
Behavior Flow Graph Construction
from System Logs for Anomaly Analysis

Hang Ling1, Jing Han2, Jiayi Pang1, Jianwei Liu2, Jia Xu1,
and Zheng Liu1(B)

1 Nanjing University of Posts and Telecommunications, Nanjing, China
{1217043023,b16041505,xujia,zliu}@njupt.edu.cn

2 ZTE Corporation, Shenzhen, China
{han.jing28,liu.jianweizp}@zte.com.cn

Abstract. Anomaly analysis plays a significant role in building a secure
and reliable system. Raw system logs contain important system informa-
tion, such as execution paths and execution time. People often use system
logs for fault diagnosis and root cause localization. However, due to the
complexity of raw system logs, these tasks can be arduous and ineffec-
tive. To solve this problem, we propose ETGC (Event Topology Graph
Construction), a method for mining event topology graph of the normal
execution status of systems. ETGC mines the dependency relationship
between events and generates the event topology graph based on the
maximum spanning tree. We evaluate the proposed method on data sets
of real systems to demonstrate the effectiveness of our approach.

Keywords: Event topology graph · System logs · Anomaly detection ·
Maximum spanning tree

1 Introduction

Systems in business giants such as Google and Amazon generate tens of billions
of logs every day. Numerous system logs are of great value in various application
fields, and one application domain is to extract valuable knowledge from these
system logs for building secure systems [4]. System logs reveal various event
characteristics at critical moments, and they contain essential information con-
cerning the operating status of the system, such as the execution traces [9]. Such
system logs are the universally available resource among almost all computer
systems, which is essential for understanding the overview system status.

Anomaly analysis is indispensable to establish a secure and reliable system.
With the rapid iteration of the system version, the system is suffering from cyber-
attacks increasingly. However, relying solely on the experience of engineers and
domain experts is undoubtedly inefficient and inaccurate. Therefore, log analysis
has always been a hot topic in the field of system operation and maintenance,
especially in the detection of anomaly events [2,8].

Existing approaches that leverage system logs for anomaly detection can be
grouped into two categories: feature-based and workflow-based. Feature-based
c© Springer Nature Switzerland AG 2019
F. Liu et al. (Eds.): SciSec 2019, LNCS 11933, pp. 215–223, 2019.
https://doi.org/10.1007/978-3-030-34637-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34637-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-34637-9_16

216 H. Ling et al.

methods construct feature vectors from system logs and employ Principal Com-
ponent Analysis (PCA) for anomaly detection [6,11]. Workflow-based approaches
build the execution flow graphs based on system logs from normal executions
[3,5,12]. Cloudseer [12] models workflow automata by repeating executions of
one single task, which analyzes dependencies between events. Tong et al. propose
an approach called Logsed [3], which mines the control flow graphs with time
weights from operational logs and transaction logs. However, it is a critical task
to extract workflow graphs from massive logs.

By carefully considering the characteristics of system logs, we have the fol-
lowing observations: (1) The log format varies with different system platforms,
which is usually unstructured. Therefore, it is a challenging task to parse a con-
siderable amount system log accurately and convert them into events. (2) The
sequential information of log messages is essential for problem diagnosis. Modern
cloud computing platforms execute tasks in parallel and system logs printed by
the terminal are often intertwined. Even a single task can perform asynchronous
operations which could cause interleaved logs.

The main contributions of this paper are summarized below:

– In this paper, we propose ETGC (Event Topology Graph Construction), an
effective approach to mine event topology graph based on the maximum
spanning tree from interleaved system logs. Compared with existing anomaly
detection approaches, our method can detect more anomalies with high accu-
racy.

– We evaluate the effectiveness of ETGC mining algorithm on OpenStack data
set and BGL data set. The experimental results prove that our method has
higher accuracy and interpretability than other algorithms.

The remainder of this paper is organized as follows. In Sect. 2, we explain
in detail how to construct event topology graphs, followed anomaly diagnosis in
Sect. 3. We conducted extensive experiments and report the results in Sect. 4.
Finally, we conclude the paper in Sect. 5.

2 Event Topology Graph Construction for Anomaly
Analysis

Our approach consists of an offline phase and an online phase. In the offline
phase, we adopt some simple but effective cluster approaches such as BSG [1]
to generate log templates of high quality. Then we use these log templates to
generate the event topology graphs, which represents the normal execution trace
of the system. In the online phase, by comparing the newly arrived execution log
sequence and the event topology graphs, we can find their deviation and detect
anomaly events.

2.1 Parsing the Logs

Log parsing [1] converts raw and free form system logs into structured log tem-
plates with specific formats. A piece of raw system log can be divided into two

Behavior Flow Graph Construction from System Logs 217

parts: the constant part and the variable part. The constant part is the constant
string from original texts printed by the source codes. The variable part usually
carries various status information of the system. Log templates are extracted
from raw system logs. For example, if the raw log is “initialize prop version req-
f3eaa3dd-321d-44db-b705-937a1c26a01b”, then the extracted log template will
be “initialize prop version *”. Compared with present works mainly based on the
templates, we have fully considered the log timestamp information in addition,
which significantly improves the accuracy of detecting anomalies.

2.2 Finding Candidate Successor Group

The Computation of the candidate successor group contains two steps: (1) Suc-
cessor group generation. (2) Noise event filtering. Mining the candidate successor
group aims at finding all the possible successor events of reference templates.
First, we record all the distinct events in two closest events with the same ref-
erence template and then add them to the candidate successor group of the
reference template. The noise event filtering aims to keep meaningful but rare
events. We use an adaptive correlation probability to filter out noise while retain-
ing normal rare events. Let us denote the probability of occurrence of predecessor
template A as PA, the probability of occurrence of successor template B as PB,
and the occurrence times of template B in the successor group of A as N(A|B).
We compute the correlation possibility between event A and event B in the
successor group.

SUP(A|B) =
N(A|B)

min(PA, PB)
∗ sigmoid(min(PA, PB)). (1)

The threshold for SUP should be small enough to filter noise event and retain
rare and meaningful events. After we set a filtering threshold, if the correlation
probability is larger than the threshold, then event B is added to the final suc-
cessor group of A.

2.3 Mining Dependent Event Pair

The existing method usually uses a time window mechanism to retain the sub-
sequent events of the reference templates in a statistical manner. The items in
the same sliding window are considered to be subsequent events of the same
reference template. However, it is difficult to estimate the length of the time
window accurately.

Li and Ma [10] proposed to use several statistics for detecting dependent
event pairs and filtering candidate event pairs. The sequence of points of event
type A is denoted as PA = < a1, a2, ..., am >, and ai is the specific timestamp of
one log entry of event type A. Assume that the time range of the point sequence
PA is [0, T], given a point z, the minimum positive distance between the z and
sequence PA is defined as

d(z, PA) = min||x − z||, x ∈ PA, x ≥ z. (2)

218 H. Ling et al.

The unconditional distribution of waiting time of event B is

FB(r) = P (d(z, PB)) ≤ r, (3)

where r is a real number. The conditional distribution of waiting time of event
B with respect to event A is

FB|A(r) = P (d(z, PB)) ≤ r, z ∈ PA, (4)

where r is a real number, z is a point of PA in the point sequence, and FB|A
describes the conditional probability in the case of event A at time z. Then we
have the following definition [10].

Definition 1. [10] Given two corresponding sequence of points for event types
A and B, if FB(r) and FB|A are significantly different, then statistically, event
B is considered to be dependent on event A. Specifically, the dependency test
between events A and B can be compared by FB|A and FB(r). Assuming that A
and B are independent of each other, according to the central limit theorem

Z =
MB − MB|A√

var(FB(r))
m

∼ N(0, 1), (5)

where var(FB(r)) represents the variance of FB(r), MB and MB|A represent the
first moment of FB(r) and FB|A(r) respectively.

2.4 Discovering Transition Time Lag

Existing methods tend to use a fixed time weight for edges in the event topol-
ogy graph, which indicates the transition time period between adjacent events.
However, in real world systems, fixed time lags are not practical due to noise
interference, unsynchronized clocks, and so forth. Time lags usually fluctuate
within a range.

For each dependent event pair < Ti, Tj >, we look into two adjacent template
Ti and Tj in the log stream and record all the time period as < t1, t2, ..., tm >.
We use a time distribution f(t) to describe the transition time of event pair
< Ti, Tj >. Since the time distribution represents the time lag sequence of event
pair, we propose a cluster-based method to get rid of redundant event pairs. In
this method, we divide the time-delay sequence into multiple time lag clusters.
Then the maximum and minimum values of the clusters are considered as the
boundary values of the transition time interval. Intuitively, we perform the chi-
square test on these time lag clusters. If they pass the chi-square test, then the
event pairs are considered to have the dependency relationship, and the time
delay interval is used as the time lag interval of the event pair.

2.5 Generating Maximum Spanning Tree

In the graph theory, a spanning tree of a graph is a subgraph that contains
all the vertices and the maximum spanning tree [7] is the minimum connected

Behavior Flow Graph Construction from System Logs 219

graph with maximum weight. In a maximum spanning tree, each node represents
a single distinct event, and weights of connected edges represent the transition
probability between predecessor and successor events. Successor events are not
always immediately follow reference events, so that some structures like loop
structures and detour structures may be missing from the event topology. How-
ever, the spanning tree represents the backbone of the entire workflow. Even if
some meaningful structures are missing, we can still retrieve them through the
original dependency relationship between events. We employ the attenuation
factor to control the possibility of the existence of the detour structure. We first
define the step size as the distance from the starting node to the terminal node
in the maximum spanning tree structure. Next, we define the probability of the
existence of the detour structure between the starting node and the terminal
node as:

d(E1, E2) = log(1 + path(E1, E2)), (6)

where the path(E1, E2) refers to the step size between E1 and E2 in maxi-
mum spanning tree. Then we could set a suitable threshold to preserve the edge
between E1 and E2.

3 Anomaly Diagnosis

There are two kinds of anomalies: event anomalies and time anomalies. An event
anomaly is raised when an unexpected log entry occurs, which cannot match
to any node in the event topology graph. Unexpected log entry indicates an
abnormal event that cannot be matched with any log template or a redundant
occurrence of a log template.

A time anomaly is raised when a child node of a parent node occurs, but the
interval time is not within the time lag interval. The time lag interval records
the maximum transition time and minimum transition time of the event. Any
transition time that occurs within this time lag interval is considered as a normal
event. Hence, this type of anomaly is more instantaneous and could be captured
easily.

4 Experimental Evaluation

4.1 The Datasets

We evaluate our approach ETGC through two real log datasets. Detailed infor-
mation about the two datasets is as followed:

1. OpenStack cloud platform log dataset: OpenStack, a cloud computing plat-
form based on PaaS, provides cloud service for millions of people all over
the world and its logs are accessible to users. This data includes 30 normal
deployments and 3 abnormal deployments, each of which is related to the
deployment of the cluster. We collected the data from the two components:
cf-pdman and pdm-cli.

220 H. Ling et al.

Fig. 1. An event topology graph from the OpenStack dataset

2. BGL log dataset: Blue Gene/L supercomputer system log dataset contains
4,747,963 logs, where 348,460 entries are labeled as anomalies. We choose this
dataset because it contains many log templates which only appear during a
certain time period.

4.2 A Case Study

To illustrate our method of anomaly diagnosis, we take an event topology graph
for example. Figure 1 is a part of the event topology graph generated from
OpenStack dataset. In this figure, each node represents a distinct event, and
the weight of each edge represents the transition probability of an event pair.
Moreover, Table 1 provides further information about these log templates. For
example, path (130, 7, 17) in the transaction flow diagram in Fig. 1 represents
the configuration of attributes on the server node.

4.3 Anomaly Diagnosis Evaluation

Figures 2 and 3 demonstrate the Error Event Pair Percent and the Average
Error Event Percent in normal deployments and abnormal deployments results,
respectively. Whether in abnormal deployments such as 514, 17, 60 or normal
deployments, ETGC can detect more Error Event Pair than Logsed. The left
side and right side of Fig. 4 show the proportion of event pairs on BGL data
set detected by ETGC and Logsed, respectively. The result demonstrates that
ETGC can detect more normal and abnormal event pairs than Logsed, which
proves that our approach is feasible.

Behavior Flow Graph Construction from System Logs 221

Table 1. Event IDs and the corresponding events

Event
IDs

Events

130 sqlalchemy.orm.relationships.RelationshipProperty Node.servers local/remote
pairs [(nodes.server id/servers.id)] *

4 sqlalchemy.orm.mapper.Mapper
(Server—servers) configure property(node list, RelationshipProperty) *

107 sqlalchemy.orm.relationships.RelationshipProperty Node.servers secondary
synchronize pairs *

109 sqlalchemy.orm.relationships.RelationshipProperty Server.Node secondary
synchronize pairs *

60 sqlalchemy.orm.mapper.Mapper (Node—nodes) initialize prop created at *

110 sqlalchemy.orm.mapper.Mapper (Node—nodes) initialize prop timestamp *

111 sqlalchemy.orm.relationships.RelationshipProperty Server.node list secondary
synchronize pairs *

7 sqlalchemy.orm.mapper.Mapper (Node—nodes) configure property(servers,
RelationshipProperty) *

9 sqlalchemy.orm.mapper.Mapper
(CtrlSwitch—ctrl switch) configure property(created at, Column) *

10 sqlalchemy.orm.mapper.Mapper (Lock—locks) configure property(state,
Column) *

17 sqlalchemy.orm.mapper.Mapper (PsmRole—psmroles) configure property(id,
Column) *

Fig. 2. The OpenStack deployments error
event pair percent

Fig. 3. OpenStack deployments average
error event percent

4.4 The Execution Time

At the first stage, we study the time it takes to generate candidate event pairs.
At the second stage, we pay attention to the time it costs for our algorithm
to filter these candidate event pairs and generate the event topology graph. In
Fig. 5, the solid line and dotted line refer to the time spent at the first and
second stage. It shows that the time taken to generate candidate event pairs

222 H. Ling et al.

Fig. 4. The BGL validation result Fig. 5. Execution time on BGL dataset

grows exponentially as the number of data increases. To solve this problem, we
can use the multi-thread program to reduce the time spent at the first stage of
our approach.

5 Conclusion

In this paper, we proposed ETGC (Event Topology Graph Construction), an
effective approach to diagnose the abnormal events based on system logs. By
using the maximum spanning tree generation, ETGC constructs the meaningful
event topology graphs based on dependent event pairs. Evaluation results show
that our approach can achieve superior performances in anomaly event detection.

Acknowledgments. This work is supported in part by Nanjing University of Posts
and Telecommunications under Grant No. NY215045 and NY219084, and Shanghai
Sailing Program under Grant No. 18YF1423300.

References

1. Guo, S., Liu, Z., Chen, W., Li, T.: Event extraction from streaming system logs.
Inf. Sci. Appl. 2018, 465–474 (2019)

2. He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: system log analysis for
anomaly detection. In: 2016 IEEE 27th International Symposium on Software Reli-
ability Engineering (ISSRE), pp. 207–218, October 2016

3. Jia, T., Yang, L., Chen, P., Li, Y., Meng, F., Xu, J.: LogSed: anomaly diagno-
sis through mining time-weighted control flow graph in logs. In: 2017 IEEE 10th
International Conference on Cloud Computing (CLOUD), pp. 447–455 (2017)

4. Li, T., Liu, Z., Zhou, Q.: Application-driven big data mining. ZTE Technol. J.
22(2), 49–52 (2016)

5. Lin, Q., Zhang, H., Lou, J., Zhang, Y., Chen, X.: Log clustering based problem
identification for online service systems. In: 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C), pp. 102–111 (2016)

Behavior Flow Graph Construction from System Logs 223

6. Lou, J.G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs
for system problem detection. In: USENIX Annual Technical Conference, pp. 1–14
(2010)

7. McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency pars-
ing using spanning tree algorithms. In: Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language Processing, pp.
523–530 (2005)

8. Nagaraj, K., Killian, C., Neville, J.: Structured comparative analysis of systems logs
to diagnose performance problems. In: Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation, p. 26 (2012)

9. Tak, B.C., Tao, S., Yang, L., Zhu, C., Ruan, Y.: Logan: problem diagnosis in the
cloud using log-based reference models. In: 2016 IEEE International Conference
on Cloud Engineering (IC2E), pp. 62–67, April 2016

10. Li, T., Ma, S.: Mining temporal patterns without predefined time windows. In:
Fourth IEEE International Conference on Data Mining (ICDM 2004), pp. 451–
454, November 2004

11. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale
system problems by mining console logs. In: Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, pp. 117–132 (2009)

12. Yu, X., Joshi, P., Xu, J., Jin, G., Zhang, H., Jiang, G.: Cloudseer: workflow mon-
itoring of cloud infrastructures via interleaved logs. ACM SIGPLAN Not. 51(4),
489–502 (2016)

	Behavior Flow Graph Construction from System Logs for Anomaly Analysis
	1 Introduction
	2 Event Topology Graph Construction for Anomaly Analysis
	2.1 Parsing the Logs
	2.2 Finding Candidate Successor Group
	2.3 Mining Dependent Event Pair
	2.4 Discovering Transition Time Lag
	2.5 Generating Maximum Spanning Tree

	3 Anomaly Diagnosis
	4 Experimental Evaluation
	4.1 The Datasets
	4.2 A Case Study
	4.3 Anomaly Diagnosis Evaluation
	4.4 The Execution Time

	5 Conclusion
	References

