
Critical
 Infrastructure
 Protection XIII

Jason Staggs
Sujeet Shenoi (Eds.)

IFIP AICT 570

123

IFIP Advances in Information
and Communication Technology 570

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board Members

TC 1 – Foundations of Computer Science
Luís Soares Barbosa , University of Minho, Braga, Portugal

TC 2 – Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

TC 3 – Education
Arthur Tatnall , Victoria University, Melbourne, Australia

TC 5 – Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

TC 6 – Communication Systems
Burkhard Stiller, University of Zurich, Zürich, Switzerland

TC 7 – System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

TC 8 – Information Systems
Jan Pries-Heje, Roskilde University, Denmark

TC 9 – ICT and Society
David Kreps , University of Salford, Greater Manchester, UK

TC 10 – Computer Systems Technology
Ricardo Reis , Federal University of Rio Grande do Sul, Porto Alegre, Brazil

TC 11 – Security and Privacy Protection in Information Processing Systems
Steven Furnell , Plymouth University, UK

TC 12 – Artificial Intelligence
Eunika Mercier-Laurent , University of Reims Champagne-Ardenne, Reims, France

TC 13 – Human-Computer Interaction
Marco Winckler , University of Nice Sophia Antipolis, France

TC 14 – Entertainment Computing
Rainer Malaka, University of Bremen, Germany

http://orcid.org/0000-�0002-�5037-�2588
http://orcid.org/0000-�0003-�4317-�971X
http://orcid.org/0000-�0002-�5776-�2888
http://orcid.org/0000-�0001-�5781-�5858
http://orcid.org/0000-�0003-�0984-�7542
http://orcid.org/0000-0003-2303-7263
http://orcid.org/0000-�0002-�0756-�6934

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World
Computer Congress held in Paris the previous year. A federation for societies working
in information processing, IFIP’s aim is two-fold: to support information processing in
the countries of its members and to encourage technology transfer to developing na-
tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
panies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102

http://www.springer.com/series/6102
http://www.springer.com/series/6102

Jason Staggs • Sujeet Shenoi (Eds.)

Critical Infrastructure
Protection XIII
13th IFIP WG 11.10 International Conference, ICCIP 2019
Arlington, VA, USA, March 11–12, 2019
Revised Selected Papers

123

Editors
Jason Staggs
Tandy School of Computer Science
University of Tulsa
Tulsa, OK, USA

Sujeet Shenoi
Tandy School of Computer Science
University of Tulsa
Tulsa, OK, USA

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-030-34646-1 ISBN 978-3-030-34647-8 (eBook)
https://doi.org/10.1007/978-3-030-34647-8

© IFIP International Federation for Information Processing 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-34647-8

Contents

Contributing Authors ix

Preface xv

PART I THEMES AND ISSUES

1
Quantifying the Costs of Data Breaches 3
Siddharth Dongre, Sumita Mishra, Carol Romanowski and Manan
Buddhadev

PART II INFRASTRUCTURE PROTECTION

2
A Comparative Analysis Approach for Deriving Failure Scenarios

in the Natural Gas Distribution Infrastructure
19

Michael Locasto and David Balenson

4
Converting an Electric Power Utility Network to Defend Against

Crafted Inputs
73

Michael Millian, Prashant Anantharaman, Sergey Bratus, Sean
Smith and Michael Locasto

5
Cyber Security Modeling of Non-Critical Nuclear Power Plant Digi-

tal Instrumentation
87

Trevor MacLean, Robert Borrelli and Michael Haney

3
An Attack-Fault Tree Analysis of a Movable Railroad Bridge 51
Matthew Jablonski, Yongxin Wang, Chaitanya Yavvari,
Zezhou Wang, Xiang Liu, Keith Holt and Duminda Wijesekera

vi CRITICAL INFRASTRUCTURE PROTECTION XIII

PART III VEHICLE INFRASTRUCTURE SECURITY

6
Electronic Control Unit Discrimination Using Wired Signal Distinct

Native Attributes
103

Rahn Lassiter, Scott Graham, Timothy Carbino and Stephen Dun-
lap

7
Vehicle Identification and Route Reconstruction via TPMS Data

Leakage
123

Kenneth Hacker, Scott Graham and Stephen Dunlap

8
Modeling Liability Data Collection Systems for Intelligent Trans-

portation Infrastructure Using Hyperledger Fabric
137

Luis Cintron, Scott Graham, Douglas Hodson and Barry Mullins

PART IV TELECOMMUNICATIONS INFRASTRUCTURE SECURITY

9
Securing Wireless Coprocessors from Attacks in the Internet of

Things
159

Jason Staggs and Sujeet Shenoi

10
Vulnerability Assessment of InfiniBand Networking 179
Daryl Schmitt, Scott Graham, Patrick Sweeney and Robert Mills

PART V CYBER-PHYSICAL SYSTEMS SECURITY

11
Leveraging Cyber-Physical System Honeypots to Enhance Threat

Intelligence
209

Michael Haney

12
Dynamic Repair of Mission-Critical Applications with Runtime Snap-

Ins
235

J. Peter Brady, Sergey Bratus and Sean Smith

13
Data-Driven Field Mapping of Security Logs for Integrated Monitoring 253
Seungoh Choi, Yesol Kim, Jeong-Han Yun, Byung-Gil Min and
HyoungChun Kim

Contents vii

PART VI INDUSTRIAL CONTROL SYSTEMS SECURITY

14
Modeling and Machine-Checking Bump-in-the-Wire Security for

Industrial Control Systems
271

Mehdi Sabraoui, Jeffrey Hieb, Adrian Lauf and James Graham

15
Defining Attack Patterns for Industrial Control Systems 289
Raymond Chan, Kam-Pui Chow and Chun-Fai Chan

16
An Incident Response Model for Industrial Control System Foren-

sics Based on Historical Events
311

Ken Yau, Kam-Pui Chow and Siu-Ming Yiu

Contributing Authors

Prashant Anantharaman is a Ph.D. student in Computer Science at Dart-
mouth College, Hanover, New Hampshire. His research interests include smart
grid and Internet of Things protocol security, and eliminating input-handling
vulnerabilities in code.

David Balenson is a Senior Computer Scientist in the Infrastructure Security
Group at SRI International in Arlington, Virginia. His research interests in-
clude critical infrastructure protection, experimentation and testing, and tech-
nology transition.

Robert Borrelli is an Assistant Professor of Nuclear Engineering at the Uni-
versity of Idaho, Idaho Falls, Idaho. His research interests include assessing and
safeguarding advanced nuclear fuel cycles, including securing industrial control
systems.

J. Peter Brady is a Ph.D. student in Computer Science at Dartmouth College,
Hanover, New Hampshire. His research interests include improving systems and
data security via the application of formal verification techniques.

Sergey Bratus is a Research Associate Professor of Computer Science at
Dartmouth College, Hanover, New Hampshire. His research interests include
computing system exploitation and its formalization as a distinct research and
engineering discipline.

Manan Buddhadev is a Software Engineer at Microsoft Corporation, Red-
mond, Washington. His research interests include natural language processing
and data privacy.

x CRITICAL INFRASTRUCTURE PROTECTION XIII

Timothy Carbino is an Adjunct Assistant Professor of Electrical Engineering
at the Air Force Institute of Technology, Wright-Patterson Air Force Base,
Ohio. His research interests include digital communications protocols, physical
layer device fingerprinting and critical infrastructure protection.

Chun-Fai Chan is a Ph.D. student in Computer Science at the University
of Hong Kong, Hong Kong, China. His research interests include penetration
testing, digital forensics and Internet of Things security.

Raymond Chan is a Lecturer of Information and Communications Technology
at Singapore Institute of Technology, Singapore. His research interests include
cyber security, digital forensics and critical infrastructure protection.

Seungoh Choi is a Senior Researcher at the Affiliated Institute of ETRI,
Daejeon, South Korea. His research interests include critical infrastructure
protection and network security.

Kam-Pui Chow is an Associate Professor of Computer Science at the Uni-
versity of Hong Kong, Hong Kong, China. His research interests include infor-
mation security, digital forensics, live system forensics and digital surveillance.

Luis Cintron recently completed his M.S. degree in Computer Engineering
at the Air Force Institute of Technology, Wright-Patterson Air Force Base,
Ohio. His research interests include embedded systems, critical infrastructure
protection, distributed computing applications and software engineering.

Siddharth Dongre is an M.S. student in Computing Security at Rochester In-
stitute of Technology, Rochester, New York. His research interests include data
privacy and security, and their applications in critical infrastructure protection.

Stephen Dunlap is a Cyber Security Research Engineer at the Air Force
Institute of Technology, Wright-Patterson Air Force Base, Ohio. His research
interests include embedded systems security, cyber-physical systems security
and critical infrastructure protection.

James Graham is a Co-Founder and the Chief Executive Officer of True
Secure SCADA, Goshen, Kentucky. His research interests include information
security, digital forensics, critical infrastructure protection, high performance
computing and intelligent systems.

Contributing Authors xi

Scott Graham is an Associate Professor of Computer Engineering at the Air
Force Institute of Technology, Wright-Patterson Air Force Base, Ohio. His re-
search interests include vehicle cyber security, critical infrastructure protection
and embedded systems security.

Kenneth Hacker recently completed his M.S. degree in Computer Engineer-
ing at the Air Force Institute of Technology, Wright-Patterson Air Force Base,
Ohio. His research interests include automotive embedded systems, critical
infrastructure protection and distributed computing applications.

Michael Haney is an Assistant Professor of Computer Science at the Univer-
sity of Idaho, Idaho Falls, Idaho; and a Cyber Security Researcher at Idaho
National Laboratory, Idaho Falls, Idaho. His research interests include critical
infrastructure protection and active defenses for industrial control systems.

Jeffrey Hieb is an Assistant Professor of Engineering Fundamentals at the
University of Louisville, Louisville, Kentucky. His research interests include
information security, honeypots, digital forensics, secure operating systems and
engineering education.

Douglas Hodson is an Associate Professor of Computer Engineering at the
Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio. His
research interests include computer engineering, software engineering, real-time
distributed simulation and quantum communications.

Keith Holt is the Vice President of Northeast Division Rail Systems at HNTB
Corporation, Philadelphia, Pennsylvania; and a retired Deputy Chief Engineer
at Amtrak, Philadelphia, Pennsylvania. His research interests are in the area
of rail systems.

Matthew Jablonski is a Ph.D. student in Information Technology at George
Mason University, Fairfax, Virginia. His research interests include attack mod-
eling, secure system design and transportation systems security.

HyoungChun Kim is a Principal Researcher at the Affiliated Institute of
ETRI, Daejeon, South Korea. His research interests include cyber security and
critical infrastructure protection.

xii CRITICAL INFRASTRUCTURE PROTECTION XIII

Yesol Kim is a Researcher at the Affiliated Institute of ETRI, Daejeon, South
Korea. Her research interests include cyber security and industrial control
systems security.

Rahn Lassiter recently completed his M.S. degree in Electrical Engineering at
the Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.
His research interests include digital communications protocols, physical layer
device fingerprinting and critical infrastructure protection.

Adrian Lauf is an Assistant Professor of Computer Engineering and Computer
Science at the University of Louisville, Louisville, Kentucky. His research inter-
ests include the integration of embedded computing, networking and security
applications in airborne robotics.

Xiang Liu is an Assistant Professor of Civil and Environmental Engineering
at Rutgers University, Piscataway, New Jersey. His research interests include
rail systems safety and security.

Michael Locasto is a Principal Computer Scientist at SRI International, New
York. His research focuses on understanding software faults and developing
fixes.

Trevor MacLean is an M.E. student in Mechanical Engineering at the Uni-
versity of Idaho, Idaho Falls, Idaho. His research interests include industrial
control systems security, especially in the nuclear sector.

Michael Millian is a Ph.D. student in Computer Science at DartmouthCollege,
Hanover, New Hampshire. His research interests include language-theoretic se-
curity for network-level and bootloader-level protocols.

Robert Mills is a Professor of Electrical Engineering at the Air Force Institute
of Technology, Wright-Patterson Air Force Base, Ohio. His research interests
include network security and management, cyber situational awareness and
electronic warfare.

Byung-Gil Min is a Senior Researcher at the Affiliated Institute of ETRI,
Daejeon, South Korea. His research interests include security monitoring, in-
dustrial control systems and critical infrastructure protection.

Contributing Authors xiii

Sumita Mishra is a Professor of Computing Security at Rochester Institute
of Technology, Rochester, New York. Her research interests include critical
infrastructure protection, smart grid privacy and resource-constrained network
security.

Barry Mullins is a Professor of Computer Engineering at the Air Force In-
stitute of Technology, Wright-Patterson Air Force Base, Ohio. His research
interests include cyber-physical systems security, cyber operations, critical in-
frastructure protection, computer, network and embedded systems security,
wired and wireless networking, and code reverse engineering.

Carol Romanowski is a Professor of Computer Science at Rochester Institute
of Technology, Rochester, New York. Her research interests include applications
of data science and data mining to critical infrastructure protection, cyber
security and engineering design.

Mehdi Sabraoui is a Ph.D. student in Computer Science and Engineering at
the University of Louisville, Louisville, Kentucky. His research interests include
the formal modeling and verification of security in industrial control systems.

Daryl Schmitt recently completed his M.S. degree in Computer Science at the
Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio. His
research interests include network security and management, cyber situational
awareness and cyber defense.

Sujeet Shenoi is the F.P. Walter Professor of Computer Science and a Profes-
sor of Chemical Engineering at the University of Tulsa, Tulsa, Oklahoma. His
research interests include critical infrastructure protection, industrial control
systems and digital forensics.

Sean Smith is a Professor ofComputer Science at Dartmouth College, Hanover,
New Hampshire. His research interests include industrial Internet of Things
security, trusted computing and human-computer interaction security.

Jason Staggs is an Adjunct Assistant Professor of Computer Science at the
University of Tulsa, Tulsa, Oklahoma. His research interests include telecom-
munications networks, industrial control systems, critical infrastructure protec-
tion, security engineering and digital forensics.

xiv CRITICAL INFRASTRUCTURE PROTECTION XIII

Patrick Sweeney is an Assistant Professor of Computer Engineering at the
Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio. His
research interests include avionics security, critical infrastructure protection
and embedded systems security.

Yongxin Wang is a Ph.D. student in Computer Science at George Mason Uni-
versity, Fairfax, Virginia. His research interests include applications of cyber
security and sensor systems to transportation systems.

Zezhou Wang is a Ph.D. student in Civil Engineering at Rutgers University,
Piscataway, New Jersey. His research interests include rail systems safety and
security.

Duminda Wijesekera is a Professor of Computer Science at George Mason
University, Fairfax, Virginia; and a Visiting Research Scientist at the National
Institute of Standards and Technology, Gaithersburg, Maryland. His research
interests include cyber security, digital forensics and transportation systems.

Ken Yau is a Ph.D. student in Computer Science at the University of Hong
Kong, Hong Kong, China. His research interests are in the area of digital
forensics, with an emphasis on industrial control system forensics.

Chaitanya Yavvari recently completed his Ph.D. degree in Computer Science
at George Mason University, Fairfax, Virginia. His research areas include cyber
security, and transportation systems safety and security.

Siu-Ming Yiu is an Associate Professor of Computer Science at the University
of Hong Kong, Hong Kong, China. His research interests include security,
cryptography, digital forensics and bioinformatics.

Jeong-Han Yun is a Senior Researcher at the Affiliated Institute of ETRI,
Daejeon, South Korea. His research interests include network security, cyber
security and industrial control systems security.

Preface

The information infrastructure – comprising computers, embedded devices,
networks and software systems – is vital to operations in every sector: chemi-
cals, commercial facilities, communications, critical manufacturing, dams, de-
fense industrial base, emergency services, energy, financial services, food and
agriculture, government facilities, healthcare and public health, information
technology, nuclear reactors, materials and waste, transportation systems, and
water and wastewater systems. Global business and industry, governments,
indeed society itself, cannot function if major components of the critical infor-
mation infrastructure are degraded, disabled or destroyed.

This book, Critical Infrastructure Protection XIII, is the thirteenth volume
in the annual series produced by IFIP Working Group 11.10 on Critical Infras-
tructure Protection, an active international community of scientists, engineers,
practitioners and policy makers dedicated to advancing research, development
and implementation efforts related to critical infrastructure protection. The
book presents original research results and innovative applications in the area of
critical infrastructure protection. Also, it highlights the importance of weaving
science, technology and policy in crafting sophisticated, yet practical, solutions
that will help secure information, computer and network assets in the various
critical infrastructure sectors.

This volume contains sixteen revised and edited papers from the Thirteenth
Annual IFIP Working Group 11.10 International Conference on Critical Infras-
tructure Protection, held at SRI International in Arlington, Virginia, USA on
March 11–12, 2019. The papers were refereed by members of IFIP Working
Group 11.10 and other internationally-recognized experts in critical infrastruc-
ture protection. The post-conference manuscripts submitted by the authors
were rewritten to accommodate the suggestions provided by the conference at-
tendees. They were subsequently revised by the editors to produce the final
chapters published in this volume.

The chapters are organized into six sections: (i) themes and issues; (ii) in-
frastructure protection; (iii) vehicle infrastructure security; (iv) telecommuni-
cations infrastructure security; (v) cyber-physical systems security; and (vi) in-
dustrial control systems security. The coverage of topics showcases the richness
and vitality of the discipline, and offers promising avenues for future research
in critical infrastructure protection.

xvi CRITICAL INFRASTRUCTURE PROTECTION XIII

This book is the result of the combined efforts of several individuals and
organizations. In particular, we thank David Balenson for his tireless work on
behalf of IFIP Working Group 11.10. We gratefully acknowledge the Institute
for Information Infrastructure Protection (I3P), managed by George Washing-
ton University, for its sponsorship of IFIP Working Group 11.10. We also thank
the National Science Foundation, U.S. Department of Homeland Security, Na-
tional Security Agency and SRI International for their support of IFIP Working
Group 11.10 and its activities. Finally, we wish to note that all opinions, find-
ings, conclusions and recommendations in the chapters of this book are those
of the authors and do not necessarily reflect the views of their employers or
funding agencies.

JASON STAGGS AND SUJEET SHENOI

I

THEMES AND ISSUES

Chapter 1

QUANTIFYING THE COSTS
OF DATA BREACHES

Siddharth Dongre, Sumita Mishra, Carol Romanowski and Manan
Buddhadev

Abstract Recent years have seen increases in the number of data breaches. This
chapter attempts to quantify the impacts of data breaches in terms of
the monetary costs incurred by providers and consumers. This is impor-
tant because data breaches are a major factor when allocating funds for
security controls. Case studies involving the Equifax incident in 2017
and the Target incident in 2013 are employed to demonstrate that the
cost impacts of data breaches are significant for providers as well as con-
sumers. The cost components in the overall cost function for providers
and consumers are presented. Guided by open-source data, the cost
components in the provider portion of the cost function are expressed
as best-fit functions of time since the data breach. An important point
in the cost quantification is that equal weights are assigned to the costs
incurred by the provider and the consumers.

Keywords: Data breaches, cost analysis, providers, consumers

1. Introduction
The average cost of data breaches has increased by 6.4% during the past

year, with an average increase of 4.8% in the cost of each stolen record [9].
These statistics point to a general increase in the cost impacts of data breaches.
Clearly, it is imperative to understand the many aspects of data breaches in
terms of their cost impacts.

A data breach is defined as an incident that leads to the loss or exposure
of sensitive information. The focus of this chapter is on specific data breaches
that have exposed personal information such as social security numbers, driver’s
license information, dates of birth, credit card numbers, telephone numbers and
residential addresses, and/or other information that malicious entities could use
to perpetrate activities such as identity theft and credit card fraud.

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 3–16, 2019.

https://doi.org/10.1007/978-3-030-34647-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-34647-8_1

4 CRITICAL INFRASTRUCTURE PROTECTION XIII

The root causes of data breaches vary from incident to incident. Most data
breaches occur due to vulnerabilities in web applications hosted by providers
or through cyber-espionage activities [9]. Since the majority of breaches have
these two vectors, their costs appear to be more significant to providers than
consumers.

Acquisiti et al. [1] have analyzed the impact of privacy breaches on the
market value of providers. Their research demonstrates that a data breach has
a statistically-significant negative impact on the market value of a company on
the day that the breach is announced.

Romanosky [21] has analyzed the causes and costs of cyber incidents in an
attempt to understand how companies should improve their security postures
in order to reduce the risk of data breaches. He states that public concerns
regarding data breaches are excessive compared with the financial impacts on
companies.

Most research efforts, including the work of Acquisiti et al. [1] and Ro-
manosky [21], analyze the cost impacts of data breaches on providers. Limited
research has focused on the cost impacts on consumers. In contrast, the re-
search described in this chapter considers the cost impacts from the perspec-
tives of providers and consumers. Both providers and consumers have to pay
to mitigate the negative effects of data breaches. For example, the Equifax
data breach of 2017 cost the company approximately �439 million [18], but
numerous Equifax consumers also paid a price by becoming victims of identity
theft [16] that exposed them to financial losses.

This chapter presents a mathematical formulation that expresses the cost
impacts of data breaches. The costs incurred by the provider and consumers
have different components, all of which vary with time. Therefore, a cost
function for a provider and consumers is developed, which incorporates multiple
cost components and weights for the components that vary with time. In the
case of providers, the component weights are derived from real data pertaining
to the Equifax data breach of 2017 and the Target data breach of 2013. The
two case studies were selected because they had significant, direct impacts on
providers and consumers, and open-source data related to the breaches and
their impacts was available.

2. Cost Function
The cost impacts of a data breach can be broadly expressed as a function of

time C(T). Specifically, this cost function is the sum of the costs incurred by
the provider and by consumers, Cp(T) and Cc(T), respectively, which are also
functions of time. The time T denotes the number of months elapsed since the
breach was discovered. Unique weights Wp ∈ [0, 1] and Wc ∈ [0, 1] are assigned
to the costs incurred by the provider and by consumers, respectively, based on
the relative impacts of the two cost perspectives. Thus, the costs incurred due
to a data breach at time T months after the breach is given by:

C(T) = WpCp(T) + WcCc(T) (1)

Dongre, Mishra, Romanowski & Buddhadev 5

Each term in Equation (1) is expressed as the sum of the individual cost
components for the provider and consumers, Cpi(T) and Ccj(T), where 1 ≤
i ≤ N and 1 ≤ j ≤ M , and N and M are the numbers of cost components
incorporated for the provider and consumers, respectively.

Thus, the costs incurred by the provider and by consumers are given by:

Cp(T) =
N∑

i=1

Cpi(T) (2)

Cc(T) =
M∑

j=1

Ccj(T) (3)

Each term Cpi(T) and Ccj(T) can be further expressed as the sum of the costs
incurred each month, which varies with time t ∈ [0, T] expressed in months:

Cpi(T) =
T∑

t=0

Cpi(t) (4)

Ccj(T) =
T∑

t=0

Ccj(t) (5)

Equations (1) through (5) can be combined to yield the following overall
cost function for the provider and consumers:

C(T) = Wp

N∑

i=1

T∑

t=0

Cpi(t) + Wc

M∑

j=1

T∑

t=0

Ccj(t) (6)

where the weights are based on well-defined cost component values Cpi and
Ccj for the provider and consumers, respectively. These cost component values
vary on a case by case basis. In this work, the cost component values are
assigned based on case studies involving the 2017 Equifax and 2013 Target
data breaches.

3. 2017 Equifax Data Breach
Equifax is one of the leading credit reporting agencies along with TransUnion

and Experian. It provides important services that determine the creditworthi-
ness of consumers based on their credit histories. The information provided
by Equifax is used by lenders to decide whether or not to issue credit lines to
consumers and to determine the appropriate credit limits.

In July 2017, Equifax became the victim of one of the largest data breaches in
history [7]. The breach was traced to a vulnerability in Equifax’s web applica-
tion systems, which were developed using the Apache Struts 2 framework [13].

In March 2017, a few months before the breach, Apache announced a vul-
nerability in its technology. However, many users, including Equifax, did not

6 CRITICAL INFRASTRUCTURE PROTECTION XIII

apply the patch. The vulnerability enabled an unknown entity to remotely ac-
cess Equifax’s web application servers and run malicious programs, eventually
extracting sensitive data belonging to more than 145 million consumers. Credit
card numbers of more than 209,000 consumers were compromised. Private in-
formation such as social security numbers, driver’s license numbers and dates
of birth were also exposed.

Equifax reportedly handled the data breach in an irresponsible manner. It
did not notify the affected consumers until two months after the breach was
discovered. Equifax executives sold nearly �2 million in stock before the breach
was disclosed; however, a special company committee cleared the executives
upon finding that they did not know about the breach when they made the
transactions [4].

Equifax stock lost billions of dollars within a few months of the announce-
ment of the breach, demonstrating the major impacts that data breaches can
have on providers. However, numerous innocent consumers became victims
of identity theft and credit card fraud as a result of the breach. Indeed, the
Equifax breach is a lesson about the significant impacts that data breaches can
have on consumers.

3.1 Components Affecting Data Breach Costs
An analysis of corporate filings and news reports in the aftermath of the

Equifax data breach identified several components that may affect the costs
incurred by providers. Data from Equifax quarterly reports was used to derive
the cost function for each component. The cost function formulas were obtained
by applying machine learning algorithms to the available data.

Earnings Loss from Customer Dissatisfaction. Equifax reported
that its earnings were affected by customer dissatisfaction – its net income fell
27% to �96.3 million in the third quarter of 2017 [2]. It is safe to assume that
the loss in earnings due to customer dissatisfaction is the highest immediately
after a breach and decreases gradually over time.

The four data points in Figure 1 show Equifax’s net income (earnings loss)
figures for four consecutive quarters after the breach. Based on the variation of
net income (earnings loss) Cp1 in millions of dollars over time t in months, the
following best-fit function was obtained to express the costs due to customer
dissatisfaction as a function of time:

Cp1(t) = 165.39− 33t + 3.42t2 (7)

where the parameters a = 165.39, b = −33 and c = 3.42 are specific to the
provider, in this case, Equifax.

Market Capitalization Loss from Investor Nervousness. Af-
ter the breach was publicly announced, Equifax stock value fell sharply be-
cause nervous shareholders sold their holdings. Equifax’s market capitalization

Dongre, Mishra, Romanowski & Buddhadev 7

80

90

100

110

120

130

140

150

160

170

0 2 4 6 8 10

C
p1

 (m
ill

io
n

do
lla

rs
)

t (months)

Figure 1. Variation in Equifax’s costs (earnings loss) from customer dissatisfaction.

0

1

2

3

4

5

6

0 2 4 6 8 10

C
p2

 (b
ill

io
n

do
lla

rs
)

t (months)

Figure 2. Variation in Equifax’s market capitalization loss.

dropped by �5.3 billion [19]. However, after the initial slump, the stock value
gradually increased over the next three quarters.

The four data points in Figure 2 show Equifax’s market capitalization losses
from four consecutive quarterly reports after the breach. The costs associated
with this component decrease linearly with time. Based on the variation in
the market capitalization loss Cp2 in billions of dollars over time t in months,
the following best-fit function was obtained to express the costs due to investor
nervousness as a function of time:

Cp2(t) = 5.3 − 0.44t (8)

where the parameters c = 5.3 and m = −0.44 are specific to Equifax.

8 CRITICAL INFRASTRUCTURE PROTECTION XIII

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

C
p3

 (1
00

 m
ill

io
n

do
lla

rs
)

t (months)

Figure 3. Variation in Equifax’s legal and investigation fees.

Legal and Investigation Fees. The four data points in Figure 3 show
Equifax’s legal and investigation fees from four consecutive quarterly reports
after the breach. Equifax spent �99.4 million in fees during the final quarter
of 2017 and �28.9 million during the first quarter of 2018 [8, 17, 23]. The
costs associated with this component start low, increase gradually and finally
decrease again, which exhibits the characteristics of a Gaussian curve.

Based on the variation in the costs associated with legal and investigation
fees Cp3 in hundreds of millions of dollars over time t in months, the following
best-fit Gaussian function was obtained to express the legal and investigation
fees component as a function of time:

Cp3(t) = 1.38 × e−(t−3.93)2/2(1.17)2 (9)

where the parameters a = 1.38, b = −3.93 and c = 1.17 are specific to Equifax.

Customer Services. The four data points in Figure 4 show Equifax’s
customer services costs from four consecutive quarterly reports after the breach.
Equifax paid approximately �64.4 million for customer support services during
the final quarter of 2017 and the payments went down to �4.1 million during the
first quarter of 2018 [23]. This cost component decreases gradually with time
in a manner similar to earnings loss due to customer dissatisfaction. Based on
the variation in the costs associated with customer services Cp4 in millions of
dollars over time t in months, the following best-fit function was obtained to
express the customer services cost component as a function of time:

Cp4(t) = −0.14 +
64.54
2t/0.76

(10)

where the parameters a = −0.14, b = 64.54 and c = 0.76 are specific to Equifax.

Dongre, Mishra, Romanowski & Buddhadev 9

-10

0

10

20

30

40

50

60

70

0 2 4 6 8 10

C
p4

 (m
ill

io
n

do
lla

rs
)

t (months)

Figure 4. Variation in Equifax’s customer services costs.

0

20

40

60

80

100

120

0 2 4 6 8 10

C
p5

 (m
ill

io
n

do
lla

rs
)

t (months)

Figure 5. Variation in Equifax’s information technology security upgrade costs.

Information Technology Security Upgrades. The four data points
in Figure 5 show Equifax’s information technology security upgrade costs from
four consecutive quarterly reports after the breach. Immediately after the
breach was announced, Equifax incurred a one-time charge of �87.5 million,
which was presumably spent on incident response and disaster recovery [2].
During the last quarter of 2017, a portion of the �99.4 million spent on fees was
due to information technology security upgrades; the upgrade costs dropped to
�45.7 million during the first quarter of 2018 [23]. This cost component starts
high immediately after the data breach and decreases gradually.

Based on the variation in information technology security upgrade costs Cp5

in millions of dollars over time t in months, the following best-fit Gaussian

10 CRITICAL INFRASTRUCTURE PROTECTION XIII

function was obtained:

Cp5(t) = 99.65× e−(t−1.79)2/2(3.79)2 (11)

where the parameters a = 99.65, b = −1.79 and c = 3.79 are specific to Equifax.

4. 2013 Target Data Breach
Target is one of the largest departmental store chains in the United States. It

specializes in fast-moving consumer goods. In December 2013, Target became
the victim of a massive data breach in which nearly 40 million credit and
debit card numbers, and nearly 70 million personal information records were
stolen [22].

Several security firms analyzed the data breach to determine the root causes.
Their reports state that poor network segmentation, a mistake on Target’s
part and malicious actions by an adversary contributed to the massive data
breach. The adversary reportedly installed BlackPOS malware on point-of-sale
terminals to collect sensitive user information, especially credit and debit card
numbers. The stolen information was discovered being sold on black market
websites [11].

The data breach exposed numerous consumers to identity theft and credit
card fraud. It is another example of how the impacts of a data breach on
consumers are just as significant as those on the provider.

4.1 Components Affecting Data Breach Costs
Since the Target data breach was announced, several reports have been re-

leased that estimate the losses incurred by the company. This section discusses
the components that affect the costs incurred by Target as a provider.

Earnings Loss from Customer Dissatisfaction. Target’s profits re-
portedly fell by �440 million during the final quarter of 2013, i.e., immediately
after the data breach [15]. In the final quarter of 2014, Target reported a net
loss of �2.6 billion during the one year after the breach [20]. It can be assumed
that this cost component (earnings loss) reached its maximum value in the first
quarter after the data breach and decreased sharply over the course of a year.

The four data points in Figure 6 show Target’s net income (earnings loss)
figures for four consecutive quarters after the breach. Based on the variation
of net income (earnings loss) Cp1 in billions of dollars over time t in months,
the following best-fit Gaussian curve was obtained to express the cost due to
customer dissatisfaction as a function of time:

Cp1(t) = 0.91 × e−(t−7.22)2/2(3.81)2 (12)

where the parameters a = 0.91, b = −7.22 and c = 3.81 are specific to Target.

Dongre, Mishra, Romanowski & Buddhadev 11

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

C
p1

 (b
ill

io
n

do
lla

rs
)

t (months)

Figure 6. Variation in Target’s costs (earnings loss) from customer dissatisfaction.

Legal Fees and Lawsuit Settlements. Target reportedly made set-
tlements totaling more than �153.9 million through May 2017, almost four
years after the breach. The major costs incurred by Target during this period
were [14]:

�10 million to settle a class action lawsuit by consumers in March 2015.

�19 million to MasterCard in April 2015.

�67 million to Visa in August 2015.

�39.4 million to banks and credit unions in December 2015.

�18.5 million to settle actions by 47 state governments in May 2017.

Figure 7 shows the variation in Target’s lawsuit settlement costs over a two-
year period starting eighteen months after the breach. It is a classic example
of how the costs incurred by a provider due to legal actions arising from a
data breach are considerable over a long period of time. However, due to the
unpredictable nature of legal settlements, it is difficult to express the associated
costs as a function of time. The only statement that can be made is that the
legal costs are significant over a long period of time.

Other Expenses. Target’s 2016 annual financial report estimated that its
total costs due to the data breach were �292 million. The annual breakdowns
were �17 million in 2013, �145 million in 2014 and �39 million in 2015; infor-
mation about the 2016 costs was not provided [14]. These figures cover the
expenses incurred for incident response and forensics, disaster recovery and
information security upgrades.

12 CRITICAL INFRASTRUCTURE PROTECTION XIII

0

20

40

60

80

100

120

0 10 20 30 40 50

C
p2

 (m
ill

io
n

do
lla

rs
)

t (months)

Figure 7. Variation in Target’s lawsuit settlement costs over four years.

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40

C
p3

 (m
ill

io
n

do
lla

rs
)

t (months)

Figure 8. Variation in Target’s other costs over three years.

Figure 8 shows the variation in Target’s other costs (for incident response
and forensics, disaster recovery and information security upgrades) over a three-
year period following the data breach. Based on the variation in the other costs
Cp3 in millions of dollars over time t in months, the following best-fit Gaussian
function was obtained to express the cost component as a function of time:

Cp3(t) = 148.57× e−(t−13.44)2/2(6.47)2 (13)

Dongre, Mishra, Romanowski & Buddhadev 13

where the parameters a = 148.57, b = −13.44 and c = 6.47 are specific to
Target.

5. Cost Impacts on Consumers
Data breaches expose sensitive consumer information such as social security

numbers, driver’s license information, dates of birth, credit card numbers, tele-
phone numbers and residential addresses. Consumer information of this nature
can be exploited to perpetrate identity theft and other fraudulent activities
that can have devastating financial impacts on consumers.

It is posited that consumers as a whole incur costs that are comparable
to those incurred by the provider as a result of data breaches. Therefore,
the weights assigned to the costs incurred by the provider and consumers in
Equation (6) are equal, i.e., Wp = Wc = 0.5. Thus, the overall cost function is
given by:

C(T) = 0.5
N∑

i=1

T∑

t=0

Cpi(t) + 0.5
M∑

j=1

T∑

t=0

Ccj(t) (14)

The following sections discuss four components of the cost function for con-
sumers.

5.1 Identity Theft and Credit Card Fraud Costs
Many consumers whose personal data has been exposed by a breach become

unwitting victims of identity theft and credit card fraud. In 2016, 15.4 million
consumers were victims of identity theft or fraud and they collectively lost more
than �16.2 billion. These figures went up in 2017 with 16.7 million victims losing
�16.8 billion in total. On average, every consumer who becomes a victim of
identity theft or fraud loses more than �1,000 a year [10]. The costs include
notary fees and fax, copying, postage, mileage and calling charges incurred to
address identity theft or fraud. The costs also include loss of income as a result
of taking time off from work to handle the problems.

5.2 Protection and Monitoring Costs
The exposure of personal information puts consumers at risk of becoming

targets of identity theft and credit card fraud. Consumers are urged to enroll
in credit monitoring and identity protection services, which cost �120 to �300
annually [3].

5.3 Legal Fees
Victims of data breaches have the right to file lawsuits against providers that

may be responsible for the breaches. Attorney expenses vary, but are they still
relatively high [5]. Consumers who live in small towns and rural areas may
be charged �100 to �200 per hour by experienced attorneys. In metropolitan

14 CRITICAL INFRASTRUCTURE PROTECTION XIII

areas, attorney fees are �200 to �400 per hour. Attorney fees for complicated
data breach cases that require technical expertise are even higher.

5.4 Other Costs
Consumers who are victims of data breaches are highly susceptible to identity

theft and credit card fraud. Most victims are unaware that fraudulent activities
are being perpetrated until it is too late; there are cases where even minors have
become victims of identity theft or fraud [6].

Identity theft victims should consider freezing their credit, which prohibits
credit reporting companies from disclosing their credit histories. This also
prevents malicious entities from opening fake credit card accounts in their
names. Credit freeze requests can cost consumers �2 to �10 per credit re-
porting agency [24]; several states now ensure that credit freeze requests are
free [12].

Consumers who become victims of identity theft face the following severe
consequences:

Difficulty securing credit cards and loans.

Difficulty securing home mortgages and home rentals.

High credit card interest rates.

Difficulty securing jobs.

Psychological impacts such as distress and anxiety.

6. Conclusions
This research is the first attempt to quantify the costs of data breaches for

providers and consumers. This is important because data breaches are a major
factor when allocating funds for security controls. The cost components in
the overall cost function for the provider and consumers have been identified.
Guided by open-source data, the cost components in the provider portion of
the cost function have been expressed as best-fit functions of time elapsed since
the data breach. An important point in the cost quantification is that equal
weights are assigned to the costs incurred by the provider and the consumers.

Future research will attempt to formulate cost components in the consumer
cost function as functions of time. This effort will be theoretical as opposed to
empirical because of the lack of data pertaining to consumer costs over time.

References

[1] A. Acquisti, A. Friedman and R. Telang, Is there a cost to privacy
breaches? An event study, Proceedings of the Twenty-Seventh International
Conference on Information Systems, article no. 94, 2006.

Dongre, Mishra, Romanowski & Buddhadev 15

[2] Agence France-Presse, Massive data breach has cost Equifax nearly �90
million, November 11, 2017.

[3] Consumer Reports, Don’t get taken guarding your ID. Do-it-yourself safe-
guards are just as effective as paid services, September 8, 2014.

[4] Federal Trade Commission, The Equifax Data Breach, Washington, DC
(www.ftc.gov/equifax-data-breach), 2018.

[5] D. Goguen, How, and How Much, Do Lawyers Charge? Lawyers.com (www.
lawyers.com/legal-info/research/how-and-how-much-do-lawyers-
charge.html), 2019.

[6] K. Grant, Identity theft isn’t just an adult problem. Kids are victims, too,
CNBC, April 24, 2018.

[7] S. Gressin, The Equifax Data Breach: What to Do, Federal Trade Com-
mission, Washington, DC (www.consumer.ftc.gov/blog/2017/09/equi
fax-data-breach-what-do), September 8, 2017.

[8] M. Heller, Equifax hack could cost well over �600M, CFO Magazine, March
5, 2018.

[9] IBM Security and Ponemon Institute, 2018 Cost of a Data Breach Study:
Global Overview, Cambridge, Massachusetts and North Traverse City,
Michigan (www.ibm.com/security/data-breach), 2018.

[10] Javelin, Identity fraud hits all time high with 16.7 million U.S. victims in
2017, according to new Javelin Strategy and Research study, Press Release,
San Francisco, California (www.javelinstrategy.com/press-release/
identity-fraud-hits-all-time-high-167-million-us-victims-201
7-according-new-javelin), February 6, 2018.

[11] B. Krebs, Who’s selling credit cards from Target? Krebs on Security (www.
krebsonsecurity.com/2013/12/whos-selling-credit-cards-from-t
arget), December 24, 2013.

[12] K. Lobosco, Congress just made credit freezes free, CNN, May 22, 2018.

[13] J. Luszcz, Apache Struts 2: How technical and development gaps caused
the Equifax Breach, Network Security, vol. 2018(1), pp. 5–8, 2018.

[14] V. Lynch, Cost of 2013 Target data breach nears �300 million,
Hashed Out (www.thesslstore.com/blog/2013-target-data-breach-
settled), May 26, 2017.

[15] Marketwatch, Target’s profits down �440M after data breach, New York
Post, February 26, 2014.

[16] K. McCoy, Equifax data breach: What’s changed since last year’s huge
hack of personal information? USA Today, September 7, 2018.

[17] J. McCrank and J. Finkle, Equifax breach could be most costly in corpo-
rate history, Reuters, March 2, 2018.

[18] PYMNTS, Equifax breach to cost total of �439M (www.pymnts.com/news/
security-and-risk/2018/equifax-cost-275m), March 5, 2018.

16 CRITICAL INFRASTRUCTURE PROTECTION XIII

[19] V. Reklaitis, Equifax’s stock has fallen 31% since breach disclosure, erasing
�5 billion in market cap, MarketWatch, September 14, 2017.

[20] J. Roman, Target breach costs: �162 million. Response expenses con-
tinue to grow following 2013 incident, BankInfoSecurity (www.bankinfo
security.com/target-breach-costs-162-million-a-7951), February
25 2015.

[21] S. Romanosky, Examining the costs and causes of cyber incidents, Journal
of Cybersecurity, vol. 2(2), pp. 121–135, 2016.

[22] X. Shu, K. Tian, A. Ciambrone and D. Yao, Breaking the Target: An
Analysis of the Target Data Breach and Lessons Learned, arXiv:1701.04940
(arxiv.org/abs/1701.04940), 2017.

[23] Titanadmin, The cost of the Equifax data breach? �242 million and
rising, SpamTitan, Tampa, Florida (www.spamtitan.com/blog/cost-
of-the-equifax-data-breach-242-million-rising), April 27, 2018.

[24] F. Williams, How credit freezes work and what they cost, Credit-
Cards.com, Austin, Texas (www.creditcards.com/credit-card-news/
credit-report-freeze-1282.php), September 13, 2017.

II

INFRASTRUCTURE PROTECTION

Chapter 2

ACOMPARATIVE ANALYSIS APPROACH
FOR DERIVING FAILURE SCENARIOS IN
THE NATURAL GAS DISTRIBUTION
INFRASTRUCTURE

Michael Locasto and David Balenson

Abstract An important question facing critical infrastructure owners and opera-
tors is how their assets could be made to fail by the various threat actors.
Designing, enumerating and analyzing failure scenarios helps explore the
assumptions made on the operational side, the value of current mitiga-
tions and the need for certain types of protection mechanisms. This
chapter describes the formulation of 55 failure scenarios in the natural
gas distribution infrastructure. These failure scenarios highlight a range
of potential threats across the natural gas infrastructure, from transmis-
sion to distribution and home metering. The chapter also describes a
multi-pronged approach used to develop failure scenarios for the gas sec-
tor and compares them against the scenarios developed for the electric
sector. The focus is on the concepts underlying the failure scenarios
and their use, the threat model they encompass, and the assumptions,
lessons learned and caveats underpinning their creation.

Keywords: Natural gas distribution infrastructure, failure scenarios, cyber security

1. Introduction
Failure scenarios are an important consideration when analyzing the cy-

ber security postures of critical information infrastructure assets. This chap-
ter describes a process for developing cyber security failure scenarios in the
natural gas distribution network. The process took shape in a project per-
formed with the Gas Technology Institute/Operations Technology Develop-
ment (GTI/OTD) Cybersecurity Collaborative. During the project planning
and prioritization efforts, it was determined that the specification of failure
scenarios would help understand the cyber security implications in the nat-
ural gas distribution landscape. The effort was kicked off by exploring the

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 19–50, 2019.

https://doi.org/10.1007/978-3-030-34647-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-34647-8_2

20 CRITICAL INFRASTRUCTURE PROTECTION XIII

use and adaptation of the National Electric Sector Cybersecurity Organization
Resource (NESCOR) Electric Sector Failure Scenarios and Impact Analysis
(Version 3.0) [11] to the natural gas distribution environment.

This chapter reviews the process for designing and generating failure scenar-
ios – a process that necessarily begins with acquiring a thorough understanding
of the equipment, protocols and facilities used in the natural gas distribution
network. It describes the failure scenarios and their categories, the threat model
they encompass and the assumptions, lessons learned and caveats underpinning
their creation.

In addition to a significant domain familiarization process, the effort in-
volved adapting existing frameworks for describing failure modes and potential
compromises from another critical infrastructure sector (i.e., electric power).
The NESCOR failure scenarios developed for the electric sector [11] were em-
ployed as a template. However, the translation between the two sectors was
not straightforward and certain categories of infrastructure did not map at all.
Attempting to translate the electric sector failure scenarios to the natural gas
infrastructure provided valuable insights about the assumptions and differences
between the two sectors. In large part, the gas sector failure scenarios are not
restatements of the NESCOR scenarios. Even the closely related automated
meter reading category, has some notable differences. Indeed, it was more nat-
ural and productive to develop specialized scenarios that tightly reflect natural
gas sector equipment, protocols and facilities.

In addition to specifying a procedure for generating interesting and useful
scenarios, this chapter provides a differential comparison between the natural
gas and electricity domains with the goal of providing a roadmap for similar
efforts in other domains. The advantage of differential conceptualization is the
efficient enumeration of failure scenarios in another domain because the com-
parison highlights the parts of the process that can be generalized and the parts
that require time and investment in learning about the target domain. This
outcome should reduce the amount of effort required to conduct future analyses
because one of the least mechanical and most difficult tasks is to acquire ade-
quate domain expertise to define realistic failure scenarios and identify mean-
ingful impacts. Furthermore, the explicit observations help identify surprising
differences and considerations in two closely-related sectors, helping calibrate
and temper expectations about how certain concepts, settings, vulnerabilities
and impacts translate between sectors.

2. Failure Scenarios
According to the NESCOR document [11]:

“A cyber security failure scenario is a realistic event in which the failure
to maintain confidentiality, integrity and/or availability of sector cyber
assets creates a negative impact on the generation, transmission and/or
delivery of power.”

This definition requires one minor edit – replacing power with natural gas – to
apply to the natural gas distribution network.

Locasto & Balenson 21

Table 1. Example failure scenarios.

Scenario Description Vulnerabilities Impact

AMR.18 Competitor observes Insecure cleartext Competitive
gas consumption at protocols permit any advantage and
a store or factory party to observe insight into a

usage data direct competitor

O.3 Attacker gains Network and software Increase in service
access to odorizer compromise, supply calls as customers
controller and chain attack, or report suspected
modifies setpoints infected maintenance leaks
to increase the or vendor laptop used
amount of odorant to manipulate set-
injected, resulting points and possibly
in over-odorization disable or modify
of the gas sensor readings or

alarms

A scenario is actually not a single event; it is a complex mixture of conditions
and events. Scenarios are not limited to direct failures induced by malicious
cyber actors. Indeed, scenarios include malicious and non-malicious events [11]:

Failures due to equipment functionality compromises.

Failures due to data integrity attacks.

Communications failures.

Human error.

Interference with the equipment lifecycle.

Natural disasters that impact the cyber security posture.

Failure scenarios are not equivalent to single vulnerabilities or specific soft-
ware errors that should have been or can be remedied by a simple checklist or
adherence to best practices. By considering the mixture of causes listed above,
failure scenarios can provide a rich ground for analyses and a variety of other
uses that are discussed later. Failure scenarios offer a structured approach for
representing the potential impacts of different categories of threat actors and
provide an analysis tool for evaluating the utility and sufficiency of existing
mitigations.

Table 1 highlights two failure scenarios to provide readers with an idea about
the structure of failure scenarios.

As discussed later, the NESCOR report gathers scenarios into similar themes
called categories that map to electric power system functions such as demand-
response. The natural gas distribution network scenarios are also gathered

22 CRITICAL INFRASTRUCTURE PROTECTION XIII

into categories, but the categories are more closely mapped to facilities and
components of infrastructure rather than functions.

3. Benefits of Failure Scenarios
Failure scenarios can be used in a number of ways, including for risk assess-

ment, planning, procurement, training, tabletop exercises and security testing.
While the value proposition for employing failure scenarios as an analytical tool
for the natural gas distribution infrastructure encompasses all these uses, the
scenario development effort focused on three principal benefits:

Assess Sufficiency of Current Safety and Security Measures:
Natural gas distribution companies are aware of critical infrastructure
threats. In some cases, companies have electric and gas portions of the
business, and cyber security considerations are an active area of planning,
protection and analysis. However, a common consideration is whether the
current mitigations are sufficient. To help assess whether vendor or in-
ternal tools and procedures are adequate, companies need an analytical
methodology that directs their attention to relevant threats, vulnerabili-
ties and impacts.

Assess Risk/Reward of Incorporating Intelligent Electronic De-
vices: The natural gas industry is at an inflection point where automa-
tion is set to increase. Companies are making decisions about which
portions of their infrastructure have priority during the normal equip-
ment replacement cycle. The industry is also undergoing a generational
shift, where experienced engineers are retiring or are on the cusp of retire-
ment. One approach to compensating for this reduction is by introducing
automation that is managed by junior engineers.

Nurture Ties between IT and OT Personnel: It is important for
information technology (IT) and operational technology (OT) personnel
to work together on cyber security implementation and preparedness.
The value of such an engagement has been demonstrated by partnerships
such as the Linking the Oil and Gas Industry to Improve Cybersecu-
rity (LOGIIC) Consortium [3, 25] and the Trustworthy Cyber Infrastruc-
ture for the Power Grid (TCIPG) and Cyber Resilient Energy Delivery
(CREDC) Consortia [4, 24] that involve academia, government and in-
dustry. Trust cannot be built overnight. A key benefit of working with
natural gas utilities to specify failure scenarios was that it provided a
mechanism for collaboration, interaction and mutual understanding be-
tween engineers and cyber security experts. The failure scenarios were
also integrated in a tabletop exercise and used to prioritize cyber security
planning activities within the GTI/OTD Cybersecurity Collaborative.

Locasto & Balenson 23

3.1 Cyber Security Analysis
Critical infrastructure, industrial control systems and operational technol-

ogy present unique challenges for cyber security techniques and practice. These
specialized domains have legal and regulatory requirements and performance
constraints that affect the application of cyber security. Straightforward appli-
cations of existing information technology security mechanisms do not always
work. Sometimes it requires a minor porting effort; sometimes, although the
technology may function out-of-the-box, it does not offer the same benefits as in
an information technology environment; at other times, it requires a completely
new method or major redesign; and yet other times, it is completely unworkable
due to the unique demands of the operational environment. Nevertheless, these
complex cyber-physical systems likely contain unintended, latent errors in their
software, hardware and procedures, and therefore require monitoring and pro-
tection techniques that are suited to the domain. Some of the potential faults,
flaws and vulnerabilities exist because of specific combinations of software and
equipment, or might only be exercised under very special conditions.

Thus, a critical question for infrastructure owners and operators is how their
assets could be made to fail by a variety of threat actors exercising unanalyzed
– indeed previously non-existent – system states that result from injecting com-
puterized monitoring and control into physical processes. Asset owners need
to comprehend the nature of the threats to the operational technology envi-
ronment and how and where cyber security protection, detection and control
mechanisms should be deployed. Understanding how a system will break or
could be made to break are difficult tasks during the hard work of conceiving
how the system should properly operate in the first place [8, 9].

Such a conceptualization activity is even harder when applied to systems
of systems or where there may be cascading effects due to interdependencies
within and across the energy or other critical infrastructures – as there are
between natural gas and electric power. To wit, natural gas is used to generate
electricity and bulk electric power is used to run some compressor stations that
move natural gas. Likewise, if a cyber attack on a communications infrastruc-
ture can cause or exacerbate an impact on electricity, gas or both, then because
of these interconnections, an event at one location could cascade to multiple
events at different locations. The emergent effects that loss of power and storm
damage have on the cellular communications infrastructure were evident af-
ter Hurricane Sandy: while the cellular infrastructure was mostly undamaged,
communications ramped up dramatically due to an increase in calls (because
the Internet and other powered infrastructure were out or damaged) and cell
tower energy reserves were expended much faster than anticipated. The Liberty
Eclipse Exercise [13] has investigated the cyber security concerns surrounding
this type of interdependency between natural gas and electric power.

24 CRITICAL INFRASTRUCTURE PROTECTION XIII

3.2 Understanding Mitigations
Natural gas utilities are looking for procedures that can help avoid significant

disruptions of gas flow and destruction of property and infrastructure. Utilities
can use product assessments to understand the value of existing mitigations.
This process entails iterating through a series of commodity point solutions
from a variety of vendors to assess the promised coverage.

A complementary approach for exploring the parameters related to the value
of mitigations and utility preparedness is to specify failure modes of concern
and work backward to the types of threats that might induce the failures. In
short, a framework that categorizes failures is a useful assessment tool for deter-
mining the utility and appropriateness of cyber security tools and mechanisms.
Designing, enumerating and analyzing failure scenarios can help explore the
assumptions made on the operational side, the value of current mitigations and
the need for certain types of protection mechanisms. Failure scenarios provide
a combination of flexibility, abstraction (e.g., a baseline for further discussion
and exploration) and specificity that compare well with analysis techniques
that rely on models derived from vulnerability enumeration (e.g., attack trees)
and attacker tactics.

4. Caveats and Assumptions
This work has multiple audiences: researchers, practitioners, engineers and

regulators. As such, it is important to clearly state the caveats and assumptions
that underlie the approach. To the operational technology community, the
scenarios are a form of future-gazing and a suspension of disbelief (“our system
doesn’t work like that” or “our system can’t be compromised in that way”)
might be necessary. It is worth noting that there is a first time for everything
and so-called “system failures” arise exactly because a number of seemingly
unrelated and unlikely events occur together.

The capabilities and components considered in this work are taken from a
representative, notional architecture of the natural gas distribution network.
They are not intended to capture or imply existing weaknesses in company
infrastructures nor do they directly account for multiple levels of mitigations
that may be in place.

The scenarios discussed here do not constitute implied claims or guarantees
of successful exploitation nor do they imply that utilities have unmitigated vul-
nerabilities, are out of compliance with regulations or could be compromised.
Some failure scenarios may require significant resources from a potential ad-
versary whereas others may involve an insider taking advantage of an existing
crisis or low probability event.

As such, this work does not seek to provide a cookbook for attackers nor
is it intended to be a checklist for security defenses. Also, the enumeration of
scenarios is not expected to be complete. Furthermore, the goal is not to find
holes that utilities have not considered or to claim that specific mitigations in

Locasto & Balenson 25

place would not work, but rather to explore what might happen if some of the
mitigations were to fail.

Mitigations include redundant communications, private networks, multiple
layers of access control and clear separation of duties (e.g., mostly operate
locally, not from the central operations center). Mitigations, however, may
fail for any number of reasons: software bugs, expired keys, social engineering,
human laziness and complacency, unusable technology or a combination of these
shortcomings. Vigilance about the hygiene of operational facilities (e.g., no
BYOD policy, vetted upgrades and no removable media) is difficult to maintain
at a high level.

Finally, a failure mode need not result in catastrophic damage to an installa-
tion, environmental impact or loss of life. It may also relate to compromises of
the integrity, confidentiality and availability of information/operational tech-
nology assets, as well as the loss of business information and company reputa-
tion.

5. NESCOR Failure Scenarios Report
The most relevant starting point in the effort to develop a representative set

of failure scenarios in the natural gas distribution network was the NESCOR
document [11], which was produced by a broad collaboration between the Elec-
tric Power Research Institute, industry experts, asset owners and academia.
The NESCOR document has several contributions that make it an attractive
template for adaptation. It clearly identifies the major categories of operations
across the electric power grid, specifies a comprehensive threat model and lists
impacts and potential mitigations.

Version 3 of the NESCOR report from December 2015 contains 129 scenarios
across eight categories:

Advanced Metering Infrastructure (AMI): 32 scenarios.

Distributed Energy Resources (DER): 26 scenarios.

Wide-Area Monitoring, Protection and Control (WAMPAC):
12 scenarios.

Electric Transportation (ET): 16 scenarios.

Demand-Response (DR): 7 scenarios.

Distribution Grid Management (DGM): 16 scenarios.

Generation: 16 scenarios.

Generic: 4 scenarios.

The template has four components for each failure scenario: (i) scenario descrip-
tion; (ii) relevant vulnerabilities; (iii) impact; and (iv) potential mitigations.
The NESCOR report lists a threat model that covers cyber threats ranging

26 CRITICAL INFRASTRUCTURE PROTECTION XIII

from intentional and malicious actions to accidental failures. The following
threats identified in the report apply equally well to the natural gas distribu-
tion infrastructure:

Adversarieswith intent, driven bymoney, politics, religion, activist causes,
recreation, recognition or malevolence.

Adversary activity may include spying or have direct operational impact.

Insiders or outsiders, groups or individuals.

Failures of people, processes and technology, including human error.

Loss of resources, in particular, key employees and the communications
infrastructure.

Accidents.

Natural hazards as they impact cyber security (e.g., flooding, foundations,
pipelines above and below grade, and wind/blowing gas).

The NESCOR document also lists a number of specific impacts for the fail-
ure scenarios that apply to the natural gas distribution infrastructure. These
include loss of power, equipment damage, human casualties, revenue loss, cus-
tomer privacy violations and loss of public confidence.

6. Approach
Significant work is required to derive failure scenarios in different critical

infrastructure verticals. During the effort, it was discovered that the adapta-
tion was not necessarily sped up by attempting faithful replication of existing
failure scenario specifications. Instead, a comparative analysis was conducted
to understand and then deconstruct the essential elements of scenarios. When
appropriate, certain scenarios that did not easily translate or provide adequate
fidelity were discarded. Ultimately, the set of failure scenarios must be relevant
(i.e., speak to the threats that concern gas distribution utilities) and realistic
(i.e., not be too generic). The bottom line is that the mapping is neither easy
nor straightforward. Effort is needed to identify the real risks with respect to
the actual infrastructure – some risks are out of scope, others are irrelevant
and some are of concern only in the far future.

The goal was not to dramatically expand the number of scenarios by tweak-
ing minor properties, such as constructing two variants of the same scenario
by placing the attacker at different locations, or having an attacker who is a
trusted insider in one variant and an external attacker who steals legitimate
credentials in another instance. For variety and as realism dictated, only at-
tacker and scenario properties that made sense and were relevant to mitigation
were considered.

The following four complementary approaches were employed to generate
failure scenarios:

Locasto & Balenson 27

Directly translate the applicable categories of the NESCOR failure sce-
narios report (AMI, DER, WAMPAC, DR, ET and DGM).

Learn from experienced operators about real and hypothetical failure sce-
narios.

Review the relevant incident reports produced by the Pipeline and Haz-
ardous Materials Safety Administration (PHMSA) [15] and Transport
Canada Pipeline [18], and posit cyber contributions to physical failures.

Conduct mental walkthroughs of standard network security threats on a
notional architecture along with the Transportation Security Administra-
tion (TSA) Pipeline Security Guidelines [19–21, 23].

During the first approach, only advanced metering infrastructure (AMI) and
wide-area monitoring, protection and control (WAMPAC) translated easily.
Distributed energy resources (DER) did not translate well because residential
customers do not generate natural gas. Demand-response (DR) was not ap-
plicable; although some smart home appliances (furnaces, dryers, ovens, stoves
and water heaters) run on natural gas, there is not the same requirement for
responsive demand (or load) shedding in the power grid. Although natural
gas distribution sometimes has peak demand (i.e., winter) concerns, the scale
and degree of control are not as significant as in the smart grid. The concept
exists, but largely as a manual process and coordination with large industrial
customers, not residential customers. Electric transportation (ET) did not
translate well because natural gas refueling does not have the same semantics
(in terms of planning optimal recharging or supporting customer chargeback);
instead, the cyber risks are very similar to those faced by common gasoline
refueling. However, some aspects of distributed grid management (DGM) can
be adapted due to custody exchanges and multiple downstream customers sup-
plied by large providers.

With the rough narrative examples provided by the approaches listed above,
the procedure for generating failure scenario descriptions (i.e., fleshing out the
template) involved:

Prerequisites:

– Reasonable notional architecture for each setting (inventory of de-
vices, processes, people).

End result:

– Not necessarily catastrophic system-wide total loss; outcomes may
vary in scope and severity.

Key spectrum of setting variations to generate concrete examples:

– Natural or attacker-induced failure of a single component.

– Sequence of events targeting multiple components.

28 CRITICAL INFRASTRUCTURE PROTECTION XIII

– Sequence of events plus interference with protection/remediation ef-
forts.

For this last piece, attacker actions were drawn from two sources. The first
included standard network security threats and the second specific types of at-
tacks against the natural gas infrastructure. This helps bridge the gap between
general threats and domain-specific threats. Another alternative might be to
adapt a model of attacker tactics, techniques and procedures such as MITRE’s
ATT&CK Matrix [10, 17], which provides a structured menu of attacker actions
and tactics for achieving capabilities in a target infrastructure.

Given the focus on remotely-commanded infrastructure, attackers typically
engage in the following passive and/or active operations against network com-
munications:

Eavesdropping (threat to confidentiality).

Injecting manufactured messages (valid and nonsensical).

Dropping messages (all, selected and random).

Network congestion leading to dropped messages (denial of service).

Redirecting messages to unintended destinations and to self.

Rewriting messages to legitimate recipients with fabricated data and com-
mands.

While methods such as cryptography and strong authentication can be ap-
plied to protect against some of these attacks, they are difficult to deploy and
manage in operational technology environments. Specialized threats to the
domain include network and software compromises, supply chain attacks and
infected maintenance and vendor laptops. Specific risks include attacker actions
as well as conditions that facilitate attacker operations:

Infiltrate the central or backup gas operations center and access on-site
programmable logic controllers (PLCs).

Obtain physical access to the facility, embed malware in the system or in
auxiliary systems (e.g., heating, ventilation and air conditioning (HVAC)
systems, pumps and monitoring systems).

Compromise the vendor and supply chain.

Introduce unauthorized USB, CD and DVD drives in the local control
center or gas operations center.

Scramble GPS receivers.

Conduct local snooping in the wireless radio frequency (RF) and electro-
magnetic (EM) domains.

Locasto & Balenson 29

Figure 1. Natural gas distribution network.

Subvert software upgrade procedures.

Leverage the lack of operator visibility into supervisory control and data
acquisition (SCADA) device internals and operating software.

Physically link to unattended infrastructure assets and establish remote
connections (e.g., modem to programmable logic controller to meter).

7. Analysis of Scenarios by Category
Defining meaningful failure scenarios requires a realistic architecture of the

natural gas distribution network. Figure 1 shows the notional architecture [14].
Natural gas extraction and production occur on the left-hand side of the figure
and the gas flows toward customers on the right-hand side. Along the way,
long-range gas transmission is supported by major compressor stations along
the pipeline routes. Compression plays the dual role of moving the product and
storing it in the pipeline system (a concept referred to as “linepack”). Separate
dedicated storage facilities may be used. High-pressure transmission pipelines
transition to lower-pressure distribution lines at major tap points called gate
stations (or “city gate” stations) and large industrial customers such as heavy
manufacturing and electric power generation facilities. Local distribution lines
step down the gas pressure to lower street-level values that depend on the age

Natural Gas
Transmission Lines

Natural Gas from
Wells on Land

Gas Storage
Facility

Natural Gas from
Offshore Drilling

Platform

Liquified Natural Gas
(LNG) Offloaded from

Overseas Tankers

Gathering
Lines

Gas Processing
and Treatment

Plant

LNG Storage and
Processing Facility

Compressor
Station

Gas Storage
Facility

Local Gas
Distribution System

Commercial
Customer

Residential
Customer

Natural Gas
Powered Vehicles

City
Gate

Direct Served Customers

Electric Power
Generating Station

Large Industrial
Customer

Smaller
Manufacturer

Odorant is
Added to the

Gas at the
City Gate

Compressor
Station

30 CRITICAL INFRASTRUCTURE PROTECTION XIII

Utility Backend
Business Systems

Computer with Meter-
Reading Application

Vehicle Equipped with
Mobile Collection System

Home Meter with
Datalogging Unit

Figure 2. Vehicle-mounted automated meter reading system.

and condition of the local piping and the needs of customers ranging from
residential to commercial (e.g., schools, offices and hospitals).

The failure scenarios are organized into categories that are mapped to the
major natural gas distribution network components mentioned above. A total
of 55 scenarios are specified. The scenarios are categorized as follows:

Automated Meter Reading (AMR): 18 scenarios (AMR.1–AMR.18).

City Gate Station

– Facility Information (FI): 11 scenarios (FI.1–FI.11).
– Shutoff Valve (SV): 7 scenarios (SV.1–SV.7).
– Metering (M): 5 scenarios (M.1–M.5).
– Odorizer (O): 4 scenarios (O.1–O.4).
– Heating Plant (HP): 3 scenarios (HP.1–HP.3).

Compressor Station (CS): 7 scenarios (CS.1–CS.7).

The natural gas distribution network failure scenarios largely follow the
structure of the NESCOR failure scenarios developed for the electric sector.
Each failure scenario has a description, relevant vulnerabilities and an impact.
The specification of potential mitigations is the subject of future work.

Locasto & Balenson 31

7.1 Automated Meter Reading
Automated meter reading, which is conducted for billing purposes at resi-

dential, commercial and industrial sites, employs specialized handheld, vehicle
mounted or airborne reader devices. Figure 2 shows a vehicle-mounted auto-
mated meter reading system. The mobile collection system connects to a home
meter with a data logging unit to obtain the meter reading. The data is re-
ceived by a computer with a meter reading application that sends the data to
utility backend business systems.

The meters are usually battery powered; their serial numbers are not secrets
and can be discovered via scanning. Communications are transmitted in the
clear. The protocols employ non-cryptographic checksums for error correction.

Typical home appliances that rely on natural gas are furnaces, stoves and
water heaters. Meters that support automated reading generally have limited
power and computational resources. However, future designs will support ad-
vanced functionality and demand-response management (as in the smart grid),
and would possibly employ Internet of Things (IoT) protocols to communicate
directly with home appliances. Future meters are also expected to support
dynamic pricing and remote shutoff (e.g., for safety).

Tables 2 through 4 present the eighteen automated meter reading failure
scenarios (AMR.1–AMR.18). The scenarios focus on current deployments in-
volving the communications hardware and software in the meter, service vehicle
and utility. Automated meter reading failures impact billing and customer re-
lations, and reader device maintenance (e.g., battery life), but not natural gas
operations or emergency response.

7.2 City Gate Stations
City gate stations are crucial points in the natural gas distribution network

because they are locations where a custody transfer takes place and gas pressure
is regulated from the transmission level to the distribution level. As custody
transfer points, gate stations require the coordination of the operational prac-
tices of organizations, business relationships and physical processes involved in
transporting natural gas. Gas may also be odorized and scrubbed depending
on the installation and utility.

The infrastructure at a gate station includes shutoff valves, metering devices,
odorizers and a heating plant, all of which can be susceptible to cyber-induced
failures. Additionally, facility information pertaining to a gate station can lead
to failures. The failure scenarios associated with gate stations are structured
around these key infrastructure components.

Facility Information. Facility information refers to the physical setting/in-
frastructure (e.g., security plans, facility designs) and related information tech-
nology assets (e.g., access credentials) pertaining to a gate station or other fa-
cility. Several failure scenarios involve the unauthorized disclosure of protected
critical infrastructure information (PCII) [26], security sensitive information

32 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 2. Automated meter reading failure scenarios.

Scenario Description Vulnerabilities Impact

AMR.1 Authorized employee Insecure RF channel; Reduced consumer
performs unautho- limited key confidence; lost
rized meter data management revenue for the
acquisition system supplier
(MDAS) disconnect

AMR.2 Authorized employee Unauthorized Mischarging; effort
manipulates meter access to MDMS; to correct billing
data management no cryptographic errors
system (MDMS) data integrity; malware
to over/under charge

AMR.3 Invalid access used Supply chain; infect Collection and/or
to install malware readers and/or disclosure of
enabling remote endpoints customer data
Internet control

AMR.4 Overused key Applies if crypto is Untrustworthy data
captured on a meter employed; lack of collection; time to
channel enables crypto enables remedy errors
usage data manipulation
manipulation

AMR.5 Mass meter rekeying Key is extracted Effort required to
when a common key from protocol rekey or replace
is compromised messages or via infrastructure;

physical access ongoing risk of
to units manipulation

AMR.6 One compromised Meters or readers Time to rescan
meter in a network contain malware; customer sites
blocks others; local blocking
interference in of radio source
the channel

AMR.7 Deployed meters Bug and security Time and expense
containing patching to upgrade meters
undesirable
functionality
need repair

AMR.8 False meter data Compromised Data recovery and
induces unnecessary transmitters restoration from
analytics on the or homeowner backup
corporate side

Locasto & Balenson 33

Table 3. Automated meter reading failure scenarios (continued).

Scenario Description Vulnerabilities Impact

AMR.9 Invalid messages Physical signal or Meter
to meters impact pulse to disable unavailability;
customers and temporarily or battery
utility permanently replacement

AMR.10 Incorrect Unprotected Effort required to
consumption communications rekey or replace
information medium enables infrastructure;
impacts utility spoofing or ongoing risk of
revenue shielding manipulation

AMR.11 Improper firewall Readers and/or Significant loss
or network access mobile units are of customer data;
control between compromised access to billing
reader and corpo- systems
rate network

AMR.12 Breach of cellular Not under utility Loss of customer
provider network control data
exposes AMR access

AMR.13 Inadequate security Exposure of Replacement costs
for backend AMR networked of equipment and
data receivers equipment and receivers
enables malicious data repositories
activity

AMR.14 Malicious creation Fake reader; fake Effort to reacquire
of duplicate serial tower (for reader- data
numbers or identi- to-office communi-
fiers prevents cations)
valid AMR messages

AMR.15 Unauthorized devices Unprotected Effort to track down
create denial of communications or localize problem;
service and prevent medium enables law enforcement
valid AMR queries spoofing or involvement;
and replies shielding reacquire data

AMR.16 Stolen field service Unattended or Loss or exposure
tools expose AMR unlocked trucks of customer data;
infrastructure access to backend

AMR.17 Threat agent Update channels for Denial of service;
performs readers and truck battery drain in
unauthorized communications meters; data
firmware alteration equipment disclosure/collection

34 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 4. Automated meter reading failure scenarios (continued).

Scenario Description Vulnerabilities Impact

AMR.18 Competitor observes Insecure cleartext Competitive
gas consumption at protocols permit any advantage and
a store or factory party to observe insight into a

usage data direct competitor

(SSI) [22] and/or critical energy/electric infrastructure information (CEII) [5]
relating to natural gas distribution network facilities.

Tables 5 and 6 present the eleven facility information failure scenarios (FI.1–
FI.11).

Shutoff Valves. Gate stations implement a physical process that steps
down or regulates the nominal transmission pipeline pressure to distribution
pipeline pressure, which is roughly 10% of the transmission pressure. A key
safety component in these facilities is an automatic shutoff valve (ASV) or
remote control valve (RCV) that permits the gate station to be isolated from
the large transmission pipeline in case of a failure or incident in the gate station.

A shutoff valve also provides local, completely manual shutoff in the case
of communications or power loss to the motor unit. The operational impact
varies on how many valves are compromised. Compromises may have little
impact on the system or they could be devastating. Larger impacts may occur
if the shutoff valves cannot be operated during an incident, such as system
over-pressurization or an explosion.

Table 7 presents the seven shutoff valve failure scenarios (SV.1–SV.7).

Metering. Metering is a critical responsibility of the gate station because
it is a handoff point for custody of gas transiting the pipeline.

Several variations in metering setups exist. These include independent me-
ters before and after a tap compared with the distribution company’s indepen-
dent meter on the tap, or jointly-instrumented meters on transmission company
pipe. Shared infrastructure assets can present management challenges in coor-
dinating the cyber security practices of the collaborating organizations.

Metering failure scenarios mainly impact other equipment and may require
additional operational information or access. Regulators and other equipment
have physical safety mechanisms that prevent them from operating outside of
safe conditions. Some scenarios require physical access to a station, which may
trigger security alarms. In some cases, an attacker may have to corrupt the
distribution meter system as well as the transmission meter system, which may
be monitored and compared by the utility and the transmission company.

Table 8 presents the five metering failure scenarios (M.1–M.5).

Locasto & Balenson 35

Table 5. Facility information failure scenarios.

Scenario Description Vulnerabilities Impact

FI.1 Risk of disclosure Data inference Unauthorized dis-
of the relationship across public closure of PCII and
between cyber assets sources; SSI information
and physical observation and related to facility
infrastructure surveillance of location and cyber

public facilities properties

FI.2 Theft or loss of Inadequate or Unauthorized dis-
detailed security compromised closure of PCII and
plans or facility physical and/or SSI information
designs data controls related to security

plans or facility
designs

FI.3 Theft or loss of Compromised Unauthorized access
access credentials credentials and/or unauthorized

disclosure of PCII
and SSI information

FI.4 Risk of recording Surreptitious Unauthorized disclo-
and disclosure of observation and sure of PCII and SSI
security and safety surveillance information related
practices and to security and
procedures safety practices

and procedures

FI.5 Unauthorized, unin- Insider threat – Unauthorized disclo-
tentional disclosure disgruntled or sure of PCII and SSI
by an insider of compromised information related
security and safety employees to security and
system properties, safety systems
capabilities,
configurations and
operating procedures

FI.6 Use of electronic Electronic Unauthorized disclo-
means, tools and observations and sure of PCII and SSI
online data sources surveillance information related
to map physical combined with to cyber and
components of cyber public information security systems
and security systems

36 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 6. Facility information failure scenarios (continued).

Scenario Description Vulnerabilities Impact

FI.7 Extraction of GPS Incorrect config- Linking physical
coordinates, settings ration, software locations with
or other specific vulnerabilities specific system
location information or weak access identification and
allows mapping of control of vulnerability infor-
equipment to physical wireless routable mation leads to leaked
infrastructure devices CEII and increased
locations attacker capabilities

and situational
awareness

FI.8 Passive RF RF side channels Unauthorized disclo-
monitoring sure of PCII and SSI
may provide information related
details about to communications
communications protocols and
protocols and infrastructure
infrastructure

FI.9 Corruption and Compromised or Hide attack or event
denial of service blinded security requiring attention
of security cameras cameras or related or hide information
and related systems systems needed to respond

FI.10 Attacker pivots Common physical Attacker gains
through the communications access to both
security camera medium used communications
communications for control streams
infrastructure and security;

compromised
third-party
communications
system

FI.11 Unexplained failure Failed Dropped alarms or
of computer communi- communications alerts obscure the
cations drops alarms link root cause of the
or alerts for a incident
period of time,
obscuring the root
cause of an incident

Locasto & Balenson 37

Table 7. Shutoff valve failure scenarios.

Scenario Description Vulnerabilities Impact

SV.1 Unauthorized Stolen or lost Isolated gate
remote user credentials station from the
invokes mechanical transmission
valve closure system

SV.2 Unauthorized insider Rogue employee Unsafe valve
invokes unsafe accesses unlocked operation
mechanical valve screen or uses
open operation from an observed
local human-machine password
interface (HMI)

SV.3 Damage, disable or Network and software Modified control
remove software compromise, supply logic that
functions related to chain attack, or ignores open or
valve control by infected maintenance close commands
the PLC or vendor laptop

SV.4 Issue spurious Network and software Depleted trust in
(i.e., valve closed) compromise, supply the system causes
status messages to chain attack, or wasted effort
mimic an uncommanded infected maintenance
shutoff event or vendor laptop

SV.5 Misleading status Network and software Reduced
messages about compromise, supply confidence in
legitimate commanded chain attack, or the equipment
valve closure infected maintenance or alarm fatigue

or vendor laptop

SV.6 Unsafe or incomplete Manipulation of Loss of cyber
assumptions about sensor data situational
system state resul- (selective blocking, awareness and
ting in incorrect partial operation loss of trust
attribution of the injection or in the system
root cause of alarms rewriting)

SV.7 Failure to re-open Corrupt control logic Valve appears
valve after to prevent control unresponsive
legitimate event messages from

reaching the valve
motor; spoof or drop
legitimate acknow-
ledgement messages
to the HMI or gas
operations center

38 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 8. Metering failure scenarios.

Scenario Description Vulnerabilities Impact

M.1 Unauthorized remote Network and software Potentially dangerous
user injects false compromise, supply physical operation of
pressure reading in chain attack, or a regulator or other
SCADA traffic to infected maintenance critical system
the PLC in the or vendor laptop
local control room

M.2 Unauthorized remote Network and software Reporting false good
user injects false compromise, supply parameter values can
readings or blocks chain attack, or lead to a silent pipe
existing messages infected maintenance or heater breakdown;
from receipt at the or vendor laptop reporting false bad
local control room parameter values can
or remote gas cause delays while
operations center sensor readings are

checked

M.3 Disable power Network and software Disabled data streams
supply to meter compromise, supply to the supplier
probes chain attack, or and distributor

infected maintenance
or vendor laptop

M.4 Unnecessary Network and software Arbitrary,
maintenance compromise, supply unpredictable and
caused by spurious chain attack, or unexplained errors
unexplained failures infected maintenance may cause
of sensor probes or vendor laptop unnecessary

maintenance, repairs
or replacement

M.5 Meter readings Corrupted modeling Could significantly
inconsistent with data or software disrupt a major
the linepack models along with transmission
of the transmission compromised readings pipeline
operator from several major

gate stations

Odorizer. In some cases, gas is not odorized during transmission. This
is because transporting odorant to remote locations and injecting it in the
“middle” of a transmission pipeline may be impractical. Odorant is usually
added closer to exit points such as city gates and close-to-terminal compressor
stations. Although odorant is often added at a city gate station by a distribu-
tion company, in some cases, distribution companies rely on the transmission
pipeline operator to inject odorant, but perform an independent verification.
The addition of odorant provides an important safety property for consumers.

Locasto & Balenson 39

Table 9. Odorizer failure scenarios.

Scenario Description Vulnerabilities Impact

O.1 Attacker gains Network and software Unnecessary
access to HMI and compromise, supply increase or
reports lower-than- chain attack, or decrease in
expected or higher- infected maintenance the level of
than-expected or vendor laptop used odorant injected
measurements of to modify displayed into the system
odorant in the sensor readings
system

O.2 Attacker gains Network and software Unnecessary
access to HMI and compromise, supply maintenance check
hides all sensor chain attack, or or possible halt
readings related to infected maintenance to operations;
odorant levels in or vendor laptop used customers unable to
the storage tanks to hide displayed notice gas leaks
and outflowing gas sensor readings if enough odorant

is not present

O.3 Attacker gains Network and software Increase in service
access to odorizer compromise, supply calls as customers
controller and chain attack, or report suspected
modifies setpoints infected maintenance leaks
to increase the or vendor laptop used
amount of odorant to manipulate set-
injected, resulting points and possibly
in over-odorization disable or modify
of the gas sensor readings or

alarms

O.4 Attacker gains Network and software Customers unable to
access to odorizer compromise, supply notice existing or
controller and chain attack, or induced leaks;
modifies setpoints infected maintenance escalation of
to decrease the or vendor laptop used explosive events
amount of odorant to manipulate set- leading to property
injected, resulting points and possibly damage or loss of
in under-odorization disable or modify life
of the gas sensor readings or

alarms

Table 9 presents the four odorizer failure scenarios (O.1–O.4).

Heating Plant. A critical part of the city gate is the heating plant, which
enables safe operations by keeping the gas temperature above the freezing point
of water as the gas pressure drops during transmission. The potential for freez-

40 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 10. Heating plant failure scenarios.

Scenario Description Vulnerabilities Impact

HP.1 Attacker targets and Network and software Decreased heating
modifies thermostat compromise, supply may lead to low
readings chain attack, or gas temperature in

infected maintenance regulator piping;
or vendor laptop used overheating may
to modify settings or cause inefficient
forge readings heat exchange or

trigger nuisance
alarms

HP.2 Remote attacker Network and software Increased flow may
modifies settings or compromise, supply lead to overheating;
readings of flow chain attack, or reduced flow may
meters for the heat infected maintenance lead to decreased
exchange medium or vendor laptop used heating

to modify settings or
forge readings

HP.3 Remote attacker Network and software Lack of flow may
shuts off pumps or compromise, supply lead to damaged
circulation motors chain attack, or regulator or
that permit the heat infected maintenance automatic safety
exchange medium from or vendor laptop used shutdown of
entering the boilers to shut off pumps or regulator
or flowing to the motors
regulator piping

ing exists due to the presence of water in the gas, which is also maintained at
the desired level by instrumentation and filtering at the city gate. Should the
heating plant fail or be taken out of service, the gate station would have to
be isolated from the transmission pipeline, causing loss of revenue and down-
stream effects on customers large and small, even in the presence of failover or
redundant supply to the distribution system from other gate stations.

While heating plants operate relatively simple physical processes, their sup-
porting infrastructure components are targets for attacks. These include ther-
mostats, pumps and flow meters for the heating medium (e.g., glycol).

A heating plant may also be co-located with backup power generation (fed
by the gas pipeline) that provides the gate station “hotel” power. Heating plant
designs and implementations differ, but the failure scenarios assume there is a
programmable logic controller connected in the SCADA network.

Table 10 presents the three heating plant failure scenarios (HP.1–HP.3).

Locasto & Balenson 41

Figure 3. Compressor station yard.

7.3 Compressor Station
Compressor stations have several failure scenarios because they perform a

significant physical process and incorporate multiple infrastructure components
and smart electronic systems that support, monitor and protect the core pro-
cess, which may also have a feedback relationship with the electric power grid.

Compressor stations are located at points in the gas system where the gas
line pressure must be increased to either increase linepack (i.e., the de facto
storage of a volume of gas) or push gas downstream through the system. While
compressors are present in both transmission and distribution pipelines, they
feature prominently in transmission pipelines. As a consequence, compressor
station failures in transmission pipelines would have greater impact.

Figure 3 shows a schematic diagram of a compressor station yard (from
Spectra Energy). It comprises station yard piping (1), filter separators/scrub-
bers (2), multiple compressor units (3), gas cooling system (4), lubricating oil
system (5), mufflers (exhaust silencers) (6), fuel gas system (7) and backup
generators (8).

A compressor station may draw on a larger volume but lower pressure part
of the distribution network to concentrate and supply a dense area or several
large customers. A compressor station may be paired with a regulator unit to
step down pressure if gas needs to be moved from the higher-pressure part of
the system back to the lower-pressure portion. The relatively minor difference
in pressure places fewer demands on heating; the pressure change may be only
about 100 psi, so the temperature change is negligible, roughly 7◦F.

Tables 11 and 12 present the seven compressor station failure scenarios
(CS.1–CS.7).

42 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 11. Compressor station failure scenarios.

Scenario Description Vulnerabilities Impact

CS.1 Suppression of Network and software Full tanks may go
scrubber alarms compromise, supply unnoticed; overflow

chain attack, or tanks may spill
infected maintenance hazardous material
or vendor laptop used
to obscure failure
states of scrubbers

CS.2 Attacker induces Physical damage to Anti-surge valve is
anti-surge valve pipe and/or network closed or prevented
failure and software from opening; uncon-

compromise, supply trolled surge event
chain attack, or causes damage or
infected maintenance destruction of pipe
or vendor laptop used and/or compressor
to modify PLC readings

CS.3 Remote attacker Network and software Hide source of
modifies gas quality compromise, supply problems with feed to
readings back to chain attack, or downstream or hide
the control center infected maintenance source of condensates

or vendor laptop used in pipe; damage or
to modify gas quality destruction of pipe
readings and/or compressor

CS.4 Remote attacker Network and software Hide source of
modifies firmware compromise, supply problems with feed to
or control points of chain attack, or downstream or hide
gas quality sensors infected maintenance source of condensates

or vendor laptop used in pipe; damage or
to modify firmware or destruction of pipe
control points and/or compressor

CS.5 Failure of Induced or natural Loss of compression;
compressor process failure of process physical damage or
cooling system cooling system destruction

combined with
suppression of high-
temperature alarms

Locasto & Balenson 43

Table 12. Compressor station failure scenarios (continued).

Scenario Description Vulnerabilities Impact

CS.6 Failure of electric Failure of primary Loss of compression
power supply to electric power
compressor turbines combined with
that rely on induced or eventual
electric power (as failure of backup
primary source and/ generators due to
or for monitoring fuel exhaustion
and control)

CS.7 Use of HVAC, Software vulnerabili- Establishment of a
auxiliary building ties, supply chain foothold by the
control systems or attacks, poor access attacker in the
vendor systems as control hygiene for environment
pivot points vendor/service systems

8. Lessons Learned
The major lessons of this project relate to performing scenario translations

and the cyber security findings.

Lesson 1. During domain translation, it was observed that natural gas dis-
tribution incorporates fewer intelligent electronic devices than the electric grid.
System properties and business concerns are different because gas and electric-
ity are different physical commodities and their transmission involves signifi-
cantly different physical processes. Additionally, some parts of the NESCOR
report categories simply do not translate because there is no analogous infras-
tructure component on the gas side or an analogous component exists but has
little or no cyber elements.

Lesson 2. Learning about the infrastructure takes time and significant ef-
fort. Developing realistic scenarios requires substantial knowledge that must
be acquired from domain experts. This requires building trust with utility op-
erators and reviewing authoritative sources such as TSA guidelines, PHMSA
reports, device data sheets, vendor case studies about facility installations, and
research conducted by academic programs in petroleum engineering and related
fields. This engagement facilitated the creation of the notional architecture that
provided the setting for failure scenario development.

Lesson 3. When using the failure scenarios, utility personnel should not
think in terms of a checklist of mitigations as suggested by current regulatory
and TSA guidance, but whether they have an ongoing process for checking
security properties that provides easy-to-understand evidence that a monitoring

44 CRITICAL INFRASTRUCTURE PROTECTION XIII

system is working as intended; in other words, whether or not the cyber security
mechanisms in place are operating correctly and observing the cyber-relevant
behaviors of the operational technology devices. Because failure scenarios are
not meant to be a cookbook for attacks and they rest on the assumption that
mitigations could fail, utilities must have a process and not just a checklist that
enumerates defenses against specific attacks.

Lesson 4. There is a distinct advantage to being more mechanical. Part of
the difficulty in specifying failure scenarios was finding enough details about
where computational elements and control processors were located, the equip-
ment to which they were connected and the communications channels that
provided access to them. Important pieces of the infrastructure are largely
mechanical (e.g., regulators large and small involve physical components and
isolated controls).

As the natural gas industry looks toward the future, there will likely be an
impetus to embed intelligent electronic devices at a density and rate compara-
ble to the electric power sector. However, before anything is done, the natural
gas industry must assess whether this will introduce unjustified risk. Compu-
tational elements have latent behaviors that simply do not exist in the case of
mechanical equipment.

9. Real-World Application of Failure Scenarios
Significant questions about the utility of the failure scenarios are whether

they can be applied in real situations and whether they are tied to real-world
concerns. A potential objection to generating and using failure scenarios is that
they might be too artificial, and thus lack realism and fail to be beneficial to
utilities. The scenario development process compensated for this by engaging
with utility personnel and incorporating input from government safety investi-
gation incident reports in the failure scenarios. Indeed, the application of the
failure scenarios in the natural gas industry demonstrated that they can model
both realistic and real-world scenarios.

One use case is to retroactively study real incidents in terms of combinations
of failure scenarios, in essence introducing a synthetic cyber adversary into a
real incident. Operators and engineers can model a real incident with a sequence
of failure scenarios and re-execute the incident under a what-if analysis while
substituting failure scenario elements in the incident timeline.

For example, the San Bruno incident of September 2010 involved the rupture
of a 30-inch-diameter intrastate transmission pipeline due to an accidental over-
pressurization of a “substandard and poorly welded pipe section with a visible
seam weld flaw” [12]. This physical material failure was compounded by a
number of contributing factors, including side-effects of electrical work that
induced false low pressure readings and caused regulator valves to open fully.

Fake pressure readings introduced by an adversary underpin many of the
shutoff valve and metering failure scenarios presented in this chapter. During
the San Bruno incident, SCADA systems and communications were crucially

Locasto & Balenson 45

Attacker already inside infrastructure (cf. ATT&CK model) via visitor or vendor laptop,
supply chain, etc.

Cause utility
to shut off

downstream
Compressor A

Cannot achieve via
direct drastic pressure

drop (physical
safeguards prevent)

Must cause by
slow bleed and

eventually
stopping response

Utility forced into
Compressor A

shutdown

Delay or
reduce

effectiveness
of response

Gain presence on local PLC in Gate
Station Control Room; lie northbound

to remote Gas Control Center;
command southbound to Valves

Command
valve to open
slightly; start

slow bleed

Permit low
pressure events

to transmit to
control center

Operator
transmits remote

valve status
check message

Valve
replies
"open"

Operator transmits
remote valve close

message

Valve
replies
"OK"

N minutes pass;
low pressure
events still

transmitting

Attacker drops valve
close message from PLC

to valve; sends ack
Operators discuss

dispatch procedures
Operators discuss
response and SA

Operators discuss how to debug where command reaches; check HMI, PLC,
network logs

Tactics

Goals

Assumptions

Discussion

Figure 4. Example tabletop scenario.

important to providing situational awareness. At times during and leading up
to the San Bruno pipeline rupture, SCADA system data was not available or
reliable due to the side-effects of the repair work; this also affected some control
valve positions. Interested readers are directed to the National Transportation
Safety Board (NTSB) report on the San Bruno incident [12], especially Sec-
tions 1.1.2 and 1.9.1 to note the many opportunities for disrupting SCADA
systems that could result in the loss of situational awareness.

Another use case of the failure scenarios is the creation of tabletop exercises.
A “low pressure” tabletop exercise scenario was constructed based on real-world
events (pipeline incident reports) and some failure scenarios. Figure 4 shows
the assumptions, goals and tactics drawn from a small subset of the failure
scenarios (FI.10, SV.2, SV.4 and SV.5). These failure scenarios provided the
context that supported major discussion topics in the tabletop exercise.

Another way to add realism to a failure scenario is to instantiate it. This
can be accomplished in a number of ways, such as in a high-fidelity simulator,
by acquiring real equipment or by running it in a test laboratory environment.
However, the first step is to provide a concise diagram of the various compo-
nents.

Figure 5 presents an instantiation of Scenario O.4 of the odorizer, which
includes the principal subjects (i.e., actors), objects and an example control
and status message exchange. In Scenario O.4, the attacker gains access to
the odorizer controller and reduces the amount of odorant that is injected,
resulting in under-odorization (see Table 9 for the associated vulnerabilities
and impacts). The risk is that real leaks go undetected for a longer period of
time than warranted, thus “batching up” and causing a burst of failures over
time.

46 CRITICAL INFRASTRUCTURE PROTECTION XIII

Odorizer-
Control

{Ack, Level, LOW}

GOC

{Level-OK}

{Level-OK}

Local Gas
Distribution System

Commercial
Customer

Residential
Customer

City
Gate

Attacker

Figure 5. Example odorizer scenario.

A future line of work is to specify a common graphical language to diagram
failure scenarios. Ultimately, this would be another structured way to specify
failure scenarios that bind abstract objects such as the odorizer controller and
the SCADA protocol to specific products and protocols. Diagramming sce-
narios provides additional details that tie the abstract scenarios to real-world
equipment and communications protocols along with adversary actions.

10. Related Work
The failure scenarios for the electric sector discussed in the NESCOR re-

port [11] provided the inspiration and model for this research. Indeed, the
focus of this chapter has been a comparative analysis of the failure scenarios
for the gas sector and the NESCOR scenarios for the electric sector.

A recent (March 2018) TSA document [21] provides best practices and guid-
ance that extend over the entire gas distribution enterprise. Some of the facility
information scenarios described in this work were drawn from the TSA best
practices and guidance.

Failure mode modeling is a common practice in reliable systems engineering
that is often used to design dependable computing systems. Failure mode and

Locasto & Balenson 47

effects analysis (FMEA) is a systematic approach for collecting and analyzing
the conditions under which system components might experience failure. Effec-
tive failure mode and effects analyses are informed by experience with statistical
evidence pertaining to the prior behavior and failures of similar systems.

A closely-related piece of work is the Waterfall Security Solutions review of
20 prototypical attacks on industrial control networks [28]. The review sketches
a number of scenarios in an example water control system. A significant benefit
is the consideration of attackers with differing capabilities and placements in a
notional architecture and standard defenses against attacks that originate from
a number of locations in the topology.

Attack graphs have been an active area of cyber security research for decades.
Seminal work [2, 16] introduced the notion of linking vulnerabilities across a
network of host computers to provide a structured method for assessing attack
impacts. Hawrylak et al. [6] have applied these notions to an industrial control
system environment. Recent work by Wang et al. [27] extends the concept to
consider probabilistic modeling, which is related to the use of failure scenarios
as an analysis and “what if” tool for utilities.

The Lockheed-Martin “cyber kill chain” concept [7] identifies the phases
that cyber attackers must complete to achieve their objectives, which enables
defenders to map their courses of action to adversary kill chain indicators.
Similarly, the MITRE ATT&CK model [10, 17] provides a structured menu
of attacker actions and tactics aimed at achieving specific capabilities in a
target infrastructure. The model was originally developed as a community
resource for enterprise environments, but MITRE is currently working on ap-
plying ATT&CK to industrial control systems in the electric power, gas, water
and transportation sectors [1]. The failure scenarios described in this chapter
do not seek to provide a cookbook for attackers nor are they intended to be a
checklist for security defenses. However, future work may leverage ATT&CK
to provide more specificity to the failure scenarios, especially for activities such
as tabletop exercises.

11. Conclusions
One of the most important questions facing critical infrastructure owners

and operators is how their assets could be made to fail by cyber threat actors.
The 55 failure scenarios in the natural gas distribution infrastructure presented
in this chapter were created to provide a cyber security analysis framework for
natural gas utilities. Designing, enumerating and analyzing failure scenarios
help explore the assumptions made on the operational side, the value of current
cyber defenses and the need for new protection mechanisms.

In addition to describing the multi-pronged approach used to develop the
failure scenarios for the gas sector, the chapter compares them against scenar-
ios developed for the electric sector. The focus is on the concepts underlying
the failure scenarios and their use, the threat model they encompass and the
assumptions, lessons learned and caveats underpinning their creation. The sce-
nario development process and the differential comparison between the natural

48 CRITICAL INFRASTRUCTURE PROTECTION XIII

gas and electricity domains provide a roadmap for developing failure scenarios
in other critical infrastructure sectors.

Future research will extend the scenarios by adding more specificity, expand-
ing them to other areas of the natural gas infrastructure and exploring inter-
dependencies within natural gas systems and between natural gas and other
sectors. Attempts will also be made to measure the coverage of the failure
scenarios. Additionally, efforts will focus on a more comprehensive mapping
of real-world incidents against the failure scenario library as it increases in
coverage and specificity.

Any opinions, findings, conclusions or recommendations expressed in this
chapter are those of the authors and do not necessarily reflect the views of
the U.S. Department of Homeland Security, and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or
implied, of the U.S. Department of Homeland Security or the U.S. Government.

Acknowledgements
This work was sponsored by the U.S. Department of Homeland Security

Science and Technology Directorate (DHS S&T) under Contract No. HSHQDC-
16-C-00034. The authors thank DHS S&T Program Manager, Mr. Gregory
Wigton, and the GTI Program Manager, Mr. James Marean, for their guidance
and support. Thanks are also due to the member utilities in the GTI/OTD
Cybersecurity Collaborative for providing valuable insights into the natural
gas distribution infrastructure and potential failure scenarios. Additionally,
the authors thank the project participants from the Pacific Northwest National
Laboratory (PNNL) and MITRE Corporation.

References

[1] O. Alexander, ICS ATT&CK, presented at the Thirty-Third Annual Com-
puter Security Applications Conference, 2017.

[2] P. Ammann, D. Wijesekera and S. Kaushik, Scalable, graph-based net-
work vulnerability analysis, Proceedings of the Ninth ACM Conference on
Computer and Communications Security, pp. 217–224, 2002.

[3] Automation Federation, LOGIIC: Improving Cybersecurity in the Oil
and Natural Gas Sector, Research Triangle Park, North Carolina (www.
automationfederation.org/Logiic/Logiic), 2019.

[4] Cyber Resilient Energy Delivery Consortium, Information Trust Institute,
University of Illinois at Urbana-Champaign, Urbana, Illinois (cred-c.
org), 2019.

[5] Federal Energy Regulatory Commission, Critical Energy/Electric Infras-
tructure Information (CEII), Washington, DC (www.ferc.gov/legal/
ceii-foia/ceii.asp), 2019.

Locasto & Balenson 49

[6] P. Hawrylak, M. Haney, M. Papa and J. Hale, Using hybrid attack graphs
to model cyber-physical attacks in the smart grid, Proceedings of the Fifth
International Symposium on Resilient Control Systems, pp. 161–164, 2012.

[7] E. Hutchins, M. Cloppert and R. Amin, Intelligence-driven computer net-
work defense informed by analysis of adversary campaigns and intrusion
kill chains, Proceedings of the Sixth International Conference on Informa-
tion Warfare and Security, pp. 113–125, 2011.

[8] M. Locasto, Helping students 0wn their own code, IEEE Security and
Privacy, vol. 7(3), pp. 53–56, 2009.

[9] M. Locasto and M. Little, A failure-based discipline of trustworthy infor-
mation systems, IEEE Security and Privacy, vol. 9(4), pp. 71–75, 2011.

[10] MITRE Corporation, ATT&CK Matrix for Enterprise, Bedford, Mas-
sachusetts (attack.mitre.org), 2019.

[11] National Electric Sector Cybersecurity Organization Resource, Electric
Sector Failure Scenarios and Impact Analyses – Version 3.0, Washington,
DC (smartgrid.epri.com/doc/NESCOR%20Failure%20Scenarios%20v3%
2012-11-15.pdf), 2015.

[12] National Transportation Safety Board, Pacific Gas and Electric Company
Natural Gas Transmission Pipeline Rupture and Fire, San Bruno, Cali-
fornia, September 9, 2010, Pipeline Accident Report NTSB/PAR-11/01,
Washington, DC, 2011.

[13] Office of Electricity, Liberty Eclipse Exercise Summary Report, U.S. De-
partment of Energy, Washington, DC (www.energy.gov/oe/articles/
liberty-eclipse-exercise-summary-report), 2017.

[14] Pipeline and Hazardous Materials Safety Administration, Natural Gas
Pipeline Systems, U.S. Department of Transportation, Washington,
DC (primis.phmsa.dot.gov/comm/naturalgaspipelinesystems.htm),
2019.

[15] Pipeline and Hazardous Materials Safety Administration, Pipeline Fail-
ure Investigation Reports, U.S. Department of Transportation, Wash-
ington, DC (www.phmsa.dot.gov/safety-reports/pipeline-failure-
investigation-reports), 2019.

[16] O. Sheyner, J. Haines, S. Jha, R. Lippmann and J. Wing, Automated gen-
eration and analysis of attack graphs, Proceedings of the IEEE Symposium
on Security and Privacy, pp. 273–284, 2002.

[17] B. Strom, A. Applebaum, D. Miller, K. Nickels, A. Pennington and C.
Thomas, MITRE ATT&CK: Design and Philosophy, MITRE Product MP
18-0944-11, MITRE Corporation, McLean, Virginia, 2018.

[18] Transportation Safety Board of Canada, Pipeline Transportation Safety
Investigations and Reports, Gatineau, Canada (www.bst-tsb.gc.ca/eng/
rapports-reports/pipeline/index.asp), 2019.

[19] Transportation Security Administration, Pipeline Security and Incident
Recovery Protocol Plan, Pentagon City, Virginia, 2010.

50 CRITICAL INFRASTRUCTURE PROTECTION XIII

[20] Transportation Security Administration, Pipeline Security Smart Practice
Observations, Pentagon City, Virginia, 2011.

[21] Transportation Security Administration, Pipeline Security Guidelines,
Pentagon City, Virginia, 2018.

[22] Transportation Security Administration, Sensitive Security Informa-
tion, Pentagon City, Virginia (www.tsa.gov/for-industry/sensitive-
security-information), 2019.

[23] Transportation Security Administration, Surface Transportation, Pen-
tagon City, Virginia (www.tsa.gov/for-industry/surface-transport
ation), 2019.

[24] Trustworthy Cyber Infrastructure for the Power Grid, Information Trust
Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
(tcipg.org), 2019.

[25] U.S. Department of Homeland Security, LOGIIC: Linking the Oil and
Gas Industry to Improve Cybersecurity, Science and Technology Di-
rectorate, Washington, DC (www.dhs.gov/science-and-technology/
logiic#), 2016.

[26] U.S. Department of Homeland Security, Protected Critical Infrastruc-
ture Information (PCII) Program, Washington, DC (www.dhs.gov/pcii-
program), 2019.

[27] L. Wang, T. Islam, T. Long, A. Singhal and S. Jajodia, An attack graph-
based probabilistic security metric, in Data and Applications Security
XXII, V. Atluri (Ed.), Springer, Berlin Heidelberg, Germany, pp. 283–296,
2008.

[28] Waterfall Security Solutions, The Top 20 Cyber Attacks on Indus-
trial Control Systems, Rosh Ha’ayin, Israel (waterfall-security.com/
20-attacks), 2018.

Chapter 3

AN ATTACK-FAULT TREE ANALYSIS OF
A MOVABLE RAILROAD BRIDGE

Matthew Jablonski, Yongxin Wang, Chaitanya Yavvari, Zezhou Wang,
Xiang Liu, Keith Holt and Duminda Wijesekera

Abstract Mechanical and electrical components of movable bridges are engineered
to move heavy concrete and steel structures in order to allow water
traffic and rail and/or vehicular traffic to pass many times a day despite
harsh weather conditions, storm surges and earthquakes. The bridge
spans must also support varying rail and/or vehicular traffic loads.

This chapter considers known and theoretical risks posed by movable
bridge system attacks and faults in a single stochastic model based on
attack-fault trees. Risks associated with railroad swing bridges are pre-
sented, along with the attack-fault tree model and the analysis results.

Keywords: Cyber-physical systems, movable bridges, attack-fault tree analysis

1. Introduction
Movable bridges constructed over waterways are specifically designed to al-

low traffic flows on and over waterways. Most movable bridges, which are called
“heavy movable structures,” maneuver many tons of steel and concrete under
the control of modern controllers even under difficult weather conditions.

Bridges have been targets of attacks since ancient times. From castle draw-
bridges to supply line bridges in Europe during World War II, pitched battles
have been fought over bridges. In this post-Stuxnet era, new risks are posed
by attacks on programmable logic controllers and networked industrial control
systems – the cyber-physical components that control movable bridges. Conse-
quently, securing a modern movable bridge requires the consideration of faults
in the physical, mechanical and control aspects of the bridge as well as the
cyber security of electro-mechanical components that actuate the movements
of physical components.

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 51–71, 2019.

https://doi.org/10.1007/978-3-030-34647-8_3

https://doi.org/10.1007/978-3-030-34647-8_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_3&domain=pdf

52 CRITICAL INFRASTRUCTURE PROTECTION XIII

Figure 1. An open BNSF railroad swing bridge [18].

Faults and vulnerabilities in a system are typically studied by collecting and
analyzing data about failure modes. Design corrections are then instituted
and the resulting reports are shared with the community to mitigate hazards
and risks. Unfortunately, a repository of reports pertaining to movable bridges
does not exist for three reasons. First, although they may share some common
components, no two movable bridge systems are built the same and operate
under the same environmental conditions. Second, the faults and the methods
for handling outages vary, but this information is not recorded in a centralized
public repository. Third, no cyber attacks have as yet been reported against
movable bridges, although attacks against other control systems could be re-
purposed to target similar components in movable bridges. To address the lack
of data, this chapter models the impacts of failures on movable bridges with a
focus on railroad swing bridges (Figure 1).

A literature review indicates that intentional attacks and accidental faults
cause movable bridge failures; therefore, a comprehensive model of attacks
and faults that result in failures is needed. This work employs the combined
attack-fault tree model of Kumar and Stoelinga [16]. This model was built
on previous work on attack trees and fault trees to support qualitative and
quantitative analyses of combined system security and safety properties. The
model is leveraged to create an attack-fault tree for a swing bridge, following
which each node in the model is translated to a stochastic timed automaton
used by the UPPAAL Statistical Model Checker [7]. A qualitative analysis of
the attack-fault tree can be used to identify the root causes of swing bridge
system failures whereas a quantitative analysis allows for the incorporation of
likelihood values, costs and impacts of disruptions; these two types of analyses
are important components of a risk analysis. The utility of the attack-fault
tree model in movable swing bridge risk assessments is also discussed.

Jablonski et al. 53

Open

Failure

Opening

Open

Closed

Signal
Train

Repair

Signal
All-Clear

Closing

Close

f/a

f/a f/a

f/a

Figure 2. Finite-state machine model of a movable bridge.

This research has two main contributions. The first contribution is a thor-
ough security and safety analysis of a movable swing bridge using an attack-
fault tree model. Although the focus is on cyber attacks, physical attacks are
also considered because bridges, by their very nature, have open physical ac-
cess. The second contribution is the application of the attack-fault tree model
to a real-world system.

2. Functionality and Failures
This section presents a model of swing bridge functionality and potential

system failures. The discussion clarifies the risks of attacks and faults that
impact railroad swing bridge operations.

2.1 Functionality Model and Usage Scenarios
A swing bridge is considered to be open when the bridge is rotated parallel to

the navigable water traffic direction, enabling water traffic to flow and halting
overland traffic. The bridge is considered to be closed when it is aligned with
the overland tracks, halting water traffic while enabling overland traffic to flow.
These operational states and their transitions are modeled as a finite-state
machine shown in Figure 2. It is assumed that a railroad swing bridge is open
by default to favor water traffic, and is closed when needed to accommodate
passing trains.

When a bridge in the open state needs to transition to the closed state, an
operator signals a close request to the bridge control system. At this point,
marine craft are alerted via radio, lighting and/or alarms and given time to
steer clear of the bridge. Gates may be lowered to prevent the flow of overland
traffic. The control system also checks overland traffic control sensors to avoid

54 CRITICAL INFRASTRUCTURE PROTECTION XIII

unsafe operations. After all the sensor checks are completed, the drive system
mechanically walks the pinions around the curved rack, rotating the pivot pier
and bridge span 90 degrees. End lifts are then secured, wedges are pushed into
place (in the case of center bearing systems), the centering device is engaged
and the track is locked on both ends of the bridge [15].

The bridge is now closed, and lights and signals are used to inform operators
to permit overland traffic to flow. After overland traffic has passed over the
bridge for some time, the process is reversed to move the bridge back to the
default open state.

The functional use cases of a swing bridge are modeled as a Moore finite
state machine with four states – open, closing, closed and opening – as shown
in Figure 2. Failure states are introduced when the bridge is in these states or
transitioning between the states.

2.2 Classification of Failures
A movable swing bridge is a “binary dynamic and repairable system” [5]. It

is binary because its failures are modeled using Boolean variables, dynamic be-
cause the order of component failures impacts the system failures and repairable
because faulty, degraded and failed components can be replaced. According to
this classification, a swing bridge may also be in a failure state, which is defined
as a stopped and dysfunctional state, where it remains for a period of period
until repairs have occurred and normal functionality can resume. If the bridge
fails in the open or closed states, then the passage of overland or water traffic,
respectively, is halted.

3. Attack-Fault Tree for aMovable Swing Bridge
Attacks and faults can result in failure states. The swing bridge attack-fault

tree segments in Figures 3 and 4 show both types of failures in a single model.
As a top-down failure analysis formalism, an attack-fault tree is a directed
acyclic graph that analyzes the top-level safety or security goal and refines it
into smaller sub-goals. In the case of the bridge model, the top-level goal [G0]
is “prevent bridge movement,” which corresponds to the definition of failure.

An attack-fault tree comprises gates and leaves. Figure 5 shows the five
standard, dynamic fault tree gates: (i) AND. (ii) OR; (iii) FDEP (functional
dependency); (iv) SAND (sequential AND); and (v) SPARE (spare inputs).
The leaves in an attack-fault tree are either basic attack steps or basic com-
ponent failures, corresponding to attacks and faults, respectively. The leaves
are represented as stochastic timed automata (described later in this chapter).
Interested readers are referred to [16] for details about attack-fault trees and
their use in quantitative security and safety analyses.

It is assumed that a generic swing bridge uses programmable logic controllers
for control automation; wireless networks and manual overrides for intercon-
nections and operator control, respectively; an AC-powered electric motor and

Jablonski et al. 55
Pr

ev
en

t B
rid

ge

M
ov

em
en

t

M
ot

or

B
ra

ke
 S

tu
ck

M
ot

io
n

Sy
st

em

Fa
ilu

re

FD
EP

Po
w

er

Fa
ilu

re

G
ea

r
Fa

ilu
re

Su
pp

or
t

Sy
st

em

Fa
ilu

re

Po
w

er

Sy
st

em

M
al

fu
nc

tio
n

Ph
ys

ic
al

Po

w
er

Sy

st
em

A

tta
ck Po

w
er

C

om
po

ne
nt

D

am
ag

e

Po
w

er

Sy
st

em

A
cc

es
se

d

M
ec

ha
ni

ca
l

Sy
st

em

M
al

fu
nc

tio
n

Lo
gi

ca
l

D
riv

e
Sy

st
em

A

tta
ck

Ph
ys

ic
al

G

ea
r

Sy
st

em

A
tta

ck

Ph
ys

ic
al

A

cc
es

s
G

ai
ne

d

Ph
ys

ic
al

G

ea
r

D
am

ag
e

B
ra

ke

D
is

en
ga

ge

Pr
ev

en
te

d

Fa
ls

e
D

at
a

R
ep

or
te

d

C
on

tr
ol

le
r

A
dm

in
.

A
cc

es
s

G
ai

ne
d

Lo
gi

ca
l

B
ra

ki
ng

Sy

st
em

A

tta
ck

G
0

G
1

G
18

D
at

a
to

/fr
om

M

ot
or

 B
ra

ke

Sp
oo

fe
d

M
ot

or

O
pe

ra
tio

na
l

St
at

us

C
ha

ng
ed

FD
EP

G
ea

rb
ox

Fa

ilu
re

W
at

er

Se
ep

ag
e

Lu
br

ic
at

io
n

Is
su

es

G
25

G
31

G
32

G
38

G
33

G
26 G
27

G
20

G
34

G
40

G
22

G
24

G
23

G
28

G
35

G
37

G
36

G
30

G
29

G
46

G
45

G
44

G
41

G
43

G
42

G
47

G
53

G
39

O
ve

rlo
ad

O
ve

rw
ei

gh
t

Tr
ai

n
H

ea
vy

M

ai
nt

en
an

ce

Ve
hi

cl
es

G
78

G
79

G
80

C
om

m
s.

Fa

ilu
re

N
et

w
or

k
A

tta
ck

G
13

G
17

G
2

R
ad

io

Fa
ilu

re

SP
A

R
E Sp

ar
e

R
ad

io

Fa
ilu

re

G
14

G
15

G
16

G
5

Ph
ys

ic
al

A

cc
es

s
G

ai
ne

d

Ph
ys

ic
al

Li

nk
/

A
nt

en
na

D

am
ag

e

G
6

G
4

N
et

w
or

k
Fa

br
ic

A

cc
es

s
G

ai
ne

d

O
pe

ra
to

r
In

st
ru

ct
io

ns

Sp
oo

fe
d

N
et

w
or

k
Pr

ot
oc

ol

A
ut

h.

B
yp

as
se

d

C
om

m
s.

C

ha
nn

el

Ja
m

m
edM

es
sa

ge
s

In
je

ct
ed

G
10

G
12

G
11

G
9

G
8

G
7

SP
A

R
E

G
19

Po
w

er

O
ut

ag
e

G
en

er
at

or

Fa
ilu

re

�

 =
 4

.8
00

E-
2

G
21

G
3

M
ot

or
Fa

ilu
re

Sh
af

t
Fa

ilu
re

Sh
af

t
W

ea
r

C
ou

pl
in

g
D

eg
ra

de
d

A
N

D

G
50

G
48

G
49 G

51

FD
EP

G
52

M
ec

ha
ni

ca
l

Fa
ilu

re

M
ec

ha
ni

ca
l

Fa
ilu

re G
ea

r
W

ea
r

M
an

ua
l

O
ve

rr
id

e
Fa

ilu
re

Lo
gi

ca
l

A
tta

ck

Ph
ys

ic
al

A

tta
ck

O
p.

 C
om

m
s.

Fa

ilu
re

�

 =
 6

.0
72

E-
8

�

 =
 1

.5
2E

-8

Sh
af

t
D

eg
ra

de
d

�

 =
 1

.2
00

E-
3

�

 =
 1

.2
00

E-
3

�

 =
 8

.0
00

E-
4

�

 =
 1

.1
00

E-
3

�

 =
 2

.4
00

E-
4

�

 =
 1

.1
00

E-
3

�

 =
 2

.4
00

E-
4

�

 =
 2

.3
53

E-
5

�
 =

 2
.3

53
E-

5

�

 =
 2

.3
53

E-
5

�

 =
 3

.3
E-

4

�

 =
 1

.9
20

E-
4

�

 =
 4

.8
00

E-
4 W

ed
ge

s
Se

iz
edG

69

�

 =
 4

.8
00

E-
4

C
en

te
r

B
ea

rin
g

Se
iz

ed

G
68

SA
N

D

SA
N

D

SA
N

D
SA

N
D

SA
N

D

SA
N

D

SA
N

D

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R F

ig
ur

e
3.

A
tt

a
ck

-f
a
u
lt

tr
ee

fo
r

th
e

m
ec

h
a
n
ic

a
l
a
n
d

el
ec

tr
ic

a
l
su

b
sy

st
em

s.

56 CRITICAL INFRASTRUCTURE PROTECTION XIII

Prevent B
ridge

M
ovem

ent
G

0

G
1

Substructure
Failure

Pivot Pier
Failure

H
ydraulic/
Scour

C
orrosion

A
N

D

M
arine

Im
pactC

oncrete
Stress

H
azardous

M
aterials

Fendering
System

Failed

Pier
A

llision

C
hloride

Exposure
from

 W
ater

Train Spill

Fire
Train

C
ollision

Environm
ental

Forces

Earthquake
Storm

/
W

ind/
H

urricane

G
54

G
55

G
59

G
60

G
56

G
57

G
58

G
61

G
62

G
63

G
66

G
67

G
65

G
70

G
64

Physical
B

ridge
A

ttack

Physical
A

ccess
G

ained
Explosives

G
75

G
77

G
76

M
iter R

ails
not Locked

Sensors
Failed

Train
D

erailed

G
71

G
74

G
73

G
72

� = 4.16E-7

� = 5.62E-10

� = 5.62E-10

� = 5.62E-10

� = 4.644E-9

� = 4.644E-9

� = 1.493E-10

� = 9.953E-11

� = 4.977E-11

� = 3.288E-9

� =1.868E-9

� = 1.317E-8

SA
N

D
SA

N
D

SA
N

D

O
R

O
R

O
R

O
R

O
R

F
igure

4.
A

tta
ck

-fa
u
lt

tree
fo

r
th

e
su

p
erstru

ctu
re

a
n
d

su
b
stru

ctu
re

su
b
sy

stem
s.

Jablonski et al. 57

ORAND
FDEP SPARE

SAND

Figure 5. Attack-fault tree gates.

motor brake; a simple mechanical miter rail system that does not require sep-
arate electronic controls; and modern power systems.

Attacks or faults can take any one of the following five paths to realize the
top-level goal [G0]:

[G2]: Communications failures prevent local or remote operators from
moving the bridge.

[G32]: Stuck electric motor brake prevents bridge movement.

[G68]: Support system failure prevents the motion system from function-
ing.

[G54]: Substructure failure causes a major bridge outage.

[G64]: Pivot pier failure causes a major bridge outage.

Figure 3 shows paths [G2], [G32] and [G68]. Figure 4 shows paths [G54] and
[G64]. All five paths could result in [G0].

4. Movable Swing Bridge Components
This section describes the basic components and subsystems of a movable

swing bridge [15]. An overview of swing bridge subsystems is provided in order
to discuss the attacks and faults in the attack-fault tree. Certain basic attack
steps and basic component failures are highlighted during the discussion. Note
that swing bridges are falling out of style in favor of lift bridges because their
central piers cut waterways in half, which can prevent the passage of large
ships.

4.1 Superstructure and Substructure
A swing bridge superstructure consists of a pivot pier [G64], which is centered

in a navigable water channel (Figure 1). The pivot pier is typically fixed in
the middle of the rotating span, enabling it to remain balanced as it rotates.
Fires [G70], vehicular collisions [G74] and environmental forces [G66, G67] are
some of the primary causes of failures in a bridge superstructure system [6].
Additionally, between World War I and the Vietnam War, bridge destruction
[G76, G77] was an effective measure used by local populations to limit large
armed force movements into their territories [10].

A swing bridge substructure [G54], which includes the foundation for the
pivot pier (a round or square concrete base that vertically stretches above

58 CRITICAL INFRASTRUCTURE PROTECTION XIII

the water line), is designed to withstand horizontal loads and keep the bridge
centered. Hydraulics issues, such as bridge scour [G55] resulting from water
scooping out the soil and sediment that support the bridge pier, caused 60%
of complete bridge failures in the United States between 1950 and 1990 [6]. A
timber or crib fendering system [G57] is often installed to prevent ships from
striking the center pier or to guide them away from the pier. Allisions [G58]
that result from marine vessels striking the pier base are the second greatest
risk to the substructure and foundation of the bridge [6]. Concrete stress [G60]
causes cracks that could be further weakened by chloride from sea water [G62]
or by spills [G63].

4.2 Mechanical and Electrical Systems
This subsection describes the mechanical and electrical systems that work

together in modern swing bridge systems to control bridge movement. Potential
attacks and faults are also identified.

Support Systems. Modern swing bridges use mechanical bearing designs
from the mid-nineteenth century, such as the center bearing, rim bearing and
combined bearing designs. This research focuses on bearing systems because
they are the most common. A system that uses a center bearing [G53] has a
circular disk with a convex spherical surface fixed to the bottom of the pivot
pier, which supports the weight of the bridge while sitting on top of a fixed
convex disk on which the bridge rotates. When the bridge is rotated on top of
the disk, it moves along a circular track around the inside base of the pivot pier
that distributes the weight and balances the structure when the bridge turns;
this requires regular lubrication. Wedges [G69] or some other support system
are used to prop up the bridge when supporting live traffic loads; these often
require additional electro-mechanical components.

Drive Systems. The support system is rotated using a drive system [G52,
FDEP], which is engineered to reduce friction, limit the impact of resistance
during movement and reduce the amount of torque output generated by the mo-
tor. A shaft [G50] is used to connect the support system to the drive system; it is
generally connected to the rack and pinion system via a grid-type coupler [G50].
Additional force on the bridge span caused by overweight vehicles could result
in damage to a worn shaft or rack and pinion system [G79, G80]. Gear drives
[G40] may have open or enclosed gearing for rotating the shaft [G47, FDEP].
Possible gearbox faults are water seepage [G42] and poor lubrication [G43]. The
drive system [G31, FDEP] is powered by an electric motor [G27] that produces
the torque needed to drive the system. Motor brakes [G32, G38] are spring set
and electrically released.

The electric motor and electric brakes, which connect mechanical and electric
components [G18, G33] in the bridge system, could be exploited via logical or
physical attacks [G29, G30, G36, G37]. The electrical drive control system in a
modern movable bridge is designed to handle the sequencing of all the moving

Jablonski et al. 59

components to ensure proper bridge control. Programmable logic controllers
(PLCs) are connected to a control network that gives local and/or remote
operators the ability to instruct the bridge to open or close. Each electric
motor typically has a dedicated drive controller that controls variables such as
speed and torque for bridge rotation. The sequencing involves instructing the
networked drive controllers used to manage the electric motor(s) and motor
brake(s), controlling the bridge lighting and instructing interlocking system
actuators.

Local operators may open and close the bridge using radios [G15, G16] or a
control panel [G17] in the bridge operator’s house, which is generally located
in the middle of the swing bridge span. Remote network access is typically
provided via a wide-area network to a back office controlled by the transporta-
tion authority. A bridge without remote access is considered to be in “dark
territory.” Networked components [G2] in the bridge system could be attacked
logically [G8, G9, G11, G12] or physically [G5, G6] and should, therefore, be care-
fully designed and installed with security in mind.

Interlocking Systems. The rotational movement requires a separate in-
terlocking system that aligns the swing span with the connecting spans in order
to fully close the bridge. The interlocking system has three functions: (i) en-
sure that the opening bridge does not become unbalanced and remains stable;
(ii) ensure that the closed bridge does not become unbalanced due to a live
load; and (iii) center the bridge and ensure that it does not over-rotate. The
first two functions are performed by an end lift system, which relieves the dy-
namic stresses caused when the bridge begins to move and helps withstand the
static stresses caused by passing traffic when the bridge is closed. The third
function is performed by centering devices that ensure that the bridge does not
over-rotate in the horizontal plane.

After the bridge is in the proper horizontal position, the railroad tracks are
closed to enable a train to pass. Miter rails are most commonly used to lock
the tracks; they are lowered at the end of each side of the span via a joint when
the bridge is being locked into place and they are lifted when the bridge begins
to open. Depending on the bridge design, the interlocking system may have
electrical requirements similar to the drive control system.

Electrical Power System. Modern movable bridges are controlled by
solid-state electrical power systems that incorporate silicon-controlled recti-
fier (SCR) technology made up of power distribution panels, switches, circuit
breakers, fuses, ground fault relays, over-current protection relays, cabling, etc.
Specialized submarine cables run underwater to the center pier to bring power
to the operator’s house located in the swing span. Modern bridges use AC and
DC motors. Due to their complexity, power systems have the highest failure
rates [G20] of any swing bridge system [11]. Consequently, the American Rail-
way Engineering and Maintenance-of-Way Association (AREMA) mandates an
emergency auxiliary power supply such as a generator [G21].

60 CRITICAL INFRASTRUCTURE PROTECTION XIII

5. Quantitative Analysis Methodology
The quantitative analysis employed the UPPAAL Statistical Model Checker

(64-bit v4.1.19) [7] to transform the leaves of the attack-fault tree to stochastic
automata that simulate failures [16]. This section describes the automaton pa-
rameters for the basic attack steps (BAS) and basic component failures (BCF)
used in the simulation.

5.1 Attack Leaf Automata
Each basic attack step leaf in an attack chain is modeled as a stochastic timed

automaton. When an attack is activated, the attacker waits until (s)he is able to
afford a cost f to proceed. After the attacker proceeds, the attack is undetected
with probability w1/(w1 +w2) or detected with probability w2/(w1 +w2). The
attack stops if it is detected; otherwise, the attack is either ongoing or activated.
An ongoing attack is detected over time with an exponential probability rate
λ1 at a cost v per day to the attacker. An activated attack is detected over
time with an exponential probability rate λ at a cost v per day to the attacker.

After an attack is executed, it succeeds with probability p/(p+q) and causes
damage d to the bridge or the attack fails with probability q/(p + q). These
probabilities are based on the attacker’s skills, which are specified in an attacker
profile. The advantage of this approach is that it is possible to determine the
ratio of cost to the attacker against the damage done to the bridge.

Table 1 provides information about each basic attack step leaf in the attack-
fault tree segments in Figures 3 and 4. The w1 and w2 detection rates in the
table are configured to be high (discussed later in the What-If scenario). The
configuration assumes that detection occurs at a higher rate when an attacker is
attempting to gain access but at a lower rate after access is gained. The attack
labels and their categorizations as logical and physical attacks are relevant to
the attack profiles.

The security analysis modeled the attacks in UPPAAL using the As-Is and
What-If scenarios [16]. In the As-Is scenario, detection capabilities were elimi-
nated to establish a baseline for a successful attack based on an attacker profile.
In the What-If scenario, the w1 and w2 detection rates were set to high. This
enabled the determination of the effectiveness of the detection mechanisms at
preventing attacks.

5.2 Fault Leaf Automata
Exponential probability distributions with means λ are used to model the

failure rates, where the probability of a failure at time t is P (t) = 1 − e−λt. A
stochastic automaton is employed to simulate each basic component failure as
described in [16]. Each automaton has a λ-value that expresses the exponential
failure rate of the failing node (component). After a period of time, damage d
occurs to the system, which transitions to the failed state and sends a message to
a higher attack-fault tree gate that the component has failed. Each fault leaf in

Jablonski et al. 61

Table 1. Basic attack step leaf information.

Attack Label Path Type Description

Cut A1 [G5] → Physical [G5]: w1 = 60, w2 = 40, f = 20, v = 2,
Network [G6] d = 5, λ = 0.0011, λ1 = 0.0011

[G6]: w1 = 80, w2 = 20, f = 5, v = 1,
d = 50, λ = 0.00301, λ1 = 0

Jam A2 [G8] → Logical [G8]: w1 = 60, w2 = 40, f = 20, v = 2,
Network [G9] → d = 5, λ = 0.001188, λ1 = 0.001188
Comms. [G11] [G9]: w1 = 60, w2 = 40, f = 10, v = 1,

d = 50, λ = 0.0011, λ1 = 0.0011
[G11]: w1 = 80, w2 = 20, f = 10, v = 1,
d = 100, λ = 0.001, λ1 = 0

Inject A3 [G8] → Logical [G12]: w1 = 80, w2 = 20, f = 30, v = 2,
Packets [G9] → d = 250, λ = 0.001, λ1 = 0

[G12]

Cut A4 [G23] → Physical [G23]: w1 = 60, w2 = 40, f = 50, v = 3,
Power [G24] d = 100, λ = 0.00092, λ1 = 0.00092

[G24]: w1 = 80, w2 = 20, f = 10, v = 2,
d = 350, λ = 0.001, λ1 = 0

Stop A5 [G29] → Logical [G29]: w1 = 60, w2 = 40, f = 40, v = 3,
Drive [G30] d = 100, λ = 0.000596, λ1 = 0.000596

[G30]: w1 = 80, w2 = 20, f = 30, v = 2,
d = 500, λ = 0.0005, λ1 = 0

Tamper A6 [G29] → Logical [G36]: w1 = 80, w2 = 20, f = 40, v = 4,
with Brake [G36] d = 500, λ = 0.0005, λ1 = 0

Stop A7 [G29] → Logical [G37]: w1 = 80, w2 = 20, f = 25, v = 2,
Brake [G37] d = 500, λ = 0.0005, λ1 = 0

Break A8 [G45] → Physical [G45]: w1 = 60, w2 = 40, f = 20, v = 4,
Gear [G46] d = 5, λ = 0.0011, λ1 = 0.0011

[G46]: w1 = 80, w2 = 20, f = 40, v = 8,
d = 200, λ = 0.001092, λ1 = 0

Cause A9 [G76] → Physical [G76]: w1 = 65, w2 = 35, f = 50, v = 4,
Explosion [G77] d = 5, λ = 0.00037, λ1 = 0.00037

[G77]: w1 = 80, w2 = 20, f = 100, v = 10,
d = 5000, λ = 0.000178, λ1 = 0

Figures 3 and 4 has its own automaton and the gates are stepped through during
the UPPAAL simulation. Table 2 lists the sources of the λ-values corresponding
to the basic component failures. All the failure rates are eventually expressed
in terms of days so that the faults and attacks in the simulation have consistent
time units. Note that the MTBF acronym in Table 2 denotes the mean time
between failures.

62 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 2. Basic component failure leaf sources and computation notes.

Failures Source Computation Notes

[G15], [G16], [G17] — Assume MTBF is 20,000 hours based on a product
review

[G20], [G33] [11] Assume annual failure rate is 0.4

[G21] [14] Assume MTBF is 500 hours

[G27], [G38] [20] Assume failure rate is ten per million hours

[G40], [G42], [G43] [1] Assume MTBF is 40,000 hours based on L10 life
at the rated torque

[G50] [20] Assume failure rate is eight per million hours at a
15-year renewal interval

[G51] [20] Assume failure rate is 14 per million hours at a
15-year renewal interval

[G53] [20] Assume failure rate is 20 per million hours at a
15-year renewal interval

[G55], [G57], [G58], [6] Assume or derive an annual failure rate
[G66], [G67], [G70]
[G72], [G73], [G74]
[G79], [G80]

[G60], [G62], [G63] [8] Assume failure rate is 1.09 × 10−7 per year
based on concrete stress and corrosion data

[G69] — Assume failure rate is 20 per million hours

6. Attack-Fault Tree Analysis
Simulations were conducted to quantify the impacts of attacks and faults on

swing bridge operations. During each test, UPPAAL stepped through a number
of runs until the results became statistically significant (or insignificant) to
provide feedback on the results. A run was stopped and considered to be a hit
if the goal [G0] was reached within a specified time frame. If the time expired
before the goal [G0] was reached, then the run was considered to be a miss.
Statistical significance was assessed using 95% confidence intervals.

6.1 Critical Fault Path Analysis
The first set of simulations was conducted to analyze the probability of

disruption over time. Figure 6 shows the probabilities of disruption over time for
five scenarios. This helps identify the paths that result in maximum disruption
to the railroad bridge over a ten-year period. After one year, the Only Faults
scenario yielded a fault probability P (t ≤ 365) of 0.75. After two years, the

Jablonski et al. 63

0.00000

0.10000

0.20000

0.30000

0.40000

0.50000

0.60000

0.70000

0.80000

0.90000

1.00000

1 2 3 4 5 6 7 8 9 10
Time t (years)

Only Faults No Attack and Fault Detection

No Attack Detection Low Attack Detection Rate

High Attack Detection Rate

Figure 6. Probability of disruption at time t (95% confidence interval).

Only Faults scenario yielded a higher fault probability P (t ≤ 730) of 0.942.
Scenarios with No Attack Detection, Low Attack Detection Rate and High
Attack Detection Rate yielded two-year probabilities of 0.175, 0.147 and 0.0631,
respectively.

The next set of simulations sought to identify the critical path in the attack-
fault tree. This involved repeated simulations while disabling each basic com-
ponent failure leaf in the attack-fault tree for a one-year period, where the Only
Faults scenario yielded a fault probability P (t ≤ 365) of 0.75. After consider-
ing all the leaves, the percentage differences between the new results and the
baseline value were computed.

Table 3 shows the results for all the basic component failure leaves. The re-
sults demonstrate that the power-related leaves pose the greatest risk to bridge
failure. The G33 leaf corresponding to motor brake power failure yielded the
greatest difference of −25.200% at P (t ≤ 365) = 0.561, followed by G21 cor-
responding to generator failure with a difference of −21.730% and G20 corre-
sponding to power outage with a difference of −19.870%. Note that G20 and
G21 share the same critical failure path because the power generator should take

64 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 3. Fault disruption percentages measured for all leaves (0.750).

Leaf P(t ≤ 365) Difference Leaf P(t ≤ 365) Difference

G15 0.720 –4.000% G57 0.748 –0.270%
G16 0.693 –7.600% G58 0.734 –2.130%
G17 0.724 –3.470% G60 0.749 –0.130%
G20 0.601 –19.870% G62 0.716 –4.530%
G21 0.587 –21.730% G63 0.748 –0.270%
G27 0.702 –6.400% G66 0.758 1.070%
G33 0.561 –25.200% G67 0.728 –2.930%
G38 0.699 –6.800% G69 0.689 –8.130%
G40 0.718 –4.270% G70 0.749 –0.130%
G42 0.731 –2.530% G72 0.737 –1.730%
G43 0.724 –3.470% G73 0.724 –3.470%
G50 0.722 –3.730% G74 0.752 0.270%
G51 0.708 –5.600% G79 0.722 –3.730%
G53 0.697 –7.070% G80 0.735 –2.000%
G55 0.735 –2.000%

over in the event of a power failure. Generators are not built to last forever,
but they have low exponential failure rates (λ = 0.0042). This may indicate
a weakness in the model. Without some power system repair capabilities, the
purpose of having a backup power system is defeated if its uptime (reliability)
is less than the time between power failures.

6.2 Attacker Profile Analysis
Attacker profiles based on the attack-fault tree were created to evaluate

various strategies against simulated adversaries. In particular, three attacker
profiles were created to evaluate the effectiveness of adding security controls:

Nate: Nation state attacker; Budget = $10, 000 × 103; Success rate for
logical attacks p = 90%; Success rate for physical attacks p = 90%.

Mallory: Hacker; Budget = $5, 000×103; Success rate for logical attacks
p = 80%; Success rate for physical attacks p = 60%.

Chuck: External attacker; Budget = $3, 000×103; Success rate for logical
attacks p = 60%; Success rate for physical attacks p = 80%.

Table 4 compares the results obtained for the As-Is and What-If scenarios
by running the three attack profiles against the attack-fault tree over a ten-year
time period.

In the As-Is scenario, Nate had a 36% chance of conducting a successful
attack compared with 12.7% for Mallory and 10.2% for Chuck. Although Nate
spent twice as much money on average in conducting a successful attack in

Jablonski et al. 65

Table 4. As-Is versus What-If scenario results over ten years.

Nate Mallory Chuck

As-Is Scenario
Probability P (t ≤ 3, 650) 0.360 0.127 0.102
Mean Time E(t) (days) 828.469 606.163 410.418
Mean Cost E(cost) (103 dollars) 4,158.215 2,388.666 1,706.83
Mean Damage E(damage) (103 dollars) 1,066.595 1,058.763 442.77
Successful Attacks 133 22 14
Runs 371 182 150

What-If Scenario
Probability P (t ≤ 3, 650) 0.226 0.0454 0.0515
Mean Time E(t) (days) 982.201 628.984 971.847
Mean Cost E(cost) (103 dollars) 4,409.470 1,650.969 1,776.107
Mean Damage E(damage) (103 dollars) 1,361.609 752.78 670.127
Successful Attacks 65 4 5
Runs 287 88 97

the average case as Mallory ($4, 158.215 × 103 versus $2, 388.666× 103), they
caused roughly the same amount of average damage per attack ($1, 066.595×
103 versus $1, 058.763 × 103). This similarity suggests that logical attacks
were likely to be more successful because Mallory had a higher probability
of successful attacks. Meanwhile, Chuck spent an average of $1, 706.83 × 103

per successful attack, resulting in an average of $442.77 × 103 in damage per
successful attack. This also confirms that logical attacks are more likely to
occur given the resources because Chuck is more likely to succeed with physical
attacks. Time comparisons show that Nate (828.469 days) took longer on
average than Mallory (606.163 days) and Chuck (410.418 days).

In the What-If scenario, the detection values for w1 and w2 were reconfigured
as shown in Table 1. The percentages of successful attacks declined for Nate by
–37.22%, Mallory by –64.25% and Chuck by –49.51%, demonstrating the utility
of implementing detection mechanisms for all three attacker profiles. Nate’s
average time for attacks increased by 18.56% and cost increased by 6.04%,
but he presumably took greater risks with his additional resources because
the damage inflicted also increased by 27.66%. The simulation for Nate was
executed ten additional times and similar results were obtained, confirming that
the results were not anomalous. In contrast, Mallory saw an increase in the
average time required to conduct successful attacks of only 3.76%, but decreases
in cost of –30.88% and damage of –28.8%. Chuck saw a very large increase in
the average time required to conduct successful attacks of 136.79%, only a
slight increase in the average cost of 4.06%, but a large increase in damage of
51.35%. These results indicate that additional detection mechanisms would be
more useful against strictly logical attackers (Mallory) than adversaries who
are stronger at physical attacks (Nate and Chuck).

66 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 5. Analysis of attack disruptions measured against P (t ≤ 3, 650) = 0.341.

Attack P(t ≤ 3,650) Difference Attack P(t ≤ 3,650) Difference

A1 0.275 –19.365% A6 0.347 1.858%
A2 0.343 0.8072% A7 0.349 2.38%
A3 0.343 0.8072% A8 0.358 5.234%
A4 0.341 0% A9 0.339 –0.5234%
A5 0.330 –3.244%

6.3 Critical Attack Path Analysis
The observation that attackers with strengths in logical attacks may be

at a disadvantage influenced the identification of critical attack paths in the
attack-fault tree that might provide an explanation. This was accomplished
by re-executing the No Attack Detection scenario discussed in Section 6.1 with
Nate as the attacker.

The executions were configured to run for ten years without any detection
mechanisms in place. After running through a baseline test with all the basic
attack step leaves enabled, the differences in the new results with probability
P (t ≤ 3, 650) = 0.341 were computed.

Table 5 shows the results for all the attack paths. The physical attack A1,
which physically cut network links, is critical because it has the highest differ-
ence: a –19.365% drop in the probability of successful attacks. This explains
why physical attackers fared better in the What-If scenario. Upon applying
detection methods of similar strength to both logical and physical attacks, ad-
versaries who were stronger at physical attacks (Nate and Chuck) were still
able to increase the amount of damage caused. This was due to their ability to
perform attack A1 that cut bridge network links with higher success rates.

7. Related Work
Previous work [27] introduced the security and safety risks facing movable

railroad bridges and leveraged dynamic attack trees and fault trees to map
possible vulnerabilities. Two separate models, one involving security and the
other involving safety, were developed after researching control systems for a
specific swing bridge. The previous work also revealed that many of the attacks
and faults tended to overlap.

In contrast, the research described in this chapter integrates attacks and
faults in a single model. The integrated attack-fault tree model was recently
introduced by Kumar and Stoelinga [16], who used it to analyze a number of
example systems. However, this chapter describes the first real-world applica-
tion of the integrated attack-fault tree model, as well as the first application to
a bridge system.

Jablonski et al. 67

7.1 Historical Swing Bridge Failures
As discussed in the introductory section, data about swing bridge failures

is limited due to a variety of factors. This research began by compiling data
about swing bridge failures that was used to create the attack-fault tree.

The following additional information, categorized by the impacted swing
bridge subsystems, is highly relevant to the faults considered in the model:

Superstructure System: In 2014, a fire at a 104-year-old portal swing
bridge in New York City cut power to the bridge. The resulting 70-minute
outage delayed or cancelled 52 trains [17].

Substructure System: The Gasparilla Island Swing Bridge in Char-
lotte County, Florida was recently replaced because its concrete girders
from 1958 were structurally deteriorating, leading to high risks of fail-
ure due to storm surges and vehicular impacts [24]. Incident data about
bridge allisions by marine vessels is posted by the U.S. Coast Guard [26].

Support System: Older swing bridge center bearing designs are prone
to instability when the bridges are unbalanced. As a result, a number
of swing bridge renovation projects have been undertaken recently to
address the problem, including the Court Street Bridge in Hackensack,
New Jersey [3] and the East Haddam Swing Bridge in Connecticut [9].
In 2010, the Somerleyton Swing Bridge in Norfolk, England suffered a
catastrophic failure due to a bearing system failure [22].

Wedge faults have led to several prolonged swing bridge outages. In 2017,
degraded wedges impacted operations of the Little Current Swing Bridge
in Ontario, Canada [4]. In 2014, a complete wedge failure resulted in
significant downtime of the Walk Bridge in Norwalk, Connecticut [23].

Drive System: In 2010, a gearbox failure in the Whitby Swing Bridge in
North Yorkshire, England terminated bridge operations for one week [2].

Interlocking System: In 1996, Amtrak Train No. 12 derailed on the
Portal Bridge near Secaucus, New Jersey due to defective miter rails
[G72, G73, G74] [19]. In 2014, the Walk Bridge in Norwalk, Connecticut
was closed due to an interlocking problem with its miter rails [23].

Electrical System: An interesting story from 2002 about the Old Say-
brook Bridge is recounted in [21]. This bascule bridge had electrical
components dating back to its original design and construction in 1907.
Troubleshooting the failed electrical system was an extremely complex
task.

7.2 Rules and Regulations
Several rules and regulations govern the management of movable bridges in

the United States. The U.S. Coast Guard oversees movable bridge operations

68 CRITICAL INFRASTRUCTURE PROTECTION XIII

on navigable waterways. Organizations such as the American Association of
Railroads (AAR) and the American Association of State Highway and Trans-
portation Officials (AASHTO) promulgate national standards and requirements
for movable bridge construction, maintenance and inspection. In addition, the
following federal regulations govern movable bridge operations:

Movable Bridge, Interlocking of Signal Appliances with Bridge
Devices (49 CFR 236.312 [12]): This section specifies rules and re-
strictions governing the passage of trains over movable bridges.

Movable Bridge Locking (49 CFR 236.387 [13]): This section man-
dates that movable bridges shall be inspected once a year.

Bridge Lighting and Other Signals (33 CFR Chapter 1, Sub-
Chapter j, Part 118 [25]): This section mandates the lighting require-
ments required for signaling the status of movable bridge operations on
navigable waters.

8. Conclusions
Movable bridges have been used for hundreds of years, but they continue

to evolve in their designs and implementations. Numerous movable bridges
are being upgraded by automating and networking their components, which
adds a new layer of risk to these vital transportation infrastructure assets. The
research described in this chapter has leveraged the attack-fault tree model to
integrate the physical risks involved in operating railroad swing bridges in the
face of risks posed by physical attacks on bridge subsystems and cyber attacks
on control systems.

The attack-fault tree approach integrates attacks and faults in a single model
that supports the use of stochastic timed automata to identify the critical
failure paths for a movable swing bridge. In particular, the integrated model
reveals that physical network attacks and power faults are the best ways to
disrupt movable swing bridge operations. Moreover, by stepping through the
model, it was determined that superstructure and substructure system faults
are statistical anomalies as far as the integrated attack-fault model is concerned.
Thus, future research should focus on the attack surfaces and mechanical and
electrical system failures.

The principal conclusion of this research is that the attack-fault tree ap-
proach is effective at identifying critical attack and fault paths at a high level.
However, the swing bridge analysis reveals that the model falls short in some
ways. In the case of a swing bridge, many faults can only occur only while
the bridge is moving and other faults can occur only when the bridge is closed.
The state of the system is, therefore, important, but the attack-fault tree model
does not take the system state into account. For example, components such as
electric motors and gears have failure rates that are established only when the
system is in use. A movable bridge is in motion only for a few minutes at a time
and these components spend the majority of their time at rest. Additionally,

Jablonski et al. 69

the attack-fault tree allows for the incorporation of attack chains, but it does
not necessarily consider the specific system configurations included in previous
attack tree models. The attack-fault tree model also abstracts security con-
trol solutions as simple detection mechanisms, which reduces its applications
in real-world environments.

Note that the views and opinions expressed herein are those of the authors
and do not necessarily state or reflect the views and opinions of the Federal
Railroad Administration or U.S. Department of Transportation, and shall not
be used for advertising or product endorsement purposes.

Acknowledgements
This research was supported by Grant No. DTFR5317C00018 from the Fed-

eral Railroad Administration, U.S. Department of Transportation. The authors
thank Mr. Francesco Bedini Jacobini and Mr. Jared Withers from the Federal
Railroad Administration for their advice and assistance.

References

[1] G. Antony, How to determine the MTBF of gearboxes, Power Transmis-
sion Engineering, pp. 32–37, April 2008.

[2] BBC News, Swing bridge reopens in Whitby after gearbox failure, July 30,
2010.

[3] L. Burgos, Machinery rehabilitation of the Court Street Bridge over the
Hackensack River, Hackensack, New Jersey, presented at the Heavy Mov-
able Structures Fourteenth Bienniel Symposium, 2012.

[4] CBC News, Delays at swing bridge in Little Current due to repairs says
MTO, July 7, 2017.

[5] P. Chaux, J. Roussel, J. Lesage, G. Deleuze and M. Bouissou, Towards
a unified definition of minimal cut sequences, Proceedings of the Fourth
IFAC Workshop on Dependable Control of Discrete Systems, paper no. 1,
2013.

[6] W. Cook, Bridge Failure Rates, Consequences and Predictive Trends,
Ph.D. Dissertation, Department of Civil and Environmental Engineering,
Utah State University, Logan, Utah, 2014.

[7] A. David, K. Larsen, A. Legay, M. Mikucionis and D. Poulsen, UPPAAL
SMC tutorial, International Journal on Software Tools for Technology
Transfer, vol. 17(4), pp. 397–415, 2015.

[8] C. Davis-McDaniel, Fault-Tree Model for Bridge Collapse Analysis, M.S.
Thesis, Department of Civil Engineering, Clemson University, Clemson,
South Carolina, 2011.

[9] J. DeWolf, History of Connecticut’s Short-Term Strain Program for Eval-
uation of Steel Bridges, Report No. CT-2251-F-09-6, Connecticut Depart-
ment of Transportation, Storrs, Connecticut, 2009.

70 CRITICAL INFRASTRUCTURE PROTECTION XIII

[10] H. Douthit, The Use and Effectiveness of Sabotage as a Means of Uncon-
ventional Warfare – An Historical Perspective from World War I through
Viet Nam, M.S. Thesis, School of Systems and Logistics, Air Force Insti-
tute of Technology, Wright-Patterson Air Force Base, Ohio, 1987.

[11] R. Eacker and M. Bardsley, Electrical reliability analysis for transit ap-
plications, Proceedings of the ASME/IEEE Joint Railroad Conference, pp.
81–88, 2002.

[12] Federal Railroad Administration, Code of Federal Regulations, Title 49,
Section 236.312 – Movable Bridge, Interlocking of Signal Appliances with
Bridge Devices, Department of Transportation, Washington, DC, 2018.

[13] Federal Railroad Administration, Code of Federal Regulations, Title 49,
Section 236.387 – Movable Bridge Locking, Department of Transportation,
Washington, DC, 2018.

[14] G. Hansen, E. Frame and E. Sattler, Generator Set Durability Testing, In-
terim Report TFLRF No. 419, U.S. Army TARDEC Fuels and Lubricants
Research Facility, Southwest Research Institute, San Antonio, Texas, 2012.

[15] T. Koglin, Movable Bridge Engineering, John Wiley and Sons, Hoboken,
New Jersey, 2003.

[16] R. Kumar and M. Stoelinga, Quantitative security and safety analysis
with attack-fault trees, Proceedings of the Eighteenth IEEE International
Symposium on High Assurance Systems Engineering, pp. 25–32, 2017.

[17] P. McGeehan, 104-year-old portal bridge presents �900 million problem for
rail commuters, The New York Times, September 25, 2014.

[18] S. Morgan, Burlington Northern Railroad Bridge 9.6, Wikipedia (en.wiki
pedia.org/wiki/Burlington_Northern_Railroad_Bridge_9.6#/media
/File:BNSF_Bridge_9.6_swing_span_turning.jpg), June 25, 2011.

[19] National Transportation Safety Board, Derailment of Amtrak Train No.
12 and Sideswipe of Amtrak Train No. 79 on Portal Bridge near Secaucus,
New Jersey, November 23, 1996, Railroad Special Investigation Report,
Notation 6813B, Washington, DC, 1996.

[20] Naval Surface Warfare Center (Carderock Division), Handbook of Reli-
ability Prediction Procedures for Mechanical Equipment, West Bethesda,
Maryland, 2010.

[21] P. O’Neill and A. Ostrovsky, Failure and quick recovery of movable bridge
on the Acela Line, presented at the Heavy Movable Structures Ninth Bi-
ennial Movable Bridge Symposium, 2002.

[22] M. Rimmer, Somerleyton Swing Bridge, Report by Waterways Strategy
Officer, Navigation Committee, 2 September 2010, Agenda Item No. 8,
Broads Authority, Norwich, United Kingdom, 2010.

[23] Short Term Action Team, Connecticut DOT BR. NO. 04288R Walk Bridge
over Norwalk River, Norwalk, Connecticut, Emergency Repair and Reli-
ability Report FINAL July 17, 2014, Connecticut Department of Trans-
portation, Newington, Connecticut, 2014.

Jablonski et al. 71

[24] H. Sinson, Gasparilla Island Swing Bridge replacement, presented at the
Heavy Movable Structures Sixteenth Biennial Movable Bridge Symposium,
2016.

[25] United States Coast Guard, Code of Federal Regulations, Title 33 – Nav-
igation and Navigable Waters, Washington, DC, 2010.

[26] United States Coast Guard, Homeport, Washington, DC (homeport.uscg.
mil), 2019.

[27] Y. Wang, M. Jablonski, C. Yavvari, Z. Wang, X. Liu, K. Holt and D. Wije-
sekera, Safety and security analysis for movable railroad bridges, presented
at the ASME Joint Rail Conference, 2019.

Chapter 4

CONVERTING AN ELECTRIC POWER
UTILITY NETWORK TO DEFEND
AGAINST CRAFTED INPUTS

Michael Millian, Prashant Anantharaman, Sergey Bratus, Sean Smith
and Michael Locasto

Abstract This chapter proposes a roadmap that employs secure parsers to elimi-
nate the possibility of input-handling vulnerabilities in industrial control
systems. Industrial control systems are responsible for maintaining the
integrity of power grids. Complex communications networks constitute
the backbones of these systems. Communications in industrial control
networks must be processed correctly and they should not crash devices
or enable attackers to access networked devices. Language-theoretic
security is the practice of comprehensive input handling using secure
parsers. This chapter demonstrates that the existing collection of secure
parsers for industrial control protocols can cover the communications
needs of industrial control networks. It discusses the merits of guard-
ing industrial control networks using secure parsers, proposes a triage
procedure for implementation and summarizes the security benefits and
lessons learned.

Keywords: Industrial control networks, input handling, language-theoretic parsers

1. Introduction
Industrial control systems are increasingly connected to the Internet, either

directly or via connections to Internet-connected devices. Industrial control
protocols are used to interact with actuators and sensors that help operate im-
portant infrastructure assets such as the power grid. The risks posed by the
cyber-physical nature of industrial control devices coupled with their network
connectivity render the task of securing industrial control network communi-
cations a very high priority.

The principal goal of this research is to eliminate input-handling vulnerabil-
ities in industrial control networks. Input-handling vulnerabilities are a class of

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 73–85, 2019.

https://doi.org/10.1007/978-3-030-34647-8_4

https://doi.org/10.1007/978-3-030-34647-8_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_4&domain=pdf

74 CRITICAL INFRASTRUCTURE PROTECTION XIII

vulnerabilities with a long history and many modern examples [5–7, 19]. Pre-
vious work has shown that industrial control networks are not immune to these
vulnerabilities – between 2013 and 2014 alone, more that 30 input-handling
vulnerabilities were discovered in implementations of the DNP3 protocol in
industrial control devices [2].

However, eradicating input-handling vulnerabilities presents some challenges.
First, while a language-theoretic security approach has been applied to build
secure parsers for industrial control protocols, the results have thus far been
limited to academic research as opposed to production systems. Indeed, the
adoption of these protocol implementations in real systems has been minimal.
This research attempts to address the issue by clarifying the benefits and ex-
plaining how to use secure parsers.

In particular, a notional architecture of an industrial control network that
employs secure parsers is presented. The notional architecture is a general
network model that incorporates the components found in industrial control
networks. The model loosely maps a real-world network without being tied to
a single utility. It is shown that secure parsers cover the communications edges
of this model. Indeed, all communications can be guarded using these parsers.

The second challenge is that industrial control networks employ a large vari-
ety of protocols. Securing a protocol implementation requires a careful exami-
nation of the protocol specification. Device manufacturers often subset or fork
existing protocols, resulting in new protocols that must be analyzed thoroughly.
Device manufacturers also implement proprietary protocols that significantly
complicate protocol analysis. To address this challenge, best practices are pro-
posed for creating new parsers and for subsetting or forking existing protocols.

The third challenge is updating industrial control devices. Because these
devices perform vital operations, taking them offline or interrupting their ability
to communicate are not viable options. Nevertheless, protocols that contain
unsafe features must be made to meet language-theoretic security standards.
This is accomplished by employing a triage procedure that enables industrial
control devices to continue to operate during the transition.

The proposed approach focuses on subsetting existing industrial control pro-
tocols. A subset of a protocol is just the protocol with certain messages ex-
cluded. For example, an opcode is removed if the payload for the opcode is un-
safe. No features are added to a protocol; rather, unsafe features are removed.
As a result, all the industrial control devices that understand a protocol can
understand the safe subset of the protocol.

2. Background and Prior Work
Input-handling vulnerabilities have plagued networked systems since their

creation. Several well-known bugs – Heartbleed [6], Shellshock [18], Rosetta
Flash [17] and Apple’s goto bug [5] – involve input-handling vulnerabilities.
Any program that accepts inputs must validate the inputs holistically to ensure
that they comply with the protocol specifications. An input-handling vulnera-
bility stems from a protocol violation. Typically this is due to a programmer

Millian et al. 75

error, such as forgetting to check a condition. Sometimes, an input-handling
vulnerability may arise not from a protocol violation per se, but from a deeper
flaw in the protocol.

Many bugs have parsing errors at their root. Some work has been done to
demonstrate this in specific domains (e.g., USB [12]), but no large-scale effort
has been expended to label all parsing bugs as such. Another domain-specific
work found more than 30 input-handling vulnerabilities in DNP3 protocol im-
plementations [2]. In fact, only a few implementations were found to be free
of vulnerabilities. They were immune because they employed very constrained
subsets of DNP3 that significantly reduced their attack surfaces. This result
supports the position that protocol subsetting can eliminate input-handling
vulnerabilities.

The impacts of input-handling vulnerabilities range from device crashes to
attackers gaining access to networks. Heartbleed enabled attackers to exfiltrate
data; Apple’s goto bug allowed man-in-the-middle attacks; Shellshock gave at-
tackers direct access to systems. Given the ubiquity of input-handling vulner-
abilities, it is imprudent to believe that industrial control networks, protocols
and devices are immune to input-handling vulnerabilities. Device crashes may
pose mild threats in information technology environments. Not so in industrial
control networks where device crashes can disrupt critical infrastructure assets.
Without question, it is imperative to ensure that industrial control networks
are rendered immune to input-handling vulnerabilities.

2.1 Language-Theoretic Security
Language-theoretic security postulates that all inputs received by a program

must be validated in their entirety by a parser developed from a formal grammar
before any and all uses of the inputs by program internals. A program that
receives an unanticipated input could be driven to a state that its developers
did not anticipate. A language-theoretic-security-hardened parser ensures that
input validation code is explicitly and clearly based on a formal grammar, that
the validation code is logically separate from the code that processes the inputs,
and that a program can never operate on inputs that have not been verified
exhaustively. There is no room for inputs that are “almost correct” because
these inputs cannot be meaningfully distinct from malicious crafted inputs.

In this work, a language denotes a set of allowed inputs. A protocol is
specified using a grammar, a set of production rules that create the inputs that
constitute the language. A parser is an implementation of the protocol in code.

A parser combinator is employed to construct a parser in a manner that
clearly and explicitly represents the protocol. It is a toolkit or framework that
produces code that visually resembles the formal grammar instead of multiple
if-statements that check conditions. Parser combinators dramatically reduce
the possibility of programmer errors (e.g., forgetting to check a condition).

In this research, the Hammer parser combinator tool [16] was used to imple-
ment parsers. Hammer was developed with a security focus, which is measured
against the Chomsky hierarchy that classifies languages according to their com-

76 CRITICAL INFRASTRUCTURE PROTECTION XIII

plexity [3]. The language classes range from regular expressions that are recog-
nized/generated by finite state automata to recursively-enumerable languages
that are recognized/generated by Turing machines. Note that regex tools in
Perl, Python and JavaScript are actually more complex than regular expres-
sions. Grammars that are deterministic-context-free or simpler are considered
safe; this limit is discussed by Momot et al [14]. Parser combinator toolkits
are useful for building parsers for binary protocols and for specifying byte-level
constraints about languages. They also provide a way to represent top-down
grammars. The Hammer tool parses inputs into abstract syntax trees.

2.2 Industrial Control Systems Security
Industrial control systems differ from traditional information technology sys-

tems and, consequently, require different security approaches. Industrial con-
trol networks interact with physical devices such as sensors and actuators using
short messages with extremely low latency. In contrast, information technol-
ogy networks transfer data using much larger packets with longer latency. Ad-
ditionally, industrial control networks are typically deeper than information
technology networks.

Much work has focused on ensuring the security of industrial control systems
and networks. The prevailing security paradigm is defense-in-depth where se-
curity features and tools are added at each layer of the system or network to
provide compound protection against external threats [8].

This research leveraging secure parsers complements the defense-in-depth
model. Industrial control systems were originally designed for isolated, local
use of analog equipment. Over the years, industrial control networks have been
upgraded to support automation and remote access. New connections and
capabilities pose new threats that industrial control systems were not designed
to handle. The proposed approach is fundamentally about ensuring message
security during the protocol design phase. It may require modifications of
existing protocols if they do not meet the complexity-limitation requirements
for security. Because protocol complexity is restricted rather than increased, the
proposed approach dovetails with current defense-in-depth strategies. Existing
security measures do not have to be replaced, they can work in concert with
the proposed approach. Indeed, the approach can be used at every level of
the defense-in-depth model to increase the security claims at a given level and
between levels.

3. Notional Architecture
This section presents a notional architecture for a language-theoretic-secu-

rity-compliant industrial control system at a utility. The notional architecture
contains the general elements and components of a real-world network in an
abstract representation that is not tied to a single utility.

First, the types of devices encountered in an electricity utility are specified,
including the devices that are expected to communicate directly and the pro-

Millian et al. 77

Figure 1. Purdue model architecture (adapted from [11]).

tocols they use for communications. Next, it is shown how secure parsers can
provide coverage of the communication needs in the model such that all the
communications can be guarded by the parsers.

Figure 1 shows the Purdue model architecture [11], which is annotated with
the various paths that an attacker could use to access the industrial control
network. The Purdue model has six levels: (i) enterprise network (level 5);
(ii) business planning and logistics network (level 4); (iii) site manufacturing
operations and control (level 3); (iv) area control (level 2); (v) basic control
(level 1); and (vi) process devices (level 0). The levels are divided into several
zones, where a zone corresponds to large-scale interconnectivity. Implementing
clear boundaries between the zones is a best practice for enforcing multiple
layers of defense.

This research focuses mainly on levels 2 through 0, which is called the cell
security zone or the SCADA (supervisory control and data acquisition) zone.
This zone comprises devices found in an electricity substation as well as devices
that are directly involved in managing the substation. Level 2 is concerned with
monitoring and controlling physical devices. The devices in this level include
control center operation workstations, human-machine interfaces (HMIs), engi-
neering workstations, security event collectors, operations alarm systems, com-
munications front ends, data historians and network/application administrator
workstations. Level 1 is concerned with sensing and manipulating physical
devices. Devices in this level include dedicated operator workstations, pro-
grammable logic controllers (PLCs), control processors, programmable relays,
remote terminal units (RTUs) and process-specific microcontrollers. Level 0
contains physical devices such as sensors, actuators, motors, process-specific
automation machinery and field instrumentation devices [13].

78 CRITICAL INFRASTRUCTURE PROTECTION XIII

Figure 2. Notional architecture.

During the research, several real and development networks in the SCADA
zone were examined. These networks are considered critical infrastructure as-
sets, so detailed information about their network topologies cannot be pub-
lished. In any case, large variances were observed in device types and layouts
from substation to substation. Thus, it has been possible to develop a notional
architecture that is not based on a single utility.

Figure 2 shows the notional architecture that is derived from previous mod-
els [10, 11, 20] as well as from real and development networks. The architecture
is designed to be as generic as possible while still maintaining its utility.

The generic architecture enables the expression of coverage by focusing on
a small set of protocols used at the edges (e.g., RTU-RTU, RTU-HMI and
control-center-substation) without too much concern about the actual device
models. While there are many protocols for a given edge (e.g., RTU-HMI),
the notion of coverage means that at least one of the protocols is handled and,
therefore, it is feasible to add the protection. Vendor-specific protocols exist,
but many vendors provide devices that can handle multiple protocols (i.e.,
standard languages), so this concept of coverage is practical. Using popular
protocols allows easier integration in existing ecosystems. The set of popular

Millian et al. 79

protocols considered in this work was determined using informal as well as
published surveys [10].

4. Analysis
This section discusses the coverage provided by secure parsers and their

benefits and trade-offs.

4.1 Protocol Coverage
At this time, the authors of this chapter have implemented secure input

handling for the DNP3, MMS (Manufacturing Message Specification), Modbus,
IEC 61850-8-1 (GOOSE), IEEE C37.118 [1], SEL Fast Message, HTTP and
Telnet protocols. This section discusses how this selection of protocols offers
adequate coverage of industrial control network communications needs.

DNP3, MMS and Modbus are the de facto industry communications stan-
dards. These protocols allow for communications between the human-machine
interface of a master station and remote terminal units, programmable logic
controllers and intelligent electronic devices (IEDs). SEL Fast Message is a
vendor-specific protocol for SEL devices that handles much of the same com-
munications. GOOSE is used to broadcast or multicast event data fast and
reliably in substations; GOOSE messages have a maximum latency of 4ms.
IEEE C37.118 is used to transmit phasor data over wide-area networks. HTTP
and Telnet are used for communications between workstations and for config-
uring devices.

To reiterate, communications from level 2 downwards are covered by the
popular DNP3, MMS and Modbus protocols as well as by the vendor-specific
SEL Fast Message protocol. Level 1 substation/physical devices are covered
by the GOOSE and IEEE C37.118 protocols. Finally, workstation-workstation
communications are covered by HTTP and Telnet. By implementing parsers
for these industrial control system protocols, a large degree of protection is
provided for the majority of low-level (Purdue model) operational technology
traffic in most industrial control networks. In particular, secure parsing is pro-
vided for the protocols that are responsible for manipulating physical devices,
a task that has very high priority.

4.2 Benefits
The major benefit in using a parser combinator tool is the possibility of

producing provably-correct code. A programmer implementing a parser should
not have to worry about the correctness of a combinator just like a programmer
typically does not worry about the correctness of a compiler.

Proofs of correctness of the combinators in Hammer remain to be done.
However, as far as this work is concerned, only two possibilities exist – either
every combinator is correct or there are bugs in one or more combinators. If
a bug is found in a combinator, it can be corrected without having to rewrite

80 CRITICAL INFRASTRUCTURE PROTECTION XIII

the parsers built using the combinator (although they would have to be recom-
piled using the updated combinator library). This is because each combinator
performs a function that is fully understood under formal computational the-
ory, so the function signature of each combinator is set, only the internals may
change. After this proof work is complete, every secure parser built with these
combinators immediately derives the full benefits of provable security.

The other benefit of the parser combinator is that it reduces the effort un-
dertaken by the programmer who works on a parser. A key observation is
that attention should be paid to match the complexity of the parser to the
complexity of the protocol and this attention must be baked in during develop-
ment and implementation. Traditional parser programming involves a number
of if-statements that check conditions. It is easy to miss a condition – as in
Heartbleed and Apple’s goto bug. However, even when a fix is provided, it is
still difficult to compare the new parser against the protocol and demonstrate
that they match completely [14].

Using a parser combinator simplifies the comparison task, and thus decreases
the likelihood of errors, and simplifies the implementation of fixes should er-
rors occur. A parser combinator tool produces code that visually matches the
structure of the grammar, rendering the verification of equality trivial. Fur-
thermore, a tool like Hammer does not have combinators that would allow the
programming of complex constructions such as Turing machines. If a program-
mer cannot implement a protocol feature using a parser combinator, then it
is an indication that, perhaps, the feature is unsafe and that a subset of the
protocol without the feature should be used. Ideally, this practice of subsetting
protocols leads to protocols being designed without unsafe features.

The end result of using a parser combinator is a parser that only accepts
messages in the protocol specification. The task of implementing protocols
safely can thus be broken down to designing protocols and designing parser
combinator tools.

Previous work with DNP3 has demonstrated the practicality of the approach
for industrial control system protocols [2]. Implementing the DNP3 parser re-
vealed that the specification mentions that the transport layer payload contains
at least one byte, but that a zero-length application layer message would cause
unhandled exceptions in certain implementations. Each protocol that was im-
plemented contained such features, which were usually handled by if-checks in
the parser. The language-theoretic security approach to parser construction
considers such packet structure features when writing the parser, significantly
decreasing the likelihood that a check is omitted.

4.3 Trade-Offs
The major trade-off that comes with a language-theoretic-security-based

parser is the need to subset a protocol when inherently unsafe features are
discovered. The cost associated with this modification is the possibility that
network devices regularly or occasionally transmit messages using the unsafe
features. Experience has shown that such messages are a small, if any, fraction

Millian et al. 81

of actual traffic. However, there are situations where the trade-offs could be
greater depending on the use cases.

Maintaining unsafe protocol features is dangerous. Unsafe features most
often relate to message format as opposed to message content, especially in
the case of industrial control networks. Of course, it may be necessary to use
certain kinds of messages and there are always development costs involved in
making changes. However, the real costs arise from the risks of an attacker
crashing devices, exfiltrating data or seizing control of devices.

5. Triage Procedure
This section discusses the roadmap for incorporating language-theoretic-

security-hardened parsers in industrial control networks so that electric util-
ities may realize the security benefits. The roadmap involves a three-step plan
for engaging with utilities and vendors. The first step is to develop the secure
parsers and incorporate them on a per-device basis in a laboratory setting. The
second step is to create a virtual substation in the laboratory. The third step is
to work with utilities and vendors to replace parser implementations in device
firmware via their product refresh cycles.

5.1 Protocols and Devices
The first step is to write and test parsers for industrial control protocols.

At this time, parsers have been implemented for eight protocols: DNP3, MMS,
Modbus, IEC 61850-8-1 (GOOSE), IEEE C37.118, SEL Fast Message, HTTP
and Telnet. Accomplishing this task in full requires the complete list of proto-
cols used by utilities.

For each protocol of interest, the protocol specification is obtained and a
secure parser is written and tested. At first, parser testing is performed using
a bump-in-the-wire implementation. A key requirement is to ensure that the
messages passed by each parser allow normal device operations.

However, some inherent difficulties exist. Obtaining documentation for in-
dustrial control protocols can be difficult. Many protocol specifications have to
be purchased – their costs range from a few hundred dollars to several thousand
dollars. A protocol specification may not cover the complete protocol; some
protocols import other protocols to leverage existing work and offset the design
burden (e.g., data encoding formats and protocol data units). The specifica-
tions of these embedded protocols might also have to be purchased.

Another challenge is that there is neither uniformity nor good practice when
it comes to describing a protocol. Some specifications are all prose and the
developer must create the protocol grammars. Even worse are situations where
the specifications include state machines or grammars, but their functionalities
do not match the prose [2]. This causes divergent implementations depending
on how closely the developer reads the documentation. Until protocol specifi-
cations improve, close readings of the available specification are essential.

82 CRITICAL INFRASTRUCTURE PROTECTION XIII

When a protocol has unsafe features, the correct subset of the protocol
has to be determined before a parser can be developed. An example of an
unsafe feature is nested length fields. Inclusion of nested length fields requires
inner length agreement (e.g., the inner length should not exceed the outer
length). This constraint cannot be described purely in terms of packet structure
using a context-free language because it requires complete parsing of the outer
and inner fields to determine agreement. If adherence to the protocol is not
maintained by the packet structure of the packet, but left to after-the-fact
checks, it is common for one or more checks to be forgotten [5, 6].

After the parsers are written and tested as bump-in-the-wire implementa-
tions to ensure that devices can operate as required, the native parsers must
be replaced with security parsers on a per-device basis. This action is required
because industrial control protocols have maximum latency requirements and
parsing every message twice can be expensive. Incorporating a secure parser
as the native parser provides security benefits beyond traditional intrusion de-
tection. Intrusion detection systems have difficulty providing insights into en-
crypted messages, but every message must be decrypted and parsed. Thus,
incorporating secure parsers as the only native parsers in a device adds precise
security properties.

5.2 Virtual Substation
After implementing the full range of parsers for industrial control protocols

and incorporating them in devices, the next step is to create and operate a
virtual substation with hardened devices in a laboratory environment. Before
deploying the parsers in real critical infrastructure assets, it is necessary to
guarantee that the individual devices and the consequences on a network with
these devices operating under normal and stress conditions are well understood.

The virtual substation would be a fully-functioning substation that runs
in parallel with real-world networks but does not affect the operation of the
networks. It could accept real-time data or replayed captures and would operate
real or simulated devices. Developers would conduct analyses to ensure correct
operations of the virtual substation with no risk to the larger network.

This step can motivate hardened devices via the list of vulnerabilities that
the parsers would prevent. It would also demonstrate to utilities and vendors
that hardened devices are viable in operational environments.

5.3 Deployment
The final step involves field deployments of the hardened devices. This step

must address all the real-world constraints that were not considered in the
previous two steps. In particular, industrial control networks are slow to incor-
porate changes and the changes made may be expected to last for decades. Nev-
ertheless, existing refresh cycles can be leveraged to push language-theoretic-
security-based parsers to devices in the form of firmware updates.

Millian et al. 83

5.4 Current Status
The project is currently in the first step in the roadmap. Eight protocol

parsers have been developed and tested as bump-in-the-wire implementations
in confidential field trials [9]. Parsers for a proprietary JSON-based protocol
have also been incorporated in General Electric devices [15].

The parsers will be made available as open source or under similar licenses.
Instead of each developer having to implement a parser to read input in a spe-
cific format, the project goal is to create a standard library for each parser. It
would be very useful if the crypto-idiom “don’t roll your own crypto” could be
extended to parsers – “don’t roll your own parsers.” The number of vulnera-
bilities that have arisen from poor parser code supports this point of view.

Code for the DNP3 and C37.118 parsers is available on GitHub [4]. The
remaining parsers will be added to the master repository in the near future.

6. Conclusions
This chapter has presented the design and implementation of an industrial

control network that exclusively employs language-theoretic-security-compliant
parser implementations. The collection of secure parsers for industrial control
protocols cover the communications needs of industrial control networks while
eliminating input-handling vulnerabilities that could be exploited by denial-of-
service and remote code execution attacks. The roadmap described in this chap-
ter describes how electric utilities could deploy the security-hardened parsers in
their industrial control networks via standard product refresh cycles, reaping
the associated security benefits in a cost-effective manner.

Any opinions, findings, conclusions or recommendations expressed in this
chapter are those of the authors and do not necessarily reflect the views of the
U.S. Air Force, DARPA, United States Government or any agency thereof.

Acknowledgement
This research was supported by the U.S. Air Force and DARPA under Con-

tract No. FA8750-16-C-0179 and by the U.S. Department of Homeland Security
under Award No. DE-OE0000780.

References

[1] P. Anantharaman, K. Palani, R. Brantley, G. Brown, S. Bratus and S.
Smith, PhasorSec: Protocol security filters for wide-area measurement sys-
tems, Proceedings of the IEEE International Conference on Communica-
tions, Control and Computing Technologies for Smart Grids, 2018.

[2] S. Bratus, A. Crain, S. Hallberg, D. Hirsch, M. Patterson, M. Koo and S.
Smith, Implementing a vertically-hardened DNP3 control stack for power
applications, Proceedings of the Second Annual Industrial Control System
Security Workshop, pp. 45–53, 2016.

84 CRITICAL INFRASTRUCTURE PROTECTION XIII

[3] N. Chomsky, Three models for the description of language, IRE Transac-
tions on Information Theory, vol. 2(3), pp. 113–124, 1956.

[4] Dartmouth’s PKI/Trust Lab, C37.118PMU and dnp3, GitHub (github.
com/Dartmouth-Trustlab), 2018.

[5] P. Ducklin, Anatomy of a “goto fail” – Apple’s SSL bug explained, plus an
unofficial patch for OS X! Naked Security (nakedsecurity.sophos.com/
2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-p
lus-an-unofficial-patch), February 24, 2014.

[6] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N.
Weaver, D. Adrian, V. Paxson and M. Bailey, The matter of Heartbleed,
Proceedings of the Internet Measurement Conference, pp. 475–488, 2014.

[7] J. Freeman, Exploit (& fix) Android “master key,” The Realm of the Avatar
Blog (www.saurik.com/id/17), 2013.

[8] B. Galloway and G. Hancke, Introduction to industrial control networks,
IEEE Communications Surveys and Tutorials, vol. 15(2), pp. 860–880,
2013.

[9] L. Hay Newman, The Hail Mary plan to restart a hacked US electric grid,
Wired, November 14, 2018.

[10] C. Hurd and M. McCarty, A Survey of Security Tools for the Industrial
Control System Environment, INL/EXT-17-42229, Revision 1, Idaho Na-
tional Laboratory, Idaho Falls, Idaho, 2017.

[11] Industrial Control Systems Cyber Emergency Response Team (ICS-
CERT), Recommended Practice: Improving Industrial Control System Cy-
bersecurity with Defense-in-Depth Strategies, Idaho Falls, Idaho, 2016.

[12] P. Johnson, S. Bratus and S. Smith, Protecting against malicious bits on
the wire: Automatically generating a USB protocol parser for a produc-
tion kernel, Proceedings of the Thirty-Third Annual Computer Security
Applications Conference, pp. 528–541, 2017.

[13] R. Lee, Detecting the Siemens S7 worm and similar capabilities,
SANS Industrial Control Systems Security Blog (blogs.sans.org/indus
trial-control-systems/2016/05), May 8, 2016.

[14] F. Momot, S. Bratus, S. Hallberg and M. Patterson, The seven turrets
of Babel: A taxonomy of LangSec errors and how to expunge them, Pro-
ceedings of the IEEE Cybersecurity Development Conference, pp. 45–52,
2016.

[15] Office of Cybersecurity, Energy Security and Emergency Response,
From Innovation to Practice: Re-Designing Energy Delivery Systems
to Survive Cyber Attacks, U.S. Department of Energy, Washington,
DC (www.energy.gov/sites/prod/files/2018/09/f55/CEDS%20From%
20Innovation%20to%20Practice%20FINAL_0.pdf), July 2018.

[16] M. Patterson, Parser combinations for binary formats, in C; Yes, in C;
What? Don’t look at me like that, GitHub (github.com/Upstanding
Hackers/hammer), 2017.

Millian et al. 85

[17] M. Spagnuolo, Abusing JSONP with Rosetta Flash, Michele Spagnuolo
Blog (miki.it/blog/2014/7/8/abusing-jsonp-with-rosetta-flash),
July 8, 2014.

[18] Symantec Security Response, ShellShock: All you need to know
about the Bash Bug vulnerability, Symantec Security Response Blog
(www.symantec.com/connect/blogs/shellshock-all-you-need-know-
about-bash-bug-vulnerability), September 25, 2014.

[19] K. Torpey, The DAO disaster illustrates differing philosophies in
Bitcoin and Ethereum, CoinGecko Buzz (www.coingecko.com/buzz/
dao-disaster-differing-philosophies-bitcoin-ethereum), July 4,
2016.

[20] C. Veitch, J. Henry, B. Richardson and D. Hart, Microgrid Cyber Secu-
rity Reference Architecture, Version 1.0, Sandia Report SAND2013-5472,
Sandia National Laboratories, Albuquerque, New Mexico, 2013.

Chapter 5

CYBER SECURITY MODELING OF
NON-CRITICAL NUCLEAR POWER
PLANT DIGITAL INSTRUMENTATION

Trevor MacLean, Robert Borrelli and Michael Haney

Abstract This chapter examines potential attack vectors that exist in a nuclear
power plant and correlates the likelihood of an attack from each vec-
tor. The focus is on the boron monitoring system, which directly affects
the reactivity in the core; cyber attacks on this system can lead to in-
creased core wear, unsafe reactivity levels and poor power performance.
A mockup model is developed using open-source software and hardware,
which is tested to evaluate the potential of cyber attacks. A man-in-
the-middle attack is implemented to demonstrate a cyber attack and its
potential effects. Additionally, a redundancy-based cyber attack mitiga-
tion method is implemented using a hardware device that compares the
input/output values of multiple programmable logic controllers. The
approach for modeling general attack and defense steps is applicable to
industrial control systems in the energy sector.

Keywords: Nuclear power plants, digital instrumentation and control, security

1. Introduction
Cyber security vulnerabilities are an ever-present risk to industrial control

systems. As nuclear power plants experience increased digitization of control
systems, potential attack vectors will propagate. Critical systems in nuclear
power plants have multilayered defenses to prevent malicious actors from caus-
ing catastrophic damage. A multilayered defensive approach to all plant oper-
ations maintains safety at an increased cost or risk of lost energy production.
In the case of non-critical systems (i.e., systems that are not directly involved
in the nuclear reactions in the core) and systems designed to be passively safe
(e.g., natural convection cooling of a reactor during a power loss incident), lost
production caused by an unnecessary shutdown of the power plant or tolerat-
ing the equipment deficiency with a less efficient contingency backup method

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 87–100, 2019.

https://doi.org/10.1007/978-3-030-34647-8_5

https://doi.org/10.1007/978-3-030-34647-8_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_5&domain=pdf

88 CRITICAL INFRASTRUCTURE PROTECTION XIII

can cause unintentional harm to humans and/or the environment. Non-critical
and passively-safe systems are designed for continuous operation without direct
human interactions. Although operations could be secured to accommodate all
equipment deficiencies to maintain safety at all costs, the most efficient, but still
safe, method is to operate a non-critical or passively-safe system with a fault
detection program and perform automated or rapid repairs without operational
impacts by utilizing concurrently-operating systems.

This chapter discusses how cyber attacks have interfered with nuclear power
plants in the past. It reviews nuclear power plant components and attack paths.
A mockup testbed is developed for a non-critical boron monitoring system
against which a cyber attack is launched and an attack mitigation strategy
involving failure detection and operator alerts is demonstrated. The modeling
of general attack and defense steps is applicable to industrial control systems
in nuclear power plants as well as in other types of power plants in the energy
sector.

2. Background and Literature Review
Cyber attacks focused on gaining or interrupting control of industrial con-

trol systems are becoming increasingly prevalent. Kim [11] discusses cyber at-
tacks that compromised plant operations at Ohio’s Davis-Besse Nuclear Power
Plant in 2003, Browns Ferry Nuclear Power Plant in 2006 and Iran’s Natanz
uranium hexafluoride centrifuge facility in 2010. Each of these compromised
plants had one or more previously-unidentified vulnerabilities – “zero-day” vul-
nerabilities [11] – that were exploited to result in a security breach or cause
equipment damage. The Ohio Davis-Besse Nuclear Plant’s network server was
infected by the Microsoft SQL Slammer worm that disabled a safety monitor-
ing system. Excessive network traffic caused by a failing programmable logic
controller caused the variable frequency drives of recirculation pumps in the
Browns Ferry Nuclear Power Plant to be disabled. A man-in-the-middle at-
tack by the Stuxnet worm on Iran’s Natanz facility allowed the centrifuges to
operate normally, except under specific conditions when critical system values
were modified while reporting normal conditions to operators via the human-
machine interfaces (HMIs).

Industrial control systems are often controlled by programmable logic con-
trollers due to their modular input/output (I/O) options and ability to operate
in harsh environments. Programmable logic controllers typically have mini-
malized operating systems and often no security software, which render them
vulnerable to cyber attacks, such as the Stuxnet computer worm or via the
manipulation of controller I/O pins as described in [1]. Potential ways to in-
fluence I/O pin values are via configuration manipulation attacks, control-flow
attacks and code manipulation attacks. The manipulation of I/O pins, called
a pin control attack [1], involves reconfiguring pin assignments so that output
pins are changed to input pins, and vice versa.

Programmable logic controller protocols such as Modbus Serial, Modbus
TCP/IP and Distributed Network Protocol 3 (DNP3) are commonly used in

MacLean, Borrelli & Haney 89

Probability of
Cyber Attack
on Availability

Severity of Impact

Insignificant Minor Moderate Significant Catastrophic

Near Certain

Likely Plant Balance
(Monitoring
Only)

 Cooling
Tower; Switch
Yard

Plant Balance
(Process
Control)

Possible Condenser Turbine;
Electric
Generator

Steam
Generator

Spent Fuel
Pool;
Radiation
Monitor;
Boron
Monitoring
System

Unlikely

Remote Nuclear
Reactor

Pressure
Vessel

Figure 1. Nuclear power plant cyber attack risk matrix.

the energy sector. These protocols are highly susceptible to cyber attacks,
including numerous methods for intercepting, interrupting, modifying and fab-
ricating data communications. These attack methods are described in detail
in attack taxonomies for Modbus [9] and DNP3 [6], where each attack method
has multiple sub-categories of attacks.

3. Risk-Informed Selection of Attack Paths
In 2012, the National Institute of Standards and Technology published a

guide for conducting risk assessments [10]. This guide describes a process for
performing risk assessments of information systems, which can be directly ap-
plied to various components of a nuclear power plant. Part of the process
involves the review of threat sources, threat events, vulnerabilities, likelihoods
and impacts. This research has identified the threat sources, threat events and
vulnerabilities as nominal attack vectors at a nuclear power plant.

The major systems involved in plant operations were identified and placed
in a risk matrix (Figure 1). Each system was assigned a probability of accessi-
bility by a cyber attack and the severity of the attack impact on overall plant
operations, plant employees, the public and/or the environment. The specific
purpose of each system in the nuclear power plant was considered when assign-
ing the accessibility probability and impact severity values in the risk matrix.

A nuclear power plant comprises safety-critical, important-to-safety and non-
safety systems [14]. Safety-critical systems must operate to ensure the safety of
plant employees, the public and the environment; a failure of a safety-critical
system can cause serious injury to plant personnel and significant harm to the
public and the environment. Important-to-safety systems impact the safety
of plant personnel but would not have impacts as large as safety-critical sys-
tems. Non-safety systems are the remaining systems in a nuclear power plant

90 CRITICAL INFRASTRUCTURE PROTECTION XIII

that do not pose significant impacts to plant employees, the public and/or the
environment.

This research examined the safety-critical and important-to-safety systems
and the safety and security measures in place at a nuclear power plant. Safety-
critical systems often have their risks mitigated through engineered controls,
such as control rods that are physically unable to be retracted (which prevents
the system from going critical rapidly). Therefore, these systems were deter-
mined to have lower likelihoods of successful cyber attacks. However, the conse-
quences of successful attacks on safety-critical and important-to-safety systems
would be severe because of the potential to affect the lives of plant personnel
and the public, and the environment through contamination and radiation ex-
posure. Figure 1 expresses such scenarios – the nuclear reactor and pressure
vessel have remote cyber attack probabilities, but significant or catastrophic
impact severity values.

Other non-safety-critical systems in the nuclear power plant would have
lower severity levels in the risk matrix because cyber attacks on these systems
would impact plant operational time, but would not cause significant hazards
to plant employees, the public and the environment. The lower level of scrutiny
placed on non-safety-critical systems can lead to an increase in cyber attack
probability because these systems do not have the same level of protection as
safety-critical systems.

The probabilities of cyber attacks listed are based on the accessibility of
the control system to an attacker, either directly or via network access. For
example, the switchyard has a high cyber attack probability because the power
plant connections to external power utility lines cannot be air-gapped. The
severity scale is based on the impact that the failed system would have on plant
operations and employees, the public and the environment. Returning to the
switchyard example, mitigating the consequences of an attack would require
power from emergency backup generators. The use of emergency generators
would not impact the public, but it would impact plant employees and plant
operation; therefore, the switchyard is rated as having moderate severity.

Based on the data in Figure 1, the project scope was narrowed to focus on
the spent fuel pool, switchyard, balance of plant systems and boron monitoring
system, all of which are high risk systems because of their accessibility to ex-
ternal attacks (i.e., not air-gapped) and because of significant impact to plant
operations if the cyber-physical systems were to be compromised. The spent
fuel pool, switchyard and boron monitoring system have significant severity
because failures could lead to unstable plant conditions or loss of plant control.
The switchyard, although rated as having moderate severity, is a likely target of
cyber attacks because of the accessibility of the switchyard by external entities
and the inability to provide power to the plant without external sources after
a successful attack.

Poresky et al. [12] describe cyber security strategies and vulnerability mit-
igation methods for advanced nuclear reactors. Research related to spent fuel
pools, including patents such as [4], reveals that passive cooling is actively pur-

MacLean, Borrelli & Haney 91

sued to mitigate concerns about the failure of an active spent fuel pool cool-
ing system. Based on the available information about passively-cooled spent
fuel pools, the scope of this research was narrowed further to include only the
switchyard, balance of plant systems and boron monitoring system.

Gergely et al. [8] describe risk mitigation methods for industrial control
systems, including a fail-safe programmable logic controller that detects failures
and places the system in a safe (non-operating) state. They also discuss fail-
operate programmable logic controllers that detect failures and resort to backup
systems for continuity of operations. However, the drawback of fail-operate
systems is that they tend to degrade system performance.

Therefore, based on the analysis related to Figure 1 and previous research [4,
12], the boron monitoring system was selected as the system to model and
analyze in this research. The boron monitoring system is rated as significant
on the severity scale and possible on the accessibility scale. Modeling and
analysis of the switchyard and balance of plant systems are topics for future
research.

4. Boron Monitoring System
The boron monitoring system measures the boron levels in the reactor cool-

ing loop. This system can directly affect the reactivity (“fissionability”) or
changes to the time-dependent neutron population in the core and cause un-
desirable operating conditions, leading to increased core wear, unsafe (high)
reactivity levels and poor power performance. Using an outside vendor to de-
sign and implement a boron monitoring system introduces additional paths for
cyber attacks compared with a boron monitoring system designed and imple-
mented in-house. Therefore, the monitoring system is assigned a possible value
on the cyber attack accessibility scale.

Multiple companies offer boron monitoring systems that incorporate pro-
grammable logic controllers. Examples include the Rolls-Royce Boronline and
Mirion Technologies BM 501 Boron Meter. These products have similar com-
ponents – a neutron emitting source and a neutron detector placed around an
in-place pipe or in a storage tank in the nuclear power plant. The boron mon-
itoring system is fail-safe because it is designed to place the reactor in a safe
state if it were to fail.

4.1 Experimental Setup
This research demonstrates a cyber attack that compromises a programmable

logic controller in a boron monitoring system and the mitigation of the attack.
OpenPLC [2] and Raspberry Pis were selected to create a mock boron mon-
itoring system. OpenPLC was selected because of its open-source software
and hardware – its development platform is compliant with the IEC 61131-3
standard, supports SCADA protocols and interfaces with open-source human-
machine interfaces and the ScadaBR SCADA simulator [3, 13]. Raspberry

92 CRITICAL INFRASTRUCTURE PROTECTION XIII

Light Bulb — Neutron Source

Photocell Resistor — Neutron Detector

Arduino Uno — PLC Analog Module

Raspberry Pi — PLC System

Figure 2. Conceptual model of the boron monitoring system.

Pis were employed because their I/O pins can be used to simulate the boron
monitoring system.

Figure 2 shows a mockup of the boron monitoring system. It incorporates
a Raspberry Pi with the OpenPLC software to emulate a programmable logic
controller, an Arduino Uno to emulate a programmable logic controller analog
module that feeds analog values to the Raspberry Pi, a photoresistor to repre-
sent a neutron detector and a light source to represent a neutron source. The
neutron detector and neutron source are unique to the boron monitoring system
whereas the programmable logic controller and analog module are commonly
used in other industry sectors.

In order to launch and mitigate cyber attacks, three programmable logic
controllers were set up in parallel using a 2-out-of-3 logic circuit arrangement
to compare signals of interest. This method of risk mitigation [5] uses AND
and OR integrated circuits to compare the signals received from the three pro-
grammable logic controllers and outputs the signal that matches at least two
of the three inputs. The 2-out-of-3 circuit with three programmable logic con-
trollers operating in parallel helps prevent performance loss and downtime if
an individual programmable logic controller were to fail. By incorporating a
method that identifies a compromised programmable logic controller in real-
time and implementing a self-healing protocol [5] for continuity of operations,
repairs can be performed and malicious software can be purged without inter-
rupting the overall function of the boron monitoring system.

The 2-out-of-3 circuit compares the high and low photoresistor values for
the three programmable logic controllers. The output of the 2-out-of-3 cir-
cuit is the majority value expressing the presence (high) or absence (low) of

MacLean, Borrelli & Haney 93

OR

AND

Arduino
Raspberry Pi

Output from 2-out-of-3 Circuit
Input to 2-out-of-3 Circuit

High Alarm

2-out-of-3 Circuit

Low Alarm

2-out-of-3 Circuit

Raspberry Pi

Raspberry Pi

Arduino

Arduino

OR

AND

Figure 3. Schematic diagram of the boron monitoring system testbed.

neutrons reaching the detector. An alarm is sent to plant operators when a
programmable logic controller has an anomalous output value.

Figure 3 shows a schematic diagram of the testbed with the implemented 2-
out-of-3 circuit. The diagram shows the three programmable logic controllers,
three Raspberry Pis and three Arduino Unos (analog system models), each with
a photoresistor and cyber attack trigger. Each system outputs an alarm when
a high or low level light is detected, corresponding to high or low boron levels,
respectively. These alarm signals are wired to a 2-out-of-3 circuit to check for
system continuity, which ultimately determines the overall system state of the
light (boron) levels.

Figure 4 shows the cyber-physical testbed for analyzing cyber attack scenar-
ios. Three different models of Raspberry Pi were incorporated in the testbed
to ensure that performance differences would not produce differing results.

The testbed was programmed using the structured text programmable logic
controller programming language via the OpenPLCEditor software [2]. The
program checks the value read from each photoresistor and compares it against
the predetermined high and low levels. When the photoresistor value is too
high or too low an alarm signal is sent to the 2-out-of-3 circuit. The output of
the 2-out-of-3 circuit is used as a system state alarm input to the programmable

94 CRITICAL INFRASTRUCTURE PROTECTION XIII

Figure 4. Cyber-physical testbed for analyzing cyber attack scenarios.

logic controller in question; it represents the actual boron value monitored by
the programmable logic controller. The structured text program then compares
the individual programmable logic controller high or low alarm to the system
state alarm and triggers a programmable logic controller system alarm if a
difference is detected.

IF Photoresistor < 21000 THEN

LowAlarm := TRUE;

ELSIF Photoresistor > 37000 THEN

HighAlarm := TRUE;

ELSIF Photoresistor > 21000 & Photoresistor < 37000 THEN

LowAlarm := FALSE;

HighAlarm := FALSE;

ENDIF;

IF OR((HighState <> HighAlarm),(LowState <> LowAlarm)) THEN

SystemAlarm := TRUE;

ELSE SystemAlarm := FALSE;

ENDIF;

Figure 5. Structured text program.

Figure 5 shows the structured text program. The code has six declared
variables. The Photoresistor variable stores the analog value provided by
the photoresistor. HighAlarm and LowAlarm are programmable-logic-controller-

MacLean, Borrelli & Haney 95

specific output variables that denote whether the controller receives high or low
light readings from the photoresistor. The HighState and LowState variables
store the value received from the 2-out-of-3 circuit output and represent the
value of at least two of the three programmable logic controllers. Finally,
the System Alarm output variable holds the result of the comparisons of the
HighState and HighAlarm variables and the LowState and LowAlarm variables.

4.2 Cyber Attack Simulation
In order to simulate an attack on the programmable logic controller, the

source code of the slave device was modified to enable the photoresistor values
to be changed before sending them to the controller. This corresponds to a
man-in-the-middle attack on a Modbus communications system.

The testbed incorporates a pushbutton as a trigger for launching the attack;
however, this could be any exploit on the programmable logic controller. When
the pushbutton trigger is activated, the code functions identical to the default
code, except when a value is assigned to the analog pin fed by the photoresistor.
Specifically, the photoresistor analog pin value is set to a predetermined value
of low, which corresponds to the system diluting the boron concentration to
enable more neutrons to reach the detector from the neutron source. This
attack results in an inadequate level of boron in the cooling system that could
lead to an abnormal increase in the radiation levels and require the nuclear
reactor to be tripped.

4.3 Experimental Results
Since the focus is on the cyber security vulnerability in a single programmable

logic controller and the integrity of a system with multiple programmable logic
controllers operating in parallel, the concern is not about the boron monitoring
system state being high or low, but about the differences between the pro-
grammable logic controller alarm values. During normal operations, all the
programmable logic controller states should match, reporting either low, high
or no alarm.

Figure 6 shows the programmable logic controllers operating under normal
conditions with matching low boron states. Since all the programmable logic
controller values match, no programmable logic controller alarms are illumi-
nated in the right-hand side of Figure 6.

Figure 7 shows the programmable logic controllers operating under normal
conditions with matching high boron states. During normal operations, the
boron measuring system would ideally have the correct amount of boron in the
cooling loop. Therefore, the low, high and programmable logic controller alarms
would not be illuminated. However, in Figure 7, although the high system state
alarms are illuminated for all the programmable logic controllers, the boron
monitoring system is considered to be operating properly and should be able
to correct the high boron alarms. Since all the programmable logic controller

96 CRITICAL INFRASTRUCTURE PROTECTION XIII

Figure 6. Human-machine interface with no alarm.

Figure 7. Human-machine interface with a high alarm.

values match, no programmable logic controller alarms are illuminated in the
right-hand side of Figure 7.

In order to validate the operation of the 2-out-of-3 circuit, light was blocked
from the photoresistors associated with two programmable logic controllers
(PLC 2 and PLC 3), causing them to have low values. Since the PLC 1
value does not match the low PLC 2 and PLC 3 values, the alarm of the
non-conforming PLC 1 is triggered (Figure 8).

On the other hand, in Figure 9, extra light was provided to the two photore-
sistors associated with PLC 1 and PLC 2, causing them to have high values.
Since the PLC 3 value does not match the high PLC 1 and PLC 2 values, the
alarm of the non-conforming PLC 3 is triggered.

With the testbed operating as expected under normal conditions, a simu-
lated cyber attack was executed to see if the testbed could identify that a pro-
grammable logic controller was reading an incorrect value compared with the
remaining programming logic controllers. This was accomplished by installing

MacLean, Borrelli & Haney 97

Figure 8. Human-machine interface with two low alarms.

Figure 9. Human-machine interface with two high alarms.

a pushbutton that overwrites the photoresistor value of a programmable logic
controller with a significantly lower value.

Without the 2-out-of-3 circuit, the low neutron level alarm is activated for
PLC 1, which tells the monitoring system to dilute the boron concentration.
However, when the 2-out-of-3 circuit is operational during the cyber attack, the
low alarm for PLC 1 is tripped and, because the PLC 1 value does not match
the values of PLC 2 and PLC 3, the PLC 1 alarm is activated. With a proper
contingency procedure in place, either the system operator would be notified
or contingency recovery code would be executed to address the problem with
PLC 1.

Figure 10 shows the situation when the pushbutton cyber attack trigger is
activated for PLC 1 to overwrite the incoming photoresistor value with the low
value. The cyber attack activates the low neutron level alarm for PLC 1. Due
to the disparity between the PLC 1 value and the PLC 2 and PLC 3 values,
instead of the monitoring system diluting the boron concentration, the PLC 1
alarm is triggered.

98 CRITICAL INFRASTRUCTURE PROTECTION XIII

Figure 10. Human-machine interface with active cyber attack alarms.

5. Scope of Study
The boron monitoring system testbed is constrained to identify cyber at-

tacks and differentiate situations involving malfunctioning devices from those
involving cyber attacks. Therefore, the testbed reports when a programmable
logic controller value does not match the values of its two counterparts. In
order to implement robust cyber security, a method should be implemented to
differentiate between a cyber attack and a malfunctioning sensor.

The current method for initiating and executing a man-in-the-middle attack
does not cover up the malicious value passed to the human-machine interface.
Indeed, not presenting the photoresistor value directly to the operator is a
significant system vulnerability.

To create a more realistic and difficult-to-detect cyber attack, the man-in-
the-middle attack should change the value of an output device (e.g., valve
controlling a boron solution based on the control logic) while still reporting
the output from the photoresistor as an acceptable, non-alarming value to the
human-machine interface. In this way an operator would not receive an alarm
despite the system operating in an alarmed state.

6. Conclusions
The review of nuclear power plant components and the subsequent assign-

ment of qualitative risk measures to the components facilitated the identifica-
tion of non-critical systems that pose significant safety and/or economic risks.
The focus on the boron monitoring system is important because cyber attacks
on this system can lead to increased core wear, unsafe reactivity levels and
poor power performance. The mockup of the boron monitoring system using
open-source software and inexpensive hardware components enabled the exe-
cution of a man-in-the-middle attack that demonstrated a system vulnerability
and its mitigation using a mixed analog/digital solution. Similar methods can
provide energy sector asset owners, operators and regulators insights into risk

MacLean, Borrelli & Haney 99

management and compliance regimes for securing industrial control system en-
vironments from evolving cyber threats.

A growing trend in the modernization of nuclear power plants is splitting
digital and analog instrumentation and control [12]. Future research will in-
vestigate the cyber security implications of this modernization on non-critical
nuclear power plant instrumentation, including the implementation of miti-
gation techniques involving field programmable gate arrays [7], fault-tolerant
operations and self-repairing designs [12]. Additionally, future research will in-
vestigate other cyber attacks such as baseline response replay and direct slave
control [9] to verify the effectiveness of the mitigation techniques. Creating
testbeds for the switchyard and balance of plant systems, and incorporating
split digital and analog instrumentation and control systems, would advance
protection efforts for non-critical nuclear power plant instrumentation, helping
identify potential vulnerabilities and mitigation approaches.

References

[1] A. Abbasi, M. Hashemi, E. Zambon and S. Etalle, Stealth low-level manip-
ulation of programmable logic controller I/O by pin control exploitation,
in Critical Information Infrastructures Security, G. Havarneanu, R. Setola,
H. Nassopoulos and S. Wolthusen (Eds.), Springer, Cham, Switzerland, pp.
1–12, 2017.

[2] T. Alves, OpenPLC (www.openplcproject.com), 2019.

[3] T. Alves and T. Morris, OpenPLC: An IEC 61131-3 compliant open source
industrial controller for cyber security research, Computers and Security,
vol. 78, pp. 364–379, 2018.

[4] J. Dederer, W. Brown and F. Vereb, Alternate Passive Spent Fuel Pool
Cooling Systems and Methods, U.S. Patent No. 9646726 B2, May 9, 2017.

[5] M. Denzel, M. Ryan and E. Ritter, A malware-tolerant, self-healing in-
dustrial control system framework, in ICT Systems Security and Privacy
Protection, S. De Capitani di Vimercati and F. Martinelli (Eds.), Springer,
Cham, Switzerland, pp. 46–60, 2017.

[6] S. East, J. Butts, M. Papa and S. Shenoi, A taxonomy of attacks on the
DNP3 protocol, in Critical Infrastructure Protection III, C. Palmer and S.
Shenoi (Eds.), Springer, Berlin Heidelberg, Germany, pp. 67–81, 2009.

[7] M. Elakrat and J. Jung, Development of a field programmable gate array
based encryption module to mitigate man-in-the-middle attacks on nu-
clear power plant data communication networks, Nuclear Engineering and
Technology, vol. 50(5), pp. 780–787, 2018.

[8] E. Gergely, D. Spoiala, V. Spoiala, H. Silaghi and Z. Nagy, Design frame-
work for risk mitigation in industrial PLC control, Proceedings of the IEEE
International Conference on Automation, Quality and Testing, Robotics,
pp. 198–202, 2008.

100 CRITICAL INFRASTRUCTURE PROTECTION XIII

[9] P. Huitsing, R. Chandia, M. Papa and S. Shenoi, Attack taxonomies for the
Modbus protocols, International Journal of Critical Infrastructure Protec-
tion, vol. 1, pp. 37–44, 2008.

[10] Joint Task Force Transformation Initiative, Guide for Conducting Risk As-
sessments, NIST Special Publication 800-30, Revision 1, National Institute
of Standards and Technology, Gaithersburg, Maryland, 2012.

[11] D. Kim, Cyber security issues imposed on nuclear power plants, Annals of
Nuclear Energy, vol. 65, pp. 141–143, 2014.

[12] C. Poresky, C. Andreades, J. Kendrick and P. Peterson, Cyber Security in
Nuclear Power Plants: Insights for Advanced Nuclear Technologies, Tech-
nical Report UCBTH-17-004, Department of Nuclear Engineering, Univer-
sity of California, Berkeley, Berkeley, California, 2017.

[13] ScadaBR Project Team, ScadaBR (sourceforge.net/p/scadabr/wiki/
Home), 2019.

[14] J. Song, J. Lee, C. Lee, K. Kwon and D. Lee, A cyber security risk as-
sessment for the design of I&C systems in nuclear power plants, Nuclear
Engineering and Technology, vol. 44(8), pp. 919–928, 2012.

III

VEHICLE INFRASTRUCTURE
SECURITY

Chapter 6

ELECTRONIC CONTROL UNIT
DISCRIMINATION USING WIRED
SIGNAL DISTINCT NATIVE
ATTRIBUTES

Rahn Lassiter, Scott Graham, Timothy Carbino and Stephen Dunlap

Abstract A controller area network bus is a communications system used in mod-
ern automobiles to connect the electronic control units that implement
normal vehicular operations as well as advanced autonomous safety and
driver comfort features. However, these advancements come at the ex-
pense of vehicle security – researchers have shown that automobiles can
be hacked by compromising electronic control units or by connecting
unauthorized devices to the controller area network bus.

Physical layer device fingerprinting is a promising approach for imple-
menting vehicle security. This chapter presents a fingerprinting method
and classification algorithm for electronic control unit discrimination.
Cross-lot discrimination is assessed using four Toyota Avalon electronic
control units with different lot numbers as authorized devices, and a
BeagleBoard, Arduino and CANable as rogue devices. The experiments
yielded perfect rejection rates for rogue devices with false credentials
and access denial rates exceeding 98% for authorized electronic control
units with false credentials. Additionally, an average correct classifica-
tion of approximately 99% was obtained for authorized devices.

Keywords: CAN bus, electronic unit discrimination, rogue device detection

1. Introduction
As automobiles become more technologically advanced and connected, they

are more susceptible to hacking. Research funded by the U.S. Defense Advanced
Research Projects Agency (DARPA) exposed several security vulnerabilities [9,
10]. In particular, using a laptop with wireless connectivity, researchers were
able to attack vehicles as they were being driven on highways – remotely turn
off the engines, activate the windshield wipers and wiper fluid releases, and

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 103–121, 2019.

https://doi.org/10.1007/978-3-030-34647-8_6

https://doi.org/10.1007/978-3-030-34647-8_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_6&domain=pdf

104 CRITICAL INFRASTRUCTURE PROTECTION XIII

even disable the brakes at speeds below 15mph. These threats are not limited
to automobiles. Heavy vehicles, ships and aircraft are also vulnerable because
they have electronic control systems connected in on-board networks.

The technology needed to perform attacks on vehicles is more accessible.
In 2014, security researchers developed the CAN Hacking Tool targeting the
controller area network (CAN) bus in modern vehicles – the tool costs less than
�20 to build; it is the size of an iPhone and can be hooked up to a vehicle within
five minutes [15]. Developmental boards such as Arduino and BeagleBoard can
be programmed to emulate automobile electronic control units (ECUs) that
provide gateways for hackers to compromise CAN bus systems. Although these
“hobbyist” experiments may seem harmless, the same technology can be used
to carry out serious hacking attacks on vulnerable vehicles.

This research demonstrates that wired signal distinct native attributes (WS-
DNA) can be leveraged to detect rogue devices such as the CAN Hacking Tool.
The approach uses wired signal distinct native attribute fingerprinting and mul-
tiple discriminant analysis with maximum likelihood to identify (classify) and
authenticate (verify) devices based on their unique signal variations. The ex-
periments conducted during this research yielded perfect (100%) rejection rates
for rogue devices with false credentials and access denial rates exceeding 98%
for authorized electronic control units with false credentials. Additionally, an
average correct classification of approximately 99% was obtained for authorized
devices.

2. CAN Bus
CAN bus is a lightweight, broadcast communications system created in the

1980s by Bosch as a replacement for the older wiring systems used in automo-
biles [8]. The CAN bus system comprises multiple networked electronic control
units that transmit, receive and process critical data such as vehicle speed,
engine RPM and even the angle of the steering wheel. The latest CAN 2.0
version used in modern vehicles transmits data at speeds up to 1Mbps. The
CAN bus has two message formats: (i) base frame format; and (ii) extended
frame format. This work focuses on devices that transmit data in the base
frame format, which is specified in Table 1.

CAN signals are transmitted as non-return-to-zero (NRZ) encoded differen-
tial voltages. A differential voltage is the difference between the twisted pair
CAN-Hi and CAN-Lo signals [6]. The bits in the base frame format are formed
from the differences between the CAN-Hi and CAN-Lo signals [20]. A domi-
nant bit (0) is transmitted when the difference between CAN-Hi and CAN-Lo is
approximately 2 volts and a recessive bit (1) is transmitted when the difference
between CAN-Hi and CAN-Lo is approximately 0 volts, as shown in Figure 1.

The CAN bus is a broadcast network where electronic control units transmit
freely to all devices that are listening, or to devices that request information.
An electronic control unit that needs to send data attempts to do so when
the CAN bus is in an idle state. If multiple electronic control units transmit

Lassiter, Graham, Carbino & Dunlap 105

Table 1. Typical base frame format [8].

Bits Name/Field Description

1 Start of Frame Always dominant (0)
11 Identifier Varies for each electronic control unit;

also determines priority
1 Remote Transmission Request Dominant for data frame (0)
1 Identifier Extension Bit Difference between base frame and

extended frame; dominant for base (0)
1 Reserved Bit Must be dominant (0)
4 Data Length Code Determines data length (bytes)

0-64 Data Transmitted data
15 CRC Checksum
1 CRC Delimiter Recessive (1)
1 Acknowledgement Bit Recessive (1)
1 Acknowledgement Delimiter Transmitter sends recessive (1)
7 End of Frame All recessive; end of transmission
7 Interframe Spacing All recessive; time required to process

message

Figure 1. Base frame format [20].

messages at the same time, then the transmissions are synchronized at their
start of frame bits and an arbitration occurs in the network.

During synchronization, each identical bit is coherently combined to pro-
duce a waveform that has the same voltage for a one or a zero. The device
with the lowest identifier number, which indicates higher priority, wins the ar-
bitration and continues to transmit while the device that loses the arbitration
stops transmitting as shown in Figure 2. Because of the potential for multiple
electronic control units to transmit simultaneously in the arbitration field, Choi
et al. [6] determined that the identifier may not be the best region to use to
calculate statistical features for fingerprints in a typical CAN bus environment.
Instead, they employed the extended identifier in the extended frame format
used by electronic control units.

This work focuses on electronic control unit discrimination in a collision-
free environment and proposes the use of a region of interest (ROI) after the
arbitration field to address the issue of CAN bus collisions. The arbitration field

106 CRITICAL INFRASTRUCTURE PROTECTION XIII

 SOF Identifier
ECU 1 0 0 0 0 1 0 1 0
ECU 2 0 0 0 1 stops transmitting
CAN Bus 0 0 0 0 1 0 1 0

Figure 2. CAN bus arbitration.

in the base frame comprises identifier bits and the remote transmission request
bit whereas the control field comprises the identifier extension bit, reserved bit
and four data length code bits as shown in Figure 1. These bits are utilized as
the region of interest for fingerprint generation.

3. Device Fingerprinting
This section discusses related work in the area of device fingerprinting and

the radio frequency distinct native attribute (RF-DNA) methodology for device
classification and discrimination.

3.1 Related Work
Several fingerprinting methods have been proposed for intrusion detection

and security controls in CAN bus systems. Early attempts at electronic control
unit discrimination employed a mean-squared error and convolution approach,
achieving classification rates ranging from 90% to 100% [14]. Device identifica-
tion was attempted using the identifier field in the base frame format used by
electronic control units, but this was deemed to be unreliable [6].

Cho and Shin [5] developed a CAN bus simulation using multiple Arduino
Unos with CAN shields; electronic control unit signals were acquired from
real vehicles. Their fingerprinting approach leveraged the internal clocks of
electronic control units to identify the transmitting devices. The fingerprints
were generated based on the clock offset, clock frequency and clock skew. A
recursive least-squares algorithm was used for electronic control unit detection
and verification, achieving about 97% success in device detection.

The majority of fingerprinting methods employ statistical properties of sig-
nals and machine learning or neural net classifiers to identify unique attributes
in the extracted features [1, 6, 11]. Avatefipour et al. [1] used a CAN transceiver
and development board setup to simulate the CAN bus and electronic control
units. Choi et al. [6] employed CAN boards connected in a physical network to
simulate the CAN bus and various electronic control units. Jaynes et al. [11]
plugged a device directly into the on-board diagnostics port (OBD-II) in a
vehicle for electronic control unit signal acquisition. The three methods used
different signal collection methods but similar fingerprint generation techniques
and neural network classifiers, yielding correct classifications up to 98.6% in the
case of Avatefipour et al. [1], 96.5% in the case of Choi et al. [6] and 86% in
the case of Jaynes et al. [11].

Lassiter, Graham, Carbino & Dunlap 107

3.2 RF-DNA Methodology
The radio frequency distinct native attribute (RF-DNA) methodology was

developed to perform tasks such as detecting rogue devices, identifying aging
devices and augmenting bit-level security [4, 16, 18, 21]. Radio frequency emis-
sions are captured from devices and distinct native attributes of the emissions
are generated based on the statistical features of signal amplitude, frequency
and phase [4, 7, 13, 16, 18, 22].

Time-Domain Fingerprinting. Time-domain (TD) radio frequency fin-
gerprints are generated from the instantaneous responses of signals, which in-
clude the instantaneous amplitude, instantaneous frequency and instantaneous
phase. A discrete real-valued signal s(k) is broken up into I-Q samples using
the Hilbert transform [4]:

s(k) = sI(k) + sQ(k) (1)

where the amplitude a(k), frequency f(k) and phase φ(k) are computed as:

a(k) =
√

s2(k) (2)

φ(k) = tan−1[
sQ(k)
sI(k)

] (3)

f(k) =
1
2π

[
dφ(k)

dk
] (4)

Features are typically centered and normalized using the mean and maximum
values of the respective time-domain responses [21]. An invariant region, such
as the preamble, mid-amble or post-amble, is identified as the region of interest.
The region of interest is divided into NR equal subregions. Usually, the entire
region of interest is included as a subregion to produce NR + 1 subregions for
statistical feature extraction.

Typical features that are extracted include the standard deviation σ, vari-
ance σ2, skewness γ and kurtosis κ. These statistics are computed for a sub-
region to generate the fingerprint FRFi . The fingerprints corresponding to a
region are concatenated to form the composite fingerprint FRF :

The fingerprints are expressed by the following equations:

FRF
RFi

= [σRi , σ
2
Ri

, γRi , κRi]1×4 (5)

FRF
a,φ,f = [FRF

R1
: FRF

R2
: FRF

R3
: · · · : FRF

RN+1
]1×[4(NR+1)] (6)

FRF
C = [FRF

a : FRF
φ : FRF

f] (7)

108 CRITICAL INFRASTRUCTURE PROTECTION XIII

The features included in an RF-DNA fingerprint comprise the number of
responses Nresp, number of statistical features Nstat and number of subregions
NR. For example, if Nresp = 4, Nstat = 3 and NR = 9, then the number of
features Nfeat = 4 × 3 × 9 = 108 [4].

The wired signal distinct native attribute (WS-DNA) fingerprinting ap-
proach, which is based on the RF-DNA process, is adopted in the WS-DNA
methodology used in this research. The composite WS-DNA fingerprints are
given by:

FWS
C = [FWS

a : FWS
φ : FWS

f] (8)

WS-DNA signals are acquired directly from the wire of a transmitting device
instead of over-the-air captures of radio frequency emissions from the device as
in the case of the RF-DNA methodology [2–4, 12, 17–19].

Multiple Discriminant Analysis Maximum Likelihood. Device
fingerprints are compared using a multiple discriminant analysis maximum like-
lihood (MDA/ML) classifier. Multiple discriminant analysis is a dimensionality
reduction algorithm that takes the extracted features or fingerprints and re-
duces them to N −1 classes, where N is the number of devices. The maximum
likelihood classifier assumes that the data has a Gaussian distribution, equal
priors and uniform costs. The classifier establishes thresholds based on training
fingerprints and assigns each test fingerprint to a class using Bayesian decision
criteria [22].

Additionally, K-fold cross-validation is used to increase reliability [4]. Cross-
validation is accomplished by: (i) dividing the training fingerprints into K equal
blocks; (ii) holding one block out and conducting training with the remaining
K − 1 blocks; (iii) conducting testing using the block that was held out; and
(iv) repeating the process until all the blocks have been held out. The iteration
that produces the highest score is used for model development [3, 21].

Device discrimination is a two-step process comprising classification and ver-
ification. Classification is a one-vs-many assessment that determines which
training fingerprint best matches a testing fingerprint. Verification is a one-vs-
one assessment that determines how similar the identity of a claimed fingerprint
is to the identity of the actual fingerprint [3, 16].

4. Experimental Methodology
This section discusses the experimental setup and collection as well as the

parameters used in the WS-DNA fingerprinting methodology.

4.1 Device Under Test and Signal Collection
The device under test (DUT) was a steering angle sensor (SAS) from a

Toyota Avalon. This electronic control unit transmits a data frame or burst in
the base frame format approximately every 260μs as shown in Figure 3. The

Lassiter, Graham, Carbino & Dunlap 109

0 0.5 1 1.5 2 2.5
Time (s) 10-4

-0.5

0

0.5

1

1.5

2

2.5
V

o
lt

ag
e

(V
)

----------------------------- Steering Angle Sensor Burst -----------------------------

--- Case A
ROI

Case B
ROI

SAS Burst
Case A ROI
Case B ROI

Figure 3. Data frame or burst from a Toyota SAS.

steering angle sensor was chosen for the experiments because it has a relatively
high priority on the CAN bus of a Toyota Avalon and because it continuously
transmits data with or without user input.

Table 2. Devices under test (four-class cross-lot discrimination).

Device Device ID Lot Average SNRC

1 SAS1 (A1) 503G 42.9 dB
2 SAS2 (A2) 823F 42.4 dB
3 SAS3 (A3) 826I 43.5 dB
4 SAS4 (A4) 523E 43.4 dB

Four devices (NC = 4 classes), each from a different lot, were used to assess
the cross-lot discrimination (Table 2).

Table 3. Rogue devices used for authentication testing.

Rogue Device ID Description

R1 BeagleBoard; ISO 1050 CAN transceiver
R2 Arduino Uno with CAN shield
R3 CANable

Additionally, three rogue devices (Nrg = 3) were created to present false cre-
dentials during attempts to access the CAN bus as authorized devices. Table 3
provides information about the rogue devices.

110 CRITICAL INFRASTRUCTURE PROTECTION XIII

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s) 10-5

-0.5

0

0.5

1

1.5

2

2.5

V
o

lt
ag

e
(V

)

SAS
BeagleBoard
Arduino
CANable

Figure 4. Average region of interest responses for all the devices.

Figure 4 shows the average differential voltage waveform of the region of
interest of the steering angle sensors compared with those of the rogue devices.
All the devices transmit the same bit-level data and should be accepted as au-
thorized devices on the CAN bus. On average, rogue device R1 has a maximum
differential voltage that is 0.2V greater than those of the other rogue devices
as well as the steering angle sensors as shown in Figure 4.

A Keysight InfiniiVision MSOX3054T 5.0GHz oscilloscope operating at fs

= 1GSPS was used to collect and store the baseband signals from the Toy-
ota steering angle sensors. A total of 260ms of signals were collected, which
comprised Nbursts ≈ 1, 000 bursts. To reduce environmental and collection
bias, a random permutation of five collections of Nbursts ≈ 200 bursts for each
device were taken over a one-week period at various times and various temper-
atures. To further reduce experimental variability, each steering angle sensor
was locked into the same position so that all the devices transmitted the same
64-bit message and all the devices used the same power supply.

MATLAB was used to process the unfiltered signals and generate WS-DNA
fingerprints. Each burst or data frame was extracted by cross-correlating the
collected signal with an ideal preamble reference signal and each burst was
aligned at the same starting index in a fingerprint generation matrix. Prior
to fingerprint generation, a fourth-order baseband Butterworth filter was used
to reduce noise. The estimated average collected signal-to-noise ratio (SNR)
was computed by taking the ratio of the average power of the region of interest
to the average power of the noise region before the start of frame, yielding a
signal-to-noise ratio SNRC ≈ 43.1dB.

4.2 Signal-to-Noise Ratio Scaling
Multiple noise realizations were required for fingerprint generation. Al-

though every effort was taken to reduce the effects of environmental noise,

Lassiter, Graham, Carbino & Dunlap 111

additive white Gaussian noise (AWGN) was assumed to be present in signals
from the power supply, oscilloscope and collection probes. However, because
this noise does not demonstrate the effects of different channel conditions, differ-
ent iterations of like-filtered, power-scaled independent additive white Gaussian
noise were added during post-processing to simulate different channel condi-
tions.

In the experiments, noise was added to produce −46 dB < SNRΔ < 0 dB
in 2 dB increments, where SNRΔ denotes the reduction in the signal-to-noise
ratio under the collected conditions as the power of the additive white Gaussian
noise was increased. In this work, SNRcol (collected conditions) denotes the
signal-to-noise ratio where the classification performance is statistically equal
to the classification performance at SNRC . To be clear, the signal-to-noise
ratio was never improved. Instead, additive white Gaussian noise was added to
each burst until the average correct classification %C ≈ 1/NC was obtained.

4.3 Fingerprint Generation
Fingerprints were generated for the ideal, collision-free environment to: (i)

assess the WS-DNA classification and verification performance using an entire
invariant region of interest; and (ii) use a comparable amount of bits as in [6] to
provide a performance estimate for the WS-DNA implementation for electronic
control units using the extended frame format. This set of fingerprints does not
represent a realistic CAN bus scenario because collisions occur frequently, but
the fingerprints could be used to establish a baseline for the electronic control
units prior to installation in a vehicle. A second set of fingerprints was generated
to address the best region of interest for the WS-DNA implementation for
electronic control units using the base frame format on the CAN bus in a
realistic environment.

Case A (Ideal Collision Free Environment): Time-domain WS-
DNA fingerprints were generated using the steering angle sensor pream-
ble with the region of interest comprising the start of frame, arbitra-
tion field and control field. Additionally, Nsamp = 210 samples were
included before the start of frame bit, resulting in a region of interest
with Nsamp ≈ 40, 000 samples. The region of interest was further di-
vided into NR = 54 contiguous subregions each containing Nsamp ≈ 740
samples (Figure 5).

The total number of features Nfeats included in the WS-DNA fingerprints
is equal to Nresp × Nstats × NR + 1. Thus, Nfeats = 3 × 4 × 55 = 660
features. Fingerprints for the Nrg = 3 rogue devices were generated along
with the authorized devices using the same fingerprint generation method.

Case B (Realistic CAN Bus Environment): Time-domain WS-DNA
fingerprints were generated to address a typical collision environment for
electronic control units using the base frame format, but excluding the
start of frame and arbitration field. The region of interest for this scenario

112 CRITICAL INFRASTRUCTURE PROTECTION XIII

0 0.5 1 1.5 2 2.5 3 3.5 4
Time Domain Samples (n) 104

0.5

1

1.5

2
V

o
lt

ag
e

(V
)

Figure 5. Region of interest divided into NR = 54 subregions.

included the remote transmission request bit, identifier extension bit, re-
served bit and the four data length code bits. The region of interest was
divided into NR = 45 subregions, each containing Nsamp ≈ 306 samples.
The total number of features Nfeats included in the WS-DNA fingerprints
is equal to Nresp × Nstats × NR + 1. Thus, Nfeats = 3 × 4 × 46 = 552
features.

4.4 MDA/ML Classification and Verification
This section discusses the use of multiple discriminant analysis with maxi-

mum likelihood for device classification and device verification:

Device Classification: A total of NNZ = 5 noise realizations were
used per signal-to-noise ratio to generate a total of Nprints ≈ 5, 000 fin-
gerprints. Ntrng = Ntest ≈ 2, 500 interleaved training and testing fin-
gerprints per device were used for classification. Additionally, K = 5
was used for cross-validation, which is consistent with previous RF-DNA
work [18, 21]. Decision thresholds were established during the training
phase and testing fingerprints were classified based on the decision region
they fell in during the testing phase.

Device Verification: Device verification was implemented using the
Euclidean distance as the measure of similarity and an equal error rate
(EER) of 10% as the measure of success. In the experiments, the equal
error rate (device dependent metric) was chosen such that true verifi-
cation rate (TVR) was equal to the rogue rejection rate (RRR). The
true verification rate corresponds to the number of attempts by an au-
thorized device that are correctly accepted divided by the total number

Lassiter, Graham, Carbino & Dunlap 113

of attempts. The rogue rejection rate corresponds to the total number
of rogue attempts that are correctly rejected divided by the number of
attempts.

A probability mass function was generated during training. Device-
dependent thresholds tV (d) were established based on the desired true
verification rate and false verification rate (FVR) for authorized device
verification and established based on the desired true verification rate
and rogue acceptance rate (RAR) for rogue device verification. Note that
FVR = 1 – TVR and RAR = 1 – RRR.

During testing, the verification test statistic ZV was generated from the
fingerprint of each unknown device and compared against the threshold
tV . Devices were either granted access or denied access (correctly or
incorrectly) depending on how ZV compared against tV [3].

Receiver operating characteristic (ROC) curves were generated to present
the verification performance using the established verification and accep-
tance rates. Stem plots were generated to present the results for each
of the Ntest ≈ 5, 000 rogue attempts (for rogue devices R1, R2 and R3)
to pass as authorized devices (A1, A2, A3 and A4) [3]. Rogue device
acceptance and rejection rates were established using the BeagleBoard,
Arduino, CANable and an arbitrarily-chosen fourth device (R4) as rogue
devices. The unauthorized rogue devices were excluded from the training
so that the classifier would be presented with true rogue devices during
the verification phase.

5. Experimental Results
This section presents the results for multiple discriminant analysis with max-

imum likelihood classification and verification. The classification results are
presented using %C versus SNRΔ plots and confusion matrices. The verifica-
tion results are presented using ROC curves and stem plots.

5.1 Device Classification
Figures 6 and 7 show the classification results. The confusion matrix results

at SNRcol are presented in Table 4. All the classification results presented are
based on 95% confidence intervals, which are omitted in Figures 6 and 7 for
visual clarity because the confidence intervals fall in the vertical extent of the
markers.

The results reveal that device SAS 3 has a statistically-significant increase
in correct classification over all the other devices from SNRΔ ≥ −39dB to
SNRΔ = −14 dB. Upon further inspection, SAS 3 was verified to have the
newest internal components. The classification results for device SAS 2 are
statistically equal to the cross-class average. Devices SAS 1 and SAS 4 were
incorrectly classified as each other more often than with the other two devices.

114 CRITICAL INFRASTRUCTURE PROTECTION XIII

-44 -39 -34 -29 -24 -19 -14 -9 -4 0
SNR (dB)

20

30

40

50

60

70

80

90

100
A

vg
 P

ct
 C

o
rr

ec
t

C
la

ss
if

ic
at

io
n

 (
%

C
)

SNR
col

Dev 1/SAS 1
Dev 2/SAS 2
Dev 3/SAS 3
Dev 4/SAS 4
Crs Cls Avg

Figure 6. Classification results for NC = 4 classes using the ECU preamble.

These devices were both obtained from used vehicles that were manufactured
during the same year.

-44 -39 -34 -29 -24 -19 -14 -9 -4 0
SNR (dB)

20

30

40

50

60

70

80

90

100

A
vg

 P
ct

 C
o

rr
ec

t
C

la
ss

if
ic

at
io

n
 (

%
C

)

SNR
col

Case A

Case B

Figure 7. Classification results for cross-class average for Case A and Case B ROIs.

Figure 7 provides a direct comparison of the classification results using the
fingerprints generated with the regions of interests used in Case A and Case B.
The results are statistically equal at SNRΔ ≤ −40 dB. Moreover, using the
preamble as the region of interest yielded statistically better classification for
SNRΔ > −40dB. This is arguably the result of having more bits and more
bit transitions in the region of interest, which provide more useful time-domain
discrimination information.

Lassiter, Graham, Carbino & Dunlap 115

Table 4. Cross-lot discrimination confusion matrix (%) for NC = 4 classes.

SAS 1 SAS 2 SAS 3 SAS 4

SAS 1 99.6/93.76 0/1.88 0/0 0.4/4.36
SAS 2 0.04/1 99.6/97.8 0/0.04 0/1.16
SAS 3 0/0.56 0.04/1.04 99.92/97.88 0.04/0.52
SAS 4 0.28/2.76 0.2/1.92 0/0.12 99.52/95.2

Table 4 shows the cross-lot discrimination confusion matrix for NC = 4
classes; the results are displayed as %C Case A/%CCase B. The bold values in
the table correspond to the classification results for Case A and the non-bold
values correspond to the classification results for Case B. The classification
performance degraded when the arbitration field was excluded from the region
of interest. The classification performance values of devices SAS 1 and SAS 4
were reduced by approximately 5% and the classification performance values of
devices SAS 2 and SAS 3 were reduced by approximately 2%. SAS 1 and SAS 4
were confused with each other more often than with the other devices; these
devices were obtained from used vehicles manufactured during the same year.
As the signal-to-noise ratio was degraded, SAS 1 and SAS 4 were incorrectly
classified as each other more often than other devices, which may indicate that
these devices look more similar to each other as they age.

Greater than 90% correct identification of similar components was achieved
using WS-DNA fingerprints generated in Case B. Moreover, correct classifica-
tion (%C) greater than 90% in realistic implementations was obtained even
when the signal-to-noise ratio was degraded by 10dB.

0 0.2 0.4 0.6 0.8 1
False Verification Rate (FVR)

0

0.2

0.4

0.6

0.8

1

T
ru

e
V

er
if

ic
at

io
n

 R
at

e
(T

V
R

)

1:1

2:2

3:3

4:4

0 0.2 0.4 0.6 0.8 1
False Verification Rate (FVR)

0

0.2

0.4

0.6

0.8

1

T
ru

e
V

er
if

ic
at

io
n

 R
at

e
(T

V
R

)

1:1

2:2

3:3

4:4

(a) Case A: ROC curve. (b) Case B: ROC curve.

Figure 8. Authorized device verification ROC curve at SNRcol.

5.2 Device Verification
Figure 8 shows the results for authorized device verification. Note that the

Euclidean distance was used as the measure of similarity and success was de-
fined as a true verification rate greater than 0.9 and a false verification rate less

116 CRITICAL INFRASTRUCTURE PROTECTION XIII

0 0.2 0.4 0.6 0.8 1
Rouge Accept Rate (RAR)

0

0.2

0.4

0.6

0.8

1
T

ru
e

V
er

if
ic

at
io

n
 R

at
e

(T
V

R
)

0 0.2 0.4 0.6 0.8 1
Rouge Accept Rate (RAR)

0

0.2

0.4

0.6

0.8

1

T
ru

e
V

er
if

ic
at

io
n

 R
at

e
(T

V
R

)

(a) Case A: Rogue ROC curve. (b) Case B: Rogue ROC curve.

Figure 9. Rogue device verification ROC curve at SNRcol.

than 0.1. The horizontal black dashed lines correspond to the true verification
rate benchmark of 0.9, which is consistent with previous RF-DNA work [4, 7,
16, 18, 21]. The solid ROC curves for Case A and Case B indicate that all
four devices satisfy the true verification benchmark at the average collected
signal-to-noise ratio.

In the rogue device verification scenario, rogue devices presented false cre-
dentials and were either accepted or rejected as the device they claimed to be
based on the threshold established by the probability mass function generated
during training.

Figure 9 shows the results for rogue device verification. The dashed black
boxes represent the areas where the true verification rate is greater than 0.9 and
the rogue acceptance rate is less than 0.1. The black stars on each line denote
the device-dependent equal error rate and the solid curves denote devices that
met the success criteria. Consistent with the authorized device verification
results, all the devices successfully met the equal error rate success criteria for
Case A and Case B.

R1:A1 R2:A1 R3:A1
Rogue Device Index #

RRR = [100 100 100]

0

0.5

1

1.5

2

2.5

3

3.5

R
aw

 R
o

g
u

e
D

ev
 T

st
 S

ta
t

(
Z

V
)

R1:A1 R2:A1 R3:A1
Rogue Device Index #

RRR = [100 100 100]

0

0.5

1

1.5

2

2.5

3

3.5

R
aw

 R
o

g
u

e
D

ev
 T

st
 S

ta
t

(
Z

V
)

(a) Case A: Rogue rejection rate. (b) Case B: Rogue rejection rate.

Figure 10. Rejection rates of rogue devices using valid credentials at SNRcol.

Figure 10 shows the rejection rates for unauthorized rogue devices (R1, R2
and R3) using the valid credentials (i.e., ID) of the authorized device A1 at
SNRcol. The verification results are based on burst-by-burst grant/deny ac-
cess criteria [4]. Note that the O symbols denote access correctly denied and
the X symbols denote access incorrectly granted. The horizontal black lines
correspond to the device-dependent equal error rate thresholds.

Lassiter, Graham, Carbino & Dunlap 117

1.02 1.025 1.03 1.035 1.04
Time (s) 10-5

-0.15

-0.1

-0.05

0

0.05

V
o

lt
ag

e
(V

)
SAS
BeagleBoard
Arduino
CANable

Figure 11. Zoomed-in view of bit transitions in Figure 4.

The rogue devices were rejected 100% of the time in Case A and Case B. The
results also indicate that using the smaller region of interest yields rogue device
fingerprints that are more similar to the fingerprints of the authorized devices,
except for rogue device R3 based on the same vertical and horizontal axes in
both figures. Although the rogue rejection rates were perfect for rogue devices
R1 and R2, the verification test statistics ZV generated for these devices were
closer to the threshold tV , indicating a greater similarity in Case B than in
Case A.

Rogue device R3 looks less like device SAS 1 in Case B, which is likely due
to the symbol and transition misalignment seen in Figure 11, a zoomed-in view
of the bit transitions in Figure 4. All the rogue device transitions are slightly
misaligned and do not accurately replicate the authorized device transitions.

A4:A1 A4:A2 A4:A3 A4:A4
Auth Dev Index #

RRR = [99.5 99.9 100 4.08] %

0

0.002

0.004

0.006

0.008

0.01

R
aw

 R
o

g
u

e
D

ev
 T

st
 S

ta
t

(
Z

V
)

A4:A1 A4:A2 A4:A3 A4:A4
Auth Dev Index #

RRR = [98 98.8 100 6.23] %

0

0.5

1

1.5

2

2.5

R
aw

 R
o

g
u

e
D

ev
 T

st
 S

ta
t

(
Z

V
) 10-3

(a) Case A: Rogue rejection rate. (b) Case B: Rogue rejection rate.

Figure 12. Rejection rates of a device (A4) using the credentials of other devices.

Figure 12 shows the rejection rates when the compromised device SAS 4 (or
A4) presented false credentials belonging to the other three authorized devices
(A1, A2 and A3). Note that the O symbols denote access correctly denied
and the X symbols denote access incorrectly granted. The black dashed lines

118 CRITICAL INFRASTRUCTURE PROTECTION XIII

correspond to the device-dependent equal error rate thresholds. Excluding the
results for device A4 presenting its own credentials, the average rogue rejection
rate is still approximately 100% when an authorized electronic control unit
attempts to present false credentials in Case A. In Case B, the average rogue
rejection rate dropped approximately 1%, resulting in a rogue rejection rate of
approximately 99%.

Overall, the rogue rejection rates are high for unauthorized devices because
the devices were unable to accurately match the authorized electronic control
unit symbol rate, resulting in drastic differences in the transition regions as
shown in Figure 11. The figure also shows that, although rogue device R1 has
a higher average amplitude than the other devices, the bit transitions are more
aligned with the authorized devices than the rogue device R3. This results in
a greater degree of similarity.

6. Conclusions
Electronic control units in modern automobiles implement normal vehicular

operations as well as advanced autonomous safety and driver comfort features.
However, the automobiles can be hacked by compromising the electronic control
units or by connecting unauthorized devices to the controller area network bus.

The WS-DNA methodology described in this chapter is a viable solution for
electronic control unit classification and verification. Although development
boards such as Arduino and BeagleBoard can be used to create rogue electronic
control units, the differences in their signal transition regions and amplitudes
provide enough information to reject these devices when they are compared
against authorized electronic control units. When only the message preamble
of an electronic control unit was used, 100% of the CAN bus access attempts by
three rogue devices were detected. Using an authorized steering angle sensor as
a compromised device yielded a rogue device rejection rate greater than 99%,
even when a region of interest smaller than the preamble was used. Addition-
ally, the average correct classification of the four authorized devices was greater
than 99% at SNRcol. As expected, when only seven bits were used as the re-
gion of interest in Case B, the classification performance was statistically worse
than in Case A. Specifically, in Case B, the average correct classification was
approximately 96% at SNRcol and the average detection rate for compromised
devices was slightly lower than in Case A. Despite the decreased performance,
the unauthorized rogue rejection rate was still 100% for Case B, indicating
that the WS-DNA methodology is suitable for authenticating base frame for-
mat electronic control units. The results are also promising for extended frame
format electronic control unit based on the results in Case A.

Security can be established on the CAN bus using the WS-DNA methodology
with fingerprints generated from the region of interest used in Case B. A device
capable of monitoring and collecting signals could be installed on the CAN bus,
programmed with authorized electronic control unit WS-DNA fingerprints as
well as an multiple discriminant analysis maximum likelihood classifier. CAN

Lassiter, Graham, Carbino & Dunlap 119

bus traffic could then be collected and analyzed in real-time to detect the
presence of compromised or rogue devices in the network.

The WS-DNA methodology can be applied to a range of CAN bus and elec-
tronic control unit discrimination problems. Investigating electronic control
unit discrimination for the extended frame format could validate the claims
made in Case A. Like model discrimination – differentiating between electronic
control units from the same manufacturer and with the same lot number –
should also be examined, although it is a more difficult aspect of RF-DNA dis-
crimination [3]. Additionally, discriminating between vehicle electronic control
units with different functions such as a steering angle sensor, engine control
module and telematic control unit would be beneficial. Finally, discriminating
between CAN transceivers and evaluating the temperature effects on finger-
printing and discrimination are also promising topics for future research.

The views expressed in this chapter are those of the authors, and do not
reflect the official policy or position of the U.S. Air Force, U.S. Department
of Defense or U.S. Government. This document has been approved for public
release, distribution unlimited (Case #88ABW-2019-0050).

References

[1] O. Avatefipour, A. Hafeez, M. Tayyab and H. Malik, Linking received pack-
ets to the transmitter through physical-fingerprinting of controller area
network, Proceedings of the IEEE Workshop on Information Forensics and
Security, 2017.

[2] T. Carbino, Exploitation of Unintentional Ethernet Cable Emissions Using
Constellation Based-Distinct Native Attribute (CB-DNA) Fingerprints to
Enhance Network Security, Ph.D. Dissertation, Department of Electrical
and Computer Engineering, Air Force Institute of Technology, Wright-
Patterson Air Force Base, Ohio, 2015.

[3] T. Carbino, M. Temple and J. Lopez, A comparison of PHY-based finger-
printing methods used to enhance network access control, in ICT Systems
Security and Privacy Protection, H. Federrath and D. Gollmann (Eds.),
Springer, Cham, Switzerland, pp. 204–217, 2015.

[4] T. Carbino, M. Temple and J. Lopez, Conditional constellation based dis-
tinct native attribute (CB-DNA) fingerprinting for network device authen-
tication, Proceedings of the IEEE International Conference on Communi-
cations, 2016.

[5] K. Cho and K. Shin, Fingerprinting electronic control units for vehicle in-
trusion detection, Proceedings of the Twenty-Fifth USENIX Security Sym-
posium, pp. 911–927, 2016.

[6] W. Choi, H. Jo, S. Woo, J. Chun, J. Park and D. Lee, Identifying ECUs
using inimitable characteristics of signals in controller area networks, IEEE
Transactions on Vehicular Technology, vol. 67(6), pp. 4757–4770, 2018.

120 CRITICAL INFRASTRUCTURE PROTECTION XIII

[7] W. Cobb, E. Garcia, M. Temple, R. Baldwin and Y. Kim, Physical layer
identification of embedded devices using RF-DNA fingerprinting, Proceed-
ings of the Military Communications Conference, pp. 2168–2173, 2010.

[8] S. Corrigan, Introduction to the Controller Area Network (CAN), Appli-
cation Report SLOA101, Texas Instruments, Dallas, Texas, 2002.

[9] R. Currie, Developments in Car Hacking, Information Security Reading
Room, SANS Institute, North Bethesda, Maryland, 2015.

[10] A. Greenberg, Hackers remotely kill a Jeep on the highway – With me in
it, Wired, July 21, 2015.

[11] M. Jaynes, R. Dantu, R. Varriale and N. Evans, Automating ECU identifi-
cation for vehicle security, Proceedings of the Fifteenth IEEE International
Conference on Machine Learning and Applications, pp. 632–635, 2016.

[12] J. Lopez, N. Liefer, C. Busho and M. Temple, Enhancing critical infras-
tructure and key resources (CIKR) level-0 physical process security using
field device distinct native attribute features, IEEE Transactions on In-
formation Forensics and Security, vol. 13(5), pp. 1215–1229, 2018.

[13] M. Lukacs, P. Collins and M. Temple, Device identification using active
noise interrogation and RF-DNA “fingerprinting” for non-destructive am-
plifier acceptance testing, Proceedings of the Seventeenth Annual IEEE
Wireless and Microwave Technology Conference, 2016.

[14] P. Murvay and B. Groza, Source identification using signal characteristics
in controller area networks, IEEE Signal Processing Letters, vol. 21(4), pp.
395–399, 2014.

[15] P. Paganini, CAN hacking tools, 20 USD to hack a car remotely, Security
Affairs, February 9, 2014.

[16] D. Reising, M. Temple and J. Jackson, Authorized and rogue device
discrimination using dimensionally-reduced RF-DNA fingerprints, IEEE
Transactions on Information Forensics and Security, vol. 10(6), pp. 1180–
1192, 2015.

[17] B. Ross, T. Carbino and S. Stone, Physical-layer discrimination of power
line communications, Proceedings of the International Conference on Com-
puting, Networking and Communications, pp. 341–345, 2017.

[18] B. Ross, T. Carbino and M. Temple, Home automation simulcasted power
line communications network (SPN) discrimination using wired signal dis-
tinct native attribute (WS-DNA), Proceedings of the Twelfth International
Conference on Cyber Warfare and Security, pp. 313–322, 2017.

[19] B. Ross, T. Carbino and M. Temple, Simulcasted power line communica-
tions network (SPN) configuration validation for home automation appli-
cations using wired signal distinct native attribute (WS-DNA) fingerprint-
ing, Journal of Information Warfare, vol. 16(3), pp. 95–118, 2017.

[20] Wikipedia Contributors, CAN-Bus-Frame in Base Format without Stuff-
bits, Wikipedia Commons (commons.wikimedia.org/wiki/File:CAN-
Bus-frame_in_base_format_without_stuffbits.svg), 2017.

Lassiter, Graham, Carbino & Dunlap 121

[21] M. Williams, S. Munns, M. Temple and M. Mendenhall, RF-DNA finger-
printing for airport WiMax communications security, Proceedings of the
Fourth International Conference on Network and System Security, pp. 32–
39, 2010.

[22] M. Williams, M. Temple and D. Reising, Augmenting bit-level network
security using physical layer RF-DNA fingerprinting, Proceedings of the
IEEE Global Telecommunications Conference, 2010.

Chapter 7

VEHICLE IDENTIFICATION AND
ROUTE RECONSTRUCTION VIA
TPMS DATA LEAKAGE

Kenneth Hacker, Scott Graham and Stephen Dunlap

Abstract Tire pressure monitoring systems have become a mandatory feature of
modern automobiles, but their presence opens a new attack vector for
a potential adversary. These systems have minimal security features,
allowing for eavesdropping and data injection with low technical and
financial costs.

This chapter explores the potential for tire pressure monitoring sys-
tems to provide inputs to a remote sensing network, which leverages the
data broadcast by the systems to identify vehicles and track their move-
ments. A traffic simulation is employed to generate vehicle movements
and tire pressure monitoring system packets. Experiments demonstrate
that the tire pressure monitoring system data can help identify vehicles
and reconstruct vehicle routes. They show that a determined adversary
could deploy sensors to detect tire pressure monitoring systems and
learn about the movements of individual vehicles without any insider
information. Potential solutions to this privacy problem are discussed,
focusing on low cost changes with the greatest consumer security bene-
fits.

Keywords: TPMS data leakage, vehicle identification, route reconstruction

1. Introduction
The adoption of a new technology is exciting, with vendors and government

regulators eager to lead the way, but often without considering the security
risks. Even seemingly insignificant systems can provide avenues for an adver-
sary to gain information or influence. This is the case with vehicular tech-
nologies, where manufacturers must balance consumer desires, company goals
and safety obligations. Tire pressure monitoring systems (TPMSs), which em-
ploy wireless communications to provide tire status information on drivers’

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 123–136, 2019.

https://doi.org/10.1007/978-3-030-34647-8_7

https://doi.org/10.1007/978-3-030-34647-8_7
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_7&domain=pdf

124 CRITICAL INFRASTRUCTURE PROTECTION XIII

dashboards, are a mandatory safety feature in all new vehicles. However, the
wireless signals are neither protected from eavesdroppers nor are they authen-
ticated, enabling a malicious actor to gain access to sensitive data, or worse,
manipulate the system.

This chapter discusses potential privacy threats that result from TPMSs
being installed in the majority of vehicles on roadways. Experiments were
conducted using traffic simulations with realistic TPMS data that an adversary
could collect and analyze. The experiments demonstrate that a determined
adversary could deploy sensors to identify vehicles using TPMS data and learn
about the movements of individual vehicles without any insider information.
Potential solutions to this privacy problem are discussed, focusing on low cost
changes with the greatest consumer security benefits.

2. Tire Pressure Monitoring Systems
This section provides an overview of TPMSs, including TPMS legislation,

implementation, attacks and security.

2.1 Legislation
In the United States, steps toward mandating TPMSs in new vehicles ini-

tiated after a number of traffic fatalities related to defective tires. The Trans-
portation Recall Enhancement, Accountability and Documentation (TREAD)
Act of 2000, which was rapidly passed by the U.S. Congress [9], called for a
mandatory system that would warn drivers when one or more vehicle tires were
significantly underinflated.

The National Highway Traffic Safety Administration [5] drafted more de-
tailed compliance requirements for all new vehicles starting from September 1,
2007. These requirements included reporting to the driver if one or more tires
were 25% below minimum pressure within 20 minutes of the pressure dropping.
The European Commission [3] mandated TPMSs in all new vehicles after 2012
as part of a major safety and emission-reduction program. As a result, mil-
lions of TPMS-equipped vehicles are on the roadways and their percentage is
growing as older vehicles are removed from service.

2.2 Implementation
A TPMS unit embedded in the tire of a vehicle periodically reads its pressure

and temperature sensors, constructs a network packet, encodes it (e.g., with
Manchester encoding) and transmits it using amplitude shift or frequency shift
keying to a vehicle TPMS receiver, which forwards it to a central control module
for analysis. Tire pressure alerts are sent by the control module directly or
indirectly to the dashboard where they are displayed.

The wireless data packets transmitted by most TPMS units are fairly simple.
A typical packet includes 32 bits for an ID, eight bits of pressure data, eight

Hacker, Graham & Dunlap 125

bits of temperature data, four bits of status flags and twelve bits for a cyclic
redundancy check (CRC).

Unfortunately, the tire pressure and temperature data in the network packets
are neither encrypted nor significantly obfuscated, allowing anyone in wireless
proximity who captures the packets to read the data. Notably, information is
only transmitted in one direction, from the tire device to the vehicle TPMS
receiver, in order to conserve battery power for the sensors, which are in the
sleep mode for the vast majority of the time.

The main reason for the lack of security in TPMSs is the increased power
cost required for encryption and two-way communications. The lifespans of
the batteries are five to ten years; size and weight requirements preclude the
use of larger batteries [10]. The tire pressure unit, which includes a battery, is
usually set in epoxy inside the tire; the individual components are, therefore,
not replaceable. As a result, the entire tire pressure unit has to be replaced
when the battery is depleted.

2.3 Attacks
In 2010, Rouf et al. [6] published an evaluation of TPMS attack scenarios

as part of a case study of in-car wireless networks. They demonstrated that
the lack of authentication and integrity checks made spoofing trivial, leading to
malicious effects such as displaying false information and warning lights, and
disabling the TPMS control unit.

In the same article, Rouf and colleagues [6] discussed the feasibility of track-
ing vehicles based on their TPMS sensor broadcasts. Given the static IDs of
the four tires associated with a vehicle, it is simple to associate them with the
identity of a vehicle. In fact, given the data from all four tires of a vehicle –
and without considering any other data such as geographic locations – there
would have to be more than one billion vehicles on the road to even approach
a 1% chance of misidentifying the vehicle.

Creating an eavesdropping infrastructure can be challenging, especially for
passive data collection. The low power transmissions from TPMS units require
receivers to be positioned close to vehicles, so large numbers of receivers would
have to be placed along roadways to ensure that the infrequently-transmitted
packets are captured.

A more effective solution may be to stimulate a TPMS transmission using a
low frequency activation signal. While this process is more complex and prone
to noise, it could guarantee readings at points of interest along roadways.

Rouf and colleagues [6] also compared TPMS-based tracking of vehicles
against the other alternative for tracking vehicles – automatic number plate
reading. According to their study, tracking via TPMSs would have higher
read rates (99% versus 90%) and would not require line-of-sight measurements.
However, TPMS-based tracking by law enforcement would require changes to
existing laws and regulations.

126 CRITICAL INFRASTRUCTURE PROTECTION XIII

2.4 Security
Researchers have proposed approaches for rendering TPMS-based tracking

and spoofing of vehicles more difficult by obfuscating the packet IDs. Xu et
al. [11] have proposed a system incorporating pseudo-IDs, sequence numbers,
message authentication codes and session keys, which addresses many of the
privacy and integrity problems. However, their system, which requires a three-
way handshake to establish keys, does not work with current TPMS sensors
because they are not equipped to receive data.

Emura et al. [2] have examined sensor costs and have demonstrated a proto-
col that could be used under current TPMS constraints. Other researchers [4, 8]
have shown that rolling IDs that change between TPMS transmissions are fea-
sible and can defeat tracking methods. The next generation of TPMSs may
incorporate these and other upgrades. However, automobile manufacturers are
not as yet concerned about TPMS vulnerabilities, so the security problems
persist.

3. Background
This section describes the traffic simulator and the performance metrics used

in this research.

3.1 Simulator for Urban Mobility
Simulator for Urban Mobility (SUMO) is an open-source traffic simulation

suite that provides several tools for mapping and traffic generation, manipu-
lation and simulation. First released in 2002, SUMO continues to be actively
enhanced [1], providing a platform for testing vehicular routing protocols, ex-
ecuting traffic congestion models and generating realistic traffic data that can
be used for further research.

SUMO is a microscopic simulator in that the level of simulation goes down
to individual vehicles and lanes, with the vehicles acting on their own and
responding in a realistic manner. In contrast, macroscopic simulators abstract
the individual vehicles into general traffic flows in sections of a map. SUMO
models maps as nodes (intersections) and edges (roads) on a Cartesian grid; the
maps can be constructed, randomly generated or imported from sources such
as OpenStreetMap. Traffic conditions such as the number of lanes, traffic light
timings, speed restrictions and more can all be specified or imported. Vehicles
can belong to standard classes such as cars, trucks or buses, or customized
vehicles can be developed to meet the simulation needs.

Simulations are defined by map and route files. The map establishes the
places where a vehicle may travel, along with the road conditions and restric-
tions. The route defines the points at which a vehicle enters and exits the
roadway, the roads on which it travels and its behavior during the trip. The
simulation can be modified in real time using the Traffic Control Interface

Hacker, Graham & Dunlap 127

(TraCI) to observe how changing conditions such as traffic lights or a collision
may affect the simulation.

3.2 Measurement Metrics
This chapter discusses algorithms for identifying vehicles and reconstructing

their routes. In order to evaluate the effectiveness of the algorithms, metrics
are needed to compare their results against truth data in the simulation. Each
metric is intended to provide relative assessments of the “goodness” of various
configurations.

Data from the simulation is passed to the tire ID association phase, which
transforms TPMS observations into vehicle identities. The vehicle identities
and associated observations are sent to the route reconstruction phase, which
processes the individual observations to create complete routes.

Two metrics were selected: (i) Jaccard distance used in the tire ID asso-
ciation phase; and (ii) graph edit distance used in the route reconstruction
phase:

Jaccard Distance: During the tire ID association phase, sets are com-
pared to determine the combinations of IDs that are commonly found
together. The Jaccard distance is a set similarity metric that is com-
monly used for spell checking strings [12]. The Jacquard distance J of
two sets A and B is given by:

J(A, B) =
|A ∩ B|
|A ∪ B|

The Jaccard distance is used to compare a candidate set of tire IDs against
tire IDs observed during a time window at a specific intersection along a
route. For example, if the candidate set is {0xa1, 0xb2, 0xc3} and if the
set of tire IDs observed during a five-second window at an intersection is
{0xcc, 0xdd, 0xff, 0xa1, 0xb2}, then the Jaccard distance is computed
as:

|{0xa1, 0xb2}|
|{0xa1, 0xb2, 0xc3, 0xcc, 0xdd, 0xff}| =

2
6

= 0.33

This score helps determine the best association of tire IDs. Additionally,
it is used to compare candidate associations against true sets belonging
to vehicles in order to judge their goodness.

Graph Edit Distance: A target route on a road map and a candidate
route are modeled as directed graphs where the nodes are intersections
and the edges are roads. The graph edit distance, which compares the
similarity between two graphs, is widely used in pattern matching [7]. It
is employed in the route reconstruction phase to score candidate routes.

128 CRITICAL INFRASTRUCTURE PROTECTION XIII

The graph edit distance is defined as the minimum number of modifica-
tions required to transform the graph corresponding to a candidate route
to the target graph. In this work, the modification operations correspond
to insertions, deletions or substitutions of nodes or edges. Each mod-
ification operation can be weighted differently to reflect the impact of
the operation. Specifically, insertions and deletions have weights of one.
A substitution has a weight of two because it corresponds to a deletion
followed by an insertion.

4. Simulation Methodology
This section describes the simulation methodology.

4.1 Simulation Setup
The main steps in the simulation setup phase are: (i) geographical map

generation; and (ii) traffic generation.

Geographical Map Generation: The map employed in the simulation
covered a section of downtown Dayton, Ohio. SUMO provides a tool that
uses OpenStreetMap to download real data for an area, which accurately
represents traffic lights, speed limits, one-way streets and other elements
of traffic flow.

The map size is a simulation parameter that may be adjusted to serve
various purposes. The map size chosen for the simulation was approx-
imately 600 nodes and 1,200 edges. This map was selected for reasons
of familiarity and to represent sufficiently diverse traffic conditions that
could demonstrate the feasibility of the approach. An urban deployment
with a relatively high density of intersections was of particular interest in
this study.

Traffic Generation: The SUMO Python script randomTrips employed
the network description, simulation time, optional seed and traffic density
to generate an XML trip file that described every vehicle created along
with its source node and destination. The SUMO DUAROUTER tool
converted the source/destination pairs to actual routes that described
the roads that each vehicle could take during the simulation.

Wireless Communications Detection: SUMO includes a package for
wireless communications that can model technologies such as Bluetooth
and vehicular ad-hoc networks (VANETs) [1]. Vehicles may be given
receivers and transmitters independently, and the assignments can be
made explicitly or randomly using a user-specified percentage.

All the vehicles in the simulation were assumed to have transmitters (i.e.,
they were equipped with tire pressure sensors). The TPMS detectors were
modeled as vehicles equipped with receivers that were parked at intersec-
tions. Edge cases, corresponding to situations where multiple intersec-

Hacker, Graham & Dunlap 129

tions were very close to each other, were handled by manually removing
overlapping detectors.

When a vehicle enters detector range in the simulation, data is recorded
in an XML file associated with the vehicle. At the end of the simulation,
this XML file contains considerable details about the vehicle route and
travel conditions. Packets may be optionally dropped by eliminating a
percentage of detectors, simulating heavy versus sparse detector deploy-
ments.

This method of modeling wireless detectors differs from real-world de-
ployments, but it has enough fidelity to achieve the research goals. A
real detector would likely be a directional antenna that could only re-
ceive data from a few lanes, possibly requiring 2n detectors for an n-way
intersection. This could actually improve a tracking algorithm by provid-
ing travel directions. However, the simulation conducted only considered
binary detections at intersections – was a vehicle present at the intersec-
tion and at what time? Based on previous research and working within
the time constraints, these inputs were deemed adequate for purposes of
tire ID association and route reconstruction. The additional benefit is
that this type of data could come from detectors other than TPMS sen-
sors (which are of interest as VANET technologies enter the roadways),
but the data could still be applied to existing systems such as automatic
number plate readers.

4.2 TPMS Packet Generation
In the TPMS packet generation phase, wireless observation data generated

by SUMO is post-processed to produce TPMS packets needed for tire ID as-
sociation. In this phase, most of the data is stripped to prevent sensitive
information such as actual vehicle IDs, speeds and routes from being accessed
in the later phases.

The TPMS packet generation phase starts with a dictionary containing time
and location data for all wireless observations; the data is indexed by the ob-
served vehicle ID. For each unique vehicle, four random 32-bit tire IDs are
generated. For each vehicle observation, the simulation must decide which
tires have been observed.

A simple probabilistic model was developed based on previous experiments
that used a directional antenna to measure the attenuation due to vehicles.
The model assumed that transmissions from the two tires closest to a roadside
detector (i.e., right-side tire transmissions) would always be detected, and the
left-front and left-rear tire transmissions would be detected with probabilities of
50% and 10%, respectively. If a tire is deemed to be detected at an observation
point, then the location and timestamp are placed in a new dictionary indexed
by the tire ID. This ensures that the resulting data structure does not contain
the true vehicle ID, and is at most four times larger than the original data
structure.

130 CRITICAL INFRASTRUCTURE PROTECTION XIII

4.3 Tire ID Association
The main steps in the tire ID association phase are: (i) candidate association

creation; and (ii) candidate association scoring:

Candidate Association Creation: This step attempts to associate the
observed tire IDs with one another to create a tuple called a candidate
(tire ID) association, which ideally belongs to one vehicle. Each tire
ID has an associated list of observations that form a route. Because
it is unlikely to obtain data about all four tires of a vehicle at every
intersection, tire IDs that belong with each other (i.e., from the same car)
would have similar, but not necessarily identical, lists of observations.

All the tire IDs observed at a given location during a certain time window
(chosen as one second in the experiments) are examined. For every tire
ID, the frequency with which every other tire ID is observed near the
selected tire ID is tallied across the entire observed route. In a high-
density traffic environment, two vehicles could be close enough to yield
overlapping tire IDs. Thus, tire IDs from nearby vehicles have to be
filtered.

This is accomplished by creating sets of the four most frequently observed
tire IDs with respect to the tire ID being evaluated. The Jaccard distance
metric is used to compare these sets against the sets observed at each
location. The set with the highest average Jaccard distance across the
route is considered to be an identity and is saved in a scoring matrix.
This enables a tunable metric to be used to manipulate the risk/reward
of associating more tire IDs. Additionally, because the route for a set
of tire IDs may appear to be different even if they belong to the same
vehicle, it is possible for an infrequently observed tire ID to appear to be
associated with a different set of tire IDs.

A scoring matrix adds a second layer of filtering to reduce this error.
After all the tire IDs are considered independently, the scoring matrix
is evaluated to create the final virtual vehicle identities, which are the
sets of tire IDs belonging a unique vehicle. If a set of four or fewer
tire IDs are consistently grouped with each other, the tire IDs in the
set are assumed to belong to a specific vehicle, the set is designated
as a candidate association and the tire IDs are removed from further
consideration. Otherwise, if a set of more than four tire IDs appear to
be related, then four tire IDs that are most frequently associated with
each other are assumed to belong to a specific vehicle; this set is also
designated as a candidate association.

Candidate Association Scoring: When scoring a candidate associa-
tion, the tire IDs grouped as corresponding to a vehicle identity should
be evaluated with respect to each other instead of attempting to match
them against a true vehicle. Additionally, the risk/reward of attempting
to add a third or fourth tire ID to the group should increase.

Hacker, Graham & Dunlap 131

Table 1. Candidate association scores.

Matches Set Size Comments Score

0 4 Four incorrectly associated tires 0.14
(worst case)

0 3 Three incorrectly associated tires 0.17

0 2 Two incorrectly associated tires 0.2

0 1 One associated tire is effectively not 0.25
an association

1 4 Two correctly associated tires and two 0.33
unrelated tires

1 3 Two correctly associated tires and one 0.4
unrelated tire

1 2 Two correctly associated tires 0.5

2 4 Three correctly associated tires and one 0.6
unrelated tire

2 3 Three correctly associated tires 0.75

3 4 Four correctly associated tires 1.0
(ideal case)

The method used to score a candidate association performs a reverse
lookup in the truth data to find the true vehicle ID that is associated
with each tire ID in the candidate association. This creates a tuple of
one to four tire IDs, each of which may correspond to the same vehicle
or, in adverse cases, multiple vehicles.

Jaccard similarity is used to compare a candidate association against the
most likely true vehicle. As shown in Table 1, in the case of a four-wheeled
vehicle, the Jaccard similarity score ranges from 0.14 to 1.0. Note that
the first column corresponds to the number of tire IDs in a candidate
association that belong to the same vehicle. Thus, the values range from
zero (all the tires belong to different vehicles) to three (all the tires belong
to the same vehicle).

4.4 Route Reconstruction
The main steps in route reconstruction are: (i) candidate route creation;

and (ii) candidate route scoring:

Candidate Route Creation: The output from the tire ID associa-
tion phase, which is input to the route reconstruction phase, comprises
a list of candidate vehicles and their associated observations (location-

132 CRITICAL INFRASTRUCTURE PROTECTION XIII

timestamp pairs). The algorithm used in route reconstruction is assumed
to have complete knowledge of the roads in the geographic area where
the detectors are placed. This knowledge is encoded in a graph where the
intersections are nodes and the roads are edges. The edges are weighted
based on the estimated travel times to traverse the edges.

The algorithm examines the observations for a given vehicle and attempts
to predict the most likely route corresponding to the observations. This
is accomplished by taking two consecutive observations and finding a
simple path (without loops) whose estimated travel time is the closest to
the difference between the observed times. The complete vehicle route
is created by repeating this step for all the observations corresponding
to the vehicle. This entire process is repeated until candidate routes are
generated for all the vehicles.

Candidate Route Scoring: Because the road network is modeled as a
graph, the graph edit distance is the natural choice for quantifying the
correctness of candidate routes. The truth data is used to build a directed
graph containing only the nodes and edges that are actually traversed by
a vehicle. The graph corresponding to the candidate route is compared
against the truth graph.

The candidate route score is computed by tallying the weights corre-
sponding to the minimum number of insertions, deletions or substitutions
required to convert one graph to the other. Note that an insertion implies
that a node or edge is in the candidate route whereas a deletion implies
that an extraneous (incorrect) node or edge exists in the candidate route.

4.5 Simulation Variables
Two variables, detector density and vehicle density, were employed in the

simulation experiments. The values of these variables were varied in the simu-
lation runs.

Three detector density values were employed, low, medium and high, corre-
sponding to detectors placed at 10%, 50% and 100% of intersections, respec-
tively. The detector densities were selected to provide insights into the optimal
number of detectors that should be used when cost and infrastructure size are
considerations.

Three vehicle densities were employed, low, medium and high, corresponding
to 200, 500 and 2,000 vehicles, respectively. These densities were manually
determined based on how much traffic could be handled without becoming
overwhelmingly gridlocked.

5. Simulation Results
This section presents the tire ID association and route reconstruction results.

Hacker, Graham & Dunlap 133

Figure 1. Tire ID association results.

5.1 Tire ID Association Results
A candidate tire ID association was scored based on pairwise matches in

a reverse lookup of tire IDs that were believed to be associated with each
other. This metric provided a relative measure of goodness as the experimental
conditions changed.

Each experimental configuration was run over 150 seeds, which varied the
routes and detector placements while keeping the detector and traffic densities
constant. The resulting scores are shown in the boxplots of Figure 1. Note that
the triangles denote the means of the experiments whereas the circles denote
outliers. All the experiments with medium or high detector coverage achieved
mean scores greater than 0.75. This demonstrates that the correct 3-tuples
were identified frequently and that significant mismatches rarely occurred.

Certain trends that followed expected patterns emerged from the data. The
means always improved with increasing detector density because more observa-
tions provided more opportunities to discern patterns. Every experiment had
at least one case where all four tire IDs were correctly associated; this is likely
to occur when there are enough vehicles and long enough routes to observe all
the tires. The minimum scores appeared to be affected more by traffic density
than detector density, with the worst cases getting worse as the traffic density
increased. This is likely the result of traffic congestion, which causes vehicles to
gather at intersections, effectively forming caravans. Multiple vehicles passing
by a detector in a short window increased the likelihood of errors in tire ID as-
sociations. This issue may be alleviated by adjusting the locations of detectors
so that important intersections are adequately covered.

5.2 Route Reconstruction Results
A candidate route was scored based on the graph edit distance between the

candidate route and the true route travelled by the vehicle. Since every node
or edge inserted/deleted incurred a cost of one and every modified node or
edge incurred a cost of two, a score of zero corresponded to a perfect route

134 CRITICAL INFRASTRUCTURE PROTECTION XIII

Figure 2. Route reconstruction results.

reconstruction. Note that, because the routes were random, the length of each
route varied and the numbers of nodes and edges travelled did not have constant
relations to the physical distance travelled. As such, the graph edit distance
was used as a natural metric to observe trends between experiments when maps
were modeled as directed graphs. Figure 2 shows the distribution of scores for
the route reconstruction experiments.

Expected trends in route reconstruction emerged primarily as a function of
detector density. When the detector density was high, some vehicle routes were
reconstructed perfectly. In the case of low vehicle density and a high number of
detectors, the average score was the best in every experiment. However, when
the vehicle density was high, adding more detectors did not improve the average
score. This occurred because the heuristic that was used guessed the route be-
tween observations based on travel time. As the difference between actual and
expected travel times on a given roadway increased, the route reconstruction
accuracy decreased. In the high traffic density experiments, traffic congestion
greatly increased the travel time over the average, leading the algorithm to
assume that vehicles took longer routes. Improved graph tracking heuristics or
engaging traffic congestion data could alleviate this issue when unusual road
conditions are encountered.

6. Conclusions
This research has examined the security consequences of TPMSs, highlight-

ing some vulnerabilities and demonstrating their potential negative effects. It
extends the seminal work of Rouf et al. [6] by exploring TPMS security concerns
in a large simulated environment. The open-source SUMO tool was leveraged
to rapidly generate realistic data and conduct extensive simulations to evaluate
the feasibility of associating tire pressure ID packets with vehicle identities, and
subsequently track vehicles of interest.

Hacker, Graham & Dunlap 135

The use of intersection-based wireless observations and realistic TPMS de-
tection parameters resulted in high tire ID association rates despite employing a
fairly simple algorithm. With knowledge of vehicle identities and timestamped
locations, sparse observations could be processed to reconstruct vehicle routes
with reasonable, albeit varying, accuracy. The simulation experiments demon-
strate that an adversary could deploy current roadside sensors to glean pattern-
of-life data for large numbers of vehicles. The low level of effort required to
breach privacy should motivate further research into the proper use of the tech-
nology and push manufacturers to implement advanced security features.

Future research would be facilitated by creating a SUMO plug-in that would
handle TPMSs in a simple and consistent manner. Another avenue is to de-
velop algorithms with new heuristics that would provide improved accuracy and
speed. Another potential improvement is the application of machine learning
techniques, which appear viable due to the abstract association tasks and the
availability of scoring metrics. Finally, the concepts and techniques developed
in this research could be applied to other wireless vehicular technologies such
as Bluetooth and vehicular ad-hoc networks.

The views expressed in this chapter are those of the authors, and do not
reflect the official policy or position of the U.S. Air Force, U.S. Department
of Defense or U.S. Government. This document has been approved for public
release, distribution unlimited (Case #88ABW-2018-6333).

References

[1] DLR – Institute of Transportation Systems, Eclipse SUMO – Simulation
of Urban Mobility, Berlin, Germany (dlr.de/ts/sumo), 2019.

[2] K. Emura, T. Hayashi and S. Moriai, Toward securing tire pressure moni-
toring systems: A case of PRESENT-based implementation, Proceedings of
the International Symposium on Information Theory and its Applications,
pp. 403–407, 2016.

[3] European Commission, Top News from the European Commission, 23
November to 20 December 2009, AGENDA/09/40, Press Release, Brus-
sels, Belgium, November 20, 2009.

[4] D. Kilcoyne, S. Bendelac, J. Ernst and A. Michaels, Tire pressure moni-
toring system encryption to improve vehicular security, Proceedings of the
IEEE Military Communications Conference, pp. 1219–1224, 2016.

[5] National Highway Traffic Safety Administration, Federal Motor Vehicle
Safety Standards; Tire Pressure Monitoring Systems; Controls and Dis-
plays; Final Rule, 49 CFR Part 571, Docket No. NHTSA 2000-8572, RIN
2127-AI33, Washington, DC, 2003.

[6] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser, W.
Trappe and I. Seskar, Security and privacy vulnerabilities of in-car wireless
networks: A tire pressure monitoring system case study, Proceedings of the
Nineteenth USENIX Conference on Security, article no. 21, 2010.

136 CRITICAL INFRASTRUCTURE PROTECTION XIII

[7] A. Sanfeliu and K. Fu, A distance measure between attributed relational
graphs for pattern recognition, IEEE Transactions on Systems, Man and
Cybernetics, vol. SMC-13(3), pp. 353–362, 1983.

[8] C. Solomon and B. Groza, LiMon – Lightweight authentication for tire
pressure monitoring sensors, in Security of Industrial Control Systems and
Cyber Physical Systems, A. Becue, N. Cuppens-Boulahia, F. Cuppens, S.
Katsikas and C. Lambrinoudakis (Eds.), Springer, Cham, Switzerland, pp.
95–111, 2016.

[9] U.S. Congress, Transportation Recall Enhancement, Accountability and
Documentation (TREAD) Act, Public Law 106-414, 106th Congress,
Washington, DC, 2000.

[10] S. Velupillai and L. Guvenc, Tire pressure monitoring [Applications of
Control], IEEE Control Systems, vol. 27(6), pp. 22–25, 2007.

[11] M. Xu, W. Xu, J. Walker and B. Moore, Lightweight secure communi-
cations protocols for in-vehicle sensor networks, Proceedings of the ACM
Workshop on Security, Privacy and Dependability for Cyber Vehicles, pp.
19–30, 2013.

[12] S. Yadav, A. Reddy, A. Reddy and S. Ranjan, Detecting algorithmically-
generated domain-flux attacks with DNS traffic analysis, IEEE/ACM
Transactions on Networking, vol. 20(5), pp. 1663-1677, 2012.

Chapter 8

MODELING LIABILITY DATA
COLLECTION SYSTEMS FOR
INTELLIGENT TRANSPORTATION
INFRASTRUCTURE USING
HYPERLEDGER FABRIC

Luis Cintron, Scott Graham, Douglas Hodson and Barry Mullins

Abstract Distributed ledger technology is transforming environments where the
participating entities have low trust. Employing distributed ledgers
for intelligent transportation infrastructure communications and op-
erations enables decentralized collaboration between entities that do
not fully trust each other. This chapter models a transportation event
data collection system as a Hyperledger Fabric blockchain network and
simulates it using a transportation environment modeling tool. Data
structures model the data collected about accidents involving vehicles
and witness reports from nearby vehicles and road-side units that ob-
served the events. The chaincode developed for the collection, validation
and corroboration of the reported data is presented. Network perfor-
mance results for various configurations are discussed. Optimization
of the network configuration parameters resulted in a 48.1% improve-
ment in transaction throughput. The experiments demonstrate that a
distributed ledger technology such as Hyperledger Fabric holds promise
for the collection of transportation data and the collaboration of appli-
cations and services that consume the data.

Keywords: Intelligent transportation infrastructure, distributed ledger, blockchain

1. Introduction
Intelligent transportation systems are information-intensive tools that facil-

itate connected, integrated and automated transportation systems in modern
transportation infrastructures [28]. Intelligent transportation systems enable
vehicles, pedestrians and infrastructure components to communicate and in-

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 137–156, 2019.

https://doi.org/10.1007/978-3-030-34647-8_8

https://doi.org/10.1007/978-3-030-34647-8_8
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_8&domain=pdf

138 CRITICAL INFRASTRUCTURE PROTECTION XIII

Transportation
Agencies

Law
Enforcement

Vehicle Service
Providers

. . .

Vehicle
Manufacturers

Insurance
Companies

Figure 1. Transportation infrastructure consortium members.

teract with each another and to provide services to infrastructure stakeholders
such as government entities and businesses. However, these systems are often
isolated and do not communicate with each other due to the lack of network
services, ownership/control (company-owned and maintained) and geopolitical
limitations (cities, states and countries).

Distributed ledger technology, which has changed the way transactions are
conducted in environments with limited or zero trust among peers, can enhance
the collection, sharing and storage of data among intelligent transportation sys-
tems by providing decentralized collaborative platforms for stakeholders. In-
deed, embedding distributed ledger technology in the intelligence transporta-
tion ecosystem can address communications and interoperability challenges
while providing governance, security and privacy benefits that are not currently
available in transportation infrastructures and services.

This chapter describes an approach for standing up a distributed ledger
network (DLN) infrastructure that significantly enhances accident event data
collection in an intelligent transportation infrastructure. The proposed ap-
proach involves standing up a consortium-based distributed ledger network in-
frastructure to serve as the back-end for multiple intelligent transportation
system applications within the same instance. The decentralized network in-
frastructure, which is developed using the Hyperledger Fabric framework and
Hyperledger Composer toolset, is designed to be operated and maintained by
a consortium of government and non-government entities such as law enforce-

Cintron, Graham, Hodson & Mullins 139

ment, transportation agencies, insurance companies, vehicle manufacturers and
other transportation-related service providers (Figure 1). The infrastructure
supports the integration, collaboration and maintenance of relevant data by
pre-selected parties in a decentralized and secure manner.

The focus is on a trusted, secure and verifiable repository for data collected
by vehicles, infrastructure components and participants, which would extend
the accident reconstruction work of Kopylova et al. [10]. Specifically, the dis-
tributed ledger network infrastructure would serve as a platform for executing
distributed network services for reconstructing events leading up to, during
and immediately following vehicle accidents. Sensors mounted on vehicles and
road-side units (RSUs) collect data about vehicle parameters (e.g., speed, head-
ing, location) as well as data about other vehicles shared via vehicular ad-hoc
network (VANET) vehicle-to-vehicle/vehicle-to-infrastructure communications
using the IEEE 1609 family of standards for wireless access in vehicular environ-
ments (WAVE). This capability would enhance vehicle forensics and improve
processes and tools for identifying the root causes of accidents and the liable
parties.

2. Background
Intelligent transportation systems comprise devices and sensors that collect,

transmit and analyze data and information to provide services that enhance
the quality of and experiences provided by modern transportation infrastruc-
tures [25].

The data collection components in intelligent transportation systems include
sensors such as cameras, GPS receivers, RFID readers and radar systems that
are embedded in vehicles and road-side units. The continuous collection and
analysis of observed data enables vehicles to detect and avoid collisions, report
traffic conditions and pass on other information witnessed during road events
such as accidents. Systems and sensors may share the collected data with other
vehicles, road-side units and remote services via proximal vehicular ad-hoc net-
works or through network communications technologies such as Ethernet and
3G/4G/5G. The transmitted data is analyzed and processed to provide services
such as congestion control, automatic toll collection and collision prevention,
among others. In other words, intelligent transportation systems rely on in-
formation collection and dissemination to provide services to transportation
infrastructure stakeholders.

Currently, communications between intelligent transportation systems are
hindered by the high cost of operation and maintenance, lack of network ca-
pabilities, issues of data ownership/control (company-owned and maintained)
and geopolitical limitations (imposed by jurisdictions such as cities, states and
countries). As a result, the search for innovative and cost-saving solutions to
create a connected ecosystem of intelligent transportation systems is an active
area of research in large cities such as New York City [17] and Tampa [26].

Distributed ledger technology enables the maintenance of append-only data
structures by untrusted or partially-trusted participants in a decentralized

140 CRITICAL INFRASTRUCTURE PROTECTION XIII

manner [3]. It leverages protocols that provide decentralized communications,
tamper-resistant storage of transactions, crash/fault tolerance, and data prove-
nance, as well as other features such as code execution via smart-contracts or
chaincode. The resulting deployments are often referred to as distributed ledger
networks.

Popular distributed ledger networks, which utilize blockchains [16] or di-
rected acyclic graphs [2] to maintain ledgers, are categorized based on the level
of trust required for peers to participate. Public or permissionless distributed
ledger networks are accessible to anyone on the Internet and their contents
are visible and verifiable by all participants [21]. Access permissions in private
or permissioned distributed ledger networks are maintained by single central
entities where the network peers are highly trusted. Consortium chains, as
described in [5], are partially-decentralized solutions that are hybrids of low-
trust (i.e., public blockchains) and single high-trust entity models (i.e., private
blockchains) [21]. Such hybrid models enable organizations in a consortium to
share transaction records without having to trust all the other organizations in
the network or rely on a trusted third party to facilitate communications [9].
The consortium-based distributed ledger network model is a good fit for trans-
portation infrastructure applications due to its privacy-enabling and access
control features, distributed execution and low-cost scalability. Ideally, the
consortium would comprise government entities such as law enforcement and
transportation departments as well as organizations that provide services to the
transportation infrastructure or its stakeholders (e.g., vehicle manufacturers,
automobile dealers, insurance companies and maintenance service providers).

3. Related Work
Kopylova et al. [10] have presented an approach for collecting vehicular ad-

hoc network data to reconstruct the events that took place before, during and
after accidents. The approach leverages vehicles with improved logging mech-
anisms, vehicular ad-hoc network communications data and a GPS data rec-
tification mechanism that processes data submitted by other entities. All the
events are logged in the associated vehicle data recorders that require owner
consent or court orders to gain access to the stored data. This data is parsed,
filtered and appended to previously-acquired witnessed data in order to perform
forensic analyses. Potential problems are that the data stored in the vehicles is
at risk of tampering via modification or deletion, and the data may not always
be accessible.

Dorri et al. [8] have proposed the use of a blockchain-based distributed ledger
network to address scalability issues with centralized systems (e.g., cloud ser-
vices), preserve the privacy of vehicle owners and passengers, and enhance
the security of smart transportation systems. Unlike permissionless public
blockchains such as Bitcoin, the approach clusters the network and moves dis-
tributed ledger network management to nodes whose sole purpose is to broad-
cast and verify transactions and append blocks to the ledgers. Important fea-
tures include hash checks of wireless software updates, secure data exchange

Cintron, Graham, Hodson & Mullins 141

with insurance providers and car-sharing services. Security mechanisms in the
blockchain design include a chain of block hashes, encryption of transactions
and public-key-based authentication of transactions. The distributed network
architecture prevents service disruptions caused by distributed denial-of-service
attacks by filtering transactions from entities with invalid keys. Unfortunately,
Dorri and colleagues have not conducted any experimentation of their approach,
even in a simulated transportation environment.

Oham et al. [19] have described a blockchain liability attribution frame-
work for autonomous vehicles based on a consortium of transportation and
government organizations. The framework employs two partitions for commu-
nications – operational and decision partitions – that collect and share data
between different entities and sensors. A qualitative analysis of the framework
demonstrates its resilience to malicious activities such as transaction deletion,
collusion and spoofing. A performance evaluation focusing on the average ver-
ification and validation times for different types of transactions is promising;
the results show less overhead compared with the approach of Cebe et al. [7].

In other work, Oham and colleagues [18] have developed a blockchain frame-
work for auto-insurance claims and adjudication for connected and automated
vehicles. However, both works by Oham et al. [18, 19] are unclear about how
the consensus algorithm operates to ensure network integrity and they omit
design considerations for enabling the services to operate within existing in-
telligent transportation systems. Unlike the other proposals described in this
section [7, 18, 19], the implementation described in this chapter leverages an
open-source framework that has been tested in production environments, has
community and commercial support and continuing upgrades while enabling a
number of applications within a single platform.

While previous research describes implementations of distributed ledger net-
works that enhance intelligent transportation applications, little, if any, work
has focused on modeling transportation infrastructure applications or intelli-
gent transportation systems that leverage distributed ledger network frame-
works. Additionally, evidence showing how distributed ledger networks can
scale to millions of vehicles in public roads and in other transportation envi-
ronments is minimal. In particular, scalability challenges related to consensus
algorithms, performance metrics, and designs and decisions related to opera-
tional distributed ledger networks for intelligent transportation systems have
not been discussed. Furthermore, the other approaches described in this sec-
tion have not been analyzed in terms of key parameters such as block size,
block timeout and transactions per block that affect overall performance pa-
rameters such as transaction throughput and consensus time, which are vital
in intelligent transportation ecosystems.

4. Infrastructure Modeling and Implementation
The goal of this work was to model an intelligent transportation infrastruc-

ture and applications using a distributed ledger network, specifically, Hyper-
ledger Fabric. Performance metrics were recorded and analyzed to assess the

142 CRITICAL INFRASTRUCTURE PROTECTION XIII

Figure 2. Operational view of an infrastructure with a consortium network.

effectiveness of the network at handling the data volumes encountered in an ac-
tive intelligent transportation infrastructure. Network and code design param-
eters that improve responsiveness and throughput are also discussed. Figure 2
shows the operational view of the modeled infrastructure, which incorporates
vehicles and road-side units, and their interactions with the consortium net-
work.

4.1 Definitions
The following are the key terms used in the model:

Consensus: Consensus refers to agreement in a distributed ledger net-
work about the next set of transactions and the order in which they are
appended to the ledger [15]. Consensus in Hyperledger Fabric takes place
among ordering service nodes (commonly referred to as orderers) and is
achieved by selecting a leader from among the nodes with a fully synchro-
nized ledger to order the transactions, place them in a block and deliver
them to other peer nodes for validation and committal. Apache Kafka was
employed for consensus because it is the only implementation provided by
Hyperledger Fabric (v1.2) that is suitable for production environments.

Channel: A channel in Hyperledger Fabric is a private blockchain that
only channel participants can access and interact with [15]. Participation
is managed via authentication and access control policies.

CONSORTIUMCONSORTIUM
NETWORKNETWORK

Internet

Cintron, Graham, Hodson & Mullins 143

Chaincode: Chaincode is the code/service invoked by an application
that interacts with the Hyperledger Fabric network to manage accesses
and modifications to the ledger. It is installed on peer nodes to work on
one or more available channels [15].

Endorsement: Endorsement in Hyperledger Fabric is the simulation of
the execution of a chaincode transaction by a peer node and the commu-
nication of the response back to the originator along with the peer node
signature to provide proof of a valid execution result [15]. Endorsement
policies specify transaction endorsement requirements using Boolean ex-
pressions involving the participating organizations [27].

Membership Services Provider: A membership services provider
(MSP) supplies cryptographic (public-key infrastructure based) creden-
tials to Hyperledger Fabric participants for authentication and transac-
tion processing [15].

Peer Node: A peer node is a network node that executes the chaincode
and maintains a copy of the ledger. Peer nodes designated as endorsers
can participate in the endorsements of transactions. Nodes can also be
designated as anchors, which enables them to be discovered by and com-
municate with all the other peer nodes.

4.2 Implementation Platform
The network node simulations were executed in virtual machines (VMs) on

a single workstation powered by an Intel CORE i7 vPro (7th Gen) processor
(2.9GHz, four cores, eight logical processors) with 16GB of RAM. Each Hyper-
ledger Fabric virtual machine node was allocated two logical processors, 2GB
RAM and ran the Ubuntu 16.04 64-bit operating system.

4.3 Frameworks and Tools
Several frameworks and tools, which are part of the Hyperledger collabora-

tive effort hosted by the Linux Foundation, were employed. These frameworks
and tools are maintained by technology leaders such as IBM, Intel and SAP.
In particular, the following frameworks and tools were used in this research:

Hyperledger Fabric: Hyperledger Fabric (v1.2) is a modular and ex-
tensible open-source platform for deploying and operating permissioned
distributed ledgers; it is hosted by the Linux Foundation and maintained
by IBM [1]. Its modularity enables architects and developers to tailor
various layers such as methods for validation, consensus and distributed
ledger data structures to meet an organization’s needs. Furthermore, Hy-
perledger Fabric supports the creation of a consortium-based network of
peers in which organizations can manage their own user permissions. Hy-
perledger Fabric served as the distributed ledger network backbone for
this research.

144 CRITICAL INFRASTRUCTURE PROTECTION XIII

Figure 3. AFIT Lightweight Transportation Modeling Tool user interface

Hyperledger Composer: Hyperledger Composer (v0.20.3) is a toolset
that supports the development and execution of blockchain networks and
services [13]. It was employed to model and deploy intelligent trans-
portation infrastructure chaincode and network services. Hyperledger
Composer incorporates the Playground tool for viewing and interacting
with world-state data and performing upgrades to services. It can also
spawn a REST server that interfaces with the Hyperledger Fabric network
to provide a web application programming interface.

Vehicles, road-side units, and infrastructure behavior and communications
were modeled using a custom tool:

AFIT Lightweight Transportation Modeling Tool: This tool pro-
vides an intuitive environment for modeling and simulating vehicle move-
ments and their communications with other vehicles and entities in a
transportation infrastructure. The tool, developed using JavaScript and
NodeJS, can be deployed as a web application or as a standalone ap-
plication. In the experiments, the tool was used to generate vehicular
traffic and accident scenarios, and to function as an application client
that interacted with the distributed ledger network (Figure 3).

Cintron, Graham, Hodson & Mullins 145

Table 1. Baseline Hyperledger Fabric network configuration.

Parameter Value

Participating Organizations 3
Orderer Nodes 3
Peer Nodes 3
Channels 1
Zookeeper-Kafka Cluster Nodes 3 Zookeeper, 4 Kafka
World-State Database CouchDB
Block Size 99MB or 10Tx/Block
Block Timeout 2 s
Endorsement Policies ORG1, ORG2, ORG3

4.4 Experimental Network
Table 1 shows the baseline configuration of the Hyperledger Fabric network

with a Zookeeper-Kafka node cluster. Figure 4 shows the network topology
corresponding to this configuration. Membership services providers and peer
containers for each organization were instantiated in the same virtual machine.
The peer virtual machines executed the Composer Rest Server to expose the
web application programming interface. All the virtual machines were config-
ured with static IP addresses and the Docker container configurations were set
to the host network mode.

The number of participating organizations (consortium members) was cho-
sen to be three because it is the minimum number of organizations required
to create a partial-trust environment where a blockchain or distributed ledger
network would be most beneficial (this is not enforced by Hyperledger Fab-
ric). There are other more efficient ways than a distributed ledger for storing
and managing data for a single organization; one possibility is a distributed
database. When two organizations collaborate, the collaboration assumes full
trust between the organizations and there is no need for endorsement or consen-
sus with regard to data distribution. However, in a consortium of three orga-
nizations, the possibility exists that not all the organizations would trust each
other, increasing the importance of endorsement, and leader-based or voting-
based consensus.

The seven nodes used in the Zookeeper-Kafka cluster configuration is the
minimum number needed for Zookeeper-Kafka consensus in Hyperledger Fabric
(v1.2). In the case of the Zookeeper nodes, the number should be odd to avoid
split-brain scenarios and should be larger than one to avoid a single point of
failure [12]; hence, the configuration employed three Zookeeper nodes. In the
case of the Kafka nodes, four nodes is the minimum number needed to exhibit
crash/fault tolerance [12].

146 CRITICAL INFRASTRUCTURE PROTECTION XIII

Authentication Communications

Transaction Communications

P2P Communications

APIChaincodeLedger

Org 1-Peer 0

Org 1
MSP

Orderer

APIChaincodeLedger

Org 2-Peer 0

Org 2 Orderer

MSP

APIChaincodeLedger

Org 3-Peer 0

Org 3

MSP

Orderer

Figure 4. Experimental Hyperledger Fabric network configuration.

4.5 Assumptions
The following assumptions were made in the experiments:

Transaction Latency: Transaction times were measured from the time
the client submits a transaction to the network for validation and con-
sensus to the time the corresponding block is created and broadcasted.

Signal Loss: Wireless and wired signal losses were assumed to be mini-
mal and were not modeled in the simulation environment.

Vehicle and Sensor Authentication: Vehicles and road-side units
that send or manage transactions were assumed to have appropriate ac-
cess rights to the services.

Traffic Laws: Vehicles were assumed to not stop at intersections and
not adjust their speeds based on roadway speed limits. Also, vehicular
traffic lanes were not considered.

Obstacles: Aside from other vehicles in the same path, no other obsta-
cles (e.g., pedestrians or animals) were assumed to exist.

Event Data Recording: Vehicles were assumed to have event data
recorders that stored times, vehicle IDs, locations, speeds, headings and

Cintron, Graham, Hodson & Mullins 147

Accident

SIMULATION

Collect and
Report

Report
Accident

FABRIC
NETWORK

Validate and
Endorse Data

Request
Witness
Report

SIMULATION

Report
Witness Data

Submit
Witness
Report

FABRIC
NETWORK

Update
Accident Report

Corroborate

Figure 5. Application event workflow.

misbehavior data of vehicles in range. This capability is typically enabled
via on-board units.

Vehicle Communications: Vehicles were assumed to be equipped with
the means to establish zero-latency data links with other vehicles and
road-side units, and could communicate with Hyperledger Fabric services
over the Internet. The inner workings of vehicular network communica-
tions as specified by the IEEE 1609 family of standards were not modeled.

5. Accident Data Collection
This research focused on the storage of accident event reports and witnessed

data recorded by vehicles and road-side units in order to create snapshots of
events within a window of time before, during and after an accident, providing
evidence that could identify the liable parties. Each vehicle in the simula-
tion shared information with other vehicles and the infrastructure via vehicle-
to-vehicle or vehicle-to-infrastructure communications channels, and with the
transportation distributed ledger network (Figure 4) via connections to the
Internet (Figure 2). Vehicles were equipped with event data recorders that
logged their sensor data as well as sensor data received from other vehicles.
The broadcasted messages contained GPS position, heading and current speed
as in other implementations [10]. The vehicular ad hoc network parameters,
which were based on beacon data in [10], comprised vehicle ID, location, speed
and heading.

5.1 Scenario Generation
Each simulation scenario involved a predefined number of vehicles and road-

side units in a specified area. Each vehicle was assigned an origin and destina-
tion, and the vehicle moved until it arrived at the destination. Only road-side
units were assumed to collect data about misbehaving vehicles. Vehicles broad-
casted their parameters to other vehicles within a range of 100m.

148 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 2. Modeled data and attributes.

Name Type Attributes

Sensor asset id, type
Vehicle extends Sensor asset odometer, eventsInvolved
RSU extends Sensor asset location
RoadEvent asset id, location, eventtimestamp, type,

vehiclesInvolved, witnessedData,
validated, sourceSensor

RoadEventTx transaction Same as RoadEvent
WitnessedData asset id, observedVehicle, sourceSensor,

roadEventId, location, eventtime,
speed, heading, distanceFromsource,
behavior, nearbySensors

WitnessDataTx transaction Same as WitnessedData

The simulation triggered an accident when two or more vehicles were within
the collision distance. At this point, one of the involved vehicles reported the
event to the distributed ledger network along with its logged data and the IDs of
the other involved vehicles. The distributed ledger network then validated the
source vehicle and the involved vehicles, created an accident event report and
notified the simulation application after the report was submitted. Next, the
simulation application notified all the vehicles in the area about the accident
and requested them to report witnessed data within the accident location during
the time frame of the accident. Road-side units were also informed about the
accident and were requested to report witnessed misbehavior data. Figure 5
shows the event workflow in the experiments.

5.2 Network Data Models
The models used to store data about road events were defined using Hy-

perledger Composer. Hyperledger Composer employs its own object-oriented
modeling language, Composer Modeling Language (CML). Table 2 presents the
model definitions. Vehicle and road-side unit owners were not modeled in the
experiments, but they could easily be included in an operational environment.
Note that the only Composer Modeling Language reference in the initial model
definitions is between Sensor and RoadEvent. The received witnessed data was
appended to the RoadEvent.WitnessedData collection. This design raised some
database concurrency issues, which are discussed below.

5.3 Chaincode
Chaincode was packaged and deployed using Hyperledger Composer. In

Hyperledger Composer, chaincode logic is developed using JavaScript in the
form of transaction processor functions and it is part of the business network

Cintron, Graham, Hodson & Mullins 149

Algorithm 1 : Submit a transaction for a road event.
1: tx ← {sourceId, eventId,time,location,VehiclesInvolved,WitnessedData}
2: if SensorExists(tx.sourceId) AND IsValid(tx) then
3: re ← RoadEvent(tx)
4: re.source ← SensorAssetRegistry.get(tx.sourceId, sensorType)
5: EventAssetRegistry.add(re)
6: for i = 0 to tx.VehiclesInvolved.length do
7: //create record of vehicle observed to be involved in event
8: v ← SensorAssetRegistry.get(tx.VehiclesInvolved[i])
9: v.eventsInvolved.add(re)

10: SensorAssetRegistry.update(v)
11: end for
12: emit(RoadEventSubmitted)
13: else
14: emit(InvalidSourceVehicleEvent)
15: end if

Algorithm 2 : Submit a witnessed data transaction for a road event.
1: tx ← {sourceId, eventId, WitnessedData}
2: if tx.WitnessedData.length > 0 AND SensorExists(tx.sourceId) AND
3: RoadEventExists(tx.eventId) AND IsValid(tx) then
4: wd ← WitnessedData(tx)
5: WitnessedDataRegistry.add(wd)
6: emit(WitnessedDataSubmitted)
7: else
8: emit(InvalidWitnessedDataTx)
9: end if

archive that is deployed to the Hyperledger Fabric network to provide capabil-
ities and services. Transaction processor functions are automatically invoked
when transactions are submitted from the application programming interfaces
generated by Hyperledger Composer. Additionally, transaction processor func-
tions reference the data models and describe how to use transaction objects to
create road event reports and append the witnessed data to the reports. The
procedures defined in chaincode must be passed arguments (if required) that
are objects of transaction type classes listed in Table 2. The chaincode must
validate the existence of sensors that submit transactions and also validate data
(e.g., bounds validation) before creating an asset.

Algorithm 1 specifies how a road event report is created.
Algorithm 2 specifies how a road event is updated with witnessed data.
Algorithm 3 specifies how the network validates witnessed data about an

event to obtain consensus that the event did indeed occur (i.e., same observed
behavior by multiple unrelated parties), and help identify potential misbehav-
ior. This transaction processor function can be triggered by a consortium entity
(e.g., insurance company or law enforcement) looking into an event or it could

150 CRITICAL INFRASTRUCTURE PROTECTION XIII

Algorithm 3 : Corroborate witnessed data for a specific road event.
1: re ← {RoadEvent}
2: for all WitnessReport observed ∈ RoadEvent re do
3: possibleValidators ← getWitnessReports(ΔT, observed, WitnessReports ∈ re)
4: for all WitnessReport p ∈ possibleValidators do
5: if p validates observed then
6: observed.validatedBy ← observed.validatedBy ∪ p.id
7: end if
8: if p.seenInRange(observed) then
9: observed.seenBy ← observed.seenBy ∪ p.id

10: end if
11: end for
12: end for
13: validated ← getValidatedReports()
14: seen ← getSeenVehicleReports()
15: possibleSpoofers ← re.WitnessReports − (validated ∩ seen)

be triggered automatically after a specified period of time. After the chaincode
is executed on a transaction, the transaction awaits endorsement, following
which it is sent for ordering.

5.4 Analysis of Data
During the initial tests, a number of unsuccessful transactions occurred when

submitting the witnessed data reports and when performing stress tests with
repeated vehicle IDs. The unsuccessful transactions reported “Error trying in-
voke chaincode” and “Error: Peer has rejected transaction with code MVCC -
READ CONFLICT.” This is due to the multi-version concurrency control em-
ployed by Hyperledger Fabric, which requires the state of an object to be read
or written during the commit phase to be the same as when the transaction
was endorsed during the execution phase [4, 20, 27]. The errors were caused by
fast update rates of road event assets with witnessed data from all the other
entities. They were eliminated by creating a new object for each witnessed
data transaction. The solution employs unique IDs to reference the road event
and sensors in a report, an approach analogous to the use of foreign keys in
relational databases.

Scenarios with ten to 100 road events in increments of ten were submitted
within a one second time period. All the submissions were distributed over the
network peers in a round-robin manner. Figure 6 shows the network perfor-
mance with the baseline configuration. A peak throughput of 10.0 transactions
per second (TPS) and an average of 8.82 transactions per second were measured
in the application layer.

The block size and timeout parameters, and the endorsement policies were
modified based on the optimization recommendations in [27]. The network
configuration shown in Table 3 resulted in the best overall performance.

Cintron, Graham, Hodson & Mullins 151

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100

Ap
pl

ic
at

io
n

Th
ro

ug
hp

ut
 (T

PS
)

Arrival Rate (Request/s)

Figure 6. Network performance with the baseline configuration.

Table 3. Optimized Hyperledger Fabric network configuration.

Parameter Value

Block Size 99MB or 100 Tx/Block
Block Timeout 1 s
Endorsement Policies Two of ORG1, ORG2, ORG3

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80 90 100

Ap
pl

ic
at

io
n

Th
ro

ug
hp

ut
 (T

PS
)

Arrival Rate (Request/s)

Figure 7. Network performance with the optimized configuration.

Figure 7 shows the network performance with the optimized configuration.
A peak throughput of 14.4 transactions per second was measured in the appli-
cation layer, a 48.1% improvement over the baseline configuration. Moreover,
the average response time was reduced by 33.4%. Increasing the transaction
arrival rate over the throughput limit over long periods of time often resulted in

152 CRITICAL INFRASTRUCTURE PROTECTION XIII

network timeout errors or unresponsive servers, essentially distributed denial-
of-service.

6. Discussion
The implementation of an intelligent transportation infrastructure data col-

lection system using Hyperledger Fabric has benefits, drawbacks and challenges;
it also raises some privacy and security issues:

6.1 Benefits
A key benefit of using a blockchain network is the access to a pseudo-

immutable ledger that records transactions and world-state changes in a crypto-
graphically-secure manner. The network provides native auditing services that
could ensure the reliability and safety of modern transportation infrastructures.

The modularity of Hyperledger Fabric makes it an attractive framework for
implementing a distributed ledger network that can interface with an infra-
structure and services. By resolving transactions into a world-state database,
stakeholders can execute rich queries to obtain data if they have the proper
access rights. Additionally, as a permissioned network framework, its imple-
mentation ensures zero participant anonymity because all the identities in the
distributed ledger network are authenticated. As a result, participants are
always accountable for their actions (e.g., for certificate revocations, traffic vi-
olations and accident liability).

6.2 Drawbacks and Challenges
Although the implementation is crash/fault tolerant as a result of using

Apache Kafka, it is not Byzantine fault tolerant. Byzantine faults refer to
faulty nodes that may appear to be fully functional, but may produce inconsis-
tent results unknowingly or maliciously. The ordering nodes can be rendered
resilient to Byzantine faults by implementing a different consensus algorithm.
Sousa et al. [24] have developed a Byzantine-fault-tolerant consensus module
called BFT-SMART, with a tentative execution of requests approach similar
to the practical Byzantine fault tolerance approach of Castro and Liskov [6].
However, this module is not included in Hyperledger Fabric and its performance
and reliability in production environments are still unknown.

Storage is a concern given the large amount of data transacted in transporta-
tion environments. Since transactions recorded in the blockchain ledger cannot
be erased or tampered with, the ledger grows in size quickly. As a result, peer
nodes must have adequate storage to accommodate this data, which results
in high hosting costs over time for all participants. Consequently, nodes that
experience downtime suffer long synchronization times that could extend en-
dorsement downtime and lead to transaction execution failures. Finally, frame-
work components such as those provided by Hyperledger Composer are not
mature enough and, therefore, suffer from reliability issues that could result

Cintron, Graham, Hodson & Mullins 153

in nonresponsiveness during periods with high transaction arrival rates, as was
encountered in the experiments.

Processing times for applications with high-throughput requirements are
also a concern. Based on the results obtained in the experimental network,
several variables have to be considered when designing a distributed ledger
network that would support the processing and storage of data at high rates.
In production environments, it is expected that applications relying on a Hy-
perledger Fabric implementation of a distributed ledger network could handle
thousands of vehicles, road-side units and users conducting transactions every
minute. Although Thakkar et al. [27] have demonstrated that a Hyperledger
Fabric implementation can reach a throughput of 2,800 transactions per sec-
ond, determining whether or not the solution is adequate for a transportation
infrastructure would depend on the requirements of the applications that are
deployed.

6.3 Security and Privacy Considerations
Public-key-infrastructure services and access control rules allow secure access

to data by privileged users as defined by the consortium. Implementations can
enable users (e.g., vehicle owners) to control access to data involving their vehi-
cles. A vehicle public-key infrastructure (VPKI) as defined by the IEEE 1609.2
standard can be supported in a Hyperledger Fabric implementation by integrat-
ing vehicle certificate manager services in the membership services providers.
Since such an infrastructure relies on providing pseudonymity to vehicles, cer-
tificates can be utilized to authenticate vehicles or sign transaction data and
increase the trust in data sources without revealing their identities. Designated
authorities can always obtain the real identities of vehicle pseudonyms in the
case of accidents or legal investigations [22]. Hyperledger Fabric also allows for
certificate revocation, preventing participants from accessing data after they
have lost their credentials.

Hyperledger Fabric orderers, although not involved in the validation of trans-
actions, could be compromised to gain access to all the transactions received
and distributed by the Kafka cluster. These nodes could be compromised to
intercept transactions sent and received by the ordering service. If information
privacy is required (e.g., for personally-identifiable information), Hyperledger
Fabric provides private data channels that create separate private ledgers be-
tween parties. Private channel transactions are not sent to an orderer; instead,
hashes of the transactions and the timestamps are sent, preventing the orderer
from observing transaction content.

The possibility exists that a participant could analyze the shared ledger data
to discover traffic patterns, and the origins, destinations and times of vehicles.
This information could reveal details such as home addresses, work locations
and daily routines of vehicle owners. Therefore, participating organizations
must be transparent in the way they handle the data. More importantly, all
the stakeholders must be aware that participants could analyze data for pur-
poses other than were intended. By incorporating access control policies in

154 CRITICAL INFRASTRUCTURE PROTECTION XIII

Hyperledger Fabric, it is possible for vehicle owners to actively prevent certain
users and organizations accessing data about their vehicles and behavior.

7. Conclusions
The work described in this chapter extends the approach of Kopylova et

al. [10] by employing the Hyperledger Fabric framework and Hyperledger Com-
poser toolset to create a distributed ledger network that provides services for
storing, corroborating and querying accident event data in a decentralized and
secure manner. Like other proposals [7, 8, 18, 19], the approach relies on vehicle
on-board units to collect and disseminate vehicular ad-hoc network data while
the vehicles are on the road. Data about accidents and other road events is
pushed to the Hyperledger Fabric network, providing irrefutable evidence per-
taining to the events for subsequent analyses. This distributed ledger network
differs from the other proposals because of its use of the open-source Hyper-
ledger Fabric platform, which supports the execution of multiple applications
and channels, as well as seamless integration with existing transportation sys-
tems.

The design considerations and improvements discussed in this chapter en-
sure that the distributed ledger network can scale to handle the large volumes
of transactions encountered in transportation infrastructures. Specifically, op-
timizing the configuration by adjusting block size, block timeout and endorse-
ment policies provides significant performance improvements. However, as with
any modern technology, the benefits come with some drawbacks, in this case,
primarily privacy risks.

The views expressed in this chapter are those of the authors, and do not
reflect the official policy or position of the U.S. Air Force, U.S. Department
of Defense or U.S. Government. This document has been approved for public
release, distribution unlimited (Case #88ABW-2018-6399).

References

[1] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De
Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidha-
ran, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C.
Stathakopoulou, M. Vukolic, S. Weed Cocco and J. Yellick, Hyperledger
Fabric: A distributed operating system for permissioned blockchains, Pro-
ceedings of the Thirteenth European Conference on Computer Systems,
article no. 30, 2018.

[2] L. Baird, The Swirlds Hashgraph Consensus Algorithm: Fair, Fast, Byzan-
tine Fault Tolerance, Technical Report SWIRLDS-TR-2016-01, Swirlds,
College Station, Texas, 2016.

[3] F. Bencic and I. Zarko, Distributed ledger technology: Blockchain com-
pared to directed acyclic graph, Proceedings of the Thirty-Eighth IEEE
International Conference on Distributed Computing Systems, pp. 1569–
1570, 2018.

Cintron, Graham, Hodson & Mullins 155

[4] P. Bernstein and N. Goodman, Multiversion concurrency control – Theory
and algorithms, ACM Transactions on Database Systems, vol. 8(4), pp.
465–483, 1983.

[5] V. Buterin, On public and private blockchains, Ethereum Founda-
tion Blog (blog.ethereum.org/2015/08/07/on-public-and-private-
blockchains), August 6, 2015.

[6] M. Castro and B. Liskov, Practical Byzantine fault tolerance, Proceedings
of the Third Symposium on Operating Systems Design and Implementa-
tion, pp. 173–186, 1999.

[7] M. Cebe, E. Erdin, K. Akkaya, H. Aksu and S. Uluagac, Block4Forensic:
An integrated lightweight blockchain framework for forensic applications
of connected vehicles, IEEE Communications, vol. 56(10), pp. 50–57, 2018.

[8] A. Dorri, M. Steger, S. Kanhere and R. Jurdak, Blockchain: A distributed
solution to automotive security and privacy, IEEE Communications, vol.
55(12), pp. 119–125, 2017.

[9] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang and E. Hossain, En-
abling localized peer-to-peer electricity trading among plug-in hybrid elec-
tric vehicles using consortium blockchains, IEEE Transactions on Indus-
trial Informatics, vol. 13(6), pp. 3154–3164, 2017.

[10] Y. Kopylova, C. Farkas and W. Xu, Accurate accident reconstruction in
VANET, in Data and Applications Security and Privacy XXV, Y. Li (Ed.),
Springer, Berlin Heidelberg, Germany, pp. 271–279, 2011.

[11] L. Lamport, R. Shostak and M. Pease, The Byzantine generals problem,
ACM Transactions on Programming Languages and Systems, vol. 4(3), pp.
382–401, 1982.

[12] Linux Foundation, Bringing up a Kafka-Based Ordering Service,
San Francisco, California (hyperledger-fabric.readthedocs.io/en/re
lease-1.2/kafka.html), 2019.

[13] Linux Foundation, Hyperledger Composer, San Francisco, California
(hyperledger.github.io/composer/latest), 2019.

[14] Linux Foundation, Hyperledger Explorer, San Francisco, California
(github.com/hyperledger/blockchain-explorer), 2019.

[15] Linux Foundation, Hyperledger Fabric (1.2) Glossary, San Francisco, Cal-
ifornia (hyperledger-fabric.readthedocs.io/en/release-1.2/gloss
ary.html), 2019.

[16] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System (bitcoin.
org/bitcoin.pdf), 2008.

[17] New York City Department of Transportation, NYC Connected Vehicle
Project for Safer Transportation, New York (cvp.nyc), 2019.

[18] C. Oham, R. Jurdak, S. Kanhere, A. Dorri and S. Jha, B-FICA:
Blockchain-Based Framework for Auto-Insurance Claim and Adjudication,
arXiv:1806.06169 (arxiv.org/abs/1806.06169), 2018.

156 CRITICAL INFRASTRUCTURE PROTECTION XIII

[19] C. Oham, S. Kanhere, R. Jurdak and S. Jha, A Blockchain-Based Liabil-
ity Attribution Framework for Autonomous Vehicles, arXiv: 1802.05050
(arxiv.org/abs/1802.05050), 2018.

[20] C. Papadimitriou and P. Kanellakis, On concurrency control by multiple
versions, Proceedings of the First ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pp. 76–82, 1982.

[21] M. Pilkington, Blockchain technology: Principles and applications, in Re-
search Handbook on Digital Transformations, F. Olleros and M. Zhegu
(Eds.), Edward Elgar, Northampton, Massachusetts, pp. 225–246, 2016.

[22] Y. Qian, K. Lu and N. Moayeri, A secure VANET MAC protocol for
DSRC applications, Proceedings of the IEEE Global Telecommunications
Conference, 2008.

[23] M. Singh and S. Kim, Blockchain-Based Intelligent Vehicle Data Sharing
Framework, arXiv:1708.09721 (arxiv.org/abs/1708.09721), 2017.

[24] J. Sousa, A. Bessani and M. Vukolic, A Byzantine fault-tolerant ordering
service for the Hyperledger Fabric blockchain platform, Proceedings of the
Forty-Eighth Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pp. 51–58, 2018.

[25] A. Sumalee and H. Ho, Smarter and more connected: Future intelligent
transportation systems, IATSS Research, vol. 42(2), pp. 67–71, 2018.

[26] Tampa Hillsborough Expressway Authority, THEA Connected Vehicle Pi-
lot, Tampa, Florida (www.tampacvpilot.com), 2019.

[27] P. Thakkar, S. Nathan and B. Viswanathan, Performance benchmarking
and optimizing the Hyperledger Fabric blockchain platform, Proceedings
of the Twenty-Sixth IEEE International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, pp. 264–
276, 2018.

[28] U.S. Department of Transportation, ITS Strategic Plan 2015-2019,
FHWA-JPO-14-145, Washington, DC (rosap.ntl.bts.gov/view/dot/
3506), 2014.

[29] Y. Yuan and F. Wang, Towards blockchain-based intelligent transportation
systems, Proceedings of the Nineteenth IEEE International Conference on
Intelligent Transportation Systems, pp. 2663–2668, 2016.

IV

TELECOMMUNICATIONS
INFRASTRUCTURE SECURITY

Chapter 9

SECURING WIRELESS COPROCESSORS
FROM ATTACKS IN THE INTERNET OF
THINGS

Jason Staggs and Sujeet Shenoi

Abstract Wireless communications coprocessors are a vital component of numer-
ous Internet of Things and mobile devices. These subsystems enable de-
vices to communicate directly with peers and supporting network infras-
tructures. Previous research has shown that wireless communications
coprocessors lack fundamental security mechanisms to combat attacks
originating from the air-interface and application processor (main CPU).
To mitigate the risk of exploitation, methods are needed to retroactively
add security mechanisms to communications coprocessors.

This chapter focuses on securing a cellular baseband processor from
attacks by hostile applications in the application processor. Such at-
tacks often leverage attention (AT) commands to exploit vulnerabilities
in baseband firmware. The attacks are mitigated by installing an AT
command intrusion prevention system between the application proces-
sor and baseband processor interface.

Keywords: Wireless coprocessor, Internet of Things, intrusion prevention

1. Introduction
A Statista report [29] estimates that nearly 31 billion Internet of Things

(IoT) devices will be in use by 2020. Consumer demand for smart devices has
surged, launching a time-to-market race by manufacturers to release Internet of
Things devices with rich features at affordable prices. Unfortunately, security
has taken a back seat to features, significantly increasing the risks to devices,
networks and users [16].

Further complicating matters are the diversity and complexity of wireless
protocols and communications systems that interconnect Internet of Things de-
vices [22]. Internet of Things devices use wireless coprocessors and protocols to
support communications with smart devices and networks. These communica-

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 159–178, 2019.

https://doi.org/10.1007/978-3-030-34647-8_9

https://doi.org/10.1007/978-3-030-34647-8_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_9&domain=pdf

160 CRITICAL INFRASTRUCTURE PROTECTION XIII

tions coprocessors are normally separate microcontrollers that are independent
of the main CPUs. The heterogeneity of wireless communications coprocessors
and protocol stacks has inadvertently increased the attack surfaces of Internet
of Things and mobile devices. The security problems associated with wire-
less communications coprocessors are also inherited by devices such as remote
terminal units and programmable logic controllers that help operate critical
infrastructure assets.

Previous research has demonstrated that wireless communications copro-
cessors lack rudimentary security measures to combat attacks, especially data
execution prevention (DEP), address space layout randomization (ASLR) and
basic memory protections [2, 6, 14, 33, 34]. Although it is important to con-
sider attacks that target the main CPUs of devices, it is equally imperative
to consider attacks that focus on wireless network coprocessors. Internet of
Things and mobile devices must be engineered to be more resilient to attacks
that target communications coprocessing units, especially if the security threats
posed by insecure devices that plague the Internet [16] and some operational
technology environments are to be reduced.

This work focuses on mitigating attacks by applying security defenses to a
specific type of wireless communications coprocessor – the cellular baseband
processor. Baseband processors, also known as cellular modems, are present
in all mobile phones and in many Internet of Things devices and industrial
control systems that require cellular wide-area networking connections to the
Internet [27]. These independent systems provide direct, unfiltered radio access
to public cellular GSM, UMTS and LTE networks, and are attractive targets for
attackers who seek to intercept, modify, fabricate or interrupt communications.

Despite concerns about attacks on communications coprocessors, relatively
few attempts have been made to secure their external interfaces [20]. This
work addresses the gap by mitigating exploitation attempts from the applica-
tion processor (main CPU) that leverage malformed or unauthorized vendor-
specific serial AT commands to target the baseband processor. Such attacks
are commonly employed to unlock cell phones, but they can be repurposed to
perpetrate nefarious baseband system compromises [13, 14, 30].

This chapter describes a proof-of-concept application-processor-interface-
based AT command intrusion prevention system that combats exploitation
attempts against the baseband processor. The intrusion prevention system
relies on rules (signatures) based on AT command syntax and semantics. The
signatures help detect and prevent malicious AT commands and payloads (pa-
rameters) from being sent to the baseband processor. The proof-of-concept
system incorporates a Raspberry Pi 3 hardware platform for main CPU emu-
lation and a SIM900 GSM module (baseband processor). Empirical testing re-
veals that the system combats baseband processor attacks from the application
processor. Although the system employs hobbyist hardware, the underlying
techniques can be applied to Internet of Things and mobile devices by mak-
ing slight modifications to their operating systems or by adding a dedicated
security coprocessor that inspects input/output messages on the data bus.

Staggs & Shenoi 161

2. Security of Communications Stacks
The vast majority of Internet of Things and mobile devices incorporate wire-

less communications processors for wide-area networking and personal area
networking radio needs. These independent coprocessors facilitate communi-
cations between other smart devices, sensors, motors, relays and supporting
telecommunications infrastructure assets (e.g., cellular base stations). Com-
munications technologies such as 802.15.4 (i.e., Zigbee and WirelessHART),
802.11 (i.e., Wi-Fi), Bluetooth and GSM/UMTS/LTE have emerged over the
years and are now widely integrated in Internet of Things devices. In many
cases, the wireless chipsets operate independently of the main CPUs and, there-
fore, have their own attack surfaces [17].

Previous research has demonstrated that wireless communications copro-
cessors lack basic security mechanisms. Although it is important to consider
attacks that target the main CPUs of devices, it is imperative that future In-
ternet of Things and mobile devices are engineered to be resilient to attacks
that target communications coprocessors. Researchers have identified a number
of security problems and vulnerabilities in wireless coprocessors and protocol
stacks [2, 6, 33, 34]. Some attacks target vulnerabilities in coprocessor firmware
while others target kernel modules or libraries used by the operating systems
of the main CPUs to interact with wireless subsystems on the devices [26].

In particular, several vulnerabilities have been identified in Broadcom Wi-Fi
chipsets. Beniamini [3–5] demonstrated heap and stack overflow vulnerabili-
ties that lead to remote code execution (RCE) on a common Broadcom Wi-Fi
chipset. These vulnerabilities stem from inadequate data field checking by the
Wi-Fi coprocessor unit when processing certain 802.11r-2008 (fast BSS tran-
sition) authentication frames. Building on Beniamini’s work, Artenstein [2]
weaponized the exploits by incorporating them in a propagating worm that
could target other Wi-Fi chipsets. Meanwhile, Seri and Livne [26] have devel-
oped a new attack called “BlueBorne” that targets Bluetooth implementations
in operating systems used by billions of Internet of Things and mobile devices.
Arguably, the most terrifying wireless chipset attacks involve the exploitation
of cellular baseband processors.

Cellular baseband stack exploits have been discussed for nearly a decade [10,
33, 34]. The exploitation of communications coprocessors presents an existen-
tial threat to the devices they support, and by extension, the physical envi-
ronments in which they are used (e.g., industrial Internet of Things and indus-
trial control systems). Novel ideas, techniques and mechanisms are needed to
counter the threats to frail and insecure communications coprocessors.

This chapter presents an approach for retrofitting security in one of the exter-
nal interfaces used by baseband processors in order to mitigate hostile activity
originating from the main CPU. Admittedly, this is not a perfect solution to
the overall problem, but the approach is useful when security controls have to
be implemented in current mobile phones and legacy industrial control systems.

162 CRITICAL INFRASTRUCTURE PROTECTION XIII

Main CPU

Cellular
BasebandGPS

Wi-Fi,
Bluetooth,

NFC

DisplayBattery Camera

I/O Bus I/O Bus

Figure 1. System of systems in a smartphone.

3. Cellular Baseband Processors
Baseband processors – also called cellular modems – are present in Internet

of Things devices and mobile phones that require wide-area networking connec-
tions to the Internet and other cellular functions. The independent baseband
systems, which provide direct, unfiltered access to public cellular networks, are
prime targets for attackers interested in intercepting, modifying, fabricating or
blocking voice, text, data and signaling traffic.

3.1 Symbiotic System of Systems
Internet of Things devices and modern mobile phones incorporate support-

ing microcontrollers and subsystems, each serving a dedicated and crucial role.
These subsystems are interconnected directly or indirectly over a common data
bus, enabling the smart device to provide rich interactions with the external
environment via sensors (e.g., camera, microphone, gyroscope and accelerom-
eter) and radios. Because the microcontrollers operate independently of the
main CPUs, they have their own firmware that is usually stored in read-only
memory (ROM).

Figure 1 presents a logical view of the peripheral systems in a smartphone.
Examples include the GPS, camera, battery, Wi-Fi, near-field communications
(NFC), Bluetooth and cellular baseband systems.

Staggs & Shenoi 163

Baseband Processor

RAM Flash DSPMic

RTOS

GSM/UMTS/LTE

UART RAM Flash Display

Android/iOS

Apps Anti-Virus

Application Processor
(Main CPU)

Kernel

UART

Serial AT
Commands

Figure 2. Relationship between the application processor and baseband processor.

Although the systems are viewed as being independent, it is important to
note that some of these systems are often encapsulated in a single integrated
circuit called a “system on a chip” (SoC). The systems may be housed in a single
integrated circuit package, but a common input/output interface is still required
for them to exchange commands and data (e.g., UART, CAN, SPI, I2C, USB
or shared memory). Just like any other embedded system, each encapsulated
system has its own volatile memory (RAM) and non-volatile memory (flash),
along with various peripherals. This architecture enables the main CPU to
focus on its operating system and user applications, while relying on the inde-
pendent supporting systems to handle other tasks and provide external data
upon request via hardware interrupts. It is common for the tasks performed by
these systems to be subject to stringent synchronization and timing constraints,
as in the case of a cellular protocol stack that runs on a baseband processor.

The two main components of cellular-enabled Internet of Things and mobile
devices are the application processor and baseband processor. Figure 2 shows
the relationship between the two processors [8].

The application processor system houses the main CPU and operating sys-
tem (e.g., Linux, Android, Windows IoT or iOS). User applications and display
interfaces execute on the application processor.

The baseband processor system serves as the cellular modem that indepen-
dently handles cellular network communications between the mobile device and
cell towers, including signaling for radio resource management, mobility man-
agement, connection management, voice calls, SMS text messages and cellular
data. Like the application processor system, the baseband processor system
contains dedicated hardware peripherals such as RAM, flash memory and dig-
ital signal processor, and provides direct access to the cell phone speaker and
microphone [25]. The baseband processor system is analogous to a dial-up
modem or Ethernet controller in a personal computer, providing layer 1 mod-
ulation and demodulation of carrier signals to encode and decode information
over dedicated cellular links.

164 CRITICAL INFRASTRUCTURE PROTECTION XIII

Baseband Processor Application ProcessorRAM
(shared)

IPC IPC

Figure 3. Shared memory architecture.

3.2 Baseband Firmware
In order to manage hardware resources and perform cellular modem tasks,

the baseband processor typically runs a bootloader that initializes the hardware
and loads a real-time operating system (RTOS) into memory [35]. The real-
time operating system executes tasks for the entire cellular network stack (e.g.,
GSM, UMTS and LTE) [18, 34]. The tasks, which are engineered to provide
reliable signal connectivity to carrier networks, generally have the requirement
of minimal power consumption during operation.

Although baseband system codebases have been updated over the years to
accommodate the latest cellular protocol specifications, significant portions of
early GSM, UMTS and LTE codebases are still used in modern baseband stacks.
Implementing the 3GPP cellular protocol specifications in software is a complex
endeavor that can be ambiguous in some instances. Unfortunately, the mes-
sages used by cellular protocol stacks sometimes contain high concentrations of
variable length fields that are not handled properly and, thus, can be targeted
by fuzzing and vulnerability discovery activities. These factors create a perfect
storm for exploiting baseband systems [12, 34].

It is important to note that cellular baseband processors are not limited
to mobile phones. In fact, the processors are commonly found in Internet of
Things devices such as vehicle telematics units, automated teller machines and
smart meters used in electricity, gas and water distribution infrastructures. All
these devices typically require low bandwidth connectivity to transmit data.

3.3 Baseband Architectures
Command and data exchange between the application and baseband proces-

sors depend on the device architecture. The two architectures are: (i) shared
memory architecture; and (ii) independent memory architecture. Figures 3
and 4 illustrate the two architectures [8, 33].

In the shared memory architecture, the application processor and baseband
processor address spaces are mapped to the same physical RAM [33]. In this
case, a form of interprocess communications is employed to exchange informa-
tion between baseband and application processes.

The independent memory architecture is more commonly used in Internet of
Things devices and modern phones. The architecture requires a dedicated data

Staggs & Shenoi 165

Baseband Processor Application Processor

RAMRAM

Serial
Interface

Figure 4. Independent memory architecture.

bus between the application and baseband processors to facilitate communica-
tions. Common data bus communications interfaces are UART, SPI, I2C and
USB.

3.4 Serial Communications Protocols
Baseband processor command and control protocols vary from device to

device. The protocols are used to instruct the baseband to execute cellular
functions such as making a call and sending data. The protocols are also
used to send information back to the application processor (e.g., notification
of an incoming call, SMS or data). Common protocols include standard GSM
AT commands [9, 23] and proprietary vendor-specific command protocols [7].
GSM AT commands are similar to the Hayes AT commands used by old dial-up
modems [11]. Some baseband processor vendors incorporate additional propri-
etary commands for extended functionality and debugging; in some instances,
they provide backdoors to the application processor [15, 30]. Additionally, the
commands are usually sent in the clear and are not authenticated.

4. Securing the Baseband Processor
Despite the increased scrutiny leveled on communications coprocessors as

potential attack targets, few attempts have been made to secure their external
interfaces [13]. The application processor interface and the air-interface expose
the baseband processor to untrusted data and, thus, a number of external
threats (Figure 5).

Baseband firmware reverse engineering is required in order to fully appreciate
the baseband system security issues. The mobile phone unlocking communities
are the most advanced at understanding the complexities involved in baseband
processor firmware reverse engineering and exploitation. The application pro-
cessor interface is routinely leveraged by mobile phone unlocking enthusiasts
to exploit vulnerabilities in baseband processors to unlock phones for use in
other carrier networks. Although such attacks generally require root access

166 CRITICAL INFRASTRUCTURE PROTECTION XIII

Application Processor
(Main CPU)

UART UART

Baseband Processor

Application
Processor Interface

Air-interface JTAG Malicious AppMalicious
AT Commands

Malicious BTS

Figure 5. External input/output interfaces to the baseband processor.

to the application processor (e.g., by jailbreaking or rooting), the application
processor has a rich attack surface of its own that could be used to indirectly
target the baseband processor.

Tian et al. [30] describe a methodology and analysis framework for identify-
ing and assessing vendor-specific AT commands that are injected via the USB
modem interfaces of Android devices. They discovered hundreds of commands
that can be used to bypass screen locks, enable developer debugging tools and
perform firmware updates. Additionally, they discovered other vendor-specific
AT commands that could be used to probe and potentially manipulate base-
band processors. Over-the-air remote code execution attacks against the air-
interfaces of baseband processors are also a concern because they could be
leveraged to compromise the baseband processors remotely.

Some baseband processors incorporate a dedicated JTAG interface that can
be used to help reverse engineer and/or read/write to the flash memory of the
processor. JTAG is a hardware debugging interface that is commonly used by
manufacturers for device testing and verification. Although this interface could
provide substantial low-level access to the code, data and operational context
of a baseband processor, it is outside the scope of this work. Instead, this
section investigates techniques that could be used to retrofit security around the
baseband processor to mitigate external attacks from the application processor
interface.

4.1 Retrofitting Security
Embedded systems typically have design requirements that stress reliabil-

ity and efficiency. This is especially true for embedded systems with strict
power constraints and those that support human or physical processes (e.g.,
cell phones, programmable logic controllers and pacemakers) [19]. Unfortu-
nately, security usually comes in second after performance requirements and
is often considered only after a serious incident impacts consumers. Reactive
approaches to addressing security problems are rarely robust and often have
serious ramifications [16]. As a result, proactive measures that incorporate se-
curity engineering best practices must be considered early in system design and
definitely before system integration.

The longevity of embedded system deployments (e.g., industrial control sys-
tems) and the lack of regular firmware updates make them ideal targets for

Staggs & Shenoi 167

adversaries. The ubiquity of insecure communications interfaces and protocols
contributes to inherent vulnerabilities in embedded systems that persist over
their lifespans – these are collectively referred to as “forever days.”

Retrofitting security in an insecure external communications interface of an
embedded system is an active research challenge. Bump-in-the-wire solutions
that secure unencrypted IP-based industrial control system protocols such as
Modbus/TCP and DNP3 have been developed [32]. Additionally, specialized
firewalls have been deployed to perform rigorous message filtering across trust
domains in industrial control system environments [21, 31].

In the case of Internet of Things and mobile devices, the interface between
the application and baseband processors is fundamentally insecure. The in-
terface transports serial character streams of commands and data that initiate
cellular processes in the devices [23, 24]. Unfortunately, this interface enables
malware executing on the application processor to target the baseband proces-
sor with malicious commands and data.

4.2 AT Command Filtering
Mulliner et al. [20] have developed a “virtual modem” protection mecha-

nism that mitigates malicious injections of cellular signaling traffic from mobile
phones. The virtual modem mediates signaling traffic between the application
processor and baseband processor. This independent system intercepts and
inspects AT commands before forwarding them to the baseband processor.

The virtual modem solution incorporates an AT command filter that enforces
a security policy on messages destined for the baseband processor. The policy
specifies temporal thresholds on the frequencies of transmitted AT commands.
The enforcement of the strict policy on AT commands that initiate critical
cellular operations mitigates denial-of-service attacks. However, this solution
does not address attacks on the baseband processor itself.

5. Baseband Processor Exploitation
The mobile phone unlocking communities have for years focused on under-

standing how proprietary baseband processors work in order to bypass network
carrier locking restrictions [13]. The Apple iOS and Android communities have
acquired substantial expertise in reverse engineering, vulnerability analysis and
exploit development for targeting baseband processor firmware. Their focus is
on baseband processor exploitation from the perspective of the application pro-
cessor interface, not the air-interface.

Baseband processor exploitation over the air-interface generally occurs by
leveraging remote code execution or denial-of-service vulnerabilities in frail
cellular protocol stack implementations. The vulnerabilities are triggered by
sending specially-crafted cellular messages (e.g., signaling, voice or data) to
the baseband processor. These messages are usually malformed and are con-
structed to take advantage of inadequate checking of GSM/UMTS message
field lengths (e.g., resulting in buffer/heap overflows) or they employ improper

168 CRITICAL INFRASTRUCTURE PROTECTION XIII

variable data types (e.g., resulting in integer overflows) [33, 34]. In contrast,
baseband exploitation via the application processor interface typically involves
sending crafted AT commands that trigger remote code execution vulnerabili-
ties in the AT command handler code of the baseband processor.

Modern phones support hundreds of AT commands for initiating cellular
activities and providing vendor-specific features. This has created large attack
surfaces for the baseband and application processors that can be leveraged by
attackers to rewrite firmware, bypass security mechanisms, exfiltrate sensitive
device data, unlock screens and inject touch events [30].

The approach adopted in this research is to identify suspicious AT com-
mands and create the associated signatures. These AT command signatures
are employed in real time to thwart exploitation attempts against the base-
band processor.

5.1 AT Command Exploitation Methodology
The iOS and Android unlocking/jailbreaking communities are great sources

for information about baseband processor exploitation. This information can
also be used to assist in developing reactive and proactive security mechanisms
that detect and mitigate attacks against the baseband processor. This work has
leveraged the theiphonewiki.com community resources to understand base-
band processor exploitation from the application processor. It has also drawn
on vulnerability and exploit information from theiphonewiki.com to develop
mitigation techniques.

The first step in unlocking a phone is to understand how and where network
carrier locking is implemented. In most cases, this is handled by the baseband
processor. Traditionally, a security researcher who intends to unlock a phone
unpacks and reverse engineers the baseband firmware of the target phone. Next,
the researcher identifies sections of code and data in the firmware where the
carrier lock logic is implemented.

A method for remote code execution is then needed to patch the memory of
the targeted baseband processor. This can be accomplished by analyzing the
AT command interface handler for software vulnerabilities that provide con-
trol of the system (e.g., memory corruption). The vulnerabilities are normally
triggered (exploited) using anomalous AT commands sent from the application
processor. The anomalous AT commands, which are usually valid per specifi-
cation, are constructed to exploit vulnerabilities in the AT command handler
to gain control over the program counter of the baseband processor. In some
cases, the AT commands may contain shellcode that is eventually executed in
order to unlock the phone. Common memory corruption vulnerabilities that
are routinely identified and exploited include stack- and heap-based buffer over-
flows [1, 13].

Figure 6 shows a proof-of-concept stack overflow exploit employed by the
Purplesn0w unlock to trigger an AT command vulnerability in the iPhone 3GS
X-Gold 608 baseband processor [14]. In the example, the second parameter of

Staggs & Shenoi 169

at+xlog=1,"jjjjjjjjjjjjjjjjjjjjjjjjjjjj44445555PPPP"
j's = junk padding
R4 = 4
R5 = 5
PC = P

Figure 6. iPhone 3GS Purplesn0w AT command exploit.

the +xlog AT extended command is crafted to gain control of the program
counter of the baseband processor.

6. AT Command Intrusion Prevention System
Data entering the baseband processor from an external source should be

considered to be untrusted until it is vetted for signs of malicious behavior. A
proof-of-concept AT command intrusion prevention system was developed to
mitigate exploitation or dynamic vulnerability discovery attempts against the
baseband processor that originate from the application processor interface. The
intrusion prevention system enables users to define rules (signatures) based on
the AT command syntax and semantics. The signatures are used to detect and
prevent malicious AT commands and payloads (parameters) from being sent
to the baseband processor. Signatures are also specified to detect and prevent
fuzzing attempts and unauthorized uses of vendor-specific AT commands.

6.1 AT Command Syntax
The Hayes AT and GSM AT command sets are character-based messaging

protocols (strings) that are commonly used by application processors to instruct
baseband processors to perform cellular operations. Cellular routines for voice,
SMS and data are invoked by AT commands to instruct baseband processors to
perform the relevant functions. The AT command specifications cover hundreds
of commands. This work focuses on application processor interface protocols
that use standard AT and GSM AT commands, as well as proprietary vendor-
specific AT commands [30]. Other types of proprietary messaging protocols
exist [7]; however, the rigorous treatment of these protocols is the subject of
future research.

Several categories of AT command messages, each with its own syntax, have
been specified [9, 28]. The three AT command categories considered in this
research are basic, extended and s-parameter commands.

Basic Commands: Basic commands have the structure AT<x><n> or
AT&<x><n> where <x> is a command and <n> denotes the command pa-
rameters.

Extended Commands: Extended commands have the structure AT+<x>
<n> or AT%<x><n> where <x> is a command and <n> denotes the command
parameters.

170 CRITICAL INFRASTRUCTURE PROTECTION XIII

Figure 7. SIM900 GSM module and Raspberry Pi 3.

S-Parameter Commands: S-parameter commands have the structure
ATS<n>=<m> where <n> is the index of the s-register to be set and <m> is
the value to be assigned.

6.2 Design and Implementation
A SIM900 GSM module and a Raspberry Pi 3 hardware platform running a

Linux Debian operating system (Raspbian) were selected to develop the proof-
of-concept AT command intrusion prevention system (Figure 7). The SIM900
GSM module was selected as the baseband processor because of its wide support
and availability of documentation. The flexibility provided by the Raspberry
Pi was leveraged to program it to emulate application processor functionality.
The GSM module was connected to the GPIO pins of the Raspberry Pi to
facilitate serial UART communications. OpenBTS was used as the test GSM
network.

A method is needed to conduct real-time passive analysis of AT commands
in transit to the baseband processor. Monitoring the transmission of AT com-
mands requires an understanding of the dataflow from the source (application
processor operating system) to the destination (baseband processor real-time

Staggs & Shenoi 171

operating system). In general, AT command inspection may be performed
in three ways, each requiring different levels of device access and intrusive-
ness: (i) adding an additional security coprocessor tasked with moderating
AT commands; (ii) kernel-level modifications; and (iii) user-level library pre-
loading [23, 24]. This research leveraged the library pre-loading technique for
AT command inspection because of its ease of implementation.

In order to simulate the cellular functionality of a malicious application
or rooted phone, a test application was written for the Raspberry Pi 3 to
send arbitrary and malicious AT commands to the SIM900 GSM module. The
application sends AT commands to the SIM900 GSM module by creating a
file descriptor to the serial device /dev/uart and calling the libc write()
function to write a stream of characters to the serial device.

The write() function is hooked to inspect AT commands before being writ-
ten to the serial device. An easy way to hook a library function in Linux is to
use the LD PRELOAD environment variable [23, 24], which enables a designated
shared library to be loaded before any other shared libraries. This precedence
technique is leveraged to overwrite stock shared library symbols in order to de-
fine an alternative version of write(). This method gains control of the data
content passed to the baseband processor.

After hooking the write() function with LD PRELOAD, control is passed to
the intrusion prevention code that checks the AT commands and data. Only
verified write() function calls passed with a file descriptor to the baseband
processor (UART device) are processed further. If a write() call does not
contain a file descriptor that points to a valid serial device, then the function
calls the regular libc version of write().

If the altered version of write() is invoked, then the buffer containing the
message is parsed by the intrusion prevention system and matched against the
predefined rules (signatures). If a rule is triggered by a particular AT command,
then the command is dropped and the function simply returns to the calling
function the number of bytes that were supposed to be written to the device.
This ensures that the intrusion prevention logic is transparent to the underlying
application and that the application is unaware that the AT command has been
dropped.

Alternatively, if the AT command does not trigger on a rule, it is passed
on and written to the UART interface for serial transmission to the baseband
processor. The inspection system thus moderates potentially malevolent com-
mands and data sent over an insecure, albeit trusted, serial interface.

Figure 8 illustrates the application-processor-based AT command intrusion
prevention process used in the proof-of-concept implementation.

6.3 Intrusion Prevention System
The application-processor-based AT command intrusion prevention system

has three components: (i) AT command parser; (ii) rule parser; and (iii) intru-
sion detection/prevention engine.

172 CRITICAL INFRASTRUCTURE PROTECTION XIII

Intrusion
Prevention

System

write(int fd, void *buffer, size_t count)

LD_PRELOAD
Shared Object

/dev/uart
Application Processor Interface

*buffer

Malicious AT
Command

Drop AT
Command and

Return to
Caller

Write AT
Command to

File Descriptor

YesNo

Application

SIM900 GSM
Baseband

Figure 8. Application-processor-based AT command intrusion prevention system.

The AT command parser parses the command contained in the buffer that
is passed to the write() call. In addition to performing syntactic checks, an
appropriate data structure is created for the AT command (e.g., basic, extended
or s-parameter). The data structure, which contains granular attributes that
apply to the AT command, is employed when applying the rule-based logic.

The rule parser reads in the rules that are defined in an external configuration
file. A rule has the syntax: <operator> <command><parameter(s)>. Note
that the parameters are operator specific.

Four basic operators are employed by the intrusion prevention system:

Length: This operator provides the length of an AT command param-
eter. It is useful for flagging AT commands with abnormal parame-
ter lengths (e.g., used to induce stack-based buffer overflows, where the
padding size of the exploit is known to be at least a certain length).

– Example 1: length +xlog 25 blocks the AT +xlog command when
the parameter length is exactly 25 characters.

– Example 2: length +xlog >= 25 blocks the AT +xlog command
when the parameter length is greater than or equal to 25 characters.

Match: This operator matches a substring against the parameters of
a specific AT command or all AT commands. If a match occurs, the
AT command is blocked. The operator is useful for catching script kid-
dies or commonly-used shellcode snippets (e.g., used in phone unlocking
attempts).

Staggs & Shenoi 173

– Example 1: match "baddata" blocks all commands containing the
string "baddata" in their parameters.

– Example 2: match +xapp "\0xDE\0xAD\0xBE\0xEF" blocks +xapp
commands containing the shellcode "\0xDE\0xAD\0xBE\0xEF" as a
parameter.

Msg Sequence: This operator triggers an alert when a contiguous se-
quence of AT commands is encountered; the commands are also blocked.
It is useful for establishing context-based rules where a single AT com-
mand may not be malicious, but a series of commands in the specified
order could be malicious.

– Example 1: msg sequence +xlog +xlog triggers an alert on back-
to-back occurrences of the +xlog command; the commands are also
blocked.

Block: This operator adds an AT command to the blacklist, which causes
the command to be dropped as soon as it is encountered. It is useful for
blocking vendor-specific AT commands that could be abused by attack-
ers [30].

– Example 1: block at%imei= prevents the IMEI of a phone from
being changed.

– Example 2: block at+fus? prevents a phone from going into the
firmware download mode.

– Example 3: block at+xabbtrace prevents the baseband trace con-
figuration from being returned.

7. Experimental Analysis and Testing
The application-processor-based AT command intrusion prevention system

was subjected to several tests to verify that it could detect and prevent mali-
cious AT command exploitation attempts on the baseband processor without
degrading device performance. Specifically, the subscriber should not experi-
ence noticeable delays and should be able to use the device as intended (e.g.,
to make/receive phone calls and send/receive SMS texts and data). Several
malicious AT commands were used in the tests, including some that target the
X-Gold 608 and 618 baseband processors in older iPhones. These malicious
AT commands were selected because of their documentation and use in iPhone
baseband unlocks.

Another consideration was to appropriately tune the AT command signa-
tures to minimize false positives and false negatives. Tuning requires the pro-
filing of messages to establish baselines. Signatures that are too general increase
the false positive rate and block valid AT commands. Signatures that are too
specific increase the false negative rate and fail to block malicious AT com-
mands. Tuning the signatures was determined to be as much art as a science;

174 CRITICAL INFRASTRUCTURE PROTECTION XIII

a thorough treatment of AT command signature tuning is a topic for future
work.

Malicious AT commands used in the tests were obtained from Tian et al. [30]
and theiphonewiki.com. During the tests, regular cellular communications
procedures were performed, including sending and receiving voice calls, SMS
messages and streaming data while periodically injecting malicious AT com-
mands.

The following tests were conducted:

Test 1: Injection of a single malicious AT command during a two-minute
voice call.

Test 2: Injection of a malicious AT command every 100ms during a
two-minute voice call.

Test 3: Injection of a single malicious AT command while the baseband
was not being used (i.e., in the standby mode).

Test 4: Injection of a malicious AT command every 100ms while the
baseband was not being used (i.e., in the standby mode).

Test 5: Injection of a malicious AT command during a streaming data
session.

Test 6: Injection of a malicious AT command every 100ms during a
streaming data session.

Table 1 shows the test results along with the rules used to detect and block
malicious AT commands. Five malicious or risky AT commands were used in
the tests, all of which were successfully detected by the intrusion prevention
system. The intrusion prevention functionality did not noticeably impact the
normal use of the cellular modem (e.g., making and receiving calls, and sending
and receiving SMS messages and packetized data). Additionally, no false pos-
itives were observed during tests. Future work will pursue a rigorous testing
regimen that considers all the cellular functionality under real-world conditions.

8. Conclusions
Wireless communications coprocessors provide wide-area and personal-area

networking capabilities to Internet of Things and mobile devices. These co-
processors have been the targets of exploitation research in recent years. In
particular, the baseband processors, which are responsible for cellular com-
munications, are attractive targets for adversaries interested in intercepting,
modifying, interrupting or fabricating voice, text, data and signaling traffic.

This research has made key contributions to securing baseband processors
from exploitation attempts by hostile applications that execute on the appli-
cation processor. Retrofitting an AT command intrusion prevention system
between the application processor and baseband processor mitigates the neg-
ative effects of malicious AT commands. Because the intrusion prevention

Staggs & Shenoi 175

Table 1. Malicious AT command test cases.

AT Command IPS Rule Detected

at+xlog=1, ”jjjjjjjjjjjjjjjjjjjjjjjjjjjj44445555PPPP” length +xlog >= 30 Yes

at+xapp=”aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa length +xapp >= 50 Yes
aaaa4444555566667777PPPP”

at%IMEI=”490154203237518” block at%imei= Yes

at+fns=”00000000000000000000000000000000000000 length +fns >=1024 Yes
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0000000000000000000000111111222233334444555566
66677”

at+stkprof=1,”064a541c044b1878222803d010700132 match ”\x32\x0F\x27” Yes
0133f8e720470000bf9f154000170100546e56402000000
05c130100266e5640ddddddddeeeeeeeeb890512000000
0001010101020202020611301000c000000”;”\x10\x32
\x0F\x27\xBA\x43 \x17\x1C\x0E\xA4\x0B\xA5
\x01\x35\x21\x78\x78\x29\x0C\xD0\xA8\x47
\x0B\x01\x61\x78\xA8\x47\xC0\x46 \xC0\x46
\xC0\x46\xC0\x46\xC9\x18\x11\x70 \x02\x34\x01
\x32\xEF\xE7\xC0\x46\xC0\x46 \x01\x37\x38
\x47\x30\x30\x41\x29\x01\xDA 09pG79pG02480
3A1013101601FBD00004C711140F0B51C4B8026
8BB03601188008911A4C301CA04700250990
..................CONTINUED...................
20xx”

system is vendor agnostic and focuses on analyzing text-based AT commands,
the approach is easily implemented to secure baseband processors produced by
diverse manufacturers.

Future research will focus on integrating the AT command intrusion preven-
tion technique in Internet of Things and mobile device platforms and operating
systems. Additionally, techniques for retrofitting security mechanisms in other

176 CRITICAL INFRASTRUCTURE PROTECTION XIII

vulnerable wireless chipsets will be explored. Finally, efforts will focus on em-
ploying cryptographically-sound techniques for firmware attestation to combat
threats ranging from unauthorized surveillance to insidious system compro-
mises.

References

[1] Aleph One, Smashing the stack for fun and profit, Phrack, vol. 7(49), 1996.

[2] N. Artenstein, Broadpwn: Remotely compromising Android and iOS via a
bug in Broadcom’s Wi-Fi chipsets, presented at Black Hat USA, 2017.

[3] G. Beniamini, Over the Air: Exploiting Broadcom’s Wi-Fi Stack (Part
1), Project Zero Team, Google, Mountain View, California (googleproj
ectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-w
i-fi_4.html), April 4, 2017.

[4] G. Beniamini, Over the Air: Exploiting Broadcom’s Wi-Fi Stack
(Part 2), Project Zero Team, Google, Mountain View, California
(googleprojectzero.blogspot.com/2017/04/over-air-exploiting-b
roadcoms-wi-fi_11.html), April 11, 2017.

[5] G. Beniamini, Over the Air – Vol.2, Pt. 3: Exploiting the Wi-
Fi Stack on Apple Devices, Project Zero Team, Google, Mountain
View, California (googleprojectzero.blogspot.com/2017/10/over-a
ir-vol-2-pt-3-exploiting-wi-fi.html), October 11, 2017.

[6] A. Blanco and M. Eissler, One firmware to monitor ’em all, presented at
the Ekoparty Security Conference, 2012.

[7] G. Delugre, Reverse engineering a Qualcomm baseband, presented at the
Twenty-Eighth Chaos Communication Congress, 2011.

[8] J. Drake, P. Fora, Z. Lanier, C. Mulliner, S. Ridley and G. Wicherski,
Android Hacker’s Handbook, John Wiley and Sons, Indianapolis, Indiana,
2014.

[9] European Telecommunications Standards Institute, Digital Cellular
Telecommunications System (Phase 2+), AT Command Set for GSM
Mobile Equipment (ME), GSM 07.07, Version 5.5.5, TS/SMG-040707Q,
Sophia Antipolis, France, 1996.

[10] N. Golde and D. Komaromy, Breaking band: Reverse engineering and ex-
ploiting the Shannon baseband, presented at REcon, 2016.

[11] History of Computers, The modem of Dennis Hayes and Dale
Heatherington (history-computer.com/ModernComputer/Basis/modem.
html), 2016.

[12] B. Hond, Fuzzing the GSM Protocol, Master’s Thesis, Computing Science
Program, Radboud University, Nijmegen, The Netherlands, 2011.

Staggs & Shenoi 177

[13] iPhone Dev Team, ultrasn0w, The iPhone Wiki (www.theiphonewiki.
com/wiki/Ultrasn0w), 2009.

[14] iPhone Dev Team, Purplesn0w, The iPhone Wiki (www.theiphonewiki.
com/wiki/Purplesn0w), 2015.

[15] P. Kocialkowski, Samsung Galaxy Back-Door (redmine.replicant.us/
projects/replicant/wiki/SamsungGalaxyBackdoor), February 4, 2014.

[16] B. Krebs, Mirai botnet authors avoid jail time, Krebs on Security (krebs
onsecurity.com/tag/mirai-botnet), September 19, 2018.

[17] A. Lonzetta, P. Cope, J. Campbell, B. Mohd and T. Hayajneh, Security
vulnerabilities in Bluetooth technology as used in IoT, Journal of Sensor
and Actuator Networks, vol. 7(3), article no. 28, 2018.

[18] L. Miras, The baseband playground, presented at the Ekoparty Security
Conference, 2011.

[19] M. Moe, Go ahead, hackers. Break my heart, Wired, March 14, 2016.
[20] C. Mulliner, S. Liebergeld, M. Lange and J. Seifert, Taming Mr. Hayes:

Mitigating signaling based attacks on smartphones, Proceedings of the
Forty-Second Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2012.

[21] J. Nivethan and M. Papa, A Linux-based firewall for the DNP3 proto-
col, Proceedings of the IEEE Symposium on Technologies for Homeland
Security, 2016.

[22] M. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. Grieco, G.
Boggia and M. Dohler, Standardized protocol stack for the Internet of
(important) Things, IEEE Communications Surveys and Tutorials, vol.
15(3), pp. 1389–1406, 2013.

[23] F. Sanglard, Tracing the Baseband: Part 1 (fabiensanglard.net/cell
phoneModem/index.php), May 11, 2010.

[24] F. Sanglard, Tracing the Baseband: Part 2 (fabiensanglard.net/cell
phoneModem/index2.php), May 11, 2010.

[25] M. Sauter, From GSM to LTE: An Introduction to Mobile Networks and
Mobile Broadband, John Wiley and Sons, Chichester, United Kingdom,
2014.

[26] B. Seri and A. Livne, Exploiting BlueBorne in Linux-based IoT devices,
Armis, Palo Alto, California, 2019.

[27] W. Shaw, Cybersecuriy for SCADA Systems, PennWell, Tulsa, Oklahoma,
2006.

[28] SIMCom Wireless Solutions, AT Commands Set, SIM900 ATC V1.00,
Shanghai, China, 2010.

[29] Statista, Internet of Things (IoT) connected devices installed based world-
wide from 2015 to 2025 (in billions), Frankfurt, Germany (www.statista.
com/statistics/471264/iot-number-of-connected-devices-worldw
ide), 2018.

178 CRITICAL INFRASTRUCTURE PROTECTION XIII

[30] D. Tian, G. Hernandez, J. Choi, V. Frost, C. Ruales, P. Traynor, H. Vi-
jayakumar, L. Harrison, M. Grace and K. Butler, ATtention spanned:
Comprehensive vulnerability analysis of AT commands within the Android
ecosystem, Proceedings of the Twenty-Seventh USENIX Security Sympo-
sium, pp. 273–290, 2018.

[31] Tofino Security, Tofino Firewall LSM, Lantzville, Canada (www.tofino
security.com/products/Tofino-Firewall-LSM), 2017.

[32] P. Tsang and S. Smith, YASIR: A low-latency, high-integrity security
retrofit for legacy SCADA systems, Proceedings of the Twenty-Third IFIP
TC 11 International Information Security Conference, pp. 445–459, 2008.

[33] R. Weinmann, All your baseband are belong to us, presented at the Hack.lu
Conference, 2010.

[34] R. Weinmann, Baseband attacks: Remote exploitation of memory corrup-
tions in cellular protocol stacks, Proceedings of the Sixth USENIX Confer-
ence on Offensive Technologies, 2012.

[35] H. Welte, Anatomy of Contemporary GSM Cellphone Hardware (ondoc.
logand.com/d/373/pdf), 2010.

Chapter 10

VULNERABILITY ASSESSMENT OF
INFINIBAND NETWORKING

Daryl Schmitt, Scott Graham, Patrick Sweeney and Robert Mills

Abstract InfiniBand is an input/output interconnect technology for high perfor-
mance computing clusters – it is employed in more than one-quarter
of the world’s 500 fastest computer systems. Although InfiniBand was
created to provide extremely low network latency with high quality of
service, the cyber security aspects of InfiniBand have yet to be investi-
gated thoroughly. The InfiniBand architecture was designed as a data
center technology that is logically separated from the Internet, so de-
fensive mechanisms such as packet encryption were not implemented.
The security community does not appear to have taken an interest in
InfiniBand, but this is likely to change as attackers branch out from tra-
ditional computing devices. This chapter discusses the security implica-
tions of InfiniBand features and presents a technical cyber vulnerability
assessment.

Keywords: InfiniBand, networking, vulnerability assessment

1. Introduction
The cyber threat landscape is becoming more diverse as attackers target

new types of networks, devices and applications. According to Symantec’s 2018
Internet Security Threat Report, the number of new mobile malware variants
in 2017 increased by 54% over the number in 2016 [27]. Much more alarming
was the 600% increase in attacks against Internet of Things (IoT) devices. It
is safe to assume that state-sponsored cyber groups are building capabilities
against networks designated by the U.S. Department of Homeland Security as
part of the national critical infrastructure.

Information technology (IT) professionals and cyber defenders alike rely on
signature-based detection methods to provide alerts about anomalous and po-
tentially malicious activities in networks, but this approach cedes the initiative
to the attacker and relegates the defender to a reactive position. Symantec’s
findings suggest the need for more proactive measures throughout the com-

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 179–205, 2019.

https://doi.org/10.1007/978-3-030-34647-8_10

https://doi.org/10.1007/978-3-030-34647-8_10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_10&domain=pdf

180 CRITICAL INFRASTRUCTURE PROTECTION XIII

puting industry and security community. Cyber security experts must explore
and evaluate computing equipment in novel ways, especially from the outsider’s
perspective.

It is unreasonable to expect system engineers and programmers to compete
with elite computer hackers, especially those with the backing of nation-states
or large criminal organizations. As a result, much of the onus falls on the
research community to investigate the cyber hardening and resilience of com-
puting systems that have not been evaluated. Examples include mobile and
Internet of Things devices, industrial control systems and networks, and embed-
ded devices that communicate over vehicular networks. Such non-traditional
computing devices typically do not have active traffic monitoring in place, much
less security professionals to examine logs and alerts. These systems were not
designed with cyber security in mind; instead, they were built for user conve-
nience, durability (availability of services) and profitability. Despite these chal-
lenges, even small amounts of cyber hardening can greatly increase the costs
to attackers and reduce the threats of cyber attacks to critical infrastructure
assets.

This chapter focuses on InfiniBand, an advanced input/output interconnect
technology used in high-performance computing (HPC). InfiniBand equipment
has not been subjected to thorough external security testing because it is not
considered to be a likely target for hackers. However, the creators of InfiniBand
did realize the need for hardening and resilience. Indeed, they created the
technology to address some of the fundamental weaknesses of Ethernet.

High-speed networking hardware is very expensive and InfiniBand customers
rightfully expect that their equipment will not be easily compromised by cyber
attacks. According to the November 2018 update to the TOP500 list, Infini-
Band equipment powers 27% of the 500 most powerful computer systems in the
world, but accounts for 37.4% of the total computing performance [28]. As a
result, InfiniBand manufacturers have a lot to lose should a newsworthy cyber
attack occur on an InfiniBand network.

The desire to put such concerns to rest is evident in a Mellanox white pa-
per titled “Security in Mellanox Technologies InfiniBand Fabrics” [12]. The
paper discusses a security review of InfiniBand protocols and highlights certain
Mellanox product offerings. A vendor white paper is likely biased; therefore,
the vulnerability assessment described here provides an independent and al-
ternative viewpoint. Furthermore, the assessment has a wider scope than the
Mellanox effort, which mainly focuses on the protocol, but not much on other
aspects of InfiniBand networking. This chapter describes a technical cyber vul-
nerability assessment, an apparatus for determining the vulnerabilities that are
present in a generic InfiniBand network.

2. Background
This section describes the InfiniBand architecture and the interactions be-

tween the architectural components.

Schmitt, Graham, Sweeney & Mills 181

Table 1. InfiniBand bandwidth specifications.

InfiniBand Standard Line Rate Lines Total

Quad Data Rate (QDR) 10 Gb/s 4 40Gb/s
Fourteen Data Rate (FDR) 14 Gb/s 4 56Gb/s
Enhanced Data Rate (EDR) 25 Gb/s 4 100 Gb/s
High Data Rate (HDR) 50 Gb/s 4 200 Gb/s

2.1 InfiniBand
InfiniBand is a network protocol comparable to Ethernet. It is extremely

lightweight and is designed to minimize latency. In the late 1990s, the com-
puting industry recognized that it was facing a tremendous hurdle. Processor
speeds were increasing according to Moore’s Law, but memory latency and
network bandwidth limitations were nullifying processor performance gains.
This was not much of a problem for personal computers. However, high-end
servers, especially those operating in clusters, needed a solution. In particular,
networking (gigabit Ethernet) and storage (fibre channel) cards were pushing
the bandwidth limits of motherboard buses and networking cables [11]. The
InfiniBand Trade Association (IBTA) was created to come up with a solution.

More than 180 companies assembled in August 1999 to develop the Infini-
Band architecture. Individuals from IBM and Intel served as co-chairs of the
InfiniBand Trade Association and the steering committee members came from
influential companies such as Dell, Compaq, Hewlett-Packard, Microsoft and
Sun. With numerous contributors presenting differing needs, the association
had to design a flexible system. The specification had to “scale down to cost-
effective small server systems as well as scaling up to large, highly robust,
enterprise-class facilities” and had to accommodate “new inventions and ven-
dor differentiation” [23]. The InfiniBand Trade Association was striving to
design the most secure networks while ensuring the lowest latency and highest
application performance [7].

Modern InfiniBand uses individual copper or fiber cables capable of up to
200Gb/s full bi-directional bandwidth, but the first release was primarily based
on 2.5Gb/s copper [25]. The basic copper link had four wires, a differential
signaling pair for each direction. The original specifications called for several
speeds: 1x, 4x or 12x copper, and 1x fiber. Table 1 shows the current InfiniBand
standards, highlighting the two decades of growth.

InfiniBand was built primarily for high-performing computing clusters that
are logically isolated from the open Internet. InfiniBand nodes are capable
of communicating across the web, but the Internet backbone could not likely
run on InfiniBand due to features such as predetermined static routing. The
InfiniBand Trade Association was aware of this, when it said that the “present
[router] specification does not cover the routing protocol nor the messages ex-
changed between routers.” True routers are optional in InfiniBand networks;

182 CRITICAL INFRASTRUCTURE PROTECTION XIII

Switch Switch Switch Switch

Switch Switch

Figure 1. Switched fabric topology.

InfiniBand has been successfully utilized without routers in a production envi-
ronment between two distant clusters [10]. Nonetheless, InfiniBand is funda-
mentally a data center technology that is not typically deployed in a network
demilitarized zone unless firewalls or other similar access-controlled layers are
placed in front of the InfiniBand fabric [12]. The logical segregation provides a
fair amount of security, but motivated, well-resourced cyber actors would want
to access the valuable data stored inside InfiniBand networks.

2.2 InfiniBand Terminology
InfiniBand is more than just a protocol – the InfiniBand Trade Association

envisioned a network infrastructure around it. In fact, the association wanted
to improve on the typical hierarchical structure of switches and routers used
by Ethernet-based networks.

Figure 1 shows InfiniBand’s switched fabric topology, which is a partial
mesh that provides connection reliability to interprocessor-communications-
based systems by allowing multiple paths between systems. Scalability is sup-
ported via fully hot swappable connections managed by a single unit called
the subnet manager [11]. InfiniBand hosts have network cards, called host
channel adapters (HCAs), which are equivalent to Ethernet network interface
cards (NICs). Host channel adapters usually have at least two physical ports
so that a node can be connected to two or more InfiniBand switches simulta-
neously. It would be impractical to create a full mesh by establishing direct

Schmitt, Graham, Sweeney & Mills 183

links between all devices, but switched fabrics provide a good compromise by
enhancing redundancy, load balancing and routing speeds.

Ethernet networks use the dynamic Address Resolution Protocol (ARP) and
routing tables to determine how and where to send traffic based on link speeds
and congestion. InfiniBand switches do not make routing decisions. Instead,
all the shortest paths are calculated by the subnet manager during network
initialization and after configuration changes. The subnet manager then pushes
forwarding tables to every device in the subnet, including all the compute
nodes. Multiple subnet managers may exist, but only one acts as the master.
Each host channel adapter and switch have a subnet management agent that
enables communications with the subnet manager. The subnet manager sets
up and maintains every link in the subnet. Network discovery is performed
periodically in InfiniBand, but nodes tend not to be added or removed as often
as in Ethernet networks.

Like the Transmission Control Protocol/Internet Protocol (TCP/IP) stack,
the InfiniBand protocol stack is based on the seven-layer Open Systems In-
terconnection (OSI) model. Layer-2 addressing is done via a local identifier
(LID), which is dynamically assigned by the subnet manager [10]. The local
identifier is a 16-bit value, so a single subnet can support up to 65K hosts. In
contrast, media access control (MAC) addresses used in Ethernet are burned
into the network cards by manufacturers. However, these addresses are easily
changed via software – a simple command such as ifconfig eth0 hw ether
02:01:02:03:04:08 accomplishes this in many Linux distributions. This is
significant because InfiniBand addresses cannot be easily modified in such a
manner.

The layer-3 InfiniBand locators are called global identifiers (GIDs). These
are valid IPv6 addresses for the most part. The first half (i.e., 64 of the 128 bits)
of each GID is called the global unique identifier (GUID). GUIDs are embedded
in the host channel adapter, although there is not just one of them per network
card like MAC addresses. Each host channel adapter port has its own GUID.
Distinct port addressing helps enforce the static routing, as discussed above.

InfiniBand does not use sockets or virtual ports like Ethernet networks. In-
stead, InfiniBand connections are established between two endpoints by queue
pairs (QPs). Each queue pair consists of a send queue and a receive queue,
and each queue pair represents one end of a channel. If an application requires
more than one connection, additional queue pairs are created. A send queue
and receive queue are collectively referred to as a work queue (WQ).

Work queues put the results of completed work requests (WRs) in an asso-
ciated completion queue. This includes successfully-completed work requests
and unsuccessfully-completed work requests. Completion queues notify appli-
cations about ended work requests (status, opcode, size and source) [13]. The
user may insert a completion notification routine to be invoked when a new en-
try is added to a completion queue. This nomenclature lends itself to viewing
InfiniBand as a messaging service.

184 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 2. InfiniBand transport services.

Class of Service State Response Sent

Reliable Connection (RC) Connection-oriented Acknowledged
Reliable Datagram (RD) Multiplexed Acknowledged
Unreliable Connection (UC) Connection-oriented Unacknowledged
Unreliable Datagram (UD) Connectionless Unacknowledged
Raw Datagram Connectionless Unacknowledged

Keeping applications informed of network activity is vital considering that
InfiniBand has a major speed enhancing feature called remote direct memory
access (RDMA). Remote direct memory access permits data transfers without
interrupting either processor. In order to avoid involving the operating system,
applications at each end of a channel must have instant access to queue pairs.
This is accomplished by mapping the queue pairs directly to the virtual address
space of each application. Thus, the application at each end of the connection
has direct, virtual access to the channel connecting it to the application (or
storage) at the other end of the channel. This concept is referred to as channel
input/output [5]. Because there is no extra copying of data (e.g., to various
levels of cache), InfiniBand is referred to as “zero copy” networking.

Reliable connection types send acknowledgements after every transmission.
InfiniBand offers stateful and stateless connection types similar to the Trans-
mission Control Protocol (TCP) and User Datagram Protocol (UDP), but these
are not as critical in InfiniBand. The reliable connection types in InfiniBand
are called reliable connection (RC) and unreliable datagram (UD). The unre-
liable connection (UC), reliable datagram (RD), raw IPv6 datagram and raw
Ethertype datagram transport media exist as well, although these are not as
mainstream. Table 2 summarizes the transport options.

In Ethernet networks, most higher-level protocols run over TCP to guarantee
100% packet delivery. Only trivial traffic that can be resent easily (e.g., domain
name queries) or traffic that requires high speeds (e.g., streaming video) runs
over UDP. Conversely, unreliable datagram is extremely common in InfiniBand.
InfiniBand is more efficient at avoiding congestion due to its priority-based flow
control. The Ethernet pause frame “stops all traffic indiscriminately” whereas
InfiniBand “strictly avoids packet loss by employing link-by-link flow control,
which prevents a data packet from being sent from one end of a link if there
is insufficient space to receive the packet at the other end of [the] link” [10].
More importantly, the InfiniBand receiver host channel adapter drops all out-
of-order packets because it is an error condition as far as the InfiniBand receiver
is concerned. This setting can be changed, but the default is to disallow out-
of-order delivery.

Possible responses are either a positive acknowledge (Ack) or a negative ac-
knowledge (Nak). A negative acknowledge is triggered under three conditions:

Schmitt, Graham, Sweeney & Mills 185

Table 3. Queue pair operations.

Operation UD UC RD RC

Send (with immediate) X X X X
Receive X X X X
RDMA Write (with immediate) X X X
RDMA Read X X
Atomic: Fetch and Add X X
Atomic: Compare and Swap X X

Maximum Message Size MTU 1GB 1GB 1GB

(i) temporary receiver not ready (RNR Nak); (ii) packet sequence number er-
ror (PSN error Nak); and (iii) fatal Nak error code. The reliable connection,
unreliable datagram and reliable datagram classes support remote direct mem-
ory access and require unique queue pair numbers (QPNs), meaning that no
two connections can share the same queue pair numbers simultaneously. Since
virtual ports do not exist, this is the primary way that connections can be
distinguished from each other. Alternatively, unreliable datagram queue pairs
use the same queue pair number, because they can send and receive messages
to and from any other unreliable datagram queue pair using the unicast (one-
to-one) or multicast (one-to-many) modes; however, only send operations are
supported. In addition to remote direct memory access reads and writes, atomic
extensions to the remote direct memory access operations also exist. These are
essentially a combined write and read remote direct memory access, carrying
the data involved as immediate data [23]. Table 3 shows a detailed listing of
the available queue pair operations by connection type.

Remote direct memory access has become popular as a result of InfiniBand
and it is now used in other I/O interconnects. The reason is that remote di-
rect memory access enables high-throughput, low-latency networking with low
CPU utilization. These advantages make it especially useful in massively par-
allel compute clusters. The Internet Wide-Area RDMA Protocol (iWARP)
and RDMA over Converged Ethernet (RoCE) now bring similar capabilities
to networks employing Ethernet-based software. The main difference between
the two is that iWARP uses a “complex mix of layers, including DDP (di-
rect data placement), a tweak known as MPA (marker PDU aligned) framing,
and a separate RDMA Protocol (RDMAP) to deliver RDMA services over
TCP/IP” whereas RoCE operates “over standard layer-2 and layer-3 Ethernet
switches” [14]. RoCE’s superior performance metrics compared with iWARP
have made it the market frontrunner.

InfiniBand products (e.g., by Mellanox) support Ethernet by offering In-
ternet Protocol over InfiniBand (IPoIB) and Ethernet over InfiniBand (EoIB)
services. IPoIB uses an upper layer protocol (i.e., application layer) driver
that enables it to encapsulate IP datagrams over an InfiniBand connected or

186 CRITICAL INFRASTRUCTURE PROTECTION XIII

datagram transport service. EoIB is akin to IPoIB except that it includes the
(layer-2) Ethernet header and only runs on UD. EoIB performs an “address
translation from Ethernet layer-2 MAC addresses (48-bits long) to InfiniBand
layer-2 addresses made of LID/GID and QPN” whereas IPoIB “exposes a 20-
byte [hardware] address to the [operating system]” [15]. As a result, EoIB
requires additional equipment, specifically a BridgeX gateway that connects an
InfiniBand fabric to its external side (i.e., an Ethernet network segment). This
may be a reason why EoIB is being phased out; this is evidenced by the fact
that it is not mentioned in the latest version of the Mellanox OpenFabrics En-
terprise Distribution (OFED) Linux User’s Manual. The Ethernet Tunneling
over IPoIB (eIPoIB) driver appears to have replaced this functionality.

2.3 InfiniBand Security Features
The InfiniBand architecture provides isolation and protection services using

keys. Keys are “values assigned by an administrative entity that are used in
messages in order to authenticate that the initiator of a request is an authorized
requester and that the initiator has the appropriate privileges for the request
being made” [22]. InfiniBand has five types of keys: (i) partition keys (P -
Keys); (ii) memory keys (L Keys and R Keys); (iii) queue keys (Q Keys); (v)
management keys (M Keys); and (vi) baseboard management keys (B Keys).

A partition key designates a network partition for a channel adapter port.
Each port is assigned at least one partition key by the subnet manager; these
values point to entries in the port’s partition key table. InfiniBand partitions
are equivalent to Ethernet virtual local area networks (VLANs), so partition
keys are like VLAN tags.

Memory keys are needed for remote direct memory access operations and
come in the form of local keys (L Keys) and remote keys (R Keys). System
memory is registered to provide access to local and remote channel adapters.
Registration returns the keys, each of which has the associated access permis-
sion (i.e., read-only versus read/write) [3]. The same memory buffer can be
registered several times, even with different permissions, and every registration
results in a different set of keys.

Queue keys are preshared keys that are used in the datagram connection
types (reliable datagram and unreliable datagram). During communications
setup, channel adapters exchange queue keys between queue pairs. Receipt of
a packet with a different queue key than the one provided to the remote queue
pair indicates that the packet is not valid and is, therefore, rejected.

Management and baseboard management keys enforce control of the master
subnet manager and subnet baseboard manager, respectively. The baseboard
manager component communicates with nodes to provide an in-band mech-
anism for managing each baseboard configuration [22]. The baseboard man-
ager’s purview covers topics such as the retrieval of vital product data (e.g.,
serial number and manufacturing information), environmental data and adjust-
ing power and cooling resources [24]. The baseboard manager communicates
with a baseboard management agent (BMA) on each node, just as the subnet

Schmitt, Graham, Sweeney & Mills 187

manager does with every subnet manager agent. Every channel adapter port
and every switch have a management key and a baseboard management key.
These do not need to be identical across all devices, but they must match what
the destination is expecting in order to verify that the source of a management
packet is correct.

InfiniBand also provides integrity and quality of service (QoS). Integrity is
ensured by two cyclic redundancy checksums (CRCs). As the name implies, the
16-bit variant CRC (VCRC) is recalculated at each hop. The 32-bit invariant
CRC (ICRC) complements the VCRC by protecting the fields that do not
change along the communications pathway. Each packet has a VCRC and
an ICRC; a per-block CRC exists as well for each memory block sent in the
payload. As for quality of service, packets are assigned a priority between 0
(lowest) to 15 (highest). This priority translates to a virtual lane (VL) through
which the packet can transit. Each physical link can support up to sixteen
virtual lanes, with VL 15 reserved for management packets.

InfiniBand management is performed in-band, using management datagrams,
which are unreliable datagrams with maximum transmission units (MTUs) as
low as 256bytes. Some management datagrams are called subnet management
packets, which are unique in several ways. In addition to transiting in VL 15,
they are always sent and received on queue pair 0 of each port, and they can
use directed routing [23]. Directed routing occurs when a subnet management
packet tells a switch which ports to send it on. This is necessary when the
forwarding tables have not been initialized.

InfiniBand software derives from the OFED suite from the OpenFabrics Al-
liance, a collaboration involving major high performance I/O vendors. Mel-
lanox has augmented this package to create its own version of OFED. It sup-
ports both InfiniBand and Ethernet (technically, RoCE), although many net-
work cards cannot process both interconnect types [18]. OFED includes custom
diagnostic tools for ascertaining the status of the fabric. Two such utilities are
ibstat and ibdump, which are analogous to the traditional Linux ifconfig
and tcpdump utilities, respectively. OFED also includes open-source software
called OpenSM, which provides subnet manager functionality.

InfiniBand-supported applications are written using a series of functions
called “verbs.” The InfiniBand architecture “contains no APIs, defined reg-
isters, etc. Instead it is specified as a collection of verbs – abstract representa-
tions of the functions that must be present, but may be implemented with any
combination and organization of hardware, firmware and software” [23].

For example, the InfiniBand standard does not specify how a queue should
be implemented internally in the host channel adapter hardware. Each manu-
facturer must provide a driver in the OFA Verbs API, whose inputs are func-
tion calls and data structures defined in detail by the API. Due to latency re-
quirements, Mellanox programming is done in the C language according to its
“RDMA-Aware Networks Programming User Manual” [13]. Example verbs/-
functions are ibv get device list(), ibv reg mr() for registering a memory
region and ibv create qp() for creating a queue pair.

188 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 4. Ethernet versus InfiniBand features.

Feature Ethernet InfiniBand

Network Card Network interface card (NIC) Host channel adapter (HCA)

Programming Sockets Verbs
Model

Layer-2 Media access control (MAC) Local identifier (LID) is
Addressing address is statically assigned dynamically assigned by the

by the NIC manufacturer subnet manager

Layer-3 Internet Protocol (IP) Global identifier (GID) is a
Addressing address 64-bit subnet ID assigned

by the subnet manager plus a
64-bit global unique identifier
(GUID) assigned by the HCA
manufacturer

Forwarding Distributed control; each Centralized control by the
Tables switch discovers neighbors subnet manager

independently

Packet Standard operating system Vendor-specific tools
Capture tools (e.g., Wireshark and (e.g., ibdump from

tcpdump) Mellanox)

Table 4 juxtaposes some relevant Ethernet and InfiniBand features.

2.4 Cyber Vulnerability Assessment
A cyber vulnerability assessment (CVA) is an integral part of a good security

program. It is the process of identifying and analyzing security vulnerabilities
that might exist in a computer system. The term system usually refers to a
network or enterprise, but it can be an individual device or component. Vul-
nerability assessments are typically conducted through “network-based or host-
based methods, using automated scanning tools to conduct discovery, testing,
analysis and reporting of systems and vulnerabilities. Manual techniques can
also be used to identify technical, physical and governance-based vulnerabili-
ties” [8].

A cyber vulnerability assessment has two main phases: (i) planning the vul-
nerability assessment; and (ii) performing the vulnerability assessment. The
planning phase is extremely important, because it entails “gathering all rele-
vant information, defining the scope of activities, defining roles and responsibil-
ities,” and more [1]. A cyber vulnerability assessment of a production network
entails interviewing system administrators and reviewing appropriate policies
and procedures relating to the systems being assessed. However, the experi-

Schmitt, Graham, Sweeney & Mills 189

Recon

Weaponize

Deliver

Exploit

Control

Execute

Maintain Initial Access
Execution
Persistence
Privilege Escalation
Defense Evasion
Credential Access
Discovery
Lateral Movement
Collection
Exfiltration
Command and Control

Figure 2. MITRE enterprise tactics.

mental setup comprised just a few Linux hosts connected to a single switch, so
the effort is called a technical cyber vulnerability assessment.

The process of defining the scope is almost always up to the customer or
network owner. This determines what entities are in play, but the execution
strategy is usually up to the assessor. Many cyber experts believe in adopting
an attacker’s perspective by employing the “hacker methodology.” This pro-
gression lists the stages of a cyber attack from reconnaissance and enumeration
to exfiltrating data and covering tracks. Physical attacks are carried out in
much the same manner, but each type of attack does not necessarily incor-
porate every stage in the progression. Some of the codified models include
Lockheed Martin’s Cyber Kill Chain [6], MITRE’s ATT&CK Matrix [19] and
the STRIDE model of Garg and Kohnfelder from Microsoft [26]. This assess-
ment has adopted MITRE’s framework because it is widely accepted by the
U.S. Government cyber community.

The ATT&CK Matrix begins with gaining initial access to a device. All
the adversarial actions taken prior to establishing a foothold in the network
are covered by the PRE-ATT&CK Matrix. These steps are extremely impor-
tant for an actual attacker, but are not relevant here. Indeed, the assumption
here is that a host or other device on a generic InfiniBand network could be
compromised somehow, but the method or means by which the unintended ac-
cess might be acquired is tangential to the effort. The full ATT&CK Matrix
covers techniques spanning Windows, Macintosh and Linux platforms. Many
techniques are operating system dependent. InfiniBand is supported by newer
Windows distributions, but the focus here is on Linux-style attacks. No cyber
attack model explicitly covers InfiniBand, so the effort sought to discover and
document specific techniques using the ATT&CK tactics as guidelines.

The eleven ATT&CK Matrix tactic categories are: (i) initial access; (ii)
execution; (iii) persistence; (iv) privilege escalation; (v) defense evasion; (vi)
credential access; (vii) discovery; (viii) lateral movement; (ix) collection; (x)
exfiltration; and (xi) command and control [19] (Figure 2).

These functions are typically performed in the specified order, although at-
tackers have their own tradecraft and preferences. The available time on target
and required stealth also influence the sequence of events. Execution is the

190 CRITICAL INFRASTRUCTURE PROTECTION XIII

means by which cyber effects are produced. Common options include a com-
mand line interface, a graphical user interface, a script or a compiled binary.
Persistence enables an attacker to quickly and/or easily regain access to a sys-
tem should the connection be severed. Privilege escalation involves increasing
the levels of access to files, directories and programs. Ideally, an attacker would
have full administrative rights such as being able to modify, add or delete any-
thing on the filesystem. In Linux systems, the default administrator is the root
account.

Defense evasion involves bypassing security measures (e.g., anti-virus soft-
ware and firewalls) and avoiding detection. Credential access is the process
of harvesting usernames, passwords, personal identification numbers, and even
cryptographic keys. Discovery involves gaining information about the other
systems in the internal network, after which a decision may be made to pivot
to another system (lateral movement). Collection is the assembling and staging
of the victim’s data so that it can be exfiltrated to a location of the attacker’s
choosing. Lastly, command and control is how an attacker communicates with
his or her malicious beacons and implants.

2.5 InfiniBand Security Research
Warren [29] has presented a GUID spoofing attack that altered the values in

firmware. This is a significant contribution, but with limited realism because
the victim machine (to which the GUID belonged) was taken offline prior to the
attack. An attacker who compromises a single host would not be able to shut
down another host without first gaining access to it, which negates the benefit
of spoofing its address. (The exception might be launching a successful denial-
of-service attack.) Nonetheless, this precaution led to a more straightforward
proof-of-concept experiment. In Ethernet networks, duplicate MAC addresses
in the same subnet can cause network instability. It is unclear how the subnet
manager would react to a GUID change in a live network because GUIDs are
not supposed to change, unlike LIDs or even GIDs [29].

In a white paper, Mellanox [12] asserts that the InfiniBand architecture “tar-
gets one of the main concerns in such environments [a data center LAN] which
is security, and has many built-in mandatory features that enable much better
isolation and security than current networks and other cluster interconnects.”
The paper emphasizes that InfiniBand is a layer-2 protocol much like Ether-
net, so almost all layer-3 through layer-7 security mechanisms work the same
way with InfiniBand. Switch administration is done out-of-band via manage-
ment ports as opposed to many switches that can be configured remotely. The
switches support RADIUS authentication, although it uses MD5 hashes that
are now considered to be insecure. Mellanox [12] also contends that hardware-
based features such as packet construction and GUID addressing significantly
improve security by preventing software applications from gaining control over
them and maliciously changing the attributes. It also claims that standard
layer-2 attacks such as MAC floods, gratuitous ARP and VLAN hopping are
not possible in InfiniBand.

Schmitt, Graham, Sweeney & Mills 191

In contrast, Lee et al. [9] believe that the InfiniBand architecture specifica-
tion omits security, resulting in security vulnerabilities that could be exploited
with moderate effort. Lee and colleagues did not orchestrate attacks, but base
their arguments on the lack of encryption in InfiniBand. They are concerned
that the keys used for authentication and management are sent over the wire
in plaintext. The keys could be easily captured by a traffic sniffer and then
spoofed to achieve powerful effects. They infer that, having infiltrated an In-
finiBand network, a hacker could abuse its extensive computational power and
massive storage capacity of the cluster in “another attack and as a repository
for illegal content.” Although their focus was on data confidentiality, Lee and
colleagues proposed a security enhancement to protect against denial-of-service
attacks. They constructed a simulation testbed with a stateful partition en-
forcement mechanism in switches using trap messages; the security mechanism
filtered packets with invalid partition keys.

3. Methodology
A test network was created to perform the cyber vulnerability assessment of

InfiniBand. Generic equipment and software were employed because the intent
was to investigate potential vulnerabilities in core InfiniBand equipment and
software, not custom InfiniBand-supported applications. Mellanox products
were chosen because it is the largest InfiniBand vendor.

3.1 Equipmental Setup
A minimal network was constructed for the technical cyber vulnerability

assessment. It comprised three desktop computers and a Mellanox SX6012
switch. The switch had twelve ports, each capable of 56Gb/s full bi-directional
bandwidth. It also had Ethernet, RS-232 and mini-USB management ports
for out-of-band maintenance [16]. The computers were high-performance ma-
chines that were built to handle the requirements of the assessment. They had
identical hardware and software.

One of the computers was assigned the role of subnet manager. As a result,
it ran the OpenSM program in the master mode. In addition, this computer
was connected to the switch via an RJ-45-to-DB9 serial cable. This did not
affect the normal in-band traffic, although it could provide an attacker with
the means to access the switch.

3.2 Approach
A cyber vulnerability assessment of InfiniBand must take a holistic approach,

looking at its protocol, physical equipment (hardware), supporting software and
network architecture. Hardware vulnerabilities present the most challenges to
defenders because they are by far the most difficult to detect. InfiniBand
switches and host channel adapters use custom application-specific integrated
circuits (ASICs) that are capable of sending and receiving data at rates up to

192 CRITICAL INFRASTRUCTURE PROTECTION XIII

200Gb/s per port. The newest Mellanox switch and host channel adapter prod-
uct lines are Quantum and ConnectX-5, respectively [17]. InfiniBand hardware
is cost prohibitive for most businesses and individuals, so these chipsets have
not been externally tested or brute forced like, for example, Intel i7 processors.
In addition, assembly language or microcode is not available, requiring pro-
grammers and users to use vendor-specific tools and APIs. Thus, if hardware
vulnerabilities or backdoors were to exist, they would be nearly impossible to
discover without insider knowledge. Reverse engineering a microchip begins
with an expensive and time-consuming process called delidding, which progres-
sively strips layers off the chip. Images are taken of each chip cross-section
using a scanning electron microscope [4]. With more than a billion transistors
on a modern ASIC chip, performing these tasks and then analyzing the images
is impractical. In any case, a more likely scenario is supply chain tampering
rather than a manufacturing or design flaw.

The National Institute of Standards and Technology lists cyber supply chain
risks as the “insertion of counterfeits, unauthorized production, tampering,
theft, insertion of malicious software and hardware, as well as poor manufac-
turing and development practices in the cyber supply chain” [20]. In the case
of InfiniBand products, this would be an extremely sophisticated attack, prob-
ably requiring nation-state support. Malicious variants of integrated circuits
could be produced using an embedded rootkit or logic bomb. These could then
be substituted for the original chips while the devices are in transit from the
manufacturer to the customer. The hope would be that these compromised
devices would find their way into facilities or in networks that would otherwise
be out of reach of the attacker. Testing for hardware vulnerabilities is such a
complex operation that it will not be discussed further in this chapter.

The key component of InfiniBand networking to be evaluated is its architec-
ture. The switched fabric topology is not impervious to attack, but it does have
advantages over traditional switched networks. Having more than one phys-
ical connection to the rest of the subnet provides redundancy and resilience.
If one link were to go down, the endpoint should still be able to communi-
cate through its other channel adapter port. Furthermore, man-in-the-middle
attacks are more difficult and generally less successful when potential routes
between two endpoints do not share at least one common intermediate node.
Valuable intelligence can be gathered when a cyber actor sniffs traffic from a
switched port analyzer (SPAN) port on an Ethernet switch; all (or selected)
traffic traversing the switch is mirrored on a different port to the host with the
listener. InfiniBand nodes are not always connected to a single switch, so in
theory only a portion of the packets headed to or from a specific node would
transit through the compromised switch.

Switched fabrics also cut down the attack surface by taking away the ability
of switches to perform dynamic routing. This is not really a security enhance-
ment of the architecture, but the instantiation by InfiniBand. ARP cache
poisoning and routing table overflows are examples of attacks that are not pos-

Schmitt, Graham, Sweeney & Mills 193

Table 5. Switched fabric versus shared bus architecture.

Feature Switched Fabric Shared Bus

Topology Switched Shared Bus
Pin Count Low High
Number of End Points Many Few
Maximum Signal Length Kilometers Inches
Reliability Yes No
Scalable Yes No
Fault Tolerant Yes No

sible because of InfiniBand’s predetermined routes. Table 5 summarizes some
of the advantages of switched fabrics [11].

LRH GRH BTH ETH Payload I Data ICRC VCRC

Upper Layer Protocol

Transport Layer Protocol

Network Layer Protocol

Link Layer Protocol

Figure 3. Data packet format.

The InfiniBand protocol follows the OSI model as seen in Figure 3. The lo-
cal route header (LRH) corresponds to layer 2, the global route header (GRH)
layer 3, and the base transport header (BTH) and extended transport header
(ETH) comprise layer 4. The LIDs, and service level and virtual lane informa-
tion are in the local route header. The global route header has the IP version
and GIDs, but is omitted entirely during local (within subnet) transmissions.
The packet sequence number as well as the queue, partition and memory keys
are in the layer-4 headers. The fields in the extended transport header differ
based on the base transport header operation or the next header of the local
route header. The invariant and variant cyclic redundancy checks (ICRC and
VCRC) are the checksums for bits that do not change during the transmission
and that are recalculated at each hop, respectively. Breaking the checksum up
into two parts makes the packets slightly harder to spoof. However, this design
feature was intended to decrease the transmission delay time by limiting the
work done by switches.

An obvious security concern with the InfiniBand protocol is the omission of
encryption at the link level. Encrypting the payload and possibly some of the
metadata contained in the higher levels of encapsulation (protocol data unit

194 CRITICAL INFRASTRUCTURE PROTECTION XIII

headers) can significantly improve data confidentiality. The Ethernet stack
offers encryption down to layer 3 via Internet Protocol Security (IPsec), but
other common protocols such as Transport Layer Security (TLS) and Secure
Shell (SSH) operate at the application layer. The InfiniBand Trade Association
chose not to implement encryption because it is computationally expensive and
increases latency. Technically, SSH is still available using IP-over-InfiniBand,
but even this would not protect the keys.

Another negative, albeit necessary, feature is forced routing. This could
enable an attacker to ignore forwarding tables and send a packet along any
pathway. Positive security attributes include having virtual lanes, keys (even
cleartext ones) and unique queue pair numbers.

Lastly, the InfiniBand supporting software must be examined. The open-
source portions of the OFED suite can be modified and recompiled relatively
easily to create a new cyber weapon. OpenSM is one such application that is
susceptible to exploitation, along with many Linux shell scripts in the filesys-
tem. InfiniBand diagnostic tools comprise the majority of the OFED binaries.
Binaries could be overwritten, fuzzed for input validation vulnerabilities and/or
brute forced by testing all the command line and graphical options.

3.3 Cyber Attacks
This section discusses the types of cyber attacks that were attempted. Some

of the attacks are feasible on Ethernet networks, so the intent was to launch
equivalent attacks on InfiniBand. The vectors were selected based on the au-
thors’ experience and research, and using the ATT&CK Matrix as a guide. All
eleven tactic categories in the matrix do not pertain to InfiniBand. In partic-
ular, initial access, persistence, privilege escalation and defense evasion involve
methods that are specific to the operating systems being used.

Execution. Security researchers and the hacking community have created
many cyber tools for Ethernet networks. Very few, if any, of these could be
applied directly to InfiniBand due to hardware packet crafting, lack of virtual
ports, etc., without activating IPoIB or EoIB. Using these protocols is a legiti-
mate technique, but this work does not consider InfiniBand as “running in the
Ethernet mode.”

OFED Diagnostic Tools: The diagnostic utilities in the OFED suite
can help debug the connectivity and status of InfiniBand devices in a
fabric. Due to the lack of custom cyber security tools in InfiniBand,
these utilities could serve as building blocks for cyber weapons, enabling
an attacker to manipulate settings and network traffic. Running standard
operating system commands and using the available diagnostic tools are
much stealthier techniques than transferring and executing non-native
files to an InfiniBand environment. OFED tool usage should not set
off any alarms nor should it put the attacker’s code at risk of being
quarantined or captured.

Schmitt, Graham, Sweeney & Mills 195

All the OFED diagnostic tools have to be studied and tested. Individual
packet captures have to be taken for each tool to understand the net-
work traffic generated during its execution. All possible combinations
of parameters cannot be executed and evaluated. Instead, options that
appeared to have dangerous ramifications were chosen and tested (e.g.,
ibping with the flood option).

RDMA Programming: RDMA programming for InfiniBand, RoCE
and iWARP is accomplished via the Verbs API. Mellanox states that its
architecture “permits direct user mode access to the hardware” through a
“dynamically loaded library” [13]. Networking experts can program with
verbs in order to customize and optimize the RDMA network or generate
malicious effects.

Malicious Firmware Installation: Firmware is embedded code on
a hardware device. The host channel adapter and possibly the switch
firmware would be of particular interest. Reprogramming an InfiniBand
host channel adapter could enable an attacker to intercept incoming pack-
ets and modify outgoing packets. Firmware is chipset dependent, so a
code modification would not be guaranteed to work on all InfiniBand
host channel adapters. For this and other reasons, the experiments did
not delve into firmware, but instead investigated how malicious firmware
could be burned on a device.

Credential Access. InfiniBand does not use usernames and passwords
for authentication, nor does it require access tokens or tickets like Kerberos.
Usernames and passwords are operating system mechanisms meant for human
users. In contrast, high-performance computing clusters usually run automated
processes, and only matching source addresses and keys enable communications
access between nodes. Additionally, administrative privileges are needed to run
most InfiniBand tools.

Address Spoofing: Firewalls and intrusion detection/prevention sys-
tems typically block traffic and generate alerts based on the source (MAC
and/or IP) addresses. Modifying source addresses can enable an attacker
to bypass these middleware devices.

Spoofing can cause a destination computer to grant elevated permissions if
no other authentication/authorization mechanisms are in place. Address
spoofing can also enable reflected attacks because responses would be sent
to the true owner of the spoofed address. Popular hacking tools such as
Nmap and Scapy can be used as follows:

nmap -S $IP_Address
ifconfig eth0 hw ether $MAC_Address
nmap -spoof-mac $MAC_Address

196 CRITICAL INFRASTRUCTURE PROTECTION XIII

Address spoofing is an attack on data confidentiality because it can en-
able an unintended user or computer to gain access to resources that
would otherwise be denied. The experiments attempted to duplicate the
GUID spoofing accomplished by Warren in 2012 [29]. LID spoofing was
investigated as well.

Discovery. A cyber actor can learn the addresses and structure of an in-
ternal network in different ways. Typically, discovery is performed passively
through traffic analysis and actively through scanning. Traffic analysis utilizes
programs such as tcpdump and Wireshark whereas scanning uses tools such as
traceroute, Nmap and Solarwinds.

Network Traffic Sniffing: Traffic sniffing can give an attacker valuable
situational awareness about a network. It may not be thought of as an
attack in and of itself, but it is an attack on data confidentiality. Moni-
toring network traffic requires an attacker or attack tool to be positioned
between the sender and recipient, unless the interest is in conversations
involving one entity. The reason is that messages are not always sent
to every device, unless the topology of the network is a shared bus or a
network hub is used instead of a switch or router. Broadcast and multi-
cast messages exist in Ethernet and InfiniBand, but these are not private
messages. Therefore, switches would tend to be the preferred devices on
which to perform sniffing. The experiments explored methods for sniffing
InfiniBand traffic.

Network Mapping: The ideal byproduct of the discovery step is a com-
plete and accurate network map. Not every node communicates regularly,
so active scanning may be necessary to identify all the connected devices.
Even during relatively idle times, Ethernet networks produce a lot of noise
in the form of ARP, Network Time Protocol (NTP) and Simple Network
Management Protocol (SNMP) traffic. InfiniBand, on the other hand,
has very little overhead. A network mapping tool, especially one with
a visual display, could provide InfiniBand users and administrators with
valuable situational awareness about their networks. A few OFED diag-
nostic tools deliver this functionality in text-only output form, so efforts
focused on augmenting the tools with graphical interfaces.

Lateral Movement. Traditional pivoting is not necessary in an InfiniBand
network because remote interactive logins are not used (again, excluding SSH
via IPoIB). High-performance computing clusters automate work using scripts
and nodes share resources. In a sense, hosts are extensions of each other due to
remote direct memory access, far more so than file sharing via server message
block (SMB) or the File Transfer Protocol (FTP).

Malicious Subnet Manager: As discussed above, the subnet manager
is an extremely powerful entity in an InfiniBand network, analogous to
a Windows domain controller, albeit much more primitive. There must

Schmitt, Graham, Sweeney & Mills 197

be one master subnet manager, but several other nodes can run in the
slave or standby mode. The backups perform (vendor-specific) polling to
ensure that the master is operational and a failover to one of the backups
occurs when the master is not operational [23].

The OpenSM software is open source, so an attacker could download the
source code, modify and recompile it [21]. The next step would be to
run the weaponized OpenSM on the compromised machine and execute
a denial-of-service attack that prevents the master subnet manager from
communicating, causing it to be replaced as the master.

A malicious subnet manager could affect the integrity, confidentiality
and/or availability of an InfiniBand network. A weaponized version of
OpenSM was not created. Instead, the experiments investigated how to
cause the master subnet manager to fail remotely.

Collection. Collection is the method used by an attacker to obtain the
desired information.

Falsified Memory Keys: Acquiring remote direct memory access mem-
ory keys could enable an attacker to read from or write to a remote mem-
ory region.

Exfiltration. Exfiltration is loosely interpreted as creating the desired effect
instead of merely exfiltrating data from a victim device or network.

Denial-of-Service (DoS) Attacks: Denial-of-service attacks attempt
to disable a node or program by various means, including consuming all
its resources or shutting it down entirely. This is most often a means
to an end, such as enabling an attacker to thwart defenses or migrate
to a failover service or situation that may be more advantageous. A
common denial-of-service attack is a ping flood, which saturates a victim
machine or network link with ping packets to cause legitimate traffic to
be dropped or severely stalled. In the experiments, the ibping command
was executed in a (command line) terminal on one machine, on multiple
terminals on one machine and on multiple machines.

4. Experimental Results and Analysis
This section discusses the outcomes of executing the attacks identified in the

previous section.

4.1 Malicious Firmware Installation
How this attack is carried out depends on where the malicious firmware is

located. Mellanox provides an automatic updater tool named mlxfwmanager
for Internet-connected devices. The normal syntax is:

mlxfwmanager --online -u -d $device

198 CRITICAL INFRASTRUCTURE PROTECTION XIII

Manual firmware installation is accomplished as follows:

mlxfwmanager_pci -i fw_file.bin

The mlxfwmanager binary could be replaced with a malicious version that
downloads firmware from a location of the attacker’s choosing. This would
cause an authorized user to unknowingly install dangerous code. However, the
attack would not work if the file hash of the correct firmware was verified from
its true source.

Alternatively, the attacker could pull a copy of the malicious firmware via his
or her beacon and install it manually. Covering the tracks after the attack could
be problematic, although the old version of the firmware could be re-installed
after the attack.

4.2 OFED Diagnostic Tools
Table 6 lists the OFED diagnostic tools. A “Yes” in the third column indi-

cates that the tool can be used in a malicious manner, including as a part of a
larger cyber weapon. Some of the OFED tools require the user to be running
as root or as a local administrator.

The tools can run on any node and affect the entire InfiniBand fabric just
the same. The result is that every node is critical. Note that Windows-based
networks differentiate between local and domain accounts so a local user cannot
make changes on a remote node without submitting valid credentials.

The ibccconfig is particularly susceptible. The manual page for this com-
mand says: “WARNING −− You should understand what you are doing before
using this tool. Misuse of this tool could result in a broken fabric.” InfiniBand
has robust quality of service, but a key point is that every packet is assigned a
service level (SL). A table that maps the service level of each port to a virtual
lane determines the virtual lane on which a packet will be sent. The Infini-
Band architecture specifies a dual priority weighted round robin scheme. In
this scheme, each virtual lane is assigned a priority (high or low) and a weight.
Within a given priority, data is transmitted from virtual lanes in approximate
proportion to their assigned weights (excluding, of course, virtual lanes that
have no data to be transmitted).

The ibccconfig tool can be abused in several ways. Mapping all the ser-
vice levels to the same virtual lane will essentially eliminate all priorities. An
attacker who wishes to subtly (or not) impede certain traffic could manipulate
the virtual lane weights so that the targeted virtual lane is allocated a lower
percentage of the total bandwidth. Another attack significantly increments the
HighPriCounter so that all the low priority lanes rarely get their turn. The
impacts of changing the sizes of maximum transmission units are minimal.

4.3 Address Spoofing
As stated above, LIDs and GUIDs/GIDs are the InfiniBand layer-2 and-3

addresses, respectively. Mellanox states that “a node does not determine what

Schmitt, Graham, Sweeney & Mills 199

Table 6. OFED diagnostic tools.

Commands(s) Manual Exploitable Function

ibaddr Yes No Simple address resolver

ibdev2netdev No No Device/port status checker

ibdiagnet, iblinkinfo, Yes Yes Fabric scanners
ibnetdiscover, ibnodes,
ibswitches

ibdiagpath, ibtracert No, Yes No Route tracers

ibdump Yes Yes Traffic sniffer

ibnetsplit Yes No New subnet creator

ibping, ibsysstat Yes Yes Connectivity verifiers

ibportstate Yes Yes Port state querier/modifier

ibqueryerrors, Yes No Report port errors
perfquery Yes No

ibroute, dump fts Yes, No Yes Display forwarding table(s)

ibstat, ibstatus Yes No ifconfig, ipconfig
equivalent

ibtopodiff Yes No Topology difference checker

mstflint Yes Yes Firmware burner

saquery, sminfo, Yes (x4), Maybe Issue subnet admininistrator
smpdump, smpquery, No queries
smparquery

ibcacheedit Yes Maybe Edit ibnetdiscover output

ibccconfig, ibccquery Yes Yes, No Congestion control

the LID should be [because] LIDs are assigned by the subnet manager
and not the node itself” [12]. Several commands can be issued to print host
LID(s): ibaddr, ibdiagnet, ibnodes, ibstat, ibnetdiscover, ibv devices
and ibv devinfo. Since these addresses are assigned dynamically, it is likely
that they are stored in a file instead of in the firmware (like GUIDs). (The
/sys/class/infiniband/ directory was ascertained from a Mellanox script
elsewhere in the filesystem.) In the case of the personal computer that was
tested, these variables were mlx5 0 and mlx5 1, respectively. The files permis-
sions were initially set to read-only for everyone (-r--r--r--) and the owner
was root.

The following commands were executed to grant full read/write access:

sudo chmod +w /sys/class/infiniband/mlx5_0/ports/1/lid
sudo chmod 777 /sys/class/infiniband/mlx5_0/ports/1/lid

200 CRITICAL INFRASTRUCTURE PROTECTION XIII

The file permissions were changed, but the contents (0x2 corresponding to the
LID for the device/port) were not changed after the following attempts to edit
them:

sudo gedit /sys/class/infiniband/mlx5_0/ports/1/lid
sudo echo 0x9 >> /sys/class/infiniband/mlx5_0/ports/1/lid

It is possible that the LID file was locked from an application or it existed in
firmware.

Warren [29] altered the GUIDs in host channel adapter firmware using the
following commands:

mstflint =d $PSID -blank_guids i /usr/share/ib_firmware/
mstflint -d $PSID -guids fake_GUID_1 fake_GUID_2 ...

The first command blanks the GUIDs in the firmware and the second command
spoofs the GUIDs. Note that PSID (parameter-set identification) is a unique
identifier for configuring the firmware.

Warren’s work, which was published in 2012, involved an old version of
OFED. The firmware location has been changed since. For example, the /usr/
share/ib_firmware/ directory does not exist and a system-wide search did not
reveal an obvious replacement. Nevertheless, mstflint still supports GUID
changing options.

Another method to spoof addresses involved verbs programming. Infini-
Band connections are established via queue pairs. MacArthur et al. [10] state
that queue pairs are “comparable to port numbers in TCP and UDP, and
make it possible to multiplex many independent flows to the same destination
[host channel adapter].” The union ibv gid *gid output parameter of the
ibv query gid() function or the return value of the ibv get device guid()
method could be changed later. Likewise, the struct ibv port attr *port -
attr parameter of the ibv query port() function contains the LID of the port
(lid) as well as the LID of the subnet manager (sm lid). Unfortunately, the
ibv create qp() function fails to create a queue pair when given incorrect in-
puts because validation occurs whenever an attempt is made to use resources.

4.4 Network Traffic Sniffing
InfiniBand host channel adapters usually have two physical ports to maxi-

mize fabric effectiveness. If a host is connected to more than one networking
device, then an attacker who has command line access on one of them would
most likely not be able to listen in on all the traffic to or from the host. Ethernet
and InfiniBand switches are typically configured via out-of-band connections
to the management ports. However, many network administrators prefer to
have the ability to make changes remotely. As a result, Ethernet switches com-
monly allow access via Telnet (port 23, unencrypted), SSH (port 22, encrypted)
or even through a web browser over HTTP/HTTPS (port 80, unencrypted; or
port 443, encrypted). These services do not run on InfiniBand switches and,
even if they were, there would be no way to connect to them.

Schmitt, Graham, Sweeney & Mills 201

Nevertheless, the ibdump tool enables a user to monitor host channel adapter
traffic. The traditional tcpdump does not work because packets are crafted in
hardware, not in software.

After running the following command:

ibdump -d $device -w $filename.pcap

the packet capture (PCAP) file was loaded into Wireshark, which has an In-
finiBand plugin. The plugin was able to decipher all the bits in the layer-2 to
layer-4 headers that are not reserved for vendor-specific fields.

4.5 Network Mapping
Reconnaissance is an important step for defenders and attackers. Network

administrators need to discover or confirm what is on their networks and attack-
ers need to survey the network landscape to identify potential targets. Passive
mapping, in the form of traffic sniffing, is not an easy option in InfiniBand, be-
cause, to be effective, it requires putting a network tap on a switch, installing
a hardware splitter and altering forwarding tables to mirror traffic.

Several OFED diagnostic tools were designed to perform discovery and their
use should not raise any alarms. However, there are two minor limitations with
tools such as ibdiagnet, iblinkinfo and ibnetdiscover. First, the outputs
are in text form, which is neither user friendly nor intuitive. Second, they list
devices one at a time, not necessarily in the order in which they are connected
to each other.

InfiniBand does not have a graphical mapping tool like ZenMap. Adapting
the open-source ZenMap Python code to InfiniBand was considered. However,
it was deemed to be overkill because of the lack of hosted services and virtual
ports in InfiniBand and the fact that the OFED tools provide all the needed
network information without multiple parameter options. A relatively simple
mapping program was found on GitHub [2], which was enhanced to display
hostnames, LIDs and port details in addition to the GUIDs. Figure 4 shows
the output of the modified program.

4.6 Malicious Subnet Manager
The ibportstate tool was chosen to replace the master subnet manager.

The ibstat command provides the subnet manager LID, so an attacker can
then run a tool such as ibnetdiscover to determine the switch or switches to
which the subnet manager’s host is connected. Next, the corresponding switch
port(s) are disabled to shut off all communications to the host, causing the
subnet manager to fail during polling. For example, the following command
instructs LID 3 to disable its first port:

ibportstate 3 1 disable

Having disabled the master, the malicious version of OpenSM that is waiting
in the slave mode takes over as master assuming there are no other backups.

202 CRITICAL INFRASTRUCTURE PROTECTION XIII

Host: afit-highspeed1
LID: 4

GUID: H-506b4b0300f5354c

Host: afit-highspeed2
LID: 2

GUID: H-506b4b0300f5355c

Host: afit-highspeed0
LID: 1

GUID: H-506b4b0300f53564

Host: MF0;mellanox-switch:SX6012U1
LID: 3

GUID: S-ec0d9a030060eb80

[1]

[2] [3]

[1]

[1]

[1]

Figure 4. AFIT InfiniBand network.

This process took about ten seconds in the experiments and the switch
port(s) were later enabled to restore normal traffic flow. The attack has some
limitations, especially if the subnet manager is running on a switch. Disabling
all the ports of a switch may be irreversible without physical access.

4.7 Denial-of-Service Attacks
There are several ways to execute denial-of-service attacks. The experiments

investigated the use of the ibping command with the flood option. The fol-
lowing command sends echo request packets to and receives echo reply packets
from LID 4 (victim computer) back-to-back without any delay:

ibping -f 4

During the experiments, a single instance sent 265K packets in five seconds,
or 53K per second. Running three terminals simultaneously produced 1.6M
packets in 8.5 seconds, or 217K per second, when the ends of the capture were
removed to account for starting and stopping the commands manually. Four
terminals generated 290K packets per second. Finally, five terminals each were
run on two hosts, corresponding to a total of ten simultaneous ibping instances.
In this case, 4.5M packets were sent in 9.8 seconds or 582K per second. The
volume seems to scale linearly in the limited sampling. No major packet loss
or other harmful effects were observed, but hundreds of instances could result
in distributed denial of service.

5. Conclusions
Although the InfiniBand Trade Association did not make cyber security its

top priority when the InfiniBand architecture was designed, it is evident that

Schmitt, Graham, Sweeney & Mills 203

many InfiniBand features are inherently resistant to tampering and attack.
Hardware packet crafting, predetermined routing and redundant pathways in
the switched fabric topology contribute to the very low network latency and
high availability desired by the high-performance computing community. In-
finiBand relies somewhat on external defense mechanisms such as firewalls and
other forms of network segregation. However, high performance computing
clusters were intended to be located in data warehouses behind demilitarized
zones and not to provide services as Internet-facing servers. This was part
of the justification for not incorporating packet encryption in InfiniBand or
providing support for protocols running over TCP/IP.

Nevertheless, some minor security upgrades could make InfiniBand networks
more difficult to exploit without significantly degrading network performance.
The subnet manager is a critical component and should have some protections
in place should the master fail. A possible solution is file verification, where a
node would not become the master if its OpenSM file hash values do not match
those of the other standby nodes. Additionally, denial-of-service attacks, such
as disabling switch ports from any host or invoking ping floods, should not be
allowed even if the user is operating with elevated system privileges.

The views expressed in this chapter are those of the authors, and do not
reflect the official policy or position of the U.S. Air Force, U.S. Department
of Defense or U.S. Government. This document has been approved for public
release, distribution unlimited (Case #88ABW-2018-6395).

References

[1] R. Boyce, Vulnerability Assessments: The Proactive Steps to Secure Your
Organization, Information Security Reading Room, SANS Institute, North
Bethesda, Maryland, 2001.

[2] cyberang3l, InfiniBand-Graphviz-ualization, GitHub (github.com/cyber
ang3l/InfiniBand-Graphviz-ualization), 2016.

[3] D. Deming, InfiniBand software architecture and RDMA, presented at the
Storage Developer Conference, 2013.

[4] J. Grand, Hardware reverse engineering: Access, analyze and defeat, pre-
sented at the Black Hat DC Workshop, 2011.

[5] P. Grun, Introduction to InfiniBand for End Users: Industry-Standard
Value and Performance for High-Performance Computing and the Enter-
prise, InfiniBand Trade Association, Beaverton, Oregon, 2010.

[6] E. Hutchins, M. Cloppert and R. Amin, Intelligence-driven computer net-
work defense informed by analysis of adversary campaigns and intrusion
kill chains, Proceedings of the Sixth International Conference on Informa-
tion Warfare and Security, 2011.

[7] InfiniBand Trade Association, About InfiniBand, Beaverton, Oregon (www.
InfiniBandta.org/about-InfiniBand), 2019.

204 CRITICAL INFRASTRUCTURE PROTECTION XIII

[8] Information Systems Audit and Control Association, Security Vulnerabil-
ity Assessment, Rolling Meadows, Illinois (cybersecurity.isaca.org/
info/cyber-aware/images/ISACA_WP_Vulnerability_Assessment_111
7.pdf), 2017.

[9] M. Lee, E. Kim and M. Yousif, Security enhancement in the InfiniBand
architecture, Proceedings of the Nineteenth IEEE International Parallel
and Distributed Processing Symposium, 2005.

[10] P. MacArthur, Q. Liu, R. Russell, F. Mizero, M. Veeraraghavan and J.
Dennis, An integrated tutorial on InfiniBand, verbs and MPI, IEEE Com-
munications Surveys and Tutorials, vol. 19(4), pp. 2894–2926, 2017.

[11] Mellanox Technologies, Introduction to InfiniBand, White Paper, Docu-
ment No. 2003WP, Santa Clara, California (www.mellanox.com/pdf/whi
tepapers/IB_Intro_WP_190.pdf), 2003.

[12] Mellanox Technologies, Security in Mellanox Technologies InfiniBand Fab-
rics, Technical Overview, White Paper, Document No. 3861WP Rev. 1.0,
Sunnyvale, California (www.mellanox.com/related-docs/whitepapers/
WP_Secuirty_In_InfiniBand_Fabrics_Final.pdf), 2012.

[13] Mellanox Technologies, RDMA Aware Networks Programming User Man-
ual, Rev. 1.7, Sunnyvale, California (www.mellanox.com/related-docs/
prod_software/RDMA_Aware_Programming_user_manual.pdf), 2015.

[14] Mellanox Technologies, RoCEvs. iWARP Competitive Analysis, White Pa-
per, Document No. 15-4514WP Rev. 2.0, Sunnyvale, California (www.mella
nox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf), 2017.

[15] Mellanox Technologies, Mellanox OFED for Linux User Manual, Revision
4.4, Software Version 4.4-1.0.0.0, Sunnyvale, California (www.mellanox.
com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manua
l_v4_4.pdf), 2018.

[16] Mellanox Technologies, SX6012 Switch, Product Brief, Sunnyvale, Califor-
nia (www.mellanox.com/related-docs/prod_ib_switch_systems/PB_S
X6012.pdf), 2018.

[17] Mellanox Technologies, ConnectX-5 Single/Dual-Port Adapter Supporting
100Gb/s with VPI, Sunnyvale, California (www.mellanox.com/page/pro
ducts_dyn?product_family=258&mtag=connectx_5_vpi_card), 2019.

[18] Mellanox Technologies, Mellanox OpenFabrics Enterprise Distribution for
Linux (MLNX OFED), Sunnyvale, California (www.mellanox.com/page/
products_dyn?product_family=26), 2019.

[19] MITRE Corporation, ATT&CK Matrix for Enterprise, Bedford, Mas-
sachusetts (attack.mitre.org), 2019.

[20] National Institute of Standards and Technology, Cyber Supply Chain
Risk Management, Gaithersburg, Maryland (csrc.nist.gov/Projects/
cyber-supply-chain-risk-management), 2019.

[21] OpenFabrics Alliance, Index of /downloads/management (www.openfab
rics.org/downloads/management), 2017.

Schmitt, Graham, Sweeney & Mills 205

[22] Oracle, Delivering Application Performance with Oracle’s InfiniBand Tech-
nology: A Standards-Based Interconnect for Application Scalability and
Network Consolidation, Version 2.0, Technical White Paper, Redwood
Shores, California, 2012.

[23] G. Pfister, An introduction to the InfiniBand architecture, in High Perfor-
mance Mass Storage and Parallel I/O: Technologies and Applications, R.
Buyya and T. Cortes (Eds.), John Wiley and Sons, New York, pp. 617–632,
2001.

[24] QLogic, Fabric Manager User Guide, Firmware Version 6.0, D000007-007
C, Aliso Viejo, California, 2010.

[25] S. Rubenoff, HDR 200G InfiniBand: Empowering Next Generation Data
Centers, insideHPC, February 25, 2018.

[26] A. Shostack, Threat Modeling: Designing for Security, John Wiley and
Sons, Indianapolis, Indiana, 2014.

[27] Symantec, Internet Security Threat Report, Volume 23, Mountain View,
California, 2018.

[28] TOP500, List Statistics, Sinsheim, Germany (www.top500.org/statis
tics/list), November 2018.

[29] A. Warren, InfiniBand Fabric and Userland Attacks, Information Security
Reading Room, SANS Institute, North Bethesda, Maryland, 2012.

V

CYBER-PHYSICAL
SYSTEMS SECURITY

Chapter 11

LEVERAGING CYBER-PHYSICAL
SYSTEM HONEYPOTS TO ENHANCE
THREAT INTELLIGENCE

Michael Haney

Abstract Honeypots and related deception technologies have long been used to
capture and study malicious activity in networks. However, clear re-
quirements for developing effective honeypots for active defense of cyber-
physical systems have not been discussed in the literature. This chapter
proposes a next generation industrial control system honeynet. Enumer-
ated requirements and a reference framework are presented that bring
together the best available honeypot technologies and new adaptations
of existing tools to produce a honeynet suitable for detecting targeted
attacks against cyber-physical systems. The framework supports high-
fidelity simulations and high interactions with attackers while delaying
the discovery of the deception. Data control, capture, collection and
analysis are supported by a novel and effective honeywall system. A hy-
brid honeynet, using virtualized and real programmable logic controllers
that interact with a physical process model, is presented. The benefits
provided by the framework along with the challenges to consider during
honeynet deployment and operation are also discussed.

Keywords: Cyber-physical systems, honeypots, threat intelligence

1. Introduction
There is growing evidence that attackers, whether individual miscreants,

hactivists, terrorists or state-sponsored actors, are increasingly targeting in-
dustrial control systems via Internet-connected computers to wreak havoc on
critical infrastructure assets [4, 6, 24, 30, 47, 49, 54]. According to recent U.S.
government reports [21, 48], attacks and intrusions as well as fingerprinting and
scanning activities against U.S. critical infrastructure assets continue to rise.
In 2013, more than 250 incidents were reported and analyzed by the U.S. In-
dustrial Control Systems Cyber Emergency Response Team (ICS-CERT) [21],

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 209–233, 2019.

https://doi.org/10.1007/978-3-030-34647-8_11

https://doi.org/10.1007/978-3-030-34647-8_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_11&domain=pdf

210 CRITICAL INFRASTRUCTURE PROTECTION XIII

primarily in the enterprise networks of industrial companies. In 2017, the U.S.
National Cybersecurity and Communications Integration Center (NCCIC) [48]
detected 447 separate incidents and received roughly 106,000 reports of inci-
dents affecting communications, enterprise and process control systems. In July
2017, officials from the U.S. Department of Homeland Security and the Federal
Bureau of Investigation briefed a number of nuclear and other power systems
operators on ongoing cyber threats [35].

The U.S. Department of Homeland Security reports that many incidents are
not detected due to the lack of adequate detection and logging capabilities,
and because details of detected incidents are insufficient. Much of the dra-
matic rise in incident reporting is the result of increased awareness, detection
technologies and information sharing efforts across government and the private
sector. It is unclear whether the prevailing industrial safety mechanisms are or
will be adequate against complex attack vectors and varying attacker motiva-
tions. Current diagnostic tools are deficient at identifying compound exposure
interactions, creating pathways by which control systems may be attacked or
emergency and safety systems may be defeated or co-opted for use against con-
trol systems. This environment makes threat intelligence a vital area of cyber
security research.

Several proposals have been made to adapt traditional information technol-
ogy security techniques and systems to the operational technologies in cyber-
physical system (CPS) environments. While these proposals may meet the com-
mon requirements of information and operational technologies, some are less
suited than others to meeting the unique operational technology demands, espe-
cially “always on” availability and minimizing the negative impacts of changes.
Patching firmware and rebooting on “Patch Tuesday” every month are not vi-
able for many critical infrastructure systems. In these cases, a more passive
approach can provide greater threat intelligence while minimizing the operation
impact. Honeypots have been used very effectively in information technology
environments. These deceptive systems show promise for defending operational
technology environments.

Over the last fifteen years, honeypots – systems designed to be attacked in
order to learn attacker tactics, techniques and motives – have been proposed,
developed, improved and implemented with great success [3, 5, 9, 20, 25, 26, 29,
33, 36, 37, 44, 51], including in detecting and analyzing the celebrated Stuxnet
attack [30]. By their nature, activity in honeypot systems is malicious, or at
best unintended, except for any background replay traffic or activity. Because
all system resources are devoted to intrusion discovery and the background
activity should be relatively easy to filter out, higher levels of system logging
and other instrumentation can be provided that are not always possible in
production environments. Also, false positive and false negative intrusion alerts
can be drastically reduced if not eliminated. For these reasons, honeypots are
well suited to defending critical infrastructure systems.

However, recent years have seen only incremental advances in honeypot tech-
nologies. Many tools are starting to show their age, incompatible with current

Haney 211

versions of operating systems and dependent software. Tried-and-true tools
have had little need to change when supporting traditional information tech-
nology systems (e.g., virtual honeypots for Windows and Linux operating sys-
tems such as honeyd), but they are not necessarily suited to industrial control
systems, SCADA (supervisory control and data acquisition) environments and
large-scale networks of embedded devices that are coupled to physical processes.

The intelligence gathering capabilities of the proposed honeypot framework
can dramatically enhance the security of industrial control networks. The
framework is lightweight, highly scalable and designed specifically to protect
industrial control systems.

Several requirements for next generation honeynet technologies are proposed
in this chapter. Many of these requirements are already assumed by current
technologies and approaches; however a formal set of requirements is neces-
sary to drive metric-based advancement. A proof-of-concept architecture is
presented to meet these requirements. The architecture links process simula-
tion tools, an advanced network simulator and a complete monitoring system
to present a complex attack surface for virtualized industrial cyber-physical
systems.

The next six sections discuss industrial control systems, honeypots and hon-
eynets, Security Onion, high-interaction honeypot data collection, virtual net-
works and the Shodan search engine.

2. Industrial Control Systems
Industrial control systems is a general term that describes engineering pro-

cess support systems in industrial settings. Modern industrial control systems
generally comprise physical components (e.g., gauges, pumps, valves and other
sensors and actuators) and digital computer components (e.g., embedded sys-
tems). Because of their dual nature, these systems are often referred to as
cyber-physical systems. Nearly all modern critical infrastructure assets (e.g.,
electric grids, water treatment facilities, transportation management systems,
and oil and gas pipelines) are managed by cyber-physical systems, which are
increasingly being interconnected using traditional information technology net-
works.

A SCADA system is a distributed system where digital devices connected to
a process through sensors and actuators communicate over a network to drive
a physical process to a desired state or set point. The idea of using computing
devices to monitor and control physical systems is not new. Digital computers
were used as early as 1959 when computer control was introduced at Texaco’s
Port Arthur refinery [55]. These early systems were supervisory in nature.
Plant loops were controlled by conventional pneumatic or electrical controllers,
but monitored and optimized by computers.

Programmable logic controllers, introduced by Modicon (now Schneider Elec-
tric) in the 1960s, were originally designed to replace circuits used in sequential
control. Modern programmable logic controllers can implement control loops

212 CRITICAL INFRASTRUCTURE PROTECTION XIII

Figure 1. Typical process control network.

such as proportional-integral-derivative (PID) as well as logic functions and
sophisticated algorithms.

Communications capabilities were introduced in programmable logic con-
trollers as early as 1979. The Modbus protocol started as a proprietary protocol
for Modicon equipment, but is now maintained by the Modbus Organization, a
vendor-independent non-profit entity. The Modbus specifications [31] provide
a simple communications mechanism for transmitting commands and data be-
tween a master terminal unit (MTU) at a control center and remote terminal
units (RTUs) at field sites. The original protocol specification defines framing,
encoding and error control for transmission over serial lines such as EIA-232
and EIA-485. It also defines standard operations and parameters for MTU-
RTU interactions. More recently, the Modbus Organization defined a version
of the protocol that uses TCP for transmission [31].

Most modern programmable logic controllers carry control and data mes-
sages over TCP/IP using industrial control protocols such as Modbus (widely
used in the oil and gas industry), DNP3 (widely used in the electric power in-
dustry) and closely-related protocols such as Profibus and IEC 61850. Figure 1
shows a typical process control network and its supporting components.

JAMOD is used for prototyping Modbus-based SCADA systems. JAMOD is
a Java Modbus library that supports three transport mechanisms: (i) TCP;(ii)
UDP; and (iii) serial (UDP transport is experimental and is not part of the
Modbus standard). JAMOD can be used to develop three key components of a
SCADA system: (i) a Java class that emulates Modbus-capable programmable
logic controllers with the four types of variables that Modbus defines: discrete
inputs, discrete outputs, analog inputs and registers; (ii) control logic; and (iii)
the process to be controlled. A typical operation cycle has a programmable logic
controller read process variables, use the control logic to compute a control

PROCESS
UNDER CONTROL

MANAGEMENT
NETWORK

Data Historian

MTU

RTU

RTU

RTU

HMI

Haney 213

action and then pass it to a programmable logic controller output (e.g., an
actuator) to perform an action on the process (e.g., close a valve). Using the
JAMOD functionality and library of configuration settings and capabilities,
many types of programmable logic controllers can be emulated in software.

3. Honeypots and Honeynets
Spitzner [44] defines a honeypot as a “security resource whose value lies in

being probed, attacked or compromised.” While Spitzner formally proposed
honeypots in 1999 as trap systems for discovering information about attackers,
credit is also assigned to Stoll, who published The Cuckoo’s Egg in 1989 [45]
and Cheswick, who authored “An evening with Berferd” in 1992 [8]. These two
works describe how clever system administrators lured and studied attackers in
order to understand their techniques and ultimately discover their identities.
Since the formal creation of the Honeynet Project in 1999 [44], a number of
technologies have been introduced to perform this type of intelligence gathering.

A honeypot is the most basic type of attacker trap – a non-production system
that is set up to record user and software activities that are assumed to be
malicious. Additional terminology has been coined following the “honey” theme
to describe various levels of complexity and interactivity. The simplest is a
“honeytoken” [43], which can be an unused file, registry key, database entry or
email address with some level of additional monitoring to alert when the file is
read, the key or database entry is modified or the email address is stolen and
added to a spammer’s target list.

A “honeyfarm” combines multiple honeypot systems in a cluster or server
farm. A more complex setup, which includes honeypots or honeyfarms net-
worked together with out-of-band management and monitoring systems, is re-
ferred to as a “honeynet.” A honeynet is a complete system of systems with
specific goals of attacker control and data collection. In order to fully monitor
and control hacker interactions with a number of components in a honeyfarm,
a specialized pass-through chokepoint system called a “honeywall” is deployed.

A common way to classify honeypot technologies is according to their levels
of interactions with attackers. A honeytoken is generally a low-interaction
system that simply waits for someone to come along and access it, upon which
it triggers an alarm. Other low-interaction honeypots provide some responses
to attacker stimuli. A common low-interaction honeypot tool is honeyd [37],
which can emulate thousands of networked systems by faking IP addresses and
listening on various ports. It provides various banners to attackers who scan
the IPs and ports, and it may launch other services and scripts in order to
customize responses.

High-interaction honeypots are often deployed as fully functional operating
systems within virtual machines or on “bare metal.” Virtual machines offer the
advantage of being able to scale up more honeypots while limiting the hardware
resources that are required. They also offer a means for taking snapshots of sys-
tem state and rolling back the honeypot systems after compromises. However,
they cannot be scaled beyond a handful of systems.

214 CRITICAL INFRASTRUCTURE PROTECTION XIII

In order to support the management of a honeynet and contain attackers that
break into honeypots, a modified approach to a firewall – called a “honeywall”
is employed. Although several systems or tools can be used to construct a
honeywall, Honeywall, developed by the Honeynet Project, is a specific system
build with supporting tools on a single CD-ROM that runs as a live operating
system (i.e., read-only). Two major versions of Honeywall have been released –
Eeyore and Roo. Honeywall Roo [7] was designed to embody the requirements
for GenIII honeynet technologies (discussed later in this chapter). Note that
the general term, honeywall, is used to define the proposed data control and
collection gateway system.

The first explicit requirement – data control – for a honeynet is to ensure
that a compromised honeypot system does not cause harm to other systems
in the network. One of the main concerns with deploying a honeypot is the
liability and legality of deploying a known-vulnerable system that is intended
to be hacked. As stated by Cheswick [8], “[d]ata control always takes priority
over data capture.” Specific requirements include having both automated and
manual control mechanisms and two-deep protection to safeguard against the
failure of any one control.

Honeywall Roo is designed to work on a system with three physical network
interface cards. Two network cards are configured to bridge two networks, one
is the upstream connection to the Internet and the other is the honeynet. The
third network card is designated for connections to manage the system and is
“out of band” from the other two networks.

Honeywall Roo handles data control using iptables for routing and firewall
functions and snort inline, a tool that is no longer actively supported. The
snort inline tool is a modified version of Snort[41], an open-source intrusion
detection system, that reads packets from iptables and, based on the configured
rules, updates the firewall to drop unwanted connections. Note that iptables is
configured to provide rate limits for connections outbound from the honeynet
to minimize the effects of denial-of-service attacks. As described later, the
proposed approach incorporates these design elements, but also makes some
significant improvements.

The second explicit requirement for GenIII honeynets is data capture. Cap-
ture is the recording of all (or as much as possible) activity in a honeynet. This
includes system activity as well all the data entering and leaving the honeynet.
An important part of the data capture requirement is that it should be done
“without attackers knowing they are being watched” [19].

The third closely related requirement for honeynets is information sharing
between disparate honeynets in a standardized way. This supports a community
via the disclosure of pertinent threat information. It can lead to shared details
about specific malware or targeted attacks from advanced attackers that can
benefit other organizations. Honeywall Roo supports data captures and analy-
ses in a number of ways. The primary method is via two Snort processes that
listen on the bridge interface, one configured to perform full packet captures
and the other configured to match traffic against the enabled rules to generate

Haney 215

alerts. It also provides Argus [39], a network flow processing tool that provides
connection summaries and statistics such as bandwidth and packets per second
for each observed network flow. This data is tracked in a database managed by
Hflow2 so that complete network sessions of flows that match a Snort signature
can be reviewed in a web-based tool called Walleye.

Although Honeywall Roo provides excellent support for GenIII honeynets
along with a menu-driven system-wide configuration capability [1], there are
several problems with the current distribution that render it unusable. The
first problem is that Honeywall Roo is based on Fedora Core v3, which reached
its end-of-life in January 2006. It also uses Snort v2.6 (which has no available
rulesets) and snort inline for data control (which is no longer supported).
For these reasons alone, the deployment of Honeywall Roo is ill-advised. Ad-
ditionally, the Walleye web-based management and analysis interface must be
run on the honeywall system, but it only enables data from the single honeywall
system to be collected and reviewed. It is not currently possible to separate
data control, data capture and data analysis functions on different systems.

A key contribution of this research is a honeywall system design that pro-
vides much-improved data analysis capabilities while meeting the data control
requirement.

4. Security Onion
Several advanced intrusion detection and network security monitoring tech-

niques and tools [2] can be leveraged to study honeynet data, especially when
dealing with unknown attacks. Security Onion is a Linux distribution that
combines many tools in a single platform to support out-of-the-box network
security monitoring capabilities.

Security Onion provides a network sensor and storage system with utilities
for PCAP recording and manipulation, stream identification and flow analy-
sis, passive host identification, payload parsing and signature-based intrusion
detection. Two core tools included with Security Onion are Snort and Ar-
gus, similar to Honeywall Roo. However, Security Onion offers many advanced
management tools and a slew of analysis tools that make the difficult task of
network security analysis more manageable.

A significant feature of Security Onion is its three-tier architecture that pro-
vides separation and secure communications between sensors, the server and
the client. Security Onion Sensor provides applications, libraries and kernel
modules for performing full network data captures. Network streams are fed
to Bro, Snort or Suricata, Argus and others for processing against policies and
signatures that can be updated daily. Security Onion Server provides central-
ized storage and processing for many sensors. Alerts and connection summary
data are written to a MySQL database. Apache hosts multiple web-based ap-
plications for presenting data to analysts. Security Onion Client provides the
front-end graphical user interface and command-line tools for processing PCAP
files and analyzing network flows. In addition to the Sguil monitoring tool,
the Security Onion Client includes Wireshark and NetworkMiner for brows-

216 CRITICAL INFRASTRUCTURE PROTECTION XIII

ing through network traces and reviewing embedded artifacts. Together with
the web-based analysis and visualization tools of the ELK stack (Elasticsearch,
Logstash and Kibana), tremendous capabilities are provided for network data
analysis in an environment that is much more scalable and manageable than
Honeywall Roo.

However, Security Onion is not designed to control a honeynet in an in-line
deployment – it supports network data collection on a receive-only network
interface card connected to a SPAN port or network tap. Another contribution
of this research is a design for deploying Security Onion in an in-line manner.

5. High-Interaction Honeypot Data Collection
A full packet capture in a network is invaluable, but it does not offer complete

visibility of system activity. Just as network and systems administrators have
migrated from cleartext to encrypted protocols (e.g., from Telnet to SSH), so
have attackers who often connect to vulnerable sshd systems or use stolen or
guessed user credentials to gain access. Once in, the attackers install their own,
sometimes highly modified, versions of sshd or other encrypted remote access
tools. This is done deliberately to obfuscate attacks from conventional network
monitoring.

The Honeynet Project provides a solution to this problem in a tool called
Sebek [18]. Sebek runs on a target honeypot system and collects attacker
keystrokes and filesystem access data. Because this is done at the end node, it
is possible to view and process data after it has been decrypted by the network
software. This provides a critical monitoring capability that is not possible
with network-only approaches. Sebek operates stealthily – like a rootkit, it
runs in kernel space on a honeypot, hides from users and sends logs covertly to
a Sebek server.

However, Sebek is detectable as an unlinked kernel module and because
network statistics are increased significantly when keystroke logs are transmit-
ted. Fortunately, many of these shortcomings have been addressed in other
tools. For example, Qebek [42] adds hooks to the Qemu system emulator and
Ether [13] does the same for Xen. These tools provide the necessary stealth
logging in honeynets by addressing data capture in virtual machines.

6. Virtual Networks with IMUNES
Virtual networks of communicating nodes can be generated quickly using

the Integrated Multiprotocol Network Emulator and Simulator (IMUNES), a
general-purpose network simulation architecture for large-scale real-time exper-
iments [38]. Built on FreeBSD, the simulator offers kernel-level network stack
virtualization without the overhead associated with frameworks that make ex-
tensive use of virtual machines. This is achieved using virtual nodes in chroot
jails that have the same capabilities as the underlying kernel. Each IMUNES
node can run an independent replica of the FreeBSD network stack as well as
unique instances of user-level applications.

Haney 217

Figure 2. IMUNES graphical user interface.

IMUNES has a user-friendly graphical user interface (Figure 2) that enables
arbitrary network topologies to be designed and deployed rapidly. The interface
provides seven basic building blocks: (i) workstations; (ii) servers; (iii) hubs;
(iv) switches; (v) routers; (vi) physical communications links (i.e., wires); and
(vii) connectors for associating physical networks on host systems with virtual
networks. Each building block can be reconfigured quickly by right-clicking a
node and modifying it in a pop-up window.

Figure 3 shows a more complex model of an advanced metering infrastructure
(AMI). IMUNES models can scale to 10,000+ nodes on a moderately powered
workstation.

After a network topology has been defined and configured in IMUNES, the
simulation is instantiated and executed. During the execution, it is possible to
open a shell on any node and run installed applications. Wireshark and the
Links web browser run by default on any node. Router nodes use Quagga to
fully emulate routers while server nodes can be configured to run DHCP, an
HTTP server and other services. It is then possible, by manipulating configu-
ration scripts in IMUNES, to install additional FreeBSD packages in the root
virtual filesystem used by each node. This mechanism has been used in this re-
search to incorporate Java and JAMOD, additional industrial control protocols

218 CRITICAL INFRASTRUCTURE PROTECTION XIII

Figure 3. Advanced metering infrastructure model.

and network security tools for system monitoring and logging, including Sebek.
Additional details are provided later when discussing the proposed honeynet
architecture.

7. Shodan Search Engine
The Shodan search engine (www.shodanhq.com) finds Internet-facing sys-

tems of certain types (e.g., by manufacturer, operating system, application and
configuration) using web-crawling and system fingerprinting techniques. The
crawlers scan the Internet for ports 80 (HTTP) and 443 (HTTPS) like most
search engines, but also port 22 (SSH), port 53 (DNS), port 161 (SNMP), port
502 (Modbus/TCP) and many others. They query the ports for banners and
elicit other responses (e.g., performing an SNMP-walk), and display the results
in a searchable format.

For example, if the search term “Debian port:22” is entered, results for
thousands of systems that are listening on port 22 and run the Debian operating
system are presented. Shodan then creates clickable links to the IP addresses
and, if available, provides latitude and longitude coordinates from GeoIP data.

When Shodan scans an IP address and finds an open Modbus port 502, it fol-
lows up with two Modbus queries to identify the system via its device ID and
other string outputs. Often, the results show “DEVICE FUNCTION FAILURE.”
However, a quick search using “port:502” can actually discover systems, such
as when they return responses like “Schneider Electric BMX P342020.” De-
tails from the whois database for IP addresses are also provided in the Shodan
results, letting a searcher know, for example, that one such device is available
on AT&T’s U-Verse home fiber optic service. This may suggest that the pro-

Haney 219

grammable logic controller is at a home with a smart meter installed. A click
on the GeoIP coordinates takes the searcher to a Google Maps satellite image
of the home.

The Shodan search engine is powerful and it actively scours the Internet. As
discussed later, these facts should be considered when building cyber-physical
system honeynets.

8. Requirements and Prototype Architecture
This section presents the architecture of a next generation hybrid cyber-

physical honeynet.

8.1 Next Generation Honeynet Requirements
The formal requirements adopted by the Honeynet Project for GenIII hon-

eynets (third-generation technology) incorporate the essentials of successful
honeypotting [19]. These are: (i) data control; (ii) data capture; and (iii) data
collection. Additionally, several informal requirements are taken for granted or
included as sub-requirements. While these requirements are certainly met by
the most successful honeynets, they are not formally specified in the literature.

Therefore, three additional requirements are proposed for next generation
honeynets: (iv) realism; (v) scalability; and (vi) detection resistance. These
requirements are met by the proof-of-concept design; but they are likely met
by other technologies as well. The three additional requirements are essential to
updating honeynet deployments to make them viable as an additional network
defense layer and as valuable research tools:

Realism: GenIV honeynets should appear to would-be attackers as real
production systems that are worth investigating. This requirement is
prioritized based on the types of attacks that are desired to be attracted.
Some systems on the Internet are very clearly set up as honeypots. While
these systems may be effective at catching automated malware and initial
reconnaissance scans, they would not fool active attackers who are seeking
targets for manual exploitation. An attacker could find such systems by
searching for “honeyd” in Shodan and avoid their IP addresses altogether.

Realism in the context of industrial control systems suggests that a hon-
eypot should have basic services such as HTTP, SSH and Telnet, but that
the fake programmable logic controllers should be indistinguishable from
real ones in network scans. This would mean constructing systems with
the same open ports and providing the same responses that real systems
provide to Shodan.

Another aspect of realism is consistency. Specifically, each service must be
realistic and the services running together in a honeynet must be consis-
tent. An example honeypot system that is easily discoverable by Shodan
would present a Microsoft IIS FTP server on port 21, Debian SSH server
listening on port 22 and an open webserver on port 80 that lists pages for

220 CRITICAL INFRASTRUCTURE PROTECTION XIII

all manner of PHP and database management tools (e.g., different ver-
sions of phpmyadmin running simultaneously). Potential attackers would
avoid this system because it is obviously a honeypot.
CryPLH [5] effectively imitates a Siemens S7 programmable logic con-
troller by providing proper SNMP responses, HTTP and HTTPS pages
and an emulation of the SIMATIC Step7 protocol over ISO-TSAP. The
techniques used for reverse engineering a real programmable logic con-
troller to create a honeypot are easily replicated for other cyber-physical
systems. Another approach involves using Ettercap to record traffic to
a real programmable logic controller and then automatically generate a
system that provides the same or similar responses [50].

Scalability: GenIV honeynets scale to realistic sizes. Attackers would
expect to see dozens or hundreds of programmable logic controllers, not
just one or two. However, when deploying full virtual machines it is
difficult to meet the realism and consistency requirements – especially
if 100 systems in the network are seen to have the same hostname or
other identical features. Thus, scalability implies not simply running
many virtual systems in the honeynet, but configuring diversity in the
deployed systems, possibly by automatically changing configuration files
that dictate their “personality” or appearance in the network.

Detection Resistance: GenIV honeynets should not be detectable by
attackers. In the official requirements for GenIII honeynets [19], a sub-
requirement under data control says to “control connections in a manner
as difficult as possible to be detected by attackers.” Because of the sig-
nificance of this need and the tools and methods by which it may be met,
this item is upgraded to a stand-alone requirement.
Much research has focused on detecting the presence of a virtual ma-
chine versus a physical computer. It has also been shown that many of
the GenIII honeynet technologies are identifiable by attackers. For ex-
ample, honeyd and Sebek are technologies used exclusively in honeynets
and are key components for meeting the monitoring and data capture
requirements. However, research has shown that, with some effort, these
systems can be identified by attackers, possibly redirecting them to other
production systems [17, 37].
Thus, a critical requirement for GenIV honeynets is detection resistance.
Artifacts are bound to be present in any production system. However, the
artifacts should, by design, present themselves in the absolute minimum
way. For example, honeyd users must replace the initial configuration to
hide basic facts that are presented by default, such as known timestamps
of filesystem artifacts, protocol unimplemented functions and service ban-
ners that present the string “honeyd.” Detection resistance also stipulates
that software used in honeynets must be updated to address new research
that publishes how to fingerprint a service such as Sebek, which led to
the release of version 3.

Haney 221

Figure 4. Next generation industrial control system honeynet architecture.

8.2 Proposed Honeynet Design
The proposed honeynet architecture has five components: (i) honeyfarm,

comprising a number of virtual honeypots generated by the IMUNES network
emulator; (ii) physical honeypot components (e.g., programmable logic con-
trollers); (iii) simulated physical process, which is kept separate from the cyber
components of the network; (iv) modernized honeywall running updated data
collection tools and providing control of the environment; and (v) manage-
ment network segment providing separated data analysis tools and access for
honeynet operators to connect in an out-of-band manner to the various compo-
nents. Figure 4 shows the proposed next generation industrial control system
honeynet architecture.

SCADA CONTROL
NETWORK

CORPORATE
IT NETWORK

INTERNET

Organization Firewall

Data Analysis Tools:
SecurityOnion Server

IMUNES on
 FreeBSD Cluster

Analyst
Workstation

Physical PLCs
(Optional)

Physical Process Simulation
(e.g., WSC Simulator)

HMI on
Engineering
Workstation

A/D and D/A
Converters

Process

Each Virtual Node
PLC/RTU

JAMOD –
PLC emulation

Honey Services
(HTTP, SNMP, SSH,

Telnet, etc.)

Sebek – Hidden
Data Collection

Honeywall

Ubuntu 16.04-LTS

Iptables

SecurityOnion

SnortSam

Sebekd

222 CRITICAL INFRASTRUCTURE PROTECTION XIII

8.3 Honeypots
The prototype GenIV honeynet design incorporates a scalable number of

individual honeypot systems. The majority of these systems correspond to
virtual IMUNES nodes. Some additional hosts may be provided by Qemu,
Virtual Box and/or VMware. The remainder are physical devices, such as
single programmable logic controller units, that are plugged into a hub or switch
downstream from the honeywall.

IMUNES for Virtual Nodes: The prototype honeynet centers on an
IMUNES network emulator running on a FreeBSD workstation with two
physical network interface cards. The first network interface card is used
for connections from the honeypot management network segment (e.g.,
operator workstations) to manage the base FreeBSD system, which is
invisible to the honeynet. The second network interface card is bound
to an Ethernet adapter node in IMUNES and given an Internet-routable
address range.

The IMUNES script prepare vroot 10.sh was modified to include ad-
ditional packages for installation in vroot of the virtual network nodes.
Basic packages were included, such as bash shell, Quagga for router emu-
lation and Wireshark for troubleshooting. Additionally, netcat, honeyd,
ftelnetd, kojoney and other tools were incorporated. OpenJDK was in-
stalled as the Java runtime environment. The script prepared the virtual
node filesystems in chroot jails. IMUNES was used to create default
network configurations for the nodes. After adjusting the first node’s
network with a publicly-available IP address, additional nodes connected
to the same subnet were automatically configured with incremental IP
addresses and a matching subnet mask and default route. After the net-
work topology was configured in IMUNES, the honeywall was adjusted
to enable packets to be forwarded to this range of IP addresses.

IMUNES meets the scalability requirement by enabling additional tools
to be quickly added to each vhost node in the environment. As a honey-
pot operator decides to expand or modify the services offered, additional
packages can be installed on all vhost nodes or individual files may be
added instantly while the system is operating. These files are created
by IMUNES in each virtual node filesystem; changes in each node are
isolated to the node, including file deletions, additions and modifications.
Additional nodes may be added by simply dragging and dropping nodes
into the network topology. This makes it possible to rapidly modify the
state of the honeynet and maintain customizations unique to each node or
groups of nodes. This is far more manageable than running fully separate
virtual machines; indeed, it is a key benefit of the proposed approach.

IMUNES Honey Tools and Realism: The goal of the proof-of-
concept honeynet is to obtain information about threats to critical in-
frastructure systems. While providing general-purpose honeypots with

Haney 223

a variety of services to entice attackers, the main focus is on attract-
ing attackers interested in launching Modbus attacks. In order to meet
the realism requirement, supplemental services typically found in cyber-
physical systems must be incorporated. Full services such as telnetd
and sshd can run on each vhost, providing high-interaction honeypot
functionality.

The initial proof-of-concept experiments sought to emulate only a realistic
network fingerprint. Therefore, it was decided to implement ftelnetd
(fake Telnet) and kojoney (fake SSH) [10]. The two services present the
usual banners to attackers upon initial connection and proceed to log
the usernames and passwords; the login attempts always fail. Web-based
management tools were scraped from real programmable logic controllers
and hosted in the IMUNES nodes using lighttpd.

The first step in this effort is to mimic the TCP/IP stack options used by
the real devices, which is accomplished using FreeBSD pf. Also, by scrap-
ing any web-based management interfaces, these tools can be recreated
and deployed with lighttp in running IMUNES nodes.

Another aspect of realism and enticement is the context in which a hon-
eypot is deployed. A honeypot must blend into its surroundings. Thus,
the prototype honeynet was deployed on an Internet-reachable subnet of
the university network. If the goal is to masquerade as an oil refinery
or water treatment facility, the honeynet should certainly not be located
in the network address block of a university’s computer science depart-
ment. A realistic honeynet should be deployed in the IP address space
of an actual industrial facility to maintain realism and consistency. This
is accomplished using a layer-2 virtual private network to forward traffic
bound to an unused IP address range at an asset owner’s site to the hon-
eynet laboratory environment, which would be invisible to the attacker.

JAMOD for Modbus Slave Devices: JAMOD is a critical component
of the honeynet design because it can emulate a production cyber-physical
system. The library enables customized ladder logic to run on multiple
IMUNES virtual nodes, simulating master and slave devices in a working
implementation of the Modbus/TCP protocol. A master program on one
node is configured to connect to slave programs on other nodes, querying
and setting various data registers. Slave devices can be configured to
be “vulnerable” to remote queries and set points to be writeable by any
remote master process. Attackers may then interact with any of the
slave devices in the network by sending Modbus/TCP commands to the
open ports of the nodes. It is also important to write JAMOD code that
implements Modbus functions such as Slave ID, which are used in Shodan
queries and by other scanning methods. Other tools such as Conpot [9],
OpenPLC [40] and opendnp3 [11] can also be deployed at IMUNES nodes
to emulate other programmable logic controller platforms.

224 CRITICAL INFRASTRUCTURE PROTECTION XIII

HMI on a Windows XP Virtual Machine: Documented attacks
on industrial control systems, including Stuxnet [14] and others, often
attempt to compromise the human-machine interfaces (HMIs) used by
operators to manage cyber-physical components. A human-machine in-
terface running on a full Windows XP virtual machine was employed to
meet the realism and detection resistance requirements; this is not much
different from what is used by other honeypots. The proof-of-concept
honeynet has a custom interface built in LabVIEW [32]. The virtual ma-
chine executes on the same FreeBSD cluster that hosts IMUNES, but it
is managed by the VirtualBox hypervisor.

Physical Switch/PLCs and Scalability: Another important design
element incorporated in the prototype honeynet is a switch or hub down-
stream from the honeywall so that multiple systems can be added to
the honeynet quickly and easily. This also provides a rapid manual data
control mechanism – a system can be physically separated from the net-
work if needed. The design element contributes to scalability because
additional devices can be added to the honeynet without modifying the
honeywall significantly; only the iptables rules need to be updated in
order to forward traffic to the new honeypots.

The initial experiments employed a Direct Logic programmable logic con-
troller. This device provides an Ethernet connection and includes a web
server on port 80 and Modbus listener on port 502. The web server pro-
vides access to a configuration interface that requires no authentication
so that values can be set via an HTTP form using POST commands. The
Modbus listener provides responses to valid queries. All network traffic
to and from the programmable logic controller is automatically recorded
by the honeywall system without any extra configuration effort.

8.4 Simulated Physical Process
While simply positioning a Windows XP virtual machine in the cloud or con-

necting a typical programmable logic controller to the Internet would certainly
draw attacks, they would not attract advanced threat actors who specifically
target industrial processes. The honeynet architecture leverages a research
simulation to construct a physical process that can be controlled via digital au-
tomation. This method for representing a real physical process is a significant
contribution to the honeynet literature. The deployment of simulation software
is shielded in a unique way from attacks – by converting signals from digital to
analog and back again, which emulates real-world sensors and actuators.

Established methodologies and tools are available for modeling and simula-
tion: (i) continuous process control systems, which typically involve differential
equations and have real-time constraints; (ii) discrete systems, which keep a
process under control using feedback from sensors to send commands to actua-
tors; and (iii) communications networks, which use TCP/IP or direct-link serial
lines. While the distributed nature and communications of a large-scale cyber-

Haney 225

CPS Testbed Framework

Physical Domain Cyber Domain

Process
Simulation

A/D

D/A

Sensors

SCADA Network in
IMUNES Data Capture

and Analysis

SecOnion

Sebek

Bro

SCADA
Management

Actuators

HMI

System
Monitoring

Data
Historian

Figure 5. Cyber-physical system testbed for simulation and analysis.

physical system are handled by IMUNES, the honeynet implements a process
simulator with an API for programmed sensors and actuators associated with
real-world process components.

Models of power system buses and breakers (e.g., IEEE test buses [15])
have been created using software packages such as MATLAB and Simulink.
Human-machine interface and power system simulators have been developed
in LabVIEW [32] or acquired from entities such as Western Services Corpora-
tion [53]. Modelica, an object-oriented, equation-based language has been used
to model complex physical systems [12, 16]. However, modeling and simulation
tools do not always scale well and do not prioritize the goal of mimicking a
physical process in a manner that deceives attackers.

Several testbeds have been developed for modeling and simulating physical
systems such as electricity generation and transmission facilities, as well as
cyber-physical systems that provide virtual representations of physical compo-
nents [27, 28]. Simulators require modifications or new interfaces that share
control and sensor feedback information with the virtual network. Simulations
developed using MATLAB with Simulink [23, 46] and other platforms can be
adapted for this purpose. Simulink modules provide the physical equations to
create virtual systems that masquerade as a real physical process to attack-
ers. Programmed transformations implementing digital-to-analog (D/A) and
analog-to-digital (A/D) conversions provide an interface and convert data from
the physical simulator to the cyber (relay) domain, enabling the modeled phys-
ical process to remain separate and unexposed, except via instrumentation.
Figure 5 shows the cyber-physical system testbed for simulation and analysis.

8.5 Honeywall Design
Three novel aspects of the honeywall design are: (i) honeynet control; (ii)

honeynet data capture; and (iii) honeynet data analysis:

Honeynet Control: A GenIII honeynet should not be compromised
by attackers to wreak more havoc on other unsuspecting users. How-

226 CRITICAL INFRASTRUCTURE PROTECTION XIII

ever, the honeynet should also capture the full range of attacker tech-
niques, which often involve making outbound connections to command-
and-control servers that contain tools for download. Outbound connec-
tions from the honeypots to the Internet must be permitted, but auto-
matic and manual intervention mechanisms must cut off attackers if they
go too far.

Honeywall Roo was designed to be used with a layer-2 bridge interface to
provide data control and data capture, sniffing traffic as it is forwarded
from the Internet to the honeynet internals. Support for in-line monitor-
ing and control using a network bridge interface is not supported by Secu-
rity Onion. Nevertheless, it is possible to install the Security Onion Sensor
package and tools such as network bridge support and SnortSam [22] to
provide data capture and data control. The honeywall provides this con-
trol using Linux netfilter capabilities via iptables and SnortSam, a tool
that dynamically adds firewall rules based on Snort alerts. The design
incorporates an Ubuntu Server v16.04-LTS on a hardware configuration
that mirrors that of Honeywall Roo and requires three network interface
cards. The first network interface card provides the management connec-
tions; the other two cards are then bridged together using bridge-utils
at layer 2 as in the case of Honeywall Roo.

Honeynet Data Capture: The Security Onion Sensor package was
installed on the Ubuntu system in order to perform data capture and col-
lection. After manually modifying the network configuration for bridging
two interfaces, the br0 interface was selected to monitor inbound and out-
bound traffic on the bridge. This enables the installed tools to operate
in an in-line manner, although this configuration is officially unsupported
by Security Onion. The sebekd tool was then installed from the Hon-
eywall Roo distribution with the necessary modifications to run on the
Ubuntu platform. A Perl script was written to parse the sebekd data
received by the honeywall without modification. The Sebek client was
ported to FreeBSD and compiled into the honeypot kernel. It was then
made available on every vhost node running in IMUNES.

Honeynet Data Analysis: Data analysis employs a second system con-
figured and installed with the Security Onion Server and Client packages.
The system provides the database and web-based applications, and re-
ceives data from a sensor over an encrypted SSH tunnel. This enables
data collection, offline storage and detailed analysis to be performed with-
out impacting the honeywall. Additionally, multiple honeywall sensors
may be deployed across a network and data can be securely aggregated
for analysis at a primary system. This design supports the scalability
requirement while maintaining good data control.

Because the new honeywall analysis system includes Bro and ELSA [34],
analyses can leverage many more queries than are supported by Walleye,
which relies entirely on Snort to generate intrusion alerts. However, to

Haney 227

further support analyses, several customized Snort signatures were in-
corporated to alert to connections to open ports (e.g., 22, 23, 80 and
502), as well as connection attempts (e.g., SYN packets without the full
connection-establishment handshakes indicative of scans) with messages
such as “HONEYNET Connection established to port 80.” This enables
quick investigations of all attacker connections whether or not the con-
nections match intrusion signatures. Analysis can be performed on all
signatures matching “HONEYNET” and the sessions can be extracted
quickly from the stored PCAP files via CapMe for offline examination
using tools such as Wireshark or NetworkMiner.

9. Results and Analysis
A prototype honeynet conforming to the proposed architecture was con-

structed and deployed on the university development network from whence it
was exposed directly to the Internet. Attackers began probing the honeynet
almost immediately – the first scan was detected just 19 minutes after the Inter-
net connection was made. The results presented in this section do not provide
new insights into attacker tactics or techniques; rather, they demonstrate the
utility of the prototype.

9.1 Modbus Scanning via Shodan
Within two days of deploying the honeynet on an IP address range that

was not used on the Internet for several years, the Shodan web crawler engines
found the honeynet, scanned it for the primary list of ports – including Modbus
port 502 – and performed fingerprinting techniques (e.g., banner grabbing) to
make data about the honeynet available in its search results.

Over the course of two weeks, the honeynet received connections from most
of the systems census1.shodan.io through census12.shodan.io. These sys-
tems are located in the United States based on GeoIP and whois database
records.

The fact that Modbus was scanned so quickly suggests that attackers can
reliably search for industrial control system victims before performing any di-
rect system reconnaissance or fingerprinting them. This should be taken into
account when planning honeypot deployments as well as operational network
defenses. No other systems connected to port 502 during the two-week period
of the experiments.

9.2 Brute Force Login Attacks
The ftelnetd tool logged the usernames and passwords presented by at-

tackers during Telnet connection attempts. More than 22,300 Telnet-only lo-
gins were attempted from 333 unique IP addresses in 55 countries. Because
the connections may have come from Tor network exit nodes or addresses from

228 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 1. Top ten brute force Telnet attacks by country.

Source Country IP Addresses Login Attempts

China 356 6,456
India 59 1,927
Viet Nam 48 1,245
Mexico 35 1,414
United States 31 1,321
Columbia 24 723
Malaysia 20 1,425
Turkey 18 506
Korea 16 67
Russia (tied) 8 1,394
Taiwan (tied) 8 8

other proxies and privacy networks, correctly attributing the countries of origin
and unique attackers would be difficult to impossible.

Table 1 provides a breakdown of the Telnet connection attempts during the
two weeks of experiments. The most login attempts (744) came from a single
IP address in Belarus. It is notable that only 419 distinct username-password
combinations were recorded; many of them were attempted hundreds of times.
Since automated attack tools tend to draw from the massive stolen username-
password lists posted on the Internet, the small number of distinct username-
password combinations suggests that a specialized list of login credentials has
been tailored for industrial control systems that may be reachable via their
Telnet ports while also listening on Modbus port 502.

Table 2. Most common usernames and passwords.

Username Count Password Count

admin 2,229 password 709
root 2,138 <blank> 612
cusadmin 343 admin 572
MGR 253 1234 455
support 168 12345 393
FIELD 96 123456 385
Administrator 91 Root 248
MANAGER 77 smcadmin 217
guest 60 dreambox 195
OPERATOR 55 highspeed 178

Table 2 lists the most common usernames and passwords used in the Tel-
net connection attempts. Note that limited results are reported here because

Haney 229

future research with the honeynet would be impacted by the publication of
detailed information. Published information about the honeynet would likely
lead potential attackers to deliberately change their tactics.

10. Conclusions
Honeypots and other deception technologies have long been used to study

malicious activity in networks, but clear requirements for honeypots that im-
plement active defenses of industrial control systems have not been discussed.
Existing honeynet requirements as well as new requirements for next gener-
ation honeynets specified in this chapter have been employed to develop a
realistic, scalable and detection-resistant GenIV honeynet with an advanced
honeywall and three-tier data collection subnet. The architecture incorporates
a physical process simulation that is lacking in existing honeynets for cyber-
physical-systems. It also supports the inclusion of additional physical systems
to present a robust, hybrid cyber-physical target for attackers. Indeed, deploy-
ments of this honeynet architecture could provide valuable advanced threat
intelligence for securing critical infrastructure assets.

References

[1] F. Abbasi and R. Harris, Experiences with a Generation III virtual hon-
eynet, Proceedings of the Australasian Telecommunications Networks and
Applications Conference, 2009.

[2] R. Bejtlich, The Tao of Network Security Monitoring: Beyond Intrusion
Detection, Addison-Wesley, Boston, Massachusetts, 2004.

[3] J. Briffaut, J. Lalande and C. Toinard, Security and results of a large-scale
high-interaction honeypot, Journal of Computers, vol. 4(5), pp. 395–404,
2009.

[4] C. Bronk and E. Tikk-Ringas, The cyber attack on Saudi Aramco, Sur-
vival, vol. 55(2), pp. 81–96, 2013.

[5] D. Buza, F. Juhasz, G. Miru, M. Felegyhazi and T. Holczer, CryPLH:
Protecting smart energy systems from targeted attacks with a PLC hon-
eypot, Proceedings of the Second International Workshop on Smart Grid
Security, pp. 181–192, 2014.

[6] E. Byres, The air gap: SCADA’s enduring security myth, Communications
of the ACM, vol 56(8), pp. 29–31, 2013.

[7] G. Chamales, The Honeywall CD-ROM, IEEE Security and Privacy, vol.
2(2), pp. 77–79, 2004.

[8] B. Cheswick, An evening with Berferd in which a cracker is lured, endured
and studied, Proceedings of the Winter USENIX Conference, pp. 163–174,
1992.

[9] Conpot Development Team, Conpot ICS/SCADA Honeypot (conpot.
org), 2019.

230 CRITICAL INFRASTRUCTURE PROTECTION XIII

[10] J. Coret, Kojoney – A Honeypot for the SSH Service (kojoney.source
forge.net), 2006.

[11] I. Darwish, O. Igbe and T. Saadawi, Experimental and theoretical model-
ing of DNP3 attacks on smart grids, Proceedings of the Thirty-Sixth IEEE
Sarnoff Symposium, pp. 155–160, 2015.

[12] P. Derler, E. Lee and A. Vincentelli, Modeling cyber-physical systems,
Proceedings of the IEEE, vol. 100(1), pp. 13–28, 2012.

[13] A. Dinaburg, P. Royal, M. Sharif and W. Lee, Ether: Malware analysis
via hardware virtualization extensions, Proceedings of the Fifteenth ACM
Conference on Computer and Communications Security, pp. 51–62, 2008.

[14] N. Falliere, L. O’Murchu and E. Chien, W32.Stuxnet Dossier, Version 1.4,
Symantec, Mountain View, California, 2011.

[15] C. Grigg, P. Wong, P. Albrecht, R. Allan, M. Bhavaraju, R. Billinton, Q.
Chen, C. Fong, S. Haddad, S. Kuruganty, W. Li, R. Mukerji, D. Patton,
N. Rau, D. Reppen, A. Schneider, M. Shahidehpour and C. Singh, The
IEEE reliability test system-1996, A report prepared by the reliability test
system task force of the application of probability methods subcommittee,
IEEE Transactions on Power Systems, vol. 14(3), pp. 1010–1020, 1999.

[16] D. Henriksson and H. Elmqvist, Cyber-physical systems modeling and sim-
ulation with Modelica, Proceedings of the Eighth Modelica Conference, pp.
502–509, 2011.

[17] T. Holz and F. Raynal, Detecting honeypots and other suspicious environ-
ments, Proceedings of the Sixth Annual IEEE SMC Information Assurance
Workshop, pp. 29–36, 2005.

[18] Honeynet Project, Know Your Enemy: Sebek – A Kernel Based Data Cap-
ture Tool (old.honeynet.org/papers/sebek.pdf), 2003.

[19] Honeynet Project, Honeynet Definitions, Requirements and Standards
(old.honeynet.org/alliance/requirements.html), 2004.

[20] P. Huang, C. Yang and T. Ahn, Design and implementation of a distributed
early warning system combined with intrusion detection system and hon-
eypot, Proceedings of the International Conference on Hybrid Information
Technology, pp. 232–238, 2009.

[21] Industrial Control Systems Cyber Emergency Response Team (ICS-
CERT), Trends in Incident Response in 2013, Idaho Falls, Idaho, 2013.

[22] F. Knobbe, SnortSam – A firewall blocking agent for Snort (www.snort
sam.net), 2001.

[23] V. Koganti, Cyber-Attack Simulation in MATLAB/Simulink, M.S. Thesis,
Department of Computer Science, University of Idaho, Moscow, Idaho,
2017.

[24] B. Krebs, Cyber incident blamed for nuclear power plant shutdown, The
Washington Post, June 5, 2008.

Haney 231

[25] S. Kuman, S. Gros and M. Mikuc, An experiment in using IMUNES and
Conpot to emulate honeypot control networks, Proceedings of the Fortieth
International Convention on Information and Communications Technol-
ogy, Electronics and Microelectronics, pp. 1262–1268, 2017.

[26] T. Lengyel, J. Neumann, S. Maresca, B. Payne and A. Kiayias, Virtual
machine introspection in a hybrid honeypot architecture, Proceedings of
the Fifth USENIX Workshop on Cyber Security Experimentation and Test,
2012.

[27] J. Mahseredjian, V. Dinavahi, and J. Martinez, An overview of simulation
tools for electromagnetic transients in power systems, Proceedings of the
IEEE Power Engineering Society General Meeting, 2007.

[28] J. Mahseredjian, V. Dinavahi and J. Martinez, Simulation tools for elec-
tromagnetic transients in power systems: Overview and challenges, IEEE
Transactions on Power Delivery, vol. 24(3), pp. 1657–1669, 2009.

[29] A. Mairh, D. Barik, K. Verma and D. Jena, Honeypot in network security:
A survey, Proceedings of the International Conference on Communications,
Computing and Security, pp. 600–605, 2011.

[30] S. McLaughlin, C. Konstantinou, X. Wang, L. Davi, A. Sadeghi, M. Ma-
niatakos and R. Karri, The cybersecurity landscape in industrial control
systems, Proceedings of the IEEE, vol 104(5), pp. 1039–1057, 2016.

[31] Modbus Organization, Modbus Application Protocol Specification,
V1.1b3, Hopkinton, Massachusetts (www.modbus.org/specs.php), 2012.

[32] National Instruments, LabVIEW, Austin, Texas (www.ni.com/en-us/
shop/labview.html), 2019.

[33] S. Nunes, Web Attack Risk Awareness with Lessons Learned from High
Interaction Honeypots, M.S. Thesis, Information Networking Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania, 2009.

[34] V. Paxson, Bro: A system for detecting network intruders in real-time,
Computer Networks, vol. 31(23-24), pp. 2435–2463, 1999.

[35] N. Perlroth, Hackers are targeting nuclear facilities, Homeland Security
Dept. and FBI say, The New York Times, July 6, 2017.

[36] V. Pothamsetty and M. Franz, SCADA HoneyNet Project: Building Hon-
eypots for Industrial Networks (scadahoneynet.sourceforge.net), 2008.

[37] N. Provos, A virtual honeypot framework, Proceedings of the Thirteenth
Annual USENIX Security Symposium, 2004.

[38] Z. Puljiz and M. Mikuc, IMUNES based distributed network emulator,
Proceedings of the International Conference on Software in Telecommuni-
cations and Computer Networks, pp. 198–203, 2006.

[39] QoSient, Argus: Network Audit Record Generation and Utilization Sys-
tem, New York (qosient.com/argus), 2014.

[40] T. Rodrigues Alves, M. Buratto, F. de Souza and T. Rodrigues, OpenPLC:
An open source alternative to automation, Proceedings of the IEEE Global
Humanitarian Technology Conference, pp. 585–589, 2014.

232 CRITICAL INFRASTRUCTURE PROTECTION XIII

[41] M. Roesch, Snort – Lightweight intrusion detection for networks, Proceed-
ings of the Thirteenth USENIX Conference on System Administration, pp.
229–238, 1999.

[42] C. Song, B. Hay and J. Zhuge, Know Your Tools: Qebek – Conceal the
monitoring, The Honeynet Project (www.honeynet.org/sites/default/
files/files/KYT-Qebek-final_v1.pdf), 2010.

[43] L. Spitzner, Honeytokens: The other honeypot, Symantec Connect (www.
symantec.com/connect/articles/honeytokens-other-honeypot), Ju-
ly 16, 2003.

[44] L. Spitzner, The Honeynet Project: Trapping the hackers, IEEE Security
and Privacy, vol. 1(2), pp. 15–23, 2003.

[45] C. Stoll, The Cuckoo’s Egg: Tracking a Spy Through the Maze of Computer
Espionage, Doubleday New York, 1989.

[46] H. Tsai, C. Tu and Y. Su, Development of a generalized photovoltaic
model using MATLAB/Simulink, Proceedings of the World Congress on
Engineering and Computer Science, 2008.

[47] U.S. Department of Homeland Security, Common Cybersecurity Vulnera-
bilities in Industrial Control Systems, Washington, DC, 2011.

[48] U.S. Department of Homeland Security, NCCIC Year in Review 2017:
Operation Cyber Guardian, Washington, DC (www.us-cert.gov/site
s/default/files/publications/NCCIC_Year_in_Review_2017_Final.
pdf), 2018.

[49] C. Valli and A. Woodward, SCADA security – Slowly circling a disaster
area, Proceedings of the International Conference on Security and Man-
agement, pp. 613–617, 2009.

[50] T. Vollmer and M. Manic, Cyber-physical system security with deceptive
virtual hosts for industrial control networks, IEEE Transactions on Indus-
trial Informatics, vol. 10(2), pp. 1337–1347, 2014.

[51] S. Wade, SCADA Honeynets: The Attractiveness of Honeypots as Critical
Infrastructure Security Tools for the Detection and Analysis of Advanced
Threats, M.S. Thesis, Department of Electrical and Computer Engineer-
ing, Iowa State University, Ames, Iowa, 2011.

[52] D. Watson and J. Riden, The Honeynet Project: Data collection tools,
infrastructure, archives and analysis, Proceedings of the WOMBAT Work-
shop on Information Security Threats Data Collection and Sharing, pp.
24–30, 2008.

[53] Western Services Corporation, Power Plant Simulation Overview, Fred-
erick, Maryland (www.ws-corp.com/default.asp?PageID=1&PageNavi
gation=Simulation-Overview), 2019.

[54] K. Wilhoit, Who’s really attacking your ICS equipment, Trend Mi-
cro Security Intelligence Blog (blog.trendmicro.com/trendlabs-securi
ty-intelligence/whos-really-attacking-your-ics-devices), Mar-
ch 15, 2013.

Haney 233

[55] T. Williams, Computer control technology – Past, present and probable
future, Transactions of the Institute of Measurement and Control, vol 5(1),
pp. 7–19, 1983.

Chapter 12

DYNAMIC REPAIR OF MISSION-
CRITICAL APPLICATIONS WITH
RUNTIME SNAP-INS

J. Peter Brady, Sergey Bratus and Sean Smith

Abstract This chapter proposes a solution that provides reliable, non-disruptive
updates to critical systems using a novel design pattern called a “snap-
in,” which is able to install replacement routines embedded in shared
libraries during system execution. Most system updates are performed
in a static or maintenance state. However, dynamically updating soft-
ware reduces the time required for adding functionality and applying
security upgrades. The proposed snap-in solution improves on previous
work by adopting the novel approach of using the target’s application
binary interface to first load shared libraries that contain replacement
routines into a running application, supplanting the original routines
with replacement routines without having to modify the existing code.
An automated toolkit is provided for scanning application binaries and
determining where the replacement routines are to be added.

1. Introduction
In 1992, researchers studied the software faults discovered during integra-

tion testing of the Voyager and Galileo spacecraft code at the Jet Propulsion
Laboratory [17]. The bulk of the faults were directly attributed to errors in
understanding or implementing requirements, and to miscommunications be-
tween development teams. Not surprisingly, “there’s no such thing as a bug-free
application” [32].

Not all faults in modern computing systems are found during internal inte-
gration and testing. As a result, faults found during field deployments become
part of the maintenance cycle. Maintaining software during its lifetime is a
significant and costly problem.

A NIST report [22] reveals that the costs to repair system defects increase
rapidly after the requirements stage. Table 1, taken from the report, shows

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 235–252, 2019.

https://doi.org/10.1007/978-3-030-34647-8_12

https://doi.org/10.1007/978-3-030-34647-8_12
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_12&domain=pdf

236 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 1. Repair costs during various lifecycle stages.

Lifecycle Stage Repair Cost

Requirements 1x
System Testing 90x
Installation Testing 90x to 440x
Acceptance Testing 440x
Operation and Maintenance 470x to 880x

that the cost of repairing a defect in the field is up to 880 times the cost of
repair during the requirements stage (x denotes a normalized unit of cost).

Standard application maintenance generally has the following cycle:

Revision: Decide what is to be changed, such as repairs based on bug
reports from users or the addition of new functionality.

Development: Make the changes to the application, rebuild and test in
the engineering environment, and pass a release candidate to configura-
tion management.

Testing: Run the release candidate through a quality assurance process
to ensure that it is ready for release.

Deployment: When the new application release is ready to be installed,
shut down the old version of the application, execute an installer program
that loads the new release and start the new application.

This maintenance cycle does not work well for all systems. The ability
to do dynamic updating as opposed to a restart-style deployment is necessary,
especially in the case of mission-critical systems that cannot have any downtime.
For example, a communications satellite, the Mars Rover or a power grid cannot
be switched off entirely to update their software. While the Mars Rover had
extensive planning and infrastructure to allow for software updates [6], not all
systems have the level of resources needed for repairs, so devising an alternative
technique is imperative.

Examples of other systems that do not have the standard maintenance life-
cycle are those that are obsolete or that were created by vendors who are no
longer in business. An inability to update system software can have disastrous
consequences, such as not being able to contain a virus like Stuxnet [13] or a
potential wide-spread failure.

Industrial control systems, which operate complex and dispersed infrastruc-
tures such as electric grids, oil and gas pipelines, and power plants, are good ex-
amples of critical systems with challenging maintenance cycles. Several guides
for securing industrial control systems have been published (e.g., [27]). How-
ever, concerns have been raised about hardware obsolescence [9] and that indus-
trial control systems became operational before the latest security techniques

Brady, Bratus & Smith 237

were developed [7]. Additionally, some industrial control systems may run on
old or obsolete platforms that no longer have vendor support for their hardware
and/or operating systems.

Internet of Things (IoT) devices have similar maintenance problems. Many
consumer devices – as well as some industrial Internet of Things (IIoT) devices –
have non-upgradeable firmware, meaning that there are no easy system upgrade
paths. Additionally, integrators often incorporate low-cost circuit boards in
their systems with no opportunities for firmware updates. Internet of Things
software systems often have security issues. For example, developers may put
together software from various sources in an ad hoc manner, resulting in security
holes such as default or non-changeable administrative passwords [18] and buffer
overflows such as those exploited by the Mirai botnet [12].

To address these challenges, this chapter presents a new design pattern called
a “snap-in” that facilitates the insertion of new or modified software in a run-
ning system. Information in the application binary interface (ABI), in this
case in the Linux executable linkable format (ELF), is leveraged to find faulty
routines that are subsequently replaced with updated versions even while the
system is operational. This novel approach ascertains information about an
application and uses it to replace routines without changing the structure of
the application. This is an important point because modifying application code
directly can leave it in an inconsistent state.

Snap-ins are designed to quickly repair faulty code (e.g., validating SSL
certificates in Internet of Things devices [15]) or to make rapid repairs to pro-
grams that experience “zero-day blooms” [24] (i.e., latent errors that can affect
a wide range of programs, and program or operating system versions). Snap-
ins also enable the layering of security proactively at a global control point
in a piece of unmodified software [23]. For example, secure input-handling
parsing of command inputs to Internet of Things devices via the application
of language-theoretic security [1] can avert potential security holes by creat-
ing parser-combinators that enforce input validation to prevent malicious data
manipulation.

2. Snap-in Overview
The snap-in system has three major components:

Shared Libraries: Shared libraries contain the patches to be installed.
The patches modify or augment the operation of the target application.
Shared libraries are employed to leverage standard software engineering
techniques for aggregating custom routines or for modifying later versions
of shared libraries used by the target application that is being repaired.

Mapping Data: This data maps system executables to the repaired
routines.

Snap-In Controller: The snap-in controller reads the mapping data,
searches for running target executables, pauses the execution of the target

238 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 2. ELF segments used by snap-ins.

Segment Writable Definition

.header No ELF header and segment table

.hash No Symbol hash table

.dynsym No Dynamic linking symbols

.dynstr No Dynamic linking strings

.plt No Procedure linkage table

.text No Executable code

.rodata No Read-only data

.data Yes Initialized data

.got Yes Global offset table

.got.plt Yes Global offset table for procedure linkage table

.dynamic Yes Dynamic linking information

.bss Yes Uninitialized data

application, injects the new libraries, modifies the function addresses to
point to the new libraries and then resumes the target application.

Details about the operation of the snap-in toolkit are provided later in this
chapter. However, in order to understand how snap-ins work, it is necessary to
discuss the binary format underling Linux applications, specifically, ELF.

2.1 ELF Files
Snap-ins require the ELF ABI [28], the current standard binary executable

format for Unix and Linux systems. An ELF file is a dual-use object. It ini-
tially serves as a container for a compiler to store machine code and data and
for the linker to assemble all the selected files into an executable program. The
compiler creates a set of sections that contain the compiled code, data, relo-
cation information and external references to other routines. ELF establishes
a section header table that is accessed by the linker to resolve and update the
reference sections in each file.

When a linker creates an executable file, it writes a program header table into
the resulting ELF file. The program header table points to a set of segments.
A segment has zero or more sections; for example, a read-only segment may
contain code in an executable text section while constants reside in a read-only
section.

An ELF file is also used when a loader reads the program header table of
an executable file to map the file segments into memory and resolve run-time
symbols via the shared libraries. As discussed later, the file segments are also
used by the snap-in program to modify the software. Table 2 lists the ELF
segments used by snap-ins. Interested readers are referred to [14] for more
information about ELF.

Brady, Bratus & Smith 239

Most Linux binaries are dynamically linked – they rely on a loader to connect
required external system calls or functions to the correct shared libraries. For
example, if an application wishes to call function read(), the linker writes
information into the application that says it is located in the GNC C library
libc along with the offset in the library. The linker does not write the actual
address into the application for reasons of flexibility – if one or more libraries
are upgraded, then all the applications that use the libraries would have to be
re-linked to work properly.

Modern Linux systems use address space layout randomization (ASLR) [26]
to map the shared libraries required by an application at randomized locations
in the application memory space. This approach prevents malicious applica-
tions from using memory corruption to access resources that are denied to them.
Attempting to write a hard-coded address into an application would make this
feature unusable.

Since a loader must ascertain the memory space at runtime and resolve the
connections just before the application runs, it needs to do its job quickly. The
design of the ELF file makes this possible by establishing connections to the
shared library as and when they are needed.

Continuing with the example, the first time that function read() is called
by the executable, the mainline code calls some interlude code in the procedure
linkage table (PLT) that triggers the loader to connect function read() to
libc. The loader places the address entry in the .got.plt segment following
which the function read() is called in libc. Subsequent calls made to read()
automatically use the address written in segment .got.plt, so only the first
call to the shared library function incurs a small time penalty. This procedure
is crucial to the operation of snap-ins.

2.2 Mapping Data
Since the ELF ABI underpins the target applications to be repaired as well

as the shared libraries to be installed, this research has a designed a toolkit
containing a program that can read either. The toolkit extracts from the ELF
data the entry point name, its relocatable address and, in the case of an ap-
plication, the library name pointed to by the entry. It also identifies writable
data that has to be relocated.

If the target application is multi-threaded, then additional data is collected
to find the best places to stop code execution safely, primarily in blocking
routines such as select(), sleep(), fork() and pthread cond wait(). These
points, which are referred to as “thread markers,” are stored in the mapping
data.

The collected data is then used by the snap-in controller to match the re-
paired routines with target applications.

240 CRITICAL INFRASTRUCTURE PROTECTION XIII

Snap-in
Controller

Target Application

Snap-In Controller

(a)

Snap-in
Controller

(b)

Shared Lib A’

function g’()
{
…
return
}

Snap-in
Controller

(c)

Shared Lib A’

function g’()
{
…
return
}

Replacement
Table

function f()
…

call g()

function f()
…

call g()

function f()
…

call g()

Shared Lib A

function g()
{
…
return
}

Shared Lib A

function g()
{
…
return
}

Shared Lib A

function g()
{
…
return
}

Replacement
Table

Replacement
Table

Figure 1. Snap-in controller in operation.

2.3 Snap-In Controller
The snap-in controller is a daemon that runs on the system that is to be up-

dated. The controller uses the collected mapping data to insert shared libraries
into an operator-selected set of running programs.

The controller runs in a loop to query all the running applications on the
system. If an application matches the pattern in the mapping data and has not
already been updated, then the controller checks to see which shared libraries
need to be loaded. After the shared library information is found, the controller
briefly pauses the program in situ in the case of single-threaded applications.
In the case of multi-threaded applications, it uses thread markers in the stored
data to identify the appropriate places to pause.

Figure 1 clarifies the operation of the snap-in controller. Note the controller
does not perform any modifications when the target application is executing; in
such a situation, the controller pauses and it tries again after a timeout period.

The controller first reads the replacement table to find the target application
that is running without modifications. The running target application initially
uses function g() in shared library A (Figure 1(a)). Function g() has a bug
and will, therefore, be replaced with the repaired function g’() located in a
new shared library A’. Note that if multiple shared libraries are to be installed,
all of them are installed into the process memory during this step.

Brady, Bratus & Smith 241

Next, the ELF structure is used to connect the new library calls. In Fig-
ure 1(b), the controller installs the new snap-in library A’ into the target ad-
dress space and modifies the address pointers and data to point to the new
function g’().

The controller first checks if the loader has completed a lazy or a full binding
to the entry points in the original library. If the routine is fully bound, then
the controller checks the saved program counter to ensure that g() is not being
accessed; if it is being accessed, then the controller restarts the executable and
checks the state at an alternate quiescent point or thread marker to ensure that
g() is not running.

After the controller is sure that g() is not in the execution stream, the
ELF segment .got.plt is modified to change the address of g() in the old
shared library routine to g’() in the new shared library; all future calls in the
executable point to g’(). The address also gets the proper offset to match the
address space layout randomization used for the application. Interested readers
are referred to [14, 29] for details about this technique.

The controller loops through all the calls to be modified using the same
technique. Certain libraries, such as DIABLO [31] and ERESI [5], facilitate
the rewriting of ELF binaries. However, these libraries were not employed in
this work.

On the other hand, if the loader has performed a lazy binding of the library
call (i.e., the dependency is loaded when referenced for the first time), the
controller does an explicit binding to the new version of the call by loading its
address in the .got.plt segment.

After the snap-in controller completes the changes, it releases its connection
to the target executable, updates its internal table to mark the executable
as repaired and searches for the next executable to be repaired. The target
application runs with the new library (Figure 1(c)). Calls to g() now go to
g’().

3. Snap-In Toolkit
A snap-in toolkit was created as part of this research. The toolkit contains

utilities for source control and for system administrators to install snap-ins on
target systems.

The toolbox supports the following functions:

Searching Executable Targets for Patch Points: An automated
scanner reads a selectable set of executables on a target system and saves
entry point and patch point data in the XML format for each executable
in an executable descriptor file (EDF).

Creating Patches for Executable Targets: Software engineers de-
velop patches, which they link to shared libraries for each target exe-
cutable. The automated scanner is executed on the shared libraries to
create a patch control file (PCF) with XML data for each library.

242 CRITICAL INFRASTRUCTURE PROTECTION XIII

(b)

(d)

Target Server

(a)

Executable
Descriptor
Files (EDF)

System
Administrator

Released
EDFs

(c)

Send EDFs to
Replacement
Constructor

Program (RCP)

Figure 2. Creating an executable descriptor file.

Creating a Replacement Table: A source code administrator obtains
the patch control files for the released patches and selects the executable
descriptor files associated with the target executables to be patched. A
replacement constructor program (RCP) takes the two files and generates
a replacement table.

Installing Patches on Running Executables: A system administra-
tor receives and loads the patches and replacement tables for each target
system. The snap-in controller, which runs as a daemon on the target
system, reads the replacement table and checks if the applications listed
in the table are running. The patch or patches of each running application
are installed automatically.

3.1 Searching Executables
A Python-based program named snapdata was developed to scan and read

the ELF symbol table information of an executable and output the executable
descriptor file. The executable descriptor file contains specifics about the exe-
cutable, such as the architecture for which it is built, the system libraries and
names of external entries it calls and, optionally, the location of re-entrant or
threaded code.

Figure 2 shows the process of creating an executable descriptor file. The
target server executes snapdata -e to create the executable descriptor files
(Step (a)). The system administrator pulls the descriptor files (Step (b)). The
system administrator decides which programs need updates and releases the
descriptor files (Step (c)). Finally, the released descriptor files are sent to

Brady, Bratus & Smith 243

<?xml version=’1.0’ encoding=’utf-8’?>

<edf version="1">

<!--Executable Descriptor File (EDF)-->

<info>

<!--File location and information-->

<!--File: /usr/bin/apt-->

<path>/usr/bin</path>

<filename>apt</filename>

<class>ELFCLASS64</class>

<OS>ELFOSABI_SYSV</OS>

<type>ET_DYN</type>

<machine>EM_X86_64</machine>

<entry>0x1890</entry>

<ABI>3.2.0</ABI>

<buildID>e4e5bbe239a65880c6b7d1b9f51bfded6c61220d</buildID>

</info>

<!--External entry points-->

<entries>

<entry name="strlen"/>

<entry name="dgettext"/>

</entries>

<!--External shared libraries-->

<libraries>

<library name="libapt-private.so.0.0"/>

<library name="libapt-pkg.so.5.0"/>

<library name="libstdc++.so.6"/>

<library name="libgcc_s.so.1"/>

<library name="libc.so.6"/>

</libraries>

</edf>

Figure 3. Sample executable descriptor file.

another system administrator for processing with the replacement constructor
program.

Figure 3 shows a sample executable descriptor file output from /usr/bin/apt
on a Ubuntu Linux system.

Applying snap-ins while pausing all the threaded code is important to pre-
vent state changes; therefore, it is necessary to identify locations where code
execution can be stopped safely. If snapdata determines that an executable
is threaded, it looks for natural pauses in the code – the most straightforward
places are at blocking calls such as select(), sleep(), fork() and pthread -
cond wait(). These thread markers are stored by snapdata in the executable
descriptor file. The snap-in controller uses the thread markers to pause the
program when installing the replacement library.

244 CRITICAL INFRASTRUCTURE PROTECTION XIII

3.2 Creating Patches
As mentioned above, patch files are standard shared libraries that contain

the modified routines for a particular target library. They enable the use of a
pre-built, later version of an application library as a patch, which reduces the
time required to repair a critical program. For example, if a new version of an
application has a bug fix and it is not possible to upgrade to this version, a
library from the new version could be used without any modifications.

A shared library is just a particular type of file that contains one or more
compiled object files that were built in a positionally-independent way; this
enables it to be loaded into the address space of any executable when the exe-
cutable is running. Building a new shared library is straightforward; interested
readers are referred to [3] for details. It is important to note that the patches
must line up with entry points (subroutines) for this technique to be successful.

Another way to create a patch for an old or obsolete executable with no
source code is available is to translate or “lift” the target. Lifting is a process
that creates an intermediate representation (IR) bytecode from the machine
code of the executable. After this is done, the patch is created by modifying
the intermediate representation bytecode and recompiling the fixes into a shared
library for use. Lifting executables to an intermediate representation is outside
the scope of this work; interested readers are referred to [8, 16, 30] for additional
details.

After the shared libraries containing the patches have been created, the
snapdata program is used to scan and read the ELF symbol table information
of the executable, run with a patch scanner flag set in order to scan the libraries
and create a patch control file that maps the routines in each library. The first
section of the control file gives the name and version range of the target library
that is modified (it can be allowed to operate on all or selected versions of the
target). The second section of the descriptor file lists the routine names in
the target library to be replaced. The names in the patch file should typically
match those in the target library, but a command developer may map the target
name to another routine name in the patch library.

Figure 4 shows the process for creating patch control files. Developers select
patches and create snap-in libraries and store the completed patches on a patch
server in preparation for transfer (Step (a)). A configuration manager decides
when to apply the set of patches and executes snapdata -p on the patch server
to create the patch control files (Step (b)). The configuration manager decides
which patch control files are to be included in a specific release (Step (c)) and
sends the released patch control files to another administrator for processing
with the replacement constructor program snaprcp. This process enables the
targeted servers to receive the new shared libraries.

The snap-in shared libraries are installed in the /lib/snapin directory on
the target system. Keeping them in a single location is straightforward for an
operator; the directory tree is protected so that only the superuser can make
modifications. An operator can install all the released snap-ins on a target
system, but their use by the snap-in controller is determined by the installed

Brady, Bratus & Smith 245

Developers

(a)

Patch Server

(b)

Configuration
Manager

Released
PCFs

Send PCFs to
Replacement
Constructor

Program (RCP)

(c) (d)

Figure 4. Creating patch control files.

replacement table, which is unique for each system. In fact, as described below,
the installed replacement table may optionally be protected with encryption.

3.3 Creating a Replacement Table
The snaprcp tool creates a set of mappings between system executables and

the created patches. The mapping data is used by the snap-in controller to
decide which routines should be overridden in a program. The snaprcp tool
reads the executable descriptor and patch control files created by parsing the
executables and patches, respectively. It stores the routine of each executable
and its matching patch in the replacement table for the snap-in controller.

Figure 5 shows the process involved in creating a replacement table. A sys-
tem administrator receives the released executable descriptor and patch control
files for a target system (Step (a)). The system administrator then executes
the snaprcp program to produce the replacement table for the target system
(Step (b)).

3.4 Installing Patches
The snap-in controller inserts new libraries into running programs and uses

the replacement table to connect the appropriate subroutines to the repaired

246 CRITICAL INFRASTRUCTURE PROTECTION XIII

Released
EDFs

Released
PCFs

(a)

System
Replacement

Table

(b)

Figure 5. Creating a replacement table.

code. The basic operation of the controller was discussed above (Figure 1), but
some additional points need to be clarified.

When a shared library or libraries are installed, the snap-in controller pauses
the target application to perform the installation at one of the selected thread
markers and then restarts the code. When the new routines are connected via
the global offset table/procedure linkage table mechanism, checks are made to
ensure that the thread marker is not in the code to be changed and, in the
case of a multi-threaded application, all the threads have been paused. If the
conditions are not met, an alternate thread marker is chosen and the procedure
is repeated until the conditions are met. If the replaced code section has static,
non-constant variables, then the current states of the variables are preserved
in the data section of the new routine.

3.5 Authorizing Updates
The snap-in approach enables patching without taking applications down.

Mission-critical systems, such as those running in operational technology envi-
ronments, require extra diligence to ensure that the snap-ins are not corrupted
accidentally or maliciously. Additionally, it is important to ensure that the
target system receives the correct set of snap-ins. Authorization of patches is
an orthogonal question; however, the toolkit provides an option for public-key
authentication [25] of updates.

Specifically, a set of unique public/private key pairs is created – one for each
target machine on which the snap-in toolkit executes, one for the configuration
manager to sign snap-in patches and one for the replacement table construc-
tor. Table 3 shows how the public/private key pairs are used for signing and
verification.

The following operations are available:

Signing Executable Descriptor Files: The target system signs each
executable descriptor file with its private key. Each target system has its
own set of keys to ensure that only patches assigned to it can be loaded
on the system.

Brady, Bratus & Smith 247

Table 3. Use of public/private key pairs.

System Function Signer Verifier

Target Machine Executable descriptor file Replacement table
Configuration Manager Patch control file N/A
Replacement Table Replacement table Executable descriptor file,

patch control file

Signing Patch Control Files and Patches: The configuration man-
ager uses its private key to sign each patch control file and patch that are
to be delivered.

Signing and Encrypting a Replacement Table: The administrator
who creates a replacement table first verifies the executable descriptor
and patch control files with the respective public keys. If all the files
are verified, the administrator runs the replacement constructor tool as
described above.

The final operation of the replacement constructor tool is to sign the
replacement table with its private key, compress the table and all the
patches into a single compressed archive file, and encrypt the output
with the public key of the target system.

Installing Snap-Ins: When a snap-in controller detects a new com-
pressed archive file on a target system, it attempts to decrypt the file
with its private key. If this is successful, the snap-in controller attempts
to install snap-ins on running applications. It then verifies the signed
replacement table with its public key and continues the installation if the
verification is successful.

4. Related Work
Updating software dynamically is not a new problem. Several solutions have

been proposed over the past decade.
Systems such as JavAdapter [20], a runtime replacement agent for Java sys-

tems, use features of the Java Virtual Machine (JVM) along with a system of
containers and proxies to replace running Java classes. While JavAdapter is
platform independent, it only works with Java-based applications. In contrast,
snap-ins operate on ELF binaries; they are device hardware and language ag-
nostic and can be recompiled for any platform that uses ELF. Other formats
that have defined ABIs, such as the Windows x64 ABI [19], are easily incorpo-
rated.

Ksplice [2] is an object-code layer patching system for a running Linux kernel.
One or more patch files are merged with kernel source code to create a new
object segment, which is loaded into kernel memory. The existing code is

248 CRITICAL INFRASTRUCTURE PROTECTION XIII

modified with a trampoline to jump to the new object. However, this system
only works with a Linux kernel and requires the original source code.

POLUS [4] also uses a trampoline mechanism to jump from an old function
to a new one. In contrast, a snap-in modifies the pointers at the ELF level,
which precludes having to modify existing code and potentially makes it easier
to roll-back changes.

Kitsune [11] employs application source code andprogrammer-supplied trans-
formation files to facilitate the migration of a complete process from an older
to a newer version. This requires access to the original source code and the
insertion of Kitsune-specific functions to control the migration. Snap-ins do
not require any modifications to the original source code.

Katana [21] is the closest to the snap-in concept in that it uses ELF to
do its modifications. However, it relies on source code to build patch objects
whereas a snap-in does not require source code. Katana also uses a trampoline
mechanism to modify the functions in running code. An advantage of Katana
is cleaner migration of modified data from old to new functions; this feature
will be incorporated in a future version of snap-ins.

5. Next Steps
The snap-in project is currently moving from a prototype to an initial release

of the toolkit. The toolkit includes all the utilities, installation guides and
sample use cases. The utilities, which are written in Python (version 2.7), are
approximately 1,000 lines of code. The snap-in controller is written in C; its
compiled executable is 75KB. All releases of the toolkit will be available on
GitHub (github.com/jpbdart/snapin).

Future versions of the snap-in toolkit will include:

New Algorithm for Collecting Thread Markers: The snapdata
collection application uses a brute-force approach to search for thread
markers and data that needs to be moved. A new algorithm will be
incorporated that creates a network graph of the ELF binary; this should
make the algorithm faster and more accurate.

Developers of new applications may add “quiescent points” as discussed
in [10]. This would simplify the work of the snapdata collection appli-
cation because it would only have to search for the quiescent points in
code instead of looking for thread markers. The developers would be im-
plicitly guaranteeing that the quiescent points are safe places to stop the
target executables as opposed to snapdata making educated guesses that
stopping at thread markers would not cause execution problems.

Rollback of Application Repairs: The current toolbox programs col-
lect all the data necessary to perform rollbacks. Additional code will be
incorporated to enable snap-in controllers to return applications to their
original running states.

Brady, Bratus & Smith 249

Repairs to Statically-Linked Code: Small Internet of Things devices
and many real-time operating systems have code that is statically-linked
to applications (i.e., no calls are made to external shared libraries). Ef-
forts are underway to collect the internal program calls to facilitate code
repairs.

Other Hardware Architectures: The current implementation targets
the Intel x86 platform. The next hardware target will be ARM. The
toolbox code, which is written in Python and C, should be portable to
most hardware platforms.

Another area of research is the operation of snap-ins in highly-regulated
systems, such as those used in the energy sector. For example, snap-ins cannot
be incorporated in a power plant control system without evaluating the changes
to be made and the liability incurred in making the changes. One possibility
is to obtain approval from the regulator for repairs made using snap-ins. In
such a scenario, the regulator would sign off on each snap-in, adding its own
authorization key to the final code along with the entity that created the code.
Thus, the power plant operator would only be able to install authorized snap-
ins.

Future research will also investigate the compatibility of snap-ins with real-
time operating systems. As mentioned above, research is currently focusing on
repairs to statically-linked applications. Once this feature is added, the toolkit
collection programs should obtain the target application data that is needed.
However, research has to be conducted to see how the snap-in controller can
make changes to systems with hard timing constraints.

6. Conclusions
Attacks on operational technology systems, especially those that provide

essential services, are increasing in scope and frequency. Even the best systems
and software age from a security point-of-view, enabling attackers to discover
and exploit previously-unknown holes. Quickly repairing these systems and
software is of prime importance.

Snap-ins are a powerful mechanism for quickly updating system applications
that cannot be shut down or that do not have traditional maintenance plans
in place. Emergency repairs such as vulnerability patches and program en-
hancements can be seamlessly delivered in real time by snap-ins without any
downtime. Security measures that prevent tampering with the patches ensure
that only the correct patches are delivered to the targeted hardware.

This chapter describes work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof,
nor any of their employees, make any warranty, express or implied, or assume
any legal liability or responsibility for the accuracy, completeness or useful-
ness of any information, apparatus, product or process disclosed, or represent
that its use would not infringe privately-owned rights. Reference herein to any
specific commercial product, process or service by trade name, trademark, man-

250 CRITICAL INFRASTRUCTURE PROTECTION XIII

ufacturer or otherwise does not necessarily constitute or imply its endorsement,
recommendation or favoring by the United States Government or any agency
thereof. Additionally, the views and opinions of the authors expressed herein
do not necessarily state or reflect those of the United States or any agency
thereof.

Acknowledgement
This research was supported by the Office of Cybersecurity, Energy Security

and Emergency Response of the U.S. Department of Energy and by the Direc-
torate of Security Science and Technology of the U.S. Department of Homeland
Security under Award No. DE-OE0000780.

References

[1] P. Anantharaman, M. Locasto, G. Ciocarlie and U. Lindqvist, Building
hardened Internet-of-Things clients with language-theoretic security, Pro-
ceedings of the IEEE Symposium on Security and Privacy Workshops, pp.
120–126, 2017.

[2] J. Arnold and M. Kaashoek, Ksplice: Automatic rebootless kernel updates,
Proceedings of the Fourth ACM European Conference on Computer Sys-
tems, pp. 187–198, 2009.

[3] H. Arora, Intro to Linux shared libraries (How to create shared li-
braries), The Geek Stuff Blog (www.thegeekstuff.com/2012/06/linux-
shared-libraries), June 11, 2012.

[4] H. Chen, J. Yu, R. Chen, B. Zang and P. Yew, POLUS: A powerful live up-
dating system, Proceedings of the Twenty-Ninth International Conference
on Software Engineering, pp. 271–281, 2007.

[5] ERESI Team, The ERESI Reverse Engineering Software Interface (www.
eresi-project.org), 2016.

[6] K. Finley, NASA pulls off 160-million-mile software patch, Wired, August
16, 2012.

[7] S. Gold, The SCADA challenge: Securing critical infrastructure, Network
Security, vol. 2009(8), pp. 18–20, 2009.

[8] P. Goodman, Heavy lifting with McSema 2.0, Trail of Bits Blog (blog.
trailofbits.com/2018/01/23/heavy-lifting-with-mcsema-2-0), Ja-
nuary 23, 2018.

[9] H. Guzman-Miranda, L. Sterpone, M. Violante, M. Aguirre and M.
Gutierrez-Rizo, Coping with the obsolescence of safety- or mission-critical
embedded systems using FPGAs, IEEE Transactions on Industrial Elec-
tronics, vol. 58(3), pp. 814–821, 2011.

Brady, Bratus & Smith 251

[10] C. Hayden, K. Saur, M. Hicks and J. Foster, A study of dynamic software
update quiescence for multithreaded programs, Proceedings of the Fourth
International Workshop on Hot Topics in Software Upgrades, pp. 6–10,
2012.

[11] C. Hayden, E. Smith, M. Denchev, M. Hicks and J. Foster, Kitsune: Effi-
cient, general-purpose dynamic software updating for C, Proceedings of the
Twenty-Eighth Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, pp. 249–264, 2012.

[12] C. Kolias, G. Kambourakis, A. Stavrou and J. Voas, DDoS in the IoT:
Mirai and other botnets, IEEE Computer, vol. 50(7), pp. 80–84, 2017.

[13] R. Langner, Stuxnet: Dissecting a cyberwarfare weapon, IEEE Security
and Privacy, vol. 9(3), pp. 49–51, 2011.

[14] J. Levine, Linkers and Loaders, Morgan Kauffmann Publishers, San Fran-
cisco, California, 1999.

[15] J. Leyden, Samsung smart fridge leaves Gmail logins open to attack, The
Register, August 24, 2015.

[16] LLVM Compiler Infrastructure, Getting Started with the LLVM System
(llvm.org/docs/GettingStarted.html), 2019.

[17] R. Lutz, Analyzing software requirements errors in safety-critical, embed-
ded systems, Proceedings of the IEEE International Symposium on Re-
quirements Engineering, pp. 126–133, 1993.

[18] D. Palmer, Is ‘admin’ password leaving your IoT device vulnerable to
cyberattacks? ZDNet, April 26, 2017.

[19] M. Pietrek, Everything you need to know to start programming 64-bit
Windows systems, Microsoft Developer Network Magazine, May 2006.

[20] M. Pukall, C. Kastner, W. Cazzola, S. Gotz, A. Grebhahn, R. Schroter
and G. Saake, JavAdaptor – Flexible runtime updates of Java applications,
Software – Practice and Experience, vol. 43(2), pp. 153–185, 2013.

[21] A. Ramaswamy, S. Bratus, S. Smith and M. Locasto, Katana: A hot patch-
ing framework for ELF executables, Proceedings of the International Con-
ference on Availability, Reliability and Security, pp. 507–512, 2010.

[22] RTI International, The Economic Impacts of Inadequate Infrastructure
for Software Testing, Planning Report 02-03, RTI Project No. 7007.011,
Research Triangle Park, North Carolina, 2002.

[23] S. Ruoti, K. Seamons and D. Zappala, Layering security at global con-
trol points to secure unmodified software, Proceedings of the IEEE Secure
Development Conference, pp. 42–49, 2017.

[24] S. Smith, The Internet of Risky Things – Trusting the Devices That Sur-
round Us, O’Reilly Media, Sebastopol, California, 2017.

[25] S. Smith and J. Marchesini, The Craft of System Security, Pearson Edu-
cation, Boston, Massachusetts, 2008.

252 CRITICAL INFRASTRUCTURE PROTECTION XIII

[26] B. Spengler, PaX: The guaranteed end of arbitrary code execution, pre-
sented at G-Con2, 2003.

[27] K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams and A. Hahn, Guide to
Industrial Control Systems (ICS) Security, NIST Special Publication 800-
82, Revision 2, National Institute of Standards and Technology, Gaithers-
burg, Maryland, 2015.

[28] The Santa Cruz Operation, System V Application Binary Interface, Edi-
tion 4.1, Santa Cruz, California, 1997.

[29] D. Tomaschik, GOT and PLT for pwning, System Overlord Blog (sys
temoverlord.com/2017/03/19/got-and-plt-for-pwning.html), Mar-
ch 19, 2017.

[30] Trail of Bits, McSema, GitHub (github.com/trailofbits/mcsema/blob/
master/README.md), 2019.

[31] L. van Put, D. Chanet, B. De Bus, B. De Sutter and K. De Bosschere, DI-
ABLO: A reliable, retargetable and extensible link-time rewriting frame-
work, Proceedings of the Fifth IEEE International Symposium on Signal
Processing and Information Technology, pp. 7–12, 2005.

[32] R. Varshneya, There’s no such thing as a bug-free app, Entrepreneur, Oc-
tober 22, 2015.

Chapter 13

DATA-DRIVEN FIELD MAPPING OF
SECURITY LOGS FOR INTEGRATED
MONITORING

Seungoh Choi, Yesol Kim, Jeong-Han Yun, Byung-Gil Min and Hyoung-
Chun Kim

Abstract As industrial control system vulnerabilities and attacks increase, secu-
rity controls must be applied to operational technologies. The growing
demand for security threat monitoring and analysis techniques that in-
tegrate information from security logs has resulted in enterprise secu-
rity management systems giving way to security information and event
management systems. Nevertheless, it is vital to implement some form
of pre-processing to collect, integrate and analyze security events effi-
ciently. Operators still have to manually check entire security logs or
write scripts or parsers that draw on domain knowledge, tasks that are
time-consuming and error-prone.

To address these challenges, this chapter focuses on the data-driven
mapping of security logs to support the integrated monitoring of op-
erational technology systems. The characteristics of security logs from
security appliances used in critical infrastructure assets are analyzed to
create a tool that maps different security logs to field categories to sup-
port integrated system monitoring. The tool reduces the effort needed
by operators to manually process security logs even when the logged
data generated by security appliances has new or modified formats.

Keywords: Security, event logs, integrated system monitoring

1. Introduction
The vulnerabilities of industrial control systems used in critical infrastruc-

ture assets and the sophistication of attacks have increased significantly in
recent years. In 2016, the U.S. Department of Homeland Security’s ICS-CERT
reported 257 new vulnerabilities in industrial control systems [9]. Meanwhile,

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 253–268, 2019.

https://doi.org/10.1007/978-3-030-34647-8_13

https://doi.org/10.1007/978-3-030-34647-8_13
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_13&domain=pdf

254 CRITICAL INFRASTRUCTURE PROTECTION XIII

Figure 1. Challenges involved in integrating security log data of different formats.

new operating environments and wireless technologies used in industrial control
systems are increasing their attack surfaces.

Security devices are being incorporated in operational technology environ-
ments to combat cyber threats to industrial control systems and the critical
infrastructure assets they manage. The growing demand for security threat
monitoring and analysis techniques that integrate information from security
logs has resulted in enterprise security management systems giving way to se-
curity information and event management (SIEM) systems, whose security logs
contain valuable information about the security status and traceability of the
operating environments. The information, which is in structured or unstruc-
tured formats, helps detect anomalies and analyze the causes of security inci-
dents, contributing to the development of appropriate countermeasures. Big
data technologies are actively being applied to security log datasets to enhance
attack detection, security incident investigations and mitigation techniques.

However, operators of critical infrastructure assets have great difficulty inte-
grating the diverse formats of security data in multiple device logs to perform
security monitoring and analyses. Figure 1 shows the challenges involved in in-
tegrating security log data of different formats. The fields in white are specific
to security devices whereas the fields in grey are common to security devices.
However, the levels of risk have different data types and semantics.

Although standards exist for presenting security event information from in-
dividual devices, the standards may not be supported by device manufacturers
and/or the formats may differ considerably. Even in the case of the Common
Event Format (CEF) [1], which is designed to support interoperability in secu-
rity information and event management systems, different manufacturers use
different extension fields. Manufacturers that use the Syslog standard often
add new fields according to their needs. The formats and contents of security
events also differ based on the security policies applied at field sites where the
devices are configured and operated.

210.0.1.1

Attack
Time

Attack
IP

Attack
Port

Level of
Risk

10.0.1.1 80 TCP High

Attack
Time

Attack
IP

Victim
IP

Attack
Name

Attack
Direction

Level of
Risk

10.0.1.1 E 2

Integrated
Monitoring

and Analysis

Attack
Protocol

Firewall

Unauthor.
Access

Choi et al. 255

Additionally, even when security logs have data fields with the same seman-
tics, the logs are difficult to integrate because the data is in different formats.
For example, data in an attack severity field may be expressed numerically as
1, 5 and 10 in one log, but may expressed using the strings “caution,” “severe”
and “serious” in another log. Such correspondences cannot be solved simply
by identifying the same expression type in order to analyze the fields correctly.

Furthermore, depending on the nature of the infrastructure assets, various
security devices are employed to enhance security or monitor the operating en-
vironments; this requires the integration of diverse security logs. The problems
are acerbated because it is often difficult to acquire data specifications from
manufacturers. As a result, operators require pre-processing modules for the
security logs or they have to apply manual efforts that draw on their knowledge
and experience.

In order to overcome these problems and support integrated security mon-
itoring, security logs were examined to identify the target fields needed for
security analysis and context awareness. The results were used to create a tool
that derives the characteristics of security logs and identifies fields that match
the target fields. The tool enhances security monitoring by enabling the inte-
gration of security logs and new formats in security logs from newly added or
replaced security devices while minimizing the manual effort required on the
part of developers.

2. Related Work
RFC 4765 [6] published in 2007 by the Internet Research Task Force (IETF)

specifies the Intrusion Detection Message Exchange Format (IDMEF) as an
information exchange standard for operating and managing security devices
and systems (e.g., intrusion detection systems (IDSs) and intrusion prevention
systems (IPSs)). IDMEF specifies the heartbeats that pass status information
between equipment and systems, and alerts that pass network attack detection
information. In 2008, MITRE released the Common Event Expression (CEE)
format [11] that expresses and standardizes log exchanges between systems and
end users, log providers and security information and event management system
vendors. CEE provides a common representation language through the profile,
Common Log Syntax (CLS) and Common Log Transport (CLT) throughout
event handling, including event structuring, event encoding/decoding and event
transmission. In 2013, MITRE introduced the Structured Threat Information
Expression (STIX) format for organizing and expressing cyber threat informa-
tion. STIX has been adopted for the trusted automated exchange of indicator
information about cyber threats in real time.

Other entities have developed and released common event specifications.
Some of the important specifications are:

Common Event Format (CEF): ArcSight [1] designed CEF for logging
and audits, and for security information and event management. CEF is
primarily used with Syslog and provides custom fields for scalability.

256 CRITICAL INFRASTRUCTURE PROTECTION XIII

Log Event Extended Format (LEEF): IBM [7] developed LEEF as
a custom event format for its Security QRadar products.

Cisco Intrusion Detection Event Exchange (CIDEE): The Cisco
CIDEE format [5] extends the Security Device Event Exchange (SDEE)
standard that provides specifications for the formats and protocols used
to exchange events. CIDEE is a custom event format that is used by
Cisco intrusion prevention systems to exchange intrusion information.

Commercial vendors of security appliances typically do not comply strictly
with the standards for security log formats. There are some similar fields and
formats, but the details are different for each vendor, product and version.
Since security devices are not designed to interoperate with devices from other
manufacturers, the formats of individual fields in the security information they
generate are not disclosed.

Plaintext protocol reversing efforts have been conducted to extract informa-
tion from communications protocols [4, 8]. Most research efforts have focused
on open-text protocols such as SMB and HTTP. However, recent studies have
attempted to obtain information about private communications protocols be-
tween command and control servers and bots in order to detect and respond to
distributed denial-of-service (DDoS) attacks by botnets [2, 3, 10]. These studies
concentrate on the field separation of communications data and analyzing the
context or state from server-client conversations. As a result, this work cannot
be applied to map different security log formats to a single field required for
monitoring purposes.

3. Analysis of Field Characteristics
Four security appliances that are widely used in critical infrastructure assets

were employed to analyze the characteristics of the fields in security logs. Ixia’s
Ixload, which can reproduce security violation situations, was used to enable
the appliances to generate security logs.

Table 1 summarizes the attacks used in this research. They include 13 well-
known flooding attacks and 6,740 vulnerabilities and malware attacks.

A total of 1,146,019 security logs were collected in the experimental environ-
ment over a ten-hour period. Table 2 shows a summary of the security logs.
Note that the number of collected security logs differs from one security device
to another due to differences in the types, numbers and detection methods of
the security policies supported by the device vendors.

3.1 Target Fields in Security Logs
Analysis of the four types of security logs collected in the experimental en-

vironment confirmed that structural differences exist, e.g., for field numbers,
types and contents. For security reasons, only limited information – not the
detailed field structures – are described in this chapter.

Choi et al. 257

Table 1. Summary of attacks.

Protocol Attack

ARP ARP flooding attack

ICMP Fragmented ICMP message attack
Ping of death attack
Smurf attack

IGMP Fragmented IGMP message attack

IP Fragmented IP message attack
Teardrop attack

TCP Fragmented ACK flooding attack
LAND attack
SYN flooding attack
Xmas tree attack

UDP UDP flooding attack
UDP fragment attack

Table 2. Summary of security logs.

Manufacturer Device Security Logs

Format Total (Proportion)

A IDS/IPS I 117,850 (0.10)
B IDS/IPS II 672,624 (0.59)
C IDS/IPS III 52,801 (0.05)
C Firewall IV 302,744 (0.26)

Table 3. Target fields in security logs.

Manufacturer Device Security Log Fields

Format Number Targets

A IDS/IPS I 13 10
B IDS/IPS II 34 17
C IDS/IPS III 27 12
C Firewall IV 18 8

Table 3 shows the target fields in the security logs. Note that the IDS/IPS
from A has the fewest fields (13) whereas the IDS/IPS from B has the most fields
(34), more than 2.6 times more fields than A. The IDS/IPS from C has more
fields (27) because its manufacturer uses various field structures in its devices
according to their models and functions. Furthermore, even if each security
log has the same field name, the field type or content may be different. For

258 CRITICAL INFRASTRUCTURE PROTECTION XIII

example, the Protocol field is represented differently by case-sensitive strings
or numbers, such as “TCP” or “Tcp” or 6, depending on the manufacturer.

It is not necessary to use all the fields because other fields in a log may contain
the associated information. For example, when ID-Rule and Name-Rule have
the same meaning, ID-Rule is the key value that uniquely distinguishes the
security policy whereas Name-Rule is an annotation used by administrators for
easy recognition.

There may be unnecessary fields in terms of the semantics when performing
integrated security monitoring. For example, Type-CategoryAttack is mainly
used to classify detection results. However, it does not precisely classify and
identify the attack type because the classification is too broad. In the case of
Length-RawPacket, there are some difficulties in deriving a security threat by
only examining the packet length.

Therefore, original field structure analyses were performed for three IDS/IPS
devices and one firewall from the perspective of security monitoring and analy-
sis. This resulted in the exclusion of three (minimum) to 17 fields (maximum).
A field that was not included in all the security logs was excluded, but it was
retained if it was deemed necessary for security monitoring and analysis.

3.2 Field Categories in Security Logs
In order to categorize the target fields listed above, the meanings of the

47 target fields in the security logs were analyzed. The target fields could
be represented using 17 field-category-consolidated fields. Table 4 shows the
categories of fields included by the manufacturers along with their contents.
Seven categories of fields were included in all the security logs – Time-Sent,
IP-Attacker, IP-Victim, Port-Attacker, Port-Victim, Type-AttackProtocol and
Type-Action. The other categories of fields were included in some of the security
logs.

The analysis also confirmed that the field categories depended on the types of
security devices. The field categories of the security logs generated by IDS/IPS
devices mainly deal with attack-related information such as the attack name,
type and direction. On the other hand, certain categories of log fields were
common regardless of the types of security devices. For example, ID-Rule was
generated by IDS/IPS devices for the signature-based detection function. In
the case of the firewall with an access-control-list-based security policy, ID-Rule
was used even in the deny rules.

3.3 Syntax of Field Categories
The data types and main features of the fields in the security logs were

analyzed in order to map field information such as field name and field meaning
based on the field categories.

First, the field data types were analyzed and classified as String and Number
as shown in Table 5. The String type is divided into Word (single length of
text that does not contain spaces) and Sentence (collection of words separated

Choi et al. 259

Table 4. Categories of fields in the security logs.

Field Category Security Log Format Information

Major Minor I II III IV

Time Sent � � � � Time of sent log
Attack – � – – Time of attack start
AttackEnd – � – – Time of attack end

IP Detector – � – – IP address of device
that detected attack

Attacker � � � � IP address of attacker
Victim � � � � IP address of victim

Port Attacker � � � � Port number of attacker
Victim � � � � Port number of victim

Name Machine – � – – Name of device that
detected attack

Attack � � � - Name of detected attack

Type Attack – � � – Type of detected attack
AttackDirection - � � – Type of detected attack
AttackProtocol � � � � Type of transport

protocol
Action � � � � Type of action against

detected attack

Level Risk � � � – Level of severity of
detected attack

Count TotalAttack – � � – Total number of
detected attacks

ID Rule � � – � Rule ID that detected
attack

by spaces). The Keyword type is a subtype of the Word type when the text
is unique. In addition, special subtypes such as Time and IP are included for
the String type. The Number type has the subtypes Constant (fixed numerical
value) and Variable (variable numerical values).

Second, the field data was analyzed based on the field categories. The anal-
ysis yielded the data types shown in Table 6. To enhance understanding, each
field category is arranged according to its type. The analysis confirmed that
the field categories and types cannot be matched uniquely due to the different
data formats in the security logs produced by the appliances.

260 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 5. Field type categories.

Type Subtype Context

String Word Single text
Keyword Single unique text
Sentence Multiple text
Time Timestamp
IP IP address

Number Constant Single fixed numerical value
Variable Variable numerical values

Table 6. Mapping between field categories and types.

Field Category Time IP Word Keyword Sentence Constant Variable

Major Minor

Time Sent � – – – – – –
Time Attack � – – – – – –
Time AttackEnd � – – – – – –
IP Detector – � – – – – –
IP Attacker – � – – – – –
IP Victim – � – – – – –
Port Attacker – – – – – – �
Port Victim – – – – – – �
Count TotalAttack – – – – – – �
Type AttackProtocol – – � – – – �
Level Risk – – � – – – �
Type Action – – � – – – �
ID Rule – – � – – – �
Name Attack – – � – � – –
Type Attack – – � – � – –
Type AttackDirection – – � – – – –
Name Machine – – – � – – –

3.4 Semantics of Field Categories
The data characteristics are prominent in the case of a field category that

maps to the Number type. To clarify the semantics, features were extracted
from predefined information such as the communications protocol. The fields
Port-Attacker and Port-Victim use numbers in the range 1 to 65,536 corre-
sponding to two bytes of storage. On the other hand, Type-AttackProtocol
has values from 0 to 255 because its values are represented by one byte in the
IP headers.

Next, a situation was considered where a security event was generated in the
operational environment as a result of an attack. Count-TotalAttack is always
greater than zero because a security event occurs during an attack. Also, the

Choi et al. 261

Figure 2. Field characteristics in security log format II.

Figure 3. Field characteristics in security log format III.

number of attacks detected per unit time varies, so various values (including
zero) could result.

Finally, characteristics were extracted from statistical patterns. The fields
Port-Attacker, Port-Victim and Count-TotalAttack, which are mapped only
to the Variable type, have different characteristics in terms of distributions
of values (e.g., variance, skewness and kurtosis). Figures 2 and 3 show the
significant differences that exist in the value distributions.

Tables 7 and 8 summarize the characteristics of the field categories.

4. Mapping Security Logs to Field Categories
This section demonstrates how security logs are mapped to field categories

via data-driven analysis of the security logs.

262 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 7. Characteristics of field categories.

Field Category Type Characteristics

Major Minor

Time Sent Time Highest priority among fields of the
Time type

Time Attack Time Corresponds to earlier time among
fields of the Time type, except for
the Time-Sent field

Time AttackEnd Time Corresponds to later time among
fields of the Time type, except for
the Time-Sent field

IP Detector IP Value of the IP type field is one
(unique); predefined IP address
resolution is required

IP Attacker IP Does not include a specific string
(.1, .255); predefined IP address
resolution is required

IP Victim IP IP fields except for IP-Detector and
IP-Attacker; predefined IP address
resolution is required

Port Attacker Variable Fields with range 0–65,536; occurrence
distribution is forward

Port Victim Variable Fields with range 0–65,536; occurrence
distribution is backward

Count TotalAttack Variable Fields with 1–max range; kurtosis is
high

Type AttackProtocol Word Fewer word values and higher frequen-
cies of occurrence; predefined protocol
name verification is required

Variable Fields with range 0–255; fewer num-
bers of values and higher frequencies
of occurrence

4.1 Overview
The data-driven mapping of security logs to field categories involves three

phases:

Phase 1: Field Preparation: During this phase, the security log that
is the subject of the field mapping is received as input. The security log
is parsed to remove delimiters and produce individual fields.

Phase 2: Field Analysis: During this phase, the type of each field in
the security log is classified. The classification results are mapped to the
data characteristics. Details about the fields are presented in Section 3.2.

Choi et al. 263

Table 8. Characteristics of field categories (continued).

Field Category Type Characteristics

Major Minor

Level Risk Word Distribution is biased
Variable Fields with range 1–5 (10);

distribution is biased
Type Action Word Distribution is biased; predefined

information verification is required
Variable Number of field values is low;

distribution is biased
ID Rule Word Meaningless text; no predefined

information
Variable Fields with range 65,536–max;

lowest priority among fields of
the Variable type

Name Attack Word Predefined attack name verification
is required

Sentence Highest priority among fields of
the Sentence type

Type Attack Word Low priority among fields of the
Word type

Sentence Longest text among fields of the
Sentence type

Name Machine Keyword Highest priority among fields of
the Keyword type

Type AttackDirection Word Predefined string (E,I) verification
is required

Phase 3: Field Mapping: During this final phase, a field category is
identified by combining the mapped type and data characteristics. The
output is a candidate field category for each field.

4.2 Phase 1: Field Preparation
During the field preparation phase, the raw security log is processed as an

input for the subsequent field analysis phase (Figure 4). Since raw security
logs have different formats depending on the manufacturer and device model,
they have to be grouped into the same format. The grouped security logs are
separated into fields based on delimiters. The data is organized in a structure
(e.g., matrix or data frame) that simplifies the analysis based on the field type
that is conducted in the next phase.

264 CRITICAL INFRASTRUCTURE PROTECTION XIII

Figure 4. Field preparation using security logs.

Table 9. Results of mapping security logs to field categories.

Security Log
Format

Total
Fields

Correctly Mapping to Field Category

1st Candidate 2nd Candidate Total (%)

I 10 9 0 9 (90)
II 17 16 1 17 (100)
III 12 9 3 12 (100)
IV 8 6 1 7 (87.5)

Total 47 40 5 45 (95.74)

4.3 Phase 2: Field Analysis
During the field analysis phase, the field type is first analyzed based on the

field data. Following this, the field characteristics are analyzed to assign the
field characteristics based on Tables 7 and 8.

After the field data type analysis is complete, field category candidates are
identified and mapped according to the individual field types. However, as
described above, there could be multiple candidates for a given field. For this
reason, the field data characteristics also have to be analyzed.

The priority and frequency of data are assigned to each field of the String
type (e.g., Word, Sentence, Keyword, IP and Time). Because the Variable
type has multiple numerical values, the minimum and maximum, variance and
skewness of the values are as recorded as characteristics.

4.4 Phase 3: Field Mapping
During the field mapping phase, the final type of each field is considered

according to the priority of the candidate field category by analyzing the field
type and characteristics provided by the field analysis phase. Upon applying
the proposed method to the four security logs considered in this work, the field
types were mapped as shown in Figures 5 through 8. The mapped candidates
are presented in order of priority according to the data characteristics.

Table 9 summarizes the results of mapping security logs to field categories.
As seen in the table, when the correct field categories were mapped to the first

Raw
Security Logs

Grouped
Security Logs

Segmented
Security Logs

Choi et al. 265

Format I Type Label 1st Candidate 2nd Candidate
Field 1

Field 2

Field 3

Field 4

Field 5

Field 6

Field 7

Field 8

Field 9

Field 10

Sentence

Time

IP

IP

Word

Variable

Word

Keyword

Variable

Variable

Name-Attack

Time-Sent

IP-Attacker

IP-Victim

Type-AttackProtocol

Port-Victim

Level-Risk

Type-Action

Port-Attacker

ID-Rule

Name-Attack

Time-Sent

IP-Attacker

IP-Victim

Type-AttackProtocol

Port-Victim

Level-Risk

Type-Action

Port-Attacker

Type-AttackProtocol

Type-AttackProtocol

Type-AttackDirection

Type-Attack

Figure 5. Results of mapping field categories in the security log with format I.

Format II Type Label 1st Candidate 2nd Candidate
Field 1

Field 2

Field 3

Field 4

Field 5

Field 6

Field 7

Field 8

Field 9

Field 10

Time

IP

Time

Time

Keyword

Word

IP

IP

Variable

Variable

Time-Sent

IP-Detector

Time-Attack

Time-AttackEnd

Name-Machine

Type-AttackDirection

IP-Attacker

IP-Victim

Port-Attacker

Port-Victim

Time-Sent

IP-Detector

Time-Attack

Time-AttackEnd

Name-Machine

Type-AttackDirection

IP-Attacker

IP-Victim

Port-Attacker

Port-Victim

Field 11

Field 12

Word

Variable

Type-AttackProtocol

Count-TotalAttack

Type-AttackProtocol

Count-TotalAttack

Field 13

Field 14

Field 15

Variable

Sentence

Sentence

ID-Rule

Name-Attack

Type-Attack

ID-Rule

Name-Attack

Name-Attack Type-Attack

Field 16

Field 17

Variable

Keyword

Level-Risk

Type-Action

Level-Risk

Type-Action

Type-Attack

Type-AttackDirection

Figure 6. Results of mapping field categories in the security log with format II.

candidates, 40 field categories correspond to approximately 85.11% of the total
47 fields. When the ranges of the choices are extended to the second candidates,
45 field categories correspond to 95.74% of the total 47 fields. Note that ID-
Rule, Type-Action and Level-Risk are generally not found in the security logs

266 CRITICAL INFRASTRUCTURE PROTECTION XIII

Format III Type Label 1st Candidate 2nd Candidate
Field 1

Field 2

Field 3

Field 4

Field 5

Field 6

Field 7

Field 8

Field 9

Field 10

Time

Variable

Variable

IP

Variable

IP

Variable

Variable

Sentence

Keyword

Time-Sent

Level-Risk

Type-AttackProtocol

IP-Attacker

Port-Attacker

IP-Victim

Port-Victim

Type-Action

Name-Attack

Type-AttackDirection

Time-Sent

Level-Risk

Type-AttackProtocol

IP-Attacker

Port-Attacker

IP-Attacker

Port-Victim

Type-Action

Name-Attack

Type-Action

Type-AttackProtocol

Type-AttackDirection

Field 11

Field 12

Sentence

Variable

Type-Attack

Count-TotalAttack

Name-Attack

Count-TotalAttack

Type-Attack

Type-Attack

IP-Victim

IP-Victim

Figure 7. Results of mapping field categories in the security log with format III.

Format IV Type Label 1st Candidate 2nd Candidate
Field 1

Field 2

Field 3

Field 4

Field 5

Field 6

Field 7

Field 8

Time

Constant

Constant

IP

Variable

IP

Variable

Variable

Time-Sent

Type-Action

Type-AttackProtocol

IP-Attacker

Port-Attacker

IP-Victim

Port-Victim

ID-Rule

Time-Sent

Type-Action

Type-Action

IP-Attacker

Port-Attacker

IP-Victim

Port-Victim

Level-Risk

Type-AttackProtocol

Type-AttackProtocol

Figure 8. Results of mapping field categories in the security log with format IV.

because the fields have the same semantics but different types. The limitations
are discussed in the following section.

5. Discussion
The three principal discussion points are:

Dictionary for Semantics: The semantics of the same fields in the
security logs must be reconciled. Fields may be semantically equivalent
based on predefined information that is commonly used, such as standards
and specifications, but there may be differences in the field categories. For
example, in the case of the Type-AttackProtocol field, “HTTP” in the
String type and 80 in the Number type have to be considered as having

Choi et al. 267

the same meaning. However, the semantics of fields can be different
regardless of the field types according to the predefined information from
the manufacturer. For example, in the case of the Type-Action field, even
if the field type is Number and the value is 1, then the field meaning can
be changed by the “Deny” or “Allow” characteristics, depending on the
predefined information. In the case of the Level-Risk field, a value of 1
for the Number type may correspond to “Low” or “High” depending on
the predefined information.

Correlated Analysis of Fields: A priori information and the analysis
results can support field inference. The analysis of security logs produced
by the IDS/IPS device created by manufacturer A confirms that security
events are configured in a key-value manner. In other words, since the
key is already known, it is possible to derive the characteristics of the
value corresponding to the key and to apply it to infer the fields in the
same or other security logs with similar characteristics. The fields can be
more accurately inferred using security log fields that are related to each
other. For example, it is possible to apply association analysis between
an IP (address) field type and a Variable field type such as Port-Number
with the range 1 to 65,536 for more precise classification of an attacker
or a victim.

Manual Field Mapping Process: This research is a preliminary at-
tempt to support integrated monitoring of critical infrastructure assets
because only four major security appliances were considered. In a real-
world environment, monitoring personnel must handle all the formats in
the security logs maintained in critical infrastructure assets. This is a
highly manual process that relies on domain knowledge and experience.
Although the proposed approach has involved some manual analysis, it
is still a useful first step to removing dependencies and providing useful
information that can reduce operator error.

6. Conclusions
The data-driven mapping of security logs can support the integrated mon-

itoring of operational technology systems in the critical infrastructure. The
characteristics of security logs from security appliances used in critical infras-
tructure assets have been analyzed to create a tool that maps different security
logs to field categories based on their field types and characteristics. This en-
ables events in multiple security logs to be integrated automatically. Moreover,
it reduces the effort on the part of operators to manually process security logs
for integrated security monitoring when the logged data generated by existing
or new security appliances have diverse formats. Future research will focus on
improving the field mapping tool by considering a variety of security appliances
and critical infrastructure assets and applications.

268 CRITICAL INFRASTRUCTURE PROTECTION XIII

References

[1] ArcSight, Common Event Format, Revision 15, ArcSight Technical Note,
Cupertino, California, 2009.

[2] J. Caballero, P. Poosankam, C. Kreibich and D. Song, Dispatcher:
Enabling active botnet infiltration using automatic protocol reverse-
engineering, Proceedings of the Sixteenth ACM Conference on Computer
and Communications Security, pp. 621–364, 2009.

[3] J. Caballero and D. Song, Automatic protocol reverse-engineering: Mes-
sage format extraction and field semantics inference, Computer Networks,
vol. 57(2), pp. 451–474, 2013.

[4] J. Caballero, H. Yin, Z. Liang and D. Song, Polyglot: Automatic extraction
of protocol message format using dynamic binary analysis, Proceedings
of the Fourteenth ACM Conference on Computer and Communications
Security, pp. 317–329, 2007.

[5] Cisco Systems, Cisco Intrusion Detection Event Exchange (CIDEE)
Specification, San Jose, California (www.cisco.com/c/en/us/td/docs/
security/ips/specs/CIDEE_Specification.html), 2009.

[6] H. Debar, D. Curry and B. Feinstein, The Intrusion Detection Message
Exchange Format (IDMEF), RFC 4765, 2007.

[7] International Business Machines, IBM QRadar: Log Event Extension For-
mat (LEEF), Version 2, Armonk, New York (www.ibm.com/support/
knowledgecenter/SS42VS_DSM/b_Leef_format_guide.pdf), 2016.

[8] H. Li, B. Zhang, B. Shuai, J. Wang and C. Tang, Automatic protocol fea-
ture word construction based on machine learning, Proceedings of the IEEE
International Conference on Progress in Informatics and Computing, pp.
93–97, 2015.

[9] National Cybersecurity and Communications Integration Center, ICS-
CERT – Year in Review, Department of Homeland Security, Washington,
DC (ics-cert.us-cert.gov/Year-Review-2016), 2016.

[10] A. Sood, R. Enbody and R. Bansal, Dissecting SpyEye – Understanding
the design of third generation botnets, Computer Networks, vol. 57(2), pp.
436–450, 2013.

[11] The CEE Board, Common Event Expression, MITRE, McLean, Vir-
ginia (cee.mitre.org/docs/Common_Event_Expression_White_Paper_
June_2008.pdf), 2008.

[12] Z. Wang, X. Jiang, W. Cui, X. Wang and M. Grace, ReFormat: Auto-
matic reverse engineering of encrypted messages, Proceedings of the Four-
teenth European Conference on Research in Computer Security, pp. 200–
215, 2009.

VI

INDUSTRIAL CONTROL
SYSTEMS SECURITY

Chapter 14

MODELING AND MACHINE-CHECKING
BUMP-IN-THE-WIRE SECURITY FOR
INDUSTRIAL CONTROL SYSTEMS

Mehdi Sabraoui, Jeffrey Hieb, Adrian Lauf and James Graham

Abstract This chapter describes the formal modeling and machine-checking of a
bump-in-the-wire device that secures field device communications in in-
dustrial control networks. Field devices serve as the connection points
between computer-based control systems and the physical processes be-
ing controlled. Industrial control network traffic is routinely checked
for transmission errors, but limited mechanisms are available for com-
bating attacks that exploit industrial control protocols to target critical
infrastructure assets.

This chapter focuses on a bump-in-the-wire solution that can be
retrofitted on field devices to provide security functionality. The TLA+
formal specification language in combination with the isolation guaran-
tees provided by the seL4 microkernel are used to demonstrate that
the bump-in-the-wire solution provides important security and live-
ness properties. The resulting machine-checked system correctly applies
hash-based message authentication to verify the authenticity of incom-
ing messages while being resistant to attacks.

Keywords: Industrial control systems, security, formal methods, verification

1. Introduction
In 2014, the National Institute of Standards and Technology (NIST) re-

leased a cyber security framework [36] intended to enhance the cyber security
postures of critical infrastructure assets. Industrial control systems are used
across the critical infrastructure sectors, including chemical, critical manufac-
turing, dams, energy, food and agriculture, nuclear facilities, transportation
systems and water treatment systems. These installations are often unpatched,
offer low resilience to unexpected network traffic and incorporate few mecha-
nisms that protect against malicious activities [43]. The NIST framework –

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 271–288, 2019.

https://doi.org/10.1007/978-3-030-34647-8_14

https://doi.org/10.1007/978-3-030-34647-8_14
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_14&domain=pdf

272 CRITICAL INFRASTRUCTURE PROTECTION XIII

Human-Machine
Interface (HMI)

Data
Historian

SCADA Server
(MTU)

Multiplexer

Engineering
Workstations

Control Center Communications Field Site 1

Field Site 2

Field Site 3

RTU

RTU

RTU

Figure 1. Typical industrial control system.

and the executive order that drove it [38] – highlight the need for strong cyber
security in critical infrastructure assets that have historically focused on safety
and physical security.

A secure system, like a safe system, should be designed to preserve certain
properties and the implementation should satisfy these properties. Thus, the
problem of developing a secure system involves two sub-problems: (i) formally
express the core security properties of the system; and (ii) prove that the core
security properties hold for every possible system state. Whether the system is
a virtual banking application or a water treatment plant control system, high
degrees of trust in the system design and implementation are paramount.

An industrial control system is a general term that describes myriad con-
figurations of networked computer systems that operate and control physical
equipment and processes in infrastructure assets. These systems make heavy
use of mature, low-power and low-overhead technologies such as RS-232 com-
munications and decades-old networking protocols to pass control commands
and data between devices [21].

Figure 1 shows a typical industrial control system with three major compo-
nents: (i) central control unit (or master terminal unit (MTU)) at the control
center; (ii) remote control units (or remote terminal units (RTUs) or more
generally field devices) at field sites; and (iii) communications equipment and
protocols that link the central and remote units. The central control unit has
a human-machine interface (HMI) used for plant operations. The field devices,
which perform sensing and control, range from simple circuit boards powered
by embedded controllers to expensive programmable logic controllers (PLCs)
with racks of components. Since the master or central control unit gathers data
from the field devices and sets operating parameters and issues commands to
field devices to orchestrate plant operations, the overall system is often referred
to as a supervisory control and data acquisition (SCADA) system.

Unlike typical enterprise information technology networks where confiden-
tiality is a priority, industrial control networks value availability and integrity

Sabraoui, Hieb, Lauf & Graham 273

Table 1. Modbus ASCII protocol data unit.

Start Address Function Data LRC End

“:” 2 bytes 2 bytes Up to 504 bytes 2 bytes “\r\n”

above confidentiality [33] – keeping the data in the system private is not as
important as keeping the system running properly. Cyber threats to indus-
trial control systems reflect this priority – attackers seek to disturb and disrupt
the controlled processes rather than exfiltrate sensitive data. Attacks that dis-
rupt network flows in industrial control systems can be devastating from the
financial and safety perspectives [14, 42, 44, 46]. The importance of maintain-
ing availability disincentivizes regular system changes or updates for fear of
unscheduled downtime.

Attacks on SCADA protocols are often trivial because the protocols have
few, if any, security features. Modbus, one of the most popular SCADA proto-
cols, was developed in 1979 [35]. Modbus is a simple, connectionless protocol
that can be modeled rigorously. This research considers the Modbus ASCII
protocol [35].

Figure 1 shows the layout of a Modbus ASCII protocol data unit (PDU).
It comprises a colon “:” to signal a new packet, two bytes for the recipient
address, two bytes for the function code; up to 504 bytes for payload data, two
bytes for a longitudinal redundancy check (LRC) that helps detect transmission
errors and an ending character sequence “\r\n.”

A fully verified microkernel such as seL4 [27] provides a platform for con-
structing software solutions for high assurance environments. Instead of a se-
curity statement such as “this system works for my expected inputs,” seL4
enables a high-assurance statement to be made about the system: “this system
works as expected for every possible input at an affordable cost.” The plat-
form provides process isolation through isolated address spaces. This supports
the development of logically-contained processes, where each component acts
on its own accord and communications between each component are controlled
strictly.

The seL4 architecture enables a properly-designed microkernel environment
to be treated as a distributed system on a single chip. A concurrency modeling
language such as TLA+ [30–32] can be used to model the states and interactions
of components, and each trace of state transitions can be machine-checked to
conform to the modeled security properties (e.g., the secret key is confined to
a certain component and only valid packets can reach the inner components).
PlusCal, an algorithm language translatable to TLA+, can be used to model
the sequential steps in the operation of each component.

This research focuses on a bump-in-the-wire solution that can be retrofitted
on SCADA field devices to provide security functionality. It leverages TLA+
and PlusCal to model the components of the Modbus-based bump-in-the-wire

274 CRITICAL INFRASTRUCTURE PROTECTION XIII

security device that is designed with the seL4 microkernel in mind. The TLA+
formal specification language in combination with the isolation guarantees pro-
vided by the seL4 microkernel are used to demonstrate that the bump-in-the-
wire device provides the desired security and liveness properties. The resulting
machine-checked system correctly applies hash-based message authentication to
verify the authenticity of incoming messages while being resistant to attacks.
In particular, the verified specification assures that only valid, authenticated
Modbus packets flow across a field device, that a compromised component can-
not break the security properties of adjacent components, that the device is
not vulnerable to replay and spoofing attacks, and that the device is resilient
to malformed and malicious traffic.

2. Background
The threats to traditional information technology infrastructure are well

documented, but when industrial control systems merge with traditional infor-
mation technology networks, the threats become even more significant in their
scope and magnitude. Attacks such as the 2000 Maroochy Water breach [1]
and the 2010 Stuxnet worm [3, 14, 15] demonstrate that even isolated industrial
control systems are vulnerable to external threats. A Kaspersky Lab report [24]
states that more than 10% of all blocked threats on industrial control comput-
ers originated from removable media such as USB drives. An attacker who
gains access to an industrial control network finds little in the way of secu-
rity mechanisms. Industrial communications protocols have limited, if any,
security mechanisms and the SCADA protocols often lack basic authentica-
tion and integrity checking [34]. Meanwhile research has demonstrated that
certain interactions involving industrial control protocols (e.g., Modbus TCP)
and their carrier protocols (e.g., TCP/IP) can defeat security and integrity
guarantees [13].

The longevity and uptime requirements imposed on industrial control sys-
tems present unique challenges to keeping them secure. Physical systems can
be difficult to test, upgrade and replace. Thus, the ages of physical systems
and their software are often measured in decades and the downtime costs are
significant. Fragile, out-of-date firmware and protocol stacks are common and
they exhibit anomalous behavior with non-conforming, let alone, malicious,
traffic. Unexpected network traffic can cause heavy machinery to act in unpre-
dictable ways. Any system state that has not been explicitly evaluated during
the design phase poses a risk of disruption.

2.1 Industrial Control System Security
Efforts to address industrial control system security are generally aligned

with the categories defined in the NIST framework [36] – detect, protect, iden-
tify, recover and respond. Detection leverages monitoring methodologies and
tools for generating logs for low-performance field devices in SCADA systems,
exporting logging data without fear of opening new attack vectors and con-

Sabraoui, Hieb, Lauf & Graham 275

ducting analyses without impacting system operations (see, e.g., [18, 41]). Pro-
tection involves the development and application of security mechanisms in
software [2] or hardware [8]. Identify involves cataloging system assets and po-
tential risks with efforts concentrating on the system as a whole [18] as well as
on individual components such as vendor software and hardware [23–25]. Re-
covery involves picking up the pieces after an incident (accident or malicious)
and incorporating the lessons learned in preparing for future incidents [6, 45].
Finally, response involves all activities that follow the detection of an incident
(whether successful or not), including communication, analyses and mitiga-
tion [9, 39]. The work described in this chapter falls in the protection and de-
tection categories, with the cryptographic signing mechanism supporting both
forgery protection and detection.

2.2 seL4 and CAmkES
The seL4 microkernel has been fully verified from design to implementation

to provide an exceptionally high level of assurance [26, 27]. It has evolved from
the OKL4 family of microkernels that were reduced in size to the point where
guarantees of bug-free code could still be realized. The seL4 microkernel has the
verified ability to logically separate processes and implement highly-specified
channels of communications between components in an architecture. If a cell
in the kernel is compromised, it is shown that the other cells still maintain
their desired security properties. This enables an abstract implementation of
Rushby’s separation kernel [40] for reducing a large security kernel into smaller,
more easily provable, components that mimic a distributed system.

CAmkES is a component platform designed to address the increasing com-
plexity and unreliability of embedded systems by facilitating the modular design
of system services [16, 29]. CAmkES supports microkernel development; its de-
sign favors a low-overhead approach to accommodate the challenges involved
in microkernel development. The CAmkES architecture provides a component
model, standard interfaces (including support for user-defined interfaces) and
user-defined interactions between components using these interfaces.

2.3 TLA+ and PlusCal
TLA+ is a formal language for modeling and reasoning about concurrent sys-

tems [30–32]. PlusCal is a language for modeling algorithms in a much more
expressive manner than typical programming languages. TLA+ and PlusCal
use mathematical notation to expand their reach beyond programming lan-
guages to allow for rigorous definitions and descriptions of algorithms and sys-
tems. The mathematical notation also facilitates model checking and proofs of
properties of algorithms and systems.

PlusCal, which is a programmer-friendly option in the TLA+ toolchain, can
be automatically translated to TLA+ and used with the TLC model checker
provided by TLA+. TLC is a brute-force model checker that explores states up
to a certain number of transitions, raises alerts about properties that have been

276 CRITICAL INFRASTRUCTURE PROTECTION XIII

violated and provides traces where the violations occurred. This research has
employed TLA+ for two categories of checks that are defined and performed
for each state and transition reached by the model checker: (i) invariants; and
(ii) liveness properties.

Invariants are statements are always true regardless of the system state. An
invariant in a simple banking example is: an account balance is never less than
zero. This invariant is expressed in TLA+ as follows:

∀ acct ∈ Accounts : acct.balance ≥ 0 (1)

The initial state of a system might satisfy all the invariants, but then the
system may never leave its initial state. A system that never changes its state
is not useful. Therefore, liveness properties are specified. A liveness property
– or temporal property – checks that a property is eventually true. A liveness
property for a binary clock that alternates between zero and one is: if the
clock bit is currently one, then it will eventually be zero. An example liveness
property that is applicable to this research is: if an incoming message is a valid
communications packet, then it will eventually be processed and forwarded.
This liveness property is specified as follows:

message.valid = True � forward = True (2)

3. Related Work
The DNP3 SCADA communications protocol is commonly used to transmit

commands and data between a central operations center and remote substa-
tions [10–12]. DNP3 Secure Authentication [19] adds security mechanisms to
the basic DNP3 protocol to provide authentication and authorization. Amoah
et al. [2] have conducted a formal behavioral analysis of DNP3 Secure Authen-
tication. They employed colored Petri Nets to model common replay, modifica-
tion and spoofing attacks on the DNP3 Secure Authentication specification, in
the process, discovering a previously-unknown attack that could be launched
by an attacker with access to data in motion, but without access to the secret
key. Their modeling of the communicating entities and an attacker revealed
that the snooping of non-aggressive challenge response sessions by the attacker
could modify the sequence number and issue a request in the aggressive mode
of DNP3 communications. This resulted in the attacker being able to spoof
a valid request and replay previous messages sent in the network. This at-
tack specifically targeted critical requests that changed system operations by
modifying set-points and setting parameters.

Kuhn and Dray [28] have applied formal modeling and verification techniques
to a microprocessor-based device to create a smart token system for controlling
access to network hosts. Their objective was to create a civilian security-
critical system where formal methods could be used to improve the system; this
system could then serve as a testbed for applying formal methods for securing
larger projects. The application of formal methods contributed to correcting

Sabraoui, Hieb, Lauf & Graham 277

inconsistencies in the smart token design, improving its resilience and finding a
subtle, but critical, bug that could have completely compromised the security
provided by the smart token. Kuhn and Dray noted that the application of
formal methods to their project had tangible benefits despite its limited focus
and small budget.

The DARPA-funded High-Assurance CyberMilitary Systems (HACMS) Pro-
gram [17] has worked with Boeing to increase the security of an unmanned H-6U
helicopter in a practical manner using formally-verified code and the seL4 mi-
crokernel. Engineers were able to separate the components of the H-6U into
different virtual machines running on an seL4 hypervisor and then convert cer-
tain components from the virtual machines to fully-verified native components.
Although verifying the entire H-6U system was infeasible, the effort was able to
verify select components to expand the trusted computing base of the system
and enhance its reliability. The upgraded H-6U was able to stay in flight and
complete its test mission despite being actively attacked by multiple compro-
mised components and a professional red team. The attackers were unable to
pivot from the compromised components to affect H-6U flight control or mission
control.

4. Security Preprocessor Checking Using TLA+
Hieb and Graham [20] have proposed a bump-in-the-wire solution that en-

hances communications security between control centers and field sites that
employ legacy systems. The solution introduces an inline security preprocessor
that retrofits raw communications packets with authorization and authentica-
tion; the encapsulations are stripped at the field sites. The bump-in-the-wire
design does not impact control and configuration operations because the pre-
processor is transparent to the control center and field devices. The approach
adds some latency; however, since the timing requirements for control systems
range from microseconds to seconds, the latency provided by the added security
is acceptable in many industrial control systems [19, 20].

The preprocessor of Hieb and Graham [20] incorporates three components:
two for communications and a middle component that performs the autho-
rization and authentication checks. This section extends the design by adding
higher assurance via guarantees provided by seL4 and model verification us-
ing TLA+. The desired properties of the preprocessor are first translated into
TLA+. Following this, a model is built that preserves the security properties.

4.1 System Modeling
The new system model has four components that logically separate the secu-

rity functions: (i) checking that messages conform to the Modbus specification;
(ii) signing messages with SHA-2; (iii) networking with raw Modbus messages
in a trusted network; and (iv) networking with encapsulated/signed Modbus
messages in an untrusted network. The separation isolates critical decisions,

278 CRITICAL INFRASTRUCTURE PROTECTION XIII

Crypto

Modchk

Modtx Signtx

Figure 2. CAmkES components.

rendering exploitation more difficult and supporting parallelism to improve per-
formance should the need arise.

Each of the four components runs as a separate process, confining each crit-
ical decision-making block of code to its own memory space. Each component
was also modeled separately in TLA+, following which all the components were
modeled together to explore the security properties of the system as a whole.
Figure 2 shows the four components. Each component provides a message
interface and consumes messages from two other components.

Each thread component was specified separately using PlusCal and then
collectively as an asynchronous system. An example is the signature checking
thread of the Crypto component in Figure 2. Each thread is provided with
a queue from which it dequeues a message and performs its processing. The
Modtx component can place messages in the queues of Modchk and the mes-
sage signing thread of Crypto. The Signtx component can place messages in
the queue of Modchk and the signature verification thread of Crypto. This
system of message passing to queues is an abstraction of the interprocess com-
munications between the four CAmkES components.

TLA+ and its TLC model checker enable sets to be defined and each element
of the sets to be used when exploring model states. It would make sense to
define a set that includes every possible input for every thread. However, in
the case of network communications, it is impossible to specify the set of all
possible bits that can be read from or written to a serial port. This task is
infeasible even when the message size is restricted to the Modbus specification.
Therefore, this work uses specially-crafted packets to test the typical cases and
edge cases of valid and invalid messages that could be encountered with the
goal of showing that every message is covered by these cases. The serial port
was also abstracted as receiving and sending messages one byte at a time to
limit the search spaces of incoming and outgoing data to single bytes at a time.

Sabraoui, Hieb, Lauf & Graham 279

Table 2. Desired system properties.

System Property

A message in an internal queue has a valid length Invariant

A message in a networking queue waiting to be printed has Invariant
been validated

Only a well-formed, valid Modbus message reaches the trusted Invariant
network

Only a well-formed, signed Modbus message reaches the untrusted Invariant
network

A message entering the system reaches the opposite component Liveness
and is eventually consumed

A component queue is eventually emptied Liveness

The checking begins when a set of messages arrive at the Modtx component
and a different set of messages arrive at the Signtx component. The simulation
ends when all the queues are empty and there are no further states to explore.
Microsoft’s specification of Cosmos DB [5] is a similar message passing system
that uses TLA+.

4.2 Invariants and Liveness Guarantees
Table 2 shows the desired system properties. The four invariants ensure

that: (i) only messages with valid lengths make it to the inner components; (ii)
messages in the queues of the networking components are checked for validity
by the components from where they came and the valid messages are printed to
the screen; (iii) only well-formed and properly-verified Modbus messages reach
the trusted network; and (iv) only well-formed and properly-signed Modbus
messages reach the untrusted network.

Liveness properties are more difficult to check in a large model. However, the
two liveness properties in Table 2 ensure that: (i) messages entering the prepro-
cessor from a networking component eventually reach the opposite networking
component and are eventually consumed; and (ii) all queues are eventually
emptied.

The messages selected to push through the system drive the model. Since
it is not possible to model every possible input to the networked components,
only certain amounts and types of messages that exercise every state in the
model are employed. The TLC model checker keeps track of the number of
times each state is reached; states that are reached zero times are of particular
interest. Although a concise set of messages has not been found to hit every
state in a single run without running out of memory, each state can be reached
over multiple runs with different sets of inputs. The inputs include messages
that are too short to be valid, messages that are too long to be valid, messages

280 CRITICAL INFRASTRUCTURE PROTECTION XIII

that are valid, messages that contain incorrect characters, messages that cause
restarts, and all possible single-byte inputs.

4.3 Specifying and Checking Properties
Two components interface with an output (i.e., printing to the screen in a vir-

tual machine and printing to a serial port on hardware). The first component,
Modtx, reads and transmits Modbus messages while the second component,
Signtx, reads and transmits signed Modbus messages.

The Modtx component has a read thread and a write thread. The component
reads a byte at a time from the serial buffer until its buffer is full or a colon
(:) is received to signal a new Modbus packet or a carriage return/line feed
(\r\n) is received to signal the end of a Modbus packet. The Modtx buffer
is large enough to hold the largest Modbus packet as defined in the Modbus
specification. When the buffer fills without the \r\n, it is cleared and its
index is reset. If a colon is received, then the buffer is cleared and the colon
is placed at the head of the buffer. When a \r\n is received, the Modtx
component interprets its buffer as containing a completed Modbus packet. The
packet is assigned an ID and is simultaneously passed to both the cryptography
component and the Modbus checking component.

The Modtx write thread gathers messages from the Modbus checking com-
ponent and Crypto component. If a new message with a unique ID comes from
the Crypto component, it is stored until a message with the same ID is also
received from the Modbus checking component. After the two messages have
been received, both messages are checked for validity. If the Crypto component
was able to validate the message signature and the Modbus checking deter-
mined that the message contained a correctly-formed Modbus packet, then the
raw Modbus message is printed to the output. Thus, a message is printed only
if both the checking components agree the message is valid.

The invariants and liveness properties in the Modtx specification ensure that
only well-formed, verified packets are printed, that the data to be transmitted is
eventually transmitted and only whole (not necessarily well-formed) messages
reach the inner components.

The top half of Table 3 shows the two invariants and two liveness checks for
the Modtx read thread, which reads bytes from the trusted serial port. The
fist invariant stipulates that the receiving buffer never exceeds the maximum
size of a Modbus message. The second invariant stipulates that the application
buffer (holding data to be forwarded to the inner components) never exceeds
the maximum size of a Modbus message. The two liveness checks ensure that if
a complete Modbus message is received (starting with a colon and ending with
\r\n) and is under the maximum size, then the message is eventually processed
and forwarded to the inner components.

The bottom half of Table 3 shows the two invariants and three liveness checks
for the Modtx write thread. The first invariant stipulates that a byte is only
sent if the original message is a valid Modbus message. The second invariant
stipulates that only valid Modbus characters reach the sending register. The

Sabraoui, Hieb, Lauf & Graham 281

Table 3. Desired Modtx component properties.

Modtx Read Thread Property

A receiving buffer containing bytes read from the Invariant
serial port does not hold more than a Modbus message

A buffer containing bytes to be forwarded to inner Invariant
components does not hold more than a Modbus message

A well-formed Modbus message in the receiving buffer Liveness
is eventually processed

A well-formed Modbus message is eventually forwarded Liveness
to inner components

Modtx Write Thread Property

A byte is printed to the serial port only if the entire Invariant
Modbus message is valid

Only valid Modbus characters are stored in the serial Invariant
port register

A sending buffer containing a valid Modbus message is Liveness
eventually emptied

A valid Modbus message to be printed is eventually Liveness
printed

A transmit flag that is raised is eventually lowered Liveness

first liveness check ensures that if there is a message to send (transmit flag is
raised) and the message is a valid Modbus message, then the buffer is eventually
emptied. The second liveness check ensures that if there is a valid Modbus
message to send, then the bytes are eventually sent. The third liveness check
ensures that if the transmit flag is raised, then it is eventually lowered to allow
a new message to start the process again.

The Signtx component works in a similar manner as the Modtx component,
but with two exceptions. Its reading thread looks for a complete encapsulated
message instead of a complete Modbus message and it utilizes the Crypto com-
ponent to validate signatures instead of its signing functionality. The Signtx
component assigns ID numbers to incoming messages and forwards decapsu-
lated messages to the Modbus checking component.

4.4 Checking Modbus Properties
The Modbus protocol is modeled within TLA+ and a mechanism is incorpo-

rated to check that a given stream of bytes conforms to the Modbus standard
[35]. These are necessary to ensure that only valid Modbus packets can traverse
the preprocessor.

282 CRITICAL INFRASTRUCTURE PROTECTION XIII

The Modbus specification is more a definition than a model of behavior. As
shown in Table 1, a Modbus message has five simple fields and a longitudinal
redundancy check for determining transmission errors. The lengths and char-
acter sequences in the fields in a Modbus packet are clearly defined, so it is
straightforward to analyze each field. The head of the packet is checked to be
the colon. The address and function fields are both checked to be two-byte
hexadecimals. The data field is checked to be between zero and 504 bytes long
and all the characters are hexadecimal. The end of the data field is found by
taking every character from its start to the length of the packet and subtract-
ing four. The longitudinal redundancy field is checked to be two hexadecimal
characters and that the value in the packet matches the computed value. The
end field is checked to contain exactly \r\n.

The Modbus message definition is used as an invariant in other specifica-
tions. This requires checking that the length of a received message is within
the Modbus size limits. Next, each field of the message is examined individually
to determine if it matches its definition. A message is a valid Modbus message
when all the components match the definitions in Table 1. The Modchk com-
ponent passes its decision (valid or invalid) along with the message itself to the
opposite component from which the message was received.

4.5 Checking Cryptographic Properties
The Crypto component has two functions: (i) message signing; and (ii)

signature verification. The seL4 architecture makes the signing capabilities
available only to the Modtx component and the verifying capabilities available
only to the Signtx component. This means that signed data only flows one way
and unsigned data only flows the other way.

When Modtx receives a raw Modbus message to be signed, it passes the
message and message ID to the message signing function in the Crypto compo-
nent. The Crypto component generates a hash-based message authentication
code (HMAC) using the Beringer-Appel verified HMAC and SHA-256 imple-
mentations [4, 7] with a preshared key, then forwards the raw Modbus message,
the generated HMAC and the message ID to the Signtx component. Alterna-
tively, when Signtx receives a signed message from the untrusted network, it
passes the message and the message ID to the signature verification function.
The signature verification function separates the raw Modbus message from the
received HMAC, generates its own HMAC and compares the two HMACs. It
then passes the raw Modbus message, the message ID and the Crypto compo-
nent decision (valid or invalid) to the Modtx component.

Modeling the Crypto component hides the cryptographic techniques behind
a Boolean abstraction as the verification work for the target implementation of
HMAC has been done elsewhere [4, 7]. The specification uses an HMAC com-
parison function that simply returns true or false regardless of the strings being
compared. When checking the model, the TLA+ model checker expands the
state space for both possibilities, ensuring that the safety or liveness properties
are not violated regardless of the decision made by the Crypto component.

Sabraoui, Hieb, Lauf & Graham 283

Table 4. Desired Crypto component properties.

Message Signing Property

A macMessage is empty or contains a well-formed packet Invariant

The input and output of the signing function are different Invariant

A password does not change Invariant

A message that is received is eventually processed Liveness

A message that is processed is eventually forwarded Liveness

Signature Verification Property

A password does not change Invariant

A message that is flagged as valid is, in fact, valid Invariant

A message that is invalid is never flagged as valid Invariant

A message that is received is eventually flagged as Liveness
valid or invalid

A message that is received is eventually forwarded Liveness

The message signing function has three invariants and two liveness checks
(top half of Table 4). The buffer that holds the processed string to be forwarded,
macMessage, is checked in all the invariants. The first invariant stipulates that
macMessage is either empty or contains a well-formed packet. The second
invariant stipulates that the information received and passed by the message
signing function are different, demonstrating that processing has taken place.
The third invariant stipulates that the password variable is never changed. The
two liveness check ensure that a message that is received is eventually processed
and forwarded.

The signature verification function has three invariants and two liveliness
checks (bottom half of Table 4). As in the case of the message signing function,
the first invariant stipulates that the password variable is never changed. The
second invariant stipulates that a message marked as valid when it is forwarded
to the Modtx component has a validated HMAC. The third invariant stipulates
that an invalid message is never flagged as valid. The two liveness checks ensure
that, if a message is received, then it is eventually flagged and forwarded to the
Modtx component.

5. Discussion
An attacker who targets the network in which the bumper-in-the-wire device

operates may attempt to forge messages, or tamper with or replay captured
messages. Alternatively, the attacker may attempt to exploit the trust rela-

284 CRITICAL INFRASTRUCTURE PROTECTION XIII

tionship between the internal network and the device by assuming control and
generating malicious traffic that originates from the device as described in [22].
However, the device is immune to these types of attacks because invariants en-
sure that, regardless of the model state, only valid Modbus messages (whether
encapsulated or not) can be printed. Further, if the assumptions described
above hold, then the system would not accept messages that have been tam-
pered with (i.e., messages that do not match the attached HMACs). A nonce
is included in each encapsulated message to prevent replay attacks.

Restricting the model checking to a feasible state-space required a few tricks.
The simplest incarnation of the model completed in roughly ten minutes, but
the number of states extended to the tens of millions. Modeling each thread
individually enabled around 10,000 states to be explored to verify the invariants
and perform the liveness checks. Relying on the verification work applied to
the seL4 component architecture enabled the component models to be kept
separate while maintaining the queue-based message passing structure of the
general model. While these strategies may change according to the project,
researchers have shown that even larger projects can see benefits when the
state space is restricted to a manageable size [5, 37]

6. Conclusions
Industrial control network traffic is routinely checked for transmission errors,

but limited security mechanisms are available for combating attacks that ex-
ploit industrial control protocols to target field devices. The bump-in-the-wire
solution considered in this research is designed to be retrofitted on field devices
to provide the needed security functionality. The TLA+ formal specification
language in combination with the isolation guarantees provided by the seL4 mi-
crokernel are used to demonstrate that the bump-in-the-wire device provides
the desired security and liveness properties. Indeed, the resulting machine-
checked system correctly applies hash-based message authentication to verify
the authenticity of incoming protocol messages while being resistant to attacks.
In particular, the verified specification assures that only valid, authenticated
Modbus packets flow across a field device, that a compromised component can-
not break the security properties of adjacent components, that the device is
not vulnerable to replay and spoofing attacks, and that the device is resilient
to malformed and malicious traffic.

Future research will focus on formal proofs at the code level and a verified
implementation targeting the seL4 microkernel. The modular design would be
conducive to full formal verification because the components are limited in how
they interact with other components (if they interact at all). The seL4 proof
work provides the isolation and interprocess communications guarantees, facili-
tating a component-based architecture. The component-based architecture can
be abstracted to a distributed system of critical decision points, which TLA+
excels at modeling and checking. Thus, the important next step is to move
from a TLA+ specification to executable, verified C code. The verified C code

Sabraoui, Hieb, Lauf & Graham 285

could be incorporated in the CAmkES build and deployed in a native seL4
application.

References

[1] M. Abrams and J. Weiss, Malicious control system cyber security attack
case study – Maroochy Water Services, presented at the Twenty-Fourth
Annual Computer Security Applications Conference, 2008.

[2] R. Amoah, S. Camtepe and E. Foo, Formal modeling and analysis of DNP3
Secure Authentication, Journal of Network and Computer Applications,
vol. 59, pp. 345–360, 2016.

[3] N. Anderson, Confirmed: US and Israel created Stuxnet, lost control of it,
Ars Technica, June 1, 2012.

[4] A. Appel, Verification of a cryptographic primitive: SHA-256, ACM Trans-
actions on Programming Languages and Systems, vol. 37(2), article no. 7,
2015.

[5] Azure, Azure Cosmos TLA+ specifications, GitHub (github.com/Azure/
azure-cosmos-tla), 2018.

[6] M. Bartock, J. Cichonski, M. Souppaya, M. Smith, G. Witte and K. Scar-
fone, Guide for Cybersecurity Event Recovery, NIST Special Publication
800-184, National Institute of Standards and Technology, Gaithersburg,
Maryland, 2016.

[7] L. Beringer, A. Petcher, K. Ye and A. Appel, Verified correctness and
security of OpenSSL HMAC, Proceedings of the Twenty-Fourth USENIX
Security Symposium, pp. 207–221, 2015.

[8] Blue Coat Systems, Blue Coat ICS Protection, Scanner Station Ver-
sion, USB Malware Defense for Industrial Computers, User Guide, Ver-
sion 5.3.1, Sunnyvale, California (docplayer.net/18790337-Blue-coat-
ics-protection-scanner-station-version.html), 2014.

[9] P. Cichonski, T. Millar, T. Grance and K. Scarfone, Computer Security
Incident Handling Guide, NIST Special Publication 800-61, Revision 2,
National Institute of Standards and Technology, Gaithersburg, Maryland,
2012.

[10] Control Microsystems, DNP3 User and Reference Manual, Kanata,
Canada, 2007.

[11] K. Curtis, A DNP3 Protocol Primer (Revision A), DNP3 Users Group,
Calgary, Canada (www.dnp.org/Portals/0/AboutUs/DNP3%20Primer%20
Rev%20A.pdf), 2005.

[12] S. East, J. Butts, M. Papa and S. Shenoi, A taxonomy of attacks on the
DNP3 protocol, in Critical Infrastructure Protection III, C. Palmer and S.
Shenoi (Eds.), Springer, Berlin Heidelberg, Germany, pp. 67–81, 2009.

[13] J. Edmonds, M. Papa and S. Shenoi, Security analysis of multilayer
SCADA protocols, in Critical Infrastructure Protection, E. Goetz and S.
Shenoi (Eds.), Springer, Boston, Massachusetts, pp. 205–221. 2007.

286 CRITICAL INFRASTRUCTURE PROTECTION XIII

[14] N. Falliere, Stuxnet introduces the first known rootkit for industrial control
systems, Symantec Security Response Blog (www.symantec.com/connect
/blogs/stuxnet-introduces-first-known-rootkit-scada-devices),
August 6, 2010.

[15] N. Falliere, L. O’Murchu and E. Chien, W32.Stuxnet Dossier, Version 1.4,
Symantec, Mountain View, California, 2011.

[16] M. Fernandez, G. Klein, I. Kuz and T. Murray, CAmkES Formalization of
a Component Platform, National Information and Communications Tech-
nology Research Centre of Excellence (NICTA), Sydney, Australia, 2012.

[17] K. Fisher, J. Launchbury and R. Richards, The HACMS Program: Using
formal methods to eliminate exploitable bugs, Philosophical Transactions,
Series A, Mathematical Physical and Engineering Sciences, vol. 375(2104),
article no. 20150401, 2017.

[18] T. Gary, ICS/SCADA smart scanning: Discover and assess IT-based sys-
tems in converged IT/OT environments, Tenable Blog, June 12, 2018.

[19] G. Gilchrist, Secure authentication for DNP3, Proceedings of the IEEE
Power and Energy Society General Meeting – Conversion and Delivery of
Electrical Energy in the 21st Century, 2008.

[20] J. Hieb, J. Graham, J. Schreiver and K. Moss, Security preprocessor for
industrial control networks, Proceedings of the Seventh International Con-
ference on Information Warfare and Security, pp. 130–137, 2012.

[21] V. Igure, S. Laughter and R. Williams, Security issues in SCADA networks,
Computers and Security, vol. 25(7), pp. 498–506, 2006.

[22] Industrial Control Systems Cyber Emergency Response Team (ICS-
CERT), Advisory (ICSA-12-231-01B), Sixnet Universal Protocol Undoc-
umented Function Codes (Update B), Idaho Falls, Idaho (www.us-cert.
gov/ics/advisories/ICSA-13-231-01B), September 17, 2013.

[23] Industrial Control Systems Cyber Emergency Response Team (ICS-
CERT), ICS-CERT Advisories, Idaho Falls, Idaho (ics-cert.us-cert.
gov/advisories), 2019.

[24] Kaspersky Lab ICS CERT, Threat Landscape for Industrial Automation
Systems in the Second Half of 2016, Kaspersky Lab, Moscow, Russia, 2017.

[25] Kaspersky Lab ICS CERT, Threat Landscape for Industrial Automation
Systems in H2 2017, Kaspersky Lab, Moscow, Russia, 2018.

[26] G. Klein, P. Derrin and K. Elphinstone, Experience report: seL4: Formally
verifying a high-performance microkernel, Proceedings of the Fourteenth
ACM SIGPLAN International Conference on Functional Programming,
pp. 91–96, 2009.

[27] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch
and S. Winwood, seL4: Formal verification of an OS kernel, Proceedings
of the Twenty-Second ACM Symposium on Operating Systems Principles,
pp. 207–220, 2009.

Sabraoui, Hieb, Lauf & Graham 287

[28] D. Kuhn and J. Dray, Formal specification and verification of control soft-
ware for cryptographic equipment, Proceedings of the Sixth Annual Com-
puter Security Applications Conference, pp. 32–43, 1990.

[29] I. Kuz, Y. Liu, I. Gorton and G. Heiser, CAmkES: A component model
for secure microkernel-based embedded systems, Journal of Systems and
Software, vol. 80(5), pp. 687–699, 2007.

[30] L. Lamport, The temporal logic of actions, ACM Transactions on Pro-
gramming Languages and Systems, vol. 16(3), pp. 872–923, 1994.

[31] L. Lamport, Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers, Addison-Wesley, Boston, Massachusetts,
2002.

[32] L. Lamport, The TLA Home Page (lamport.azurewebsites.net/tla/
tla.html), December 6, 2018.

[33] H. Mackenzie, SCADA security basics: Why industrial networks are dif-
ferent than IT networks, Tofino Security Blog, October 31, 2012.

[34] L. Martin-Liras, M. Prada, J. Fuertes, A. Moran, S. Alonso and M.
Dominguez, Comparative analysis of the security of configuration protocols
for industrial control devices, International Journal of Critical Infrastruc-
ture Protection, vol. 19, pp. 4–15, 2017.

[35] Modbus Organization, Modbus over Serial Line: Specification and Im-
plementation Guide, V1.02, Hopkinton, Massachusetts (www.modbus.org/
docs/Modbus_over_serial_line_V1_02.pdf), 2006.

[36] National Institute of Standards and Technology, Framework for Improv-
ing Critical Infrastructure Cybersecurity, Version 1.1, Gaithersburg, Mary-
land, 2018.

[37] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker and M.
Deardeuff, Use of Formal Methods at Amazon Web Services, Ama-
zon, Seattle, Washington (lamport.azurewebsites.net/tla/formal-
methods-amazon.pdf), 2014.

[38] B. Obama, Presidential Policy Directive 21: Critical Infrastructure Secu-
rity and Resilience (PPD-21), The White House, Washington, DC, Febru-
ary 12, 2013.

[39] M. Permann, K. Lee, J. Hammer and K. Rohde, Mitigations for security
vulnerabilities found in control system networks, presented at the Sixteenth
Annual Joint ISA POWID/EPRI Controls and Instrumentation Confer-
ence, 2006.

[40] J. Rushby, Design and verification of secure systems, Proceedings of the
Eighth ACM Symposium on Operating Systems Principles, pp. 12–21, 1981.

[41] K. Scarfone and P. Mell, Guide to Intrusion Detection and Prevention
Systems (IDPS), NIST Special Publication 800-94, National Institute of
Standards and Technology, Gaithersburg, Maryland, 2007.

[42] U. Shamir, Analyzing a New Variant of BlackEnergy 3: Likely Insider-
Based Execution, SentinelOne, Mountain View, California, 2016.

288 CRITICAL INFRASTRUCTURE PROTECTION XIII

[43] K. Stouffer, J. Falco and K. Scarfone, Guide to Industrial Control Sys-
tems (ICS) Security, NIST Special Publication 800-82, National Institute
of Standards and Technology, Gaithersburg, Maryland, 2011.

[44] J. Sullivan and D. Kamensky, How cyber-attacks in Ukraine show the
vulnerability of the U.S. power grid, The Electricity Journal, vol. 30(3),
pp. 30–35, 2017.

[45] United Nations Security Council Counter-Terrorism Committee Execu-
tive Directorate (CTED) and United Nations Office of Counter-Terrorism,
The Protection of Critical Infrastructure against Terrorist Attacks: Com-
pendium of Good Practices, Geneva, Switzerland, 2018.

[46] D. Wagner, Infrastructure under attack, Risk Management, vol. 63(8), pp.
28–33, 2016.

Chapter 15

DEFINING ATTACK PATTERNS FOR
INDUSTRIAL CONTROL SYSTEMS

Raymond Chan, Kam-Pui Chow and Chun-Fai Chan

Abstract Attack patterns have been used to specify security test cases for tra-
ditional information technology systems in order to mitigate cyber at-
tacks. However, the attack patterns for traditional information tech-
nology systems are not directly applicable to industrial control systems.
This chapter considers the differences between traditional information
technology systems and industrial control systems, discusses why attack
patterns for traditional information technology systems are inadequate
for industrial control systems, and specifies attack patterns for indus-
trial control systems. The attack patterns are useful for creating security
test cases for assessing the security levels of industrial control systems.
An elevator system case study is used to demonstrate the utility of in-
dustrial control system attack patterns in specifying security test cases.

Keywords: Industrial control systems, attack patterns, security testing

1. Introduction
A large-scale industrial control system (ICS) can comprise hundreds or even

thousands of programmable logic controllers (PLCs) and sensors interconnected
in a network. Information technology networks at large corporations do not
have control devices and sensors, but they may have similar workstations and
servers as industrial control systems. Additionally, the network architectures
of industrial control systems and information technology networks are similar.
The interconnections of industrial control systems and information technology
networks expose the control systems and the infrastructure assets they operate
to cyber attacks.

The Stuxnet worm, which attacked Iran’s uranium hexafluoride centrifuges,
demonstrated how a cyber weapon could enter a conventional information tech-
nology asset and eventually move into a highly-secure industrial control sys-
tem [15]. In 2015, BlackEnergy, an HTTP-based toolkit, enabled hackers to

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 289–309, 2019.

https://doi.org/10.1007/978-3-030-34647-8_15

https://doi.org/10.1007/978-3-030-34647-8_15
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_15&domain=pdf

290 CRITICAL INFRASTRUCTURE PROTECTION XIII

launch distributed denial-of-service (DDoS) attacks on industrial control sys-
tems and supervisory control and data acquisition (SCADA) systems [2]. In
2017, the WannaCry malware infected workstations at the Chernobyl nuclear
power plant, which had to switch to manual radiation monitoring as a result
of the attack [5]. The Shodan search engine enables users to discover and
gain information about thousands of Internet-facing industrial control systems
around the world; the information collected can be used by hackers to enter
the industrial control systems and disrupt, perhaps even damage, the physical
assets they operate.

Attack patterns have been used to specify security test cases for traditional
information technology systems in order to mitigate cyber attacks. However,
the attack patterns for traditional information technology systems are not di-
rectly applicable to industrial control systems. This chapter considers the differ-
ences between traditional information technology systems and industrial control
systems, discusses why attack patterns for traditional information technology
systems are inadequate for industrial control systems, and specifies attack pat-
terns for industrial control systems. The attack patterns are useful for creating
security test cases for assessing the security levels of industrial control systems.
An elevator system case study is used to demonstrate the utility of industrial
control system attack patterns in specifying security test cases.

2. Related Work
Attack pattern research has largely focused on specifying and discovering

attack patterns for information technology systems. Zhu [16] has proposed an
algorithm that determines network attack patterns by mining network traffic
logs. The resulting patterns are used to identify and detect network attacks.

Rahaman et al. [11] have developed an attack pattern framework for iden-
tifying and mitigating attacks on enterprise information systems. Li et al. [7]
have proposed an attack pattern mining algorithm that extracts attack patterns
from security logs.

Other researchers [8] have analyzed attacks using attack patterns in a com-
prehensive attack knowledge repository. Bozic and Wotawa [1] have proposed
a formalization of attack patterns from which test cases can be generated and
executed automatically to conduct security testing.

Limited attack pattern research has concentrated on industrial control sys-
tems. Pricop and Mihalache [10] have proposed a fuzzy-logic-based approach
for modeling cyber attack patterns on data transfers in industrial control sys-
tems. They classified adversaries into profiles ranging from script kiddies to
cyber warriors. They also introduced an adversary profile score that can be
used to rate adversary skills. However, they do not discuss the types of indus-
trial control system attacks that an adversary could perform. Indeed, from the
security point of view, identifying an adversary profile may not be adequate to
develop an industrial control system protection plan.

In summary, research on attack patterns has focused primarily on infor-
mation technology systems and related adversary knowledge. Since attacking

Chan, Chow & Chan 291

industrial control systems is quite different from attacking traditional infor-
mation technology systems, it is necessary to define attack patterns that are
specific to industrial control systems. Attack patterns for industrial control sys-
tems can help understand the underlying security issues and assist in creating
security test cases for industrial control systems.

3. Attack Patterns
An attack pattern is an abstraction mechanism for describing how a specific

type of attack can be executed. An attack pattern describes the context where
the attack type is applicable along with its working principle. It also defines
the nature of the attack and provides general recommendations for mitigating
the attack. In short, an attack pattern is a blueprint of an attack.

According to Sethi and Barnum [12], attack patterns define a series of re-
peatable steps that can be applied to simulate an attack against the security
of a system. The Common Attack Pattern Enumeration and Classification
(CAPEC) [9] specifies cyber attack patterns for information technology sys-
tems. Although some of these attack patterns can be applied to industrial
control systems, it is important to define attack patterns that are specific to
industrial control systems. In fact, absent attack patterns that are customized
to industrial control systems, it is not possible to cover all the attack types that
target industrial control systems. This means that a complete set of security
test cases cannot be defined. Security testing that does not cover all possi-
ble attacks prevents proper assessments of the risk levels of industrial control
systems.

3.1 Design Patterns
Gamma et al. [3] have specified design patterns for software and operating

systems. These design patterns can be applied to specify attack patterns for
industrial control system that are related to software, operating system and
network architectures. Design patterns define common models or problems
whereas attack patterns define cyber attacks that occur frequently.

Unfortunately, attack patterns for information technology systems do not
cover the fact that an adversary can change the physical environment of an
industrial plant. For example, sensors that monitor industrial plant equipment
and environments are not covered by attack patterns for information technology
systems. Because industrial control devices always trust sensor data, which is
easily tampered with, the attacks cannot be mitigated by software or program
logic. As a result, it is necessary to specify attack patterns for industrial control
systems using the design patterns of Gamma et al. [3].

3.2 Attack Pattern Usage
Attack patterns are useful for defining and developing application security

and security-related actions for information technology systems. The attack

292 CRITICAL INFRASTRUCTURE PROTECTION XIII

patterns help understand the possible threats and their impacts [4]. Addition-
ally, attack patterns are useful for testing applications and systems to identify
and mitigate potential vulnerabilities.

For example, a security engineer can study attack patterns corresponding to
man-in-the-middle and replay attacks before an application is designed. The
security engineer would know in advance the possible attacks that the appli-
cation may face. Furthermore, he/she would know the security testing that
should be conducted based on the attack patterns. Last, but not least, the
application can be planned and developed to achieve security by mitigating the
attacks specified by the attack patterns.

Since industrial control systems do not have security testing standards, it is
essential to define attack patterns for these systems. Many industrial control
systems do not receive security patches or have application and operating sys-
tem update policies in place for fixing vulnerabilities [14]. Attack patterns are
needed to propose a security testing standard that forces industrial control sys-
tem operators to define security patches and policies. Indeed, attack patterns
are vital to preparing and defining test cases for assessing the security levels of
industrial control systems.

3.3 System Comparison
This section discusses the common characteristics and the differences be-

tween information technology and industrial control systems.
An industrial control network hierarchy has three layers [13]. The top layer

is the enterprise layer, which is similar to that of an information technology sys-
tem. This layer usually comprises servers and workstations that are necessary
to support operations. Examples are the mail server and the database server
that stores information. The workstations are typically connected to industrial
control devices, which means they can access the control devices and impact
the physical equipment. Below the enterprise layer is the control layer that con-
tains industrial control devices that monitor and manage physical equipment
located in the lowest physical plant layer. The physical plant layer is main-
tained and managed by technicians and engineers who usually do not have a
role in securing industrial control devices.

The differences between information technology and industrial control sys-
tems can be understood in terms of their architectures, constituent devices,
attack goals and attack methods. As mentioned above, the enterprise layers
of information technology and industrial control systems are similar. However,
the bottom two layers of the network hierarchy – the control layer and the
physical plant layer – are unique to industrial control systems.

In the case of industrial control systems, the control layer comprises indus-
trial control devices while the physical plant layer comprises physical equipment
and sensors. Information technology systems do not have such devices. The
devices in the bottom two layers of industrial control systems are attractive
cyber attack targets because they are more vulnerable than devices in the en-

Chan, Chow & Chan 293

terprise layer. Moreover, successful attacks can disrupt plant operations, and
possibly damage or destroy plant equipment.

Attackers of information technology systems and industrial control systems
generally have different goals, although some goals may be similar. In the case
of information technology systems, an attacker may wish to steal sensitive or
proprietary data, disrupt business operations or collect ransom [6]. Attackers of
industrial control systems typically have political or terrorist motivations, but
they may also be interested in accessing proprietary information, disrupting
plant operations or collecting ransom [15].

Information technology systems are generally attacked via malware or by
exploiting software or operating system vulnerabilities to gain system access.
Industrial control system attackers typically leverage unauthenticated and un-
encrypted communications protocols to target workstations, human-machine
interfaces, industrial control devices and sensors.

4. Attack Pattern Classification
This section defines common attack patterns for industrial control systems

using the attack pattern classification profiles suggested by Sethi and Bar-
num [12]. The adversary profiles defined by Pricop and Mihalache [10] are used
to specify the skill levels of adversaries.

The following subsections describe five industrial control system attack pat-
terns. The Information Collection and Analysis attack pattern describes how
an adversary can gather information about an industrial control device before
launching an attack. The Injection attack pattern describes how the behavior
of an industrial control device can be controlled or modified. The Denial-of-
Service attack pattern describes how an industrial control device can be the
source or target of a denial-of-service attack and how denial of service increases
the vulnerability of the industrial control system. The System Resource Ma-
nipulation attack pattern describes how a software application or workstation
in an industrial control system can be attacked. Finally, the Sensor Manipu-
lation attack pattern describes how an adversary can use a sensor to alter the
behavior of an industrial control device.

4.1 Information Collection and Analysis
Description: A programmable logic controller periodically sends com-
mands to and receives data from devices in its industrial control network.
An adversary can collect and analyze this information to gain knowledge
about the industrial control network and its devices.

Attack Prerequisites: An adversary can access the internal industrial
control network and capture communications traffic between the pro-
grammable logic controller, human-machine interfaces (HMIs) and work-
stations.

294 CRITICAL INFRASTRUCTURE PROTECTION XIII

Targeted Vulnerabilities or Weaknesses: The attack leverages the
weakness where devices in an industrial control network do not encrypt
their communications. The communications information includes MAC
addresses, IP addresses, device model numbers and firmware versions. In-
dustrial control devices also respond to the Link Layer Discovery Protocol
(LLDP) and Internet Control Message Protocol (ICMP), which enables
an adversary to locate the devices quickly.

An industrial control network does not incorporate security devices such
as firewalls and intrusion detection systems to isolate the control and
physical plant layers, and to alert operators to intrusions. An industrial
control network also may not have proper access control policies in place,
enabling an adversary to utilize the available protocols to query devices.
An adversary who controls a workstation can locate and connect to any
and all industrial control devices in the network.

Attack Method: An adversary gains access to a workstation in an
industrial control network. The adversary then captures network com-
munications and issues queries to obtain information about devices in the
industrial control network.

Attacker Goal: An adversary desires to collect information about de-
vices in an industrial control network to understand the operation of the
industrial control system.

Required Attacker Skill Level: An adversary only requires basic hack-
ing skills in order to gain access to the industrial control system and cap-
ture network traffic to obtain industrial control device information. The
attack can be performed by all the adversary profiles defined by Pricop
and Mihalache [10].

Example: An adversary sniffs Link Layer Discovery Protocol messages
in an industrial control network and analyzes them to obtain information
about industrial control devices in the network. The adversary can use the
device information to launch more sophisticated attacks on the industrial
control system.

4.2 Injection
Description: Industrial control device communications are insecure.
The network communications are seldom protected by authentication and
encryption. An adversary who knows how industrial control devices com-
municate with each other can inject communications messages that alter
the behavior of the devices or crash the devices.

Attack Prerequisites: An adversary needs to understand the working
principles of industrial control devices, and how they are managed and
manipulated using communications protocols (e.g., Siemens STEP 7 and

Chan, Chow & Chan 295

Modbus). In some cases, the adversary may issue a command to download
a program from an industrial control device and understand the program
logic in order to fully control the device.

Targeted Vulnerabilities or Weaknesses: In order to ensure compat-
ibility, industrial control devices use standard communications protocols.
Devices often communicate using an older version of a protocol to ensure
compatibility with other devices in the network. Also, protection mecha-
nisms for information technology systems are not customized to industrial
control systems; for example, they may not understand industrial control
protocols. The firmware and software of industrial control devices may
rarely or never be updated or patched because vendors may not support
the devices or the devices have to operate continuously and cannot ac-
commodate the downtime required to install updates. An adversary could
employ an older version of a protocol to query and attack industrial con-
trol devices. Additionally, the adversary could upload altered firmware
or control programs to the devices to conduct attacks.

Attack Method: An adversary accesses a workstation in an industrial
control network. A malicious program is installed on the workstation to
inject commands and upload malicious programs or firmware to industrial
control devices.

Attacker Goal: An adversary desires to change the behavior of indus-
trial control devices to crash the entire industrial control system, or to
control industrial control devices in order to make the industrial control
system operate in an abnormal or unsafe manner.

Required Attacker Skill Level: An adversary needs to understand
the industrial control network architecture, industrial control device op-
eration and the communications protocol in order to control and change
the behavior of the devices. Examples include making an elevator mo-
tor move the elevator car much faster than normal or switching off the
elevator light.

Example: A false command injection attack can change the behavior of
an industrial control device. Based on the commands that an industrial
control device sends or receives, a security testing professional can specify
feasible attacks on the device.

4.3 Denial-of-Service
Description: An industrial control network interface does not require
a fast Ethernet connection. Unlike a traditional information technology
network, the amount of network traffic is relatively low in an industrial
control network. An adversary does not need to generate a massive vol-
ume of traffic to launch an effective denial-of-service attack on an indus-
trial control network. Indeed, launching a denial-of-service attack from

296 CRITICAL INFRASTRUCTURE PROTECTION XIII

just one workstation is enough to affect the performance of industrial
control devices.

Attack traffic can be sent from the control center, human-machine inter-
faces or network devices. Attack traffic can also be generated by industrial
control devices.

Attack Prerequisites: An adversary installs and executes malware on
an industrial control device that generates malicious network traffic.

Targeted Vulnerabilities or Weaknesses: The bandwidth of an in-
dustrial control network is generally much lower than that of an informa-
tion technology network; the typical throughput of an Ethernet connec-
tion interface of an industrial control device is low (e.g., 10 to 100 Mbps).
Moreover, network security devices such as firewalls and intrusion preven-
tion systems are often not installed to protect industrial control devices.

Attack Method: A denial-of-service attack on an industrial control
network can be launched from three types of devices:

– Workstation: An adversary installs malware on a workstation to
disrupt the communications channels between a human-machine in-
terface and industrial control devices to render the industrial control
system out of control.

– Industrial Control Device: An adversary installs malware on an in-
dustrial control device, which generates attack traffic that crashes
workstations and/or human-machine interfaces.

– Human-Machine Interface: An adversary installs malware on a hu-
man-machine interface, which sends attack traffic to workstations
and industrial control devices that causes them to malfunction.

Attacker Goal: An adversary desires to render industrial control devices
uncontrollable. The malfunctioning industrial control system disrupts the
industrial process and potentially damages plant equipment.

Required Attacker Skill Level: An adversary needs knowledge about
the industrial control network architecture and needs to know how to
generate network traffic. All types of adversaries can execute denial-of-
service attacks.

Example: An adversary prevents a human-machine interface from com-
municating with an elevator programmable logic controller, causing the
elevator to go out of control. Figure 1 shows a human-machine inter-
face screen after the execution of a denial-of-service attack on an elevator
programmable logic controller.

Chan, Chow & Chan 297

Figure 1. Human-machine interface screen after a denial-of-service attack.

4.4 System Resource Manipulation
Description: Security patch management is typically not in place for
workstation operating systems and applications. In many cases, a work-
station may use an older operating system (e.g., Windows XP) that has
never been updated because of the 24/7 operational requirement. Ad-
ditionally, updated antivirus software may not be installed on the work-
station. Again, because of the 24/7 operational requirement, industrial
control system applications may not have been updated for years, which
means they may have critical vulnerabilities that enable an adversary to
access and modify industrial control devices.

Attack Prerequisites: An adversary gains access to a workstation in an
industrial control network and determines the vulnerable software systems
and applications installed on the workstation.

Targeted Vulnerabilities or Weaknesses: An adversary targets oper-
ating system and industrial control application vulnerabilities, and lever-
ages the absence of antivirus software on a workstation. Access to the
workstation enables the adversary to control and modify industrial con-
trol devices.

Attack Method: An adversary exploits operating system and indus-
trial control application vulnerabilities to gain control of a workstation.

298 CRITICAL INFRASTRUCTURE PROTECTION XIII

Alternatively, the adversary may use a spear phishing (email) attack or
insert a USB device with malware into the workstation.

Attacker Goal: An adversary desires to disrupt a workstation and the
automated operation of control devices, and ultimately disrupt plant op-
erations or damage plant equipment. Operators would have to monitor
and control the plant manually; in the worst case, the plant would have
to be shut down.

Required Attacker Skill Level: Attacking a workstation requires ba-
sic hacking skills. The attack can be performed by a hacker, terrorist,
industrial spy or cyber warrior.

Example: An attacker installs malware on a workstation. The malware
discovers and issues commands that impact the behavior of industrial
control devices in the network.

4.5 Sensor Manipulation
Description: A sensor attack targets the sensors in an industrial con-
trol system. There are different types of sensors, including temperature
sensors, light sensors and touch sensors. In general, there are two types
of sensor attacks:

– Physical Attack: This attack tampers with sensors or causes them to
send incorrect responses. For example, an adversary can manually
cover a light sensor, causing it to send an incorrect signal. Incorrect
sensor values would cause an industrial control device such as a
programmable logic controller to send incorrect commands to the
physical plant.

– Wireless Attack: This attack involves the wireless injection of incor-
rect sensor responses. Communications between sensors and indus-
trial control devices rarely employ authentication and encryption.
An adversary can pretend to be a sensor and send false values to
industrial control devices. The industrial control devices would be
unable to verify the correctness of the inputs they receive.

Attack Prerequisites: An adversary must know where the sensors are
located and how they are connected to industrial control devices. The
adversary also has to know how to modify sensor signals that are sent to
industrial control devices.

Targeted Vulnerabilities or Weaknesses: Sensors are used to moni-
tor a physical plant. Because sensor communications with industrial con-
trol devices are neither authenticated nor encrypted, an adversary can
capture and modify the signals sent to industrial control devices.

Attack Method: In the case of wired sensors, physical access is required
on the part of an adversary to launch an attack that affects sensor signals.

Chan, Chow & Chan 299

In the case of wireless sensors, an adversary can capture sensor signals to
industrial control devices and perform wireless signal injection and replay
attacks.

Attacker Goal: An adversary desires to change sensor signals to induce
industrial control devices to behave incorrectly. Consider, for example, an
elevator that has a light sensor to detect if an object is blocking the door
of the elevator car. The adversary could modify the light sensor signal
from on to off, causing the door to keep opening. Also, touch sensors in
the elevator detect if the car has moved to the upper or lower limit. The
elevator will not move if the adversary alters these sensor signals.

Required Attacker Skill Level: An adversary needs a good under-
standing of how industrial devices operate a physical plant. The ad-
versary also must know how sensors and industrial control devices are
connected and how the devices behave after receiving sensor signals. The
attack can be performed by a terrorist, industrial spy or cyber warrior.

Example: An attacker modifies sensor signals and causes an industrial
control system to behave in an incorrect manner.

5. Elevator System Case Study
This section defines the security test cases for an elevator system based on

the industrial control system attack patterns described in the previous section.
An elevator system operator asked the authors of this paper to design and

conduct a security test of a newly-deployed elevator system. The operator
wanted an assessment of the security level of the elevator system and to deter-
mine if an adversary could exploit vulnerabilities in the workstation, industrial
control devices and sensors to launch attacks that would interrupt elevator
service or seize control of the elevator system.

5.1 Security Test Cases
The following security test cases are based on the industrial control system

attack patterns defined in the previous section:

Information Collection and Analysis: The security test cases in this
category evaluate whether or not device information can be obtained by
an adversary. This information could be used by the adversary to develop
sophisticated attacks that interrupt elevator service or seize control of the
elevator system.

Table 1 shows five security test cases for the Information Collection and
Analysis attack pattern based on the elevator system architecture.

Injection: The security test cases in this category evaluate whether or
not elevator system communications are protected by authentication and
encryption. Additionally, the security test cases evaluate whether or not

300 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 1. Security test cases for Information Collection and Analysis.

Objective Description/Actions Expected Result

Obtain elevator con- 1. Plug attack device into the Elevator controller
troller information – elevator system information cannot
passive 2. Use tcpdump or Wireshark be obtained

to capture traffic
3. Analyze traffic to obtain
elevator controller information

Obtain elevator con- 1. Plug attack device into the Elevator controller
troller information – elevator system information cannot
active 2. Use Nmap to scan the elevator be obtained

controller
3. Analyze traffic to obtain
elevator controller information

Obtain control device 1. Plug attack device into the Control device
information – passive elevator system information cannot

2. Use tcpdump or Wireshark be obtained
to capture traffic
3. Analyze traffic to obtain
control device information

Obtain control device 1. Plug attack device into the Control device
information – active elevator system information cannot

2. Use Nmap to scan the control be obtained
device
3. Analyze traffic to obtain
control device information

Obtain sensor 1. Plug attack device into the Sensor information
information elevator system cannot be obtained

2. Use tcpdump or Wireshark
to capture traffic
3. Analyze traffic to obtain
sensor information

the control protocol is vulnerable and whether or not modified control
system commands and responses can be injected into elevator system
communications.

Tables 2 and 3 show five security test cases for the Injection attack pat-
tern.

Denial-of-Service: The security test cases in this category cover pos-
sible TCP and UDP denial-of-service attacks on the elevator controller,
control devices and sensors.

Chan, Chow & Chan 301

Table 2. Security test cases for Injection.

Objective Description/Actions Expected Result

Test authentication 1. Plug attack device into the Communications
between the elevator elevator system between the elevator
controller and 2. Stop the communications controller and
control devices between the elevator controller control devices

and control devices are authenticated
3. Use tcpdump or Wireshark Authentication is
to capture traffic secure
4. Start the communications
between the elevator controller
and control devices
5. Analyze traffic to check if
the authentication between the
elevator controller and control
devices is vulnerable

Test for encrypted 1. Plug attack device into the Communications
communications elevator system between the elevator
between the elevator 2. Stop the communications controller and
controller and between the elevator controller control devices are
control devices and control devices encrypted

3. Use tcpdump or Wireshark Encryption is secure
to capture traffic
4. Start the communications
between the elevator controller
and control devices
5. Analyze traffic to check if
encrypted communications exist
between the elevator controller
and control devices and if
they are vulnerable

Test if the control 1. Plug attack device into the Control protocol is
protocol is elevator system not vulnerable
vulnerable 2. Stop the communications

between the elevator controller
and control devices
3. Use tcpdump or Wireshark
to capture traffic
4. Start the communications
between the elevator controller
and control devices
5. Analyze traffic to check if
the control protocol version
used is vulnerable

302 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 3. Security test cases for Injection (continued).

Objective Description/Actions Expected Result

Test command 1. Plug attack device into the Commands cannot be
injection into the elevator system injected into the
elevator controller 2. Stop the communications elevator controller

between the elevator controller
and control devices
3. Use tcpdump or Wireshark
to capture traffic
4. Start the communications
between the elevator controller
and control devices
5. Capture commands sent to
the elevator controller
6. Modify and send commands
from the attack device
7. Test if the commands are
executed by the elevator
controller

Test response 1. Plug attack device into the Responses cannot be
injection into the elevator system injected into the
control devices 2. Stop the communications control devices

between the elevator controller
and control devices
3. Use tcpdump or Wireshark
to capture traffic
4. Start the communications
between the elevator controller
and control devices
5. Capture responses sent to
the control devices
6. Modify and send responses
from the attack device
7. Test if the responses are
accepted by the control devices

Table 4 shows six security test cases for the Denial-of-Service attack pat-
tern.

System Resource Manipulation: The security test cases in this cat-
egory relate to performing penetration testing on the control devices and
workstation in the elevator system. Since the workstation connects to the
elevator system, some security test cases assess the security levels of the
workstation and network configuration.

Chan, Chow & Chan 303

Table 4. Security test cases for Denial-of-Service.

Objective Description/Actions Expected Result

Test if TCP DoS attacks 1. Plug attack device into TCP DoS attacks
can be launched on the the elevator system cannot affect the
elevator controller 2. Use hping or LOIC to elevator controller

send TCP packets to the
elevator controller
3. Check if the elevator
controller operates properly

Test if UDP DoS attacks 1. Plug attack device into UDP DoS attacks
can be launched on the the elevator system cannot affect the
elevator controller 2. Use hping or LOIC to elevator controller

send UDP packets to the
elevator controller
3. Check if the elevator
controller operates properly

Test if TCP DoS attacks 1. Plug attack device into TCP DoS attacks
can be launched on the the elevator system cannot affect the
control devices 2. Use hping or LOIC to control devices

send TCP packets to the
control devices
3. Check if the control
devices operate properly

Test if UDP DoS attacks 1. Plug attack device into UDP DoS attacks
can be launched on the the elevator system cannot affect the
control devices 2. Use hping or LOIC to control devices

send UDP packets to the
control devices
3. Check if the control
devices operate properly

Test if TCP DoS attacks 1. Plug attack device into TCP DoS attacks
can be launched on the the elevator system cannot affect the
sensors 2. Use hping or LOIC to sensors

send TCP packets to the
sensors
3. Check if the sensors
operate properly

Test if UDP DoS attacks 1. Plug attack device into UDP DoS attacks
can be launched on the the elevator system cannot affect the
sensors 2. Use hping or LOIC to sensors

send UDP packets to the
sensors
3. Check if the sensors
operate properly

304 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 5. Security test cases for System Resource Manipulation.

Objective Description/Actions Expected Result

Scan control devices 1. Plug vulnerability scanner No critical
using a vulnerability into the elevator system vulnerabiliies
scanner 2. Use the vulnerability scanner are found

scanner on the control devices
3. Check the results provided by
the vulnerability scanner

Scan the workstation 1. Plug vulnerability scanner No critical
using a vulnerability into the elevator system vulnerabilities
scanner 2. Use the vulnerability scanner are found

scanner on the workstation
3. Check the results provided by
the vulnerability scanner

Check the network 1. Use the administration Network is
configuration in the console to check the network configured
elevator system configuration properly

Extract the elevator 1. Plug attack device into the Elevator program
program from the elevator system cannot be
elevator controller 2. Use the IDE (e.g., Siemens extracted from

TIA Portal) to connect to the the elevator
elevator controller controller
3. Send the download command
to the elevator controller
4. Check if the elevator
program can be downloaded

Modify the elevator 1. Plug attack device into the Modified
program in the elevator system elevator program
elevator controller 2. Use the IDE (e.g., Siemens cannot be

TIA Portal) to connect to the uploaded to
elevator controller the elevator
3. Send the upload command controller
to the elevator controller and execute
4. Check if the modified properly
elevator program can be
uploaded and execute properly

Check the elevator 1. Plug attack device into the Elevator
controller firmware elevator system controller
version 2. Use the IDE (e.g., Siemens firmware is

TIA Portal) to connect to the the latest
elevator controller version
3. Check the firmware version

Chan, Chow & Chan 305

Figure 2. Elevator light sensor.

Table 5 shows six security test cases for the System Resource Manipula-
tion attack pattern.

Sensor Manipulation: The security test cases in this category relate to
potential compromises of sensors. In the case of wired sensors, the sensors
have to be located and attacked by physical means. In the case of wire-
less sensors, a Wi-Fi sniffer and/or Bluetooth sniffer are required. The
security test cases for the Sensor Manipulation and Injection attack pat-
terns are similar. However, the two attack pattern categories are treated
separately for effective security testing.

The elevator system has light sensors and touch sensors that connect to
the elevator controller (Figures 2 and 3, respectively). The security test
cases check whether or not it is possible to change the sensor values and
the behavior of the elevator.

Table 6 shows five security test cases for the Sensor Manipulation attack
pattern.

5.2 Results
The attack patterns enabled the security testing team to define elevator

system security test cases. Also, the attack patterns helped identify the types
of attacks, vulnerabilities exploited by the attacks, and methods for detecting
and mitigating the attacks.

306 CRITICAL INFRASTRUCTURE PROTECTION XIII

Figure 3. Elevator touch sensor.

6. Conclusions
The interconnections of industrial control systems and information technol-

ogy networks expose the control systems and the infrastructure assets they
operate to cyber attacks. Attack patterns have been used to specify security
test cases for traditional information technology systems in order to mitigate
cyber attacks. However, because of differences in the architectures, constituent
devices, attack goals and attack methods, the attack patterns for traditional
information technology systems are not directly applicable to industrial control
systems.

Five attack patterns have been specified for industrial control systems –
Information Collection and Analysis, Injection, Denial-of-Service, System Re-
source Manipulation and Sensor Manipulation. Each industrial control system
attack pattern has six components – description, attack prerequisites, targeted
vulnerabilities or weaknesses, attack method, attacker goal and required at-
tacker skill level.

As demonstrated in the elevator system case study, the attack patterns help
understand the possible threats and their impacts to an industrial control sys-
tem and the physical plant it operates. The attack patterns are also useful
for creating security test cases for assessing the security levels of the indus-
trial control system, and for developing and implementing attack mitigation
mechanisms.

Chan, Chow & Chan 307

Table 6. Security test cases for Sensor Manipulation.

Objective Description/Actions Expected Result

Test authentication 1. Plug attack device into the Authentication
between the elevator elevator system is secure
controller and 2. Use tcpdump or Wireshark
sensors to capture traffic

3. Analyze traffic to check if
the authentication between the
elevator controller and sensors
is vulnerable

Test encryption 1. Plug attack device into the Encryption is
between the elevator elevator system secure
controller and 2. Use tcpdump or Wireshark
sensors to capture traffic

3. Analyze traffic to check if
the encryption between the
elevator controller and sensors
is vulnerable

Test if the sensor 1. Plug attack device into the Sensor signals
signals can be elevator system cannot be modified
modified 2. Use tcpdump or Wireshark

to capture signals sent by
the sensors
3. Modify and send signals from
the attack device
4. Check if the signals are
accepted by the elevator
controller

Test if the sensors 1. Gain physical access to the Sensors cannot be
can be accessed elevator system accessed physically
physically and 2. Locate the sensors and replaced
replaced 3. Attempt to remove and

replace the sensors
4. Check if the elevator system
is still operational

Test if the wireless 1. Use tcpdump or Wireshark Wireless sensor
sensor signals can to capture wireless signals signals cannot
be tampered with sent by the sensors be tampered with

2. Modify and send wireless
signals from the attack device
3. Check if the signals are
accepted by the elevator
controller

308 CRITICAL INFRASTRUCTURE PROTECTION XIII

References

[1] J. Bozic and F. Wotawa, Security testing based on attack patterns, Pro-
ceedings of the Seventh IEEE International Conference on Software Test-
ing, Verification and Validation Workshops, pp. 4–11, 2014.

[2] Z. Flom, Shedding light on BlackEnergy with open source intelligence,
Recorded Future Blog (www.recordedfuture.com/blackenergy-malware
-analysis), March 3, 2016.

[3] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: El-
ements of Reusable Object-Oriented Software, Addison-Wesley, Boston,
Massachusetts, 1994.

[4] M. Gegick and L. Williams, Matching attack patterns to security vulnera-
bilities in software-intensive system designs, Proceedings of the Workshop
on Software Engineering for Secure Systems – Building Trustworthy Ap-
plications, 2005.

[5] M. Havis, Chernobyl under attack: Computers “shut down” at nuclear
disaster plant, Daily Star, June 27, 2017.

[6] P. Jie and L. Li, Industrial control system security, Proceedings of the
International Conference on Intelligent Human-Machine Systems and Cy-
bernetics, vol. 2, pp. 156–158, 2011.

[7] K. Li, Y. Li, J. Liu, R. Zhang and X. Duan, Attack pattern mining algo-
rithm based on security logs, Proceedings of the IEEE International Con-
ference on Intelligence and Security Informatics, p. 205, 2017.

[8] T. Li, E. Paja, J. Mylopoulos, J. Horkoff and K. Beckers, Security attack
analysis using attack patterns, Proceedings of the Tenth IEEE Interna-
tional Conference on Research Challenges in Information Science, 2016.

[9] MITRE, Common Attack Pattern Enumeration and Classification (CA-
PEC), McLean, Virginia (www.capec.mitre.org/about/index.html),
2019.

[10] E. Pricop and S. Mihalache, Fuzzy approach for modeling cyber attack
patterns on data transfer in industrial control systems, Proceedings of the
Seventh International Conference on Electronics, Computers and Artificial
Intelligence, pp. SSS-23–SSS-28, 2015.

[11] M. Rahaman, C. Hebert and J. Frank, An attack pattern framework for
monitoring enterprise information systems, Proceedings of the Twenty-
Fifth IEEE International Conference on Enabling Technologies: Infras-
tructure for Collaborative Enterprises, pp. 173–178, 2016.

[12] A. Sethi and S. Barnum, Introduction to Attack Patterns, Cigital,
Dulles, Virginia (www.us-cert.gov/bsi/articles/knowledge/attack-
patterns/introduction-to-attack-patterns), 2006.

[13] K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams and A. Hahn, Guide to
Industrial Control Systems (ICS) Security, NIST Special Publication 800-
82, Revision 2, National Institute of Standards and Technology, Gaithers-
burg, Maryland, 2015.

Chan, Chow & Chan 309

[14] C. Valli, Issues common to Australian critical infrastructure providers’
SCADA networks discovered through computer and network vulnerability
analysis, Proceedings of the Sixth Australian Digital Forensics Conference,
2008.

[15] K. Zetter, Countdown to Zero Day: Stuxnet and the Launch of the World’s
First Digital Weapon, Broadway Books, New York, 2014.

[16] Y. Zhu, Attack pattern discovery in forensic investigations of network at-
tacks, IEEE Journal on Selected Areas in Communications, vol. 29(7), pp.
1349–1357, 2011.

Chapter 16

AN INCIDENT RESPONSE MODEL
FOR INDUSTRIAL CONTROL SYSTEM
FORENSICS BASED ON HISTORICAL
EVENTS

Ken Yau, Kam-Pui Chow and Siu-Ming Yiu

Abstract Cyber attacks on industrial control systems are increasing. Malware
such as Stuxnet, Havex and BlackEnergy have demonstrated that in-
dustrial control systems are attractive targets for attackers. However,
industrial control systems are not limited to malware attacks. Other at-
tacks include SQL injection, distributed denial-of-service, spear phish-
ing, social engineering and man-in-the-middle attacks. Additionally,
methods such as unauthorized access, brute forcing and insider attacks
have also targeted industrial control systems. Accidents such as fires
and explosions at industrial plants also provide valuable insights into
the targets of attacks, failure methods and potential impacts.

This chapter presents an incident response model for industrial con-
trol system forensics based on historical events. In particular, represen-
tative industrial control system incidents – cyber attacks and accidents –
that have occurred over the past 25 years are categorized and analyzed.
The resulting incident response model is useful for forensic planning and
investigations. The model enables incident response teams and foren-
sic investigators to decide on the expertise, techniques and tools to be
applied to ensure sound evidence acquisition, analysis and reporting.

Keywords: Industrial control systems, incident response, forensics

1. Introduction
The critical infrastructure is defined as processes, systems, facilities, tech-

nologies, networks, assets and services that are essential to the health, safety se-
curity or economic well-being of citizens and the effective functioning of govern-
ment [14]. Critical infrastructure assets can be stand-alone or interconnected,
and interdependent within and across cities, states and nations. Disruptions or

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIII, IFIP AICT 570, pp. 311–328, 2019.

https://doi.org/10.1007/978-3-030-34647-8_16

https://doi.org/10.1007/978-3-030-34647-8_16
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34647-8_16&domain=pdf

312 CRITICAL INFRASTRUCTURE PROTECTION XIII

damage to critical infrastructure assets could result in the loss of life, adverse
economic effects and loss of public confidence [14].

Industrial control systems are indispensable to the safe and efficient oper-
ation of critical infrastructure assets. An industrial control system can be a
single embedded system such as a programmable logic controller (PLC) that
controls an automatic door or an elevator; or it could be a large and complex
distributed control system connected to multiple supervisory control and data
acquisition (SCADA) systems in a nuclear power plant [24].

Modern industrial control systems are increasingly connected to corporate
networks and the Internet over TCP/IP and wireless protocols to improve their
performance and effectiveness [22], exposing the previously-isolated systems to
myriad remote attacks. According to an IBM report [12], cyber attacks on
industrial systems in 2016 increased by 110% over the previous year (2015).
Because of the importance of industrial control systems, it is crucial to protect
them from remote cyber attacks as well as from undesirable incidents such as
hardware failures, malicious intruders, accidents and natural disasters [23].

Digital forensics is an important part of an incident investigation. It helps
reconstruct past events and activities based on timelines in order to prevent
recurring attacks and undesirable incidents from occurring. Industrial con-
trol systems may comprise hundreds to thousands of interconnected devices.
The devices include programmable logic controllers and remote terminal units
(RTUs), which are highly specialized embedded systems that often have limited
computational and memory resources, and functionality. As a result, it can be
difficult to acquire data from industrial control systems. Traditional digital
forensic techniques are also inadequate for industrial control systems. More-
over, standard forensic guidelines, procedures and tools are not as yet available
for investigating incidents involving industrial control systems.

Several frameworks, processes and tools have been developed for industrial
control system security and forensics; these are primarily based on attack pat-
terns of real or synthetic industrial control system malware. However, only
a portion of industrial control system incidents involve malware attacks. This
chapter presents an incident response model for industrial control system foren-
sics based on historical events. In particular, representative industrial control
incidents – cyber attacks and accidents – that have occurred over the past 25
years are categorized and analyzed. The resulting incident response model is
useful for forensic planning and investigations. The model enables incident re-
sponse teams and forensic investigators to decide on the expertise, techniques
and tools to be applied to ensure sound evidence acquisition, analysis and re-
porting.

2. Forensic Challenges
Digital forensic techniques and tools are required to collect evidence for

legal proceedings and internal investigations, as well as to handle malware
incidents and unusual operational problems. Regardless of the application,
digital forensics involves four basic processes: (i) collection; (ii) examination;

Yau, Chow & Yiu 313

Collection Examination Analysis Reporting

Figure 1. Digital forensic process [10].

(iii) analysis; and (iv) reporting (Figure 1). The implementation details of
these processes vary based on the specific forensic needs.

Although digital forensics is becoming a mature domain, investigators need
to modify traditional digital forensic processes for use in industrial control
system environments. The following forensic challenges are encountered in
industrial control environments [7]:

The availability of industrial control systems is a top priority. Therefore,
it is often not possible to shut down devices such as programmable logic
controllers for evidence collection and forensic investigations.

Most modern industrial control environments provide only some of the
required data collection features (e.g., identifying, recording, copying and
labeling materials from a variety of data sources in the information archi-
tecture). Many industrial control systems do not support forensic data
collection.

Contemporary forensic tools, such as those used to examine running pro-
cesses and services, automate evidence collection through precompiled
scripts or programs, bit copy processes and programs that generate check-
sums for image verification, are often not designed to accommodate indus-
trial control system technologies. Many forensic tools cannot be adapted
to operate in industrial control environments.

3. Industrial Control Networks
Operational technology (OT) refers to the hardware and software that moni-

tor and/or control industrial processes. Industrial control systems and SCADA
systems are examples of operational technology. The protection of critical in-
frastructure networks is commonly considered to fall in the domain of SCADA
security [4]. However, this is not necessarily true.

In fact, critical infrastructure networks are hybrids of operational technology
and information technology [4]. Industrial control systems are often connected
to corporate networks (Figure 2). Whether they reside in large critical in-
frastructure assets or small localized controller-run assets, industrial control
systems integrate operational and information technologies.

Stuxnet, a most sophisticated and complex malware, was designed to target
industrial control systems. It was launched from a conventional information
technology network to attack programmable logic controllers in an operational

314 CRITICAL INFRASTRUCTURE PROTECTION XIII

SCADA Server,
Historian,
Gateways

Office Computers

SCADA

Web
Server

Corporate

Data
Ware-
house

Firewall INTERNET

Operator Terminal (HMI)

PLCs, RTUs,
Actuators, Sensors

Engineering
Station

SMS

INTERNET

PDA

Direct
Connection
or Serial
Bus

Wireless
Access
Point

DIGITAL

Embedded Device,
Field Device

Controller

PLC

Figure 2. Example industrial control network [4].

technology network. The Stuxnet attack demonstrated that an air gap between
information technology and operational technology can be breached [4].

4. Literature Review
Research on industrial control system and programmable logic controller

security and forensics significantly ramped up after Stuxnet was discovered
in 2010. The research has generally focused on vulnerabilities in industrial
control systems and protocols. Several types of simulated cyber attacks have
been investigated to advance security and forensic efforts.

Spenneberg et al. [20] developed a worm that propagates to programmable
logic controllers. The worm scans a network for programmable logic controllers,
attacks the targets and then replicates itself on the targets. Spenneberg and
colleagues have analyzed the impacts of the worm on various targets and have
suggested possible mitigations.

Abbasi and Hashemi [1] have investigated the security implications of em-
bedded system input/output pin control. They demonstrate how an attacker
can affect the integrity and availability of embedded system inputs and out-
puts by exploiting pin control operations. Such attacks on programmable logic
controllers can be difficult to detect.

Ben Aloui [2] has demonstrated the ease with which dynamic code injection
can be executed on a Siemens S7-300 programmable logic controller without
shutting down or restarting the device. The program, which is written in
the C language and uses the Snap7 library, pushes a new program segment

Yau, Chow & Yiu 315

(organization block) into the CPU. A small human-machine interface (HMI)
was developed to illustrate dynamic modifications of the execution flow. Several
countermeasures and protection strategies were proposed to combat dynamic
code injection.

All these research efforts are useful for industrial control system threat anal-
ysis and forensics, but they focus on simulated, not real, cyber attacks. Thus,
the results do not reflect real situations. Indeed, realistic solutions for indus-
trial control system forensics are unlikely to be developed by considering only
simulated attacks.

Eden et al. [6] have proposed a forensic incident response model for industrial
control systems. The model has four stages: (i) prepare; (ii) detect; (iii) triage;
and (iv) respond. Eden and colleagues outline the forensic triage process and
highlight the differences and challenges involved in performing forensic incident
responses on industrial control systems compared with traditional systems. The
forensic incident response model is useful, but is generic as opposed to incident-
specific.

5. Classification of Incidents
In order to develop a practical methodology for industrial control system

forensics, representative incidents since 1992 discussed in newspaper articles,
technical reports and research papers were examined. The incidents were first
organized into two types: (i) attacks; and (ii) accidents. They were then clas-
sified into four categories: (i) general computer malware; (ii) unauthorized
access; (iii) industrial control system malware; and (iv) accidents.

The classification model is based on categories of malicious activity [3] and
accidents. Tables 1 and 2 summarize the incidents.

5.1 General Computer Malware
General computer malware targets traditional information technology sys-

tems such as office computers and human-machine interfaces. However, mal-
ware attacks can indirectly shut down or otherwise impact industrial control
system operations.

A variant of the Sobig worm was introduced into the CSX Railroad head-
quarters in Jacksonville, Florida in August 2003 [3]. The malware installed
applications and created backdoors while continuing to spread by infecting e-
mail attachments. Although the worm was not specifically designed to target
railroad systems, it propagated to the control center and proceeded to disrupt
signaling, dispatch and other related systems. Reports indicated that Amtrak
trains in the area were also affected by the malware in CSX Railroad systems.
The malware attack caused multiple train delays and expensive clean-up activ-
ities.

316 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 1. Selected incidents classified into four categories [3, 12].

Type Category Year Representative Incident

Attacks General 2003 The SQL Slammer worm disabled a nuclear
Computer power plant in Ohio, USA
Malware 2003 The Sobig worm was introduced in the CSX

Railroad headquarters in Florida, USA
2005 The Zotob worm infected 13 automobile

plants in Ohio, USA, causing shutdowns
and delays

2006 An attacker penetrated a water treatment
facility network in Pennsylvania, USA

2014 The modified Gh0st RAT Trojan infected
a fast-breeder nuclear reactor in Tsuruga,
Japan

Attacks Unauthorized 1992 A fired employee hacked into Chevron
Access systems in New York and California, USA,

and reconfigured the emergency alert
network

1997 A teenager connected to a dial-up loop
carrier system servicing an airport in
Massachusetts, USA and sent a series
of commands that disabled the system

2000 A former consultant attacked a sewage
treatment plant in Maroochy, Australia

2007 Striking workers (insiders) penetrated
a traffic system in California, USA

2008 An attacker used a homemade device to
remotely derail a train in Lodz, Poland

2009 A disgruntled former IT contractor
hacked into leak detection systems on
multiple oil platforms off the coast
of California, USA

2011 A hacker used Shodan to access HMIs in
a water utility network in Texas, USA

2013 A sophisticated attacker penetrated the
U.S. Army Corps of Engineers National
Inventory of Dams, USA

2014 A hacker accessed a SCADA server in the
USA that operated mechanical equipment

5.2 Unauthorized Access
These incidents involve unauthorized persistent access of control center sys-

tems or field devices from another network such as a corporate network or

Yau, Chow & Yiu 317

Table 2. Selected incidents classified into four categories [3, 12] (continued).

Type Category Year Representative Incident

Attacks Industrial 2003 An attacker sabotaged a marine terminal
Control in Venezuela
System 2010 The Stuxnet worm destroyed uranium hexa-
Malware fluoride centrifuges in Natanz, Iran

2014 The Havex Trojan entered OPC servers and
tried to exfiltrate data from industrial
control systems in the USA and Europe

2016 The BlackEnergy Trojan caused power outages
in the Ivano-Frankivsk region of Ukraine

Accidents Accidents 2013 Two mechanics died in a fire in the nacelle
of a wind turbine in The Netherlands [12]

2013 An elevator dropped on its way up a
building in North Point, Hong Kong [11]

2014 Nickel sulfate was discharged into a river
from a mine in Harjavalta, Finland [13]

2015 Water mixed with molten metal in a foundry
in Feurs, France to cause an explosion [13]

2015 Pressurized flammable gas leaked into
a petrochemical complex in Gonfreville-
l’Orcher, France [13]

2017 An escalator suddenly accelerated and then
reversed its direction in a mall in Mong
Kok, Hong Kong [15]

the Internet. The attackers can be insiders (e.g., employees, contractors and
vendors) or outsiders.

One of the most famous SCADA system breaches occurred at Maroochy
Water Services on Queensland’s Sunshine Coast in Australia [18]. Vitek Boden,
a former Maroochy consultant, used a laptop computer and a radio transmitter
to take control of 150 sewage pumping stations. Over a three-month period, he
released one million liters of untreated sewage into a water drain from where
it flowed into local waterways. Mr. Boden launched the attack because he was
denied a fulltime position with the Maroochy Shire Council.

5.3 Industrial Control System Malware
Industrial control system malware specifically targets field devices such as

programmable logic controllers. The incidents may involve firmware tampering
or exploiting device vulnerabilities.

Stuxnet is a most sophisticated industrial control system malware that lever-
aged four zero-day vulnerabilities and two compromised digital certificates in its
attacks on Iran’s uranium hexafluoride centrifuges [3]. The malware exploited

318 CRITICAL INFRASTRUCTURE PROTECTION XIII

Incident Response Action/Forensic Collection

Incident Recovery/Forensic Analysis

Incident Closure/Forensic Reporting

Incident Detection

Response Initiation

Figure 3. Cyber incident response model with an embedded forensics component.

application software to control Windows systems that could modify the con-
trol programs of Siemens programmable logic controllers, inducing abnormal
operations and eventually destroying several centrifuges.

5.4 Accidents
Accidents include incidents such as incorrect control, power disruptions,

hardware failures and fires that are not due to cyber attacks or cyber crim-
inal activities [5]. They are typically caused by design flaws, human error and
natural phenomena.

A fire in the nacelle of a wind turbine in The Netherlands in October 2013
killed two service engineers [24]. Investigators working in collaboration with
the Netherlands Forensic Institute, Department of Digital Technology and the
wind turbine manufacturer were able to remove the controller located at the
base of the turbine to extract evidence.

6. Refined Incident Response Model
Incident response requires substantial planning and resources. [19]. Digital

forensics, which is a core component of incident response capabilities, covers
the collection, examination, analysis and reporting of incident data [7]. A
forensic program is typically initiated after incident response processes such as
restoration, mitigation and initial reporting. Many organizations integrate the

Yau, Chow & Yiu 319

forensic function in incident response processes, especially when the start of
the forensic function cannot be defined clearly.

Fabro and Cornelius [7] have studied the integration trend and have defined
a cyber incident response model with an embedded forensics component as
shown in Figure 3. In this approach, forensic collection is embedded in incident
response, forensic analysis in incident recovery and forensic reporting in incident
closure.

The study of historical industrial control system incidents reveals that special
skills and techniques are not always required for digital forensic examinations of
industrial control systems. Some incidents can be investigated using traditional
forensic techniques and tools, especially when the incidents fall in the general
computer malware and unauthorized access categories. In the case of an indus-
trial control system incident, the incident response team typically incorporates
industrial control system specialists and applies special techniques and tools in
the investigation. However, the historical incident data reveals that traditional
forensic techniques and tools are adequate for investigating incidents in the
general computer malware and unauthorized access categories, eliminating the
need to use specialized techniques and tools.

Therefore, in order to increase the efficiency of forensic processes, the core
components of cyber incident response in Figure 3 are refined by inserting a
new incident categorization component after the incident detection component
during the early stage of preparing a forensic response plan. Figure 4 shows
the refined incident response model with an embedded industrial control system
forensics component.

Additionally, two types of response are incorporated: (i) traditional foren-
sics; and (ii) industrial control system forensics. Depending on the classification
assigned to an incident, the investigation can employ either traditional forensics
or industrial control system forensics during the early stage. This saves time,
effort and resources while ensuring more precise and effective incident response.

6.1 Traditional Forensics
This section discusses the application of traditional forensics to industrial

control systems in incidents involving general computer malware and unautho-
rized access. Since traditional information technology computers, networks and
protocols are targeted, traditional forensic methods are adequate for digital in-
vestigations. Normal hard drive analysis, log analysis and network tools can
be used to examine what was running on the systems and reveal the causes of
the incidents.

General Computer Malware: In the case of the virus attack on CSX
Railroad, traditional digital forensics would have been sufficient because
the incident did not involve industrial control equipment or field de-
vices. The incident mainly involved general computer systems. There-
fore, the investigation would have identified the hosts that were infected
by malware, and appropriate containment, eradication and recovery ac-

320 CRITICAL INFRASTRUCTURE PROTECTION XIII

Incident Response Action/Forensic Collection

Incident Recovery/Forensic Analysis

Incident Closure/Forensic Reporting

Unauthorized
Access

Accidents ICS Malware General Comp.
Malware

Malware Analysis

Check antivirus
software logs

Consult security
software vendors

Analyze DNS,
application server
and network device
logs

Audit Log
Analysis

Monitor and review
insider (e.g.,
employee, vendor
and contractor)
activities

ICS Skills and Knowledge

ICS field devices

ICS communications protocols

PLC programming languages

Electronics, electrical and mechanical
knowledge

ICS Incident Detection

Incident Categorization

Response Initiation

Traditional
Forensics

 ICS Forensics Traditional
Forensics

Figure 4. Refined incident response model with an ICS forensics component.

Yau, Chow & Yiu 321

tions would have been applied to the infected hosts. Evidence would then
have been collected from the domain name server (DNS) logs, applica-
tion server logs and network device logs. Traditional network forensic
logs would also have been analyzed to reveal detailed information about
the malware activity [19].

Unauthorized Access: In the case of the unauthorized access incident
at Maroochy Water Services, a PDS Compact 500 process controller, two-
way radio and computer laptop were found in Mr. Boden’s automobile.
Mr. Boden stated that he owned all the items and was using them for
study, personal correspondence and work related to his family business.
However, law enforcement discovered that the PDS Compact 500 con-
troller and two-way radio were stolen from Hunter Watertech, a company
contracted to install PDS Compact 500 units at pumping stations belong-
ing to Maroochy Shire.
The software installed in Mr. Boden’s laptop computer was developed by
Hunter Watertech and was required to communicate with the SCADA
system at Maroochy Water Services; the software had no other practical
use. The two-way radio was set to the same frequency as two of the three
available repeater stations. The laptop computer startup and shutdown
times were consistent with the logged intrusions. The PDS Compact 500
process controller had the same address as the one logged during the
intrusions. Moreover, Mr. Boden was arrested at a location that was
within radio range of the pumping station repeater and close enough to
connect to the SCADA network.
All the evidence in the Maroochy Water Services incident was collected
by applying traditional digital forensic techniques and tools with the as-
sistance of Hunter Watertech personnel. Mr. Boden was ultimately sen-
tenced to two years in jail on 30 charges of computer hacking, theft and
causing environmental damage [17].
Industrial control system attacks are not limited to malware. Other at-
tacks include advanced persistent threats (APTs), spear phishing, SQL
injection, distributed denial-of-service (DDoS), social engineering and
man-in-the-middle (MITM) attacks. However, less sophisticated meth-
ods such as unauthorized access, brute forcing and insider attacks can
be just as effective [17]. As in the case of the CSX Railroad and Ma-
roochy Services attacks, many incidents can be handled using traditional
forensic methods because the incidents did not involve industrial control
equipment or field devices.

6.2 Industrial Control System Forensics
Traditional forensic techniques and tools do not provide data collection func-

tionality for programmable logic controllers, remote terminal units, intelligent
electronic devices and other field devices encountered in industrial control en-
vironments [24]. Therefore, incidents that fall in the industrial control system

322 CRITICAL INFRASTRUCTURE PROTECTION XIII

Entry

Windows Operating System

S7-315-2 CPU

Siemens SCADA System

CP-342-5 – up to 6 modules

31 frequency converters per module

S7-315-2 CPU

31 motors

Computer with STEP 7
used for programming
PLC

Figure 5. Stuxnet infection.

malware and accidents categories require the application of industrial control
forensic expertise and tools.

Industrial Control System Malware: The Stuxnet malware was de-
veloped to target specific industrial control systems. The malware con-
ducted a layered attack against three systems: (i) Windows operating
system; (ii) Siemens PCS 7, WinCC and STEP 7 industrial software
applications that run on Windows (SCADA system); and (iii) Siemens
STEP 7 programmable logic controllers (SCADA system).

Figure 5 provides an overview of the Stuxnet infection. The malware en-
tered and infected a target system via a USB flash drive, following which

Yau, Chow & Yiu 323

it searched for, propagated to and infected other target systems. It orig-
inally leveraged four zero-day Windows vulnerabilities to propagate and
infect systems. Stuxnet was designed to sabotage centrifuges that em-
ploy Siemens SCADA systems by reprogramming the programming logic
controllers to command the centrifuges to operate outside their designed
parameter ranges [8].

In order to conduct a forensic investigation of a Stuxnet-type incident, in-
cident response personnel must have substantial knowledge about SCADA
systems, especially programmable logic controller and field device hard-
ware, firmware and software (applications) as well as SCADA communi-
cations protocols. Furthermore, highly specialized techniques and tools
are required to collect and analyze data from industrial control devices
in a forensically-sound manner.

Accidents: In the case of an accident like the wind turbine fire in The
Netherlands discussed above, investigators were required to have ade-
quate industrial control system expertise and sophisticated tools because
evidence pertaining to the accident had to be collected from the RAM
chip in the programmable logic controller located at the base of the tur-
bine. Therefore, the accident investigators worked closely with profes-
sionals from the Netherlands Forensic Institute, Department of Digital
Technology and the wind turbine manufacturer to collect and analyze
the evidence.

On March 25, 2017, a serious escalator accident occurred in a busy Mong
Kok, Hong Kong shopping mall. A 45-meter escalator linking the fourth
and eighth floors and carrying about 120 patrons malfunctioned and sud-
denly moved in the reverse direction, injuring 18 people [16].

The technical investigation report [9] stated that the escalator accident
was due to the failure of the main drive chain and a broken chain safety
device. There was no overloading of the escalator. The investigators
worked closely with escalator workers, a registered escalator engineer, the
escalator contractor and personnel from the mall management company
to collect evidence for examination.

Investigating incidents involving industrial control systems is not only
about finding evidence about potential criminal activities. This is because
incidents are often the result of accidents such as equipment malfunctions
and fires [24]. Accident investigators must have adequate technical ex-
pertise and the appropriate tools to collect and analyze evidence from
industrial control systems that are directly or indirectly connected to ac-
cidents, or are proximal to the accidents [24].

7. Discussion
This study has some limitations. A large number of industrial control sys-

tem incidents go unreported and, in other cases, details about the incidents

324 CRITICAL INFRASTRUCTURE PROTECTION XIII

are not published. The number of incident categories proposed depends on the
representative incidents considered in the study and different selections of in-
cidents would likely yield different incident categories. Moreover, information
about the incidents considered in the study was collected from various sources,
and may have various assumptions and biases. All these factors are expected
to affect the results of the analysis.

This study reveals that a large proportion of industrial control system inci-
dent investigations can be conducted using traditional forensic processes. How-
ever, some incidents are more difficult to handle because embedded systems
such as programmable logic controllers are specialized devices with their own
communications protocols, connection interfaces, operating systems and pro-
gramming languages [24]. Therefore, in the case of incidents related to em-
bedded systems, investigators may have to work with experts who have the
appropriate tools to collect and analyze data from industrial control equip-
ment. Some tools are able to extract evidence from RAM chips in the devices,
but this may not always be done in a forensically-sound manner [24].

Programmable logic controllers are arguably the most important compo-
nents in industrial control systems. They are attractive targets because suc-
cessful attacks on programmable logic controllers can result in significant in-
dustrial process malfunctions and equipment damage. Each vendor usually
provides custom software for programming, communicating and configuring its
programmable logic controllers. For example, STEP 7 software running in
Windows environments is used to program, communicate with and configure
Siemens programmable logic controllers.

The following STEP 7 features are useful in forensic investigations of pro-
grammable logic controllers:

Logging communications between a programmable logic con-
troller and STEP 7 software: Communications events of interest in-
clude Program Change, Start PLC and Stop PLC (Figure 6). For ex-
ample, the logged information enables an investigator to identify who
changed the control program and when it was changed.

Checking the integrity of the control program in a programmable
logic controller: The control program in a programmable logic con-
troller and the source program in the device used to program it can be
compared to identify alterations to the program logic.

Monitoring programmable logic controller inputs/outputs and
control program memory addresses: The inputs/outputs and mem-
ory address values provide valuable information about malicious activity.

Monitoring execution time: A programmable logic controller executes
in a cyclic manner. Every cycle has three phases: (i) read inputs; (ii)
execute the control program; and (iii) update outputs [16]. A change in
the execution time can indicate control program alteration.

Yau, Chow & Yiu 325

Figure 6. STEP 7 event activity log.

Other vendors (e.g., Allen Bradley) provide similar software (RSLogix) for
their programmable logic controllers. The software is useful for investigating
industrial control system incidents involving industrial control system malware
and accidents.

The official investigative report [9] on the escalator incident in the Mong
Kok, Hong Kong shopping mall attributed the cause to the failure of the main
drive chain as well as a broken chain safety device. The main drive chain failure
was due to metal fatigue, and the chain safety device malfunction was due to
the presence of grease on the sliding surface of the moving part of the device
and an improper setting of the compression springs. The incident was classified
as an accident and the investigators cooperated with the escalator contractor
and manufacturer to collect evidence for analysis. However, the focus was on
the mechanical parts of the escalator. Clearly, the investigation would have
been more comprehensive by applying digital forensic processes to extract and
analyze evidence residing in the controllers.

In order to prepare an efficient plan for industrial control system forensics,
incidents should be classified at an early stage if possible. In the case of inci-
dents involving general computer malware or unauthorized access, the investi-
gations can be handled just like they are for incidents involving conventional
information technology systems. In the case of incidents involving industrial
control system malware and accidents, the investigations must incorporate in-
dustrial control system experts, including vendor personnel. The investigators

326 CRITICAL INFRASTRUCTURE PROTECTION XIII

Table 3. Summary of industrial control system incidents.

Category Incidents (%) Techniques

General Computer Malware 5 (19%) Traditional forensics
Unauthorized Access 9 (35%)

ICS Malware 6 (23%) ICS forensics
Accidents 6 (23%)

must understand the technical and tactical aspects of industrial control system
forensics. Additionally, specialized industrial control system evidence recovery
and analysis tools would have to be used in the investigations.

The proposed model inserts the incident categorization component before
the incident detection component. However, it is not always possible to catego-
rize an incident at an early stage. In such instances, incident categorization can
be performed after response initiation, after incident response or after incident
recovery, as appropriate. The important point is that, regardless of when inci-
dent categorization is performed, it enhances the efficiency of the investigation.

8. Conclusions
The incident response model presented in this chapter is useful for forensic

planning and investigations of industrial control system incidents. The model
enables incident response teams and forensic investigators to decide on the ex-
pertise, techniques and tools to be applied to ensure sound evidence acquisition,
analysis and reporting.

Most investigations of industrial control system incidents tend to focus on
malware attacks; this could obscure determinations of other causes of the in-
cidents. The majority of the representative incidents considered in this work
(19% + 35% = 54% in Table 3) fall in the general computer malware and unau-
thorized access categories, which means that they could be investigated using
traditional forensic techniques. In the other words, industrial control system
experts and specialized tools are not required for all investigations of industrial
control system incidents. Robust guidelines and tools are available for such
investigations, which greatly simplify incident response.

Another key point is that performing incident categorization early in inci-
dent response renders the entire process more effective and efficient. Based on
the incident categorization, forensic investigators can decide on the industrial
control system expertise, techniques and tools that are required, which reduces
the time, effort, costs and resources.

Future research will analyze a comprehensive collection of industrial control
system incidents. This research will provide valuable insights into incident
handling, enabling the creation of a robust forensic investigation model for
industrial control systems.

Yau, Chow & Yiu 327

References

[1] A. Abbasi and M. Hashemi, Ghost in the PLC: Designing an undetectable
programmable logic controller rootkit via pin control attack, presented at
Black Hat Europe, 2016.

[2] N. Ben Aloui, Industrial Control Systems Dynamic Code Injection, Cy-
bersecurity Labs, DCNS Toulon, Toulon, France (grehack.org/files/
2015/Grehack%202015%20-%20Paper%20-%20Industrial%20Control%20
Systems%20Dynamic%20Code%20Injection.pdf), 2015.

[3] N. Carr, Development of a Tailored Methodology and Forensic Toolkit for
Industrial Control Systems Incident Response, M.S. Thesis, Cyber Systems
and Operations, Naval Postgraduate School, Monterey, California, 2014.

[4] A. Dar, Protecting industrial control networks – It’s not just about SCADA
security, Cyberbit Blog, February 10, 2017.

[5] M. Dzwiarek, An analysis of accidents caused by improper functioning of
machine control systems, International Journal of Occupational Safety and
Ergonomics, vol. 10(2), pp. 129–136, 2004.

[6] P. Eden, A. Blyth, P. Burnap, Y. Cherdantseva, K. Jones, H. Soulsby and
K. Stoddart, A forensic taxonomy of SCADA systems and approach to
incident response, Proceedings of the Third International Symposium for
ICS and SCADA Cyber Security Research, pp. 42–51, 2015.

[7] M. Fabro and E. Cornelius, Recommended Practice: Creating Cyber Foren-
sic Plans for Control Systems, INL/EXT-08-14231, Idaho National Labo-
ratory, Idaho Falls, Idaho, 2008.

[8] N. Falliere, L. O’Murchu and E. Chien, W32.Stuxnet Dossier, Version 1.4,
Symantec, Mountain View, California, 2011.

[9] Government of the Hong Kong Special Administrative Region, EMSD
releases technical investigation report on escalator incident at Lang-
ham Place, Press Release, Hong Kong, China (www.info.gov.hk/gia/
general/201706/09/P2017060900449.htm), June 9, 2017.

[10] K. Kent, S. Chevalier, T. Grance and H. Dang, Guide to Integrating Foren-
sic Techniques into Incident Response, NIST Special Publication 800-86,
National Institute of Standards and Technology, Gaithersburg, Maryland,
2006.

[11] S. Lau and J. Ngo, Seven injured in lift accident in North Point building,
South China Morning Post, March 3, 2013.

[12] D. McMillen, Security Attacks on Industrial Control Systems: How Tech-
nology Advances Create Risks for Industrial Organizations, IBM Security,
International Business Machines, Somers, New York, 2015.

[13] Ministry of the Environment, Energy and the Sea, Lessons Learnt
from Industrial Accidents, 12th Seminar, Paris, France (www.impel.eu/
wp-content/uploads/2018/01/Brochure_IMPEL2017_EN.pdf), 2017.

328 CRITICAL INFRASTRUCTURE PROTECTION XIII

[14] Public Safety Canada, Critical Infrastructure, Ottawa, Canada
(publicsafety.gc.ca/cnt/ntnl-scrt/crtcl-nfrstrctr/index-en.as
px), 2018.

[15] Radio Television Hong Kong, Langham Place escalator malfunctions, in-
juring 18, RTHK News, March 25, 2017.

[16] K. Sacha, Translatable finite state time machine, in Design for Depend-
able Systems, E. Gaudin, E. Najm and R. Reed (Eds.), Springer, Berlin
Heidelberg, Germany, pp. 117–132, 2007.

[17] N. Sayfayn and S. Madnick, Cybersafety Analysis of the Maroochy Shire
Sewage Spill, Working Paper CISL# 2017-09, Cybersecurity Interdisci-
plinary Systems Laboratory, Sloan School of Management, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 2017.

[18] J. Slay and M. Miller, Lessons learned from the Maroochy water breach, in
Critical Infrastructure Protection, E. Goetz and S. Shenoi (Eds.), Springer,
Boston, Massachusetts, pp. 73–82, 2007.

[19] M. Souppaya and K. Scarfone, Guide to Malware Incident Prevention and
Handling for Desktops and Laptops, NIST Special Publication 800-83,
Revision 1, National Institute of Standards and Technology, Gaithersburg,
Maryland, 2013.

[20] R. Spenneberg, M Bruggemann and H Schwartke, PLC-Blaster: A worm
living solely in the PLC, presented at Black Hat USA, 2016.

[21] B. Sperber, Solutions emerge to prevent control system cyber-attacks, Au-
tomation World, May 23, 2012.

[22] T. Spyridopoulos, T. Tryfonas and J. May, Incident analysis and digi-
tal forensics in SCADA and industrial control systems, Proceedings of the
Eighth IET International System Safety Conference Incorporating the Cy-
ber Security Conference, 2013.

[23] K. Stouffer, J. Falco and K. Scarfone, Guide to Industrial Control Sys-
tems (ICS) Security, NIST Special Publication 800-82, National Institute
of Standards and Technology, Gaithersburg, Maryland, 2011.

[24] P. van Vliet, M. Kechadi and N. Le-Khac, Forensics in industrial control
system: A case study, in Security of Industrial Control Systems and Cyber
Physical Systems, A. Becue, N. Cuppens-Boulahia, F. Cuppens and S.
Katsikas (Eds.), Springer, Cham, Switzerland, pp. 147–156, 2016.

[25] C. Wueest, Targeted Attacks Against the Energy Sector, Version 1.0,
Symantec, Mountain View, California, 2014.

	Contents
	Contributing Authors
	Preface
	Part 1 THEMES AND ISSUES
	1 QUANTIFYING THE COSTSOF DATA BREACHES
	1. Introduction
	2. Cost Function
	3. 2017 Equifax Data Breach
	3.1 Components Affecting Data Breach Costs

	4. 2013 Target Data Breach
	4.1 Components Affecting Data Breach Costs

	5. Cost Impacts on Consumers
	5.1 Identity Theft and Credit Card Fraud Costs
	5.2 Protection and Monitoring Costs
	5.3 Legal Fees
	5.4 Other Costs

	6. Conclusions
	References

	Part 2 INFRASTRUCTURE PROTECTION
	2 A COMPARATIVE ANALYSIS APPROACH FOR DERIVING FAILURE SCENARIOS IN THE NATURAL GAS DISTRIBUTION INFRASTRUCTURE
	1. Introduction
	2. Failure Scenarios
	3. Benefits of Failure Scenarios
	3.1 Cyber Security Analysis
	3.2 Understanding Mitigations

	4. Caveats and Assumptions
	5. NESCOR Failure Scenarios Report
	6. Approach
	7. Analysis of Scenarios by Category
	7.1 Automated Meter Reading
	7.2 City Gate Stations
	7.3 Compressor Station

	8. Lessons Learned
	9. Real-World Application of Failure Scenarios
	10. Related Work
	11. Conclusions
	Acknowledgements
	References

	3 AN ATTACK-FAULT TREE ANALYSIS OFA MOVABLE RAILROAD BRIDGE
	1. Introduction
	2. Functionality and Failures
	2.1 Functionality Model and Usage Scenarios
	2.2 Classification of Failures

	3. Attack-FaultTree for aMovable Swing Bridge
	4. Movable Swing Bridge Components
	4.1 Superstructure and Substructure
	4.2 Mechanical and Electrical Systems

	5. Quantitative Analysis Methodology
	5.1 Attack Leaf Automata
	5.2 Fault Leaf Automata

	6. Attack-Fault Tree Analysis
	6.1 Critical Fault Path Analysis
	6.2 Attacker Profile Analysis
	6.3 Critical Attack Path Analysis

	7. Related Work
	7.1 Historical Swing Bridge Failures
	7.2 Rules and Regulations

	8. Conclusions
	Acknowledgements
	References

	4 CONVERTING AN ELECTRIC POWER UTILITY NETWORK TO DEFEND AGAINST CRAFTED INPUTS
	1. Introduction
	2. Background and Prior Work
	2.1 Language-Theoretic Security
	2.2 Industrial Control Systems Security

	3. Notional Architecture
	4. Analysis
	4.1 Protocol Coverage
	4.2 Benefits
	4.3 Trade-Offs

	5. Triage Procedure
	5.1 Protocols and Devices
	5.2 Virtual Substation
	5.3 Deployment
	5.4 Current Status

	6. Conclusions
	Acknowledgement
	References

	5 CYBER SECURITY MODELING OF NON-CRITICAL NUCLEAR POWER PLANT DIGITAL INSTRUMENTATION
	1. Introduction
	2. Background and Literature Review
	3. Risk-Informed Selection of Attack Paths
	4. Boron Monitoring System
	4.1 Experimental Setup
	4.2 Cyber Attack Simulation
	4.3 Experimental Results

	5. Scope of Study
	6. Conclusions
	References

	Part 3 VEHICLE INFRASTRUCTURE SECURITY
	6 ELECTRONIC CONTROL UNIT DISCRIMINATION USING WIRED SIGNAL DISTINCT NATIVE ATTRIBUTES
	1. Introduction
	2. CAN Bus
	3. Device Fingerprinting
	3.1 Related Work
	3.2 RF-DNA Methodology

	4. Experimental Methodology
	4.1 Device Under Test and Signal Collection
	4.2 Signal-to-Noise Ratio Scaling
	4.3 Fingerprint Generation
	4.4 MDA/ML Classification and Verification

	5. Experimental Results
	5.1 Device Classification
	5.2 Device Verification

	6. Conclusions
	References

	7 VEHICLE IDENTIFICATION AND ROUTE RECONSTRUCTION VIA TPMS DATA LEAKAGE
	1. Introduction
	2. Tire Pressure Monitoring Systems
	2.1 Legislation
	2.2 Implementation
	2.3 Attacks
	2.4 Security

	3. Background
	3.1 Simulator for Urban Mobility
	3.2 Measurement Metrics

	4. Simulation Methodology
	4.1 Simulation Setup
	4.2 TPMS Packet Generation
	4.3 Tire ID Association
	4.4 Route Reconstruction
	4.5 Simulation Variables

	5. Simulation Results
	5.1 Tire ID Association Results
	5.2 Route Reconstruction Results

	6. Conclusions
	References

	8 MODELING LIABILITY DATA COLLECTION SYSTEMS FOR INTELLIGENT TRANSPORTATION INFRASTRUCTURE USING HYPERLEDGER FABRIC
	1. Introduction
	2. Background
	3. Related Work
	4. Infrastructure Modeling and Implementation
	4.1 Definitions
	4.2 Implementation Platform
	4.3 Frameworks and Tools
	4.4 Experimental Network
	4.5 Assumptions

	5. Accident Data Collection
	5.1 Scenario Generation
	5.2 Network Data Models
	5.3 Chaincode
	5.4 Analysis of Data

	6. Discussion
	6.1 Benefits
	6.2 Drawbacks and Challenges
	6.3 Security and Privacy Considerations

	7. Conclusions
	References

	Part 4 TELECOMMUNICATIONS INFRASTRUCTURE SECURITY
	9 SECURING WIRELESS COPROCESSORS FROM ATTACKS IN THE INTERNET OF THINGS
	1. Introduction
	2. Security of Communications Stacks
	3. Cellular Baseband Processors
	3.1 Symbiotic System of Systems
	3.2 Baseband Firmware
	3.3 Baseband Architectures
	3.4 Serial Communications Protocols

	4. Securing the Baseband Processor
	4.1 Retrofitting Security
	4.2 AT Command Filtering

	5. Baseband Processor Exploitation
	5.1 AT Command Exploitation Methodology

	6. AT Command Intrusion Prevention System
	6.1 AT Command Syntax
	6.2 Design and Implementation
	6.3 Intrusion Prevention System

	7. Experimental Analysis and Testing
	8. Conclusions
	References

	10 VULNERABILITY ASSESSMENT OF INFINIBAND NETWORKING
	1. Introduction
	2. Background
	2.1 InfiniBand
	2.2 InfiniBand Terminology
	2.3 InfiniBand Security Features
	2.4 Cyber Vulnerability Assessment
	2.5 InfiniBand Security Research

	3. Methodology
	3.1 Equipmental Setup
	3.2 Approach
	3.3 Cyber Attacks

	4. Experimental Results and Analysis
	4.1 Malicious Firmware Installation
	4.2 OFED Diagnostic Tools
	4.3 Address Spoofing
	4.4 Network Traffic Sniffing
	4.5 Network Mapping
	4.6 Malicious Subnet Manager
	4.7 Denial-of-Service Attacks

	5. Conclusions
	References

	Part 5 CYBER-PHYSICALSYSTEMS SECURITY
	11 LEVERAGING CYBER-PHYSICAL SYSTEM HONEYPOTS TO ENHANCE THREAT INTELLIGENCE
	1. Introduction
	2. Industrial Control Systems
	3. Honeypots and Honeynets
	4. Security Onion
	5. High-Interaction Honeypot Data Collection
	6. Virtual Networks with IMUNES
	7. Shodan Search Engine
	8. Requirements and Prototype Architecture
	8.1 Next Generation Honeynet Requirements
	8.2 Proposed Honeynet Design
	8.3 Honeypots
	8.4 Simulated Physical Process
	8.5 Honeywall Design

	9. Results and Analysis
	9.1 Modbus Scanning via Shodan
	9.2 Brute Force Login Attacks

	10. Conclusions
	References

	12 DYNAMIC REPAIR OF MISSION CRITICAL APPLICATIONS WITH RUNTIME SNAP-INS
	1. Introduction
	2. Snap-in Overview
	2.1 ELF Files
	2.2 Mapping Data
	2.3 Snap-In Controller

	3. Snap-In Toolkit
	3.1 Searching Executables
	3.2 Creating Patches
	3.3 Creating a Replacement Table
	3.4 Installing Patches
	3.5 Authorizing Updates

	4. Related Work
	5. Next Steps
	6. Conclusions
	Acknowledgement
	References

	13 DATA-DRIVEN FIELD MAPPING OF SECURITY LOGS FOR INTEGRATED MONITORING
	1. Introduction
	2. Related Work
	3. Analysis of Field Characteristics
	3.1 Target Fields in Security Logs
	3.2 Field Categories in Security Logs
	3.3 Syntax of Field Categories
	3.4 Semantics of Field Categories

	4. Mapping Security Logs to Field Categories
	4.1 Overview
	4.2 Phase 1: Field Preparation
	4.3 Phase 2: Field Analysis
	4.4 Phase 3: Field Mapping

	5. Discussion
	6. Conclusions
	References

	Part 6 INDUSTRIAL CONTROLSYSTEMS SECURITY
	14 MODELING AND MACHINE-CHECKING BUMP-IN-THE-WIRE SECURITY FOR INDUSTRIAL CONTROL SYSTEMS
	1. Introduction
	2. Background
	2.1 Industrial Control System Security
	2.2 seL4 and CAmkES
	2.3 TLA+ and PlusCal

	3. Related Work
	4. Security Preprocessor Checking Using TLA+
	4.1 System Modeling
	4.2 Invariants and Liveness Guarantees
	4.3 Specifying and Checking Properties
	4.4 Checking Modbus Properties
	4.5 Checking Cryptographic Properties

	5. Discussion
	6. Conclusions
	References

	15 DEFINING ATTACK PATTERNS FOR INDUSTRIAL CONTROL SYSTEMS
	1. Introduction
	2. Related Work
	3. Attack Patterns
	3.1 Design Patterns
	3.2 Attack Pattern Usage
	3.3 System Comparison

	4. Attack Pattern Classification
	4.1 Information Collection and Analysis
	4.2 Injection
	4.3 Denial-of-Service
	4.4 System Resource Manipulation
	4.5 Sensor Manipulation

	5. Elevator System Case Study
	5.1 Security Test Cases
	5.2 Results

	6. Conclusions
	References

	16 AN INCIDENT RESPONSE MODEL FOR INDUSTRIAL CONTROL SYSTEM FORENSICS BASED ON HISTORICAL EVENTS
	1. Introduction
	2. Forensic Challenges
	3. Industrial Control Networks
	4. Literature Review
	5. Classification of Incidents
	5.1 General Computer Malware
	5.2 Unauthorized Access
	5.3 Industrial Control System Malware
	5.4 Accidents

	6. Refined Incident Response Model
	6.1 Traditional Forensics
	6.2 Industrial Control System Forensics

	7. Discussion
	8. Conclusions
	References

