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Abstract. Security operation centers (SOCs) typically use a variety of
tools to collect large volumes of host logs for detection and forensic of
intrusions. Our experience, supported by recent user studies on SOC
operators, indicates that operators spend ample time (e.g., hundreds
of man hours) on investigations into logs seeking adversarial actions.
Similarly, reconfiguration of tools to adapt detectors for future simi-
lar attacks is commonplace upon gaining novel insights (e.g., through
internal investigation or shared indicators). This paper presents an auto-
mated malware pattern-extraction and early detection tool, testing three
machine learning approaches: TF-IDF (term frequency–inverse docu-
ment frequency), Fisher’s LDA (linear discriminant analysis) and ET
(extra trees/extremely randomized trees) that can (1) analyze freshly
discovered malware samples in sandboxes and generate dynamic analy-
sis reports (host logs); (2) automatically extract the sequence of events
induced by malware given a large volume of ambient (un-attacked) host
logs, and the relatively few logs from hosts that are infected with poten-
tially polymorphic malware; (3) rank the most discriminating features
(unique patterns) of malware and from the behavior learned detect
malicious activity, and (4) allows operators to visualize the discriminat-
ing features and their correlations to facilitate malware forensic efforts.
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To validate the accuracy and efficiency of our tool, we design three exper-
iments and test seven ransomware attacks (i.e., WannaCry, DBGer, Cer-
ber, Defray, GandCrab, Locky, and nRansom). The experimental results
show that TF-IDF is the best of the three methods to identify discrimi-
nating features, and ET is the most time-efficient and robust approach.

1 Introduction

Ransomware, a class of self-propagating malware, uses encryption to hold vic-
tim’s data and has experienced a 750% increase in frequency in 2018 [1]. Recently,
the majority of these ransomware attacks target local governments and small
business [2]. For example, the 2018 SamSam ransomware hit the city of Atlanta,
encrypted at least one third of users’ applications, disrupted the city’s vital ser-
vices [3], and resulted in $17M of remediation to rebuild its computer network [4].
Unlike large multinational businesses, small cities and businesses usually face
stricter financial constraints than larger enterprises and struggle to establish
or keep pace with cyber defensive technology and adversary/malware advance-
ments. Consequently, they are less capable to defend against cyber threats. More
generally, SOC’s resource constraints and the shortage of cybersecurity talent [5–
7] motivate us to develop an automated tools for SOCs.

Currently, manual investigation of logs is commonplace in SOCs and
extremely tedious. E.g., our interaction with SOC operators revealed a 160 man-
hour forensic effort to manually analyze a few CryptoWall 3.0 infected hosts’
logs [8] with the goal of (a) identifying the adversary/malware actions from user
actions in their logs and (b) leveraging learned information to reconfigure tools
for timely detection. This motivates our target use case—from SOC-collected
logs from an attacked host (esp. a ransomware infection) and non-attack host
logs, we seek to automated the (currently manual) process of identifying the
attack’s actions. In the ransomware case, this should be used to provides a pre-
encryption ransomware detector. For testing in a controlled environment, we use
“artificial logs”, that is, logs obtained by running malware and ambient (emu-
lated user) activities in a sandbox.

Note that this mirrors classical dynamic analysis—(a) performing dynamic
malware analysis to (b) extract indicators or signatures—and, hence, dynamic
analysis is a second use case. Malware analysis takes considerable time and
requires an individual or a team with extensive domain knowledge or reverse
engineering expertise. Therefore, malware analysts usually collaborate across
industry, university and government to analyze the ransomware attacks that
caused disruptive global attacks (e.g., WannaCry). However, the security com-
munity has insufficient resources to manually analyze less destructive attacks
such as Defray, nRansom and certain versions of Gandcrab. Therefore, manual
analysis reports of such malware do not provide enough information for early
detection [9–16]. Our approach, regardless of the malware’s real-world impacts
and potential damages, efficiently help to automate tedious manual analysis by
accurately extracting the most discriminating features from large amount of host
logs and identifying malicious behavior induced by malware.
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While our approach holds promise for more general malware and other
attacks, we focus on ransomware. Note that upon the first infection identified
in an enterprise, the logs from the affected host can be automatically turned
into a detector via our tool. The tool applies three machine learning algorithms,
(1) Term Frequency-Inverse Document Frequency (TF-IDF ), (2) Fisher’s Linear
Discriminant Analysis (Fisher’s LDA) and (3) Extra Trees/Extremely Random-
ized Trees (ET ) to (a) automatically identify discriminating features of an attack
from system logs (generated by an automatic analysis system, namely, Cuckoo
Sandbox [17]), and (b) detect future attacks from the same log streams. Using
Cuckoo and set scripts for running ransomware and emulated user activity pro-
vides source data for experimentation with ground truth. We test the tool using
infected system logs of seven disruptive ransomware attacks (i.e., WannaCry,
DBGer, Cerber, Defray, GandCrab, Locky, and nRansom) and non-attack logs
from emulated user activities, and present experiments varying log quality and
quantity to test robustness. These system logs include files, folders, memory,
network traffic, processes and API call activities.

Contributions of the pattern-extraction and early detection tool are

1. analyzing ransomware (esp. initial infection) using Cuckoo Sandbox logs
(more generally, ambient collected host logs) and generating features from
the host behavior reports.

2. extracting the sequence of events (features) induced by ransomware given
logs from (a few) hosts that are infected and (a potentially large amount of)
ambient logs from presumably uninfected hosts;

3. ranking the most discriminating features (unique patterns) of malware and
identifying malicious activity before data is encrypted by the ransomware.

4. creating graph visualizations of ET models to facilitate malware forensic
efforts, and allowing operators to visualize discriminating features and their
correlations.

We compare outputs with ransomware intelligence reports, and validate that
our tool is robust to variations of input data. TF-IDF is the best method to
identify discriminating features, and ET is the most time-efficient approach that
achieves an average of 98% accuracy rate to detect the seven ransomware. This
work builds on preliminary results of our workshop paper [8], which only consid-
ered feature extraction, only used TF-IDF, and only tested with one ransomware.

2 Background and Related Work

Ransomware. In contrast to the 2017 ransomware WannaCry that infected
300K machines across the globe, the majority of ransomware attacks in 2018
and 2019 have been targeting small businesses. These crypto-ransomware attacks
usually use Windows API function calls to read, encrypt and delete files. Ransom
messages are displayed on the screen after the ransomware infecting the host.
This paper selects and analyzes seven recently disruptive ransomware attacks.
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1. WannaCry (2017), a ransomware with historic world-wide effect, was
launched on May 12, 2017 [18]. The WannaCry dropper is a self-contained pro-
gram consists of three components, an application encrypting and decrypting
data; an encryption key file; and a copy of Tor. WannaCry exploits vulner-
abilities in Windows Server Message Block (SMB) and propagates malicious
code to infect other vulnerable machines on connected networks.

2. DBGer (2018), a new variant of the Satan ransomware [19], scans the victim
local network for vulnerable computers with outdated SMB services. DBGer
incorporates a new open-source password-dumping utility, Mimikatz, to store
credential of vulnearble computers [20]. The dropped Satan file is then exe-
cuted to encrypt files of the infected computers with AES encryption algo-
rithm. A text file How to decrypt files.txt containing a note of demands
from the attackers is displayed on victim’s screen.

3. Defray (2017), a ransomware attack targets healthcare, education, manufac-
turing and technology industries [16]. Defray propagates via phishing emails
with an attached Word document embedding an OLE package object. Once
the victim executes the OLE file, the Defray payload is dropped in the %TMP%
folder and disguises itself as an legitimate executable (e.g., taskmgr.exe or
explorer.exe). Defray encrypts the file system but does not change file
names or extensions. Finally, it deletes volume shadow copies of the encrypted
files [15]. Defray developers encourage victims to contact them and negotiate
the payment to get the encrypted files back [14].

4. Locky (2016, 2017) has more than 15 variants. It first appeared in Febru-
ary 2016 to infect Hollywood Presbyterian Medical Center in Los Angeles,
California. The ransomware attackers send millions of phishing emails con-
taining attachments of malicious code that can be activated via Microsoft
Word Macros [11]. Locky encrypts data using RSA-2048 and AES-128 cipher
that only the developers can decrypt data. In this research, we analyze the
malicious behavior of a new variant of Locky ransomware called Asasin, which
encrypts and renames the files with a .asasin extension.

5. Cerber (2016–2018) infected 150K Windows computers in July 2016 alone.
Several Cerber variants appeared in the following two years have gained
widespread distribution globally. Once the Cerber ransonware is deployed
in the victim computer, it drops and runs an executable copy with a random
name from the hidden folder created in %APPDATA%. The ransomware also cre-
ates a link to the malware, changes two Windows Registry keys, and encrypts
files and databases offline with .cerber extensions [21,22].

6. GandCrab (2018, 2019), a Ransomware-as-a-Service (RaaS) attack has
rapidly spread across the globe since January, 2018. GandCrab RaaS online
portal was finally shut down in June, 2019. During these 15 months, Gand-
Crab creators regularly updated its code and sold the malicious code, facili-
tating attackers without the knowledge to write their own ransomware [23].
Attackers then distribute GandCrab ransomware through compromised web-
sites that are built with WordPress. The newer versions of GandCrab use
Salsa20 stream cipher to encrypt files offline instead of applying RSA-2048
encryption technique connecting to the C2 server [24]. GandCrab scans
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logical drives from A: to Z:, and encrypts files by appending a random Salsa20
key and a random initialization vector (IV) (8 bytes) to the contents of the
file. The private key is encrypted in the registry using another Salsa20 key
and the IV is encrypted with an RSA public key embedded in the malware.
This new encryption method makes GandCrab a very strong ransomware,
and the encrypted files can be decrypted by GandCrab creators only [25].

7. nRansom (2017) blocks the access to the infected computer rather than
encrypting victim’s data [13]. It demands ten nude photos of the victim
instead of digital currency to unlock the computer. As recovery from nRan-
som is relatively easy, it is not a sophisticated malware but a “test” or a
“joke”.

Ransomware Pattern Extraction and Detection Works. Homayoun et al.
[26] apply sequential pattern mining to find maximal frequency patterns (MSP)
of malicious activities of four ransomware attacks. Unlike generating behavioral
features directly from host logs, their approach summarizes activity using types
of MSPs. Using four machine learning classifiers, the team found that atomic
Registry MSPs are the most important sequence of events to detect ransomware
attacks with 99% accuracy.

Verma et al. [27] embed host logs into a semantically meaningful metric space.
The representation is used to build behavioral signatures of ransomware from
host logs exhibiting pre-encryption detection, among other interesting use cases.

Morato et al. introduces REDFISH [28], a ransomware detection algorithm
that identifies ransomware actions when it tries to encrypt shared files. RED-
FISH is based on the analysis of passively monitored SMB traffic, and uses
three parameters of traffic statistics to detect malicious activity. The authors
use 19 different ransomware families to test REDFISH, which can detect mali-
cious activity in less than 20 seconds. REDFISH achieves a high detection rate
but cannot detect ransomware before it starts to encrypt data. Our approach,
discovering ransomware’s pre-encryption footprint, promises a more accurate
and in-time detection.

The Related Work section our preliminary work [8] includes works published
previously to those above. As the more general topic of dynamic analysis is large
and diverse, a comprehensive survey is out of scope, but many exist, e.g. [29].
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3 Methodology

Fig. 1. Flowchart of research methodology

The proposed approach
requires a set of normal
(presumably uninfected)
system logs and at least
one log stream containing
ransomware behavior. In
this study, the seven
ransomware executables
introduced in Sect. 2 are
deployed inside a real-
istic but isolated envi-
ronment with a sandbox
tool, Cuckoo [17], for har-
vesting reproducible and
shareable host logs. The
Cuckoo host logs are
dynamic analysis reports
outlining behavior (i.e.,
API calls, files, registry
keys, mutexes), network
traffic and dropped files
Meanwhile, Cuckoo also captures logs from scripted, emulated normal user activ-
ity such as reading and writing of executables, deleting files, opening websites,
watching YouTube videos, sending and receiving emails, searching flight tick-
ets, and posting and deleting tweets on Twitter (see [8]). The normal user
and the ransomware events/behavior in the raw host logs produced by Cuckoo
are then converted to features, and the three machine learning techniques are
used to automatically obtain the most discriminating features from normal and
ransomware-including logs. Afterwards, we discard the features that have little
or no influence, and update the feature vector to reduce the search space of ET
decision tree models. The decision tree graphs are created to present the most
discriminating features of ransomware attacks. See flowchart in Fig. 1.

3.1 Feature Generation

To build features we only use the enhanced category and part of the behav-
ior category of Cuckoo-captured logging output. The details of the feature
building can be found in our previous work [8]. As malware often uses
random names to create files, modules and folders, in this study, we aug-
ment paths of specific files to emphasize their names only. For example,
C:\\Windows\\system32\rsaenh.dll is converted to a string “c:..rsaenh.dll”.
Here, “..” is used as a wild-card to avoid generating duplicated features that
represent similar host behavior.
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3.2 Discriminating Feature Extraction with Machine Learning

TF-IDF, Fisher’s LDA and ET are algorithms used in this research to automat-
ically extract the most discriminating features of ransomware from host logs.

TF-IDF, was defined to identify the relative importance of a word in a
particular document out of a collection of documents [30]. Our TF-IDF appli-
cation follow our previous work for accurate comparison. Given two sets of doc-
uments let f(t, d) denote the frequency of term t in document d, and N the
size of the corpus. The TF-IDF weight is the product of the Term Frequency,
tf(t, d) = ft,d/

∑
t′∈d ft′,d (giving the likelihood of t in d) and the Inverse Docu-

ment Frequency, idf(t,D) = log[N/(1+ |{d ∈ D : t ∈ d}|)] (giving the Shannon’s
information of the document containing t). Intuitively, given a document, those
terms that are uncommonly high frequency in that document are the only terms
receive high scores. We use log streams from infected hosts as one set of doc-
uments and a set of normal log streams as the other to apply TF-IDF; hence,
highly ranked features occur often in (and are guaranteed to occur at least once
in) the “infected” document, but infrequently anywhere else [8].

Fisher’s LDA is a supervised learning classification algorithm that oper-
ates by projecting the input feature vectors to a line that (roughly speaking)
maximizes the separation between the two classes [31]. For our application we
consider a binary classification where one class (C1) is comprised of the fea-
ture vectors {xi}i ⊆ R

m representing host logs that included ransomware, and
the second class (C2) are those vectors of ambient logs. We use this classifier
for identifying the discriminating features between the classes. Consider the set
{vtxi : xi ∈ C1 ∪ C2} ⊂ R, which is the projection of all feature vectors to
a line in R

m defined by unit vector v. Fisher’s LDA identifies the unit vector
v that maximizes S(v) := [vt(µ1 − µ2)]2/[vt(Σ1 + Σ2)v] with µj ,Σj the mean
and covariance of Cj , j = 1, 2, respectively. S(v) is the squared difference of the
projected classes’ means divided by the sum of the projected classes’ variances.
It is an exercise in linear algebra to see the optimal v ∝ (Σ1 + Σ2)−1(µ1 − µ2).
Geometrically, v can be thought of as a unit vector pointing from C1 to C2;
hence, ranking the components of v by absolute values sorts the features that
most discriminate the ransomware and normal activity.

Extremely Randomized Trees (ET) is a tree-based ensemble algorithm
for supervised classification and regression. “It consists of randomizing strongly
both attribute and cut point choice while splitting the tree node” [32]. In the
extreme case, the algorithm provides “totally randomized trees whose struc-
tures are independent of the output values of the learning sample” [32,33]. The
randomization introduces increased bias and variance of individual trees. How-
ever, the effect on variance can be ignored when the results are averaged over a
large ensemble of trees. This approach is tolerant with respect to over-smoothed
(biased) class probability estimates [32]. See the cited works for details.
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4 Experimental Results

Experiment One: Extracting Discriminating Features from Host Logs.
This experiment applies the machine learning approaches to extract the most dis-
criminating features/behavior of each ransomware attack. In addition to obtain-
ing a Cuckoo analysis report (raw behavior log) for each ransomware sample,
Python scripts immitating various users’ normal activities (such as reading, writ-
ing and deleting files, opening websites, etc.) are submitted to the Cuckoo sand-
box to generate a large volume of normal reports.

Table 1 illustrates the most discriminating features of the seven ransomware
attacks. The first column of the table (#) lists the name of seven ransomware.
The second column (Pattern) presents the pre-encryption patterns (activities)
of each ransomware attack obtained from the detailed ransomware technical
(static) analysis produced by cybersecurity companies (e.g., FireEye [34]), secu-
rity help websites (e.g., Bleeping Computer [35,36]) and malware research teams
(e.g., The Cylance Threat Research [16]). The third column (Feature) presents
the features extracted from the host logs using the proposed approaches that
match the unique patterns of rasomware attacks. The last column (Rank) lists
the TF-IDF, Fisher’s LDA and ET rankings of the features that represent the
unique patterns of the seven ransomware attacks. The features that have the
largest TF-IDF and Fisher’s LDA scores, or the non-leaf nodes (features) of the
Extremely Randomized Trees that have smallest levels, are top-ranked discrim-
inating features. For the ET algorithm, the features that are at the top of the
tree contribute more to correctly classifying a larger portion of input logs. E.g.,
a feature with rank = 1 is one of the most indicative feature of the malware
according to that algorithm. Ties are possible as the scores may be the same
between multiple features. We use the rankings of these features to evaluate
the efficiency of the proposed three machine learning methods. The methods
that provide higher rankings of the selected features are more efficient than the
approaches that yield a lower rank of the same feature.

We set a large class weight parameter for the target class in Extra-
TreesClassifier of Python’s Scikit-Learn library to make the ET classifier biased
to learn the pattern of malicious logs more meticulously. Therefore, some features
representing the ransomware patterns are not selected as the nodes to compose
the tree. In this scenario, we use “NA” to present the rankings of the feature
that are not nodes in the tree. Details are elaborated by ransomware:

1. WannaCry: The six patterns of WannaCry before the attack encrypting
data are presented in Table 1. All of these patterns can find WannaCry-
generated features from the host logs. A total of 1, 207 unique features have
been extracted from host logs containing both normal and abnormal behavior,
while only a small portion are resulting from WannaCry actions. The experi-
mental results indicate that TF-IDF is better than the other two methods for
identifying WannaCry’s behaviors. The rankings generated by the ET classi-
fier are slightly lower than the TF-IDF’s. However, ET is more time efficient
for extracting the most discriminating features from large volume of host logs,
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Table 1. The most discriminating features of the seven ransomware attacks

# Pre-Encryption Pattern Feature
Rank

TF-IDF LDA ET

1.
W
an

na
C
ry

1. Import CryptoAPI from advpi32.dll data file+‘advapi32.dll’+event+‘load’+object+‘library’ 3 294 6
2. Unzips itself to .wrny files *.wnry 1 176 1

3.
Creates a registry, HKEY_LOCAL_MACHINE\
Software\WanaCrypt0r\wd

api+‘regcreatekeyexw’+arguments 1 value+‘33554432’
+category+‘registry’ (subkey=“Software\\WanaCrypt0r”)

6 177 NA

4.
Run ‘attrib +h’, to set the current directory
as a hidden folder data file+‘attrib +h .’+event+‘execute’+object+‘file’ 6 298 11

5.
Run ‘icacls . /grant Everyone:F /T /C /Q’ to
grant user permissions to the current directory data file+‘icacls . ..q’+event+‘execute’+object+‘file’ 6 298 11

6.
Import public and private RSA AES
keys (000.pky, 000.eky) from t.wrny data file+‘c:..00000000.pky’+event+‘write’+object+‘file’ 6 298 11

2.
D
B
G
er

1. Drop ExternalBlue files at
‘C:\Users\All Users\’

data file+‘c:..users’+event+‘create’+object+‘dir’,
data file+‘c:..allusers’+event+‘create’+object+‘dir’,
data file+‘c:..blue.exe’+event+‘write’+object+‘file’,
... 22 various dropped file features...
data file+‘c:.. satan.exe’ +event+‘write’+object+‘file’,
data file+‘c:..mmkt.exe’+event+‘write’+object+‘file’

9 125
11,
12

2. Drop satan.exe on C drive
and execute the file for encryption

data file+‘c:..satan.exe’+event+‘write’+object+‘file’,
data file+‘c:..satan.exe’+event+‘execute’+object+‘file’ 9 125

11,
12

3. Drop “KSession” file at %Temp% data file+‘c:..ksession’+event+‘write’+object+‘file’ 9 125 11

3.
D
ef
ra
y 1. Import/Load Microsoft OLE from “ole32.dll” data file+‘ole32.dll’+event+‘load’+object+‘library’ 9 10 9

2. Drop and execute “explorer.exe” data file+‘explorer.exe’+event+‘load’+object+‘library’ 17 93 NA
3. Call ShellExecute to run as more privileged
user to disable startup recovery and delete
volume shadow copies

data file+‘c:..-hibernate-timeout-dc0’+event+‘execute’
+object+‘file’ 17 121 NA

4.
L
oc
ky

1. Read and write ‘PIPE\\wkssvc’ and
‘PIPE\lsarpc’

data file+‘pipe..wkssvc’+event+‘write’(‘read’)+object+‘file’,
data file+‘pipe..lsarpc’+event+‘write’ (‘read’)+object+‘file’

2
7

72
408

2
7

2. Read network provider name
data regkey+‘hkey local machine..
networkprovidername’+event+‘read’+object+‘registry’ 3 186 3

3. Read the path to the network provider .dll file
data regkey+‘hkey local machine..
systworkproviderproviderpath’+event+‘read’+object+‘registry’ 4 171 4

4. Load the network provider ‘ntlanman.dll” file data file+‘c:..ntlanman.dll’+event+‘load’+object+‘library’ 4 130 4

5. Obtain the name of the Security Identifier
data regkey+‘hkey users..s-1-5-21-1966058-1343024091
-1003name’+event+‘read’+object+‘registry’ 5 408 5

5.
C
er
be

r

1. Create two .tmp files under a random folder
in %APPData%

a. data file+‘c:..b51826f3’+event+‘create’+object+‘dir’
b. data file+‘c:..4e89.tmp’+event+‘write’+object+‘file’
c. data file+‘c:..5572.tmp’+event+‘write’+object+‘file’

10
a.105
b.230
c.230

a.10
b.10
c.11

2. Find users profiles and read the profiles

a.data regkey+‘hkey local machine..
softilelistprofilesdirectory’+event+‘read’+object+‘registry’
b.data regkey+‘hkey local machine..
softlelistdefaultuserprofile’+event+‘read’+object+‘registry’
c. data regkey+‘hkey local machine..
softs-1-5-18profileimagepath’ +event+‘read’+object+‘registry’
...omit SID 1-5-19∼1-5-20...
d. data regkey+‘hkey local machine..
soft091-1003profileimagepath +event+’read’+object+‘registry’

a.5
b.5
c.7
d.7

a.111
b.111
c.150
d.150

a.5
b.5
c.7
d.7

3. Read and load “rsaenh.dll”

a. data regkey+‘hkey local machine..
softaphic providerimage path’+event+‘read’+object+‘registry’
b. data file+‘c:..rsaenh.dll’+event+‘read’+object+‘file’
c. data file+‘c:..rsaenh.dll’+event+‘load’+object+‘file’

a.3
b.1
c.6

a.79
b.15
c.119

a.3
b.1
c.6

4. Obtain Machine GUID from registry
data regkey+‘hkey local machine..
cryptographymachineguid’+event+‘read’+object+‘registry’ 2 69 2

6.
G
an

dc
ra
b

1. Scan and collect information
a. computer name
b. session manager name
c. domain name
d. processor type

a.data regkey+‘hkey local machine..systcomputername
computername’+event+‘read’+object+‘registry’
b.data regkey+‘hkey local machine..sessionmanagername’
+event+‘read’+object+‘registry’
c. data regkey+‘hkey local machine..parametersdomain’
+event+‘read’+object+‘registry’
d.1 data regkey+‘hkey local machine..0processornamestring’
+event+‘read’+object+‘registry’
d.2 data regkey+‘hkey local machine..0identifier’
+event+‘read’+object+‘registry’
d.3 data regkey+‘hkey local machine..
systgersafeprocesssearchmode’+event+‘read’+object+‘registry’

a.1
b.6
c.7
d.7

a.276
b.430
c.431
d.431

a.1
b.8
c.10
d.9

2. Copy the ransomware .exe file
to %APPDATA%/Microsoft
and add an entry to RunOnce key

a. data file+‘c:..lrcjty.exe’+event+‘write’+object+‘file’
b. data content+‘..x00’+data object+‘none’+data regkey+
‘hkey current user..runonceoopmhnlocoz’
+event+‘write’+object+‘registry’

7 431
a. 9
b.10

7.
nR

an
so
m
w
ar
e

1. Create temprary directory in \%TEMP%\1.tmp\
tools\ data file+‘c:..tools’+event+‘create’+object+‘dir’ 5 32 5

2. Download and write following files:
a. an executable (i.e., nransom.exe)
b. a media control file (i.e.,interop.wmplib.dll)
c. a audio file (i.e., your-mom-gay.mp3)

a.data file+‘c:..nransom.exe’+event+‘write’+object+‘file’
b.data file+‘c:..interop.wmplib.dll’+event+‘write’+object+‘file’
c.data file+‘c:..your-mom-gay.mp3’+event+‘write’+object+‘file’

a.4
b.4
c.4

a.23
b.23
c.23

a.4
b.4
c.4

3. Execute the executable (i.e., nransom.exe) using
command prompt (i.e.,cmd.exe) that lock the screen

a. data file+‘nransom.exe’+event+‘execute’+object+‘file’
b. data file+‘c:..cmd’+event+‘execute’+object+‘file’

a.6
b.6

a.60
b.60

a.7
b.6

4. Play the looped song using the downloaded
audio file (i.e., your-mom-gay.mp3)

data file+‘c:..your-mom-gay.mp3’+event+‘read’
+object+‘file’ 5 32 5

5. Delete the temporary folders with
the downloaded files

data file+‘c:..1.tmp’+event+‘delete’+object+‘dir’
+object+‘file’ 6 60 6
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which requires only 215 features (nodes) to make decisions (i.e., WannaCry
or Normal). Therefore, the results suggest using TF-IDF to analyze the few
infected hosts’ logs in an attempt to produce shareable threat intelligence
reports and using the ET algorithm to obtain pre-encryption detection capa-
bilities. This experiment also illustrates that the top-ranked features gener-
ated by Fisher’s LDA are quite different from the other two techniques. Most
of the top-ranked features are normal activities. Features representing Wan-
naCry’s patterns are listed as low as #200. Additionally, we notice that the
loading and reading events of the rsaenh.dll module are ranked highly (i.e.,
#2 and #4 for TF-IDF and #3 and #8 for ET). The module implements the
Microsoft enhanced cryptographic service provider for WannaCry to encrypt
the victim’s data with 128-bit RSA encryption. These two top ranked features
are not listed in our table, as they are not discriminating features to identify
WannaCry attacks from other crypto-ransomware attacks.

2. DBGer: The three unique patterns of DBGer ransomware reported by [37]
are presented in Table 1. dbger.exe, the mother file of DBGer, first creates
the C:\Users\AllUsers folder, drops EternalBlue and Mimikatz executables
in the new folder, and then saves satan.exe into the C drive. A file named
KSession is dropped to C:\Windows\Temp\ for storing the host ID. TF-IDF
and Fisher’s LDA rank 1, 104 features generated from normal and DBGer
Cuckoo reports. The ET classifier builds the decision tree using 216 of the
1104 features. The three DBGer features are ranked highly. TF-IDF yields
a highest ranking of the three features, which is better than the other two
methods. ET is more time efficient. However, there are many features ranked
higher than the ranking of the three features, but they are normal activity.
E.g., dynamic link library (DLL) files kernel32.dll and advapi.dll are on
the top of the three rankings, but are not discriminating features for DBGer.

3. Defray: The three unique patterns of Defray are loading the ole32.dll file,
dropping and executing the ransomware executable file explorer.exe, and exe-
cuting a shell command. The three machine algorithms rank the first feature
“loading the ole32.dll file” #9 among the total 1, 243 features. As Defray’s
executable file is disguised as a Windows Internet Explorer, all of the three
methods struggle to distinguish it from the normal activities. The second
feature therefore is not selected to build the ET model, and its TF-IDF
and Fisher’s LDA weights are much lower than the first feature’s. The three
machine learning approaches rank another three features (as shown in Table 2)
highest among the 1243 features. These features represent unique malicious
activities performed by Defray, thus, they are discriminating features to dis-
tinguish Defray from other ransomware. However, none of these three patterns
are discussed in Defray manual analysis reports [14–16].

4. Locky: We execute Asasin Locky, a 2017 variant of Locky ransomware in
the Cuckoo sandbox, collect and analyze its behavior using our tool. The
static analysis reports [9,11] indicate that after being deployed, Locky’s
executable file disappears. Its dropped copy svchost.exe is executed from
the %TEMP% folder. However, our tool generates features from the behav-
ior logs and presents that Asasin Locky does not drop the executable file.
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Instead, the attack modifies the workstation services \PIPE\wkssvc launched
by the svchost.exe process. As a member of the Cryptowall family, Asasin
Locky also modifies PIPE\lsarpc, a file communicates with the Local Secu-
rity Authority subsystem [38]. The attack then reads network provider name
and the path to the Network Provider DLL file from registry by loading
the network provider ntlanman.dll. Registry is retrieved by Asasin Locky
to obtain the name of the Security Identifier. TF-IDF and ET provides the
same and higher rankings for these five features from a total 1, 047 normal
and ransomware features. These two methods both rank rsaenh.dll as the
top feature; however, this feature is not a unique pattern for Asasin Locky.

5. Cerber: This ransomware copies itself as cerber.exe to the hidden
%APPDATA% folder, creates a directory with a random name, and drops two
.tmp files [10]. Cerber also escalates its privilege to admin level and reads pro-
files from the users’ profile image paths. Afterwards, Cerber finds the image
path of rsaenh.dll, reads and loads the DLL file to encrypt data. Cerber
obtains the Machine GUID (globally unique identifier) and uses its fourth part
as the encrypted files’ extension. The Cerber sample tested has an extension
of 93ff. The three methods rank the total 1, 137 features. ET selects 145
features to composes the decision tree. TF-IDF and ET provides similar and
higher rankings of the discriminating features than Fisher’s LDA’s.

6. GandCrab: This experiment uses Gandcrab V2.3.1, a variant that scans the
victim machine and collects information of user name, domain name, com-
puter name, session manager name and processor type [12]. The execution is
terminated if the ransomware finds the system language is Russian or the vic-
tim machine installed specific anti-virus (AV) software. Otherwise, it copies
the executable file into %APPDATA%/Microsoft and adds an entry of the copied
executable file path to the RunOnce key as a one-time persistence mechanism.
GandCrab then decrypts the ransom notes and generate RSA keys for encryp-
tion. After encrypting data, the malware uses Windows’ NSLOOKUP tool to
(1) find IP address of the GandCrab’s C2 (command and control) server;
and (2) communicate with the C2 server (i.e., sending information collected
from the victim’s machines to the C2 server and/or receiving commands from
the C2 server). Table 1 presents two unique pre-encryption patterns of Gand-
Crab V2.3.1. TF-IDF and ET rank them highly among 1, 017 features. The
rankings of these features are much lower by Fisher’s LDA.

7. nRansom: This attack first creates a subfolder in %TEMP% with a ran-
dom name ended with .tmp. In our experiment, the subfolder is named
1.tmp. nRansom drops an executable file (i.e., nransom.exe) and two Win-
dows Media Player control library files (i.e., Interop.WMPLib.dll and
AxInterop.WMPLib.dll) in 1.tmp. An audio file your-mom-gay.mp3 is
dropped in 1.tmp Tools. Then nransom.exe is executed through the com-
mand prompt cmd.exe. After locking the victim’s computer screen, nRansom
plays a looped song from the dropped mp3 file, and deletes the subfolders and
dropped files. TF-IDF and ET both rank the five discriminating features of
nRansom highly among 1046 features. 55 features are used for composing ET.
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Table 2. Static analysis missed unique patterns and their behavioral features

Ransomware Unique Patterns Missed from Manual Analysis. As dis-
cussed above, besides the patterns obtained from Defray’s threat intelligence
reports, the three features shown in Table 2 are also unique behavior to distin-
guish Defray attacks. From the dynamic analysis provided by our methodology,
we also found that many ransomware attacks have similar patterns. For exam-
ple, Defray, Locky and Cerber all conduct an event to load the ole32.dll file.
However, neither Locky nor Cerber’s static analysis have mentioned this pat-
tern. Similarly, manual analysis of GandCrab does not discuss the malware sam-
ple has imported CryptoAPI from advapi32.dll, which is also a discriminating
feature of WannaCry attacks. Thus, our tool provides automated—more efficient
and without reliance on security experts—and better quality malware behavior
analysis.

Table 3. WannaCry discriminating feature ranking with varying normal data



Automated Ransomware Behavior Analysis 211

Experiment Two: Ransomware Feature Rankings with Varying Nor-
mal Activities. This experiment aims to validate that the rankings of the seven
ransomware discriminating features are not influenced by varying the number of
normal logs. To validate the hypothesis, we calculate the TF-IDF, Fisher’s LDA
and ET weights of the ransomware features in the following three scenarios.

– Case 1 (C1): Using Experiment One’s normal logs as the baseline.
– Case 2 (C2): Adding 30% additional new normal host logs into training data.
– Case 3 (C3): Adding 60% more new normal host logs into training data.

Fig. 2. Decision path based on the training logs
showing how the most discriminating features are
correlated in the decision making process.

Table 3 presents the top
ten features of WannaCry
that are calculated by the
three machine learning meth-
ods when the ambient log-
ging data are different. The
experimental results present
that the ET method is robust
to provide the same rank-
ings of the top ten features
under the three tested sce-
narios. TF-IDF is less robust
than ET, but Fisher’s LDA
provides completely different
rankings of the top ten fea-
tures in three different sce-
narios. Similar results were
found when analyzing the top-ranked features of the other six ransomware
attacks. Therefore, the ET algorithm is more robust to varying training data
containing different quality and quantity of normal activity.

Table 4. ET early detection results
Ransomware Accuracy Precision Recall F-Score
WannaCry 0.918 1 0.717 0.835
DBGer 0.987 1 0.308 0.471
Defray 0.994 1 0.992 0.996
Locky 0.997 1 0.806 0.893
Cerber 0.987 1 0.505 0.671

GandCrab 0.999 1 0.997 0.999
nRansom 0.994 1 0.382 0.553

Experiment Three: Ransomware
Early Detection. The ET decision
tree classifier is applied to detect the
seven ransomware before encryp-
tion from a large majority of non-
malicious activity. Table 4 presents
the detection rate of the seven ran-
somware attacks. Note that while
recall varies, meaning the method
produces false negatives, precision is always perfect, meaning there are no false
positives. In terms of overall performance metrics, the detection model Gandcrab
performs the best and DBGer performs the worst. We also create graphs of each
decision tree to better interpret and visualize the detection results. Using Wan-
naCry attack as an example, Fig. 2 displays first three levels of the decision tree.
The brown non-leaf nodes (rectangular boxes) represent the features of normal
activity and the blue non-leaf nodes represent features induced by WannaCry.
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By retrieving the blue nodes on the top of the decision tree, we can identify
WannaCry’s discriminating features. The correlation coefficients of these features
are provided in non-leaf boxes. The graphs facilitate malware forensics analysis
and allow operators to visualize disruptive activity and determine the damages
induced by the malware for proposing an optimal protection and response plan.

5 Conclusion

We develop an automated ransomware pattern-extraction and early detection
tool that extracts the sequence of events induced by seven ransomware attacks,
identifies the most discriminating features using three machine learning meth-
ods, and creates graphs to facilitate forensic efforts by visualizing features and
their correlations. The experimental results present that TF-IDF feature rank-
ing yields the most accurate identification of the ransomware-discriminating fea-
tures, while the ET method is the most time efficient and robust to the variation
of inputs. Notable, discriminating features are automatically promoted by this
method that malware analysis reports failed to identify.

As the target application is using this to analyze real host logs collected by
SOCs, future research to test our tool using real-world host-based data captured
in enterprise networks to determine conditions for success. Moreover, large enter-
prises generate large volumes of host data. The offline machine learning tech-
niques used in this paper—creating features from host logs, determining malware
discriminating features and detecting attacks—may not scale. Future research
using online machine learning technique (e.g., incremental decision tree) and
deep learning methods (e.g., LSTMs) can enhance the tool.
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