rotating blades. In Ref.
[5] the equilibrium manifolds (EMs) have been determined with their associated
normal modes, and stability is examined. Also, there are a vast number of articles
examining chaotic dynamics near specific equilibrium points, but articles relevant
to equilibrium manifolds with the examination of points that the linearized solution
is changing nature with state space-dependent eigenvalues are very limited, and few
relevant comments can be found in Ref. [6].

This chapter is a continuation of the work done in Ref. [5], focused on chaotic
motions in the nonlinear dynamics of the spinning shaft, using typical technique
applied in nonlinear dynamics which is the linearization around EM. First, the
trajectories arising from linearization around some EMs are determined, and second,
using direct numerical integration, the validity of the solutions with the associated
eigenvalues is examined. Also using numerical methods, the notion of variant
Lyapunov exponent and the chaotic behavior in the dynamics of the spinning shaft
are examined by means of the determination of Poincare section, the Lyapunov
exponents (LE), and the approximated information entropy for a specific set of
initial conditions (ICs).

2 Trajectories Around Equilibrium Manifolds

A spinning shaft (with length L, internal Di and external diameter Do) with a non-
constant rotating speed made of isotropic material (with density ρ, Young’s and
Shear modulus being E and G, respectively) modeled as Euler–Bernoulli beam is
considered. The equations of motion describing the dynamics are given in Refs [4]
and [5] by neglecting the equation of rigid body angular position, then a restricted
system arises. The restricted system does not correspond to the specific energy
function; therefore, even if a linear counterpart of the restricted system exists, the
examination of chaotic orbits through Melnikov theory would be rather complicated
[7–9]. So, in this chapter, as the first investigation of chaotic orbits on the restricted
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system, linearization through perturbations around EM and examination of the
associated real parts of the eigenvalues as indicators of LE is used.

Herein the analysis will be restricted around the following EM:

y
(1)
0 = (

y0,1, y0,2, y0,3, y0,4, y0,5, y0,6, y0,7
) = (

0, 0, 0, θ̇0, 0, 0, 0
)

with θ̇0 ∈ R

(1)

and

y
(3)
0 =

(
y0,1, y0,2, y0,3, y0,4, y0,5, y0,6, y0,7

)= (
0, 0, q0,φ,±ωT, 0, 0, 0

)
with q0,φ∈R

(2)

namely first and third EM as mentioned in Ref. [5], whereas y1, y2, and y3, are
the modal displacements in lateral bending motions and torsion, respectively, y4
is the rigid body angular velocity, and the rest are the associated velocities of the
modal displacements in the same order. Considering ξ i (ζ i) perturbations for each
generalized i-coordinate on the equilibriums for the first EM (third EM) and then
after linearization, the system will be examined in the region of phase space that

is defined by rigid body angular velocity of θ̇0 ∈
(
ωb
√
(1−M),

ωb(1−M)√−M

)
. The

constants are given by

m=πρ

(
Do

2−Di
2

4

)
, I1=ρI=ρπ

(
Do

4−Di
4

64

)
, ωb=

√
π4EI

L2π2I1+L4m
,

(3a–c)

ωT = π

2L

√
G

ρ
, F = 2

π

√
2I1L, M = −I1π

2

mL2 . (4a–c)

The linearization around the first EM
(
y
(1)
0

)
leads to two fully decoupled systems

of differential equations, one describing the two lateral bending motions and the
other one describing the coupled torsional with rigid body motions which will

be considered herein [5]. The linearization around the third EM
(
y
(3)
0

)
[5] leads

to three systems of differential equations, one describing the two lateral bending
motions fully decoupled from the equations that are describing the torsional with
rigid body motions which will be considered herein [5].

The eigenvalues of the linearized system around the first EM are given by [5]

{
λj

} =
[
−
√

I1L
(
θ̇2

0 − ω2
T

)
(
I1L− F 2

) , 0,

√
I1L

(
θ̇2

0 − ω2
T

)
(
I1L− F 2

)
]T

, j = 1, 2, 3 (5)
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which are real in case of θ̇0 > ωT. Therefore, based on the existing theory, there
is a “threshold” of θ̇0 = ωT, whereas for higher angular velocities, the LE from
zero becomes positive [9]. The existence of the chaotic region for θ̇0 > ωT and the
transition to chaos around the region θ̇0 = ωT will be examined. For θ̇0 = ωT, the
first EM is approaching the third EM which justifies that the examination must be
performed considering both EM. The eigenvalues of the linearized system around
third EM are purely imaginary or zero and they are given by [5]

{
μj

} =

⎡
⎢⎢⎣−i

2ωTy0,3√(
I1L− F 2 + y2

0,3

) , 0, i
2ωTy0,3√(

I1L− F 2 + y2
0,3

)

⎤
⎥⎥⎦

T

, j = 1, 2, 3.

(6)

The systems of differential equations which describe the motions around the first
and third EM will be used for the projection to the phase space by parametrizing
time with respect to the perturbation in torsional position (ξ3 and ζ 3, respectively)
[5].

Using the linearized equations arising with ξ i perturbations around the first EM
lead to [5]

dξ4

dξ3
= F

(
θ̇2

0 − ω2
T

)
ξ3(

I1L− F 2
)
ξ7

, (7)

dξ7

dξ3
= I1L

(
θ̇2

0 − ω2
T

)
ξ3(

I1L− F 2
)
ξ7

⇐⇒ ξ2
7 −

I1L
(
θ̇2

0 − ω2
T

)
(
I1L− F 2

) ξ2
3 = A, (8)

neglecting ξ7 �= 0 which corresponds to the local extrema of perturbation of
torsional position (ξ3), then in phase space, the curves are given by

ξ2
7 −

I1L
(
θ̇2

0 − ω2
T

)
(
I1L− F 2

) ξ2
3 = A ⇐⇒ y2

7 −
I1L

(
θ̇2

0 − ω2
T

)
(
I1L− F 2

) y2
3 = A, (9)

where the case of θ̇0 > ωT corresponds to a family of hyperbolas with center (0,0)
in phase space, the case of θ̇0 = ωT leads to a constant perturbation in torsional
velocity (ξ7), and the last case of θ̇0 < ωT corresponds to a family of ellipses with
center (0,0) in phase space. Using Eq. (9), the constant of integration A can be
determined. Rearrangement of Eq. (9) leads to

ξ7 = ±
√

I1L
(
θ̇2

0 − ω2
T

)
(
I1L− F 2

) ξ2
3 + A ⇐⇒ y7 = ±

√
I1L

(
θ̇2

0 − ω2
T

)
(
I1L− F 2

) y2
3 + A, (10)
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Then using Eq. (10) in Eq. (7) and after integration considering original system state
space variables lead to,

y4 = θ̇0 ± F

I1L

√
I1L

(
θ̇2

0 − ω2
T

)
(
I1L− F 2

) y2
3 + A+ B, (11)

which corresponds to the following families of orbits:

(I1L)2(y4 − θ̇0 − B
)2

F 2A
− I1L

(
θ̇2

0 − ω2
T

)

A
(
I1L− F 2

) y2
3 = 1, (12)

where θ̇0 > ωT corresponds to a family of hyperbolas with center (θ̇0 + B, 0),θ̇0 =
ωT leads to a constant rigid body angular velocity (y4), and finally θ̇0 < ωT leads to
a family of ellipses with center (θ̇0 + B, 0) in phase space.

In Ref. [5], the linearized third EM which corresponds to θ̇0 = ωT is surrounded
by periodic orbits; therefore, the constant perturbations in torsional and rigid body
angular velocities obtained from Eqs. (10) and (11) respectively are not describing
the orbits in this region. In this region of the orbit, a better approximation of
the orbits can be obtained from the linearization of the third EM. The orbits
associated with the third EM around ζ i perturbations, by parametrizing time with
the perturbation in torsional position (ζ 3) using equations obtained in Ref. [5], are
determined. First, the differential equation,

dζ4

dζ7
= Fζ4 − ζ7(

I1L+ y2
0,3

)
ζ4 − Fζ7

(13)

neglecting the points of
(
I1L+ y2

0,3

)
ζ4 �= Fζ7 which corresponds to the local

extrema of perturbation of torsional velocity (ζ 7), is solved to obtain

ζ4 = Fζ7(
I1L+ y2

0,3

) ±

√
−

(
I1L− F 2 + y2

0,3

)
ζ 2

7 + C

(
I1L+ y2

0,3

) . (14)

The constant of integration C can be determined using any pair of values in the
following rearranged equation:

(
I1L+ y2

0,3

)2
ζ 2

4 +
(
I1L+ y2

0,3

)
ζ 2

7 − 2
(
I1L+ y2

0,3

)
Fζ4ζ7 − C = 0, (15)

which is a second-degree equation, and it forms an ellipse [10].
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The other equation (considering ζ 7 �= 0) is given by

dζ7

dζ3
= 2ωTy0,3

⎛
⎝

(
I1L+ y2

0,3

)
(
I1L− F 2 + y2

0,3

) ζ4

ζ7
− F(

I1L− F 2 + y2
0,3

)
⎞
⎠ (16)

and using (Eq. 14) and direct integration lead to

ζ3 = ∓ 1

2ωTy0,3

√
−

(
I1L− F 2 + y2

0,3

)
ζ 2

7 + C +D (17)

or using state space variables of the original system and rearrangement lead to the
following family of curves in phase space:

[
2ωTy0,3

(
y3 − y0,3 −D

)]2 +
(
I1L− F 2 + y2

0,3

)
y2

7 = C, (18)

which is an ellipsis centered at (y3, y7) = (y0, 3 + D, 0) [10].
Solving Eq. (18) for perturbation of modal torsional velocity with respect to

perturbation of modal torsional position leads

ζ7=±
√√√√√C−[

2ωTy0,3 (ζ3−D)
]2

(
I1L−F 2 + y2

0,3

) ⇐⇒ y7=±
√√√√√C−[

2ωTy0,3
(
y3−y0,3−D

)]2

(
I1L−F 2+y2

0,3

) ,

(19)

and replacing (Eq. 19) in (Eq. 14) considering state space variables of the original
system lead to

y4=ωT ± F(
I1L+y2

0,3

)
√√√√√C−[

2ωTy0,3
(
y3−y0,3 −D

)]2

(
I1L−F 2+y2

0,3

) ± 2ωTy0,3
(
y3−y0,3−D

)
(
I1L+ y2

0,3

)

(20)

and if it is written as a second-order equation, it becomes evident that it forms a
family of ellipsis with center at (y3, y4) = (y0, 3 + D,ωT) [10].

3 Numerical Results and Discussion

A 1-m length shaft with internal and external radii ri = 0.028 m and ro = 0.03
m, respectively, is considered. It is made of stainless steel with density ρ = 7850
kg/m3, Young modulus E = 200 GPa, shear modulus G= 76.9 GPa, and Poisson’s
ratio ν = 0.3.
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The ICs are (y1, y2, y3, y4, y5, y6, y7) = (0, 0, 0, 4996.41, 0, 0, 0.1) and correspond
to a perturbation of the first EM for y0,4 = θ̇0 = ωT + 80 rad/s, whereas the
trajectory around this point can be approximated by hyperbolas given by Eqs. (9)
and (12). The total restricted system has been numerically integrated with time
step (1.5e−5) for approximated 3997 orbits (approximating average orbital period
0.01251 s). The full manifold superimposed with the plot of the EMs is depicted in
Fig. 1a, noting that the lateral bending motions are zero, and therefore in Fig. 1a the
total manifold is depicted. In Fig. 1a the four points that the trajectory is approaching
the third EM

(
θ̇0 = ωT = 4916.41 rad/s

)
are also indicated. The points are defined

by the following sets of values: (y3, y4, y7)= (0.001374, 4916.411021, −2.686653)
for the first point, (y3, y4, y7) = (0.006003, 4916.411603, 2.686645) for the second
point, (y3, y4, y7) = (−0.001374, 4916.411674, −2.686633) for the third point, and
(y3, y4, y7) = (−0.006003, 4916.411329, 2.686636) for the fourth point, which are
not the singular points of first EM since y7 �= 0. Around these points, the trajectory
can be approximated by ellipsis given by Eqs. (18) and (20).

In Fig. 2, the projection of the trajectory in (y3, y4) plane superimposed with the
analytical solutions around the ICs (using Eqs. 10 and 11) and around the four points
that the trajectory is approaching the third EM (using Eqs. 17 and 20) is depicted.

Examining Fig. 2b becomes evident that the trajectory around the ICs is very
well approximated by hyperbolas (Fig. 2b), and the linearized system has real
eigenvalues (Eq. 5). When the trajectory is approaching points 2 and 4, the trajectory
is very well approximated with ellipses (Fig. 2d, f) which correspond to purely
complex eigenvalues given by Eq. (6).In cases that the trajectory is approaching
points 1 and 3, the trajectory is approximated in a very small region around them
(Fig. 2c, e) with ellipses, again with zero LE.

The definition of Lyapunov exponent for an equilibrium of an autonomous
dynamical system is given by [9]

LEj = lim
t→∞

1

t
Re

(
σj t

)
, (21)

where the real part of σ j which is the j eigenvalue of the linearized system around
the equilibrium is considered, and this limit exists when they are monotonic. In the
considered case, the eigenvalues are dependent on states. When the part of the orbit
is close to ICs (first EM), then the linearized system has pure real eigenvalues (λj) ,
and when part of the orbit nearby the points 1–4 (third EM) is considered. then
the eigenvalues (μj) are pure complex. Therefore, the real part of the σ i eigenvalues
from the linearized systems approximating the original nonlinear system are varying

within one orbit σ1 ∈
[

0,

√
I1L

(
θ̇2

0−ω2
T

)

(I1L−F 2)

]
, and the limit of Eq. (21) has no specific

value but since the trajectory is approximated well locally with different curves
which corresponds to different eigenvalues, it can be claimed that the LE is variant
within an orbit. The existence of positive real eigenvalues in some parts of the orbit
means nearby orbits at this region are diverging, and it is an indication of chaos.

Examining Fig. 2a on the right-hand side with the indication of the eigenvalues
of the first EM and based on the standard stability theory then the point of θ̇0 = ωT,
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Fig. 1 (a) The total trajectory in phase space superimposed with the EMs. (b) Poincare section
with maxima of torsional angle
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Fig. 2 (a) Projection of the trajectory in (y3, y4) plane superimposed with the analytical solutions
around ICs and four points, whereas the region of first EM indicated with red arrow (right-hand
side) is associated with real nonzero eigenvalues, and the blue arrow indicates the region with
pure complex eigenvalues; (b) zoom out near the point of the ICs with eigenvalues λ1 = 0,
λ2,3 = ±2406.6 (real); (c) zoom out near the first point (red star indication) that the trajectory is
approaching the third EM with eigenvalues μ1 = 0, μ2,3 = ±i890.91 (imag.); (d) near the second
point (magenta star indication) that the trajectory is approaching the third EM with eigenvalues
μ1 = 0, μ2,3 =±i3631.59 (imag.); (e) near the third point (green star indication) that the trajectory
is approaching the third EM with eigenvalues μ1 = 0, μ2,3 = ±i890.91 (imag.); (f) near the fourth
point (cyan star indication) that the trajectory is approaching the third EM with eigenvalues μ1 = 0,
μ2,3 = ±i3631.59 (imag.)
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whereas the eigenvalues from purely complex becomes real, can be considered as
the “threshold” to discriminate the chaotic (θ̇0 > ωT) with regular regions (θ̇0 <

ωT). Herein this is not the case. If the initial conditions are taken from the same
trajectory but from the “lower region” (θ̇0 < ωT) whereas the eigenvalues are purely
complex, these initial conditions correspond to the regular region, but they follow a
chaotic trajectory.

The analysis of the projection of the trajectory to (y3, y7) plane superimposed
with the analytical solutions provided similar results.

In Fig. 1b the Poincare section obtained with zero crossings of torsional velocity
(y7) restricted to the maxima of torsional angle (y3) is depicted. The absence of
periodic and quasiperiodic motion due to the existence of irregular points in the
Poincare section is evident.

The numerical determination of the LE has been done by three methods, in first
one using direct integration of the system, the Lyapunov spectrum with the re-
orthonormalization Gram-Schmidt (G-S) method is determined [11]. In the other
two methods only the maximum LE is determined, and in the second, the direct
integration of the system with rescaling to the neighboring trajectory as described
by Seydel in Ref. [12] is used, and in the last one, the maximum LE is obtained
from data series after direct numerical integration of the system using a Matlab tool
[13]. The first two methods are well explained in the literature [11, 12], and they are
well known so it will not be explained further on. Both the methods provide reliable
results as long as the elementary volume expansion or contraction (an indication
of LE) in the considered direction of the dynamical system is monotonic with
time [15]. In Ref. [15], in the implementation of the different numerical schemes,
there is an emphasis on how to implement the different schemes to avoid the non-
monotonicity in time of the used estimators.

In the third method, a Matlab tool to determine the LE has been used [13]. Using
the data series, the lag (estimated from the same tool), and the embedded dimension
of the phase space as input, then the analysis can be performed with a tool figure to
obtain the largest LE. It is based on the practical method developed in Ref. [16], and
the algorithm used for the determination is explained very well in Ref. [13].

Briefly, the method and the algorithm are based on curve fitting of the divergence
of nearby points (Yn and Yn∗) [13]

LDIV = ln
‖Yn+K − Yn∗+K‖
‖Yn − Yn∗‖ (22)

by considering the values of them at several time instants (K) belonging to a certain
expansion range [Kmin, Kmax], with a plot of the average divergence, then the LE
estimation is done through a curve fitting in selected expansion ranges, which is
based on the following formula:

LE(n) = 1

Kmax +Kmin + 1

Kmax∑
K=Kmin

1

K · dt ln
‖Yn+K − Yn∗+K‖
‖Yn − Yn∗‖ . (23)
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In case that the LE is variant, for different time instants (K), the logarithm in
Eqs. (22) and (23) can have a positive or negative value (slope), since the ratio
of the initial difference (denominator) with the considered time instant difference
(nominator) throughout the expansion range is decreasing or increasing. Also this
method is developed for monotonic values of divergence.

All the codes for LE determination have been tested successfully to obtain the
benchmark values for many systems indicated in Ref. [14].

The determination of the LE has been done using approximately 1500 orbits
for the first two methods and approximately 1000 orbits for the last one. In the
presenting results for the first method, 1.25e−3 s time step has been used, in the
second 4.17e−5 s with initial perturbation 1e−9 (limited only to torsional velocity),
and in the third 2.502e−5 s.

The LE spectrum obtained using the G-S method is summarized in Table 1,
where the largest value is positive. The accuracy of the G-S method is dependent
on the number of orthonormalizations and the choice of the finite-time step for each
orthonormalization. In Hamiltonian systems, the validity of LE spectrum can be
checked by the sum of LE which should be equal to zero, and this is the case for the
spectrum in Table 1. Therefore, under the monotonic assumption of the elementary
volume expansion or contraction and based on the current knowledge, the selected
time step and number of orbits (for a specific time step is an indicator of the number
of orthonormalizations) are leading to “reliable” results.

Table 2 presents a positive value of the maximum LE using the second method.
According to Refs [12, 14], based on the reported experiments, in the second method
of LE estimation, in case of monotonic divergence of nearby trajectories and if
the perturbation is very small (1e−9 in this case), the maximum LE is determined
independently of the choice of time steps.

Also, in the plots of identifying the plateaus of the LE values in first and second
methods, there are small fluctuations within an orbit.

Matlab tool in the third method provides the opportunity to examine whether
there are enough data points by reconstructing the phase space, which has been
done successfully. Figure 3 depicts the plot as a Matlab tool to determine the slopes
of the divergence of nearby points with respect to the expansion steps which defines
the maximum LE using this method. In Fig. 3, there are four different slopes at
different expansion ranges based on the divergence of nearby points throughout the

Table 1 Lyapunov spectrum using G-S method

\n 1 2 3 4 5 6 7

LEn (bits/orbit) 87.6 3.9 1.9 0 −1.9 −3.9 −87.6

Table 2 Maximum LE (bits/orbit) using the three different methods

G-S Seydel [12]
Range 1
(35–96) [13]

Range 2
(157–224)

Range 3
(275–342)

Range 4
(413–474)

LE 87.6 13.7 −8.1 11.3 −9.8 10.3
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Fig. 3 Matlab tool (third method), divergence of nearby points with respect to expansion steps

considered total expansion range (600). The estimated slopes are summarized in
Table 2, and they have positive and negative values.

The values of the largest LE obtained from the three methods are summarized in
Table 2 which are different. In the first two methods, the maximum LE is positive
but different to each other because the two methods use different ways to obtain a
representative value of LE throughout the total range since the LE is variant within
an orbit.

In the third method, depending on the selected expansion range (time instants),
the LE have positive and negative values. The variant Lyapunov exponent arising
from the theoretical analysis is also justified with this third method, whereas the
different ranges correspond to different time instants that the exponent of the
divergence of the orbits varies from negative to positive.

The Matlab tool from Ref. [13] applied in the data series estimates that the
approximated information entropy is 0.155. Therefore, the irregularity is high, and
the information loss is significant which is an indication of chaos.
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4 Conclusions

In this chapter, chaotic dynamics of a spinning shaft with non-constant rotating
speed is examined through linearization around the EM. The analytical approxima-
tion of the orbit is approximated well, only locally, nearby the different equilibriums,
and, in that respect, it is shown that there are positive and zero eigenvalues which
are indicative of the Lyapunov exponent. Although the limit does not exist, the
Lyapunov exponent can be considered as variant within one orbit. Also, it is shown
that the in-principle threshold of the change of nature of the eigenvalues whereas
from purely complex become real which it should be expected to separate chaotic
with regular regions in a given orbit is not valid. Therefore, a more advanced theory
is needed to identify the thresholds of the chaotic motion in case of the spinning
shaft. Examination of the Poincare section indicates irregular motion. The LE has
been determined numerically with three methods, and they are very different. In
the first two cases, they are positive. In the third method, they are clearly state-
dependent with the largest being positive which certifies the variant theoretical
Lyapunov exponent. Also, the approximated information entropy is relatively high
which is an indication of chaos. Since the Lyapunov exponent is varying within
an orbit the methods of calculating LE that are relying on monotonicity and they
are based on the sampling of state-space variables values at certain time instants
they cannot provide reliable results. This work is a first attempt to identify chaotic
motions in spinning shafts using analytical and numerical methods, but further work
is needed. It highlights the need for further development in the mathematics of
nonlinear dynamical systems associated with EMs and the significance of the variant
Lyapunov exponent examination for this kind of system. Also, generate the need to
reexamine the cases of the validity of algorithms to estimate variant LE within an
orbit, since most of them are based on the constant value assumption; therefore,
there is a need of the development of new ones considering variant LE.
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Post-Resonance Backward Whirl
in a Jeffcott Rotor with a Breathing
Crack Model

Mohammad A. Al Shudeifat and C. Nataraj

Abstract Propagation of fatigue cracks is one of the major causes for catastrophic
damage in rotor systems. Such cracks have an unusual property in that they can open
and close continuously and synchronously with the shaft rotational speed which was
termed as a breathing mechanism. This problem has not been adequately analyzed
from nonlinear and rotor dynamic perspectives in the literature in spite of a large
number of papers that have appeared over the last two decades. Separately from this,
backward whirl (where the precession is opposite to the rotational direction) can
be dangerous and can lead to catastrophic failures in rotor systems. Interestingly,
a new backward whirl phenomenon at start-up and coast down operations in
cracked rotor systems with open crack models was observed in a recent publication.
This phenomenon has been numerically and experimentally verified with an open
crack to directly appear after the passage through the critical speed. Building
on these recent findings, there is an imperative need to further investigate this
phenomenon in rotor systems associated with open and breathing crack models from
nonlinear and rotor dynamic perspectives. For start-up and coast down operations
at constant angular acceleration, the model of the cracked rotor system with open
or breathing crack models becomes a linear time-varying (LTV) system. Here, we
also numerically verify the existence of this new backward whirl (BW) phenomenon
in a cracked rotor with a breathing crack model via numerical simulation. Results
indicated that a wide zone of BW rotational speeds is observable after the passage
through the critical speed due to appearance of the breathing crack in the considered
Jeffcott rotor system.
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1 Introduction

Several of real-life rotor systems are usually exposed to recurrent passage through
critical forward whirl speeds during start-up and coast down operations that are
associated with constant angular acceleration. Therefore, as cracks propagate, it
is important to diagnose their presence and their effect on the backward whirl
excitation at start-up and coast down operations to be able to shut down the
machinery before catastrophic failures occur.

In most of the published literature, it has been believed that the backward whirl
phenomena might be only excited before passing through critical forward whirl
speeds at elevated vibration amplitudes. This assumption is usually based on the
related Campbell diagrams of such rotor systems in which the frequency curves
are obtained at discrete constant angular velocities of the system (i.e., steady-state
operation at zero angular acceleration).

Few studies in the literature have considered the effect of the angular acceleration
on rotor systems response during the passage through the critical rotational speeds.
In Ref. [1], the equations of motion which incorporate the angular acceleration
effect and their analytical solutions were obtained for slender rotating shafts.
Accordingly, it was analytically verified that the critical speeds were higher for the
accelerating shaft and lower for the decelerating shaft compared with those obtained
at constant angular velocity of similar systems. Moreover, the analytical solution
of an accelerating shaft at start-up operations was obtained in Ref. [2] where the
response was found incorporating different frequency components. In another series
of publications [3–6], the angular acceleration effect on the whirl response of the
considered systems was also investigated. However, in all of these available studies,
the effect of the angular acceleration on capturing the backward whirl response in
intact and cracked rotor systems was not investigated. The Jeffcott rotor model
has been extensively used in the literature for studying the underlying nonlinear
dynamics in the whirl response of cracked rotor systems. For example, in Refs [7–
9], the appearance of the backward whirl phenomena in nonlinear cracked rotor
systems using the simple two-degree-of-freedom Jeffcott model has been studied.

In a recent publication in Ref. [10], new backward whirl phenomena associated
with angular acceleration of rotor systems has been found to exist immediately
after passing through the critical forward whirl speed for start-up and coast down
operations of cracked rotors with an open crack model. These findings contradict
with Campbell diagram analysis of such systems since incorporating the angular
acceleration in modeling and equations of motions converts these systems into
linear time-varying systems (LTVs) which are considered as nonlinear in nature.
Accordingly, this work is to further explore this new backward whirl phenomena
in a cracked Jeffcott rotor system with a breathing crack model. The combined
effect of the angular acceleration during start-up operations and the unbalance force
vector orientation of the considered cracked rotor system on the new backward whirl
excitation is investigated here.
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2 Mathematical Model

2.1 Jeffcott Rotor Model

The simple two-degree-of-freedom Jeffcott rotor disk model in Fig. 1 with the
physical parameters in Table 1 is considered here. In this model, a rigid disk of
mass m is attached to a simply supported massless shaft.

Mq̈+ Cq̇+KC(t)q = Fu(t)+ Fg (1)

where q= [u(t) v(t)]T is the vector of the horizontal u(t) and vertical v(t)oscillations
of the center of the rigid disk with respect to the fixed X and Y axes, respectively,
Fu is the unbalance force excitation vector, and Fg is the gravity force vector. The
2 × 2 matrices of the mass M and the time-varying stiffness KC(t) are given as

M =
[
m 0
0 m

]
, KC(t) = 48E

L3

[
IY (t) IXY (t)

IYX(t) IX(t)

]
(2)

where IX(t), IY (t), and IXY (t) are the time-varying moments of area of the cracked
cross section which are computed according to the new breathing functions in
Refs [11, 12] by replacing Ωt in these functions by the angle of rotation θ (t) of
the accelerated rotor system where θ (t) = 0.5αt2 and α is the constant angular
acceleration of the shaft. Note that they can be complicated functions of time;
note also that if the crack opening is modeled as depending on the local flexural
curvature, the stiffness becomes nonlinear. The damping matrix is assumed to be
proportional to the mass and stiffness matrices of the intact shaft as C= γM+ ζK,
where γ = 0.01 s−1 and ζ = 0.001 s. The components of the unbalance force

Fig. 1 The considered rotor
disk system

Table 1 Physical parameters
of the theoretical model

Description Value

Length of the rotor, L 700 mm
Radius of the rotor, R 9.5 mm
Density of rotor, ρ 7850 kg/m3

Modulus of elasticity, E 2.1 × 1011 N/m2

me 1 × 10−4 kg·m
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excitation vector in the fixed X and Y axes at the angular velocity of Ω(t) = αt are
written, respectively, as [13]

fX(t) = meα2t2 cos (θ(t))+meα sin (θ(t))

fY (t) = meα2t2 sin (θ(t))−meα sin (θ(t))
(3)

where e is the eccentricity of the unbalance mass in Jeffcott rotor. Since
α � ω(t)2

.for the considered range of rotational speeds of the system, the second
terms in fX(t) and fY (t) can be ignored and dropped from the equations of motion.
The crack depth in the radial direction is normalized to the radius of the shaft and
expressed by μ while the resultant vibration whirl amplitude is represented by

Z =
√
u2 + v2 (4)

During start-up and coast-down operations at constant angular acceleration, a
parametrically excited system (and hence a linear time-varying one) is obtained
which is excited by the resulting nonlinear unbalance force in Eq. (3). Note that
this parametrically excited system is not necessarily periodic (of the Hill’s type)
and needs detailed analysis. Here, our objective is to investigate whether the new
BW zones captured in cracked rotor systems with an open crack model in Ref. [1]
can also be captured for such systems with a breathing crack model.

2.2 Numerical Simulation Results

Numerical simulations for the equations of motions at the given parameters in
Table 1 were carried out for varying angular acceleration and rotational speeds of
start-up operations. The results are shown in Fig. 2 for two different crack depths
at zero unbalance force vector angle with the fixed X-axis. The fundamental critical
whirl amplitude is followed with local whirl amplitudes as shown which get elevated
as the angular acceleration is increased. Similar to Ref. [1], the backward whirl

Fig. 2 Numerical simulation response of the resultant whirl amplitude Z versus the start-up
rotational speed and the angular acceleration of the cracked rotor system in (a) for μ = 0.15 and
β = 0 rad in (b) for μ = 0.25 and β = 0 rad
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zone is mainly expected to appear between the fundamental whirl amplitude and the
directly following one. This zone of backward whirl rotational speeds is strongly
affected by the angular acceleration and the crack propagation in the system.

For α = 10 rad/s2, the effect of the unbalance force vector orientation is explored
in Fig. 3 where changing the angle of the unbalance force vector from zero to
other values shows some change in the whirl response. However, this behavior does
not significantly affect the backward whirl zones of rotational speeds. The results
depicted in Fig. 4 show the vibration whirl amplitude plots for the intact and cracked
systems at α = 10 rad/s2. The effect of the crack on the whirl response is clear
where the zones of rotational speeds at which backward whirl orbits are captured
are shown. Accordingly, the whirl orbits preceding this backward whirl zone, within
the zone, and after passing this zone are plotted in Fig. 5 for the cracked system.
Similar to the cracked rotor system with an open crack model in Ref. [1], the new

Fig. 3 Numerical simulation response of the resultant whirl amplitude Z versus the start-up
rotational speed and the normalized crack depth at α = 10 rad/s2 and unbalance force angles
of β = 0 rad in (a), β = π /3 rad in (b), β = 5π /6 rad in (c), β = 3π /2 rad in (d)

Fig. 4 Numerical simulation response of the resultant whirl amplitude Z versus the start-up
rotational speed for the intact rotor system in (a) and the cracked rotor in (b) at μ = 0.25
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Fig. 5 Numerical simulation whirl orbits of the cracked rotor system for start-up running in the
neighborhood of the BW zone at μ = 0.25

backward whirl zone for the considered system with the breathing crack model is
also captured here directly after the passage through the critical forward whirl speed
under the effect of breathing crack appearance.

3 Conclusions

The singularly puzzling appearance of backward whirl (BW) zones after the passage
through the critical speed is investigated for a cracked rotor system with a breathing
crack model during start-up operations at constant angular acceleration. It is found
here that the BW zone is immediately captured after the passage through the
critical FW speed. It is also observed that this BW zone is associated with abrupt
reduction in whirl amplitudes rather than an elevation in amplitudes. Therefore,
we hypothesize that the effect of the crack damage on the appearance of this new
BW phenomenon could be employed as an indicator for detecting a propagating
breathing crack.
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Proper and Smooth Orthogonal
Decompositions for Detection of Inner
Race Defects in Rolling Element Bearings
with Variable Rotational Speeds

Turki H. Mohamad, Shahab Ilbeigi, and C. Nataraj

Abstract Rolling element bearings represent one of the prominent sources of
nonlinearity in rotating systems, which makes fault diagnostics one of the most
challenging tasks. This paper presents the application of proper and smooth orthog-
onal decomposition methods as feature extraction techniques for rolling bearing
diagnostics under variable operating conditions. Multiple operation configurations
are investigated using proper and smooth orthogonal-based features in order to
characterize bearings with inner race defects. Results demonstrate the effectiveness
of the proposed techniques for optimal detection of inner race defects under variable
rotational speeds.

Keywords Condition-based maintenance · Bearing diagnostics · Feature
extraction · Machine learning · Orthogonal decomposition · Inner race defects

1 Introduction

Condition-based maintenance (CBM), which is also known as predictive mainte-
nance, is based on performing online assessments of the current machine condition
without interrupting the normal machine operation. CBM provides insight into a
potential breakdown, which can help take the necessary actions to fix the problem
while minimizing downtime as much as possible.

Rolling element bearings are the load carrying components of a rotating system
and consist of rolling elements such as balls or rollers that sit between two bearing
rings called races. They represent one of the prominent sources of nonlinearity
in rotating systems due to the nonlinear restoring forces between various curved
surfaces in contact, radial clearance between the races, and defects. One of the
common modes of failure in a rolling element bearing is a point defect on the
inner race or the outer race of the bearing. Of these, the inner race defect is more
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difficult to detect using the traditional diagnostic techniques which rely heavily on
accelerometer sensors that are usually installed on the bearing case. Because of
this configuration, the vibration signal is transmitted through multiple components,
which affects the signal quality.

The nonlinearity of rolling element bearings makes the development of robust
fault diagnostic approaches one of the most challenging tasks in health management
of rotating machines. In general, the prevailing diagnostic methods in industry
do not take into account critical nonlinearities of systems, resulting in a lack of
general applicability and ineffectiveness for complex multidisciplinary systems,
which are increasingly the norm of modern technology. This can crucially risk the
safety of operations in practical applications in addition to compromising the cost
effectiveness of maintenance. Therefore, there is a pressing need to continuously
develop and improve current maintenance algorithms to ensure safe and efficient
day-to-day operations.

Diagnostic problems can be formulated as a classification problem that involves
extracting features from measured signals and then using classifiers or learning
algorithms such as artificial neural networks (ANN) and support vector machines
(SVM) to predict the health condition. The robustness of the classifier’s performance
depends significantly on the extracted feature set that represents the system’s health
over a wide range of conditions such as speed, load, and fault level. Almost all
existing diagnostics methods are based on extracting statistical features of a system
in time or frequency domain, and supervised learning methods. These include work
in [1–3] just to mention a few.

Our previous work investigated rolling bearing diagnostics using various tech-
niques [4–8]. Domain dependency was investigated in some of our work [5, 9] but is
still currently an unsolved problem. Therefore, there is a need to develop techniques
that can be applied and adapted to different operation domains of the system. In this
paper, we consider features directly related to the subspace on which the dynamical
system evolves. In order to identify this subspace, we use a multivariate analysis
of the system’s scalar field using proper orthogonal decomposition (POD), and a
newly developed method called smooth orthogonal decomposition (SOD).

The rest of this paper is organized as follows: in Sect. 2, the experimental setup
is described. Section 3 presents the proposed feature extraction method. In Sect. 4,
the fault detection results are presented for three operating condition cases. Finally,
Sect. 5 summarizes and concludes the paper.

2 Experimental Setup and Data Collection

The proposed method in this study was implemented on a rotating fault simulator
machine shown in Fig. 1. It consists of a motor-driven shaft mounted on two
bearings. The tests in this study were conducted with a balanced shaft and a mass
load of 5 kg applied to it. The vertical and horizontal vibration displacements of the
shaft were measured using GE/Bently Nevada 7200 series proximity probe sensors
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installed close to the bearing housing. The data were then processed through the
corresponding conditioning units and were digitized using a National Instruments
NI USB 6363 data acquisition system as shown in Fig. 1. The vibration data of the
shaft was collected for two bearing conditions including healthy bearings (H) and
those with inner race defects (IR) at 19 different speeds ranging from 300 rpm to
3000 rpm with alternating increments of 120 and 180 rpm (e.g., 300, 420, 600, 720,
900, · · · , 3000), at a sampling rate of 10 kHz, and for a time length of 5 s. In order
to obtain sufficient data, 10 sets of data were collected at each rotating speed for a
total number of 380 sampled signals.

3 Diagnostic Method

An overview of the fault detection method used in this paper is summarized in
Fig. 2 and is described as follows. The proximity probe sensors in two orthogonal
directions measured the vibration of the shaft for two bearing conditions such as
healthy and inner race defect for variable operating speeds.

For each data set, two feature sets, which will be explained later, were extracted
using POD and SOD methods. Various speed domains were considered for training
and testing a classification model using an artificial neural network (ANN). In
the following subsections, we provide a brief mathematical overview of proper
and smooth orthogonal decomposition methods for completeness; for more details
please refer to [10–12].

Proximity Probes Proximity Probes
Signal Processing

Data 
Acquisition

Fig. 1 Data collection process

Fig. 2 Diagnostic approach
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3.1 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) [10, 11], also known as principal compo-
nent analysis (PCA), is a statistical method used to represent multi-dimensional data
as orthogonal basis vectors in which the data projection onto these basis vectors has
maximum variance. Let us assume that matrix Y ∈ R

r×n is composed of r snapshots
of n measurements of a system or phenomenon, and Ẏ ∈ R

r×n is the derivative of
Y, containing the rate of changes in data or information. Provided that Y and Ẏ have
zero mean, the corresponding auto-covariance matrices can be formed by

Σyy = 1

r − 1
YTY , Σẏẏ = 1

r − 1
ẎTẎ . (1)

In POD, we seek a basis vector φ ∈ R
n such that a projection of the data matrix

onto this vector has maximal variance. The description of POD translates into the
following constrained maximization problem:

max
φ
‖Yφ‖2 subject to ‖φ‖ = 1 . (2)

We obtain the solution to the POD problem by solving the eigenvalue problem of
the auto-covariance matrix Σyy :

Σyyφk = λkφk , (3)

where λk are proper orthogonal values (POVs), φk ∈ R
n are proper orthogonal

modes (POMs), and proper orthogonal coordinates (POCs) are columns of Q =
YΦ, in which Φ = [φ1, φ2, . . . , φn] ∈ R

n×n. POVs are ordered such that λ1 ≥
λ2 ≥ . . . ≥ λn, and reflect the variances in Y data along the corresponding POMs.

3.2 Smooth Orthogonal Decomposition

Smooth orthogonal decomposition (SOD) [11, 12] can be viewed as an extension
to POD in which multi-dimensional data are represented with basis vectors (not
necessary orthogonal) in which the data projection onto these basis vectors has max-
imum variance and minimum roughness, or in other words, maximum smoothness.
In SOD, we are looking for a basis vector ψ ∈ R

n such that a projection of the
data matrix onto this vector has both maximal variance and minimal roughness (i.e.,
maximal smoothness.) Roughness can be defined as squared L2 norm of rate of
change of data. Thus, the roughness of a scalar field Y is equal to ‖Ẏψ‖. Therefore,
the description of SOD can be stated as maximizing the following function:
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λ(ψ) = ‖Yψ‖2

‖Ẏψ‖2
. (4)

We rewrite the above equation by considering Eq. (1) in the following form:

λ(ψ) = ψT Σyyψ

ψT Σẏẏψ
. (5)

In order to maximize λ(ψ), we set the first derivative equal to zero:

∂λ(ψ)

∂ψ
= 2(ψT Σẏẏψ)Σyyψ − 2(ψT Σyyψ)Σẏẏψ

(ψT Σẏẏψ)2
= 0. (6)

As a result, Eq. (6) can be simplified using Eq. (5):

Σyyψk = λkΣẏẏψk. (7)

Equation (7) is the generalized eigenvalue problem of the matrix pairs Σyy

and Σẏẏ which yields the solution to the SOD problem. In this equation, scalars
λk are smooth orthogonal values (SOVs), and vectors ψk ∈ R

n are smooth
projection modes (SPMs). A matrix that contains all the SPMs has the form
Ψ = [ψ1, ψ2, . . . , ψn] ∈ R

n×n, and a matrix that contains all the SOVs has the
form Λ = diag([λ1, λ2, . . . , λ2n]) ∈ R

n×n. Using these definitions, Eq. (7) can be
summarized into the following matrix form:

ΣyyΨ = ΣẏẏΨΛ. (8)

The degree of smoothness of the coordinates is described by the magnitude of
the corresponding SOV. Thus, the greater in magnitude the SOV, the smoother in
time is the corresponding coordinate. It should be noted that, if we were to replace
Σẏẏ with the identity matrix, the formulation would yield POD.

In summary, POD and SOD are techniques used to map multi-dimensional data
into basis vectors. POD considers the spatial or geometric consequences of this
mapping and neglects the temporal structure of the state evolution. In contrast, SOD
considers both the geometrical features of states and their time evolution in terms of
overall spatial variation and temporal smoothness of the corresponding coordinate.

3.3 Feature Extraction and Supervised Learning

The advantage of both POD and SOD techniques is their capacity of characterizing
nonlinear dynamical systems and identifying trends in the data by preserving the
nonlinearity of the original data flow in its projection onto the basis vectors. In
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this work, POD and SOD methods were used as feature extraction techniques for
detection of inner race bearing defects using the shape of orbits plots. Orbit plots
are a visualization of the shaft path that it takes as it vibrates during rotation.
They are created by two simultaneous orthogonal displacement measurements of
the rotational shaft.

The shape of the orbit plots characterizes the response of the rotating system
in a qualitative fashion, which can be vitally important in analysis and diagnostics
of rotating machinery. Extracting meaningful information of this qualitative visu-
alization is a challenging task and requires expert knowledge. Thus, quantitative
characterization of the orbit plots could offer valuable information in describing the
condition of the system without having to involve an expert. Therefore, our chief
concern here is to extract a set of features that can quantify the orbit plots.

Figure 3 depicts samples of the orbit plots for a healthy bearing and a bearing
with inner race defect. The figure also shows the proper and smooth orthogonal
modes for the corresponding data. For each data sample, the POD and SOD were
performed to the orbit plot. A feature set was then extracted including (1) the angle
lying between each proper orthogonal mode and the positive x-axis, (2) each proper
orthogonal value, (3) the angle lying between each smooth projection mode and the
positive x-axis, (4) each smooth orthogonal value, and (5) shaft rotational speed.
This represents a set of five features for each technique.

An ANN was then developed in order to find the relationship between the
extracted features (input) and the bearing condition (output). A two-layer neural
network with a single hidden layer was chosen to map those features in order to
predict the bearing health condition at various rotational speeds. The total number
of selected neurons was twenty and the backpropagation algorithm was used to train
the artificial neural network. In the trained ANNs, the activation functions for the
neurons of hidden and output layers were Tansig and Softmax, respectively.
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Fig. 3 Orbit plots of the rotational shaft at 300 rpm along with the orthogonal modes for (a)
healthy bearing and (b) bearing with inner race defect
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4 Fault Detection Results

The current study investigated different speed configurations between the training
and testing sets of the classification model: (Case A) known speed domains, (Case
B) bounded speed domains, and (Case C) unknown speed domains.

In order to attain this goal, Case A investigated the classification model by
training and testing the classifier on the same set of speeds. This case is important
when we have sufficient knowledge about the system and its operating conditions.
Case B involved generalizing the diagnostic approach to variable operating speeds
within a predefined speed range where the test set domain is different from the
training set but it is bounded by the training speeds. This approach is useful for
applications where the operating range is known, i.e., maximum and minimum
operating speeds, but not the exact operating speed. Finally, Case C studied the
effect of training and testing on entirely different speed domains where the test
speeds were unknown to the user and the trained model. This is a difficult problem
but is commonly encountered in industry.

The performance of the classification models can be analyzed using certain evalu-
ation matrices such as the overall model accuracy, the fault prediction precision, and
sensitivity. The definition of these metrics along with some examples can be found in
our previous work [13]. Considering multiple metrics in building the classification
model is a very important practice, especially, to avoid biased or conservative
models. A high sensitivity and low precision for a certain class indicates a biased
classifier and the opposite indicates a conservative classifier. Ideally, a classifier with
high recall and high precision is what we seek. Finally, the overall accuracy of the
classier is the rate of the correct prediction.

Results in Table 1 demonstrate the effectiveness of the SOD technique in
the diagnostics of inner race bearings under certain speed conditions. An overall
accuracy of 100% was achieved under cases (A) and (B). This indicates the high
significance of the SOD-based features in characterizing the dynamic behavior
of the bearing system operating under an identical speed domain and variable
speed domains bounded with a known range. However, the SOD-based features
performed poorly in Case (C), which indicates that there was inadequate information
extracted to detect the inner race defect. The POD-based features provided valuable
information for the detection of inner race defects for all the three speed cases (A,
B, and C). An overall accuracy of 100% was achieved for Case (A), 97% was

Table 1 Classification
results for various speed cases
using POD and SOD
techniques

Technique Case Accuracy Precision Sensitivity

POD A 100.0% 100.0% 100.0%

B 97.2% 94.4% 100.0%

C 84.4% 82.5% 85.7%

SOD A 100.0% 100.0% 100.0%

B 100.0% 100.0% 100.0%

C 50.0% 62.5% 50.0%
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achieved for Case (B), and 84% was achieved for Case (C). This indicates the
superiority of POD-based features over SOD-based features as it has the capability
to be generalized to different speed domains.

5 Conclusions

This work introduced the application of POD and SOD as feature extraction
techniques for the detection of inner race bearing defects under variable operating
conditions. Various features were extracted using estimated proper and smooth
modes and values. We showed that the POD and SOD based features effectively
characterized the behavior of the system by preserving the nonlinearity of the
original data flow, and can also be applied to various dynamical system domains
with minimum knowledge about the signatures of the response under various
bearing conditions. In the case of rotating machinery diagnostics, these results
are significant due to the shaft rotational speed’s strong influence on the dynamic
system behavior. The results in general are quite impressive considering that only
five features were extracted from the shaft displacement data in order to diagnose
bearings with inner race defects under variable rotational speeds. This work has very
good potential in the field of machinery diagnostics. In general, the current work
has potential for unsupervised domain adaptation, where these kind of problems are
mostly unsolved. In addition, results show the superiority of POD-based features
compared with SOD-based features, particularly for the case of unknown speed
domains.
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Effect of the Compliance of the Part
on the Double-Turning Process

Alexander Gouskov , Grigory Panovko , and Dinh Duc Tung

Abstract The report studies the influence of the processing parameters on the
vibration excitation at two-cut turning of an extended cylindrical workpiece. The
design scheme of the process and the acting forces are described. The model of
the part is represented in the form of the Bernoulli–Euler beam. The solution of
the obtained equations with a retarded argument is constructed using the Galerkin
method. Based on the results of the numerical solution, the influence of the main
parameters of processing is analyzed. It is shown that for a deformable workpiece,
the presence of two symmetrically located cutters due to the flexibility of the
workpiece in an unstable mode does not provide symmetric processing without
vibration.

Keywords Stability · Delay · Cutting process · Nonlinear dynamics ·
Numerical simulation

1 Introduction

Turning process of workpieces is often accompanied by the occurrence of self-
oscillations in the system “machine-tool-workpiece” [1, 2], which negatively affect
the quality of manufactured parts and equipment wear. The various causes of their
occurrence are described and studied in sufficient detail in the modern literature,
in particular, those that are caused by the nonlinearity of the characteristics of
the cutting forces [3], by the pliability of machine elements or of the part, by
the conditions for fixing the cutting tool [4], by turning over the surface formed
in the previous turn of the workpiece, etc. [5, 6]. However, in relation to the
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development of various progressive cutting schemes with the simultaneous use of
several cutting tools, a great deal of new problems arises related to the analysis of
the dynamics of the multi-cutter process [7–9]. This chapter studies the influence
of processing parameters on the excitation of vibration in the two-cutter turning
process of an extended cylindrical part with finite flexural rigidity. The turning is
made by two rigid cutters, which are symmetrically disposed on the cross section of
the workpiece [10, 11]. Similar processing scheme allows one to eliminate the use
of intermediate support elements, while simultaneously increasing the depth of cut.

2 Design Scheme and Dynamic Models

The workpiece is a cylinder with a constant cross section of radius R along its length
L. The left end of the workpiece is rigidly fixed in the spindle of the lathe; the right
end of the workpiece rests on the freely rotating center of the machine’s tailstock.
The workpiece rotates at a constant speed ω relative to its longitudinal axis Oz,
the beginning of which (see Fig. 1) is combined with the center of the section
located at the spindle exit (the axis Ox is vertical, the plane yOz is horizontal).
When describing the dynamics of the process, the part is presented in the form of a
Bernoulli–Euler beam, the material of which is considered linearly elastic.

Processing is simultaneously performed by two cutters at points C1 and C2,
located at the opposite ends of the diameter (Ø = 0, z = zC) of the workpiece
parallel to the horizontal axis Oy. It is assumed that both cutters are rigidly fixed
on a common support which moves along the workpiece at a constant speed V0. The
positions of the cutting points C1(0, RC1, zC(t)), C2(0, −RC2, zC(t)) are determined

PC1

PC2

Fig. 1 Design scheme of the workpiece
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by the radius of the cylindrical surface of the workpiece RC and the axial coordinate
zC(t) = L − V0t depending on time t. Cutting starts from the free end of the

workpiece zC(0) = L. At points C1 and C2 cutting forces
−→
P C1,

−→
P C2 are applied

to the workpiece, under the action of which the workpiece bends in the direction of
the axes Ox and Oy with displacements uCx, uCy (see Fig. 1).

The main objective of this study is to determine the effect of the deformability of

the workpiece under the action of cutting forces
−→
P C1,

−→
P C2 on the stability of the

continuous cutting (without chip breaking).

Vectors of cutting forces
−→
P Ck (k = 1, 2) retain their orientation with respect to

the surface being treated, which does not depend on the longitudinal coordinate of

the point zC : −→P Ck = PCk
−→e k

(∣∣−→e k

∣∣ = 1
)
. Usually in practice, cutting forces are

expressed as:

−→
P C k = γkσLBkhk · f (hk, rk, ck)

−→
e k. (1)

Here, the dimensionless coefficient γ k depends on the geometry of the cutting
edges (takes values from several units to several tens ~10–102); Bk is the cutting
depth; hk is the thickness of the removed layer; σL is the characteristic stress
of the material being processed (for ductile materials they usually take the yield
strength); nonlinear function characterizing the dependence of the cutting force
on the thickness of the removed layer can be written in the form: f (hk, rk,
ck) = (ck + rkhk)/(ck + hk), where ck, rk are the experimental coefficients [11]. We
assume that both cutters have the same geometry, i.e., γ 1 = γ 2 = γ , c1 = c2 = c,
r1 = r2 = r and present the nonlinear part of the cutting law as

fk = f (hk, r, c) = (c + rhk) / (c + hk) , [hk] = [c] = m, [r] = [fk] = 1.
(2)

Define the vectors of the cutting forces
−→
P C1,

−→
P C2 by the projection on the

tangential (t), radial (r), and axial (z) directions as:
−→
P C1 = Pt1

−→
i x − Pr1

−→
i y −

Pz1
−→
i z,

−→
P C2 = −Pt2

−→
i x + Pr2

−→
i y − Pz2

−→
i z. Accordingly, the tangential, radial,

and axial components of the cutting forces (1) can be presented in a single form,
taking into account:

PXk = kXBkhkfk; kX = lXγ σL; X = t, r, z;
l1t = −→e 1 · −→i x; l1r = −−→e 1 · −→i y; l1z = −−→e 1 · −→i z; l2t = −−→e 2 · −→i x,

l2r = −→e 2 · −→i y; l2z = −−→e 2 · −→i z;
lt =| l1t |=| l2t |; lr =| l1r |=| l2r |; lz =| l1z |=| l2z | .

(3)

We reduce the task of the study to the detection of the influence of compliance of
the part on the excitation of its vibrations depending on the processing parameters
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and the position of the cutters along the length of the part. The feature of this system
is that the dynamic compliance of the part depends on the coordinates of the cutting
forces points of application along the length and the excitation of vibrations of the
part changes during the process of turning.

For the further formulation of the oscillation of workpiece as a Bernoulli–Euler
beam, we bring both the cutting forces to the point C(0, 0, zC). As a result we get
the resultant force and moment located on the axis of the workpiece:

−→
P C = (Pt1 − Pt2)

−→
i x + (Pr2 − Pr1)

−→
i y − (Pz1 + Pz2)

−→
i z;−→

MC = − (RC1Pt1 + RC2Pt2)
−→
i z + (RC2Pz2 − RC1Pz1)

−→
i x.

(4)

We will consider only the components of the cutting forces in the plane of the
cross section along the axes Ox, Oy and neglect the torque. In the future we set the
radii R´1 = RC2 ≈ R. In the matrix form Eq. (4) for the projections on the axes Ox,
Oy:

PC =
{
Pt1 − Pt2

Pr2 − Pr1

}
, MC =

{
R (Pz2 − Pz1)

0

}
. (5)

In the symmetric operation of both cutters, the generalized forces (5) are equal
to zero. In case of symmetry breaking due to deformations of the part, shear force
and bending moments arise. The oscillations of the part will be considered in two
mutually perpendicular planes. The cylindrical part is considered as the Bernoulli–
Euler beam:

müx +
(
Au′′x

)′′ = PCxδ (z− zC) ,

müy +
(
Au′′y

)′′ = PCyδ (z− zC)+MCxδ
′ (z− zC) ,

(6)

where m is the mass per unit length of beam, A is the flexural stiffness, ux(z, t),
uy(z, t) are the components of deflection of z axis of beam and δ(z − zC) is the
Dirac delta-function. The derivative with respect to the axial coordinate is denoted
by u′j , j = {x, y}, and u̇j is the time derivative.

When symmetrically machining of an ideal cylinder, the cutting depth and
thickness of the removed layer for both cutters will be the same (B1 = B2 = B0,
h1 = h2 = h0) and the corresponding components of the cutting forces PXk (see Eq.
(1)) will be nominal:

PX
0 = kXB0h0f 0; X = t, r, z; f 0 = f

(
h0, r, c

)
=

(
c + rh0

)
/
(
c + h0

)
.

(7)

When vibrations appear, the symmetry is broken, and the sections of the chips
will change due to the radial movement of the axis of the workpiece uy(t) and cross-
section rotation θx:
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B1 = B0 − uy(t)+ uy (t − T0/2) , B2 = B0 + uy(t)− uy (t − T0/2) ,
h1 = h0 + R0 [θx(t)− θx (t − T0/2)] , h2 = h0 − R0 [θx(t)− θx (t − T0/2)] ,

(8)

where R0 is the nominal radius of the cylindrical surface being processed (we
assume that R = R0); T0 = 2πR0/VC is the period of rotation of the part that
will determine the delay T0/2 in the sequential operation of diametrically located
cutters; VC is a cutting velocity; B0 is the difference between the radii of the initial
cylindrical surface and the treated one. The nominal thickness of the removed layer
h0 is determined by the axial speed of the tool V0 and is equal to h0 = V0T0/2.

The appearance and development of vibrations of a part is caused by the
regenerative effect associated with delay. The increase in vibrations reduces the
instability of the cutting process. The determination of the increase in vibration can
be found by considering the small deviations of the part in time. In the following,
linearized equations of oscillations of a deformable workpiece will be considered;
therefore, cutting forces (7) with (8) will take the form:

Bkjhf (h, r, c) ≈ B0h0f 0 + h0f 0ΔBk + B0g0Δhk,

g0 = ∂(hf )/∂h|h=h0 = r + (1− r) c2/
(
c + h0

)2
,

(9)

where the increments of the cutting depth ΔBk and thickness of the removed chips
Δhk linearly depend on the change in the position of the processed section of the
part:

ΔB1 = uy(t)− uy (t − T0/2) , Δh1 = −R0
[
u′y(t)− u′y (t − T0/2)

]
. (10)

In the symmetric case ΔB2 = −ΔB1, Δh2 = −Δh1 (if we ignore the influence
of torque in the section plane of the part and the axial force from the action of
the cutting forces on the part). However, the breaking of symmetry or transverse
perturbations leads to the excitation of vibrations, by the nature of which one can
judge the stability and instability of the turning process. After using the values
(9) in (10), we will rewrite the workpiece flexural oscillations equations (6) in a
dimensionless form. To do this, we introduce the scaling: T∗ : t= T∗τ ; Z∗ : z= Z∗ζ ;

U∗ : u = U∗ξ . Select the following scale values: T∗ = L2
√
ρπ

(
R0

)2
/A0; Z∗ =

L; U∗ = 1,, where ρ is the mass per unit length. Furthermore, we assume that the
stiffness of the bending section varies slightly when turning A0 = A = πE(R0)4/4,
where E is Young’s modulus. Then we have T∗ = 2R0/(ε2VS), where VS = √E/ρ

is a speed of sound in the material. Now Eq. (6) has the form:

ξ̈x + ξ ′′′′x = +K1
ε3 δ (ζ − ζC) ;

ξ̈y + ξ ′′′′y = −K1
ε3 κrδ (ζ − ζC)− K1

ε2 κzδ
′ (ζ − ζC) ,

(11)

where



508 A. Gouskov et al.

1 = ηf 0ξy (τ, ζ )− ξy (τ − T , ζ )+ βεg0ξ ′y (τ, ζ )− ξ ′y (τ − T , ζ ) .

The dimensionless delay is equal to T = T0/2T∗ . We also use the designations:

β = B0

R0
, ε = R0

L
, η = h0

R0
, κr = kr

kt
, κz = kz

kt
,

K = 8γ σL

πE
, T = πε2VS

2VC
, & = π

T
.

(12)

A further solution is constructed by the Galerkin method. We represent the
solution of problem (11) in the following form:

ξx (τ, ζ ) ≈ q1 (τ ) p1 (ζ ) +q2 (τ ) p2 (ζ ) , ξy (τ, ζ ) ≈ q3 (τ ) p1 (ζ ) +q4 (τ ) p2 (ζ ) .

(13)

The linearized system (11) presents the vibrations in two planes—vertical and
horizontal. The vibrations in horizontal plane ξ y(τ , ζ ) can be studied independently
of vibration in vertical plane. After substituting the expression for ξ y from (13) into
the second equation of the system (11) and orthogonalizing the residual coordinate
functions pi(ζ ), i = 1, 2, we obtain two equations that we write in the matrix form:

q̈ (τ )+ 2ndDq̇ (τ )+ (α+ C)q (τ ) = Cq (τ − T ) , (14)

where the following designations are used:

C (ζC) = K

ε3

(
ηf 0A+βεg0B

)
, α=

[
α1

4 0
0 α2

4

]
, D=

[
α1

2 0
0 α2

2

]
, q=

{
q3

q4

}
,

where A and B are the functions on cutting-edge position pT = {p1(ζC), p2(ζC)}:

A (ζC) =κrppT −ε2κz

(
pp′T +ppT

)
, B (ζC) = κrpp′T −ε2κz

(
pp′′T +p′p′T

)
.

The coordinate functions pi(ζ ) will be chosen as the eigen functions of the
transverse vibrations for the Bernoulli–Euler beam as:

p′′′′n − αn
4pn = 0, ζ = 0 : pn = 0, p′n = 0; ζ = 1 : pn = 0, p′n = 0, ‖pn‖ = 1.

(15)

Equation (15) is a system of linear ordinary differential equations with two
degrees of freedom for a system without delay, and the natural frequency of nth
mode is equal to αn

2. The matrices A, B depend on the current position of the cutting
tools coordinate ζC(τ ) = 1 − (τVC)/(2εVS). A linear viscous damping matrix D is
introduced in Eq. (15), nD is the damping coefficient. As the cutters move from the
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right end ζ = 1 to the left one (that is fixed in the spindle) ζ = 0, the dynamic
compliance in the cutting forces application places changes. The modules of linear

and angular dynamic compliance of the part

∣∣∣∣
3

ξ y (f, ζC)

∣∣∣∣ and

∣∣∣∣
3

ξ
′
y (f, ζC)

∣∣∣∣ defined

as:
∣∣∣∣
3

ξ y (f, ζC)

∣∣∣∣ =
∣∣∣pT (ζC)

3
q(f )

∣∣∣ ,
∣∣∣∣
3

ξ
′
y (f, ζC)

∣∣∣∣ =
∣∣∣p′T (ζC)

3
q(f )

∣∣∣ , (16)

where vector
3
q(f )is the solution of the following linear algebraic system:

[
(2πif )2 + 2nd (2πif )D+ α

]
3
q(f ) = p (ζC) , i = √−1.

The natural frequencies are equal to f1 = α1
2/2π ≈ 2.45, f2 = α2

2/2π ≈ 7.95.

3 Analysis of the Calculation Results

Numerical integration of the system of equations with a lagging argument was used
by the program dde23 of the computing environment MATLAB. All calculations
were carried out with the following parameters and values of the system and taking
into account the adopted notation for dimensionless complexes in (12): R0 = 0.02 m,
L = 0.5 m, ρ = 7.8 · 103 kg · m−3, E = 2 · 1011 Pa, yield strength of the material
of the part σ L = 3 · 108 Pa, c = 2.5 · 10−4 m, r = 0.65, γ = 50, cutting
velocity VC = 2 m · s−1, β = 0.1, η = 0.02, nd = 0.01, κr = 0.25; κz = 0.5 [1].
We consider the spatial representation for the calculations in nine different cutter
positions ζC = {0.1, 0, 2, . . . , 0.9}. Figure 2 compares the two turning processes
and the nature of the growth of perturbations with η = 0.02 (see Fig. 2a) and with

Fig. 2 Development of vibrations at η = 0.02 (a), and η = 0.005 (b)
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a decrease in the chip thickness four times η = 0.005 (see Fig. 2b). In the first case
(η = 0.02), the emerging vibrations that appear will increase—unstable turning in
the middle of workpiece. The growth of perturbations leads to the appearance of
intermittent cutting corresponds to the Hopf bifurcation [7, 10].

Reducing the feed per revolution by four times (η= 0.02→ η= 0.005) stabilizes
the turning process over the entire length of the workpiece. Analogous results can
be shown with time delay (cutting velocity) and cutting depth—parameterβ.

4 Conclusion

A nonlinear model for turning a cylindrical part with finite flexural rigidity has
been developed. The linearized model shows that vibrations occur in a horizontal
plane regardless of vibrations in a vertical plane. Vibrations in the vertical plane
are generated by oscillations in the horizontal plane. The peculiarity of this system
is that the dynamic compliance of the system at the cutting points depends on its
position along the length of the workpiece: the excitation changes during the turning
process. The highest sensitivity of the system to vibrations is provided by cutting
speed and feed per revolution. It is shown that it is possible to choose such values
of the turning conditions that during the whole process the emerging vibrations
will attenuate. It is shown that for a deformable workpiece, the presence of two
symmetrically located cutters due to the flexibility of the workpiece in an unstable
mode does not provide symmetric processing without vibration.
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Effect of the Regenerative and Frictional
Force on Chatter in Turning Process

An Wang, Wuyin Jin, and Qian Lin

Abstract Based on a new proposed single-degree-of-freedom turning process
model, in this work, the effects of the regenerative and the frictional force on cutting
tool nonlinear behaviors are investigated by bifurcation analysis and numerical
simulation. The Hopf bifurcation usually generates large amplitude vibration and
even causes chaotic vibration in the cutting process; hence, it is used in the
prediction of chatter onset. We have concluded that the vibration amplitude of the
cutting tool increases and the chatter vibration happened earlier as the regenerative
force increases. Meanwhile, the vibration amplitude of the cutting tool is reduced
due to the increase of the frictional force; however, it affects the original equilibrium
position of the cutting tool.

Keywords Chatter · Bifurcation analysis · Hopf bifurcation · Turning process

1 Introduction

With the rapid development of science and technology, chatter has drawn much
more attention in the fields of precision machining in the past time. As we all
know, chatter is strongly relative to the vibration of the cutting process, especially
between the cutting tool and the workpiece, and it is also an important reason for
surface quality and tool breakage. In order to eliminate the chatter in the cutting
process, the vibration mechanism and vibration response must be studied. Three
mechanisms known as frictional chatter, regeneration chatter, and mode coupling
chatter are the major reasons for chatter. Various methods were used to explore
the chatter phenomena and reveal their vibrational properties, such as analytical
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methods [1, 2], numerical techniques [3–7], and experimental tests [8, 9]. All of
these methods are important means of understanding the mechanism and dynamic
response of chatter. There are many factors that influence the chatter system
including cutting variables, tool geometry, and other nonlinearity factors. Rusinek
proposes a model that considers both frictional and regenerative mechanisms, since
the friction phenomenon exists in the cutting process. Simultaneously, the effects of
frictional force and regenerative force on the cutting stability region were studied
[10]. Recently, a similar model considering frictional and regenerative force was
established by Weremczuk, and the multi-time scale method was used to study
the effects of friction and regeneration factors on the chatter system [11]. In this
chapter, the influence of frictional force and regenerative force on the dynamic
characteristics of the cutting system is studied by using the bifurcation analysis
method.

2 Model

In this section, a simple single-degree-of-freedom model of turning process is
developed. The model mainly considers the influence of regenerative force and
frictional force. The focus of this chapter is to propose the effect of regenerative
force and frictional force on the orthogonal turning system. Therefore, other
nonlinear factors are not considered in our model, for example, nonlinear spring,
loss of tool-workpiece contact, and other nonlinearity factors.

Here, the cutting process of the cutting tool is modeled as a vibrator which can be
vibrated in x direction as shown in Fig. 1. Hence, the governing equation of cutting
tool vibration is

mẍ + cẋ + kx = Fr + Ff (1)

where x is the vibration displacement of cutting tool in x direction, m is an equivalent
mass of the cutting tool, c is the equivalent damping, and k is the equivalent stiffness.

The cutting force is made up of regenerative force Fr and frictional force Ff [11–
16]. They have the form as follows:

Fig. 1 Schematic model of
orthogonal turning process

x

cutting tool workpiece

c

k

Ff

m

Fr
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Fr = Kfw (x (t − τ)− x(t))

Ff = Kt
(
sgn (vr)− avr + bvr

3
) (2)

in which Kf is the cutting coefficient, w is the chip width, x(t) and x(t − τ ) are
the current cutting tool position and its delayed position, time delay τ is inversely
proportional to the spindle velocity and, for the turning process, it is the period
of one revolution, Kt is the component of the frictional force, a and b are the
coefficients of the frictional force, vr is the relative velocity between the cutting
tool and the chip, and it is connected with the workpiece diameter d and time delay
τ

vr = πd/τ − ẋ (3)

Substituting Eq. (2) into Eq. (1) and introducing nondimensional variables
defined by x̃ = x/L, t̃ = ω0t , w̃ = w/L, τ̃ = ω0τ , d̃ = d/L, α = Kfw̃L/mω0

2,
β = Kt/mω0, it can be cast into the dimensionless form as

ẍ + δẋ + x = α (x (t − τ)− x(t))+ β
(

sgn (vr)− avr + bvr
3
)

(4)

where x is the dimensionless vibration displacement of cutting tool and δ is a viscous
damping coefficient. We note that both the regenerative force and the frictional force
are considered in our model. Meanwhile, the cutting force mainly depends on the
dimensionless parameters α and β in the model.

3 Effect of the Regenerative Force and Frictional Force

In the present study, a bifurcation analysis is performed to investigate the effects of
the regenerative force and the frictional force on cutting tool nonlinear behaviors.
Particularly, the main purpose is to research the type of Hopf bifurcation, which
is very important to cutting system, because the Hopf bifurcation can generate
large amplitude vibration and even cause chaotic vibration in the cutting process.
In addition, the bifurcation diagrams were determined using the software package
KNUT [17], which is a continuation and bifurcation software for delay differential
equations.

The bifurcation diagram represents the vibration amplitude of the cutting tool as
function of time delay for different α and β combination. Based on our dynamic
model, the increase of α and β means the increase of regenerative force and
frictional forces, respectively. In addition, fix δ = 0.1, d = 1, a = 0.5, and b = 0.1
in Eq. (4).

Figures 2, 3, and 4 show the bifurcation diagrams obtained for α = 0.1, 0.5,
1, 2 and fixed β = 0.01, 0.1, 1, respectively, using dimensionless time delay τ as a
bifurcation parameter. In the bifurcation diagrams, Hopf bifurcation point is denoted
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Fig. 2 The bifurcation diagrams of the dimensionless vibration displacement of cutting tool in x
direction vs. delay time τ , with β = 0.01 and different values of α: (a) α = 0.1, (b) α = 0.5,
(c) α = 1, (d) α = 2. The black solid line denotes stable trivial motion of the cutting tool, black
dotted line denotes unstable trivial motion of the cutting tool, red solid line denotes stable periodic
motion of the cutting tool, and red dotted line denotes unstable periodic motion of the cutting tool.
H stands for Hopf bifurcation point, CF stands for cyclic fold bifurcation point

by H, CF refers to fold bifurcation point, and CH stands for chaos. In addition, black
solid line denotes stable trivial motion of the cutting tool, black dotted line denotes
unstable trivial motion of the cutting tool, red solid line denotes stable periodic
motion of the cutting tool, and red dotted line denotes unstable periodic motion of
the cutting tool.

It is quite evident from Fig. 2a that the response of the cutting tool is always stable
while β = 0.01 and α = 0.1, whereas when the value of α is 0.5,1, and 2, the stable
limit cycle emanates from the supercritical Hopf bifurcation points H (H = 2.44,
1.92, and 1.46 respectively) as shown in Fig. 2b–d, meaning that the cutting tool
chatter vibration appears. In addition, in the neighborhood of the Hopf bifurcation
point H, there are three branches: one is a stable trivial motion of the cutting tool at
the left of the point H, one is an unstable trivial motion of the cutting tool at right
of the point H, and one is a stable (and partial unstable) limit cycle motion of the
cutting tool at the top right of the point H. It is clear that the position of the Hopf
bifurcation point H is affected by the regenerative force. The Hopf bifurcation point
H moves toward the left as α is increased, which indicated that the parameter range
of tool stability response is also reduced. In other words, the cutting tool chatter
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Fig. 3 The bifurcation diagrams of the dimensionless vibration displacement of cutting tool in
x direction vs. delay time τ , with β = 0.1 and different values of α: (a) α = 0.1, (b) α = 0.5,
(c) α = 1, (d) α = 2. The black solid line denotes stable trivial motion of the cutting tool, black
dotted line denotes unstable trivial motion of the cutting tool, red solid line denotes stable periodic
motion of the cutting tool, and red dotted line denotes unstable periodic motion of the cutting tool.
H stands for Hopf bifurcation point, CF stands for cyclic fold bifurcation point, and CH stands for
chaos

vibration is more likely to occur due to increase in regenerative force. Moreover, we
also note that the amplitude of the limit cycle becomes larger while the regenerative
force is increased.

It is obvious that there is another bifurcation point: cyclic fold bifurcation point
(CF1 and CF2) in Fig. 2b, c, where CF1 is subcritical cyclic fold bifurcation point
and CF2 is supercritical cyclic fold bifurcation point. The stability of the limit cycle
is changed at the cyclic fold bifurcation point. At the same time, the amplitude
of the limit cycle will change abruptly at the cyclic fold bifurcation point. This
phenomenon has a great influence on the stability of the cutting process.

As shown in Fig. 3 while β = 0.1 and α = 0.1, 0.5, 1, 2, respectively, the branches
bifurcate from the supercritical Hopf bifurcation point H (H = 3.73, 2.44, 1.95,
and 1.50), which indicates stable limit cycle of the response of the cutting tool. The
branches expand to the upper left as α increases. This means the vibration amplitude
of the cutting tool gradually increases and the chatter vibration happened earlier as
the regenerative force increases (α increased from 0.1 to 2). In comparison with
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Fig. 4 The bifurcation diagrams of the dimensionless vibration displacement of cutting tool in x
direction vs. delay time τ , with β = 1 and different values of α: (a) α = 0.1, (b) α = 0.5, (c) α = 1,
(d) α = 2. The black solid line denotes stable trivial motion of the cutting tool, black dotted line
denotes unstable trivial motion of the cutting tool, red solid line denotes stable periodic motion of
the cutting tool, and red dotted line denotes unstable periodic motion of the cutting tool. H stands
for Hopf bifurcation point, CH stands for chaos

Figs. 2b, c and 3b, c, there are also subcritical cyclic fold bifurcation point and
supercritical cyclic fold bifurcation point.

Here is an interesting phenomenon that the stable trivial motion and the unstable
trivial motion of the cutting tool begin to deviate from the equilibrium position while
frictional force increases (β increased from 0.01 to 0.1), this phenomenon is more
obvious especially when the time delay is relatively a small value. Moreover, in
contrast to Fig. 2b–d, the structure of the bifurcation diagrams are very similar, but
the vibration amplitude of the cutting tool in Fig. 3b–d decreases significantly with
increasing frictional force. Especially, in Fig. 3a, when the time delay exceeds CH
point, the response of the cutting tool appears chaotic vibration. Subsequently, it
will be validated by numerical simulation method.

As can be observed in Fig. 4, while β = 1 and α = 0.1, 0.5, 1, 2, respectively,
the stable limit cycle of the response of the cutting tool bifurcates from different
supercritical Hopf bifurcation points H (2.76, 2.43, 2.12, and 1.76). With the
increase of regenerative force, the amplitude of the limit cycle increases rapidly, and
the cutting tool response presents a chaotic vibration after CH point. In contrast to
Figs. 2 and 3, the stable trivial motion and the unstable trivial motion of the cutting



Effect of the Regenerative and Frictional Force on Chatter in Turning Process 519

tool is obviously deviated from the equilibrium position, similar to Fig. 3, especially
when the time delay is relatively a small value. In addition, subcritical cyclic fold
bifurcation point and supercritical cyclic fold bifurcation point in Figs. 2b, c and 3b,
c do not appear in Fig. 3.

Compared with Figs. 2 and 3, the vibration amplitude of the cutting tool in Fig.
4 is further reduced due to the increase of frictional force. In addition, the range of
the limit cycle branch is obviously reduced and the chaotic vibration of the cutting
tool appears after the point CH.

In the following simulations, the largest Lyapunov exponent (LLE) and Poincaré
section are used to analyze the dynamic motions of the cutting tool with the help of
the numerical simulation method. The Poincaré section defined as those trajectories
which pierce the hyper-surface ẋ = 0 at negative velocity of the tool in the three-
dimensional space composed of {x, ẋ, x (t − tau)}. For the case of β = 0.1, α = 0.1
and β = 1, α = 0.1 (Corresponding to Figs. 3a and 4a respectively), the LLE and
Poincaré section of the tool dynamic response are shown in the Fig. 5. It can be
found that LLE (Fig. 5a, b) are consistent with bifurcation diagrams (Figs. 3a and
4a). In addition, the Poincare section (Fig. 5c, d) further confirms that the dynamic
response of the tool is chaotic motion.
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4 Conclusions

In this chapter, a single-degree-of-freedom model for turning process is examined
where the dynamic cutting force consists of frictional force and regenerative force.
The influence of regenerative force and frictional force on the dynamic charac-
teristics of cutting tool is analyzed by using bifurcation analysis and numerical
simulation methods in this work. It can be found that regenerative force will induce
chatter and large amplitude vibration, while frictional force can effectively suppress
vibration amplitude; however, frictional force will cause the cutting tool to deviate
from the original equilibrium position. Therefore, it is possible to suppress the
chatter by reasonable control of frictional force in the cutting process.
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Noise-Induced Transitions
and Resonances in a Delayed Triple-Well
Potential System

Yanfei Jin and Pengfei Xu

Abstract The noise-induced transitions and resonances are studied in a delayed
triple-well potential system driven by correlated Gaussian white noises and a
harmonic signal. The analytical expressions for the stationary probability density
(SPD) and the spectral amplification (SA) are derived by using the small time delay
approximation and the linear response theory. The results show rich transition and
resonance phenomena. It is found that the time delay induces an occurrence of the
transitions of the system. Both the reentrance phenomena in noise-induced transi-
tions and the double stochastic resonance (SR) are observed when the multiplicative
and additive noises are correlated. Under the condition of large noise intensity, the
noise-induced resonance effect can be enhanced with the assistance of the cross-
correlation between noises. Moreover, the noise-induced resonance phenomenon
notably depends on the cooperative effects of time delay and correlated noises. The
appropriate choice of noise intensities and time delay can improve the response of
the system to an external forcing.

Keywords Noise-induced transition and resonance · Correlated noises · Time
delay

1 Introduction

Numerous physical systems are associated with random fluctuating environment or
noise, which is usually considered as a source of disorder andchaos. In some circum-
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stance, noise may play a constructive role and induce new ordering phenomena, such
as noise-induced transition [1], noise enhanced stability [2], resonant activation [3],
and stochastic and coherence resonances (SR and CR) [4]. These counterintuitive
phenomena attracted the interests of people and have been extensively investigated
in theory and applications [5, 6]. However, the majority of works on noise-induced
transition and resonance considered bi-stable and mono-stable systems, only a few
publications involved multi-stable systems [7, 8]. Nicolis [7] extended the theory of
SR to explain noise-induced transitions between an initial and a final stable state in
multi-stable systems. Xu et al. [8] studied the SR in multi-stable coupled systems
subjected to two different driving signals. They observed the stochastic multi-
resonance phenomenon in the subsystem driven by low frequency signal. Moreover,
time delays always exist and play an important role in physics [9], biology [10], and
engineering [11]. Especially, the combined effects of both noise and time delay are
necessary to consider in the modeling of the practical dynamical systems [12–15].
For example, Frank [12] studied the nonlinear stochastic systems with time-delayed
feedback by using the approximate Fokker–Planck method. Jin [13, 14] explored the
effects of noise on the delay-independent stability and noise-induced resonances in
the time-delayed systems. To the best knowledge of authors, less attention has been
paid to the nonlinear dynamics of the delayed multi-stable system with correlated
noises.

In Ref. [15], a general nonlinear dynamical system that contains time-delayed
feedback and noise are proposed as follows:

ẋ(t) = f (x(t), x (t − τ))+ ε sin (ωt)+ x(t)ξ(t)+ η(t), (1)

where τ is the time delay, ε and ω represent the amplitude and the frequency of a
harmonic signal, respectively. The multiplicative noise ξ (t) and additive noise η(t)
are cross-correlated Gaussian white noises with zero mean and Dirac correlation
functions, which are characterized as follows:

〈
ξ(t)ξ

(
t ′
)〉 = 2Dδ

(
t − t ′

)
,

〈
η(t)η

(
t ′
)〉 = 2Qδ

(
t − t ′

)
,

〈
ξ(t)η

(
t ′
)〉 = 〈

ξ
(
t ′
)
η(t)

〉 = 2λ
√
DQδ

(
t − t ′

)
.

(2)

where D and Q are the multiplicative and additive noise intensity, respectively. λ is
the cross-correlation strength between multiplicative and additive noises.

The triple-well potential systems can model many real systems and have many
applications in various fields, such as parallel reaction [16], quantum mechanics
[17], and energy harvesting [18]. Particularly, a triple-well potential is found to
improve the broadband performance of energy harvesting. Thus, the delayed nonlin-
ear function has taken the following form, i.e., f (x, xτ ) = ax5

τ −b (1+ c) x3+ cx,
where a, b, and c are the parameters of the potential function. The triple-well
potential function corresponding to Eq. (1) has three stable states si(i = 1, 2, 3) and
two unstable states uj(j = 1, 2) for fixed a = 1/30, b = 1/5, and c = 3/10.
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The chapter is organized as follows. In Sect. 2, the stationary probability density
(SPD) is obtained through the Fokker–Planck equation with small time delay. The
phase diagram of the system is plotted to indicate the noise-induced transition.
Section 3 is devoted to derive the spectral amplification to characterize noise-
induced resonance. Finally, some conclusions are drawn in Sect. 4.

2 Noise-Induced Transition

Using the small time delay approximation proposed in Ref. [19], the Fokker–Planck
equation corresponding to Eq. (1) with Eq. (2) can be derived as follows:

∂

∂t
p (x, t) =

{
− ∂

∂x

[
α(x)+ β(x)

dβ(x)

dx

]
+ ∂2

∂x2
β2(x)

}
p (x, t) , (3)

where

α(x) = [−ax5 + b (1+ h) x3 − hx + ε sin (ωt)
] (

1+ 5aτx4
)
,

β(x) = [
Dx2 + 2λ(DQ)1/2x +Q

]1/2 (
1+ 5aτx4

)
.

Setting the left-side of Eq. (3) to zero leads to the following quasi SPD:

pst(x) = Nβ(x)−1 exp
[
−D−1Ṽ (x, t)

]
, (4)

where N is the normalization constant. The modified potential Ṽ (x, t) is derived as

Ṽ (x, t) = −D

∫ [
α(x)/β2(x)

]
dx = V0(x)− εg(x) sin (ωt) , (5)

with

V0(x) =
∫ x [

au5 − b (1+ h) u3 + hu
] [(

u2 + 2λ
√
Ru+ R

) (
1+ 5aτu4

)]−1
du,

g(x) = ∫ x
[(

u2 + 2λ
√
Ru+ R

) (
1+ 5aτu4

)]−1
du,

where R = Q/D is the noise intensity ratio.
The extrema of SPD (4) are determined by the following equation:

α(x)− β(x)
dβ(x)

dx
= 0. (6)
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Fig. 1 (a) Phase diagram of the system. R1 denotes the mono-stable one, R2 the bi-stable one, and
R3 the tri-stable phase. The representative points A, B, C are marked in each region. (b) The SPD
(4) about the points A, B, C are shown, respectively. (c) The results of Monte Carlo simulations
are presented. Other parameters are chosen as D = 0.11 and Q = 0.12

According to Eqs. (4) and (6), the phase diagram and the SPD are plotted in
Fig. 1 for observations of phase transitions. The cross-correlation strength between
multiplicative and additive noises λ as a function of time delay τ is shown in Fig.
1a. The phase diagram makes it apparent that for fixed value of λ and for small
values of τ , the system is found in the tri-stable phase. After increasing τ beyond
some threshold values, the system undergoes a transition to a bi-stable phase. With
further increasing τ , the system finally reaches a mono-stable phase in the range
0 < λ < 0.57. That is, the system undergoes a succession of two delay-induced
transitions. For example, these points A, B, C (see Fig. 1a) correspond to a path
of a succession of two transitions. In order to verify the transitions predicted in the
phase diagram, the SPD of the points A, B, C are presented in Fig. 1b. It is seen
that the right-side peak disappears first and then the left-side peak disappears with
an increase in τ . The reason is that the cross-correlation between noises leads to a
symmetry-breaking effect on the SPD. However, the symmetry-breaking effect for
small λ is suppressed by the increasing time delay. As a result, there is a single peak
in SPD for large time delay. It also indicates that the system can jump easily from
the left or right potential well to the middle one with the assistance of time delay,
but it is difficult for it to return back to the two lateral potential wells. Meanwhile,
the Monte Carlo simulations (MCS) of SPD are performed from original system (1)
in Fig. 1c. It is obvious that the MCS confirms the effectiveness of the theoretical
analyses obtained in Fig. 1a, b.

The cooperative effects of multiplicative noise intensity D and additive noise
intensity Q on the transition phenomenon are analyzed for different values of cross-
correlation strength λ in Fig. 2. It is clearly observed from Fig. 2a that for fixed small
λ and for any value of Q, an increasing D leads to a transition from the tri-stable
phase to a bi-stable one and then to a mono-stable one. However, as λ increases
from 0.2 up to 0.8, the reentrance phenomena in noise-induced transitions occur in
Fig. 2b. For example, the horizontal line makes it apparent that, for some regions of
values of additive noise intensity (0.62 < Q < 1) and for zero and small values of D,
the system is found in a tri-stable phase. With the increment of D, the system toggles
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denotes the mono-stable one, R2 the bi-stable one, and R3 the tri-stable phase. Note the horizontal
line in (b) implying an occurrence of reentrance phenomena

into the bi-stable region immediately. Then, after D is increased beyond some
threshold values, the system undergoes a transition from the bi-stable phase to a
mono-stable one. However, if one further increases the multiplicative noise intensity,
the system goes back to the bi-stable phase first and then to a mono-stable one
again. Namely, the system undergoes a succession of two noise-induced reentrant
transitions. Since the noise correlation strongly affects the stationary probability dis-
tribution of the system. The multiplicative and additive noises play different roles in
the transition of the system. Thus, the reentrance phenomena in noise-induced tran-
sitions are quite sensitive to the correlated noises in the triple-well potential system.

3 Noise-Induced Resonance

In the adiabatic limit, Eq. (3) can be mapped into a discrete-state Markov process
describing the transfer of probability masses pi(i = 1, 2, 3) between the attraction
basins of the stable states si. The corresponding kinetic equation is written as

Ṗ = WP, (7)

where P = (p1 p2 p3)T and the superscript T denotes the transpose of matrix. The
transfer matrix W has the following form:

W =
⎛
⎝
−W1,2 W2,1 0
W1,2 − (

W2,1 +W2,3
)

W3,2

0 W2,3 −W3,2

⎞
⎠ . (8)
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Here the individual transition rates in Eq. (8) are calculated from Eq. (5) by
Kramers’ formula [5]:

Wm,m+1 = (2π)−1
√
V ′′0 (sm) | v | exp

{
D−1

[
Ṽ (sm)− Ṽ (um)

]}
, (m = 1, 2) ,

Wn,n−1=(2π)−1
√
V ′′0 (sn) |V ′′0 (un−1) | exp

{
D−1

[
Ṽ (sn)−Ṽ (un−1)

]}
, (n=2, 3) .

Expanding the ε-dependent terms in Eq. (7) and remaining the first nontrivial
order can lead to the following equations:

ΔṖ = W(0)ΔP+ ϕ(0) sin (ωt) , (9)

where P = P(0) + ε1P and W = W(0) + ε1W. According to Eq. (7), the time-
dependent average response to an external weak periodic forcing can be obtained
as

〈x(t) |x0, t0 〉 =
∫

xP (x, t |x0, t0 ) dx, (10)

with P (x, t |x0, t0 ) = ∑3
i=1pi(t)δ (x − si). By substituting the asymptotic

response 1pi = Ai sin (ωt + ψ i) in Eq. (9) into Eq. (10), the average response
in the long time limit is of the following forms:

〈x(t)〉as = lim
t0→−∞

〈x(t) |x0, t0 〉 =
3∑

i=1

si

[
p
(0)
i + ε0Ai sin (ωt + ψi)

]
, (11)

where Ai =
√
μ2

i + ν2
i and ψ i = arctan (νi/μi). The analytical expressions of the

elements μi and νi can be derived from Eq. (9) as follows:

μi = −
3∑

k=1

(
γkakξk,i

)
/
(
γ 2
k + ω2

)
, νi = −

3∑
k=1

(
ωakξk,i

)
/
(
γ 2
k + ω2

)
,

where γ k and ξk are the eigenvalues and eigenvectors of W(0) in Eq. (9). The ϕ(0) of
Eq. (9) is expanded as ϕ(0) =∑3

k=1akξk .
As an important candidate commonly used for characterizing the nature of noise-

induced resonance, the spectral amplification (SA) can be obtained from Eq. (11):

η1 =
3∑

j=1

(
sjAj

)2 + 2s1s2A1A2 cos (θ1)+ 2s3A3 cos (θ2)4, (12)
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Fig. 3 The effects of driving frequency ω and cross-correlation strength λ on spectral amplifica-
tion η1 with fixed τ = 0.05. (a) η1 versus D with λ = 0.5, Q = 0.1, and different ω. (b) η1 versus
D with ω = 0.01, Q= 0.2, and different λ. (c) η1 versus Q with ω = 0.01, D= 0.1, and different λ

where

4 =
√
(s1A1)

2 + 2s1s2A1A2 cos (θ1)+ (s2A2)
2, θ1 = ψ2 − ψ1,

θ2 = ψ3 − ψ1 − κ1, κ1 = arctan {[s2A2 sin (θ1)] / [s1A1 + s2A2 cos (θ1)]} .

According to Eq. (12), the dependence of SA η1 on the driving frequency ω is
analyzed in Fig. 3a. It is seen from Fig. 3a that there is a single peak in these curves.
This is a typical phenomenon of stochastic resonance (SR). As ω is decreased,
the peak value increases obviously and the optimal noise intensity for resonance
decreases. In fact, the height of the peak can reach a finite limiting value as ω tends
to zero. In other words, the increasing frequency can weaken the effect of resonance
and suppress the role of noise in this system. The reason for this phenomenon is that
if the driving frequency is much higher than the inverse of the system’s intrinsic time
scales, the response of the system to a harmonic signal can be weakened or even
vanish. In Fig. 3b, the variation of η1 versus D is presented with different values
of cross-correlation strength λ. It is found that the height of resonant peak ascends
while the position of the peak keeps almost invariable with the enlargement of λ.
Namely, the resonance effect is enhanced with increasing λ at the fixed optimal noise
intensity. The explanation for this phenomenon is that with the help of large noise
intensity (Q= 0.2), the system has sufficient energy to cross the potential barrier and
hop among the three wells back and forth in accordance with the harmonic signal.
The cross-correlation between noises plays a positive role in the enhancement of SR.
Moreover, for D = 0.1 and small values of λ in Fig. 3c, η1 decreases monotonously
with an increase in Q and the noise-induced resonance disappears. However, when λ

becomes sufficiently large (e.g., λ≥ 0.7), the curve of η1 exhibits a suppression first
and then a typical resonance with pronounced peak. The SR effect can be improved
as the cross-correlation strength is further increased.

The effect of time delay τ on SA η1 is shown in Fig. 4. It is found from Fig. 4a
that these curves present a double-peak characteristic, which is called the double SR
phenomena. The reason behind this observation is that the correlated noises cause
the symmetry breaking of the system (see Fig. 1). The system driven by weak noise



530 Y. Jin and P. Xu

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.06

0.12

0.18

Q

h 1 h 1

t=0.01
t=0.1
t=0.2

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

Q

t=0.01
t=0.1
t=0.2

(b)

Fig. 4 Spectral amplification η1 versus additive noise intensity Q for different values of time delay
τ . Other parameters are chosen as ω = 0.01, λ = 0.8, (a) D = 0.01 and (b) D = 0.1

(D = 0.01) can continuously jump between one side well and middle well. As a
result, the noise-induced resonance between two adjacent wells occurs. With the
further increase of Q, the system has sufficient energy to induce the transition of the
resonance from two adjacent wells to two lateral wells. So, the double SR can be
observed in the triple-well potential subjected to correlated noises. Interestingly, the
heights of the two peaks are both increased with an increase in τ , and the position
of the right-side peak is shifted toward the direction of decreasing Q. It implies
that the presence of time delay enhances the role of additive noise in the noise-
induced resonance and improves the response of the system when multiplicative
noise intensity is sufficiently weak. Then, when the multiplicative noise intensity
becomes large (e.g., D = 0.1 in Fig. 4b), there is a single peak in the curve of
η1. On the contrary, the peak value is decreased and the optimal noise intensity
of resonance remains almost unchanged with an increase in τ . In short, the noise-
induced resonances are closely related to the cooperative effects of time delay and
correlated noises.

4 Conclusions

In this work, the phenomena of noise-induced transition and resonance are inves-
tigated in a delayed triple-well potential subjected to correlated noises. The
phenomena of reentrant transitions and double SR can occur when the two noises
have the cross-correlation. With increasing cross-correlation strength, the SR effect
is improved. Besides, the noise-induced resonance can be controlled, i.e., either
enhanced or suppressed, for various values of the intensity of correlated noises by
choosing the proper time delay.
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Application of the Second Dimension
Reduction Method in Nonlinear Rotor
Dynamic System

Kuan Lu, Haopeng Zhang, Hao Zhou, Yulin Jin, Yongfeng Yang, and Chao Fu

Abstract The second dimension reduction method is proposed based on compo-
nent mode synthesis (CMS) and proper orthogonal decomposition (POD) in this
chapter. The dual rotor-bearing model is established by finite element (FE) method.
The efficiency of the proposed second dimension reduction method is verified via
comparing with the dynamical behaviors (frequency spectrum and axis orbit) of
the first model dimension reduction (MDR) and second MDR based on mode
expansion. The proposed second dimension reduction method can provide perfect
connection between actual rotor system and qualitative analysis of the reduced
system.

Keywords Second dimension reduction · Component mode synthesis method ·
POD method · Dynamical behaviors · Rotor system

1 Introduction

Dimension reduction of high-dimensional systems have become one central issue
of concerns in nonlinear dynamics, attracting the attention of researchers in many
actual engineering areas. A series of dimension reduction methods are summarized
in Ref. [1]. The common dimension reduction methods include center manifold
method, Lyapunov–Schmidt method, Galerkin method, CMS method, POD method,
etc. [2]. The POD method is widely used for dimension reduction of high-
dimensional rotor systems.
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POD is an efficient method for data analysis aimed at obtaining low-order modes
of the original system. The POD method could be applied to reduce the dimension
of the rotor-bearing system, so that to study the qualitative properties of the reduced
system in detail [3]. The transient POD (TPOD) method was proposed based on
the inertial manifold method, and a 23-degrees-of-freedom (DOF) rotor system
model is reduced to a 2-DOFs one [4]. The TPOD method was generalized to
the rotor system supported by sliding bearing with looseness fault at one end and
both ends [5]. The efficiency of the TPOD method was verified via comparing with
the structure order reduction (SOR) method [6]. The rotor systems in the previous
research are not actual; most cases are theoretical models. POD method is difficult
to study the super-multiple degrees-of-freedom (DOF) actual rotor systems directly,
the calculation amount is very huge and the DOF of the reduced system is also
difficult to confirm. Therefore, the second dimension reduction method should be
proposed, an appropriate method should be used for first dimension reduction, and
the POD method is applied for second dimension reduction.

CMS method is an efficient dimension reduction method, the essence of the
CMS method is a classical Galerkin method, which can be widely applied for
model dimension reduction (MDR) of large complex structure system [7]. Bathe
presented an approach to improve CMS solutions using subspace iterations to obtain
frequency and mode shape predictions of controlled accuracy [8]. Krattiger and
Hussein [9] presented a mode synthesis method for fast band-structure calculations
that is generally applicable to problems of the elastic wave propagation in periodic
media.

Disadvantages of the CMS and POD methods usually exist in the theoretical
analysis of dynamics and actual dynamical system. Although the CMS method
is suitable for processing the dimension reduction problems of large complex
structures, e.g., the rotor systems, this method is mainly used for mode reduction of
linear sub-structures. The high order and local modes of the system are neglected,
and the error of MDR may be very large [10]. Meanwhile, the dimension of the
reduced system obtained by the CMS method is still very high, the qualitative
analysis is difficult, especially for the nonlinear rotor systems. Generally speaking,
the CMS method can dispose actual rotor system models, and the nonlinear
dynamics analysis of the reduced systems is still difficult; the POD method fits very
well for the simple rotor system models, and the theory of the reduced systems is
convenient, but the rotor system model is not actual. The PDE dynamics systems
established by Hamilton principle instead of Lagrange approach can reflect the
dynamical behaviors of the physical model better [11, 12]. The rotating shaft
of the aero-engine is thick and short, the stiffness is large, and deformation is
small. In this chapter, the Timoshenko beam element model is used, bending and
shear deformation of the beam are considered. Hence, the model in this chapter is
approximately equivalent to the dynamical model of PDE condition based on small
deformation.

The motivation of this chapter is to propose the second dimension reduction
method based on the CMS and POD method. In Sect. 2, a finite element model of
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cylindrical shell-conical shell dual-rotor-bearing system is established. In Sect. 3,
the basic theory and general process of the component mode synthesis are intro-
duced. The second dimension reduction process based on the POD method is
highlighted in Sect. 4. The efficiency of the proposed method is verified via
comparing with the frequency–amplitude curve and displacement responses of the
first dimension reduction and second dimension reduction method in Sect. 5.

2 Finite Element Model of Dual Rotor-Bearing System

The structure of the actual aero-engine rotor is very complex. As shown in Figs. 1
and 2, the complex geometry dual rotor-bearing system of an aero-engine turbine
will be simplified as cylindrical shell-conical shell-wheel disc combined rotor
structure so that to study the vibration problems of the rotor system more accurately.
Consider that all levels of compressor of high pressure (HP) and low pressure (LP)
rotor are geometrically neat with uniform material. The FE method [13] is used
to discretize rotating shaft into several beam elements. Each supporting bearing

Fig. 1 A complex geometry dual rotor-bearing system of an aero-engine turbine

Fig. 2 Dynamics model of cylindrical-conical shaft element-disc-dual rotors with six supporting
rolling element bearings
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Fig. 3 Three types of beam finite elements. (a) Rigid disc element, (b) cylindrical shaft beam
element, (c) conical shaft beam element

locates at the corresponding node position. The disc is considered to be rigid,
centroid locates at the corresponding node, the elastic deformation of bearing in
radial direction is considered, then a dynamical system model of cylindrical shell-
conical shell dual rotor-bearing system can be established.

As shown in Fig. 3, the HP and LP rotors are divided into two kinds of units:
conical shell and cylindrical shell when the FE method is used to establish the
model. The LP rotor is divided into 39 units (41 nodes), two units of the nodes
3, 4 and 17, 18 are parallel, nodes 11 and 13 are parallel. Nodes 1, 23, 41 connect
with Number 1, 2, 6 bearings. Nodes 25 and 39 connect with HP rotor via inter-shaft
bearing, 1–4 level wheel discs of LP compressor and LP turbine disc locate at nodes
7, 9, 11, 13, 40, respectively. HP rotor is divided into 27 units (29 nodes), nodes 42
and 70 support at number 3 and 5 inter-shaft bearing, node 43 connects with number
4 bearing. Two units of the nodes 45, 46 and 49, 50 are parallel, each unit of nodes
52–56, 52, 57–60 is in parallel. 1–9 level wheel discs of HP compressor and HP
turbine disc locate at nodes 47–55 and 67, respectively. Number 2 and 4 bearings
are angular contact bearings, and others are rolling bearings.

Figure 3a shows the cone shaft unit, each unit contains two nodes, and each
node contains four degrees of freedom (DOF). qL = [q1, q2, q3, q4]T represents
the displacement and intersection angle of two directions of the left node,
qR = [q5, q6, q7, q8]T represents those of the right node, rLi, rLo are the inner
and outer radius of unit left end face, rRi, rRo are those of unit right end face.

Shear deformation coefficient of variable section element ϕs is the function
of unit length. For convenience, shear deformation coefficient of cone cell is
considered to be constant, which can be expressed as

ϕs = 12EImχ

GAml2
(1)

where Im=π
4

(
r4

mo−r4
mi

)
, Am=π

(
r2

mo−r2
mi

)
, χ= 7+6μ

6(1+μ)

[
1+ 20+12μ

7+6μ

(
rmormi
r2
mo+r2

mi

)2
]

,

rmo =
√

1
2

(
r2

Lo + r2
Ro

)
, rmi =

√
1
2

(
r2

Li + r2
Ri

)
. E, G, and υ are elastic modulus,

shear modulus, and Poisson ratio, respectively.
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For the convenience of derivation, sectional area A(ξ ), cross-sectional moment of
inertia I(ξ ), polar moment of inertia of unit length Ip(ξ ), and the moment of inertia
in diameter Id(ξ ) are represented by section position function ξ = s

l
, see details in

Eq. (2).

A (ξ) = AL
(
1+ α1ξ + β1ξ

2
)
, I (ξ) = IL

(
1+ α2ξ + β2ξ

2 + γ2ξ
3 + δ2ξ

4
)
,

Ip (ξ) = πρ
2

(
r4

o − r4
i

) = 2ρI (ξ) , Id (ξ) = 1
2Ip (ξ) = ρI (ξ)

(2)

where AL, IL are sectional area and cross sectional moment of inertia of left end, ρ
is unit material density, l is unit length, other parameters are shown in Appendix.

The dynamical equation of cone cell versus fixed coordinate system can be
obtained via Lagrange equation as follows:

(
Me

T +Me
R

)
q̈e − ωGeq̇e +Ke

Bqe = Fe (3)

where qe = [q1, . . . , q8]T is unit generalized coordinate, Me
T and Me

R are unit mass
and matrix and mass inertia matrix, Ge is unit gyroscopic matrix, Ke

B is unit stiffness
matrix, Fe is generalized external force vector, ω is angular frequency.

The unit mass matrix Me
T can be expressed as

Me
T =

ρALl

1260(1+ ϕs)
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1 0 0 lM2

0 M1 −lM2 0
0 −lM2 l2M5 0

lM2 0 0 l2M5

M3 0 0 −lM4

0 M3 lM4 0
0 −lM6 −l2M7 0

lM6 0 0 −l2M7

M3 0 0 lM6

0 M3 −lM6 0
0 lM4 −l2M7 0

− lM4 0 0 −l2M7

M8 0 0 −lM9

0 M8 lM9 0
0 lM9 l2M10 0

− lM9 0 0 l2M10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where the parameters are expressed in detail in Appendix.
The unit mass inertia matrix Me

R is shown as follows:
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Me
R =

ρIL

210(1+ ϕs)
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 0 0 lM12

0 M11 −lM12 0
0 −lM12 l2M14 0

lM12 0 0 l2M14

−M11 0 0 lM13

0 −M11 −lM13 0
0 lM12 −l2M15 0

− lM12 0 0 −l2M15

−M11 0 0 −lM12

0 −M11 lM12 0
0 −lM13 −l2M15 0

lM13 0 0 −l2M15

M11 0 0 −lM13

0 M11 lM13 0
0 lM13 l2M16 0

− lM13 0 0 l2M16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where the parameters in matrix Me
R are expressed in Appendix.

The unit gyroscopic matrix is

Ge = ρIL

105l(1+ ϕs)
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 G1 −lG2 0
G1 0 0 −lG2

− lG2 0 0 l2G4

0 −lG2 l2G4 0

0 −G1 −lG3 0
G1 0 0 −lG3

− lG2 0 0 −l2G5

0 −lG2 l2G5 0
0 G1 −lG2 0
−G1 0 0 −lG2

− lG3 0 0 l2G5

0 −lG3 −l2G5 0

0 G1 lG3 0
G1 0 0 lG3

lG3 0 0 l2G6

0 lG3 l2G6 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where

G1 = 126α2 + 72β2 + 30δ2 + 45γ 2 + 252,
G2 = − (42α2 + 21β2 + 7.5δ2 + 12γ 2 + 105)ϕs + 21α2 + 15β2

+7.5δ2 + 10.5γ 2 + 21,
G3 = − (63α2 + 42β2 + 22.5δ2 + 30γ 2 + 105)ϕs − 6β2 − 7.5δ2 − 7.5γ 2 + 21
G4 = (17.5α2+7β2+2δ2+3.5γ2+70) ϕ2

s + (35− 7α2 − 7β2 − 3.5δ2 − 5γ2) ϕs

+7α2 + 4β2 + 2δ2 + 2.75γ2 + 28

G5 = − (17.5α2 + 10.5β2 + 5δ2 + 7γ2 + 35) ϕ2
s + (17.5α2 + 10.5β2 + 5δ2

+ 7γ2 + 35) ϕs + 3.5α2 + 3β2 + 2.5δ2 + 2.75γ2 + 7

G6 = (52.5α2 + 42β2 + 30δ2 + 35γ2 + 70) ϕ2
s + (42α2 + 42β2

+37.5δ2 + 40γ2 + 35) ϕs + 21α2 + 18β2 + 15δ2 + 16.25γ2 + 28

The unit stiffness matrix Ke
B is expressed as follows:
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Ke
B =

EIL

105l3(1+ ϕs)
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1 0 0 lK2

0 K1 −lK2 0
0 −lK2 l2K4 0

lK2 0 0 l2K4

−K1 0 0 lK3

0 −K1 −lK3 0
0 lK2 l2K5 0

− lK2 0 0 l2K5

−K1 0 0 −lK2

0 −K1 lK2 0
0 −lK3 l2K5 0

lK3 0 0 l2K5

K1 0 0 −lK3

0 K1 lK3 0
0 lK3 l2K6 0

− lK3 0 0 l2K6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ GALϕ
2
s

12χl(1+ ϕs)
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K7 0 0 lK8

0 K7 −lK8 0
0 −lK8 l2K9 0

lK8 0 0 l2K9

−K7 0 0 lK8

0 −K7 −lK8 0
0 lK8 l2K9 0

− lK8 0 0 l2K9

−K7 0 0 −lK8

0 −K7 lK8 0
0 −lK8 l2K9 0

lK8 0 0 l2K9

K7 0 0 −lK8

0 K7 lK8 0
0 lK8 l2K9 0

− lK8 0 0 l2K9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where the parameters in Eq. (7) are shown in Appendix.
The dynamical equation of cylindrical unit is established based on the FE

method, which is expressed in Eq. (8):

(
Mtei +Mrei

)
q̈ei − ωGei q̇ei +Kei qei = Fei (8)

In Eq. (8), qe = [q1, · · · , q8]T are unit generalized coordinates, Mtei and Mrei

represent unit mass matrix and mass inertia matrix, Gei is unit gyroscopic matrix,
Kei is unit stiffness matrix, Fei is generalized external force vector, ω is angular

frequency. The DOF of the wheel disc is qd =
[
xd, yd, θxd , θyd

]T relative to the
fixed coordinate. m, Jd, Jp represent the mass of disc, equatorial moment of inertia,
and polar moment of inertia, respectively. Similarly, the dynamical equation of
wheel disc can be obtained by Lagrange equation,

(Mtd +Mtd ) q̈d − ωGd q̇d = Fd (9)

where Fd is the generalized external force vector, and other parameters are shown
as

Mtd =

⎡
⎢⎢⎣

m 0 0 0
0 m 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Mrd =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 Jd 0
0 0 0 Jd

⎤
⎥⎥⎦ , Gd =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 −Jp

0 0 Jp 0

⎤
⎥⎥⎦
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The elastic deformation of number one, two, four, and six bearing and nonlinear
factors are considered, assemble differential equation of motion of each shaft section
and wheel disc, the dynamical equation of cylindrical shell-conical shell dual rotor-
bearing system is shown as

Mq̈+ (C− ωG) q̇+Kq+ Fb (q, t) = Fg + F(t) (10)

M, K, C, G are mass, stiffness, damping, and gyroscopic matrix, C= α0M+ α1K,
α0, α1 are constants, Fg is gravity vector, F(t) is eccentricity excitation, Fb(q, t) is
Hertz contact force which can be expressed as follows:

[
Fxi

Fyi

]
= Cbi

Nbi∑
j=1

H
(
δij

)
δnij

[
cos θij
sin θij

]
, θij = 2π (j − 1)

Nbi

+&it,

δij = xi cos θij + yi sin θij − δi0 (11)

θ ij, δij are instantaneous rotation and contact deformation of j rolling element of I
bearing, n is Hertz contact nonlinearity, e.g., ball bearing case n = 3/2, H(δij) is
Heaviside function, Cbi , Nbi , &i, 2δi0 represent i bearing contact stiffness, number
of rolling element, rotating speed of cage, initial radial internal clearance.

3 First Dimension Reduction for Dual Rotor-Bearing System

Because of the complicated structures of the dual rotor-bearing system and including
multiple supporting rolling element bearings, the pre-computed high fidelity simula-
tion signals of the physical system are costly for the direct MDR based on the POD
method. Response signal of time length should be obtained in advance to construct
POD reduced order mode (ROM) when the POD method is used for MDR. The
CMS method is used for first dimension reduction of linear part of complex rotor
system to avoid long time calculation.

The rotor-bearing model is divided into two sub-structures, one is LP rotor and
the other is HP rotor system. Internal coordinate is qiI and external coordinate is
qiB, i = L, H. Dividing each structure into blocks, the dynamical equation of each
structure can be written as

Mi q̈i + Ci q̇i +Kiqi = Fi (qi , t) (12)

In Eq. (12), the parameters are shown as
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Mi =
[

MiI I MiIB

MiBI MiBB

]
, Ci =

[
CiI I CiIB

CiBI CiBB

]
, Ki =

[
KiI I KiIB

KiBI KiBB

]
,

qi =
[

qiI

qiB

]
, Fi =

[
FiI

FiB

]

Calculate the primary mode ψik ∈ RniI×nik and constrained release mode
ψiC ∈ RniI×niB . niI , niB, nik represent number of internal node coordinate, boundary
coordinate, constraint-preserved primary mode. Constrained release mode can be
obtained by the equation as follows [14]:

ψiC = −K−1
iI IKiIB (13)

Project the physical coordinate of each substructure to the subspaces spanned by
truncation mode via Craig-Bampton conversion

[
qiI

qiB

]
=

[
ψik ψiC

0 IiB

] [
uik

uiB

]
= Pi

[
uik

uiB

]
(14)

Substituting Eq. (14) into Eq. (12), the dynamical equation of substructure can
be obtained

Mi üi + Ci u̇i +Kiui = Fi (15)

where Mi = P T
i MiP i , Ci = P T

i CiP i , Ki = P T
i KiP i , F i = P T

i F i . Synthesizing
MDRs of LP and HP rotor structures, the overall reduced model of dual rotor-
bearing system can be got as follows:

Mü+ Cu̇+Ku = F (16)

where M =
{

ML,MH

}
, C =

{
CL,CH

}
, K =

{
KL,KH

}
, F = {

FL,FH

}
,

u = {uL, uH}.
In aero-engine, there are many supporting bearings that contain more boundary

DOF, the MDR obtained by CMS method is also high-dimensional with dozens of
DOF, so the POD method will be applied for second dimension reduction based on
the first MDR obtained by CMS method.

4 Second Dimension Reduction for Dual Rotor-Bearing
System

The ROMs of first dimension reduction method neglect the effects of high-order
modes. The high-order modes truncated by CMS method are added when the POD
method is applied for second dimension reduction to reduce the results of the first
MDR. The CB transformation is used to obtain first MDR which contains high-order
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mode response, then the POD method is applied for second dimension reduction.
The basic idea of the proposed method is similar as the nonlinear Galerkin method,
and the error of second dimension reduction can be reduced.

The numerical method is used to calculate the response signal û (u0, u̇0, ω, ts) =
[u1, . . . ,um]NS×m of a certain time length of Eq. (16) when we used the POD
method for second dimension of the first MDR. For the sampling snapshot matrix,
u0, u̇0, ω, ts represent initial position, initial velocity, rotational speed, sampling
time length, m is the DOF number of first MDR. The eigenvector of autocorrelation
matrix of Eq. (17) is calculated

Sc = 1

Ns

[
û(u0, u̇0, ω, ts)

Tû (u0, u̇0, ω, ts)
]
m×m

(17)

The eigenvectors are ranked as the descending order of eigenvalues, and ROMs of
POD

{
ϕi (u0, u̇0, ω, ts)

}
i=1...m can be obtained. The first MDR is projected to the

subspace spanned by the first l ROMs

u(t) =
l∑

i=1

vi(t)ϕi (u0, u̇0, ω, ts) = ψ (u0, u̇0, ω, ts) v(t) (18)

where ψ (u0, u̇0, ω, ts) = [
ϕ1 (u0, u̇0, ω, ts) , . . . ,ϕl (u0, u̇0, ω, ts)

]
m×l

. The
dynamical equation of second MDR can be got via substituting Eq. (18) into
Eq. (16)

Mr v̈ + Cr v̇ +Krv = Fr (v, v̇, t) (19)

where Mr = ψTMψ, Cr = ψTCψ, Kr = ψTKψ, Fr = ψTF, the initial conditions
can be confirmed by v0 = ψTu0,v̇0 = ψTu̇0.

Equation (19) is an approximation to first MDR, and vibration responses u(t) of
first MDR obtained by different POD ROM transformation matrixes are different.
CMS method truncates more high-order modes, and the CB transformation is used
to get vibration response qr(t) of physical coordinates of the original system.
Vibration response qr(t) exhibits larger error than q(t) of real physical coordinates
of the original system through two non-one-to-one coordinate transformation. The
numerical method is applied to calculate the response of the first MDR to solve
this problem. We use mode expansion, the truncated high-order modes are added,
the CB transformation is applied, and the response that contains high-order modes
of first MDR can be obtained. The POD method is applied for second dimension
reduction, and the detailed processes are shown as follows.

The numerical method is applied to calculate the vibration response of first ROM
coordinate of Eq. (16), and the CB transformation is used

qr =
[

qL

qH

]

N×1

=
[

PL 0
0 PH

]

N×m

[
uL

uH

]

m×1

(20)
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The number of the truncated constrained principal mode of HP and LP rotor is
expanded respectively, nH , nL are the number of corresponding expanded mode, and
n= nH + nL is the total number. The coordinate transformation relation on the basis
of mode expansion can be obtained via Eq. (20)

qr =
[

qL

qH

]

N×1

=
[

PL 0
0 PH

]

N×(m+n)

[
uL

uH

]

(m+n)×1

(21)

Transforming Eq. (21), we can get

[
uL

uH

]

(m+n)×1

=
([

PL 0
0 PH

]T

(m+n)×N

[
PL 0
0 PH

]

N×(m+n)

)−1

[
PL 0
0 PH

]T

(m+n)×N

[
qL

qH

]

N×1

(22)

The vibration response can be obtained via substituting Eq. (20) into Eq. (22)

[
uL

uH

]

(m+n)×1

=
([

PL 0
0 PH

]T

(m+n)×N

[
PL 0
0 PH

]

N×(m+n)

)−1

[
PL 0
0 PH

]T

(m+n)×N

[
PL 0
0 PH

]

N×m

[
uL

uH

]

m×1

(23)

Snapshot response signals ũ (u0, u̇0,um+n, ω, ts) =
[
ũ1, . . . , ũm

]
NS×m

of the
corresponding mode coordinate of the first MDR in a certain time length are
truncated, which are sampling snapshot matrices. The dynamical equation of second
MDR can be obtained through Eqs. (17)–(19). The vibration response of physical
coordinate of the original system can be got via calculating the response ṽ(t) of
second MDR and Eqs. (18) and (20).

q̃r (t)N×1 =
[

PL 0
0 PH

]

N×m

ψ(u0, u̇0,um+n, ω, ts)m×l ṽ(t)l×1 (24)

The vibration response of the physical coordinate of the original system obtained
by direct second dimension reduction is expressed as

qr (t)N×1 =
[

PL 0
0 PH

]

N×m

ψ(u0, u̇0, ω, ts)m×lv(t)l×1 (25)



544 K. Lu et al.

Equation (24) contains higher order mode information of the original system in
comparison to Eq. (25); hence, it can better approximate the vibration response of
the original system.

5 Results and Discussions

In this section, frequency spectrum, axis orbit, and frequency–amplitude curve of
the first MDR, second MDR based on mode expansion and direct second MDR are
discussed.

As shown in Fig. 4, in the case of LP rotation speed 520 rad/s, speed ratio
1.3, frequency spectrum and axis orbit of the first MDR, mode expansion second
MDR, and direct second MDR of LP turbine are studied. The results show that
the frequency components of the system response are very complex, the main

Fig. 4 Comparisons between the frequency spectrums and axis orbits of the LP turbine for the
first ROM, the second ROM with modal expansion at the rotational speed of LP rotor 520 rad/s for
λ = 1.3. (a) Frequency spectrum of the LP turbine for the first ROM, (b) Frequency spectrum of
the LP turbine for the second ROM with modal expansion, (c) Axis orbit of the LP turbine for the
first ROM, (d) Axis orbit of the LP turbine for the second ROM with modal expansion
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frequencies are eccentric excitation of HP and LP frequencies 2fL, 2fH. The third,
fourth frequency, other frequencies and many combination frequencies also appear
in the frequency spectrum curves, e.g., |fL±fH|, |2fL ± fH|, 3fL − fH, 5fL − 2fH, and
the VC signal of bearing is weak. The frequencies and amplitude of mode expansion
second dimension reduction agree well with those of first MDR. From the aspect of
axis orbit, polycyclic 8 form occurs in the system at this speed, the axis orbit of
second dimension reduction agrees well with the first MDR.

As shown in Fig. 5a, b, there are two main resonance peaks, which are motivated
by the eccentric excitations of Hp and Lp rotors, respectively, in addition the two-
superharmonic resonances and combination resonances are also excited which lead
to characteristics of complicated nonlinear vibrations. Comparing Fig. 5c, d with
Fig. 5a, b, the reader can observe that the frequency–amplitude curves of the second
ROM with mode expansion are nearly identical with the first ROM, thus the dynamic
properties of the two ROMs are almost the same.

Fig. 5 Comparisons between the frequency–amplitude curves of Lp turbine for the first ROM,
the second ROM with mode expansion for λ = 1.3 (ωL, ΩL are the rotational speed and rated
speed of Lp rotor). (a) Frequency–amplitude curve of first ROM in the x-direction, (b) Frequency–
amplitude curve of second ROM with mode expansion in the x-direction, (c) Frequency–amplitude
curve of first ROM in the y-direction, (d) Frequency-amplitude curve of second ROM with mode
expansion in the y-direction
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As discussed above, mode expansion POD second dimension reduction method
considers high-order mode information of the original system, second MDR can
reflect the dynamical behaviors of the original system in high-precision after
two times coordinate transformation. The proposed CMS-POD second dimension
reduction method can be applied for high-precision MDR of large complex systems.

Remark The computational time of the proposed second dimension reduction
method is ten times faster than the first dimension reduction method based on CMS.
The second MDR needs at least 20 h and the first MDR needs only 1.5 h. The
dynamical responses of both first and second MDR are calculated by Runge–Kutta
method.

The mode expansion POD second dimension reduction method has been pro-
posed based on the component mode synthesis method and proper orthogonal
decomposition method in this chapter. The cylindrical shell-conical shell-wheel disc
dual-rotor bearing system of aero-engine has been established by the FE method.
The frequency spectrum and axis orbit curves of the first MDR and mode expansion
second MDR have been studied. The efficiency of the proposed method has been
verified via comparing the dynamical behaviors of the first MDR with the second
MDR at different rotational speeds. The present authors will focus on two aspects
in the future work: one is to generalize the second dimension reduction method to
the rotor system model with common faults, e.g., looseness fault and rub-impact
fault, the other is to combine the polynomial dimensional decomposition method
[15, 16] with the proposed method to study the nonlinear dynamics system with
uncertainties.
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Appendix

1ro = rRo − rLo, 1ri = rRi − rLi, α1 = 2π
AL

(rLoΔro − rLiΔri), β1 =
π
AL

(
Δr2

o −Δr2
i

)
, α2 = π

AL

(
r3

LoΔro − r3
LiΔri

)
β2 = 3π

2IL

(
r2

LoΔr2
o − r2

LiΔr2
i

)
,

γ2 = π
2IL

(
rLoΔr3

o − rLiΔr3
i

)
, δ2 = π

4IL

(
Δr4

o −Δr4
i

)

M1 = (105α1 + 42β1 + 420) ϕ2
s + (210α1 + 78β1 + 882) ϕs+ 108α1+ 38β1+

468
M2 = (42α1+21β1+105) ϕ2

s /2+ (81α1+36β1+231) ϕs/2+ (42α1+17β1+132)
/2

M3 = (105α1 + 63β1 + 210) ϕ2
s + (189α1 + 111β1 + 378) ϕs+ 81α1+ 46β1+

162
M4= (42α1+21β1+105) ϕ2

s /2+ (81α1+42β1+189) ϕs/2+ (36α1+19β1+78) /2
M5 = (21α1+12β1+42) ϕ2

s /4+ (36α1+18β1 + 84) ϕs/4+ (9α1+4β1+24) /2
M6 = (63α1 + 42β1 + 105) ϕ2

s /2+ (108α1 + 69β1 + 189) ϕs/2
+ (42α1 + 25β1 + 78) /2

M7 = (21α1+12β1+42) ϕ2
s /4+ (21α1+12β1+42) ϕs/2+ (9α1+5β1+18) /2

M8 = (315α1 + 252β1 + 420) ϕ2
s + (672α1 + 540β1 + 882) ϕs + 360α1

+ 290β1 + 468
M9 = (63α1 + 42β1 + 105) ϕ2

s /2+ (150α1 + 105β1 + 231) ϕs/2
+ (90α1 + 65β1 + 132) /2

M10 = (21α1+12β1+42) ϕ2
s /4+ (24α1+15β1+42) ϕs/2+ (15α1+10β1+24) /2

M11 = 126α2 + 72β2 + 30δ2 + 45γ 2 + 252
M12 = − (42α2 + 21β2 + 7.5δ2 + 12γ 2 + 105)ϕs + 21α2 + 15β2 + 7.5δ2

+ 10.5γ 2 + 21
M13 = − (63α2 + 42β2 + 22.5δ2 + 30γ 2 + 105)ϕs − 6β2 − 7.5δ2 − 7.5γ 2 + 21
M14 = (17.5α2+7β2+2δ2+3.5γ2+70) ϕ2

s+ (35−7α2−7β2−3.5δ2−5γ2) ϕs

+ 7α2 + 4β2 + 2δ2 + 2.75γ2 + 28

M15 = − (17.5α2 + 10.5β2 + 5δ2 + 7γ2 + 35) ϕ2
s

+ (17.5α2 + 10.5β2 + 5δ2 + 7γ2 + 35) ϕs

+ 3.5α2 + 3β2 + 2.5δ2 + 2.75γ2 + 7

M16 = (52.5α2 + 42β2 + 30δ2 + 35γ2 + 70) ϕ2
s

+ (42α2 + 42β2 + 37.5δ2 + 40γ2 + 35) ϕs

+ 21α2 + 18β2 + 15δ2 + 16.25γ2 + 28
K1 = 630α2 + 504β2 + 396δ2 + 441γ 2 + 1260
K2 = − (105α2 + 105β2 + 84δ2 + 94.5γ 2)ϕs + 210α2 + 147β2 + 114δ2

+ 126γ 2 + 630
K3 = (105α2 + 105β2 + 84δ2 + 94.5γ 2)ϕs + 420α2 + 357β2 + 282δ2

+ 315γ 2 + 630
K7 = 6α1 + 4β1 + 12, K8 = 3α1 + 2β1 + 6, K9 = 1.5α1 + β1 + 3
K4 = (52.5α2+35β2+21δ2+26.25γ2+105) ϕ2

s+ (−35β2−42δ2−42γ2+210) ϕs

+ 105α2 + 56β2 + 36δ2 + 42γ2 + 420
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K5 = − (52.5α2 + 35β2 + 21δ2 + 26.25γ2 + 105) ϕ2
s

− (105α2 + 70β2 + 42δ2 + 52.5γ2 + 210) ϕs

+ 105α2 + 91β2 + 78δ2 + 84γ2 + 210

K6 = (52.5α2 + 35β2 + 21δ2 + 26.25γ2 + 105) ϕ2
s

+ (210α2 + 175β2 + 126δ2 + 147γ2 + 210) ϕs

+ 315α2 + 266β2 + 204δ2 + 231γ2 + 420
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Vibration Analysis of Washing Machines
in the Drum Plane

Cem Baykal, Ender Cigeroglu, and Yiğit Yazicioglu

Abstract In this study, a nonlinear mathematical model for drum-type washing
machines is developed considering rotating unbalance type excitation. Nonlinear
differential equations of motion are converted into a set of nonlinear algebraic
equations by using harmonic balance method (HBM). The resulting nonlinear alge-
braic equations are solved by using Newton’s method with arc-length continuation.
Several case studies are performed in order to observe the effects of orientation
angles of springs and dampers supporting the drum. In order to reduce the steady-
state vibration amplitude of the drum and transmitted force through springs and
dampers, suitable spring and damper orientation angles are identified. Moreover, in
order to further reduce the vibration amplitude of the drum, dry friction dampers are
introduced to the system. It is clearly observed that dry friction dampers are solving
the walking problem of washing machines.

Keywords 2D washing machine model · Nonlinear vibrations · Dry friction
damper · Harmonic balance method

1 Introduction

As the standards of living and customer expectations are going up, there has been
a demand for reduced noise and minimized vibration of machines during operation.
Since it is very critical to satisfy customers, the design criterion of any machine
has a tendency toward the minimized vibration and noise. Washing machines are
also being affected by this trend in both acoustical and visual terms. Therefore,
there have been many studies to reduce/minimize vibration and noise of washing
machines during the operation.
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Türkay et al. [1, 2] modeled the washing machine with four dry friction
shock absorbers containing linear spring. In the derivation of equations of motion,
Newton’s second law is used by neglecting Euler effects, and transient response of
the system is considered by increasing the frequency of unbalance empirically. After
solving the nonlinear differential equations of motion by Runge–Kutta integration,
the forces on the dry friction dampers are minimized by selecting spring and dry
friction damper constants.

Conrad and Soedel [3] worked on the oscillatory walking motion of the washing
machine by using a 2D model. By considering the coulomb damping between the
washing machine and ground, effects of frequency on the magnitudes of walking
motion of horizontal axis washing machines are analyzed. Papadopoulos and
Papadimitriou [4] created a different 2D model to observe the effects of frequency
on the walking behavior of the horizontal axis washing machine. In the study, an
active balancing system with one and two balancing masses is introduced.

Bae et al. [5] worked on a 3D vertical axis washing machine model with
a hydraulic balancer. The fluid in the hydraulic balancer moves as the rotating
unbalance excites the system, and the balancer acts as a passive balancing system.
It provides an additional mass effect; however, the center of mass of the fluid also
changes and makes the balancer more effective. Chen and Zhang [6, 7] worked on
stability analysis of a vertical axis washing machine with and without hydraulic
balancer by considering steady-state response via bifurcation diagrams. Tangential
damping coefficients and unbalance mass are used as two parameters in bifurcation
analyses. Later, the installation height of the hydraulic balancer is optimized with the
aim of minimizing vibration amplitude in both transient and steady state response
[8, 9].

Nygårds and Berbyuk [10] created a detailed model of horizontal axis washing
machines using commercial multi-body dynamic simulation programs. To minimize
the magnitude of vibration, ball balancers, which are commonly used in counter-
balancing, are used through a Pareto optimization [11]. Boyraz and Gündüz [12]
derived a 2D dynamical model of a horizontal axis washing machine in the rotation
plane. The transient solution of the system is obtained, and design parameters are
optimized by utilizing the genetic algorithm.

Argentini et al. [13] worked on a linearized 3D dynamical model with both dry
friction and tuned mass dampers for horizontal axis washing machines. Galavotti
et al. [14] used a shaker and a PID controller to minimize the vibration amplitudes
in the vertical axes washing machines. Campos and Nicoletti [15] introduced a
dynamic absorber to prevent excessive amounts of vibrations, only for vertical axis
washing machines. Buskiewicz and Pittner [16] introduced the disengaging dampers
for washing machines, and vibration amplitudes are drastically reduced. Chrzan
et al. [17] introduced magnetorheological fluid dampers to overcome the vibration
problem.

Almost all of the studies are performed by solving the resulting nonlinear
differential equations of motion by direct time integration and obtained transient
response of the system. However, it is known that washing machines generate
sound and vibration during their steady-state operation during spinning cycles,
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i.e., >800 rpm. To analyze this problem, obtaining the steady-state solution and
comparing the effect of spinning speed to the vibration amplitude is necessary.
Moreover, using time integration to analyze steady-state response is expensive in
terms of computational time.

In this work, a simple 2D dynamic model in the rotating plane is derived with
three degrees of freedom by using two springs and two viscous dampers or two dry
friction dampers. This configuration of springs and dampers are the most common
models used in the literature. Resulting nonlinear differential equations of motion
are converted to a set of nonlinear algebraic equations by using the harmonic balance
method (HBM), which are solved by utilizing Newton’s method. Since the vibration
of the washing machine is directly related to the vibration of the cabinet, forces
exerted to the cabinet through dampers and springs are to be minimized. Therefore,
in this study, orientation angles of springs and dampers supporting the drum, spring
stiffness, and damper constants are taken as parameters to be studied. It is observed
that dry friction dampers have an enormous amount of reduction in the transmitted
force to the cabinet and ground, especially at higher frequencies, compared to
viscous dampers. Moreover, this is the first study in the literature that analyzes the
frequency response functions of the washing machine drum.

2 Mathematical Modeling

2D dynamic model developed in this study includes the drum, springs, and dampers,
as shown in Fig. 1a. Points 1–4 and f1 − f4 indicate the connection points of springs

a b

Fig. 1 (a) 2D model of the drum. (b) Exaggerated view of motion
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Table 1 Nomenclature

m1 Mass of the washing machine k Spring constant
m2 Mass of the laundry c Viscous damping

constant
φc0 Initial orientation angles of dampers kf Free length of springs
φk0 Initial orientation angles of springs cf Free length of dampers
e Eccentricity of the mass center of laundry r Radius of the drum
θ i Instantaneous angles of point i μN Slip load of dry friction

damper
xi Instantaneous horizontal position of point i xfi x of fixed of resilient

element at point i

yi Instantaneous vertical position of point i yfi y of fixed of resilient
element at point i

and dampers. For better understanding the motion and the forces applied to the
drum, an exaggerated view of motion is shown in Fig. 1b. In the equation of motion
(EOM), x, y, and θ are used as generalized coordinates, which are displacements
with respect to the origin and the rotation of the drum, respectively. Nomenclature
for other variables is given in Table 1. Related position variables are as follows:

x1 = r cos (φk0 + θ)+ x, y1 = r sin (φk0 + θ)+ y (1)

xf 1 = (r + kf) cos (φk0) , yf 1 = (r + kf) sin (φk0) (2)

x2 = r cos (π − φk0 + θ)+ x, y2 = r sin (π − φk0 + θ)+ y (3)

xf 2 = (r + kf) cos (π − φk0) , yf 2 = (r + kf) sin (π − φk0) (4)

x3 = r cos (π + φc0 + θ)+ x, y3 = r sin (π + φc0 + θ)+ y (5)

xf 3 = (r + cf) cos (π + φc0) , yf 3 = (r + cf) sin (π + φc0) (6)

x4 = r cos (−φc0 + θ)+ x, y4 = r sin (−φc0 + θ)+ y (7)
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xf 4 = (r + cf) cos (−φc0) , yf 4 = (r + cf) sin (−φc0) (8)

Related angles are:

θ1 = atan2
(
yf 1 − y1, xf 1 − x1

)
, θ2 = atan2

(
yf 2 − y2, xf 2 − x2

)
(9)

θ3 = atan2
(
y3 − yf 3, x3 − xf 3

)
, θ4 = atan2

(
y4 − yf 4, x4 − xf 4

)
(10)

Forces on the springs can be given as:

Fki = k

(√(
xi − xfi

)2 + (
yi − yfi

)2 − kf

)
, where i = 1, 2 (11)

To write forces on the dampers, velocities of the connection points along the
instantaneous orientation of dampers are necessary. Related velocity terms are given
as:

ẋ3 = −r sin (π + φc0 + θ) θ̇ + ẋ, ẏ3 = r cos (π + φc0 + θ) θ̇ + ẏ (12)

ẋ4 = −r sin (−φc0 + θ) θ̇ + ẋ, ẏ4 = r cos (−φc0 + θ) θ̇ + ẏ (13)

Projections of the velocities along the dampers are as follows:

v3 = ẋ3 cos (θ3)+ ẏ3 sin (θ3) , v4 = ẋ4 cos (θ4)+ ẏ4 sin (θ4) (14)

Forces on the viscous dampers can be written as:

Fc3 = −cv3, Fc4 = −cv4 (15)

To write the EOM in x, y, and θ directions, x and y components of these forces
are obtained as follows:

Fkix = Fki cos (θi) , Fkiy = Fki sin (θi) , where i = 1, 2 (16)

Fcix = Fki cos (θi) , Fciy = Fki sin (θi) , where i = 3, 4 (17)

Moments caused due to these forces can be expressed as:

M1 = (x1 − x) Fk1y − (y1 − y) Fk1x, M2 = (x2 − x) Fk2y − (y2 − y) Fk2x
(18)
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M3 = (x3 − x) Fc3y − (y3 − y) Fc3x, M4 = (x4 − x) Fc4y − (y4 − y) Fc4x
(19)

EOM for all degrees of freedom can be written as:

∑
Fx = (m1 +m2) ẍ = Fk1x + Fk2x + Fc3x + Fc4x +m2eω

2 sin (ωt) (20)

∑
Fy = (m1 +m2) ÿ = Fk1y + Fk2y + Fc3y + Fc4y +m2eω

2 cos (ωt) (21)

∑
M =

(
I1 +m2e

2
)
θ̈ = M1 +M2 +M3 +M4 (22)

In the EOM, damper forces and spring forces are derived as forces acting on
the drum; therefore, they are on the right hand side. To make a comparison, a
linear system is also defined by just assuming small oscillations, i.e., neglecting
θ and decoupling x and y coordinates. These nonlinear differential equations of
motions are converted into a set of nonlinear algebraic equations by utilizing
harmonic balance method (HBM). In HBM, periodic external forces, nonlinear
internal forces and the response of the system are represented by Fourier series.
These representations are substituted into the differential equations of motion, and
coefficients of harmonics are balanced, which results in a set of nonlinear algebraic
equations. More information on the method can be found in [18–20]. In the solution,
all forces are represented by utilizing seven harmonics, and sample results obtained
are given in Fig. 2. Consider single harmonic in the displacement representation
and six nonlinear algebraic equations in terms of the unknown amplitudes of sine
and cosine terms. Solution of this nonlinear algebraic equation set is obtained by
Newton’s method with arc-length continuation. Parameters used in this study are
given in Table 2 unless otherwise specified.
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Fig. 2 Effect of number of harmonics



Vibration Analysis of Washing Machines in the Drum Plane 555

Table 2 Numerical values m1 40 kg r 30 cm
m2 6 kg k 6000 N/m
φk0 45

◦
c 200 Ns/m

φc0 45
◦

μN 200 N
cf, kf 40 cm γ 0.08
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Fig. 3 (a) Displacement of drum vs. spin speed. (b) Transmitted force vs. spin speed

3 Results and Discussion

If viscous dampers are used, at spinning frequencies (800–1000 rpm), washing
machines tend to walk. Figures 2 and 3 show vertical forces and the displacement
of the drum as a function frequency, respectively. It is clearly seen in Fig. 3b that
vertical forces at high frequencies overcome the weight of the machine and friction
force between washing machine and ground becomes not large enough to hold the
washing machine stationary. As a result, since the horizontal forces on the cabinet
are much higher than the friction force between the cabinet and the floor, it leads to
walking motion.

To prevent excessive forces at high frequencies, dry friction dampers are
introduced instead of viscous dampers. If a single harmonic motion as x= X sin (ψ)
is considered, friction force can be expressed as:

fdry(x) =
{−μN + k (x + δ) if π

2 ≤ x ≤ ψ1

− μN if ψ1 ≤ x ≤ π

}
(23)

where

δ = 2μN − kX

k
; ψ1 = π − a sin

(
− δ

X

)
(24)

HBM represents the EOM by sine and cosine components. This nonlinear friction
force can be expressed in Fourier series utilizing a single harmonic for single
harmonic motion as follows:
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Fs = 2

π

(∫ ψ1

π/2
(−μN + k (x + δ)) sin (ψ) dψ +

∫ 3π/2

ψ1

(−μN) sin (ψ) dψ

)

(25)

Fc = 2

π

(∫ ψ1

π/2
(−μN + k (x + δ)) cos (ψ) dψ +

∫ 3π/2

ψ1

(−μN) cos (ψ) dψ

)

(26)

where Fs and Fc are Fourier coefficients of the sine and cosine components of the
nonlinear friction force, respectively. In order to calculate these integrals, the relative
displacement between the ends of dry friction dampers should be represented
utilizing single harmonic. Relative displacement between the ends of dry friction
dampers can be expressed similar to springs and dampers as follows:

di =
√(

xi − xfi
)2 + (

yi − yfi
)2 − cf, where i = 3, 4 (27)

Orientation angles different than 45
◦

are used, and the results obtained are given
in Fig. 4. Results for both systems with viscous or dry friction dampers obey the
expectations of the rotating unbalance excitation. FRF graph starts from zero and
converges to me/M as the frequency goes to infinity. When the frequency is low,
forces acting on the dry friction dampers are too small to move them; therefore, they
are acting like springs. The system consists of a drum and four springs. Around the
natural frequency of the drum, dry friction dampers start working and drastically
decrease the amplitude of vibrations, as expected. For higher frequencies, dry
friction dampers act like springs again. Studying Figs. 3b and 4b, it is clearly seen
that for higher frequencies, the vertical and horizontal forces settles to a low value
compared to viscous dampers, in which case they increase as frequency increases.
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Selecting a dry friction damper with a low slip load, μN, decreases the transmit-
ted force to the cabinet at the spinning cycle; however, it increases the displacement
of the drum and the transmitted force to the cabinet at the frequencies close to the
natural frequency. This engineering trade-off is clearly seen by comparing Figs. 3b
and 4b. At this point, observing the effects of k and μN values of the dry friction
dampers are vital; however, they will be taken into consideration after analyzing the
effects of orientation angles of springs and dampers.

It is expected to have a correlation between orientation angles and transmitted
forces to the cabinet. As depicted in Fig. 5a, b, orientation angles have a direct effect
on the transmitted force in x and y directions when the amplitude of the oscillations
is high; however, they do not affect the spinning cycle process as observed from
Fig. 4b. When φk0 and φc0 are selected as 45

◦
, complete symmetry is produced

along with both x and y directions, and total transmitted force in x and y direction
becomes the same, as expected. Changing the orientation angles of springs and
viscous dampers inversely lead to considerable differences in terms of transmitted
force to the cabinet in x and y directions. However, the total transmitted force is
almost the same in the whole frequency range, as seen from Fig. 5b.

Changing the orientation angles of the springs and viscous dampers in the same
direction increases the total nonlinearity of the system. At limiting cases, it is
equal to attaching components only in x or y directions, which is not feasible. In
Fig. 6a, b, similar results with inversely changing orientation angles are given. In
this case, there is a significant difference between transmitted forces in x and y
directions. However, the resultant force exerted to the cabinet is almost the same
for all frequency range. From Fig. 6a, b, it is clearly seen that even if the total
transmitted forces are the same for three cases, their directions are not the same.

Choosing both of the implementation angles as 45
◦

has many advantages. It
provides the minimum resultant force exerted to the cabinet; moreover, it results
in even distribution of the resultant force, which definitely prolongs the cabinet life.
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It prevents nonlinearities in transmitted forces and in displacements as observed
from Fig. 5a. For some special cases, manufacturers may want to have different
magnitudes of forces in x and y direction; however, in this chapter minimizing total
resultant force is considered, and 45

◦
is selected as the best orientation for springs

and dampers.
At this point, final parameters to be considered are the spring stand slip load

of the dry friction dampers to minimize force acting on the cabinet. Dry friction
damper starts to apply a constant force to the drum whenever the displacement
gets larger. The value of the slip load becomes an important parameter for the low
frequencies. However, in the spinning cycle, the total displacement of the drum
is not enough to cause slip in the dry friction damper. Therefore, slip load loses
its effect on the transmitted force to the cabinet, and contact stiffness k becomes
the important parameter for high frequencies. Selecting both of them as small as
possible leads to minimum transmitted force to the cabinet; but it will create large
displacements, which is not feasible. The amplıtude of the displacement becomes a
physical constraint in this problem, and throughout an optimization process, it has
to be taken into consideration.

In Fig. 7a, b, it is clearly seen that lower slip loads decrease the transmitted force
to the cabinet around the resonance frequency and increase the total displacement
of the drum. However, making the dry friction force very small causes the drum
to vibrate in an asymmetrical way with different vibration amplitudes in x and y
directions. In Fig. 8a, b, it is observed that lower spring constant values decrease the
transmitted force to the cabinet in the spinning cycle. However, this leads to higher
vibration amplitudes during the washing process, i.e., <400 rpm.
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4 Conclusion

A 2D nonlinear dynamical model of a washing machine drum is developed in this
study. Viscous and dry friction dampers are considered separately in the model
developed. Harmonic balance method is used to transfer the nonlinear differential
equations of motion to frequency domain resulting into a set of nonlinear algebraic
equations, and Newton’s method with arc-length continuation is used to calculate
the steady-state response. Several case studies are performed, and the effect of
different parameters is studied. It is clearly seen that proper use of friction dampers
can significantly limit the force transmitted to the cabinet and outperforms viscous
dampers.
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2. Türkay, O.S., Sümer, I.T., Tuğcu, A.K., Kiray, B.: Modeling and experimental assessment of
suspension dynamics of a horizontal-axis washing machine. J. Vib. Acoust. 120(2), 534 (1998)

3. Conrad, D.C., Soedel, W.: On the problem of oscillatory walk of automatic washing machines.
J. Sound Vib. 188(3), 301–314 (1995)

4. Papadopoulos, E., Papadimitriou, I.: Modeling, design and control of a portable washing
machine during the spinning cycle. 2001 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics. Proceedings (Cat. No.01TH8556), 2(July), pp. 899–904 (2001)

5. Bae, S., Lee, J.M., Kang, Y.J., Kang, J.S., Yun, J.R.: Dynamic analysis of an automatic washing
machine with a hydraulic balancer. J. Sound Vib. 257(1), 3–18 (2002)

6. Chen, H.W., Zhang, Q.J.: Stability analyses of a vertical axis automatic washing machine
without balancer. J. Sound Vib. 329(11), 2177–2192 (2010)

7. Chen, H.W., Zhang, Q.J.: Stability analyses of a vertical axis automatic washing machine with
a hydraulic balancer. Mech. Mach. Theory. 46(7), 910–926 (2011)

8. Chen, H.W., Zhang, Q.J., Fan, S.Y.: Study on steady-state response of a vertical axis automatic
washing machine with a hydraulic balancer using a new approach and a method for getting a
smaller deflection angle. J. Sound Vib. 330(9), 2017–2030 (2011)

9. Chen, H.W., Ji, W.X., Zhang, Q.J., Cao, Y., Fan, S.Y.: A method for vibration isolation of
a vertical axis automatic washing machine with a hydraulic balancer. J. Mech. Sci. Technol.
26(2), 335–343 (2012)

10. Nygårds, T., Berbyuk, V.: Multibody modeling and vibration dynamics analysis of washing
machines. Multibody Syst. Dyn. 27(2), 197–238 (2012)

11. Nygårds, T., Berbyuk, V.: Optimization of washing machine kinematics, dynamics, and
stability during spinning using a multistep approach. Optim. Eng. 15(2), 401–442 (2014)

12. Boyraz, P., Gündüz, M.: Dynamic modeling of a horizontal washing machine and optimization
of vibration characteristics using Genetic Algorithms. Mechatronics. 23(6), 581–593 (2013)

13. Argentini, T., Belloli, M., Robustelli, F.C., Martegani, L., Fraternale, G.: Innovative Designs
for the Suspension System of Horizontal-Axis Washing Machines: Secondary Suspensions
and Tuned Mass Dampers. Volume 4B: Dynamics, Vibration and Control, 4 B, V04BT04A058
(2013)

14. Galavotti, T.V., Sanchez, J.P.: Hardware in the Loop As a Tool for the Development of Wash
Machine Suspension, 6(Cobem), pp. 9301–9310 (2013)

15. Campos, R.O., Nicoletti, R.: Vibration reduction in vertical washing machine using a rotating
dynamic absorber. J. Braz. Soc. Mech. Sci. Eng. 37(1), 339–348 (2014)

16. Bus\dot{g}kiewicz, J., Pittner, G.: Reduction in vibration of a washing machine by means of a
disengaging damper. Mechatronics. 33, 121–135 (2016)

17. Chrzan, M.J., & Carlson, J.D.: MR fluid sponge devices and their use in vibration control of
washing machines, Proceedings of SPIE 4331, Smart Structures and Materials 2001: Damping
and Isolation, https://doi.org/10.1117/12.432719 (2001)

18. Von Groll, G., Ewins, D.: The harmonic balance method with arc-length continuation in
rotor/stator contact problems. J. Sound Vib. 241(2), 223–233 (2001)

19. Cigeroglu, E., An, N., Menq, C.H.: A microslip friction model with normal load variation
induced by normal motion. Nonlinear Dyn. 50(2), 609–626 (2007)

20. Erisen, Z.E., Cigeroglu, E.: Frequency domain optimization of dry friction dampers on
buildings under harmonic excitation. Conf. Proc. Soc. Exp. Mech. Ser. 1, 113–125 (2012)

http://dx.doi.org/10.1117/12.432719


Nonlinear Model for Wear Effects
in Hydrodynamic Bearings Applied
to Rotating Systems

Tiago Henrique Machado and Gustavo Chaves Storti

Abstract Wear of hydrodynamic bearings is one of the main causes of forced
stops on machines and rotating systems. In this way, the purpose of this chapter
is to investigate the time response effects of nonlinearities inserted by wear on
hydrodynamic bearings in rotating systems. The rotor is modeled using traditional
finite element method, and the Reynolds equation is solved by finite volume method,
to evaluate the hydrodynamic bearing behavior. For the numerical time integrator,
nonlinear Newmark scheme is used along with Newton––Raphson method to
estimate the response at each time step. The orbit of the shaft inside the bearings
revealed that for low speeds, even with the small size of orbits, the introduction of
wear causes changes in center, size, and position of the orbits. At critical speed,
the nonlinearities from the worn bearings became even more significant and tend
to change dramatically the system response. In addition, the system response to
different levels of rotating unbalanced mass proves the nonlinear profile due to the
presence of wear on the hydrodynamic bearings.

Keywords Rotating system · Wear in hydrodynamic bearing · Nonlinear
character

1 Introduction

Analysis of rotating systems involve many parameters and must include the rotor
interaction with other components, such as bearings. Being responsible for machine
support and force transmission between rotor and foundation, the role of these
components are very important. Early fault detection is essential to avoid sudden
failures during operation of rotating machines. Therefore, failures associated with
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hydrodynamic bearings are one of the most common causes of rotor shutdowns, and
the wear of these bearing walls affects a large number of machineries.

Early fault detection in this type of component is essential to avoid sudden
failures during operation of rotating machines in the industry. In addition, knowing
the behavior of worn bearings is very important as well. Dufrane et al. [1] was one
of the first to investigate the wear of bearings in steam turbines and established
two models of wear geometry used for a more in-depth analysis. Since then one of
the models (the assumption of an abrasive wear with an arc larger than the bearing
diameter) proposed in Dufrane et al. [1] has been widely used to predict the behavior
of worn bearings, since it was experimentally validated by Hashimoto et al. [2].

In the range of recent works, Papadopoulos et al. [3] presented a theoretical
identification method for hydrodynamic bearing wear by means of rotor response
measurements. Fillon and Bouyer [4] studied the performance of worn plain
journal bearings considering the local thermal effects. Chun and Khonsari [5]
estimated the wear depth due to material removal when the bearing experiences
elastohydrodynamic lubrication. Sharma and Awasthi [6] made a theoretical study
of worn bearing performance under specific length/diameter ratios.

Regarding the identification of wear parameters, several works have been
published in recent years, with different approaches and results as can be seen, for
instance, in Gertzos et al. [7] and Machado and Cavalca [8]. The wear effects on
the characteristics of hydrodynamic bearings and its influence in rotating system
response have been well studied. However, in the vast majority of works, the
Reynolds equations for worn bearings are solved using linear models.

In this context, the purpose of this chapter is to use a nonlinear model for
the wear in hydrodynamic bearings in order to analyze the time response of a
rotor-bearing system, comparing the orbit of the shaft within the bearing in two
critical conditions, namely high load at low rotating speed and high load at the
critical speed. In addition, the system response is evaluated in varied conditions with
different levels of rotating unbalance mass, in order to prove the nonlinear profile
due to the presence of wear on the hydrodynamic bearings. The numerical model
used in this work is best presented in Machado and Cavalca [9], since this model
brings an evolution of the model initially proposed by Dufrane et al. [1].

2 Numerical Model

The numerical analysis assumptions considers a rigid support structure in order
to isolate the effects originated by the bearings. Rotor is modeled using the finite
element method employing Timoshenko’s beam elements with four degrees of
freedom per node, two translational and two rotational (lateral vibration). The
resulting equation of motion is given by Eq. (1).

[M] {ẍ} + ([C]+& [G]) {ẋ} + [K] {x} = {F} (1)
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where [M], [C], [K], and [G] are the global mass, damping, stiffness and gyroscopic
matrices, respectively. Ω represents the rotating speed of the rotor, {x} is the vector
with the system’s degrees of freedom, and {F} contains the external forces, for
this case, the unbalance force, and the hydrodynamic force of the bearings. The
[C] matrix, which represents the shaft equivalent structural damping, is modeled
proportional to the mass and stiffness matrices, as shown in Eq. (2).

[C] = α [M]+ β [K] (2)

Reynolds equation is the basis of hydrodynamic lubrication theory, and its solu-
tion provides the pressure distribution in lubricating fluid. In this work, Reynolds
equation (Eq. 3) is solved numerically by finite volume method, using a relaxation
procedure to smooth the transition in the cavitation region (for cavitation, the
Gumbel’s model is used). The pressure field (p) is numerically integrated, using
Euler’s method, to obtain the supporting hydrodynamic forces. These forces are
inserted into the force vector of the system’s equation of motion for the computation
of time domain response.

∂

∂θ

(
h

3 ∂p

∂θ

)
+ ∂

∂Z

(
h

3 ∂p

∂Z

)
= 6μ

∂h

∂θ
+ 12μ

∂h

∂t
(3)

where μ is the absolute viscosity. The wear model used here was initially proposed
by Dufrane et al. [1] and adapted by Machado and Cavalca [8] based on the
hypothesis of abrasive wear. This model considers that the wear has a uniform
thickness (h) in axial direction, can have a variable depth, and can be located in
any region of the bearing bore (Fig. 1). This wear pattern introduces an additional
oil film layer with thickness δh(θ ), and the lubricating film thickness in the presence
of wear becomes:

h (θ) = h0 (θ)+ δh (θ) (4)

Fig. 1 Worn bearing model
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Fig. 2 Finite element model for the rotating system

For the numerical time integrator, nonlinear Newmark scheme, which combines
prediction and correction variables, is used along with Newton–Raphson method
in order to find the nodal position, velocity, and acceleration values for each time
step [10].

As shown in Fig. 2 the model consists of 16 beam elements and 2 disk elements
(nodes 7 and 11). Bearings are positioned at nodes 3 and 15. The steel shaft has an
elastic modulus of 2.1× 1011 N/m2, 7800 kg/m3 density, poison coefficient 0.3, and
a 0.796 × 1011 N/m2 shear modulus. The coefficients of the proportional damping
matrix are adjusted to α = 0 and β = 1.5 × 10−5, as recommended by Liu and
Novak [11]. For the system configuration showed in Fig. 2, the first critical speed
occurs at approximately 72.3 Hz.

The purpose is to compare the shaft’s orbit for the system with both undam-
aged bearings and worn bearings. Three different conditions are used: first, both
bearings are undamaged and Reynolds equation is evaluated by the traditional
linear approach; second, both bearings are undamaged and Reynolds equation is
evaluated by a nonlinear approach; and third, both bearings are worn (d0 = 45% of
radial clearance and γ = 10◦) and Reynolds equation is evaluated by the proposed
nonlinear approach. Tests are performed at two rotating speeds, 10 and 72.3 Hz, in
order to evaluate the system behavior in low speed and at the critical speed. Two
vertical forces are applied at the disk nodes to simulate high load condition. The
excitation is given by unbalanced mass. Different levels of unbalance are tested
in order to emphasize the high nonlinear character presented by the system when
the bearings are worn. Since the system is symmetrical and following that usually
just the bearing information is available in real machines, results are shown and
compared just for Bearing 1.

3 Results and Discussion

Figure 3 shows that at low speeds (10 Hz), both the linear and nonlinear models
for the undamaged bearings have a very similar response, being overlapped on the
graph. By adding wear, it can be seen that the position of the orbit’s center changes
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Fig. 3 Shaft’s orbit inside Bearing 1 for rotating speed of 10 Hz

Fig. 4 Shaft’s orbit inside
Bearing 1 for rotating speed
of 72.3 Hz

drastically, taking the shaft closer to the bearing wall. In addition, it is noted that the
size of the orbit for the worn bearing case is larger and more nonlinear (distorted
ellipse).

Figure 4 shows that at the critical speed (72.3 Hz), even for undamaged bearings,
there is a certain degree of nonlinearity inherent for the hydrodynamic bearings,
since the red and blue curves are no longer coincident. However, the differences
between the orbits are not so striking. By including the wear, it is noted that both
the shape of the orbit and the position of its center change drastically. This shows
that, at the critical speed (region of high vibration amplitude), the presence of the
wear on hydrodynamic bearings affects the behavior of the system response, greatly
increasing the nonlinearities.
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In order to highlight the rotating system nonlinear behavior at worn bearing con-
dition, the system response was evaluated into three different levels of unbalance,
as shown in Table 1.

As widely known, if the system has a linear behavior, its response will also
preserve this property. Therefore, varying a certain amount of rotating unbalance
mass will result in a response variation in the same ratio as the increase in the input
excitation, since the system is linear, as mentioned before. In this way, the system
responses were calculated for the three different cases presented in Table 1. For
each case, the Bearing 1 orbit dimension was measured and compared for linear
and nonlinear undamaged bearing models, in addition to the nonlinear worn bearing
model. These results are shown in Table 2 for the rotating speed of 10 Hz and Table
3 for the rotating speed of 72.3 Hz (critical speed). As the orbits are not perfectly
circular, it was necessary to establish an equivalent dimension as reference for the
comparisons, taking into account the differences between the largest and smallest
values of the vibration amplitudes in each direction, as shown in Eq. (5).

S =
√
(ymax − ymin)

2 + (zmax − zmin)
2 (5)

Analyzing Table 2, the linear behavior for undamaged bearings is clear: the
proportion of unbalanced mass increased matches the gain in the orbit dimension.
For case 1–2, the mass increases by a ratio of 1.5 and the same proportion is seen
comparing the two orbits. The gain for case 2–3 respects this same property.

Also in Table 2, even in the case using the non-linear model for non-damaged
bearings, the observed increase in the orbit dimension has a nearly linear behavior.

Table 1 Tested cases with
different levels of rotating
unbalance mass

Case Unbalanced mass (g)

1 3.0
2 4.5
3 6.0

Table 2 Linear and nonlinear behavior of the unbalance response for rotating speed of 10 Hz

Case
Orbit dimension for
undamaged linear model

Orbit dimension for
undamaged nonlinear model

Orbit dimension for worn
nonlinear model

1 9.13 × 10−7 9.12 × 10−7 3.26 × 10−7

2 1.37 × 10−6 1.37 × 10−6 7.23 × 10−7

3 1.83 × 10−6 1.82 × 10−6 9.64 × 10−7

Table 3 Linear and nonlinear behavior of the unbalance response for rotating speed of 72.3 Hz

Case
Orbit dimension for
undamaged linear model

Orbit dimension for
undamaged nonlinear model

Orbit dimension for worn
nonlinear model

1 1.41 × 10−4 1.35 × 10−4 6.98 × 10−5

2 2.12 × 10−4 1.86 × 10−4 1.98 × 10−4

3 2.82 × 10−4 2.14 × 10−4 2.36 × 10−4
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This is due to the small amplitudes of the orbit at low rotating speeds (in Machado
et al. [12] there is a discussion about this fact). Regarding the system with worn
bearings, it is noted in Table 2 that the response behavior is nonlinear, since the
increase in vibration amplitude is not equivalent to the increase in excitation mass.

Finally, analyzing Table 3, where the rotating speed coincides with the first
critical frequency, the linear response behavior appears only in the case in which
the adopted model is also linear. The variation of the rotating unbalance mass does
not match with the increase seen in the orbit dimension for other cases, even in
the model with undamaged bearings. It is also noticed that for the case with worn
bearings, the values observed for the orbit dimension is extremely nonlinear, and
there is no way to directly relate the increase in the excitation magnitude with the
increase in the vibration amplitude.

4 Conclusions

This work presents an analysis of the nonlinearities included in a rotating system
due to the wear in the hydrodynamic bearings. The results show that the wear of the
hydrodynamic bearings causes sensible changes in the dynamic behavior of rotating
systems. These differences substantially increase the nonlinearity of vibrations,
since it changes the magnitude and shape of the shaft’s orbit.

Furthermore, it has been shown that by changing the magnitude of the excitation
force present in the system, its response does not behave linearly when the bearings
are affected by wear.

Therefore, once wear occurs on most machines after long periods of use, it can
be concluded that it is very important to understand the nonlinear behavior of the
system under these conditions.
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