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Abstract. Return-Oriented Programming (ROP) is a robust attack
which has been proven to be Turing-complete. ROP reuses code seg-
ments named gadget in vulnerable applications and modifies control flow
to achieve malicious attacks. Existing defense techniques for code reuse
attacks attempt to restrict the policy of control flow transfer (e.g. CFI)
or make locating gadgets a hard work (e.g. ASLR). However, decades of
the arm race proved the ability to detect up-to-date attacks remains the
Achille’s heel. In honeypot, a general pattern for operators is spreading
honeytokens and hunting spammers by capturing their malicious behav-
ior. In order to capture the attack pattern of code reuse attacks, we
present a novel deception based ROP detection model named Honey-
Gadget. HoneyGadget inserts various types of honey gadgets as tokens
to some specific points of binary files where normal control flow would
not reach and record their places once the application is loaded. During
the execution, HoneyGadget uses Last Branch Record (LBR) to trace
execution records. On performing a sensitive function call, HoneyGadget
compares LBR records with the maintained address list, and terminates
the program immediately if some records match. Since these honey gad-
gets will not be executed by normal control flow, there must be a ROP
attack. We have developed a fully functioning prototype of HoneyGad-
get. Our evaluation results show that HoneyGadget can (1) capture ROP
attacks actively and (2) incurs an acceptable overhead of 7.61%.

Keywords: Return-Oriented Programming - Gadget insertion -
Deception - Control flow - Last Branch Record

1 Introduction

Code injection attack was a tricky problem for software security practitioners
before non-executable memory was introduced. With the widely deployment of
DEP [2] and W @ X, attackers are forced to reuse existing code segments in
binary. Over time, the state-of-art code reuse attacks have dramatically evolved
from reusing sensitive system functions in related libraries of victim application
(e.g. return-to-libe [33]) to chaining small code segments named gadgets into a
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gadget chain (e.g. Return-Oriented Programming [5,30]). Triggered by a simple
buffer overflow vulnerability, code reuse attack proved that it can perform arbi-
trary Turing-complete computation without injecting any malicious code [8]. In
addition, there are several automated tools or methods available to help attack-
ers to mount ROP attacks [28,29].

On the other hand, attempts to defense ROP attacks never stop. Existing
defense techniques can be classified into two categories [24,26], which are ran-
domization and control flow transfer checks respectively. A general purpose of
Address Space Layout Randomization (ASLR) is to make data segments of the
target application and the exact memory address of gadgets unpredictable. Con-
trol Flow Integrity (CFI) introduced by Abadi et al. [1] calls for validation checks
for each control flow transfer. By constructing Control Flow Graph (CFG) stat-
ically and applying integrity checks at execution, CFI-based defense schemes
restrict policies of control flow transfer.

However, existing defense methods are either one-time effort or detecting
malicious behavior according to pre-defined policies, the ability to detect up-
to-date attacks is outdated. Code reuse attacks via remote code execution is
considered the most frequently used attack technique [4,31] in modern appli-
cation scenarios. The remote adversary manipulates a code pointer to create
memory disclosure and locates available gadgets for ROP attack. Equipped with
weapons to exploit 0-day vulnerability, these advanced attacks are able to break
existing defenses [4,6,7,15,31].

In order to capture these code reuse attacks, we propose HoneyGadget, a
deception based defense scheme just like Honey-Patches [3]. HoneyGadget inserts
honey gadgets as honeytokens to binary files of the target application and its
related libraries, then we can detect attacks at runtime if inserted gadgets are
executed. We have implemented a prototype of HoneyGadget on x86-based Linux
platform. The experiment results show that the HoneyGadget incurs a modest
overhead of 7.61% on average.

In summary, our main contributions of this paper include:

1. We propose HoneyGadget, a deception based ROP detection scheme, which
provides a new method to capture ROP attacks.

2. We propose novel techniques combining constructing gadgets, inserting gad-
gets automatically and runtime ROP gadget chain detection method to
achieve a ROP detection scheme.

3. We have implemented a prototype of HoneyGadget, and our evaluation shows
that HoneyGadget achieves high accuracy with low overhead, proving our
scheme practical.

The rest of this paper is organized as follows. We begin in Sect. 2 by intro-
ducing background knowledge on existing ROP attack methods and relative
defenses. In Sect. 3, we detail our threat model and assumptions. The basic idea
of HoneyGadget and the concrete implementation are illustrated in Sects. 4 and
5 respectively. We evaluate our system in Sect.6. Related works are given in
Sect. 7, and conclude in Sect. 8.
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2 Background

2.1 Return-Oriented Programming

Return-Oriented Programming (ROP) is a typical code reuse attack. The main
idea of ROP is chaining gadgets in the binary files of the target application
as attack payload. Gadgets chosen for gadget chain are usually short with no
more than 6 instructions [10] to avoid unplanned adjustment to pointers or reg-
isters. Each gadget in the attack payload is responsible for performing one or
several steps of computation, such as loading argument from a specific register
or performing arithmetic operations [8]. Triggered by an inconspicuous vulner-
ability, stack buffer overflow for example, control flow of the target application
is hijacked. Together with the deployment of ROP defense schemes in modern
system, ROP based attack techniques update correspondingly [6,7,15]. These
attack techniques utilize flaws in control flow transfer policies, and bring defense
schemes false negatives. Flexible and powerful, these features make ROP a state-
of-art attack technique.

In modern application situations, except from software on the local host,
applications and services provided by remote servers become a growing trend [3,
13,27]. Correspondingly, attacks on those remote hosts based on remote code exe-
cution and code reuse techniques appear [4]. Based on the feature that servers do
not rerandomize the address space layout after a crash under particular circum-
stances, BROP rewrites every single byte of stack canary after several attempts,
and this corrupts stack integrity protection. The adversary then invokes write
to dump more available gadgets in process memory. BROP enriches the arsenal
of remote attackers and expand the attack surface of code reuse attacks.

2.2 Last Branch Record

Last Branch Record (LBR) provides a way to trace the execution control flow
of a program, as it can log the branch information executed in a looped buffer
at real-time. CPU can record the execution pace parallel at execution, and it
incurs no slowdown. The length of the looped buffer is limited. For an Intel
Haswell CPU, the length is set to 16, indicating that LBR can record the past
16 instruction branches executed. For an Intel Skylake CPU, LBR can record
the last 32 executed instruction. While the looped buffer of LBR is filled, the
newly recorded branches overwrite the old ones [16]. The functionality of LBR
is enabled/disabled by certain model-specific registers (MSRs). The access to
MSRs requires kernel privilege, which makes the status of LBR transparent to
programs running in user space.

3 Threat Model and Assumptions

HoneyGadget aims to capture attack patterns of ROP attacks from both local-
host and remote attackers. To ensure that our scheme is practical, we define our
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threat model based on strong yet realistic attack assumption. With attack mod-
els in previous literature [4,6,7,15] and application scenarios of HoneyGadget,
we generate the threat model as follows.

We assume the target application has at least buffer overflow vulnerability
and the adversary has ready knowledge to exploit the vulnerability. The adver-
sary is allowed to exploit the vulnerability repeatedly and can use automatic
gadget generating tools to locate available gadgets and construct attack pay-
load.

For remote side, we assume servers restart their worker processes after a
crash and do not change their address space layout. Currently, servers such as
Nginx and Apache are compatible with this feature. We further assume that the
adversary is allowed to overwrite a variable length of bytes including a return
instruction pointer [4]. These assumptions mean that the adversary can mount
BROP attack successfully.

We assume the operating system enables standard defense mechanisms such
as W@ X and ASLR by default. However, as HoneyGadget focuses on capturing
the malicious behavior of adversaries, methods aim to stop unintended control
flow transfer such as CFI are disabled.

4 HoneyGadget

In this section, we describe the architecture of HoneyGadget. We first introduce
the overview of our scheme, then we give out the detail of each component of
HoneyGadget.

4.1 Overview

HoneyGadget owns two main components: static processing module and runtime
checking module (see Fig. 1). The static processing module is responsible for (1)
source code iteration and locating places to insert honey gadget as honeytokens;
(2) generating gadgets that meet the requirement of potential code reuse attacks
and (3) gadget insertion. After processed by the static processing module, the
input file together with secured libraries are then taken over by runtime checking
module. The runtime checking module of HoneyGadget (1) maintains address
list of inserted gadgets and a pre-defined sensitive function list, and (2) performs
runtime monitoring of execution. At last the output file is provided to local users
and remote users. The output file has no interference on normal operations.
However, those inserted honey gadgets are tempting but dangerous traps for
attackers.

4.2 Static Processing Module

As we mentioned, the key idea of HoneyGadget is deception. Based on the obser-
vation of attack principle of code reuse attacks, we draw a conclusion that those
attacks assemble gadgets into attack payload and hijack the control flow of victim
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Runtime Checking Module

5 Static Processing Module
Code
Traverse | Located Insertion Secured Base
e Source Code Address
Source File Places Gadget & Libraries |
& Libraries Insertion Execution
> > e Address List
Senera nop Address List Target 3

Generated Insertion Application Compare
Gadgets

LBR Stack

Fig. 1. Overview of HoneyGadget.

program no matter attack trick transforms. Thus, we can insert honey gadgets
that meet the requirement of code reuse attacks as honeytokens. In order to
avoid potential altering of execution flow caused by our gadgets, HoneyGadget
inserts them to places where benign control flow would never reach.

In general, we summarize these places into two categories, which are opaque
instructions [23] and function outlet.

Type I: Opaque Instruction: Opaque instructions have been used in
software protection extensively. By setting predicates according to the value of
invariant, context or execution result, opaque instruction is designed to clutter
the control flow graph and it can redirect execution flow to a certain path.

Type II: Function Outlet: Code spaces right after function outlets is
another case. The outlet of a function can be identified with the ret instruc-
tion and normal execution flow would never reach code segments right after
ret instruction. However, inserting honey gadgets right after ret will grant
the function with multiple outlets. Automatic gadget generating tool such as
ROPEME |[21] and ROPgadget [28] will regard the second function outlet as a
fake one and discard it. In order to separate honey gadgets from existing func-
tion outlets, the static processing module selects instruction nop to complete
this task. Those inserted nop sequences form interspaces between original outlet
and the inserted gadget, and it confuses the automatic gadget generating tool.

Due to the poor alignment on x86 platform, unintended gadgets enrich
attackers’ options on their way to construct gadget chains. In order to elimi-
nate potential unintended gadgets, HoneyGadget randomizes source code layout
by randomly inserting nop instructions (0x90) before each assembly instruction.
Shown in Fig.2, by inserting a nop sequence between instruction “mov [ec],
edr” and “add ebzr, ebx”, the unintended gadget disappears. We will introduce
the detailed implementation of inserting nop instructions and gadgets in Sect. 5.

For each honey gadget inserted, the static processing module records the
offset to the start of the source code file in a formulation of address list. The
address list is then maintained by runtime checking module during executions.
Finally, the static processing module gives out a sensitive function list. The list
contains function calls that can elevate privilege or perform arbitrary execution
such as execve() and setreuid().
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Fig. 2. The layout of instruction sequence after nop insertion.

4.3 Runtime Checking Module

Gadgets inserted are independent from existing code segments in source code,
and there is no legal control flow transferred to them. Thus, it is most likely trig-
gered by malicious attackers once the inserted gadgets are executed. Runtime
checking module is designed to check whether there are inserted gadgets in exe-
cution branches of CPU. When loading application, ASLR randomizes the space
layout of the application. Thus, in order to have an accurate record of honey
gadgets inserted, the runtime checking module updates the saved address list.
This module adds the base address of code segments with offsets of each honey
gadget when the application is loaded. This maintenance procedure is done in
kernel space, which is also transparent to user level applications.

Based on the observation that malicious executing code will eventually need
to perform system calls to achieve something meaningful, the static processing
module pre-defines a sensitive function call list and saves it in the kernel module
together with the address list. While the target application is about to perform a
sensitive function call, the runtime checking module pauses the execution of the
target application and reads from the looped buffer of LBR. Then the runtime
checking module compares the recorded instruction addresses with maintained
address list. If one or more record matches, HoneyGadget confirms a ROP attack.

5 Implementation

In this section, we detail the implementation of our HoneyGadget, and give
algorithms on gadget insertion and nop insertion.

5.1 Honey Gadget Insertion

Since HoneyGadget is a deception based defense scheme trying to confuse the
ROP attacker by inserting honey gadgets. It turns out that the place where the
gadgets are inserted, the number of inserted honey gadgets and types of those
gadgets are the main factors that affects the effectiveness of HoneyGadget.

Places of Honey Gadget. The place to insert gadgets should be carefully
arranged. Inserting gadgets inside normal instruction sequences may conflict
with benign execution. For example, the gadget which modifies register eax may
change the return address of benign execution flow. Consequently, the gadgets
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should be placed to unreachable execution paths. However, the diversification of
unreachable execution path should be guaranteed to avoid those honey gadgets
from identification. We generate those places in two types: opaque instructions
and code spaces right after function outlet.

Function Outlet: As mentioned in Sect. 4, inserting gadgets directly after
ret instruction will grant a function with multiple outlets. In this case, automatic
gadget generating tool will recognize the fake gadget discard it. In HoneyGadget,
we insert nop instructions to space out the two outlets as a disguise. After
analyzing several frequently used dynamic libraries including g¢libc and Id, we
noticed that there are several nop instructions between basic blocks. The number
of nop instruction is between 5 to 40. Thus, we disguise those inserted gadgets
as normal code segments by inserting 5 to 40 nop instructions after ret.

: / Al
: : ca:]] \ et

call . nop
L : \ ret
jmp / jle E nop nop
. gadget
- s--- 1 nop
L gadget | gadget
Type Il :0paque predicate Type I :Function outlet

Fig. 3. Layout of code segment after inserting honey gadget.

Opaque Instruction: For opaque instructions, there exists three different
types, which are invariant opaque predicates, contextual opaque predicates and
dynamic opaque predicates [23]. In HoneyGadget, we focus on locating invariant
opaque predicates in the source code. Due to its easy deployment, it is the most
frequently leveraged opaque predicate [23]. HoneyGadget uses KLEE [32] to per-
form symbolic execution. KLEE is built on top of LLVM compiler infrastructure
with a symbolic virtual machine engine. During this procedure, KLEE engine is
responsible for locating the unreachable path and iterate to the end of this path.
Following the end of the path, a gadget is inserted. The layout of code segment
after inserting gadgets and nop instructions is shown in Fig. 3.

Insertion Algorithm. The honey gadget insertion algorithm is given in
Algorithm 1. HoneyGadget randomly inserts nop instructions and gadgets after
functions in source code at the probability of pGadget. For each insertion place,
static processing module generates a random number pRand. If requirements
are met, static processing module first inserts several nop instructions, then it
randomly chooses a set of operation instructions such as call, mov or sub and an
ending instruction to construct a gadget. To be noticed, HoneyGadget is able to
generate all types of gadgets. This makes those honey gadgets inserted applica-
ble for constructing a gadget chain. The length of generated honey gadget is no
more than 6 instructions.
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Algorithm 1. Honey gadget insertion
Input:
(1) The list of functions and opaque instructions, FList;
(2) The probability of insertion, pGadget;
(3) List of candidate operation instruction, operationTypeTable;
Output:
The list with deception gadgets inserted, FList.
1: numOperationTypes < operationTypeTable
2: for F € FList do
3:  pRand = random (0,1)
4:  if pRand ; pGadget then
5: i = the ret instruction of F
6
7
8
9

numNOP = random (5,40)
insertAfter (i, nop, numNOP)
i« inext (numNOP)

nOpt = random (1,5)

10: for index from 1 to nOpt do

11: optIndex = random (0, numOperationTypes)
12: insertAfter (i, operationTypeTable [optIndex])
13: i+ i.next

14: end for

15: insertAfter (i, endRet)

16:  end if

17: end for

18: return FList

5.2 Insert nop

As presented in Sect.4, HoneyGadget randomizes code layout by randomly
inserting mop before each instruction, this procedure can eliminate potential
unintended gadgets.

Similar with gadget insertion procedure, during mop insertion procedure,
static processing module traverses each instruction from the first line in source
code. For each instruction traversed, the module generates a random number
pInsert. If pInsert is less than pNop defined previously, static processing module
inserts a nop ahead of the instruction.

5.3 Trigger Detection

Runtime detection module of HoneyGadget leverages LBR to monitor execution
states of instruction branches. Runtime detection module reads LBR, buffer by
using privilege instruction rdmsr and wrmsr. For an Intel Skylake CPU, the
buffer of LBR can record last 32 executed instructions.

HoneyGadget pre-defines a sensitive function list containing function calls
that can elevate privilege or perform arbitrary execution such as ezecve() and
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setreuid() during static processing procedure. It will trigger runtime detection
mechanism if one of the sensitive functions is called. While the detection mech-
anism is invoked, HoneyGadget pauses the execution of the target application.
Then runtime checking module sends the privilege instruction rdmsr to ker-
nel to read LBR buffer. After reading the 32 recorded instructions, the module
leverages binary search algorithm to search if there exist one or more recorded
instructions match with items in the address list. Since only malicious execution
flow can reach inserted gadgets, those addresses in the address list shall never
appear in LBR record during normal execution.

6 Evaluation

In this paper, we evaluate the space cost of inserting nop instructions and gad-
gets, effectiveness and performance of HoneyGadget. We implement HoneyGad-
get on Ubuntu 12.04 with 4 GB available memory. The machine equips an Intel
Skylake i5-6500 CPU. And the deployed LLVM and Clang version are both 3.5.2.

6.1 Effectiveness

In order to evaluate the effectiveness of our scheme, we verify HoneyGadget
with real ROP attacks under two real world vulnerabilities. During these tests,
pNop and pGadget are both set to 50%. Results of these tests indicate that
HoneyGadget can prevent ROP attacks effectively.

Proof of Concept. In the first test, we test HoneyGadget on a small program
containing a stack buffer overflow vulnerability. By inputting long parameters,
the vulnerability is triggered and can be then utilized to launch a ROP attack.
We use the automatic ROP gadget generating tool ROPGadget [28] to search
available gadgets and randomly choose them to construct a ROP gadget chain.
We repeat this test 50 times and report the final results. Among the 50 repeated
tests, 49 of them used at least one of the inserted gadgets to construct the ROP
gadget chain. HoneyGadget captured all the gadget chains containing inserted
gadget with no false positive.

No-IP DUC. We also choose No-IP Dynamic Update Client (DUC) version
2.1.9 to conduct the test. The application fails to perform a boundary check
while invoke vulnerable function strepy(). The exploit database Exploit-db gives
a ROP gadget chain example. We substitute gadgets in the gadget chain with
gadgets generated by automatic gadget generating tool. Similar to the first test,
we generate 50 gadget chains as ROP payload using different gadgets and 48 out
of them contains at least one inserted gadget.

Nginx Web Server. HoneyGadget performs a deception based defense on
remote code execution. Nginx web server is one of the most popular web servers in
real world application situations. However, the weak security enforcement makes
it vulnerable to a couple of attacks [4,14]. We exploit a simple stack vulnerability
on Nginx 1.4.0 (64-bit) to launch a BROP attack. We apply HoneyGadget on
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Fig. 4. Space cost and effectiveness evaluation.

Nginx server, and the scheme inserted honey gadgets that meets the requirement
of BROP attack automatically. We repeat BROP attack attempt 50 times, 46
out of them leveraged at least one inserted gadgets during stage 2 or 3 in attack
payload. As expected, our HoneyGadget can detect those attacks with no false
positive.

6.2 Memory Cost Evaluation

On loading the application, those inserted gadgets and nop instructions are
loaded into the memory together with the application. Consequently, memory
requirement of the target application inevitably increases. In our experiment,
we evaluate the extra memory requirement of nop insertion and gadget insertion
respectively. The insertion procedure increases the program binary size. We set
pNop and pGadget 50% as benchmark, the average increase in binary size is
8.41%. Increasement on binary file size has a positive relationship with insertion
probability.

Space Cost and Effectiveness Evaluation of Inserting nop. We use Hon-
eyGadget to process different applications and evaluate the space cost and effec-
tiveness of nmop insertion. In this test, we set pGadget 50%. Inserting nop instruc-
tions into source code of the target application inevitably increases its size, and
the extra memory requirement has a linear positive relationship with nop inser-
tion probability. Figure 4(a) shows that it takes 1.31% extra memory space while
pNop is set to 0.1, and 10.84% extra memory cost while pNop is set to 0.9. On
the other hand, along with the increase of pNop, the possibility of corrupting
an unintended gadget raises. The dashed line in Fig.4(a) gives the remained
unintended gadgets percentage. The percentage of remained unintended gadgets
drops from 82.13% to 3.72%.
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Space Cost and Effectiveness Evaluation of Inserting Gadgets. Similar
to the evaluation on nop insertion, in this evaluation procedure, we leverage same
applications to perform the evaluation, and pNop is set to 50% as benchmark.
It then takes about 1.71% extra memory when pGagdet is set 0.1, and the
memory consumption raises to 14.33% while pGadget is 0.9. Together with the
increment of pGadget, the scale of inserted gadget increases. The results of the
experiment show that with pGadget of 0.1, only 4.61% of gadgets are inserted.
The ratio increases to 19.74% for pGadget of 0.5, and to 34.82% for pGagdet of
0.9. Figure 4(b) shows the results.

6.3 Performance Overhead

To evaluate the overhead brought by HoneyGadget, we divide the evaluation into
2 phases. Corresponding to the architecture of HoneyGadget, the first phase is
static processing, and another one is runtime checking.

We set pGadget and pNop to 50% and evaluate performance overhead of
static processing phase by adding -time-passes argument. During the traverse
procedure, the module identifies all instructions, basic blocks and functions.
Thus, the larger the library size is, the longer time for static processing is needed.
Time for processing frequently-used libraries are shown in Fig. 5(a). The experi-
ment results meet this idea. As the results show, except from some huge libraries,
it takes about 30s to process a dynamic library. For example, it takes 35.96s
to process 1d-2.23.s0 and 36.86s to process liblzma.so. As for libraries with a
huge quantity of basic blocks and functions, processing these libraries requires
much time. Taking the library libc-2.23.s0 for an example, the time consumption
increases to 468s. Although it does take some time to do the static processing
work, fortunately, operations in static processing phase is mostly a one-time
effort, for libraries can be shared by different applications.
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Fig. 5. Performance overhead of HoneyGadget.
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For runtime checking phase, we evaluate the performance overhead by run-
ning a benchmark test using phoroniz test suite [20] with optimization level
-02. As we have introduced, those inserted gadgets are unreachable for benign
control flow, and they introduce no runtime overhead during execution. The
main performance overhead incured by honeygadget is to compare LBR records
when handling sensitive system calls. On the other hand, the nop instructions
we inserted will be executed. With more nop instructions inserted, the normal-
ized runtime overhead increases accordingly. In our experiment, we set pNop
50%, the evaluation results are shown in Fig. 5(b). HoneyGadget introduces an
average overhead of 7.61% which is less than Readactor++ (8.4%) and other
fine-grained CF1I solutions.

7 Related Work

Address Space Layout Randomization (ASLR) is a representative mechanism to
defend ROP attacks. By re-allocating the space layout, ASLR changes the base
address of the application and its related libraries. However, a single memory
leakage vulnerability is enough to de-randomize the whole memory space.

Enhancement on ASLR is mainly on re-randomization and applying fine
granularity. For example, ASLP [19] randomizes the target application at the
function level, Remix [9] randomizes the address space at basic block level, and
ILR [17] realizes randomization at instruction level. Bigelow et al. promoted
a timely randomization scheme to re-randomizes address layout during execu-
tion [21]. Although these fine-grained ASLR significantly increase the difficulty
for attackers to locate useful information in memory, it also brings extra time
consumption and memory allocation.

Inserting some instructions in the program that do not affect the execution
of the program can also increase the difficulty for the attacker to obtain internal
information of the program. kGuard [18] uses a nop sled to change address loca-
tions, but they only do this to protect and diversify the kernel. HoneyGadget
randomly inserts nop instructions and gadgets to source code of the target appli-
cation and its related libraries. As mentioned in Sect. 5, the diversity of gadget
types and inserted places makes attackers hard to distinguish inserted gadgets
from original ones. Moreover, the maintained address list is in kernel space, this
makes the address list transparent to adversaries and immune to information
leakages in application layer.

Though the strict control flow transfer check mechanism is able to mitigate
potential control flow hijacking, CFI poses an unacceptable overhead of more
than 20%. In order to make CFI practical, a few coarse-grained mechanisms
based on CFT are proposed. Coarse-grained CFI mechanisms relax the limitation
of legal indirect control flow transfers, and simplify the checking method. Com-
pared with fine-grained CF1I, coarse-grained CFI mechanisms such as CCFIR [34]
and binCFT [35] loose the indirect control flow checking policy and reduce over-
head to an acceptable level. However, the loose checking policy brings potential
vulnerabilities.
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Another way to reduce overhead of checking the validity of control flow trans-
fer is based on hardware. Liu et al. introduced a CFI enforcement using Intel
Processor Trace [22]. Compared to using IPT to trace the execution path, CPU
is able to read LBR registers parallel at execution. This feature makes LBR a
more efficient way to log instruction branches of the application. Kbouncer [25]
uses LBR to detect ROP attacks. ROPecker [10] also leverages LBR. to optimize
performance overhead. During offline processing procedure, ROPecker identi-
fies potential gadgets and saves them in Instruction & Gadget database (IG).
ROPecker reads LBR buffer and analysis executed gadgets in IG, then it indi-
cates following instructions by simulating execution. If the number of gadgets
reaches the limit, ROPecker warns user of ROP attack. HoneyGadget also uses
LBR to record execution branch of the target application. However, different
from these two approaches, the main idea of HoneyGadget is tempting adver-
saries to launch attacks by inserting gadgets to binary code. The behavior of the
attacker is then captured and logged by host.

Booby trap [11] is a mechanism to actively detect and respond to attacks
against a target application proposed by Crane et al. The main idea of booby
traps is as follows: in a diversified application, code sequences (the actual booby
traps) are added that trigger an active response, such as terminating the pro-
gram or generating an alert. Readactor++ [12] inserts booby traps in both PLT
and vtables to mitigate blind probing of table entries. HoneyGadget inserts nop
instructions and honey gadgets to confuses adversary with traps. Compare to
Readactor++, our HaneyGadget is more active and has a greater chance of
getting attackers into the traps.

8 Conclusion

In this paper, we present a deception based ROP defense scheme named Hon-
eyGadget. By inserting nop instructions and honey gadgets, our HoneyGadget
confuses adversary with traps. HoneyGadget maintains an address list record-
ing addresses of inserted gadgets in kernel space and defines a set of sensitive
function calls. Once executing the sensitive function call, HoneyGadget pauses
execution of the target application and reads LBR buffer to check if recorded
instruction branches match with addresses in address list. If the record matches,
HoneyGadget alarms a potential ROP attack. Our evaluation shows that Honey-
Gadget incurs an acceptable runtime overhead of about 7%. Compared to other
ROP defense mechanisms, the key idea of HoneyGadget is deception, which is a
brand-new method to detect code reuse attacks.
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