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Preface

The second annual International Conference on Science of Cyber Security (SciSec
2019) took place in August 2019 in Nanjing, China. The mission of SciSec is to
catalyze the research collaborations between the relevant scientific communities and
disciplines that should work together in exploring the foundational aspects of Cyber-
security. We believe that this collaboration is needed in order to deepen our under-
standing of, and build a firm foundation for, the emerging Science of Cybersecurity
discipline. SciSec is unique in appreciating the importance of multidisciplinary and
interdisciplinary broad research efforts towards the ultimate goal of a sound Science of
Cybersecurity, which attempts to deeply understand and systematize knowledge in the
field of security.

To understand the goals of the conference, note that SciSec 2019 solicited
high-quality, original research papers that can justifiably help achieve the ultimate goal
of Science of Cybersecurity. Topics of interest included, but were not limited to:

– Cybersecurity Dynamics
– Cybersecurity Metrics and Their Measurements
– First-principle Cybersecurity Modeling and Analysis (e.g., Dynamical Systems,

Control-Theoretic, Game-Theoretic Modeling, Logical and Verification
methodologies)

– Cybersecurity Data Analytics
– Quantitative Risk Management for Cybersecurity
– Big Data for Cybersecurity
– Artificial Intelligence for Cybersecurity
– Machine Learning for Cybersecurity
– Economics Approaches for Cybersecurity
– Social Sciences Approaches for Cybersecurity
– Statistical Physics Approaches for Cybersecurity
– Complexity Sciences Approaches for Cybersecurity
– Experimental Cybersecurity
– Macroscopic Cybersecurity
– Statistics Approaches for Cybersecurity
– Human Factors for Cybersecurity
– Compositional Security
– Biology-inspired Approaches for Cybersecurity
– Synergistic Approaches for Cybersecurity
– Mechanisms for Solving Actual Cybersecurity Problems (like: Cryptographic

Mechanisms, Formal Methods techniques)

SciSec 2019 was hosted by the Nanjing University of Posts and Telecommunica-
tions, Nanjing, China, August 9–11, 2019. The contributed works at the conference
were selected from 62 submissions, from which the Program Committee selected 28



papers (20 full papers and 8 short papers) for presentation. These papers cover the
following subjects: Artificial Intelligence for Cybersecurity, Machine Learning for
Cybersecurity, and Mechanisms for Solving Actual Cybersecurity Problems (e.g.,
Blockchain, Attack, and Defense; Encryptions with Cybersecurity Applications). We
anticipate that the topics covered by the program in the future will be more systematic
and further diversified.

The committee further selected the paper titled “HoneyGadget: A Deception based
ROP Detection Scheme” by Xin Huang, Fei Yan, Liqiang Zhang, and Kai Wang for
the Student Distinguished Paper Award. The conference program also included three
invited keynote talks: the first keynote titled “Layers of Abstraction and Layers of
Obstruction: how what makes computing successful makes security hard” was deliv-
ered by Prof. Moti Yung, Google and Columbia University, USA; the second keynote
titled “VRASED: Verifiable Remote Attestation for Simple Embedded Devices” was
delivered by Prof. Gene Tsudik, University of California, USA; while the third keynote
was titled “Advanced Threat Detection and Automated Response Using Machine
Learning” and was delivered by Dr. Bo Liu, Anheng Information Technology Co., Ltd,
China. The conference program presented a panel discussion on “Future Research
Directions towards Science of Cyber Security.”

We would like to thank all of the authors of the submitted papers for their interest in
SciSec 2019. We also would like to thank the reviewers, keynote speakers, and par-
ticipants for their contributions to the success of SciSec 2019. Our sincere gratitude
further goes to the Program Committee, the Publicity Committee, the Journal Special
Issue Chairs, the external reviewers, and the Organizing Committee, for their hard work
and great efforts throughout the entire process of preparing and managing the event.
Furthermore, we are grateful for the generous financial support from the Nanjing
University of Posts and Telecommunications.

We hope that you will find the conference proceedings inspiring and that it will
further help you in finding opportunities for your future research.

September 2019 Feng Liu
Jia Xu

Shouhuai Xu
Moti Yung

vi Preface
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Cross-Domain Recommendation System Based
on Tensor Decomposition for Cybersecurity

Data Analytics

Yuan Wang1,2, Jinzhi Wang1, Jianhong Gao1,2, Shengsheng Hu1,2,
Huacheng Sun3, and Yongli Wang3(&)

1 State Grid Electric Power Research Institute Co., Ltd., Nanjing 211100, China
2 China Realtime Database Co., Ltd., Nanjing 211100, China

3 School of Computer Science and Technology, Nanjing University of Science
and Technology, Nanjing 210094, China

305118154@qq.com, yongliwang@njust.edu.cn

Abstract. In the context of personalization e-commerce cyberspace based on
massive data, the traditional single-domain recommendation algorithm is diffi-
cult to adapt to cross-domain information recommendation service. Collabora-
tive filtering is a simple and common recommendation algorithm, but when the
target domain is very sparse, the performance of collaborative filtering algorithm
will seriously degrade. Cross domain recommendation is an effective way to
solve this problem because it is made by means of the auxiliary data domain
associated with the target data domain. Most of the existing cross-domain rec-
ommendation models are based on two-dimensional rating matrix, and much
other dimension information is lost, which leads to a decrease in recommended
accuracy. In this paper, we propose a cross-domain recommendation method
based on tensor decomposition, which can reduce the sparseness of data and
improve the diversity and accuracy. It extracts the scoring patterns in different
fields to fill the vacancy value in the target domain by transfer learning method.
Many experiments on three public real data sets show that the proposed model’s
recommendation accuracy is superior to some of the most advanced recom-
mendation models. It can be applied to large-scale cross-domain information
recommendation service and cybersecurity data analytics.

Keywords: Cloud recommendation service � Collaborative filter �
Cross-domain

1 Introduction

Recommender systems are becoming more and more popular because it can help users
find items that they interest in (such as movies, books, music, etc.), and it can relieve
the problem of information overload. In recent decades, many researchers have
developed some recommendation systems [1, 2], such as Amazon, LastFm, Movie-
Lens, but there are still some challenges, such as cold start [3–5] and data sparsity
problems [6].

© Springer Nature Switzerland AG 2019
F. Liu et al. (Eds.): SciSec 2019, LNCS 11933, pp. 3–19, 2019.
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The recommendation results from a large number of recommender systems are only
single-domain, and in fact, there is a lot of dependency and correlation between dif-
ferent domains. The information in one domain can be improved by combining by
other domains rather than just thinking about it independently. For example, if some
users like the singer’s song (music as the source domain), then some movies (as target
domains) can be recommended to the users which are performed by the singer. This
method can solve the cold-start problem [7], and data sparsity problems [8] in target
domains. Therefore, cross domain recommendation has become a hot topic in rec-
ommender systems recently.

Currently, cross domain recommendations usually require that the rating infor-
mation from different domains shares users and items, but it rarely exist in real-world
scenarios. This paper focuses on cross domain recommender systems without shared
users and items. In this paper, a method of cross domain recommendation is proposed,
which can be used to construct association between users in different domains. Firstly,
the redundant information is extracted from the auxiliary domain, then the tensor is
constructed by using the information after clustering, after that we can construct the
rating model. The next step is to transfer the rating model obtained from the source
domain to the target domain to fill the target domain’s vacancy value.

The main contributions of this paper are as follows:

(1) Extract the rating model with tensor decomposition on the clustering level.
(2) A recommended approach is proposed to transfer the rating model of auxiliary

domain to target domains.

The structure of this paper is as follows, Sect. 2 discusses the related work of tensor
decomposition and cross-domain systems. Section 3 discusses the definition of prob-
lem about tensor and cross-domain. Section 4 describes the details of the proposed
method. Section 5 presents the experiments and analysis, and uses relevant experi-
ments to validate the feasibility of the proposed method. Finally, we conclude in
Sect. 6.

2 Related Work

Cross-domain recommendations have become an important means of resolving cold
start and alleviate sparsity problems. Some researchers have studied cross-domain
related work as defined in [9], where there are two cross-domain recommended tasks.

The first task is to use the knowledge of the source domain to improve the quality
of the target domain recommendation. Li et al. [10] proposed a cross-domain collab-
orative filter method to alleviate sparsity. They extract the rating model between the
user items on the cluster level, and then they transferred the knowledge of auxiliary
domain to the target domain in the form of codebook. Kumar [11, 12] and others
proposed a cross-domain topic model to alleviate the sparsity of data. They assume that
each domain has N different topics, each user in these topics subject to a distribution.
Using topic matching for cross-domain collaborative recommendation rather than
traditional matching by shared authors. Karatzoglou et al. [13] proposed a method of
using machine learning to transfer dense source domain knowledge to sparse target

4 Y. Wang et al.



areas to solve data sparsity problems. They have developed a transfer learning tech-
nique to extract knowledge from multiple domains that contain rich data, and then
generate recommendations for sparse target domains. This technique studies the rele-
vance and linear integration of all the source domain rating models into one model that
makes it possible to predict the rating model that is unknown to the target domain.
Enrich et al. [14] proposed the use of user tags as a bridge between different domains,
from which they learn the user’s rating model (for example, how the user rating in the
source domain, in other words, the relationship between these tags and rating) to
improve the performance of target domain.

The second task is recommending items in different domains jointly. Li et al. [15]
proposed a method of sharing knowledge by pooling multidisciplinary rating data.
They created a rating matrix which is the multidisciplinary shared latent factor, and
then the shared rating matrix was extended to a general cluster rating model called
rating matrix generation model. The rating matrix of any relevant user can be generated
or predicted by this generation model and user-item joint mixed model. Shi et al. [16]
proposed a label-induced collaborative cross-domain recommendation. They use user-
generated tags as a cross-domain link. These tags can be used to calculate the similarity
between cross-domain users and the similarity between items, and then the similarity is
integrated into a matrix decomposition model to improve the recommended effect. Gao
et al. [17] proposed a clustering latent factor model (CLFM) based on a joint non-
negative matrix framework. Unlike [10], they use CLFM not only to learn multi-
domain shared rating models, but also to learn specific domain clustering rating models
from each domain that contains important information. Hu [18] proposed modeling the
user-item-domain as a third-order tensor. Then, they use the standard CANDECOMP/
PARAFAC (CP) tensor decomposition model to extract the relationship between user
factors and items factors from different domains, so that we can predict the rating in
each domain.

This paper focuses on the first cross-domain recommendation task. By transferring
the cross-domain multi-dimensional rating model to solve the first task.

3 Problems and Definitions

The main problem of cross-domain recommendation is that there is no shared coverage
information, as in [19]. In this paper, we use the tensor decomposition to extract the
rating models of the two domains and then make use of the cross-domain approach of
the transferring model to solve the sparsity problem and cold-start problem [20]. This
section focuses on the definition of tensor decomposition and cross-domain transfer
learning [21–23] (Table 1).

Cross-Domain Recommendation System Based on Tensor Decomposition 5



3.1 The Concept of Tensor

Formally, the tensor is a multidimensional matrix. The order of a tensor is the number
of dimensions, also called the mode. The tensor in this paper is represented by bold
script letters, such as X . The matrix is represented in bold letters, such as X. The vector
is represented in bold lowercase letters, for example x. Elements are represented by
lowercase letters, for example xi; j;k. The i-th row of the matrix X is expressed as Xi;�,
the j-th column is expressed as X�;j, the element i; jð Þ is expressed as Xi;j.

Definition 1 (matrix unfolding). The mode expansion operation of the tensor is to
map the tensor into a matrix form, such as X 2ð Þ is a representation of

X I�J�K ! XJ� IKð Þ. An N-order tensor A as A 2 R
I1...IN , have the elements ai1;...;iN .

Expanding the third order tensor in three directions to get A 1ð Þ 2 R
I1� I2I3ð Þ;

A 2ð Þ 2 R
I2� I2I3ð Þ;A 3ð Þ 2 R

I1I2ð Þ�I3 , here A 1ð Þ; A 2ð Þ; A 3ð Þ is the mode-1, mode-2, mode-3
expansion of the A.

Table 1. Notations

Symbol Description

X aux auxiliary domain
X tgt target domain
X tgtijk element of tensor X tgt

S rating model
U factors of user matrix
I factors of item matrix
T factors of tag matrix
X nð Þ n-mode unfolded version of X
U nð Þ the n-th factor of N-th order tensor

�n n-mode product of a tensor by matrix
W ijk binary weights tensor

Fig. 1. Tensor mode-n matrix expansion

6 Y. Wang et al.



Definition 2 (mode product). The product’s result of the n-mode is the tensor A 2
R

I1�I2�...�IN multiplied by the matrix U 2 R
Jn�In in the n-th mode, represent as A�n U,

the size of the result is RI1�...�Jn�...�IN . And the mode product satisfies the exchange law
and the union law [23]:

A�n A�m B ¼ A�n Að Þ �m B ¼ A�m B�n A ð1Þ

3.2 Tensor Decomposition

There are many ways to decompose tensor. In this paper, we use the HOSVD. Higher
order singular value decomposition (HOSVD) is an extension of the concept of matrix
singular value decomposition (SVD). For a mode-n expansion, the singular value
decomposition on two dimensions can be rewritten as follows:

U ¼ S�1 U 1ð Þ �2 U 2ð Þ ð2Þ

By extension, the third order tensor HOSVD can be written as follows:

A ¼ S �1 U
1ð Þ �2 U

2ð Þ �3 U
3ð Þ ð3Þ

HOSVD decomposition can decompose a N-order tensor into a core tensor and N
factor matrixes product in the form of Fig. 1. Figure 1 is a third-order tensor decom-
position of a tensor kernel and three factor matrixes, the tensor core S can be seen as
the compression of the original tensor A (Fig. 2).

When the factor matrix is determined, the core tensor can be calculated by tensor
and factor matrix:

Ŝ ¼ A�1 U
1ð ÞT �2 U

2ð ÞT �3 U
3ð ÞT ð4Þ

Then use the formula (1) can get the low rank tensor approximation, fill the vacancy
value and compress the data.

=

U

I

KT T

S
KT

KI

KU

T

I

U

A

KIKU

Fig. 2. HOSVD decomposition of third - order tensor

Cross-Domain Recommendation System Based on Tensor Decomposition 7



3.3 Recommendation with HOSVD

For a rating system that contains tags, it can be defined as a relational structure
F := U; I; T; Yð Þ, where,

U; I; T are Non-empty finite set, elements are users, items, tags,
Y is an observable relationship of triples, Y � U � I � T ,
u; i;Tu;i
� �

is a user’s tag for a item i, u 2 U; i 2 I and non-empty set
Tu;i := ft 2 Tj u; i; tð Þ 2 Yg,

Y represents the ternary relationship among user, item and tags, expressed with a
binary tensor A ¼ au;i;t

� � 2 R
Uj j� Ij j� Tj j, where with a tag is 1, others 0.

au;i;t :=
1; u; i; tð Þ 2 Y

0; else

�
ð5Þ

At this point, the tensor decomposition is expressed as:

Â :¼ Ŝ �u Û �i Î �t T̂ ð6Þ

Û; Î; T̂ are the user, item, label low rank feature matrix factors, their latent factor
dimensions are kU; kI; kT , and the tensor kernel Ŝ 2 R

kU�kI�kT represents the rela-
tionship between these latent factors.

The optimization function of this model is ĥ := Ŝ; Û; Î; T̂
� �

.

The basic idea of HOSVD [22] is to minimize the estimation error, we can use the
mean square error as an optimization function

argmin
ĥ

X
u;i;tð Þ2Y âu;i;t � au;i;t

� �2 ð7Þ

When the parameters are optimized, the following formula can be used to predict:

ð8Þ

where bU ¼ buu;eu
h iu¼1;...;U

u¼1;...;kU
;bI ¼ bi

i;ei

h ii¼1;...;I

ei¼1;...;kI
; bT ¼ bt

t;et

h it¼1;...;T

et¼1;...;kT
. The feature dimension

of the feature matrix is denoted by *, and the element of the characteristic matrix is
denoted by ^.
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3.4 Cross-Domain Recommendation

There exists four different cross- domain scenarios, these are illustrated in Fig. 3
(Table 2):

(a) User overlap. There are some common users across different domains and these
users have ratings in both domains, i.e., UST 6¼ £.

(b) Item overlap. There are some common items across different domains and these
items have been rated by some users in two domains, i.e., IST 6¼ £.

(c) Full overlap. The two domains have overlap both among users and items, i.e.
UST 6¼ £ and IST 6¼ £

(d) No overlap. There is no overlap of both users and items between two domains, i.e.
UST ¼ £ and IST ¼ £

Table 2. Notations

Symbol Description

DS source domain
DT target domain
US set of users in source domain
UT set of users in target domain
IS set of users in source domain
IT set of items in target domain
IST overlap of items between source and target domain
UST overlap of users between source and target domain
RS rating matrix of source domain
RT rating matrix of target domain

User overlap Item overlap

Full overlap No overlap

US

RS

RS
RS

RS

RT

RT
RT

RT

US

USUS

IS

ISIS

IS

IT IT

ITIT

UT

UTUT

UT

UST

UST

IST

IST

Fig. 3. Cross-domain scenarios
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Most collaborative filtering algorithm can be applied in the first three scenarios to
solve the cross-domain recommendation problem. However, the last scenario is seldom
solved due to the lack of any overlap of users or items in two different domains. In this
paper, we mainly focus on cross-domain recommendation in the last scenario. As is
shown in Fig. 4, it mainly consists of the following two types:

(1) Integrate knowledge. Knowledge is integrated from multiple source domains into
the target domain.

(2) Knowledge transfer. Knowledge is recommended by association or migration.

Shared latent factors or transferring rating model are usually combined with matrix
decomposition or tensor decomposition.

3.5 Transfer Learning

The latent factor model is a popular method for collaborative filtering (CF). The users’
preferences and items attributes in these models are usually very sparse and can be
represented by the latent factors in the data. In the collaborative filtering system based
on latent factor analysis, the potential user preferences and items attributes can be
captured and matched well. There are two approaches of latent factor transfer learning:
adaptation models and union models. The former is using the source domain to learn
the latent factors, then integrating the factors into the recommended model of the target
domain. The latter is to integrate the two domains to learn the latent factor.

In addition to sharing the latent factors of users or items there is another popular
way for knowledge transfer learning. In many real scenes, even if the users and the
items is different, similar domain still have similar users’ preferences and popularity.
The potential association can be a set of user preferences for a set of items, called rating
models. The method proposed in this paper is based on the method of extracting the
rating model from the source domain to the target domain. As shown in Fig. 6, the
source and target domain shown in the figure correspond to the rating matrix of the
user-item. The mode extraction is done by tensor decomposition, with more infor-
mation can improve accuracy (Fig. 5).

Source domain Target domain

+

Target domain 
recommenda ons

Knowledge 
aggrega on

Source domain Target domain>

Target domain 
recommenda ons

Knowledge
transfer

Fig. 4. Cross-domain recommendation classification
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4 Cross-Domain with Tensor Decomposition

The method proposed in this paper is divided into two stages, the first stage extracts the
post-clustering rating model from the auxiliary domain, and then, the second stage
transfers the rating mode of the first stage to the target domain to fill the target domain’s
vacancy value.

4.1 Extract Rating Mode

In a collaborative filtering system, the same preference users and the items with similar
attributes behaves similarly. Therefore, the users and the items can be clustered, and the
clustered rating tensor only contains the cluster information of the users and the items
which can remove the redundant information of the original rating tensor. On this basis,
to represent the original rating tensor only need to retain the clustered ID without
considering other information.

Definition 3 (Rating mode, RatingKernel). RatingKernel is a tensor and its size is
kU � kI � kT , which compresses the original score tensor with kU user clusters and kI
item clusters and kT tag clusters. Analog codebook in [10], but with difference, the
mode in this paper is that the rating model based on the tensor kernel, which retains
more information, and the method of mode extraction and migration has a wider range
of applications.

Ideally, if user, item, tag are the same in the same cluster, you only need to select a
pair from the cluster user, item, tag to build the RatingKernel. However, the elements in
the same cluster can not be exactly the same. It is common practice to select the cluster
center for each cluster to represent the cluster. In this case, it is necessary to simul-
taneously cluster the users, the items and the tags. For the construction of Rat-
ingKernel, only need to retain the user and item cluster ID, in which case you can
choose any clustering algorithm. The auxiliary rating tensor can be decomposed as
follows:

DS DT

DS
RsA B= x x DT A B= x x

Target domain 
recommenda ons

RecsysT

Ra ng pa erns 
Rs Rs

Ac ve 
user

IS IT

U

Fig. 5. Shared rating model cross-domain recommendation
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min X aux � S �u bU �i bI �t bT
���

���
���

���
2

F
ð9Þ

The current users, items clustering number representation U; I, T , can not express
the literal meaning of user, item, tag. For simplicity, this paper uses binary data
representation by setting each row of nonnegative elements to 1 for the remainder of 0.
These binary clustering matrix from the auxiliary rating tensor are recorded as Uaux; Iaux
and Taux.

The way to build a rating mode S is as follows:

S ¼ X �1 U
1ð ÞT
aux �2 I

2ð ÞT
aux �3 T

3ð ÞT
aux ð10Þ

In Algorithm 1, the complexity of calculating tensor core on line 3 is the same as
the complexity of calculating the approximate tensor on line 4 O P3

i¼1Ii
� �

. Line 5, 6, 7
are the process of each loop SVD expansion, and the complexity is O I1k2U þ�

I2k2I þ I3k2TÞ, so the overall complexity is O Tð2P3
i¼1Ii þ I1k2U þ I2k2I þ I3k2TÞ

� �
, T is that

the number of iterations, several iterations can be convergence. So you can automat-
ically initialize multiple times to obtain better local minimum. Since the tensor
dimension is much larger than the dimension of the shared pattern, the approximation is
given O TP3

i¼1Ii
� �

, depending on the tensor dimension.

12 Y. Wang et al.



The remaining task is choosing the number kU ; kI and kT of clusters user; item; tag.
The number of clusters, that is, the number of latent factors. The higher feature
dimension will increase the computational complexity. When the number of clusters is
too small, the construction data is insufficient, resulting in the algorithm losing too
much effective information. Therefore, the choice of the appropriate RatingKernel size
not only need to be fully compressed so that the calculation can also fully represent
most of the original information, the experimental part of the experimental scene will
verify the number of clusters.

4.2 Transfer Rating Model

After gaining the rating model S, the rating model can be transferred from X aux to X tgt.
The clusters of user; item; tag in the auxiliary domain task are implicitly related to these
in the target domain task. X tgt can be reconstructed by the extended rating model, for
example, we can use the 3-dimensional matrix factor in the rating model as base to
combine. In the rating mode, the combination behavior of user; item; tag in the rep-
resentation is similar to these in Xaux.

The reconstruction process of X tgt is to extend the RatingKernel because it reduces
the difference between the observation rating tensor X tgt and the reconstruction rating
tensor on the loss function (the square loss function used in this paper). Here, we apply
the binary weight matrix W whose size equivalent to X tgt to cover the unobserved
elements. When X tgt

� 	
ijk has been rated W ijk ¼ 1others W ijk ¼ 0. Finally, the objec-

tive function only includes the squared difference of the observed elements.
The MF (Matrix Factorization) method defines the loss function as follows:

L bX tgt;X tgt

� �
:= min

bUtgt ;bItgt ;bTtgt

X tgt � S �u bUtgt �i bItgt �t bTtgt

h i
� W

���
���

���
���
2

F
ð11Þ

The direct minimization of the loss function leads to overfitting, so the addition of a
regular term to the objective function is considered, and the F norm regular term for a
given matrix factor Utgt; Itgt; Ttgt is expressed as follows:

X Utgt; Itgt; Ttgt
� 	

:=
1
2

kU Utgt

�� ���� ��2
F þ kI Itgt

�� ���� ��2
F þ kI Itgt

�� ���� ��2
F

h i
ð12Þ

The objective function after adding the regular term is:

min
bX tgt

L bX tgt;X tgt

� �
þX Utgt; Itgt; Ttgt

� 	 ð13Þ
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For the optimization of the objective function, the random gradient reduction
(SGD) can be used to optimize as soon as possible in order to face the ever-increasing
data set.

In line 2 of Algorithm 2, the approximate tensor complexity is approximated
O pqrð Þ. Line 6, 7, 8 use the random gradient descent method. In each loop an element
is updated once, it can be done in the process of one element traversal and the com-
plicity is O pkU þ qkI þ rkTð Þ. Therefore, the overall computational complexity is
O pqr pqrþ pkU þ qkI þ rkTð Þð Þ, because the algorithm can be done within one
traversal, so we can do multiple experiments to take the mean.

The value of the objective function represents the correlation of the target domain
and the source domain. The smaller the value, the more relevant the rating model. In
contrast, larger values suggest that weak correlations lead to negative transitions. We
can make recommendations after filling the vacancy value.

5 Experiments

In order to validate the efficiency of the tensor decomposition model proposed in this
paper, a lot of experiments will be performed to verify the performance on three data
sets and to compare with several advanced recommendation methods. This experiment
evaluates the performance of the algorithm with MAE (mean absolute error) as a
measure. We use matlab to program this algorithm, the experimental environment is
shown in Table 3.

Table 3. Linux cluster experimental environment

Nodes Amount CPU RAM Hard-Disk

manage node 1 Xeon2.0 GHz*64*8 128 GB 512 GB*2
compute node 6 Xeon2.3 GHz*64*6 64 GB 512 GB
storage node 6 Xeon2.4 GHz*64*6 31 GB 512 GB
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5.1 Dataset

We tested based on the following three common real data sets: MovieLens [24] data
set, containing 943 users, 1682 movies and more than 1 million scoring data (range 1 to
5); EachMovie dataset, containing 72916 users, 6214 movies and more than 2 million
scoring data (range 1 to 6, this paper will be mapped to 1 to 5); Book-Crossing data set
[25], containing 278858 users, 271379 books and more than 100 million Score data
(range 0 to 9, this map will be mapped to 1 to 5). In the experiment, 70% of the users in
the above data and their rating were used as training data samples, and the remaining
part was used as the test sample. For cross-domain experiments, EachMovie was set as
the source domain, MovieLens and Book-Crossing as the test environment for the
target domain. The experiment was repeated 10 times in each test environment and the
average value was calculated as the experimental result.

This paper chooses the other 3 related algorithms to compare with the algorithm:
UPCC. Recommending items for similar users by the Pearson correlation

coefficient;
RMGM (rating-matrix generative model). As the current best cross-domain rec-

ommended algorithm to test cross-domain recommended performance.
CBT (codebook transfer). An advanced cross-domain collaborative filtering model,

assuming that a rating model is shared between domains and uses a post-clustering
codebook to describe a shared rating model and then transfer the information with the
codebook.

TKT (Tensor kernel transfer). The method proposed in this paper, using the clus-
tering level of the tensor kernel as model for cross-domain migration.

All experimental tests use MAE (mean absolute error) as a measure, the smaller the
value of MAE, the better the performance of the algorithm. MAE is calculated as
follows:

MAE ¼
P

i2TE ri � r�i
�� ��

TEj j ð19Þ

5.2 Experimental Results

In this paper, we verified the effect of this algorithm in cross-domain recommendation.
Randomly we select 300 users and ratings from each data set as training set (ML300
means 300 from the MovieLens data set, BC300 means 300 from Book-Crossing), and
200 more as test set. For each test user, we consider the number of different scores,
such as 5, 10, 15 scores recorded as (Given5, Given10, Given15), the other scores used
to assess. Since that waRMGM, CBT and other experimental latent factor space (also
the number of clusters) set to 50, in this paper in order to simplify the experimental
process, the experimental clustering latent factor space are set to the same
R ¼ kU ¼ kI ¼ kT ¼ 50. Followed by the experimental analysis of is the analysis of
the value R.
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It can be seen from the results in Table 4 that the effect of the method in this paper
is better than that of other comparison methods on all test sets. By CBT, RMGM is
better than UPCC, we can know that cross-domain can improve the recommendation
accuracy. RMGM and CBT extract the two-dimensional matrix scoring modes in
different fields. TKT makes full use of the ternary relationship between tag information
and user items, and learns from the source domain to learn in the target domain to adapt
to the specificity of the target domain. From the test results we can see that by adding
the latent factor dimensions of the shared model, we can improve the recommendation
accuracy and alleviate the sparsity of the target area.

The effect of the algorithm is different from the value of R. In this paper, the results
of different latent factor space selection are as follows:

It can be seen from Fig. 7 that the average absolute error MAE of the recommended
result increases with the number of latent factors increasing and the optimal effect is
achieved at the factor is about 50, and as the number of factors increases, the MAE rise
that may because of the overfitting leading to a decrease in recommended accuracy.

Table 4. Average MAE of 10 experiments

Training set Method Given5 Given10 Given15

ML300 UPCC 0.9347 0.8752 0.8631
RMGM 0.8387 0.7933 0.7827
CBT 0.8715 0.8571 0.8413
TKT 0.8352 0.7738 0.7693

BC300 UPCC 0.6931 0.7172 0.6975
RMGM 0.6423 0.6214 0.6012
CBT 0.6179 0.6038 0.5881
TKT 0.6087 0.5975 0.5793
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Fig. 6. Effects of the cluster’s number
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k reflects the specificity of the target domain, so we need to select the appropriate k
to avoid over-fitting or under-fitting. Figure 7 is based on EachMovie as the source
domain MovieLens as the target domain, R = 50, we select the experimental results of
Given10. From the figure we can see that the larger k which will weaken of the source
domain of the model, the smaller k will produce a greater error. Under this experiment
set, when it takes 15 can get good experimental results.

6 Conclusions

In this paper, we propose a novel cross-domain collaborative filtering method, which
can be used to disseminate useful knowledge from the auxiliary rating tensor to sup-
plement other sparse target domains by sharing the tensor rating model. The knowledge
is transferred in the form of a rating model, and the rating mode is compressed into a
rich and compact representation by learning the clustered user scoring mode from the
auxiliary domain. Thus, sparse target domains can be reconstructed by extending the
rating model. Experimental results show that rating mode transferring can be signifi-
cantly better than many of the most advanced methods. Therefore, it is possible to
obtain additional useful information from the source domain to help the target domain.

In the future work can use a variety of optimization techniques to optimize the
process of clustering and tensor decomposition process. We can try to use different
similarity measures to improve recommendation for cybersecurity data analytics.

References

1. Wang, Y., Yin, G., Cai, Z., et al.: A trust-based probabilistic recommendation model for
social networks. J. Netw. Comput. Appl. 55, 59–67 (2015)

parameter

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 1 2 5 10 15 20 50

Fig. 7. Effects of parameter k

Cross-Domain Recommendation System Based on Tensor Decomposition 17



2. Liu, H., Xia, F., Chen, Z., et al.: TruCom: exploiting domain-specific trust networks for
multicategory item recommendation. IEEE Syst. J. 11(1), 295–304 (2015)

3. Qiu, T., Chen, G., Zhang, Z.K., et al.: An item-oriented recommendation algorithm on cold-
start problem. EPL (Europhys. Lett.) 95(5), 58–63 (2011)

4. Zhou, K., Yang, S.H., Zha, H.: Functional matrix factorizations for cold-start recommen-
dation. In: Proceedings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 315–324. ACM (2011)

5. Bobadilla, J.S., Ortega, F., Hernando, A., et al.: A collaborative filtering approach to mitigate
the new user cold start problem. Knowl. Based Syst. 26, 225–238 (2012)

6. Bobadilla, J., Ortega, F., Hernando, A., et al.: Recommender systems survey. Knowl. Based
Syst. 46, 109–132 (2013)

7. Abel, F., Herder, E., Houben, G.J., et al.: Cross-system user modeling and personalization on
the social web. In: User Modeling and User-Adapted Interaction, pp. 1–41 (2013)

8. Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T. (eds.): Recommendation
Systems in Software Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-45135-5

9. Cantador, I., Cremonesi, P.: Tutorial on cross-domain recommender systems. In: Proceed-
ings of the 8th ACM Conference on Recommender Systems, pp. 401–402. ACM (2014)

10. Li, B., Yang, Q., Xue, X.: Can movies and books collaborate? Cross-domain collaborative
filtering for sparsity reduction. In: IJCAI 2009, vol. 9, pp. 2052–2057 (2009)

11. Kumar, A., Kumar, N., Hussain, M., et al.: Semantic clustering-based cross-domain
recommendation. In: 2014 IEEE Symposium on Computational Intelligence and Data
Mining (CIDM), pp. 137–141. IEEE (2014)

12. Tang, J., Wu, S., Sun, J., et al.: Cross-domain collaboration recommendation. In:
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 1285–1293. ACM (2012)

13. Karatzoglou, A., Amatriain, X., Baltrunas, L., et al.: Multiverse recommendation: n-
dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of
the Fourth ACM Conference on Recommender Systems, pp. 79–86. ACM (2010)

14. Enrich, M., Braunhofer, M., Ricci, F.: Cold-start management with cross-domain
collaborative filtering and tags. In: Huemer, C., Lops, P. (eds.) EC-Web 2013. LNBIP,
vol. 152, pp. 101–112. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39878-0_10

15. Li, B., Yang, Q., Xue, X.: Transfer learning for collaborative filtering via a rating-matrix
generative model. In: Proceedings of the 26th Annual International Conference on Machine
Learning, pp. 617–624. ACM (2009)

16. Shi, Y., Larson, M., Hanjalic, A.: Tags as bridges between domains: improving
recommendation with tag-induced cross-domain collaborative filtering. In: Konstan, J.A.,
Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 305–316.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22362-4_26

17. Gao, S., Luo, H., Chen, D., Li, S., Gallinari, P., Guo, J.: Cross-domain recommendation via
cluster-level latent factor model. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.)
ECML PKDD 2013, Part II. LNCS (LNAI), vol. 8189, pp. 161–176. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40991-2_11

18. Hu, L., Cao, J., Xu, G., et al.: Personalized recommendation via cross-domain triadic
factorization. In: Proceedings of the 22nd International Conference on World Wide Web,
pp. 595–606. ACM (2013)

19. Iwata, T., Koh, T.: Cross-domain recommendation without shared users or items by sharing
latent vector distributions. In: Artificial Intelligence and Statistics, pp. 379–387 (2015)

18 Y. Wang et al.

http://dx.doi.org/10.1007/978-3-642-45135-5
http://dx.doi.org/10.1007/978-3-642-45135-5
http://dx.doi.org/10.1007/978-3-642-39878-0_10
http://dx.doi.org/10.1007/978-3-642-39878-0_10
http://dx.doi.org/10.1007/978-3-642-22362-4_26
http://dx.doi.org/10.1007/978-3-642-40991-2_11


20. Fernández-Tobías, I.: Matrix factorization models for cross-domain recommendation:
Addressing the cold start in collaborative filtering (2017)

21. Symeonidis, P., Zioupos, A.: Matrix and Tensor Factorization Techniques for Recommender
Systems, pp. 3–102. Springer Briefs in Computer Science. Springer, Cham (2016)

22. Cantador, I., Fernández-Tobías, I., Berkovsky, S., Cremonesi, P.: Cross-domain recom-
mender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems
Handbook, pp. 919–959. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-
7637-6_27

23. Cichocki, A., Zdunek, R., Phan, A.H., et al.: Nonnegative Matrix and Tensor Factorizations:
Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation. Wiley,
Chichester (2009)

24. [EB/OL] (2019). http://files.grouplens.org/datasets/movielens/ml-latest.zip
25. [EB/OL] (2019). http://www2.informatik.uni-freiburg.de/*cziegler/BX/

Cross-Domain Recommendation System Based on Tensor Decomposition 19

http://dx.doi.org/10.1007/978-1-4899-7637-6_27
http://dx.doi.org/10.1007/978-1-4899-7637-6_27
http://files.grouplens.org/datasets/movielens/ml-latest.zip
http://www2.informatik.uni-freiburg.de/%7ecziegler/BX/


Density Peak Clustering Algorithm Based
on Differential Privacy Preserving

Yun Chen1, Yunlan Du2, and Xiaomei Cao1(&)

1 School of Computer Science, Nanjing University of Posts
and Telecommunications, Nanjing 210046, China

caoxm@njupt.edu.cn
2 Department of Computer Science and Technology, Nanjing University,

Nanjing 210046, China

Abstract. Clustering by fast search and find of density peaks (CFSFDP) is an
efficient algorithm for density-based clustering. However, such algorithm
inevitably results in privacy leakage. In this paper, we propose DP-CFSFDP to
address this problem with differential privacy, which adds random noise in order
to distort the data but preserve its statistical properties. Besides, due to the poor
performance of CFSFDP on evenly distributed data, we further optimize the
clustering process with reachable-centers and propose DP-rcCFSFDP. The
experimental results show that, under the same privacy budget, DP-rcCFSFDP
can improve the clustering effectiveness while preserving data privacy compared
with DP-CFSFDP.

Keywords: Differential privacy � Clustering � Density peak � Privacy
preserving

1 Introduction

In the era of big data, the launches of services and products are relying more on the user
data (i.e. privacy) and information mined from it. As data privacy is inevitably exposed
in the process of data collection, analysis and publication, privacy protection tech-
nology is developed to address these privacy threats. Recently, many privacy protection
methods based on k-anonymity [1, 2] and partition [3, 4] have emerged. Although these
methods can protect more details of data, they all under special attack assumptions.

Differential privacy is an innovative conception demonstrated by Dwork [5–7] for
privacy leakage of statistical databases. With random noise, it distorts the sensitive data
and preserves the privacy from the malicious attackers. This technique inspires
researchers to introduce appropriate noise to data and arm clustering analyses with
differential privacy correspondingly.

For example, Blum et al. [8] first introduced differential privacy into clustering
analysis. They improved a k-means clustering algorithm and perturbed the query
response to protect each database entry. Wu et al. [9] then applied differential privacy
technique to density-based clustering algorithm for the first time and proposed
DP-DBSCAN algorithm. Though the clustering methods with differential privacy are
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improving year by year, the algorithms are still limited by the unsuitability of clusters
with complex shapes [8, 10, 11] and the sensitiveness to input parameters [9, 12–14].

In this paper, we leverage a more efficient density peak clustering algorithm,
clustering by fast search and find of density peaks (CFSFDP) [20], which clusters data
by connecting points to the nearest and denser points, and propose an improved DP-
CFSFDP by introducing differential privacy protection to it, aiming at solving privacy
leakage problem. We add Laplacian noise depending on the differential privacy
mechanism when the Gaussian kernel function is called during the density calculation.
Due to the poor performance of CFSFDP on data with uniform distribution, an
improved algorithm with reachable-centers (DP-rcCFSFDP) is proposed to optimize
the clustering process. We allow the lower-density center points to cluster with the
reachable and higher-density center points, thus DP-rcCFSFDP can improve the
effectiveness of clustering while satisfying the requirement of security.

2 Background and Related Work

2.1 Differential Privacy

Differential privacy preserving is a technique to protect private data by adding random
noise to sensitive data while maintaining the data attributes or their statistical properties
[5]. We suppose the attacker has obtained all data except the target data. With dif-
ferential privacy preserving, he still cannot obtain the target. The definitions of dif-
ferential privacy are as follows.

Definition 1. Suppose D and Dʹ are any pair of neighboring datasets that differ by at
most one piece of data, M is a randomized algorithm, Pr[X] is the disclosure risk of
event X, and S � Range(M) is the output of algorithm M. If the algorithm M satisfies:

Pr½MðDÞ 2 S� � ee � Pr½MðD0Þ 2 S� ð1Þ

Then the algorithm M is said to be e-differentially private [5]. e denotes the privacy
protection parameter, also known as the privacy budget. The smaller the e is, the more
noise is added, and the more privacy protection is provided.

Definition 2. For the query function f: D ! Dd, its sensitivity [6] Df is defined as:

Df ¼ max
D;D0

f ðDÞ � f ðD0Þk k1 ð2Þ

where �k k1 denotes the first-order norm distance.
Differential privacy works by adding noise perturbations. There are two common

noise addition mechanisms: Laplace mechanism [7] for numerical data and Exponential
mechanism [15] for non-numeric data. The amount of noise depends on sensitivity and
privacy budget. In this paper, we implement differential privacy with Laplace
mechanism.
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Definition 3. Given a dataset D, a function f with sensitivity Df, and privacy budget e,
thus the randomized algorithm M (D):

MðDÞ ¼ f ðDÞþ Lap
Df
e

� �
ð3Þ

provides e-differential privacy preserving [7]. The Lap (Df/e) is a random noise of
Laplace distribution.

Let b denote the scale parameter Df/e, the probability density function of the
Laplace distribution is:

p xð Þ ¼ 1
2b

exp � xj j
b

� �
ð4Þ

2.2 CFSFDP Algorithm

The main idea of CFSFDP is that each class has a maximum density point as the center
point which attracts and connects the lower density points around it, while different
class centers are far away from each other. The algorithm defines two quantities: local
density qi and distance di.

Definition 4. qi denotes the local density, and there are two calculation methods: based
on the cutoff kernel and based on the Gaussian kernel. The local density of xi calculated
by cutoff kernel is defined as:

qi ¼
P
j
v dij � dc
� �

ð5Þ

where dij denotes the Euclidean distance between xi and xj, dc denotes the cutoff
distance, and qi denotes the number of all remaining points contained in the circle with
point xi as the center and dc as the radius.

When the data distribution of the dataset is uniform, Eq. (5) may make different
points with the same local density, which affects the subsequent cluster calculation. For
this reason, another method is proposed for calculating the local density qi with
Gaussian kernel function:

qi ¼
P
j
e�

dij
dc

� �2

ð6Þ

In this paper, Gauss kernel function is used to calculate local density.
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Definition 5. Distance di denotes the minimum distance between point xi and other
points with higher density, and the equation is as follows:

di ¼
min

j:qj [ qi
dij

� �
max

j
dij

� �
; otherwise

8<
: ð7Þ

When point xi has the maximum local density, di denotes the distance between xi
and the point with the maximum distance from xi.

The CFSFDP selects cluster centers by the decision graph. The decision graph takes
q as the abscissa and d as the ordinate. When the point has both larger values of q and
d, it is considered as the cluster center. An instructive measurement for choosing the
number of centers is provided by the plot of ci = qi � di sorted in decreasing order [20].
The remaining points are connected to the nearest point corresponding to their di for
clustering.

3 CFSFDP Algorithm Based on Differential Privacy

3.1 DP-CFSFDP

CFSFDP algorithm selects k cluster centers according to the decision graph. The rest
points are arranged in descending order of local density and gradually connected to the
nearest point with higher density until to a center point. The algorithm performs well on
datasets with different shapes or uneven density distribution. However, the density of
points may expose the distribution of dataset. The density peak clustering algorithm
based on differential privacy preserving (DP-CFSFDP) introduces Laplacian noise to
the function of local density calculation, in order to accord with the e-differentially
private and avoid the risk of privacy leakage caused by local density.

The steps of DP-CFSFDP are as follows:
First, initialize the quantities of each point - q0i and di. Calculate the Euclidean

distance between points and local density qi. Based on sensitivity and privacy budget,
we generate random noise corresponding to Laplace distribution and add it to the
density qi. The new densities q0i are arranged in descending order. Thus, we calculate di
which indicates the distance from point i to its nearest point with a larger local density.

Second, generate the decision graph based on density q0i and distance di, thereby
determine the class centers.

Finally, cluster non-central points. We traverse the rest points in descending order
of density, and classify each point and its nearest point with distance di into a class.
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The pseudo code of the DP-CFSFDP algorithm is presented in the Algorithm 1.

Algorithm 1 DP-CFSFDP 

Input: data set D, cutoff distance dc, privacy budget εOutput: clustering results with differential privacy 
1: Calculate ρi from Eq.(6) on D,
   and generate its descending-order subscript qi
2: b = Δf / ε, Generate random noise Lap (b)
3: ρi’= ρi + Lap (b)
4: Calculate δi from Eq.(7), and generate 
   its corresponding subscript ni
5: Draw the decision graph based on ρi' and δi
6: Select the appropriate class centers mj,
   initialize the clustering label Ci=-1
7: for i = 1:j do
8: Cmj = i
9: end for 
10:for i = 1:N do
11: if point qi is not classified 
12: Cqi = Cnqi
13: end if
14:end for

3.2 DP-CFSFDP with Reachable-Centers

DP-CFSFDP algorithm protects data privacy by introducing noise into local density.
However, the arrangement order of local density may change due to the added
Laplacian noise, and then interfere with the calculation of the distance d resulting in the
change in the distribution of the decision graph. Since the center points is generated
from the decision graph, the parameters with noise may lead to the deviation between
the new center point and the correct one. Besides, points are likely to be misclassified
under the influence of noise during the clustering.

In addition, CFSFDP algorithm supposes that each class must be a maximum
density point as the class center. If the density distribution of a class is uniform, or there
are multiple distant points with high density, an entire class will be divided into several
subclasses. CFSFDP algorithm selects k centers based on the decision graph. However,
the inappropriate number of centers may have a great impact on the clustering results.
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In this paper, DP-CFSFDP algorithm with reachable-centers (DP-rcCFSFDP) is
proposed to reduce the influence of Laplacian noise on clustering results, optimize the
selection of centers and make up for the inapplicability of CFSFDP algorithm to
uniformly distributed data. The improved algorithm refers to some ideas of DBSCAN
[21] and defines reachable, and applies it to the classification of the center points. The
definitions used in DP-rcCFSFDP are as follows:

Neighbors. The neighbors of xi are all points in the neighborhood with xi as the center
and eps as the radius. In our algorithm, the cutoff distance dc is used as eps to represent
the radius of neighborhood.

Reachable. There is a series of points p1, p2, p3… pm, pm is said to be reachable from
pi if each pi+1 lies in the neighborhood of pi.

The specific steps of DP-rcCFSFDP are as follows:
First, initialize the quantities q0i and di, and generate the decision graph. This

process is the same as the beginning of DP-CFSFDPs.
Second, we select k_init points as the initial centers according to the decision graph.

We then calculate the delta-density value of gamma by ci ¼ q0i � di, and arrange them in
descending order. The k_init points with the largest gamma are selected as initial
cluster centers points.

Third, the initial centers are arranged in descending order of density for traversal
processing. If the center point with higher density is reachable from a point with lower
density with respect to dc, the lower one will be classified into the cluster of the higher
one. We will obtain the accurate number of centers k after the traversal.

Finally, the remaining points are traversed in descending order of density, and
classified to the cluster of the nearest point with higher density until each of them is
connected to a class center. The clustering results will be printed at last.
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The cluster process of DP-rcCFSFDP algorithm is presented in the Algorithm 2.

Algorithm 2 DP-rcCFSFDP 

Input: data set D, cutoff distance dc, privacy budget ε
Output: lustering results  differential privacy 
1: Calculate ρi from Eq.(6) on D,
   and generate its descending-order subscript qi
2: b = Δf / ε, Generate random noise Lap (b)
3: ρi’= ρi + Lap (b)
4: Calculate δi from Eq.(7), and generate 
   its corresponding subscript ni
5: Draw the decision graph based on ρi' and δi,
   and calculate γi = ρi' · δi in descending order 
6: Calculate the neighbors of each point based on dc
7: Select k_init points with the largest γ
   as the initial cluster centers 
8: Initialize class count nc=1
9: The initial centers are sorted in descending order
   of density Clistm, and Clist1 is the nc class 
10:for i = 1:m do
11: for j = 1:i do
12: if Clistj is reachable from Clisti w.r.t. dc
13: Clisti is classified to Clistj
14: break
15: end if 
16: end for 
17: if Clisti is not classified
18: nc=nc+1
19: Clisti is the nc class 
20: end if 
21:end for 
22:Non-central points are arranged according to qi,
   and classified to the class of ni

DP-CFSFDP algorithm is sensitive to the selection of centers. Though the number
of center points meets the actual clustering requirements, the selection of centers will
still be interfered with Laplacian noise, resulting in biased centers or even multiple
centers in one class. While DP-rcCFSFDP selects k_init points as initial centers (k_init
is greater than or equal to the number of actual centers number), it classifies the
reachable centers into one class, which finally corrects the biased center points gen-
erated by noise to connect to the right one. The algorithm reduces the dependence on
the number of centers, reduces the interference of noise on clustering, and improves the
stability.
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3.3 Privacy Analysis

According to Eq. (6) of local density and Definition 2 of sensitivity, the sensitivity of
the local density function is 1 when a point is added or deleted in the normalized space
[0, 1]d.

Suppose that two datasets D1 and D2 differ by at most one record, M (D1) and
M (D2) denote the output of CFSFDP algorithm with Laplacian noise on D1 and D2,
S denotes the arbitrary output, f (D1) and f (D2) denote the true clustering results on
these datasets, and s (x) denotes a certain clustering result. According to Eqs. (2) and
(4), the security proof of DP-CFSFDP and DP-rcCFSFDP is as follows:

Pr M D1ð Þ 2 S½ �
Pr M D2ð Þ 2 S½ � ¼

exp � e f D1ð Þ�s xð Þj j
Df

� 	

exp � e f D2ð Þ�s xð Þj j
Df

� 	

¼ exp
e f D2ð Þ � s xð Þj j � f D1ð Þ � s xð Þj jð Þ

Df

� �

� exp
e f D2ð Þ � f D1ð Þj j

Df

� �

¼ exp
e f D2ð Þ � f D1ð Þk k1

Df

� �

� exp eð Þ

The first inequality follows from the triangle inequality which indicates the dif-
ference between any two sides is less than the third. According to Definition 1, it is
proved that DP-CFSFDP and DP-rcCFSFDP are e-differentially private.

4 Experiments

4.1 Experiment Setup

The proposed algorithms are implemented in the Python language. The experiments are
conducted on a computer with win10 x64 system, Intel i7-6700HQ @2.60 GHz CPU
and 8 GB RAM. The datasets used are from the artificial datasets [22] and UCI
Knowledge Discovery Archive database [23].

The specific information of the datasets is shown in Table 1.

Table 1. Datasets information

Datasets Instances Dimensions Clusters

Jain 373 2 2
Wine 178 13 2
Aggregation 788 2 7
Iris 150 4 3
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4.2 Evaluation Criteria

F-measure [24] and adjusted Rand index (ARI) [25] are used to compare the similarity
between the clustering results of proposed algorithms and the ground truth class
assignment to evaluate the clustering effectiveness. F-measure is the harmonic average
of the precision and recall. ARI is to measure the similarity of the two assignments.

Suppose that Tj is the class in the real clustering results, and Di the clustering results
output from the algorithm proposed in the paper. N is the total number of points in the
dataset. |Tj| and |Di| denote the number of points in the class. The rate of precision,
recall and the value of F-measure of Tj and Di are defined as follows:

P Tj;Di
� � ¼ Tj \Dij j

Dij j ð8Þ

R Tj;Di
� � ¼ Tj \Dij j

Tjj j ð9Þ

F Tj;Di
� � ¼ 2�P Tj;Dið Þ�R Tj;Dið Þ

P Tj;Dið ÞþR Tj;Dið Þ ð10Þ

F-measure of the clustering results is the weighted average of F-measure for all
clusters:

F-measure ¼ P
j

Tjj j
N max

i
F Tj;Di
� �

ð11Þ

ARI is the improvement of Rand index (RI). Variations of the ARI account for
different models of random clustering [26]. Suppose that T is the actual clustering
results, D is the clustering results obtained by the improved algorithm, a is the number
of pairs of elements that are in the same set in T and D, and b be the number of pairs of
elements that are in different sets in T and D. E[RI] denotes the expectation of RI, then
RI and ARI are defined:

RI ¼ aþ b
C2
N

ð12Þ

ARI ¼ RI�E RI½ �
max RIð Þ�E RI½ � ð13Þ

The range of F-measure is [0, 1] and ARI is [−1,1]. The higher the value is, the
more similar the outputs of clustering algorithm are to the real clustering results and the
less the impact of Laplacian noise on clustering effectiveness.

4.3 Results and Discussion

In the experiment, the datasets are normalized so that each attribute value is limited to
[0, 1]. To achieve the best clustering effect, appropriate parameters should be selected
before we add the noise. DP-CFSFDP and DP-rcCFSFDP are applied on four datasets.
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For each privacy budget and each metric, we apply the algorithms on each dataset for
30 times and compute their average performances. When the privacy budget e changes,
the F-measure and ARI values of the clustering results are shown in the figure.

(a) F-measure on Jain dataset (b) ARI on Jain dataset

Fig. 1. F-measure and ARI comparison of algorithms on Jain dataset

(a) F-measure on Wine dataset (b) ARI on Wine dataset

Fig. 2. F-measure and ARI comparison of algorithms on Wine dataset

(a) F-measure on Aggregation dataset (b) ARI on Aggregation dataset

Fig. 3. F-measure and ARI comparison of algorithms on Aggregation dataset
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The left side of the figures (Figs. 1(a), 2(a), 3(a), 4(a)) depicts F-measure of the
clustering results. As is shown, with the growth of privacy budget, F-measure gradually
increases and tends to be stable. Since the privacy budget is inversely proportional to
the size of the Laplacian noise, the higher the privacy budget, the less the noise and the
better the clustering results.

When we compare the performance of DP-CFSFDP and DP-rcCFSFDP under the
same privacy budget, it is easy to find that in Figs. 1(a) and 2(a), DP-rcCFSFDP always
has a higher F-measure value than DP-CFSFDP, and that the clustering result is closer
to the real result. However, in Figs. 3(a) and 4(a), when the privacy budget takes a
small value, the F-measure value of DP-CFSFDP becomes higher but seems more
unstable. The reason is that when the privacy budget is small, too much noise leads to
the increasing randomness of the centers selection by DP-CFSFDP algorithm and
coincidentally generates even better centers than the original algorithm. When the
privacy budget takes a larger value, the clustering of DP-rcCFSFDP is of higher
accuracy and more stable, resulting from the optimization of center points classification
with the reachable centers.

The right side of the figures (Figs. 1(b), 2(b), 3(b) and 4(b)) depicts ARI of the
clustering results. As we can see, ARI gradually increases and then flattens with the
increase of privacy budget. Under the same privacy budget, the ARI value of DP-
rcCFSFDP is generally superior than DP-CFSFDP, since the calculation of ARI
ignores permutations. Thus, under the same level of privacy protection, the similarity
between clustering results of DP-rcCFSFDP and real ones is higher, indicating that DP-
rcCFSFDP algorithm clusters with higher effectiveness.

In general, DP-rcCFSFDP reduces the impact of Laplacian noise on clustering
compared with DP-CFSFDP and achieves a better balance between clustering effec-
tiveness and privacy preserving.

(a) F-measure on Iris dataset (b) ARI on Iris dataset

Fig. 4. F-measure and ARI comparison of algorithms on Iris dataset
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5 Conclusion

In this paper, a density peak clustering algorithm based on differential privacy pre-
serving (DP-CFSFDP) is proposed to protect private data. Meanwhile, an improved
DP-CFSFDP algorithm with reachable-centers (DP-rcCFSFDP) is proposed for the
poor performance on data with uniform distribution and the bad clustering with
Laplacian noise by CFSFDP. The experiments show that the improved algorithm can
meet the requirement of privacy preserving while ensuring the effectiveness of clus-
tering. In the future, we are going to optimize the allocation of input parameters and
privacy budget in DP-rcCFSFDP, and further improve the clustering performance.
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Abstract. With the development of internet communication, spam is
quite ubiquitous in our daily life. It not only disturbs users, but also cms.
Although there exists many methods of spam detection in both the area
of cyber security and natural language processing, their performance is
still not capable to satisfy requirements. In this paper, we implemented
deep cascade forest for spam detection, a deep model without using back-
propagation. With less hyperparameters, the training cost can be easily
controlled and declines compared with that in neutral network meth-
ods. Furthermore, the proposed deep cascade forest outperforms other
machine learning models in the F1 Score of detection. Therefore, consid-
ering the lower training cost, it can be considered as a useful online tool
for spam detection.

Keywords: Spam detection · Deep forest · Deep learning · Machine
learning · Ensemble methods

1 Introduction

In the era of information explosion, communication through digital media
becomes prevalent in peoples’ daily life. There is a lot of complicated infor-
mation in our daily life. However, among these messages, there exists a large
amount of information that is false, violent, or illegal. These messages not only
affect user’s product experience, but may also lead to cyber security issues such
as financial fraud and personal privacy leaks [20]. According to the report pre-
sented by Kaspersky, an independent cybersecurity company, spammers continu-
ously exploit new methods to propogate malicious messages to their “audience”,
including instant messengers and social networks [13].
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Owing to the fact that spam is too multitudinous to be recognized and fil-
tered in advance manually, spam detection is of great significance. There are two
major difficulties in spam detection. One is how to convert text information into
numerical information, especially those conveys less information such as word
abbreviations, expressions, and symbols. The other is how to build an online
tool that can recognize spam in time.

Spam detection plays a predominant way in cyber security. Early in 1999,
Harris Drucker et al. applied Support Vector Machines (SVM) to email spam
detection [7]. In order to encode texts into computer-readable mathematical
features, he combined Term Frequency-Inverse Document Frequency (TF-IDF)
representation method with binary representation method. According to his
research, compared with boosting decision tree, SVM is considered as the most
suitable model at that time. In 2011, McCord used a variety of traditional
machine learning methods to detect spam on twitter. In his work, several classic
classification algorithms such as random forest (RF), naive bayes (NB), support
vector machine (SVM), and k nearest neighbors (KNN) are compared. Among
them, RF shows the best performance as an ensemble learning method [14].
When combining with multiple base classifiers, ensemble classifier provides a
more accurate prediction than single classifier. In 2013, Cailing Dong developed
an ensemble learning framework for online web spam detection, and their exper-
imental results reflect the effectiveness of integrated learning [6].

In around 2006, the idea of Deep Learning started to take shape. Hinton
believes that neural networks can be used to reduce dimensions of data so as
to contribute to feature extraction [8]. Its true in many areas such as speech
recognition [5], image recognition [11]. Deep learning is also widely used in nat-
ural language processing (NLP) [12,19], Long Short-Term Memory (LSTM) is
one of its best-known models. Hochreiter discusses [9] how LSTM is trained to
store information over a period of time. Recent years, some researchers began
to use deep learning models to detect spam. In 2017, Wu et al. compared multi-
layer perception with RF, decision tree (DT) and NB [22]. Later, Ren empiri-
cally explored a neural network model to learn document-level representation for
detecting deceptive opinion spam [15]. They compared gated recurrent neural
network (GRNN) with convolutional neural network (CNN) and recurrent neural
network (RNN), finding that GRNN outperforms others on datasets which con-
sist of truthful and deceptive reviews in three domains. Furthermore, Gauri Jain
et al. firstly used LSTM to categorize SMS spam and Twitter spam [10] in 2019.
The results show that LSTM is superior to traditional machine learning methods
in SMS and Twitter spam datasets. Due to the fact that some datasets contain
not only texts but also images, Yang et al. used CNN for image extraction and
LSTM for text extraction respectively [23].

When dealing with text information, a traditional approach is vector space
model [17]. It is designed to encode each word respectively. Therefore, it washes
away semantic information and generates high dimensional and sparse features
that are not suitable for neural networks. Another mainstream approach is
semantic-based textual representation, which translates textual information into
continuous dense features to learn the distributed representation of words [4].



Spam Detection via Deep Forest 35

This method is also called word embedding, which has high autocorrelation and
is suitable for use in neural networks.

Our goal is to find promising methods and settings that can recognize spam
in social networks. Many developers have developed anti-spam tools for spam
detection, but they are not efficient. Most of these spam detection methods
are based on traditional machine learning methods. In recent years, with the
development of NLP, deep learning methods emerged in spam detection, which
have achieved satisfying results in accuracy. Nevertheless, the deeper the network
is, the higher training cost and complexity the model will be.

In summary, this article uses the gcForest method, the deep ensemble method
proposed by Zhou et al. in 2017 [24], and its structure has been improved to
adapt to spam detection problems. It is a highly-ensemble learning model with
fewer hyperparameters than deep neural network. Furthermore, its model com-
plexity can be determined in a data-dependent way which makes our model less
time-consuming. Compared with previous machine learning methods, our model
shows a higher accuracy and efficiency and solves training overhead problems
simultaneously.

The rest of the paper is organized as follows: Sect. 2 offers the description of
the cascade structure of gcForest approach (Deep Cascade Forest, DCF) that is
the core of our method. Section 3 briefly describes the text processing methods. In
Sect. 4, we illustrate models elaborately including datasets we use and parameter
settings in experiments. After that, we compare the accuracy, F1 Score, training
time, etc. of models. Finally, Sect. 5 describes the main conclusion and offers
guidelines for future work.

2 Deep Cascade Forest

Text
Processing

this

a

?

sentence

spam

Is

Input
Feature
Vector

Concatenate

Level 1 Level 2 Level N

Final
Prediction

MaxAve.

Model 1

Model 1

Model 2

Model 2

Model 1

Model 1

Model 2

Model 2

Model 1

Model 1

Model 2
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Fig. 1. Example of the cascade structure of gcForest (DCF) for spam detection. Sup-
pose each level of the cascade consists of two kinds of base models. There are two
classes to predict (spam or ham), thus, each model will output a two-dimensional class
vector, which is then concatenated for re-representation of original input.

In 2017, Zhou et al. proposed an ensemble approach with a deep cascade
structure, named gcForest [24]. The basic form of gcForest contains 2 parts:
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Multi-Grained Scanning and Cascade Forest. The former is used for feature
preprocessing, and for spam detection tasks, we replace it with text preprocess-
ing method. In order to train the model, we only use the cascade structure and
call the model the deep cascade forest (DCF).

As is elaborately illustrated in Fig. 1, first, it is necessary to split the input
document into words, and then carried out the text processing procedure that
extracting the textual information as a feature vector. Inspired by the well-known
recognition that representation learning in deep neural network mostly relies on
the layer-by-layer processing of raw features, DCF then feed the feature vector
into the layer-by-layer cascade structure. After training various base models on
the feature vector, the output predictions will then be concentrated with raw
features and fed to the next layer together. In each layer, different types of base
models can be selected to encourage the ensemble diversity. Base model can even
be an ensemble model, e.g. random forest and this constitutes an “ensemble of
ensembles”. The output of each base model is a class vector, indicating the
probability of predicting a sentence as a class. In the spam detection task, there
are two classes (spam and ham), that is, each model outputs a two-dimensional
probability class vector. To reduce the risk of overfitting, which is common in
deep learning models, class vectors are generated by k-fold cross validation. In
detail, each instance will be trained k-1 times to generate k-1 class vectors, and
then averaged to get the final class vector. Before generating a new layer, the
performance of the entire cascade structure is estimated on validation data, and
if the performance does not improve, the training process terminates. So that
the number of cascade levels is automatically determined.

DCF can achieve good results in different dimensions of input data. However
neural networks are difficult to get good results on high dimensional and sparse
text features. Comparing with deep neural networks, DCF has much fewer hyper-
parameters and lower training cost, and it opens the door of deep learning based
on non-NN (Neural Network) styles, or deep models based on non-differentiable
modules.

3 Text Processing

In order to turn text into information that computers can recognize, following
different text processing methods are used:

Remove the Stop Words. A stop word is a commonly used word (such as “the”,
“a”, “an”, “in”) that a search engine has been programmed to ignore, both when
indexing entries for searching and when retrieving them as the result of a search
query. We can remove them easily, by storing a list of words that considered as
stop words.

Build Word Count Vector. To build the word count vector for each sample, we
firstly create a dictionary of words and their frequency. Once the dictionary is
ready, we can extract word count vectors from training set. A sample corresponds



Spam Detection via Deep Forest 37

to a word count vector. The dimension of the word count vector is the total
number of words in the training set. If the sample contains a word in the training
set, the value in the vector is the frequency of the word in the training set. If
not, the value is zero. All word count vectors are combined into a word count
matrix, rows represent each sample, and columns represent each word.

Term Frequency-Inverse Document Frequency (TF-IDF). TF-IDF stands for
term frequency-inverse document frequency, and the TF-IDF weight is a weight
often used in information retrieval and text mining, to produce a composite
weight for each term in each document. [16].

TF determines a terms (a word or a combination) relative frequency within
a document. The TF (wi) is the number of times that word wi appears in a
document.

TF-IDF uses the above TF multiplied by the IDF, the inverse document
frequency (IDF) is defined as:

IDF (wi) = log(
|D|

DF (wi)
) (1)

Where |D| is the number of documents, and the document frequency DF (wi)
is the number of times that word wi appears in all documents.

Texts to Sequences. This approach will create a vector for each sample, convert-
ing words to their index in the word count dictionary. An example of texts to
sequences is shown in Fig. 2.

Dictionary:   index         word            frequency

  Step 1
Build the word count dictionary for two sentences:

      Step 2
Convert sentences to sequences using the word index

Sentence Sequence
[2, 3, 1, 4]

      Step 3
Padding the sentences

Sentence Sequence
[0, 0, 0, 2, 3, 1, 4]

Fig. 2. An example of texts to sequences method

4 Experiments and Results

The experiments use two public data sets to train the model. In order to compare
models performance on detecting spam and their training cost, we used F1 Score
to evaluate the model and calculated the training and testing time of each model.
Our experiments use a PC with Intel Core i5 7260u CPUs (2 cores), and the
performance and running efficiency of DCF is good.
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4.1 Datasets and Evaluation Measures

The experiments are performed on SMS spam dataset and YouTube comments
spam dataset. All the information is available in UCI repository [1,21]. The
SMS spam dataset is a public set of SMS labeled messages that are collected for
mobile phone spam research. It has one collection composed by 5,574 English,
real and non-encoded messages, tagged in legitimate (ham) or spam [2]. The
YouTube comments spam dataset was collected using the YouTube Data API
v3. The samples were extracted from the comments section of five videos that
were among the 10 most viewed on YouTube during the collection period [3].
For these two datasets, each is divided into 70% training sets and 30% test sets.
The training set is used to train the model, and the test set is used to assess the
effectiveness of models. The overview of these datasets is reported in Table 1.

Table 1. Datasets overview

Dataset No. of instances No. of ham No. of spam

SMS spam 5574 4825 747

YouTube spam 1956 951 1005

The experiments were performed on four processed datasets, shown in
Table 2, where Count in the first row denotes the approach of building word
count vector, Sequence denotes the approach of texts to sequences.

Table 2. Number of features in four processed datasets

Dataset TF-IDF Count Sequence

SMS spam 8710 8710 200

YouTube spam 4454 4454 500

SMS spam (stop) 9403 9403 200

YouTube spam (stop) 4185 4185 500

In order to assess the effectiveness of proposed methods, this paper uses
different evaluation indicators, including accuracy, recall, precision and F1 score,
which are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)
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F1 = 2 · precision · recall
precision + recall

(5)

Where true positive (TP ) means the number of spam that are correctly
classified, false positive (FP ) means the number of legitimate emails (ham) that
are misclassified, true negative (TN) means the number of legitimate emails
(Ham) that are correctly classified and false negative (FN) is the number of
misclassified spam.

4.2 Parameter Settings

The grid search method is used to select hyperparameters of models [18]. Both
machine learning methods and deep learning methods are the benchmark, includ-
ing support vector machine (SVM), k nearest neighbors (KNN), Naive Bayes
(NB), decision tree (DT), logistic regression (LR), random forest (RF), adap-
tive boosting (Adaboost), Bagging, extra-trees classifier (ETC, standing for
extremely randomized trees), and long short-term memory (LSTM).

For SMS spam detection, SVM uses a sigmoid kernel with gamma set to 1.0.
KNN uses 49 neighbors. NB uses a multinomial kernel with alpha set to 0.2. The
minimum of DT samples in each split is 7, and the best gini value is used to
measure the quality of a split. LR uses the L1 penalty, random forest contains 31
decision trees. The Adaboost classifier contains 62 decision trees. The Bagging
classifier contains 9 decision trees. ETC contains 9 decision trees.

For YouTube spam detection, SVM uses a sigmoid kernel with gamma set
to 1.0. KNN uses 5 neighbors. NB uses a multinomial kernel with alpha set
to 1. The minimum of DT samples in each split is 2, and the best gini value is
used to measure the quality of a split. LR uses the L2 penalty, and random forest
contains 10 decision trees. The Adaboost classifier contains 50 decision trees. The
Bagging classifier contains 10 decision trees. ETC contains 10 decision trees.

For SMS spam detection, each layer of DCF contains 1 RF with 31 deci-
sion trees, and an NB classifier with a multinomial kernel. For YouTube spam
detection, each layer of DCF contains 1 DT, an NB classifier with a multinomial
kernel and a LR classifier. There are many hyperparameters used by LSTM.
The specific structure and settings refer to Appendix B. It can be seen that the
complexity of DCF is much smaller than that of LSTM.

4.3 Results and Analysis

Datasets shown in Table 2 are split into 70% training data and 30% test data. All
models use two text processing approaches: building word count vectors and TF-
IDF. In addition, given that LSTM is better suited to use semantic-based text
processing methods, the texts to sequences approach is used and compared with
other approaches. In order to further validate the performance of those models,
we compared their training time which is an important factor in building an
online detector.
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Figures 3 and 4 show the accuracy and F1 score of different models on the
SMS dataset and YouTube dataset, respectively. More details of precision, recall,
training and testing time are shown in Tables 3 and 4.
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Fig. 3. Accuracy and F1 Score of different models on the test dataset of SMS spam
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Fig. 4. Accuracy and F1 Score of different models on the test dataset of YouTube spam

From Fig. 3, we can conclude that DCF outperforms others in both the accu-
racy and F1 Score on the SMS spam dataset. After building word count vec-
tors, DCF achieves the highest accuracy of 99.40% and highest F1 Score of
97.84% which can be found in Table 3. Simultaneously, DCF gets the highest
accuracy of 99.40% after using TF-IDF method. The DCF’s performance is bet-
ter on datasets without removing stop words. The training time of DCF is much
less than LSTM after building word count vectors and using TF-IDF method.
LSTM performs poorly after using the building word vector and using the TF-
IDF method, because high dimensional and sparse samples produced by these
two methods are not well handled by LSTM. However, after using the texts to
sequences method, LSTM performance has been greatly improved but still does
not exceed DCF Among many machine learning models, NB not only has a short
training time, but also has an accuracy of 99.04%. In addition, since TP is equal
to zero, the accuracy, recall, and F1 score of some models are zero in Table 3,
which means that all spam is incorrectly classified.
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It can be inferred from Fig. 4 and Table 4, as for YouTube spam dataset,
DCF also achieved the highest accuracy (95.74%) and F1 Score (95.87%). LSTM
performs worst on the dataset after building word count vector and using TF-IDF
method, with the lowest accuracy and F1 Score, as well as the longest training
time, which denotes that it is less likely to be applied in this field. Regardless of
the text processing method used, KNN works very poorly.

Overall, DCF shows the highest accuracy and F1 Score in the spam detection
mission. This model not only has quite robust performance to different datasets,
but also has lower training cost than the deep neural network due to its automat-
ically determined complexity. The LSTM model is much suitable to use the texts
to sequences processing approach, but when facing high-dimension and sparse
data (e.g. the YouTube spam dataset), the model not only performs worse, but
also has a long training time.

Among other machine learning and ensemble learning methods, NB seems
more suitable for spam detection on account of its relatively higher accuracy and
lower training cost.

5 Conclusion

In this paper, differing from other researches who use machine learning meth-
ods and deep learning methods to carry out spam detection, we attempted deep
forest, a non-NN style deep model based on non-differentiable modules. We con-
cluded that deep forest shows the highest accuracy and F1 Score on both SMS
spam datasets and YouTube spam datasets. Deep forests are suitable for input
data of different kinds of dimensions, however neural networks are difficult to
produce good results on high dimensional and sparse samples. Owing to the fact
that deep forest has fewer hyperparameters and lower training cost than LSTM,
it can be considered as a more suitable model for building an online detector.

In the future, we hope to use new techniques to solve problems with more
datasets that include both images and texts. We also aim to explore more text
processing methods to further improve performance of classifiers. As an alterna-
tive towards deep neural networks, we intend to apply deep forest to other tasks
that can not be well handled by deep neural networks. With regard to online
tools, we plan to develop web browser and mobile phone plugins to filter spam
directly.

Acknowledegment. This work was supported by the National Natural Science Foun-
dation, China (Nos. 61806096, 61872190, 61403208).

A Performance Comparison Between Deep Cascade
Forest and Other Classifiers

Tables 3 and 4 shows the precision, recall, precision, accuracy and train-
ing/testing time of different models by different kinds of text processing methods
on SMS datasets and YouTube datasets, respectively.
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Table 3. Performance comparison between deep cascade forest and other classifiers on
SMS spam dataset

Classifier Text processing Precision

(%)

Recall

(%)

Accuracy

(%)

F1

(%)

Training

time (s)

Testing

time (s)

SVM TF-IDF 99.05 89.66 98.45 94.12 0m 0.4593 s 0m 0.1385 s

Count 40.82 34.48 83.97 37.38 0m 0.4723 s 0m 0.1495 s

TF-IDF, Stopwords 98.02 85.34 97.73 91.24 0m 0.3706 s 0m 0.4958 s

Count, Stopwords 71.91 72.84 92.28 72.38 0m 0.1763 s 0m 0.1140 s

KNN TF-IDF 100.00 61.64 94.68 76.27 0m 0.0041 s 0m 0.2161 s

Count 0.00 0.00 86.12 0.00 0m 0.0010 s 0m 0.3007 s

TF-IDF, Stopwords 99.08 46.55 92.52 63.34 0m 0.0014 s 0m 0.9363 s

Count, Stopwords 0.00 0.00 86.12 0.00 0m 0.0010 s 0m 0.3494 s

NB TF-IDF 98.21 94.83 99.04 96.49 0m 0.0018 s 0m 0.0003 s

Count 91.50 97.41 98.39 94.36 0m 0.0019 s 0m 0.0004 s

TF-IDF, Stopwords 95.20 93.97 98.50 94.58 0m 0.0017 s 0m 0.0005 s

Count, Stopwords 87.11 96.12 97.49 91.39 0m 0.0022 s 0m 0.0016 s

DT TF-IDF 90.05 85.78 96.71 87.86 0m 0.2270 s 0m 0.0006 s

Count 88.21 87.07 96.59 87.64 0m 0.1238 s 0m 0.0008 s

TF-IDF, Stopwords 86.70 81.47 95.69 84.00 0m 0.1950 s 0m 0.0104 s

Count, Stopwords 87.39 83.62 96.05 85.46 0m 0.1386 s 0m 0.0026 s

LR TF-IDF 93.33 72.41 95.45 81.55 0m 0.0107 s 0m 0.0002 s

Count 96.73 89.22 98.09 92.83 0m 0.0153 s 0m 0.0015 s

TF-IDF, Stopwords 90.06 62.50 93.84 73.79 0m 0.0085 s 0m 0.0005 s

Count, Stopwords 97.13 87.50 97.91 92.06 0m 0.0104 s 0m 0.0022 s

RF TF-IDF 100.00 86.64 98.15 92.84 0m 0.9180 s 0m 0.0150 s

Count 100.00 83.62 97.73 91.08 0m 0.9301 s 0m 0.0290 s

TF-IDF, Stopwords 100.00 82.76 97.61 90.57 0m 1.2973 s 0m 0.0437 s

Count, Stopwords 100.00 81.90 97.49 90.05 0m 1.3429 s 0m 0.0448 s

AdaBoost TF-IDF 95.26 86.64 97.55 90.74 0m 2.4091 s 0m 0.0185 s

Count 96.24 88.36 97.91 92.13 0m 2.1926 s 0m 0.0189 s

TF-IDF, Stopwords 96.72 76.29 96.35 85.30 0m 2.5404 s 0m 0.0370 s

Count, Stopwords 93.78 84.48 97.07 88.89 0m 2.4455 s 0m 0.0234 s

Bagging TF-IDF 93.52 87.07 97.37 90.18 0m 1.1530 s 0m 0.0579 s

Count 91.59 89.22 97.37 90.39 0m 0.7393 s 0m 0.0214 s

TF-IDF, Stopwords 91.08 83.62 96.59 87.19 0m 1.0032 s 0m 0.0284 s

Count, Stopwords 95.67 85.78 97.49 90.45 0m 0.8343 s 0m 0.0408 s

ETC TF-IDF 99.50 86.21 98.03 92.38 0m 0.6672 s 0m 0.0115 s

Count 99.02 87.07 98.09 92.66 0m 0.6012 s 0m 0.0131 s

TF-IDF, Stopwords 100.00 78.88 97.07 88.19 0m 0.9153 s 0m 0.0454 s

Count, Stopwords 100.00 81.03 97.37 89.52 0m 0.7918 s 0m 0.0201 s

LSTM TF-IDF 0.00 0.00 86.60 0.00 14m 54.3540 s 0m 35.1124 s

Count 0.00 0.00 86.60 0.00 20m 19.1406 s 0m 32.3467 s

TF-IDF, Stopwords 0.00 0.00 86.60 0.00 9m 49.5561 s 0m 28.2616 s

Count, Stopwords 0.00 0.00 86.60 0.00 15m 53.9231 s 0m 30.3698 s

Sequence 98.08 91.07 98.56 94.44 0m 32.2483 s 0m 3.2479 s

Sequence, Stopwords 91.27 93.30 97.91 92.27 0m 45.1065 s 0m 1.2113 s

DCF TF-IDF 98.68 96.98 99.40 97.83 1m 41.7678 s 0m 9.7851 s

Count 98.26 97.41 99.40 97.84 0m 46.6826 s 0m 4.6078 s

TF-IDF, Stopwords 98.63 93.10 98.86 95.79 1m 54.8653 s 0m 2.4483 s

Count, Stopwords 97.79 95.26 99.04 96.51 1m 6.5370 s 0m 1.3066 s
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Table 4. Performance comparison between deep cascade forest and other classifiers on
YouTube spam dataset

Classifier Text processing Precision

(%)

Recall

(%)

Accuracy

(%)

F1(%) Training

time (s)

Testing

time (s)

SVM TF-IDF 95.86 92.05 93.87 93.92 0m 0.1041 s 0m 0.0281 s

Count 70.68 71.85 70.19 71.26 0m 0.1014 s 0m 0.0229 s

TF-IDF, Stopwords 96.36 78.81 87.56 86.70 0m 0.0908 s 0m 0.0288 s

Count, Stopwords 77.67 79.47 77.68 78.56 0m 0.0521 s 0m 0.0117 s

KNN TF-IDF 98.81 27.48 62.52 43.01 0m 0.0017 s 0m 0.0258 s

Count 98.65 72.85 85.52 83.81 0m 0.0011 s 0m 0.0202 s

TF-IDF, Stopwords 98.46 21.19 59.28 34.88 0m 0.0008 s 0m 0.0279 s

Count, Stopwords 98.34 58.94 78.36 73.71 0m 0.0007 s 0m 0.0243 s

NB TF-IDF 90.79 94.70 92.33 92.71 0m 0.0018 s 0m 0.0004 s

Count 90.42 93.71 91.65 92.03 0m 0.0009 s 0m 0.0001 s

TF-IDF, Stopwords 89.68 83.44 86.54 86.45 0m 0.0010 s 0m 0.0001 s

Count, Stopwords 88.69 83.11 85.86 85.81 0m 0.0011 s 0m 0.0013 s

DT TF-IDF 95.88 92.38 94.04 94.10 0m 0.0450 s 0m 0.0003 s

Count 93.71 93.71 93.53 93.71 0m 0.0247 s 0m 0.0004 s

TF-IDF, Stopwords 95.02 82.12 88.59 88.10 0m 0.0481 s 0m 0.0003 s

Count, Stopwords 93.63 82.78 88.25 87.87 0m 0.0348 s 0m 0.0007 s

LR TF-IDF 95.34 88.08 91.65 91.57 0m 0.0081 s 0m 0.0001 s

Count 95.27 93.38 94.21 94.31 0m 0.0045s 0m 0.0001s

TF-IDF, Stopwords 96.69 77.48 87.05 86.03 0m 0.0030 s 0m 0.0001 s

Count, Stopwords 95.65 80.13 87.90 87.21 0m 0.0034 s 0m 0.0001 s

RF TF-IDF 97.90 92.72 95.23 95.24 0m 3.5051 s 0m 0.1002 s

Count 97.92 93.71 95.74 95.77 0m 3.3739 s 0m 0.1228 s

TF-IDF, Stopwords 97.62 81.46 89.44 88.81 0m 4.3453 s 0m 0.0874 s

Count, Stopwords 97.27 82.45 89.78 89.25 0m 4.5593 s 0m 0.1163 s

AdaBoost TF-IDF 94.20 91.39 92.67 92.77 0m 0.4922 s 0m 0.0071 s

Count 94.30 93.05 93.53 93.67 0m 0.4322 s 0m 0.0068 s

TF-IDF, Stopwords 94.92 80.46 87.73 87.10 0m 0.4404 s 0m 0.0071 s

Count, Stopwords 95.29 80.46 87.90 87.25 0m 0.4357 s 0m 0.0071 s

Bagging TF-IDF 97.22 92.72 94.89 94.92 0m 0.2403 s 0m 0.0085 s

Count 95.89 92.72 94.21 94.28 0m 0.2488 s 0m 0.0081 s

TF-IDF, Stopwords 97.57 79.80 88.59 87.80 0m 0.2903 s 0m 0.0083 s

Count, Stopwords 96.14 82.45 89.27 88.77 0m 0.2522 s 0m 0.0082 s

ETC TF-IDF 94.48 90.73 92.50 92.57 0m 0.1329 s 0m 0.0024 s

Count 96.90 93.05 94.89 94.93 0m 0.1476 s 0m 0.0035 s

TF-IDF, Stopwords 94.02 78.15 86.20 85.35 0m 0.1577 s 0m 0.0025 s

Count, Stopwords 95.14 77.81 86.54 85.61 0m 0.1473 s 0m 0.0030 s

LSTM TF-IDF 51.45 100.00 51.45 67.94 2m 56.7070 s 0m 8.4437 s

Count 51.37 99.67 51.28 67.79 3m 20.1492 s 0m 7.8555 s

TF-IDF, Stopwords 51.45 100.00 51.45 67.94 2m 7.2586 s 0m 9.3072 s

Count, Stopwords 51.45 100.00 51.45 67.94 2m 7.2586 s 0m 8.1658 s

Sequence 94.95 87.09 90.97 90.85 0m 47.4032 s 0m 1.1193 s

Sequence, Stopwords 88.97 85.43 87.05 87.16 1m 10.3903 s 0m 1.0290 s

DCF TF-IDF 95.65 94.70 95.06 95.17 0m 8.7054 s 0m 0.2663 s

Count 95.71 96.03 95.74 95.87 0m 8.6446 s 0m 0.2523 s

TF-IDF, Stopwords 95.82 83.44 89.61 89.20 0m 10.4687 s 0m 0.0996 s

Count, Stopwords 92.54 90.40 91.31 91.46 0m 11.8891 s 0m 0.3085 s
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B Parameters of LSTM in our Experiment

The LSTM layer contains 64 units for SMS spam detection and 100 units for
YouTube spam detection. On both datasets, the batch size is set to 128 In addi-
tion, an embedding layer is used to convert each word in the sequence into a dense
vector in advance. The embedding layer follows the LSTM layer, a fully con-
nected layer with 256 units, an activation layer using ReLu function, a dropout
layer with a dropout rate of 0.1, a fully connected layer with 1 unit, and an
activation layer using sigmoid function.
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Fig. 5. LSTM classification model

The structure of LSTM is shown in Fig. 5, suppose the texts to sequences
processing approach is used, then the output integer sequence is fed to the LSTM
model. After embedding each token in the sequence into a 50-dimension word
vector x, it is then fed to the LSTM layer with 100 hidden units. Overall, the
output 100-dimension vector is processed through a 256 units fully connected
layer, a 256 units ReLu layer, a fully connected layer with 1 unit in turn, and
finally gets the predicted label through the sigmoid mapping.
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Abstract. Recently it has been recognized that many complex biological,
technological and social networks have a multilayer nature and can be described
by multilayer networks. Multilayer networks are formed by a set of nodes
connected by links having different connotations forming the different layers of
the multilayer. Illustrating the centrality of the nodes in a multilayer network is
an interesting task since the centrality of the node organically depends on the
importance associated to links of a certain type. Here we propose to assign to
each node of a multilayer network a centrality called Coupling Multiplex
PageRank that is a modification of the coupling given to every distinct pattern of
connections (multi-links) existent in the multilayer network between any two
nodes. Since multi-links differentiate all the possible ways where the links in
distinct layers can overlap, the Coupling Multiplex PageRank can describe the
coupling effects during the multi-links. Here we apply the Coupling Page Rank
to a multilayer artificial network and to a multiplex traffic network. Findings
indicate that considering the network with multilayers helps uncover the rank-
ings of nodes, which are different from the rankings in a monotonous network.

Keywords: Multilayer networks � Multiplex PageRank � Shunt

1 Introduction

Networks become more and more representative in complex systems [1–3]. Although
many achievements have been achieved in traditional network research, many
researches, expectation, interpretation and control of the dynamic fields of various
systems still remain to be studied, as traditional networks support limited representation
of complex systems. There are interdependent interconnections among various sys-
tems, which produce various interacting systems. Various types of interrelated nodes
comprise many complex systems of interaction that form multilayer networks [4–7].
Multilayer networks can be used to model large numbers of complex systems,
examples include financial [8, 9], ecological [10], information system [11], trans-
portation [12] and numerous other areas. The potential characteristics of multilayer
networks describe the complex systems more accurately than before, which has led to
the upsurge of research.
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Centrality has promoted the interest of sociologists for decades [13, 14]. Centrality
is usually used to measure the relative importance of nodes in the network, which is
important for identifying influential diffusers [15], engineering optima topologies for
network traffic congestion with local search [16], exploring efficient ways in which to
construct the network structure [17], identifying proteins crucial for the cell survival
[18], and other applications. Various methods are used to evaluate centrality, such as
Betweenness centrality [19], Degree centrality [20], Eigenvector centrality [21],
Closeness centrality [13], PageRank centrality [22], etc. In these methods, the
PageRank centrality may be the earliest and most frequently used measure, originally
running behind Google’s general search engine and then applied to a large number of
scenarios.

Recently, researchers are concerning about measuring the centrality of multiplex
networks. The Eigenvector multiplex centrality assumed that the centrality of nodes in a
layer is influenced by the centrality of other layers [23]. The Versatility of nodes
highlights the relevance of the related nodes in different layers and is applicable to
multilayer networks, in which the corresponding nodes in different layers are connected
through interconnections [24]. The Multiplex PageRank centrality utilizes the correla-
tion between node degrees in different layers by random walk of transmission [25–29].

In these centrality measures, the Versatility of nodes is the only measure of
interconnection, while both the Multiplex PageRank and the Eigenvector multiplex
centrality stipulate one-to-one links in the nodes of different levels, which will be called
inner links in the rest of the paper. The major problem when identifying a centrality of
the nodes in a multiplex network with inner links is that the centrality depends on the
relationship associated to the distinct types of connection that may exist between the
nodes in the same layer. However, as important as the impact of connections, the
influence of any two nodes in different layers depends on the coupling relationship in
the internal links. This paper intends to solve this problem by considering the coupling
relationship of a generalization of PageRank.

Adopting with the model of random-walk, PageRank is depicted as a random surfer
that constrained by two rules: the suffer skip to one of any nodes chosen within the
same probabilities; the suffer walk randomly to one of his or her neighbors. The time
for a random walker to pass a node is a measure of the importance of the node, and it
can also be identified by the assigned score. In order to extend the measurement of
PageRank center to an instance of multilayer networks, Multiplex PageRank is origi-
nally proposed in a double layer network composed of small world networks and fully
connected networks, in which the same users send instant messages and publish
information to a forum. In addition, it is assumed that the PageRank centrality of a node
in a layer may affect the node can be obtained in another layer, and Multiplex
PageRank obtains the affected centrality of the latter node [29]. However, the influence
of the latter node on the former leads to the feedback effect of the former on the latter,
and the latter is ignored. In order to identify the interactions between corresponding
nodes in different layers, we introduce coupling terms to illustrate their relationships.

Coupling is originally a physical concept. It describes the phenomenon that two or
more than two systems or motions interact through various interactions [30, 31]. The
coupling coefficient describes the degree of system or motion interaction. As a complex
system, there is a coupling relationship between nodes and connections in the network.
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The properties of distribution, amplification [30] and reduction [31] caused by couplers
and dividers in physical systems is also applicable to networks. Here, we propose a new
centrality measure called Coupling Multiplex PageRank, which takes the feedback
influence into account, collects the centrality of the corresponding nodes in different
layers, and distributes the total centrality back to each node according to the coupling
coefficient caused by the two specifications. In this way, we can surpass the influence
model in each layer.

The remainder of this paper is organized as follows. In Sect. 2 we briefly describe
the basic notation of PageRank and devote to, in detail, analysis the centrality of nodes
in multilayer networks in considering of the coupling effect. In Sect. 3, several
numerical computations are presented in this section. Finally, we summarize our
findings and some prospects in Sect. 4.

2 Discussion

In order to evaluate the importance of web pages, the PageRank si of a node i in a
network with N nodes is defined as Eq. (1) [22]:

siðtþ 1Þ ¼ a
XN

j¼1

Aji
sjðtÞ
hj

þð1� aÞ 1
N
; ð1Þ

where hj means the out-neighbors of j that meet hj ¼ maxð1; koutj Þ ¼ maxð1;P
N

r¼1
ArjÞ in

directed networks and hj ¼ maxð1; kjÞ in undirected networks. The node without any
neighbor is considered to be pointing at itself. In addition, Aji is an adjacency matrix. If
there is a connection from node j to node i, its element is equal to 1 and otherwise to 0,
and a is called the damping factor satisfying 0\a\1. PageRank can be interpreted as
a centrality contribution, and each node transfers its centrality to other nodes. A node j
uniformly transfers the a of its total centrality equally to the out-neighbors of j, while
the total scores of ð1� aÞ points to each node in the network averagely. The sorting
process starts at the same centrality of each node and continues to the steady state. The
PageRank of a node is associated with the other nodes pointing to it. Thus, the
PageRank of a node is predicted to vary as a function of the node’s in-degree. If nodes
in a network are assembled into classes relying on their expanded degrees
k = ðkin; koutÞ, the average PageRank for nodes’ class with k degree presents as:

xðkÞ ¼ a
kin

\kin [N
þ 1� a

N
; ð2Þ

where the symbol \. . .[ indicates the average over the N nodes of the network.
Contrasted with normal networks, nodes in multilayer networks can be connected

to each other through more than one type of link, thus providing a more detailed model
that can evaluate the location of the nodes. According to the various attributes of nodes,
each node can be divided into multiple subordinate nodes, which are regarded as
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corresponding nodes, such as in Fig. 1(a). The multilayer network in Fig. 1(a) is
converted to a single layer network, and the result is shown in Fig. 1(b). Figure 1
shows that the connectivity of nodes in multilayer networks is more obvious than that
of normal, because there are various types of relationships, especially overlapping
relations. Therefore, the generation of PageRank to the multilayer network will adopt a
novel way to measure the importance of nodes associated with their multiple interre-
lated connections. Therefore, new sorting of nodes can be obtained that can be easily
exported with nodes in a single-layer network.

Here, we define an extended and generalization PageRank measurement called
Coupling Multiplex PageRank centrality, which takes the effect of feedback into
account and can be applied to any multilayer network dataset. First, the basic symbols
used are introduced. In order to adapt to any network different from PageRank, we
define a multilayer network G ¼ ðG1;G2; . . .;GMÞ composed of M layers, each with N

nodes, and gðLÞij with L ¼ 1; 2; . . .;M represent the connection between node i and node
j in the L layer. It should be noted that in this definition, multilayer network include
only normal connections between each unrelated N node in the same layer, as well as
the internal links between each M corresponding node in the different layers.

This centrality measure depends on the set of parameters c and aL, which represents
the coupling and dividing coefficient, L means the number of layers. In multilayer
networks two irrelevance nodes may connect simultaneously in no less than two layers
that we nominate overlap connections in the above. The overlap connections of any
two irrelevance nodes exists a coupling amplifier or attenuator that can amplify or
reduce the contribution through by each connection with a coupling coefficient. In the
model of contributions of centralities, each node at each time step obtains its centrality
by accepting the contributions of its in-neighbors. The centrality of corresponding
nodes in different layers will aggregate to a comprehensive centrality by a coupling

Fig. 1. Example of how the multiplex offers more detailed model than the monotonous

50 X. Tu et al.



relation caused by the inner links between the corresponding nodes. The comprehen-
sive centrality subsequently assigns to the corresponding nodes by the coupling
coefficient aL. The redistributed centrality will then divide to its out-neighbors and
repeat the above process. Considering of the significance of this measure in physical
systems, we will adopt an urban multiplex traffic network that contains various
transportation to explicate the Coupling PageRank centrality measure.

Supposing a model of population migration in an urban multiplex traffic network
that in purpose to obtain the rankings of hub cities of transportation. An urban mul-
tiplex traffic network includes numerous ways of transportation that can be deemed as
several monotonous networks. To clarify our measure simply, we firstly consider the
urban multiplex traffic network to a double layer network including N nodes in each

layer that comprises of a flight network G1 including the status of each airline g
ð1Þ
ij and a

railway network G2 including the status of each railway gð2Þij , where i; j ¼ 1; 2; . . .;N
depicting the airports and train stations. A city contains a train station or an airport or
both the two is considered as a global node in our urban multiplex traffic network,
while the train station or airport in a city is regard as a local node, which will be called
node for short. In additional, we call the nodes coexisting in a global node corre-
sponding to each other and nominated as the corresponding nodes. A link between two
corresponding nodes is nominated as an inner link. It is important to note each node i
adopt one-to-one connection to i’s corresponding nodes in other layers that all belong
to the global node i. As we are aiming on obtaining the rankings of hub cities of
transportation, the train stations or airports in a same city can be deemed as one train
station or airport. The connections between irrelevant nodes in the same layer are
identified by the existence of railway or airline between cities. A directed link exists as
there is a railway or an airline from one city to another city. A coupler will occur when
a railway and an airline existing simultaneously, and impact the transmission ability of
the railway and the airline by a coupling coefficient c that meets the condition c[ 0.
The transmission ability amplifies as c[ 1 or reduces as 0\c\1, while c ¼ 1 rep-
resents a standard mode. For instance, a railway and an airline existing with the same
beginning point and ending point enrich the optional transmission ways that discount
the number of passengers in both the airline and railway to c times. Corresponding
nodes in different layers exist inner links that couple the centrality of the nodes to a
comprehensive centrality and redistributing the comprehensive centrality to these nodes
respectively by a distribute coefficient aL that meets 0\

P
L
aL\1. Thus, in our urban

multiplex traffic network model we record the association probability of airport net-
work as a1 and train station network as a2. Aiming on depicting our centrality measure
in a convenient way, we define the comprehensive Coupling Multiplex PageRank
centrality of each M corresponds nodes as Si, while the distributed centrality of the

node i in L layer expresses as sðLÞi . In the urban multiplex traffic network model, we

adopt the distributed centrality of an airport in city i as sð1Þi and a train station in city i as

sð2Þi . Therefore, the relation of a comprehensive centrality Si to each distributed cen-

trality sðLÞi presents as Eq. (3):
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ð3Þ
In which D is a modifying coefficient that will be illustrated later. The parameter t

represents the time step of a process that at here describe the coupling aggregation
occurring between each two corresponding nodes in different layers to be considered as
an inner interaction of the global node i that without occupying time step. A compre-
hensive centrality Si mixes the centrality of each node i in all layers, and then delivers
back to these nodes that will contribute to their out-neighbors in each layer at next time

step. Defining the redistributed centrality of a node i in network GL as ~sðLÞi , a dividing
process of the comprehensive centrality for each two corresponding nodes presents as
Eq. (4):

~sð1Þi ðtÞ ¼ a1Siðt)
~sð2Þi ðtÞ ¼ a2Siðt):

ð4Þ

It should be noted that the parameters a1 and a2 are the decompose coefficient that
meet the condition a1 � 0, a2 � 0 and a1 þ a2\1. The adjacent matrix of each
monotonous network of a multilayer network writes as GL, in which contains the

element of the linkage status record as gðLÞji that equal to 1 if there exists a link form
node j to node i, otherwise 0.

Refer to Eq. (1) we can discover that the PageRank centrality of a node distributes
to all the node’s out-neighbors at each step time by the method of average. The
Coupling Multiplex PageRank centrality measure, however, differ from the classical
PageRank centrality measure, can be described as a model of population migration that
the centrality of a node distributes to its out-neighbors with considering of overlap
connections. Assuming a single railway or a single airline that through from one city to
another city, Humans move by the monotonous way with a normal probability. Nev-
ertheless, the number of humans who travel by the existed single mode of trans-
portation will reduce when the second mode occurs, for the increasing of optional way,
which is reflected by c. An opposite instance refers to virus spreading model that the
transmission ability may increase when two or more than two transmission ways
coexist. Depending on these views, we define a distributed Coupling Multiplex
PageRank centrality of a node i in an airport network G1 presents in Eq. (5):

sð1Þi ðtþ 1Þ ¼
X

j

gð1Þji cg
ð2Þ
ji
~sð1Þj ðtÞ
Hð1Þ

j

; ð5Þ

where Hð1Þ
j ¼ P

r
gð1Þjr cg

ð2Þ
jr þ dð0;P

r
gð1Þjr cg

ð2Þ
jr Þ, dðx; yÞ is the Kronecker delta which equals

to one as x ¼ y and zero as x 6¼ y that exploited to control a node j without any out-
neighbor delivers j’s contribution to itself. This equation refers to the contribution to the
centrality of node i in network G1. Like with the classical PageRank measure, this
contribution is inversely proportional to the out-degree of the in-neighbors of node i.
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However, unlike the classical measure, Eq. (5) enable this contribution to be also
impacted by the process of transmission by the link that both from node j to node i in
network G1 have in network G2, and also affected by the centrality of node i with its in-
neighbors in network G1. This interaction between the two networks has a two-fold
influence on the centrality of a node. Firstly, a link from node j to node i in network G1

amplifies or reduces with a parameter c if the link from node j to node i in network G2

exists. The distributed centrality for node i depends on the in-neighbors of i that
amplifies or reduces with the c. Secondly, the contribution of each in-neighbor j to i’s
centrality is discounted by dividing j’s centrality by the number of j’s out-neighbors in
network G1. Similarly, a distributed centrality of a train station node i in a directed train
station network G2 can present as Eq. (6):

sð2Þi ðtþ 1Þ ¼
X

j

gð2Þji cg
ð1Þ
ji
~sð2Þj ðtÞ
Hð2Þ

j

; ð6Þ

where Hð2Þ
j ¼ P

r
gð2Þjr cg

ð1Þ
jr þ dð0;P

r
gð2Þjr cg

ð1Þ
jr Þ. This equation refers to the contribution to

the centrality of a node i in network G2 and the link from i’s in-neighbors to i in
network G2.

Equations (5, 6) can describe as a process of population migrate from a city to its
out-neighbors in an airport or a train station network with uncertain probabilities that
associate with the links from the city to its out-neighbors in another network. This
process, which is distinct from the inner process of a global node, occurs between
irrelevant nodes in same layers that occupies a time step and obtains the centrality of a
node in each layer at time step ðtþ 1Þ. The centrality of the node in each layer then
continue to aggregate at time step ðtþ 1Þ. To acquire the rankings of the compre-
hensive centralities of nodes in an urban multiplex traffic network, we refine Eq. (3) to
Eq. (7) presents as:

Siðtþ 1Þ ¼
X

j

gð1Þji cg
ð2Þ
ji
a1SjðtÞ
Hð1Þ

j

þ
X

j

gð2Þji cg
ð1Þ
ji
a2SjðtÞ
Hð2Þ

j

þð1� a1 � a2Þvi; ð7Þ

where Hð1Þ
j ¼ P

r
gð1Þjr cg

ð2Þ
jr þ dð0;P

r
gð1Þjr cg

ð2Þ
jr Þ, and Hð2Þ

j ¼ P
r
gð2Þjr cg

ð1Þ
jr þ dð0;P

r
gð2Þjr cg

ð1Þ
jr Þ.

The first term in Eq. (7) describes the number of passengers who tend to move by an
airplane. It concerns with the contribution to node i’s centrality that delivered from the
centrality of the nodes pointing to i in network G1. This contribution associate with the
out-degree of node i’s in-neighbors in network G1 that also affected by the links from
i’s in-neighbors to i in network G1 have in network G2. Each i’s in-neighbor j in

network G1 is assigned a1 of the comprehensive centrality Sj and divide into Hð1Þ
j parts

that will deliver to all of j’s out-neighbors in network G1. The contribution from j to i in

network G1 accounts for gð1Þji cg
ð2Þ
ji of Hð1Þ

j parts. The status of a link from j to i in

network G1 expresses as gð1Þji that identifies if j is i’s in-neighbor or not and will be
retained or discarded. The contribution from j to i equals to zero if the link from j to i
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without existing in network G1. Otherwise, the contribution occupies a standard part if
the link from j to i is non-exist in network G2, or occupies a part modified by a coupling
coefficient c if the link from j to i exists in G2. In other words, the contributions from
node i’s in-neighbors to i in network G1 concern with the link from i’s in-neighbors to i
in network G2.

The second term is similar with the first term that describe the number of pas-
sengers who tend to move by a train. Each node i’s in-neighbor j in network G2 is

assigned a2 of the comprehensive centrality Sj that divide into Hð2Þ
j parts and deliver

proportionally to j’s out-neighbors in network G2. The contribution from j to i in
network G2 similarly associates with the link from j to i in network G1. This contri-
bution tend to be zero as if the link from j to i is deficient in network G2, otherwise
accounts for a portion of j’s entire contribution. The entire contribution of j in network

G2 divides into Hð2Þ
j parts that one of these parts will be delivered to i if the link from j

to i without existing in network G1, or one of the parts changing with c will be
delivered to i if the link from j to i exists in network G1.

The third term nominated the modifying coefficient that describe as the people who
reluctant to migrate and incline to stay back. According to the above, a global node j
distributes a1 of the comprehensive centrality Sj to the node j in network G1 and a2 of
Sj to the node j in network G2. It can describe as the passengers originally from a city
migrate randomly in a multiplex network that a1 of them prefer migrating by air, and a2
of them prefer migrating by train. Simultaneously, the people accounting for ð1�
a1 � a2Þ decline to migrate and tend to stay back with a personalized element vi
belonging to a personalized vector V ¼ ðv1; v2; . . .; vNÞ in which contains the average
interestingness of staying back in each city for majority people and meets

P
i
vi ¼ 1.

As a result, we can obtain the rankings of the comprehensive centrality of global
nodes i by Si, and the centrality of nodes i with considering of feedback influence in

each layer L by sðLÞi . The only thing should be noted is the nodes in each layer of a
multilayer network adopt one-to-one connect. For instance, if there exists a train station
in our urban multiplex traffic network without an airport in the same city, it should be
represented by a virtual node that dangling in the airport network.

3 Simulations

To testify the validity of our method, we generated a duplex network that consists of
network G1 and network G2. Both the two layers were considered as a BA network,
constructed primarily by a fully connected network of m nodes that introducing a new
node with m0 links to the existed nodes until there are totally N nodes. We adopted
m ¼ 20, m0 ¼ 12 and N ¼ 2000 in G1, while m ¼ 30, m0 ¼ 15 and N ¼ 2000 in G2

and then obtained the duplex network. Imposing the original centrality of each node i
as Si t ¼ 0ð Þ ¼ 1

N, the coupling distribution coefficient c ¼ 0:2, a1¼ 0:5, a2¼ 0:35, and
the personalized vector of each node i as vi ¼ 1

N. The distribution of Multiplex
PageRank S on in-degree is shown in Fig. 2. Furthermore, the data of our Multiplex
PageRank comparing with the classical PageRank on the monotonous network
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converted from the multiplex network by combined the overlapped edges is shown in
Fig. 3. For large values of PageRank, the Multiplex PageRank is larger than the
monotonous PageRank that due to the position of nodes in both the two layers and the
role of each layer. A node which is important in both two layers positively possesses a
large value of PageRank, while the values of nodes with high importance in only one
layer is similarly rely on other factors.

Fig. 2. Results of Multiplex PageRank in a artificial double-layer network, i is the number of
rankings of nodes, while S depicts the centrality of the node, both of the two layers are BA
networks.

Fig. 3. Coupling Multiplex PageRank Sc versus Monotonous PageRank Sm in Artificial
Network
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To testify the validity of our method, we adopt the real Air-Train network [32]. The
multilayer networks data will be combined to classical single-layer networks. The
comparison of the data of the multilayer networks and the corresponding classical
networks will show. For the multilayer networks, the original centrality of each node i
is set as Si t ¼ 0ð Þ ¼ 1

N, the coupling distribution coefficients as c ¼ 0:2, a1¼ 0:5,
a2¼ 0:35, and the personalized vector of each node i as vi ¼ 1

N. For the corresponding
classical networks, the original centrality of each node i is also set as Si t ¼ 0ð Þ ¼ 1

N, and
the damping factor as a ¼ 0:85. A comparison of the Multiplex PageRank and the
classical PageRank of Air-Train network is shown in Fig. 4. This figure reveals the
centrality difference between the multilayer network and the single-layer network. For
large values of PageRank, the Coupling Multiplex PageRank is smaller than the single-
layer PageRank due to the positions of nodes in both layers and the role of each layer.
A node that is important in both layers corresponds to a large value of PageRank, while
the values of nodes with high importance in only one layer depend on other factors.

4 Conclusions

In conclusion we have proposed here to study the Coupling Multiplex PageRank for
characterizing the centrality of nodes in multilayer networks. This measure associates
to a node a function called its coupling that is able to capture the role of the different
type of connections in determining the node centrality. Two generic nodes of a mul-
tilayer network can have distinct positions leading to their success, and here we pro-
pose a way to characterize their coupling. From this measure we can extract a
comprehensive Multiplex PageRank which provides a comprehensive rank between the
nodes of the multiplex. We have applied this measure to an artificial multiplex

Fig. 4. Coupling Multiplex PageRank Sc versus Monotonous PageRank Sm in real Air-Train
Network
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networks, and to airport multilayer networks. The Coupling Multiplex PageRank can
be efficiently measured on duplex multiplex networks, and when suitably simplified, it
can be applied to multiplex networks with arbitrary number of layers M.
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Abstract. System logs which trace system states and record valuable
events comprise a significant component of any computer system in our
daily life. There exist abundant information (i.e., normal and abnormal
instances) involved in logs which assist administrators in diagnosing and
maintaining the operation of the system. If diverse and complex anoma-
lies (i.e., bugs and failures) cannot be detected and eliminated efficiently,
the running workflows and transactions, even the system, would break
down. Therefore, anomaly detection has become increasingly significant
and attracted a lot of research attention. However, current approaches
concentrate on the anomaly detection in a high-level granularity of logs
(i.e., session) instead of detecting log-level anomalies which weakens the
efficiency of responding anomalies and the diagnosis of system failures.
To overcome the limitation, we propose a sequence-based generative
adversarial network for anomaly detection based on system logs named
LogGAN which detects log-level anomalies based on the patterns (i.e.,
the combination of latest logs). In addition, the generative adversarial
network-based model relieves the effect of imbalance between normal and
abnormal instances to improve the performance of capturing anomalies.
To evaluate LogGAN, we conduct extensive experiments on two real-
world datasets, and the experimental results show the effectiveness of
our proposed approach to log-level anomaly detection.

Keywords: Anomaly detection · Generative adversarial network ·
Log-level anomaly · Negative sampling

1 Introduction

Anomaly detection is an important task in protecting our daily life from those
intended or unintended malicious attacks such as the network intrusion, mobile
fraud, industrial damage, and abnormal condition of system [3]. However, with
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the rapid development of computer science, systems and applications become
increasingly complex which makes anomalies diverse and non-trivial to be
detected even by human beings. Except for the intended malicious attacks,
unknown bugs and errors which are seemingly controllable but caused by non-
artificial reason in online systems damage the secure and reliable operating envi-
ronment. Therefore, the effectiveness and efficiency of anomaly detection have
become a big challenge for the further development of information-based society.

Currently, the automated generation of logs is an indispensable component
of any large scale system. System logs trace every status of the system and
record each critical event in detail to assist administrators in diagnosing bugs,
failures, and errors of systems. Therefore, the density of arrival logs and the
description of logs directly determine the value of the quantity of knowledge for
improving the performance of running systems [9,15]. For example, if arrival
logs are extremely dense, it is a challenge to analyze the dependency between
events due to the concurrency of logs. Likewise, if the description of logs is col-
loquial and obscure to represent the state of a system, it is non-trivial to trace
the workflows. Figure 1 illustrates the arrival frequency of system logs in prac-
tical scenarios, where Fig. 1a shows the logs generated by 203 nodes during 2
days in HDFS and Fig. 1b illustrates the logs generated by 1 node during 215
days in BlusGene/L. Observed from Fig. 1, the peak frequency of arrival logs
is 198,878/min and 152,929/hour for HDFS and BGL, respectively. In addition,
the number of normal instances is much more than that of anomalies, and gen-
erally, anomalies are unlabeled. Therefore, such an extremely frequent arrive of
unlabeled logs results in a significant challenge to the prompt response and the
precise diagnosis.

Fig. 1. Arrival frequency of system logs in the real-world datasets

To overcome the challenges mentioned above, researchers take a lot of efforts
on the anomaly detection based on system logs. The proposed approaches
are mainly categorized into the supervised, semi-supervised, and unsupervised
strategy based on the availability of labeled data (i.e., normal and abnormal
instances). Most of these approaches have good performance in detecting anoma-
lies based on diverse system logs. However, there exist two problems in restricting
the further development of system diagnosis [1,11–13]. First, these approaches
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detect session-level anomalies where a session contains many logs and is divided
base on some rules (e.g., period, transaction, and node). In other words, the
session including abnormal logs will be detected, however, the abnormal logs
cannot be located in the session. Therefore, administrators need to diagnose
the workflows in the session which is a non-trivial task. Second, the anomaly
is not alerted until the logs are traversed in the session. In other words, the
anomaly cannot be detected and responded efficiently when the abnormal log is
appearing. This two problems significantly limit the effectiveness and efficiency
of system diagnosis.

In this paper, we cast the task of anomaly detection as a pattern-based
sequential prediction and propose an LSTM-based generative adversarial net-
work to distinguishing upcoming abnormal events named LogGAN based on
temporal system logs. First, we exploit a customized log parser to extracting the
structured information (i.e., timestamps, signature, and parameters) and trans-
forming each log into an event. Second, the combinations of events (i.e., pattern)
and the corresponding upcoming event are collected from temporal system logs
using the sliding window. The collected pairs of patterns and events are utilized
to construct real training dataset. LogGAN consists of two major components:
(1) generator and (2) discriminator. The generator tries to capture the distri-
bution of real training dataset and synthesizes plausible instances (i.e., normal
and abnormal data), while the discriminator aims to distinguish the fake ones
from the dataset which is built using the real and synthetic data. Finally, the
fully-trained generator is applied to detect whether the upcoming log is nor-
mal or abnormal based on the latest events. According to the game setting of
anomaly detection, the problem of the imbalance between normal and abnormal
instances can be relieved by generating ‘real’ anomalies to supply the real anoma-
lies in the training set. In addition, the LSTM-based generator identifies whether
each upcoming log is normal or abnormal, which efficiently responds alerts of
anomalies and effectively assists administrators to diagnose workflows, instead
of detecting abnormal sessions including anomalies. To the best our knowledge,
this is the first attempt to apply a game setting (i.e., adversarial learning) for the
anomaly detection based on system logs. Our contribution can be summarized
as below:

– A generative adversarial network is proposed to relieve the problem of imbal-
ance between normal and abnormal instances while improving the perfor-
mance of anomaly detection.

– An LSTM-based detector promotes the efficiency of responding anomalies
and marks anomalies of logs instead of detecting session-level anomalies.

– Extensive experiments are conducted to evaluate the effectiveness of LogGAN
based on two real-world datasets.

2 Related Work

Generally, the techniques of anomaly detection (i.e., outlier detection) are cat-
egorized as supervised, semi-supervised, and unsupervised anomaly detections.
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In this section, we will briefly introduce some popular anomaly detections in
each category of techniques.

2.1 Supervised Anomaly Detection

Supervised anomaly detections operate under two general assumptions: (1) the
labels of normal and abnormal instances are available; (2) the normal and abnor-
mal instances are distinguishable given the feature space. Chen et al. proposed a
decision tree-based approach to detecting the actual failures from large Internet
sites (i.e., eBay) based on the temporal request traces [5]. The decision trees
simultaneously handle the varying types of runtime properties (i.e., continuous
and discrete variables). Therefore, the proposed approach was widely used in
many practical scenarios. Bodik et al. proposed a fingerprint (i.e., vector) to
effectively demonstrate the performance state of systems and implemented a
regularized logistic regression-based method for selecting the relevant metrics to
build the appropriate fingerprints [1]. The anomalies can be precisely identified
using the fingerprints which summarize the properties of the whole data center
(e.g., CPU utilization). Liang et al. employed several classifiers (e.g., SVM and
nearest neighbor) to detecting the failures in the massive event logs which were
collected from the supercomputer IBM BlueGene/L [10]. Similar to Bodik et al.,
they also derived the specific combination of features to effectively describe each
event log for improving the performance of classification tasks, which demon-
strates that the representation of normal and abnormal logs is significant. The
supervised methods have a quick test phase for the online detections, how-
ever, the extreme dependency on the quality of labels limits the application
scenarios [18].

2.2 Semi-supervised Anomaly Detection

The semi-supervised anomaly detection operates under the assumption: given
the feature space, the normal samples are located closely while the anomalies
are far from the clusters of normal ones [3]. The representative of the semi-
supervised model is the nearest neighbor-based techniques which can be cat-
egorized as (1) distance-based neighbors, and (2) density-based neighbors. To
address the problem of the high-dimensional feature space, Zhang et al. proposed
a High-Dimension Outlying subspace Detection (HighDOD) to searching for the
optimal subset of features to represent outliers [20]. Due to the subset of features
(i.e., low-dimensional data), the Euclidean distance is capable of describing the
actual distance between normal and abnormal instances. Besides distance-based
approaches, the density-based method is also useful to distinguish anomalies. To
improve Local Outlier Factor (i.e., a type of popular measure to calculating the
density given the instance), Chawla et al. proposed a new measure called Spatial
Local Outlier Measure (SLOM) [4,14]. Du et al. proposed LSTM-based anomaly
detection and diagnosis framework named DeepLog based on unstructured sys-
tem logs [6]. DeepLog analyzes and detects anomalies using the log key and the
parameter value vector to help administrators for diagnosing the system errors
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based on workflows. DeepLog is trained based on the normal patterns in sys-
tem logs and provides a way to be incrementally updated using upcoming logs;
therefore, DeepLog is categorized as semi-supervised anomaly detection. Tuor
et al. also proposed a recurrent neural network-based approach to detecting
abnormal instances where the proposed model considered system logs as sen-
tences in language models [16]. Compared to the supervised anomaly detections,
semi-supervised techniques do not extremely rely on the labeled data and the
distribution of observed instances and outperform the unsupervised approaches
generally. However, the selection of measuring distance is significant for the per-
formance of semi-supervised anomaly detections.

2.3 Unsupervised Anomaly Detection

The unsupervised technique is the most popular approach in the domain of
anomaly detection because this technique still works even if the label of data is
unknown. This characteristic of the unsupervised technique satisfies the assump-
tion that anomalies are generally rare and unknown in practical scenarios. Lin
et al. proposed a cluster-based approach (i.e., LogCluster) to addressing the log-
based anomalies detection problem based on the data from Microsoft service
product teams [11]. LogCluster aims to cluster the historical and upcoming logs
using the knowledge base, and engineers only need to distinguish several logs (i.e.,
events) in each cluster that can identify the type of anomalies which is located
in the same cluster. Therefore, it is not necessary to obtain the label of logs, and
the similarity between logs is more essential to operate LogCluster. Lou et al.
proposed a novel anomaly detection approach to identifying program invariants
based on the unstructured console logs [13]. The proposed approach concen-
trates on structuring the free form description in console logs and mining the
meaningful anomalies after grouping the structured logs with parameters. Differ-
ent from the traditional anomaly detections which construct models fitting nor-
mal instances and distinguish instances that do not conform to the constructed
model, Liu et al. proposed a novel concept that explicitly isolates abnormal
instances [12]. The proposed isolation forest (iForest) is capable of addressing
the high-dimensional problems using an attribute selector (i.e., the characteristic
of the decision tree). In addition, iForest achieves good performance even if there
are no anomalies occurred in the training set. Xu et al. proposed a PCA-based
anomaly detection and visualized the promising results using a decision tree [19].
The main contribution of this work is that the source code is considered as a
reference to parse console logs for improving the quality of structured data and
the quality data will improve the representation of console logs (i.e., extracted
distinguishable features). The advantage of unsupervised techniques is that the
approaches are independent with the label information of the training set. The
disadvantage of unsupervised techniques is that expert knowledge is still needed
to utilize unsupervised approaches for detecting anomalies in practical scenarios,
although the techniques reduce the massive workloads.
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3 Method

In this paper, we propose a generative adversarial network-based anomaly detec-
tion approach named LogGAN which improves the performance of identifying
anomalies in an adversarial setting. Figure 2 illustrates the overview of LogGAN.
The main modules of LogGAN are categorized into three parts:

Fig. 2. The framework of anomaly detection generative adversarial network

– Log Parser: is the module to parsing unstructured logs into structured logs (or
events) which are considered as the minimum units for the following machine
learning-based techniques.

– Adversarial Learning: is the module to training the LSTM-based anomaly
detection model based on the timestamps, signatures, and attributes
extracted from structured log.

– Anomaly Detection: is the module to detecting and diagnosing anomalies
using the LSTM-based model and incrementally update the model based on
the upcoming logs and users’ feedbacks.

In the following parts of this section, we will introduce each part of LogGAN in
detail.

3.1 Log Parser

In the module of log parser, the original unstructured logs are converted into the
structured logs. The log parsing, which is considered as the common preprocess-
ing of unstructured logs, is the significant part in the majority of log analysis
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tasks. Many approaches were proposed to generate events, which are extracted
and summarized based on raw logs, for automated performance analysis of sys-
tem [8,15]. These template-free methods are capable of parsing logs using statis-
tical approaches. However, the performance of these methods is not convincing,
because the formations of logs from different systems are chaotic and that is
nontrivial to be captured. Therefore, in this paper, we first divide the unstruc-
tured logs into several parts (e.g., datetime and content) using the corresponding
template, then further extract meaningful information (i.e., event) from these
parts [21]. Generally, the event consists of three major components: (1) times-
tamps, (2) signature and (3) parameters. To make readers fully understand the
process of log parser, Fig. 3 illustrates the examples of parsing unstructured logs
from two real-world systems (i.e., HDFS and BlusGene/L), respectively.

Fig. 3. Example of log parser to converting from logs to structured entities

Note that, HDFS and BlusGene/L are different in the system structures and
workflows, hence the parsed structures from the first step are also different.
Observed from Fig. 3a, the timestamps, signature, and parameters are extracted
exactly where the signature is a static content that presents a type of logs and
the parameters record dynamic parts in each log. The three-tuple representation
(i.e., timestamps, signature, and parameters) effectively describes the status of
each event which provides administrators with sufficient references to diagnose
the broken-down system.

3.2 Adversarial Learning

In this paper, we cast the task of anomaly detection as a set of adversarial learn-
ing and propose an LSTM-base generative adversarial network named LogGAN
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to improve the performance of identifying anomalies. The concept of the gen-
erative adversarial network (GAN) was proposed by Goodfellow et al. where
GAN considers a machine learning problem as a game between two models (i.e.,
generator and discriminator) [7]. The generator (G) captures the distribution of
real samples and generates plausible samples which are similar with real sam-
ples in the representation of features, while the discriminator (D) tries to identify
whether the upcoming sample is real or synthetic one for improving the quality of
samples generated by G. The iteration repeats until both G and D converge, then
G is capable of generating ‘real’ samples. This game setting of machine learning
exactly addresses a significant problem in anomaly detection: the overwhelming
ratio of normal and abnormal instances. The fully-trained G can capture the
distribution of anomalies which further improves the performance of detecting
whether the upcoming log is normal or abnormal.

The original GAN, which is utilized to generate continuous variables of
images, do not match the scenario of predicting discrete event ID (i.e., sig-
nature) [7]. Therefore, we propose LogGAN to independently generate the con-
tinuous probability of each upcoming event instead of using the softmax layer
to output the probability distribution of overall events [2,17]. In details, given
an observed set of temporal events S = {e(1), e(2), ..., e(s)} from parsed sys-
tem logs and a set of event E = {e1, e2, ..., em} where ej presents a signa-
ture of the jth event, the task of LogGAN is to predict whether the upcom-
ing event (i.e., log) is normal or abnormal based on the context combinations
from the set C = {c1, c2, ..., cn} where ci demonstrates the ith combination
(e(k−2), e(k−1), e(k)) within a 3-size sliding window. As a game setting, we exploit
Long Short Term Memory network (LSTM) for both G and D where G aims to
generate fake normal and abnormal instances and D tries to distinguish whether
the instance is real or fake. For G, we utilize a random noise z and a combi-
nation ci as the input of LSTM1 while the output is an m−dimensional vector
representing the independent occurring probability of each event in E. For D,
we utilize a combination ci as the input and an m−dimensional vector of the
independent occurring probability as the parameter2 of LSTM while the output
is whether the m−dimensional vector is real or fake sample under the contex-
tual combination ci. Therefore, the objective function of G and D is defined as
follows, respectively:

JG = min
θ

n∑

i=1

(Eê∼Pθ
[log(1 − D(ê|c))] +

m∑

j=1

(êj − ej)2)

= min
θ

n∑

i=1

(log(1 − D(êci
|ci)) +

1
m

m∑

j=1

( ˆecij − ecij)
2)),

(1)

1 Learned event embedding is used to demonstrate each event.
2 In D, we cast the combination ci as the input of LSTM and LSTM directly

outputs the hidden layer without any manipulation. Then, we concatenate the
m−dimensional vector with the hidden layer as an input of a two-layer full Con-
nected neural network which outputs whether the m−dimensional vector is real or
fake as a binary classification.
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JD = min
φ

−
n∑

i=1

(Ee∼Ptrue
[log D(e|c)] + Eê∼Pθ

[log(1 − D(ê|c))])

= min
φ

−
n∑

i=1

(log D(eci
|ci) + log(1 − D(êci

|ci))),
(2)

where θ and φ is the parameter of G and D, respectively. Note that, êci
= e′

ci
�oci

is an m−dimensional vector representing the independent occurring probability
of each event in E (i.e., input of D), where e′

ci
is the output of G and � is

the element-wise mask multiplication. oci
, which is an m−dimensional observed

vector (i.e., ocij stands for the observation of ej where oj ∈ {1, 0} represents
whether ej is an upcoming event next to ci or not), is used to filter the occurring
probability of unobserved events in e′

ci
. This setting assists LogGAN to only

update the gradients based on the loss of observed events (i.e., both normal and
abnormal instances) and avoid the disturbance generated by the unobserved one.
In addition, during the process of updating G, we apply a reconstruction error
(i.e.,

∑m
j=1( ˆecij−ecij)

2) to help G capture the actual distribution of training data
for further improving the performance. Algorithm 1 shows the overall algorithm
of LogGAN in detail.

Algorithm 1. The algorithm of LogGAN
Input:

Gθ: the generator G,
Dφ: the discriminator D,
B: the size of minibatch,
N : the number of maximum iteration.

Output:
Gθ∗ : converged generator G.

1: Initialize Gθ and Dφ with random weights θ and φ.
2: Set t ← 0
3: repeat
4: for G-steps do
5: Sample B combinations of events as a minibatch MG

6: Generate corresponding fake instances using generator Gθ and train Gθ

7: Update Gθ by θ∗ ← θ − 1
B

�θJ
G

8: end for
9: for D-steps do

10: Sample B combinations of events as a minibatch MD

11: Generate corresponding fake instances using generator Gθ

12: Combine the generated instances with sampled real instances and train Dφ

13: Update Dφ by φ∗ ← φ − 1
B

�φJD

14: end for
15: Update t ← t + 1
16: until LogGAN converges OR t >= N
17: return Gθ∗ .

Negative Sampling: In practical scenarios, given a combination of events, the
possible upcoming events are sparse. In other words, the real event vector (i.e.,
eci

) is more like a one-hot or multi-hot encoding vector which causes the over-
fitting problem. Therefore, we exploit a negative sampling strategy to avoid the
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overfitting problem [2]. During the G-steps, we randomly sample the unobserved
instances according to a specific ratio and set the corresponding position of mask
oci

as 1 for retaining the gradients.

3.3 Anomaly Detection

After completing the training LogGAN, generator G is applied to detect anoma-
lies based on the streaming events from system logs. During the stage of anomaly
detection: (1) the historical and upcoming system logs are transformed into
structured data (i.e., event) via the log parser; (2) the input of G is the com-
bination of several latest events (i.e., several one-hot encoding vectors) and G
generates a corresponding m−dimensional vector representing the independent
occurring probability of each event; (3) a set of normal events is built based
on the generated m−dimensional vector filtered using a predefined threshold
of normal probability in the step 2; (4) the upcoming event is considered as a
normal instance if the event has an intersection with the set of normal events,
otherwise, the event will be alerted as an anomaly.

4 Experiment

In this section, we propose the experiments to evaluate the effectiveness of Log-
GAN on two real-world datasets, and mainly concentrate on the following issues:

– Parameter: We analyze the effect of different parameters on the performance
of LogGAN.

– Session-level Anomaly Detection: The performance of LogGAN on the task
of session-level anomaly detection is compared to that of baselines.

– Log-level Anomaly Detection: The performance of LogGAN on the task of
log-level anomaly detection is compared to the performance of DeepLog.

4.1 Experimental Setup

Datasets: Generally, up-to-date system logs are rarely published and are sensitive
data that describe the detailed information (i.e., business and transaction) about
the deployed large scale system, however, the data collected from own small scale
system hardly show the actual anomalies in practical scenarios. Therefore, we
exploit two real-world datasets (i.e., HDFD and BGL) collected several years
ago which is published for research [21]. HDFS is collected from Amazon EC2
platform where 11,197,705 system logs are divided into 575,139 sessions and
generated by 203 nodes during two days while BGL contains 4,747,963 logs
collected from the BlueGene/L supercomputer system during 215 days. The
detailed information of datasets is shown in Table 1.

Baselines: In the experiments, to evaluate the performance of our proposed
approach, we compare LogGAN with several selected baselines:
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Table 1. The overview of two real-world datasets

System Start date Days Size (GB) Rate (log/sec) Messages Alerts Signatures

HDFS 2008-11-09 2 1.490G 64.802 11,197,705 16,916/575,139 29

BGL 2005-06-03 215 0.708G 0.256 4,747,963 348,698 394

– iForest [12]: is an unsupervised tree-based isolation forest which tries to isolate
anomalies from other normal instances, especially for the imbalanced training
set.

– PCA [19]: is an unsupervised principal component analysis-based anomaly
detection technique which improves the parser of unstructured systems and
visualizes the promising diagnosis of abnormal instances.

– Invariants Mining [13]: is an unsupervised anomaly detection technique
applied to build the structured logs based on the unstructured description
in console logs.

– LogCluster [11]: is an unsupervised cluster-based approach to clustering
events extracted from the historical and upcoming logs based on the knowl-
edge base.

– DeepLog [6]: is a supervised LSTM-based deep learning framework which
utilizes LSTM to fit the distribution of normal instances using the log key
and the performance value vector extracted from each log.

In the experiments, we exploit the first 30% of dataset as the training set
while the remaining data as the test set based on time series. In addition, we
will briefly introduce the key parameters of LogGAN for the reproduction of our
model. The size of sliding window determines the capacity of contextual events
to the upcoming log. The larger size demonstrates the more specific contextual
patterns are used to identify anomalies while the smaller size means upcoming
anomalies are determined by the latest events (i.e., the more regular contextual
patterns). The event embedding is used to represent events in the continuous
space. In this paper, we utilize the 3-size sliding window to extracting contex-
tual pattern of upcoming logs. To distinguish normal and abnormal events from
the output of generator (i.e., an m−dimensional vector), we define a threshold
to filtering normal logs. When the occurring probability of a event is below the
predefined threshold, the event is considered as an anomaly based on the con-
textual pattern. In addition, we define the threshold as 0.90 which means the
upcoming log is normal if the appearing probability of the log is 90% based on
the output of generator. The ratio of negative sampling is set as 0.1. The 2-layer
LSTM is applied as the basic model of generator and discriminator in LogGAN.
The dimension of event embedding is set as 200. To keep the correspondence
with DeepLog, in the experiments, we define the accurate identification of true
anomalies as the true positive. Therefore, the metrics (e.g., precision and recall)
demonstrate the performance of detecting anomalies.
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4.2 Result and Discussion

Parameters: Figure 4 illustrates the performance of LogGAN within different
settings of parameters including the size of sliding window, the threshold to fil-
tering normal logs, and the layer of LSTM. In this section, we concentrate on
the task of log-level anomaly detection. First, Fig. 4a shows the performance
(i.e., Precision, Recall, and F1-measure) of LogGAN on different sizes of sliding
window (i.e., size 1 to 5). Observed from Fig. 4a, abnormal logs are correlated
with the appropriate context of events (i.e., 3-size sliding window). Neither the
concurrence of pair-wise events (i.e., 1-size sliding window) nor the extremely
specific contextual pattern (i.e., 5-size sliding window) is beneficial to identity
log-level anomalies. Second, Fig. 4b illustrates the performance on different set-
tings of threshold to filtering normal logs. Note that, LogGAN has the similar
performance on the threshold from 0.90 to 0.30 while the performance becomes
worse when the threshold is 0.10. In other word, the appearing probability of
normal and abnormal logs largely depends on whether the combination of con-
textual events and logs occurs in the training set. Finally, Fig. 4c shows the
performance of LogGAN using different layers of LSTM in the generator and
discriminator. The experimental results demonstrate that appropriately using
deep features (i.e., 2-layer LSTM) is capable of improving the performance of
detecting anomalies.

Fig. 4. The performance of LogGAN within different settings of parameters
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Fig. 5. The comparison between DeepLog and LogGAN on log-level anomaly detection

Log-level Anomaly Detection: Figure 5 illustrates the comparison between
DeepLog and LogGAN on the log-level anomaly detection on BGL. The char-
acteristic of DeepLog is to utilize feedbacks (i.e., false positive samples) from
administrators to update the model incrementally. In other words, DeepLog
aims to learn the whole normal instances including the upcoming ones to detect
anomalies without considering the correlation between normal and abnormal
logs. Any method, which has the strategy of incremental learning, has the bene-
fit of this setting including LogGAN. In this experiment, we concern more about
the generalization ability of model based on the limited training set. Observed
from Fig. 5, LogGAN outperforms DeepLog on the task of anomaly detection
based on the same size of training set (i.e., 30%). However, the overall per-
formance of DeepLog and LogGAN is not satisfactory. To further improve the
performance of anomaly detection, we need to extract more meaningful feature
from logs instead of only using the sequential information.

Table 2. The comparison between baselines and LogGAN on session-level anomaly
detection on HDFS

Method Recall Precision F1-score

Invariants miner 1.000 0.084 0.154
PCA 0.346 0.707 0.465
DeepLog 0.016 0.939 0.032
iForest 0.318 1.000 0.482
LogClustering 0.362 1.000 0.532

LogGAN-sess 0.356 1.000 0.525

Session-level Anomaly Detection: Table 2 shows the performance of baselines
and LogGAN on HDFS dataset. Different from the version of LogGAN used in
the log-level anomaly detection, we propose a session-level version of LogGAN
(LogGAN-sess) in the session-level task. The generator of LogGAN-sess aims to
match a 30−dimensional vector where the first 29 dimensions record the num-
ber of corresponding events appeared in the current session, and the last one
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represents the abnormal score instead of fitting an m−dimensional vector. The
experimental results show that LogGAN-sess outperform other baselines except
for LogClustering. The limitation of current LogGAN-sess is the model only
exploits the statistics of independent event that occurred in the session. How-
ever, the traditional anomaly detection methods concentrate on the concurrence
of several events in the temporal sequence. In addition, the structure of work-
flows is also significant information which describes the normal and integrated
transactions in the system. Therefore, the performance of LogGAN-sess could be
further improved using the statistics of specific patterns (i.e., the combination
of temporal logs).

5 Conclusion

To overcome the limitation of diagnosing log-level anomaly detection, in this
paper, we propose a sequence-based generative adversarial network to detecting
abnormal events among system logs named LogGAN. In practical scenarios, we
consider that the occurring anomalies depend on specific patterns which com-
prise the latest logs and regard specific patterns as the contextual information
of upcoming logs. Due to the benefit of the generative adversarial network, the
problem of the imbalance between normal and abnormal logs is relieved where
LogGAN is capable of generating ‘real’ anomalies for supplying the lack of abnor-
mal logs in system logs. In addition, LogGAN can be transformed into the session
version only to changing the representation of samples without reforming the
overall structure of LogGAN. The experimental results show the effectiveness of
LogGAN on both the tasks of session-level and log-level anomaly detection.

The current LogGAN still has some problems that need to be solved for fur-
ther improvement, and there exist several ideas to extend our work in the future.
First, the current LogGAN has similar structures of discriminator and genera-
tor, and we exploit the generator to distinguish anomalies from system logs. Can
the combination of outputs from discriminator and generator be used to identify
anomalies? Second, only the signature and the temporal information of system
logs are used to train LogGAN in this paper. The parameter of each event and
other meaningful feature need to be considered to precisely describe anomalies.
Third, the diagnosis of anomalies is also an important task which helps admin-
istrators solve anomalies efficiently. Therefore, the root cause analysis (RCA)
should be considered in the process of detecting anomalies.
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Abstract. Machine Learning has exhibited great performance in several
practical application domains such as computer vision, natural language
processing, automatic pilot and so on. As it becomes more and more
widely used in practice, its security issues attracted more and more atten-
tions. Previous research shows that machine learning models are very
vulnerable when facing different kinds of adversarial attacks. Therefore,
we need to evaluate the security of different machine learning models
under different attacks. In this paper, we aim to provide a security com-
parison method for different machine learning models. We firstly classify
the adversarial attacks into three classes by their attack targets, respec-
tively attack on test data, attack on train data and attack on model
parameters, and give subclasses under different assumptions. Then we
consider support vector machine (SVM), neural networks with one hid-
den layer (NN), and convolution neural networks (CNN) as examples and
launch different kinds of attacks on them for evaluating and comparing
model securities. Additionally, our experiments illustrate the effects of
concealing actions launched by the adversary.

Keywords: Machine learning · Adversarial attack · Security
evaluation · Support vector machine · Neural network

1 Introduction

Machine Learning has been a hot topic for a long while both in research area
and application area. It contains several different kinds of subfields, and for
each the models and technologies exhibit great performance in corresponding
practical domains or tasks such as computer vision, natural language processing,
automatic pilot and so on. As it becomes more and more widely used in practice,
its security issues have attracted more and more attentions.
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Machine learning models could be exposed to various kinds of security risks.
Firstly, previous studies [1,2] showed that machine learning models are vulnera-
ble. For example, a machine learning classifier could make terrible mistakes when
facing specific adversarial examples while humans would not be fooled by them.
That means a rather small perturbation could fool the models [3]. They can be
intentionally crafted by an adversary if he has access to the models or has the
capability to obtain information to some extent. Secondly, based on the assump-
tions on modelling the adversary given by the security evaluation framework in
[4,5], the train data and model parameters could also be attacked in some spe-
cific situations. This means the machine learning models could be manipulated
by an adversary, which appears huge risks both for correctness and effectiveness.

Because some practical tasks could be done by several different machine
learning models, we may wonder which models should we choose in practice when
considering effectiveness, efficiency and security. This paper aims to provide a
quantified comparison framework between different machine learning models. We
can make our choices by referring to the evaluation results of this comparison
framework when dealing with security-effectiveness trade-off dilemma.

We perform our experiments in the case of MNIST two-class (3 and 7) clas-
sification problem, as MNIST classification is one of the fundamental problems
of machine learning, on which there are several models performing well [6]. We
compare three models including linear support vector machine, neural networks
with one hidden layer, and convolution neural networks. While the three mod-
els all have rather good performance, their complexities are hugely different. We
compare these models under the situation of facing three different attack targets,
which are test data, train data, and model parameters. These three adversar-
ial settings are under different adversary capability assumptions. Besides, we
perform experiments under the situation that adversaries try not to make the
changing too obvious on the attack targets. For attacks on model parameters,
we limit the capability of the adversary by only enabling attacks on one layer of
the model, or one parameter of the model. For attacks on train data or model
parameters, we control the attacks strength by limiting the changing range of
the attack target. And for attacks on test data, we measure the mimicry behav-
ior initiated by [2]. This action is initiated for leading the adversarial examples
to an adversarial area with high density in the whole parameter space. From
another perspective, it has an effect of concealing the attack actions launched
by the adversary.

This paper is organized as follows: Sect. 1 gives an introduction of this paper.
Section 2 gives a review of previous related works. Section 3 introduces the rel-
evant machine learning models including support vector machine, multilayer
perceptron and convolutional neural networks. And we also give a review of the
concept of adversarial attack and how to model the adversary based on several
assumptions for evaluating the model security. Section 4 presents the compar-
ison experiments between these machine learning models which the adversary
attacks on the test data (i.e. Evasion Attack). This experiment is based on the
idea given by [2]. Section 5 presents the comparison experiments between these
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machine learning models which adversary attacks on the train data. We focus
on a simple attack method called Label Reversal Poisoning. It’s a subclass of
poisoning attack. Section 6 presents the comparison experiments between these
machine learning models which the adversary directly attacks on the model,
which means that the adversary can directly change the parameters of the mod-
els to some extent based on our assumptions. Section 7 gives our conclusion on
the comparison experiments and some further thoughts.

2 Related Work

Research on adversarial environment of machine learning has lasted for many
years. [9] initiated the adversarial attacks against machine learning and gave a
framework of modelling the adversary strategy. [10] analyzed the capability of
adversary on getting information and launching attacks based on several assump-
tions. [11,12] classified the adversarial attacks into several categories and pro-
vided several defense strategies. [20] explored the space of adversarial images and
explained the existence of adversarial images which cannot trick human beings.

Quantified security evaluation of machine learning models has also been stud-
ied during recent years. [2] defined an adversarial attack model based on the
capability and knowledge of the adversary. They also provided a general secu-
rity evaluation framework in [13] considering the machine learning models under
adversarial environments. [14] provided a forward derivative algorithm to effec-
tively craft adversarial examples without the need of existing samples. [3] argued
that instead of non-linearity, the linear nature of neural networks is the primary
cause of neural networks vulnerability to adversarial perturbation. [19] evaluated
the robustness of models while considering different layers modified.

As to the different attack targets, [15] utilized the poisoning attacks to eval-
uate the security of SVM model, while [2] evaluated the security of SVM model
under evasion attacks. There are also attack method takes effect when adversary
couldn’t get perfect knowledge or capability, which called transferable adversarial
attack [16]. There are also several papers elaborate on how to launch adversarial
attacks on machine learning tasks in practice, especially the models using in
security domain. For example, the spam email filters [7] and malicious control
of automobile [8].

3 Preliminary

3.1 Relevant Machine Learning Models

We define a two-class classifier g(x), classifying x as a positive (negative) sample
when g(x) > 0(g(x) < 0). We compare different models as follows:
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Support Vector Machine (SVM) [17] is a classification algorithm which
mainly applied on two-class classification tasks. It’s aimed to find a hyperplane
to well separate the data of different classes with maximized margin. As a clas-
sic and representative algorithm of machine learning, it appears good learning
ability and has been applied widely in different tasks such as data mining, image
processing and pattern recognition. And besides, it has a relatively strong robust-
ness compare to neural networks. In our experiment here in this paper, we use
the basic linear SVM model trained with Hinge Lost. Noticing that the param-
eters of SVM model only depend on a small number of train samples, so the
model appears good robustness.

Multilayer Perceptron also known as Neural Network, has been widely used
in lots of application field of real world. It and its several variations appear
great power and effectiveness in computer vision, natural language processing
and many other artificial intelligence scenarios. In our experiment here in this
paper, we use an one-hidden-layer neural network model with 20 hidden nodes
and adopt ReLU as activation function, denoted by NN.

Convolutional Neural Network has been the most remarkable machine
learning technique since it came out. Almost every state of the art model in
computer vision field takes advantage of the convolutional structure. It shows
amazing power on picture classification, object detection and many other tasks.
And also it’s the most advanced model with respect to the MNIST classification
problem. In our experiment here in this paper, we use the classic LeNet with two
convolutional layers and two full-connected layers and adopt ReLU as activation
function [18].

3.2 Adversarial Attack

Adversarial learning refers to a learning environment in which an adversary
attacks the defender’s machine learning models, resulting in a confrontation
between the adversary and the defender. Generally, the adversary has a purpose,
mostly wants to disable the model to reach his goal. Under the assumptions of
given capability and knowledge of the adversary, he may launch different attack
type based on different attack targets. For a spam filter, for example, if the
adversary has the perfect knowledge of this filter model, he could craft a spam
email which can evade the filter by avoiding the illegitimate keywords defined by
the filter. And furthermore, if he could get the authority to manipulate the train
data or model parameters, he can launch attacks by manipulating the train data
or model parameters to crack the models.

Besides launching attacks on the three models in our experiments, we also
consider a more realistic situation in which the adversary should restrict his
movement size. Because in some cases, the defender may set up additional defense
such as another filter in different model or even human monitoring. If your attack
appears too obvious, for example, changing all the model parameters to zero or
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crafting a totally unrecognizable handwriting number picture, the defender may
soon detect the attack and launch a new defense immediately. This will make
the attack fail very quickly. So the adversary often launches attacks along with
some kinds of concealing techniques, such as mimicry the original data or limit
the action size at each time step. We will expound on the corresponding method
in each following experiment.

3.3 Security Evaluation

Based on the security evaluation framework proposed by [4], we believe that sim-
ulating different kinds of potential attack scenarios is the key step for evaluating
the security of machine learning models. More specifically, we can empirically
evaluate the security by following three steps. Firstly, identify possible attack
scenarios. Secondly, design corresponding attacks. Thirdly, systematically assess
the impact of the attacks. Noticing that the final step must be done in a specific
way for every unique model. Also noticing that our proposed attack model is
based on some specific assumptions on the adversary, including purpose, knowl-
edge obtained of the model, and capability with regard to the data or model.

4 Attack on Test Data

Attack on Test Data is also called Evasion Attack, which means modifying the
test samples to evade the filter models. In this section, we consider SVM, NN
and CNN under evasion attack and try to find out how to modify the test
samples according to our purpose such as evading the filter with limited range of
movement. Then we simulate several attack scenarios and compare the results.

4.1 Background and Settings

We use a gradient descent algorithm to evade different filter models. This algo-
rithm is to calculate the derivative of g(x) to x, and then subtract the unitized
derivative from the original sample x. It is similar to the classical gradient descent
training algorithm of neural networks, only with a difference that here we calcu-
late the derivative of the input, not the weights. We can express one attack step
into formula as:

xnew = xold −
∂g(x)

∂x |x=xold

‖∂g(x)
∂x |x=xold

‖
(1)

where xnew is the newly generated adversarial example.
Although the adversary aims to make the model more likely to wrongly clas-

sify the test data (classify a positive sample into negative class), an overlarge
movement range could make the attack action rather easily to be detected by the
defender. Therefore, the adversary may limit his movement range when attack-
ing. Besides, he may also conduct a mimicry action proposed in [2] to imitate
real positive samples, so that the adversarial examples seem not to be modified
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too far from a real picture from the perspective of human. For example, many
noise points may indicate that the picture has been intentionally modified, and
this usually happens under gradient attacks. Noticing that in [2], it is initiated
for avoiding local minimum of the gradient descent algorithm. However, from
another perspective, it has an effect of concealing the attack actions launched
by the adversary.

We describe the problem as an optimization problem. Under above assump-
tions, for any positive (negative) test sample x0, the optimal attack strategy
is trying to find a modified adversarial example x∗ minimizing (maximizing)
the output of corresponding two-class classifier g(x), while limiting the distance
between x∗ and x0 smaller than given dmax. But this may lead the adversar-
ial example appears far too different from a real number picture, which may
result in being detected by additional defense process launched by the defender.
For overcoming this shortage, we add an additional term into our attack objec-
tive function to launch a mimicry action. Then we get the following modified
optimization problem:

arg min
x

f(x) = g(x) − c
∑

i|yi=−1

K(x − xi), d(x, x0) ≤ dmax (2)

where yi is the label of xi, and K is the kernel density estimator (KDE) function.
Here we use Gauss Kernel as KDE in our experiment.

4.2 Experiments and Results

We conduct two experiments in this section. In the fist one, we use the evasion
attack algorithm mentioned above to attack SVM, NN and CNN model. We
compare the results and analyze their security positions under this attack.

In the second experiment, we take the linear SVM algorithm as an example to
visually demonstrate how the mimicry action takes effect. And we also compare
the results between original SVM and mimicry SVM.

Comparison Between Models. We compare the performances of SVM, NN
and CNN models under evasion attack. We launch attack on every positive
samples (i.e. number 3 in MNIST) of test set by different attack strength (i.e.
the distance between original sample and adversarial sample), and calculate the
average accuracy. Then we get three accuracy curves as shown in Fig. 1.

From Fig. 1 we can find that CNN model has the highest accuracy, followed
by NN model and SVM model when there is no attack. This meets our com-
mon sense. But comparing these three models on security, we can find that the
accuracy of CNN reduces rapidly as the evasion attack intensifies. This vulnera-
ble security position is caused by the relatively high irregularity (non-linearity)
of the classification bound of neural network. Because when a picture facing
gradient attacks, the non-linearity of neural network leads the samples chang-
ing toward different directions respectively to achieve the classification bound
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Fig. 1. Accuracy changing under gradient descent attack (λ = 0)

through a quicker route, while SVM model appears stable because the linear-
ity leads all the samples changing toward the same direction. So we can infer
that the irregularity of the classification bound of neural network causes model’s
vulnerable when facing gradient attack. On the other side, this characteristic
enhances the fitting capability of a model. So there is a security-effectiveness
trade-off dilemma when facing this kind of attacks.

It is worthy noting that in [3], the authors argued that the vulnerability of
neural network isn’t caused by the non-linearity, but its linearity nature. And
they showed that the non-linear RBF based classification models can resist the
attacks to some degree while sacrifice the classification accuracy. So they claim
that neural network is not non-linear enough to resist the perturbation. This
conclusion is not incompatible with our result, because the non-linearity here
we talk about in this paper refers to the bending or irregularity characteristics
of the classification bound. This can be supported by [20]. But this bound is to
some extent warped from a hyperplane which appears intrinsic linearity nature
because of the linear mappings and activation function within neural networks.
That means, the non-linearity concept used here can be used to explain the com-
parative vulnerability of neural networks to SVM while holding the accuracy, but
it’s too coarse to explain all the adversarial characteristics of a model. So more
specific concepts and theories beyond non-linearity may need to be proposed in
the future to clarify this intricate problem.

Mimicry Attack. We take linear SVM model as an example to illustrate the
effect of mimicry action mentioned above. We exhibit the samples generated
by the attack algorithm. Figure 2 is the visual comparison of common attack
(first line) and mimicry attack (second line). We can see from the figure that
the mimicry action truly is more confusable to us. So the adversary may take
advantage of this action to conceal his attack.

Furthermore, the gradient descent attack follows the shortest descent path
when there is no mimicry action. After adding the mimicry action, the adversary
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Fig. 2. Adversarial examples generated by different attack strengths and styles

Fig. 3. Accuracy changing under gradient attack with/without mimicry

needs more attack steps to achieve the same adversarial effect, as shown in Fig. 3.
Therefore, this behavior can be a trade-off dilemma for the adversary. As for us,
we may launch other filter models to assist in defending the attack. This may
take effect when facing no mimicry adversarial actions.

5 Attack on Train Data

Attack on Train Data is also called Poisoning Attack, which means the adversary
manipulates the training set of a model before the training process begins. This
kind of attacks could easily disable the machine learning model because the
model even cannot be properly trained. This section based on a simple attack
method called Label Reverse Attack and compare the security positions of SVM,
NN, CNN under this kind of attacks.

5.1 Background and Settings

We experiment on a simple attack method called label reverse attack, which
means to reverse the label (0 or 1) of samples in train data. It can deal with
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two-category problems such as positive sample filter. Noticing that this kind of
attacks only need limited knowledge of the model and do not need the knowledge
of model structure and parameters. The attack can be launched very easily if
the adversary gets the knowledge and authority of the training set, and can be
destructive to the model. Because the machine learning models usually learn the
distribution of train data, while the poisoning attacks change the distribution to
some extent.

In our experiments, we use random label reversing method to attack. That
means to randomly select some training samples in the training set at a certain
percentage and reverse their labels. Then we train the model with contaminated
train data and finally test the model with the same test data. As the percentage
of poisoned data (i.e. the attack strength) increases, we analyze and compare
the security positions of SVM, NN and CNN models.

5.2 Experiments and Results

We still experiment on the MNIST dataset. Firstly, we train the three models
(i.e. SVM, NN and CNN) and calculate the average model output and the clas-
sification accuracy for each model. Then we randomly select 1% of the training
samples in the train set and reverse their labels. After newly training these mod-
els, we can newly calculate the values of the two indexes under the poisoning
attack. Continuing intensify the attack at a step of 1%, we finally obtain Fig. 4.

Fig. 4. Model output (Left) and accuracy (Right) changing under label reverse attack

From Fig. 4 we can find that CNN is the most unstable model, so we need
to keep a balance between classification accuracy and security position when
using CNN as a classifier. Besides, we can see in the right figure that when the
attack strength reaches 50%, the classification accuracy on test set exhibits a
cliff-like fall from 0.9 to 0.1. We can explain this phenomenon through the left
figure which depicts the model output. Because when the model output declines
to zero, the classification results of the test samples remain unchanged. But the
classification confidence indicated by the model output has declined either, so
we can see a cliff-like fall of accuracy near the percentage of 50%.
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Comparing to the evasion attack, the poisoning attack brings down the clas-
sification accuracy rather slowly. One possible reason is that the poisoning attack
only takes advantage of limited knowledge, while evasion attack uses the perfect
knowledge of underlying model to launch gradient attack.

6 Attack on Model Parameters

We first define three concepts for this sections. Authority means the adversary’s
authority on changing corresponding attack target, which is the model parameter
in this section. Knowledge means the adversary’s knowledge on model parame-
ters, determining whether the model is a black box or white box to him. Attack
Time Window means the period when model’s vulnerability exposing to the
adversary, so the adversary must conduct attack quickly for seizing the oppor-
tunity.

Now we imagine an attack scenario as follows. If the adversary has per-
fect knowledge and capability of the model, which means that he has obtained
the complete authority of directly manipulating the model. He may modify the
model parameters to disable the model under this scenario. We call this kind
of adversarial movement Attacks on Model Parameters. This scenario presents
an extreme case that may seldom appear in practice because of the complete
authority. Besides, when it happens, the adversary could launch far more vicious
attacks on the models than manipulating the model parameters, such as directly
attack the defender’s system to shut down the defense.

But it’s still worthy to analyze the impact of manipulating parameters
directly. Because the complete authority is hardly obtained, so how about part
of the authority? If the adversary gets the authority to manipulate some of
the parameters to some extent, the analysis on model parameter attack may
become valuable. Besides, an adversary may need to conceal his action by limit-
ing his own movement range. Obviously, shutting down the defense of the system
directly is far more easily to be detected by the defender than just changing the
values of few parameters. We consider this situation as adversary with part of
the authority. Following gives some discussions on this kind of attacks based
on different assumptions made. Noticing that the intercept of a weight layer is
regarded as one weight parameter of corresponding layer, which multiplies one
all the time.

6.1 With Complete Authority

Noticing that the complete authority brings perfect knowledge. Under this sit-
uation, the most effective attack method under this situation is to calculate the
derivative of g(x) to the parameters w and then train w towards the direction
given by derivative. This is a kind of adversarial training process and is all the
same as the regular training process of a classifier model, except they are just
trained toward opposite directions. So we can know that the attack result share
the same ranking list with the classification accuracy of the models. Besides, if we
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consider limited attack time window, then the training speed of corresponding
model should be taken into consideration. Still considering SVM, NN and CNN
here, we can easily know that the training speed of a model has a negative corre-
lation with the complexity of the model, which means the number of parameters
and number of layers. So by contrast, CNN appears the most difficult to train
(even if it’s adversarial training) which could be the most secure position when
attack time window is limited.

6.2 With Part of Authority and Perfect Knowledge

Assume that the adversary has perfect knowledge of the model but he can only
launch attacks on one layer of parameters, noted w. As discussed in complete
authority situation, the most effective attack method is still calculating the gra-
dients of parameters and launch a gradient attack. Noticing that one layer of
parameters means entirely different on SVM, NN and CNN. For NN it’s 50% of
all the parameters, and for CNN it’s 25%, but 100% for SVM which equivalent
to complete authority. This means the adversarial training authority of the orig-
inal model is limited. Besides, if we consider a limited attack time window, the
convolution operation is the most complicated one with regard to calculating
gradients. This means the SVM exhibiting worst security position here.

6.3 With Part of Authority and Limited Knowledge

But if the adversary only gets limited knowledge, he could not launch gradients
attack on the models. That is to say, he can only modify the parameters touch-
able for him. We assume that the adversary can only launch attacks on one layer
or one parameter of the model. With regard to the robustness of models while
considering one layer, [19] conducted several experiments and concludes that
this analysis is better performed respecting the network architectures due to the
heterogeneous behaviors of different layers. And with regard to one parameter,
we conduct experiments as follows. Comparing to take his chance on modifying
the parameter randomly and get unpredictable adversarial effect, he may utilize
simple attack methods. In our experiment, with regard to a given parameter
within a layer, the adversary multiplies this parameter by a constant number.
We call it Single Parameter Multiplying Attack. Noted that this kind of attacks
can be done very easily and quickly regardless of the attack time window. We
conduct two experiments under this assumption. The first experiment demon-
strates different impacts when different layers of a multilayer model facing this
kind of attacks. We use the first convolutional layer and the second fully con-
nected layer of a CNN model to illustrate. Noticing that these two layers are
the first and the last layer of the model. We traverse all the parameters of these
two layers respectively (noticing that we ignore the intercepts and focus on the
weights), and execute single parameter multiplying attack on each of the param-
eters at different attack strengths (choosing multiplier constant from −40 to 50
at a step of 10). We calculate the average output and the average classification
accuracy. Results are shown in Fig. 5.
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Fig. 5. Model Output (Left) and Accuracy (Right) Changing under Single Parameter
Multiplying Attack on First/Last Layer of CNN. The figures are drawn from scatter
points at a step of 10.

The figures indicate that the attacks on last layer is more destructive. This
is in line with the intuition that the absolute values of gradients of last layer are
usually bigger than those of front layers. Besides, from the figure we can infer
that the attacks on front layers may appear unpredictability in the results, due
to the non-linearity provided by the deep structure of neural networks.

The second experiment demonstrates the correlation between the attack
effect and the complexity of model. The experiment method is same as before.
First, we conduct attacks only aiming at one random parameter of SVM, NN
and CNN respectively (still ignore the intercepts and focus on the weights). It
turns out that CNN suffers the least as we expect, and NN follows. Then we
conduct attacks aiming at the last layer of SVM, NN and CNN respectively and
compare the results. Besides, we newly train a NN model with a hidden layer of
10 cells, compared to the original NN model with 20 hidden cells. Results are
shown in Fig. 6.

Fig. 6. Model Output(Left) and Accuracy(Right) Changing under Single Parameter
Multiplying Attack on Last Layer of SVM/NN/CNN. The figures are drawn from
scatter points at a step of 10. Noted that the results of NN are unstable, in another
word, they could be affected more by the trained parameter distribution of the last
layer. The reason could be that the number of neurons in last layer of NN is relatively
small.
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In this experiment, the SVM model has 784 weight parameters, the last layer
of CNN model has 1024 weight parameters, and the last layer of NN merely
has 10 or 20 weight parameters. We can infer from the figures that a higher
complexity (i.e. the numbers of parameters within a layer) of the layer under
attack can improve the robustness of the model, resulting in less damage as
the attack intensifies. This presents an opposite result on model complexity,
compared to the result of evasion attack. The main reason is that a higher
complexity becomes a sort of protection when the adversary only got very limited
authority like this experiment, as he can only influence the model on a small
scale.

7 Conclusion

In this paper, we firstly summarize the security issues faced by machine learning,
describe the current research status of machine learning security under adversar-
ial environment, classify the adversarial attacks that machine learning models
might encounter by their different attack targets. Then We simulate different
kinds of attacks on SVM, NN and CNN models based on a evaluation frame-
work and compare their security positions.

In the evasion attack (i.e. attack on test data) experiments, we show that
machine learning model with high complexity appears poor security position,
due to a large number of parameters could be manipulated under adversarial
environment. Additionally, we conduct an experiment on the mimicry attack
of adversary to illustrate the impact of concealing action on machine learning
models. In the poisoning attack (i.e. attack on train data) experiments, we show
that even the simplest Label Reversal Poisoning attack can significantly affect
the test accuracy of the classifier. The SVM, NN and CNN models all exhibit a
cliff-like fall of accuracy when train data has changed by 50%, while CNN model
exhibits the most unstable fluctuation. For model parameter attacks, we classify
the attacks into several scenarios through making different assumptions on the
authority of adversary. The models show different security positions under differ-
ent scenario due to their intrinsic properties, especially complexity and linearity.
Brief results on robustness ranking (security position) under three main attacks
are listed in following table, while 1 represents the strongest one. Noted that
Authority means the adversary’s authority on changing corresponding attack
target, and Knowledge means the adversary’s minimum requirement of knowl-
edge on model parameters.

This paper shows that different attack scenarios make different security
results with respect to these three kinds of models. We could not summarize
the correlations between complexity, non-linearity and vulnerability of different
models simply into positive or negative. Because the correlations could be quite
different in specific situations as mentioned above. So when facing a real attack,
we need to analyze the authority, the knowledge, the attack goal, the attack tar-
get and the movement range of the adversary in detail. Further research could
focus on more complicated and advanced attack methods, and may take other
machine learning models into consideration.
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Attack target Authority & Knowledge Attack type SVM NN CNN

Test data Complete & Perfect Evasion attack 1 2 3

Train data Complete & None Label reversal
poisoning attack

1 2 3

Model parameter Part & Limited Single parameter
multiplying
attack on all
layers

3 2 1

Model parameter Part & Limited Single parameter
multiplying
attack on last
layer

Related to the
number of
neurons in last
layer
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Abstract. Feature selection is one of key problems in machine learning and
data mining. It has been widely accepted that adversarial training is an effective
strategy to improve the accuracy and robustness of classifiers. In this paper, in
order to improve the performance of feature selection, adversarial training is also
adopted, and an adversarial training based feature selection framework is pro-
posed. To validate the effectiveness of the proposed feature selection frame-
work, three classical feature selection algorithms, i.e. Relief-F, Fisher Score and
minimum Redundancy and maximum Relevance (mRMR) are chosen and two
methods are used to generate adversarial examples in experiments. The exper-
imental results on benchmark datasets containing low-dimension and high-
dimension datasets demonstrate show that adversarial training is able to improve
the performance of classical feature selection methods in most cases.

Keywords: Machine learning � Data mining � Adversarial training � Feature
selection

1 Introduction

Feature selection is an important and frequently used technique for dimension reduc-
tion by removing irrelevant and redundant features from the dataset to obtain an
optimal feature subset. Feature selection is a knowledge discovery tool for providing
insights into the problem through the interpretation of the most relevant features.
Feature selection is also widely used in information security fields such as intrusion
detection, malware detection, and spam detection. There exist two key problems for
feature selection: evaluation criterion and search strategy. According to evaluation
criteria, feature selection algorithms are categorized into filter, wrapper and hybrid
(embedded) models. Feature selection algorithms under filter model rely on analyzing
the general characteristics of data and evaluating features without involving any
learning algorithm. Wrapper model utilizes a predefined learning algorithm instead of
an independent measure for subset evaluation. A typical hybrid algorithm makes use of
both an independent measure and a learning algorithm to evaluate feature subsets.
Search strategies for feature selection can be divided into exhaustive, heuristic, and
stochastic methods. Based on the output type, the feature selection algorithms can also
be classified as feature weighting (ranking) and feature subset [1].

To improve the performance of feature selection, previous works focus on
designing new evaluation criterion or new search strategy for different learning
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scenario, however, in this paper, we would like to enhance feature selection via aug-
menting the training data by adversarial training [5]. Jeff Donahue use BiGANs as a
mean to learn the feature representation and the result is useful for auxiliary supervised
discrimination tasks [17].

The adversarial training is usually used to against the adversarial examples, Weilin
Xu et al. proposed two method of feature squeezing to make DNN more sensitive to
adversarial examples [18]. However, it has been proved that adversarial training not
only improve the robustness but also improve the classification performance of clas-
sifier. Generally, adversarial training is used to generate many adversarial examples for
training a robust classifier. Miyato et al. [2] conducted experiments to demonstrate that
adversarial training has good regularization performance on text classification tasks
with a LSTM based neural network [3], on the other hand, adversarial training and
virtual adversarial training [4] can improve classification performance.

However, there are few studies about the combination of adversarial training and
feature selection. In this paper, the adversarial training is applied into feature selection,
and some adversarial examples are generated according to appropriate algorithms, then
feature selection will be performed on the datasets mixed with the adversarial examples
and the original examples. The main contribution of this paper is to put forward a new
feature selection framework based on adversarial training, which can enhance the
performance of original feature selection in many cases.

The paper is organized as follows. Section 2 presents the way to generate adver-
sarial examples in adversarial training and the adversarial training based feature
selection framework. The experiments are introduced in Sect. 3. And the paper ends up
with conclusion and discussion in Sect. 4.

2 Framework of Adversarial Training-Based Feature
Selection

Adversarial training is first proposed to make model robust under attack scenario [5].
Its main idea is to generate some adversarial examples, and then train model with both
original examples and adversarial examples, aiming to make the model more robust to
adversarial examples and enhance the performance of the learning model. The key
problem for adversarial training is how to generate the adversarial examples. Usually,
the process to generate an adversarial example is an optimization problem, which
includes objective function and optimization algorithm.

2.1 Objective Functions in Adversarial Training

Szegedy et al. have proposed a method to generate adversarial examples for deep
neural networks [6]. Given an example x 2 <m and its corresponding label y, an
adversarial example x

0
is generated by adding a small perturbation r to x, i.e. x

0¼ xþ r,
which will be miss-classified by the classifier f: <m ! f1; . . .; hg, h is the number of
labels. The processes of finding an adversarial example can be formulated as Eq. (1).
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min c rk k2 þ lossf ðxþ r; lÞ
xþ r 2 ½0; 1�m

�
ð1Þ

The objective function above consists of two terms, the first is the magnitude of
perturbation r, the other term is the classification loss. l is the target label, which is
different from original label y. To get the valid data, each dimension of the data should
be limited to [0,1], i.e. xþ r 2 ½0; 1�m. c is a balance parameter and needs to be adjusted
to generate effective adversarial examples. The c is higher, the bias (pertubation r) is
larger and it is easier to get a miss-classified example. In this paper, Hinge loss [7] is
chosen as the loss function in Eq. (1). Hinge loss is often used for “maximum margin
classification”, especially for Support Vector Machines(SVM) [8]. Hinge loss can be
expressed as Eq. (2).

lossðyÞ ¼ maxð0; 1� ŷ � yÞ ð2Þ

where ŷ is the predicted label of an example x, y is its true label.

2.2 Optimization Method

In this paper, two optimization methods are adopted to minimize the Eq. (1), i.e.,
gradient descent (GD) algorithm and the ADAM algorithm.

Gradient Descent Algorithm. GD [9] is one of the simplest and the most popular
iterative optimization algorithms which calculates a gradient direction in each iteration.
The negative gradient direction of the objective function is the direction where the
function value is reduced at the fastest speed. The basic idea of GD is to gradually
approach the minimum point along the descent direction of the objective function
instead of the negative gradient direction. Concretely, an appropriate initial example x0
is chosen firstly, then iterate and update the value of x along the descent direction until
convergence and obtain the corresponding adversarial example of x. The iteration
formulation is shown in Eq. (3).

xjþ 1 ¼ xj � agðxjÞ ð3Þ

Where xj is the example obtained at j-iteration, a is the learning rate and gðxjÞ is the
gradient at xj.

ADAM Algorithm. ADAM optimization algorithm [10] is the extension of stochastic
gradient descent algorithm (SGD) [9]. The SGD keeps the single learning rate updated
with all weights, and the learning rate does not change during training. However,
ADAM computes independent adaptive learning rate for different parameters by cal-
culating first-order Momentum estimation and second-order Momentum estimation of
gradient. Compared with SGD, ADAM requires less memory resources and the model
converges faster.

2.3 Adversarial Training Based Feature Selection

For feature selection with adversarial training, given an original data set D¼ xi; yif g;
i ¼ 1; . . .; n, the adversarial examples ðx0

i; yiÞ are generated by GD or ADAM
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algorithm, these adversarial examples are added to the original dataset to obtain a
mixed adversarial dataset Dmix. Then feature selection is performed on this mixed
adversarial dataset. The pseudo code for adversarial training based feature selection
framework is shown in Algorithm 1. Of course, in the proposed framework, any feature
selection algorithm can be used, and the number of adversarial examples to be added to
original data depends on the application.

Algorithm 1: Feature Selection With Adversarial Training
Input: Original data set D
Output: Feature subset T ;

1. Initialize advD = ;
2. FOR i = 1 to n
3.     Generate adversarial example '( , )i ix y for ( , )i ix y by GD or ADAM algorithm;

4.     Add adversarial example '( , )i ix y to advD ;
5. END FOR
6. mix advD D D= + ;
7. T=Feature Selection ( mixD );

3 Experiment Results and Analysis

3.1 Datasets

In experiments, seven datasets are employed to evaluate performance of proposed
feature selection framework, i.e., the Breast Cancer Wisconsin dataset [11] (Breast), the
Spambase dataset (Spam), the Parkinson dataset [12] (Parkinson), the Sonar dataset
(Sonar) from the UCI Machine Learning Repository site, sklearn’s Breast Cancer dataset
(Scikit_Breast), Arcene dataset and Madelon dataset from NIPS 2003 (http://clopinet.
com/isabelle/Projects/NIPS2003/). Details of these datasets are shown in Table 1.

3.2 The Experiment Setup

Three classical feature selection algorithms, i.e. Relief-F [13], Fisher Score [14] and
mRMR [15], are chosen to validate the performance of adversarial training for feature
selection.

Table 1. The information of datasets

Data Set Number of examples Number of features

Breast 699 9
Spam 4601 57
Parkinson 195 23
Sonar 208 60
Scikit_Breast 569 30
Arcene 200 10000
Madelon 2000 500
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The Relief algorithm is considered as one of the most successful feature selection
algorithms due to its simplicity and effectiveness. The Relief-F is an extension of Relief
to deal with multiple class problems. Relief-F algorithm needs to choose an example xi
randomly, then select k nearest examples H (nearest-hit) in the examples with the same
label of xi, and select k nearest examples M (nearest-miss) from the examples with
different labels.

Fisher Score is also one of the most widely used feature selection methods. The key
idea of the Fisher score is to find a subset of features so that the distance between the
data points in the different classes is as large as possible in the data space spanned by
the selected features, and the distance between the data points in the same class is as
small as possible.

The mRMR is an effective method to preprocess high-dimension data. It takes into
account not only the correlation between features and labels to identify the relevant
features, but also the correlation between features and features to find the redundant
ones. Mutual information is always used to measure the correlation.

The GD and ADAM optimization algorithms introduced in Sect. 2 are employed to
generate adversarial examples, and these adversarial examples are mixed with original
training examples to obtain new training datasets respectively. Based on the cross-
validation experiments, the best mix ratio of adversarial examples and original
examples in training set is set as 0.7 for low-dimension datasets (Breast, Spam,
Parkinson, Sonar and Scikit_Breast), and it is set as 0.5 for high dimension datasets
(Arcene and Madelon). The value of parameter c in Eq. (1) is set according to cross-
validation. In experiments, the c values of the various data sets are shown in the
Table 2. SVM and KNN classifiers are utilized to evaluate the accuracy of feature
selection results with or without adversarial training. Ten-cross validation is adopted in
the experiments.

3.3 Experiment Result on Feature Selection

We would like to compare the performance of feature selection with and without
adversarial training on seven data sets. The feature selection algorithms with adver-
sarial training are ReliefF+GD, ReliefF+ADAM, Fisher+GD, Fisher+ADAM, mRMR
+GD and mRMR+ADAM. “GD” means adversarial examples are generated by GD
optimizer and “ADAM” means adversarial examples generated by ADAM optimizer.
For example, the ReliefF+GD means using Relief-F algorithm to select features on the
mixed dataset which consists of original dataset and the adversarial dataset generated
by the GD algorithm. The meanings of other legends are similar. The performance of
feature selection with and without adversarial training are shown in Figs. 1, 2, 3, 4, 5, 6
and 7 for seven datasets. X-axis is the number of selected features, and Y-axis is the
classification accuracy of SVM or KNN classifiers.

Table 2. The parameter c value for different datasets

Breast Scikit_Breast Spam Parkinson Sonar Arcene Madelon

c 9 25 35 6 15 25 30
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(a) (b)

Fig. 1. The accuracy of feature selection methods with and without adversarial training for SVM
and KNN on Madelon. (a) SVM; (b) KNN.

(a) (b)

Fig. 2. The accuracy of feature selection methods with and without adversarial training for SVM
and KNN on Arcene (a) SVM; (b) KNN.
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(a) (b)

Fig. 3. The accuracy of feature selection methods with and without adversarial training for SVM
and KNN on Parkinson. (a) SVM; (b) KNN.

(a) (b)

Fig. 4. The accuracy of feature selection methods with and without adversarial training for SVM
and KNN on Scikit_Breast. (a) SVM; (b) KNN.
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(a) (b)

Fig. 5. The accuracy of feature selection methods with and without adversarial training for SVM
and KNN on Sonar. (a) SVM; (b) KNN.

(a) (b)

Fig. 6. The accuracy of feature selection methods with and without adversarial training for SVM
and KNN on Spam. (a) SVM; (b) KNN.
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As shown in figures and Table 3, we can observe that mRMR with adversarial
training always obtains better performance than mRMR without adversarial training for
all data sets. For the high-dimension datasets, Arcene and Madelon, feature selection
with and without adversarial training has the similar classification accuracy using
SVM, as shown in Figs. 1(a) and 2(a). For Madelon and Arcene data sets, their small
sample size with high dimensionality leads to the little difference on performance
between the feature selection with and without adversarial training. However, for the
low-dimension datasets, feature selection with adversarial training obtains higher
classification accuracy than feature selection without adversarial training. Regarding
the KNN classifier, the performance of feature selection with adversarial training is
obviously higher than the feature selection algorithms without adversarial training in
most cases, especially the high-dimension dataset.

In order to show the approximate performance effect, we take the mean of the cases
in different feature numbers, as shown in Table 3. The data in Table 3 is the perfor-
mance improvement of its corresponding ATBFS method over the original feature
selection. The results demonstrate that for the most cases, the ATBFS obtains better
performance.

(a) (b)

Fig. 7. The accuracy of feature selection methods with and without adversarial training for SVM
and KNN on Breast. (a) SVM; (b) KNN.
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Moreover, we also calculate the variance and conducts statistical tests on the
classification accuracy results for different feature selection algorithms. Since the ten-
cross validation is adopted by experiments, the variance is used to verify the fluctuation
of classification accuracy results among ten crosses. The smaller the fluctuation, the
more reliable the classification results. The variance is shown in Tables 4 and 5, each
variance result corresponds to a line on Figs. 1, 2, 3, 4, 5, 6 and 7.

Table 3. The average of comparison between classical feature selections and ATBFS

RF
(GD)

RF
(ADAM)

FS
(GD)

FS
(ADAM)

mRMR
(GD)

mRMR
(ADAM)

Arcene(SVM) 0 0 0 0 0 0
Arcene(KNN) 1.6% 1.3% −2.1% 2.7% 0.6% 0.9%
Madelon(SVM) 0 0 0 0 0 0
Madelon(KNN) 0.9% 0.7% −0.1% −1.3% 5.7% 4.1%
Parkinson(SVM) 0.3% 0.3% 3.8% 3.7% 1.6% 1.8%
Parkinson(KNN) 0.4% 0 0.5% −0.3% 0.7% 1.0%
Sklearn(SVM) 0.6% 0.6% 0.5% 0.3% 0.7% 0.6%
Sklearn(KNN) 0.8% 0.7% 0.5% 0.2% 0.5% 0.3%
Sonar(SVM) 1.2% 0.8% 1.9% 2.0% 2.2% 1.7%
Sonar(KNN) 2.2% 2.1% 0.5% 0.9% 1.2% 0
Spam(SVM) 0 0.1% 0.4% 0.5% 0.3% 0.4%
Spam(KNN) 0 0 0.6% 0.7% 0.6% 0.6%
Breast(SVM) 1.7% 1.7% −0.3% −0.3% 0 0
Breast(KNN) −0.2% −0.2% −0.2% −0.2% 0.2% 0.2%

Table 4. Variance for experiment results (SVM)

Breast Scikit_Breast Spam Parkinson Sonar Arcene Madelon

RF 0.0041 0.0177 0.0012 0.0064 0.0236 0.0237 0.0031
RF+GD 0.0067 0.0142 0.0013 0.0065 0.0393 0.0330 0.0022
RF+ADAM 0.0067 0.0154 0.0013 0.0060 0.0264 0.0338 0.0028
Fisher 0.0048 0.0036 0.0017 0.0205 0.1105 0.0173 0.0050
Fisher+GD 0.0047 0.0063 0.0014 0.0196 0.0779 0.0337 0.0049
Fisher+ADAM 0.0047 0.0065 0.0013 0.0197 0.1000 0.0361 0.0053
mRMR 0.0038 0.0039 0.0017 0.0533 0.0423 0.0473 0.0028
mRMR+GD 0.0031 0.0022 0.0014 0.0356 0.0345 0.0435 0.0016
mRMR+ADAM 0.0031 0.0027 0.0014 0.0410 0.0215 0.0347 0.0016
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As shown in Tables 4 and 5, the ten-cross classification accuracy results using
SVM classifier are more stable than using KNN. Most of the classification accuracy
results of adversarial training-based feature selection are reliable in terms of variance.

To furtherly show the reliability of the classification accuracy results, we conduct a
statistic test, namely the method of cross-validation t-test [16]. For two learning models
A (i.e., feature selection with adversarial training) and B (i.e., feature selection without
adversarial training), the two models’ classification accuracy got through k-cross val-
idation are eA1 ; e

A
2 ; . . .; e

A
i ; . . .; e

A
k and eB1 ; e

B
2 ; . . .; e

B
i ; . . .; e

B
k , so the paired t-test could be

used for comparative test. The basic idea here is that if the performance of the two
learning models is same, then the test accuracy obtained by using the same test set
should be same.

A hypothesis “the performance of feature selection with and without adversarial
training is same” is made. And the difference on performance are calculated, i.e.,
D1;D2; . . .;Di; . . .;Dk, Di ¼ eAi � eBi . Then, cross-validation t-test is applied on the sets
of difference sets as shown in Eq. (4).

st ¼
ffiffiffi
k

p
l

r

����
���� ð4Þ

where l and r are the mean value and standard deviation of D1;D2; . . .;Di; . . .;Dk,
respectively.

According to the experiment setups, we takes t0:5=2;10�1 (1.8331) as the threshold, if
the value of t-test is less than the threshold, the hypothesis is valid, i.e., the performance
of feature selection with and without adversarial training is same. If the value of t-test is
larger than the threshold, significant difference on performance appears in methods
with and without adversarial training, and the method obtaining better performance
would be adopted. Due to the limitations of space, this article only shows three data
sets’ t-test results (Parkinson, Sonar and Arcene) whose variance are greater than other
data sets. The results of t-test are shown in Table 6, 7 and 8 for datasets Parkinson,
Sonar and Arcene respectively.

Table 5. Variance for experiment results (KNN)

Breast Scikit_Breast Spam Parkinson Sonar Arcene Madelon

RF 0.0054 0.0025 0.0009 0.0595 0.0752 0.0682 0.0058
RF+GD 0.0034 0.0026 0.0011 0.0526 0.0575 0.0682 0.0060
RF+ADAM 0.0034 0.0022 0.0011 0.0584 0.0889 0.0682 0.0062
Fisher 0.0057 0.0027 0.0010 0.0825 0.1440 0.0551 0.0017
Fisher+GD 0.0054 0.0027 0.0009 0.0782 0.1453 0.0551 0.0017
Fisher+ADAM 0.0054 0.0015 0.0009 0.0822 0.1450 0.0551 0.0017
mRMR 0.0092 0.0068 0.0006 0.1106 0.0530 0.0680 0.0011
mRMR+GD 0.0059 0.0075 0.0005 0.1027 0.0394 0.0674 0.0011
mRMR+ADAM 0.0059 0.0081 0.0005 0.1067 0.0364 0.0669 0.0011
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In tables, the first column (from left to right) is the feature selection algorithm with
adversarial sample generation method and the adopted classifier. The elements in the
table is credibility of performance difference between the original algorithm and feature
selection algorithm with adversarial training. For example, the element in the row 7 and
column 1 is 0.0308, which means credibility of performance difference between the
Relief-F algorithm and Relief-F algorithm with adversarial training (GD algorithm) on
KNN classifier. The ‘–’ in the table means that the performance of feature selection
with and without adversarial training is same which corresponds to the points in lines
of ReliefF and ReliefF + GD overlap together in Fig. 1(a). As shown in Table 8, the
t-test results of KNN are better and we can draw a conclusion that KNN is more
suitable for high-dimension data in the proposed framework. Half of the t-test values
exceed threshold, which indicates that the experiment results are reliable enough and
the feature selection with adversarial training can obtain better performance in most
cases.

In a word, adversarial training is effective for feature selection and it can improve
the feature selection performance in most cases.

Table 6. t-test on the performance of feature selection on Parkinson

7 9 11 13 15 17

ReliefF+GD(SVM) – 2.8942 1.2594 2.0453 – –

ReliefF+ADAM(SVM) – 2.8408 0.8347 2.0453 – 0.7477
Fisher+GD(SVM) 2.3237 2.3914 2.3914 2.3914 3.3360 3.0560
Fisher+ADAM(SVM) 2.3237 2.3914 2.3914 3.3360 2.9006 3.0560
mRMR+GD(SVM) 2.5381 1.4519 1.2196 1.2196 2.5352 2.0135
mRMR+ADAM(SVM) 2.5381 2.6736 1.2196 1.2196 2.5352 2.0135
ReliefF+GD(KNN) 2.6150 1.4417 1.1490 2.5493 1.1019 1.5768
ReliefF+ADAM(KNN) 2.6150 1.8120 0.2017 2.5493 0.1757 0.2556
Fisher+GD(KNN) 0.6511 2.3374 0.3554 0.3554 0.0329 0.0329
Fisher+ADAM(KNN) 0.6511 2.3374 0.3554 0.1794 0.5717 0.0329
mRMR+GD(KNN) 1.2063 1.0043 1.3191 1.2570 1.9352 1.4496
mRMR+ADAM(KNN) 0.4917 0.5438 0.8855 1.2570 1.9352 1.4496
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4 Conclusion and Discussion

In this paper, a novel feature selection framework based on adversarial training is
proposed. In detail, the GD and ADAM algorithms are implemented to generate the
adversarial examples. And feature selection algorithms with adversarial training are
performed on the datasets mixed with adversarial examples. Three popular feature
selection algorithms (Relief-F, Fisher Score and mRMR) are used to validate the
effectiveness of adversarial training. And seven benchmark datasets are utilized in
experiments to evaluate the performance of feature selection with adversarial training.
The experimental results show that adversarial training is effective to enhance the
feature selection performance in most cases. This experiment results have been sta-
tistically tested (t-test) to prove the confidence of this conclusion.

Table 7. t-test on the performance of feature selection on Sonar

20 25 30 35 40 45 50

ReliefF+GD(SVM) 5.8953 2.0654 0.4567 0.4243 2.8604 4.5511 1.0974
ReliefF+ADAM(SVM) 1.6905 1.1928 1.7695 7.1349 3.4125 3.3514 1.2444
Fisher+GD(SVM) 0.7481 0.4179 2.6907 3.2733 7.4684 2.8922 7.2008
Fisher+ADAM(SVM) 0.7481 8.4751 1.1742 5.9998 7.4684 2.8922 4.1905
mRMR+GD(SVM) 1.2206 0.4482 2.1919 3.5214 2.2354 0.4269 0.6124
mRMR+ADAM(SVM) 1.2206 2.8365 2.1919 3.6589 1.8381 0.4269 1.6906
ReliefF+GD(KNN) 0.0770 4.3763 1.0821 0.3570 2.4599 1.0310 0.5412
ReliefF+ADAM(KNN) 3.1453 2.6151 0.2704 1.5147 1.6723 0.9717 0.3433
Fisher+GD(KNN) 4.3830 6.5801 3.0319 0.7051 1.9574 3.9675 3.0102
Fisher+ADAM(KNN) 4.3830 4.7840 2.8664 0.4863 1.9574 3.9675 3.2501
mRMR+GD(KNN) 1.9910 1.9125 3.0066 5.2172 1.1473 3.5227 0.1683
mRMR+ADAM(KNN) 1.9910 3.5117 3.0066 4.3793 0.1302 3.5227 0.1764

Table 8. t-test on the performance of feature selection on Arcene

100 200 300 400 500

ReliefF+GD(SVM) – – – – –

ReliefF+ADAM(SVM) – – – – –

Fisher+GD(SVM) – – – – –

Fisher+ADAM(SVM) – – – – –

mRMR+GD(SVM) – – – – –

mRMR+ADAM(SVM) – – – – –

ReliefF+GD(KNN) 0.0308 1.0713 0.7393 0.8371 2.5034
ReliefF+ADAM(KNN) 0.1246 1.5079 3.4182 1.9243 0.9119
Fisher+GD(KNN) 1.2186 2.0500 1.6805 0.3937 0.3411
Fisher+ADAM(KNN) 1.3306 3.0289 4.1002 2.7406 1.3327
mRMR+GD(KNN) 0.0024 2.1008 1.0654 2.2871 –

mRMR+ADAM(KNN) 0.2726 0.9897 1.4896 0.3742 –
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In the proposed framework, adversarial examples are generated by GD and ADAM
algorithms. Other methods to produce adversarial examples, such as generative
adversarial network (GAN), will be explored in the future work.
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Abstract. In the real world, various information can be represented by
graph structure data. For example, interpersonal relationships and pro-
tein structure. In recent years, with the development of artificial intelli-
gence, graph embedding has become a popular method of network anal-
ysis. It can reduce the dimension of network structure data, so that net-
work structure data can be applied to various machine learning and deep
learning tasks. At the same time, many studies of network geometry show
that the hidden metric of many complex networks is hyperbolic. After
hyperbolic space mapping, nodes in the original network data structure
can be represented by hyperbolic coordinates. Hyperbolic coordinates
contain information about the popularity and similarity of nodes which
is very important for unsupervised clustering tasks. However, the ran-
dom walk strategy in the native DeepWalk algorithm cannot effectively
extract this information. So we propose an improvement of the DeepWalk
algorithm based on hyperbolic coordinates and achieved good results on
many datasets.

Keywords: DeepWalk · Graph embedding · Hyperbolic coordinates ·
Unsupervised clustering

1 Introduction

In the real world, network structure data is of great significance, which can
effectively represent some realistic relationships. Since many years ago, scholars
have begun to study graph data. In the traditional analysis method, the graph
data is stored in the form of an adjacency matrix. Therefore, the graph data of
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hundreds of millions of nodes requires a very large storage cost, not to mention
the computational cost during the analysis process. This is the so-called curse
of dimensionality.

With the development of artificial intelligence, machine learning and deep
learning methods have achieved remarkable results in many tasks. For exam-
ple, image recognition [2] and natural language processing [3]. However, graph
data stored by traditional adjacency matrix is not suitable for machine learning
models, but also leads to curse of dimensionality. Therefore, methods of graph
embedding are getting more and more attention from scholars. First, it can save
most of the information of the graph data. Second, it reduces the dimension of the
graph structure data, so reduce the storage and computational costs. Finally, the
vector representation of a node is more suitable as an input to machine learning
and deep learning models than an adjacency matrix [4,5]. Therefore, the graph
embedding method has achieved good results in many fields, such as product
recommendations [6], item categorisation [7], link prediction [8], community dis-
covery [9], customer value prediction [10,11] and network classification [12,13].

Over the years, scholars have proposed a number of graph embedding meth-
ods. In 2014, Perozzi et al. proposed the DeepWalk [14] algorithm which applies
the SkipGram [15] model in the natural language processing (nlp) domain to
social networks, so that it can use the deep learning method to not only repre-
sent nodes, but also to represent the topological relationship between nodes. The
LINE algorithm [16] (Large-scale Information Network Embedding) constructs
an objective function using the existing edges in the graph. The objective func-
tion explicitly depicts the first-order and second-order neighbor relationships.
Node2vec [8] optimizes the sequence extraction strategy for random walks on
the DeepWalk architecture. This strategy has some hyperparameters, and dif-
ferent choices of parameters can be suitable for different kinds of network data.
HyBed [17] does graph embedding in hyperbolic space, rather than in European
space.

In practical applications, the data set we can generally get are only the adja-
cency matrixes of networks. If there is no other extra information, how can we
improve the graph embedding method to make it save more similarity informa-
tion of the node? Fortunately, scholars in the field of network geometry give us
a solution to this problem. Krioukov, Papadopoulos et al. found the negative
curvature and metric property in the hyperbolic space can correspond well to
heterogeneous degree distributions and strong clustering in complex networks
[18]. And The PSO (popularity-similarity-optimization)algorithm suggests that
the hyperbolic coordinates of the hyperbolic coordinates of the network nodes
contain the similarity and popularity information of the nodes [19]. Based on
the PSO model, Papadopoulos et al. proposed a hyperbolic mapping algorithm
called HyperMap [20]. The input of the HyperMap algorithm is the graph data
of the adjacency matrix format, and the output is the hyperbolic coordinates
of each node of the network. This solves a problem that without any additional
information, how can we only use the adjacency matrix to embed the graph to
preserve more useful information of the graph data?
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2 DeepWalk

DeepWalk takes a certain point as the starting point, obtains the sequence of
points by random walk, and then the obtained sequence is regarded as a sentence,
combined with the SkipGram algorithm in NLP to obtain the representation
vector of the point. Essentially, random walks are used to capture the local
context information of the points in the graph. The learned representation vector
reflects the local structure of the point in the graph, and the adjacent points (or
higher-order neighbors) shared by the two points in the graph. The more, the
shorter the distance between the corresponding two vectors. So two main parts
of the DeepWalk algorithm are random walk and the SkipGram model.

2.1 RandomWalk

Given a network structure data, a node is randomly selected as the starting
point, and then we randomly select a point in the neighbor of this starting point
as the next point. And move to this point and repeat the above steps. Know
that we stop moving. This is called a random walk on the graph structure.
[21] In the DeepWalk algorithm, the length of random walks is fixed. Random
walk randomly and uniformly selects network nodes and generates a fixed-length
random walk sequence, which is analogized to sentences in natural language
(node sequence as a sentence, nodes in the sequence as words in a sentence)
The input and output of the SkipGram model are the one-hot encoding of the
network node, and the hidden layer is the vector representation of the nodes we
need to learn (Fig. 1).

Fig. 1. The left side is the original graph structure data, On the right is the node
sequence generated by random walk. The two adjacent nodes in the node sequence, in
the original graph structure data, there must be a joint between them.

2.2 SkipGram Model

The input and output of the SkipGram model are the one-hot encoding of the
network node, and the hidden layer is the vector representation of the nodes we
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Fig. 2. SkipGram architecture. The model predicts context vertices from a single input
vertex. Final embedding is a collection of learned weights WN×V in the hidden layer
xk represents the one-hot code of a single node, y1j , y2j , y3j represents the one-hot
code of context node of xk.

need to learn. If in the random walk, the two nodes have very many common
neighbors, that is, the context node, then their vector representations will be very
similar through the SkipGram model. This preserves the structural information
of the network. The input and output of the SkipGram model are the one-hot
encoding of the network node, and the hidden layer is the vector representation
of the nodes we need to learn (Fig. 2).
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3 Hyperbolic Geometry

3.1 Hyperbolic Space

In mathematics, a space in which the curvature is constant and negative is called
a hyperbolic space. Points in hyperbolic space are x = (r, θ), the approximate
hyperbolic distance between A(ra, θa) and B(rb, θb) can be calculated approxi-
mately by the following formula:

Distanceab ≈ ra + rb + ln(Δθab2). (1)

where Δθab = π − |π − |θa − θb|| is the angle between the point A and B.

3.2 Popularity Similarity Optimization (PSO) Model
and HyperMap

The popularity similarity optimization (PSO) model indicates that the real net-
work has a consistent geometric representation in the hyperbolic space, where
each network node maps according to the angle and radial coordinates of the
polar coordinate system. On the one hand, the node similarity is the angular dis-
tance in the hyperbolic space: the higher the similarity between the two nodes,
the closer their angular coordinates are. On the other hand, the degree of node
is related to the intrinsic popularity of the node: the higher the degree of node,
the higher its popularity in the network, and the lower its radial coordinate in
the hyperbolic space.

4 Combination

4.1 Disadvantage

In network clustering problems, such as commodity networks, many nodes rep-
resent unpopular goods, and subgraphs composed of some popular commodities
are the focus that needs to be sampled. Since the random walk is randomly sam-
pled, it does not distinguish between popular and unpopular items. Therefore,
the sampled node sequence does not have a high confidence level, that is, the
similarity and popularity information of the nodes is not considered. Moreover,
without additional information, we can not obtain the similarity and popular-
ity information of the nodes through the adjacency matrix. This also leads to
the fact that the node vector obtained by DeepWalk using random walk does
not perform well in clustering tasks. Because the general clustering task utilizes
the distance between the vector representations of the two nodes, such as the
Euclidean distance. The vector between the unpopular node and the hot node
indicates that if there is no discrimination, that is, the distance is not far enough,
then the clustering effect is not good.
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4.2 Improvement

In the case where only the adjacency matrix is given, and there is no additional
information, how to obtain more useful information of the node?

The coordinates of the nodes proposed by the PSO model in the hyperbolic
space contain the similarity and popularity information of the nodes. And the
hyperbolic coordinates can only be obtained by adjacency matrix. In the PSO
model, r, which is the polar path, is related to the popularity of the node. Theta,
which is the angle, is related to the similarity of the nodes. So we need to set a
metric that measures the similarity and popularity of the two nodes based on the
hyperbolic coordinates. Then convert the original unweighted undirected graph
obtained from the adjacency matrix into a full undirected graph and convert the
random walk into a weighted walk. That is, according to the weight of the edge,
the next node is selected with probability.

4.3 Weighted Walk

In hyperbolic space, the distance between two nodes is called the hyperbolic
distance. However, we do not directly use this formula (1), because for different
kinds of networks, the popularity of network nodes and the similarity between
nodes have different impressions on the effect of classification of network nodes.
For example, in an Internet network, two nodes with high popularity, that is,
nodes with higher degrees, have a high probability of belonging to the same
kind. In the interpersonal relationship network, the similarity information of two
nodes, that is, structural similarity information, the distance between nodes,
etc., is very important in the clustering task. So we set up two extra global
hyperparameters for different types of networks, then we propose the following
formula based on formula 1:

Wij = α ∗ rij + β ∗ θij . (2)

Where Wij represents the weight of the edge between node i and node j,
j ⊆ N(i), N(i) represents the one step neighbors of node i, rijrepresents the
similarity information between node i and node j obtained from the polar diam-
eter of the hyperbolic coordinates, θij represents the popularity information
between node i and node j obtained from the angle of hyperbolic coordinates. α
and β can change the proportion of similarity and popularity in the Wij . rij is
calculated by formula (3) and formula (4):

proij =
Σm |rm + ri|

|rj + ri| ,m ∈ N(i). (3)

rij =
proij

Σmproim
,m ∈ N(i). (4)

θij is calculated by formula (5):

θij =
cos(θi − θj) + 1

Σm(cos(θi − θm) + 1)
,m ∈ N(i). (5)
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Based on these formulas, each edge has its W calculated by formula (1). Then
we can use W to convert the random walk into a weighted walk.

Tables Data charts which are typically black and white, but sometimes include
color.

Algorithm 1. Imporved DeepWalk(G,w, d, r, t, α, β)
Input:graph G(V, E)

window size w
embedding size d
walks per vertex γ
walk length t
Hyperparameters of WeightedWalk α and β

Output:matrix of vertex representationsΦ ∈ R
(|V |×d)

1. Initialization
2. Build a binary Tree T from V
3. Get hyperbolic coordinates by HyperMap,H(G)
4. for i = 0 to γ do
5. O=Shuffle(V )
6. for each vi ∈ O do
7. W(vi) =WeightedWalk(G, vi, t, H(G), α, β)
8. SkipGram(Φ, W(vi), ω)
9. end for
10. end for

Algorithm 2. WeightedWalk(G, vi, t,H(G), α, β)
1. Initialization SUMw = 0, α, β
2. for each vj ∈ N(vi) do
3. get W(vi, vj) by formula (2) with H(G)
4. SUMw+ = Wvivj

5. end for
6. choose next node vx with the probability

Wvivx

SUMw

5 Experiment

In the experiment, we selected the following network for unsupervised clustering
(Table 1).

Network vector representation using native DeepWalk and improved Deep-
Walk for k-means algorithm for unsupervised clustering.
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Table 1. |V | represents the number of nodes, |E| represents the number of edges, |y|
represents the number of clusters. All data comes from MEJ Newman [23]

Name |V | |E| |y|
karate 34 77 2

polbooks 105 441 3

football 115 613 12

adjnoun 112 425 2

polblogs 1224 16781 2

5.1 K-Means

The k-means algorithm is an indirect clustering method based on the measure of
similarity between samples, which belongs to the unsupervised learning method.
This algorithm takes k as a parameter and divides n objects into k clusters so that
the clusters have higher similarity. The calculation of the similarity is performed
based on the average value of the objects in a cluster (considered as the center
of gravity of the cluster). This algorithm first randomly selects k objects, each
object representing the centroid of a cluster. For each of the remaining objects,
according to the distance between the object and the centroid of each cluster, it
is assigned to the cluster most similar to it. Then, calculate the new centroid of
each cluster. Repeat the above process until the criterion function converges.

5.2 Metric for Clustering Task

In order to compare the native DeepWalk with the improved DeepWalk, we
selected six commonly used clustering algorithm evaluation indicators, as follows:

Adjusted Rand Index (ARI): Bounded range [−1, 1], negative values are bad,
similar clusterings have a positive ARI, 1.0 is the perfect match score

Adjusted Mutual Information (AMI): Bounded range [−1, 1], 1.0 is the per-
fect match score as ARI. Homogeneity: Each cluster contains only members of
a single class. Bounded range [0, 1], 0.0 is as bad as it can be, 1.0 is a perfect
score.

Completeness: All members of a given class are assigned to the same cluster.
Bounded range [0, 1], 0.0 is as bad as it can be, 1.0 is a perfect score.

V-measure: Bounded range [0, 1], 0.0 is as bad as it can be, 1.0 is a perfect
score.

Fowlkes-Mallows scores (FMI): Bounded range [0, 1], 0.0 is as bad as it can
be, 1.0 is a perfect score.

The specific meaning of the above indicators can be found in the document
of scikit-learn v0.20.2 [24].
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6 Qualitative Assessment

We use the default parameters of native DeepWalk to embed the dataset, i.e.
number-walks = 10, representation-size = 64, walk-length = 40, window-size = 5.
For the improved DeepWalk, we make αchange from 0.1 to 0.9, the step size
is 0.1, and β also changes with α, from 0.9 to 0.1, then we use HyperMap
and Weighted Walk to get the sequence of the node, and then get the vector
representation of the node through the SkipGram model as described in the
pseudo code. Since the result of the k-means algorithm has some randomness,
in the experiment, we call the k-means api in sklearn and perform 500 k-means
algorithms for each network. The results of all indicators are the average of five
hundred results. This avoids the randomness of the results and shows the pros
and cons of the two algorithms on different indicators. The figure below is the
experimental result. We show the result of the original DeepWalk algorithm as
a red dotted line. The abscissa is the value of the hyperparameter α, and the
ordinate is the index of the different clustering tasks.

As can be seen from figures [3–7], for different types of networks, the improved
DeepWalk algorithm using weightedwalk has a certain improvement over the
native DeepWalk algorithm in different indicators. The selection of hyperparam-
eters will also have an impact on the effectiveness of the improved DeepWalk
algorithm. The change in hyperparameters sometimes makes the effect of the

Fig. 3. karate (Color figure online)
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Fig. 4. polblogs (Color figure online)

Fig. 5. football (Color figure online)
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Fig. 6. adjnoun (Color figure online)

Fig. 7. polbooks (Color figure online)
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improved DeepWalk algorithm better than the native DeepWalk algorithm, but
overall, for different networks, the appropriate hyperparameters can increase the
algorithm index and be superior to the native DeepWalk algorithm. In the exper-
iment, the types of networks are different and the nature is different. Therefore,
the hyperparameter enables the weighted walk to better extract the information
in the original data that is more conducive to the classification task, thereby
improving the generalization ability of the algorithm (Figs. 3, 4, 5, 6 and 7).

7 Conclusion

We propose a method to convert the random walk module in the native Deep-
Walk algorithm into a Weighted Walk by hyperbolic coordinates. The hyperbolic
coordinates of the nodes in the network are obtained by the HyperMap algo-
rithm, and the weights of the connected edges in the network are determined by
the hyperbolic coordinates. Then combine the PSO model to convert the weight
into the probability of selecting the node during the weighted walk. In the weight
conversion part, in order to improve the generalization ability of the algorithm
for different kinds of networks, we also set the proportion of the popular infor-
mation and the similarity information extracted by the hyperparametric control
algorithm with two linear relationships. Finally, in the unsupervised classifica-
tion task of network nodes using k-means algorithm, our proposed algorithm has
significantly improved on many indicators compared with the native DeepWalk
algorithm.
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Abstract. Return-Oriented Programming (ROP) is a robust attack
which has been proven to be Turing-complete. ROP reuses code seg-
ments named gadget in vulnerable applications and modifies control flow
to achieve malicious attacks. Existing defense techniques for code reuse
attacks attempt to restrict the policy of control flow transfer (e.g. CFI)
or make locating gadgets a hard work (e.g. ASLR). However, decades of
the arm race proved the ability to detect up-to-date attacks remains the
Achille’s heel. In honeypot, a general pattern for operators is spreading
honeytokens and hunting spammers by capturing their malicious behav-
ior. In order to capture the attack pattern of code reuse attacks, we
present a novel deception based ROP detection model named Honey-
Gadget. HoneyGadget inserts various types of honey gadgets as tokens
to some specific points of binary files where normal control flow would
not reach and record their places once the application is loaded. During
the execution, HoneyGadget uses Last Branch Record (LBR) to trace
execution records. On performing a sensitive function call, HoneyGadget
compares LBR records with the maintained address list, and terminates
the program immediately if some records match. Since these honey gad-
gets will not be executed by normal control flow, there must be a ROP
attack. We have developed a fully functioning prototype of HoneyGad-
get. Our evaluation results show that HoneyGadget can (1) capture ROP
attacks actively and (2) incurs an acceptable overhead of 7.61%.

Keywords: Return-Oriented Programming · Gadget insertion ·
Deception · Control flow · Last Branch Record

1 Introduction

Code injection attack was a tricky problem for software security practitioners
before non-executable memory was introduced. With the widely deployment of
DEP [2] and W ⊕ X, attackers are forced to reuse existing code segments in
binary. Over time, the state-of-art code reuse attacks have dramatically evolved
from reusing sensitive system functions in related libraries of victim application
(e.g. return-to-libc [33]) to chaining small code segments named gadgets into a
c© Springer Nature Switzerland AG 2019
F. Liu et al. (Eds.): SciSec 2019, LNCS 11933, pp. 121–135, 2019.
https://doi.org/10.1007/978-3-030-34637-9_9
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gadget chain (e.g. Return-Oriented Programming [5,30]). Triggered by a simple
buffer overflow vulnerability, code reuse attack proved that it can perform arbi-
trary Turing-complete computation without injecting any malicious code [8]. In
addition, there are several automated tools or methods available to help attack-
ers to mount ROP attacks [28,29].

On the other hand, attempts to defense ROP attacks never stop. Existing
defense techniques can be classified into two categories [24,26], which are ran-
domization and control flow transfer checks respectively. A general purpose of
Address Space Layout Randomization (ASLR) is to make data segments of the
target application and the exact memory address of gadgets unpredictable. Con-
trol Flow Integrity (CFI) introduced by Abadi et al. [1] calls for validation checks
for each control flow transfer. By constructing Control Flow Graph (CFG) stat-
ically and applying integrity checks at execution, CFI-based defense schemes
restrict policies of control flow transfer.

However, existing defense methods are either one-time effort or detecting
malicious behavior according to pre-defined policies, the ability to detect up-
to-date attacks is outdated. Code reuse attacks via remote code execution is
considered the most frequently used attack technique [4,31] in modern appli-
cation scenarios. The remote adversary manipulates a code pointer to create
memory disclosure and locates available gadgets for ROP attack. Equipped with
weapons to exploit 0-day vulnerability, these advanced attacks are able to break
existing defenses [4,6,7,15,31].

In order to capture these code reuse attacks, we propose HoneyGadget, a
deception based defense scheme just like Honey-Patches [3]. HoneyGadget inserts
honey gadgets as honeytokens to binary files of the target application and its
related libraries, then we can detect attacks at runtime if inserted gadgets are
executed. We have implemented a prototype of HoneyGadget on x86-based Linux
platform. The experiment results show that the HoneyGadget incurs a modest
overhead of 7.61% on average.

In summary, our main contributions of this paper include:

1. We propose HoneyGadget, a deception based ROP detection scheme, which
provides a new method to capture ROP attacks.

2. We propose novel techniques combining constructing gadgets, inserting gad-
gets automatically and runtime ROP gadget chain detection method to
achieve a ROP detection scheme.

3. We have implemented a prototype of HoneyGadget, and our evaluation shows
that HoneyGadget achieves high accuracy with low overhead, proving our
scheme practical.

The rest of this paper is organized as follows. We begin in Sect. 2 by intro-
ducing background knowledge on existing ROP attack methods and relative
defenses. In Sect. 3, we detail our threat model and assumptions. The basic idea
of HoneyGadget and the concrete implementation are illustrated in Sects. 4 and
5 respectively. We evaluate our system in Sect. 6. Related works are given in
Sect. 7, and conclude in Sect. 8.
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2 Background

2.1 Return-Oriented Programming

Return-Oriented Programming (ROP) is a typical code reuse attack. The main
idea of ROP is chaining gadgets in the binary files of the target application
as attack payload. Gadgets chosen for gadget chain are usually short with no
more than 6 instructions [10] to avoid unplanned adjustment to pointers or reg-
isters. Each gadget in the attack payload is responsible for performing one or
several steps of computation, such as loading argument from a specific register
or performing arithmetic operations [8]. Triggered by an inconspicuous vulner-
ability, stack buffer overflow for example, control flow of the target application
is hijacked. Together with the deployment of ROP defense schemes in modern
system, ROP based attack techniques update correspondingly [6,7,15]. These
attack techniques utilize flaws in control flow transfer policies, and bring defense
schemes false negatives. Flexible and powerful, these features make ROP a state-
of-art attack technique.

In modern application situations, except from software on the local host,
applications and services provided by remote servers become a growing trend [3,
13,27]. Correspondingly, attacks on those remote hosts based on remote code exe-
cution and code reuse techniques appear [4]. Based on the feature that servers do
not rerandomize the address space layout after a crash under particular circum-
stances, BROP rewrites every single byte of stack canary after several attempts,
and this corrupts stack integrity protection. The adversary then invokes write
to dump more available gadgets in process memory. BROP enriches the arsenal
of remote attackers and expand the attack surface of code reuse attacks.

2.2 Last Branch Record

Last Branch Record (LBR) provides a way to trace the execution control flow
of a program, as it can log the branch information executed in a looped buffer
at real-time. CPU can record the execution pace parallel at execution, and it
incurs no slowdown. The length of the looped buffer is limited. For an Intel
Haswell CPU, the length is set to 16, indicating that LBR can record the past
16 instruction branches executed. For an Intel Skylake CPU, LBR can record
the last 32 executed instruction. While the looped buffer of LBR is filled, the
newly recorded branches overwrite the old ones [16]. The functionality of LBR
is enabled/disabled by certain model-specific registers (MSRs). The access to
MSRs requires kernel privilege, which makes the status of LBR transparent to
programs running in user space.

3 Threat Model and Assumptions

HoneyGadget aims to capture attack patterns of ROP attacks from both local-
host and remote attackers. To ensure that our scheme is practical, we define our
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threat model based on strong yet realistic attack assumption. With attack mod-
els in previous literature [4,6,7,15] and application scenarios of HoneyGadget,
we generate the threat model as follows.

We assume the target application has at least buffer overflow vulnerability
and the adversary has ready knowledge to exploit the vulnerability. The adver-
sary is allowed to exploit the vulnerability repeatedly and can use automatic
gadget generating tools to locate available gadgets and construct attack pay-
load.

For remote side, we assume servers restart their worker processes after a
crash and do not change their address space layout. Currently, servers such as
Nginx and Apache are compatible with this feature. We further assume that the
adversary is allowed to overwrite a variable length of bytes including a return
instruction pointer [4]. These assumptions mean that the adversary can mount
BROP attack successfully.

We assume the operating system enables standard defense mechanisms such
as W ⊕X and ASLR by default. However, as HoneyGadget focuses on capturing
the malicious behavior of adversaries, methods aim to stop unintended control
flow transfer such as CFI are disabled.

4 HoneyGadget

In this section, we describe the architecture of HoneyGadget. We first introduce
the overview of our scheme, then we give out the detail of each component of
HoneyGadget.

4.1 Overview

HoneyGadget owns two main components: static processing module and runtime
checking module (see Fig. 1). The static processing module is responsible for (1)
source code iteration and locating places to insert honey gadget as honeytokens;
(2) generating gadgets that meet the requirement of potential code reuse attacks
and (3) gadget insertion. After processed by the static processing module, the
input file together with secured libraries are then taken over by runtime checking
module. The runtime checking module of HoneyGadget (1) maintains address
list of inserted gadgets and a pre-defined sensitive function list, and (2) performs
runtime monitoring of execution. At last the output file is provided to local users
and remote users. The output file has no interference on normal operations.
However, those inserted honey gadgets are tempting but dangerous traps for
attackers.

4.2 Static Processing Module

As we mentioned, the key idea of HoneyGadget is deception. Based on the obser-
vation of attack principle of code reuse attacks, we draw a conclusion that those
attacks assemble gadgets into attack payload and hijack the control flow of victim
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Fig. 1. Overview of HoneyGadget.

program no matter attack trick transforms. Thus, we can insert honey gadgets
that meet the requirement of code reuse attacks as honeytokens. In order to
avoid potential altering of execution flow caused by our gadgets, HoneyGadget
inserts them to places where benign control flow would never reach.

In general, we summarize these places into two categories, which are opaque
instructions [23] and function outlet.

Type I: Opaque Instruction: Opaque instructions have been used in
software protection extensively. By setting predicates according to the value of
invariant, context or execution result, opaque instruction is designed to clutter
the control flow graph and it can redirect execution flow to a certain path.

Type II: Function Outlet: Code spaces right after function outlets is
another case. The outlet of a function can be identified with the ret instruc-
tion and normal execution flow would never reach code segments right after
ret instruction. However, inserting honey gadgets right after ret will grant
the function with multiple outlets. Automatic gadget generating tool such as
ROPEME [21] and ROPgadget [28] will regard the second function outlet as a
fake one and discard it. In order to separate honey gadgets from existing func-
tion outlets, the static processing module selects instruction nop to complete
this task. Those inserted nop sequences form interspaces between original outlet
and the inserted gadget, and it confuses the automatic gadget generating tool.

Due to the poor alignment on x86 platform, unintended gadgets enrich
attackers’ options on their way to construct gadget chains. In order to elimi-
nate potential unintended gadgets, HoneyGadget randomizes source code layout
by randomly inserting nop instructions (0x90) before each assembly instruction.
Shown in Fig. 2, by inserting a nop sequence between instruction “mov [ecx],
edx” and “add ebx, ebx”, the unintended gadget disappears. We will introduce
the detailed implementation of inserting nop instructions and gadgets in Sect. 5.

For each honey gadget inserted, the static processing module records the
offset to the start of the source code file in a formulation of address list. The
address list is then maintained by runtime checking module during executions.
Finally, the static processing module gives out a sensitive function list. The list
contains function calls that can elevate privilege or perform arbitrary execution
such as execve() and setreuid().
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Fig. 2. The layout of instruction sequence after nop insertion.

4.3 Runtime Checking Module

Gadgets inserted are independent from existing code segments in source code,
and there is no legal control flow transferred to them. Thus, it is most likely trig-
gered by malicious attackers once the inserted gadgets are executed. Runtime
checking module is designed to check whether there are inserted gadgets in exe-
cution branches of CPU. When loading application, ASLR randomizes the space
layout of the application. Thus, in order to have an accurate record of honey
gadgets inserted, the runtime checking module updates the saved address list.
This module adds the base address of code segments with offsets of each honey
gadget when the application is loaded. This maintenance procedure is done in
kernel space, which is also transparent to user level applications.

Based on the observation that malicious executing code will eventually need
to perform system calls to achieve something meaningful, the static processing
module pre-defines a sensitive function call list and saves it in the kernel module
together with the address list. While the target application is about to perform a
sensitive function call, the runtime checking module pauses the execution of the
target application and reads from the looped buffer of LBR. Then the runtime
checking module compares the recorded instruction addresses with maintained
address list. If one or more record matches, HoneyGadget confirms a ROP attack.

5 Implementation

In this section, we detail the implementation of our HoneyGadget, and give
algorithms on gadget insertion and nop insertion.

5.1 Honey Gadget Insertion

Since HoneyGadget is a deception based defense scheme trying to confuse the
ROP attacker by inserting honey gadgets. It turns out that the place where the
gadgets are inserted, the number of inserted honey gadgets and types of those
gadgets are the main factors that affects the effectiveness of HoneyGadget.

Places of Honey Gadget. The place to insert gadgets should be carefully
arranged. Inserting gadgets inside normal instruction sequences may conflict
with benign execution. For example, the gadget which modifies register eax may
change the return address of benign execution flow. Consequently, the gadgets
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should be placed to unreachable execution paths. However, the diversification of
unreachable execution path should be guaranteed to avoid those honey gadgets
from identification. We generate those places in two types: opaque instructions
and code spaces right after function outlet.

Function Outlet: As mentioned in Sect. 4, inserting gadgets directly after
ret instruction will grant a function with multiple outlets. In this case, automatic
gadget generating tool will recognize the fake gadget discard it. In HoneyGadget,
we insert nop instructions to space out the two outlets as a disguise. After
analyzing several frequently used dynamic libraries including glibc and ld, we
noticed that there are several nop instructions between basic blocks. The number
of nop instruction is between 5 to 40. Thus, we disguise those inserted gadgets
as normal code segments by inserting 5 to 40 nop instructions after ret.

Fig. 3. Layout of code segment after inserting honey gadget.

Opaque Instruction: For opaque instructions, there exists three different
types, which are invariant opaque predicates, contextual opaque predicates and
dynamic opaque predicates [23]. In HoneyGadget, we focus on locating invariant
opaque predicates in the source code. Due to its easy deployment, it is the most
frequently leveraged opaque predicate [23]. HoneyGadget uses KLEE [32] to per-
form symbolic execution. KLEE is built on top of LLVM compiler infrastructure
with a symbolic virtual machine engine. During this procedure, KLEE engine is
responsible for locating the unreachable path and iterate to the end of this path.
Following the end of the path, a gadget is inserted. The layout of code segment
after inserting gadgets and nop instructions is shown in Fig. 3.

Insertion Algorithm. The honey gadget insertion algorithm is given in
Algorithm 1. HoneyGadget randomly inserts nop instructions and gadgets after
functions in source code at the probability of pGadget. For each insertion place,
static processing module generates a random number pRand. If requirements
are met, static processing module first inserts several nop instructions, then it
randomly chooses a set of operation instructions such as call, mov or sub and an
ending instruction to construct a gadget. To be noticed, HoneyGadget is able to
generate all types of gadgets. This makes those honey gadgets inserted applica-
ble for constructing a gadget chain. The length of generated honey gadget is no
more than 6 instructions.
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Algorithm 1. Honey gadget insertion
Input:

(1) The list of functions and opaque instructions, FList;
(2) The probability of insertion, pGadget;
(3) List of candidate operation instruction, operationTypeTable;

Output:
The list with deception gadgets inserted, FList.

1: numOperationTypes ← operationTypeTable
2: for F ∈ FList do
3: pRand = random (0,1)
4: if pRand ¡ pGadget then
5: i = the ret instruction of F
6: numNOP = random (5,40)
7: insertAfter (i, nop, numNOP)
8: i ← i.next (numNOP)
9: nOpt = random (1,5)

10: for index from 1 to nOpt do
11: optIndex = random (0, numOperationTypes)
12: insertAfter (i, operationTypeTable [optIndex])
13: i ← i.next
14: end for
15: insertAfter (i, endRet)
16: end if
17: end for
18: return FList

5.2 Insert nop

As presented in Sect. 4, HoneyGadget randomizes code layout by randomly
inserting nop before each instruction, this procedure can eliminate potential
unintended gadgets.

Similar with gadget insertion procedure, during nop insertion procedure,
static processing module traverses each instruction from the first line in source
code. For each instruction traversed, the module generates a random number
pInsert. If pInsert is less than pNop defined previously, static processing module
inserts a nop ahead of the instruction.

5.3 Trigger Detection

Runtime detection module of HoneyGadget leverages LBR to monitor execution
states of instruction branches. Runtime detection module reads LBR buffer by
using privilege instruction rdmsr and wrmsr. For an Intel Skylake CPU, the
buffer of LBR can record last 32 executed instructions.

HoneyGadget pre-defines a sensitive function list containing function calls
that can elevate privilege or perform arbitrary execution such as execve() and
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setreuid() during static processing procedure. It will trigger runtime detection
mechanism if one of the sensitive functions is called. While the detection mech-
anism is invoked, HoneyGadget pauses the execution of the target application.
Then runtime checking module sends the privilege instruction rdmsr to ker-
nel to read LBR buffer. After reading the 32 recorded instructions, the module
leverages binary search algorithm to search if there exist one or more recorded
instructions match with items in the address list. Since only malicious execution
flow can reach inserted gadgets, those addresses in the address list shall never
appear in LBR record during normal execution.

6 Evaluation

In this paper, we evaluate the space cost of inserting nop instructions and gad-
gets, effectiveness and performance of HoneyGadget. We implement HoneyGad-
get on Ubuntu 12.04 with 4 GB available memory. The machine equips an Intel
Skylake i5-6500 CPU. And the deployed LLVM and Clang version are both 3.5.2.

6.1 Effectiveness

In order to evaluate the effectiveness of our scheme, we verify HoneyGadget
with real ROP attacks under two real world vulnerabilities. During these tests,
pNop and pGadget are both set to 50%. Results of these tests indicate that
HoneyGadget can prevent ROP attacks effectively.

Proof of Concept. In the first test, we test HoneyGadget on a small program
containing a stack buffer overflow vulnerability. By inputting long parameters,
the vulnerability is triggered and can be then utilized to launch a ROP attack.
We use the automatic ROP gadget generating tool ROPGadget [28] to search
available gadgets and randomly choose them to construct a ROP gadget chain.
We repeat this test 50 times and report the final results. Among the 50 repeated
tests, 49 of them used at least one of the inserted gadgets to construct the ROP
gadget chain. HoneyGadget captured all the gadget chains containing inserted
gadget with no false positive.

No-IP DUC. We also choose No-IP Dynamic Update Client (DUC) version
2.1.9 to conduct the test. The application fails to perform a boundary check
while invoke vulnerable function strcpy(). The exploit database Exploit-db gives
a ROP gadget chain example. We substitute gadgets in the gadget chain with
gadgets generated by automatic gadget generating tool. Similar to the first test,
we generate 50 gadget chains as ROP payload using different gadgets and 48 out
of them contains at least one inserted gadget.

Nginx Web Server. HoneyGadget performs a deception based defense on
remote code execution. Nginx web server is one of the most popular web servers in
real world application situations. However, the weak security enforcement makes
it vulnerable to a couple of attacks [4,14]. We exploit a simple stack vulnerability
on Nginx 1.4.0 (64-bit) to launch a BROP attack. We apply HoneyGadget on
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Fig. 4. Space cost and effectiveness evaluation.

Nginx server, and the scheme inserted honey gadgets that meets the requirement
of BROP attack automatically. We repeat BROP attack attempt 50 times, 46
out of them leveraged at least one inserted gadgets during stage 2 or 3 in attack
payload. As expected, our HoneyGadget can detect those attacks with no false
positive.

6.2 Memory Cost Evaluation

On loading the application, those inserted gadgets and nop instructions are
loaded into the memory together with the application. Consequently, memory
requirement of the target application inevitably increases. In our experiment,
we evaluate the extra memory requirement of nop insertion and gadget insertion
respectively. The insertion procedure increases the program binary size. We set
pNop and pGadget 50% as benchmark, the average increase in binary size is
8.41%. Increasement on binary file size has a positive relationship with insertion
probability.

Space Cost and Effectiveness Evaluation of Inserting nop. We use Hon-
eyGadget to process different applications and evaluate the space cost and effec-
tiveness of nop insertion. In this test, we set pGadget 50%. Inserting nop instruc-
tions into source code of the target application inevitably increases its size, and
the extra memory requirement has a linear positive relationship with nop inser-
tion probability. Figure 4(a) shows that it takes 1.31% extra memory space while
pNop is set to 0.1, and 10.84% extra memory cost while pNop is set to 0.9. On
the other hand, along with the increase of pNop, the possibility of corrupting
an unintended gadget raises. The dashed line in Fig. 4(a) gives the remained
unintended gadgets percentage. The percentage of remained unintended gadgets
drops from 82.13% to 3.72%.
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Space Cost and Effectiveness Evaluation of Inserting Gadgets. Similar
to the evaluation on nop insertion, in this evaluation procedure, we leverage same
applications to perform the evaluation, and pNop is set to 50% as benchmark.
It then takes about 1.71% extra memory when pGagdet is set 0.1, and the
memory consumption raises to 14.33% while pGadget is 0.9. Together with the
increment of pGadget, the scale of inserted gadget increases. The results of the
experiment show that with pGadget of 0.1, only 4.61% of gadgets are inserted.
The ratio increases to 19.74% for pGadget of 0.5, and to 34.82% for pGagdet of
0.9. Figure 4(b) shows the results.

6.3 Performance Overhead

To evaluate the overhead brought by HoneyGadget, we divide the evaluation into
2 phases. Corresponding to the architecture of HoneyGadget, the first phase is
static processing, and another one is runtime checking.

We set pGadget and pNop to 50% and evaluate performance overhead of
static processing phase by adding -time-passes argument. During the traverse
procedure, the module identifies all instructions, basic blocks and functions.
Thus, the larger the library size is, the longer time for static processing is needed.
Time for processing frequently-used libraries are shown in Fig. 5(a). The experi-
ment results meet this idea. As the results show, except from some huge libraries,
it takes about 30 s to process a dynamic library. For example, it takes 35.96 s
to process ld-2.23.so and 36.86 s to process liblzma.so. As for libraries with a
huge quantity of basic blocks and functions, processing these libraries requires
much time. Taking the library libc-2.23.so for an example, the time consumption
increases to 468 s. Although it does take some time to do the static processing
work, fortunately, operations in static processing phase is mostly a one-time
effort, for libraries can be shared by different applications.

Fig. 5. Performance overhead of HoneyGadget.
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For runtime checking phase, we evaluate the performance overhead by run-
ning a benchmark test using phoronix test suite [20] with optimization level
-O2. As we have introduced, those inserted gadgets are unreachable for benign
control flow, and they introduce no runtime overhead during execution. The
main performance overhead incured by honeygadget is to compare LBR records
when handling sensitive system calls. On the other hand, the nop instructions
we inserted will be executed. With more nop instructions inserted, the normal-
ized runtime overhead increases accordingly. In our experiment, we set pNop
50%, the evaluation results are shown in Fig. 5(b). HoneyGadget introduces an
average overhead of 7.61% which is less than Readactor++ (8.4%) and other
fine-grained CFI solutions.

7 Related Work

Address Space Layout Randomization (ASLR) is a representative mechanism to
defend ROP attacks. By re-allocating the space layout, ASLR changes the base
address of the application and its related libraries. However, a single memory
leakage vulnerability is enough to de-randomize the whole memory space.

Enhancement on ASLR is mainly on re-randomization and applying fine
granularity. For example, ASLP [19] randomizes the target application at the
function level, Remix [9] randomizes the address space at basic block level, and
ILR [17] realizes randomization at instruction level. Bigelow et al. promoted
a timely randomization scheme to re-randomizes address layout during execu-
tion [21]. Although these fine-grained ASLR significantly increase the difficulty
for attackers to locate useful information in memory, it also brings extra time
consumption and memory allocation.

Inserting some instructions in the program that do not affect the execution
of the program can also increase the difficulty for the attacker to obtain internal
information of the program. kGuard [18] uses a nop sled to change address loca-
tions, but they only do this to protect and diversify the kernel. HoneyGadget
randomly inserts nop instructions and gadgets to source code of the target appli-
cation and its related libraries. As mentioned in Sect. 5, the diversity of gadget
types and inserted places makes attackers hard to distinguish inserted gadgets
from original ones. Moreover, the maintained address list is in kernel space, this
makes the address list transparent to adversaries and immune to information
leakages in application layer.

Though the strict control flow transfer check mechanism is able to mitigate
potential control flow hijacking, CFI poses an unacceptable overhead of more
than 20%. In order to make CFI practical, a few coarse-grained mechanisms
based on CFI are proposed. Coarse-grained CFI mechanisms relax the limitation
of legal indirect control flow transfers, and simplify the checking method. Com-
pared with fine-grained CFI, coarse-grained CFI mechanisms such as CCFIR [34]
and binCFI [35] loose the indirect control flow checking policy and reduce over-
head to an acceptable level. However, the loose checking policy brings potential
vulnerabilities.
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Another way to reduce overhead of checking the validity of control flow trans-
fer is based on hardware. Liu et al. introduced a CFI enforcement using Intel
Processor Trace [22]. Compared to using IPT to trace the execution path, CPU
is able to read LBR registers parallel at execution. This feature makes LBR a
more efficient way to log instruction branches of the application. Kbouncer [25]
uses LBR to detect ROP attacks. ROPecker [10] also leverages LBR to optimize
performance overhead. During offline processing procedure, ROPecker identi-
fies potential gadgets and saves them in Instruction & Gadget database (IG).
ROPecker reads LBR buffer and analysis executed gadgets in IG, then it indi-
cates following instructions by simulating execution. If the number of gadgets
reaches the limit, ROPecker warns user of ROP attack. HoneyGadget also uses
LBR to record execution branch of the target application. However, different
from these two approaches, the main idea of HoneyGadget is tempting adver-
saries to launch attacks by inserting gadgets to binary code. The behavior of the
attacker is then captured and logged by host.

Booby trap [11] is a mechanism to actively detect and respond to attacks
against a target application proposed by Crane et al. The main idea of booby
traps is as follows: in a diversified application, code sequences (the actual booby
traps) are added that trigger an active response, such as terminating the pro-
gram or generating an alert. Readactor++ [12] inserts booby traps in both PLT
and vtables to mitigate blind probing of table entries. HoneyGadget inserts nop
instructions and honey gadgets to confuses adversary with traps. Compare to
Readactor++, our HaneyGadget is more active and has a greater chance of
getting attackers into the traps.

8 Conclusion

In this paper, we present a deception based ROP defense scheme named Hon-
eyGadget. By inserting nop instructions and honey gadgets, our HoneyGadget
confuses adversary with traps. HoneyGadget maintains an address list record-
ing addresses of inserted gadgets in kernel space and defines a set of sensitive
function calls. Once executing the sensitive function call, HoneyGadget pauses
execution of the target application and reads LBR buffer to check if recorded
instruction branches match with addresses in address list. If the record matches,
HoneyGadget alarms a potential ROP attack. Our evaluation shows that Honey-
Gadget incurs an acceptable runtime overhead of about 7%. Compared to other
ROP defense mechanisms, the key idea of HoneyGadget is deception, which is a
brand-new method to detect code reuse attacks.
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Abstract. Recent studies have highlighted the vulnerability and low robustness
of deep learning model against adversarial examples. This issue limits their
deployability on ubiquitous applications requiring a high level of security such
as driverless system, unmanned aerial vehicle and intrusion detection. In this
paper, we propose latent encodings transferring attack (LET-attack) to generate
target natural adversarial examples to fool well-trained classifiers. In order to
perturb in latent space, we train WGAN-variants on various datasets to achieve
feature extraction, image reconstruction and image discrimination against
counterfeit with good performance. Thanks to our two-stage procedure of
mapping transformation, the adversary performs precise and semantic pertur-
bations on source data referring to target data in latent space. By using the critic
in WGAN-variant and the well-trained classifier, the adversary crafts more
verisimilar and effective adversarial examples. As shown in the experimental
results on MNIST, FashionMNIST, CIFAR-10 and LSUN, LET-attack can yield
a distinct set of adversarial examples with partly data manifold targeted transfer
and attains similar attack performance against state-of-the-art models in different
attack scenarios. What is more, we evaluate LET-attack on the characteristic of
transferability in different classifiers on MNIST and CIFAR-10 respectively, and
find that the adversarial examples are easy to transfer with high confidence.

Keywords: Adversarial example � Mapping transformation � Black-box
attack � Transferability

1 Introduction

In recent years, deep learning has made great progress in the fields of computer vision
and natural language processing. With its advantages of no need to manually extract
features from raw datasets, deep learning is widely used in many high secure-
requirements scenarios such as driverless system, unmanned aerial vehicle, robotics,
and intrusion detection. At the same time, the security problems of deep learning based
on adversarial examples is gradually becoming a research hotspot [1–3]. Although deep
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learning has achieved phenomenal success in dealing with complex problems, recent
studies have highlighted the vulnerability of various deep learning models to adver-
sarial examples, targeted crafted by adversary to fool a well-trained model to mis-
classify with high confidence, which putting the applications with high security-
requirements into a colossal security bungle [4–6].

The low robustness of deep learning models against adversarial examples is con-
firmed in physical world [7]. For instance, the perturbations is added to the input
against autopilot and face recognition system. Most attacks occur in the inference
process by contaminating input data with no effect on human judgment, such as posting
malicious stickers on road signs to mislead the driverless system to identify the stop
sign as a speed limit sign with great confidence [8]. In face recognition system, when
the invisible but malicious perturbation is added to the input data, such as wearing
lipstick [9], the accuracy of face recognition has dropped dramatically.

The methods of generating adversarial examples are known as the attacks against
deep learning models. Attacks are generally classified into untargeted attacks and
targeted attacks [3]. Untargeted attacks generally refer to an attack in which the original
label changes after adding a well-crafted perturbation to the input. By contrast, targeted
attacks need targeted label change. After being compromised by adversarial examples,
poorly interpretable deep learning models are unable to explain the cause of the
problem and the characteristic of adversarial subspace because of its end-to-end
property. So reference [10] improves the robustness and interpretability by regularizing
their input gradients. Meanwhile, many attempts have been to design a secure defense
against adversarial examples to achieve high robustness and resistance against adver-
sarial examples. General defense algorithms focus on modifications to the parameters
of target model [11, 12] and attachment for target model with additional adversarial
example detection modules [13–16]. Up to now, even a great many of detection
algorithms have been implemented [13, 15, 16], the intrinsic characteristics of adver-
sarial examples against normal data are still ambiguous. So there is still a great limi-
tation on adversarial detection.

All of the above algorithms of attacks and defenses are based on imperceptible and
unnatural adversarial examples. Limited by L1, L2-norm, most of the existing attacks
are performed in input space with the access of target model, and lack of interpretation
of their intrinsic properties. The perturbations crafted with the help of internal infor-
mation looks like unnatural and lack of unambiguous semantics. So the search in latent
space for adversaries is to generate natural adversarial examples without internal
information of target model [17]. But it still exists large limitation on the target-
direction search for adversaries due to the semi-random noise attached to the latent
encodings of source data. What is more, the adversarial examples they craft are still of
low quality.

In this paper, we introduce a framework of WGAN-variant referring to WGAN [18,
19] to achieve mapping transformation by using different reconstruction metrics, and
our LET-attack generating targeted adversarial examples with more precise and natural
perturbations by using the components of the pre-trained WGAN-variant. The algo-
rithm is based on black-box attack to craft targeted semantic adversarial examples.
Figure 1 provides an example performed in MNIST dataset to fool LeNet-5.
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Equipped with this perspective, we make the following contributions.

• We introduce a two-stage training process of generator to achieve mapping trans-
formation between input space and latent space by using different distance metrics.
We use an Encoder-Decoder block and a Decoder-Encoder block to perform image
reconstruction and feature extraction. The Reconstruction error of R x; x

0� �
uses L2-

distance and R z; z
0� �

uses L1-distance. By using L2-distance, the reconstructed
image looks like real image. By using L1-distance, it contributes to the feature
disentangle in latent space.

• We use the given pre-trained classifier and the critics to generate targeted and
natural adversarial examples. Whether the process of data manifold transfer makes
the label change from origin to target is determined by the given classifier. Whether
the generated adversarial example looks like real is determined by the pre-trained
critic. The above two sub-nets ensure the great quality of the targeted natural
adversarial examples.

• The adversarial examples crafted by our attack mislead target models with high
confidence and they are easy to perform black-box attack to fool other well-trained
classifiers with great transferability.

The rest of this paper is organized as follows. In the following section, we provide a
survey of related works that we analyze their advantages and disadvantages to lead to
our LET-attack. In Sect. 3, we provide a framework of WGAN-variant to achieve
mapping transformation, and our targeted LET-attack. We present the process of data
manifold transfer and our experimental evaluation on various datasets in Sect. 4. In
Sect. 5, we show the great transferability of our adversarial examples in various pre-
trained classifiers. Finally, we conclude with a discussion and future studies in Sect. 6.

2 Related Work

In this section, we introduce four categories of recent studies on adversarial attacks:
gradient-based attacks, score-based attacks, transfer-based attacks, decision-based
attacks and FCN attack.

Fig. 1. (b) is the subtraction between source data(a) and target data(c). After the process of our
attack finished, (e) is the target adversarial example we craft, and (d) is the subtraction between
(a) and (e). By (d) we can find that the targeted perturbation is more natural and prone to mislead
pre-trained LeNet-5 on MNIST, but still remaining positive identification by human.
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2.1 Gradient-Based Attack

By accessing the gradient of target model to inversely increase loss function, Gradient-
based attacks are completely easy to craft non-targeted and targeted adversarial
examples. Common gradient-based attack algorithms are as follows: fast gradient sign
method (FGSM) [2] is based on the hypothesis about linear interpretation to craft
adversarial examples via one-step operation. Basic iterative method (BIM) [7] uses
iterative steps to craft more exquisite adversarial examples. Jacobian-based saliency
map attack (JSMA) calculates the significant point scores of each pixel to find the
pixels affecting the accuracy of classification most, by setting limitation about the norm
of perturbation [20]. Up to now, Carlini and Wagner attack becomes one of the most
effective attack algorithms by using modified objective function to generate adversarial
examples in different levels of confidence [21].

2.2 Score-Based Attack

Score-based attacks belong to black-box attack. Whether the model is sensitive to the
change of pixel value is determined by replacing the pixel value of input image with
maximum or minimum, which is based on the change of output probability of label
prediction [22, 23].

2.3 Transfer-Based Attack

In transfer-based attacks, the adversary feeds local data to the target model to obtain
information feedback, such as the data similar to the training set with high correlation,
and crafts a substitute model to generate adversarial example. It only depends on the
data, not on the target model instead [24].

2.4 Decision-Based Attack

Decision-based attacks belong to black-box attack. Relying only on the final output of
the model and minimizing the norm-based adversarial examples, decision-based attacks
implement a kind of more effective and imperceptible attacks [25].

2.5 FCN Attack

FCN attack is based on the adversarial transformation networks [26] to generate
adversarial examples that minimally perturb the original input to fool the classifiers.
FCN attack uses multi-target training, multi-task training and gradient hints to perform
the attack. By using the models they pre-trained, they craft target adversarial examples
fast and precisely.

With the continuous evolution of the attack algorithms, it requires less information
of target model and its perturbation is becoming more exquisite and imperceptible [25].
The above-mentioned attack algorithms achieve the destruction against accuracy of the
target model to a certain extent. However, there are still large limitation in practice.
First of all, the white-box attacks need to obtain internal information of target model to
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generate adversarial examples by using the gradient of target model, mining the “blind
spot” in deep learning models [1]. By adding the adversarial examples of blind spots to
adversarial training, target models are fitting the decision boundary better. Adversarial
training provides additional regularization benefits for target model, and improves the
robustness of adversarial examples. However, the adversary generally has no access to
internal information to perform this kind of attack. Therefore, the white-box attack is
only effective on the adversarial examples crafted by using internal information on
laboratory setting, not impressively practical in actual scenarios. Secondly, the black-
box attacks mentioned above require a large number of times to access target models to
indirectly acquire model information, such as model structure or training data [24].
This kind of attack is limited by the times of access, so it also has large limitation on the
mentioned black-box attacks. Last but not least, there is a similar problem exiting in all
of the above attack algorithms. Although the influence of the malicious perturbation on
target model is obviously great, the perturbation added to the input is unnatural. In
other words, the pixel-uncorrelated perturbation is not semantic in human observation.
Therefore, the uninterpretable adversarial subspace the adversary revealing is not clear
and sufficient. Besides, most of the attacks do not work when the model is deployed to
real scenes. The attacks with obviously semantic perturbation are more common in
practice, such as slight image rotation and image saturation adjustment, causing the
target model to make different decisions [1].

There is an obvious defect that the present various deep learning models only
extract black-box features from input data, and fail to understand the input in a deeper
way. It leads to the malicious perturbations with imperceptibility in human to destruct
the accuracy of target model. But it does not exist such a kind of perturbations in
reality. Therefore, the study focusing on how to generate natural adversarial examples
with semantic perturbation is becoming gradually meaningful [24, 27]. Reference [17]
using latent encodings iteration or recursively tightening search to find natural
adversarial examples makes great progress, but fails to generate targeted adversarial
examples with reference to targeted data. What is more, the quality of the adversarial
example generation is not stable enough.

3 Latent Encodings Targeted Transferring

In this section we describe the framework of WGAN-variant and latent encodings
targeted transferring algorithm (LET-attack). Based on the idea of Wasserstein GAN,
we combine an encoder with a decoder as a generator in WGAN, and introduce a critic
to determine whether the image generated by generator is real. The pre-trained gen-
erator is capable of mapping between input space and latent space. Finally, we intro-
duce the LET-attack to perform a targeted semantic adversarial attack without the
access of internal information in target model.

3.1 Generative Adversarial Networks

Generative Adversarial Networks (GAN) is an emerging kind of generation model,
consisting of generator model G �ð Þ and critic model C �ð Þ. Given a large number of
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unlabeled data from training set and a prior distribution of latent encodings z, the GAN
model learns to represent z in input space through the Max-min game training. Whether
the image generated by generator is real is determined by the critic. The training
process continues to alternately optimize G �ð Þ model and C �ð Þ model until reaching the
Nash equilibrium. At this point, the critic can hardly discriminate whether the data is
generated from generator or sampled from training set. The objective function can be
described as:

W Pdata;PGð Þ � min
G

max
C

V C;Gð Þ ¼ Ex�Px Cw½ � � Ez�Pz Cw G zð Þð Þ½ � ð1Þ

Cw is the critic to determine whether the image generated by G is real. After
training the G and the D iteratively, PG is almost close to real data distribution Pdata.

In this paper, we use the framework of WGAN to provide a stable training process
with the replacement of objective function and some tricks in WGAN [18, 19].

3.2 Mapping Transformation WGAN-Variant

To perform an effective adversarial attack in latent space, it is necessary to map
between input space x and latent space z. During the process of feature extraction and
image reconstruction, it is required that we retain original information of source data as
much as possible. Therefore, we introduce generative adversarial networks to meet this
requirement. We refine the framework of WGAN as WGAN-variant in Fig. 2:

The WGAN-variant consists of two parts, one is the generative model combined
with an Encoder and a Decoder, and the other is the discriminator model named Critic.
Firstly, we feed instance x from training set into an Encoder-Decoder block, calculating
the reconstruction error between x and x

0
. And then we feed z from Gaussian distri-

bution into a Decoder-Encoder block, calculating the L1-distance between z and z
0
.

Finally, we minimize (1) by different weights on the distances in generator-training step
to fool the critic. In critic-training step, we use x

0
from the prior z to determine whether

the image generated by Decoder is real. By reasonably setting representation dimen-
sions, we obtained well-performed WGAN-variants to perform feature extraction and
image reconstruction on various datasets.

Fig. 2. The process of generating verisimilar data includes two parts. One is image
reconstruction from x to x

0
, another is feature extraction from z to z

0
. (1) combines the distances

between x and x
0
, z and z

0
in L2 and L1 metrics. The critic tries to discriminate generated data from

the whole dataset by minimizing (2).
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3.3 LET-Attack

We hypothesis that there is little overlap between source and target data manifold in
original high-dimension input space, but a part in latent space. When increasing the
overlaps or decreasing the distance between source and target manifold in given latent
space, we try to search adversaries with normal-data manifold targeted transferring to
adversarial targets. After the partly transferring latent encodings mapping into input
space, we enlarge the overlaps between source and target data manifold. The concrete
process is as follows.

After the training process of WGAN-variant, we perform LET-attack on different
datasets. Given a local image pre-trained classifier on the dataset with high classifi-
cation accuracy, we select a group of source and target data with their correct labels in
training dataset. The source data xsource and target data xtarget are mapped into the fixed
latent space from input space by the Encoder to get their latent encodings:

zsource ¼ Enc xsourceð Þ ¼ a 1; . . .; a i; a n½ � ð2Þ

ztarget ¼ Enc xtarget
� � ¼ b 1; . . .; b i; b n½ � ð3Þ

Giving a transferring step size R, we iteratively search the decision boundary in
latent encodings of source data transferring to target data until the label of source data
changes to targeted label:

zadv ið Þ ¼ zadv i�1ð Þ þR� distance zadv i�1ð Þ � ztarget
� � ð4Þ

xadv ¼ Dec zadv ið Þ
� �

; when yadv is ytarget ð5Þ

zadv ið Þ is the intermediate product of the process of manifold transferring. Every
transferring step needs decoding the zadv ið Þ to determine whether the attack is
completed.

The process is shown in Fig. 3.

Fig. 3. The process of LET-attack. The subtraction between source and adversary is much
smaller than the original subtraction after the process of transfer.
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When targeted latent-space transfer in each iteration is performed and the adver-
sarial latent encodings are mapped back to the input space, the adversary is classified
by the given classifier. The adversary returns to the process of transfer when it fails to
change its label to target. After the label of adversarial example calculated by the given
classifier target changes and it looks like real judged by the critic, the process of search
iterations is finished. The adversarial examples generated in this way is partly changed
in some semantic local features, but with its original identification maintained in human
perspective. In other words, it changes slightly without misleading the perception of
human, but a lot in deep learning models.

The process of targeted latent-space transfer dynamically reduces the distance
between latent encodings mapped from source data and target data step by step to
generate targeted semantic adversarial examples. Here is the pseudo-code of our LET-
attack:

Algorithm: Minimal version of the LET-attack

Require: a dataset X of image classification, a classifier f pre-trained on the da-
taset
Hyperparameter: representation dimension z , transferring step size R , maximum 
transferring steps n
Input: sourcex , targetx , sourcey , targety

1. Use Mapping transformation WGAN-variant in 3.2 to train an Encoder enc , a 
Decoder dec and a Critic c on target dataset.

2. select a corpus of sourcex , a corpus of targetx with different label

3. initialize advz with sourcez , ( ) ( )0source sourceadvz z enc x= = , ( )target targetz enc x= ,

source targetz z z= − , 0i = .

4. while targety y≠ , do

5. partial transferring, ( ) ( )1adv i adv iz z z R+ = + ×

6. ( )( )1adv ix dec z += , ( )y f x=

7. 1i i= +

8. if reach maximum iteration n , then

9. break

10. ( )1source adv iz z += , update z

11. if advx looks like real judged by the critic, then

12. return advx x= , where targety y=

13. else reject the adversary, return None
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4 Experiment

We apply the algorithm we proposed in sect. 3 into various datasets including MNIST,
Fashion-MNIST, CIFAR-10 and LSUN. The given classifiers are pre-trained on var-
ious datasets with high accuracy. The results of our attack performed on various
datasets are as follows.

4.1 Process of Data Manifold Transfer

As is shown in Fig. 4, the process of data manifold transfer is demonstrated and
explained on MNIST, which process of transferring is obviously clear. Taking the
number 3 as the source data and the number 7 as the target data, it can be seen that the
process of data manifold transferring is gradually closer to target data manifold without
dropping its original identification in human perception. During the process, the label is
not directly changed from 3 to 7 while via 3, 2, 8 and 7. Furthermore, there are some
similarities between 2, 3 and 8, such as a length of arc in the same position. In contrast,
the process of data manifold transferring from 9 to 4 is directly changed.

Based on the above examples we demonstrated, we make following explanations:

(1) The decision boundary of target model in high-dimension input space is not
sufficiently regular.

(2) The distance between classes with local semantic similarity is not large enough.
(3) The given classifier exits clearly under-fitting or over-fitting adversarial subspace

between the classes with local semantic similarity.

In the process of data manifold transfer, there is another special phenomenon
aroused our interest that the value of hyper-parameter R has a great impact on the
process. As is mentioned in the process of 3 to 7 manifold transfer, the latent manifold
in the first 10 dimensions in Fig. 5 is almost like the data after only 20 iterations when
R ¼ 0:1. But when the step size R is adjusted to 0.01, we find tighter adversarial
subspace such as 2 and 8. Therefore, we can search for tighter adversarial subspaces by
using smaller step size R to find under-fitting or over-fitting decision boundaries. But it
also causes an increase in the computational cost due to the increased number of
iterations.

Fig. 4. The first row shows the process of indirect transfer via 3, 8, 2, 3 to 7 while the second
row shows the direct transfer from 9 to 4.
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The success rates of our attack on LeNet-5 trained on MNIST in different R are as
follows. A success attack means the adversarial example keeping its original identifi-
cation in human observation makes a given classifier targeted misled.

Above Table 1 we find that the success rate of attack reaches 93% when R ¼ 0:01,
which is little different in success rate with the result of R ¼ 0:005 and R ¼ 0:001. But
they need more iterations steps to reach the decision boundary with much more times
of access to the given classifier.

4.2 Experiments on Various Datasets

After training classifiers and WGAN-variants on MNIST, FashionMNIST, CIFAR-10
and LSUN, we obtain four sets of pre-trained classifiers, encoders, decoders and critics,
each of the encoders and decoder perform feature extraction and image reconstruction
well on target dataset. Given all the preparations above, we apply our attack on various
datasets to take a look.

(1) MNIST & FashionMNIST
The accuracies of pre-trained LeNet-5 classifiers on the datasets are 98% and 85%
respectively. Handwritten digits have relatively clear and simple semantic information,
so the effect of our attack performed on MNIST is obvious. Figure 6 shows that under
the given target data manifold, the process of data manifold transfer is less unexpected
on MNIST and the effect on it is relatively intuitive.

Fig. 5. The visualization of latent manifold transfer from 3 to 7 in first 10 dimensions on
different R.

Table 1. Success rate and iteration steps in different R

R 0.1 0.05 0.01 0.005 0.001

Success rate 17% 46% 93% 95% 96%
Iteration steps 18 41 87 150 280
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FashionMNIST is an enhancement of MNIST with the same size but more local
features. When it performs well on MNIST, it is necessary to apply the same algorithm
into FashionMNIST. As a result, the source data targetedly changes its label with
changes its manifold partly and slightly. Moreover, there are some local similarities
between source and target data that are prone to perform our attack easily. For instance,
the transfer from sandal to sneaker and dress to top.

(2) CIFAR-10 & LSUN
After performing our attack on gray-scale image, we also apply it to the images with
RGB channels. As a consequence, the adversarial examples we craft only need slightly
semantic perturbation to targeted change its label, such as color saturation shift, color
change, and slight shape change.

In addition, we attack the open-source pre-trained classifier on LSUN with our
attack in Fig. 7. Limited by the larger size of image and computer power, we select
bedroom and dining room as our two categories to perform our attack. It can be seen
from the results that it exits broader adversarial subspace in the higher-dimension input
space.

4.3 Comparisons with Present Attacks

Comparing the adversarial examples generated by different attacks, we find that the
perturbations of excellent attacks at present focus on the region of main features.
But most of the attacks are merely search adversarial example in pixel-scale so that the
perturbations have no characteristic of semantics. Without the correlation of pixels, most

Fig. 6. The attack on MNIST from 2 to 1 and 6 to 5, on FashionMNIST from sandal to sneaker
and dress to top.

Fig. 7. The attack on CIFAR-10 and LSUN subsets. The attack on LSUN is only performed on
the subset of bedroom and dining room due to the limitation of our computational power.
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attacks at present are incapable to craft more effective perturbations that misleading
target model at the same time. In this paper, it turns out that the encoder is capable of
reasonably mapping the modified latent encodings into original space. And the critic
rejecting the unnatural adversarial examples in the end ensures that the adversarial
examples crafted by our attack is real and reliable with high-confidence deception.

Our attack is an excellent targeted black-box attack algorithm without the access to
target model for internal information by using target data manifold to search the
decision boundary to reduce computational cost. We can give a large R to evaluate the
image reconstruction at first. According to the feedback of the classifier, we can
dynamically adjust the transfer step R to a reasonable value. For instance, when the
label changes targetedly, we reduce step size R to perform a tighter search for more
precise decision boundary. Compared with latent space search attack, our attack using
target data manifold and R can reduce the times of access to target model largely to find
targeted adversarial examples in latent space with similar perturbation size and higher-
quality of reconstruction.

We also evaluate the confidence level of adversarial examples crafted by pixel-scale
attack such as FGSM and Carlini and Wagner attack (L2), and feature-scale attack such
as latent space semi-random search and our attack. We use standard model and distilled
model with temperature-augmented softmax of the type:

softmax x; Tð Þi ¼
exi=T

P
j e

xj=T
ð6Þ

We use the defensive distillation [14] to train a teacher network with temperature T.
And then, on the softmax outputs of the teacher we train a distilled network which is
same with the teacher. We use the temperature T ¼ 1 at test time to evaluate the
distilled network.

From Table 2 we can find that adversarial examples have high confidence to
mislead the standard model both on MNIST and CIFAR-10. But when the attack is
performed on the latent space search [17], the confidence is obviously lower than other
attacks including our attack. Besides, our attack remains at the same level of high
confidence as the FGSM and Carlini and Wagner attack. But when the distilled net-
works mask their gradient of the cross-entropy loss [28]: we decrease the temperature
of the softmax at test time in order to make gradients of the cross-entropy loss vanish,
on which FGSM relies. So the adversarial examples crafted by FGSM fails on distilled

Table 2. The confidence of adversarial examples crafted by different attacks on standard and
distilled networks

AttackType MNIST CIFAR-10
Standard Distilled Standard Distilled

FGSM 94.7% Fails 96.3% Fails
Carlini and Wagner (L2) 98.5% 96.3% 98.2% 97.1%
Latent space search 87.0% 71.5% 78.2% 70.8%
Our attack (targeted) 99.3% 98.8% 98.4% 98.5%
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networks. We also find that the distilled networks have a great influence on latent space
search attack but slight influence on our attack. Our adversarial examples still remain
93.8% on MNIST and 93.3% on CIFAR-10 adversarial confidence on average. It
demonstrates that defensive distillation fails to robust our adversarial examples

5 Transferability of Adversarial Examples

The characteristic of transferability is another concerned aspect of the target adversarial
examples crafted by our attack. We randomly select 400 images in the training set of
each dataset to probe into the transferability between different classifiers. We use the
pre-trained local classifiers on MNIST and CIFAR-10 as our source classifiers to
generate adversarial examples. After performing our attack on the selected images, we
find that a great decrease is occurred in the accuracy of other pre-trained classifiers
without any additional changes in the adversarial examples we craft.

As the transfer rate shown in Fig. 8, it can be seen that the adversarial examples
generated by our attack have a great impact on various pre-trained target models. Given
a source classifier LeNet-5 with 99.25% accuracy on the gray-scale image dataset
MNIST, the adversarial examples generated by it also have a great destruction on other
kinds of traditional machine learning models, such as random forest, SVM, and kNN.
We consider that deep learning models are capable of fitting better the dataset with
much more linear and nonlinear properties. So the adversarial examples generated by
our attack based on LeNet-5 discover the adversarial subspaces, which are also
applicable in traditional ML models. But it also remains considerable transfer rate when
we use other kinds of source models to generate adversarial examples. As the
dimensions of input space becomes larger, the process of training on CIFAR-10 is
much more difficult, so the accuracies are all below 94%. However, the transfer rate of
our attack still stays above 65%. It shows that with great transferability, LET-attack is
an effective black-box targeted attack against various well-performed traditional ML
models and deep learning models due to the large but semantic distortions.

Fig. 8. The transfer rate of targeted adversarial examples generated using LET-attack
appproach. Cell i; jð Þ indicates that the transfer rate of targetd adversarial examples generated
for source model i rowð Þ when evaluated on target model j columnð Þ. In order to demonstrate the
transferability clearly, the transfer rates of Cell i; ið Þ are set to zero.
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6 Conclusion and Future Work

Generally speaking, the categories of target datasets in the high-dimension space are
divided into clusters, which means a cluster is a class. We hypothesis that the distance
of inter-clusters is much larger than the inner-clusters. In other words, the data manifold
in a cluster is a dense and continuous manifold in the subspace of input space while the
manifolds between clusters is far away from each other. Due to the above character-
istics, there is little overlap between inter-clusters manifolds in input space. Most
previous attacks based on the internal information of target model only perform semi-
random search for the adversarial subspace caused by under-fitting or over-fitting. The
perturbations lack of interpretation of their formation and make it hard to perform more
precise and effective attack. Besides, most kinds of attacks are performed in pixel scale,
and their computational cost significantly increases accompanied by the requirement of
more sophisticated search for adversarial subspace.

In this paper, we introduce a feature-scale targeted adversarial attack named LET-
attack by using mapping transformation WGAN-variant. To reasonably map between
original input space and latent space, we pre-train a WGAN-variant including an
encoder, a decoder and a critic to perform our attack. Utilizing the pre-trained classifier
and the critic, we add extra semantic perturbation by using LET-attack we mentioned in
Sect. 3. The attack is based on fully black-box attack by perturbing the latent encodings
in latent space to reconstruct the targeted adversarial examples, which mislead the
target model in high confidence and high success rate. We also find that the adversarial
examples we craft are easy to transfer between various well-performed classifiers.

In addition, the previous adversarial training is based on gradient-based attack. This
kind of data re-training is effective to robust the adversarial examples generated by
FGSM and BIM, and provides an additional regularization on target model. But it
cannot robust other kinds of adversarial examples and generalize well. Up to now, there
is not a more generalized re-training process to perform better. It means the general-
ization of the re-trained model is not good enough to classify the unlabeled data and
other kinds of adversarial examples into correct classes. In the future, we consider to
introduce the idea in this paper to perform a more generalized re-training in order to
improve the robustness of unlabeled data and more kinds of adversarial examples in
target model. We are also supposed to use our model to build more robust verification-
code system in order to prevent black market from batch-cracking the digit code
automatically.

Finally, we are supposed to get a WGAN-variant to perform better. For instance,
the process of feature extraction and image reconstruction needs to be improved
because it exists some unnatural distortions in some details.
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Abstract. The robustness of the communication network is an important
measurement of network connectivity after some attacks, such as virus and
failure. To evaluate the network robustness, many robustness measures have
been presented depending on the type of attacks. These measures mainly con-
centrate on the relation between the robustness of the network and the number of
deleted nodes, and seldom consider the robustness of the network in the sce-
narios that the network is attacked by the virus. The existing measures can not
completely evaluate the robustness of the network against virus attacks and can
not accurately reveal the relation between network robustness and the trans-
missibility of the virus. So, it is necessary to study the relation between the
robustness of the network and the effective spreading rate of the virus, especially
important for communication networks. In this paper, we first introduce three
new measures based on the effective spreading rate to evaluate the robustness.
Then, we further study the relation between network topology and the three
measures. Our results are helpful in designing robust communication networks
according to the new robustness measures.

Keywords: Communication network � Robustness measures � Virus attacks �
Network topology

1 Introduction

With the rapid development of information and communication technology, human
society has stepped into the era of network [1, 2]. As one of the most important
networks, communication networks, e.g., computer networks [3], optical communi-
cation networks [4], ad-hoc networks [5], and wireless sensor networks [6], are
gradually changing people’s work and lifestyle. Communication networks are widely
used in both military and civil fields. They bring great convenience to the production
and life of human society and improve the production efficiency and living standards.
Meanwhile, the security of communication networks is more challenging. More and
more malicious attacks have caused huge losses to people’s production and life.
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To prevent these losses, it is necessary to design robust networks to combat these
malicious attacks.

The robustness of the network is an important property that the network maintains
its functionality after being attacked, which causes nodes or links to be removed from
the network [7, 8]. In general, most of the research about the network robustness has
focused on two main types of attacks: random attacks and targeted attacks [9–11]. For
random attacks, each node or link is removed with the same probability from the
network. While in targeted attacks, the more important the nodes or links for the
network robustness is, the larger the probability that they will be removed. In order to
evaluate the network robustness and explore the robust network topology, some
robustness measures have been presented depending on the two types of attacks [9, 11–
15]. Albert et al. [9] studied the changes of maximal connected component (MCC) that
the size of the largest connected subgraph in the remaining network after a small
fraction of the nodes are removed for the exponential network and scale-free network
under random attacks and targeted attacks respectively. They found that scale-free
networks display a surprisingly resilient against random attacks but extremely vul-
nerable to targeted attacks, while the exponential networks don’t show this property.
Schneider et al. [11] introduced a new measure (R) for robustness and used it to devise
a method to reconstruct networks against malicious attacks. Their results showed that
networks with an “onion-like” structure have significantly high robustness against
malicious targeted attacks. Louzada et al. [15] proposed a new measure based on
communication efficiency and outlined a procedure that one can modify any given
network to enhance its robustness by an optimization approach using simulated
annealing. Their results showed that high assortativity and the onion-like structure are
the characteristics of the robust networks.

The main difference between communication networks and other networks is that it
will not only suffer physical attacks but also be attacked more easily by viruses through
information interaction. Attackers usually control a non-critical node in the network at
a low cost and then implant the virus. So, it is not appropriate to use the measures of
robustness based on random attacks and targeted attacks only to evaluate the robustness
of communication networks. When the virus spread over the network and infect more
and more nodes, it will result in the decline or even loss of network functions. Many
scholars measure the network robustness against virus attacks by three criteria, namely,
the epidemic threshold [16], the fraction of infected nodes at steady state [17] and the
epidemic velocity [18]. For communication networks, their function must be supported
by a connected network composed of a certain number of nodes and links to keep the
communication networks as operative as possible. Therefore, we are more concerned
about the size of the connected components after some nodes removed from the net-
work by virus attacks. So, the above three criteria cannot evaluate the connectivity of
the networks which had been destroyed by the virus. If a large number of nodes and
links are removed from the communication networks, it will disintegrate into many
isolated connected components, and its functionality will decline dramatically. For an
attacked communication network, each connected component can maintain the basic
functionality for the area where the connected component is located. The larger the size
of the connected component is, the greater functionality is. Therefore, we can use the
MCC and the average size of the other connected components (ACC) in the attacked
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network to represent the functionality to some extent. Moreover, the number of links in
the connected component also indicates the level of functionality. With the same size of
the connected component, the more links in the connected component are, the greater
the functionality is.

When the communication network is attacked by viruses with different infection
rates, the larger the connected network composed of the remaining nodes and links is,
the better the robustness of the communication network is. At present, there are few
studies on the relation between the robustness of the network and the effective
spreading rate of the virus. Therefore, in this paper, we first propose three new mea-
sures to measure the network robustness against virus attacks. Existing researches have
shown that communication networks generally have scale-free properties [19], so we
mainly use three new measures to measure the robustness of scale-free networks in
which degree distribution follow power-law distribution and have scale-free properties.
We further use the degree-preserving rewiring algorithm [20] to generate a large
number of networks with different topology parameters, and then use susceptible-
infected-removed (SIR) propagation model [21] to study the impact of network
topology on these three measures.

The rest of the paper is arranged as follows: In Sect. 2, we briefly review the
existing robustness measures. In Sect. 3, we propose three new anti-virus robustness
measures. In Sect. 4, we use Monte Carlo simulations to analyze the network
robustness based on the effective spreading rate of virus, and study the relation between
network robustness and the network topology in detail. The conclusions are given in
Sect. 5.

2 Review of Robustness Measures

In 2000, Albert et al. [9] investigated the robustness of the ER and scale-free models.
They used the size of MCC (S) and the average size of the ACC (<S>) to evaluate
network robustness. They found that scale-free networks display a surprisingly resilient
against random attacks but extremely vulnerable to targeted attacks, while the expo-
nential networks don’t show this property. They confirmed that error tolerance and
attack vulnerability are generic properties of communication networks which rooted in
their inhomogeneous connectivity distribution, namely, scale-free property.

Schneider et al. [11] introduced a new measure R for network robustness according
to the MCC. The measure is shown as follow,

R ¼ 1
N

XN

Q¼1

SðQÞ ð1Þ

where S(Q) is the fraction of nodes of the MCC after removing Q largest degree nodes
and N denotes the size of the initial network. It is proper to compare the network
robustness with different sizes by the normalization factor 1/N which makes sure that
the value of R is in the range of 0 and 1. The larger the value of R is, the more robust
the network is.
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Louzada et al. [15] proposed a new measure integral efficiency based on com-
munication efficiency. The measure is shown as follow,

IntE ¼ 1
N

XN

Q¼1

EðQÞ ð2Þ

where E(Q) is the efficiency of the network after the removal of Q nodes and N denotes
the size of the initial network. They outlined a procedure that modifies any given
network to enhance its robustness by an optimization approach using simulated
annealing. Their results showed that high assortativity and an onion-like structure are
the characteristics of the robust networks.

As the number of nodes removed from the network by the virus attacks is closely
related to the effective spreading rate and these removal nodes are often interconnected,
it is not appropriate to use R to evaluate the network robustness against virus attacks. In
Sect. 3, we propose three robustness measures to study the relation between network
robustness and the effective spreading rate of the virus.

3 The New Anti-virus Robustness Measures: RS
s
, RL

s
, and R Sh i

s

The core nodes in communication networks may be protected by the network man-
agers. So, it is difficult to remove them from the communication networks by physical
targeted attacks. However, attackers may easily control the non-critical nodes. For
communication networks, nodes forward information through links in the network.
Some viruses can easily spread in the networks by means of this forwarding mecha-
nism. So, attackers can implant viruses into the network by the non-critical nodes
which can be easily controlled. Viruses spread in the network depending on this
forwarding mechanism, and ultimately cause the damage of the network. According to
the character of virus attacks, we need to formulate some measures of network
robustness. Figure 1 shows the different scenarios of a network under virus attacks. The
component in blue dotted lines denote the MCC of the network and the component in
green dotted lines denotes the ACC after the nodes (red solid nodes) removed from the
network. We can see that Fig. 1(b) has the largest MCC. Comparing Fig. 1(b) and (c),
we can see that the MCC of Fig. 1(b) is larger than that of Fig. 1(c), but the ACC of
Fig. 1(c) is larger than that of Fig. 1(b). The MCC of Fig. 1(d) has the same size as the
MCC of Fig. 1(c), but the number of links in MCC from Fig. 1(d) less than that the
number of links in MCC from Fig. 1(c).

Based on the analysis above, we will propose three new anti-virus robustness
measures RS

s
, RL

s
and R Sh i

s
. When the network is attacked by a virus, it will disintegrate

into many isolated connected components. Among them, the MCC may maintain the
main functions of the attacked network. Therefore, we can use RS

s
to evaluate the

network robustness. It is shown as follows,
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RS
s ¼

Z 1

0
SðsÞds ð3Þ

where SðsÞ is the fraction of nodes of the MCC when the network is attacked by a virus
with the effective spreading rate s.

This measure captures the network response to any effective spreading rate s. For
the same effective spreading rate s, the larger the value of RS

s
is, the more robust the

network is. The number of links in the connected component also indicates the level of
the functionality. With the same size of connected component, the more links in the
network, the more transmission paths in the network. This means that the communi-
cation efficiency of the network will be higher. So, we can also use RL

s
to evaluate the

network robustness. RL
s
is shown as follows:

RL
s ¼

Z 1

0
LðsÞds ð4Þ

where LðsÞ is the fraction of links of the MCC when the network is attacked by a virus
with the effective spreading rate s. This measure captures the network response to any

Fig. 1. Different scenarios of a network under virus attacks. (Color figure online)
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effective spreading rate s. For the same effective spreading rate s, the larger the value of
RL

s
is, the more robust the network is. Besides MCC, the size of other connected

components is also an appropriate criterion to assess the functionality of remained
networks. For simplicity, we use the size of ACC to evaluate the network robustness.
R Sh i

s
is shown as follow:

R Sh i
s ¼

Z 1

0
Sh iðsÞds ð5Þ

where Sh iðsÞ is the size of the ACC when the network is attacked by a virus with the
effective spreading rate s. This measure captures the network response to any effective
spreading rate s. For the same effective spreading rate s, the larger the value of R Sh i

s
is,

the more robust the network is.
In practical experiments, it is unrealistic and unnecessary to evaluate the robustness

with all continuous s. In fact, we can evaluate network robustness by sampling only a
certain proportion of s. So, Eqs. (4), (5) and (6) can be transformed as follows:

RS
s ¼

1
n

Xn

i¼1
SðsðiÞÞ; 0\sðiÞ� 1 ð6Þ

RL
s ¼

1
n

Xn

i¼1
LðsðiÞÞ; 0\sðiÞ� 1 ð7Þ

R Sh i
s ¼ 1

n

Xn

i¼1
Sh iðsðiÞÞ; 0\sðiÞ� 1 ð8Þ

where n is the number of sampling of s. The normalization factor 1/n makes sure that
the value of RS

s
, RL

s
and R Sh i

s
are in the range of 0 and 1. The principle of sampling can

be determined according to the actual situation. In this paper, we carry out experiments
with the uniformly-spaced sampling.

4 Experimental Data and Simulations

In this section, we will use SIR model to study and analyze the relation between
network robustness and the effective spreading rate of virus by Monte Carlo simulation.
We generate some networks with different topology properties. For each network, the
simulations are performed by starting from a randomly chosen initial spreader, and the
corresponding simulation results are averaged over 1000 runs. Through the compara-
tive analysis of the Monte Carlo simulation results, we can obtain some conclusions
about the influence of network topology on network robustness against virus attacks.

4.1 Experimental Data

Inspired by the Ref. [9], we start by generating a homogeneous network and a
heterogeneous network based onWS [22] and BA [23] models, respectively. The size of
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two models is N = 1000, and the average degree is <k> = 6. With the help of the two
models, we study the effects of degree distribution on the new robustness measures.
Different from the Ref. [12], we define that isolated nodes do not belong to the con-
nected components in the communication networks. Since most communication net-
works have scale-free characteristics, it is important to study the influence of the
network topology characteristics on network robustness under the condition that the
network degree distribution remains unchanged. In this paper, we mainly study the
effects of average clustering coefficient and the maximum eigenvalue of adjacency
matrix. Firstly, we take the two network topology properties as objective functions and
use degree protection reconnection algorithm to generate two kinds of network sets
with identical degree distribution. Then, we select 8 networks from each network set to
create C set (see Table 1) and k1 set (see Table 2). Each set comprises 8 networks with
N = 1000, average degree kh i ¼ 6, C denotes average clustering coefficient, k1
denotes the maximum eigenvalue of the adjacency matrix.

Table 1. The characteristic parameters of the C set.

1 2 3 4 5 6 7 8

N 1000 1000 1000 1000 1000 1000 1000 1000
kh i 6 6 6 6 6 6 6 6
C 0.1183 0.2000 0.2817 0.3635 0.4450 0.5269 0.6086 0.6903

Table 2. The characteristic parameters of the k1 set.

1 2 3 4 5 6 7 8

N 1000 1000 1000 1000 1000 1000 1000 1000
kh i 6 6 6 6 6 6 6 6
k1 10.9542 13.7154 16.4971 19.2602 22.0213 24.8049 27.5769 30.3443

Fig. 2. SðsÞ, LðsÞ and Sh iðsÞ as the functions of effective spreading rate s for WS and BA
networks, respectively.
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4.2 Simulations

In this section, we use Monte Carlo simulations to study the relation between network
topology and the robustness according to the new measures. Figure 2a shows that SðsÞ
of WS network is larger than that of BA network when the effective spreading rate s is
below 0.34. Similar conclusions about LðsÞ are shown in Fig. 2b. When the effective
spreading rate s is above 0.34, SðsÞ and LðsÞ of WS network are lower than those of BA
network. As shown in Fig. 2c, Sh iðsÞ of WS network is smaller than that of BA network
when the effective spreading rate s is below 0.34. We note that the results of robustness
comparison between WS and BA networks have a transition at s ¼ 0:34. Therefore, we
need to compare network robustness in a certain range of effective spreading rate
according to the actual situation. When the effective spreading rate is high, the influ-
ence of network structure on robustness will be reduced. In addition, too small effective
spreading rate is not enough to cause the virus spread in the network. So, we evaluate
network robustness by sampling a certain proportion of s 2 ½0:1; 0:3� in the next
simulations.

Fig. 3. a: SðsÞ as the function of effective spreading rate s for C set. b: RS
s
as the function of

effective spreading rate s 2 ½0:1; 0:3� for C set.

Fig. 4. a: LðsÞ as the function of effective spreading rate s for C set. b: RL
s
as the function of

effective spreading rate s 2 ½0:1; 0:3� for C set.
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Figure 3a shows that C has little influence on SðsÞ of C set. From Fig. 3b, we can
see that RS

s
become smaller with increase of C, but the value of change is very limited.

We can also obtain that the C have little influence on LðsÞ of C set form Fig. 4a. In
Fig. 4b, we can see that RL

s
become non-monotony increase with increase of C, but the

value of change is very limited. Figure 5a shows that Sh iðsÞ become larger with
increase of C when the effective spreading rate s is below 0.3. When the effective
spreading rate s is above 0.36, Sh iðsÞ becomes smaller with increase of C. From
Fig. 5b, we can see that R Sh i

s
becomes larger with increase of C.

Figure 6a shows that the k1 have much influence on SðsÞ. We can see that SðsÞ
becomes larger with the increase of k1 when the effective spreading rate s is above
0.14. From Fig. 6b, we can see that RS

s
becomes larger with increase of k1. We can also

Fig. 5. a: Sh iðsÞ as the function of effective spreading rate s for C set. b: R Sh i
s

as the function of
effective spreading rate s 2 ½0:1; 0:3� for C set. In order to facilitate comparison, the numerical
values are normalized by virtue of maximum value.

Fig. 6. a: SðsÞ as the function of effective spreading rate s for k1 set. b: RS
s
as the function of

effective spreading rate s 2 ½0:1; 0:3� for k1 set.
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obtain that the k1 has much influence on LðsÞ of k1 set form Fig. 7a. We note that LðsÞ
of k1 set has a transition at s ¼ 0:15. In Fig. 7b, we can see that RL

s
becomes mono-

tonously increase with increase of k1. Figure 8a shows that Sh iðsÞ becomes smaller
with increase of k1 when the effective spreading rate s is below 0.3. When the effective
spreading rate s is above 0.5, Sh iðsÞ becomes larger with increase of k1. From Fig. 8b,
we can see that R Sh i

s
becomes smaller with increase of k1.

5 Conclusion

According to the characteristics of communication networks, three new anti-virus
robustness measures have been proposed in this paper. These new measures can reveal
the relation between network robustness and virus infection rate. We have used degree
protection reconnection algorithm to swap the underlying network which is generated

Fig. 7. a: LðsÞ as the function of effective spreading rate s for k1 set. b: RL
s
as function of

effective spreading rate s 2 ½0:1; 0:3� for k1 set.

Fig. 8. a: Sh iðsÞ as the function of effective spreading rate s for k1 set. b: R Sh i
s

as the function of
effective spreading rate s 2 ½0:1; 0:3� for k1 set.

160 Y. Li et al.



by BA model, and have obtained two set of networks with different C and k1. We have
also used generated networks to study the influence of network topology on network
robustness. Our results show that average clustering coefficient of network has little
effect on RS

s
and RL

s
. For R Sh i

s
, the networks with high clustering coefficients are more

robust against low infection virus attacks, but they become less robust against virus
attacks with high infection. RS

s
and RL

s
of the network can be effectively improved by

increasing the maximum eigenvalue of the network under the condition that the degree
distribution of the network remains unchanged. R Sh i

s
becomes smaller with increase of

k1 when the network is attacked by low infection virus. While R Sh i
s

becomes larger with
increase of k1 when the network is attacked by high infection virus. Our results are
useful for the robust communication networks designing according to the new
robustness measures.
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Abstract. In the era of network and big data, network information security has
become a major issue. Intrusion Detection System (IDS) is an essential com-
ponent of network security facilities, which utilizes network traffic data to detect
attacks. IDS can adopt data analysis and data mining technologies to detect
attacks to network systems. However, the computational overhead of IDS is too
large to serve for real-time detection due to the redundancy and irrelevant
features in the network traffic dataset. We hence analyze seven classification
algorithms for intrusion detection, where we separately perform data prepro-
cessing with two kinds of dimensionality reduction techniques, Principal
Component Analysis (PCA) and Singular Value Decomposition (SVD), to
improve the performance of IDS. The experimental results on the NSL-KDD
dataset indicate that the classification algorithms with dimensionality reduction
outstands in detection rate and detection speed. Meanwhile, SVD demonstrate
its superiority to PCA in boosting these algorithms.

Keywords: Intrusion Detection System � Principal Component Analysis �
Dimensionality reduction � Singular Value Decomposition

1 Introduction

Intrusion Detection System (IDS) is a network security device that monitors network
data in real time and takes proactive measures when it detects suspicious transmissions.
Due to frequent malicious network activity and network policy violations, IDS is
widely implemented in different types of networks (e.g., education and financial
organizations) [1]. The main problem of current IDS is that there are too many attri-
butes of network data, and there may be a high correlation between some attributes,
which makes the classifier unable to accurately and quickly distinguish the normal and
abnormal behavior of the system [2]. In addition, when IDS selects a subset of samples,
it takes a lot of time to exhaustively search and test each subset due to the dimension of
the samples. Compressing data into relatively low-dimensional subspace is thus of
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great help. Data dimensionality reduction not only reduces the demands of storage
space, but also accelerates the classification algorithms.

As a common technique for data preprocessing, dimensionality reduction, is uti-
lized to clear the noise, and compress the data into a subspace of smaller dimension
while retaining the relevant information to the greatest extent. But it may also reduce
the accuracy of algorithms. Multiple highly correlated features, which are referred to as
redundant features, along with features that have a small effect on sample classification,
which are referred to as irrelevant features, causes a long-term problem in network
traffic classification. These features not only slow down the process of classification
and increase computational overhead, but also prevent a classifier from making
accurate decisions, especially when coping with big data [3]. Removal of redundant
and irrelevant feature is the main goal in any feature selection algorithm. In terms of
high-dimensional network traffic data, feature selection can reduce the training time of
the classification algorithm, minimize the computational overhead of IDS, and thereby
improving the performance.

A relatively high detection rate and a relatively high detection speed are both
required for intrusion detection. Finding the best intrusion classification algorithm is
not easy due to the lack of ideal preprocessing and classification techniques for
detecting anomalies. Recent advances in information technology have produced a wide
variety of machine learning methods, which can be integrated into an IDS [4]. Many
supervised and unsupervised learning methods from the field of machine learning and
pattern recognition have been used to increase the efficacy of IDS [5]. A good clas-
sification algorithm achieves imposing and adequate result of detecting attacks [6].
There are many classic classifiers, such as Naïve Bayes (NB), BP neural network,
Decision Tree (DT), Logistic Regression (LR), Support Vector Machine (SVM), etc.
However, these classifiers have different classification effects for different datasets.
Classifiers without preprocessing have problems such as high computational overhead
and low detection rate.

Therefore, we analyze seven classification techniques: NB, LR, K-Nearest
Neighbor (KNN), SVM, DT, AdaBoost (AB), Random Forest (RF) in this paper.
Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) are
adopted to reduce computational overhead. Our work can be summarized as follows:
reducing the computational overhead with SVD and PCA; comparing seven different
classification algorithms on indicators such as accuracy, recall, precision, etc.; ana-
lyzing the respective effects of adopting PCA and SVD in the above algorithms;
analyzing the effect of adopting dimension reduction.

The rest of the paper is organized as follows: Sect. 2 provides a brief overview of
the current work on data preprocessing and classification algorithms. Section 3 intro-
duces intrusion detection system. Section 4 covers experimental setup and results
analysis. Conclusion and future work are provided in Sect. 5.
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2 Related Work

Thaseen et al. [7] proposed an intrusion detection model using Linear Discriminant
Analysis (LDA), chi-square feature selection and modified NB classification. Their
hybrid model produces better accuracy and lower false alarm rate than in comparison to
the traditional approaches. However, LDA cannot perform dimensionality reduction for
the two-class problem, and the model used is not compared with other machine
learning models.

Subba et al. [8] proposed a model that uses PCA dimensionality reduction tech-
niques to reduce computational overhead. The dimensionally reduced dataset obtained
after PCA is analyzed by Naïve Bayes, C4.5 decision tree, SVM and Multilayer Per-
ceptron (MLP). Application PCA can significantly reduce the dimensionality of data
processed by anomaly-based IDS, thereby minimizing its computational overhead
without adversely affecting its performance. However, they only use a data dimension
reduction method, which takes a long time to detect. For the classification model
parameters, no optimal parameters are given.

Salo et al. [9] proposed a novel hybrid dimensionality reduction technique that
combines the approaches of Information Gain (IG) and PCA with an ensemble clas-
sifier based on instance-based learning algorithms (IBK), SVM, and MLP. The per-
formance of the IG-PCA-Ensemble method was evaluated based on three well-known
datasets, namely ISCX 2012, NSL-KDD and Kyoto 2006+. Experimental results show
that the proposed hybrid dimensionality reduction method with the ensemble of the
base learners contributes more critical features and significantly outperforms individual
approaches, achieving high accuracy and low false alarm rates. However, their pro-
posed model cannot handle large amounts of data streams in real time.

Shahbaz et al. [10] proposed an effective feature selection algorithm to solve the
problem of high dimensionality. The algorithm considers the correlation between fea-
ture subsets and behavioral class labels. Correlation-based Feature Selection (CFS) and
Symmetrical Uncertainty (SU) are two correlation metrics used to measure the depen-
dency level between features and class labels, and among features. Experimental results
on NSL-KDD dataset shows that the proposed approach with fewer features, signifi-
cantly outperforms the existing schemes in terms of the training time, time taken to build
the model, while it preserves or increases the system accuracy. In addition, they tested
the efficiency of the proposed feature selection technique on different classification
algorithms. The results show that the proposed algorithm has high accuracy. However,
they have no further dimensional reduction to reduce detection time.

Raman et al. [11] proposed a novel feature selection technique based on Rough Sets
(RS) and few interesting properties of Hyper-graph (RSHGT), such as minimal
transversal and vertex linearity for the identification of the optimal feature subset.
Experiments were carried out using the KDD cup 1999 intrusion dataset. The results
show the dominance of RSHGT over the existing feature selection techniques with
respect to the reduct size, classifier accuracy and time complexity. RSHGT was found
to be flexible, accommodative and computationally attractive for high dimensional
datasets. However, due to the long detection time of the model, it cannot be applied to
real-time detection.
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Umbarkar et al. [12] proposed a smart heuristic-based approach for feature
reduction. Three feature reduction techniques, IG, Gain Ratio (GR) and CFS, are used
to calculate the reduced feature set. The number of features is reduced without
degrading the performance of the system and demonstrate the nature of each feature
reduction technique with respect to number of features. The results show that CFS is
superior as compared to other methods. With feature subset of 15 accuracies increased
to 92.65% which is better than the accuracy of the normal dataset having 41 features.

Miao et al. [13] mainly studied the preprocessing stage of network traffic data,
using PCA to compare six machine learning algorithms. Accuracy and F-measure are
two metrics to be analyzed to find the best classifier, and computational time is also
considered in analyzing the performance. KNN and RF are the top 2 algorithms among
all the 6 regarding the 2 metrics mentioned above. However, they only compared the
six classifiers, did not use the advanced techniques of the combining classifiers to
improve the classification accuracy.

Tengl et al. [14] proposed a collaborative and robust intrusion detection model
using a novel optimal weight strategy based on Genetic Algorithm (GA) for ensemble
classifier. PCA is used for dimension reduction and attribute extraction, GA is used to
optimize the weight of each basic classifier of ensemble classifier. However, although
the proposed method has high precision and generalized performance, it takes a lot of
time to adjust the weight, and has a low detection rate for data with less training
samples.

3 Intrusion Detection System

3.1 Basic Theory

Intrusion detection is the detection of intrusion behavior. It collects and analyzes
network behavior, security logs, audit data, information available on other networks,
and information on several key points in a computer system to check for violations of
security policies and signs of attacks in the network or system. As a proactive security
protection technology, intrusion detection provides real-time protection against internal
attacks, external attacks, and misuse, intercepting and responding to intrusions before
being compromised. Therefore, it is considered as the second security gate behind the
firewall, which can monitor the network without affecting network performance.
Network Intrusion Detection System (NIDS) is a tool for dynamically detecting and
classifying network vulnerabilities in Information and Communication Technology
(ICT) systems. The original network packet is used as the data source, and the network
card of the detection host in the network data is set to the promiscuous mode, and the
NIDS receives and analyzes the data packets flowing in the network in real time to
detect whether there is an intrusion behavior. The intrusion detection system is shown
in Fig. 1.
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In this paper, we have tried two data reduction algorithms, PCA and SVD. The
dimensionality reduction can compress the data to a subspace with a smaller dimension
while retaining the relevant information to the greatest extent, but it may also reduce
the performance of some algorithms in terms of accuracy. However, in view of the
correlation often existing in the actual data, we try to reduce the loss of information as
much as possible while reducing the dimension. Then we used the more classic seven
classifiers for classification: Naïve Bayes, Logistic Regression, KNN, SVM, Decision
Tree, AdaBoost, Random Forest. The architectural model of the overall algorithm is
shown in Fig. 2. The algorithm is used as a detection engine in IDS to receive event
information and analyze it to determine whether it is an intrusion or anomaly.
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Switch Switch
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Server Server
Administrator

Intrusion detection system

INTERNET

Fig. 1. Intrusion detection system
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Fig. 2. Algorithm framework
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3.2 Data Preprocessing

(1) Data Mapping

Since many features in the sample data are composed of letters, in order to eliminate its
influence on the algorithm, we need to convert the characteristics of the corresponding
letters into numerical values. For example, for the protocol_type feature, it consists of
three types of data, namely TCP, UDP, and ICMP. Since distance calculation cannot be
performed on such data, we replace them one by one with 0, 1, and 2, so that these
unavailable features become available, as shown in Table 1. The conversion rule for
the tag type of the sample data is: normal record is 0, and abnormal record is 1.

(2) Maximum and Minimum Normalization

Since the minimum value of some features in the data is less than 1, the maximum
value is hundreds of thousands, which affects the use of distance-based classification
algorithms, so we need to normalize the continuous data. Here, min-max normalization
is used for normalization which is given in (1). Each column feature is subtracted from
the minimum value of the column, and then divided by the difference between the
maximum value and the minimum value of the column feature. Where x�j represents the
normalized data, xj represents raw data, Min represents the minimum value of each
column feature, Max represents the maximum value of each column feature.

x�j =
xj � Min
Max�Min

ð1Þ

3.3 Dimensionality Reduction

A. Principal Component Analysis

PCA is a statistical technique for finding patterns in high-dimensional data. It trans-
forms component-correlated original random vectors into new random vectors with
uncorrelated components by means of an orthogonal transformation. Project high-order
n-dimensional data to low-order k-dimensional data (n > k) without losing any
important information. The PCA implements this transformation by finding k feature
vectors, projecting n-dimensional data on the feature vector, thereby minimizing the
overall projection error. As shown in Fig. 3, blue dots (represented by features X1 and
X2) can be projected onto any of the two lines (Line 1 and Line 2). However, PCA

Table 1. Data mapping of protocol_type feature

Original eigenvalue Converted eigenvalue

TCP 0
UDP 1
ICMP 2
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chooses Line 1 over Line 2 for projection, since the overall orthogonal projection error
for projecting the data points onto Line 1 is much smaller compared to orthogonal
projection error for projecting the same data points onto Line 2 [8].

B. Singular Value Decomposition

Singular Value Decomposition [15] is a generalization of feature decomposition on
arbitrary matrices. Assuming that our matrix A is m � n matrix, then we define the
SVD of matrix A as:

A¼URVT ð2Þ

Where U is a matrix of m � m and V is an n � n matrix. R is an m � n matrix whose
elements outside the main diagonal are all 0, and each element on the main diagonal is
called a singular value. Both U and V are unitary matrices, UTU = I, VTV = I. For
singular values, it is similar to the eigenvalues in our feature decomposition. It is also
arranged in the singular value matrix from large to small, and the singular value is
reduced especially fast. In many cases, the sum of the singular values of the first 10%
or even 1% accounts for more than 99% of the sum of all singular values. That is to
say, we can also approximate the description matrix with the largest k singular values
and the corresponding left and right singular vectors.

Am�n ¼Um�m

X
m�n

VT
n�n � Um�k

X
k�k

VT
k�n ð3Þ

Where k is much smaller than n, a large matrix A can be represented by three small
matrices Um�k,

P
k�k and VT

k�n.

Fig. 3. Projection of two-dimensional data points onto a one dimensional line (Color figure
online)
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4 Experiments

4.1 Experimental Setup

The dataset used in this experiment is the NSL-KDD public dataset [16, 17], which
solves the inherent problems in the KDD CUP 99 dataset [18]. The training set of the
NSL-KDD dataset does not contain redundant records, so the classifier does not bias
towards more frequent records. Since the record number setting is reasonable, this
makes the experiment running on the entire set of experiments inexpensive. Deshmukh
et al. [19] have experimentally verified that NSL-KDD is the best intrusion detection
dataset for classification algorithms. Although the NSL-KDD dataset has a small
number of samples, it can still be used as a valid baseline dataset, which can help
researchers compare different intrusion detection methods. The dataset used in this
experiment is “KDDTrain+.txt”, as shown in Table 2. The training set randomly
samples 80% of the samples from the dataset, and the test set randomly extracts 20% of
the samples from the dataset, which can prevent the model from over-fitting and under-
fitting.

In order to facilitate the comparison of subsequent performance, the following
indicators are defined in advance. Classifier performance is evaluated by calculating
performance metrics such as Accuracy, Error rate, Detection rate, Precision, F-measure,
AUC, and Detection time. Equations (4) to (8), where TP represents the number of true
positives, TN represents the number of true negatives, FP represents the number of
false positives, and FN represents the number of false negatives. Accuracy: the pro-
portion of correctly classified instance; Error rate: the proportion of incorrectly clas-
sified instance; Recall/Detection rate: the proportion of elements correctly classified as
positive out of all positive elements; Precision: the proportion of elements correctly
classified as true alarms out of all the elements the intrusion detection model classified
as positive; F-measure: the average of the sum of the detection rate and the recall rate;
AUC: the size of the area under the ROC curve; Detection time: the time taken for the
test sample to complete the test.

Accuracy ¼ TPþ TN
TPþ TN þFPþFN

ð4Þ

Table 2. KDDTrain+.txt

KDDTrain+
Attribute:42
Label Count

Normal 67343
Anomaly 58630
Total 125973
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Error rate ¼ FPþFN
TPþ TNþFPþFN

ð5Þ

Recall=Detection rate ¼ TP
TPþFN

ð6Þ

Precision ¼ TP
TPþFP

ð7Þ

F � measure ¼ 2 � Precision � Recall
Precision þRecall

ð8Þ

4.2 Experimental Results and Analysis

In this section, we evaluate the models’ performance. All experiments were performed
on a Windows 10 PC with Intel Core i7 CPU@ 3.70 GHz and 16 GB RAM. In order to
show the necessity of data preprocessing, we conducted three experiments respectively:
experiment 1 did not perform data preprocessing, and directly used seven classification
algorithms for classification; experiment 2 after PCA processing, using seven classifi-
cation algorithms for classification; experiment 3 after SVD processing, seven classi-
fication algorithms are used for classification. Experiment 1 was carried out on 41
features of the original dataset, and Experiment 2 and Experiment 3 were performed on
the first 23 features after dimensionality reduction. Table 3 is Logistic Regression (LR),
KNN, SVM, Naïve Bayes (NB), Decision Tree (DT), AdaBoost (AB), Random Forest
(RF) seven algorithms in the accuracy, error rate, recall rate, precision, F-measure, AUC
and detection time comparison. Tables 4 and 5 show the comparison of the indicators of
the seven machine learning algorithms after PCA and SVD.

Table 3. Comparison of various indicators of seven machine learning algorithms

Accuracy Recall Precision F-measure AUC Error rate Time (ms)

LR 0.95388 0.941036 0.958899 0.949884 0.953027 0.04612 31
KNN 0.997539 0.997607 0.997096 0.997352 0.997544 0.002461 71000
SVM 0.942965 0.896599 0.978823 0.935908 0.939888 0.057035 28
NB 0.898512 0.899932 0.883696 0.89174 0.898606 0.101488 174
DT 0.997619 0.998205 0.996672 0.997438 0.997658 0.002381 31
AB 0.980353 0.974022 0.983519 0.978747 0.979933 0.019647 800
RF 0.998412 0.997265 0.999315 0.998289 0.998336 0.001588 217
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By analyzing Tables 3, 4 and 5, we conclude that:

(1) When using seven algorithms for classifying data without dimensionality reduc-
tion, RF, KNN, and DT are superior to other algorithms in Accuracy, Detection
rate, Precision, F-measure, AUC, and Error rate. SVM, LR, DT have less
detection time than the other four algorithms. Especially in terms of computational
overhead, the overhead of KNN and AdaBoost is too large, and KNN is about
2500 times that of SVM. The NB classifier has low indicators, and it is impossible
to accurately perform intrusion detection for the current dataset.

(2) After the data of PCA or SVD dimensionality reduction is classified, the
parameters of the seven algorithms before and after the dimension reduction are
not very different, and the time has been significantly improved. It can be seen that
after data dimensionality reduction processing, although the data characteristics
are reduced, it does not have an excessive negative impact on the accuracy of the
classification and other indicators. In addition, after the data preprocessing, the
running time of the classifier is greatly reduced, and the average time consumption
of KNN in PCA and SVD is 94.37%.

(3) The reason why the seven algorithms are greatly improved in time performance is
that the feature dimension reduction greatly simplifies the dimension of the data
and reduces the amount of data calculation during the detection process. Some
algorithms have a slight improvement in each index because when the proposed
model is applied, the obtained dataset cannot fully represent the original record,
but the selected principal component contribution rate is over 95%. The redun-
dancy has been cleared and the indicators have been improved.

Table 4. Comparison of the indicators of seven machine learning algorithms after PCA

Accuracy Recall Precision F-measure AUC Error rate Time(ms)

PCA-LR 0.952054 0.938472 0.957454 0.947868 0.951153 0.047946 7
PCA-KNN 0.996706 0.996753 0.996157 0.996455 0.996709 0.003294 4000
PCA-SVM 0.953126 0.940694 0.957634 0.949088 0.952301 0.046874 10
PCA-NB 0.900695 0.896257 0.890625 0.893432 0.9004 0.099305 70
PCA-DT 0.994999 0.994787 0.994447 0.994617 0.994985 0.005001 21
PCA-AB 0.977773 0.971629 0.980341 0.975966 0.977366 0.022227 641
PCA-RF 0.996507 0.994702 0.997771 0.996234 0.996387 0.003493 166

Table 5. Comparison of the indicators of seven machine learning algorithms after SVD

Accuracy Recall Precision F-measure AUC Error rate Time(ms)

SVD-LR 0.95253 0.939498 0.957499 0.948413 0.951665 0.04747 8
SVD-KNN 0.996864 0.996838 0.996412 0.996625 0.996863 0.003136 4000
SVD-SVM 0.949355 0.922919 0.966529 0.944221 0.947601 0.050645 7
SVD-NB 0.882397 0.880619 0.868082 0.874305 0.882279 0.117603 89
SVD-DT 0.994086 0.994274 0.993002 0.993638 0.994099 0.005914 21
SVD-AB 0.969637 0.965647 0.968876 0.967259 0.969372 0.030363 702
SVD-RF 0.99611 0.994018 0.997599 0.995805 0.995971 0.00389 164

172 S. Jiang and X. Xu



(4) After the seven algorithms are subjected to feature dimensionality reduction by
SVD or PCA, the accuracy and other indicators remain at a high level compared
to the use of all features. This means that the features are not as good as possible.
Some features in the original feature set do not work for anomaly detection. The
existence of these features will not only become a burden of anomaly detection,
but also increase the false alarm rate. The seven KNN algorithms have longer
training time and larger computational cost, while the SVD and PCA methods
have the advantages of fast calculation speed and high operational efficiency,
which can greatly reduce the computational overhead. By using the PCA or SVD
dimensionality reduction method, both high detection rate and computation time
can be greatly reduced.

(5) As shown in Figs. 4, 5, 6, 7 and 8, SVD-DT is generally superior to other
algorithms. To demonstrate the performance of the SVD-DT algorithm, we per-
formed experiments using approximately 500,000 samples of “kddcup.-
data_10_percent” in the KDD CUP 99 dataset [18], as shown in Fig. 9. The
algorithm can maintain high accuracy with less detection time.

Figure 4 depicts the accuracy of 7 classifiers with respect to PCA and SVD. The
interpretations from Fig. 4 are:

• Seven algorithms are reduced in size by PCA, and their accuracy is higher than
SVD.

• KNN has the highest accuracy through seven algorithms processed by PCA and
SVD.

• Naïve Bayes has lower accuracy and KNN, DT, and RF have higher accuracy.

Fig. 4. Comparison of Accuracy of 7 classifiers with PCA versus SVD
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Figure 5 depicts the recall of 7 classifiers with respect to PCA and SVD. The
interpretations from Fig. 5 are:

• SVD-KNN has the highest recall.
• The KNN, DT, and RF algorithms processed by PCA or SVD have a high recall.
• SVD-NB and PCA-NB have the lowest recall.

Figure 6 depicts the precision of 7 classifiers with respect to PCA and SVD. The
interpretations from Fig. 6 are:

• PCA-RF has the highest precision.
• KNN, DT, and RF algorithms processed by PCA or SVD have higher precision.
• SVD-NB and PCA-NB have the lowest precision.

Fig. 5. Comparison of Recall of 7 classifiers with PCA versus SVD

Fig. 6. Comparison of Precision of 7 classifiers with PCA versus SVD
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Fig. 8. Comparison of AUC of 7 classifiers with PCA versus SVD

Fig. 9. Comparison of Accuracy and Time of 3 algorithms in KDD CUP 99

Fig. 7. Comparison of F-measure of 7 classifiers with PCA versus SVD
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5 Conclusion

In this paper, we study the performance of seven machine learning algorithms through
PCA and SVD. In addition to the recall, SVD performance analysis is always superior
to PCA feature selection technology. Therefore, SVD is the best feature selection
technique for NSL-KDD dataset because it reduces dimensionality by selecting
important feature vectors and discarding unimportant feature vectors. SVD and PCA
can achieve effective dimension reduction and redundancy removal of data based on
the maximum extraction of original data features, and solve the high computational
overhead of IDS. Through experiments, we found that the DT method processed by
SVD is superior to other methods in detection rate and time. PCA and SVD reduce the
computational cost and improve the efficiency of IDS while ensuring high detection
rate. It has a certain meaning for real-time deployment in high-speed networks.

Although PCA provides better performance analysis in terms of Accuracy, Error
rate, Recall, Precision, F-measure and AUC, it requires a lot of computation time due to
its complexity. In terms of intrusion detection, there are still improvements in this
experiment. For example, you can put the program on the Spark architecture for
distributed processing. However, due to the insufficient amount of data in the NSL-
KDD dataset, the distributed processing method will greatly exceed the data processing
time. Therefore, this paper does not adopt a distributed method to further reduce the
time consumption. However, in the real world, a distributed approach is still desirable,
which can further reduce the time consumption based on dimensionality reduction.
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Abstract. This paper proposes a distributed data anonymous storage and
transaction protocol that discards the centralized architecture and distributes the
computational pressure to each edge device through blockchain and edge
computing. In addition, a pseudo-identity-based data anonymous storage
scheme is designed based on ElGamal cryptosystem, and the anonymous
transaction scheme based on ECDLP and blinding signature allows sellers and
buyers to directly trade through the blockchain. The protocol proposed in this
paper effectively guarantees the security of data storage and the anonymity of
data transactions.

Keywords: Blockchain � Edge computing � Pseudo identity � Anonymous
transaction

1 Introduction

The blockchain was first proposed by Nakamoto in [1] describing Bitcoin. He pointed
out that blockchain is a data structure used to record bitcoin transaction history. There
are no third parties in the blockchain, so the blockchain is decentralized, which greatly
reduces security threats from third parties, and all transactions in the blockchain are
traceable, which provides assurance for the verification and arbitration of the
transaction.

The Internet of Things is a huge network formed by combining various sensing
devices with the Internet, such as temperature sensors and infrared sensors [2]. The
number and scale of the IoT is rapidly expanding. As the number of IoT devices grows,
a large amount of data is generated at the edge of the network. These data need to be
processed in time rather than sent back to the cloud server, so processing data at the
edge of the network is more effective [3]. Edge computing has the characteristics of
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high real-time and close to the edge. The basic principle of edge computing is that
computing should be near the data source, not in the remote cloud [4], and it is
proposed as an intermediate architecture that supports blockchain and interact with IoT
devices [5].

With the increasing number of IoT devices and the ever-increasing amount of data
generated, how to store these data securely and securely trade these data has become
the focus of attention. Xu et al. [6] proposed a blockchain-based storage system for data
analytics applications in the Internet of Things. Li et al. [7] proposed a distributed data
storage scheme employing blockchain and certificateless cryptography. Wang et al. [8]
proposed a new architecture for data synchronization based on fog computing. Liu
et al. [9] proposed a new blockchain-based decentralization DNS data storage method.
Kogan et al. Yang et al. [10] proposed to use a credit-based payment for fast computing
resource trading in edge-assisted blockchain-enabled IoT. Nagato et al. [11] provided a
data framework for edge computing where developers can easily attain efficient data
transfer between devices or users.

The contributions of this paper are listed as follows:
First, based on the ElGamal cryptosystem [12], we design an anonymous storage

scheme for data that can generate pseudo identities, protect the correspondence
between real identities and data. Second, we propose a data anonymous transaction
scheme based on blinding signature and ECDLP [13], which realized the complete
anonymity of the transaction.

This paper is organized as follows. We introduce the preliminary setting of the
protocol in Sect. 2. We propose our anonymous storage and transaction protocol for
IoT data based on blockchain and edge computing in Sect. 3. We analyze the security
of our protocol in Sect. 4. Finally, we conclude our paper in Sect. 5.

2 Preliminary

The blockchain is the core supporting technology of the digital cryptocurrency system
represented by bitcoin. The core advantage of blockchain technology is decentraliza-
tion, which can be achieved through the use of data encryption, time stamping, dis-
tributed consensus and economic incentives. Nodes do not need to trust each other in
distributed systems to achieve peer-to-peer-based transaction, coordination and col-
laboration, thus providing solutions to solve the problems of high cost, low efficiency
and insecure data storage that are common in centralized architecture.

In the blockchain network, there is a role called miner, which can also be called a
work node. The role of the miner is to package the transaction into blocks and solve the
proof-of-work problem when a user posts a transaction to the Bitcoin network, blocks
that successfully solve the problem will be broadcast throughout the network. A block
consists of a block header and a block body. The block body mainly contains
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transaction counts and transaction details. That is, the Merkel tree [14] is stored in the
block body except the root node, the block header is composed of the following parts:

block header: ðPrehash;MerkelRoot;Nonce; Ts;CurrenthashÞ

Where Prehash is the hash value of the previous block; MerkelRoot is the root of
Merkel tree, which is a transaction tree; Nonce is a random number found by solving
proof-of-work problem; Ts is the timestamp and Currenthash is the hash of current
block, Fig. 1 shows the structure of the blockchain.

3 Data Anonymous Storage and Transaction Protocol Based
on Blockchain and Internet of Things

Our protocol is divided into two parts, the first part is the data anonymous storage
protocol and the second part is the data anonymous transaction protocol.

3.1 Data Anonymous Storage Protocol

In this section, the edge device encrypts the received data which collected from the IoT
device, including generating a pseudo identity for the IoT device and generating a
symmetric key for encrypting the original data. Pseudo-identity protects the corre-
spondence between real identity and data. Figure 2 shows the architecture diagram of
the protocol.

Fig. 1. Blockchain structure

Fig. 2. Data anonymous storage architecture
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Pseudo Identity Generation
The pseudo-identity generation is based on ElGamal cryptosystem, which is a kind of
public key cryptosystem based on discrete logarithm problem, we assume that the
reader is familiar with the discrete logarithm problem and the ElGamal cryptosystem.

1. A trusted third party TA distributes a unique identity Tidi; 1� i� nð Þ for each IoT
device, where n means number of IoT devices.

2. The edge device randomly selects a large prime number p that satisfies the security
requirements, and generates a generator g of Zp, g 2 Z�

p.
3. The edge device sends a random number T to the terminal device; the terminal

device sends the random number R and its own identity identifier Tidi to the edge
device. After the edge device receives the random number R, it computes gH Tð Þ�R

and generates a pseudo-identity public-private key pair for the terminal device. The
expression of the public private key pairing is given below:

PKpse ¼ gH Tidð Þ � gH gH Tð Þ�Rð Þ mod pð Þ � gH Tidð ÞþH gH Tð Þ�Rð Þ modpð Þ ð1Þ

SKpse ¼ H Tidð ÞþH gH Tð Þ�R
� �

ð2Þ

4. Divide the identity Tid into t groups, each group has L length, where
Tid ¼ Tid1Tid2. . .Tidn, select a random number ri for Tidi, 1\i\n, 1\ri\p� 1,
and computing ci; c

0
i

� �
, so that the pseudo identity is:

ci � gri ðmod pÞ; c
0
i � Tidi � PKri

pseðmod pÞ;PseID ¼ ðc1; c0
1Þðc2; c

0
2Þ. . .ðcn; c

0
nÞ ð3Þ

Data Encryption
Since the amount of IoT device data is too large, a symmetric cryptographic algorithm
is used when encrypting the IoT device data, and symmetric encryption algorithm has
higher encryption efficiency.

Selecting a part of the private key as the symmetrically encrypted key has the
advantage of reducing the computational complexity of the edge device to generate the
symmetric encryption key again. And more importantly, in the subsequent data
transaction process, the IoT device delegates the edge device to trade data, If the IoT
device questions the data sold by the edge device during the transaction, that is,
whether the edge device sells the correct data belonging to the IoT device instead of the
forged data, the IoT device can use the symmetric key to verify whether the data
generated by itself is correctly sold.

The symmetric key is K ¼ H gH Tð Þ�R� �
, use this key to generate ciphertext C, the

generated ciphertext is tagged, in order to indicate which type of data is being traded
during the data transaction.

C ¼ EnK M;PseID; Tsð Þ ð4Þ
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Where M is the data of the IoT device, PseID is the pseudo identity of the cor-
responding device and Ts is the current timestamp. En is a symmetric encryption
algorithm. It can be AES or other symmetric encryption algorithms. Store the data
pairing \label;C[ (label is the tag) to the distributed hash table (DHT) [15], and
return the address of the data Addr in the DHT to the edge device.

The mapping relationship Mapping ¼ \PseID; Tid[ between the real identity
and the pseudo identity is also saved and stored in the DHT. If the buyer suspects that
the data he purchased is forged by the edge device during the data transaction, the edge
device presents the Mapping for verification.

3.2 Data Anonymous Transaction Protocol

In this section, we present a data anonymous transaction protocol. The details of this
part are given below, including edge device registration and data anonymous
transaction.

Edge Device Registration
Since the data transactions are based on the blockchain, the edge device needs to
register with the blockchain before the data transaction. The registration process is as
follows:

1. The edge device generates a random number Re and uses the public key of the
blockchain PKC to encrypt the random number to generate the ciphertext Ze, where
Ze ¼ EnPKc Reð Þ and sends it to the blockchain, Similarly, the blockchain generates
Rc and generate the ciphertext Zc, where Zc ¼ EnPKe Rcð Þ and send it to the edge
device.

2. After each party decrypts the random number sent by the other party, both of them
combine two random numbers into one number N by using an XOR operation,
where N ¼ Re � Rc, the blockchain stores the random number in its own access
control list.

Fig. 3. Data anonymous transaction
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Data Anonymous Transaction
In the process of data transaction, the edge device is actually the Seller who owns the
data, and the user who purchases the data is the Buyer. In this section, all transactions
are signed with the sender’s private key and verified using the sender’s public key.
Figure 3 is the diagram of anonymous transaction protocol:

1. The buyer posted a transaction in the blockchain indicating that the buyer wanted to
purchase the data:

TBuyer ¼ val; labelB;PKBuyer;ECCBuyer;H TBuyer
� �� � ð5Þ

Where val indicates the price of the data, labelB indicates which type of data the
buyer wants to purchase, PKBuyer is the buyer’s public key, ECCBuyer is an elliptic
curve equation Q ¼ kP, Q;P 2 Ep a; bð Þ and k\p, but in this step, only the value of
QBuyer;PBuyer are given. H TBuyer

� �
is the hash function of this transaction.

2. When the seller in the blockchain receives a suitable transaction request and the
seller is willing to trade data with the buyer, the seller sends a transaction to the
buyer:

TSeller ¼ labelS;ECCSeller;PKSeller;H TSellerð Þð Þ ð6Þ

3. After the buyer receives the transaction sent from the seller, the buyer generates a
cheque and send it to the seller, The cheque is used to transfer money between the
buyer and the seller’s bank account. In order to prove the identity of himself, the
buyer needs to give the secret value kBuyer and his account, the specific structure of
the cheque is:

TSeller send Cheque ¼ Cheque:\SN; val;ECCBuyer; acc noBuyer [ ; kBuyer
� �

: ð7Þ

4. The seller receivers the cheque sent from the buyer, firstly uses the secret value
kBuyer to verify the buy’s identity, and then add his bank account acc noSeller and
ECCSeller into the cheque, finally send it to the bank.

TSeller send Cheque ¼ Cheque:\SN; val;ECCBuyer; acc noBuyer;ECCSeller; acc noSeller [

ð8Þ

5. After receiving the cheque, the bank does not immediately transfer the money in the
buyer’s account to the seller, the bank informs the seller to send the data to the
buyer. Meanwhile, the seller uses blinding signature to blind the Mapping, which is
the correspondence between pseudo identity and real identity, here we give the
detail of blinding signature:
Firstly, the seller generates a random number r named blinding factor, and then uses
buyer’s public key to encrypt the blinding factor, then computes Mapping

0
. Sec-

ondly, the seller stores H rð Þ on the blockchain, and then add the Mapping
0
, the

data’s address, the secret value kSeller and the symmetric key that decrypts the data
into a transaction:
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Tdata ¼ Mapping
0 ¼ Mapping � PKBuyer rð Þ;Addr; kSeller;H gH Tð Þ�R

� �� �
ð9Þ

6. After the buyer receives the transaction, the identity of the seller is authenticated,
and then the data is obtained and decrypted in the DHT. Then the buyer and seller
send their secret value kBuyer and kSeller to the bank. The bank verifies the identity of
the seller and the buyer, and after the verification is successful, transfers the money
in the buyer’s account to the seller’s account.

4 Security Analysis

4.1 Security of the Protocol

In the part of pseudo-identity generation algorithm, the security of the algorithm is
based on the security of the ElGamal encryption algorithm, and the security of the
ElGamal algorithm is based on the mathematical problem of computing the discrete
logarithm is complex on a finite field. The security of data anonymous transaction
protocols is based on the security of blockchain and the hardness of the elliptic curve
discrete logarithm problem.

The security of the blockchain means that once the transaction on the blockchain is
broadcast, it is visible to all other nodes in the entire network and cannot be modified.
The miners on the blockchain find a nonce by computing the proof-of-work, who first
calculated the nonce is given the right to write the block which containing the trans-
action to the blockchain. The advantage of this mechanism is that it can prevent double
spending attack.

The anonymous transaction means that in the equation Q ¼ kP, only know Q and P
are difficult to compute k, When the identity needs to be presented, the identity
information is replaced by presenting k, there is no identity-related information
throughout the transaction, thereby realizing anonymous transactions.

4.2 Traceability

When encrypting data using a symmetric key, use K ¼ H gH Tð Þ�R� �
as the symmetric

key. The advantage of using K ¼ H gH Tð Þ�R� �
as a symmetric key when encrypting data

is that if the data sold by the seller (edge devices) is not generated by the IoT device but
is forged, the IoT device can verify the generated pseudo-identity to ensure that the data
the seller sells is generated by himself.

When selling data, the buyer blinds the Mapping by using blinding signature. The
advantage of this is that if the buyer questions the authenticity of the data sold by the
seller, the value is revealed to prove whether he sold the data the buyer needs, rather
than the seller’s forged data. Meanwhile, the blinding factor generated in the blinding
signature, the seller will store H rð Þ on the blockchain, and when necessary, present the
value so that the buyer can obtain the true mapping value.

Anonymous IoT Data Storage and Transaction Protocol 187



When the buyer obtains the blinding factor r, he computes:

SKBuyer Mapping
0

� �
¼ SKBuyer Mappingð Þ � r � r�1 ¼ SKBuyer Mappingð Þ ð10Þ

PKBuyer SKBuyer Mappingð Þ� � ¼ Mapping ð11Þ

Now the buyer gets the knowledge of Mapping.

5 Conclusion

In this paper, we present an anonymous data storage and transaction protocol based on
blockchain and edge computing. In the data anonymous storage section, the edge
device generates a pseudo identity for the terminal device to protect the correspondence
between the real identity and the data. In the data anonymous transaction section, we
designed a structure of an electronic cheque. Through the blockchain, the buyer signs
the cheque to the seller, the seller sells the data to the buyer, and the seller then entrusts
the bank to use the cheque to transfer the money.
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Abstract. Bitcoin is the most popular cryptocurrency all over the world.
Existing mining pool systems do not consider the cost of miners. In this paper,
we propose a novel pool mining mechanism based on Stackelberg game to
incentivize the rational miners in Bitcoin mining pool. Through both theoretical
analysis and simulations, we demonstrate that the proposed mechanism achieve
computational efficiency, individual rationality, and profitability. Moreover, we
show that the Stackelberg game has a unique Equilibrium.

Keywords: Bitcoin � Mining pool � Incentive mechanism � Nash equilibrium

1 Introduction

Bitcoin is the world’s first decentralized digital currency, which relies on the network
of computers that synchronize transactions with a process called mining to find valid
blocks. In this way, miners repeatedly compute hashes until one finds a numerical
value, which is low enough, and thus get the reward from the block. Small miners
participate in the mining pool to achieve large computing power in total, and divide the
reward from blocks in order to receive a smaller but steadier stream of income.

Incentive mechanisms are important for many human-involved cooperative sys-
tems, such as computation offloading [1], and crowdsourcing [2, 3]. Some research
efforts [4–6] focus on designing incentive mechanisms to entice miners to participate in
mining pools. However, none of them considers the cost of each miner. Designing an
efficient mechanism to incentive the rational miners within the mining pool is a
challenging issue.

This paper considers the rational miners with different cost. For example, people
living in areas with high electricity bills will have higher mining cost than others. Their
mining strategies will be influenced by their cost. To solve this problem, we design an
incentive mechanism to motivate the miners to participate in the mining pool. In our
incentive mechanism, the mining pool platform has the absolute control over the total
payment to the miners affiliated, and miners can determine the mining actions based on
the total payment decided by mining pool platform and their cost.

There are two noteworthy properties of our mechanism which are distinguished
with most mining mechanisms. First, our mechanism satisfies the property of individual
rationality, which can guarantee nonnegative utility for both side of miner and
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F. Liu et al. (Eds.): SciSec 2019, LNCS 11933, pp. 190–198, 2019.
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platform. Second, the platform has the absolute control of the pool, and takes all risk of
the miners. This means that the platform needs to pay to the miners no matter whether
the pool finds a valid block, and the miners always have steady income.

2 System Model and Problem Formulation

We use Fig. 1 to illustrate the mining pool system. The system consists of a mining
pool platform and a mining pool which contains a set M ¼ 1; 2; . . .; nf g of rational
miners, where n� 2. The Miners provide hash quantity by consuming their computing
power with different unit cost. Therefore, these rational miners expect the payment to
compensate for their cost. Each miner makes its own mining strategy, which is the hash
quantity, and then submits it to the platform. After collecting the mining strategies from
miners, the platform sends the payments to the miners. The miners with positive hash
quantity send the hash to the platform. If they are lucky enough, through the integrated
efforts of the miners in the pool, the mining pool will find a valid block and receive the
reward from the block. On the other side, if any miner outside the pool finds a valid
block, the platform can’t get reward. Overall, the platform absorbs all the variance for
the miners in the pool.

The platform is only interested in maximizing its own utility. Since computing
power is owned by different individuals, it is reasonable to assume that miners are
selfish and rational. Hence each miner only wants to maximize its own utility and won’t
participate in mining pool unless there is sufficient incentive.

For mining a block, the platform announces a total payment P[ 0, motivating
miners to participate in the mining pool. Each miner decides its mining strategy of
participation based on the payment. The mining strategy of any miner i 2 M is rep-
resented by hi, hi � 0, the hash quantity he is willing to provide. Specifically, if hi ¼ 0,
miner i indicates that he will not participate in the mining pool. The mining cost of
miner i is kihi, where ki [ 0 is its unit cost. Assume that the payment received by miner
i is proportional to hi. Then the utility of miner i can be defined as the difference
between payment and cost:

ui ¼ hiP
j2M hj

P� hiki ð2:1Þ

Fig. 1. A mining pool system
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For the reason that the mining process is subject to Poisson process [4], we can get
the utility of the platform in expectation:

u0 ¼
P

j2M hj
Aþ P

j2M hj
R� P ð2:2Þ

where A ¼ D�232
10min is the total hash power in Bitcoin network. We can estimate it easily

from the difficulty of finding a valid block, D, which is adjusted periodically by the
Bitcoin network. We suppose that A is a constant because it is almost stable for two
weeks (the approximate period when Bitcoin network adjusts D). The probability of
finding a valid block by the platform is proportional to its total computing power in the
whole network. R is the reward the platform can obtain if it finds a valid block.

The objective of the platform is to decide the optimal value of P such as to
maximize (2.2), while each miner i 2 M decides its hash quantity hi to maximize (2.1)
for the given value of P. Since no rational user is willing to mine with negative utility,
user i will set hi ¼ 0 when P� ki

P
j 6¼i\ j2M hj.

Our objective is to design an incentive mechanism for mining pool satisfying the
following four desirable properties:

• Computational Efficiency: A mechanism is computationally efficient if the outcome
can be computed in polynomial time.

• Individual Rationality: Each participating miner will have a non-negative utility.
• Profitability: The value brought by the miners should be at least as large as the total

payment paid to the miners. Note that profitability here is profitability in expectation
because of the randomness of Bitcoin mining.

• Uniqueness: The combination of strategies is called Nash Equilibrium, where each
player’s equilibrium strategy is to maximize his/her expected utility, while all other
players follow the equilibrium strategy. Uniqueness requires that there exists only
one Nash Equilibrium. Being uniqueness, we can predict and compute the equi-
librium strategies of all players exactly.

3 Incentive Mechanism

We model the mining process as Stackelberg game, which can be called Mining game.
There are two phases in this mechanism: In the first phase (called payment determi-
nation), the platform announces its payment P; in the second phase (called hash
determination), each miner strategizes its mining plan to maximize its own utility.
Therefore, the platform is the leader and the miners are the followers in our Mining
game. The strategy of the platform is its payment P. The strategy of any miner i is its
hash amount hi. Let h ¼ h1; h2; . . .; hnð Þ denote the strategy profile of all miners’
strategies. Let h�i denote the strategy profile excluding hi. As a notational convention,
we write h ¼ hi; h�ið Þ.
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Note that the second process of the Mining game itself can be considered as a non-
cooperative game, which we call the Hash Determination (HD) game. Given Stack-
elberg game formulation, we introduce the following two definitions:

Definition 1 (Nash Equilibrium, NE). A set of strategies ( hne1 ; h
ne
2 ; . . .; h

ne
n Þ is a Nash

Equilibrium of the HD game if for any user i,

uiðhnei ; hne�iÞ� ui hi; hne�i

� �
for any hi � 0, where ui is defined in (2.1).

Definition 2 (Subgame Perfect Nash equilibrium). The Stackelberg game can be
solved by finding the Subgame Perfect Nash Equilibrium (SPNE), i.e. the strategy
profile serves best for each player, given the strategies of the other player, and entails
every player playing in a Nash Equilibrium in every subgame.

3.1 Hash Determination

We first introduce the concept of best response strategy.

Definition 3 (Best Response Strategy). Given h−i, the strategy is miner i’s best
response strategy, denoted by bi(h−i), if it maximizes ui hi; h�ið Þ over all hi � 0.

Based on the definition of NE, every player is playing its best response strategy in a
NE. From (2.1), we know that hi � P

ki
because ui will be negative otherwise. To study

the best response strategy of miner i, we compute the derivatives of ui with respect
to hi:

@ui
@hi

¼ 1P
j2M hj

P� hiP
j2M hj

� �2 P� ki ð3:1Þ

@2ui
@h2i

¼ � 2p
P

j2Mnfig hjP
j2M hj

\0
ð3:2Þ

Since the second-order derivative of ui is negative, the utility ui is a strictly concave
function with hi. Therefore, given any P[ 0 and any strategy profile h�i of the other
miners, the best response strategy bi h�ið Þ of user i is unique, if it exists. If the strategy
of all other miners j 6¼ i is hj ¼ 0, then miner i does not have a best response strategy,
as it can have a utility arbitrarily close to P, by setting hi to a sufficiently small positive
number. Therefore, we are only interested in the best response for miner i whenP

j2Mn if g h_j [ 0. Setting the first derivative of ui to 0, we have

1P
j2M hj

P� hiP
j2M hj

� �2 P� ki ¼ 0 ð3:3Þ
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Solving for hi in (3.3), we obtain

hi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
P

j2Mn if g hj
ki

s
�

X
j2Mn if g hj ð3:4Þ

Remark: hi is the total hash that can make i achieve maximum utility in the current
mining pool. Of course, i can put the remaining hash power to any other pools.

If the right-hand side of (3.4) is positive, it is also the best response strategy of
miner i, due to the concavity of ui. If the right-hand side of (3.4) is less than or equal to
0, then miner i does not participate in the mining task by setting hi = 0 (to avoid a
deficit). Hence we have

b hið Þ ¼
0 if P� ki

P
j6¼i\ j2M

hjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
P

j2Mnfig hj
Ki

r
� P

j2Mnfig
hj otherwise

8>>><
>>>:

ð3:5Þ

These analyses lead to Algorithm 1 for computing an NE of the HD game.

Algorithm 1: Computation of the NE
1   Sort miners according to their unit costs,

2   
3 while and do
4     
5 end
6 for each do

7 if then 

8 else 
9 end
10 return 

Theorem 1. The strategy profile hne ¼ hne1 ; h
ne
2 ; . . .; h

ne
n

� �
computed by Algorithm 1 is a

NE of the HD game.

PROOF 1: From Algorithm 1, we get:

(1) for i 62 S, ki �
P

j2S kj
n0�1

(2)
P

j2S h
ne
j ¼ Sj j�1ð ÞPP

j2s kj

(3) for i 2 S,
P

j2Sn if g h
ne
j ¼ Sj j�1ð Þ2PkiP

j2S kj

� �2
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There are two cases:
① For i 62 S: It is obvious that ki

P
j2Sn if g h

ne
j ¼ ki

P
j2S h

ne
j . Using (1) and (2), we

get ki
P

j2Sn if g h
ne
j �P. According to (3.5), we have b hne�i

� � ¼ 0. So, it is the best
response strategy given hne�i for 62 S.

② For i 2 S: From the Line 3 of Algorithm 1, we get (i� 1) ki\
Pi

j¼1 kj. Then

n0 � 1ð Þki ¼ i� 1ð Þki þ n0 � ið Þki

\
Xi

j¼1

kj þ
Xn
j¼i

kj ¼
Xn
j¼1

kj

Thus, ki\
Pn

j¼1
kj

n0�1 . Furthermore, using (3) we have

ki
X

j2Mn if g h
ne
j ¼ ki

X
j2Sn if g h

ne
j ¼ ki

n0 � 1ð Þ2PkiP
j2S kj

� �2 ¼ P
n0 � 1ð Þ2k2iP

j2S kj
� �2

\P
n0 � 1ð Þ2

P
j2S kj

n0�1

� �2

P
j2S kj

� �2 ¼ P

Thus, ki\ PP
j2Mn if g h

ne
j

. According to (3.5), we have

b hne�i

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
P

j2Mn if g hj
ki

s
�

X
j2Mn if g

hj ¼ n0 � 1ð ÞPP
j2S hj

� n0 � 1ð Þ2PhiP
j2S hj

� �2 ¼ hnei

In summary of ① and ②, hne is an NE of HD game. ■

Theorem 2. The NE in Theorem 1 is unique.

PROOF 2: First, we assume that there exists one miner i 2 M whose h
0
i 6¼ hnei , but it

also satisfies ui h
0
i; h

ne
�i

� �� ui hi; hne�i

� �
for any hi [ 0.

① If i 62 S, There must have h
0
i > 0 for the reason that h

0
i 6¼ hnei and hnei ¼ 0.

However, it cannot change the truth that ki\
ki þ

P
j2S kj

Sj j , which means that

ki
P

j2Sn if g h
ne
j �P (In proof 1). So, its h

0
i have to be 0 in order to avoid a deficit. h

0
i ¼ 0

is contradict with h
0
i [ 0.

② If i 2 S, reminding that (2.1) is a concave function and it reaches the maximum
when hi ¼ hnei . So, ui h

0
i; h

ne
�i

� �
\ui hnei ; h

ne
�i

� �
. Which is contradict with

ui h
0
i; h

ne
�i

� �� ui hi; hne�i

� �
for any hi [ 0.
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In summary of ① and ②, there is no any miner i 2 M whose h
0
i 6¼ hnei , and it still

satisfies ui h
0
i; h

ne
�i

� �� ui hi; hne�i

� �
for any hi [ 0. ■

3.2 Platform Utility Maximization

According to the above analysis, the platform, which is the leader in the Stackelberg
game, knows that there exists a unique NE for the miner for any given value of
P. Hence the platform can maximize its utility by setting the optimal value of
P. Substituting hne into (2.2), we have

u0 ¼ X
AþX

� P ð3:6Þ

where X ¼ P
j2S

Sj j�1ð ÞPP
j2S kj

1� Sj j�1ð ÞkiP
j2S kj

� �
, and X 0 ¼ @X

@P ¼ P
j2S

Sj j�1ð ÞP
j2S kj

1� Sj j�1ð ÞkiP
j2S kj

� �
.

Obviously, X 0 is a constant. We use Y to represent X 0.

Theorem 3. There exists a unique Stackelberg Equilibrium P�; hneð Þ in the Mining
game, where P� is the unique value of P to maximize the platform utility in (3.6) over
P 2 0;1½ Þ.
PROOF 3: We have

@u0
@P

¼ AY

AþXð Þ2 � 1 ð3:7Þ

@2u0
@P2 ¼ � 2AY2

AþXð Þ3 \0 ð3:8Þ

Therefore the utility u0 defined in (3.6) is a strictly concave function of P, for any
P 2 0;1½ Þ. Since the value of u0 in (3.6) is 0 if P ¼ 0, and goes to �1 when P goes to
1, it has a unique maximum value P� that can be effectively computed using either
bisection or Newton’s method. ■

In the following, we present the analysis, demonstrating that Mining game can
achieve the desired properties.

Theorem 4. Mining game is computationally efficient, individually rational, profitable,
and has unique Equilibrium.

PROOF 4: The Sorting in Line 1 can be done in O nlognð Þ time. The while-loop (Lines
3–5) requires a total time of O nð Þ. The for-loop (Lines 6–9) requires a total time of
O nð Þ. Hence the time complexity of Algorithm 1 is O nlognð Þ.

The property of individually rational is obvious from (3.3). The property of prof-
itability is also obvious because the pool can always set P ¼ 0 in (2.2) to get u0 ¼ 0 (In
this case, all miners should set hi ¼ 0 according to (3.5)). This means that u0 can be at
least 0 because the u0 defined in (3.6) is a strictly concave function of P. The
uniqueness of Equilibrium has been proved in Theorem 3. ■
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4 Performance Evaluation

We consider that the block reward R is 100. The default number of miners in the pool is
100. We assume the cost of each miner subjects to normal distribution or uniform
distribution with l ¼ 4:0788� 10�12, which can be estimated from the miners in [7].

To explore the influence of r further, we pick some meaningful value of r and plot
Figs. 2 and 3. We find that when r is not large enough, there is only part of the miners
provide hash to the pool, which means that other miners set hi ¼ 0. Second, we find
that the larger r is, the steeper the curve. Extremely, the curve can be a horizontal line
when r ¼ 0. Third, notice that the unit cost of miners is sorted by k1 � k2 � . . .� kn.
We find that miners with lower cost are willing to provide more hash to the pool since
the NE computed by Algorithm 1 is a decreasing function with the unit cost.
Accordingly, from Fig. 2 we find the miners, who contribute more hash, will be paid
more.

5 Related Work

Since launched in 2009, Bitcoin has received lots of attention in the research com-
munity. Eyal et al. [8], and Kiayias et al. [9] all focus on the problem called selfish
mining in Bitcoin network. Rosenfeld et al. [4], Schrijvers et al. [5], and Lewenberg
et al. [6] focus on profit distribution in a mining pool. Eyal et al. [10] focus on
improving the protocol of the Bitcoin network. However, there isn’t much work taking
the cost into consideration.

Fig. 2. Hash amount provided by each
miner under normal distribution

Fig. 3. Hash amount provided by each miner
under uniform distribution
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6 Conclusion

We have proposed a novel pool mining mechanism based on Stackelberg game to
incentive the rational miners in Bitcoin mining pool. Through both theoretical analysis
and simulations, we demonstrate that the proposed mechanism achieves computational
efficiency, individual rationality, and profitability. Moreover, we show that the
Stackelberg game has a unique Equilibrium.
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Abstract. Security operation centers (SOCs) typically use a variety of
tools to collect large volumes of host logs for detection and forensic of
intrusions. Our experience, supported by recent user studies on SOC
operators, indicates that operators spend ample time (e.g., hundreds
of man hours) on investigations into logs seeking adversarial actions.
Similarly, reconfiguration of tools to adapt detectors for future simi-
lar attacks is commonplace upon gaining novel insights (e.g., through
internal investigation or shared indicators). This paper presents an auto-
mated malware pattern-extraction and early detection tool, testing three
machine learning approaches: TF-IDF (term frequency–inverse docu-
ment frequency), Fisher’s LDA (linear discriminant analysis) and ET
(extra trees/extremely randomized trees) that can (1) analyze freshly
discovered malware samples in sandboxes and generate dynamic analy-
sis reports (host logs); (2) automatically extract the sequence of events
induced by malware given a large volume of ambient (un-attacked) host
logs, and the relatively few logs from hosts that are infected with poten-
tially polymorphic malware; (3) rank the most discriminating features
(unique patterns) of malware and from the behavior learned detect
malicious activity, and (4) allows operators to visualize the discriminat-
ing features and their correlations to facilitate malware forensic efforts.
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To validate the accuracy and efficiency of our tool, we design three exper-
iments and test seven ransomware attacks (i.e., WannaCry, DBGer, Cer-
ber, Defray, GandCrab, Locky, and nRansom). The experimental results
show that TF-IDF is the best of the three methods to identify discrimi-
nating features, and ET is the most time-efficient and robust approach.

1 Introduction

Ransomware, a class of self-propagating malware, uses encryption to hold vic-
tim’s data and has experienced a 750% increase in frequency in 2018 [1]. Recently,
the majority of these ransomware attacks target local governments and small
business [2]. For example, the 2018 SamSam ransomware hit the city of Atlanta,
encrypted at least one third of users’ applications, disrupted the city’s vital ser-
vices [3], and resulted in $17M of remediation to rebuild its computer network [4].
Unlike large multinational businesses, small cities and businesses usually face
stricter financial constraints than larger enterprises and struggle to establish
or keep pace with cyber defensive technology and adversary/malware advance-
ments. Consequently, they are less capable to defend against cyber threats. More
generally, SOC’s resource constraints and the shortage of cybersecurity talent [5–
7] motivate us to develop an automated tools for SOCs.

Currently, manual investigation of logs is commonplace in SOCs and
extremely tedious. E.g., our interaction with SOC operators revealed a 160 man-
hour forensic effort to manually analyze a few CryptoWall 3.0 infected hosts’
logs [8] with the goal of (a) identifying the adversary/malware actions from user
actions in their logs and (b) leveraging learned information to reconfigure tools
for timely detection. This motivates our target use case—from SOC-collected
logs from an attacked host (esp. a ransomware infection) and non-attack host
logs, we seek to automated the (currently manual) process of identifying the
attack’s actions. In the ransomware case, this should be used to provides a pre-
encryption ransomware detector. For testing in a controlled environment, we use
“artificial logs”, that is, logs obtained by running malware and ambient (emu-
lated user) activities in a sandbox.

Note that this mirrors classical dynamic analysis—(a) performing dynamic
malware analysis to (b) extract indicators or signatures—and, hence, dynamic
analysis is a second use case. Malware analysis takes considerable time and
requires an individual or a team with extensive domain knowledge or reverse
engineering expertise. Therefore, malware analysts usually collaborate across
industry, university and government to analyze the ransomware attacks that
caused disruptive global attacks (e.g., WannaCry). However, the security com-
munity has insufficient resources to manually analyze less destructive attacks
such as Defray, nRansom and certain versions of Gandcrab. Therefore, manual
analysis reports of such malware do not provide enough information for early
detection [9–16]. Our approach, regardless of the malware’s real-world impacts
and potential damages, efficiently help to automate tedious manual analysis by
accurately extracting the most discriminating features from large amount of host
logs and identifying malicious behavior induced by malware.
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While our approach holds promise for more general malware and other
attacks, we focus on ransomware. Note that upon the first infection identified
in an enterprise, the logs from the affected host can be automatically turned
into a detector via our tool. The tool applies three machine learning algorithms,
(1) Term Frequency-Inverse Document Frequency (TF-IDF ), (2) Fisher’s Linear
Discriminant Analysis (Fisher’s LDA) and (3) Extra Trees/Extremely Random-
ized Trees (ET ) to (a) automatically identify discriminating features of an attack
from system logs (generated by an automatic analysis system, namely, Cuckoo
Sandbox [17]), and (b) detect future attacks from the same log streams. Using
Cuckoo and set scripts for running ransomware and emulated user activity pro-
vides source data for experimentation with ground truth. We test the tool using
infected system logs of seven disruptive ransomware attacks (i.e., WannaCry,
DBGer, Cerber, Defray, GandCrab, Locky, and nRansom) and non-attack logs
from emulated user activities, and present experiments varying log quality and
quantity to test robustness. These system logs include files, folders, memory,
network traffic, processes and API call activities.

Contributions of the pattern-extraction and early detection tool are

1. analyzing ransomware (esp. initial infection) using Cuckoo Sandbox logs
(more generally, ambient collected host logs) and generating features from
the host behavior reports.

2. extracting the sequence of events (features) induced by ransomware given
logs from (a few) hosts that are infected and (a potentially large amount of)
ambient logs from presumably uninfected hosts;

3. ranking the most discriminating features (unique patterns) of malware and
identifying malicious activity before data is encrypted by the ransomware.

4. creating graph visualizations of ET models to facilitate malware forensic
efforts, and allowing operators to visualize discriminating features and their
correlations.

We compare outputs with ransomware intelligence reports, and validate that
our tool is robust to variations of input data. TF-IDF is the best method to
identify discriminating features, and ET is the most time-efficient approach that
achieves an average of 98% accuracy rate to detect the seven ransomware. This
work builds on preliminary results of our workshop paper [8], which only consid-
ered feature extraction, only used TF-IDF, and only tested with one ransomware.

2 Background and Related Work

Ransomware. In contrast to the 2017 ransomware WannaCry that infected
300K machines across the globe, the majority of ransomware attacks in 2018
and 2019 have been targeting small businesses. These crypto-ransomware attacks
usually use Windows API function calls to read, encrypt and delete files. Ransom
messages are displayed on the screen after the ransomware infecting the host.
This paper selects and analyzes seven recently disruptive ransomware attacks.
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1. WannaCry (2017), a ransomware with historic world-wide effect, was
launched on May 12, 2017 [18]. The WannaCry dropper is a self-contained pro-
gram consists of three components, an application encrypting and decrypting
data; an encryption key file; and a copy of Tor. WannaCry exploits vulner-
abilities in Windows Server Message Block (SMB) and propagates malicious
code to infect other vulnerable machines on connected networks.

2. DBGer (2018), a new variant of the Satan ransomware [19], scans the victim
local network for vulnerable computers with outdated SMB services. DBGer
incorporates a new open-source password-dumping utility, Mimikatz, to store
credential of vulnearble computers [20]. The dropped Satan file is then exe-
cuted to encrypt files of the infected computers with AES encryption algo-
rithm. A text file How to decrypt files.txt containing a note of demands
from the attackers is displayed on victim’s screen.

3. Defray (2017), a ransomware attack targets healthcare, education, manufac-
turing and technology industries [16]. Defray propagates via phishing emails
with an attached Word document embedding an OLE package object. Once
the victim executes the OLE file, the Defray payload is dropped in the %TMP%
folder and disguises itself as an legitimate executable (e.g., taskmgr.exe or
explorer.exe). Defray encrypts the file system but does not change file
names or extensions. Finally, it deletes volume shadow copies of the encrypted
files [15]. Defray developers encourage victims to contact them and negotiate
the payment to get the encrypted files back [14].

4. Locky (2016, 2017) has more than 15 variants. It first appeared in Febru-
ary 2016 to infect Hollywood Presbyterian Medical Center in Los Angeles,
California. The ransomware attackers send millions of phishing emails con-
taining attachments of malicious code that can be activated via Microsoft
Word Macros [11]. Locky encrypts data using RSA-2048 and AES-128 cipher
that only the developers can decrypt data. In this research, we analyze the
malicious behavior of a new variant of Locky ransomware called Asasin, which
encrypts and renames the files with a .asasin extension.

5. Cerber (2016–2018) infected 150K Windows computers in July 2016 alone.
Several Cerber variants appeared in the following two years have gained
widespread distribution globally. Once the Cerber ransonware is deployed
in the victim computer, it drops and runs an executable copy with a random
name from the hidden folder created in %APPDATA%. The ransomware also cre-
ates a link to the malware, changes two Windows Registry keys, and encrypts
files and databases offline with .cerber extensions [21,22].

6. GandCrab (2018, 2019), a Ransomware-as-a-Service (RaaS) attack has
rapidly spread across the globe since January, 2018. GandCrab RaaS online
portal was finally shut down in June, 2019. During these 15 months, Gand-
Crab creators regularly updated its code and sold the malicious code, facili-
tating attackers without the knowledge to write their own ransomware [23].
Attackers then distribute GandCrab ransomware through compromised web-
sites that are built with WordPress. The newer versions of GandCrab use
Salsa20 stream cipher to encrypt files offline instead of applying RSA-2048
encryption technique connecting to the C2 server [24]. GandCrab scans



Automated Ransomware Behavior Analysis 203

logical drives from A: to Z:, and encrypts files by appending a random Salsa20
key and a random initialization vector (IV) (8 bytes) to the contents of the
file. The private key is encrypted in the registry using another Salsa20 key
and the IV is encrypted with an RSA public key embedded in the malware.
This new encryption method makes GandCrab a very strong ransomware,
and the encrypted files can be decrypted by GandCrab creators only [25].

7. nRansom (2017) blocks the access to the infected computer rather than
encrypting victim’s data [13]. It demands ten nude photos of the victim
instead of digital currency to unlock the computer. As recovery from nRan-
som is relatively easy, it is not a sophisticated malware but a “test” or a
“joke”.

Ransomware Pattern Extraction and Detection Works. Homayoun et al.
[26] apply sequential pattern mining to find maximal frequency patterns (MSP)
of malicious activities of four ransomware attacks. Unlike generating behavioral
features directly from host logs, their approach summarizes activity using types
of MSPs. Using four machine learning classifiers, the team found that atomic
Registry MSPs are the most important sequence of events to detect ransomware
attacks with 99% accuracy.

Verma et al. [27] embed host logs into a semantically meaningful metric space.
The representation is used to build behavioral signatures of ransomware from
host logs exhibiting pre-encryption detection, among other interesting use cases.

Morato et al. introduces REDFISH [28], a ransomware detection algorithm
that identifies ransomware actions when it tries to encrypt shared files. RED-
FISH is based on the analysis of passively monitored SMB traffic, and uses
three parameters of traffic statistics to detect malicious activity. The authors
use 19 different ransomware families to test REDFISH, which can detect mali-
cious activity in less than 20 seconds. REDFISH achieves a high detection rate
but cannot detect ransomware before it starts to encrypt data. Our approach,
discovering ransomware’s pre-encryption footprint, promises a more accurate
and in-time detection.

The Related Work section our preliminary work [8] includes works published
previously to those above. As the more general topic of dynamic analysis is large
and diverse, a comprehensive survey is out of scope, but many exist, e.g. [29].
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3 Methodology

Fig. 1. Flowchart of research methodology

The proposed approach
requires a set of normal
(presumably uninfected)
system logs and at least
one log stream containing
ransomware behavior. In
this study, the seven
ransomware executables
introduced in Sect. 2 are
deployed inside a real-
istic but isolated envi-
ronment with a sandbox
tool, Cuckoo [17], for har-
vesting reproducible and
shareable host logs. The
Cuckoo host logs are
dynamic analysis reports
outlining behavior (i.e.,
API calls, files, registry
keys, mutexes), network
traffic and dropped files
Meanwhile, Cuckoo also captures logs from scripted, emulated normal user activ-
ity such as reading and writing of executables, deleting files, opening websites,
watching YouTube videos, sending and receiving emails, searching flight tick-
ets, and posting and deleting tweets on Twitter (see [8]). The normal user
and the ransomware events/behavior in the raw host logs produced by Cuckoo
are then converted to features, and the three machine learning techniques are
used to automatically obtain the most discriminating features from normal and
ransomware-including logs. Afterwards, we discard the features that have little
or no influence, and update the feature vector to reduce the search space of ET
decision tree models. The decision tree graphs are created to present the most
discriminating features of ransomware attacks. See flowchart in Fig. 1.

3.1 Feature Generation

To build features we only use the enhanced category and part of the behav-
ior category of Cuckoo-captured logging output. The details of the feature
building can be found in our previous work [8]. As malware often uses
random names to create files, modules and folders, in this study, we aug-
ment paths of specific files to emphasize their names only. For example,
C:\\Windows\\system32\rsaenh.dll is converted to a string “c:..rsaenh.dll”.
Here, “..” is used as a wild-card to avoid generating duplicated features that
represent similar host behavior.
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3.2 Discriminating Feature Extraction with Machine Learning

TF-IDF, Fisher’s LDA and ET are algorithms used in this research to automat-
ically extract the most discriminating features of ransomware from host logs.

TF-IDF, was defined to identify the relative importance of a word in a
particular document out of a collection of documents [30]. Our TF-IDF appli-
cation follow our previous work for accurate comparison. Given two sets of doc-
uments let f(t, d) denote the frequency of term t in document d, and N the
size of the corpus. The TF-IDF weight is the product of the Term Frequency,
tf(t, d) = ft,d/

∑
t′∈d ft′,d (giving the likelihood of t in d) and the Inverse Docu-

ment Frequency, idf(t,D) = log[N/(1+ |{d ∈ D : t ∈ d}|)] (giving the Shannon’s
information of the document containing t). Intuitively, given a document, those
terms that are uncommonly high frequency in that document are the only terms
receive high scores. We use log streams from infected hosts as one set of doc-
uments and a set of normal log streams as the other to apply TF-IDF; hence,
highly ranked features occur often in (and are guaranteed to occur at least once
in) the “infected” document, but infrequently anywhere else [8].

Fisher’s LDA is a supervised learning classification algorithm that oper-
ates by projecting the input feature vectors to a line that (roughly speaking)
maximizes the separation between the two classes [31]. For our application we
consider a binary classification where one class (C1) is comprised of the fea-
ture vectors {xi}i ⊆ R

m representing host logs that included ransomware, and
the second class (C2) are those vectors of ambient logs. We use this classifier
for identifying the discriminating features between the classes. Consider the set
{vtxi : xi ∈ C1 ∪ C2} ⊂ R, which is the projection of all feature vectors to
a line in R

m defined by unit vector v. Fisher’s LDA identifies the unit vector
v that maximizes S(v) := [vt(µ1 − µ2)]2/[vt(Σ1 + Σ2)v] with µj ,Σj the mean
and covariance of Cj , j = 1, 2, respectively. S(v) is the squared difference of the
projected classes’ means divided by the sum of the projected classes’ variances.
It is an exercise in linear algebra to see the optimal v ∝ (Σ1 + Σ2)−1(µ1 − µ2).
Geometrically, v can be thought of as a unit vector pointing from C1 to C2;
hence, ranking the components of v by absolute values sorts the features that
most discriminate the ransomware and normal activity.

Extremely Randomized Trees (ET) is a tree-based ensemble algorithm
for supervised classification and regression. “It consists of randomizing strongly
both attribute and cut point choice while splitting the tree node” [32]. In the
extreme case, the algorithm provides “totally randomized trees whose struc-
tures are independent of the output values of the learning sample” [32,33]. The
randomization introduces increased bias and variance of individual trees. How-
ever, the effect on variance can be ignored when the results are averaged over a
large ensemble of trees. This approach is tolerant with respect to over-smoothed
(biased) class probability estimates [32]. See the cited works for details.
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4 Experimental Results

Experiment One: Extracting Discriminating Features from Host Logs.
This experiment applies the machine learning approaches to extract the most dis-
criminating features/behavior of each ransomware attack. In addition to obtain-
ing a Cuckoo analysis report (raw behavior log) for each ransomware sample,
Python scripts immitating various users’ normal activities (such as reading, writ-
ing and deleting files, opening websites, etc.) are submitted to the Cuckoo sand-
box to generate a large volume of normal reports.

Table 1 illustrates the most discriminating features of the seven ransomware
attacks. The first column of the table (#) lists the name of seven ransomware.
The second column (Pattern) presents the pre-encryption patterns (activities)
of each ransomware attack obtained from the detailed ransomware technical
(static) analysis produced by cybersecurity companies (e.g., FireEye [34]), secu-
rity help websites (e.g., Bleeping Computer [35,36]) and malware research teams
(e.g., The Cylance Threat Research [16]). The third column (Feature) presents
the features extracted from the host logs using the proposed approaches that
match the unique patterns of rasomware attacks. The last column (Rank) lists
the TF-IDF, Fisher’s LDA and ET rankings of the features that represent the
unique patterns of the seven ransomware attacks. The features that have the
largest TF-IDF and Fisher’s LDA scores, or the non-leaf nodes (features) of the
Extremely Randomized Trees that have smallest levels, are top-ranked discrim-
inating features. For the ET algorithm, the features that are at the top of the
tree contribute more to correctly classifying a larger portion of input logs. E.g.,
a feature with rank = 1 is one of the most indicative feature of the malware
according to that algorithm. Ties are possible as the scores may be the same
between multiple features. We use the rankings of these features to evaluate
the efficiency of the proposed three machine learning methods. The methods
that provide higher rankings of the selected features are more efficient than the
approaches that yield a lower rank of the same feature.

We set a large class weight parameter for the target class in Extra-
TreesClassifier of Python’s Scikit-Learn library to make the ET classifier biased
to learn the pattern of malicious logs more meticulously. Therefore, some features
representing the ransomware patterns are not selected as the nodes to compose
the tree. In this scenario, we use “NA” to present the rankings of the feature
that are not nodes in the tree. Details are elaborated by ransomware:

1. WannaCry: The six patterns of WannaCry before the attack encrypting
data are presented in Table 1. All of these patterns can find WannaCry-
generated features from the host logs. A total of 1, 207 unique features have
been extracted from host logs containing both normal and abnormal behavior,
while only a small portion are resulting from WannaCry actions. The experi-
mental results indicate that TF-IDF is better than the other two methods for
identifying WannaCry’s behaviors. The rankings generated by the ET classi-
fier are slightly lower than the TF-IDF’s. However, ET is more time efficient
for extracting the most discriminating features from large volume of host logs,
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Table 1. The most discriminating features of the seven ransomware attacks

# Pre-Encryption Pattern Feature
Rank

TF-IDF LDA ET

1.
W
an

na
C
ry

1. Import CryptoAPI from advpi32.dll data file+‘advapi32.dll’+event+‘load’+object+‘library’ 3 294 6
2. Unzips itself to .wrny files *.wnry 1 176 1

3.
Creates a registry, HKEY_LOCAL_MACHINE\
Software\WanaCrypt0r\wd

api+‘regcreatekeyexw’+arguments 1 value+‘33554432’
+category+‘registry’ (subkey=“Software\\WanaCrypt0r”)

6 177 NA

4.
Run ‘attrib +h’, to set the current directory
as a hidden folder data file+‘attrib +h .’+event+‘execute’+object+‘file’ 6 298 11

5.
Run ‘icacls . /grant Everyone:F /T /C /Q’ to
grant user permissions to the current directory data file+‘icacls . ..q’+event+‘execute’+object+‘file’ 6 298 11

6.
Import public and private RSA AES
keys (000.pky, 000.eky) from t.wrny data file+‘c:..00000000.pky’+event+‘write’+object+‘file’ 6 298 11

2.
D
B
G
er

1. Drop ExternalBlue files at
‘C:\Users\All Users\’

data file+‘c:..users’+event+‘create’+object+‘dir’,
data file+‘c:..allusers’+event+‘create’+object+‘dir’,
data file+‘c:..blue.exe’+event+‘write’+object+‘file’,
... 22 various dropped file features...
data file+‘c:.. satan.exe’ +event+‘write’+object+‘file’,
data file+‘c:..mmkt.exe’+event+‘write’+object+‘file’

9 125
11,
12

2. Drop satan.exe on C drive
and execute the file for encryption

data file+‘c:..satan.exe’+event+‘write’+object+‘file’,
data file+‘c:..satan.exe’+event+‘execute’+object+‘file’ 9 125

11,
12

3. Drop “KSession” file at %Temp% data file+‘c:..ksession’+event+‘write’+object+‘file’ 9 125 11

3.
D
ef
ra
y 1. Import/Load Microsoft OLE from “ole32.dll” data file+‘ole32.dll’+event+‘load’+object+‘library’ 9 10 9

2. Drop and execute “explorer.exe” data file+‘explorer.exe’+event+‘load’+object+‘library’ 17 93 NA
3. Call ShellExecute to run as more privileged
user to disable startup recovery and delete
volume shadow copies

data file+‘c:..-hibernate-timeout-dc0’+event+‘execute’
+object+‘file’ 17 121 NA

4.
L
oc
ky

1. Read and write ‘PIPE\\wkssvc’ and
‘PIPE\lsarpc’

data file+‘pipe..wkssvc’+event+‘write’(‘read’)+object+‘file’,
data file+‘pipe..lsarpc’+event+‘write’ (‘read’)+object+‘file’

2
7

72
408

2
7

2. Read network provider name
data regkey+‘hkey local machine..
networkprovidername’+event+‘read’+object+‘registry’ 3 186 3

3. Read the path to the network provider .dll file
data regkey+‘hkey local machine..
systworkproviderproviderpath’+event+‘read’+object+‘registry’ 4 171 4

4. Load the network provider ‘ntlanman.dll” file data file+‘c:..ntlanman.dll’+event+‘load’+object+‘library’ 4 130 4

5. Obtain the name of the Security Identifier
data regkey+‘hkey users..s-1-5-21-1966058-1343024091
-1003name’+event+‘read’+object+‘registry’ 5 408 5

5.
C
er
be

r

1. Create two .tmp files under a random folder
in %APPData%

a. data file+‘c:..b51826f3’+event+‘create’+object+‘dir’
b. data file+‘c:..4e89.tmp’+event+‘write’+object+‘file’
c. data file+‘c:..5572.tmp’+event+‘write’+object+‘file’

10
a.105
b.230
c.230

a.10
b.10
c.11

2. Find users profiles and read the profiles

a.data regkey+‘hkey local machine..
softilelistprofilesdirectory’+event+‘read’+object+‘registry’
b.data regkey+‘hkey local machine..
softlelistdefaultuserprofile’+event+‘read’+object+‘registry’
c. data regkey+‘hkey local machine..
softs-1-5-18profileimagepath’ +event+‘read’+object+‘registry’
...omit SID 1-5-19∼1-5-20...
d. data regkey+‘hkey local machine..
soft091-1003profileimagepath +event+’read’+object+‘registry’

a.5
b.5
c.7
d.7

a.111
b.111
c.150
d.150

a.5
b.5
c.7
d.7

3. Read and load “rsaenh.dll”

a. data regkey+‘hkey local machine..
softaphic providerimage path’+event+‘read’+object+‘registry’
b. data file+‘c:..rsaenh.dll’+event+‘read’+object+‘file’
c. data file+‘c:..rsaenh.dll’+event+‘load’+object+‘file’

a.3
b.1
c.6

a.79
b.15
c.119

a.3
b.1
c.6

4. Obtain Machine GUID from registry
data regkey+‘hkey local machine..
cryptographymachineguid’+event+‘read’+object+‘registry’ 2 69 2

6.
G
an

dc
ra
b

1. Scan and collect information
a. computer name
b. session manager name
c. domain name
d. processor type

a.data regkey+‘hkey local machine..systcomputername
computername’+event+‘read’+object+‘registry’
b.data regkey+‘hkey local machine..sessionmanagername’
+event+‘read’+object+‘registry’
c. data regkey+‘hkey local machine..parametersdomain’
+event+‘read’+object+‘registry’
d.1 data regkey+‘hkey local machine..0processornamestring’
+event+‘read’+object+‘registry’
d.2 data regkey+‘hkey local machine..0identifier’
+event+‘read’+object+‘registry’
d.3 data regkey+‘hkey local machine..
systgersafeprocesssearchmode’+event+‘read’+object+‘registry’

a.1
b.6
c.7
d.7

a.276
b.430
c.431
d.431

a.1
b.8
c.10
d.9

2. Copy the ransomware .exe file
to %APPDATA%/Microsoft
and add an entry to RunOnce key

a. data file+‘c:..lrcjty.exe’+event+‘write’+object+‘file’
b. data content+‘..x00’+data object+‘none’+data regkey+
‘hkey current user..runonceoopmhnlocoz’
+event+‘write’+object+‘registry’

7 431
a. 9
b.10

7.
nR

an
so
m
w
ar
e

1. Create temprary directory in \%TEMP%\1.tmp\
tools\ data file+‘c:..tools’+event+‘create’+object+‘dir’ 5 32 5

2. Download and write following files:
a. an executable (i.e., nransom.exe)
b. a media control file (i.e.,interop.wmplib.dll)
c. a audio file (i.e., your-mom-gay.mp3)

a.data file+‘c:..nransom.exe’+event+‘write’+object+‘file’
b.data file+‘c:..interop.wmplib.dll’+event+‘write’+object+‘file’
c.data file+‘c:..your-mom-gay.mp3’+event+‘write’+object+‘file’

a.4
b.4
c.4

a.23
b.23
c.23

a.4
b.4
c.4

3. Execute the executable (i.e., nransom.exe) using
command prompt (i.e.,cmd.exe) that lock the screen

a. data file+‘nransom.exe’+event+‘execute’+object+‘file’
b. data file+‘c:..cmd’+event+‘execute’+object+‘file’

a.6
b.6

a.60
b.60

a.7
b.6

4. Play the looped song using the downloaded
audio file (i.e., your-mom-gay.mp3)

data file+‘c:..your-mom-gay.mp3’+event+‘read’
+object+‘file’ 5 32 5

5. Delete the temporary folders with
the downloaded files

data file+‘c:..1.tmp’+event+‘delete’+object+‘dir’
+object+‘file’ 6 60 6
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which requires only 215 features (nodes) to make decisions (i.e., WannaCry
or Normal). Therefore, the results suggest using TF-IDF to analyze the few
infected hosts’ logs in an attempt to produce shareable threat intelligence
reports and using the ET algorithm to obtain pre-encryption detection capa-
bilities. This experiment also illustrates that the top-ranked features gener-
ated by Fisher’s LDA are quite different from the other two techniques. Most
of the top-ranked features are normal activities. Features representing Wan-
naCry’s patterns are listed as low as #200. Additionally, we notice that the
loading and reading events of the rsaenh.dll module are ranked highly (i.e.,
#2 and #4 for TF-IDF and #3 and #8 for ET). The module implements the
Microsoft enhanced cryptographic service provider for WannaCry to encrypt
the victim’s data with 128-bit RSA encryption. These two top ranked features
are not listed in our table, as they are not discriminating features to identify
WannaCry attacks from other crypto-ransomware attacks.

2. DBGer: The three unique patterns of DBGer ransomware reported by [37]
are presented in Table 1. dbger.exe, the mother file of DBGer, first creates
the C:\Users\AllUsers folder, drops EternalBlue and Mimikatz executables
in the new folder, and then saves satan.exe into the C drive. A file named
KSession is dropped to C:\Windows\Temp\ for storing the host ID. TF-IDF
and Fisher’s LDA rank 1, 104 features generated from normal and DBGer
Cuckoo reports. The ET classifier builds the decision tree using 216 of the
1104 features. The three DBGer features are ranked highly. TF-IDF yields
a highest ranking of the three features, which is better than the other two
methods. ET is more time efficient. However, there are many features ranked
higher than the ranking of the three features, but they are normal activity.
E.g., dynamic link library (DLL) files kernel32.dll and advapi.dll are on
the top of the three rankings, but are not discriminating features for DBGer.

3. Defray: The three unique patterns of Defray are loading the ole32.dll file,
dropping and executing the ransomware executable file explorer.exe, and exe-
cuting a shell command. The three machine algorithms rank the first feature
“loading the ole32.dll file” #9 among the total 1, 243 features. As Defray’s
executable file is disguised as a Windows Internet Explorer, all of the three
methods struggle to distinguish it from the normal activities. The second
feature therefore is not selected to build the ET model, and its TF-IDF
and Fisher’s LDA weights are much lower than the first feature’s. The three
machine learning approaches rank another three features (as shown in Table 2)
highest among the 1243 features. These features represent unique malicious
activities performed by Defray, thus, they are discriminating features to dis-
tinguish Defray from other ransomware. However, none of these three patterns
are discussed in Defray manual analysis reports [14–16].

4. Locky: We execute Asasin Locky, a 2017 variant of Locky ransomware in
the Cuckoo sandbox, collect and analyze its behavior using our tool. The
static analysis reports [9,11] indicate that after being deployed, Locky’s
executable file disappears. Its dropped copy svchost.exe is executed from
the %TEMP% folder. However, our tool generates features from the behav-
ior logs and presents that Asasin Locky does not drop the executable file.
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Instead, the attack modifies the workstation services \PIPE\wkssvc launched
by the svchost.exe process. As a member of the Cryptowall family, Asasin
Locky also modifies PIPE\lsarpc, a file communicates with the Local Secu-
rity Authority subsystem [38]. The attack then reads network provider name
and the path to the Network Provider DLL file from registry by loading
the network provider ntlanman.dll. Registry is retrieved by Asasin Locky
to obtain the name of the Security Identifier. TF-IDF and ET provides the
same and higher rankings for these five features from a total 1, 047 normal
and ransomware features. These two methods both rank rsaenh.dll as the
top feature; however, this feature is not a unique pattern for Asasin Locky.

5. Cerber: This ransomware copies itself as cerber.exe to the hidden
%APPDATA% folder, creates a directory with a random name, and drops two
.tmp files [10]. Cerber also escalates its privilege to admin level and reads pro-
files from the users’ profile image paths. Afterwards, Cerber finds the image
path of rsaenh.dll, reads and loads the DLL file to encrypt data. Cerber
obtains the Machine GUID (globally unique identifier) and uses its fourth part
as the encrypted files’ extension. The Cerber sample tested has an extension
of 93ff. The three methods rank the total 1, 137 features. ET selects 145
features to composes the decision tree. TF-IDF and ET provides similar and
higher rankings of the discriminating features than Fisher’s LDA’s.

6. GandCrab: This experiment uses Gandcrab V2.3.1, a variant that scans the
victim machine and collects information of user name, domain name, com-
puter name, session manager name and processor type [12]. The execution is
terminated if the ransomware finds the system language is Russian or the vic-
tim machine installed specific anti-virus (AV) software. Otherwise, it copies
the executable file into %APPDATA%/Microsoft and adds an entry of the copied
executable file path to the RunOnce key as a one-time persistence mechanism.
GandCrab then decrypts the ransom notes and generate RSA keys for encryp-
tion. After encrypting data, the malware uses Windows’ NSLOOKUP tool to
(1) find IP address of the GandCrab’s C2 (command and control) server;
and (2) communicate with the C2 server (i.e., sending information collected
from the victim’s machines to the C2 server and/or receiving commands from
the C2 server). Table 1 presents two unique pre-encryption patterns of Gand-
Crab V2.3.1. TF-IDF and ET rank them highly among 1, 017 features. The
rankings of these features are much lower by Fisher’s LDA.

7. nRansom: This attack first creates a subfolder in %TEMP% with a ran-
dom name ended with .tmp. In our experiment, the subfolder is named
1.tmp. nRansom drops an executable file (i.e., nransom.exe) and two Win-
dows Media Player control library files (i.e., Interop.WMPLib.dll and
AxInterop.WMPLib.dll) in 1.tmp. An audio file your-mom-gay.mp3 is
dropped in 1.tmp Tools. Then nransom.exe is executed through the com-
mand prompt cmd.exe. After locking the victim’s computer screen, nRansom
plays a looped song from the dropped mp3 file, and deletes the subfolders and
dropped files. TF-IDF and ET both rank the five discriminating features of
nRansom highly among 1046 features. 55 features are used for composing ET.
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Table 2. Static analysis missed unique patterns and their behavioral features

Ransomware Unique Patterns Missed from Manual Analysis. As dis-
cussed above, besides the patterns obtained from Defray’s threat intelligence
reports, the three features shown in Table 2 are also unique behavior to distin-
guish Defray attacks. From the dynamic analysis provided by our methodology,
we also found that many ransomware attacks have similar patterns. For exam-
ple, Defray, Locky and Cerber all conduct an event to load the ole32.dll file.
However, neither Locky nor Cerber’s static analysis have mentioned this pat-
tern. Similarly, manual analysis of GandCrab does not discuss the malware sam-
ple has imported CryptoAPI from advapi32.dll, which is also a discriminating
feature of WannaCry attacks. Thus, our tool provides automated—more efficient
and without reliance on security experts—and better quality malware behavior
analysis.

Table 3. WannaCry discriminating feature ranking with varying normal data
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Experiment Two: Ransomware Feature Rankings with Varying Nor-
mal Activities. This experiment aims to validate that the rankings of the seven
ransomware discriminating features are not influenced by varying the number of
normal logs. To validate the hypothesis, we calculate the TF-IDF, Fisher’s LDA
and ET weights of the ransomware features in the following three scenarios.

– Case 1 (C1): Using Experiment One’s normal logs as the baseline.
– Case 2 (C2): Adding 30% additional new normal host logs into training data.
– Case 3 (C3): Adding 60% more new normal host logs into training data.

Fig. 2. Decision path based on the training logs
showing how the most discriminating features are
correlated in the decision making process.

Table 3 presents the top
ten features of WannaCry
that are calculated by the
three machine learning meth-
ods when the ambient log-
ging data are different. The
experimental results present
that the ET method is robust
to provide the same rank-
ings of the top ten features
under the three tested sce-
narios. TF-IDF is less robust
than ET, but Fisher’s LDA
provides completely different
rankings of the top ten fea-
tures in three different sce-
narios. Similar results were
found when analyzing the top-ranked features of the other six ransomware
attacks. Therefore, the ET algorithm is more robust to varying training data
containing different quality and quantity of normal activity.

Table 4. ET early detection results
Ransomware Accuracy Precision Recall F-Score
WannaCry 0.918 1 0.717 0.835
DBGer 0.987 1 0.308 0.471
Defray 0.994 1 0.992 0.996
Locky 0.997 1 0.806 0.893
Cerber 0.987 1 0.505 0.671

GandCrab 0.999 1 0.997 0.999
nRansom 0.994 1 0.382 0.553

Experiment Three: Ransomware
Early Detection. The ET decision
tree classifier is applied to detect the
seven ransomware before encryp-
tion from a large majority of non-
malicious activity. Table 4 presents
the detection rate of the seven ran-
somware attacks. Note that while
recall varies, meaning the method
produces false negatives, precision is always perfect, meaning there are no false
positives. In terms of overall performance metrics, the detection model Gandcrab
performs the best and DBGer performs the worst. We also create graphs of each
decision tree to better interpret and visualize the detection results. Using Wan-
naCry attack as an example, Fig. 2 displays first three levels of the decision tree.
The brown non-leaf nodes (rectangular boxes) represent the features of normal
activity and the blue non-leaf nodes represent features induced by WannaCry.
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By retrieving the blue nodes on the top of the decision tree, we can identify
WannaCry’s discriminating features. The correlation coefficients of these features
are provided in non-leaf boxes. The graphs facilitate malware forensics analysis
and allow operators to visualize disruptive activity and determine the damages
induced by the malware for proposing an optimal protection and response plan.

5 Conclusion

We develop an automated ransomware pattern-extraction and early detection
tool that extracts the sequence of events induced by seven ransomware attacks,
identifies the most discriminating features using three machine learning meth-
ods, and creates graphs to facilitate forensic efforts by visualizing features and
their correlations. The experimental results present that TF-IDF feature rank-
ing yields the most accurate identification of the ransomware-discriminating fea-
tures, while the ET method is the most time efficient and robust to the variation
of inputs. Notable, discriminating features are automatically promoted by this
method that malware analysis reports failed to identify.

As the target application is using this to analyze real host logs collected by
SOCs, future research to test our tool using real-world host-based data captured
in enterprise networks to determine conditions for success. Moreover, large enter-
prises generate large volumes of host data. The offline machine learning tech-
niques used in this paper—creating features from host logs, determining malware
discriminating features and detecting attacks—may not scale. Future research
using online machine learning technique (e.g., incremental decision tree) and
deep learning methods (e.g., LSTMs) can enhance the tool.
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Abstract. Anomaly analysis plays a significant role in building a secure
and reliable system. Raw system logs contain important system informa-
tion, such as execution paths and execution time. People often use system
logs for fault diagnosis and root cause localization. However, due to the
complexity of raw system logs, these tasks can be arduous and ineffec-
tive. To solve this problem, we propose ETGC (Event Topology Graph
Construction), a method for mining event topology graph of the normal
execution status of systems. ETGC mines the dependency relationship
between events and generates the event topology graph based on the
maximum spanning tree. We evaluate the proposed method on data sets
of real systems to demonstrate the effectiveness of our approach.

Keywords: Event topology graph · System logs · Anomaly detection ·
Maximum spanning tree

1 Introduction

Systems in business giants such as Google and Amazon generate tens of billions
of logs every day. Numerous system logs are of great value in various application
fields, and one application domain is to extract valuable knowledge from these
system logs for building secure systems [4]. System logs reveal various event
characteristics at critical moments, and they contain essential information con-
cerning the operating status of the system, such as the execution traces [9]. Such
system logs are the universally available resource among almost all computer
systems, which is essential for understanding the overview system status.

Anomaly analysis is indispensable to establish a secure and reliable system.
With the rapid iteration of the system version, the system is suffering from cyber-
attacks increasingly. However, relying solely on the experience of engineers and
domain experts is undoubtedly inefficient and inaccurate. Therefore, log analysis
has always been a hot topic in the field of system operation and maintenance,
especially in the detection of anomaly events [2,8].

Existing approaches that leverage system logs for anomaly detection can be
grouped into two categories: feature-based and workflow-based. Feature-based
c© Springer Nature Switzerland AG 2019
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methods construct feature vectors from system logs and employ Principal Com-
ponent Analysis (PCA) for anomaly detection [6,11]. Workflow-based approaches
build the execution flow graphs based on system logs from normal executions
[3,5,12]. Cloudseer [12] models workflow automata by repeating executions of
one single task, which analyzes dependencies between events. Tong et al. propose
an approach called Logsed [3], which mines the control flow graphs with time
weights from operational logs and transaction logs. However, it is a critical task
to extract workflow graphs from massive logs.

By carefully considering the characteristics of system logs, we have the fol-
lowing observations: (1) The log format varies with different system platforms,
which is usually unstructured. Therefore, it is a challenging task to parse a con-
siderable amount system log accurately and convert them into events. (2) The
sequential information of log messages is essential for problem diagnosis. Modern
cloud computing platforms execute tasks in parallel and system logs printed by
the terminal are often intertwined. Even a single task can perform asynchronous
operations which could cause interleaved logs.

The main contributions of this paper are summarized below:

– In this paper, we propose ETGC (Event Topology Graph Construction), an
effective approach to mine event topology graph based on the maximum
spanning tree from interleaved system logs. Compared with existing anomaly
detection approaches, our method can detect more anomalies with high accu-
racy.

– We evaluate the effectiveness of ETGC mining algorithm on OpenStack data
set and BGL data set. The experimental results prove that our method has
higher accuracy and interpretability than other algorithms.

The remainder of this paper is organized as follows. In Sect. 2, we explain
in detail how to construct event topology graphs, followed anomaly diagnosis in
Sect. 3. We conducted extensive experiments and report the results in Sect. 4.
Finally, we conclude the paper in Sect. 5.

2 Event Topology Graph Construction for Anomaly
Analysis

Our approach consists of an offline phase and an online phase. In the offline
phase, we adopt some simple but effective cluster approaches such as BSG [1]
to generate log templates of high quality. Then we use these log templates to
generate the event topology graphs, which represents the normal execution trace
of the system. In the online phase, by comparing the newly arrived execution log
sequence and the event topology graphs, we can find their deviation and detect
anomaly events.

2.1 Parsing the Logs

Log parsing [1] converts raw and free form system logs into structured log tem-
plates with specific formats. A piece of raw system log can be divided into two
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parts: the constant part and the variable part. The constant part is the constant
string from original texts printed by the source codes. The variable part usually
carries various status information of the system. Log templates are extracted
from raw system logs. For example, if the raw log is “initialize prop version req-
f3eaa3dd-321d-44db-b705-937a1c26a01b”, then the extracted log template will
be “initialize prop version *”. Compared with present works mainly based on the
templates, we have fully considered the log timestamp information in addition,
which significantly improves the accuracy of detecting anomalies.

2.2 Finding Candidate Successor Group

The Computation of the candidate successor group contains two steps: (1) Suc-
cessor group generation. (2) Noise event filtering. Mining the candidate successor
group aims at finding all the possible successor events of reference templates.
First, we record all the distinct events in two closest events with the same ref-
erence template and then add them to the candidate successor group of the
reference template. The noise event filtering aims to keep meaningful but rare
events. We use an adaptive correlation probability to filter out noise while retain-
ing normal rare events. Let us denote the probability of occurrence of predecessor
template A as PA, the probability of occurrence of successor template B as PB,
and the occurrence times of template B in the successor group of A as N(A|B).
We compute the correlation possibility between event A and event B in the
successor group.

SUP(A|B) =
N(A|B)

min(PA, PB)
∗ sigmoid(min(PA, PB)). (1)

The threshold for SUP should be small enough to filter noise event and retain
rare and meaningful events. After we set a filtering threshold, if the correlation
probability is larger than the threshold, then event B is added to the final suc-
cessor group of A.

2.3 Mining Dependent Event Pair

The existing method usually uses a time window mechanism to retain the sub-
sequent events of the reference templates in a statistical manner. The items in
the same sliding window are considered to be subsequent events of the same
reference template. However, it is difficult to estimate the length of the time
window accurately.

Li and Ma [10] proposed to use several statistics for detecting dependent
event pairs and filtering candidate event pairs. The sequence of points of event
type A is denoted as PA = < a1, a2, ..., am >, and ai is the specific timestamp of
one log entry of event type A. Assume that the time range of the point sequence
PA is [0, T ], given a point z, the minimum positive distance between the z and
sequence PA is defined as

d(z, PA) = min||x − z||, x ∈ PA, x ≥ z. (2)
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The unconditional distribution of waiting time of event B is

FB(r) = P (d(z, PB)) ≤ r, (3)

where r is a real number. The conditional distribution of waiting time of event
B with respect to event A is

FB|A(r) = P (d(z, PB)) ≤ r, z ∈ PA, (4)

where r is a real number, z is a point of PA in the point sequence, and FB|A
describes the conditional probability in the case of event A at time z. Then we
have the following definition [10].

Definition 1. [10] Given two corresponding sequence of points for event types
A and B, if FB(r) and FB|A are significantly different, then statistically, event
B is considered to be dependent on event A. Specifically, the dependency test
between events A and B can be compared by FB|A and FB(r). Assuming that A
and B are independent of each other, according to the central limit theorem

Z =
MB − MB|A√

var(FB(r))
m

∼ N(0, 1), (5)

where var(FB(r)) represents the variance of FB(r), MB and MB|A represent the
first moment of FB(r) and FB|A(r) respectively.

2.4 Discovering Transition Time Lag

Existing methods tend to use a fixed time weight for edges in the event topol-
ogy graph, which indicates the transition time period between adjacent events.
However, in real world systems, fixed time lags are not practical due to noise
interference, unsynchronized clocks, and so forth. Time lags usually fluctuate
within a range.

For each dependent event pair < Ti, Tj >, we look into two adjacent template
Ti and Tj in the log stream and record all the time period as < t1, t2, ..., tm >.
We use a time distribution f(t) to describe the transition time of event pair
< Ti, Tj >. Since the time distribution represents the time lag sequence of event
pair, we propose a cluster-based method to get rid of redundant event pairs. In
this method, we divide the time-delay sequence into multiple time lag clusters.
Then the maximum and minimum values of the clusters are considered as the
boundary values of the transition time interval. Intuitively, we perform the chi-
square test on these time lag clusters. If they pass the chi-square test, then the
event pairs are considered to have the dependency relationship, and the time
delay interval is used as the time lag interval of the event pair.

2.5 Generating Maximum Spanning Tree

In the graph theory, a spanning tree of a graph is a subgraph that contains
all the vertices and the maximum spanning tree [7] is the minimum connected
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graph with maximum weight. In a maximum spanning tree, each node represents
a single distinct event, and weights of connected edges represent the transition
probability between predecessor and successor events. Successor events are not
always immediately follow reference events, so that some structures like loop
structures and detour structures may be missing from the event topology. How-
ever, the spanning tree represents the backbone of the entire workflow. Even if
some meaningful structures are missing, we can still retrieve them through the
original dependency relationship between events. We employ the attenuation
factor to control the possibility of the existence of the detour structure. We first
define the step size as the distance from the starting node to the terminal node
in the maximum spanning tree structure. Next, we define the probability of the
existence of the detour structure between the starting node and the terminal
node as:

d(E1, E2) = log(1 + path(E1, E2)), (6)

where the path(E1, E2) refers to the step size between E1 and E2 in maxi-
mum spanning tree. Then we could set a suitable threshold to preserve the edge
between E1 and E2.

3 Anomaly Diagnosis

There are two kinds of anomalies: event anomalies and time anomalies. An event
anomaly is raised when an unexpected log entry occurs, which cannot match
to any node in the event topology graph. Unexpected log entry indicates an
abnormal event that cannot be matched with any log template or a redundant
occurrence of a log template.

A time anomaly is raised when a child node of a parent node occurs, but the
interval time is not within the time lag interval. The time lag interval records
the maximum transition time and minimum transition time of the event. Any
transition time that occurs within this time lag interval is considered as a normal
event. Hence, this type of anomaly is more instantaneous and could be captured
easily.

4 Experimental Evaluation

4.1 The Datasets

We evaluate our approach ETGC through two real log datasets. Detailed infor-
mation about the two datasets is as followed:

1. OpenStack cloud platform log dataset: OpenStack, a cloud computing plat-
form based on PaaS, provides cloud service for millions of people all over
the world and its logs are accessible to users. This data includes 30 normal
deployments and 3 abnormal deployments, each of which is related to the
deployment of the cluster. We collected the data from the two components:
cf-pdman and pdm-cli.
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Fig. 1. An event topology graph from the OpenStack dataset

2. BGL log dataset: Blue Gene/L supercomputer system log dataset contains
4,747,963 logs, where 348,460 entries are labeled as anomalies. We choose this
dataset because it contains many log templates which only appear during a
certain time period.

4.2 A Case Study

To illustrate our method of anomaly diagnosis, we take an event topology graph
for example. Figure 1 is a part of the event topology graph generated from
OpenStack dataset. In this figure, each node represents a distinct event, and
the weight of each edge represents the transition probability of an event pair.
Moreover, Table 1 provides further information about these log templates. For
example, path (130, 7, 17) in the transaction flow diagram in Fig. 1 represents
the configuration of attributes on the server node.

4.3 Anomaly Diagnosis Evaluation

Figures 2 and 3 demonstrate the Error Event Pair Percent and the Average
Error Event Percent in normal deployments and abnormal deployments results,
respectively. Whether in abnormal deployments such as 514, 17, 60 or normal
deployments, ETGC can detect more Error Event Pair than Logsed. The left
side and right side of Fig. 4 show the proportion of event pairs on BGL data
set detected by ETGC and Logsed, respectively. The result demonstrates that
ETGC can detect more normal and abnormal event pairs than Logsed, which
proves that our approach is feasible.
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Table 1. Event IDs and the corresponding events

Event
IDs

Events

130 sqlalchemy.orm.relationships.RelationshipProperty Node.servers local/remote
pairs [(nodes.server id/servers.id)] *

4 sqlalchemy.orm.mapper.Mapper
(Server—servers) configure property(node list, RelationshipProperty) *

107 sqlalchemy.orm.relationships.RelationshipProperty Node.servers secondary
synchronize pairs *

109 sqlalchemy.orm.relationships.RelationshipProperty Server.Node secondary
synchronize pairs *

60 sqlalchemy.orm.mapper.Mapper (Node—nodes) initialize prop created at *

110 sqlalchemy.orm.mapper.Mapper (Node—nodes) initialize prop timestamp *

111 sqlalchemy.orm.relationships.RelationshipProperty Server.node list secondary
synchronize pairs *

7 sqlalchemy.orm.mapper.Mapper (Node—nodes) configure property(servers,
RelationshipProperty) *

9 sqlalchemy.orm.mapper.Mapper
(CtrlSwitch—ctrl switch) configure property(created at, Column) *

10 sqlalchemy.orm.mapper.Mapper (Lock—locks) configure property(state,
Column) *

17 sqlalchemy.orm.mapper.Mapper (PsmRole—psmroles) configure property(id,
Column) *

Fig. 2. The OpenStack deployments error
event pair percent

Fig. 3. OpenStack deployments average
error event percent

4.4 The Execution Time

At the first stage, we study the time it takes to generate candidate event pairs.
At the second stage, we pay attention to the time it costs for our algorithm
to filter these candidate event pairs and generate the event topology graph. In
Fig. 5, the solid line and dotted line refer to the time spent at the first and
second stage. It shows that the time taken to generate candidate event pairs
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Fig. 4. The BGL validation result Fig. 5. Execution time on BGL dataset

grows exponentially as the number of data increases. To solve this problem, we
can use the multi-thread program to reduce the time spent at the first stage of
our approach.

5 Conclusion

In this paper, we proposed ETGC (Event Topology Graph Construction), an
effective approach to diagnose the abnormal events based on system logs. By
using the maximum spanning tree generation, ETGC constructs the meaningful
event topology graphs based on dependent event pairs. Evaluation results show
that our approach can achieve superior performances in anomaly event detection.
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Abstract. Aiming at detecting various vulnerabilities in Web application sys-
tem based on PHP language, a semi-automatic code auditing system based on
knowledge graph is proposed. Firstly, the abstract syntax tree of each file in the
Web application system is constructed to extract the taint variables and function
information from the abstract syntax tree and construct the global variable
information. Secondly, the data flow information of each taint variable is ana-
lyzed accurately. Finally, the knowledge graph and code auditing technology are
combined to construct and display the vulnerability information of the Web
application system in the form of graph. Experiments and analysis results show
that this detection method can well construct and display the data flow infor-
mation of each taint variable and help auditors find common vulnerabilities in
Web application systems more quickly.

Keywords: Abstract syntax tree � Code auditing � Knowledge graph � Taint
analysis

1 Introduction

With the rapid development of the Internet, Web technology has been widely used in
science, education, transportation, finance and other important fields. According to the
latest statistics of w3tech [1], 83.5% of websites use PHP as their website language,
and this proportion has remained high since 2018. However, the vulnerability of PHP
language makes these Web application systems vulnerable. According to OWASP TOP
10 released in 2017 [2], eight of the top 10 vulnerabilities in the list are due to the taint
variable of Web applications.

In order to improve the detection speed and accuracy of taint analysis, this paper
proposes a semi-automatic code auditing system based on knowledge graph. First, by
constructing the abstract syntax tree of each PHP file, variable information and function
information of each file can be extracted. Second, the tracking of taint variables can be
carried out to check whether some sensitive sinks will be passed through in data flow of
each taint variable. Third, with the help of knowledge graph, the variables and func-
tions of each file can be regarded as entity vectors, the sensitive sinks can be regarded
as entity attributes, and the variables and their passing functions are regarded as
relational corpus. Finally, the knowledge graph are output by visual interface, and the
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sensitive sinks are marked to help code auditors better analyze the security problems of
Web application systems.

2 Review of Research

Since 1970s, static analysis technology has been applied to source code auditing. In the
following decades, experts and scholars at home and abroad have done a lot of research
on the detection technology of taint analysis.

Huo proposes a static detection method based on the Facebook HHVM. By using
flow-sensitive, context sensitive and inter-procedural data flow analysis, it realize the
taint analysis in order to improve the precision of automate-based string analysis. It also
proposes a method to define rules including sensitive source, sensitive sink and vul-
nerability pattern [3]. Miachael and Rieck proposed a highly scalable and flexible
approach for analyzing PHP applications. By leveraging the concept of code property
graph which constitute a canonical representation of code incorporating a program’s
syntax, control flow, and data dependencies in a single graph structure, an analyst can
write traversals to query the database to find various kinds of vulnerabilities [4]. Yan
put forward a new detection model and static stain data analysis method, which collects
and constructs contextual information by dividing the program into blocks, and then
traces and analyses the variables of the fixed module and different modules, so as to
effectively detect the vulnerabilities [5].

However, static detection technology has some limitations where it cannot verify
whether the vulnerabilities really exist, so more and more researchers pay their
attention to dynamic detection technology. Alhuzali and Birhanu combined dynamic
detection with static auditing, proposed a contamination analysis model which can
automatically generate attack vectors. Through the analysis of taint variables, combined
with the characteristics of database back-end architecture and other modules, it may
accurately generate data flow, in order to achieve high-quality vulnerability generation
[6]. Gong proposed a new method of combining static detection with dynamic
detection. Static detection is based on HHVM to track tainted data and dynamic fuzz
technology is based on arrangement of reorganization for the parameter of url. With
dynamic test results it helps static detection streamlining the process, and static analysis
results are used as input to help the dynamic test by generating new more logical
permutation links which can achieve higher dynamic detection coverage [7].

3 Architecture and Algorithms

3.1 Abstract Syntax Tree

Our approach is based on static analysis technology, so it is necessary to process the
source code and compile it into an intermediate form which can be easily analyzed.
PHP-Parser is an open source tool based on the token stream acquired by the built-in
function of PHP to construct an abstract syntax tree according to context
information [8].
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In the source code processing step, the source code of the program is identified and
the PHP code is extracted. In the grammar analysis step, because of the different types
of node in abstract syntax tree, different analysis and processing can be done according
to the type of node in the syntax tree to improve the compilation speed. Our system has
configured common rules of node type analysis, such as file inclusion, variable defi-
nition, function call, etc.

3.2 Taint Analysis

According to the results of abstract syntax tree, when constructing data flow infor-
mation of each file, it will be recorded when the sink is PHP built-in function. If it is not
PHP built-in function, the definition position of variable and function name is recorded.

For example, in query “test($data1)”, here we record the function name “test”, the
variable name $data1 and the location of the variable in the function. When the external
variable refers to the function of “test”, it is necessary to judge which parameter of the
function corresponds to the external variable, and then continue to extend the data flow
information according to the parameters.

When searching the data flow of built-in functions of PHP in files, the function
name is extracted first and once the function name matches, the data stream is extracted
according to the mapping relationship of the variables. When extracting file informa-
tion, because of the characteristics of PHP language, the files that has been included
can invoke the function call and variable value of each required files. Therefore, when
extracting other file information, our system needs to inherit the included filenames.

3.3 Graph Construction

3.3.1 Entity Extraction
Entity extraction, also known as named entity recognition, refers to the automatic
recognition of named entities from text data set, which is the most basic and key part of
information extraction. The traditional data of knowledge graph mostly come from
structured data in Encyclopedia sites and vertical sites. Attribute-value of related
entities is obtained from various semi-structured data to expand the description of
attributes [9]. Entities are the basis of knowledge graph construction, it is necessary to
choose representative information as far as possible [10].

According to our code auditing requirements and output results, it will be slightly
different from the traditional knowledge graph construction. Our paper is to detect the
stained vulnerabilities, the taint variables will be automatically identified and screened
according to the type of variables in this step, and the file names of the web application
system will be extracted as entities into the knowledge graph.

3.3.2 Relationship Extraction
After obtaining a series of discrete named entities, in order to obtain semantic infor-
mation, it is necessary to extract the relationship between entities from corpus, and link
the entities through the relationship to form a network of knowledge structure [11].

Since the entities in this paper are extracted from the abstract syntax tree of web
application systems, the relationships between entities will also belong to the superior
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and subordinate relationships like tree structures. For the entity named before, our
system will automatically locate the entry position of taint variable, judge the file name
where it is located, extract the inclusion relationship between filename and stain
variable.

3.3.3 Attribute Extraction
The work mentioned in this paper is from the perspective of improving the efficiency of
code auditing, so the selection of entity attributes should also consider whether it will
help code auditing.

The entity that extracts the attribute here is the file name and the taint variable. The
entity attribute of the file name is the size of the file, the latest modification time of the
file, and the hash value of the file. In the real environment, it is likely that some
important files of the Web application system will be maliciously changed. So when the
knowledge graph of each version of the Web application system is retained, the latest
modified file information can be found quickly to help auditors focus on checking the
changing files. The attributes extracted from the taint variables are data flow infor-
mation obtained in Sect. 3.2. Therefore, the taint variable are taken as entities and their
passing functions are stored as their attributes.

3.3.4 Entity Disambiguation
Entity disambiguation is a technology specially used to solve ambiguity problem of the
same-name entity. In real language environment, it often encounters the problem that
an entity reference item corresponds to multiple named entity objects. For example, the
term “Li Na” can correspond to the entity of Li Na as a singer or tennis player. Through
entity disambiguation, we can establish entity links accurately according to the current
context [12].

In our paper, it is found that different taint variables can be assigned to the same
variable name in multiple program segments, and the data flow of each program
segment is different. Therefore, when tracing and extending the data flow information
of different variables, the data flow with the same variable name but in different
program segments will be spliced into each other, resulting in false alarm.

The problem that arises here is that an entity reference corresponds to many named
entity objects, which leads to the confusion of the final data flow. Therefore, it is
necessary to distinguish these named entity objects. The method here is to add random
numbers to the duplicate variables, and replace the duplicate variables in the data flow,
so the problem has actually been transformed from entity disambiguation into how to
define the range of the variables in the data flow. In the abstract syntax tree information
extracted previously, there are corresponding function processing for each operation,
such as file extraction, function call, variable definition, etc. Therefore, we need to start
from variable definition to determine whether the assigned variable will be renamed. If
renamed, then we need to define the boundary of each data flow.

Because the focus of our paper is on the taint variable and its sink function, the
variable name is only the transmission media of data flow. It will not affect the original
parameter’s data stream when changing its variable name, so we can eliminate entity
disambiguation by changing the duplicate variable name.

Knowledge Graph Based Semi-automatic Code Auditing System 227



3.3.5 Knowledge Reasoning
Semantic relations commonly used in knowledge graph include inheritance relationship
between concepts, whole-part relationship and domain-specific semantic relationship
[13]. According to the relationship between entities and entities established previously,
this paper makes knowledge reasoning based on the relationship between the whole
and the part in the knowledge graph, and excavates the knowledge in it.

In this paper, we start from the entity of taint variable and check the function
information in its entity attributes by blacklist. The blacklist here is actually the cor-
responding relation table of the vulnerability type and the sensitive sinks listed
according to the security knowledge. If there is a sensitive sink in the data flow, but
there is no filtering function of the corresponding vulnerability type, then auditors can
generally determine that this is a vulnerability and our system will built the entity for
sensitive sink and relationship between the function entity and taint variable entity
whose relationship attribute is file name information. The greatest advantage of this
method is that it can trace the source of the vulnerability and display the corresponding
relationship between the sensitive sink and the stain variable directly.

4 Evaluation

4.1 Dataset

We evaluated our system on DVWA (Damn Vulnerable Web Application) and ssVote
voting system [14]. DVWA is a Web application system which aims to provide a legal
environment for security researchers to test their professional skills and tools and help
Web developers better understand the process of Web application security prevention.
DVWA also provides many vulnerability environments with different levels, such as
SQL injection, cross-site scripting attacks, command execution and so on.

Since we focus on semi-automatic code auditing and display the taint variable and
sensitive sinks to auditors, there are two main reasons for choosing DVWA: one is to
simulate the real environment through different vulnerability levels, the other is to
display the function information of taint variable through different levels of vulnera-
bility. As an open source voting system, we also choose ssVote as a demonstration.

4.2 Measurements

The graph database used here is Neo4j [15]. This is a high-performance NOSQL graph
database, which stores structured data on the network rather than in tables. Flask [16],
which is a lightweight Web application framework written in Python, is used for visual
output. The reason why it becomes lightweight is that its core is very simple and has
strong extendibility.

228 Y. Hongji and C. Wei



Figure 1 is the knowledge graph information of DVWA, which contains the basic
information of DVWA files, such as modification time, the hash value of files. For
example, in the file of “dvwa/xss_s/source/high.php”, the number of taint variables is
two and the number of sensitive sinks is three. This kind of information mainly helps
auditors find vulnerabilities faster and improve the accuracy and efficiency of auditing.

Figure 2 shows the specific file information of all injection vulnerabilities in
DVWA. Since it is divided into four levels, the inconsistency of data flow can be
clearly found by comparing the data flow of four files. There is no protection for the
taint variable in the “low” level. The data flow of the taint variables in the “medium”
level adds a “mysql_real_escape_string()” function, which is mainly used to escape
special characters in SQL statements, such as single quotation, double quotation and so
on. The taint variables in the “high” level are passed in through “session” type which
cannot be controlled by users easily. In the “Impossible” level, the “db_bindParam”
function and “is_numeric” function appear in the data flow of taint variable. The former
function is a prepared function of SQL, and the latter function checks the taint variable
to determine whether it is a digital type, which can prevent SQL injection. Therefore,
three potential injection vulnerabilities can be inferred from the graph.

Fig. 1. Knowledge graph of DVWA

Fig. 2. SQL injection of DVWA graph
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Figure 3 is the traceability graph of DVWA. Since there are four main code-level
vulnerabilities in DVWA: SQL injection, cross-site scripting, file inclusion, and
command execution, we can see that the graph can be divided into four categories.
According to the attribute information of edges, we can trace to specific file names and
specific taint variables. Through graph, we can directly infer that there may be four
kinds of common vulnerabilities in the web application. With the help of the data flow
of the taint variables, auditors can quickly find out the common problems.

Figure 4 is the traceability graph of ssVote. From the graph, we can see that the
taint variables are mainly distributed around the “mysql_query()” function and “echo”
function. Therefore, auditors need to focus on the analysis of the database operation of
the program to find the common vulnerabilities.

5 Conclusions

Aiming at the vulnerability detection in Web applications, a semi-automatic code
auditing system based on knowledge graph is proposed. According to the type char-
acteristics of abstract syntax tree, this paper constructs data flow information of web
application system, and achieves the goal of semi-automatic detection by constructing
and displaying knowledge graph. The experimental results show that the system is
faster than the traditional static code auditing system in constructing data flow infor-
mation and more intuitive in displaying data flow information. At the same time,
multiple vulnerabilities and common problems in web application system can be found.
In future work, this study considers further enriching the node types of abstract syntax
tree to extend the data flow information and improve detection accuracy.

Fig. 3. Sensitive sinks of DVWA graph Fig. 4. Sensitive sinks of ssVote graph
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Abstract. With the continuous upgrading of smart devices, people are
using smartphones more and more frequently. People not only browse the
information they need on the Internet, but also more and more people get
daily necessities through online shopping. Faced with a variety of recom-
mendation systems, it becomes more and more difficult for people to keep
their privacy from being collected while using them. Therefore, ensuring
the privacy security of users when they use the recommendation system
is increasingly becoming the focus of people. This paper summarizes the
related technologies. A recommendation algorithm based on collabora-
tive filtering, matrix factorization as well as the randomized response is
proposed, which satisfies local differential privacy (LDP). Besides, this
paper also discusses the key technologies used in privacy protection in
the recommendation system. Besides, This paper includes the algorithm
flow of the recommendation system. Finally, the experiment proves that
our algorithm has higher accuracy while guaranteeing user privacy.
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1 Introduction

Faced with a huge amount of item information, it is more and more difficult for
people to find what they are interested in and need. The advent of the recom-
mendation system reduces the difficulty for users to choose. Recommendation
system can not only locate items with high correlation quickly according to the
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information provided by users but also make an additional recommendation in
other aspects. To provide better user experience, the recommendation system
usually collects relevant information of users actively and get users’ profiles by
mining relevant information [18]. This kind of collecting and analyzing behavior
has the potential risk of privacy leakage. On the one hand, the recommendation
system may actively make use of user information for profit; on the other hand,
the user data maintained by the recommendation system also has the risk of
being attacked and leaked.

When people use the recommendation system, the recommendation system
can accurately predict users’ privacy information by mining users’ relevant infor-
mation [19]. Many existing studies have found that recommendation systems can
obtain users’ relevant privacy information by mining user information. For exam-
ple, the location-based recommendation system can judge the user’s residence,
company, travel frequency, and even the user’s travel purpose by locating the
user’s location and the time spent in each location. Although there are already
methods for protecting all the items and scoring information for each user, this
method requires the user to implement large matrix multiplication locally, so that
the space complexity and time complexity of the implementation will increase
with the total items linearly. As a result, it is difficult for users to achieve in their
local equipment. Our goal is to improve the accuracy and speed of recommen-
dation while reducing time and space consumption to improve the practicability
of the recommendation system based on protecting users’ privacy information.

The purpose of this paper is to ensure the recommendation quality of recom-
mendation while satisfying the LDP and reducing the space and time cost. In
this paper, a new gradient descent matrix factorization algorithm that satisfies
differential privacy is proposed. We use the LDP solution proposed by Nguyen to
protect the private data of each user [6]. We also use the LDP solution proposed
by Qin et al. [3] to reduce the number of related items, which greatly reduces
the disturbance error caused by a large number of items.

Our main contributions of this paper are as follows. First, we proposed a new
algorithm that protects all user items and scoring data. Secondly, we have greatly
reduced the number of items related to users, and thus significantly reduce the
relevant dimensions. As a result, space and time consumption of the algorithm
is significantly reduced. Thirdly, by adding a new gradient correction parameter,
the quality of the recommendation system has been significantly improved. To
sum up, our algorithm guarantees high recommendation quality and needs less
space and time costs while protecting items and ratings.

2 Preliminary

2.1 LDP

Local differential privacy is a popular privacy protection method based on
ε-differential privacy. This means that before sending personal privacy data
to the data collector, the user first disturbs the data locally to satisfy
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the ε-differential privacy [15], and then uploads the disturbing informa-
tion to the data collector. Generally, if a randomized algorithm f satisfies
ε-differential privacy, f satisfies the following inequalities for any two neigh-
boring datasets D And D′ and any possible output o:

Pr[f(D) ∈ o] ≤ eε × Pr[f(D′) ∈ S] (1)

Generally, it is difficult for an opponent to be confident that the output
o obtained by using algorithm f comes from either D or D′ [8]. So, for the
individual user, using this way to process the data, when the data is abused, he
can plausibly deny. Among them, ε is also called the privacy budget [7], which
is mainly used to control the strength of privacy protection. When the privacy
budget is very small, it means stronger privacy protection. In this paper, we
consider two data sets, in which each recorded information is a pair of items
that the user has scored. However, Shin et al. [1], Hua et al. [2], and Shen
et al. [8] all consider that both neighboring data sets D and D′ contain all item
information, even if the user has not scored the corresponding item [3]. Different
definitions of adjacent data sets will lead to different time and space costs and
affect the final accuracy. Our algorithm is more realistic for it only considers the
related items and has lower space, time consumption as well as higher accuracy
while satisfying the privacy protection for each user.

One of the important concepts of differential privacy is sequential combin-
ability [3], that is, for all algorithm fi of a series of randomized algorithms,
they satisfy εi-differential privacy, then for the whole sequence of fi, it satisfies∑

i=1 εi- differential privacy. Early studies [3] have shown that for a given pri-
vacy budget ε, users can divide ε into several parts, and each part can release
perturbation information [6], the overall process is to satisfy the ε-differential
privacy.

2.2 Existing LDP Solution

Because LDP only requires locally perturbed of privacy data to satisfy the
ε-differential privacy. Therefore, theoretically, every user can apply LDP to their
private information. However, in reality, it is often the data collector who can
obtain the user’s real data, and only disturbs the user’s private information when
it is released. If the user uses LDP to disturb his information locally and then
publishes the proceed information, the recommendation system cannot get the
real exact data of the user, therefore the final information released by the system
can only be the data set of all users disturbed information [13]. This ensures pri-
vacy protection for user data. The following is a summary of the existing LDP
methods, which have received extensive attention recently.

RandomizedResponse. The randomized response algorithm (RR) is based
on LDP. Generally, RR refers to whether or not a user answers a judgmental
question, such as ‘have you eaten today?’. He can reasonably deny the answer.
RR controls the intensity of privacy protection by adjusting the probability of
real and false answers. That is to say, if the probability of true answers is set
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to be smaller, the intensity of privacy protection will be higher. To use RR in
LDP, we set the probability of getting the true value to p [14]. According to
the existing works, when p satisfies the following values, the RR satisfies the
ε-differential privacy:

p =
eε

1 + eε
(2)

RR can only be used to answer questions with binary answers. But it is the
cornerstone of solving more complex problems.

RAPPOR. RAPPOR can deal with more complex questions, especially when
the answer is non-binary. RAPPOR is mainly used to estimate the frequency of
items. Generally, suppose there are n users and m item categories, and each user
ui has an item vj . The purpose of the data collector is to collect the occurrence
frequency of each item category. In RAPPOR, user ui represents the ownership
of the item vj by uploading a vector of m bit length. In this m bit vector, all the
bits except vj-th are zero. Then, the user uses RR independently for each bit in
the m-bit vector [3]. The specific values will be described below. Data collectors
collect vectors sent by all users to calculate unbiased estimates of the occurrence
of each item in m item categories.

To get the value of p, the concept of sensitivity in differential privacy needs
to be used in RAPPOR. Generally speaking, for any function F , sensitivity Δf

can be defined as
Δf = maxDD′ ‖F (D) − f(D′)‖1 (3)

D′ and D are adjacent data sets, and ‖•‖ denotes ζ1 of a vector. Since there is
only 1 bit which value is one and all the others are zero, the maximum value of
‖F (D) − f(D′)‖1 is 2. Therefore, the sensitivity is 2. According to the existing
papers, when p satisfies the following values, RAPPOR can satisfy ε-differential
privacy:

p =
e

ε
2l

e
ε
2l + 1

(4)

Generally, l is much smaller than m. In the existing recommendation system,
the gradient matrix of all items is uploaded. As a result, the maximum ζ1 is 2m
for the vector subtraction of two m bits and the sensitivity is 2m. This paper
assumes that users own l items. By using the RAPPOR method for l items owned
by users, we can protect the related items owned by users to satisfy ε-differential
privacy, while greatly reducing the sensitivity. Besides, the space complexity and
time complexity of the algorithm are significantly reduced.

2.3 Matrix Factorization

This paper is based on the standard collaborative filtering recommendation algo-
rithm. We assume that there are n users scoring m items (movies, etc.). We
assume that the matrix is Rn×m, and the element rij whose value is not zero
indicates that the user i scored the item j [9]. Let the set of valid scoring sub-
scripts D ⊂ {1, ..., n} × {1, ...,m}, which represents the user/item pair. Then
the total number of valid scores M can be expressed by |D| [10]. The scoring
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matrix is generally very sparse, which results in M being much smaller than nm,
especially when both n and m are large.

With a given training set, the recommendation system can predict scores
of items that have not been scored by the user. Matrix factorization is one of
the most popular methods for prediction because of its high accuracy and easy
implementation. In the matrix factorization, each user is represented by a d-
dimensional vector, also called a personal profile [1]. At the same time, each item
is also represented by a d-dimensional vector, also known as the profile of the
item. Then, the relevance of the item to the user can be represented by the inner
product of the two vectors [11]. Thus, for users and items, the corresponding
hidden factor vector forms are U = u{1:n} and V = v{1:m} [12], respectively. In
this paper, the user profile is represented by ui, ui ∈ Rd, 1 ≤ i ≤ n, and the
profile of the item is represented by vj ∈ Rd, 1 ≤ j ≤ m and their values are
solved by minimizing the regularized mean square error

arg min =
1
M

∑

rij∈D

(rij − uT
i vj)2 + λu

n∑

i−1

‖ui‖2 + λv

n∑

j=1

‖vj‖2 (5)

Where 1
M

∑
rij∈D(rij − uT

i vj)2 is a loss function that measures the distance
between two matrices, and λu

∑n
i−1 ‖ui‖2 + λv

∑n
j=1 ‖vj‖2 is a regular factor

used to constrain parameters to avoid overfitting, Where λu, λv are normal
numbers. The obtained ui and vj can predict the relevance of the unrated item
to the user by calculating their inner product uT

i × vj .
We use the stochastic gradient descent (SGD) to minimize the formula (5).

Using the SGD, U and V can be calculated by using ui and vj as follows:

vt
j = vt−1

j − γt{�vj
+ 2λvvt−1

j } (6)

ut
j = ut−1

i − γt(�ui
+ 2λuut−1

i } (7)

Where ut
j and vt

j are the value of ui and vj at t iterations, γt is a positive number,
which represents the learning rate when the number of iterations is t. �ui

, �vj

are gradients of ui and vj , respectively, which can be obtained from the following
equation:

�ui
= − 2

M

∑

rij∈R

yijvj(rij − uT
i vj) (8)

�vj
= − 2

M

∑

rij∈R

yijui(rij − uT
i vj) (9)

Since each user does not rate all items, in reality, the number of rated items is
much smaller than the total items. Therefore, in this paper, the user first filters
out the possible types of graded items, and then only updates the related items’
gradients locally, while ignoring the others.
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3 A New Differentially Private Matrix Factorization
Algorithm

3.1 System Model

The experimental environment of this paper is assumed to be that the recommen-
dation system is untrusted, and the user does not want his private information
to be obtained by the recommendation system. Our goal is to allow the system
and individual users to get more accurate recommendations using smaller space,
time and communication costs.

Figure 1 shows how our system works. In our system, we first perturb each
user’s scored items to satisfy ε1-differential privacy. Then upload the disturbed
data to the recommendation system. Because l is much smaller than m, the
sensitivity of the gradient matrix is much less than 2m, and the communication
cost will be greatly reduced. After obtaining the relevant item, the user calculates
the gradient matrix �V of 1 items. Then, using the dimensionality reduction
method proposed by Shin et al. [1], the object gradient matrix �V is projected
into the low-dimensional space to further compress the communication cost.
After perturbed the data is sent to the recommendation system. Then, the server
updates V by calculating the item gradient matrix of all users and sends the
updated V to each user. In this way, after k iteration, the user can obtain the
correlation between items and himself by calculating uT

i × vj .
Since M cannot be obtained locally, the approximate calculation is generally

performed by replacing M with the number of users n. The number of iterations
k, the number of users n, the privacy budget ε, the regular coefficients λv and
λu, as well as the learning rate γt are all given by the recommendation system.

Fig. 1. Overview of our recommender system.

3.2 A New Solution for Protecting Items and Ratings

Since a user always wants to upload data about all items, and the total number
of items m is generally very large [1], the sensitivity of V is very large. However,
the number of items related to the user is much smaller than the total number
of items. Therefore, we assume the number of rated items is l rather than m and
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ensure the rated items which satisfy ε1-differential privacy. Then the randomized
gradient of the l items is uploaded to the server. Thus, the communication cost
changes from O(m) to O(l), noting l � m.

In the algorithm private-GD-DR, we first assume that the number of each
user’s related item is l. If the number of items scored by the user is greater than
l, we select l items randomly from the scored items; otherwise, we select one
item from the unscored items until the total number is up to l [3]. Each user ui

selected item is represented by a vector li of length l bits, the value of one item
being scored is 1, the value of the unrated value is 0, and the item number of the
corresponding position is recorded by the vector mi. Then, each bit in the vector
li is perturbed using the RAPPOR method to obtain l∗i , and the corresponding
item number of the element having a value of 0 in the perturbed vector is replaced
with the remaining unattached item label. The resulting m∗

i after the disturbance
is sent to the server. In the following paper, m′

i is a complement of mi.

Theorem 1. The rating item selection described above satisfies ε1-differential
privacy.

Proof. It is assumed that li1 and li2 are two sets of binary items, and they are
all equal in length l. Assume that F is the perturbation method for the item to
be uploaded in the algorithm private-GD-RAPPOR, and any possible output of
F is li. We have

Pr [F (li1) = li]
Pr [F (li2) = li]

≤ maxli1 Pr [F (li1) = li]
maxli2 Pr [F (li2) = li]

=

∏l
j=1

e
ε1
2l

e
ε1
2l +1

∏l
j=1

1

e
ε1
2l +1

≤ e
ε1
2l ∗l

< eε1

Therefore, the theorem is proved.

3.3 Accuracy Improvement via Dimension Reduction

After one user ui gets the m∗
i , he uses m∗

i to calculate the ∇V . At the same
time, ∇U is calculated using all the related items. As a result, we can further
reduce the dimension of user data.

Let q � l, let Φ be a q ∗ l random matrix whose element ϕkj is a Bernoulli
distribution with mean 0 and variance 1

q . Φ is shared between the user and
the recommendation system, and the user i does not upload the item gradient
∇i

V but uploads ∇i
B(∇i

B = Φ∇i
V ) [4]. Before uploading the data, it is only

necessary to add noise to the method proposed by Jingyu Hua et al., and finally,
send ∇i,∗

B to the server. The server restores the sparse matrix by using a sparse
recovery algorithm. The recommendation system will calculate the restored data
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Algorithm 1. Private-GD-DR
Require: li, mi, m′

i,1 =< i <= n,positive integer q, predefined iteration number k,
and privacy parameter ε, rated set D.

Ensure: Item profile matrix V ∈ Rm×d

1: Generate a q× l random matrix Φ whose entries are drawn from Gaussian distribu-
tion with mean 0 and standard deviation 1√

q
and send Φ to users,∇�

B is the pseudo

inverse matrix of Φ
2: Initialize U , V and a counter iter = 0, arraym ∈ Rn×l

3: for i = 1; i < n; i + + do
4: for j = 1; j < l; j + + do

5: Draw T Bernoiulli ( e
ε
2l

e
ε1
2l +1

)

6: if T =1 then
7: m∗

ij = mij

8: else
9: select p uniformly at random from {1, 2, ..., m − l}

10: m∗
ij = m′

ip

11: end if
12: end for
13: arraymi = m∗

i

14: end for
15: while iter ≤ k do
16: Initialize ∇�

B ∈ {0}m×d

17: for i = 1; i < n; i + + do
18: Initialize x�

i ∈ {0}q×d

19: Derive �i
V = {−2ui(rij − uT

i vj)}j∈arraymi,(i,j)∈D

20: Compute xi = Φ�i
V

21: Sample s uniformly at random from {1, 2, ..., q}
22: Sample p uniformly at random from {1, 2, ..., d}
23: If(xi)s,l /∈ [−1, 1], project (xi)s,l onto [−1, 1]

24: Draw T Bernoiulli (
(xi)s,l(e

ε2
k −1)+e

ε2
k +1

2(e
ε2
k +1)

)

25: if T =1 then

26: (x�
i )s,p = qd e

ε2
k +1

e
ε2
k −1

27: else

28: (x�
i )s,p = −qd e

ε2
k +1

e
ε2
k −1

29: end if
30: for j = 1; j < l; j + + do
31: q = arraym[i][j]

32: Compute ∇�
B [q][p] = ∇�

B [q][p] + ∇†
B [:][l]

(x�
i )s,p

33: end for
34: end for
35: Compute ∇�

B = ∇�
B/n and send ∇�

B to users
36: iter = iter + 1
37: Get �i

U from (8),and ui = ui − γt{�i
U + 2λuui}

38: V = V − γt{(��
V − η�

V ) + 2λuV }
39: end while
40: return V.
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and feedback the results to each user. In this way, after k times of iteration, the
recommendation system and users can obtain the final updated V [16], and the
updated ui is obtained only by user i.

Theorem 2. The graded item gradient update method described above satisfies
ε2-differential privacy.

Proof. Suppose ∇i
B and ∇i′

B are two arbitrary gradient matrices of user i, let ∇i
B

and ∇i′
B ∈ [−1, 1]q×l. Suppose M is the perturbation method for the gradient of

the item in the algorithm private-GD-RAPPOR, and any possible output of M

is ∇i′,∗
B . We have

Pr
[
M

(
∇i,∗

B

)
= v|∇i

B

]

Pr
[
M

(
∇i,∗

B

)
= v|∇i′,∗

B

] ≤
maxli1 Pr

[
M

(
∇i,∗

B

)
= v|∇i

B

]

maxli2 Pr
[
M

(
∇i,∗

B

)
= v|∇i′,∗

B

]

=
eε2/k − 1 + eε2/k + 1
−e

ε2
k + 1 + e

ε2
k + 1

= eε2/k

Therefore, the V obtained for each iteration satisfies ε2
k -differential privacy. So,

the V obtained after k iterations satisfies ε2 -differential privacy. Thus, the the-
orem is proved. It can be seen from the sequence composability that the total
algorithm satisfies ε-differential privacy [3], where ε = ε1 + ε2.

Because the privacy budget ε
k allocated for each iteration decreases linearly

with the number of iterations, the deviation caused by each disturbance to
increase linearly with k. To reduce the influence of the number of iterations,
we add a learning correction parameter fk of the item gradient. From the above
analysis and experimental verification, when fk = 1

k , the deviation will be signif-
icantly reduced. As shown in Table 1, when the related items are reduced from
m to d, the time complexity is greatly reduced.

Table 1. Time cost at each iteration.

User Server

Hua et al. [2] O(md) O(nmd)

Xiao et al. [1] O((md) log(m)) O((mnd) log(m))

Ours O((ld) log(l)) O((nld) log(l))

4 Experiment and Results

The database tested in this paper is two movie data sets, which are MovieLens
and LibimSeTi [1]. The MovieLens dataset contains 20M rating information from
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138,493 people for 26,744 movies. The scale for this data set is from 0.5 to 5.
The LibimSeTi dataset contains 135,359 ratings for 135,359 people on 26,509
movies. The other parameter settings are the same as Shin et al. We compare
Shin et al., Hua et al., and our algorithm on two data sets from five aspects.
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Fig. 2. On MovieLens, the estimation errors ‖V ∗ − V ‖max for each algorithm.
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Fig. 3. On LibimSeTi, the estimation errors ‖V ∗ − V ‖max for each algorithm.

First, we compare the difference between the contour matrix of the items
obtained by each algorithm. Figures 2 and 3 shows the estimated results of each
algorithm after ten iterations on the MovieLens and the LibimSeTi data sets. The
estimate of Hua et al. decreases linearly with an increase of ε but is significantly
larger than other algorithm results. Experimental results obtained by Shin’s
algorithm also decreases with an increase of ε, but it is stable after reaching 4.19
due to the addition of the learning correction parameter 1

k2 . When the modified
learning parameters are not added, the estimation difference is higher than that
of Shin et al. lower than the Hua et al. algorithm. However, when the learning
correction parameter 1

k is added, our algorithm performs better when the privacy
budget is lower.
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Fig. 4. On MovieLens, the prediction RMSEs for each algorithm.
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Fig. 5. On LibimSeTi, the prediction RMSEs for each algorithm.

Besides, to compare the mean square error of the results, we analyze the
mean square error results for each algorithm after ten iterations, as shown in
Figs. 4 and 5. For the two data sets, our algorithm is superior to the algorithms
of Hua et al. and Shin et al. when ε is small. At the same time, Hua et al.
satisfy mε-differential privacy, and our algorithm satisfies ε differential privacy.
Since our algorithm adds a correction parameter 1

k at each iteration, the mean
square error does not increase significantly with k when k is large. Because the
Libimseti data set has a larger scale, the resulting mean square error is larger
than the MovieLens.

To test the accuracy of algorithm prediction, one data set is divided into ten
parts, and their CDF (joint allocation function) is calculated separately. Nine
of the ten data sets were used as training samples and the last one was used
as a test sample. The prediction error |r̂ij − rij | of the test sample is finally
calculated by 10 iterations of each training sample. r̂ij is the system prediction
score, rij is the true score. Figures 6 and 7 show the test results of the two data
sets for estimation.
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Fig. 6. On MovieLens, the prediction errors |r̂ij − rij | for each algorithm.
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Fig. 7. On LibimSeTi, the prediction errors |r̂ij − rij | for each algorithm.

To evaluate the accuracy of the recommendation, we calculate the f-score of
each user’s recommended top-10 items, as shown in Figs. 8 and 9. In the data
set MovieLens, the f-score increases with the increase of privacy budget, and
when the privacy budget is small, our algorithm recommends more accuracy.
In the data set LibimSeTi, when the privacy budget is small, The quality of
our algorithm and Shin’s algorithm recommendation are very stable, but our
algorithm has a higher accuracy than Shin’s algorithm. The reason can be seen
in Figs. 4 and 5. The percentage of predicted errors in the MovieLens increases
with the increase of the privacy budget faster than in the data set LibimSeTi,
so the resulting f-score changes are more obvious.

Finally, to evaluate the influence of the iteration number, it can be ana-
lyzed by calculating the RMSE of each algorithm, as shown in Fig. 10. On the
MovieLens dataset, the algorithms iteratively calculate 1, 2, 3, 4, 5, 10, 20, and
50 times, respectively, with a fixed privacy budget of 0.1. With the increase of
the privacy budget, our algorithm with a suitable learning rate parameter of this
algorithm can converge faster than other algorithms, thus the curve drops faster.
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Fig. 8. On MovieLens, the F-score for each algorithm.
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Fig. 9. On LibimSeTi, the F-score for each algorithm.
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Fig. 10. On MovieLens, the prediction RMSEs of each algorithm after k iterations
when ε = 0.1.
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5 Conclusion

The matrix factorization algorithm we propose sharply reduces the space and
time complexity while ensuring the protection of user-related items and ratings
as well as the quality of the recommendation.
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Abstract. Aiming at the problem that transaction amount and the identity of the
two parties can be analyzed and predicted to reveal the privacy of the user from
the open and transparent transaction information in the traditional Bitcoin sys-
tem, a fully anonymous blockchain system is constructed by combining the
aggregate signature and the ring signature in this paper. The scheme combines
the advantages of aggregate signature and ring signature, uses aggregate sig-
nature to protect the transaction amount privacy, uses ring signature to protect
the address privacy of both parties, and at the same time compresses the
transaction information size while protecting the privacy, saving a certain space
overhead. Through comparing with the evaluation and analysis of various
blockchain privacy protection schemes, it is concluded that the scheme takes
both security and performance into account, that is, the privacy protection of
transaction information is greatly improved when the reasonable overhead is
increased.

Keywords: Aggregate signature � Ring signature � Full anonymous
blockchain � Privacy protection

1 Introduction

In 2008, Nakamoto published a bitcoin white paper on the topic of a peer-to-peer
electronic cash system [1]. As a result, blockchain technology came into being.
Blockchain technology is a brand new decentralized infrastructure and distributed
computing paradigm that uses encrypted chained block structures to validate and store
data, utilize distributed node consensus algorithms to generate and update data, and
utilize automated scripting code (smart contracts) to program and manipulate data [2].
This ensures that the blockchain has the characteristics of decentralization, timing,
collective maintenance, and verifiability. Therefore, blockchain has been widely used
in the design of systems such as data storage, data validation, sharing economy,
dynamic key management, and supply chain financing.

With the rapid development and application of blockchain technology, its privacy
issues have received extensive attention. Due to the existence of the blockchain con-
sensus mechanism, different nodes will calculate and verify the transaction data on the
blockchain, so the transaction record data on the blockchain must be made public.
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To some extent this approach increases the transparency and credibility of the data, but
from another perspective it also poses a risk of privacy breaches. Among them, the
privacy protection of the identity of the two parties and the transaction amount should
be paid more attention. In order to make the blockchain have a broader application
prospect, data privacy protection is an important prerequisite.

This paper will combine the aggregate signature and ring signature to construct the
blockchain system to realize the full anonymity which protects both two parties and the
transaction content, and also ensure that the scheme has high computational efficiency.
Aggregating signatures allows an efficient algorithm to aggregate n signatures on n
different messages from n different users into a single signature. A ring signature is a
signature generated using a single private key and a set of unrelated public keys. The
advantage of compressing information by using aggregated signatures not only saves
storage space but also protects privacy, and the ring signature protects the account
information of the participating signature entities, further enhancing the anonymous
security of the system.

2 Background

2.1 Bitcoin Blockchain System

Users and miners are two types of entities in the Bitcoin blockchain system. When the
user conducts the transaction operation, the transaction information is generated and
goes into transaction pool for waiting. The miners will first verify the legality of these
transactions and then package them to generate blocks, and then use the proof of work
to get the Nonce value. After that, they broadcast the legal block on the whole network
and update the UTXO pool. The following is a case where Alice initiates a transaction
to Bob as an example to show the transaction initiation and authentication process:
Alice broadcasts the generated transaction information, and the nearby miners receive
and verify it. The miners pack several legitimate transactions into blocks and then
broadcast them to the entire network. At the same time an unspent output will be added
to the Bob address. The entire transaction process is shown in Fig. 1.

Fig. 1. Transaction process
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The Bitcoin transaction structure contains transaction ID, lock time, input and
output transaction, etc. The transaction ID is the hash value of the transaction entity
data; the lock time locks the UTC (International Standard Time) generated by the
transaction; the current transaction amount is derived from the output of the previous
transaction, and the input transaction inherits the source of the amount. The input
transaction needs to prove its legal ownership by the signature of the corresponding
export transaction public key address. The output transaction points to different output
addresses according to different transactions. The Bitcoin blockchain system generates
a public key and signature based on an elliptic curve digital signature algorithm
(ECDSA). The ECDSA public key performs a number of hash transformations to
generate an output address. The output address can be used as a change address, which
enables splitting and merging of amounts. The transaction structure is shown in Fig. 2.

2.2 Aggregate Signature

An aggregate signature [3] is a variant signature that combines any number of signa-
tures into a single signature. It contains five algorithms: key generation algorithm
(Gen), signature algorithm (Sign), verification algorithm (Verify), aggregate signature
algorithm (AggS) and aggregate signature verification algorithm (AggV). The aggre-
gation signature algorithm only needs to obtain the individual signature/pair of the user
participating in the signature to generate an aggregate signature. The aggregate sig-
nature verification algorithm only needs to aggregate the signature, aggregate the user
public key and the message set to verify the validity of the aggregate signature. The
information that the aggregated signature requires to be signed in the aggregation
process is different from each other.

The unidirectional aggregation signature scheme of the reference document [4] is as
follows.

The parameter conventions are as follows: p is a large prime, G and G1 are both
elliptic curve group, g is the generator of group G, e1 : G� G! G is a bilinear map.

Fig. 2. Transaction structure
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I. Key generation: The private key for user i is a random number xi �R Zp. Public

key is PKi ¼ gxi 2 G. The total number of users is k.
II. Signature: The message to be signed is Mi 2 f0; 1g�. Hash transform is

Hi ¼ Hash ðMiÞ 2 G. Signature is di ¼ Hxi
i 2 G.

III. Verification: The equation e1ðPK ¼ gxi ;HiÞ ¼ e1ðg; di ¼ H
xi

i Þ is true.
IV. Aggregate signature: The requirements for Mi are different, and the result of the

aggregation is signature d ¼ Qk
i¼1

di ¼
Qk
i¼1

Hxi
i ¼

Qk
i¼1
ðHashðMiÞÞxi .

V. Aggregate signature verification: Verify that the equation
Qk
i¼1

eðvi ¼ gxi1 ; hi ¼

eðg1; d ¼
Qk
i¼1

di ¼
Qk
i¼1

hxii Þ is true.

The security of this aggregate signature scheme depends on the random prediction
model, which requires a gap Diffie-Hellman (GDH) group that is difficult to assume a
computational Diffie-Hellman (CDH) problem but a deterministic Diffie-Hellman
(DDH) problem, and the original image of the bilinear map should be a different group
(co-GDH). The difficulty of extracting independent signature individuals from the
aggregate signature can be solved by solving the CDH problem [5], which explains the
unidirectionality of this aggregate signature.

2.3 Ring Signature

Ring signature [6] is a new signature technology proposed in the context of anonymous
disclosure of secrets, which can be regarded as a special group signature. It does not
require a trusted center to exist, and the signer only needs to randomly select several
other public keys, and then complete the signature by combining its own public and
private keys. For a signature verifier, he can only get the signature set of the signer, not
the signature that belongs to the set. In the application scenario where data needs to be
protected for a long time, the unconditional anonymity of the ring signature is of great
significance.

Assume that the total number of users is n, and each user ui corresponds to a public-
private key pair {PKi, SKi}. It mainly contains three algorithms: key generation
algorithm (Gen), signature algorithm (Sign), verification algorithm (Verify).

I. Key generation: This is a Probabilistic Polynomial Time (PPT) algorithm. Each
user ui outputs a corresponding public-private key pair {PKi, SKi} by inputting
respective security parameters pi, and each user’s generated public-private key
may be generated by different public key systems.

II. Signature: This is a PPT algorithm. When the message m, the public key set of
the n ring members {PK1, PK2, …, PKn} and the private key SKs of one of the
members are input, a signature R (a parameter in R will be ring according to
certain rules) for the message m is output.
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III. Verification. This is a deterministic algorithm. After inputting the message and
the corresponding signature information pair (m, R), if “R” is the ring signature
of m, “True” is output, otherwise “False” is output.

3 Fully Anonymous Blockchain Scheme

3.1 System Parameter Convention

PK is the signature public key; A, a are the payment public key and private key of the
user respectively; ri is a random number generated by the sender of the transaction; Pi,
di are the one-time public key and signature of a transaction respectively; is, os are the
sum of the input amount and the sum of the output amount respectively; z represents
the number of transactions; n represents the number of users participating in the ring
signature; Tx is the transaction information. (For the sake of convenience, this paper
uses an abbreviation to refer to this scheme, called ARFA.)

3.2 Transaction Generation and Verification

The user generates transaction information when the transaction is executed, and the
miner verifies the legality of the transaction. In order to ensure that the user who
initiated the transaction can only operate on the amount of the transaction he owns, and
cannot freely generate or destroy the transaction amount, this requires the miner to
verify the transaction.

For the transaction situation of multiple input and output, in order to hide the
transaction amount of any single transaction, the scheme will adopt the elliptic curve
algorithm to protect: select G as the generator of Fp to perform the encryption operation
first to achieve the homomorphic characteristic. A malicious attacker can still obtain the
transaction amount by controlling several inputs and outputs. To this end, the intro-
duction of random numbers in the scheme increases the input and output delivery mode
so that the verification does not pass, and the attacker cannot successfully attack. By
adding an aggregate signature algorithm, ARFA compresses the signature length of a
multi-input and output transaction to the signature length of a single input-output
transaction while hiding the transaction amount. The aggregate signature scheme
combined with the blockchain system is as follows.

I. Key generation: The aggregated user entity collection is U1 ¼ fu1;
u2; . . .; ukg�U. ui 2 U1’s signature private key is a random number xi �R Zp.

The signature public key is PKi ¼ gxi2 2 G2. The payment private key is ai 2 E.
The payment public key is Ai ¼ ai � G 2 E.

II. Signature: If the user whose public key Ai is ready to deliver an amount to the
user whose public key is Bi. The sender of the transaction first generates a
random number ri 2 ½1; n� 1�. Then the one-time public key Pi ¼ HsðriBiÞ �
GþAi and the signature di ¼ Pxi

i 2 G1 are calculated. Also R ¼ r � G will be
packaged in the transaction. Then the sender of the transaction randomly selects
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di 2 Zp and calculates iRi ¼ di � G, ihi ¼ HðiRi jj inaiÞ and isi ¼ di � ihiþ inai .
Afterwards, he continues to randomly select tj 2 Zp and calculate oRj ¼ tj � G,
ohj ¼ HðoRj jj outajÞ and osj ¼ tj � ohjþ outaj . ð1� i� kÞ

III. Aggregate signature: Aggregate multiple signatures into one signature, that is,

d Qk
i¼1

di 2 G1. The input delivery mode is
Pn
i¼1

isi and the input delivery mode

is
Pm
j¼1

osj.

IV. Aggregate signature verification: Known the user collection of aggregate sig-
nature U1�U, the aggregate signature d 2 G1, the one-time public key Pi ¼
HsðriBiÞ � GþAi and the signature public key PKi for each user ui, the aggregate
signature can be verified by calculation P0i ¼ Hsðbi � RiÞ � GþAi. If the equation

eðd; g2Þ ¼
Qk
i¼1

eðP0i;PKiÞ is true, the verification is successful, otherwise it fails.

The following is a combination of the aggregate signature and the ring signature to
further improve the fully anonymous blockchain system based on the transaction
amount and the transaction parties. The aggregate key is generated first, and the process
refers to the above scheme. Secondly, the aggregate signature is combined with the ring
signature to form an aggregate ring signature: 1� i� z; 1� j� n, the public key
PKi;j 2 G2, z transaction informations Txi ¼ f0; 1g�, z private key xi corresponding
to the public key PKsi that needs to be ring signed. For all j 6¼ si, randomly

select ai;j �R Zp. Calculate txi ¼ HðTxiÞ 2 G1 and set dsi ¼ txi=w
Q
j 6¼si

PKai;j
i;j

 ! !1=xi

.

For all j 6¼ si, let di;j ¼ gai;j1 , then output aggregate ring signatures

d ¼ Qk
i¼1

di;1; . . .;
Qk
i¼1

di;n

� �
2 Gn

1. Finally, perform aggregate ring signature verification:

Given PKi,j, z transactions Txi ¼ 0; 1f g� and aggregation ring signatures d, calculate

txi ¼ HðTxiÞ 2 G1 and verify
Qz
i¼1

eðtxi; g2Þ ¼
Qn
j¼1

e
Qz
i¼1

di;j;
Qz
i¼1

PKi;j

� �
.

3.3 Transaction Packaging

In order to obtain the block reward, the miner needs to package the legal transaction
into a block after the transaction is verified, and carry out the corresponding workload
proof. All transactions packaged into the block are verified by the transaction. There is
no reference to the unverified transaction, so these transactions can save the interme-
diate proof and only contain contents: txi; ai;j; dsi ;PKi;j.

According to the unidirectional aggregation signature scheme [4]: this aggregation
scheme requires that all signature messages participating in the aggregation are dif-
ferent. So the miner verifies the random number ai,j for each transaction to ensure that
the signed messages are different. Transactions for the same random number can be put
on hold for a while, waiting to be packaged into subsequent blocks for processing.
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In order to solve the problem that the block storage space is limited, the number of
transactions that the block can accommodate can be increased by removing the sec-
ondary information: the transaction output public key in the block can remove the
encrypted public key, and only the signature of the transaction recipient is required.
The key is used to prove the ownership of the transaction.

In addition, since the original transaction is an index established for the different
transaction output in a single transaction, and the full anonymous blockchain system is
an index established for all transaction outputs in the block that disrupts the transaction
order. Thus the construction of the UTXO pool will change.

4 Evaluation of the Scheme

In this chapter, the security of the scheme is analyzed firstly to evaluate its anonymous
security. Then, compared with other schemes, the efficiency of the public key
ciphertext length and the transaction block size are analyzed. Finally, the rationality of
the proposed scheme is summarized.

4.1 Security of the Scheme

ARFA is based on the unidirectional aggregation signature scheme [4] and the ring
signature scheme [6]. The security of unidirectional aggregate signatures depends on
the CDH difficulty problem on the co-GDH group [4, 5]. The aggregation selection key
model [4] indicates that the security of the aggregation signature scheme is equivalent
to the absence of an adversary that can falsify the aggregate signature.

Given a host A’s public key to complete the existence of an aggregated signature
forgery (existence forgery means that the adversary attempts to use the aggregated
signature of other transaction sets to falsify the aggregated signature of the specified
transaction set). The adversary A can obtain all the public keys except the challenger
C public key, even the signature of the challenger C. The possibility that an attacker
gains the following Game wins is called the attacker’s advantage AdvAggSigA [4, 7].

• Game: Attacker A and Challenger C participate in the game.
• Initialization: Attacker A randomly generates a public key pk1.
• Query: Attacker A signs the selected sub-transaction set with its randomly generated

public key pk1.
• Response: Attacker A obtains other k − 1 public keys {pk2, …, pkk} and spoofs the

aggregated signature with the k − 1 public keys and pk1. At the same time, attacker
A can also obtain the sub-transaction set {Tx1, …, Txk}, and then output the
aggregate signature d of k users.

The condition for the attacker A to win: only if the aggregate signature generated
for the sub-transaction set {Tx1, …, Txk} corresponding to the public key {pk1, …,
pkk} is valid and non-trivial.
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Definition 1. If the following conditions are true, the aggregated signature attacker
A t; qH ; qs;N; eð Þ destroys the aggregated signature scheme of the N users in the
aggregated selective key mode.

I. t is the longest execution time of A.
II. qH is the maximum number of hash function queries executed by A. qs is the

maximum number of signature prediction queries executed by A.
III. AdvAggSigA is at least e.
IV. Forged aggregate signatures are executed by up to N users

Theorem 1. (G1, G2) is a bilinear group pair of co-Diffie-Hellman, the order of each
group is p, and the corresponding generator is g1, g2. It also contains a homogeneous
mapping of G2 to G1, a bilinear mapping e : G1�G2 ! GT . Compared to the existence
of forgery in the aggregated selection key model, if all t satisfies t� t0 �
cG1 qH þ 2qsþNþ 4ð Þ � N � 1ð Þ and all e satisfies e	 eðqsþNÞ � e0 (e is the natural
logarithm and cG1 is the time spent on exponentiation and inversion operations on G1),
then the bilinear aggregate signature scheme on (G1, G2) is safe based on
t; qH ; qs;N; eð Þ.

With the continuous development of ring signatures, their unforgeable security
models can be classified into three types according to different security levels. The
security model of the ring signature scheme [6] is as follows: there is a signer K, an
attacker B. K obtains the ring public key set {pk1, pk2,…, pkn} through the ring member
set I (n is the total number of all members in the ring). B sends a message mi to the
K with a polynomial of no more than 1 for the ring signature inquiry of Ii. After
obtaining the ring signature Ii;m; d, B cannot obtain the ring signature Ii;m; d
of the message m with a non-negligible probability I 0 
 I;B 62 I 0;m 62ð
Inquired message mif gÞ. Then it is safe in Model1.

Through the transaction verification, the scheme can make the transaction initiator
unable to falsify the encryption amount during the transaction generation process. The
miner without the encryption scheme private key can only verify the legality of the
transaction. In the implementation of the scheme, the encrypted public key of the
transaction payee in the blockchain data may be deleted to increase the number of
transactions that can be accommodated in the block. The aggregated signature guar-
antees the transaction amount privacy by aggregating the data. The ring signature
guarantees the privacy of both parties by protecting the subject account information of
the participating signature. Therefore, this blockchain scheme is fully anonymous.

4.2 Efficiency Analysis of the Scheme

Public Key and Ciphertext Length. According to the current hardware system, the
selection requirements for cryptographic security parameters are as follows. The
decomposition scheme based on the large integer is 2048b (256B), and the security
parameter based on the elliptic curve scheme is 256b (32B). In addition, points on the
elliptic curve expressed using 256b can be represented by 33B [8]. In ARFA, 32B is
used to represent the elliptic curve of the aggregated signature. The ring signature
scheme uses 256B to represent the large composite number.
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In order to increase the number of transactions that can be accommodated in the
block, the scheme removes the public key of the encrypted transaction in the block
transaction output address after the miner verifies the legality of the transaction.
Therefore, the length of the transaction public key on the blockchain is |PK| = |gx| =
33B. Encrypted transactions require a large number of modulo, so the ciphertext
length of ARFA is |n| = 256B.

Regardless of P2PKH, the original bitcoin blockchain system output amount space
is 8B, ECDSA public key space is 33B. The ECDH key and ECDSA public key length
are both 33B, a total of 66B [9]. The ciphertext is in the form of Pedersen’s promise,
and the promised ciphertext is a point on the elliptic curve with a length of 33B. If the
security (large integer decomposition requires a large number of 256B) is the same,
then the Paillier ciphertext required by the Dumb Account system [10] requires 512B to
represent the modulo n2 group. The encrypted public key is a large composite number
and a group generator. Considering the ECDSA signature public key at the same time,
the total public key length is 256*2 + 33 = 545B.

Size of the Trading Block. Compared with the original Bitcoin blockchain scheme,
ARFA converts the plaintext storage amount into the ciphertext on modulo n group, so
the transaction size will increase accordingly. The aggregated signatures are used to
aggregate the signatures of all transactions in the block into a signature, and the
encryption scheme public key is removed from the transaction inclusion process, which
in turn reduces the transaction size in the block.

The original Bitcoin blockchain system has an average block size of 644.2kB in
recent years, and the number of transactions accommodated is 1682 [11]. Removing
the block header and related information of about 100B, the size of each transaction is
about 392B. Among them, the data that is not related to input and output at the
beginning and end of the transaction is 8B. Regardless of the P2PKH case and the
input/output counter size: the single input includes the reference previous transaction
hash value 32B, the index 4B, the ECDSA signature 64B, and the sequence number
4B. The single output includes the ECDSA public key 33B and the amount 4B.
Therefore, when the input and output are equal, there are about 2.65 input and output.
Combine the public key and ciphertext length of each scheme in Sect. 3.2.1, and
calculate the transactions number included in each scheme block when the input and
output are equal, as shown in Table 1.

Table 1. Comparison of Public Key Length, Ciphertext Length and Transactions Number

Efficiency analysis indicator Public key
length(/B)

Ciphertext
length(/B)

Transactions
number(/PCS)

Traditional Bitcoin System 33 \ 1682
Standard CT [8] 66 33 1208
Dumb Account [10] 545 512 207
This Scheme (ARFA) 33 256 687
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According to the comprehensive Table 1 analysis, although ARFA has no advan-
tage over the ciphertext length of the standard encrypted transaction, the standard
encrypted transaction still needs an additional communication channel to notify the
payee of the specific transaction amount when the user performs the transaction, and
the payee cannot verify whether to receive the transactions amount.

5 Related Work

In view of the privacy leakage problem of blockchain, the research on privacy pro-
tection mechanism is mainly focused on three aspects: network layer, transaction layer
and application layer [12]. The network layer defense mechanism is mainly to increase
the difficulty of the attacker collecting network layer data, which can be completed by
restricting access, malicious node detection and shielding, and network layer data
confusion. The trading layer protection mechanism focuses on preventing malicious
nodes from obtaining accurate transaction data. Data distortion, data encryption, and
data restriction publishing technologies can be adopted. The focus of the application
layer defense mechanism is from the user’s point of view. Commonly used methods are
blockchain applications and blockchain procedures with privacy protection
mechanisms.

This paper focuses on the privacy protection of the transaction layer. At present,
three measures are taken for the privacy protection of the digital currency agreement in
the transaction layer:

1. Data distortion based solution: the coin mechanism: The coinage mechanism was
first proposed by Chaum in a paper [13] published in 1981, initially to achieve
anonymous communication between the two parties. In order to confuse the con-
nection between the two parties, Maxwell proposed the idea of CoinJoin in 2013
[14]. Although this mechanism successfully confuses the connection between the
two parties, this method only protects the user’s identity privacy, and does not take
privacy protection measures for the transaction amount.

2. Protection scheme based on encryption mechanism: The objects that need to be
encrypted in the blockchain mainly include the parties to the transaction and the
contents of the transaction. In digital currency applications, alternative currencies
based on encryption mechanisms have emerged, such as Dash [15], Monroe [16],
ZeroCoin [17], and ZeroCash [18]. They all solve the privacy problem of trans-
action data to a certain extent, and the principles are different, so the blockchain
scenarios are different. The key technology of Dash is to mix multiple transactions
of multiple users into a single transaction through some master nodes. In order to
solve the problem that the Dash master node is controlled, Monroe proposes an
encryption scheme that does not rely on the central node: the ring transaction is used
to hide the real transaction address. ZeroCoin’s flaw is that it only protects the
privacy of the payer. The use of zero-knowledge proof for ZeroCash avoids mali-
cious user attacks in Monroe, allowing users to hide transaction information only by
interacting with the cryptocurrency itself. However, the process of generating proof
by the zero-knowledge proof algorithm is very slow and the efficiency has a
bottleneck.
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3. Protection scheme based on restricted release: ARFA means to directly remove
information related to privacy from the database. Compared with the mechanism of
mixed currency and encryption, the purpose of ARFA is to fundamentally eliminate
the hidden dangers of privacy. At present, the payment of lightning and the division
of the alliance chain and the private chain are born based on the idea of ARFA.

6 Conclusion

This paper combines the aggregate signature and the ring signature to construct a full
anonymous blockchain system, which solves the privacy protection and performance of
the cryptocurrency to some extent. Compared with the separate aggregation signature
scheme and the separate ring signature scheme, ARFA not only conceals the address
and transaction amount of both parties, but also compresses the signature space and
improves the performance of the blockchain system. Compared with the traditional
bitcoin system, the capacity for introducing the stored ciphertext due to the improve-
ment of security performance is also reasonable. The conversion of the ring signature
scheme to the prime order group and the research based on the ECC field can further
improve the efficiency of the scheme. The future work will continue to be improved on
the basis of ARFA.
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Abstract. Blackout events indicate that the overloaded power lines are
the chief culprit to trigger the large-scale cascading failures hidden in
the power grid. In order to protect the grid from the cascading failures,
this paper aims to design a false data injection attack for the operators
to identify the overloaded power lines. A leader-follower game-theoretic
bi-level optimization model is formulated to maximize the set of over-
loaded power lines. To evaluate the performance of our proposed method,
numerical simulations are performed on the IEEE 14-bus, 30-bus, 57-bus,
and 118-bus systems. The results of Monte Carlo experiments indicate
that the occurrence frequency of overloaded power lines is the most in
our method.

Keywords: Bilevel optimization · Cascading failure · False data
injection attack · Overloading

1 Introduction

Smart grid is a typical cyber-physical system (CPS), integrating the advanced
technologies of computer, communication, and control. Broadly, a power grid is
divided into the generators that supply the power, the transmission system that
carries the power from the generating centers to the load centers, and the distri-
bution system that feeds the power to nearby customers. In the modern society,
power grid is a critical energy infrastructure to support nearly all industrial
and economic systems. Thus, the security assurance is vital for every electrical
component deployed to supply, transfer, and consume electricity [1].

On August 2003, an overheated power line drooped into the foliage, causing
a widespread power outage throughout parts of the Northeastern between USA
and Canada [2]. This blackout event indicates that the overloaded power lines
are the chief culprits who cause the large-scale cascading failures. Generally,
cascading failures often hide in the grid. Only when some initial triggers are
activated due to the storm, high temperature, fire, or cyber attack, cascading
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failures happen immediately. Indeed, the overloaded power lines play a role of
trigger, like the first fallen card in the domino game. Therefore, it is significant
to screen overloaded power lines for preventing cascading failures. Especially,
in the electricity maintenance phase, the staff can purposefully monitor these
identified sensitive lines, saving lots of human resources. Even in the holistic
power planning phase, the identification result can guide the operator to amend
the vulnerabilities for the precaution of line outages in advance. Nevertheless, a
main challenge is how to effectively screen out the overloaded power lines from
the whole grid.

Cascading failure is a process in a system of interconnected parts where the
initial failure of one or few parts can break the original load equilibrium and then
trigger the sequential failures of other parts one after another until a new equi-
librium is established. This phenomenon is also known as butterfly, avalanche,
and domino effect. In practice, most power grids have adopted N-1 secure crite-
rion. However, multiple hidden failures may co-occur at a very short period of
time beyond the N-1 secure capacity and such N-k contingencies can cause the
uncontrolled successive loss of interdependent elements. To understand, predict,
and prevent cascading failures, the existing studies have made great advances in
modeling the cascade propagation patterns [3–10], which can be classified into
two aspects. (i) Some stochastic simulations were performed to mimic as many
cascade as possible by randomly isolating one or multiple lines ORNL-PSerc-
Alaska (OPA) model described the DC power flow-based dynamic process and
analyzed the selforganization criticality [3]. An improved OPA model interpreted
the iterative load redistribution in the fast dynamic process and the evolution of
power planning in the slow dynamics process [4]. A feed forward neural network
model was trained in the database from simulating N-k contingency induced
cascading failures to learn cascading patterns [5]. (ii) Some dynamic models
were built to capture the cascade propagation characteristics. An interaction
model was proposed by using the tripping probability of each component and
the interactions between component failures to identify key lines [6]. A swing
equation was introduced into calculating dynamical transient flows to forecast
the critical lines [7]. A general interdependent models analyzed the robustness of
interacting networks subject to cascading failures [8]. An unified percolation and
overload failure model found that cascading failures showed spatially long-range
correlated with correlations decaying slowly with distance [9]. An integrated
model was built using the concepts of complex networks and electrical laws to
illustrate that the decentralized generator locations might greatly increase the
robustness of the grid [10]. The above studies either need a mass of simulations
to enumerate all possible cascade paths or formulate a complex model to con-
sider the specified operation conditions. Instead of these simulations with heavy
computational burden and complex but non-generalized model, we introduce
the generative adversarial strategy to reveal the weak portion of the whole grid.
Specifically, we attempt to design a most-effectiveness attack and cause the most
possible overloaded lines that are the trigger of cascading failures. When these
overloaded lines are screened, the staff only monitor these lines to prevent cas-
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cading failures. That is, if the first possible fallen card is stood up all the time,
the domino game never occur.

With the increasing integration of cyber and physical components, power grid
is becoming vulnerable to cyber attacks. For instance, on December 2015, a syn-
chronized and coordinated cyber attack compromised three Ukrainian regional
electric power distribution companies and this blackout were caused by remote
cyber intrusions, impacting approximately 225,000 customers for several hours
[11]. The investigation report from an interagency team indicated that some mal-
ware such as Trojan, KillDisk and BlackEnergy had been found to erase selected
files and corrupt the master boot record for rendering system inoperable [12]. A
typical stealthy attack, false data injection attack (FDIA) can inject the well-
designed false data into the meters’ measurements without being detected by the
bad data detection (BDD) and then mislead the controller to make erroneous
decisions. An attacker was able to perform the long-term interception for the
operational data and had sufficient prior-knowledge for launching a successful
FDI attack [13]. Hence, a feasible solution is to identify the overloaded lines
using FDIA to model the decision-making process between attacker and target
grid’s controller (security constrained economic dispatch (SCED)).

Indeed, some existing studies have focused on designing different game-
theoretic strategies to undermine transmission lines in the physical layer. For
example, a load redistribution attack strategy was proposed that may cause
multiple line overloadings [14]. A game-theoretic strategy was presented to max-
imize the total power flows of all overloaded lines [15], a two-stage line outage
model to trigger the hidden N-k contingency [16], two multi-stage screening mod-
els to maximize the joint probabilities of the line trippings [17] and the number
of the tripped lines [18]. These studies indicate that the leader-follower game-
theoretic framework is general to study the attack-defense interaction. Following
this framework, we formulate a bi-level model to deeply study how FDIA may
induce the line overloading and even tripping. However, these studies are con-
fined in a targeted strategy, aiming to overload a set of prespecified power lines,
e.g., Ref. [14] and [19]. Apparently, an untargeted strategy is significant to iden-
tify as many overloaded lines as possible for the whole grid. In this work, we
study the untargeted strategy, where the attackers do not pre-select the set of
transmission lines to attack but, instead, formulate the optimization problem to
screen the most possible overloaded lines in the whole grid. Meanwhile, in order
to evaluate the performance of our method, we perform Mente Carlo experi-
ments to simulate the initial stage of cascading failures. Main contributions of
our work include:

(i) We reveal the vulnerability of power grid under the FDIA, motivating to
make some protection mechanisms for the power grid.

(ii) We formulate a leader-follower bilevel optimization problem to model the
adversarial interaction between attacker and SCED, identifying the most
possible overloaded lines and reformulate this bi-level model into single-
level mixed integer liner program (MILP) for computational tractability.
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(iii) We evaluate the proposed attack strategies on the IEEE 14-bus, 30-bus, 57-
bus, and 118-bus systems. Especially, we perform Monte Carlo experiments
to simulate the initial stage of the cascading failures.

The rest of this paper is organized as follows: Sect. 2 give the problem formu-
lation; Sect. 3 describes the solution strategy to solve the bi-level optimization;
Sect. 4 performs the numerical simulations; and Sect. 5 concludes this work.

2 Problem Formulation

To ease the representation of a power grid, the power grid can be modeled as
an undirected graph G = (V,E), as shown in Fig. 1, where the node set V is the
collection of buses that are connected to generators and/or loads, and the link
set E the collection of transmission lines that are equipped the circuit breakers.
It is worth noting that a circuit breaker is always a standard configuration to
protect a line from damage caused by excess current from an overload or short
circuit, which is an automatically operated electrical switch to interrupt flow
after a fault is detected. Table 1 lists the notations involved in this paper.

D

G

G

D
Transmission line

Bus

G Generator

D Load

Circuit breaker

Fig. 1. An undirected graph modeling a power grid.

Recall that we always stand the operators’ side to analyze the attacker’s
decision-making process how to cause the most overloaded lines. To this end,
we first introduce the FDIA-induced line tripping and then formulate a bi-level
optimization model.

2.1 FDIA-Induced Line Tripping

In the following, we describe how the FDIA may induce the line overloading and
even tripping. First, suppose that the attackers are able to tamper the readings
of partial load meters stealthily. The false load injection model is formulate as

P̃d = Pd + ΔPd (1)

where ΔPd satisfies the following constraints
{

1TΔPd = 0 (2)
−τPd � ΔPd � τPd (3)
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Table 1. Notation list

Symbol Description Symbol Description

Vg Set of buses linked to generators Vd Set of buses linked to loads

Ng Size of Vg Nd Size of Vd

Nb Size of V Nf Size of E

k Index of generators l Index of transmission lines

Nmax
a Maximum number of available load τ Detection coefficient, τ ∈ [0, 1]

Eo Overloading set of transmission lines γm Marginal loading ratio

γo Line overloading ratio γ Line loading ratio

cg Unit generation cost Kf Bus-branch reactance matrix

P min
g Lower bounds of generation capacity Ks Injection shift factor matrix

P max
g Upper bounds of generation capacity Kd Bus-load incidence matrix

P max
f Upper bounds of line’s thermal limit Kg Bus-generator incidence matrix

Pd Loads before attacks Kb System susceptance matrix

Pg Generation power before attacks P̃d Loads after attacks

θ̃ Estimated phase angles after attacks P̃g Generation power after attacks

P̃f Estimated power flow after attacks θ̄ Actual phase angles after attacks

P̃ ∗
g Optimal generation after attacks P̄f Actual power flow after attacks

z Binary indicator of line overloading ΔPf Incremental power flow

α Binary indicator of load modification ΔPd Injected false load

λ, ν , ν KKT multipliers ξ, δ, δ KKT multipliers

Constraint (2) ensures the generation-load balance and (3) indicates that ΔPd

can bypass the threshold-based bad data detector, which is configured in the
supervisory control and data acquisition (SCADA) of the control center to
supervise whether the outliers exist in the raw measurements of the load meters
through comparing the prespecified threshold with the residue between measure-
ments and their estimations. Namely, (2) and (3) characterize the stealthiness
behavior of FDIA. Note that the attackers can estimate τ by performing the
long-term reconnaissance and extracting the boundary of these historical data.

Second, when these contaminated readings P̃d are sent to the control center,
the SCED will be misguided to allocate a new generation order to each gener-
ator in the process of calculating optimal power flow (OPF). Consequently, the
corrupted power flow is estimated in the SCED as

P̃f = Ks(KgP̃g − KdP̃d) (4)

which is constrained within the range −Pmax
f � P̃f � Pmax

f . Meanwhile, the
generators produce these corrupted generation power accordingly. Here we have
the nodal power balance equations before and after attacks as

1TPd = 1TPg and 1TP̃d = 1TP̃g,
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respectively. Since the sum of injected false load is zero as (2), the above two
equalities are consistent numerically, i.e.,

1TPd = 1TPg = 1TP̃d = 1TP̃g.

These equalities indicate that before attacks, P̃g matches P̃d, However, after
attacks, P̃g mismatches Pd. The mismatching will result in the load redistribu-
tion in the physical layer.

Third, according to the Kirchhoff’s Law, the load redistribution calculates
the actual power flow as

P̄f = Ks(KgP̃g − KdPd). (5)

Comparing (4) and (5), we have

ΔPf = P̄f − P̃f = KsKdΔPd. (6)

Further, we have the following forms from (3) and (6),
{ |ΔPf,l| ≤ τ |[KsKdPd]l|

|P̄f,l| ≤ P̄max
f,l , ∀l ∈ E

(7)

where [KsKdPd]l denotes the lth element of the vector KsKdPd and P̄max
f,l =

Pmax
f,l +τ |[KsKdPd]l|. The above inequalities indicate that the actual power flow

of multiple transmission lines might exceed their thermal limits, forming a set
of overloaded lines Eo, defined as

Eo = {l | γl ≥ γo, γl = |P̄f,l|/Pmax
f,l , l ∈ E}

Note that Eo is not pre-specified in this study, which is different from the previ-
ous studies [14,19] where the attackers artificially preselect a set of transmission
lines to be overloaded. This untargeted strategy is more effective to identify the
more transmission lines that may be overloaded.

Fourth, when the transmission lines are overloaded, these lines may trip
with a high probability. To characterize the stochastic process of line tripping,
some studies introduce the cumulative distribution function (CDF), e.g., the
exponential-based CDF model [20], normal-based CDF model [21], and uniform-
based CDF model [22]. Here we adopt the uniform-based CDF model as follows

p(γ�) =

⎧⎨
⎩

0 0 ≤ γ� < 1.00
2.50(γ� − 1) 1 ≤ γ� < 1.40
1 γ� ≥ 1.40

∀� ∈ E. (8)

Figure 2 illustrates the mapping between the line loading ratio and line trip-
ping probability. Any line whose loading ratio is below the overloading ratio
γo = 1.00 will never trip under the normal operation. As the line loading ratio
γl increases up to the marginal loading ratio γm = 1.40, the line tripping prob-
ability increases gradually until 1.00.



268 D.-T. Peng et al.

2.2 Bilevel Optimization Model

Recall that our main purpose is to identify the most possible overloaded lines,
i.e., maximize |Eo|, the total number of overloaded lines. Figure 3 shows a leader-
follower game-theoretic framework to describe the decision-making interaction
between attacker and SCED. The attacker is the game leader in the upper level
and launch the FDIA to inject the false load ΔPd into the readings of load
meters. The SCED in the contaminated cyber/information layer is the game
follower in the lower level and can perform optimal power flow (OPF) to dispatch
the corrupted generation P̃g into the physical grid after receiving the corrupted
load measurements P̃d. Due to the mismatching of P̃g and Pd in the physical
grid, the power flow will be recalculated to redistribute P̄f for all power lines.
This situation provides a possible opportunity to generate the most possible
overloaded transmission lines. Then we formulate a bi-level model as follows

Fig. 2. Line tripping probability distribution as loading ratio increases.

Fig. 3. A diagram of leader-follower game-theoretic framework.

max
ΔPd

1Tz (9)

s.t. P̃d = Pd + ΔPd, 1TΔPd = 0, − τPd � ΔPd � τPd

γl ≥ γo ⇔ zl = 1, zl ∈ {0, 1} ∀l ∈ E (10)

Kbθ̄ = KgP̃g − KdPd (11)



FDIA-Identified Overloaded Power Lines 269

P̄f = Kf θ̄ (12)
ΔPd,k �= 0 ⇔ αk = 1, αk ∈ {0, 1} ∀k ∈ Vd (13)

1Tα ≤ Nmax
a (14)

P̃ ∗
g ∈ arg

{
min cTg P̃g : s.t. (15)

Kbθ̃ = KgP̃g − KdP̃d (λ) (16)

P̃f = Kf θ̃ (ξ) (17)

Pmin
g � P̃g � Pmax

g (ν,ν) (18)

− Pmax
f ≤ P̃f � Pmax

f (δ, δ) } . (19)

The decision-making process of SCED misled by the attack is formulated
in the lower level (15)-(19). Objective (15) minimizes the total generation costs.
(16) and (17) perform the Kirchhoff’s Law. (18) and (19) consider the generation
capacity and lines’ thermal limit, respectively. The decision-making process of
attacker is formulated in the upper level (9)-(14). To indicate the line overloading
state, we define a binary indicator z in (10): zl = 1 if and only if the lth line is
overloaded, i.e, γl ≥ γo; otherwise, zl = 0. Thus, the sum of all elements of z,
i.e., 1Tz, can be used to quantify the total number of overloaded lines in Eo.
Maximizing the objective function (9) is to obtain the most overloaded lines.
(11) and (12) perform the Kirchhoff’s Law again, due to the load redistribution.
To indicate the modification state of load meters’ readings, we also define a
binary indicator α in (13): αk = 1 if and only if the reading of kth load meter is
modified, i.e., ΔPd,k �= 0; otherwise, αk = 0. (14) denotes that the total number
of modified meters is no more than the specified maximum number Nmax

a .
The above bi-level optimization problem cannot be solved directly, because it

contains bi-level objective functions and some logical constraints. To solve them
feasibly, we will present some effective solution strategies in the next section.

3 Solution Strategy

In this section, we introduce how the foregoing bi-level optimization model is
reformulated into a single-level MILP problem.

3.1 Linearization Approach

To linearize |P̄f,l|, l ∈ E, we introduce a binary variable βl ∈ {0, 1} and write
|P̄f,l| = P̄f,lβl − P̄f,l(1 − βl). We define an auxiliary variable ηl ∈ R: ηl = P̄f,lβl,
which is the product of a binary variable and a continuous variable. Referred to
the bounds |P̄f,l| ≤ P̄max

f,l mentioned in (7), we linearize this product as
⎧⎪⎪⎨
⎪⎪⎩

−P̄max
f,l ≤ ηl ≤ P̄max

f,l

−P̄max
f,l βl ≤ ηl ≤ P̄max

f,l βl

ηl ≥ P̄f,l − (1 − βl)P̄max
f,l

ηl ≤ P̄f,l + (1 − βl)P̄max
f,l

∀l ∈ E. (20)
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Hence, the nonlinear term |P̄f,l| in (10) can be substituted by the linear form

|P̄f,l| = 2ηl − P̄f,l. (21)

The logical constraint (10) can be rewritten in its linear form

2ηl − P̄f,l − γoP
max
f,l ≥ zl, ∀l ∈ E. (22)

After introducing two new binary variables αk
+ and αk

−, we can rewrite (13)
in a mixed integer linear form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−τPd,kαk ≤ ΔPd,k ≤ τPd,kαk

ΔPd,k ≥ −τPd,k(1 − ρk
+) + εαk

+

ΔPd,k ≤ τPd,k(1 − ρk
−) − εαk

−
αk
+ + αk

− − 2αk ≤ 0
αk
+ + αk

− + αk ≤ 2
αk
+ + αk

− − αk ≥ 0
αk
+, αk

−, αk ∈ {0, 1}

∀k ∈ Vd (23)

where ε is a small positive real number.

3.2 Karush–Kuhn–Tucker (KKT) Conditions

We use the KKT conditions to transform the bi-level optimization problem into
a single-level MILP problem. We can derive the dual conditions of (15)–(19) as

⎧⎨
⎩

cg − KT
g λ − ν + ν = 0

KT
b λ + KT

f ξ = 0
−ξ − δ + δ = 0

(24)

and obtain the linearized complementary slackness conditions as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ νk ≤ Mψ
g,k

P̃g,k − Pmin
g,k ≤ M(1 − ψ

g,k
)

0 ≤ νk ≤ Mψg,k

Pmax
g,k − P̃g,k ≤ M(1 − ψg,k)

ψ
g,k

+ ψg,k ≤ 1
ψ

g,k
, ψg,k ∈ {0, 1}

∀k ∈ Vg (25)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ δl ≤ Mψ
f,l

P̃f,l + Pmax
f,l ≤ M(1 − ψ

f,l
)

0 ≤ δl ≤ Mψf,l

Pmax
f,l − P̃f,l ≤ M(1 − ψf,l)

ψ
f,l

+ ψf,l ≤ 1
ψ

f,l
, ψf,l ∈ {0, 1}

∀l ∈ E (26)
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where ψ
g,k

, ψg,k, ψ
f,l

, and ψf,l are the auxiliary binary variables, M a big
positive real number, and we set M = 1/ε in this paper.

Therefore, we obtain the single-level MILP problem as follows

max
ΔPd

∑
l∈E

zl

s.t. (1) − (3), (11), (12), (14), (16) − (19),
(20), (21), (23) − (26).

This MILP problem can be solved directly in a commercial solver: CVX-
Gurobi, a package for solving convex programming [23].

4 Numerical Illustration

In this section, we perform numerical simulations on IEEE 14-bus, 30-bus, 57-
bus, and 118-bus systems. Their configuration parameters are referred to Mat-
power, a popular platform of IEEE test systems [24], including Pd, Kb, Ks, Kg,
Kd, Kf , cg, Pmin

g , Pmax
g , and Pmax

f . For additional simulation parameters, we
specify Nmax

a = 10, 15, 20, 90 for IEEE 14-bus, 30-bus, 57-bus, and 118-bus
systems, respectively, τ = 0.5, γo = 1, and M = 106.

4.1 Overloaded Power Lines Under Three Scenarios

To evaluate the attack effectiveness of our proposed method, we compare it with
no attack and random attack. Here when the power system is normally operating
without suffering any attack, this scenario is called no attack. When the attacker
can modify the readings of available load meters by a perturbation ΔPd that is
generated randomly in the feasible region formed by constraints (2) and (3), this
scenario is called random attack. To fairly evaluate the effectiveness of random
attack, we adopt Monte Carlo experiment to set the experimental times L =
1000. Namely, we stochastically select 1000 feasible solution for random attack
to obtain its average performance on every IEEE test system.

Table 2. Simulation Results Under Three Scenarios

Scenario 14-bus 30-bus 57-bus 118-bus

|Eo| η |Eo| η |Eo| η |Eo| η

No attack 0 0% 0 0% 0 0% 0 0%

Random attack 2.89 28.5% 1.53 12.17% 3.27 17.65% 1.27 4.10%

Our method 5 40.56% 4 32.03% 7 30.65% 26 43.43%

To measure the performance of different strategies, we use two indices: the
total number of overloaded transmission lines, denoted |Eo| and the percent
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of power flow loaded in overloaded transmission lines and in all transmission
lines, denoted η. Table 2 lists the simulation results under three scenarios: no
attack, random attack, and our proposed method. Under no attack, the four
IEEE test systems are normal in operation and have no overloaded transmis-
sion lines. Compared to random attack, our method can cause more overloaded
transmission lines, because |Eo| of our method is greater than that of random
attack for all IEEE test systems. The larger-scale power grid might be more
sensitive to our method than other smaller-scale grid, e.g., the total number of
overloaded transmission lines is 26 in IEEE 118-test system whereas the total
number is below 10 in IEEE 14-bus, 30-bus, and 57-bus systems. In addition, η of
our method is more than 30% in the four test systems, indicating that the more
number of overloaded transmission lines and the more percent of power flow.
Moreover, η of our method is much larger than that of random attack for all
test systems, illustrating that the our proposed attack strategy is more effective
than random attacks for compromising the power systems.

Take IEEE 14-bus and 30-bus systems for examples in Figs. 4 and 5, respec-
tively, where the overloaded transmission lines are marked in red and the non-
overloaded lines in black. The graphical results clearly display the distributions
of overloaded transmission lines before and after attacks. Obviously, our method
can identify more overloaded lines and thus assist the operators to screen out
more vulnerable electrical component. It is worth noting that only two lines are
overloaded in the random attack, i.e., (6−11) and (7−9) (see Fig. 5(b)) while
five lines are overloaded in our method (see Fig. 5(c)), but the overloaded line
(6−11) in Fig. 5(b) is normal in Fig. 5(c). Because the random attack has no the
most powerful attack effectiveness to cause the worst case and the perturbation
ΔPd is randomly generated from a sample of Monte Carlo experiment so that
the line overloading events also become uncertain and random.

Fig. 4. Distribution of overloaded transmission lines of IEEE 14-bus system.

4.2 Line Tripping Events in Monte Carlo Experiments

As seen from the above simulations, our method can cause the overloading of
multiple power lines. Once these overloaded lines trip with a high probability,



FDIA-Identified Overloaded Power Lines 273

Fig. 5. Distribution of overloaded transmission lines of IEEE 30-bus system.

cascading failures might be triggered and more transmission lines fail succes-
sively. In the following, we simulate the initial stage of cascading failures to ver-
ify the practical effectiveness of our method. We have mentioned that the line
tripping is a stochastic process, as seen in Fig. 2. It is natural to adopt Monte
Carlo simulation for simulating this random process well. We count the occur-
rence frequency of line tripping events for the four test systems under no attack,
random attack, and our method. The generating draws follow the line tripping
probability p(γl) as (8). We define a binary indicator Il ∈ {0, 1} for the lth line:
if the lth line trips, Il = 1; otherwise, Il = 0. We also define Ne, the total number
of random events, which is set 1000, and Mj , j ∈ Z

+, the specified number of
line tripping events, Mj = j, and Nm the maximum specified number of line
tripping events, which is set 5 for IEEE 14-bus, 30-bus, and 57-bus systems and
set 14 for IEEE 118-bus system. We specify a random matrix R ∈ R

Ne∗Nf , and
Rl,i is a random numbers uniformly distributed within [0, 1]. We use a counter
Co to record the number of line tripping events, which is initialized 0. The total
number of line tripping events is stored in matrix S ∈ R

Nm∗Ne . Algorithm 1
illustrates the Monte Carlo experiment clearly.

The simulation results are shown in Fig. 6, where the total number of line
tripping events is counted in 1000 random events under the three strategies for
the four IEEE test systems. Under no attack, the total number of line tripping
events concentrates on 1000, the mode appears at M1 = 0, and the numbers
of both one-line and two-line tripping events are 0. These results are consistent
with the performance of a power grid under normal operations where the line
tripping event is very rare. Under the random attack, the total number of the
no line tripping event decreases to 577, 822, 348, and 758 in IEEE 14-bus, 30-
bus, 57-bus, and 118-bus systems, respectively. The total number of one-line
tripping events increases to 241, 160, 476, and 133, respectively. Except that
the mode of IEEE 57-bus system appears at M2 = 1, the modes of other three
systems still appear at M1 = 0. Under our proposed attack strategies, the mode
of IEEE 30-bus system shifts to 2 whereas that of IEEE 118-bus system shifts
to 10, and the mode of IEEE 14-bus system lies between 0 and 1 whereas that
of IEEE 57-bus system lies between 1 and 2. These results indicate that our
proposed method is more effective than random attack to induce the tripping
of multiple transmission lines simultaneously and increase the occurrence risk of
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Algorithm 1. Count the number of line tripping events.
Input: The vector of line tripping probability, p(γ);

The matrix of random numbers, R;
Output: The matrix of the number of line tripping events, S;
for i = 1 : Ne do

for l = 1 : Nf do
if Rl,i ≤ p(γl) then

Il = 1;
else

Il = 0;
end if

end for
for j = 1 : Nm do

Co → 0;
if

∑
l Il = Mj then

Co ← Co + 1;
else

Co ← Co;
end if
Sj,i ← Co;

end for
end for
return 1

Ne

∑
i Sj,i as the number of line tripping events.

Fig. 6. Distribution of line tripping events in 1000 random experiments.
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cascading failures. In Particular, IEEE 118-bus system is the most sensitive to
our proposed method because the line tripping events always occur from five-line
to fourteen-line. These results conform to that in Table 2.

5 Conclusion and Discussion

From system operators’ perspective, we utilize the generative adversarial strat-
egy to identify the most possible overloaded lines that may trigger the large-scale
cascading failures. For analyzing this worst case, we propose a leader-follower
game-theoretic bi-level optimization problem to model the decision-making inter-
action between attacker and SCED. The effectiveness of our proposed strategy
is verified on IEEE test systems in numerical simulations, where Monte Carlo
experiments indicate that the proposed strategy can cause the line tripping
events with the most occurrence frequency.

Our study also reveals that the smart grid becomes vulnerable to the inten-
tional FDIA, which can motivate operators to develop some mitigation schemes
for protecting the grid from cascading failures. For instance, the nonzero ele-
ments of ΔP ∗

d can indicate which is the sensitive load meters, which can be
tampered to inject the false load data that can perturb the supply-demand bal-
ance of power flow; every element of Eo can locate the vulnerable transmission
lines, which is easy to be overloaded and even tripped due to the lower ther-
mal rating. Thus, this study can guide us to closely monitor the sensitive load
meters and their readings and meanwhile update the physical configuration of
the vulnerable transmission lines with the higher thermal rating for tolerating
the extra power flow. We believe that our work is significant to apply at both
the electricity maintenance and the power planning for the security assurance of
power grid.

In addition, it is worth noting that this FDIA is an one-shot attack strat-
egy because when ΔP ∗

d is carefully designed well, the attackers can launch the
FDIA by accordingly tampering the available load meters. After the attacker can
successfully modify the related load meters, multiple transmission lines are over-
loaded and even tripped automatically as the power grid is operating. Namely,
nearly all of attack time concentrates on the stealthy modification of load meters.
In the future, we also focus on developing the detection countermeasures to pre-
vent the FDIA.
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Abstract. Tree-based RFID authentication protocols provide an efficient
solution for lowering authentication delay, but level of privacy provided by tree-
based systems decreases considerably if some members are compromised and
secret keys are probed. In the RFID system, Tags are severely limited in terms of
computational power and storage. A large amount of research focused on
optimizing the key-tree has been launched, yet none of them consider the Tags’
storage constraints.
In this paper, we introduce a new privacy metric expression for measuring the

resistance of the system to a single compromised member; we furtherly extend
the research work of Buttyan et al. and Beye et al. by proposing two opti-
mization problems respecting storage constraints. In addition, we show how to
construct the optimal key-tree in order to maximize the system’s resistance to
single member compromise under the constraints on the Tags’ number, the
maximum authentication delay and the number of the keys stored in the Tag.

Keywords: RFID � Authentication protocol � Key-tree � Anonymity � Storage
constraint

1 Introduction

Radio Frequency Identification (RFID) is a wireless technology for convenient auto-
matic identification of physical objects, originally intended to replace bar codes. RFID
systems are typically composed of RF Tags, RF Readers and backend Server. Most
Tags consist of an antenna connected to a microchip, and the use of silicon-based
microchips enables a range of functionality to be integrated into the Tags, including
readable/writable storage and limited computing capability. The Readers broadcast an
RF signal to access information stored on the Tags. This information can range from
static identification numbers to user written data or data computed by the Tag.
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However, the communication channel between the Tag and Reader is wireless, so
RFID systems are vulnerable to various forms of passive or active attacks. RFID
technology has triggered significant concerns on its security and privacy as the Tags’
information can be read or traced by malicious Readers from a distance without the
owner’s awareness [1]. In traditional computing systems, many security and privacy
problems can be solved by utilizing cryptographic techniques. Unfortunately, RFID
Tags are highly resource constrained and cannot support strong cryptography, which
means that supporting strong public key cryptographic primitives on low-cost Tags is
not a viable option today, therefore there is a strong need for lightweight symmetric
cryptographic primitives [2].

Over the past few years, many researchers have developed dozens of protocols to
tackle the authentication and privacy problems of RFID systems. The protocols based
on symmetric cryptosystems are divided into two categories: one based on hash
functions or block ciphers, such as hash chain protocol, randomized hash locking
protocol etc. [3–7], which trigger the research development of the design and analysis
of lightweight block ciphers and hash functions; the other based on simple operations
such as AND, XOR, Rotation [8–10] or the LPN(Learning Parity in the Presence of
Noise)problem [11–15]. LPN based authentication is not only theoretically secure in
terms of provable security, but also provides better efficiency than classical symmetric
ciphers.

In the privacy-preserving symmetric key based protocols, the Tag and Reader share
with the same secret keys, thus they are faced with the following paradox. In one hand,
Tag must encrypt its identity with its secret keys so that only authorized Readers can
extract the identity. On the other hand, Readers must first decide which secret keys
should be used to authenticate the Tag. As a consequence, the server must perform a
brute force search in its database to identify the Tag. That is, for each Tag entry in the
database, the server computes a symmetric cryptographic operation with the corre-
sponding Tag’s secrets and checks whether the result matches with the received
response produced by the target Tag. Such a tedious search procedure will raise
scalability issues as the Tag increases.

Molnar and Wagner [16] proposed the tree-based authentication protocol in 2004 to
tackle the authentication delays problem. More precisely, the complexity of the
authentication procedure in the Molnar-Wagner scheme is logarithmic in the number of
potential Tags, in contrast with the linear complexity of the simple key search
approach. Since different Tags share their partial keys, if one Tag is compromised and
its memory has been probed through invasive tampering, the adversary can learn partial
keys for several other Tags as well, which will enable him to decipher some of their
responses, resulting in reduced anonymity and facilitating tracking.

Buttyan, Holczer and Vajda [17] first analyzed the information leakage problem
resulting from Tag corruption in the tree-based authentication protocol. They intro-
duced the concept of trees with variable branching factors to better preserve anonymity
in case of attack. They also have quantified the resulting loss of anonymity in the
system, solved the optimization problem with given number of the Tag and the
maximum authentication delay. Beye and Veugen [18] furtherly improved upon
Buttyan et al.’s research. They found that the constraint condition on exact number of
the Tag may provide inferior solutions, so they formulated a new optimization problem
given the minimum number of the Tags, which led to better results.
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However, low-cost RFID Tags usually have extremely limited storage and com-
putational capabilities. The two optimization problems in [17] and [18] do not take the
Tags’ storage constraints into consideration. In this paper, we extend Buttyan et al.’s
and Beye et al.’s results, and propose two improved key-tree optimization problems
under the constraints on the Tags’ number, the maximum authentication delay and the
number of the keys stored in the Tag. Besides, we present the corresponding algorithms
for determining the optimal parameters of the key-tree to maximize the resistance of
single Tag compromise.

The rest of the paper is organized as follows: In Sect. 2, we introduce a new metric
expression to measure the level of privacy provided by key-tree based authentication
systems under single Tag compromise; In Sect. 3, we extend Buttyan et al.’s and Beye
et al.’s work to formulate two optimization problems respecting storage constraints. In
addition, we reprove the four lemmas in [17] utilizing the new privacy metric
expression; In Sect. 4, we mainly brings forward two algorithms to solve the new
optimization problems, and experiment results with the applicable parameters are
illustrated in Sect. 5. Finally, conclusions are drawn in Sect. 6.

2 Resistance to Single Member Compromise

To overcome the high authentication delay problem in the symmetric key based RFID
authentication protocols, Molnar and Wagner [16] presented the tree-based authenti-
cation infrastructure. We assume the number of the Tag is N, and the Reader will keep
a full key-tree with l levels and branching factors B ¼ ðb1; b2; . . .; blÞ, i.e., the different
nodes in the same level have the same number of children nods. Each leaf represents a

Tag member, which is denoted as T0; T1; . . .; TN�1. It is obvious to see that N ¼ Ql
i¼1

bi.

There is a unique key assigned to each edge, and the leaf node possesses the keys
assigned to the edges of the path starting from the root and ending in the given leaf.
Figure 1 gives an example of a key-tree with 3 levels and branching factors
B ¼ 3; 3; 2ð Þ. So the Tag number is 18, and left most Tag T0 possesses three different
keys k1; k11; k111f g.

Fig. 1. Illustration of a key-tree
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In Fig. 1, if the Reader wants to authenticate the Tag with the secret keys
ki1 ; ki2 ; ki3f g, a classic symmetric key based RFID authentication protocol is executed

as the following steps:
Step 1. Reader generates and sends a random value Nr to the Tag;
Step 2. Tag generates a random value Nt, computes and sends three values to the

Reader: H ki1 ;Nr;Ntð Þ, H ki2 ;Nr;Ntð Þ and H ki3 ;Nr;Ntð Þ, where H function can be some
secure hash function, such as MD5.

Step 3. The Reader tries all the possible key in the first level to compute
H ki;Nr;Ntð Þ; i ¼ 1; 2; 3ð Þ to find which value matches the response H ki1 ;Nr;Ntð Þ.
Once the first key is identified, the verifier continues to search through second-level
keys that reside below the already identified first-level key in the tree to determine
which second-level key has been used in the same way. This process continues until all
keys are identified, and thus authenticating members are identified.

Buttyan et al. defined the maximum authentication delay as Dmax, and it can be
easily computed as Dmax ¼

Pl
i¼1 bi, which is logarithmic in the number of Tags. The

problem of tree-based authentication scheme is that upper-level keys in the tree are
shared by many Tags. For example, in Fig. 1, the two Tags T0 and T1 share the same
first and second level keys k1 and k11. Therefore, if some Tag is compromised and its
keys has been leaked, the adversary gains partial knowledge of the keys of other
members, which obviously reduces the privacy provided by the RFID system.

Accordingly, Buttyan et al. [17] quantified the resulting anonymity leakage in the
tree-based authentication protocol utilizing the concept of anonymity set [19]. In
addition, they presented an optimization problem to maximize RFID system’s resis-
tance to single Tag compromise under the constraints on the maximum authentication
delay. Here we measure the level of anonymity leakage from the following basic
probability problems.

Problem: Given a full key-tree with l levels and branching factors B ¼ ðb1; b2; . . .; blÞ,
a unique key is assigned to each edge, and the leaf node possesses the keys assigned to
the edges of the path starting from the root to the given leafTag. After corrupting any
leaf node and obtaining all the secret keys stored, a passive adversary chooses two
different random Tags. The problem is to calculate the probability of distinguishing
these two Tags through eaves dropping the communication messages of the above tree-
based RFID authentication protocol.

Fig. 2. Partition when T0 is Corrupted
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We know the total number of the Tag is N ¼ Ql
i¼1

bi, and we suppose the leftmost

Tag T0 is corrupted. As shown in Fig. 2, we utilize the same method in [17] to partition
the Tag members into lþ 1 set P0;P1; . . .;Pl, where:

– P0 contains the compromised Tag only, i.e. T0;
– P1 contains the Tags whose parent node is the same as that of T0, and those are not

in set P0;
– P2 contains the Tags whose grandparent node is the same as that of T0, and those

are not in P0 [P1;
– Pl contains the Tags who have the same root node as that of T0, and those are not in

P0 [P1 [ . . .[Pl�1.

Choosing two different random Tag Tx and Ty among all the possible Tags(in-
cluding the corrupted Tag T0, due to the one-way nature of Hash function, if the
passive adversary expects to distinguish them utilizing the tree-based RFID authenti-
cation protocol, the t the following l condition:

1. Tx 2 Pl
V
Ty 62 Pl

2. Tx 2 Pl�1ð ÞVTy 62 Pl
S
Pl�1ð Þ

3. Tx 2 Pl�2ð ÞVTy 62 Pl
S
Pl�1

S
Pl�2ð Þ

……..

l: Tx 2 P1ð ÞVTy 62 Pl
S
Pl�1

S
. . .
S
P1ð Þ

We can deduce the probability that passive adversary can distinguish Tx and Ty is:

Pr�D Bð Þ ¼ b1 � 1ð Þb22 � � � b2l þ b2 � 1ð Þb23 � � � b2l þ . . .þ bl � 1ð Þ� �
=C2

N

In order to facilitate the following discussion, we substitute N2=2 for C2
N , and the

resistance to single member compromise is defined as follows:

Definition 2.1. Given a full key-tree with l levels and branching factors B ¼
ðb1; b2; . . .; blÞ in the tree based RFID authentication protocol, the total number of Tags

N is
Ql
i¼1

bi, and the resistance to single member compromise is defined as

Pr Bð Þ ¼ 1� PrD Bð Þ, where

PrD Bð Þ ¼ 2 b1 � 1ð Þb22. . .b2l þ b2 � 1ð Þb23. . .b2l þ . . .þ bl � 1ð Þ� �
=N2

In [17], the resistance to single member compromise, denoted as R Bð Þ, is
quantified as

R Bð Þ ¼ ð1þ bl � 1ð Þ2 þ
Xl�1

i¼1
bi � 1ð Þ2

Yl

j¼iþ 1
b2j Þ=N2

It is easy to verify that Pr Bð Þ equals to R Bð Þ, which means these two variables are
the same value but with different expression.
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3 RFID Number Optimization Problem with Storage
Constraints

In this section, we reconsider the optimization problem as phrased by Buttyan et al. and
Beye et al. In [17], Buttyan et al. presented the following optimization problem of
finding the best branching factors to maximize Pr Bð Þ:
Definition 3.1. Exact Number Optimization Problem (ENO-Problem for short) Given
the Tag’s number N and the upper bound Dmax of the maximum authentication delay,
ENO-Problem is to find a branching factor vector B ¼ ðb1; b2; . . .; blÞ such that Pr Bð Þ is
maximal subject to the following two constraints:

N ¼
Yl

i¼1
bi;

Xl

i¼1
bi �Dmax ð1Þ

In [18], Beye and Veugen found the condition N ¼ Ql
i¼1

bi can result in inferior

solutions, especially when N does not have good prime factorization. So they improved
Buttyan et al.’s work and presented a new optimization problem as follows:

Definition 3.2. Minimum Number Optimization Problem (MNO-Problem) [18] Given
N and Dmax as in Definition 3.1, MNO-Problem is to find the branching factors B ¼
ðb1; b2; . . .; blÞ that maximize Pr(B) subject to the following constraints:

Yl

i¼1
bi �N;

Xl

i¼1
bi �Dmax ð2Þ

RFID Tags are typically low-cost devices, so their computation and storage capa-
bilities are severely constrained. The optimization problem in Definitions 3.1 and 3.2
do not consider the storage requirements of RFID systems. It is obvious that the leaf
node in the key-tree with l levels will store l different secret keys. Here we improve the
above two optimization problems through putting the storage requirement into
consideration.

Definition 3.3. Exact Number Optimization Problem with Storage Constraints (sENO-
Problem for short) Given N, Dmax as in Definition 3.1, and lreq of the number of the
secret keys stored in the Tags, sENO-Problem is to find a branching factors.

B ¼ ðb1; b2; . . .; blreqÞ so that Pr Bð Þ is maximal subject to the following constraints:

N ¼
Ylreq

i¼1
bi;

Xlreq

i¼1
bi �Dmax ð3Þ

Just as the improvement on the ENO-Problem, we put forward the corresponding
improved optimization problem on MNO-Problem under the storage constraints.
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Definition 3.4. Minimum Number Optimal Problem with Storage Constraints,
(sMNO-Problem) Given the three parameters N, Dmax, lreq, the sMNO-Problem is to
find the vector B ¼ ðb1; b2; . . .; blreqÞ that maximizes Pr(B) subject to the following
constraints:

Ylreq

i¼1
bi �N;

Xlreq

i¼1
bi �Dmax ð4Þ

Buttyan et al. analyzed the ENO-Problem through a series of lemmas that will lead
to an algorithm to solve theproblem. In the following, we list and simplify the proof of
four lemmas in [17] utilizing the new expression Pr Bð Þ. The following four lemmas are
also the theoretic basis for our algorithms.

Lemma 3.1. Given N and Dmax, and let B ¼ ðb1; b2; . . .; brÞ be a branching factor
satisfying constraints (1) of the optimizationproblem. Supposing B0 ¼ b

0
1; b

0
2; . . .; b

0
r

� �
is the branch vector consisting of the sorted elements of B in decreasing order,
i.e.b

0
1 � b

0
2 � . . .� b

0
r, then Pr B0ð Þ � Pr Bð Þ.

Proof: Let us assume B0 is obtained from B with the bubble sort algorithm. The basic
step of this algorithm is to change two neighboring elements if they are not in the right
order.

Considering branching factors B1 ¼ ðb1; . . .; bi; biþ 1; . . .; brÞ, let us suppose
bi\biþ 1, then the algorithm changes the order of bi and biþ 1 to obtain new branching
factors B2 ¼ ðb1; . . .; biþ 1; bi; . . .; brÞ. According to the definition of Pr Bð Þ, we can
finally express Pr B2ð Þ � Pr B1ð Þ as follows:
Pr B2ð Þ � Pr B1ð Þ ¼ 2 bi � 1ð Þb2iþ 1 � � � b2r þ biþ 1 � 1ð Þb2iþ 2 � � � b2r � biþ 1 � 1ð Þb2i � � � b2r � bi � 1ð Þb2iþ 2 � � � b2r

� �
=N2

¼ 2 biþ 1 � bið Þ biþ 1 � 1ð Þ bi � 1ð Þb2iþ 2 � � � b2r=N2

Considering the condition bi\biþ 1, bi; biþ 1 � 1, we can get the conclusion
Pr B2ð Þ� Pr B1ð Þ. This means, when sorting the elements of B, Pr Bð Þ improves by
every step, and thus, Pr B0ð Þ � Pr Bð Þ must hold.□

Lemma 3.2. Let B ¼ ðb1; b2; . . .; brÞ be a sorted branching factors (i.e.,
b1 � b2 � . . .� brÞ. The lower and upper bounds on Pr Bð Þ can be given as follows (the
bounds are different from those of [17]):

1� 2
b1 � 1
b21

þ 2
3b21

� �
� Pr Bð Þ� 1� 2 b1 � 1ð Þ

b21

Proof: Because N ¼ Qr
i¼1

bi, we can obtain the upper bound of the lemma:

Pr
D

Bð Þ� 2 b1 � 1ð Þb22. . .b2r
N2 ¼ 2 b1 � 1ð Þb22. . .b2r

b21b
2
2. . .b

2
r

¼ 2 b1 � 1ð Þ
b21
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To achieve the lower bound, for every i in 2; 3; . . .; r, we replace bi � 1 with bi, and
we can get:

PrD � 2 b1 � 1ð Þb22. . .b2r þ b2b23. . .b
2
r þ . . .br

� �
N2

¼ 2
b1 � 1ð Þ
b21

þ 1
b21

1
b2

þ 1
b22b3

þ . . .þ 1
b22b

2
3. . .b

2
r�1br

� �� �

� 2
b1 � 1ð Þ
b21

þ 1
b21

1
2
þ 1

8
þ 1

32
þ . . .

� �� �
¼ 2

b1 � 1
b21

þ 2
3b21

� �

The proof is the same as that in [17]. Lemma 3.2 implies that in order to find the
solution to the optimization problem, b1 should be maximized. □

Lemma 3.3. Given N and Dmax, if B ¼ ðb1; b2; . . .; brÞ and B0 ¼ b
0
1; b

0
2; . . .; b

0
r

� �
are

two sorted branching factors that satisfy the constraints (1) of the optimization problem,
then b1 [ b

0
1 implies Pr B0ð Þ � Pr Bð Þ.

Proof: According to Lemma 3.2, for branching factors B0 ¼ b
0
1; b

0
2; . . .; b

0
r

� �
, we

know:

Pr B0ð Þ � 1� 2 b
0
1 � 1

� �
b02
1

We can also calculate the compromise resistance probability of branching factors
B ¼ ðb1; b2; . . .; brÞ according to Lemma 3.2 in the same way:

Pr Bð Þ� 1� 2
b1 � 1
b21

þ 2
3b21

� �

Because b1 [ b
0
1, it is easy to see Pr Bð Þ� 1� 2 b

0
1

b01 þ 1ð Þ2 þ
2

3 b01 þ 1ð Þ2
� �

. Now we

consider the in equality:

1� 2 b
0
1 � 1

� �
b02
1

� 1� 2
b

0
1

b0
1 þ 1

� �2 þ 2

3 b0
1 þ 1

� �2
 !

then we can obtain the inequality: b
0
1

� �2�3b
0
1 � 3� 0, thus we get the conclusion:

when b
0
1 � 4, b1 [ b

0
1 implies Pr B0ð Þ � Pr Bð Þ.

For the conditions of b
0
1 2 2; 3f g, we can also prove Pr B0ð Þ � Pr Bð Þ utilizing the

same discussion in [17]. Our proof simplifies the discussion of this lemma in [17].
Buttyan et al. only proved when b

0
1 � 5 implies Pr B0ð Þ � Pr Bð Þ, and thus, they have to

discuss three cases of b
0
1 2 2; 3; 4f g respectively. □

Lemma 3.4. Given N and Dmax, let B ¼ ðb1; b2; . . .; brÞ and B0 ¼ b
0
1; b

0
2; . . .; b

0
r0

� �
be

two sorted branching factors satisfying the constraints (1). For all 1� i� j�min r; r0ð Þ,
bjþ 1 [ b

0
jþ 1, if bi [ b

0
i, then Pr Bð Þ� Pr B0ð Þ.
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Proof: The probability of distinguishing two Tags PrD Bð Þ must satisfy the following
equation:

Pr
D

Bð Þ ¼ 2 b1 � 1ð Þ
b21

þ 2
b21

b2 � 1ð Þ
b22

þ b3 � 1ð Þ
b22b

2
3

þ . . .þ br � 1ð Þ
b22b

2
3. . .b

2
r

� �

¼ 2 b1 � 1ð Þ
b21

þ 1
b21

Pr
D

B1ð Þ

where B1 ¼ ðb2; b3; . . .; brÞ. In the same way, we know that for B
0
1 ¼ b

0
2; b

0
3; . . .; b

0
r0

� �
:

Pr
D

Bð Þ ¼ 2 b
0
1 � 1

� �
b02
1

þ 1
b02
1
Pr
D

B
0
1

� �

Utilizing the relationship of Pr Bð Þ ¼ 1� PrD Bð Þ, and the conclusion of Lemma 3.3,
we know Lemma 3.4 must hold. □

4 Algorithms for Optimal Trees on SENO(SMNO)-Problem

We first present an exhaustive algorithm to find the solution to the sENO-Problem. As
to the sorted branching factors B ¼ ðb1; b2; . . .; brÞ, we let Bf g denote the set

fb1; b2; . . .; brg,
Q

B denote
Qr
i¼1

bi and
P

B denote
Pr
i¼1

bi.

Exhaustive Solution. Given the three parameters N, Dmax, lreq, we suppose the set B is
composed of all the prime factors of N. The sENO-Problem can be settled in the
following intuitive algorithm:

Algorithm 1. Exhaustive Solution to sENO-Problem

Step 1.  An empty list with two columns is constructed;
Step 2. Partition set into  subset , if , the 
partition set is arranged in decreasing order, and filled in thefirst 
column of , meanwhile value of is filled in the second 
column of the . 
Step 3. Try all the partition of and repeat step 2, andoutput the partition with the 
maximum first level. If more than onepartition have the same first level in the second 
column, then the successive level isconsidered.

From Lemma 3.4, we know the output of Algorithm 1 must be the optimal solution
to sENO-Problem. However, the algorithm is less efficient especially when the number
of set Bf g is large. In addition, given three parameters N, Dmax,lreq, we can not
determine whether sENO-Problem has solution efficiently.
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In the following subsections, we will present a much more efficient algorithm to
settle sENO-Problem.

4.1 Minimal Sum Problem with Static Product

Considering the Definition 3.3, we know if sENO-Problem has a solution, there exists
at least one lreq divisor ðb1; b2; . . .; blreqÞ of Tag number N satisfying the condition (3).
To determine whether or not sENO-Problem has a solution, we should find out the

minimum value
Plreq
i¼1

bi can be reached with the constraint N ¼ Qlreq
i¼1

bi.

Now, we consider the following problem:

Definition 4.1. Minimal Sum Problem with Static Product (MSSP-Problem) Given
positive integers n and r, the problem is to find positive integers xi i ¼ 1; 2; . . .; rð Þ that
minimize

Pr
i¼1

xi with the constraint n ¼ Qr
i¼1

xi.

If we allow xi to be a positive real number, it is clear that the solution to the above
problem is xi ¼

ffiffiffi
nr

p
; i ¼ 1; 2; . . .; r. Regarding the constraint of integer solutions, we

use the following two necessary and sufficient conditions presented by Ma [20].

Theorem 4.1. [20] Given positive integer n and r ¼ 2, the necessary and sufficient
condition that positive integers x1 and x2 satisfying x1 þ x2 is minimum and x1 � x2 ¼ n
is:

x1 ¼ minfd : djn ^ d� ffiffiffi
n2

p g

namely, x1 � x2j j also achieves the minimum value.
When considering any given integer r, Ma gave the following theorem:

Theorem 4.2. [20] Given positive integer n and r, the necessary and sufficient con-

dition that positive integers xi i ¼ 1; 2; . . .; rð Þ satisfying
Pr
i¼1

xi is minimum and n ¼
Qr
i¼1

xi is:

xi � xj
		 		� x� yj j; for any i 6¼ j

where x and y are arbitrary positive integers satisfying xi � xj ¼ x � y.
Although Ma gave the necessary and sufficient condition of the solution to the

problem, he did not show how to find the solution. Here, we propose a heuristic
algorithm to output the integer solution xi i ¼ 1; 2; . . .; rð Þ fulfilling the condition of the
problem.
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Taken n = 27000 and r = 4 as an example, B is initially set as {3,10,30,30}, and
the output solution is{10,12,15,15}. The intermediate states of B along with the
Algorithm 2 are listed as follows:

{5,6,30,30} ! {6,10,15,30} ! {10,10,15,18}

4.2 Optimal Trees on sENO-Problem

In this subsection, we present the Algorithm 3 to settles ENO-Problem. We define our
algorithm as a recursive function f , which takes three following input parameters:

1. positive integer n, its initial value is the number N of the Tags;
2. positive integer d, its initial value is the maximum authentication delay Dmax;
3. positive integer r, its initial value is lreq.

We also denote Algorithm 2 as function g with the input parameters including
number n and r, and its output are r integers x1; x2; . . .; xr, which make

Pr
i¼1 xi reach

the minimal value on the constraint n ¼ Qr
i¼1 xi.

Here n=n0 denotes integer division operation. The operation of the above algorithm
can be described as follows: the algorithm first runs function g to check whether the
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optimization problem has a solution or not; additionally, from the detail construction of
function f , we can see the output of function f is the largest possible value that respects
the upper bound on the maximum authentication delay. The algorithm successively
improves the branching factor vector by maximizing its elements, starting with the first
element, and then proceeding to the next element. So we can see the output of
Algorithm 3 is the solution to the sENO-Problem because of Lemma 3.4.

4.3 Optimal Trees on SMNO-Problem

In [18], Beye and Veugen proved that the four lemmas in Sect. 3 still hold under the
constraint condition (2). Obviously the solution to sENO-Problem may not necessarily
be the solution to sMNO-Problem. Considering N = 27000, Dmax = 90 and lreq = 4,
we know the optimal branching factors for sENO-Problemis B = (60,18,5,5), but
B� = (62,18,5,5) certainly satisfies the constraint condition (4), and Pr(B�) =
0.9682 > Pr(B).

Now, we propose an enumeration Algorithm 4 to settle the sMNO-Problem, and the
algorithm is presented as pseudo code in C language.

To reduce the number of loop operations, we can see Dmax ¼
Plreq
i¼1

bi � b1 � lreq, so
Dmax � b1 �dDmax=lreqe. The computational complexity of algorithm 4 is about O

( Dmaxð Þlreq ), which is independent of the tags’ number N. We only need the first suitable
vector, so the algorithm can output the vector efficiently according to applicable
parameters.

If Algorithm 4 has output a vector ðb1; b2; . . .; blreqÞ, it is clear the elements must be
arranged in decreasing order, and ðb1; b2; . . .; blreqÞ is the first vector that satisfies the
constraint condition (4). For any i, the element bi is the possible largest number that can
be reached when bi�1 is determined, so from Lemma 3.4, we know the output vector is
the optimal solution to sMNO-Problem.
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5 Experiment Comparison

We conduct the experiments with the classical parameters N = 27000, Dmax ¼ 90
considered in [17] and [18], and we set lreq to be 4. Table 1 illustrates the operations of
the algorithm 3. The optimal branching factor vector for ENO-Problem in [17] is
B ¼ 72; 5; 5; 5; 3f g and Pr(B) = 0.9725. The number n initially equals to 27000. We
have known the output of g n; 4ð Þ is {10, 12, 15, 15}, which means the optimization
problem has a solution. The first row of the table corresponds to the levels of the
recursion of f function during the execution. The optimal branching factor vector can
be read out from the last column of the table, while � means the chosen n0 can not
satisfy the requirement of the maximum authentication delay. Taken the first row as an
example, now n0 = 72, and g n=n0; r � 1ð Þ ¼ g 375; 3ð Þ ! {15, 5, 5}, the authentication
delay is 72 + 5+5 + 15 = 97 > 90, therefore n0 can not be the first element of the
optimization solution vector. The final optimal branching factor vector for N = 27000,
Dmax ¼ 90 and lreq ¼ 4 is B = (60, 18, 5, 5), and the real maximum authentication
delay is 88, and Pr(B) = 0.9672.

As to the sMNO-Problem, the optimal branching factors for MNO-Problem in [18]
with parameters N = 27000, Dmax = 90 are B = (73, 5, 3, 3, 3, 3) and Pr(B) = 0.9736.
When we limit lreq = 4, utilizing algorithm 4, we can obtain the optimal branching
factors for sMNO-Problem are B = (67, 10, 7, 6). In that case, the to al number of Tag
is 28140, and Pr(B) = 0.9706.

6 Conclusions

In this paper, we propose two optimization problems respecting storage limitation
(sENO-Problem and sMNO-Problem) in key-tree based RFID authentication system,
which aim at minimizing the loss of privacy under single member compromise. The
constraint conditions of sENO-Problem are Tags’ exact number, maximum authenti-
cation delay, secret keys’ number; while those of sMNO-Problem are Tags’ minimum
number, maximum authentication delay, secret keys’ number. We also present Algo-
rithm 3 and Algorithm 4 to solve these two optimization problems respectively through
finding the optimal branching factors. The principle of the algorithms that lies in the

Table 1. Illustration of Algorithm 3 with input (27000, 90, 4)

RL n n0g n=n0; r � 1ð ÞSr d Output

1 27000 72 15, 5, 5 4 90 �
60 10, 9, 5 72 4 90 60

2 450 25 6, 3 3 30 �
18 5, 5 18 3 30 18

3 25 5 5 2 12 5
4 5 5 1 7 5
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privacy of efficient tree-based RFID authentication protocols is heavily dependent on
the branching factor at the top layer. In the view of applicable parameters, the exe-
cutions of the algorithms are efficient. However, we do not discuss the complexity of
the algorithms in detail, and the complexity analysis of the algorithm 3 will be con-
sidered in the future work.

However, in our work, we only consider passive adversary who only eaves drops
the authentication messages. In practice, active adversaries can utilize side-channel
information to attack thesystem. Beye and Veugen [21] first launched the research on
anonymity for key-trees with adaptive adversaries. How to expand our current results
by taking side-channel knowledge and adaptive adversaries into considerations will be
another problem worthy of careful consideration.
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Abstract. Searchable encryption enables users to search the encrypted
data outsourced in a third party. Recently, to serve a wide scenario of
data sharing application, multi-user searchable encryption (MUSE) is
proposed to realize the encrypted data search for multiple users. In this
paper, we concentrate on addressing the authorized keyword search prob-
lem for a team with fixed unauthorized members and propose a novel
puncture public key encryption with keyword search (PPEKS) scheme
with designed access policy. Compared with the existing schemes, our
proposal has the following features: our scheme supports team autho-
rized search rather than single-user authorization; the data owner only
needs one encrypted copy for all authorized members which is one copy
one user in traditional MUSE schemes. In addition, we also conduct a
rigorous security analysis on our scheme and make a functional com-
parison of our scheme with other MUSE schemes. Finally, we perform
comprehensive efficiency evaluations on a laptop.

Keywords: Cloud storage · Multi-user · Adaptive chosen keyword
attack · Access policy · Standard model

1 Introduction

Due to the advent of information technology, one may enjoy the convenience
brought by cloud storage, users can outsource their data to a third party (cloud)
to save their local cost. Compared to physical storage, data on the cloud gets rid
of the limitations of physical devices. When the data is needed, they can access
them at any time, anywhere via a device like a laptop or mobile phone. Bene-
fitting from these features, more and more users begin to outsource their data
to enjoy the cloud services provided by third-party servers. However, data out-
sourcing services bring convenience to people while posing some security issues
as well. The third-party server may always be untrusted, that means it may
maliciously use or leak user’s data. Therefore, storing data, especially private
data, on the cloud without any safeguard raises confidentiality and privacy con-
cerns. A generic approach to keep the data privacy is to encrypt them before
c© Springer Nature Switzerland AG 2019
F. Liu et al. (Eds.): SciSec 2019, LNCS 11933, pp. 293–307, 2019.
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uploading them to the cloud. But doing so will bring another problem, i.e., the
encrypted data loses its underlying meaning, if one wants to retrieve the doc-
uments with some expected keywords, she needs to download all her data and
decrypt them for search, which is impractical and inefficient. Therefore, how to
realize the secure storage and efficient retrieval of data on the cloud is an urgent
problem to be solved.

Searchable encryption (SE) is a cryptographic primitive that enables users
to perform search on the encrypted data stored on the cloud with a search
token which can only be generated by the authorized users with their secret key.
Multi-user searchable encryption (MUSE) is an extension of the traditional SE,
which supports encrypted data search among multiple users for data sharing
application. However, existing research on MUSE primarily focuses on autho-
rization for a single user, not a group, which means the data owner needs to
generate a unique ciphertext for each user when she wants to authorize a file to
multiple users. The authorize process has tremendous communication and com-
putation overhead. Furthermore, some existing schemes require the data owner
to be online to grant search capabilities for users, which is impractical for the
data owner. Many MUSE schemes can only achieve the goal of coarse-grained
access control, which makes the authorization accuracy lower. In regard to the
security of MUSE schemes, many of them only consider the non-adaptive chosen
keyword attack but ignoring the adaptive chosen keyword attack.

Since the attribute-based encryption (ABE) can provide a flexible approach
to realize access control. ABE can be exploited to construct SE schemes with
such advantage, which is of great significance in the multi-user setting. Inspired
by the technique of non-monotonic ABE [11] and puncturable encryption pro-
posed by Matthew et al. [7], we construct a novel puncture public key encryption
with keyword search (PPEKS) scheme with designed access policy to solve the
issues outlined above. Specifically, we employ a set of tags to specify each user in
our scheme, where every user can be identified by a tag. Data owner needs to set
the access policy, i.e. who are not authorized, for each keyword before upload-
ing the encrypted data. Then she just needs to execute a designed encryption
algorithm with tags of unauthorized members, namely the access policy, so that
only the authorized users can search the corresponding data. When the number
of unauthorized users of a team (hereafter called it threshold) is preset to d,
the size of keyword ciphertexts is constant even if some new members add to
the team. In terms of security, our scheme is expected to resist adaptive chosen
keyword attack in the standard model which ensures that neither ciphertexts
nor search token can be distinguished in the adaptive security game.

1.1 Related Works

Song et al. [13] gave the first solution to encrypted search problem for data stored
in an untrusted server. However, their scheme is inefficient as it needs to scan
the whole file to search for a single keyword. After Song’s work, many search-
able symmetric encryption(SSE) schemes have been proposed based on different
techniques or functionalities. In order to enhance the efficiency of encrypted
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data search, Goh et al. [6] proposed an SSE scheme using pseudo-random func-
tions and bloom filters. Then, Kamara et al. [8] proposed the first dynamic SSE
scheme, extended the inverted index approach, which is introduced by [4]. Since
the capability of conjunctive search is needed in the SSE system, Cash et al. [2]
proposed a highly scalable SSE with support for boolean queries.

In order to realize the data sharing between multiple data readers and multi-
ple data writers, Curtmola et al. proposed the first multi-user searchable encryp-
tion (MUSE) scheme [4] to achieve this goal. In their scheme, they combined the
broadcast encryption with a single-user SSE scheme to realize the key manage-
ment and user access rights setting. However, since all users in their scheme share
a single key, all users need to update their keys once someone’s right is revoked,
which causes a huge revoke cost. After Curtmola’s research, more scholars paid
attention to MUSE and proposed many creative schemes [1,10,14,18]. Except
for the overhead of user rights revocation, key management is also a concern
in the MUSE. Bao et al. introduced a trusted third party (TTP) to manage
the enrolment and revocation of users [1]. In their scheme, the TTP is respon-
sible for sending secret key to each user and the complementary key of each
user to the server so that only the authorized users allowed to write and search
the database. Then, to provide users with the flexible fine-grained access con-
trol, Zhao et al. proposed an MUSE scheme based on attribute-based encryption
(ABE) and attribute-based signature (ABS) [18]. Recent MUSE schemes focus
more on the result rank and verification [9,17] to improve efficiency and security.

In general, the research on the protection of outsourced data has become
increasingly important in recent years. And MUSE has also become a hot topic
in current research due to its practicality. More and more researchers are working
to balance the search efficiency and security of MUSE scheme [3,16]. Since it’s
not easy to achieve efficiency and multi-user at the same time, how to guarantee
the security under the premise of ensuring the two conditions is still to be studied.

1.2 Our Contribution

In this paper we mainly propose a fine-grained multi-user searchable encryp-
tion scheme for encrypted data retrieval in the cloud, our contributions can be
summarized as follows:

1. Multi-user. With the multi-user setting, our scheme can support flexible
data sharing of data within an organized team. Each user can generate the
ciphertext based on some access policies, and only the authorized ones can
search them.

2. Non-interactive. We deploy the access policy to encrypt the data, once the
user satisfies the access policy, she can search the data on her own without
interacting with the data owner.

3. Efficient. Our scheme also has a super feature in data storage. The size of the
ciphertext is constant and will not increase with the number of the authorized
users. In addition, there is no need to update the key of the current members
even someone joins in.



296 L. Mei et al.

4. Privacy-preserving. Comparing with prior arts, this paper prefers to deal
with a stronger security model. Our system is proven to satisfy both the
keyword ciphertext indistinguishability and the trapdoor indistinguishability
under the adaptive chosen-keyword attacks.

1.3 Organization

We organize the rest of this paper as follows: Sect. 2 lists the background knowl-
edge on pairing with its security assumptions and reviews the definition as well
as the security game of our proposed PPEKS scheme. Section 3 overviews the
proposed scheme and defines the related threat models. Section 4 gives the pro-
posed scheme and Sect. 5 performs the formal security analysis. Experimental
evaluation is given in Sect. 6. Finally, we give a brief conclusion in Sect. 7.

2 Preliminaries

We first review the knowledge of pairing and its hardness assumption, and then
give the function of PPEKS. The security models of PPEKS are listed at the
end of this section.

2.1 Bilinear Pairing and Hardness Assumption

Let G1 and G2 be two cyclic groups with prime order p, and g be the generator
of G1. A map e: G1 × G1 → G2 is bilinear if it satisfies the following three
conditions:

1. Bilinear: For all element u, v ∈ G1 and x, y ∈ Z∗
p , we have e(ux, vy) =

e(u, v)xy;
2. Non-degeneracy: e(g, g) �= 1;
3. Computability: There exists an efficient algorithm to compute the value of

e(gx, gy) for any x, y ∈ Z∗
p .

Given a tuple (g, ga, gb, gc, g′), where g, ga, gb, gc ∈ G1 and g′ ∈ G2. The
DBDH problem in (G1,G2) is to decide if g′ = e(g, g)abc. The advantage for a
probabilistic polynomial-time(PPT) adversary A to solve the above problem is:

AdvDBDH(A) = |Pr[A(g, ga, gb, gc, e(g, g)abc) = 1] − Pr[A(g, ga, gb, gc, g′) = 1]|

Definition 1 (DBDH assumption). We say that the DBDH assumption
holds if AdvDBDH(A) is negligible for A.

Given a tuple (g, ga), where g, ga ∈ G1. The DL problem in G1 is to compute
the value of a. The advantage for a PPT adversary A to solve the above problem
is:

AdvDL(A) = |Pr[A(g, ga) = a]|
Definition 2 (DL assumption). We say that the DL assumption holds if
AdvDL(A) is negligible for A.
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2.2 Definition and Security

In this section, we will first give the framework of our proposed scheme and
the correctness definition of it. Then, the security models of our scheme are
presented.

– Setup(1k, d) −→ {SP, MSK}: It takes as input a security parameter k, the
threshold d, and outputs the system parameter SP and the master secret key
MSK.

– Derive(SP, MSK, τ) −→ {SKτ}: It takes as input the system parameter SP,
the master secret key MSK and the user’s tag τ , and outputs the secret key
SKτ for the user.

– Encrypt(SP, w, T†) −→ {CTw}: It takes as input the system parameter SP,
the keyword w and the set T† consisting of the unauthorized users’ tags, and
outputs the keyword ciphertext CTw.

– TokGen(w∗, SKτ , SP) −→ {STw∗}: It takes as input the keyword w∗, the
secret key SKτ and the system parameter SP, and outputs the search token
STw∗ .

– Test(STw∗ , CTw) −→ {0 or 1}: It takes as input the search token STw∗ and
the keyword ciphertext CTw, and outputs 1 if w = w∗ and τ /∈ T †, otherwise
outputs 0.

A PPEKS scheme is correct if the Test protocol always returns the correct
result when searching over the encrypted database (EDB) with the token ST,
where the EDB and ST are generated by Encrypt and TokGen protocols,
respectively. We define the correctness as follows.

Definition 3. (Correctness): Let Π =(Setup, Derive, Encrypt, TokGen,
Test) be a PPEKS scheme. Π is correct if for all k ∈ N, for all d ∈ N, for
all master secret keys MSK and system parameters SP output by Setup(1k, d),
for all tags τ ∈ {0, 1}∗, for all secret keys SKτ output by Derive(SP, MSK, τ),
for all keywords w, for all d-size tag sets T† and for all ciphertext CTw output
by Encrypt(SP, w, T†), if w = w∗ and the tag τ /∈ T†, then Test(STw∗ ,CTw)
returns the correct response with all but negligible probability when STw∗ is output
by TokGen(w∗,SKτ ,SP).

Definition 4 (CT-IND-CKA game). Let k be the security parameter and d
be the threshold parameter, A be the adversary, B be the challenger, and W be
the keyword space.

– Setup. The setup algorithm Setup(1k, d) and the secret key generation algo-
rithm Derive(SP, MSK, τ) are excused by B. Get the system parameters SP,
the master secret key MSK and the secret key SKτ for the user. Then B sends
the system parameters SP to A.

– Query phase 1. A adaptively makes the queries to oracles:
• Ciphertext query 〈w〉: Adversary A can adaptively ask B the ciphertext for

any keyword w ∈ W of her choice. Challenger B generates the keyword
ciphertext CTw = Encrypt(SP, w, T†) and returns it to A.
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• Token query 〈w〉: Adversary A can adaptively ask B the search token for
any keyword w ∈ W of her choice. Challenger B generates the search
token of keyword STw = TokGen(w, SKτ , SP) and returns it to A.

• Test query 〈CTw,STw′ 〉: Adversary A can adaptively ask B the relation of
CTw and STw′ . Challenger B runs the Test(STw, CTwi

) and returns 1 to
A if STw and CTwi

are corresponding to the same keyword and the STw

doesn’t satisfy the access policy of CTwi
or 0 otherwise. The test query

simulates the behavior of an adversary who verifies the keyword guess by
performing the Test algorithm or using the server as a test oracle.

– Challenge. As long as A determines to end the phase 1, she will submit two
different keywords w0 and w1 as her challenge. The only restriction is that
the ciphertext of w0 and w1 cannot been queried in phase 1. After receiving
the two keywords, B randomly selects a bit b ∈ {0, 1} and creates a challenge
ciphertext CTwb

which is sent to A. It should be noted that the access policy
of the challenge ciphertext CTwb

should contain the tag τ .
– Query phase 2. A adaptively makes the queries to oracles as in phase 1.

Notice that both keywords w0 and w1 should not be queried to get their cipher-
texts.

– Guess. A outputs the guess b
′ ∈ {0, 1}. If b

′
= b, A wins the game.

We define the advantage of A in CT-IND-CKA game is AdvCT (A) =
|Pr[b

′
= b]-1/2|

Definition 5. A PPEKS scheme is assumed to be CT-IND-CKA secure if the
advantage AdvCT (A) defined above is negligible.

Definition 6 (ST-IND-CKA game). Let k be the security parameter and d
be the threshold parameter, A be the adversary, B be the challenger, and W be
the keyword space.

The definition of ST-IND-CKA game is totally consistent with the Defini-
tion 4. Except for replacing the ciphertext CTwb

with the search token STwb
dur-

ing the Challenge step and the adversary must satisfy the access policy defined
in the Encrypt.

We define the advantage of A in ST-IND-CKA game is AdvST (A) = |Pr[b
′
=

b] − 1/2|
Definition 7. A PPEKS scheme is assumed to be ST-IND-CKA secure if the
advantage AdvST (A) defined above is negligible.

3 Problem Statement

In this section, we first present an overview of our scheme. Then we define our
threat model.
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Fig. 1. Overview of the system

3.1 System Overview

The proposed (PPEKS) scheme involves a central authority (CA), the data
owner, the cloud server, and the data reader. As shown in Fig. 1, our scheme
considers the following three parties:

– Central authority: The central authority (CA) plays the role of key gener-
ator, it initializes the system with the security and threshold parameters and
outputs the public key and master secret key. In addition, it is responsible
for computing the secret key for the users according to their tags.

– Users: Each user in the team should submit a tag representing their identity
to the CA. The users can be data owner or data reader. As the data owner,
she encrypts the data and uploads it to the cloud, and as the data reader,
she submits the search query to the cloud server with a valid token.

– Server: The server can be deployed by a third-party cloud service provider.
It stores the encrypted keywords with unauthorized tags set T† and performs
a search query when receiving search token.

The architecture of our scheme is illustrated in Fig. 1. First of all, all users are
required to submit a tag representing their identities to the CA in our scheme.
And CA needs to know the threshold of this team in advance. Then it generates
the system parameters (SP) and master secret key (MSK) for this team. In
addition, CA will generate a specific key for each user based on their unique
tags, which we name it secret key (SK) in this paper. When a user wants to
share her data securely with some other users in this team, she first encrypts the
keywords extracted from the data with SP and the access policy, i.e., a set of tags
of those who are not authorized, and then sends it with the ciphertext generated
by a symmetric encryption algorithm to the cloud server. We omit the ciphertext
generation process in this paper, because it can be any symmetric encryption
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algorithm, e.g., AES. Once someone wants to search for data containing a certain
keyword, she generates a valid search token of the keyword by her secret key and
sends it to the cloud server. The server will check if the ciphertext contains the
certain keyword related to the token and the tag of reader is contained in the
access policy by performing the test operation and return the search results to
data reader.

3.2 Threat Models

In this paper, we consider the threat models including three parties: CA, cloud
server and users. We assume that CA is a trusted entity in our scheme and it
sends the legal secret keys to registered users under a secure channel. The cloud
server is “honest but curious”, i.e., it will honestly perform all the operations,
but be curious to get the hidden information of the search token and the cor-
responding results. For the user, when she acts as a data owner, she is reliable,
while as a data reader she is not trusted anymore and attempts to recover the
underlying information.

4 Our Construction

In this section, we will first present our fine-grained multi-user searchable encryp-
tion scheme with Fig. 2, and then explain the scheme in detail and show the
correctness of our scheme at the end of this section.

4.1 Our PPEKS Scheme

Our construction is shown in Fig. 2. The scheme is described in detail as follows.
By default, all users in the team have submitted an identity tag to the CA before
all steps begin (write the identity tag set for all users as T).

Setup(1k, d). In this stage, the CA takes the security parameter k and the
threshold value d as inputs, and outputs the system parameters and the mas-
ter secret key. Specifically, it first chooses a group G with prime order p, a
generator g and a hash function H : {0, 1}∗→Zp. Then it samples a d-degree
polynomial q(·) whose coefficient is denoted by the vector (ad, ad−1, . . . , a0),
where ai is the coefficient of the i-th term. It then chooses random exponents
r, α ∈Zp and sets g1 = gα, g2 = ga0 . Here we define V (x) = gq(x), note that
t0 is a special tag that is not contained in T. Finally, it computes the system
parameters SP = (g, g1, g2, g

q(1), . . . , gq(d)), and the master secret key MSK =
(sk(1)

0 , sk
(2)
0 , sk

(3)
0 , sk

(4)
0 , sk

(5)
0 ), where sk

(1)
0 = gα+r

2 , sk
(2)
0 = V (H (t0))

r
, sk

(3)
0 =

gr, sk
(4)
0 = t0, sk

(5)
0 = V (H (t0)).

Derive(SP, MSK, τ). For each member in the team, CA takes the master secret
key MSK and the user’s tag τ ∈ {0, 1}∗ \{t0} as input, and returns her a valid
secret key. As shown in Fig. 2, it first parses the MSK as (sk(1)

0 , sk
(2)
0 , sk

(3)
0 ,

sk
(4)
0 , sk

(5)
0 ), where the values of sk

(i)
0 (i = 1, . . . , 5) are showed in the previous
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Fig. 2. Our basic encrypted data search scheme construction

step. Then, it randomly selects three numbers r0, r1, λ
′ from Zp and computes

(skn0, skn1) according to Derive algorithm. Finally CA sends the secret key
SKτ = (skn0, skn1) to the user.

Encrypt(SP, w∗, t1, t2, . . . , td). When the data owner wants to share the data
with some certain members in her team. She first collects the tags out of
her willingness and puts them in a set which can be called access policy, we
denote it as T† = {t1, t2, . . . , td|ti ∈ {0, 1}∗ \{t0}}. Then she takes the pub-
lic key PK, keyword w∗, and the T† as input, and outputs the ciphertext
as follows: Sample a random number s ∈Zp, and compute the ciphertext
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CTw∗ = (ct(1), ct(2), ct(3,1), ct(3,2), . . . , ct(3,d),T†), the computational procedure
can be found in the Encrypt algorithm from Fig. 2.

TokGen(w, SKτ ). This algorithm describes how the data reader generates a
valid search token for a certain keyword w. She takes her secret key SKτ and
the keyword w as inputs, and performs TokGen protocol to compute the token
STw = (stn0, stn1), where stn0 and stn1 are described in the TokGen algorithm
in Fig. 2. Once the token is generated, she sends the query request with the token
STw to the server.

Test(STw∗ , CTw). Once the server received token STw∗ from data reader, it tests
which keyword ciphertext is related to the keyword w∗ and whether the data
reader is authorized to the keyword w∗. On input the search token STw∗ received
from data reader and the keyword ciphertext CTw from encrypted database.
First, parse ciphertext CTw as (ct(1), ct(2), ct(3,1), ct(3,2), . . . , ct(3,d),T†), the
search token STw∗ as (stn0, stn1) and stni is parsed into ( st

(1)
ni , st

(2)
ni ,

st
(3)
ni , st

(4)
ni ) for i = 0, 1. Next, compute the equations (u∗

i · q(H(st(4)ni ))) +
∑d

k=1 (uki · q (H (tk))) = q (0) = a0 to get the coefficients u∗
i , u1i, . . . , udi.

This can be solved by using the Lagrange interpolation polynomial. While
the data reader is authorized to the keyword w∗, its tag will belong to the
tag set T∗ = T\T† and therefore the coefficients can be computed success-
fully. Finally, compute Zi according to the Test algorithm. Check: c

?= 1, where
c = ct(1)/

∏1
j=0 Zj . If yes, it means that w = w∗. Otherwise, not.

Theorem 1. The propose PPEKS scheme is correct.

Proof. The correctness can be verified as follows.
For k = 1 to d, we have

uk0 =
∏

ti∈T†
0\{tk}

−H(ti)
H(tk) − H(ti)

, uk1 =
∏

ti∈T†
1\{tk}

−H(ti)
H(tk) − H(ti)

and

u∗
0 =

∏

ti∈T†
0\{st

(4)
n0 }

−H(ti)

H(st(4)n0 ) − H(ti)
, u∗

1 =
∏

ti∈T†
1\{st

(4)
n1 }

−H(ti)

H(st(4)n1 ) − H(ti)

this can be done if the tag τ /∈ T†
1. Then if w∗ = w, the following equations hold:

Z0 =
z01

z02 · z03
=

e(st
(1)
n0 , ct

(2))

e(st
(2)
n0 , ct

(2))
u∗
0 · e(st(3)n0 ,

∏d
k=1 (ct

(3,k))uk0 )
= e(g(α−λ′)H(w), gsa0 )

Z1 =
z11

z12 · z13
=

e(st
(1)
n1 , ct

(2))

e(st
(2)
n1 , ct

(2))
u∗
1 · e(st(3)n1 ,

∏d
k=1 (ct

(3,k))uk1 )
= e(gλ′H(w), gsa0 )

c =
ct(1)

∏1
j=0 Zj

=
e(g1, g2)

sH(w∗)

e(gαH(w), gsa0 )
= 1
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5 Security Analysis

In this section, we show that our PPEKS scheme is IND-CKA secure in the
standard model.

Theorem 2. Our PPEKS scheme satisfies the CT-IND-CKA security under
the DBDH assumption in the standard model.

Proof. Here we will show that if there is an adversary ACT that can break the
CT-IND-CKA security of our PPEKS scheme with a non-negligible advantage
ε, then it’s equivalent to the existence of an algorithm ADBDH that can solve
the DBDH problem with the same advantage.

Let (p,G1,G2, e, g, A = ga, B = gb, C = gc,X) be an instance of the DBDH
problem. ADBDH tries to distinguish X and e(g, g)abc, then it interacts with the
adversary ACT as follows:

Setup. The algorithm ADBDH randomly chooses a d-degree polynomial q(·)
whose constant term is equal to a0, sets V (x) = gq(x) and g2 = ga0 . Then
it selects one hash function H : {0, 1}∗→Zp, two random numbers α, r ∈ Zp,
t0 ∈ {0, 1}∗, and sets g1 = gα. Set the master key MSK, a five-tuple, which
consists of the following five parts: sk

(1)
0 = g2

α+r, sk
(2)
0 = V (H (t0))

r
, sk

(3)
0 =

gr, sk
(4)
0 = t0, sk

(5)
0 = V (H (t0)). To generate the secret key, it randomly chooses

three numbers r0, r1, λ
′ ∈ Zp and sets SKτ = (skn0, skn1), where

skn0 = (g2α+r+r0−λ′
, V (H(t0)

r+r0 , gr+r0 , t0, V (H(t0)))

skn1 = (g2λ′+r1 , V (H(τ))r1 , gr1 , τ, V (H(τ)))

Finally, it sends the SP=(g,Aa0 , Bα, V (1), . . . , V (d)) to the adversary ACT .

Query Phase 1. The adversary ACT adaptively queries the oracles. The algo-
rithm ADBDH responds in the following form:

Ciphertext query 〈w〉: The algorithm ADBDH samples a random num-
ber s ∈ Zp to generate the keyword ciphertext CTw = (ct(1), ct(2),
ct(3,1), ct(3,2), . . . , ct(3,d), T†), where ct(1) = e(Aa0 , Bα)sH(w), ct(2) = gs, ct(3,1) =
V (H(t

′
1))

s, . . ., ct(3,d) = V (H(t
′
d))

s, t
′
i �= τ(1, . . . , d). Finally, ADBDH returns

CTw to ACT .
Token query 〈w〉: The algorithm ADBDH randomly selects a number r′ ∈ Zp,

generates the search token of keyword STw = (stn0, stn1), where

stn0 = (st(1)n0 , st
(2)
n0 , st

(3)
n0 , st

(4)
n0 ), st(1)n0 = g2

(α+r+r0−λ′)H(w)+r′

st
(2)
n0 = V (H(t0))(r+r0)H(w)+r′

, st
(3)
n0 = g(r+r0)H(w)+r′

, st
(4)
n0 = t0

stn1 = (st(1)n1 , st
(2)
n1 , st

(3)
n1 , st

(4)
n1 ), st(1)n1 = g2

(λ′+r1)H(w)+r′

st
(2)
n1 = V (H(tτ ))r1H(w)+r′

, st
(3)
n1 = gr1H(w)+r′

, st
(4)
n1 = τ

and returns it to ACT .
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Test query 〈CTw,STw′ 〉: The algorithm ADBDH runs the Test(STw, CTwi
)

and returns 1 to ACT if the keyword corresponding to STw and CTwi
is the

same and the STw doesn’t satisfy the access policy of CTwi
or 0 otherwise.

Challenge. In this step, the adversary ACT will submit two different keywords
w0 and w1 as her challenge. The only restriction is that both two keywords
should not been queried in phase 1. The algorithm ADBDH randomly selects
a bit β ∈ {0, 1}. Then it choose a random number s∗ ∈ Zp and compute
CTwβ

=(Xαa0s∗H(wβ),gαa0cs∗
, V (H(t1))αa0cs∗

, . . .,V (H(td))αa0cs∗
). It should be

noted that there is must one tag ti equals to τ . Otherwise, the adversary can
transform the ciphertext of wβ to the ciphertext of any other keyword, and dis-
tinguish w0 and w1 by using the Test. Finally, it returns the challenge ciphertext
CTwβ

to the adversary ACT .

Query Phase 2. The adversary ACT adaptively makes the queries to oracles
as in phase 1. Notice that both keywords w0 and w1 should not been queried to
get their ciphertexts.

Guess. The adversary ACT outputs the guess β′ ∈ {0, 1}. If β = β′ which means
that X = e(g, g)abc, the algorithm ADBDH outputs 1 or 0 otherwise.

Next, we analyze the advantage of the algorithm ADBDH in solving the
DBDH problem. In the challenge phase, if X = e(g, g)abc, then let s′ = s∗ ·αa0c.
We will get CTwβ

= (ct(1), ct(2), ct(3,1), . . . , ct(3,d)), where

ct(1) = e(g, g)abαa0cs∗H(wβ) = e(A,B)s′H(wβ), ct(2) = gαa0cs∗
= gs′

ct(3,1) = gαa0cs∗q(H(t1)) = V (H(t1))s′
, . . . , ct(3,d) = gαa0cs∗q(H(td)) = V (H(td))s′

It’s clear that when X = e(g, g)abc, CTwβ
is a valid ciphertext of the keyword wβ .

And the adversary ACT wins the game with the probability: |Pr[β′ = β]−1/2| =
ε. In another case, when X is a random element in the group G2, the adversary
ACT can obtain no additional information from the ciphertext of the keyword wβ .
Therefore, the guess β′ satisfies Pr[β′ = β] = 1/2. In summary, the advantage
of the algorithm ADBDH to solve the DBDH problem satisfies the following
equation:

|Pr[ADBDH(p,G1,G2, e, g, ga, gb, gc, e(g, g)abc) = 1|a, b, c ∈ Zp]

− Pr[ADBDH(p,G1,G2, e, g, ga, gb, gc,X) = 1|a, b, c ∈ Zp ∧ X ∈ G2]|
= |(1/2 ± ε) − 1/2|
= ε

This complete the proof of Theorem 2.

Theorem 3. Our PPEKS scheme satisfies the ST-IND-CKA security under the
DL assumption in the standard model.

The proof of this theorem can be reduced to DL assumption, we will not state
it in detail due to the space limit.
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6 Experimental Evaluation

This section mainly discusses the performance of our proposed scheme. As shown
in Table 1, We first compare our scheme with some existing MUSE schemes from
the functionality and security perspective. To make it easily understand, we
explain the meaning of abbreviations as follows. TTP-free stands for no third
trusted party is needed in the scheme; Autonomy means the data owner can
authorize users’ access rights without the help of other entities; Fine-grained
indicates the scheme can achieve the fine-grained access control; KS-free means
that there is no need to share keys between users to realize the multi-user set-
ting; CKA means the scheme can be secure under the adaptive CKA; Constant
represents that the scheme can achieve the constant length of ciphertext when
the number of authorized users increases.

Table 1. Comparisons of our scheme with some existing schemes.

Schemes TTP-free Autonomy Fine-grained KS-free CKA Constant

[1] × × × × × �
[5] × × � � × �
[18] × × � × × ×
[15] � � � × × �
[12] × × � � � �
Ours � � � � � �
×: the scheme does not satisfy the feature;
�: the scheme satisfies the feature.

Then we write a program for experiments, which is conducted on a laptop
with Windows 10 Intel (R) Core (TM) i5-5200U CPU @ 2.20GHz and 4GB
RAM. In our experiments, the tag and keyword space are consists of 100 and
1000 strings randomly selected in {0, 1}∗, respectively. And we use the jpbc
library to implement cryptographic operations.

First, for a given team with 100 users, we study the effect of threshold value
“d” on computational efficiency. As shown in Fig. 3(a), we can find that the
increase of “d” has little effect on TokGen efficiency. The time cost of Setup
and Encrypt protocols will increase with the size of the “d”, this is because
both of the two protocols need to perform corresponding operations with these
“d” unauthorized tags as input. Figure 3(a) shows that it takes about 1.25 s to
generate the system parameters-master secret key pairs and 1.40 s to encrypt
one keyword while the threshold size is 50. As the Setup is one-time work, so
we omit its cost in our scheme.

To further explore the relationship between the threshold and encryption
efficiency, we conduct more experiments to evaluate the time costs for encrypting
1000 keywords under different thresholds. Figure 3(b) indicates that, for a given
threshold, the time cost of encryption increases with the number of keywords.
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Fig. 3. Experimental results

In the case of d = 50, it takes about 1.49 × 103 s to encrypt 1000 keywords. In
addition, we can obtain some interesting results from Fig. 3(b), i.e., the more
members are authorized by the data owner in a team, the less time she needs to
encrypt the data. As mentioned above, when the number of authorized members
is 50, the time cost for encrypting 1000 keywords is 1.49×103 s, which will reduce
to 312 s when the number of authorized members increases to 90.

Finally, we evaluate the search performance on an encrypted dataset of 1000
keyword ciphertexts with a given token. Figure 3(c) records the time it takes for
each test for d = 10, it needs 326 ms to fulfill one test. When the size of dataset
increases, the matching time increases linearly.

7 Conclusion

This paper deals with the problem of multi-user encrypted search for the data
outsourced in a third party. We design a novel PPEKS scheme in this paper,
it enables users to search the data following some certain access policy. The
scheme has been proven to be CKA-secure against PPT adversary through a
series of security games and difficult assumptions under the standard model. We
also analyze the computational overhead of our scheme in detail after proving
the security, the results show that our scheme is greatly balanced with efficiency
and security. In future work, we will focus on constructing an MUSE system
that does not require a specific threshold and to be secure under the keyword
guessing attack.
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Abstract. Dynamic searchable symmetric encryption (DSSE) allows
addition and deletion operation on an encrypted database. Recently, sev-
eral attack works (such as IKK) show that existing SSE definition which
leaks access pattern and search pattern cannot capture the adversary in
the real world. These works underline the necessity for forward privacy.
To achieve forward privacy, updating search token is considered as a
simple yet efficient method. In this paper, we concentrate on scenario of
updating a batch of files containing the same keyword and propose an effi-
cient forward private searchable encryption (EFSE) scheme with a novel
batch update. In this scenario, by batch update method, the search token
corresponding to the keyword only needs to be updated once. Then for
each file in the batch, we use updated search token combining number of
this file in the batch to transform the pair (file, keyword) into encrypted
index. In the scenario mentioned above, the number of updating search
token operation in our EFSE is 1, while the one in existing forward pri-
vate searchable encryption scheme based on updating search token is the
size of batch. In addition, by integrating Cash’s OXT scheme, we extend
our EFSE scheme to support conjunctive keywords query. Finally, we
give the rigorous security analysis for our proposed two schemes and
give performance evaluation for the basic one.

Keywords: Forward private · Searchable encryption · Conjunctive
keywords query · Dynamic

1 Introduction

Searchable symmetric encryption (SSE) is a cryptographic system which enables
keyword search over encrypted data while protecting the privacy of both the data
and query. Generally, each SSE scheme contains three parties of functionality
including encryption, generating search token and search. Encryption transforms
a pair (file, keyword) into a ciphertext called encrypted index. Search token is
a ciphertext of query keywords, and it will be used for search. Search operation
is performed by cloud server to output all files matching the given search token.
Dynamic searchable symmetric encryption (DSSE) is a class of SSE supporting
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dynamic database. DSSE allows a user to dynamically add and delete data over
an encrypted database without rebuilding the encrypted index. Nowadays, DSSE
is demanded in cloud storage.

For the leakage of SSE, Curtmola [7] firstly gave the formal definition about
the leakage of access pattern and search pattern. IKK [13] attack is the first one
which utilizes the leakage of access pattern to fully recover the user’s query by
the statistical method. By further study of leakage, Cash [4] proposed an efficient
attack called leakage abuse attack. Based on their work, Zhang [22] proposed a
generic attack for DSSE schemes called file-injection attack. This attack shows
that cloud server could recover the keyword in past search query by injecting
as few as 10 files. This attack also dangers the security of most DSSE schemes,
since in these schemes, the newly injecting files could match the previous search
query. These attack works underline the need for a new security definition called
forward privacy.

In previous work, ORAM based schemes like [6,12] protect forward privacy.
But they expend a large bandwidth overhead on communication between server
and user. Aiming at the problem of deficiency of ORAM based schemes, Bost
[2] proposed a practical SSE scheme utilizing trapdoor permutation. In Bost’s
scheme, data owner keeps the search token for each keyword, which is used to
generate encrypted index or decrypt encrypted index stored on cloud server.
When updating a file f containing keyword w, data owner needs to use trap-
door permutation to update the search token corresponding to this keyword,
and stores new search token. Then data owner uses this updated search token to
generate encrypted index for the pair (f, w). In this setting, the new add file can-
not be matched by previous search token, and before the next query, new search
token is kept secret against cloud server. Thus, forward privacy is protected.
Later, Song [18] improved Bost’s work by replacing the trapdoor permutation
with pseudorandom permutation. In their schemes, each search token is corre-
sponding to a pair (file, keyword). When updating a batch of files containing the
same keyword, the number of updating search token operation is linear with the
size of the batch. This batch update is not efficient.

1.1 Our Contribution

In this paper, we focus on forward private searchable encryption with efficient
batch update. Our contribution is summarized as follows:

• We propose an efficient forward private searchable encryption (EFSE) scheme
with a novel batch update. Inspired by Song’s FAST scheme [18], we use
pseudorandom permutation to update search token. By our batch update
method, when updating a batch of files containing the same keyword, search
token corresponding to this keyword only needs to be updated once. Then for
each file in the batch, we use this updated search token combining number
of this file in the batch to transform the pair (file, keyword) into encrypted
index (In fact, we identify files with their indexes). In this setting, the updated
search token could match this batch of files. In this scenario of batch update,
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number of updating search token operation in our EFSE scheme is 1, while
the one in Song’s FAST [18] or Bost’s scheme [2] is the size of batch.

• The proposed EFSE scheme achieves a high level of update performance
and search performance. In particular, EFSE scheme supports parallel search
operation. When given current search token, cloud server first calculates all
previous search tokens. Because each search token matches a batch of files,
cloud server can use these search tokens to do the search operation at the
same time. We conduct the performance evaluation by implementing EFSE
scheme as well as other schemes [2,18]. The experiment result confirms that
our EFSE scheme has good update performance and search performance. In
addition, we present a rigorous security analysis for EFSE scheme.

• We extend our EFSE scheme to support conjunctive keywords query by inte-
grating Cash’s OXT scheme [5]. Our extending scheme achieves the tradeoff
between efficiency and query functionality. We conduct a rigorous security
analysis for the extending scheme.

2 Related Work

Song [17] was the first to propose the practical searchable encryption (SE)
scheme, whose search time is linear with the database size. To improve the search
efficiency, Goh [9] introduced secure index to searchable encryption and proposed
the Z-IDX scheme based on bloom filter and pseudorandom function. Curtmola
[7] utilized inverted index to generate the secure index, and achieved sublin-
ear search time. These schemes mentioned above all support dynamic update,
but they must rebuild the encrypted index when updating. It is not efficient
for dynamic update. Kamara [14] was the first to propose the dynamic search-
able symmetric encryption (DSSE) scheme. His scheme could support dynamic
addition or deletion operation, and achieve the sublinear search time.

In 2004, Golle [10] proposed a searchable encryption scheme with conjunctive
keywords query whose search complexity is linear with the size of the database.
Some other schemes [1,3] share the same problem. In 2012, Cash [5] proposed the
OXT scheme which achieves the sublinear search complexity. In 2013, Moataz
[16] proposed an efficient construction which is only based on vector operation.

In 2012, Islam [13] introduced the IKK attack which is a statistical attack
utilizing the leakage of access pattern. Considering a range of threats including
the IKK attack, Cash [4] was the first to introduce the “leakage abuse attack”.
Zhang [22] improved their work, and proposed the “file injecting attack” which
can recover the keywords of a query in a high probability. Some other work
[11,15] also focused on the “leakage abuse attack”. To mitigate the “leakage
abuse attack”, Xu [20] proposed a database padding method which achieves
optimal padding overhead.

Stefanov [19] was the first to state the conception of forward privacy. In addi-
tion, he proposed a forward private DSSE scheme based on non-trivial ORAM
technology. But this scheme brings a large bandwidth overhead when updating.
As early as 2005, Chang [6] put forward a scheme which ensures forward privacy.
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Unfortunately, this scheme includes large bandwidth overhead and large cloud
server storage. Some ORAM [8,12] based schemes share the same problem, i.e.
large bandwidth overhead. In 2016, Bost [2] proposed an efficient forward pri-
vate SSE scheme utilizing the trapdoor permutation. Based on Bost’s work, Song
[18] used the pseudorandom permutation to construct a more efficient forward
private SE scheme. Yoneyama [21] proposed the verifiable forward private SSE
scheme. Zuo [23] proposed the forward private SSE scheme supporting range
query.

3 Preliminaries

3.1 Dynamic Searchable Symmetric Encryption

A dynamic searchable symmetric encryption scheme Π = (Setup,
Update, Search) can be described as follows:

• Setup(λ,DB) −→ (EDB, (K,σ)) is run by data owner, it inputs a security
parameter λ and a database DB = (indi,Wi)D

i=1, where indi is the file index,
D is total number of files, Wi is the set of keywords. It outputs the encrypted
database EDB, secret key K and state σ.

• Update(K,σ, ind,w, op;EDB) = (UpdateC(K,σ, ind,w, op), UpdateS

(EDB)) is a protocol between data owner and cloud server. Data owner
inputs the secret key K, the state σ, a file index ind, a keyword w, and
an operation op ∈ {add, del}. Data owner outputs the encrypted index
UpdateC(K,σ, ind,w, op) for (ind, w) pair. The cloud server’s input is the
encrypted database EDB. When receiving the encrypted index, according
to the operation op, the cloud server inserts the (ind, w) pair into EDB, or
deletes this pair from EDB.

• Search(K,σ,w;EDB) = (SearchC(K,σ,w), SearchS(EDB)) is a protocol
between data owner and cloud server. Data owner inputs the secret key K,
the state σ, a keyword w to generate the search query. The cloud server’s
input is the encrypted database EDB. When receiving the search query, the
cloud server searches over EDB, and returns the corresponding file indexes.

3.2 Security Definition

Let Π = (Setup, Update, Search) be a dynamic searchable symmetric encryp-
tion scheme, A be an adversary, S be a simulator with the leakage function
L = (LSetup,LUpdate,LSearch), λ be the security parameter. Two probabilistic
experiments RealΠA(λ), IdealΠA,S(λ) are shown as follows:

• RealΠA(λ): At the beginning, an adversary chooses a database DB. The
experiment runs Setup(λ,DB), and returns EDB to the adversary. Then
the adversary adaptively chooses query qi. If qi is update query (it can
be described as qi = (opi, wi, indi)), the experiment answers the query by
running Update (K,σ, indi, wi, opi;EDB). If qi is search query (it can be
described as qi = (i, wi)), the experiment answers the query by running
Search(K,σ,wi; EDB). Finally, the adversary outputs a bit b ∈ {0, 1}.



312 Z. Yao et al.

• IdealΠA,S(λ): At the beginning, an adversary chooses a database DB. Then
the simulator runs Setup(LSetup(DB)) and returns the result to adversary.
Then the adversary adaptively chooses query qi. If qi is update query, the
simulator runs the Update(LUpdate(qi)) and returns the result to adversary.
If qi is search query, the simulator runs the Search(LSearch(qi)) and returns
the result to adversary. Finally, the adversary outputs a bit b ∈ {0, 1}.

Definition 1. Π is called L-adaptively-secure SSE, if for any probabilistic poly-
nomial time (PPT) adversary A, there exists a PPT simulator S such that:

|Pr(RealΠA(λ) = 1) − Pr(IdealΠA,S(λ) = 1)| ≤ negl(λ)

Definition 2. (Forward Privacy) An L-adaptively-secure searchable encryption
scheme is called forward private, if given an update query qi = (opi, wi, indi), its
update leakage is (i, opi, indi).

4 System Overview

In this section, we propose an overview on the system of EFSE. The major
notation is introduced in Table 1.

Table 1. Notations

Notation Meaning

⊕ The XOR operation
$←− Choose uniformly

⊥ Non-existent

ST Search token

ind The index of a file

DB(w) The index set of files containing keyword w

|DB(w)| The size of set DB(w)

4.1 System Architecture

The architecture of our EFSE system is shown in Fig. 1. In EFSE, data owner
outsources encrypted index and his encrypted data to cloud server; cloud server
provides cloud storage and keywords search service.
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Fig. 1. System structure of EFSE on the two-party model

4.2 System Model

In this paper, file is identified with its index. So we concentrate on how to use
file index to generate the encrypted index, how to use search token to search
over encrypted index and get the corresponding file indexes. In addition, we
concentrate on addition operation, rather than deletion operation.

The EFSE scheme is a collection of three protocols described as follows:

• Setup(λ) −→{ks, T,W,K} is run by data owner. It takes as input a security
parameter λ, and outputs a random string ks. It also initializes three maps
T,W,K, where W is kept by data owner, T,K are kept by cloud server.

• Update(add,w,DB(w), ks,W ;T,K) is a protocol between data owner and
cloud server. The protocol can be divided into UpdateC(add,w,DB(w),
ks,W ) and UpdateS(T,K). The former one is performed by data owner, and
the latter one is performed by cloud server. Data owner’s input is keyword w,
database DB(w), secret key ks and map W . By the former protocol, for each
ind ∈ DB(w), data owner transforms (ind, w) into encrypted index. Then
data owner sends these encrypted indexes to cloud server. Cloud server’s
input is maps T and K. When receiving encrypted indexes, cloud server
inserts them into maps T and K.

• Search(w, ks,W ;T,K) = (SearchC(w, ks,W ), SearchS(T,K)) is a protocol
between data owner and cloud server. Data owner inputs keyword w, secret
key ks, and map W to generate the search query. Cloud server’s input is
maps T,K. When receiving the search query, cloud server performs search
operation over T,K, and outputs file indexes corresponding to the search
query.

5 Construction

In this section, we give the concrete construction for EFSE scheme and the exten-
sion scheme: forward private searchable encryption with conjunctive keywords
query (FSECQ). Some tools that our schemes use are introduced as follows:

Let H, H1, H2,H3 be four different keyed hash functions, where H : {0, 1}λ×
{0, 1}∗ −→ {0, 1}λ, H1 : {0, 1}λ × {0, 1}∗ −→ {0, 1}λ, H2 : {0, 1}λ × {0, 1}∗ −→
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Fig. 2. Efficient forward private searchable encryption

{0, 1}2λ, H3 : {0, 1}λ × {0, 1}∗ −→ Z∗
p . Besides, F : {0, 1}λ × {0, 1}λ −→ {0, 1}λ

is a pseudorandom permutation (F−1 is inverse permutation).

5.1 EFSE Construction

Shown in Fig. 2, our basic scheme mainly consists of three protocols: setup,
update and search. Then, three protocols are described as follows:

Setup. Data owner inputs security parameter λ. Then he chooses a random
string ks ∈ {0, 1}λ as the secret key, and outputs three empty maps T,W,K.
Specifically, T,K will be kept by cloud server. T is used to record the encrypted
index. K is used to record the ciphtertext of the secret key k which is used to
update the search token. W is used to record current search token ST for each
updated keyword, and it is stored locally.

Update. The update protocol shown in Fig. 2 is to generate the encrypted index
for DB(w). The data owner generates the encrypted index and sends it to cloud
server, cloud server stores it. The detail description is shown as follows:

Firstly, data owner inputs secret key ks and the keyword w, outputs tw
by tw ←− H(ks, w). Then, he looks up W [w] to get (search token, counter)
pair (STc, c). If W [w] = ⊥, then data owner initializes the search token by

ST0
$←− {0, 1}λ, c is set to 0.
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In order to update the search token, data owner chooses two random
strings kc+1, rc+1 with length λ. Then, he updates the search token by
STc+1 ←− F (kc+1, STc). Besides, kc+1 is encrypted by Ckey ←− kc+1||rc+1 ⊕
H2(tw, STc+1), while Ukey is generated by H1(tw, STc+1). Last but not the least,
(STc+1, c + 1) is recorded in W [w].

Specifically, DB(w) = {indj}j=1,··· ,|DB(w)|. For each indj ∈ DB(w), data
owner calculates UTj by UTj ←− H1(tw, STc+1||j). Then he generates the
encrypted index by ej ←− indj ⊕ H2(tw, STc+1||j). Finally, (Ukey,Ckey) and
{UTj , ej}j=1,··· ,|DB(w)| are sent to cloud server.

Upon receiving these message, cloud server records (Ukey,Ckey) pair in map
K by K[Ukey] ←− Ckey, and records each (UTj , ej) pair in T by T [UTj ] ←− ej .

Search. The search protocol shown in Fig. 2 is to query for keyword w. Data
owner generates the search query, while the cloud server performs the search
operation and returns the search result to data owner. Detail description of
search protocol is shown as follows:

Firstly, data owner generates long term session key by tw ←− H(ks, w).
Then, he looks up W [w] to get the (search token, counter) pair (STc, c). Finally,
he sends the search query (tw, STc, c) to the cloud server.

After receiving the search query (tw, STc, c), cloud server obtains Ukey by
Ukey ←− H1(tw, STc). Then cloud server gets Ckey from K[Ukey]. Next, kc||rc

is generated by Ckey ⊕ H2(tw, STc). Finally, cloud server gets the previous
search token STc−1 by STc−1 ←− F−1(kc, STc). Similarly, if given STg, cloud
server could obtain its previous search token STg−1. Finally, cloud server obtains
ST1, ST2, · · · , STc

We recall that each STi is corresponding to a batch of files, and cloud server
could use this search token combining the file number to decrypt the encrypted
index. In Fig. 2, when given search token STi(i ∈ {1, 2, · · · , c}), cloud server
firstly initializes j = 1 and an empty list IND. Then cloud server initializes UT
by UT ←− H1(tw, STi||j). In the “while loop” of the search protocol (line 14–20
in Fig. 2), the cloud server decrypts the encrypted index to get the indexes of the
batch of files which is corresponding to STi. In this way, cloud server obtains the
indexes of files corresponding to ST1, the indexes of files corresponding to ST2, ...,
and the indexes of files corresponding to STc. Finally, cloud server returns these
indexes to data owner.

5.2 FSECQ Construction

Our FSECQ scheme is the extension scheme for EFSE scheme, and supports
conjunctive keywords query. It mainly consists of three protocols: setup, update
and search.

Setup. The setup protocol is identical with the one in our EFSE scheme except
that in FSECQ scheme, an additional set Xet is set up, and three extra random
strings kX , kI , kZ ∈ {0, 1}λ are chosen by data owner.

Update. The update protocol is same with the one in EFSE scheme except
some changes. For each keyword, the corresponding pair (STc, c) is changed to
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Fig. 3. The search operation on cloud server in FSECQ scheme

pair (STc, c, v), where the new added counter v initializes to 0, and is used to
record the number of updated files containing this keyword. Except generating
(Ukey, Ckey) and (UTj , ej)j=1,··· ,|DB(w)|, for each indj in DB(w), data owner
additionally calculates yj ←− (H3(kZ , w||v + j))−1 · H3(kI , indj), and generate
extra xtagj by xtagj ←− gH3(kX ,w)·H3(kI ,indj). At the end of update, the new
pair is (STc+1, c+1, v+ |DB(w)|) which will be recorded in W [w]. (Ukey,Ckey),
{xtagj}j=1,··· ,|DB(w)|, and {UTj , (ej , yj) }j=1,··· ,|DB(w)| are sent to cloud server.

Upon receiving these message, cloud server records Ckey in K[Ukey], and
stores each (ej , yj) in T [UTj ]. Then each xtagj is appended to Xset.

Search. To query the conjunctive keywords w1 ∧· · ·∧wn, data owner first looks
up W [w1] to obtain (STc, c, v). Then, for the keyword w1, data owner generates
the search query (tw1 , STc, c) whose operation is similar to the one in EFSE
scheme. Next, for other keyword wk(k = 2, · · · , n), data owner generates each
Tag[k, l] by gH3(kZ ,w1||l)·H3(kX ,wk), where l = 1, · · · , v. Finally, the search query
for conjunctive keywords w1∧· · ·∧wn is (tw1 , STc, c, {Tag[k, l]}k=2,··· ,n;l=1,··· ,v).
The search query is sent to cloud server.

Upon receiving the search query, cloud server performs the decryption oper-
ation to obtain all previous search tokens (line 1–6 in Fig. 3). This decryption
operation is same with that in EFSE. Then, the operation in line 7–29 shows
that cloud server decrypts the encrypted index and returns all indexes of files
which contains all keywords w1, · · · , wn.

6 Security Analysis

In this section, we introduce the threat model and conduct the security proof
for our two schemes briefly.
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6.1 Threat Model

Our EFSE system and its extension both consist of two parties: data owner, cloud
server. In this paper, the cloud server is considered to be honest but curious,
which means that (1) cloud server intends to obtain some private information
from the encrypted data or search queries, (2) cloud server obeys the prescribed
protocols.

Let Hist = {DBi, qi}n
i=1 be a history, where DBi is a database (In this

paper, DBi can be viewed as the index set of files), and qi is a query. Let
Q = {q1, q2, · · · , qn} is the query list for Hist. If qi is an update query, then
qi can be described as (opi, wi,DBi); If qi is a search query, then it can be
described as (i, wi). Then access pattern is ap(w) = {i|qi ∈ Q, qi contains w}.
Search pattern is sp(w) = {i|qi ∈ Q, qi is a search query for keyword w}.

In our system, search pattern and access pattern are revealed to cloud server.
Besides, we also assume that the search token is upload to server through secure
channel.

6.2 Security Proof

Theorem 1. Let F be the pseudorandom permutation, H,H1,H2 be three
hash functions modeled as random oracles. Define leakage L = (LSetup,
LUpdate,LSearch) as

LSetup = ⊥
LUpdate(add,w,DBi) = (i, add,DBi)
LSearch(w) = (sp(w), ap(w))

Then, EFSE is L-adaptively-secure SSE scheme with forward privacy.

Proof. Obviously, the update leakage satisfies the Definition 2. So we conclude
that our basic scheme is forward private. Then we construct some games Real,
G1, G2, G3, G4, Ideal to prove that our EFSE scheme satisfies the Definition 1,
where H,H1,H2 are modeled as random oracle.

Firstly, Real is the real world game. In G1, instead of generating tw by H,
the experiment stores a map Tw which is used to store tuple (w, tw). When tw
is needed, the experiment looks up the table H. If Tw[w] exists, returns Tw[w]
as tw; Otherwise, the experiment randomly chooses a string s ∈ {0, 1}λ as tw,
and stores (w, tw) in Tw. Because H is modeled as random oracle and ks is kept
secret against the adversary, G0 and G1 are indistinguishable.

In G2, we replace all strings generated by the random oracle H1 in the
update protocol by random strings. In the search protocol, the experiment uti-
lizes these random strings to program the random oracle H1. In addition, in G2,
the experiment maintains a map K

′
. In the update protocol, after generating

kc+1, (w||c+1, kc+1) is stored in K
′
. After the update and before the next query,

the adversary could not obtain the query result H1(tw, STc+1), since STc+1 is
kept secret against the adversary. The probability that the adversary guesses
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STc+1 correctly by chance is poly(λ) · ( 1
2λ +negl(λ)). Then we conclude that G2

and G1 are indistinguishable.
In G3, we replace all strings generated by the random oracle H2 in the update

protocol by random strings. In the search protocol, the experiment utilizes these
random strings to program the random oracle H2. Similarly, we conclude that
G2 and G3 are indistinguishable.

In G4, ST and k are generated only when performing the search protocol. In
the update protocol, the experiment sends same number of random strings to
the cloud server. Then we conclude that G3 and G4 are indistinguishable, since
search token and the one in G3 are at the same distribution.

In Ideal, instead of inputting the actual data, the simulator inputs the leak-
age which is defined by leakage function. Then we conclude that G4 and Ideal
are indistinguishable.

Finally, to sum up, the Real and Ideal are indistinguishable.

To analyze the security of our extension scheme, without loss of generality, we
focus on 2-conjunctive keywords search, and introduce the lemma and theorem
as follows:

Lemma 1. (DDH assumption)Let G be a cyclic group whose order is λ, g is its
generator. We say that DDH assumption holds if for any probabilistic polynomial
time adversary A, these exists a negligible function negl satisfies that

|Pr[A(g, ga, gb, gab) = 1] − Pr[A(g, ga, gb, gc) = 1]| < negl(λ)

where a, b, c are chosen uniformly from Z∗
p .

Theorem 2. Let F be the pseudorandom permutation, H,H1,H2,H3 be four
hash functions modeled as random oracles. Define leakage L = (LSetup,
LUpdate,LSearch) as

Lsetup = ⊥
Lupdate(add,w,DBi) = (i, add,DBi)
Lsearch(w1 ∧ w2) = ({sp(wi), ap(wi)}i=1,2)

Then, FSECQ is L-adaptively-secure SSE scheme with forward privacy.

Proof. Similarly, the update protocol does not leak any information about the
keyword. So our extension scheme is forward private. Then we construct sev-
eral games (Real, G1, · · · , G7, Ideal) to prove that our extension scheme is
L-adaptively-secure SSE scheme.

Real is the real world game. G1, G2, G3 are same with the one in proof of
Theorem 1.

Compared with G3, in G4, the first change is that yj is recorded in Y [w, indj ],
where Y is a map indexed by a keyword and a file index. The second change is
that xtagj is recorded in X[w, indj ], where X is also a map indexed by a keyword
and a file index. Two maps are maintained by the experiment. Obviously, we
conclude that G3 and G4 are indistinguishable.
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In G5, yj is replaced by a random element in Z∗
p and it will be stored in

Y [w, indj ]. For convenience, we replace Tag[2, l] by Tag[w2, l]. If X[w2, indl] 	=
⊥, Tag[w2, l] is evaluated by X[w2, indl](Y [w1,indl])

−1
; Otherwise, Tag[w2, l] is

evaluated by A[w1, w2, l] = gH3(kZ ,w1||l)·H3(kX ,w2), where map A is maintained
by the experiment. The change can be observed by adversary only if adversary
could query the random oracle H3. But kI and kZ are random strings which are
kept secret against the adversary. Thus, G4 and G5 are indistinguishable.

In G6, xtagj is chosen randomly, and is recorded in X[w, indj ]. In the search
protocol, if X[w2, indl] = ⊥, and A[w1, w2, l] = ⊥, then Tag[w2, l] is evalu-
ated by random string which will be recorded in A[w1, w2, l]. In addition, if
X[w2, indl] = ⊥, and A[w1, w2, l] 	= ⊥, Tag[w2, l] is evaluated by A[w1, w2, l].
Finally, by Lemma 1, we conclude that G6 and G5 are indistinguishable.

In G7, ST and k are generated only when performing the search protocol.
This change is similar with the one in G4 in proof of Theorem1. Similarly, we
conclude that G6 and G7 are indistinguishable.

In Ideal, instead of inputting actual data, the simulator inputs the leakage
which is defined by leakage function. Then we conclude that G7 and Ideal are
indistinguishable.

Finally, to sum up, Real and Ideal are indistinguishable.

7 Performance Evaluation

In this section, we evaluate the performance of our EFSE scheme by comparison
with Song’s FAST scheme [18] and Bost’s scheme [2].

7.1 Experiment Setup

In this paper, we implement our EFSE scheme in java (JDK 1.8). The security
parameter λ is set to 128bits. For the pseudorandom permutation, we use AES.
For hash functions H, H1, we use HMAC-MD5. For hash function H2, we use
HmacSHA256. The index of file ind is set to 256 bits.

To ensure fair, the security parameters in the rest schemes are set to 128bits.
When implementing Song’s scheme, we use MD5 for hash function h, and SHA-
256 for hash function H1, H2. In addition, for pseudorandom function F , and
pseudorandom permutation P , we use AES. File index ind||op is set to 128 bits.
When implementing Bost’s scheme, we use HMAC-MD5 for the PRF, and the
keyed hash function H1,H2. In addition, for trapdoor permutation π, we use
RSA, where the key size is set to 512 bits. File index is also set to 128 bits.

The server and the data owner are deployed on the same laptop. The laptop
is x64 instance running Windows 10 containing Intel core i7-7500U 2.7 GHz cpu,
4 GB RAM, and 250 GB SSD.
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7.2 Experiment Results

Update. Figure 4(a) shows the update performance of our EFSE scheme, FAST
and Bost’s scheme. In our experiment, the IO cost and communication overhead
are excluded from the update cost. When testing updating, each time we update
a batch of files containing same keyword (its index set is DB(w)), the size of
batch is ranging from 2E5 to 1E6 (step length is 2E5). Shown in Fig. 4(a), vertical
axis represents the update time, and horizontal axis represents the number of
files (i.e. the size of batch). The experiment result shows that our EFSE scheme
has a better performance. Because of our novel batch update, each file in this
batch shares the same search token. Thus, for a batch, the search token only
needs to be updated once. But in Song’s FAST or Bost’s batch update, the
search token needs to be updated n times, where n is the size of DB(w).

Fig. 4. Experimental results

Search. Figure 4(b) shows the search performance of our EFSE scheme, FAST
and Bost’s scheme. In our experiment, IO cost and communication overhead are
excluded from the search cost. The search cost includes the cost about gener-
ating search token and the one about the search operation. We first conduct
batch update, and then we conduct the search test. In the Fig. 4(4), vertical axis
represents search time, while the horizontal axis represents the number of files
which match the query. The experiment result shows that our EFSE scheme has
a better performance. The cost for generating search token in our EFSE scheme
is similar to others. That cost is nearly 0.002 ms. The search time per file in our
EFSE scheme is about 0.0056 ms while the one in FAST is 0.0071 ms, and the
one in Bost’s scheme is 0.016 ms.

8 Conclusion

In this paper, we propose the efficient forward private searchable encryption
scheme (EFSE). This scheme utilizes a novel batch update method, and achieves
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a high level of update performance and search performance. Then, in order to
extend EFSE to support conjunctive keywords query, we propose the forward pri-
vate searchable encryption with conjunctive keywords query (FSECQ) scheme.
This scheme achieves optimal computational overhead while supporting conjunc-
tive keywords query. Meanwhile, we give the rigorous security proof for our two
schemes. Finally, we implement our EFSE scheme as well as other works [2,18].
The experiment result shows that our EFSE achieves better update performance
and search performance.
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Abstract. Online Social Networks (OSNs) are online services that peo-
ple use to build social relations with other people. Friends retrieval over
OSNs is an important activity among users. However, in existing friends
retrieval solutions, user may leak private and sensitive information, such
as personal data and friends relation. Traditional end-to-end encryption
methods can protect users’ information, while it is not available for them
to share contents with others. In this paper, aiming at preventing attack
launched by the service provider, we propose PAFR, a Privacy-Aware
Friends Retrieval scheme over OSNs. Inspired by private set interaction
protocols, our scheme allows user to upload his encrypted contents to
server, obliviously connect with others as friends, and retrieve friends
with specific content. In addition, we design a dual-server model where
two non-collude servers S1 and S2 perform secure sorting protocol to
retrieve the ranked relevant friends without learning the underlying query
and friends relationship. Compared with the approach with single server
holding the whole knowledge of the OSN, each of them only has a part
of the information make our scheme achieve a high level of privacy. Both
security and performance analysis demonstrate that our scheme has both
a very light user workload and a moderate server workload while being
secure against user-server collusion.

Keywords: Online social networks · Private set interaction ·
Dual-server model · Friends retrieval

1 Motivation

Online social networks (OSNs) such as Facebook, Twitter, and Google+, are
online services that allow users to connect with others. It is becoming the center
of users due to they can offer many services closely related to their everyday life.
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Consider a scenario that in a social network, there is a server that has a database
that contains all users’ contents and their relationships. If a user Alice wants
to retrieve her nearest friend, she can directly send her location to the server,
the server searches all her friends’ locations and get the result. Such kind of
friend retrieve service is a general application of content-based search over OSNs.
However, in such process, user leaks her personal profiles and search pattern. It
is getting increasingly important that the information exchanged among users
should take privacy into consideration. It is crucial and very related to critical
life threatening situations. For instance, in 2018, a second Cambridge Analytica
whistleblower had harvested the personal data of users’ profiles in Facebook
without their consent and used it for political purposes, which affects way more
than 87 million users [1,2].

Therefore, in order to protect the social community, privacy-aware schemes in
OSNs should be provided. It should satisfies with the following security charac-
ters: identity privacy, content privacy and closeness privacy. Specifically, identity
privacy is essential, since some malicious adversary may gather users’ identities
in OSNs that resulting in users suffering from blackmails and kidnappers [3]. It
can be achieved by using a pseudonym to hide user’s real identity. Content pri-
vacy is also important as contents are the most related information and is very
existence relates to critical life-threatening situations. The use of the profiles
by others can be just for gaining more information, such as financial, location,
confidential data, etc. If such data are used illegally, it can be even dangerous to
the user’s safety [4]. In privacy-aware setting, user’s contents can only be shared
with his friends who are treated as trust parties in user’s view [5]. Whats more,
the closeness value of each friend pair is also useful for adversary to perform
different kinds of data mining for different purposes [6]. Therefore it should be
preserved and should not be available in the server side.

Traditional end-to-end encryption methods [7,8] can protect users’ contents,
while it is not available for users to share contents with other. To protect
users’ privacy while remain their contents retrievable, the straightforward way is
searchable encryption [9,10]. The most widely known architecture in searchable
encryption is user encrypts his database and builds search structure at local, and
upload them to the server. He can send search token to the server to perform
search in the database encrypted by his own key. However, in social network
setting, there are multiple users with different keys, how to search the multi-key
based encrypted social network is a problem that needs to be solved.

To solve such problem, a naive way is to share keys among friends [11]. Sup-
pose a user has q friends, when he wants to search contents among his friends, he
should generate q search tokens and send them to the server. Multi-key search-
able encryption [23] allows users to share files with each other selectively. How-
ever, it seems very difficult with this approach to prevent the server from learning
a large amount of information, as such scheme has a significant leakage profile
since tokens from different users can applied on the same encrypted value, thus
the search keyword can be known to the server if the server colluded with some
users. As a result, in OSNs scenario, the corruption of one user impacts the
privacy of other users, even if they are far from the corrupted user in the OSN
graph. The problem comes from that a token can be applied to any encrypted
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contents after transformation. A single user colluding with the server can then
have access to the whole OSNs. To the best of our knowledge, there are very few
studies on privacy-aware social network under multiple keys.

Besides, there are many schemes are proposed focusing on privacy-aware
peer-to-peer OSNs. Most of them base on the private set intersection (PSI)
protocols [14–16]. However, these solutions are involved in a large number of
high computational cost, or rely on third-party certification for input informa-
tion, where user needs to bear the additional computational overhead. Vaidya
et al. [14] established a friend-of-friend prediction model in mobile social net-
works based on n-party secret sharing protocol, while the model cannot resist
brute force attack. Zhang et al. [15] proposed the concept of fine-grained privacy
information matching protocol, by giving preference to each profile, and using
similarity function to measure the matching degree. Based on that, Niu et al.
[16] designed the privacy information matching protocol based on the weight or
level of the profile itself and the social strength of the participant.

To reduce computational cost, some privacy profile matching protocols based
on non-encryption methods are proposed recently. Fu et al. [17] proposed the
privacy profile matching scheme based on Bloom Filter. Sun et al. [18] proposed
lightweight privacy profile matching scheme with less computing cost, which
doesn’t using encryption algorithm, only involves the hash SHA-256 operation,
but Bloom Filter and its dispersion column function is public. The above two
schemes cannot resist brute force attack, resulting in privacy information leakage.

Our Contribution. Based on the aforementioned observations, we propose
PAFR, a Privacy-Aware Friend Retrieval scheme over OSNs. Our contributions
are described as follows:

• In our construction, we allow user to encrypt profiles by his secure key at
local and upload them to the OSNs service provider. We design a oblivious
connect protocol for adding friends where user’s profiles can be obliviously
shared with others. Inspired by the idea of private set intersection, we propose
a secure profile-based search method among friends.

• We build a dual-server model where two non-collude servers S1 and S2 imple-
menting the OSNs service provider. S1 plays the roll to store the social net-
work structure, and S2 is responsible to store user’s encrypted contents. Com-
pared with single server holding the whole knowledge, each of them only has
a part of the information make our scheme achieve a high level of privacy. To
achieve friends retrieving and ranking by closeness order, we design a secure
sorting protocol between S1 and S2 to get the sorted friends without learning
the underlying searching words and the friends list.

• Our scheme offers high level of privacy while having a minimal cost for the
users. We define the leakage functions L1 to L4 to formally abstract the
information that are leaked to the servers in different phases, and give the
formal security analysis under ideal/real world paradigm to claim that our
scheme is adaptively L-semantically secure. The performance analysis shows
the scheme we present have both a very light user workload and a moderate
server workload while being secure against user-server collusion.
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2 Cryptographic Tools

Paillier Encryption. Paillier encryption [20] is a probabilistic asymmetric
algorithm for public key cryptography. The message space M for the encryption
is ZN , where N is a product of two large prime numbers p and q. For a message
m ∈ ZN , we denote [m] ∈ Z2

N to be the encryption of m with the public key PK.
It has the addition homomorphic properties:: ∀m1,m2 ∈ ZN , E(m1)E(m1) =
E(m1 + m2). Our construction relies on a generalization of Paillier encryption
[21]. The message space expands to ZNs for s > 1, and the ciphertext space
is under the group ZNs+1 . This generalization allows one to doubly encrypt
messages and use the additive homomorphism of the inner encryption layer under
the same secret key. We denote [[m]] as ciphertext of m using the second layer.
This nested encryption preserves the structure over inner ciphertexts and allows
one to manipulate it as follow: [[m1]]

[m2] = [[[m1][m2]]] = [[[m1 + m2]]].

PSI-DH. Our scheme is partly inspired by the idea of Private Set Intersection
based on DiffieHellman problem (PSI-DH) [24]. It involves a sender with set
Y and a receiver with set X. The receiver picks a random value α ∈ Zk and
sends H(x)α, x ∈ X to the sender. The sender picks a random value β ∈ Zk and
sends both (H(x)αβ , x ∈ X and (H(y)β , y ∈ Y . Finally the receiver computes
(H(y)βα, y ∈ Y and is able to see which elements of X are in Y without learning
anything about the elements in Y − X.

EncSort. We use the state-of-art efficient and secure sort protocol EncSort as
building block to get the encrypted sorted results [22]. It is executed between
two parties P1 and P2 and takes as input a public/secret key pair (PK,SK) of
a semantically secure cryptosystem {KeyGen, Enc,Dec}, where SK is known to
P2 but not P1. P1 has an array A = [Enc(vi)], i ∈ (1, N) of N elements where
each element is encrypted individually using PK. The goal is for P1 to obtain an
array B = [Enc(vj)], j ∈ (1, N), where vj = vπ(i) and i ∈ (1, N), a re-encryption
of a sorted array A. Neither P1 nor P1 learn anything about the plaintext values
of A (e.g., their initial order, frequency of the values) while running the protocol.

3 Problem Statement

Consider a social network contains many users, every user has his own profiles,
such as age, location, job and so on. A social network provider creates a social
network structure database that contains all the users information. A close-
ness value in the structure represents the closeness of every friends pair. In our
privacy-aware social network, user’s profiles and the closeness between friends
are considered as private, so they are encrypted at local. The service provider
collects all the encrypted values and constructs a the encrypted social network
structure which should maintain searchable. Users can search his friends who
have specific profiles. Server should be able to perform searching over his friends
in the encrypted social network structure. Searchable encryption can achieve this
goal. However, if a user wants search over his friends’ encrypted values, he has
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to ask for different keys from his friends, and separately search over each of his
friends’ profiles using different tokens, which is troublesome and inefficient for
social networks. What’s more, anther challenge is how to get his sorted closeness
friends that each friend’s profiles satisfied user query token.

One solution would be that when user connect with others, the server trans-
forms his encrypted profiles into a copy that is specific to his friend. With trans-
formation, users don’t need to ask for different keys every time when he wants
to search. In the security aspect, queries from different users are not applied
on the same encrypted profiles. It provided security against user-server collision.
However, the server is able to link a transformed profile to the original encrypted
profile it originates from. A question that arises is then: Who will perform this
transformation step? The answer cannot be the users, as this does not seem
practical. Having the server perform it is also problematic: the entity perform-
ing translation is able to link a transformed profile to the original encrypted
profile it originates from. Finding a profile transformation process that hides
such kind of information seems hard.

To solve this problem, we build a dual-server model: one server performs
the profile transformation and sends the transformed one to the other server,
named the proxy server The idea is that, when proceeding query and match, the
proxy server sees the matching transformed profile but does not see which users
they correspond to, while the server sees the relations between transformed and
encrypted contents but does not see the queries and matches. To protect against
user-server collusion, we assumed that two servers not colluding with each other.

3.1 Architecture

PAFR allows users to connect with other as friend privately and retrieve friends
based on profiles through OSN server. As shown in Fig. 1, PAFR consists in
three types of entities: Users U , a server S1, a proxy server S2.

• U contains n users (u1, ..., un). Each user ui ∈ U creates his own profile set
Pi = (p1, . . . , pd), encrypts Pi to Ci and upload Ci to S1. Every user can
connect with others as his friends dynamically and later search for friends
whose encrypted profiles contains some keyword p. After uploading the Ci to
S1, user only needs to store constant size data (key) in local client.

• S1 acts as the service provider that provides the social network service to U .
S1 has a graph G = (V, E) that contains the whole social network. The vertex
vi ∈ V represents the information that the server knows about a user ui ∈ U .
If two users ui ∈ U and uj ∈ U are friends with each other, there will exist
an edge eij ∈ E between vertexes vi and vj in the graph G.

• S2 acts as an collaborator of S1. For every user ui ∈ U , S2 hass a graph
Gi = (Vi, Ei). The vertexes in Gi represent user ui and his friends. An edge
eij ∈ Ei between vertices vi and vj in the graph Gi stores encrypted closeness
information about the friendship between ui and uj , which is dynamically
updated by the friendship getting closer. S2 can interact with S1 to perform
secure sorting protocol get the sorted search result.
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Fig. 1. The architecture

Security Model. We consider the non-collude servers S1 and S2 as honest-
but-curious adversaries, which is similar to most of prior works in the dual-
server model (e.g., [12,13]). Particularly, they will follow protocols honestly, yet
they are curious about inferring the private information and will do so inde-
pendently. Such an security assumption makes sense because in practice cloud
service providers are well-established and business-driven parties who do not
want to harm their reputation and thus avoid behaving maliciously and collusion.
Meanwhile, on the practical service deployment side, protocols under honest-but-
curious model would present much more efficient implementation than protocols
under the malicious adversary model. What’s more, since there are multiple
users in our dual-server architecture, the servers cannot tell when two queries
from different users that query for the same profile or not.
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3.2 Formal Definitions

Definition 1. PAFR consists 6 polynomial time algorithms and protocols:

1. (G, params) ← Setup(1k): is a probabilistic algorithm run by S1 that takes
a security parameter 1k as input, outputs public parameter params and an
undirect graph structure G.

2. (ki, (PKi, SKi)) ← KeyGen(params): is a probabilistic algorithm run by the
user ui that takes params as input, generates his key ki and his homomorphic
key pair (PKi, SKi).

3. (⊥,Gi,G′) ← Register(ui(Pi, ki), S2(⊥), S1(G)): is an interactive protocol run
by user ui , S2 and S1. User ui takes his key ki and his profile Pi as input, S1

takes G as input, after the protocol, S2 outputs a graph Gi for ui, S1 outputs
an updated G′.

4. (ki,j , kj,i, (G′
i,G′

j),G′) ← Connect(ui(ki), uj(kj), S2(Gi), S1(G)): is an interac-
tive protocol among server S1, S2, ui and uj. ui and uj take their keys ki and
kj as input, S2 takes Gi and Gj as input, and S1 takes G as input, the output
of S2 is the updated G′

i and G′
j, the other three party have no output.

5. (⊥,⊥, I) ← Query(uq(kq, p), S1(G), S2(Gi, k)): is an interactive protocol run
by user uq, S1 and S2 that user uq takes his key kq and the query profile
p ∈ {0, 1}∗ as input, S2 takes Gi as input, and S1 takes G as input, the output
of S2 is a unsorted query results I.

6. (⊥, IR) ← Sort(S1(SKq), S2(I)): is an interactive protocol run by S1 and S2

that S2 takes unsorted query results IR as input, and S1 takes SKq as input,
the output of S2 is a sorted query results IR.

3.3 Security Definition

The security definition will be formalized by the four leakage functions L1, L2,
L3 and L4, which denote the information leaked to S1 and S2 in different phases
of the scheme. We formalize the ideal/real world paradigm for PAFR. In the real
world Real(1k), the protocol between the adversarial servers and user executes
just like the real scheme. In the ideal world ideal(1k), there exists two simulators
Sim1 and Sim2 who get the leakage information from leakage functions L1 to
L4 and try to simulate the execution of S1 and S2 in the real world. We give the
formal definition as follow.

Definition 2. Adaptive L-Semantically Secure. Given the scheme described
in Definition 1 and consider the following probabilistic paradigms where, U =
(u1, . . . , un) are users, A1 and A2 are two non-colluding honest-but-curious
adversaries, Sim1 and Sim2 are two polynomial times simulators, and L1 to
L4 as leakage functions.

Real(1k): It is run among the two adversaries A1, A2 and the users U using
the real scheme. A1 initializes a empty graph structure G, every user ui ∈ U
computes his keys k ← KeyGen(params) and send A1 his encrypted profiles
Ci and his friends list L(ui), sends A2 L(ui), Ci,j and the encrypted closeness
value xi,j for all his friends. After that, by Register and Connect, A1 updates G
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that contains the received values. A2 constructs n graph (G1, . . . ,Gn), each graph
contains the information about user and his friends information and the edges
in each graph is encrypted closeness value xi,j. After that, polynomial times
queries (q1, . . . , qt) are made by different users to A2. For each query qi, the
query user uq, A1 and A2 run the protocol Query(uq(kq, p),A1(G),A2(Gi, k)).
After the execution of the protocol, A2 sends the encrypted result IR to user u.
Finally, A1 outputs Output

Real(1k)
A1

, and A2 outputs Output
Real(1k)
A2

.
Ideal(1k): It is run by the two simulators Sim1 and Sim2. Sim1 and Sim2

do not interact with users, it responds to queries using randomly generated data,
with these leakage functions as the only input. By the information leaked from L1

and L2, Sim1 builds simulated structure ˜G and Sim2 builds simulated structures
(˜G1, . . . , ˜Gn). After that, there are q polynomial times queries (q1, . . . , qt) send
to Sim2. Sim2 uses L3 to simulate Query(Sim

L3()
1 (˜G), Sim

L3()
2 ( ˜Gi)). After the

execution of the protocol, Sim2 uses L4() to get the simulated result ˜IR. Finally,
Sim1 outputs Output

Ideal(1k)
Sim1

, and Sim2 outputs Output
Ideal(1k)
Sim2

.
We say that our scheme is adaptive L-semantically secure if for all polyno-

mial time A1 and A2, there exists polynomial time simulators Sim1 and Sim2

such that the following two distribution ensembles are computationally indistin-
guishable: Output

Real(1k)
A1/2

≈ Output
Ideal(1k)
Sim1/2

4 Construction

Let H : (0, 1)∗ → G be a collision-resistant hash function, it can hash any bit
string into a DDH-hard group G of order ζ. Let PE = {KeyGen, Enc,Dec} be
the Pallier encryption scheme [24]. The construction works as follows:

• Setup. In Setup phase, on input the security parameter 1k, the server S1

initialize a graph structure G = (V, E). We denote G as the global graph. It
contains n vertexes |V| = n, each vertex vi ∈ V represents the information
that the server collects about a user ui ∈ U . An edge eij ∈ E between vertices
vi and vj stores information about the friendship between ui and uj . If ui

and uj are not friends, then eij does not exist. Both of V and E are empty at
initialization.

• KeyGen. To join in the system, ui should first generate his own keys:
ui randomly select a value ski ∈ Zk, acting as secret key to encrypt her
profiles. Moreover, he initializes her public/secret key pairs (PKi, SKi) ←
PE .KeyGen(1k) by Paillier encryption: PKi is used to encrypt the closeness
value between him and his friend, and SKi is used for decrypt the closeness
and identities of the query results.

• Register. To register, user ui should first generate his identity idi and create
his profile vector Pi = (p1i , . . . , p

m
i ). To hide Pi, for every pj

i ∈ Pi, he first
computes the hash value by using the hash function H: H(pj

i ), and encrypts
it into cj

i : cj
i ← H(pj

i )
ski . Then he forms encrypted profiles Ci = (c1i , . . . , c

m
i )

and send (Ci, idi, SKi) to S1. S1 adds a vertex vi to graph G, which is
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initialized with idi||Ci||SKi. Moreover, ui also sendsski to S2, S2 initializes
a new graph Gi for ui: Gi = (Vi, Ei). In Gi, the vertexes Vi represent user ui

and all of his friends. An edge eij ∈ Ei between vi and vj in Gi stores the
closeness value between ui and uj . After that, ui only needs to store constant
size data (key) in local client.

• Connect. Every user can connect other as his friend dynamically. When ui

wants to connect with uj , he sends request to S2. S2 adds a vertex vj in ui’s
social graph Gi, and store idj in vertex vj in Gi. To authorize uj to retrieve
his encrypted profiles Ci, ui and uj generate a random search key kj,i ∈ Z∗

k

by secure key exchange protocol and send it to the server S1. S1 adds kj,i

into the edge eij between vi and vj in G.
To achieve secure query, S1 and S2 conduct the profile transfer protocols for
ui and uj : for ui, S1 first retrieves the vertex vj ∈ G and gets uj ’s encrypted
profiles Cj in vj , and transfers Cj into ui-specific profiles vector Cj,i: Cj,i =
(c1j,i, . . . , c

d
j,i), in which ci

j,i ∈ Cj,i is a “double encryption” value of ci
j : ci

j,i ←
(ci

j)
kj,i . Then S1 sends Cj,i to S2. S2 adds a vertex vj in Gi, and updates the

vertex vj into idj ||Cj,i. S2 also generates a closeness value xj with initial value
0. The value xj represents closeness between ui and uj . S2 encrypts xj with
PKi into [xj ]: [xj ] ← PE .EncPKi

(xj), and adds it to the edge xj between
vi and vj .It can be dynamically updated due to the addition homomorphic
property of Paillier encryption(it is another scope of work which we shall not
discuss here).

• Query. Users can send query to S2 for retrieving friends with some specific
profiles. If the query user uq wants to query for whether he has friends who
has the profile p, he should first generate his token τq: τq = (t1, . . . , td), in
which ti = H(p)kq,i , where kq,i is uq’s search key for his friend ui. Then uq

submits τq to S2. Upon receiving τq, S2 computes the transformed token t′i
for each vi ∈ Gq: t′i = ti

skq . Then S2 traverses each vi ∈ Gq to look up for
value t′i. If the value t′i does exist in vertex vi, we say that user with idi is
matched. For every matched idi, S2 also retrieves [xq] from the edge between
vi and vq in Gq. S2 traverses each t′i in the graph Gq to get all the matched
ids and the correspond closeness values. The search result contains the set
I = {(id1, [x1]), . . . , (idd, [xd])}.

• Sort. Since the set I = {(id1, [x1]), . . . , (idd, [xd])} is encrypted by Paillier
encryption. The randomness property of Paillier encryption prohibits S2 from
sorting them and returning the friends identifiers ranked by their closeness
values to the user uq. To achieve ranking, we build a secure key-value sort
protocol between S1 and S2 to privately sort the closeness of the matched
friends based on EncSort. First of all, to prevent S1 from learning the order, S2

encrypts each idi ∈ I for 1 ≤ i ≤ d to [idi] with PKq: [idi] ← PE .EncPKq
(idi),

and generates I ′ = {([id1], [x1]), . . . , ([idd], [xd])}. Then S1 and S2 perform
EncSort : S2 inputs I ′ = {([id1], [x1]), . . . , ([idd], [xd])} that it wants to sort
and S1 inputs Paillier encryption secret key SKq. By Batcher’s sorting net-
works [22], they sort the elements of each pair at every level of the network.
For each level i, for every pair ([idx], [xx]), ([idy], [xy]): S2 computes {z} :=
[2l][xi][xy]−1 mod n2(l > k). It blinds [z]: randomly chooses r ∈ (0, 1)l+k,
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computes [d] := [z][r] mod n2. and sends [d] to S1. S1 and S2 both compute
d′ ← PE .DecSKq

([d]) and r′ := r mod 2l. S1 and S2 engage in a private
input comparison protocol ( e.g. the DGK protocol [25]) to compare d′ and
r′. Then S2 receives the ciphertext of the comparison result ||λ||, which sat-
isfies λ = 1 → d′ < r′. Then S1 retrieves the l−th bit of d′, denotes it
as dl and sends it to S2. At the same time, S1 retrieves ||rl||: the l−th bit
of r′, and computes ||v|| = ||dl|| ∗ ||rl|| ∗ ||λ||. They performs the bit re-
encryption and the encrypted chosen protocol [26] to get the ranked ||λ||.
After O((logd)2) times Batchers protocol, S2 obtains the final ranked results
IR: IR = {([id′

1], [x
′
1]), . . . , ([id

′
d], [x

′
d])} encrypted using the first layer of Pail-

lier encryption. IR is a re-encryption of array I ′, which includes the encrypted
ranked closeness values with the corresponding encrypted identities which is
satisfied PE .DecSKq

([x′
1]) <, ..., < PE .DecSKq

([x′
d]). Finally, S2 sends the

final result IR to user uq. uq can decrypt each [idi] with his secret key SKq:
idi ← PE .DecSKq

[idi] and get the sorted friends identities R = (id1, . . . , idd)
that matches the search profile p.

5 Analysis

5.1 Security Analysis

In the following, we analyze the security of our scheme. We need to capture the
leakage functions of our PAFR construction:

– L1: In the register protocol, given user ui’s encrypted profile vector Ci =
(c1i , . . . , cm

i ), S1 can learn the size of Ci: |Ci|, the number of ci: m,
and the length of each items |cj

i |cji∈Ci
. We denote these by L1, i.e.,L1 =

(|Ci|,m, |cj
i |cji∈Ci

).
– L2: The connect phase reveals S2 the length of the transformed encrypted pro-

files |Cj,i|ej,i∈Gi
for every user ui and the length of the corresponding closeness

values |xj |ej,i∈Gi
. We denote these by L2, i.e., L2 = (|Cj,i|ej,i∈Gi

, |xj |ej,i∈Gi
).

– L3: In the query protocol, we assume that t times queries are send to S2. The
queries are from different users. For each query qi, S2 gets the query token
τi, it can only see the size of τi: |τi|, query user id idq and the number of
matched #[idi]1<i<d the relationship between them. We denote these by L3,
i.e.,L3 = ((|τ1|,#[idi]1<i<d), . . . , (|τt|,#[idj ]1<j<d), t).

– L4: In the sorting protocol S1 and S2 perform sort by pairs {([idx], [xx]),
([idy], [xy])} in (logd)2 times. For each pairs, S2 gets ([xx], [xy], l), S1 gets
{([[z]] , [λ])}. We denote these by L4, i.e.,LS1

4 =
{

([[z]]i , [λ]i)1<i<(logm)2
}

,
LS2
4 =

{

([xx]i, [xy]i, l)1<i<(logm)2
}

.

Theorem 1. If Paillier encryption is CPA-secure, H is a collision-resistant
hash function, the DDH problem in G cannot be solved in polynomial time, and
the DGK protocol is proved semantic secure, in random oracle model, then our
scheme is Adaptive L-Semantically Secure.
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Proof. The primary goal of providing this proof is to construct two simula-
tors Sim1, Sim2 that can generate the simulated values in Ideal(1k) using the
information given in these leakage functions described above. We show that the
outputs of the simulator Sim1 and Sim2 is indistinguishable from the view of
A1 and A2 in Real(1k) using a sequence of hybrid games, where each of them
simulates one or more non-revealed encrypted values than the previous game.
As a consequence the first hybrid game corresponds to Real(1k) and the last one
corresponds to Ideal(1k).

Game1: Given the information received from L1, the simulator Sim1 can
randomly choose m random strings to construct a simulated ˜Ci = (c̃1i , . . . , c̃

m
i ),

the length of every c̃j
i is |cj

i |. Sim1 uses these structures to build a sim-
ulated graph structure ˜G. In Real(1k), the vertex in graph G is initialized
with idi||Ci||SKi, in which idi, SKi are random values chosen by ui, and
Ci = (c1i , . . . , c

m
i ), where cj

i = H(pj
i )

ski . If the hash function H is pseudo-random
and the Decision Diffe-Hellman problem exists in PPT time, then ˜G ≈ G. For
all polynomial time A1, he cannot distinguish the simulated ˜G with the real
graph structure G. Therefore, the two distribution ensembles are computation-
ally indistinguishable: OutputReal(1k)

A1
≈ OutputGame1

Sim1
.

Game2: It is the same as Game1 except the following differences: in Game1,
if uj is a friend of ui, then A2 can get Cj,i = (c1j,i, . . . , c

d
j,i), in which ci

j,i is a “re-

encryption” value of ci
j : ci

j,i ← (ci
j)

kj,i and get [xij ]: [xij ] ← PE .EncPKi
(xij).

In this game, given the information received from L2, the simulator Sim2 could
learn the number of every user’s friends: #L(ui). Moreover, for every user ui,
Sim2 could also learn m: the number of ci

j,i in Cj,i, the length of every ci
j,i:

|ci
j,i| and the corresponding closeness values |xij |. Then it can construct ˜Cj,i,

which contains #L(ui) random strings with the length of |cj
i |. Sim2 uses these

structures to build simulated graph structures (˜G1, . . . , ˜Gn). For every ˜Gi, the
vertexes and edges contains randomly chosen strings |˜idj || ˜Cj,i| and x̃ij with
the length of |idj ||Cj,i| and |xij |. If the Paillier encryption is CPA-secure, then
x̃ij ≈ xij , and the Decision Diffe-Hellman problem exists in PPT time, then
˜Cj,i ≈ Cj,i, so ˜Gi ≈ Gi. For all polynomial time Sim1, he cannot distinguish the
simulated (˜G1, . . . , ˜Gn) from the real (G1, . . . ,Gn). Therefore, the two distribution
ensembles are computationally indistinguishable: OutputGame2

Sim2
≈ OutputGame1

Sim2
.

Game3: It is the same as Game2 except the following difference: in Game2,
for each query qi, Sim2 runs Query protocol with the query user uq. The query
user uq sends query token to Sim2 in the form of τq: τq = (t1, . . . , td), which
ti = H(p)kq,i . Sim2 generates query result I = {(id1, [x1]), . . . , (idd, [xd])}. In
Game3, by access the leakage function L3, Sim2 can learn |ti| and d: the length
of each item and the number of items in τq. For a number of queries (q1, . . . , qt),
Sim2 checks if either of the query qi appeared in any previous query. It needs
to consider the following two cases:

– If qi doesn’t appear in any previous query, Sim2 runs the simulation of Query
protocol to generate the simulated ˜Ii with the simulated x̃ij and ˜idij .

– If qi appears in any previous query qj , Sim2 returns the previous results ˜Ij .
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If the Paillier encryption is CPA-secure, then x̃ij ≈ xij , therefore ˜I ≈ I. For
all polynomial time Sim2, he can not distinguish the simulated ˜I from the real I.
Therefore, the two distribution ensembles are computationally indistinguishable:
OutputGame3

Sim2
≈ OutputGame2

Sim2
.

Game4: It is Ideal(1k) which is the same with Game3 except the following
difference: Since A1 and A2 interact with each other for comparing values by
(log d)2 times in Game3, the simulators Sim1 and Sim2 should simulate A1

and A2 with the leakage functions L4 by each pairs (log d)2 times in Batcher’s
protocol to get the final simulation value. At every pairs i, A1’s view can be
denoted as viewA1 = (SKP , [[z]] , ‖λ‖), in which SKP is the secret key of Paillie
Encryption. Given (SKP , [[z]] , [λ]), we can build a simulated Sim1:

– Randomly choose λ̃, compute ||λ̃|| to denote xx ≤ xy

– Randomly choose z̃ ← (0, 2λ+l)
⋂

Z
– Encrypt z̃ by Paillier encryption to get [z̃] ← PE .EncPKP (z)
– Output viewSim2 = (SKP , l, [z̃], ||λ̃||)

In Game3, z is equal to x + r, in which x is a l-bits integer and r is a l+λ-
bits integer, so the distribution of z̃ is indistinguishable from z. We can get
(SKP , [z̃]) ≈ (SKP , [z]). Moreover, since the distribution of z̃ and z are inde-
pendent of t, so (SKP , l, [z̃]||λ̃||) ≈ (SKP , l, [z], ||λ̃||). In a similar way, at every
pairs i, A2’s view can be denoted as viewA2 = (([xx]i, [xy]i, l, PKP , r, ‖λ‖ , [zl]).
We can build a Sim2 to simulate A2:

– Choose r̃ ← (0, 2λ+l)
⋂

Z
– Choose two random values λ̃, z̃l, generate two ciphertexts ||λ̃||, ‖z̃‖
– Output viewSim2 = ([xx], [yy], l, PKP , r̃, [z̃l]).

In both viewA2 and viewSim2 , r is extracted from uniform distribution
(0, 2λ+l)

⋂

Z, [z̃l] is the ciphertext of Paillier encryption which is randomness,
so ([xx], [yy], l, PKP ) ≈ ([xx], [yy], l, PKP , r, [z̃l]). Besides, r and r̃ are extracted
from the same uniform distribution, based on the CPA-secure Paillier encryption,
we can get: viewA2 and viewSim2 are computational indistinguishable.

What’s more, since ||λ̃|| ≈ ‖[xx] ≤ [xy]‖, then (SKP , l, [z], ||λ̃||) ≈ (SKP ,
l, [z], ‖[xx] ≤ [yy]‖). Due to the semantic security in random oracle model of
DGK, Sim1 and Sim2 can get d ciphertexts that unsorted from the leakage
function L4. Then, Sim1 and Sim2 can simulate (log m)2 times Bathcer’s pro-
tocols. At the end of the sort protocol, OutputIdeal(1

k)
Sim1

looks indistinguishable
from the the output OutputGame3

Sim1
. Also, since Sim2 has no additional output

by this game, so OutputIdeal(1
k)

Sim2
looks indistinguishable from the the output

OutputGame3
Sim2

: OutputIdeal(1k)Sim1 ≈ OutputGame3
Sim1

.
For all polynomial time A1 and A2, there exists polynomial times simula-

tors Sim1 and Sim2 such that: OutputReal(1k)
A1/2

≈ OutputIdeal(1
k)

Sim1/2
. Therefore, we

can meet the security definition defined in Definition 2, that is, our scheme is
adaptively L-semantically secure.
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5.2 Performance Analysis

In this section, we measure the performance of PAFR by evaluating the com-
plexity in terms of computation complexity and communication overhead. We
also compare the properties with other recent related schemes that supporting
result ranking.

Formally, let m be the number of profiles, q be the number of query keywords
in a single token, and d be the average friends number. In PAFR, the register
cost for user is linear in the size of the profile collection. Hence, user need to
perform O(m) work before uploading the encrypted profiles to S1. In addition,
(G1, . . . ,Gn) are stored in S2. Gi includes the shared profiles, which has a linear
size in the number of profiles and friends number O(m∗d). However, this will not
affect the scheme’s practicality, since the original encrypted profiles can be safely
stored in S1, such that there is no need to submit them to S2 when performing
query. During the query phase, user sends a token for q profiles to S2 and as a
result obtains IR of size d as a result of ordered friends identifiers. Hence, token
generation time for user is O(q) and overall communication cost between the
user and S2 in the worst case is O(q ∗ d). S2 queries in O(q) time and sums the
corresponding closeness vectors in O(q ∗ d) time, i.e., to obtain identifiers for
all the matched friends. Sort phase takes O(d(logd)2) rounds of communication
between S1 and S2 since Bathcer’s sorting network gives the dominating cost.
Hence, our construction gives only a O(logd) multiplicative overhead over a non-
secure construction. If S1 and S2 operate in parallel the run time overhead can
be dropped to O((logd)2).

Therefore, the performance guarantees: Register takes user O(m) time and
space; Query takes user O(q) time to generate a token, the communication com-
plexity between user and S2 is O(q + d); the space complexity for S1 and S2 are
O(q ∗ d) and O(1); and the Sort phase takes O((logd)2) for both S1 and S2.

Table 1. Comparison

Accuracy Updatable Server Model Homomorphic Tools Compu CompS

[26] No No Single − O(m) O(m2)

[27] Yes No Single LWE-Brakerski O(q ∗ d) O(q ∗ d + m2)

[28] No No Two Paillier O(d(logd)) O(d(logd))

Ours Yes Yes Two Paillier/GM O(d) O((logd)2)

m: keywords space; q: the number of query keywords; d: the items number.

We compare PAFR with the related secure search schemes [26–28] in Table 1.
For accuracy, [26] calculates the number of matched keywords in each item based
on Inner Scalar Product and ranks items by computing weights, [27] clusters sim-
ilar items by LSH functions. However, the false positives rate in above schemes
cannot be negligible since the keyword-to-item significance leaves out of consid-
eration, so they cannot provide exact ranking. In PAFR, the servers compare the
encrypted closeness weights to obtain the precise ranking for matched friends.
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For security, [26] hides the search and access pattern based on heuristic method,
so the security is out of comparison. [27] builds the search index based on fully
homomorphic encryption, which reaches high security but leads to high com-
putation cost. [28] introduces non-collusion servers models, one of which can
access the plaintext of result. PAFR encrypts the closeness weight based on
Paillier homomorphic encryption, so servers can rank the search results without
obtaining any information of related plaintext. For efficiency, in [26], the server
can only perform search without ranking, it sends back all the matched items
to user and user performs ranking at local, which still occurs high computa-
tion and communication workload at user-side. The search computation cost is
O(m2), and the query size is O(m) which is linear with the size of keywords
space. To achieving ranking, the server computes all the matched items weights,
the ranking computation cost is O(d ∗ m2), where d is the items number. In
[27], the frequency of keywords is encrypted by fully homomorphic encryption,
that occurs O(q ∗ d + m2) computation cost for ranking. In [28], the storage
cost of collaborative server is linear with the items number O(d). In PAFR, the
query computation cost of server and user are both related with query keywords
number and friends number O(q ∗ d). And the computation cost for ranking
is O((logd)2). From Table 1, we can demonstrate that PAFR has both a very
light user workload and a moderate server workload while being secure against
user-server collusion.

6 Conclusion

In this paper, we propose PAFR, a privacy-aware friends retrieval scheme over
OSNs, aiming at preventing attack launched by the service provider. PAFR
allows user to upload his encrypted contents to server, connect with others in
an oblivious method, and query for retrieving his friends with specific keyword.
In addition, we adopt the dual-server model where two non-collude servers S1

and S2 implementing the role of the service provider. Based on that, we design
closeness-based secure sorting protocol to let the servers perform friends sorting
and return the ranked relevant result to user without learning the underlying
query words and the friends relationship. Both security and performance analysis
demonstrate that PAFR has both a very light user workload and a moderate
server workload while being secure against user-server collusions. As future work,
our aim is to extend PAFR to be secure against fully malicious adversaries, and to
efficiently support more functions in OSNs. We also plan to improve its efficiency
to reduce the computation cost associated with query and sort phase.
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Abstract. In this paper, we propose an ID-based linear homomorphic
cryptosystem, which consisted of an ID-based encryption scheme with
homomorphic property and a linearly homomorphic signature scheme,
where the linearly homomorphic signature scheme is compatible with
the privacy-protection data aggregation. Then, we propose a secure
and efficient ID-based meter report protocol for the isolated smart
grid devices, which can not only protect against unauthorized reading,
unintentional errors and maliciously altering messages, but also achieve
privacy-preserving for the customers. We provide security analysis of our
protocol in context of five typical attacks. The implementation of our pro-
tocol on the Intel Edison Platform shows that our protocol is efficient
enough for the physical constrained devices, like smart grid devices.

Keywords: Isolated smart grid device · ID-based linear homomorphic
cryptosystem · ID-based meter report protocol · Edison platform

1 Introduction

In order to avoid the management cost of public-key certificates, Shamir intro-
duced the concept of identity-based cryptography in 1984 [9]. The idea is to
derive public keys directly from the user’s unique identifiers, such as telephone
numbers, social insurance number and email address etc. The corresponding
private key is generated from the user’s public key by using the secret key of a
central authority that is named as Private Key Generator or PKG for short. Up
to now, most of identity based schemes are constructed from bilinear pairing,
such as Boneh and Franklin’s identity based encryption scheme [10]. Günther
[11] designed an additive homomorphic identity based encryption scheme based
c© Springer Nature Switzerland AG 2019
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on Boneh and Franklin’s scheme. The conception of homomorphic cryptosystem
was proposed by Johnson et al. [1]. The notion of homomorphic cryptosystem
is an important primitive and allows to validate computation over encrypted
and authenticated data. Homomorphic cryptosystem can be employed in many
applications, such as electronic business, cloud computing and smart grid. Nowa-
days, there are many types of homomorphic cryptosystems have been proposed
[12,13], but there are few homomorphic cryptosystems, designed in ID-based
cryptography. Since the management of public-key certificates is cumbersome
in the public key-based cryptosystems, it is meaningful to design homomorphic
cryptosystems in ID-based cryptosystems.

The smart grid network is considered as the next generation electricity supply
network, which is widely different from the traditional grid [2–4]. However, not all
smart grid devices are connected to the smart grid data communication network.
For example, some customers’ homes are located sparsely and far away from the
cloud center of ESP, and thus, it would be a heavy cost to extend the smart grid
network for covering their isolated smart grid devices.

The meter report protocol is used to calculate the total power consumption
data for each individual customers in a long term, for example one month, which
provides energy forecast for the ESP [5]. For the isolated smart grid device, a
smart reader device acts as a bridge between the ESP and it as Fig. 1. Usually,
the smart reader device needs to read the isolated smart meter more frequently
for monitoring the energy supply, but the fine-grained metering data may leak
the personal information of customers. Actually, the smart reader device only
need to send the long-term data to the ESP. Moreover, the reader device is
usually a mobile and portable device, and it is apt to be lost or broken, then will
be used by the attacker. Thus, a secure and efficient data aggregation mechanism
is required in the meter report protocol for isolated smart grid devices.

Recently, several privacy-protection aggregation schemes have been proposed.
Li et al. [6] constructed an incremental aggregation scheme based on a virtual
aggregation tree relies on the topology of network. Garcia et al. [5] proposed an
aggregation scheme combined with additive secret sharing. Lu et al. [7] proposed
an efficient privacy-preserving scheme for multidimensional data structure. The
three schemes are all based on Pallier’s homomorphic encryption technology.
Fan et al. [8] proposed an data aggregations scheme based on the subgroup
indistinguishability assumption. All the above aggregation schemes are designed
for aggregating individual usage date from different customers, and they are all
based on the public-key based cryptography. Recently, Wang and Xie proposed
a privacy-protection metering data protocol for the isolated smart devices [19],
which is still based on the public-key based cryptography.

This paper aims to propose an ID-based linear homomorphic cryptosystem
based metering report protocol for the isolate smart grid devices. The metering
data should be encrypted and aggregated securely for protecting against attacks
and privacy preserving. The reader device should be considered as an un-trusted
device. Furthermore, both the smart grid devices and the reader devices have
only restricted resources, and thus all the cryptographic schemes in the protocol
should provide the high performance in terms of efficiency.



An ID-Based Linear Homomorphic Cryptosystem 341

The contributions of this paper can be listed as follows: (1) We propose
an ID-based linear homomorphic cryptosystem which consists of an ID-based
encryption scheme [11] with homomorphic property and a linearly homomorphic
signature scheme. (2) We present an ID-based linear homomorphic cryptosystem
based metering report protocol for the isolate smart grid devices. In our design,
the only work of reader device is to aggregate the metering data and submit the
long-term data. It has no private keys, and thus it cannot be used to forge or
decrypt the metering data, even it has been controlled by an attacker. (3) We
provide security analysis to our protocol in context of five typical attacks. (4)
To evaluate the appropriacy of our protocol for the resource constrained devices,
we implement our protocol on the Intel Edison Platform which is a development
system for Internet of Things devices.

Organization. Some related mathematical concepts to our construction and
proof are reviewed in Sect. 2. An ID-based linear homomorphic cryptosystem
is proposed in Sect. 3. The secure and privacy-protection identity based meter
report protocol for isolated smart grid devices is proposed in Sect. 4. We analyze
our protocol against five typical attacks in Sect. 5. Section 6 discusses the per-
formance of our protocol on the platform of MacBook Pro and Edison. Finally,
we conclude our paper in Sect. 7.

2 Review of Mathematical Concepts

In this section, we will review some related mathematical concepts for our con-
struction and proof.

We assume that G and GT are two cyclic groups with the prime order p. We
define e : G × G → GT be the bilinear map as it has the following properties:

1. Bilinear: ∀g1, g2 ∈ G, a1, a2 ∈ Zp, e(ga1
1 , ga2

2 ) = e(g1, g2)a1a2 .
2. Non-degenerate: ∃g ∈ G, e(g, g) �= 1.
3. Efficient Computability: There exists an efficient algorithm to compute

e(g1, g2) for all g1, g2 ∈ G.

We define the Decisional Bilinear Diffie-Hellman (DBDH) assumption [11]
over G as follows.

Definition 1 (DBDH Assumption). Let Gen(1ι) be a group generation algo-
rithm that, takes as input a security parameter ι, outputs a description of a
prime order group Θ = {p,G,GT , e}. The DBDH Assumption over group G
states that for any probability polynomial-time (PPT) attackers A, given a tuple
(g, p, e, gx1 , gx2 , gx3) for randomly chosen x1, x2, x3

R−→ Zp and g is a generator
of G, the advantage for |Pr[A(g, p, e, gx1 , gx2 , gx3 , hb) = b] − 1/2| is negligible in
ι, where h0 = e(g, g)x1x2x3 , h1 = e(g, g)ω, ω

R−→ Zp and b ∈R {0, 1}.
Then, we define the q-strong Diffie-Hellman (q-SDH) assumption over G as

follows.
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Definition 2 (q-SDH Assumption). Let Gen(1ι) be a group generation algo-
rithm that, takes as input a security parameter ι, outputs a description of a
prime order group Θ = {p,G,GT , e}. The q-SDH Assumption over group G
states that for any probability polynomial-time (PPT) attackers, given a tuple
(g, gβ , gβ2

, · · · , gβq

) for randomly chosen β
R−→ Zp and g

R−→ G, the advantage
for obtaining a solution (γ, g1/(β+γ)) is negligible in ι, where γ ∈ Zp.

3 Design of ID-Based Linear Homomorphic Cryptosystem

3.1 An ID-Based Linear Homomorphic Cryptosystem

In this section, an ID-based linear homomorphic cryptosystem is presented,
which consists of an ID-based encryption scheme with homomorphic property
[11] and a linearly homomorphic signature scheme, where the linearly homomor-
phic signature scheme is compatible with the privacy-protection data aggrega-
tion. There are three roles in this cryptosystem: sender, receiver, and collector.
The sender is responsible for encrypting and signing his data, while the collec-
tor is responsible for computing the sum of the data only with the ciphertexts
and the aggregation of sender’s signature. The receiver accepts the outputs of
collector only if the aggregated signature is true.

Some notations in the cyrptosystem can be defined here.

– H : {0, 1}∗ → G is a cryptographic hash function.
– H2 : {0, 1}∗ → Z∗

p is a one-way hash function.
– x is the master secret key for the generation of ID-based private key.
– IDR is the identity information of receiver.
– IDS is the identity information of sender.
– r is the random number chosen by sender for encryption.
– s is the random number chosen by sender for generating the signature.

The ID-based linear homomorphic cryptosystem consists of five algorithms:
Setup, KeyGen, Enc&Sign, Aggr, Decrypt&Verif.

– Setup: The private key generator (PKG) generates two bilinear groups
parameters (G,GT , e : G × G → GT ) and (GT , Gω, eT : GT × GT → Gω)
with a security parameter λ, where G, GT and Gω are all prime order groups
with order p > 2λ. Let g and gt be the generators of G and GT respec-
tively. Then, PKG selects a random x ∈ Zp, and computes y = gx. It chooses
a cryptographic hash function H : {0, 1}∗ → G and a one-way hash func-
tion H2{0, 1}∗ → Z∗

p . Finally, PKG publishes the master public parameters
as mpk = (p, g, gt, G,GT , e, eT , y,H,H2), and keeps the master private key
msk = x.

– KeyGen: PKG generates the private key of receiver as dIDR
= H(IDR)x,

and the private key of sender as dIDS
= H(IDS)x, and then distributes these

private key securely. The security channel between PKG and sender only need
to be constructed once, and PKG goes offline after the registration phase.



An ID-Based Linear Homomorphic Cryptosystem 343

It does not need to cost too much to maintain the security channels. The
receiver computes W = e(H(IDR), y)1, and sends it to the sender.

– Enc&Sign: The sender selects s ∈R Zp, and publishes S = gs and St = gs
t .

When the sender wants to encrypt the data m for the receiver, the sender
chooses r ∈ Zp randomly and computes a ciphertext CT = (c1, c2, c3) =
(gr, gr

t , gm
t W r). Then, the sender computes the signature as

σ1 = d
1/(s+H2(IDR))
IDS

(1)

σ2 = (c3)1/(s+H2(IDR)). (2)

Finally, it sends {CT, (σ1, σ2)} to the collector.
– Aggr: After receiving {CT, (σ1, σ2)} from the sender, the collector can verify

the identity of sender by checking

e(σ1, S · gH2(IDR)) = e(H(IDS), Y ) (3)

If the signature σ1 is true, then the ciphertext/signature pair {CTi, (σ1, σ2)}
can be stored. Suppose that there are n ciphertext/signature pairs
{CTi, (σ1, σ2i)}i∈[1,n] have been stored in the collector. Then, the collec-
tor can compute the encrypted sum of the data as CT =

∏n
i=1 CTi =

(
∏n

i=1 c1i,
∏n

i=1 c2i,
∏n

i=1 c3i) = (C1, C2, C3) and the aggregated signature as
σ2 =

∏n
i=1 σ2i. Finally, it sends them to the receiver.

– Decrypt&Verif: When the receiver receives {CT, (σ1, σ2)}, it decrypts the
sum data as

M̄ = C3/e(dIDR
, C1). (4)

Then, the sender can compute the discrete log of M̄ on the base of gt to get
M . Finally, the receiver verifies σ2 by checking

eT (σ2, St · g
H2(IDR)
t ) = eT (gt, gt)M · eT (W,C2). (5)

The correctness of the above formulas will be depicted as follows:

Equation (3):

e(σ1, S · gH2(IDR))

= e(d1/(s+H2(IDR))
IDS

, gs · gH2(IDR))
= e(dIDS

, g)
= e(H(IDS), Y )

1 W is pre-computed by reciever, and will be stored in the sender, since the pairing
operation is considered as a very time-consuming cryptographic operation. Then,
there is no pairing operations in the encryption and signing phase of the sender.
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Equation (4):

M̄ = C3/e(dIDR
, C1)

=
n∏

i=1

gmi
t W r/e(H(IDR)x,

n∏

i=1

gri)

=
n∏

i=1

gmi
t ·

n∏

i=1

W ri/

n∏

i=1

e(H(IDR)x, g)ri

=
n∏

i=1

gmi
t = g

∑n
i=1 mi

t

Equation (5):

eT (σ2, St · g
H2(IDR)
t )

= eT (
n∏

i=1

(c3i)1/(s+H(IDR)), St · g
H2(IDR)
t )

= eT (
n∏

i=1

(gmi
t W ri), gt)

= eT (gt, gt)
∑n

i=1 mi · eT (W,

n∏

i=1

gri
t )

= eT (gt, gt)M · eT (W,C2)

The ID-based encryption scheme used in the cryptosystem can be proved
IND-ID-CPA secure under the DBDH assumption and CDH assumption, and
the proofs are omitted. The linearly homomorphic signature scheme is based on
Boneh and Boyen signature [14], which has been proved strongly unforgeability
against a weak attacker under the q-SDH assumption.

4 Design of the Identity-Based Meter Report Protocol
for Isolated Smart Grid Devices

4.1 Identity-Based Meter Report System Model

There are four roles in the system model, including private key generator (PKG),
electricity service provider (ESP), reader, and isolated smart grid device, where
the PKG is located in the ESP, as shown in Fig. 1. In the identity-based meter
report protocol, the PKG generates the identity-based private keys for the ESP
and the isolated smart grid device, and it goes offline after the registration
phase. Subsequently, the reader attempts to collect fine-grained metering data
from the isolated smart grid device at short intervals. After a long period, such
as one month, the reader sends the total electricity consumption data to the
ESP. Several types of attacks may be possible for such a collection procedure.
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Firstly, an attacker may listen in on the communications between the reader
and the isolated smart grid device to obtain the metering data or alter the
messages. Secondly, a corrupted reader may be used to obtain the power usage
data of the isolated smart grid device. Thirdly, a corrupted reader may provide
incorrect total power usage data to the ESP. Fourthly, a fake ESP worker may
analyze the fine-grained power usage data to identify the daily activities of the
customer. Finally, a customer may provide payment to an incorrect ESP because
of communication errors.

The identity-based meter report model is graphically summarized in Fig. 1.
To monitor the energy supply, the reader needs to read from the isolated smart
grid device much more frequently than it reports to the ESP. At regular intervals,
the ESP obtains only the long-term electricity usage data of the customer from
the reader.

Fig. 1. Identity-based meter report model for isolated smart grid devices

4.2 Protocol Construction

The proposed protocol consists of five phases. For convenience, some notation is
defined here.

– H : {0, 1}∗ → G is a cryptographic hash function.
– H2 : {0, 1}∗ → Z∗

p is a one-way hash function.
– x is the master secret key for the generation of identity-based private keys.
– IDesp is the identity information of the electricity service provider.
– IDis is the identity information of the isolated smart grid device.
– ri is the ith random number chosen by the isolated smart grid device for

encryption.
– s is the random number chosen by the isolated smart grid device for the

generation of signatures during a given period.

(1) Initialization Phase:

– PKG: The PKG generates two bilinear group parameters (G,GT , e : G×G →
GT ) and (GT , Gω, eT : GT × GT → Gω) with a security parameter λ, where
G, GT and Gω are all prime order groups of order p > 2λ. Let g and gt be the
generators of G and GT , respectively. Then, the PKG selects a random x ∈ Zp

and computes y = gx. It chooses a cryptographic hash function H : {0, 1}∗ →
G and a one-way hash function H2{0, 1}∗ → Z∗

p . Finally, the PKG publishes
the master public parameters as mpk = (p, g, gt, G,GT , e, eT , y,H,H2) and
stores the master private key as msk = x.



346 Z. Wang et al.

(2) Registration Phase:

– PKG: Let IDesp denote the identity of the ESP, and let IDis denote the
identity of the isolated smart device. The PKG generates the private key of
the ESP as dIDesp

= H(IDesp)x and the private key of the isolated smart
device as dIDis

= H(IDis)x, and it then securely distributes these private
keys. A secure channel between the PKG and the isolated smart device needs
to be constructed only once (e.g., through issuing a tamper-proof smart card),
and the PKG goes offline after the registration phase. Therefore, a high cost
is not required to maintain secure channels.

– ESP: The ESP computes W = e(H(IDesp), y)2 and sends it to the isolated
smart grid device.

(3) Reading Phase:

– Isolated smart grid device: At the beginning of a given long-term aggre-
gation period, the isolated smart grid device selects s ∈R Zp and publishes
S = gs and St = gs

t . When the reader needs to collect the metering data
mi for the ith time instance during this period, the device randomly chooses
ri ∈ Zp and computes a ciphertext CTi = (c1i, c2i, c3i) = (gri , gri

t , gmi
t W ri).

We assume that the reader reads the metering data n times during a single
period. There is a limitation that

∑n
i=1 mi should not be an excessively large

number. The device computes the signature as

σ1 = d
1/(s+H2(IDesp))
IDis

(6)

σ2i = (c3i)1/(s+H2(IDesp)). (7)

Finally, it sends {CTi, (σ1, σ2i)} to the reader.
– Reader: After receiving {CTi, (σ1, σ2i)}, the reader verifies the identity of

the isolated smart grid device by checking that3

e(σ1, S · gH2(IDesp)) = e(H(IDis), Y ). (8)

If the signature σ1 is valid, then the reader stores {CTi, (σ1, σ2i)}.

(4) Aggregation Phase:

– Reader: At the end of a long period, such as one month, the reader must
aggregate the total power usage data of the isolated smart grid device.
We assume that the reader has read the smart grid device n times dur-
ing this period, and thus, n ciphertext/signature pairs {CTi, (σ1, σ2i)}i∈[1,n]

have been stored in the reader. The reader computes CT =
∏n

i=1 CTi =
(
∏n

i=1 c1i,
∏n

i=1 c2i,
∏n

i=1 c3i) = (C1, C2, C3) and σ2 =
∏n

i=1 σ2i and then
reports {CT, (σ1, σ2)} to the ESP.

2 W is pre-computed by the ESP and will be stored in the isolated smart grid device,
since the pairing operation is considered to be a very time-consuming cryptographic
operation. Thus, no pairing operations are performed during the reading phase of
the isolated smart grid device.

3 This signature also involves the identity of ESP, which prevent the customer from
paying for an improper ESP.
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(5) Decryption and Verification Phase:

– ESP: When the ESP receives {CT, (σ1, σ2)}, it first verifies the identity of
the isolated smart grid device by checking Eq. (3). Then, the ESP computes

M̄ = C3/e(dIDesp
, C1). (9)

Since the long-term power usage data M =
∑n

i=1 mi is guaranteed not to be
an excessively large number, the ESP can compute the discrete logarithm of
M̄ with base gt to obtain M . Finally, the ESP verifies σ2 by checking that

eT (σ2, St · g
H2(IDesp)
t ) = eT (gt, gt)M · eT (W,C2). (10)

5 Security Analysis

Our identity-based meter report protocol is designed to prevent unauthorized
parties from reading or maliciously altering data and to protect the private
information of customers. In this section, we analyze the security properties of
our protocol in the context of five typical attacks in a smart grid system, and
use the Proverif tool to verify the formal security of our protocol.

5.1 Against Attacks from External Parties

To obtain unauthorized information, external attackers may eavesdrop on the
communication channels between the reader and the isolated smart grid device or
between the ESP and the reader. In our protocol, all metering data are encrypted
by the identity of the ESP and can only be decrypted using its private key. The
identity-based encryption scheme used in our protocol satisfies IND-ID-CPA
security under the DBDH assumption. External attackers also cannot maliciously
alter metering data from the isolated smart grid device because they cannot
forge the appropriate signature. Our linearly homomorphic signature scheme is
unforgeable under the q-SDH assumption and Boneh-Boyen signatures [14].

5.2 Against Attacks from the Isolated Smart Grid Device

If an isolated smart grid device is controlled by an attacker, it may be used
to mimic other legitimate smart grid devices. In our protocol, we use linearly
homomorphic signature technology to prevent a falsified smart grid device from
performing reader-device and ESP-device authentication. The first component
of the linearly homomorphic signature is used to authenticate the identity of
the isolated smart grid device, and it is unforgeably secure under Boneh-Boyen
signatures.
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5.3 Against Compromise Attacks from the Reader

An attacker may use a lost legitimate reader to obtain unauthorized information
or maliciously alter the long-term power usage data of a smart grid device; such
an attack is called an internal attack from the reader. During the reading phase,
such a legitimate reader can verify the signature of the device. However, the
power usage data mi cannot be recovered from the ciphertext CTi = gmi

t W ri

because the reader cannot obtain the ESP’s private key, dIDesp
. During the

aggregation phase, the reader also cannot decrypt CT to determine M̄ and
obtain the long-term power usage data because it does not require the private
key for aggregating the linearly homomorphic signatures. Moreover, the linearly
homomorphic signature (σ1, σ2) prevents the reader from altering the long-term
power usage data. The unforgeability of our linearly homomorphic signature
scheme is proven by Theorems 2 and 3. The properties of linearly homomorphic
signatures also protect the correctness and integrity of the long-term power usage
data.

5.4 Against Internal Attacks from the ESP

Suppose that some legitimate workers from the ESP make malicious attacks to
analyze the private information of customers, such as their daily activity. After
receiving the ciphertext/signature pair {CT, (σ1, σ2)} from the reader, the ESP
can compute M̄ = C3/e(dIDesp

, C1) to recover the long-term power usage data.
However, the ESP cannot decrypt the individual metering data mi from CT
because it does not know each corresponding random number ri.

5.5 Against Man-in-the-Middle Attacks

In reader-device and ESP-device authentication, the linearly homomorphic sig-
nature scheme is used to authenticate the device’s identity and the ciphertexts.
Thus, any man-in-the-middle attacker cannot mimic a legitimate device to fool
the reader or the ESP. The first component of the linearly homomorphic signa-
ture scheme provides strong defense against man-in-the-middle attacks because
an attacker cannot convince the reader or ESP to accept its identity.

5.6 Formal Security of Protocol

It is very difficult by trial to find vulnerabilities from the complex security pro-
tocol. Thus, we use the Proverif tool [16,17] to formally verify the security of our
protocol. Obviously, the secrecy value mentioned for our protocol is the metering
power usage data m. Furthermore, there are also authentication properties, and
we declare the events as follows:

event acceptsISG(m,identity), which is used to record a fact that the iso-
lated smart grid device considers it has accepted to run the protocol with the
reader and ESP, with the metering data as the first argument and the ESP’s
identity as the second.
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event termESP(m,identity), which means that the ESP believes it has ter-
minate a protocol run.

event termReader(identity), which means that the reader believes it has
terminate a protocol run.

Executing our protocol with Proverif produces the output as Fig. 2, which
informs us that authentications of isolated smart grid device to reader and ESP
holds, and the secrecy of meter data also holds. Both acknowledge the correctness
and safety of our protocol.

Fig. 2. Output of Proverif

6 Implementation and Performance Analysis

6.1 Communication Overhead

The communication cost of meter report protocol for isolated smart grid devices
can be divided into two parts: (1) communications between isolated smart grid
devices and readers; (2) communications between readers and ESPs. In our simu-
lation, we choose MNT elliptic curve with order of 160 bits and embedded degree
k = 6. Then, the elements in Zp, G, and GT are represented by 160, 161, and
960 bits under this curve. In our protocol, in reading phase, the isolated smart
grid device sends the encrypted meter data and signature to the reader. The
form of ciphertext and signature involves 3 elements in G and 2 elements in GT .
In aggregation phase, the reader sends encrypted total power usage data and
signature to the ESP, which also includes 3 elements in G and 2 elements in GT .
Thus, the total communication cost of our protocol is 600 bytes. Table 1 presents
a comparison of communication overheads between Jo et al.’s protocol [18] and
our protocol, and Jo et al.’s protocol is also the only existing privacy-preserving
protocol against collector(reader) compromise attacks. Table 1 shows that the
communication overhead of Jo et al.’s protocol is much more heavy than our
protocol, since they use Paillier homomorphic encryption algorithm (The mod-
ule N = 1024 bits) for privacy-preserving. Unlike Jo et al.’s protocol [18], our
protocol is designed for the isolated smart grid devices, and the communication
overhead between readers and ESPs should be low. For most isolated smart grid
devices, readers are usually installed temporarily, and the connections between
ESPs and readers are often wireless connections.

We use ns 2 (version 2.34) to simulate end-end wireless communication delays.
For isolated smart grid devices, there are usually both wireless connections that
connects isolated smart grid devices and readers, and connects readers and ESPs.
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Table 1. Comparison of communication loads

Jo et al. Our protocol

Isolated Smart Grid Device-Reader 1080 bytes 300 bytes

Reader-ESP 1344 bytes 300 bytes

Total 2424 bytes 600 bytes

Table 2 shows the simulation parameters. In our simulation, the link distance
from the isolated smart grid device to the reader is assumed to 25 m, and the
distance from the reader and the ESP is assumed to 50 to 100 miles. The result
shows that the communication delay on link of the isolated smart grid device to
the reader is negligible, and the average communication delay between the reader
and ESP is 6.23 to 7.79 s. We cannot ignore the communication delay of between
the reader and the ESP. As previously analyzed, the communication overhead
is low in our protocol, and the reader only need to send the total power usage
data once at the end of the billing period. Thus, our protocol is more feasible
for isolated smart grid devices than the protocol of [18].

Table 2. Parameters for the communication simulation

Simulation parameter Value

Number of nodes 3

Message size (bytes) 300, 300

Mac protocol 802.11p

Route protocol DSDV

Simulation Time(s) 150

6.2 Computational Cost

We implemented our protocol on two different platforms. The first one is a
MacBook Pro with an Intel Core i5 CPU (2.5 GHz) with 4 GB of RAM running
OS X 10.9.3. The second one is an Intel Edison development platform with a
dual-core, dual-threaded Intel Atom CPU (500 MHz) with 1 GB of RAM running
Yocto Linux v1.6. The Intel Edison development platform is considered a good
choice for rapidly prototyping and producing Internet of Things (IoT) devices.
In a smart grid network, many devices are resource-constrained, and the Intel
Edison development platform can ideally simulate such smart grid devices. We
implemented our protocol in C using the Pairing-Based Cryptography (PBC)
library [15], which provides implementations of the basic arithmetic and pairing
operations.
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Table 3 shows the time costs during the reading phase for the isolated smart
grid device and the reader device. The time cost for the isolated smart grid device
is only approximately 0.42 s when our protocol is run on the Edison platform. The
reader device requires 0.39 s for signature verification on the Edison platform.
The values in Table 3 are the average values over 100 randomized runs. Figure 3
shows the time costs of the reader device (on the two different platforms) during
the aggregation phase, where the time consumption increases with an increasing
number of ciphertext/signature pairs to be aggregated. From Table 3 and Fig. 3,
we can see that the reading phase and aggregation phase of our protocol are very
efficient for resource-constrained smart grid devices. Table 4 shows the time cost
of decryption for the ESP, which is approximately 0.42 s on the MacBook.

Table 3. Time costs during the reading phase

Platform MacBook Intel Edison

Isolated Smart Grid Device 0.0196 s 0.42 s

Reader Device 0.015 s 0.39 s

Table 4. Time cost during the decryption and verification phase

Platform MacBook Intel Edison

Decryption and Verification 0.42 s 9 s

Fig. 3. Time cost of the reader during the aggregation phase
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7 Conclusion

Privacy preservation and un-trusted reader are two important issues in the
metering report of isolated smart grid device. Thus, in order to protect users’ pri-
vacy information and against the un-trusted reader, we design an ID-based linear
homomorphic cryptosystem based metering data protocol for the isolated smart
grid devices. We give security analysis to our protocol in context of five typical
attacks in smart grid. Finally, the implementation of our protocol on the Edison
platform shows that our protocol is efficient enough for the resource-constrained
devices.

Acknowledgment. This research is partially supported by the National Natural Sci-
ence Foundation of China under Grant No. 61672016, the Jiangsu Qing Lan Project,
the Humanities and Social Science Research Planning Fund of the Education Ministry
of China under grant No. 15YJCZH201, Guangxi Key Laboratory of Cryptography
and Information Security (No. GCIS201815).

References

1. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7 17

2. Niyato, D., Xiao, L., Wang, P.: Machine-to-machine communications for home
energy management system in smart grid. IEEE Comm. Mag. 49(4), 53–59 (2011)

3. Fadlullah, Z.M., Fouda, M.M., Kato, N., Takeuchi, A., Iwasaki, N., Nozaki,
Y.: Toward intelligent machine-to-machine communications in smart grid. IEEE
Comm. Mag. 49(4), 60–65 (2011)

4. Liang, H., Choi, B., Zhuang, W., Shen, X.: Towards optimal energy store-carry-
and-deliver for PHEVs via V2G system. In: Proceedings of IEEE INFOCOM 2012,
pp. 25–30, March 2012

5. Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via homomorphic
encryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010.
LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22444-7 15

6. Li, F., Luo, B., Liu, P.: Secure information aggregation for smart grids using homo-
morphic encryption. In: Proceedings of the 1st IEEE International Conference on
Smart Grid Communication, pp. 327–332 (2010)

7. Lu, R., Liang, X., Li, X., Lin, X., Shen, X.: EPPA: an efficient and privacy-
preserving aggregation scheme for secure smart grid communications. IEEE Trans.
Parallel Distrib. Syst. 23(9), 1621–1631 (2012)

8. Fan, C.-I., Huang, S.-Y., Lai, Y.-L.: Privacy-enhanced data aggregation scheme
against internal attackers in smart grid. IEEE Trans. Ind. Inform. 10(1), 666–675
(2014)

9. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

10. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/978-3-642-22444-7_15
https://doi.org/10.1007/978-3-642-22444-7_15
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-44647-8_13


An ID-Based Linear Homomorphic Cryptosystem 353

11. Günther, F., Manulis, M., Peter, A.: Privacy-enhanced participatory sensing with
collusion resistance and data aggregation. In: Gritzalis, D., Kiayias, A., Askoxy-
lakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 321–336. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-12280-9 21

12. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 41

13. Wang, Z., Sun, G., Chen, D.: A new definition of homomorphic signature for iden-
tity management in mobile cloud computing. J. Comput. Syst. Sci. 80(3), 546–553
(2014)

14. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21, 149–177 (2008). Extended abstract
in Advances in Cryptology EUROCRYPT 2004

15. Lynn, B.: The pairing-based cryptography (PBC) library. http://crypto.stanford.
edu/pbc

16. Blanchet, B.: Automatic verification of security protocols in the symbolic model:
the verifier ProVerif. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD VII.
LNCS, vol. 8604, pp. 54–87. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-10082-1 3

17. Cheval, V., Blanchet, B.: Proving more observational equivalences with ProVerif.
In: Basin, D., Mitchell, J.C. (eds.) POST 2013. LNCS, vol. 7796, pp. 226–246.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36830-1 12

18. Jo, H.J., Kim, S., Lee, D.H.: Efficient and privacy-preserving metering protocols
for smart grid systems. IEEE Trans. Smart Grid 7(3), 1732–1742 (2016)

19. Wang, Z., Xie, H.: Privacy-preserving meter report protocol of isolated smart grid
devices. Wirel. Commun. Mob. Comput. 2017, 8 (2017)

https://doi.org/10.1007/978-3-319-12280-9_21
https://doi.org/10.1007/978-3-642-30057-8_41
https://doi.org/10.1007/978-3-642-30057-8_41
http://crypto.stanford.edu/pbc
http://crypto.stanford.edu/pbc
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1007/978-3-642-36830-1_12


Implicit-Key Attack on the RSA
Cryptosystem

Mengce Zheng(B) and Honggang Hu

Key Laboratory of Electromagnetic Space Information, CAS,
University of Science and Technology of China, Hefei, China

{mczheng,hghu2005}@ustc.edu.cn

Abstract. In this paper, we address the security evaluation issue of the
RSA cryptosystem with implicitly related private keys. We formulate the
attack scenario and propose a novel implicit-key attack using the lattice-
based method. When given public information (N1, e1), (N2, e2) and the
amount of shared bits of the private keys d1 and d2, one can conduct the
implicit-key attack to factor N1, N2 in polynomial time under a certain
condition. We show that the RSA cryptosystem is more insecure when
taking the implicitly related keys into consideration. The experimental
results are provided to verify the validity of our proposed attack.

Keywords: RSA cryptosystem · Cryptanalysis · Implicit-key attack ·
Lattice · Coppersmith’s techniques

1 Introduction

The RSA cryptosystem [14] is the most attractive one in public key cryptography
and plays an important role in the field of cybersecurity. The main mathemat-
ical equation is ed ≡ 1 mod ϕ(N), where e, d,N and ϕ(N) are described as
follows. N = pq is the product of two large primes of the same bit-size. The
respective public and private keys e, d are also called public/encryption and pri-
vate/decryption exponents. ϕ(N) = (p − 1)(q − 1) is Euler’s totient function
of N . To encrypt an integer m, one computes c = me mod N . To decrypt a
ciphertext c, one needs to compute cd mod N .

The security of the RSA cryptosystem has been investigated in [1,12]. Since
Coppersmith [4] introduced the lattice-based method, its variations have been
widely used for attacking the RSA cryptosystem such as [2,5–7,10,16]. Among
the various attacks, the partial key exposure attack and the implicit factoring
problem are two attractive ones.

In 2005, Ernst et al. [7] presented several concrete attacks that work up to
full size exponents. This attack type was first studied by Boneh, Durfee, and
Frankel in [3]. In other words, partial key exposure attack can be seemed as the
problem of attacking RSA with an oracle providing explicit information about
d. In 2009, May and Ritzenhofen [13] proposed a new approach to factor RSA
modulus with an oracle providing implicit information about p. To be specific,
c© Springer Nature Switzerland AG 2019
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for RSA moduli N1 = p1q1 and N2 = p2q2 with α-bit qi and p1, p2 share at least
t many least significant bits (LSBs), it has been proved that if t > 2(α + 2), one
can find q1 and q2. Thus, N1 and N2 can be factored easily. Other cases such as
shared most significant bits (MSBs), shared middle bits [8] and some improved
methods [15] were proposed afterwards.

Inspired by the partial key exposure attack and the implicit factoring prob-
lem with existing drawbacks, we concentrate on a weaker setting, where some
implicit information about the private keys is given. We informally formulate
the following scenario related to the implicit-key attack. Let (N1, e1, d1) and
(N2, e2, d2) be two different RSA key pairs with N1, N2 of the same bit-size.
Suppose we know some implicit information about the private keys, i.e. the
amount of shared MSBs and LSBs of d1 and d2. The goal is to factor N1 and N2

in polynomial time from the knowledge of the implicitly related private keys.
It is opposed to the previous cryptanalyses dealing with only one RSA key

pair. Our work can cover other similar works and make further improvements.
Once RSA instances are generated with imperfect randomness or backdoored
keys, one may encounter such attack scenario. Though such implicit-key attack
may not directly influence the security of the RSA cryptosystem. We consider
the following issues for which our theoretical study may be interesting. One is to
deeply disclose the vulnerability of RSA with weaker conditions. Moreover, we
want to investigate how one can further extend previous attacks, where partial
key exposure and implicit hint are combined.

We adapt the Jochemsz-May strategy [10] as a main mathematical tool to
solve the common root of multivariate equations. To achieve theoretical effects,
the lattice-based method relies on the following heuristic assumption. One can
obtain algebraically independent polynomials by the lattice-based method, and
then efficiently solve the common root by the Gröbner basis computation. This
heuristic assumption always holds in the simulated experiments like previous
works in the literature. We want to point out that the theoretical results stated
below are asymptotic since we require the dimension of the corresponding lattice
to be preferably large.

The rest of the paper is organized as follows. We provide the basic knowledge
of lattice reduction theory and the condition for finding the common root in
Sect. 2. In Sect. 3, we formulate the concrete attack scenario and present the
implicit-key attack. In Sect. 4, we provide the experimental results with more
details. Finally, concluding remarks are given in Sect. 5.

2 Preliminaries

In this section, we briefly introduce the LLL algorithm [11] and Coppersmith’s
techniques (also stated as Howgrave-Graham’s lemma [9]). Then, we provide the
condition for finding the common root and simply mention the running time.
One can refer to [12] for more details about the lattice-based method.

A lattice L spanned by linearly independent vectors b1, . . . , bm ∈ R
n is the

set of all their integer linear combinations. Thus, the lattice L can be written
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as L(b1, . . . , bm) = {∑m
i=1 zibi|zi ∈ Z}. For i = 1, . . . , m, we regard each basis

vector bi as a row vector, which generates so-called m × n basis matrix B. The
determinant of L is calculated as det(L) =

√
det(BBT ). We usually consider a

full-rank lattice for m = n and hence det(L) = |det(B)|.
The LLL algorithm proposed by Lenstra, Lenstra, and Lovász [11] is prac-

tically used for finding approximately non-zero short lattice vectors due to its
efficient running results. We provide the following substratal lemma about its
outputs.

Lemma 1. Let L be a lattice spanned by a basis (b1, b2, . . . , bm). The LLL algo-
rithm outputs a reduced basis (v1,v2, . . . ,vm) in polynomial time. For 1 ≤ i ≤ m,
the first i many reduced basis vectors satisfy

‖v1‖, ‖v2‖, . . . , ‖vi‖ ≤ 2
m(m−1)

4(m+1−i) det(L)
1

m+1−i .

The following lemma presented by Howgrave-Graham [9] gives a criterion
for judging whether the desired small root of a modular equation is also a root
over Z. To a given polynomial g(x1, . . . , xn) =

∑
ai1,...,inxi1

1 · · · xin
n , its norm is

defined as ‖g(x1, . . . , xn)‖2 :=
∑ |ai1,...,in |2.

Lemma 2. Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an n-variate integer polynomial,
which is a sum of at most m monomials. Suppose that (1) g(x̃1, . . . , x̃n) ≡ 0 mod
R, where |x̃1| < X1, . . . , |x̃n| < Xn, and (2) ‖g(x1X1, . . . , xnXn)‖ < R/

√
m.

Then g(x̃1, . . . , x̃n) = 0 holds over the integers.

Applying the lattice-based method, we can combine Lemma 1 with Lemma 2
to solve modular/integer polynomials. Once having the first l reduced vectors,

one can solve the unknown variables for 2
m(m−1)
4(m+1−l) det(L)

1
m+1−l < R/

√
m, which

can be further reduced to det(L) ≤ Rm−ε with an error term ε, or a simpli-
fied condition det(L) < Rm. We can construct an upper/lower triangular basis
matrix by the lattice-based method. The lattice determinant can be calculated
as det(L) = RuR

∏n
i=1 Xui

i , where ui denotes the exponent sum of each Xi or
R that appear on the diagonal in the corresponding basis matrix. Hence, the
condition det(L) < Rm can be rewritten as RuR

∏n
i=1 Xui

i < Rm.
We sketch the lattice-based method and derive the crucial condition for find-

ing small roots of integer polynomials. Lattice-based attacks using Coppersmith’s
techniques start with an integer/modular equation in some unknown parameters
of given RSA instances. To carry out the proposed implicit-key attack, we aim
to find a suitable root of a five-variate integer polynomial f(x1, x2, x3, x4, x5).

First, we need to estimate the upper bounds Xi as mentioned in Lemma 2.
Moreover, we define the largest size of an individual term in f(x1, x2, x3, x4, x5)
as X∞ = ‖f(x1X1, x2X2, x3X3, x4X4, x5X5)‖∞ that is related to the definition
of a sufficient large modulus R. Then, a lattice basis matrix is constructed using
the shift polynomials defined in two monomial sets S and T . Based on the
Jochemsz-May strategy, the solvable condition reduces to Xs1

1 Xs2
2 Xs3

3 Xs4
4 Xs5

5 <
X

sg∞ for sj =
∑

T\S ij and sg = |S| in our proposed implicit-key attack. More
details about the concrete lattice construction for a given specific polynomial
will be described in Sect. 3.
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Under the above condition, we can compute the first l reduced basis vectors
using the LLL algorithm and then obtain the equations f1, . . . , fl that all share
the same root over the integers. Next, we use the Gröbner basis computation to
extract the common root. The running time depends on the time of reducing the
basis matrix and extracting the common root. For conducting the implicit-key
attack on concrete RSA instances, both of them can be done in polynomial time.

3 Implicit-Key Attack

We describe the implicit-key attack by providing the concrete construction for
two RSA instances (N1, e1, d1) and (N2, e2, d2). Consider a general case when
e1, e2 are of arbitrary bit-size and d1, d2 share some MSBs and LSBs leaving one
different block in the middle. Unless otherwise noted, N in this paper denotes
the greater one of N1, N2 and log2 N denotes their bit-size (suppose two RSA
moduli are of the same bit-size). Our main result is stated as follows.

Theorem 1. Let N1 = p1q1, N2 = p2q2 be two different RSA moduli of the same
bit-size, and p1, q1, p2, q2 be primes of the same bit-size. Let e1, d1, e2, d2 satisfy
e1d1 ≡ 1 mod ϕ(N1) and e2d2 ≡ 1 mod ϕ(N2), such that e1 = Nα1 , e2 = Nα2

and d1, d2 ≈ N δ. Suppose that d1 and d2 share β1 log2 N MSBs and β2 log2 N
LSBs. Then N1, N2 can be factored in polynomial time if

δ <
(α + β − 1)(1 + 10τ + 20τ2) − 10τ2 − 30τ3

4 + 30τ + 40τ2
− α

2
+ 1,

where α = α1 + α2, β = β1 + β2 and τ is the only positive root of

120x4 + 180x3 + (86 − 20α − 20β)x2 + (16 − 8α − 8β)x − α − β + 1 = 0.

Proof. From the main equation of the RSA cryptosystem, namely ed ≡ 1 mod
ϕ(N), we have e1d1 = k1(N1+1−p1−q1)+1 and e2d2 = k2(N2+1−p2−q2)+1
for two unknown positive integers k1 and k2. Multiplying the above equations
by e2 and e1 respectively and then subtracting, we have

e1e2(d1 − d2) = e2k1(N1 + 1 − p1 − q1) + e2 − e1k2(N2 + 1 − p2 − q2) − e1. (1)

Consider we know d1, d2 ≈ N δ sharing β1 log2 N MSBs and β2 log2 N LSBs.
Hence, it implies that d1 = dMSB2(δ−β1) log2 N + d̄12β2 log2 N + dLSB and d2 =
dMSB2(δ−β1) log2 N + d̄22β2 log2 N + dLSB, where dMSB and dLSB are shared MSBs
and LSBs, d̄1 and d̄2 are different values in the middle block. Substituting d1
and d2 into (1), it can be rewritten as

e1e2(d̄2 − d̄1)Nβ2 + e2k1(N1 +1− p1 − q1)− e1k2(N2 +1− p2 − q2)+ e2 − e1 = 0.

The known values are a1 = e1e2N
β2 , a2 = e2(N1 + 1), a3 = −e1(N2 + 1),

a4 = −e2, a5 = e1, and a6 = e2 − e1. The unknown variables are x1 = d̄2 − d̄1,
x2 = k1, x3 = k2, x4 = p1 + q1, and x5 = p2 + q2. We aim to find a suitable root
of f(x1, x2, x3, x4, x5) := a1x1 + a2x2 + a3x3 + a4x2x4 + a5x3x5 + a6.
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If e1 and e2 have a nontrivial great common divisor, one can do the division
to make the polynomial irreducible. Suppose we know e1 = Nα1 and e2 = Nα2 .
The upper bounds Xi are estimated as follows. X1 = N δ−β for β = β1 + β2,
X2 = Nα1+δ−1, X3 = Nα2+δ−1, and X4 = X5 = N1/2. The maximal coefficient
X∞ can be easily calculated as X∞ ≈ Nα+δ for α = α1 + α2.

We follow the Jochemsz-May strategy [10] and use extra shifts of x4 and
x5 for solving f(x1, x2, x3, x4, x5). Define two monomial sets S and T for two
integers s ≥ 1 and t ≥ 0.

S =
⋃

0≤j4,j5≤t

{
xi1
1 xi2

2 xi3
3 xi4+j4

4 xi5+j5
5

∣
∣xi1

1 xi2
2 xi3

3 xi4
4 xi5

5 is a monomial of fs−1
}

,

T =
⋃

0≤j4,j5≤t

{
xi1
1 xi2

2 xi3
3 xi4+j4

4 xi5+j5
5

∣
∣xi1

1 xi2
2 xi3

3 xi4
4 xi5

5 is a monomial of fs
}

.

Through the expansion of fs−1 and fs, we know the relation of xi1
1 xi2

2 xi3
3 xi4

4 xi5
5

in S and T to their exponents i1, i2, i3, i4, i5, respectively.
Let R = X∞Xs−1

1 Xs−1
2 Xs−1

3 Xs−1+t
4 Xs−1+t

5 , we define f ′ = a−1
6 f mod R

and the shift polynomials below,

gi1,i2,i3,i4,i5 : xi1
1 xi2

2 xi3
3 xi4

4 xi5
5 f ′Xs−1−i1

1 Xs−1−i2
2 Xs−1−i3

3 Xs−1+t−i4
4 Xs−1+t−i5

5 ,

for xi1
1 xi2

2 xi3
3 xi4

4 xi5
5 ∈ S,

g′
i1,i2,i3,i4,i5

: xi1
1 xi2

2 xi3
3 xi4

4 xi5
5 R,

for xi1
1 xi2

2 xi3
3 xi4

4 xi5
5 ∈ T\S.

The lattice L is constructed by the coefficient vectors of gi1,i2,i3,i4,i5 and
g′

i1,i2,i3,i4,i5
with xiXi substituting for each xi. We have uR = |T\S|, uj =∑

T ij and m = |T |. More precisely, the diagonal elements of gi1,i2,i3,i4,i5 is
equal to R/X∞ and uj =

∑
S ij +

∑
T\S ij . So RuR

∏5
i=1 Xui

i < Rm implies

RuR(R/X∞)sg
∏5

i=1 Xsi
i < RuR+sg for sj =

∑
T\S ij and sg = |S|, which can

be reduced to
Xs1

1 Xs2
2 Xs3

3 Xs4
4 Xs5

5 < Xsg∞ . (2)

We now calculate sj for j = 1, . . . , 5 and sg by above definitions. Taking
t = τs for τ ≥ 0 and omitting the lower term for simplicity, we obtain

sg = s1 =
1

120
(1 + 10τ + 20τ2)s5, s2 = s3 =

1
120

(2 + 15τ + 20τ2)s5,

s4 = s5 =
1

120
(1 + 10τ + 30τ2 + 30τ3)s5.

We substitute the values of Xj , sj and X∞, sg into the condition (2) and obtain
1+10τ +30τ2 +30τ3 +(1+10τ +20τ2)(δ −β)+ (2+15τ +20τ2)(α+2δ − 2) <
(1 + 10τ + 20τ2)(α + δ). It leads to

δ <
(α + β − 1)(1 + 10τ + 20τ2) − 10τ2 − 30τ3

4 + 30τ + 40τ2
− α

2
+ 1.
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As α and β are already given, the value of the right side can be maximized by
an optimal value of τ . It is easy to see that τ is the only positive root of

120x4 + 180x3 + (86 − 20α − 20β)x2 + (16 − 8α − 8β)x − α − β + 1 = 0.

We can obtain four integer polynomials f1, f2, f3 and f4 apart from f by the
proposed implicit-key attack. Moreover, f, f1, f2, f3 and f4 share the common
root (d̄2 − d̄1, k1, k2, p1 + q1, p2 + q2) over the integers. Thus, we can extract
p1 + q1 and p2 + q2 that directly lead to the factorization of N1 and N2. 	


If e1 and e2 are of full bit-size, i.e. α = 2, we immediately know τ is the only
positive root of 120x4 + 180x3 + (46 − 20β)x2 − 8βx − β − 1 = 0. Therefore, we
show that N1, N2 can be factored in polynomial time for β = β1 + β2 if

δ <
(β + 1)(1 + 10τ + 20τ2) − 10τ2 − 30τ3

4 + 30τ + 40τ2
. (3)

We illustrate the above condition (3) with respect to various β’s in Fig. 1. It is
oblivious that we achieve higher insecure bound on δ as β increases, which means
that the RSA cryptosystem with implicitly related keys is more vulnerable.

Fig. 1. The comparison of previous result (i.e. δ < δBD) and ours (i.e. δ < δZH). The
gray region shows our asymptotic improvement using the proposed implicit-key attack.

4 Experimental Results

To achieve the asymptotic bound on δ, the parameter τ = t/s should be less than
0.2 from our theoretical observation. For the smallest positive integer t = 1, s
should be at least 6. Therefore, the dimension of the corresponding lattice will be
m = 966, which seems impossible for our simulated experimental environment.
Thus, we always choose t = 0 (i.e. τ = 0) in the simulated numerical experiments.

The experiments were carried out by SageMath under Windows 10 running
on a laptop with Intel Core i7-8550U CPU 1.80 GHz. The numbers for gener-
ating the parameters of two RSA instances were chosen at random. During the
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experiments, we collected much more polynomials satisfying our requirement
and extracted the common root by the Gröbner basis computation.

We would generate 1024-bit moduli in the experiments and all the public
exponents appeared are near full bit-size for simplicity. The δt-column provides
the theoretical bound on δ for fixed β1 and β2 (with τ = 0). The δe-column
provides the experimental bound on δ for the same β1, β2 and log2 N = 1024 in
distinct lattice settings. We denote the dimension of the corresponding lattice by
m and the running time of the proposed attack is denoted by Time in seconds.

For given two distinct 1024-bit moduli and d1, d2 sharing some MSBs and
LSBs, we choose s = 1, 2, 3 and t = 0 to construct the lattices. Hence, we need to
reduce 6-dimensional, 21-dimensional and 56-dimensional lattices using the LLL
algorithm. The results of the comparison of the theoretical and experimental
insecure bounds are showed in Table 1.

Table 1. The theoretical and experimental results of the proposed implicit-key attack

log2 N = 1024 s = 1, m = 6 s = 2, m = 21 s = 3, m = 56

β1 β2 δt δe Time δe Time δe Time

0.043 0.043 0.271 0.259 0.004 0.264 0.623 0.270 47.59

0.064 0.101 0.291 0.280 0.004 0.286 0.621 0.291 47.17

0.107 0.142 0.312 0.300 0.004 0.307 0.682 0.311 37.23

0.150 0.150 0.325 0.315 0.005 0.321 0.522 0.325 32.02

In each experiment, we collected sufficient polynomials sharing the common
root over the integers. Then we put several equations into the Gröbner basis
computation and finally obtained the correct values of p1 + q1 and p2 + q2,
which lead to the factorization of N1 and N2, respectively. If the Gröbner basis
computation did not directly output the desired root, we would first calculate
the value of x3 and then extract the solution of the remaining variables. As the
lattice dimension gets larger, the experimental insecure bound becomes higher
and the running time gets longer. From Table 1, we observe that s = 3 is already
enough for performing the implicit-key attack since the experimental result is
very close to the theoretical bound.

5 Concluding Remarks

In this paper, we focus on a new attack scenario concerning implicitly related
private keys. Our goal is to factor RSA moduli using the implicit information
about the related keys. We propose the implicit-key attack based on Copper-
smith’s techniques, which is applied for solving modular/integer polynomials as
a powerful tool.

The proposed implicit-key attack can reveal the vulnerability of the RSA
cryptosystem with implicitly related keys. We further verify the validity of the
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proposed attack by several numerical experiments. We would like to extend the
implicit-key attack for an arbitrary number n of unknown variables. However, it
seems less efficient as n gets greater since the running time is exponential in n.
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Abstract. Triangle counting is an important step in calculating the net-
work clustering confficient and transitivity, and is widely used in impor-
tant role recognition, spam detection, community discovery, and biologi-
cal detection. In this paper, we introduced a GPU-based load balancing
triangle counting scheme (GBTCS), which contains three techniques.
First, we designed an algorithm for preprocessing the graph to obtain
the CSR (Compressed Sparse Row Format) representation of the graph,
which not only can reduce half of the memory usage of GPU, but also
distribute the computational overhead to the core of the GPU. Second,
we designed a SIMD (Single Instruction Multiple Data)-based set inter-
section algorithm that improves the thread parallel performance on the
GPU. Third, we designed a load balancing algorithm to dynamically
schedule the GPU workload. Performance evaluations demonstrate that
our proposed scheme is 5x to 120x faster than the serial CPU algorithm.

Keywords: Triangle counting · CSR representation · Set
intersection · Workload balance

1 Introduction

With the prosperity of big data, triangle counting has been widely used in
important role recognition, spam detection, community discovery, and biolog-
ical detection. Triangle counting algorithm mainly used in counting the number
of intersections of the neighbor lists to identify the triangles in the graph, which
plays an important step in calculating the network clustering coefficient and
transitivity.

The traditional triangle counting algorithm traverses each vertex or edge of
the graph, finds the intersection of the two lists, and once it finds a common
adjoining vertex, it finds a triangle. Considering the rise of big data and com-
plex networks, the traditional triangle counting algorithm cannot find the exact
number of triangles in an acceptable time [10,13,15].
c© Springer Nature Switzerland AG 2019
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The current GPU, which has many times more computational core than the
CPU, is an ideal platform for accelerating the triangle counting algorithm. We
have observed that there is already some work to explore this direction [4,10,14].
However, these tasks do not make good use of the computing resources of the
GPU. For example, [4] a merge-based triangle counting method is used on the
GPU, which is a migration of serial CPU algorithms. If the degree distribution
of the graph is not an average distribution, serious branch divergence problems
may occur due to tasks cannot be evenly distributed to the GPU core. Also,
these algorithms need to reserve a large amount of GPU memory space for the
intermediate data structure, which limits the size of the processed graphics [10].
In this case, it is important to make full use of GPU memory and to utilize the
computational features of the GPU to design a triangle counting scheme.

In this paper, aiming at above challenging problems, we propose a GPU-
based load balancing triangle counting scheme. The main contributions of this
paper are summarized as follows.

1. We designed an algorithm for preprocessing graphs. After conversion to the
CSR representation, the data structure size is reduced by approximately two
times. In the process of preprocessing the graph, the transform of the undi-
rected graph to the directed graph will make the degree distribution more
even, and the computing tasks assigned by the cores of the GPU are rela-
tively uniform.

2. We designed a SIMD-based set intersection algorithm. Our method uses one
neighbor list as the query list and the other as the comparison list. Then
multiple GPU cores check the value of the comparison list based on the query
list. The algorithm solves the problem of branch divergence and low memory
access efficiency of traditional algorithms.

3. The traditional triangle count will evenly distribute the nodes to the core of
the GPU during the parallelization process. Due to the different degrees of
nodes, the workloads of different threads are different, which will reduce the
performance of parallel computing. To this end, we designed a load balancing
algorithm to dynamically schedule the GPU workload and improve parallel
efficiency.

2 Related Work

The applications of triangle counting are widely used. With the introduction
of clustering coefficient, it has become an important metric for data scientists.
It is also used in detecting web spam [1], evaluating the quality of different
community discovery algorithms [6,16], finding close communities [9].

Given a undirected graph G = (V,E), there are several computational
approaches for triangle counting: enumerating all node triples O(|V |3), or adja-
cency set intersection. Schank et al. [11] were the first to distinguish and bind
these methods. Adjacency set intersection can be completed in many ways: sort
set intersection, binary search and hash table.
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In order to reduce the time complexity of triangle counting, many algorithm
optimization techniques have been developed. For example, Green and Bader
[2] propose a combinatorial optimization that reduces the number of necessary
intersections and provide a better complexity bound. Green et al. [3] shows a
scalable technique for workload-balancing triangle counting on a shared-memory
system. Shun and Tangwongsan [12], Polak [8], and Pearce [7] show approaches
to reduce the computational requirements by looking for triangles in the directed
graph rather than the undirected graph, and the directed graph is obtained by
the pretreatment of the undirected graph.

Leist et al. [5] presents the triangle counting of the first GPU algorithm
using each thread to perform a different intersection. This proved inefficient due
to the workload balancing problem caused by unbalanced nodes degree distri-
bution. Green et al. [4] demonstrates the way parallelize set intersections by
splitting them into subsets of finer granularity. This work takes the number of
threads per intersection as a parameter to be configured. And the GPU cannot
effectively leverage workload balancing and introduce overhead (in some cases,
overhead control execution). Wang et al. [14] demonstrates several additional
different strategies for implementing triangle counting on the GPU, including
matrix multiplication.

3 Algorithms in GBTCS

In this section we show how to manipulate the data in the graph format to
facilitate triangle counting, which involves preprocessing and representation of
the graph format. We also calculate the number of triangles more efficiently
by improving the set intersections on the GPU. In addition, we gain further
efficiency gains by distributing the vertices of the triangles to the core of the
GPU.

3.1 Representation of the Graph

An undirected graph is usually represented by a number of edges, each of which
consists of a source vertex and a destination vertex, as shown in Fig. 1(a). We
show the undirected graph as a directed graph. When the degree of vertex a is
less than the degree of b or the degree of a is equal to the degree of b but the
number of a is more than the number of b, define a ≺ b, and the undirected
edge {a, b} after directionalization, a points to b. The undirected triangle �u,v,w

becomes a directed triangle �u,v,w, where the vertex u is called the cone vertex,
and the edge {v, w} is called the pivot edge, as shown in 1(b). According to the
above rules, a new edge list is obtained, as shown in Fig. 1(c).

Large-scale graphs are generally sparse graphs. The use of adjacency matri-
ces can result in a large amount of memory waste and even memory overflow.
In addition, using traditional adjacency matrices to allocate a separate mem-
ory for each node for storage of adjacent nodes, memory allocation and release
operations, result in memory fragmentation, seriously affecting the efficiency of
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the algorithm. To avoid the above problem, we use the CSR (Compressed Sparse
Row) format to construct the adjacency list. The CSR structure is represented
by two large arrays: adjList and nodeIndex, adjList is used to store adjacent
nodes of all nodes, and nodeIndex is used to save each node of the starting
subscript in adjList, as shown in Fig. 1(d).

Fig. 1. Representation of the graph

3.2 Set Intersection

Fig. 2. Set Intersection on GPU Using 4 as the Block Size
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The most basic operation in triangle counting is the set intersection. If set inter-
section is executed in parallel in each block of the GPU, the degree of the end-
points of the different edges may vary greatly, resulting in severe branch diver-
gence. So we design a SIMD-based set intersection algorithm. Figure 2 shows an
example of our algorithm with a block size of 4.

Algorithm first read in two ordered arrays A and B, and take the value of
array B as the base value of the GPU’s four kernels. Each kernel compares its
own base value with the four values of the current block of array A. When
compared to greater than the base value, the comparison can be stopped, as
shown in Fig. 2(a). If an equal value is encountered, the number of intersecting
sets is increased by one. After comparing the block, compare the last element of
the current block, perform the block shift, and repeat the above steps until all
the block traversal is completed, as shown in Figs. 2(b) and (c).

3.3 Workload Balance on the GPU

The GPU triangle count assigns nodes to different blocks in a node-by-node
manner. In each block, the contiguous list of two endpoints of each edge is
parallelized by GPU threads, and parallel merging and summing each thread in
the block. The number, between blocks, is accumulated using atomic operations.

Traditional GPU triangle counting distributes nodes evenly to each thread
of the GPU during the parallelism of nodes. Because the degree of each node is
different, the thread workload of different blocks is different, which will reduce
the performance of GPU parallel computing.

The solution is to adopt dynamic scheduling. Each idle block acquires new
nodes according to the latest node recorded and offset, thus ensuring balanced
thread workload and improving parallel efficiency.

4 Results

The experiments presented in this paper were carried out on a NVIDIA 1080Ti
GPU and Intel(R) Xeon(R) Gold 5122 CPU 3.60 GHz and 64 GB RAM. Our
CUDA code is compiled with the NVIDIA Compiler (nvcc) using CUDA version
9.0. The host compiler is gcc, version 5.4.0 and compile flag set to O3.

The algorithms are tested using real world graphs and networks taken from
the HPEC Graph Challenge [10]. By default, all graphs are treated as undirected,
and duplicate edges removed.

4.1 GPU vs. CPU Comparison

This section shows the performance comparison of the triangle counting on the
GPU and CPU. As shown in Table 1, the GPU can accelerate the time overhead
of 5x to 120x. The results show that although the advantages on the smaller
graph are smaller, on the larger graph and the graph with partial distribution,
the GPU program of the paper can bring quite fast speed.



368 Y. Wu et al.

4.2 Comparisons with Graph Challenge Champions

We compared our GPU triangle counting results with some projects focused
on triangle counts. Briefly, TCKK [15] uses a linear algebraic kernel to count
triangles on a single computer. The computer is equipped with an E5-2698 v3
intel CPU processor with 512 g of memory, 32 cores and 64 threads. Nv [10] uses
an Nvidia Titan X pascal GPU. Note that since these projects are not open
source, we compare their data directly to GBTCS from their papers. Figure 3
shows the performance of GBTCS, Nv, and TCKK on three Graph 500 data sets
(from 23 to 25) and on Twitter.

Table 1. Triangle counting performance comparison between CPU and GPU

DataSet NodeNum EdgeNum TriangleCount CpuCost(s) GpuCost(s)

roadNet-PA adj 1088092 1541898 67150 0.06415 0.00316

roadNet-TX adj 1379917 1921660 82869 0.05306 0.00405

roadNet-CA adj 1965206 2766607 120676 0.09891 0.0051

ca-CondMat adj 23133 93439 173361 0.00885 0.00122

email-Enron adj 36692 183831 727044 0.027 0.00524

email-EuAll adj 265214 364481 267313 0.03784 0.00184

soc-Epinions1 adj 75879 405740 1624481 0.08139 0.00735

soc-Slashdot0811 adj 77360 469180 551724 0.11307 0.0066

soc-Slashdot0902 adj 82168 504230 602592 0.13759 0.00665

amazon0302 adj 262111 899792 717719 0.07176 0.00221

loc-gowalla edges adj 196591 950327 2273138 0.10603 0.00661

amazon0312 adj 400727 2349869 3686467 0.2408 0.00398

amazon0505 adj 410236 2439437 3951063 0.25744 0.00416

amazon0601 adj 403394 2443408 3986507 0.25098 0.00414

cit-Patents adj 3774768 16518947 7515023 3.50662 0.0275

ca-AstroPh adj 18772 198050 1351441 0.02334 0.00342

cit-HepTh adj 27770 352285 1478735 0.04278 0.00472

cit-HepPh adj 34546 420877 1276868 0.09278 0.00403

flickrEdges adj 105938 2316948 107987357 1.78855 0.09799

graph500-scale18-ef16 adj 174147 3800348 82287285 3.63493 0.2118

graph500-scale19-ef16 adj 335318 7729675 186288972 9.07368 0.41732

graph500-scale20-ef16 adj 645820 15680861 419349784 22.9305 0.68375

graph500-scale21-ef16 adj 1243072 31731650 935100883 56.5171 1.38296

graph500-scale22-ef16 adj 2393285 64097004 2067392370 141.604 3.1076

graph500-scale23-ef16 adj 4606314 129250705 4549133002 361.082 5.74552

graph500-scale24-ef16 adj 8860450 260261843 9936161560 891.446 12.8818

graph500-scale25-ef16 adj 17043780 523467448 21575375802 2293.09 30.1524

twitter rv.net 61578415 1468365182 34824916864 2396.93 22.4301
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Fig. 3. GBTCS vs Graph Challenge champions

5 Conclusion

The rise of graphical analysis systems has created a way to measure and com-
pare the capabilities of these systems. Graphical analysis has unique scalability
difficulties. The community of machine learning, high-performance computing,
and visual analytics has struggled with these difficulties for decades and has
developed ways to create challenges that drive these communities forward.

This paper proposes an improved GPU-based set intersection method to
make triangle calculations more efficient. In addition, the problem of branch
divergence caused by the uneven distribution of node degrees in the graph is
solved by load balancing in the GPU.
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Abstract. The Internet of Things (IoT) has been more and more pop-
ular in people’s lives because it can bring convenience to our lives. Com-
munication between IoT smart devices is vulnerable to various attacks.
Therefore, designing a lightweight and secure cryptographic protocol for
IoT applications is an important task. In this paper, we find that Jia
et al.’s certificateless signature scheme cannot resist public key replace-
ment attacks. Then, we propose a new certificateless signature scheme
(PK-CLS) to resist super type I and type II adversaries. Finally, we prove
the security of our PK-CLS scheme in the random oracle model.

Keywords: Internet of Things (IoT) · Certificateless signature ·
Public key replacement attack

1 Introduction

With the popularity of Internet of Things (IoT) information and communication
technologies, IoT is becoming more and more popular in people’s lives. According
to Gartner [1], the influence of IoT in our daily activities is increasing with a
projected 26 billion connected devices by 2020.

In IoT applications, smart objects are usually used to collect data, transfer
the data to the server and the data to other smart objects through the public
networks. However, due to the nature of some IoT services, security and privacy
protection of the data become important. Moreover, some smart objects have
low computing power and storage capacity. Generally, traditional encryption
and signature schemes are difficult to be implemented on these resource-limited
devices. Due to the limited resources of IoT devices, many researchers pay more
attention to construct lightweight authentication protocols [2].

In order to solve the key escrow problem, Al-Riyami and Paterson [3] first
proposed the certificateless signature (CLS) scheme. Al-Riyami et al. defined two
different types of adversaries in the security model. A type I adversary could
c© Springer Nature Switzerland AG 2019
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implement public key replacement attacks even if it does not have knowledge
of the master secret key. Moreover, a type II adversary stands for a malicious
key generation center (KGC). It means a type II adversary is a malicious KGC
who knows the master secret key, but cannot replace users’ public keys. In 2007,
Huang et al. [4] also defined three security levels in the security models of CLS,
which are referred to as normal, strong and super adversaries, respectively. A
normal adversary can only obtain signatures from legal users. And further, if the
public key of a legal user has been replaced, a strong adversary can get a legal
signature as long as the secret value is known. While a super type adversary
can still get a legal signature although the public key has been replaced with an
unknown secret value.

Huang et al. [5] showed that the scheme in [3] is attackable under the public
key replacement attack. Shim [6] pointed out that the scheme in [4] is vulnerable
to public key replacement attacks launched by the type I adversary. In 2005,
Gorantla and Saxena [7] designed lightweight CLS. But unfortunately, Cao et al.
[8] demonstrated that scheme [7] cannot resist super type I adversaries. In 2006,
Yap et al. [9] designed a pairing-based CLS scheme under the computational
Diffie-Hellman assumption.

Because the cost of the bilinear pairing is very high, He et al. [10] proposed
a CLS scheme without bilinear pairings. Many other schemes without bilinear
pairings can be found in the literature [11–18]. However, the schemes [12,15,16,
18] are vulnerable to the type I adversary [16,17,19,20]. The schemes [10,13]
cannot resist the type II adversary [21]. In 2018, Jia et al. [17] proposed a CLS
scheme for IoT deployment. However, we will show the scheme still suffers from
severe security flaws.

The remaining of the article is structured in the following 5 parts. In Sect. 2,
we discuss the security problem in Jia et al.’s [17] scheme. In Sect. 3, we present
an improved PK-CLS scheme. The security analysis of our PK-CLS scheme are
discussed in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Vulnerability of Jia Et Al.’s Scheme

Jia et al. [17] claimed that their CLS scheme is unforgetable against super type I
and type II adversaries. However, we find Jia et al.’s scheme cannot resist public
key replacement attack. Let AI and CI represent a super type I adversary and
a challenger, respectively.

(1) AI asks CreateUser query on the input ID∗ and receives ID∗’s public key
PKi = (Ri, Qi) as output.

(2) AI chooses z ∈ Z∗
q , calculates hi = (ID∗, Ri), sets R

′
i = Ri , and computes

Q
′
i = zP − hiPpub. Then AI asks ReplacePublicKey query to change the

public key of ID∗ to PK
′
i = (R

′
i, Q

′
i).

(3) AI randomly picks t
′ ∈ Z∗

q and calculates T
′

= t
′
P = (Tx, Ty), and sets

r
′

= Tx mod q. And AI chooses a forged message m∗ and calculates v
′

=
H3(ID∗,m∗, hi, PK

′
i , T

′
) and τ

′
= ((zr

′
+ v

′
)/t

′
) mod q.
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(4) AI can forge a valid signature σ
′

= (T
′
, τ

′
) on the chosen message m

′
.

Noting that ExtractSecretValue query, ExtractPartialPrivateKey query and
Sign query have never been asked, and the forged signature σ

′
= (T

′
, τ

′
) on

message m∗ will be verified to be VALID since τ
′
T

′
= ((zr

′
+ v

′
)/t

′
)t

′
P =

(zr
′
+ v

′
)P = v

′
P + r

′
(Q

′
i + hiPpub). That means AI could successfully

forge a signature. Therefore, this scheme is not secure against super type I
adversaries.

3 Our Improved Scheme

In Jia et al.’s [17] scheme, we observe that Qi + hiPpub in the verifier’s equation
is the sum of two points on the elliptic curve. Once the replaced public key Qi

contains −hiPpub, hiPpub will be eliminated when the equation is calculated.
Therefore setting Ppub becomes meaningless when the scheme faces the type I
adversary. We slightly modify Jia et al.’s scheme to make it a secure scheme.
Then, PK-CLS is described in detail.

(1) Setup: The KGC generates a master key s and public parameters
Params based on the input security parameter λ. The Params =
(G,P, Ppub,H1,H2) are published, where P is a generator on an elliptic
additive group G of order q over finite field Fp and Ppub = sP . The master
key s is kept secret. Besides, H1 and H2 denotes two one-way hash functions:
H1 : {0, 1}∗ × G → Z∗

q ; H2 : {0, 1}∗ × Z∗
q × G × G → Z∗

q .
(2) Partial-Private-Key-Extract: The KGC randomly chooses ri ∈ Z∗

q for the
user with identity ID, and computes Ri = riP , hi = H1(ID,Ri), si = (ri +
his) mod q. The value (si, Ri) is sent to the user as his partial private key.
This partial private key can be verified by the equation siP = Ri + hiPpub,
because siP = (ri + his)P = Ri + hiPpub.

(3) Set-Secret-Value: The user randomly chooses xi ∈ Z∗
q as the secret value.

(4) Set-Private-Key: The private key SKi represents (si, xi).
(5) Set-Public-Key: The public key PKi represents (Ri, Pi) where Pi = xiP .
(6) Sign: Given Params, m, ID and SKi as input, the signer randomly chooses

t ∈ Z∗
q and calculates T = tP , hi = H1(ID,Ri). Then signer computes

v = H2(ID,m, hi, PKi, T ) and τ = (t/(si + vxi)) mod q. Finally, the signer
generates the signature σ = (T, τ).

(7) Verify: On receiving Params, ID, PKi and σ = (T, τ) with message m, the
verifier calculates hi = H1(ID,Ri), v = H2(ID,m, hi, PKi, T ) and then
checks if the equation τ(Ri + hiPpub + vPi) = T is satisfied. If it’s true,
σ is treated as genuine and thus it returns VALID. Otherwise, it returns
INVALID. The correctness of the scheme is guaranteed by the following
equation.
τ(Ri + hiPpub + vPi)
= (t/(si + vxi))(Ri + hiPpub + vPi)
= (t/(ri + his + vxi))(ri + his + vxi)P
= tP
= T .
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4 Security Analysis

Our PK-CLS scheme is analyzed formally to be provably secure against both
super type I and type II adversaries based on the difficulty of elliptic curve
discrete logarithm problem (ECDLP) under the random oracle model.

Lemma 1. According to the security model, if a super type I adversary AI
could succeed in Game 1 with non-negligible probability β in a polynomial time,
CI could get the solution to the ECDLP problem with the possibility:

β
′ ≥ (1 − qH1/q)qcu(1 − 1/qcu)qep(1/qcu)(1 − qH2/q)β.

In the equation above, qH1 , qH2 ,qcu and qep represent the number of H1

queries, H2 queries, CreateUser queries and ExtratPrivateKey queries, respec-
tively.

Proof. Assuming AI could succeed in Game 1 with possibility β, the challenger
CI is required to solve the problem in which Q = sP where P is a generator
of group G over an elliptic curve with an order q. CI sets Ppub = Q and needs
to compute s according to the attacker’s forged signature. In the following pro-
cesses, CI maintains three lists (L1, L2 and Lu) which are initially empty to
record the information about H1, H2 and CreateUser queries.

– Phase 1. CI randomly chooses an ID∗ as the target identity, and sets public
parameters Params = (G,P, Ppub = Q) and sends Params to AI .

– Phase 2. AI can request the following oracles in polynomial times.
• H1 query. When AI asks H1 oracle with (ID, Ri) as input, CI searches

the list L1 and returns the record if the information of (ID, Ri) already
exists. Otherwise, CI queries CreateUser(ID) and extracts hi from the
returned parameters and sends it to AI .

• H2 query. When AI asks the H2 oracle with (ID,m, hi, PKi, T ) as input,
CI searches the list L2 and returns the record if (ID,m, hi, PKi, T )
already exists. Otherwise, CI randomly picks v ∈ Z∗

q , calculates V = vP ,
which sets H2(ID,m, hi, PKi, T ) = v. CI sends v to AI at last.

• CreateUser(ID). When AI asks the CreateUser oracle with ID as input,
CI searches the list Lu and returns the PKi if there exists a record of
ID. Otherwise, CI will complete the following steps to create a record and
add it to Lu. If ID �= ID∗, CI randomly chooses si, hi, xi, and computes
Ri = siP − hiPpub, Pi = xiP . If ID = ID∗, CI randomly chooses ri, hi,
xi and sets Ri = riP , Pi = xiP , si = null. In addition, if CI checks and
finds there exists a record (ID,Ri,H1(ID,Ri)) but H1(ID,Ri) �= hi, CI
aborts Game 1. Otherwise, CI returns PKi to AI and adds the record
(ID, si, xi, Ri, Pi) and (ID,Ri, hi) to the lists Lu and L1.

• ReplacePublicKey(ID, x
′
i, PK

′
i). CI will replace the user’s public key with

(x
′
i, PK

′
i). We assume that the CreateUser query has been executed with

the identity of ID. And given the ability of a super type I adversary, AI
doesn’t need to provide the value of xi, which means xi can be null.
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• ExtractSecretValue(ID). CI searches the list Lu and returns xi to AI if
there exists a record (ID, si, xi, Ri, Pi) on ID. Otherwise, CI calls Crea-
teUser query on ID and returns xi to AI . In addition , CI may do nothing
if ReplacePublicKey has been queried where xi is null.

• ExtractPartialPrivateKey(ID). If ID �= ID∗, CI searches the list Lu and
returns si if the record (ID, si, xi, Ri, Pi) exists. If ID = ID∗, CI aborts
the game. Here we assume that CreateUser on ID has been executed.

• SuperSign(ID, m). CI searches for the record (ID,si,xi,Ri,Pi),
(ID,Ri, hi) and (ID,m, hi, PKi, T, v, V ) in the lists Lu, L1 and L2

respectively. If ID = ID∗ or xi = null (that is ReplacePublicKey
has been queried with xi not provided), CI randomly chooses T ∈ G,
τ ∈ Z∗

q and sends (T, τ) to AI . Otherwise, CI randomly chooses t,
v ∈ Z∗

q , and calculates T = tP, τ = (t/(si + vxi) mod q. Then, CI adds
(ID,m, hi, PKi, T, v, V ) to L2 and returns (T, τ) to AI . In that case, the
signature will be verified because the equation τ(Ri + hiPpub + vPi) = T
holds.

– Phase 3. AI submits a forged signature (T ∗, τ∗). Then CI checks if the ID
of this signature is ID∗. If not, CI ends the game. Otherwise, CI searches
the lists Lu, L1 and L2 for the records (ID, si, xi, Ri, Pi), (ID,Ri, hi),
(ID,m, hi, PKi, T, v, V ). If there is no records of h∗

i and v∗ in the list, CI
aborts the game. Next, if the signature can be authenticated, the equation
τ∗(r∗

i + h∗
i s + v∗x∗

i ) = t∗ mod q holds. In this equation, there are only three
unknown values i.e. xi, s, and t∗. In addition, xi is not necessarily needed
according to the ReplacePublicKey query and s is the value CI needs to solve
the ECDLP problem. According to the principle of forking lemma [4], CI
replays the above game with the same random tape, but different responses
to hi and v hash queries. AI compute to generate three different signatures
as follows.
(1) τ∗(r∗

i + h∗
i s + v∗x∗

i ) = t∗;
(2) τ∗′

(r∗
i + h∗′

i s + v∗′
x∗
i ) = t∗;

(3) τ∗′′
(r∗

i + h∗′′
i s + v∗′′

x∗
i ) = t∗.

Let the probability of CI solving the ECDLP problem be Pr[succ]. The equa-
tion denotes the probability that pr[succ] = pr[E1 ∧ E2] where E1 means the
Game 1 successfully completed all the steps without being terminated and E2

means the signature forged by AI with identity ID∗ is verified. Suppose that
AI can forge a valid signature with probability β, we can compute:

pr[succ] = pr[E1 ∧ E2] = pr[E1]pr[E2 | E1] = pr[E1]β.
E1 requires these conditions corresponding to the respective probabilities:
The probability of (1 − qH1/q)qcu represents that there exists no collisions in

the CreateUser query.
The probability of (1−1/qcu)qep represents that AI doesn’t query the partial

private key of ID∗.
The probability of (1/qcu) means AI sends the signature where ID = ID∗.
The probability of (1 − qH2/q) denotes that the values of v about the forged

signature sent by AI can be found in the list L2 in Phase 3. Therefore,
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β
′ ≥ (1 − qH1/q)qcu(1 − 1/qcu)qep(1/qcu)(1 − qH2/q)β.

Lemma 2. If there exists a super type II adversary who could win Game 2 in a
polynomial time with non-negligible probability β , CII could solve the ECDLP
problem with probability β

′′
:

β
′′ ≥ (1 − qH1/q)qcu(1 − 1/qcu)qrp(1 − 1/qcu)qes(1/qcu)(1 − qH2/q)β .

Here qH1 , qH2 , qcu, qes and qrp represent the number of H1 queries, H2

queries, CreateUser queries, ExtratSecretValue queries and ReplacePublicKey
queries.

Proof. Assuming that AII can win in Game 2 between AII and CII in poly-
nomial time, for a given G where Q = sP and s is unknown, CII could get the
value of s based on the signature given by AII . CII maintains Lu, L1 and L2

initially empty for CreateUser, H1, H2 queries as in Game 1.

– Phase 1. CII randomly picks an ID∗ and a number s ∈ Z∗
q , calculates

Ppub = sP , sets Params = (G,P, Ppub), CII sends Params and s to AII .
– Phase 2. AII can ask any of the following queries in polynomial times.

• H1 query and H2 query are as same as in Game 1.
• CreateUser(ID). If there exists a record of ID, CII returns the public key

PKi. Otherwise, if ID �= ID∗, CII randomly chooses ri, xi and hi ∈ Z∗
q ,

and calculates Ri = riP , si = (ri + his), Pi = xiP . If ID = ID∗,
CII randomly chooses ri, hi, and calculates Ri = riP , si = (ri + his),
Pi = Q, xi = null. Finally, CII returns PKi = (Ri, Pi) to AII and adds
(ID, ri, si, xi, Ri, Pi) and (ID, Ri, hi) to the lists Lu and L1 respectively.

• ReplacePublicKey(ID, x
′
i, PK

′
i): If ID = ID∗, CII aborts the game. Oth-

erwise, CII replaces ID’s public key with given PK
′
i even if x

′
i is null, and

updates the list Lu.
• ExtractSecretValue(ID). Note that AII is not allowed to access the secret

value of ID∗, CII will abort the game if ID = ID∗. Otherwise, CII
searches the record of ID and returns xi to AII . However CII may out-
puts a null if the PKi has been replaced with a null xi.

• ExtractPartialPrivateKey(ID). CII returns si from the list Lu if there
exists a record of ID.

• SuperSign(ID,m). CII searches for the records of ID in the list Lu, L1 and
L2. If xi = null, which means ID = ID∗ or the PKi has been replaced
with x

′
i = null, CII randomly chooses T ∈ G, τ ∈ Z∗

q and sends (T , τ)
to AII . Otherwise, CII randomly picks t and v ∈ Z∗

q , calculates T = tP ,
τ = (t/(si + vxi)) mod q. Eventually, the signature (T , τ) generated by
SuperSign query, will be sent to AII and the record (ID, m, hi, PKi, T ,
v, V ) will be added to L2.

– Phase 3. CII submits the forged signature (T ∗, τ∗) to CII at this stage. If
the ID of this signature is not ID∗, the game will be terminated. Otherwise,
CII will check the records of ID∗ in the lists Lu, L1 and L2, and search if v∗

exists. If not, CII aborts the game.
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From the signature given by AII , we know τ∗(r∗
i + h∗

i s + v∗x∗
i ) = t∗ mod q.

According to the forking lemma [4], CII can obtain another signature submitted
by AII , which satisfies the equation: τ

′∗(r
′∗
i + hi∗

i s + v
′∗x

′∗
i ) = t∗ mod q.

From these two equations extracted from the forged signatures where differ-
ent values of hi and v are used, we can calculate the values of xi and t∗. CII
could get the value of xi, which means CII solves the ECDLP problem.

AII successfully generates the right signature with the following conditions:
There are no collisions of hash functions in the CreateUser query. The prob-

ability is (1 − qH1/q)qcu .
AII has not queried ReplacePublicKey with ID∗ as input. The probability

is (1 − qH1/q)qcu .
AII has not queried ExtractSecretValue with ID∗ as input. The probability

is (1 − 1/qcu)qrp .
The submitted signature must satisfies ID = ID∗. The probability is (1/qcu).
The probability that v∗ will be found in phase 3 is (1 − qH2/q).
In conclusion, if AII can complete Game 2 with a nonnegligible probability

β, the probability that CII can solve the ECDLP problem is:
β

′′ ≥ (1 − qH1/q)qcu(1 − 1/qcu)qrp(1 − 1/qcu)qes(1/qcu)(1 − qH2/q)β.

Theorem 1. If the complexity of ECDLP holds, our PK-CLS scheme is prov-
ably adaptively chosen message and identity attacks secure against super type I
and type II adversaries.

5 Conclusion

In this paper, we analyzed in detail that Jia et al.’s scheme [17] cannot resist
public key replacement attacks. In other words, a super type I adversary can
easily forge a valid signature on any message and cheat the verifier. Then we
proposed an improved PK-CLS scheme to resist super type I and type II adver-
saries. The proposed solution is very useful in practical applications, such as
identity authentication in the IoT. Finally, we conducted security analysis in the
random oracle model.
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