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Abstract. Head Mounted Display (HMD) became a popular device,
drastically increasing the usage of Virtual, Mixed, and Augmented Real-
ity. While the systems’ visual resources are accurate and immersive,
precise interfaces require depth cameras or special joysticks, requiring
either complex devices or not following the natural body expression.
This work presents an approach for the usage of bare hands to control
an immersive game from an egocentric perspective and built from a pro-
posed case study methodology. We used a DenseNet Convolutional Neu-
ral Network (CNN) architecture to perform the recognition in real-time,
from both indoor and outdoor environments, not requiring any image
segmentation process. Our research also generated a vocabulary, consid-
ering users’ preferences, seeking a set of natural and comfortable hand
poses and evaluated users’ satisfaction and performance for an entertain-
ment setup. Our recognition model achieved an accuracy of 97.89%. The
user’s studies show that our method outperforms the classical controllers
in regards to natural interactions. We demonstrate our results using com-
mercial low-end HMD’s and compare our solution with state-of-the-art
methods.

Keywords: Hand poses recognition · Convolutional neural network ·
Deep learning · Virtual reality · User interfaces

1 Introduction

Head-Mounted Displays (HMDs) are becoming popular and accessible, lever-
aging Virtual, Mixed and Augmented Reality applications to a new level of
consumption. A considerable amount of these market is strongly attached to
low-end devices, based on smartphones as displays and computing hardware,
enhancing the possibility of users interacting with virtual worlds anytime, any-
where, whether to watch a movie, work or play games [14].
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Fig. 1. The FPVRGame is a virtual reality environment developed to simulate a first-
person view game which allows the usage of the bare hand to control a character. This
figure shows the action of selecting a coin and the process involved: capture of the
image, the inference of the convolutional neural network and the label send for the
execution of the action in the game.

High-end devices, such as Oculus Rift or HTC Vive, provide sophisticated
interfaces controllers and tracking systems, allowing powerful and complex inter-
actions with the virtual environment [16]. Due to the lack of these components,
mobile-based systems must be projected to be more straightforward and in many
cases less immersive solutions.

Visual immersion achieved by the HMDs can generate high interaction expec-
tation among the users. It is common to observe, at interaction time, that the
user makes undesired body and hand gestures, moved by a natural body instinct
[22].

This body interaction cannot be implemented with regular HMD joysticks
and controllers. Thus, research has been conducted to offer a more natural
engagement to users. For instance, several body and hand gestures recognition
solutions are being presented in the last years, some of them using very different
approaches than traditional joysticks: heart rate monitors [28], Coulomb friction
model [9], acoustic resonance analysis [32] and even clothing that restricts joint
movements [1].

The usage of bare hands is what seems to be the most natural and immersive
solution, and some researchers are working on this [24,26]. In this sense, precise
and comfortable solutions still require some dedicated hardware, such as depth
cameras, structured light-based systems, and even Inertial measurement unit
(IMU) based hardware.

In this work, we present an interaction solution based on bare hand inter-
actions, which perform the real-time recognition with 98% accuracy and can be
executed indoor and outdoor using ordinary cameras as input devices through
low-end platforms, such as smartphones. Our solution is constrained for egocen-
tric point of view and for a specific set of hand poses. It can be easily Incor-
porated in any application and presents good performance, suitable for low-end
VR devices.

The hand pose recognition is a Machine Learning problem modeled as a
pattern recognition task. Given that the state-of-the-art algorithms for pattern
recognition in images are based on Convolutional Neural Networks (CNNs) [25],
we have chosen to use this approach in our work. We adopted three CNNs based
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architectures (GoogLeNet, Resnet, and DenseNet), with which we conducted
several training sessions using two different datasets until we get to the model
used in our solution. One of the data sets was created specifically for this work,
containing approximately 59,000 Red-Green-Blue (RGB) images of the hand in
an egocentric vision [18,30,33].

To simulate a First-Person Vision (FPV) navigation system, we developed
the FPVRGame (Fig. 1), a Virtual Reality (VR) environment. The FPVRGame
design and evaluation process involved three empirical studies. In Study One we
specified a preliminary vocabulary containing the hand poses considered more
intuitive to represent the actions of a character from an FPV perspective. In
Study Two we evaluated the hand poses existing in the preliminary vocabulary
and built a new and more comfortable vocabulary, capturing the images required
to create the dataset. Finally, in Study Three we validated our results using a
low-end HMD and a simple VR environment.

The main contributions can be summarized as:

1. Implementation of a CNN-based method for recognition of user’s hand poses
captured from an FPV navigation system perspective in any environment
(indoor and outdoor) and without any background or lighting constraints;

2. Creation of an open dataset with approximately 59,000 images of hand poses
from a FPV navigation system perspective;

3. Generation and assessment of a hand pose vocabulary by using the Wizard
of Oz method;

4. Empirical evaluation of user’s experience and performance, using the pro-
posed hand posture recognition in comparison to the main interfaces available
for HMDs, in both low and high-end systems;

In addition, while we attempted to solve FPV systems, our solution can be
trivially extended to any other interaction paradigm, depending only on provid-
ing a new image dataset.

The remainder of this paper is organized as follows: Sect. 2 describes the
related works. Section 3 presents our CNN based solution for hand posture recog-
nition and describes our Dataset, which we defined as public. Section 4 presents
the FPVRGame design and evaluation process, i.e, the hand poses vocabulary
construction process; the comparison between the accuracy achieved by our
method with other interfaces. Finally, Sect. 6, present the conclusions of our
work.

2 Related Work

Although there are several precise and functional interface devices for HMD’s, we
claim that the usage of bare hands is the most natural, intuitive and immersive
[24].

Among several works, Son and Choi [27] proposed a hand pose detection
approach that is capable for classifications based on raw RGB images. Their
method recognizes three distinct hand poses employing a faster R-CNN, capable
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of identifying the region of interest and classifying one of the three possible
poses. The dataset for training the network requires additional annotation for
the palm position and fingertip. Their method aims to estimate the bounding
box of the hands and identify which hand is in the camera field of view (left or
right). In our paper, we consider that the game controller should work similarly
for both hands, allowing left-handed and right-handed users to share the same
experiences.

Hand gestures are classified in static and dynamic gestures [24]. Differ-
ent datasets containing images in egocentric vision are available, such as
[17,18,30,33]. However, most of them contain dynamic gestures. Dynamic ges-
tures recognition usually exploits spatiotemporal features extracted from video
sequences. The evaluation of this type of method usually employs a sliding win-
dow of 16 frames or more [4], which introduces a significant input lag correspond-
ing to the time between the 16 frames and the gesture recognition. Our work
recognizes static gestures through a CNN, classifying hand poses from a single
frame and allowing real-time recognition without the before-mentioned input lag
penalty. Furthermore, tests performed in an egocentric dataset [33] shows that
our method has a competitive accuracy when taking account gestures similar to
our hand poses vocabulary. We created a specific dataset with a limited number
of poses but with higher accuracy.

Depth cameras (RGB-D) have the capacity of delivering depth information
for each pixel, making possible the use of different techniques for geometry recon-
struction and estimation of inverse kinematics bones positioning [24]. In indoor
and controlled environments the depth cameras perform very well and are being
vastly used. However, depth sensors can generate noisy depth maps, presenting
some limitations: restricted field of view and range, near-infrared interference
(such as light solar) and non-Lambertian reflections, and thus cannot acquire
accurate measurements in outdoor environments [23]. These issues become more
critical when the cameras are not fixed.

Yousefi et al. [31] presented a gesture-based interaction system for immer-
sive systems. Their solution makes use of the smartphone camera to recognize
the gesture performed by the user’s hands. The recognition process is based on
matching a camera image with an image in a gesture dataset. The gesture dataset
contains images of a user’s hand performing one of the 4 available gestures. The
images were recorded for both left and right hands under different rotations and
a chroma key screen was employed to remove the background pixels. The con-
struction of the dataset is labor-intensive, requiring the manual annotation of
19 joint points for each image in the dataset. At runtime, a preprocessing step is
necessary to ensure that only the relevant data is fed to the gesture recognition
system. This stage consists in segmenting the hand from the background and
crop the image in the region of interest. The gesture recognition system performs
a similarity analysis based on L1 and L2 norms to match the camera image with
one of the dataset images. A selective search strategy based on the previous
camera frame is used to reduce the search domain and efficiently recognize the
gesture in real time.
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The previous method requires extensive labor-intensive adjustments through
the manual annotation of 19 joint points for each sample on the dataset creation
process. Furthermore, the segmentation process requires manual adjustments
based on the user’s environment. As opposed to their approach, our method
employs a dataset creation process that automatically annotates the images while
the user is experimenting with the application. Furthermore, our recognition
system works on raw input images and does not require background extraction,
chroma key, and lighting adjustments.

3 Hand Pose Recognition Solution

The hand pose recognition is the process of classifying poses of the user’s hands
in a given input image [24]. We use the recognized pose to perform an action in
an interactive game. Since we are using the player’s hands like a game controller,
the process must be robust to recognize the player’s hands in multiple scenarios
and different environments. It is important to have a consistent result in the hand
recognition since a wrong classification would result in an involuntary movement
in the game, potentially harming the user’s experience.

The hand pose recognition is a Machine Learning problem modeled as a
pattern recognition task. Given that the state-of-the-art algorithms for pat-
tern recognition in images are based on Convolutional Neural Networks [25],
we choose to use this approach in our work.

Convolutional Neural Networks are learning algorithms that require a two-
step process. A compute-intensive training step executed once, and a fast infer-
ence step, performed in the application runtime [24,26]. Considering that our
method aims to be executed in a mobile environment, the hand pose recog-
nition must be executed in interactive time even on low spec mobile devices.
This requirement makes the Deep Neural Network a suitable approach for our
purposes.

The input of our method is an RGB image containing the user’s hands
(Fig. 4). The output is a probability distribution of the k possible classes. The
classes are composed of the specified vocabulary described in Sect. 4, and an
additional Background Class, that represents the absence of the user’s hands in
the input image.

We adopted three off-the-shelf CNN architectures for the hand pose recogni-
tion: GoogLeNet [29], Resnet 50 [8], and DenseNet [10].

3.1 Datasets

We use two datasets in the CNNs training.

Dataset 1 (DS1): We use a pre-training dataset, containing 1,233,067 samples,
taken from publicly available sign language datasets [15]. A sample in the dataset
consists of a tuple (image, label) where the image portrays an interpreter per-
forming a sign language gesture. Even though this dataset does not contain the
correct label for our recognition system, the images of the dataset are employed
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to precondition the CNN to recognize features related to human hands under
different poses.

Dataset 2 (DS2): We created a second dataset specially tailored for our recog-
nition system. The dataset consists of 58,868 samples captured in an indoor envi-
ronment, comprising images of fifteen people (eleven men and four women). To
improve our detection for both right-handed and left-handed users, we applied a
mirror transformation in the images. The images were manually annotated with
one of the seven classes that represent the possible actions of the game, or a
class representing the background (Fig. 4).

A preprocessing step in both datasets ensures that the images have the same
dimensions (256 × 256 pixels). A bicubic transformation was performed to resize
images to adequate dimensions.

3.2 CNNs Training Results

Training a CNN from scratch requires a significant amount of labeled data;
therefore, we trained three CNNs through a process known as fine-tuning. We
loaded a pre-trained model with weights adjusted to the ImageNet dataset [6];
then we fine-tuned our network to the DS2 dataset. Figure 2a shows a summary
of the results obtained during the training.

The ResNet architecture obtained a not satisfactory result, with a mean
accuracy of 85.46% (test) and 79.25% (validation), with a mean error of 0.854%.
Aiming to improve the accuracy of the classification, we performed a second
experiment that exploits the features learned from the DS1 dataset.

The second experiment consists in, first, fine-tuning the CNN from the Ima-
geNet dataset to the DS1 dataset, then fine-tuning the resulting model to the
DS2 dataset. The result of this experiment for the ResNet architecture results in
a mean accuracy of 93.03% (test) and 89,79% (validation) with a mean error of
0.406%. When compared to the first approach, we obtained a significant improve-
ment in the mean accuracy of 8.85% (test) and 13.28% (validation) with a mean
error of 0.406%.

While the ResNet highly benefit from the second approach, the GoogleNet
and DenseNet obtained only a slight change in the mean accuracy when com-
pared to the first experiment. The GoogLeNet test accuracy improved by a small
margin (from 97.47% to 98.05%) while the DenseNet present a small decrease in
test accuracy (from 97.89% to 97.23%).

Overall, the GoogLeNet obtained the highest mean accuracy of 98.05% on
tests while the DenseNet, trained with the first approach, achieved the lowest
mean error on the validation and a better mean accuracy distribution across
the different classes. Furthermore, the training process was facilitated due to
the usage of the first approach that does not require the finetuning to the DS1
dataset. The mean accuracy across multiple classes can be observed in the con-
fusion matrix depicted in Fig. 2b and c. In our hand pose recognition system, we
choose to use the DenseNet implementation due to less associated error across
multiple classes and the relative uncomplicated single training process.



76 E. de Oliveira et al.

Fig. 2. (a) Best results achieved during the training of CNNs, using the two data sets
DS1 and DS2. (b) DenseNet’s confusion matrix. (c) GoogleNet’s confusion matrix.

For validation purposes, we tested our trained CNN against a public avail-
able egocentric benchmark dataset, EgoGesture [33]. The dataset contains 2,081
RGB-D videos, 24,161 gesture samples totaling 2,953,224 frames. There are 83
classes of gestures, mainly focused on interaction with wearable devices. Because
it is a data set different from ours, we have chosen a subset of gestures that are
similar to the poses of our vocabulary. The mapping between the EgoGesture
classes and our vocabulary classes is shown in the Table 1. Our GloogleNet model,
even though have never been trained with any of the images in the EgoCentric
dataset achieved an accuracy of 64.3%. This result is superior to the mean aver-
age accuracy of 62.5% in the VGG16 model presented by Cao et. al [4]. On
one hand, we could improve our accuracy results by considering spatiotempo-
ral strategies like appending an Long Short-Term Memory (LSTM) network to
the output of our last fully connected layer, on the other hand, this introduc-
tion would increase the input lag in our application, thus making the model
inadequate for VR applications.

Table 1. Gesture mapping our vocabulary of hand poses to EgoGesture [33] gestures.

Our Vocabulary EgoGesture
Class Gesture Class Gesture

1 move left 66 thumb toward left

2 move right 65
thumb toward
right

3 move forward 83
move fingers
forward

4 move back 67
thumbs
backward

5 select 29 number 5
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Most of the errors associated with our model are the misclassification of
gestures as background (class 0), as shown in the confusion matrix depicted in
Fig. 3a. This error is associated with the different nature of our training dataset
and the tested dataset (video sequences in the EgoGesture vs single frames in our
dataset). Frames at the two extremes (beginning and ending) of a video sequence
in the EgoGesture dataset contains no identifiable gestures, for example, partially
visible hands or the very beginning/ending of a gesture. To test this hypothesis,
we tested our model by dropping the few beginning and ending frames of the
video sequences. With 4 and 8 frames dropped, the model achieved a notable
higher mean accuracy of 76.17% and 78.81%. The improvement in the model’s
accuracy and the confusion matrix (Fig. 3b and c) confirm our hypothesis.

Fig. 3. Confusion matrix: (a) 0 frames dropped, (b) 4 frames dropped, (c) 8 frames
dropped. As for classes 6 and 7 we did not find similar gestures. Class 0 does not make
its inference because it does not appear in the label of the base EgoCentric.

The CNN training was executed on a DGX-1 machine with the following
specification: Intel Xeon E5-2698 v4 2.2 GHz, 512 GB DDR 4, 8 x NVIDIA P100
Graphics Processing Unit (GPU). All the networks are trained using 4 GPUs
adopting Stochastic Gradient Descent (SGD) as our solver. We applied 5-fold
cross-validation to our model, splitting the dataset into 5 distinct folds [7]. We
run the tests for 30 epochs with batch size 96. The learning rate is set initially
to 0.01 with the exponential decay (gamma = 0.95).

3.3 Inference Server Implementation

The recognition system is based on a client/server system. The FPVRGame,
running on a smartphone Moto X4, act as a client that captures the HMD cam-
era image and send them to the inference server application through a TCP/IP
protocol. The server feeds the CNN with the received image and carries the rec-
ognized hand pose identification back to the FPVRGame. The inference server
application (Fig. 1c) was implemented with Python 3.6 using the Caffe frame-
work [11] within an Intel R© CoreTM i7-7700HQ CPU @ 2.80 GHz, 16 GB RAM
and NVIDIA GeForce R© GTX 1050 Ti machine and running the DenseNet model
performs the inference with an average of 28 ms. Thus, the inference process can
run in real-time (35 fps) on any modern GPU enabled devices. Alternatively,
it is possible to use our CNN model with third-party inference engines such as
NVIDIA TensorRT [20], Clipper [5], and DeepDetect [12].
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4 FPVRGame - Design and Evaluation Process

FPVRGame is a VR environment developed to simulate an FPV game. Its pri-
mary objective is to navigate through the scenario and collect as many coins
as possible. For this, it captures the image of the player’s hand and forwards
the images to the Inference Server, see Fig. 1. As the camera is the single input
device, the player has to position his hand inside the camera field. This limi-
tation may require considerable physical effort, and if the hand pose is not the
most suitable, may cause pain.

Fig. 4. Vocabulary of hand poses used for the player.

Figure 4 shows the vocabulary provided by FPVRGame, built based on two
empirical studies, that offer a set of intuitive and comfortable hand poses. Study
One included identifying users’ preference for the most appropriate hand poses.
This study was attended by 173 people, being 105 males and 68 females, aged
between 18 and 39 years (M = 25, SD = 4.06), 92.5% and 7.5% left-handers.
What resulted in preliminary vocabulary. In Study Two by using the Wizard of
Oz method [13], we evaluate the existing hand poses in the preliminary vocab-
ulary and construct a new, more comfortable vocabulary, capturing the images
needed to create the data set. This study was attended by 15 people, 11 males,
and 4 females, aged 18 to 43 years (M = 26.46, SD = 6.94), all right-handed.

Study Three is aimed at assessing the participant’s experience and perfor-
mance when using our hand poses recognition solution. The primary measures
used in this study were the participant’s feelings (Easy to learn, Comfort, Nat-
ural and Enjoyment) when using different game controllers (joystick, gaze and
hand poses) to control a virtual character in the FPVRGame.

Figure 5 shows a summary of the results for questions Q1 - Easy to learn,
Q2 - Comfort, Q3 - Natural, and Q4 - Enjoyment, for each game controller. All
statistical analyses were performed using IBM SPSS1 with (α = 0.05).

For the item “Q1 - Easy to learn”, we find none significant difference between
the game controllers (Friedman X2

(2) = 4.480, p = 0.106).

1 https://www.ibm.com/analytics/spss-statistics-software.

https://www.ibm.com/analytics/spss-statistics-software
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Fig. 5. Perceptions of the participants considering all game controllers.

For the item “Q2 - Comfort”, there was a significant difference between
gaze and joystick controllers (Friedman X2

(2) = 16.033, p < 0.001). The joystick
achieved the highest percentage of positive feelings among the controllers (95%),
is significantly higher than the gaze (40%).

For the item “Q3 - Natural”, there was a significant difference between the
joystick and hand pose controllers (Friedman X2

(2) = 12.400, p = 0.002). The
hand pose achieved the highest percentage of positive feelings among the con-
trollers (55%), is significantly higher than the joystick (15%).

For the item “Q4 - Enjoyment”, there was no significant difference between
the game controllers (Friedman X2

(2) = 8.041, p = 0.018, with the multiple
comparisons tests with p value adjusted (Gaze-Hand Pose p = 0.207), (Gaze-
Joystick p = 0.144), (Hand Pose-Joystick p = 1)).
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Fig. 6. Participants’ perception of effectiveness while using the hand pose controller,
first row: all participants, second row: participants separated per group (indoor, out-
door).

Fig. 7. Quantity of coins per game controller: Hand Pose (M = 8.2, SD = 0.46), Joystick
(M = 8.25, SD = 0.51) and Gaze (M = 6.35, SD = 0.43).

For the evaluation of “Effectiveness” perception (Fig. 6) the majority of the
participants pointed out positive feelings regarding the effectiveness of the hand
pose recognition with only 5% of “Neutral” responses. In addition, we found
no significant difference between the participants who performed the study in
different environments (Mann-Whitney U = 41.500, p = 0.423).

Concerning the performance of participants using the hand pose controller
in indoor and outdoor environments we find none significant difference (t-test
t(18) = 0.631, p = 0.536). This result is in agreement with the evaluation of
effectiveness perception.

We also recorded the number of coins collected by participants using each
game controller (see Fig. 7). The Shapiro-Wilk test shows that the data follows
a normal distribution (Hand Pose: W = 0.970, p = 0.760, Joystick: W = 0.958,
p = 0.499 and Gaze: W = 0.952, p = 0.396). Thus, a One-way ANOVA with
repeated measures (α = 0.05) with posthoc and correction of Bonferroni was
used (F(2,38) = 8.218, p = 0.001. We note that the quantity of coins collected
while using the hand pose controller was significantly higher when compared to
the gaze controller. However, it was not different from the performance achieved
while using the joystick.
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One limitation of FPVRGame is to use a single input device. The interaction
occurs only when the user places his hand within the angle of the camera, which
can cause some physical discomfort. Therefore, we evaluated the participants’
comfort when using hand pose and surprisingly, such aspect was not a problem
for the participants to enjoy and to achieve excellent performance.

5 Discussion

Natural User Interfaces (NUIs) is not a trivial definition [19]. Bill Buxton [3]
argues that NUI exploits skills that were acquired through a lifetime of living,
which minimizes the cognitive load and therefore minimizes the distraction. He
also states that NUIs should always be designed with the use of context in mind.
Bowman et al. [2] questioned naturalism in 3D interface saying that high levels of
naturalism can enhance performance and the overall user experience, but mod-
erately natural 3D UIs can be unfamiliar and reduce performance. Traditional,
less natural, interaction styles can provide excellent performance, but result in
lower levels of presence, engagement, and fun.

Dealing with this trade-off between naturalism versus performance is still a
challenge, and few efforts have been reported about how to explore the design
space in order to find the appropriate and natural interaction for a specific
context of use. Different from Son et al. [27] and Yousefi et al. [31], our work
addresses such issue by using a user-centered design approach to build a hand
pose vocabulary for 3D user interaction in an egocentric vision scenario. The
Wizard-of-Oz technique used in Study Two shown to be adequate for validating
the preliminary vocabulary achieved by Study One and contributing for a good
final user’s experience with the FPVRGame, as was discussed in Study Three.

In addition, the simulation with the wizard allowed appropriate conditions
for recording the images and generating the data set. Before using the simulation
we tried to ask the volunteers to perform some hand poses to be captured and
used in the CNNs training, using the same method of capturing the databases
cited above in related works [17,30,33]. However, in practice, the results were not
good, and we assume that it was due to the robotic and not natural movements
made by the volunteers without causing oscillations in the poses.

Even with a dataset composed only of images collected indoor, no need for
background extraction, chroma key, and lighting adjustments [31] or data aug-
mentation [27], our CNN model was able to generalize the recognition of hand
poses, and it works appropriately for both indoors and outdoors environments.
Besides that, we observed that the performance of the hand pose interaction
with the FPVRGame presented satisfactory results, similar to the joystick in
the number of collected coins (Fig. 7).

6 Conclusion

Our FPVRGame proposal allows the use of bare hands as a control for VR and
Head Mounted Display scenarios, especially for low-end VR devices. Our scenario
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is focused on egocentric vision and presents a set of natural and comfortable hand
poses, considering users’ preferences. We developed a public dataset [21], which
allows extensions and inclusions of new hand poses. The FPVRGame demon-
strates a hand pose interaction solution, based on deep learning, that using a
trained CNN model capable of recognizing hand poses, captured at indoors or
outdoors environments and without any illumination or background constraint.
We achieved an average accuracy of 97.89%, which allowed smooth and com-
fortable human interaction through different usage scenarios. We demonstrate
our results using commercial low-end HMD’s and compare our solution with
traditional interaction devices.
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