
Mary Hall
Hari Sundar (Eds.)

LN
CS

 1
18

82

31st International Workshop, LCPC 2018
Salt Lake City, UT, USA, October 9–11, 2018
Revised Selected Papers

Languages and Compilers
for Parallel Computing

Lecture Notes in Computer Science 11882

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Mary Hall • Hari Sundar (Eds.)

Languages and Compilers
for Parallel Computing
31st International Workshop, LCPC 2018
Salt Lake City, UT, USA, October 9–11, 2018
Revised Selected Papers

123

Editors
Mary Hall
University of Utah
Salt Lake City, UT, USA

Hari Sundar
University of Utah
Salt Lake City, UT, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-34626-3 ISBN 978-3-030-34627-0 (eBook)
https://doi.org/10.1007/978-3-030-34627-0

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3058-7573
https://orcid.org/0000-0001-9001-5107
https://doi.org/10.1007/978-3-030-34627-0

Preface

This volume contains the papers presented at LCPC 2018: the 31th International
Workshop on Languages and Compilers for Parallel Computing, held during
October 9–11, 2018, in Salt Lake City, Utah. Since its founding in 1988, the LCPC
workshop has been a leading venue for research on parallelizing compilers and related
topics in concurrency, parallel languages, parallel programming models, runtime
systems, and tools. The workshop spans the spectrum from foundational principles to
practical experience, and from early ideas to polished results. LCPC encourages
submissions that go outside the scope of scientific computing and enable parallel
programming in new areas, such as mobile computing and data centers. The value of
LCPC stems largely from its focused topics and personal interaction. This year’s
location, in Salt Lake City, Utah, was both scenic and convenient. Fall is beautiful in
Utah, and Salt Lake City nestled between the Wasatch and Oquirrh ranges provided a
scenic location. Specific topics of LCPC 2018 included: compiling for parallelism and
parallel compilers; static, dynamic, and adaptive optimization of parallel programs;
parallel programming models and languages; formal analysis and verification of
parallel programs; parallel runtime systems and libraries; performance analysis and
debugging tools for concurrency and parallelism; parallel algorithms and concurrent
data structures; parallel applications; synchronization and concurrency control;
software engineering for parallel programs; fault tolerance for parallel systems; and
parallel programming and compiling for heterogeneous systems. LCPC received 26
submissions, and each submission was reviewed by at least 3, and on average 3.5,
Program Committee members. The committee decided to accept 14 papers, of which 8
are regular papers, 5 are short papers and 1 an invited paper. The workshop program
includes 9 invited talks:

1. “The Tensor Algebra Compiler” by Saman Amarasinghe, MIT
2. “Programming Model and Compiler Extensions for Unifying Asynchronous Tasks,

Futures, and Events” by Vivek Sarkar, Georgia Tech
3. “The Sparse Polyhedral Framework: Composing Compiler-Generated

Inspector-Executor code” by Michelle Strout, Arizona State University
4. “Cache Analysis and Optimization Based on Reuse-time Distribution” by Chen

Ding, University of Rochester
5. “New Opportunities for Compilers in Computer Security” by Alex Viedenbaum,

University of California, Irvine
6. “Putting Parallelizing Compilers into the Toolbox of Computational Scientists” by

Rudi Eigenmann, University of Delaware
7. “Quantifying and Reducing Execution Variance in STMs via Model Driven

Commit Optimization” by Santosh Pande, Georgia Tech
8. “UPC++” by Scott Baden, UC San Diego
9. “Tuning without Auto-Tuning” by Martin Kong, Stonybrook University

We would like to thank the School of Computing staff for the help in organizing the
workshop and the financial support from Microsoft and Intel. The generation of the
proceedings was assisted by the EasyChair conference system.

December 2018 Mary Hall
Hari Sundar

vi Preface

Organization

Program Committee Chairs

Mary Hall University of Utah, USA
Hari Sundar University of Utah, USA

Program Committee

Chen Ding University of Rochester, USA
Maria Garzaran Intel, USA
Ganesh Gopalakrishnan University of Utah, USA
Chunhua Liao Lawrence Livermore National Laboratory, USA
Eric Mercer Brigham Young University, USA
Saurav Muralidharan Nvidia, USA
Cathie Olschanowsky Boise State University, USA
Santosh Pande Georgia Tech, USA
Lawrence Rauchwerger Texas A&M University, USA
Vivek Sarkar Georgia Tech, USA
Jun Shirako Georgia Tech, USA
Hiroyuki Takizawa Tohoku University, Japan
Peng Wu Huawei, USA

Contents

A Unified Approach to Variable Renaming for Enhanced Vectorization 1
Prasanth Chatarasi, Jun Shirako, Albert Cohen, and Vivek Sarkar

Design and Performance Analysis of Real-Time Dynamic
Streaming Applications . 21

Xuan Khanh Do, Stéphane Louise, and Albert Cohen

A Similarity Measure for GPU Kernel Subgraph Matching. 37
Robert Lim, Boyana Norris, and Allen Malony

New Opportunities for Compilers in Computer Security 54
Junjie Shen, Zhi Chen, Nahid Farhady Ghalaty, Rosario Cammarota,
Alexandru Nicolau, and Alexander V. Veidenbaum

Footmark: A New Formulation for Working Set Statistics 61
Liang Yuan, Wesley Smith, Sicong Fan, Zixu Chen, Chen Ding,
and Yunquan Zhang

Towards an Achievable Performance for the Loop Nests 70
Aniket Shivam, Neftali Watkinson, Alexandru Nicolau, David Padua,
and Alexander V. Veidenbaum

Extending Index-Array Properties for Data Dependence Analysis 78
Mahdi Soltan Mohammadi, Kazem Cheshmi, Maryam Mehri Dehnavi,
Anand Venkat, Tomofumi Yuki, and Michelle Mills Strout

Optimized Sound and Complete Data Race Detection in Structured
Parallel Programs . 94

Kyle Storey, Jacob Powell, Ben Ogles, Joshua Hooker, Peter Aldous,
and Eric Mercer

Compiler Optimizations for Parallel Programs. 112
Johannes Doerfert and Hal Finkel

MATE, a Unified Model for Communication-Tolerant
Scientific Applications . 120

Sergio M. Martin and Scott B. Baden

GASNet-EX: A High-Performance, Portable Communication
Library for Exascale . 138

Dan Bonachea and Paul H. Hargrove

Nested Parallelism with Algorithmic Skeletons . 159
Alireza Majidi, Nathan Thomas, Timmie Smith, Nancy Amato,
and Lawrence Rauchwerger

HDArray: Parallel Array Interface for Distributed Heterogeneous Devices . . . 176
Hyun Dok Cho, Okwan Kwon, and Samuel P. Midkiff

Automating the Exchangeability of Shared Data Abstractions 185
Jiange Zhang, Qian Wang, Qing Yi, and Huimin Cui

Author Index . 193

x Contents

A Unified Approach to Variable
Renaming for Enhanced Vectorization

Prasanth Chatarasi1(B), Jun Shirako1, Albert Cohen2, and Vivek Sarkar1

1 Georgia Institute of Technology, Atlanta, GA, USA
{cprasanth,shirako,vsarkar}@gatech.edu

2 INRIA & DI ENS, Paris, France
albert.cohen@inria.fr

Abstract. Despite the fact that compiler technologies for automatic
vectorization have been under development for over four decades, there
are still considerable gaps in the capabilities of modern compilers to per-
form automatic vectorization for SIMD units. One such gap can be found
in the handling of loops with dependence cycles that involve memory-
based anti (write-after-read) and output (write-after-write) dependences.
Past approaches, such as variable renaming and variable expansion, break
such dependence cycles by either eliminating or repositioning the prob-
lematic memory-based dependences. However, the past work suffers from
three key limitations: (1) Lack of a unified framework that synergisti-
cally integrates multiple storage transformations, (2) Lack of support for
bounding the additional space required to break memory-based depen-
dences, and (3) Lack of support for integrating these storage transfor-
mations with other code transformations (e.g., statement reordering) to
enable vectorization.

In this paper, we address the three limitations above by integrating
both Source Variable Renaming (SoVR) and Sink Variable Renaming
(SiVR) transformations into a unified formulation, and by formalizing the
“cycle-breaking” problem as a minimum weighted set cover optimization
problem. To the best of our knowledge, our work is the first to formalize
an optimal solution for cycle breaking that simultaneously considers both
SoVR and SiVR transformations, thereby enhancing vectorization and
reducing storage expansion relative to performing the transformations
independently. We implemented our approach in PPCG, a state-of-the-
art optimization framework for loop transformations, and evaluated it on
eleven kernels from the TSVC benchmark suite. Our experimental results
show a geometric mean performance improvement of 4.61× on an Intel
Xeon Phi (KNL) machine relative to the optimized performance obtained
by Intel’s ICC v17.0 product compiler. Further, our results demonstrate
a geometric mean performance improvement of 1.08× and 1.14× on the
Intel Xeon Phi (KNL) and Nvidia Tesla V100 (Volta) platforms relative
to past work that only performs the SiVR transformation [5], and of
1.57× and 1.22× on both platforms relative to past work on using both
SiVR and SoVR transformations [8].

c© Springer Nature Switzerland AG 2019
M. Hall and H. Sundar (Eds.): LCPC 2018, LNCS 11882, pp. 1–20, 2019.
https://doi.org/10.1007/978-3-030-34627-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34627-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-34627-0_1

2 P. Chatarasi et al.

Keywords: Vectorization · Renaming · Storage transformations ·
Polyhedral compilers · Intel KNL · Nvidia Volta · TSVC Suite · SIMD

1 Introduction

There is a strong resurgence of interest in vector processing due to the significant
energy efficiency benefits of using SIMD parallelism within individual CPU cores
as well as in streaming multiprocessors in GPUs. These benefits increase with
widening SIMD vectors, reaching vector register lengths of 512 bits in the Intel
Xeon Phi Knights Landing (KNL) processor, Intel Xeon Skylake processor and
2048 bits in the scalable vector extension of the Armv8 architecture [18]. Further,
there is a widespread expectation that compilers will continue to play a central
role in handling the complexities of dependence analysis, code transformation
and code generation necessary for vectorization for CPUs. Even in cases where
the programmer identifies a loop as being vectorizable, the compiler still plays
a major role in transforming the code to use SIMD instructions. This is in
contrast with multicore and distributed-memory parallelism (and even with GPU
parallelism in many cases), where it is generally accepted that programmers
manually perform the code transformations necessary to expose parallelism, with
some assistance from the runtime system but little or no help from compilers. It
is therefore important to continue advancing the state of the art of vectorizing
compiler technologies, so as to address the growing needs for enabling modern
applications to use the full capability of SIMD units.

This paper focuses on advancing the state of the art with respect to handling
memory-based anti (write-after-read) or output (write-after-write) dependences
in vectorizing compilers. These dependences can theoretically be eliminated by
allocating new storage to accommodate the value of the first write operation
thereby ensuring that the following write operation need not wait for the first
write to complete. However, current state-of-the-art vectorizing compilers only
perform such storage transformations in limited cases, and often fail to vectorize
loops containing cycles of dependences that include memory-based dependences.
This is despite a vast body of past research on storage transformations, such as
variable renaming [7,13–15] and variable expansion [10], which have shown how
removing storage-related dependences can make it possible to “break” depen-
dence cycles.

We believe that the limited use of such techniques in modern compilers is
due to three key limitations that currently inhibit their practical usage:

1. Lack of a unified framework that synergistically integrates multiple storage
transformations,

2. Lack of support for bounding the additional space required to break memory-
based dependences, and

3. Lack of support for integrating these storage transformations with other code
transformations (e.g., statement reordering) to enable vectorization.

A Unified Approach to Variable Renaming for Enhanced Vectorization 3

The goal of this paper is to enhance the current state-of-the-art in vectorizing
compilers to enable more loops to be vectorized via systematic storage transfor-
mations (variable renamings) that remove selected memory-based dependences
to break their containing cycles, while optionally using a bounded amount of
additional space. We view our tool, called PolySIMD, as an extension to vec-
torization technologies that can be invoked when a state-of-the-art vectorizer
fails to vectorize a loop. Thus, we do not focus on replicating all state-of-the-art
vectorization capabilities in PolySIMD. For example, we focus on enabling vec-
torization of innermost loops in PolySIMD, though many state-of-the-art com-
pilers support outer loop vectorization as well (and we believe that our contri-
butions can also be applied to outer loop vectorization). By default, our tool
takes sequential code as input, and focuses on identifying the best use of vari-
able renamings to maximize opportunities for vectorization. An input loop can
optionally be annotated with a pragma that specifies a bound (spacelimit) on
the maximum amount of extra storage that can be allocated to break depen-
dences. As discussed later, the two main variable renaming transformations that
we employ in our approach are Source Variable Renaming (SoVR) and Sink
Variable Renaming (SiVR).

The main technical contributions of this paper are as follows:

– We formalize the problem of identifying an optimized set of SoVR and SiVR
variable renaming transformations to break cycles of dependences as a min-
imum weighted set cover optimization problem, and demonstrate that it is
practical to use ILP formulations to find optimal solutions to this problem. If
the user provides an optional spacelimit parameter, our formalization ensures
that the additional storage introduced by our transformations remains within
the user-provided bounds.

– We created a new tool, PolySIMD, to implement our approach by selecting
and performing an optimal set of SoVR and SiVR transformations, along with
supporting statement reordering transformations. Given an input sequential
loop, PolySIMD either generates transformed sequential CPU code that can
be input into a vectorizing compiler like ICC or generates GPU code (CUDA
kernels) that can be processed by a GPU compiler like NVCC. PolySIMD is
implemented as a extension to the PPCG framework [1,20], so as to leverage
PPCG’s dependence analysis and code generation capabilities.

– We evaluated our approach on eleven kernels from the TSVC benchmark suite
[16], and obtained a geometric-mean performance improvement of 4.61× on
an Intel Xeon Phi (KNL) machine relative to the optimized performance
obtained by Intel’s ICC v17.0 product compiler.

– We also compared our approach with the two most closely related algorithms
from past work, one by Calland et al. [5] that only performed SiVR trans-
formations, and the other by Chu et al. [8]. that proposed a (not necessarily
optimal) heuristic to combine SiVR and SoVR transformations.

Relative to Calland et al’s approach, our approach delivered an overall
geometric-mean performance improvement of 1.08× and 1.14× on the Intel
KNL and Nvidia Volta platforms respectively, though our approach selected

4 P. Chatarasi et al.

exactly the same (SiVR-only) transformations for six of the eleven bench-
marks. Relative to Chu et al’s approach, our approach delivered an overall
geometric-mean performance improvement of 1.57× and 1.22× on the Intel
KNL and Nvidia Volta platforms respectively.

Table 1. An example to illustrate SoVR and SiVR transformations.

Original program

having cycles

Applying SoVR(s2, a[i+1])

on the original program

Applying SiVR(s1, a[i])

on the original program

for i = 1 to N {
a[i] = b[i]+c[i];//s1
a[i+1] = a[i -1]+2*a[i+1];//s2

}

for i = 1 to N {
a[i] = b[i]+c[i];//s1
float k = a[i+1];//s21
a[i+1] = a[i -1]+2*k;//s2

}

float a_temp[N];
for i = 1 to N {
a_temp[i] = b[i]+c[i];//s11
a[i] = a_temp[i];//s1
a[i+1] = (i > 1) ? \ //s2
(a_temp[i-1] : a[i-1]) +2*a[i+1]

}

Dependence graph

of the original program

Dependence graph

after applying SoVR(s2, a[i+1])

on the original program

Dependence graph

after applying SiVR(s1, a[i])

on the original program

2 Discussion on Variable Renaming Transformations

In this section, we discuss on two variable renaming transformations that are
considered in this paper, and they are Source variable renaming (SoVR)1 intro-
duced by Kuck et al. in [15] and Sink variable renaming (SiVR) introduced by
Chu et al. in [7]. Furthermore, these two renaming transformations were for-
malized by Calland et al. in [5], and referred SoVR and SiVR as T1 and T2
transformations respectively.

2.1 Source Variable Renaming (SoVR)

Source variable renaming transformation is introduced to handle anti-
dependences in cycles of memory-based dependences, and the transformation is
applied on a read access of a statement to reposition an outgoing anti-dependence
edge from the read access [15]. Applying SoVR on a read access (say r) of a
statement introduces a new assignment statement that copies the value of r into
a temporary variable (say k), and then the original statement’s read access is
replaced with k. Since the transformation is renaming source (read access) of
an anti-dependence, we call this transformation as a source variable renaming
transformation.

Example. Applying SoVR on the read access a[i+1] of the statement s2 in the
original program (shown in Table 1) introduces a new assignment statement s21
1 SoVR was also referred as node splitting by Kuck et al. in [15].

A Unified Approach to Variable Renaming for Enhanced Vectorization 5

copying the value of a[i+1] into a temporary variable k, and then the statement
s2 refers to k in-place of a[i+1]. As a result, the source of the anti-dependence
from the read access a[i+1] is repositioned to s21. This reposition helps in
breaking one of the cycles through s2, i.e., the cycle involving a flow-dependence
from a[i] of s1 to a[i-1] of s2, and an anti-dependence from a[i+1] of s2 to
a[i] of s1.

Usefulness. Since SoVR transformation is applied on a read access of a state-
ment, the transformation can modify only incoming flow- and outgoing anti-
dependences related to that read access. Hence, applying a SoVR transforma-
tion on a statement is useful in breaking cycles if the statement has an incoming
anti- or output-dependences and an outgoing anti-dependence [5]. Also, SoVR
transformation can be useful if the statement’s incoming flow-dependence and
outgoing anti-dependence are on different accesses.

Space requirements & Additional memory traffic. The temporary variable intro-
duced as part of a SoVR transformation is private to a loop carrying an anti-
dependence that we are interested in repositioning. Hence, SoVR requires an
additional space equivalent to the length of vector registers (i.e., VLEN) of tar-
get hardware. Furthermore, the transformation additionally introduces only one
scalar load and one scalar store per every iteration of the target loop.

2.2 Sink Variable Renaming (SiVR)

Sink variable renaming transformation is introduced to handle both anti- and
output-dependences in cycles of memory-based dependences [7]. The transfor-
mation is applied on a write access of a statement to reposition an outgoing
flow-dependence from the write access and also an outgoing anti-dependence
from the statement. Applying SiVR on a write access (say w) of a statement
s introduces a new assignment statement that evaluates the right hand side of
the statement into a temporary array (say temp), and then any references to
the value of w are replaced by accessing the temp. Since SiVR transformation
is applied on a write access of a statement, the transformation can modify only
incoming anti- or output-dependences related to that write access. As a result,
applying SiVR transformation is useful in breaking cycles if the statement has
either an incoming anti- or output-dependences and either an outgoing flow- or
anti-dependences [5]. Since the transformation is renaming the sink (the write
access) of an incoming anti- or output-dependence, this transformation is called
as sink variable renaming transformation [7].

Example. Applying SiVR on the write access a[i] of the statement s1 in the
original program (shown in Table 1) introduces a new assignment statement s11
that evaluates the rhs of s1 into a temporary array a temp, and then the trans-
formation replaces the references to a[i] (such as a[i-1]) with the a temp. As
a result, the source of the flow-dependence from the write access a[i] is repo-
sitioned to s11. This repositioning helps in breaking all of the cycles present in
the original program including the one that is not broken by the previous SoVR

6 P. Chatarasi et al.

transformation, i.e., the cycle involving a flow-dependence from a[i] of s1 to
a[i-1] of s2, and an output-dependence from a[i+1] of s2 to a[i] of s1.

Space requirements. The temporary array introduced as part of a SiVR transfor-
mation is not private to a loop unlike SoVR transformation, because references
to the newly allocated storage can be across iterations. Hence, SiVR requires an
additional space equivalent to the number of iterations of a loop. However, the
additional storage can be reduced by strip mining the loop, and vectorizing only
the strip [21]; whose space requirement is now proportional to the strip size, and
the strip can be as minimal as vector length.

Additional memory traffic. SiVR transformation introduces pointer-based loads
and stores, unlike the SoVR transformation which introduces only scalar loads
and stores. The new assignment statement as part of a SiVR transformation
introduces one additional pointer-based store and one pointer-based load per
one iteration of the loop. Along with a new assignment statement, each ref-
erence to the newly allocated storage introduces one additional pointer-based
load, leading to overall (1+#references) of pointer-based loads per one iteration
of the loop. In this work, we focus on applying renaming transformations for
vectorizing only inner-most loops, and this focus helps in conservatively count-
ing the references to the newly allocated storage by traversing the loop body
and ignoring conditionals.

2.3 Synergy Between SoVR and SiVR

In general, SoVR transformation is neater in code generation and performs more
efficiently than SiVR since the SoVR transformation introduces scalar loads
and stores. But, SoVR transformation has limited applicability (i.e., handling
only anti-dependences) in breaking cycles compared to SiVR, which has broader
applicability through breaking output-dependences. Table 2 shows a comparison
between SoVR and SiVR transformations related to space requirements and
additional stores and loads.

Table 2. A comparison between SoVR and SiVR transformations related to the space
requirements and additional stores, loads introduced by these transformations in one
iteration of the target loop. * – Additional scalar loads/stores for SiVR transformation
may go negative in case of renaming scalars.

Storage #Additional space SoVR SiVR

Vector length Loop length

Additional loads &
stores

#scalar loads 1 0*

#scalar stores 1 0*

#pointer-based loads 0 1+#references

#pointer-based stores 0 1

A Unified Approach to Variable Renaming for Enhanced Vectorization 7

3 Motivating Example

To motivate the need of a unified framework that synergistically integrates mul-
tiple variable renaming transformations, we consider a running example (shown
in Fig. 1) from [5] whose dependence graph consists of three cycles (i.e., s1-s3-
s2-s4-s1, s1-s3-s4-s1, and s1-s2-s4-s1) which prohibit vectorization. Past work by
Calland et al. [5] uses only SiVR transformations to eliminate all of the above
three cycles by applying SiVR transformations on the statements s2 and s3. But,
these transformations require an additional space close to 2 times the number
of iterations of the loop-i, i.e., a total of (2 × T), and also introduce additional
2 pointer-based stores and 4 pointer-based loads per one iteration of the loop.

Fig. 1. A running example from [5] whose dependence graph consists of three cycles
c1/c2/c3: s1-s3-s2-s4-s1/s1-s3-s4-s1/s1-s2-s4-s1 which prohibit vectorization. The table
also lists dependence graphs and transformed codes after applying past approach [5]
and our integrated approach on the original program.

However, instead of applying SiVR transformation on the statement s2 to
break the cycle (c3), SoVR transformation can be applied on the s1 to break the
same cycle (c3). This results in lesser additional space (T + V LEN), and also
introduces lesser additional 1 pointer-based store and 2 pointer-based loads per
one iteration of the loop. Our approach identifies such optimal transformations
from a set of valid SoVR and SiVR transformations by formalizing the “cycle-
breaking” problem as a minimum weighted set cover optimization problem with

8 P. Chatarasi et al.

a goal of reducing overhead arising from additional loads and stores introduced
by these transformations. The speedup’s after applying our approach over the
original program is 5.06× and 4.02× compared to the original program and the
transformed program after applying the Calland et al. approach [5] respectively
on the Intel Knights Landing processor (More details about the architectures
and compiler options can be found in Table 4).

4 Our Unified Approach to Variable Renaming

In this section, we introduce our approach that synergistically integrates SoVR
and SiVR transformations into a unified formulation to break cycles of depen-
dences involving memory-based dependences, and the approach is implemented
in a tool called PolySIMD.

The overall approach is summarized in Fig. 2, which is implemented as an
extension to the PPCG framework [20] (a state-of-the-art optimization frame-
work for loop transformations), and consists of the following components: (1)
Dependence cycles finder (Extracting flow-, anti-, and output-dependences on a
target loop, then constructing a dependence graph, and then finding cycles in
the graph using the Johnson’s algorithm [12]), (2) Bipartite graph constructor
(Building a bipartite mapping from a union over useful SoVR and SiVR transfor-
mations to the breakable cycles, in such a way that there is an edge between them
if the transformation can break the cycle), (3) Solver (Reducing the problem of
breaking cycles as a weighted set covering optimization problem and finding an
optimal solution using the ILP solver of ISL framework [19]), (4) Transformer
(Applying SoVR and SiVR transformation from the optimal solution to break
cycles).

4.1 Dependence Cycles Finder

Fig. 2. Workflow of PolySIMD imple-
mented as an extension to the PPCG [20].

This component takes the polyhe-
dral intermediate representation (also
referred to as SCoP) extracted from
a target loop as an input. Then, the
loop-carried and loop-independent flow-
, anti-, and output-dependences (includ-
ing both data and control dependences)
of the target loop are computed using
the PPCG dependence analyzer. After-
wards, these dependences are repre-
sented as a directed graph, where a
node denotes a statement, and an
edge denotes a dependence between two
statements. Also, each edge of a directed
graph is annotated with a dependence type: flow-, anti-, or output-. Now,
PolySIMD computes all strongly connected components (SCC’s) of the directed

A Unified Approach to Variable Renaming for Enhanced Vectorization 9

graph using the Tarjan’s algorithm [11]. Then, all elementary cycles2 for every
SCC of the dependence graph are identified using the Johnson’s algorithm [12],
an efficient algorithm to enumerate all elementary cycles of a directed graph.
The worst case time complexity of the algorithm is O((n+ e)(c+ 1)) where n is
the number of vertices, e is the number of edges and c is the number of distinct
elementary cycles in a directed graph. For example, applying Johnson’s algo-
rithm on a dependence graph of the running example (shown in Fig. 1 and has
only one SCC) results in three elementary cycles c1/c2/c3: s1-s3-s2-s4-s1/s1-s3-
s4-s1/s1-s2-s4-s1 on the loop-i.

Note that SoVR and SiVR transformation cannot break a cycle if the cycle
is either a pure flow- or pure output-dependence cycle [5]. Since our approach
considers only SoVR and SiVR into the formulation, if PolySIMD encounters
any dependence cycle involving pure flow- or pure output-dependences in a SCC,
then the tool ignores the SCC and continues with the rest of SCC’s. If each SCC
have either a pure flow- or pure output-dependence cycle, then PolySIMD will
skip rest of steps in our approach, otherwise the tool continues with next steps.
Since the three cycles c1, c2, and c3 of the running example are neither pure-flow
nor pure-output dependence cycles, our approach proceeds to the next step.

4.2 Bipartite Graph Constructor

Table 3. Bipartite graph constructed on
the dependence graph of the original pro-
gram in Fig. 1.

Transformations (T) Cycles (C)

t1 = SoVR(s1, b[2i+2]) c3
t2 = SiVR(s2, b[2i]) c3
t3 = SiVR(s3, a[i]) c1, c2
t4 = SoVR(s3, c[i+5]) c2
t5 = SiVR(s4, c[i]) c2

This component constructs a bipartite
graph between a union of useful SoVR
and SiVR transformations (see Sect. 2
for usefulness criteria) and breakable
cycles of the dependence graph such
that there is an edge between them if
applying the transformation can break
the cycle. As from the usefulness crite-
ria, Table 3 shows a tabular version of
the bipartite graph constructed for the
running example.

4.3 Solver

After constructing the bipartite graph, the problem of finding an optimal set
of transformations for cycle breaking is reduced to a minimum weighted set
cover optimization problem (C, T,W) where C refers to a collection of cycles,
T refers to a set of useful SoVR and SiVR transformations, and W refers to
a set of weights for each transformation. The goal of the optimization problem
is to identify the minimum weighted sub-collection of T whose union covers all
cycles in C, and the optimization problem is known to be NP-hard. Hence, we

2 An elementary cycle of a directed graph is a path in which no vertex appears twice
except the first and last vertices. Since elementary cycles form a basis for enumerating
all cycles in a directed graph, breaking all of them results in an acyclic graph.

10 P. Chatarasi et al.

formulate the minimum weighted set covering problem as the following integer
linear programming (ILP) in our tool-chain.

Variables:

– A variable ti for each transformation of T

ti ∈ {0, 1}, ∀ ti ∈ T

where ti = 1 indicates that the transformation ti should be applied on the
original program, otherwise it should be ignored.

– A weight parameter wi for each transformation ti to indicate an additional
execution overhead (ignoring cache effects), and is measured using the addi-
tional loads and stores introduced by the transformation per one iteration of
the target loop (See Table 2 for more details).

– A latencyratio parameter to indicate the ratio of access times of main memory
to registers, and this parameter is used in converting weight parameters of
SiVR transformations (introduced pointer-based loads/stores) into same units
as of weight parameters of SoVR transformations (introduces scalar-based
loads/stores).

Acyclicity constraint: The acyclic constraint on the dependence graph is mod-
eled into a condition that each cycle of C should be covered by at-least one
transformation of T .

∀ cj in C,

(∑
∀ ti in T

such that ti can break cj

ti

)
≥ 1

Objective function: Our approach targets at minimizing additional overhead
introduced by the optimal set of transformations.

Minimize
(∑

∀ ti in T

wi × ti

)

The ILP formulation for the example is as follows (Assuming latencyratio as
50).

T = {t1, t2, t3, t4, t5}, C = {c1, c2, c3}, ti ∈ {0, 1}, ∀ ti ∈ T,

w1 = w4 = 2, w2 = w3 = w5 = 50 × 3 = 150,
t3 ≥ 1, t3 + t4 + t5 ≥ 1, t1 + t2 ≥ 1,

Minimize
(

2 × (t1 + t4) + 150 × (t2 + t3 + t5)
)

The optimal solution obtained for the above formulation is (t1 = 1, t2 =
0, t3 = 1, t4 = 0, and t5 = 0), i.e., applying SoVR on s2 and SiVR on s3
can break all cycles present in the running example with minimal additional

A Unified Approach to Variable Renaming for Enhanced Vectorization 11

overhead introduced. Note that the above solution is different to the solution
(t2 = 1, t3 = 1) from the Calland et al’s approach in [5] since our approach
considers both SoVR and SiVR transformations into the formulation, unlike the
Calland et al’s approach which includes only SiVR transformations.

Heuristics. There can be simple heuristics such as applying SoVR transformation
in the beginning to break as many cycles it can and followed by applying SiVR
transformation to break rest of cycles, which can lead to the similar performance
improvements compared to our approach. The solution from such heuristics may
include redundant SoVR transformations, which can be observed on the running
example. Applying transformation t4 (SoVR) on the running example (ahead of
SiVR transformations) to break the cycle c2 is redundant because the transfor-
mation t3 (SiVR) will eventually break the cycle c2 and also can break cycle c1
that cannot be broken by any SoVR transformation.

There can exists other heuristics or greedy algorithms to the minimum
weighted set cover optimization problem. But, we believe that an ILP formula-
tion formalizes the optimization problem without being tied to specific heuris-
tics, which in turn reduces performance anomalies that can occur in optimization
heuristics; Also, the compile-times for the results in this experimental evalua-
tion are less than half a second (see Table 5 for more details). We also believe
that our framework can be easily extended to include other heuristics or greedy
algorithms to the optimization problem.

4.4 Transformer

This component applies the optimal set of transformations obtained from the
solver onto the intermediate polyhedral representation of the target loop. It is
also mentioned in [5] that the order of applying SoVR and SiVR transformations
doesn’t have any effect on the final program. Hence, PolySIMD first applies SoVR
transformations from the optimal solution, and then followed by SiVR transfor-
mations from rest of the optimal solution. The generation of new assignment
statements, modifying schedules of statements, and updating the references as
part of the code transformations are implemented using the dependence analyzer
and schedule trees of the PPCG framework.

After applying all transformations from the optimal solution, PolySIMD feeds
the transformed intermediate polyhedral representation to the PPCG optimiza-
tion engine to perform statement reordering based on the topological sorting
of the transformed dependence graph. Note that all of the benchmarks in the
experimental evaluation required statement reordering transformation to be per-
formed without which the Intel’s ICC v17.0 product compiler couldn’t vectorize.
This demonstrates the necessity of coupling storage optimizations with the loop
optimization framework. Finally, PolySIMD leverages code generation capabili-
ties of the PPCG framework to generate transformed sequential CPU code that
can be input into a vectorizing compiler like ICC or generates GPU code (CUDA
kernels) that can be processed by a GPU compiler like NVCC.

12 P. Chatarasi et al.

4.5 Bounding Additional Space

We believe that one of the major key limitations in the unavailability of variable
renaming techniques (especially on arrays) in modern compilers is due to the
lack of support for bounding the additional space required to break memory-
based dependences. Hence, we provide a clause (i.e., spacelimit) to the direc-
tive “#pragma vectorize” that can help programmers to limit the additional
space to enable enhanced vectorization of inner-most loops, and the spacelimit
is expressed in multiples of vector registers length. The clause spacelimit essen-
tially helps our approach to compute strip size that can be vectorized, and the
formula to compute the strip size (in multiples of vector length) is as follows.

strip size =

⌊
spacelimit × V LEN − |TSoV R| × V LEN

|TSiV R| × V LEN

⌋
=

⌊
spacelimit − |TSoV R|

|TSiV R|
⌋

where |TSoV R| and |TSiV R| refer to number of SoVR and SiVR transformations
in the optimal solution respectively. If the strip size value is non-positive for a
given spacelimit, then our approach ignores applying renaming transformations.
Otherwise, our approach does strip mining of the target loop before applying
any of the renaming transformations from the optimal solution.

5 Performance Evaluation

In this section, we present an evaluation of our PolySIMD tool relative to Intel’s
ICC v17.0 product compiler and to the two algorithms presented in past work
[5,8] for performing SiVR and SoVR transformations to break cycles of a depen-
dence graph. We begin with an overview of the experimental setup and the
benchmark suite used in our evaluation, and then present experimental results
for the three different comparisons.

5.1 Experimental Platforms

Our evaluation uses the following two SIMD architectures. (1) A many-core Intel
Xeon Phi Knights Landing (KNL) processor with two 512-bit vector processing
units (VPU) per core. Thus, each 512-bit VPU can perform SIMD operations
on 16 single-precision floating point values, i.e., the VPU has an effective vec-
tor length of 16 (for 32-bit operands). Since we are evaluating vectorization for
single-threaded benchmarks, we only use one core of the KNL processor in our
evaluation, though our approach can be applied to multithreaded applications
as well. (2) An Nvidia Volta accelerator (Tesla V100) with 80 symmetric mul-
tiprocessors (SMs), each of which can multiplex one or more thread blocks. A
thread block can contain a maximum of 1024 threads, which are decomposed
into 32-thread warps for execution on the SM. Thus, each SM can be viewed
as being analogous to a VPU with an effective vector length of 32 (for 32-bit
operands). For consistency with our KNL results, we only generate one block of

A Unified Approach to Variable Renaming for Enhanced Vectorization 13

1024 threads per benchmark, thereby only using one SM in the GPU. However,
our approach can be applied to multi-SM executions as well. Table 4 lists the
system specifications and the compiler options used in our evaluations. The com-
parison with ICC could only be performed on KNL, since ICC does not generate
code for Nvidia GPUs. The comparison with the two algorithms from past work
[5,8] were performed on both platforms.

Table 4. Summary of SIMD architectures and compiler flags used in our experiments.
SP refers to Single Precision floating point operands, VPU refers to a KNL Vector
Processing Unit, and SM refers to a GPU Streaming Multiprocessor.

Intel Xeon Phi Nvidia Volta

Microarch Knights Landing Tesla V100

SIMD lanes 16 SP per VPU (2 VPU’s per core) 32 SP per SM

Compiler Intel ICC v17.0 Nvidia NVCC v9.1

Compiler flags -O3 -xmic-avx512 -O3 -arch=sm 70 -ccbin=icc

5.2 Benchmarks

We use the Test Suite for Vectorizing Compilers (TSVC) benchmark suite in our
evaluation, originally developed in FORTRAN to assess the vectorization capa-
bilities of compilers [4]. Later, the benchmark suite was translated into C with
additional benchmarks to address limitations in the original suite [16], so we used
this C version for our evaluations. A detailed study of these benchmarks, along
with the vectorization capabilities of multiple compilers can be found in [9,16].
Since our goal is to evaluate the effectiveness of renaming variables on breaking
dependence cycles that inhibit vectorization, we restrict our attention to TSVC
benchmarks that contain multi-statement dependence cycles containing at least
one anti/output dependence and that cannot be broken by scalar privatization.
Further, since PolySIMD is based on a polyhedral optimization framework, we
further restricted our attention to the subset of these benchmarks that do not
contain non-affine expressions that prevent polyhedral analysis3. This selection
resulted in 11 benchmarks from the TSVC suite that will be the focus of our
evaluation, and are summarized in Table 5.

5.3 Comparison with ICC

As discussed in Fig. 2, PolySIMD takes a sequential program as input, and gen-
erates sequential code as output with selected variable renamings and statement
reorderings that enable enhanced vectorization. Figure 3 shows the speedups
obtained by using PolySIMD as a preprocessor to Intel’s ICC v17.0 product

3 This constraint arises from the implementation of our algorithm in PolySIMD; our
algorithm can be applied in a non-polyhedral compiler setting as well.

14 P. Chatarasi et al.

Table 5. Summary of the 11 benchmarks from the TSVC suite used in our evaluation,
including the number of statements, number of dependences, and number of elementary
cycles per benchmark (excluding self-loop cycles). The benchmarks were executed using
N = 225 and T = 200 as input parameters. Number of SiVR and SoVR transformations
performed by PolySIMD for the 11 benchmarks, and also the overall compilation times
required. Coincidentally, none of these benchmarks triggered a case in which both SiVR
and SoVR transformations had to be performed.

Benchmark #Stmts #Deps #Elementary

cycles

Our ILP solution Compilation time (sec)

#SoVR’s #SiVR’s PolySIMD Total

s116 5 5 1 1 0 0.08 0.10

s1244 2 2 1 1 0 0.01 0.02

s241 2 3 1 1 0 0.01 0.03

s243 3 6 2 1 0 0.02 0.04

s244 3 4 1 1 0 0.02 0.03

s2251 3 4 1 0 1 0.02 0.03

s252 3 5 2 0 2 0.02 0.04

s254 2 2 1 0 1 0.01 0.02

s255 3 6 3 0 2 0.02 0.04

s257 2 3 1 0 1 0.02 0.04

s261 4 9 3 0 2 0.02 0.04

Fig. 3. Speedups using PolySIMD on the eleven benchmarks from the TSVC suite,
compiled using the Intel’s ICC v17.0 product compiler and running on a single core of
Intel Knights Landing processor.

compiler on the KNL platform. The speedup represents the ratio of the execu-
tion time of the original program compiled with ICC to the execution time of the
transformed program compiled with ICC, using the compiler options in Table 4
in both cases. As can be seen in Fig. 3, the use of PolySIMD as a preprocessor
results in significant performance improvements for the 11 kernels. The trans-
formations performed by PolySIMD are summarized in Table 5; the fact that no
benchmark required both SiVR and SoVR transformations is a pure coincidence.
We now discuss the two groups of benchmarks for which PolySIMD applied the
SoVR and SiVR transformations respectively.

A Unified Approach to Variable Renaming for Enhanced Vectorization 15

Source Variable Renaming (SoVR): The benchmarks s116, s1244, s241,
s243, s244 in the first five entries of Table 5 contain multi-statement recur-
rences involving outgoing anti-dependences. Hence, PolySIMD applied the
SoVR transformation on these benchmarks to reposition these outgoing anti-
dependence edges to break the cycles, as dictated by the column titled SoVR
under ILP solution of Table 5. There are a few interesting observations that can
be made from the results in Table 5 for these five benchmarks: (1) The SoVR
transformation enabled vectorization for all five benchmarks (as confirmed by
the compiler log output), and resulted in speedups varying from 1.12× to 21.02×
on Intel KNL relative to the original program using the Intel’s ICC v17.0 product
compiler. (2) The s1244 benchmark involves dead-write statements (i.e., there
are no reads of a write before another statement writing to the same location)
whose removal eliminate dependence cycles. Currently, PolySIMD doesn’t check
for dead-write statements unlike the Intel compiler (with O3 optimization flag
enabled) which remove the dead writes to enable the vectorization. As a result,
there is a lower speedup with our approach compared to the Intel compiler. (3)
The reason for less speedup in case of the s116 benchmark is the generation
of non-unit (unaligned) strided loads and stores leading to inefficient vectoriza-
tion (as confirmed by the compiler log output describing the estimated potential
speedup as 1.36×). (4) All these five benchmarks required statement reorder-
ing to be performed after the SoVR transformations, without which the Intel’s
compiler wasn’t able to vectorize. This indicates the necessity of loop transfor-
mations framework to output the final code that can be vectorizable by the
existing compilers.

Sink Variable Renaming (SiVR): The column titled SiVR under ILP solu-
tion indicates that the SiVR transformation should be performed on the remain-
ing benchmarks (s2251, s252, s254, s255, s257, s261) in Table 5. These
benchmarks have dependence cycles involving anti- and output-dependences,
and hence our approach chose only the SiVR transformations to break these
dependence cycles. As with the earlier five benchmarks, there are a few inter-
esting observations that can be made from the results in Table 5 for these later
three benchmarks: (1) The SiVR transformation enabled vectorization for all
the remaining six benchmarks, and resulted in speedups varying from 2.02× to
10.77× on the Intel KNL platform relative to the original program. The compiler
log output shows that vectorization was indeed performed in all cases. (2) The
benchmarks s252, s254, s255, s2574 have loop-carried flow-dependence and
loop-independent anti-dependences on scalars, and resolving these dependences
on scalars using our approach introduced higher overhead from temporary arrays
pointer-based loads and stores. As a result, the performance improvements in
these benchmarks are relatively low. (3) As seen with earlier five benchmarks
benefited by the SoVR transformation along with the statement reordering,
these six benchmarks also required statement reordering to be performed after
the SiVR transformations, without which the Intel’s compiler wasn’t able to
vectorize.
4 Also, most of accesses in these benchmarks are dominated with scalars.

16 P. Chatarasi et al.

5.4 Comparison with Calland et al’s Approach

The heuristics proposed by Calland et al. [5] aim to find the minimum number
of SiVR transformations to break all dependence cycles involving memory-based
dependences. As a result, the heuristics choose only SiVR transformations for
vectorizing all the eleven benchmarks. However, our approach chooses to perform
SoVR transformations on five of the eleven benchmarks (s116, s1244, s241,
s243, s244), since SoVR incurs less overhead than SiVR. Hence, we observe
speedups (shown in Table 6) with our approach relative to Calland et al, varying
from 1.07× to 1.24× on the Intel KNL platform and 1.12× to 1.57× on the
NVIDIA Volta. For the remaining six benchmarks, our approach chose exactly
the same set of SiVR transformations as did their approach, and hence there is no
performance improvement in these cases. The overall geometric-mean speedups
on all of the eleven benchmarks are 1.08× and 1.14× relative to their approach
on the KNL and Volta platforms.

Table 6. Speedups on the Intel KNL processor and NVIDIA Volta accelerator
using PolySIMD on seven benchmarks from the eleven benchmarks relative to past
approaches, i.e., Calland et al. [5] and Chu et al. [8]. We excluded the remaining four
benchmarks from the table since our results were similar to both of the past works.

Benchmark Intel KNL NVIDIA Volta

Calland et al.
approach

Chu et al.
approach

Calland et al.
approach

Chu et al.
approach

s116 1.20× 1.03× 1.29× 1.27×
s1244 1.10× 4.03× 1.57× 1.51×
s241 1.07× 1.49× 1.31× 1.70×
s243 1.27× 1.59× 1.47× 1.61×
s244 1.24× 1.22× 1.12× 1.32×
s257 1.00× 9.74× 1.00× 1.08×
s261 1.00× 1.20× 1.00× 1.19×

5.5 Comparison with Chu et al’s Approach

Chu et al. proposed an algorithm for resolving general multistatement recur-
rences which considers both SoVR and SiVR transformation [8]. The solution
obtained by their algorithm depends on a traversal of the dependence graph,
and may not be optimal in general. Further, their algorithm may include redun-
dant SiVR transformations, which were observed when applying their algorithm
to benchmarks s241, s243, s257 and 261, leading to lower performance com-
pared to our approach. We observed performance improvements on these bench-
marks with our approach (relative to Chu et al), varying from 1.20× to 9.74× on
KNL and 1.08× to 1.70× on Volta. For the remaining three benchmarks s116,
s1244 and s244 in Table 6, our approach chose the same solution as their app-
roach, but we still obtained better performance because PolySIMD generates

A Unified Approach to Variable Renaming for Enhanced Vectorization 17

private scalars for SoVR transformations, unlike their algorithm which gener-
ates temporary arrays for the SoVR transformations. The generation of private
scalars enabled our approach to achieve performance improvements speedups
ranging from 1.03× to 4.03× on KNL and 1.27× to 1.51× on Volta. The overall
geometric-mean speedups on all of the eleven benchmarks were 1.57× and 1.22×
on the KNL and Volta platforms.

6 Related Work

Since there exists an extensive body of research literature in handling memory-
based dependences, we focus on past contributions that are closely related to
variable expansion [10], variable renaming including SoVR [5,15], SiVR [5–8]
and Array SSA [14,17].

Comparison with past approaches involving SoVR and/or SiVR transforma-
tions. Calland et al. [5] formally defined both SoVR and SiVR transformations,
and also explained the impact of these transformations on a dependence graph.
Also, Calland et al. proved that the problem of finding the minimum number
of statements to be transformed—to break artificial dependence paths involv-
ing anti- or output-dependences—is NP-complete, and proposed some heuristics.
However, the implementation and impact of these techniques on the performance
of representative benchmarks were not mentioned. But, PolySIMD utilizes both
SoVR and SiVR in a complementary manner to coordinate each other, and is
built on a polyhedral framework (PPCG), and leveraged it for statement reorder-
ing to enable vectorization. Also, we did not find a framework publicly available
from the past approaches. Chu et al. work in [7,8] discussed dependence-breaking
strategies in the context of recurrence relations, and developed an algorithm for
the resolution of general multi-statement recurrences using the proposed strate-
gies. But, the proposed algorithm for the resolution of cycles is not optimal and
may generate solutions having redundant SoVR transformations.

Other works on storage transformations. Array SSA has been developed to con-
vert a given program into a static single assignment form to enable automatic
parallelization of loops involving memory-based dependences [14], and also to
extend classical scalar optimizations to arrays [17]. However, applying renam-
ing on writes of every statement of a loop body is significantly expensive in
terms of additional space requirements, and may not be required for enabling
vectorization. Other approaches such as variable expansion [10] can be used to
break specific memory-based dependences. The variable expansion may be ben-
eficial for applying onto scalars but expanding multi-dimensional arrays inside
the inner-most loop for vectorization is expensive in terms of additional space.
But, variable expansion can be useful in eliminating pure-output dependence
cycles unlike with SoVR and SiVR, which is a part of our future work.

Bounding additional space. There has been lack of support for bounding the extra
space required to break memory-based dependences in the past approaches [5,8].
But, our approach provides a spacelimit clause that can help programmers to

18 P. Chatarasi et al.

specify the maximum amount of extra storage that can be allocated. An alter-
native approach to enable parallelization or vectorization has always been to
convert the program to (dynamic) single assignment form, through array expan-
sion, followed by affine scheduling [3] for vectorization, and then applying storage
mapping optimization [2] (a generalized form of array contraction). Yet no such
scheme can provide the guarantees that the affine transformations obtained on
the fully expanded arrays will enable storage mapping optimization to restore
a low-footprint implementation. Enforcing an a priori limit on memory usage
would be even harder to achieve. Furthermore, no integrated system enabling
vectorization through such a complex path of expansion and contraction has
been available until now.

7 Conclusions and Future Work

Despite the fact that compiler technologies for automatic vectorization have
been under development for over four decades, there are still considerable gaps
in the capabilities of modern compilers to perform automatic vectorization for
SIMD units. This paper focuses on advancing the state of the art with respect
to handling memory-based anti (write-after-read) or output (write-after-write)
dependences in vectorizing compilers. In this work, we integrate both Source
Variable Renaming (SoVR) and Sink Variable Renaming (SiVR) transforma-
tions into a unified formulation, and formalize the “cycle-breaking” problem as
a minimum weighted set cover optimization problem. Our approach also can
ensure that the additional storage introduced by our transformations remains
within the user-provided bounds.

We implemented our approach in PPCG, a state-of-the-art optimization
framework for loop transformations, and evaluated it on eleven kernels from
the TSVC benchmark suite. Our experimental results show a geometric mean
performance improvement of 4.61× on an Intel Xeon Phi (KNL) machine relative
to the optimized performance obtained by Intel’s ICC v17.0 product compiler.
Further, our results demonstrate a geometric mean performance improvement of
1.08× and 1.14× on the Intel Xeon Phi (KNL) and Nvidia Tesla V100 (Volta)
platforms relative to past work that only performs the SiVR transformation [5],
and of 1.57× and 1.22× on both platforms relative to past work on using both
SiVR and SoVR transformations [8]. We believe that our techniques will be
increasingly important in the current era of pervasive SIMD parallelism, since
non-vectorized code will incur an increasing penalty in execution time on future
hardware platforms.

As part of the future work, we plan to work on extending the unified formu-
lation by including variable expansion [10] and forward propagation techniques
[15] to break pure-output and to handle pure-flow dependence cycles respectively.
Also, we plan to extend our approach and implementation to handle non-affine
regions of codes, and also to support vectorization of outer loops as well. Fur-
thermore, we plan to investigate into enabling loop transformations (such as
tiling in case of cycles on tiles) using variable renaming transformations.

A Unified Approach to Variable Renaming for Enhanced Vectorization 19

References

1. Baghdadi, R., et al.: PENCIL: a platform-neutral compute intermediate language
for accelerator programming. In: Proceedings of the 2015 International Confer-
ence on Parallel Architecture and Compilation (PACT), PACT 2015, pp. 138–149.
IEEE Computer Society, Washington, DC (2015). https://doi.org/10.1109/PACT.
2015.17

2. Bhaskaracharya, S.G., Bondhugula, U., Cohen, A.: SMO: an integrated approach
to intra-array and inter-array storage optimization. In: Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2016, pp. 526–538. ACM, New York (2016). https://doi.org/10.
1145/2837614.2837636

3. Bondhugula, U., Acharya, A., Cohen, A.: The Pluto+ algorithm: a practical app-
roach for parallelization and locality optimization of affine loop nests. ACM Trans.
Program. Lang. Syst. 38(3), 12:1–12:32 (2016). https://doi.org/10.1145/2896389

4. Callahan, D., Dongarra, J., Levine, D.: Vectorizing compilers: a test suite and
results. In: Proceedings of the 1988 ACM/IEEE Conference on Supercomputing,
Supercomputing 1988, pp. 98–105. IEEE Computer Society Press, Los Alamitos
(1988). http://dl.acm.org/citation.cfm?id=62972.62987

5. Calland, P., Darte, A., Robert, Y., Vivien, F.: On the removal of anti- and output-
dependences. Int. J. Parallel Program. 26(2), 285–312 (1998). https://doi.org/10.
1023/A:1018790129478

6. Chang, W.L., Chu, C.P., Ho, M.S.H.: Exploitation of parallelism to nested loops
with dependence cycles. J. Syst. Arch. 50(12), 729–742 (2004). https://doi.
org/10.1016/j.sysarc.2004.06.001. http://www.sciencedirect.com/science/article/
pii/S1383762104000670

7. Chu, C.P.: A theoretical approach involving recurrence resolution, dependence
cycle statement ordering and subroutine transformation for the exploitation of par-
allelism in sequential code. Ph.D. thesis, Louisiana State University, Baton Rouge,
LA, USA (1992). uMI Order No. GAX92-07498

8. Chu, C.P., Carver, D.L.: An analysis of recurrence relations in Fortran Do-loops
for vector processing. In: Proceedings. The Fifth International Parallel Processing
Symposium, pp. 619–625, April 1991. https://doi.org/10.1109/IPPS.1991.153845

9. Evans, G.C., Abraham, S., Kuhn, B., Padua, D.A.: Vector seeker: a tool for finding
vector potential. In: Proceedings of the 2014 Workshop on Programming Models
for SIMD/Vector Processing, WPMVP 2014, pp. 41–48. ACM, New York (2014).
https://doi.org/10.1145/2568058.2568069

10. Feautrier, P.: Array expansion. In: Proceedings of the 2nd International Conference
on Supercomputing, ICS 1988, pp. 429–441. ACM, New York (1988). https://doi.
org/10.1145/55364.55406

11. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipu-
lation. Commun. ACM 16(6), 372–378 (1973). https://doi.org/10.1145/362248.
362272

12. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975). https://doi.org/10.1137/0204007

13. Kennedy, K., Allen, J.R.: Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann Publishers Inc., San Francisco
(2002)

https://doi.org/10.1109/PACT.2015.17
https://doi.org/10.1109/PACT.2015.17
https://doi.org/10.1145/2837614.2837636
https://doi.org/10.1145/2837614.2837636
https://doi.org/10.1145/2896389
http://dl.acm.org/citation.cfm?id=62972.62987
https://doi.org/10.1023/A:1018790129478
https://doi.org/10.1023/A:1018790129478
https://doi.org/10.1016/j.sysarc.2004.06.001
https://doi.org/10.1016/j.sysarc.2004.06.001
http://www.sciencedirect.com/science/article/pii/S1383762104000670
http://www.sciencedirect.com/science/article/pii/S1383762104000670
https://doi.org/10.1109/IPPS.1991.153845
https://doi.org/10.1145/2568058.2568069
https://doi.org/10.1145/55364.55406
https://doi.org/10.1145/55364.55406
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/362248.362272
https://doi.org/10.1137/0204007

20 P. Chatarasi et al.

14. Knobe, K., Sarkar, V.: Array SSA form and its use in parallelization. In: Proceed-
ings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 1998, pp. 107–120. ACM, New York (1998). https://doi.
org/10.1145/268946.268956

15. Kuck, D.J., Kuhn, R.H., Padua, D.A., Leasure, B., Wolfe, M.: Dependence graphs
and compiler optimizations. In: Proceedings of the 8th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 1981, pp. 207–218.
ACM, New York (1981). https://doi.org/10.1145/567532.567555

16. Maleki, S., Gao, Y., Garzarán, M.J., Wong, T., Padua, D.A.: An evaluation of vec-
torizing compilers. In: Proceedings of the 2011 International Conference on Parallel
Architectures and Compilation Techniques, PACT 2011, pp. 372–382. IEEE Com-
puter Society, Washington, DC (2011). https://doi.org/10.1109/PACT.2011.68

17. Rus, S., He, G., Alias, C., Rauchwerger, L.: Region array SSA. In: Proceedings
of the 15th International Conference on Parallel Architectures and Compilation
Techniques, PACT 2006, pp. 43–52. ACM, New York (2006). https://doi.org/10.
1145/1152154.1152165

18. Stephens, N., et al.: The ARM scalable vector extension. IEEE Micro 37(2), 26–39
(2017). https://doi.org/10.1109/MM.2017.35

19. Verdoolaege, S.: isl : an integer set library for the polyhedral model. In: Fukuda,
K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp.
299–302. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-
6 49

20. Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gómez, J., Tenllado, C.,
Catthoor, F.: Polyhedral parallel code generation for CUDA. ACM Trans. Archit.
Code Optim. 9(4), 54:1–54:23 (2013). https://doi.org/10.1145/2400682.2400713

21. Weiss, M.: Strip mining on SIMD architectures. In: Proceedings of the 5th Inter-
national Conference on Supercomputing, ICS 1991, pp. 234–243. ACM, New York
(1991). https://doi.org/10.1145/109025.109083

https://doi.org/10.1145/268946.268956
https://doi.org/10.1145/268946.268956
https://doi.org/10.1145/567532.567555
https://doi.org/10.1109/PACT.2011.68
https://doi.org/10.1145/1152154.1152165
https://doi.org/10.1145/1152154.1152165
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/109025.109083

Design and Performance Analysis
of Real-Time Dynamic Streaming

Applications

Xuan Khanh Do1(B), Stéphane Louise1, and Albert Cohen2

1 CEA, LIST, 91191 Gif-sur-Yvette Cedex, France
{xuankhanh.do,stephane.louise}@cea.fr

2 INIRA and ENS, 45 rue d’Ulm, 75005 Paris, France
albert.cohen@inria.fr

Abstract. Static dataflow graphs enable powerful design, implementa-
tion and analysis methods for embedded systems. Nevertheless, com-
plex signal and media processing applications—such as cognitive radio
or modern video codecs—display dynamic behavior that do not fit the
classical cyclo-static restrictions. An approach to tackle this limitation
combines integer parameters—to express dynamic rates—with control
actors—to allow topology and mode changes as well as time-dependent
scheduling and constraints, as introduced in the Transaction Parameter-
ized Dataflow (TPDF) model of computation. In this paper we present
a technique to automatically analyse the static properties of a TPDF
application, including consistency, liveness, boundedness and worst-case
throughput. Our implementation of these analyses is validated against a
set of real-life dynamic applications, demonstrating significant buffer size
and throughput improvements compared to the state of the art models,
including Cyclo-Static Dataflow (CSDF) and Scenario-Aware Dataflow
(SADF).

Keywords: Models of computation · Dataflow ·
Performance of systems

1 Introduction

The limits on power usage and dissipation is encouraging a trend towards on-
chip parallelism in both HPC and embedded systems. Since the early 2000s,
this trend has fostered the appearance of so-called many-core systems which are
already available from several vendors, e.g., the MPPA-256 from Kalray (256
cores) [6] or Epiphany from Adapteva (64 cores). This broader availability of
low-power many-core platforms opens new opportunities for system designers,
but introduces also several challenges in expressing parallelism and facilitating
the efficient mapping, performance tuning and analysis of applications.

Dataflow models of computation (MoC) are widely used to analyze and
optimize streaming applications mapped onto embedded many-core platforms.
c© Springer Nature Switzerland AG 2019
M. Hall and H. Sundar (Eds.): LCPC 2018, LNCS 11882, pp. 21–36, 2019.
https://doi.org/10.1007/978-3-030-34627-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34627-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-34627-0_2

22 X. K. Do et al.

Applications are modeled as directed graphs where nodes represent actors (iter-
ated execution of tasks) and edges represent communication channels. Among
these, some dataflow models like SDF [14] and CSDF [5] families provide many
decision procedures and optimization algorithms, they are useful for their pre-
dictability, formal abstraction, and amenability to powerful optimization tech-
niques. However, it is not always possible or convenient to represent all of the
functionality of a complex media and signal processing application in terms
of a static dataflow representation; typical challenges include variable data
rates, multi-standard or multi-mode signal processing, and data-dependent forms
of adaptive behavior. For this reason, numerous dynamic dataflow modeling
techniques—whose behavior is characterized by dynamic variations in resource
requirements—have been proposed. In many of these, in exchange for the higher
expressive power, translating into increased modeling flexibility, one must give up
statically decidable guarantees on buffer underflow (deadlock), overflow (bound-
edness) or performance analysis (e.g., throughput).

Transaction Parameterized Dataflow (TPDF) [8] is a recently proposed
model allowing dynamic changes of the graph topology, variable produc-
tion/consumption rates and time constraints enforcement. The dynamic
behaviour of TPDF can be viewed upon as a collection of different behaviours,
called cases, occurring in certain unknown patterns. Each case of a TPDF graph
is characterized by a value of its parameter and a graph topology. For this
reason, each case is by itself fairly static and predictable in performance and
resource usage and can be dealt with by traditional methods. In this paper we
introduce a technique to automatically analyse a TPDF application for its static
properties (i.e., consistency, liveness and boundedness) and its worst-case perfor-
mance (e.g., throughput). TPDF would naturally fit larger frameworks such as
Ptolemy [18], Open RVC-CAL [22], or dataflow visual programming languages
such as LabView [12] or Matlab/Simulink. In this paper, We prefered to focus
on the model’s properties and specific algorithms, we will consider its interac-
tion with wider semantical frameworks in future studies. In particular, while
LabView and Simulink are widely and successfully deployed in industry, signifi-
cantly reducing development time, they lacking the static guarantees and formal
verification capabilities provided in TPDF. In summary, the contributions of this
paper consist in:

– a formal model of TPDF based on the (max,+) algebra;
– methods to analyse the static properties and worst-case throughput of TPDF

graphs;
– an implementation of the analysis algorithms, demonstrating significant buffer

size and throughput improvements compared to CSDF and SADF.

The remainder of this paper is organised as follows. Section 2 recalls some
technical preliminaries of CSDF, TPDF and introduces their (max,+) model-
ing. Then Sect. 3 presents the static analyses of this dynamic model for liveness,
boundedness, worst-case throughput and a scheduling heuristic for TPDF. The
latter is illustrated and evaluated in Sect. 4, considering different realistic case

Design Analysis of Streaming Applications 23

studies. Finally, we discuss the related work in Sect. 5 and summarize our con-
tributions in Sect. 6.

2 Model of Computation

We first present CSDF [5], one of the reference dataflow MoC for applications in
the signal processing domain. Then, TPDF [8] is introduced as a parameterized
extension of CSDF with transaction processes. The dynamic behaviors of this
model can be captured by using (max,+) algebra, as presented in Sect. 2.3.

2.1 Basic Model: CSDF

Cyclo-Static Dataflow (CSDF) [5] is chosen as the basic model for TPDF because
it is deterministic and allows for checking conditions such as deadlocks and
bounded memory execution at compile/design time, which is usually not possible
for Dynamic Dataflow (DDF). In CSDF, a program is defined as a directed graph
G = 〈A,E〉, where A is a set of actors and E ⊆ A×A is a set of communication
channels. Actors represent functions that transform incoming data streams into
outgoing data streams. An atomic data object carried by a channel is called a
token. Each channel has an initial status, characterized by its initial tokens.

Every actor aj ∈ A has a cyclic execution sequence [fj(0), fj(1), · · · , fj(τj −
1)] of length τj . The interpretation of this sequence is: The n-th time that actor aj

is fired, it executes the code of function fj(n mod τj) and produces (consumes)
xu

j (n mod τj) (or yu
j (n mod τj)) tokens on its output (input) channel eu. The

firing rule of a cyclo-static actor aj is evaluated as true for its n-th firing if
and only if all input channels contain at least yu

j (n mod τj) tokens. The total
number of tokens produced (consumed) by actor aj on channel eu during the
first n invocations, denoted by Xu

j (n) =
∑n−1

l=0 xu
j (l) (or Y u

j (n) =
∑n−1

l=0 yu
j (l)).

Definition 1. Given a connected CSDF graph G, a valid static schedule for
G is a schedule that can be repeated infinitely while the buffer size remains
bounded. A vector −→q = [q1, q2, ..., qn]T is a repetition vector of G if each
qj represents the number of invocations of an actor aj in a valid static schedule
for G. A CSDF graph is called consistent if and only if it has a non-trivial
repetition vector [5].

Theorem 1. In a CSDF graph G, a repetition vector −→q = [q1, q2, ..., qn]T is
given by [5]:

−→q = P · −→r ,with P = Pjk =

{
τj , if j = k

0 , otherwise
(1)

where −→r = [r1, r2, ..., rn]T is a solution of

Γ · −→r = 0 (2)

24 X. K. Do et al.

and where the topology matrix Γ ∈ Z
|E|×|A| is defined by

Γuj =

⎧
⎪⎨

⎪⎩

Xu
j (τj) , if task aj produces on edge eu

−Y u
j (τj) , if task aj consumes from edge eu

0 , otherwise
(3)

2.2 Transaction Parameterized Dataflow

TPDF [8] is introduced as an extension of CSDF, allowing rates to be paramet-
ric and a new type of control actor, channel and port. For a compact formal
notations, kernels, which play the same role as computation units (actors) as in
CSDF, have at most one control port. Kernels without control ports are con-
sidered to always operate in a dataflow way, i.e., a kernel starts its firings only
when there is enough data tokens on all of its data input ports.

Definition 2. A TPDF graph G is defined by a tuple (K, G, E, P , Rk, Rg,
α, φ∗) where:

– K is a non-empty finite set of kernels and G is a finite set of control actors
such that K ∩ G = ∅. For each kernel k ∈ K, Mk denotes the set of modes
indicated by the control node connected to its unique control port c. The fol-
lowing modes are available within a TPDF graph:

• Mode 1: Select one of the data inputs (outputs)
• Mode 2: Select more than one data input (output)
• Mode 3: Select available data input with the highest priority
• Mode 4: Wait until all data inputs are available

In this context, the effect of control tokens can be also described as selecting
between available data input and output ports besides choosing modes.

– E ∈ O × (I ∪ C) is a set of directed channels, where I, C,O is the union of
all input, control and output port sets respectively. Ec = E \ (O × I) is the set
of all control channels. A control channel can start only from a control actor
and is connected to a control port. All other channel are data channels, which
can start only from a kernel.

– P is a set of integer parameters.
– Rk : Mk × (Ik ∪ Ck ∪ Ok) × N −→ N assigns the rate to the ports of the

n-th firing of k for each mode. The rate Rk(m, c, n) = {0, 1} for all modes
m ∈ Mk and for all firings of k. We restrict the case of zero values if both of
the production and consummation rate of a channel is 0.

– Rg : (Ig ∪ Cg ∪ Og) × N −→ N assigns the rate to each port of the n-th firing
of a control actor g.

– α : (I ∪ C ∪ O) −→ N returns for each port its priority. By default, the
priority is the same for all ports.

– φ∗ : E −→ N is the initial channel status.

A kernel k ∈ K is assumed to wait until its control port becomes available to
be fired by reading one token from this port. This token defines in which mode

Design Analysis of Streaming Applications 25

m ∈ Mk k will operate. One of the most important property of TPDF, which is
different from (C)SDF, is that a kernel or a control actor does not have to wait
until sufficient tokens are available at every data input port. This new property
allows the capacity of dynamic graph reconfiguration depending on context and
time.

In TPDF, the n-th firing of a control actor g ∈ G starts by waiting until
Rg(i, n) and Rg(c, n) tokens are available at every input i ∈ Ig and c ∈ Cg,
where Rg(c, n) = {0, 1}. After performing its actions, the n-th firing of g ends
by removing the Rg(i, n) and Rg(c, n) tokens from its input data and control
ports and writing Rg(o, n) tokens to each output control port o ∈ Og.

Fig. 1. Example of a TPDF graph with integer parameter p, control actor C and
control channel e5.

Example 1. Figure 1 depicts a TPDF graph with constant or parametric pro-
duction/consumption rates (e.g., p for the rate of A). The repetition vector is
[2, 2p, p, p, 2p, 2p], respectively in the order A,B,C,D,E, F . C is a control actor
and e5 is a control channel. A sample execution of the graph is the following: A
produces p tokens on e1. Then B fires and produces one token on edge e2, e3,
e4. After, only E can fire because there are enough tokens on its input edge and
produce one token on edge e7. B (and A if necessary) will fire a second time and
produce another token on edge e2, e3, e4. Then C,D and E will fire and produce
2, 2 and 1 token, respectively, on edge e5, e6, e7. Finally, F fires two times, each
time it consumes one token from its control port. This token determines in which
mode F will be fired. In this case, F can choose two tokens from e6 or one from
e7 and remove the remaining tokens. This continues until each actor has fired a
number of times equal to its repetition count.

In TPDF, two data distribution kernels Select-duplicate, Transaction Box
[16] and a new type of control clock can be defined in a dataflow way.

– Select-duplicate: kernels with one entry and n outputs. At a given time,
this actor has the ability to select a subset of its outputs to send the duplicated
data tokens on.

26 X. K. Do et al.

– Transaction: symmetric processes with n inputs and one output. Its role is
to atomically select a predefined number of tokens from one or several of its
input to its output. By using special modes predefined by TPDF and com-
bining with a control actor, the Transaction process implements important
actions not available in usual dataflow MoC: Speculation, Redundancy with
vote, Highest priority at a given deadline [16].

– Clock: can be considered as a watchdog timer with control tokens sent each
time there is a timing out. The kernel which receives this time token will be
awakened and fired immediately. In this way, TPDF can be applied to model
streaming applications with time constraints, as can be seen in Sect. 4.1.

2.3 (max, +) Algebraic Semantics of TPDF

We use (max, +) algebra [1,11] to capture the semantics of modes introduced
by TPDF graphs. In fact, this MoC can be considered as a dynamic switch-
ing between cases (each case is one graph iteration and can consist of different
modes), each of which is captured by a CSDF graph with two fundamental char-
acteristics of its self-timed execution: synchronisation (the max operator), when
the graph (in a specific mode of TPDF) waits for sufficient input tokens to start
its execution, and delay (the + operator), when an actor starts firing it takes a
fixed amount of time before it completes and produces its output tokens.

We briefly introduce some basic concepts of (max, +) (see [1] for background
on (max, +) algebra, linear system theory of the (max, +) semiring). (max, +)
algebra defines the operations of the maximum of numbers and addition over
the set Rmax = R ∪ {−∞}, where R is the set of real numbers. Let a ⊕ b =
max(a, b) and a ⊗ b = a + b for a, b ∈ Rmax. For scalars x and y, x · y (with
short hand xy) denotes ordinary multiplication, not the (max, +) ⊗ operator.
For a ∈ Rmax,−∞ ⊕ a = a ⊕ −∞ = a and a ⊗ −∞ = −∞ ⊗ a = −∞. By
using (max, +) algebra, we extend the linear algebra to matrices and vectors
through the pair of operations (⊕,⊗). The set of n dimensional (max, +) vectors
is denoted R

n
max while R

n×n
max denotes the set of n×n (max, +) matrices. The sum

of matrices A,B ∈ R
n×n
max , denoted by A ⊕ B is defined by [A ⊕ B]ij = aij ⊕ bij

while the matrix product A ⊗ B is defined by [A ⊗ B]ij =
n⊕

k=1

aik ⊗ bkj . For

a ∈ R
n
max, ||a|| denotes the vector norm, defined as ||a|| =

n⊕

i=1

ai = maxi ai (i.e.,

the maximum element). For a vector a with ||a|| > −∞, we use anorm to denote
[ai − ||a||]. With A ∈ R

n×n
max and c ∈ R, we use denotations A ⊕ c or c ⊕ A for

[aij + c]. The ⊗ symbol in the exponent indicates a matrix power in (max, +)
algebra (i.e., c⊗n = c · n).

Within an iteration, several modes can be evolved. Each mode corresponds
to an element of the execution sequence of the kernel which receives the con-
trol token (e.g., for the TPDF graph in Fig. 1, with p = 1, F can be fired in
two different modes within an iteration). Each combination of these modes and
parameter’s values forms a case of the TPDF graph, which can be represented
by a CSDF graph. We record the production times of initial tokens after the

Design Analysis of Streaming Applications 27

i−th case CSDF iteration using the time-stamp vector λi consisting of as many
entries as there are initial tokens in the graph (e.g., (2p + 1) initial tokens in
Fig. 1). The relationship between the i−th and the (i + 1)-st case iteration is
given by (4):

λi+1 = Mi+1 ⊗ λi (4)

Mi is the characteristic (max, +) matrix of case i. This matrix can be obtained
by symbolic simulation of one iteration of the CSDF graph in case i. To illustrate,
we use the first case of Example 1 in Fig. 1, where p = 1, the execution time
vector [2, 2, 1, 5, 2, 1.5], respectively in the order A,B,C,D,E, F and two tokens
from the control actor set the kernel F in mode 4 (i.e., wait until all data inputs
available). This graph has three initial tokens so λi = [t1, t2, t3]T . Entry tk
represents the time stamp of initial token k after the i−th case iteration. Initially,
time-stamp t1 corresponds to the symbolic time-stamp vector [0,−∞,−∞]T , t2
corresponds to the symbolic time-stamp vector [−∞, 0,−∞]T and finally t3 to
[−∞,−∞, 0]T . We start by firing actor A consuming two tokens, one from the
self edge and one from the edge from actor F , labelled t1 and t2 respectively.
The tokens produced by A carry the symbolic time-stamp:

max([0,−∞,−∞]T , [−∞, 0,−∞]T) + 2 = [2, 2,−∞]T

which corresponds to the expression max(t1 + 2, t2 + 2). The subsequent first
firing of actor B with a duration of 2 consumes this token and produced output
tokens labelled as:

max([2, 2,−∞]T) + 2 = [4, 4,−∞]T

If we continue the symbolic execution till the completion of the iteration, we
obtain the symbolic time-stamp for the second firing of A [4, 4, 2]T which repro-
duces the token in the self edge for the next iteration. The tokens produced by
the first and second firings of F in the back edge and reused by the next iteration
has the time-stamp [8.5, 8.5, 6.5]T (by consuming t2) and [12.5, 12.5, 10.5]T (by
consuming t3). If we collect the symbolic time-stamp vector of these new tokens
into a new vector λ′

i = [t′1, t
′
2, t

′
3]

T , we obtain the following (max, +) equation:
⎡

⎣
t′1
t′2
t′3

⎤

⎦ =

⎡

⎣
4 4 2

8.5 8.5 6.5
12.5 12.5 10.5

⎤

⎦

⎡

⎣
t1
t2
t3

⎤

⎦ (5)

If we assume that all initial tokens are available from time 0, the first time-
stamp is λ0 = [0, 0, 0]T . After one iteration in the case where both the first and
second tokens from C set F in mode 4, the time-stamp of initial tokens becomes
λ1 = [4, 8.5, 12.5]T .

If this case followed by another case where the TPDF graph works in the
mode 4 (i.e., wait until all data available) for the first token of C and mode 1
(i.e., select input E) for the second token of C, we obtain the following matrix:

⎡

⎣
t′1
t′2
t′3

⎤

⎦ =

⎡

⎣
4 4 2

8.5 8.5 6.5
9.5 9.5 7.5

⎤

⎦

⎡

⎣
t1
t2
t3

⎤

⎦ (6)

28 X. K. Do et al.

With the initial tokens λ1 = [4, 8.5, 12.5]T , after this case, the time-stamp
becomes λ2 = [14.5, 19, 20]T .

After analyzing all cases individually, the theory of (max, +) automata is
used to capture the dynamic semantics of modes introduced by TPDF graphs.
The completion time of a sequence of cases cs1cs2cs3 . . . csn is given by:

λi+1 = Mi+1 ⊗ Mi ⊗ . . . M1 ⊗ λ0 ∀i ∈ [0, n − 1] (7)

A careful reader might have noticed that for the example in Fig. 1, the initial
token vectors between the cases where p = 1 and p = 2 are not in the same
dimensions and therefore the matrix multiplication of (7) will not be well-defined.
However, case matrices can be extended with entries 0 and −∞ to accommodate
the initial tokens of the entire case sequence. For example, if p has a maximum
value of 2 in the case sequence, the case iteration has five initial tokens so λi =
[t1, t2, t3, t4, t5]T we can extend the matrix of case cs1 (Eq. (5)) to accommodate
this case sequence and yield the following matrix:

Mext
1 =

⎡

⎢
⎢
⎢
⎢
⎣

4 4 2 −∞ −∞
8.5 8.5 6.5 −∞ −∞
12.5 12.5 10.5 −∞ −∞
−∞ −∞ −∞ 0 −∞
−∞ −∞ −∞ −∞ 0

⎤

⎥
⎥
⎥
⎥
⎦

(8)

The synchronization data between two different cases is made through the com-
mon initial tokens between two consecutive iterations. For the synchronization
between different values of parameters, we use the initial token labelling to model
inter-case synchronization. Initial tokens are explicitly defined by their identi-
fier (e.g., t1). Two initial tokens of two different cases are common only if they
share the same identifier. With this approach, if we assume an initial case with
five initial tokens (p = 2) followed by a case which has only three initial tokens
(p = 1), only time-stamp value of initial tokens with the same identifier will be
selected by using the extended case matrix. In the opposite case, the missing
values for the (i+1)-th are replaced by ||λi|| (i.e., the production time of the last
token produced by the last iteration).

3 Throughput Analysis

Along with the three static analyses needed to consistency, boundedness, liveness
[8], this section presents a method to evaluate the worst-case throughput of
TPDF graphs.

The performance analysis of TPDF is challenging because TPDF is a dynamic
dataflow model and the graph behavior is control-dependent. In this case, we
introduce an analysis technique based on the work in [11]. We characterized the
TPDF graphs by the possible orders in which certain cases may occur. It is
possible by stochastically specifying each mode sequence (or graph case) by a
Markov Chain. For worst-case analysis, we can abstract from these transition

Design Analysis of Streaming Applications 29

probabilities and obtain a Finite State Machine (FSM). Every state is labelled
with a graph case and different states can be labelled with the same graph case.

Definition 3. Given a set U of cases. A finite state machine F on U is a tuple
(S, s0, σ, ϕ) consisting of a finite set S of states, an initial state s0 ∈ S, a set of
transitions between two states σ ⊆ S × S and a case labelling ϕ : S → U .

Each case of the graph is characterized by a (max, +) matrix, as can be
seen in Sect. 2.3. Since TPDF is designed to be well adapted with streaming
applications, we consider here infinite executions of the FSM to characterize the
mode sequences that may occur. With this FSM and an initial time-stamp λ0,
we can associate a time-stamp sequence λ0λ1λ2 . . . λn with λi+1 = Mi+1 ⊗ λi

∀i ∈ [0, n − 1]. According to the theory of CSDF [5], each case is guaranteed to
have an upper bound on the self-timed execution of the dataflow’s execution, so
we can derive straightforwardly that this case sequence has also an upper bound
value.

To compute throughput, we have to check all possible case sequences. From
the FSM of a TPDF graph, we define a state-space of case sequence executions
as follows.

Definition 4. Given a TPDF graph G characterized by the set of (max, +)
matrices {Mi|i ∈ U} and a FSM F = (S, s0, σ, ϕ), a state-space of G on F is a
tuple (Q, q0, θ), consisting of:

– A set Q = S × R
N
max of configurations (s, λ) with a state s ∈ S of F and a

time-stamp vector λ.
– q0 is the initial configuration of the state-space.
– θ is the set of transitions between two configurations θ ⊆ Q×R×Q consisting

of the following transitions: {((s, λ), ||λ′||, (s′, λ′norm))|(s, λ) ∈ Q, (q, q′) ∈
σ, λ′ = MΣ(i)λ}, where MΣ(i) is a multiplication of all case matrices between
λ and λ′, as defined in Eq. (7).

A state in the state-space is a pair consisting of a state in the FSM and a
normalized vector representing the relative distance in time of the time-stamp of
the common initial tokens. An edge in this state-space ((s, λ), ||λ′||, (s′, λ′norm))
represents the execution of a single iteration in the case of the destination of
the edge. If we start with the initial tokens having time-stamp vector λ and we
execute a single iteration in case s′ then the new time-stamp vector of initial
tokens are produced at λ′ = ||λ′|| + λ′norm (or earlier). The state-space of a
TPDF graph can be constructed in depth-first-search (DFS) or breadth-first-
search (BFS) (or any other) manner incrementally. For a self-timed bounded
graph with rational execution times, the state-space is finite. However, it can be
large in some cases because of the number of modes used in each case and because
of the complexity of the FSM. Further techniques (e.g., (max, +) automaton
[10,11]) can be applied to reduce the size of the state-space and analyse the
worst-case throughput in a faster way.

30 X. K. Do et al.

Fig. 2. (a) State-space of the example in Fig. 1 and (b) its Finite State Machine. The
blue box and bold arrows highlight the cycle with the maximum cycle mean which
determines the throughput. (Color figure online)

From Definition 4, according to [19], the throughput of a TPDF graph is equal
to the inverse of the Maximum Cycle Mean (MCM) attained in any reachable
simple cycles of the state-space. For example, Fig. 2 represents the reachable
state-space of the example in Fig. 1 and its Finite State Machine. The blue
box and bold arrows highlights the cycle with maximum cycle mean or lowest
throughput (i.e., 10.5 for the MCM and 1/10.5 for the throughput).

4 Evaluation

Our method is implemented to check the static guarantees, compute the exe-
cution state-space and analyse the worst-case throughput of TPDF graphs in
the publicly available SDF 3 software library for SDF, CSDF and SADF anal-
ysis [20]. We use a basic breadth-first-search to construct straightforwardly the
state-space according to the definition of Sect. 3. During the exploration proce-
dure, we enumerate the state-space and check timing constraints. Exploration
continues until a state that our tool visited before is reached, we back-track and
stop exploration in that direction.

4.1 Benchmarks

We have done experiments with a set of cognitive radio applications (e.g., OFDM
[3], Adaptive Coding Transceiver and Receiver model [15]), on the well-known

Design Analysis of Streaming Applications 31

video codec VC-1 model [2], on the time-constrained application Edge Detection
[17] as presented in Sect. 4.1 and on a large collection of randomly generated
graphs, on a standard Intel Core i3@2.53 GHz based PC. Table 1 shows these
applications with its number of kernels (N) in the eighth column and its num-
ber of states in the ninth column. These benchmarks are selected from different
sources to check the expressiveness of TPDF and its performance results. The
first source is several case studies of other dynamic dataflow models (e.g., VC-1
Decoder and OFDM). These applications are also official benchmarks of indus-
trial tools such as LabView or Simulink. Another source is to build TPDF graph
from real-life application programmed in C (e.g., Edge Detection). From this
approach, dynamic code analysis tool, as the method introduced in [13], can be
developed in the near future to transform automatically legacy code to TPDF
graph.

Table 1. Throughput (iterations per cycle) obtained and the improvement of TPDF
compared to the SADF and (C)SDF model (EffSADF and Eff(C)SDF, respectively). N
represents the number of kernels of each application. The last column represents the
analysis time by using our tool set.

Application TPDF SADF EffSADF (C)SDF Eff(C)SDF N #States Time

(ms)

OFDM 2 × 10−2 1.6 × 10−2 25% 1.58 × 10−2 26.58% 8 15 4

Adaptive

coding

10 × 10−2 8.5 × 10−2 17.65% 4.6 × 10−2 117.39% 14 6 16

VC-1

Decoder

4 × 10−1 2.5 × 10−1 60% 2.2 × 10−1 81.81% 12 12 8

Edge

detection

7.86 × 10−1 8 18 12

Random

graphs

1.5 × 10−1 1.29 × 10−1 15.51% 1.09 × 10−1 36.6% 10∼150 5∼30

Case-Study on Edge Detection. Edge detection is one of the most significant
tasks in image processing systems with various proposed algorithms: Quick Mask,
Sobel, Prewitt, Kirsch, Canny [17]. When dealing with timing constraint, an
average quality result at the right time is far better than an excellent result,
later. The Canny filter may an excellent algorithm for edge detections, but the
execution time depends on the input image. In contrast, Quick Mask or Sobel
have image-independent execution time (i.e., depending only on the size of the
input image, not on its contents). So a control actor of type clock can be used
to implement this time constraint, as can be seen in [8].

Case-Study on Cognitive Radio. The TPDF approach is applied to model
an OFDM demodulator from the domain of cognitive radio, which is one of the
fundamental subsystems of LTE and WiMAX wireless communication systems.
Figure 3 illustrates a runtime-reconfigurable OFDM demodulator that is mod-
eled as a TPDF graph. Here, actor SRC represents a data source that generates
random values to simulate a sampler. In a wideband OFDM system, information

32 X. K. Do et al.

is encoded on a large number of carrier frequencies, forming an OFDM symbol
stream. In baseband processing, a symbol stream can be viewed in terms of con-
secutive vectors of length N . The symbol is usually padded with a cyclic prefix
(CP) of length L to reduce inter-symbol inference (ISI) [3]. In Fig. 3, the CP
is removed by actor RCP. Then, actor FFT performs a fast Fourier transform
(FFT) to convert the symbol stream to the frequency domain. This kernel is
connected to a M-ary QAM demodulation, with a configurable QPSK configu-
ration (M = 2 or M = 4). Finally, the output bits are collected by the data sink
SNK.

Fig. 3. TPDF model of an OFDM demodulator with a configurable QPSK (M = 2)
or QAM (M = 4) configuration. Omitted rates equal to 1.

In summary, there are four principal parameters: β, M , N and L, where
L depends on the cyclic prefix, N is the OFDM symbol length (N = 512 or
N = 1024) and β, which varies between 1 and 100, is the number of OFDM
symbols to be processed in a single activation of the actor. For example, if M = 4
and β = 10, this means that the system is operating in a mode that uses QAM as
the demapping scheme, and executes actors in blocks of 10 firings each. Figure 4
presents the minimum buffer size required by the application, depending on the
vectorization degree β and the symbol length N (L = 1 and M is chosen by the
control node). We find out that the buffer size increases proportionally to the
vectorization degree and we have an improvement of 29% in comparison with the
implementation by using CSDF. This result can be explained by the fact that the
dynamic topology obtained using TPDF is more flexible than the static topology
of CSDF, allowing to remove unused edges and decrease the minimum buffer size
required by one iteration of the TPDF graph. In a similar way, several StreamIt
benchmarks (e.g., FM Radio [21]) must perform redundant calculations that are
not needed with models allowing dynamic topology changes such as TPDF.

4.2 Experimental Results

These applications are implemented by using TPDF, SADF and a conservative
CSDF/SDF model, without modes. Table 1 shows the throughput obtained using
these models as well as the improvement of the results using TPDF compared
to the SADF and CSDF/SDF model. For the OFDM application, a conservative

Design Analysis of Streaming Applications 33

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

10 20 30 40 50 60 70 80 90 100

B
uf

fe
r

si
ze

Vectorization degree

N=512 TPDF
N=512 CSDF

N=1024 TPDF
N=1024 CSDF

Fig. 4. Minimum buffer size increased proportionally to β, given by Buff = 3 + β ×
(12 × N + L) for TPDF and Buff = β × (17 × N + L) for CSDF.

CSDF model, without modes, can guarantee a throughput of 1.58 × 10−2 itera-
tions per cycle. This result by using SADF is 1.6 × 10−2. Experiments with the
TPDF graph show that the OFDM graph can achieve a guaranteed throughput
of 2 × 10−2 iterations per processors cycle, 25% and 26.58% higher than SADF
and CSDF implementations, respectively. This result can be explained as follows:
TPDF maximizes the degree of parallelism and driving around some sequential
limitations by using speculation, a technique often used in hardware design to
reduce the critical data-path, all kernels and cases which receive enough data
tokens will be fired immediately and in parallel. Moreover, the kernel which
receives the control token will also be fired instantly and choose the input or
output data channel depending on the control token. All unnecessary kernels
will be stopped, then computation will be accelerated and parallelized.

VC-1 Decoder is another application modelled by BPDF, a recent dynamic
dataflow model [2]. The existing analysis method of this model takes only into
account the maximum throughput. Our technique focuses on the worst-case
throughput (i.e., a guaranteed lower bound on the application throughput),
which is a more interested performance metric. Experiments with the TPDF
model shows that we have an improvement of 60% compared to the SADF model
and 81% to the conservative CSDF model. For the Edge Detection case study, as
discussed in Sect. 4.1, our tool succeeds to analyse the throughput of the graph
with a state-space of 18 states and the analysis took only 12 ms. This type of time
constraint is complicated, even impossible by using SADF or (C)SDF model.

These results are also extended by testing the capacity of pipelining canonical
periods of TPDF graphs. This experiment consists in testing the ability of TPDF
to adapt the compile tool chain used for MPPA-256, which constructs for each
CSDF application a canonical period per iteration and optimise the parallelism
by pipelining these canonical periods. Figure 5 shows the ratios of the throughput

34 X. K. Do et al.

by using a degree of pipelining of 2, 3 and 4 compared to the case when only
one canonical period is used. We can see that a higher level of pipelining (under
4) gives always a higher throughput. In this way, we can conclude that TPDF is
well adapted to the existing parallelism method used for ΣC and its real-world
many-core platform, the Kalray’s MPPA. We have also analysed a collection of
more than 200 random TPDF graphs between 10 and 150 actors with an entry
in the repetition vector between 1 and 10 and between 5 and 30 modes to use,
giving an average of 15.51% and 36.6% higher throughput guarantee than from
a SADF and a conservative CSDF model of the same graph, respectively.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

OFDM
A.Coding

VC-1Decod

EdgeDetect

Example1

R
at

io
s

of
 th

e
th

ro
ug

hp
ut

P=2
P=3
P=4

Fig. 5. Ratios of the throughput under different degrees of pipelining.

5 Related Work

Dataflow models are widely used in modeling and analyzing applications in the
domain of digital signal processing. Moreover, they are also used for designing
and analyzing concurrent multimedia applications realized using multiprocessor
systems-on-chip. The main aim is to realize predictable performance and among
the performance indicators, throughput is a prominent one. Throughput of static
models, such as SDF and CSDF, and its static guarantees has been extensively
studied in the literature [7,19,20]. However, the desire to extend the range of
applicability to more dynamic dataflow models has lead to use of extensions, for
instance PSDF [4] and SPDF [9]. In contrast to CSDF, these models allow a
dynamic variation of the production and consumption rates of actors to change
at runtime according to the manipulated data. However, none of these models
provide any of the static analyses enabled by TPDF: rate consistency, bound-
edness, liveness and performance analysis, nor do they support parametric rates
without dynamic topology changes.

Design Analysis of Streaming Applications 35

6 Conclusion

In this paper, we have introduced a formal model of Transaction Parameterized
Dataflow graphs based on the theory of (max, +) automata. From this theory, we
derived static analyses to guarantee the boundedness, liveness and evaluate the
worst-case throughput when executing a TPDF application. An implementation
of the TPDF model has been presented and experimentally evaluated on realistic
applications, showing that this approach can give much tighter performance
guarantees than state of the art analyses. We believe the proposed model is an
important step towards the design of a programming model suitable for high
performance applications with safety-critical requirements.

References

1. Baccelli, F., Cohen, G., Olsder, G., Quadrat, J.: Synchronization and Linearity.
Wiley, New York (1992)

2. Bebelis, V., Fradet, P., Girault, A., Lavigueur, B.: BPDF: a statically analyzable
dataflow model with integer and Boolean parameters. In: EMSOFT, pp. 3:1–3:10
(2013)

3. van de Beek, J.J., Sandell, M., Isaksson, M., Ola Borjesson, P.: Low-complex frame
synchronization in OFDM systems. In: ICUPC (1995)

4. Bhattacharya, B., Bhattacharyya, S.: Parameterized dataflow modeling for DSP
systems. IEEE Trans. Signal Process. 49(10), 2408–2421 (2001)

5. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.: Cyclo-static data flow. In:
ICASSP, vol. 5, pp. 3255–3258, May 1995

6. de Dinechin, B.D., et al.: A distributed run-time environment for the Kalray
MPPA-256 integrated manycore processor. Procedia Comput. Sci. 18, 1654–1663
(2013)

7. Do, X., Louise, S., Cohen, A.: Managing the latency of data-dependent tasks in
embedded streaming applications. In: MCSoc (2015)

8. Do, X., Louise, S., Cohen, A.: Transaction parameterized dataflow: a model for
context-dependent streaming applications. In: 2016 Design, Automation Test in
Europe Conference Exhibition (DATE), pp. 960–965, March 2016

9. Fradet, P., Girault, A., Poplavko, P.: SPDF: a schedulable parametric data-flow
MoC. In: DATE, pp. 769–774, March 2012

10. Gaubert, S.: Performance evaluation of (max,+) automata. IEEE Trans. Autom.
Control 40(12), 2014–2025 (1995)

11. Geilen, M., Stuijk, S.: Worst-case performance analysis of synchronous dataflow
scenarios. In: CODES+ISSS, pp. 125–134, October 2010

12. Johnson, G.: LabVIEW Graphical Programming: Practical Applications in Instru-
mentation and Control. McGraw-Hill School Education Group, New York (1997)

13. Lazarescu, M.T., Lavagno, L.: Interactive trace-based analysis toolset for manual
parallelization of C programs. ACM Trans. Embed. Comput. Syst. 14(1), 13:1–
13:20 (2015)

14. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987)

15. Lotze, J., Fahmy, S., Noguera, J., Doyle, L.: A model-based approach to cognitive
radio design. IEEE J-SAC 29(2), 455–468 (2011)

36 X. K. Do et al.

16. Louise, S., Dubrulle, P., Goubier, T.: A model of computation for real-time appli-
cations on embedded manycores. In: MCSoC, September 2014

17. Phillips, D.: Image Processing in C, Part 5: Basic Edge Detection, pp. 47–56 (1994)
18. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation Using Ptolemy II.

Ptolemy.org (2014). http://ptolemy.org/books/Systems
19. Sriram, S., Bhattacharyya, S.S.: Embedded Multiprocessors: Scheduling and Syn-

chronization, 2nd edn. Marcel Dekker, Inc., New York (2009)
20. Stuijk, S., Geilen, M., Basten, T.: SDF3: SDF for free. In: Proceedings of ACSD,

pp. 276–278 (2006)
21. Thies, W., Amarasinghe, S.: An empirical characterization of stream programs and

its implications for language and compiler design. In: Proceedings of PACT (2010)
22. Wipliez, M., Roquier, G., Nezan, J.F.: Software code generation for the RVC-CAL

language. J. Signal Process. Syst. 63(2), 203–213 (2009)

http://ptolemy.org/books/Systems

A Similarity Measure for GPU Kernel
Subgraph Matching

Robert Lim(B), Boyana Norris, and Allen Malony

University of Oregon, Eugene, OR, USA
{roblim1,norris,malony}@cs.uoregon.edu

Abstract. Accelerator architectures specialize in executing SIMD (sin-
gle instruction, multiple data) in lockstep. Because the majority of
CUDA applications are parallelized loops, control flow information can
provide an in-depth characterization of a kernel. CUDAflow is a tool that
statically separates CUDA binaries into basic block regions and dynam-
ically measures instruction and basic block frequencies. CUDAflow cap-
tures this information in a control flow graph (CFG) and performs sub-
graph matching across various kernel’s CFGs to gain insights into an
application’s resource requirements, based on the shape and traversal
of the graph, instruction operations executed and registers allocated,
among other information. The utility of CUDAflow is demonstrated with
SHOC and Rodinia application case studies on a variety of GPU archi-
tectures, revealing novel control flow characteristics that facilitate end
users, autotuners, and compilers in generating high performing code.

1 Introduction

Structured programming consists of base constructs that represent how programs
are written [4,27]. When optimizing programs, compilers typically operate on the
intermediate representation (IR) of a control flow graph (CFG), which is derived
from program source code analysis and represents basic blocks of instructions
(nodes) and control flow paths (edges) in the graph. Thus, the overall program
structure is captured in the CFG and the IR abstracts machine-specific intrinsics
that the compiler ultimately translates to machine code. The IR/CFG allows the
compiler to reason more efficiently about optimization opportunities and apply
transformations. In particular, compilers can benefit from prior knowledge of
optimizations that may be effective for specific CFG structures.

In the case of accelerated architectures that are programmed for SIMD paral-
lelism, control divergence encountered by threads of execution presents a major
challenge for applications because it can severely reduce SIMD computational
efficiency. It stands to reason that by identifying the structural patterns of a
CFG from an accelerator (SIMD) program, insight on the branch divergence
problem [22] might be gained to help in their optimization. Current profil-
ing approaches to understanding thread divergence behavior (e.g., [10,21,24])
do not map performance information to critical execution paths in the CFG.

c© Springer Nature Switzerland AG 2019
M. Hall and H. Sundar (Eds.): LCPC 2018, LNCS 11882, pp. 37–53, 2019.
https://doi.org/10.1007/978-3-030-34627-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34627-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-34627-0_3

38 R. Lim et al.

While accelerator devices (e.g., GPUs) offer hardware performance counters for
measuring computational performance, it is more difficult to apply them to cap-
ture divergence behavior [17].

Our research focuses on improving the detail and accuracy of control flow
graph information in accelerator (GPU) programs. We study the extent to which
CFG data can provide sufficient context for understanding a GPU kernel’s exe-
cution performance. Furthermore, we want to investigate how effective knowl-
edge of CFG shapes (patterns) could be in enabling optimizing compilers and
autotuners to infer execution characteristics without having to resort to running
execution experiments. To this end, we present CUDAflow, a scalable toolkit for
heterogeneous computing applications. Specifically, CUDAflow provides a new
methodology for characterizing CUDA kernels using control flow graphs and
instruction operations executed. It performs novel kernel subgraph matching to
gain insights into an application’s resource requirements. To the knowledge of
the authors, this work is a first attempt at employing subgraph matching for
revealing control flow behavior and generating efficient code.

Contributions described in this paper include the following.

– Systematic process to construct control flow graphs for GPU kernels.
– Techniques to perform subgraph matching on various kernel CFGs and GPUs.
– Approaches to reveal control flow behavior based on CFG properties.

The rest of the paper is organized as follows. Section 2 discusses prior work,
and Sect. 3 provides background information. Section 4 describes the methodol-
ogy behind our CUDAflow tool and our implementation approach. Sections 5 and
6 summarizes the findings of our application characterization studies. Section 7
outlines future work.

2 Prior Work

Control flow divergence in heterogeneous computing applications is a well known
and difficult problem, due to the lockstep nature of the GPU execution paradigm.
Current efforts to address branch divergence in GPUs draw from several fields,
including profiling techniques in CPUs, and software and hardware architectural
support in GPUs. For instance, Sarkar demonstrated that the overall execution
time of a program can be estimated by deriving the variances of basic block
regions [23]. Control flow graphs for flow and context sensitive profiling were
discussed in [2,3], where instrumentation probes were inserted at selected edges
in the CFG, which reduced the overall profiling overhead with minimal loss of
information. Hammock graphs were constructed [30] that mapped unstructured
control flow on a GPU [11,28]. By creating thread frontiers to identify early
thread reconvergence opportunities, dynamic instruction counts were reduced
by as much as 633.2%.

Lynx [12] creates an internal representation of a program based on PTX and
then emulates it, which determines the memory, control flow and parallelism of
the application. This work closely resembles ours but differs in that we perform

A Similarity Measure for GPU Kernel Subgraph Matching 39

workload characterization on actual hardware during execution. Other perfor-
mance measurement tools, such as HPCToolkit [1] and DynInst [20], provide
a way for users to construct control flow graphs from CUDA binaries, but do
not analyze the results further. The MIAMI toolkit [19] is an instrumentation
framework for studying an application’s dynamic instruction mix and control
flow but does not support GPUs.

Subgraph matching has been explored in a variety of contexts. For instance,
the DeltaCon framework matched arbitrary subgraphs based on similarity scores
[15], which exploited the properties of the graph (e.g., clique, cycle, star, bar-
bell) to support the graph matching. Similarly, frequent subgraph mining was
performed on molecular fragments for drug discovery [5], whereas document clus-
tering was formalized in a graph database context [14]. The IsoRank authors
consider the problem of matching protein-protein interaction networks between
distinct species [25]. The goal is to leverage knowledge about the proteins from
an extensively studied species, such as a mouse, which when combined with a
matching between mouse proteins and human proteins can be used to hypoth-
esize about possible functions of proteins in humans. However, none of these
approaches apply frequent subgraph matching for understanding performance
behavior of GPU applications.

nvcc

source.cuuser

construct
CFG

sample PC
counter

CUDAflow
profiler

CUDAflow
analysis

basic block counts
instruction mixes
CFG matching

Fig. 1. Overview of our proposed CUDAflow methodology.

3 Background

Our CUDAflow approach shown in Fig. 1 works in association with the current
nvcc toolchain. Control flow graphs are constructed from static code analysis
and program execution statistics are gathered dynamically through program
counter sampling. This measurement collects counts of executed instructions
and corresponding source code locations, among other information. In this way,
the CUDAflow methodology provides a more accurate characterization of the
application kernel, versus hardware performance counters alone, which lack the

40 R. Lim et al.

Fig. 2. Control flow graphs generated for each CUDA kernel, comparing architecture
families (Kepler, Maxwell, Pascal).

ability to correlate performance with source line information and are prone to
miscounting events [16]. In particular, it gives a way to understand the control
flow behavior during execution.

Kernel Control Flow Graphs. One of the more complex parameters used
to characterize SIMD thread divergence is by using a control flow graph (CFG)
representation of the computation. A CFG is constructed for each GPU kernel
computation in program order and can be represented as a directed acyclic graph
G = (N,E, s), where (N,E) is a finite directed graph, and a path exists from the
START node s ∈ N to every other node. A unique STOP node is also assumed
in the CFG. A node in the graph represents a basic block (a straight line of code
without jumps or jump targets), whereas directed edges represent jumps in the
control flow.

Each basic block region is incremented with the number of times the node is
visited. Upon sampling the program counter, the PC address is referenced inter-
nally to determine to which basic block region the instruction corresponds to.
. L 41 :

/∗04a0∗/ DSETP.LE.AND P0 ,PT, | R6| ,+INF ,PT;
/∗04a8∗/ @P0 BRA ‘ (. L 43) ;
/∗04b0∗/ LOP32I .OR R5 , R7 , 0x80000 ;
/∗04b8∗/ MOV R4 , R6 ;

/∗04 c8∗/ BRA ‘ (. L 42) ;

The SASS assembly code illustrates how a control flow graph is constructed.
Each basic block is labeled in the left margin (e.g. “.L 41”), with predication
and branch instructions representing edges that lead to corresponding block

A Similarity Measure for GPU Kernel Subgraph Matching 41

regions (e.g. “.L 43,” “.L 42”). The PC offsets are listed in hexadecimal between
the comments syntax (∗∗). In other words, “.L 41” represents a node ni, with
“.L 43,” and “.L 42” as its children.

Example control flow graphs for selected SHOC (top) [9] and Rodinia (bot-
tom) [6] GPU benchmarks are displayed in Fig. 2. Different GPU architecture
types will result in the nvcc compiler producing different code and possibly
control flow, as seen in the CFGs from Fig. 2 for Kepler, Maxwell and Pascal
architectures. Section 5 discusses the differences in GPU architectures. The CFG
differences for each architecture are due in part to the architecture layout of the
GPU and its compute capability (NVIDIA virtual architecture). The Maxwell
generally uses fewer nodes for its CFGs, as evident in kernel warp. Our approach
can expose these important architecture-specific effects on the CFGs. Also, note
that similarities in structure exist with several CFGs, including csr scalar and
sum kernel. Part of the goal of this research is to predict the required resources
for the application by inferring performance through CFG subgraph matching,
with the subgraphs serving as building blocks for more nested and complex GPU
kernels. For this purpose, we introduce several metrics that build on this CFG
representation.

Transition Probability. Transition probabilities represent frequencies of an
edge to a vertex, or branches to code regions, which describes the application
in a way that gets misconstrued in a flat profile. A stochastic matrix could also
facilitate in eliminating dead code, where states with 0 transition probabilities
represent node regions that will never be visited. Kernels employing structures
like loops and control flow increase the complexity analysis, and knowledge of
transition probabilities of kernels could help during code generation.

A canonical adjacency matrix M represents a graph G such that every diag-
onal entry of M is filled with the label of the corresponding node and every
off-diagonal entry is filled with the label of the corresponding edge, or zero if no
edge exists [29]. The adjacency matrix describes the transition from Ni to Nj .
If the probability of moving from i to j in one time step is Pr(j|i) = mi,j , the
adjacency matrix is given by mi,j as the ith row and the jth column element.
Since the total transition probability from a state i to all other states must be
1, this matrix is a right stochastic matrix, so that

∑
j Pi,j = 1.

Figure 3 illustrates transition probability matrices for a kernel from the
Pathfinder application (Table 2, bottom-rt.), comparing Kepler (left) and
Maxwell (right) versions. Note that the Pascal version was the same as Maxwell,
as evident in Fig. 2, lower-right, and was left out intentionally. The entries of
the transition probability matrix were calculated by normalizing over the total
number of observations for each observed node transition i to j. Although the
matrices differ in size, observe that a majority of the transitions take place in the
upper-left triangle, with a few transitions in the bottom-right, for all matrices.
The task is to match graphs of arbitrary sizes based on its transition probability
matrix and instruction operations executed, among other information.

42 R. Lim et al.

Fig. 3. Transition probability matrices for Pathfinder (dynproc kernel) application,
comparing Kepler (left) and Maxwell (right) versions.

Hybrid Static and Dynamic Analysis. We statically collect instruction
mixes and source code locations from generated code and map the instruction
mixes to the source locator activity as the program is being run [17]. The static
analysis of CUDA binaries produces an objdump file, which provides assem-
bly information, including instructions, program counter offsets, and source line
information. The CFG structure is stored in iGraph format [8]. We attribute the
static analysis from the objdump file to the profiles collected from the source
code activity to provide runtime characterization of the GPU as it is being exe-
cuted on the architecture. This mapping of static and dynamic profiles provides
a rich understanding of the behavior of the kernel application with respect to
the underlying architecture.

4 Methodology

Based on the kernel CFG and transition probability analysis, the core of the
CUDAflow methodology focuses on the problem of subgraph matching. In order
to perform subgraph matching, we first scale the matrices to the same size by
taking for graphs G1 and G2 the maximal proper submatrix, constructed by
B(Gi) = max(|V1|, |V2|) for a given Gi = min(|V1|, |V2|) using spline interpo-
lation. The similarities in the shapes of the control flow graphs, the variants
generated for each GPU (Table 2) and the activity regions in the transition
probability matrices (Fig. 3) provided motivation for this approach. In our case,
the dense hotspots in the transition matrix should align with their counterparts
if the matrices are similar enough.

4.1 Bilinear Interpolation

To scale the transition matrix before performing the pairwise comparison, we
employ a spline interpolation procedure. Spline interpolation is general form of
linear interpolation for functions of n-order polynomial, such as bilinear and
cubic. For instance, a spline on a two-order polynomial performs bilinear inter-
polation on a rectilinear 2D grid (e.g. x and y) [13]. The idea is to perform linear
interpolation in both the vertical and horizontal directions. Interpolation works
by using known data to estimate values at unknown points. Refer to [13] for the
derivation of bilinear interpolation.

A Similarity Measure for GPU Kernel Subgraph Matching 43

Table 1. Distance measures considered in this paper.

Abbrev Name Result

Euc Euclidean
√∑n

i=1 |xi − yi|2
Iso IsoRank (I − αQ × P)x

Man Manhattan
∑n

i=1 |xi − yi|
Min Minkowski p

√∑n
i=1 |xi − yi|p

Jac Jaccard
∑n

i=1(xi−yi)
2

∑n
i=1 x2

i+
∑n

i=1 y2
i −

∑n
i=1 xiyi

Cos Cosine 1 −
∑n

i=1 xiyi√∑n
i=1 x2

i

√∑n
i=1 y2

i

4.2 Pairwise Comparison

Once the matrix is interpolated, the affinity scores (S1 and S2 for graphs G′
1

and G′
2, respectively) are matched via a distance measure, which includes the

Euclidean distance, the IsoRank solution [25], Manhattan distance, Minkowski
metric, Jaccard similarity, and Cosine similarity. The distance measures consid-
ered in this work are listed in Table 1. By definition, sim(Gi, Gj) = 0 when i = j,
with the similarity measure placing progressively higher scores for objects that
are further apart.

5 Experimental Setup

To demonstrate our CUDAflow methodology, we measured the performance of
applications on several GPU architectures.

5.1 Execution Environment

The graphic processor units used in our experiments are listed in Table 2. The
selected GPUs reflect the various architecture family generations, and perfor-
mance results presented in this paper represent GPUs belonging to the same
family. For instance, we observed that the performance results from a K80 archi-
tecture and a K40 (both Kepler) were similar, and, as a result, did not include
comparisons of GPU architectures within families. Also, note the changes in
architectural features across generations (global memory, MP, CUDA cores per
MP), as well as ones that remain fixed (constant memory, warp size, registers
per block). For instance, while the number of multiprocessors increased in suc-
cessive generations, the number of CUDA cores per MP (or streaming multi-
processors, SM) actually decreased. Consequently, the number of CUDA cores
(MP × CUDAcores per mp) increased in successive GPU generations.

44 R. Lim et al.

Table 2. Graphical processors used in this experiment.

K80 M40 P100

CUDA capability 3.5 5.2 6.0

Global memory (MB) 11520 12288 16276

Multiprocessors (MP) 13 24 56

CUDA cores per MP 192 128 64

CUDA cores 2496 3072 3584

GPU clock rate (MHz) 824 1140 405

Memory clock rate (MHz) 2505 5000 715

L2 cache size (MB) 1.572 3.146 4.194

Constant memory (bytes) 65536 65536 65536

Shared mem blk (bytes) 49152 49152 49152

Registers per block 65536 65536 65536

Warp size 32 32 32

Max threads per MP 2048 2048 2048

Max threads per block 1024 1024 1024

CPU (Intel) Haswell Ivy Bridge Haswell

Architecture family Kepler Maxwell Pascal

5.2 Applications

Rodinia and SHOC application suite are a class of GPU applications that cover
a wide range of computational patterns typically seen in parallel computing.
Table 3 describes the applications used in this experiment along with source code
statistics, including the number of kernel functions, the number of associated files
and the total lines of code.

Rodinia. Rodinia is a benchmark suite for heterogeneous computing which
includes applications and kernels that target multi-core CPU and GPU plat-
forms [6]. Rodinia covers a wide range of parallel communication patterns, syn-
chronization techniques, and power consumption, and has led to architectural
insights such as memory-bandwidth limitations and the consequent importance
of data layout.

SHOC Benchmark Suite. The Scalable HeterOgeneous Computing (SHOC)
application suite is a collection of benchmark programs testing the performance
and stability of systems using computing devices with non-traditional archi-
tectures for general purpose computing [9]. SHOC provides implementations for
CUDA, OpenCL, and Intel MIC, and supports both sequential and MPI-parallel
execution.

A Similarity Measure for GPU Kernel Subgraph Matching 45

Table 3. Description of SHOC (top) and Rodinia (bottom) benchmarks studied.

Name Ker File Ln Description

S
H

O
C

FFT 9 4 970 Forward and reverse 1D fast Fourier transform

MD 2 2 717 Compute the Lennard-Jones potential from molecular

dynamics

MD5Hash 1 1 720 Computate many small MD5 digests, heavily dependent on

bitwise operations

Reduction 2 5 785 Reduction operation on an array of single or double precision

floating point values

Scan 6 6 1035 Scan (parallel prefix sum) on an array of single or double

precision floating point values

SPMV 8 2 830 Sparse matrix-vector multiplication

Stencil2D 2 12 1487 A 9-point stencil operation applied to a 2D dataset

R
o
d
in

ia

Backprop 2 7 945 Trains weights of connecting nodes on a layered neural network

BFS 2 3 971 Breadth-first search, a common graph traversal

Gaussian 2 1 1564 Gaussian elimination for a system of linear equations

Heartwall 1 4 6017 Tracks changing shape of walls of a mouse heart over a

sequence of ultrasound images

Hotspot 1 1 1199 Estimate processor temperature based on floor plan and

simulated power measurements

Nearest Neighbor 1 2 385 Finds k-nearest neighbors from unstructured data set using

Euclidean distance

Needleman-Wunsch 2 3 1878 Global optimization method for DNA sequence alignment

Particle Filter 4 2 7211 Estimate location of target object given noisy measurements in

a Bayesian framework

Pathfinder 1 1 707 Scan (parallel prefix sum) on an array of single or double

precision floating point values

SRAD v1 6 12 3691 Diffusion method for ultrasonic and radar imaging applications

based on PDEs

SRAD v2 2 3 2021 ...

6 Analysis

To illustrate our new methodology, we analyzed the SHOC and Rodinia appli-
cations at different granularities.

6.1 Application Level

Figure 4 projects goodness as a function of efficiency, which displays the simi-
larities and differences of the benchmark applications. The size of bubble repre-
sents the number of operations executed, whereas the shade represents the GPU
type. Efficiency describes how gainfully employed the GPU floating-point units
remained, or FLOPs per second:

efficiency =
opfp+opint + opsimd + opconv

timeexec
· callsn (1)

The goodness metric describes the intensity of the floating-point and memory
operation arithmetic intensity:

goodness =
∑

j∈J

opj · callsn (2)

46 R. Lim et al.

Note that efficiency is measured via runtime, whereas goodness is measured
statically. Figure 4 (left) shows a positive correlation between the two measures,
where the efficiency of an application increases along with its goodness. Static
metrics, such as goodness, can be used to derive dynamic behavior of an applica-
tion. This figure also demonstrates that merely counting the number of executed
operations is not sufficient to characterize applications because operation counts
do not fully reveal control flow, which is a source of bottlenecks in large-scale
programs.

Fig. 4. Left: The static goodness metric (Eq. 2) is positively correlated with the
dynamic efficiency metric (Eq. 1). The color represents the architecture and the size
of bubbles represents the number of operations. Right: Differences in vertices between
two graphs, as a function of Euclidean metric for all GPU kernel combinations. Color
represents intensity.

6.2 CFG Subgraph Matching

Distribution of Matched Pairs. Figure 4 (right) projects the distribution
of differences in vertices |V | for all 162 CFG kernel pairs (Table 3, 2nd col. + 3
GPUs) as a function of the Euclidean measure (application, architecture, ker-
nel), with shade representing the frequency of the score. Note that most matched
CFGs had a similarity score of 1.5 to 2.2 and had size differences under 10 ver-
tices. Figure 4 (right) also shows that as the differences in vertices increase,
similarity matching becomes degraded due to the loss of quality when interpo-
lating missing information, which is expected. Another observation is that strong
similarity results when node differences of the matched kernel pairs were at a
minimum, between 0 and 8 nodes.

Error Rates from Instruction Mixes. Here, we wanted to see how far off our
instruction mix estimations were from our matched subgraphs. Figure 5 displays
instruction mix estimation error rates, calculated using mean squared error,
for MD, Backprop, and SPMV kernels as a function of matched kernels (x-
axis) with IsoRank scores between 1.00 to 1.30. Naming convention for each
kernel is as follows: 〈gpu arch.suite.app.kernel〉. In general, CUDAflow is able

A Similarity Measure for GPU Kernel Subgraph Matching 47

Fig. 5. Error rates when estimating instruction mixes statically from runtime observa-
tions for selected matched kernels (x-axis), with IsoRank scores near 1.30.

Fig. 6. Similarity measures for Euclidean, IsoRank and Cosine distances for 12 arbi-
trarily selected kernels.

48 R. Lim et al.

to provide subgraph matching for arbitrary kernels through the IsoRank score
in addition to instruction mixes within a 8% margin of error. Note that since
relative dynamic performance is being estimated from static information, the
error rates will always be high.

Fig. 7. Similarity measures for Jaccard, Minkowski and Manhattan distances for 12
arbitrarily selected kernels.

Pairwise Matching of Kernels. Figure 6 shows pairwise comparisons for 12
arbitrary selected kernels, comparing Euclidean (top), IsoRank (middle), and
Cosine distance (bottom) matching strategies, and GPU architectures (rows).
Figure 7 shows comparisons for the Jaccard measure, Minkowski, and Manhattan
distances for the same 12 kernels. Note that the distance scores were scaled to
0 and 1, where 0 indicates strong similarity and 1 denotes weak similarity. In
general, all similarity measures, with the exception of IsoRank, is able to match
against itself, as evident in the dark diagonal entries in the plots. However, this
demonstrates that using similarity measures in isolation alone is not sufficient
for performing subgraph matching for CUDA kernels.

Clustering of Kernels. We wanted to identify classes of kernels, based on
characteristics such as instruction mixes, graph structures and distance mea-
sures. The Ward variance minimization algorithm minimizes the total within-
cluster variance by finding a pair of clusters that leads to a minimum increase in

A Similarity Measure for GPU Kernel Subgraph Matching 49

Fig. 8. Dendrogram of clusters for 26 kernels, comparing Maxwell (left) and Pascal
(right) GPUs.

a weighted squared distances. The initial cluster distances in Ward’s minimum
variance method is defined as the squared Euclidean distance between points:
dij = d({Xi}, {Xj}) = ||Xi −Xj ||2. Figure 8 shows a dendrogram of clusters for
26 kernels calculated with Ward’s method all matched with Rodinia Particle-
filter sum kernel, comparing the Maxwell (left) and Pascal (right) GPUs, which
both have 4 edges and 2 vertices in their CFGs. sum kernel performs a scan
operation and is slightly memory intensive (∼26% on GPUs). As shown, our
tool is able to categorize kernels by grouping features, such as instruction mixes,
graph structures, and distance measures that show strong similarity. This figure
also demonstrates that different clusters can be formed on different GPUs for
the same kernel, where the hardware architecture may result in different cluster
of kernel classes.

Finally, we wanted to see if our technique could identify the same kernels
running on a different GPU. Figure 9 shows distance measures when comparing
three kernels across three GPUs, for a total of 9 comparisons, whereas Fig. 10
shows pairwise comparisons for the same three kernels across 3 GPUs, for a total
of 27 comparisons (x-axis), considering pairwise comparisons in both directions
(e.g. sim(G1, G2) and sim(G2, G1)). Figure 9 displays patches of dark regions
in distance measures corresponding to the same kernel when compared across
different GPUs. As shown in Fig. 10, our tool not only is able to group the
same kernel that was executed on different GPUs, as evident in the three gen-
eral categories of clusters, but also kernels that exhibited similar characteristics
when running on a particular architecture, such as instructions executed, graph
structures, and distance measures.

50 R. Lim et al.

Fig. 9. Dendrogram of clusters for pairwise comparison for 3 kernels across 3 GPUs (9
total).

Fig. 10. Dendrogram of clusters for pairwise comparison for 3 kernels across 3 GPUs
(27 total).

6.3 Discussion

These metrics can be used both for guiding manual optimizations and by com-
pilers or autotuners. For example, human optimization effort can focus on the
code fragments that are ranked high by kernel impact, but low by the goodness
metric. An autotuner can also use metrics such as the goodness metric to explore

A Similarity Measure for GPU Kernel Subgraph Matching 51

the space of optimization parameters more efficiently, such as by excluding cases
where we can predict a low value of the goodness metric without having to exe-
cute and time the actual generated code. A benefit to end users (not included
in paper, due to space purposes) would be providing the ability to compare an
implementation against a highly optimized kernel. By making use of subgraph
matching strategy as well as instruction operations executed, CUDAflow is able
to provide a mechanism to characterize unseen kernels.

7 Conclusion

We have presented CUDAflow, a control-flow-based methodology for analyzing
the performance of CUDA applications. We combined static binary analysis with
dynamic profiling to produce a set of metrics that not only characterizes the ker-
nel by its computation requirements (memory or compute bound), but also pro-
vides detailed insights into application performance. Specifically, we provide an
intuitive visualization and metrics display, and correlate performance hotspots
with source line and file information, effectively guiding the end user to loca-
tions of interest and revealing potentially effective optimizations by identifying
similarities of new implementations to known, autotuned computations through
subgraph matching. We implemented this new methodology and demonstrated
its capabilities on SHOC and Rodinia applications.

Future work includes incorporating memory reuse distance statistics of a ker-
nel to characterize and help optimize the memory subsystem and compute/mem-
ory overlaps on the GPU. In addition, we want to generate robust models that
will discover optimal block and thread sizes for CUDA kernels for specific input
sizes without executing the application [18]. Last, we are in the process of devel-
oping an online web portal [7,26] that will archive a collection of control flow
graphs for all known GPU applications. For instance, the web portal would be
able to make on-the-fly comparisons across various hardware resources, as well as
other GPU kernels, without burdening the end user with hardware requirements
or software package installations, and will enable more feature rich capabilities
when reporting performance metrics.

References

1. Adhianto, L., et al.: HPCToolkit: tools for performance analysis of optimized par-
allel programs. Concurr. Comput. Pract. Exp. 22(6), 685–701 (2010)

2. Ammons, G., Ball, T., Larus, J.R.: Exploiting hardware performance counters with
flow and context sensitive profiling. ACM Sigplan Not. 32(5), 85–96 (1997)

3. Ball, T., Larus, J.R.: Optimally profiling and tracing programs. ACM Trans. Pro-
gram. Lang. Syst. (TOPLAS) 16(4), 1319–1360 (1994)

4. Böhm, C., Jacopini, G.: Flow diagrams, turing machines and languages with only
two formation rules. Commun. ACM 9(5), 366–371 (1966)

5. Borgelt, C., Berthold, M.R.: Mining molecular fragments: finding relevant sub-
structures of molecules. In: Proceedings of the IEEE International Conference on
Data Mining, pp. 51–58. IEEE (2002)

52 R. Lim et al.

6. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: IEEE
International Symposium on Workload Characterization, IISWC 2009, pp. 44–54.
IEEE (2009)

7. Collective Knowledge (CK). http://cknowledge.org
8. Csardi, G., Nepusz, T.: The iGraph software package for complex network research
9. Danalis, A., et al.: The scalable heterogeneous computing (SHOC) benchmark

suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units, pp. 63–74. ACM (2010)

10. Allinea DDT. http://www.allinea.com/products/ddt
11. Diamos, G., Ashbaugh, B., Maiyuran, S., Kerr, A., Wu, H., Yalamanchili, S.: SIMD

re-convergence at thread frontiers. In: Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 477–488. ACM (2011)

12. Farooqui, N., Kerr, A., Eisenhauer, G., Schwan, K., Yalamanchili, S.: Lynx: a
dynamic instrumentation system for data-parallel applications on GPGPU archi-
tectures. In: International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 58–67. IEEE (2012)

13. Gonzales, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading
(1993)

14. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraphs in the pres-
ence of isomorphism. In: Third IEEE International Conference on Data Mining,
ICDM 2003, pp. 549–552. IEEE (2003)

15. Koutra, D., Vogelstein, J.T., Faloutsos, C.: DeltaCon: a principled massive-graph
similarity function. SIAM

16. Lim, R., Carrillo-Cisneros, D., Alkowaileet, W., Scherson, I.: Computationally effi-
cient multiplexing of events on hardware counters. In: Linux Symposium (2014)

17. Lim, R., Malony, A., Norris, B., Chaimov, N.: Identifying optimization opportuni-
ties within kernel execution in GPU codes. In: Hunold, S., et al. (eds.) Euro-Par
2015. LNCS, vol. 9523, pp. 185–196. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-27308-2 16

18. Lim, R., Norris, B., Malony, A.: Autotuning GPU kernels via static and predictive
analysis. In: 2017 46th International Conference on Parallel Processing (ICPP),
pp. 523–532. IEEE (2017)

19. Marin, G., Dongarra, J., Terpstra, D.: MIAMI: A framework for application perfor-
mance diagnosis. In: 2014 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pp. 158–168. IEEE (2014)

20. Miller, B.P., et al.: The paradyn parallel performance measurement tool. Computer
28(11), 37–46 (1995)

21. Nvidia Visual Profiler. https://developer.nvidia.com/nvidia-visual-profiler
22. Sabne, A., Sakdhnagool, P., Eigenmann, R.: Formalizing structured control flow

graphs. In: Ding, C., Criswell, J., Wu, P. (eds.) LCPC 2016. LNCS, vol. 10136, pp.
153–168. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52709-3 13

23. Sarkar, V.: Determining average program execution times and their variance. In:
ACM SIGPLAN Notices, vol. 24, pp. 298–312. ACM (1989)

24. Shende, S.S., Malony, A.D.: The TAU parallel performance system. Int. J. High
Perform. Comput. Appl. 20(2), 287–311 (2006)

25. Singh, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction
networks by matching neighborhood topology. In: Speed, T., Huang, H. (eds.)
RECOMB 2007. LNCS, vol. 4453, pp. 16–31. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71681-5 2

http://cknowledge.org
http://www.allinea.com/products/ddt
https://doi.org/10.1007/978-3-319-27308-2_16
https://doi.org/10.1007/978-3-319-27308-2_16
https://developer.nvidia.com/nvidia-visual-profiler
https://doi.org/10.1007/978-3-319-52709-3_13
https://doi.org/10.1007/978-3-540-71681-5_2
https://doi.org/10.1007/978-3-540-71681-5_2

A Similarity Measure for GPU Kernel Subgraph Matching 53

26. Sreepathi, S., et al.: Application characterization using Oxbow toolkit and PADS
infrastructure. In: Proceedings of the 1st International Workshop on Hardware-
Software Co-Design for High Performance Computing, pp. 55–63. IEEE Press
(2014)

27. Williams, M.H., Ossher, H.: Conversion of unstructured flow diagrams to struc-
tured form. Comput. J. 21(2), 161–167 (1978)

28. Wu, H., Diamos, G., Li, S., Yalamanchili, S.: Characterization and transformation
of unstructured control flow in GPU applications. In: 1st International Workshop
on Characterizing Applications for Heterogeneous Exascale Systems (2011)

29. Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: Proceedings
of 2002 IEEE International Conference on Data Mining, ICDM 2003, pp. 721–724.
IEEE (2002)

30. Zhang, F., D’Hollander, E.H.: Using hammock graphs to structure programs. IEEE
Trans. Softw. Eng. 30(4), 231–245 (2004)

New Opportunities for Compilers
in Computer Security

Junjie Shen1, Zhi Chen1, Nahid Farhady Ghalaty2, Rosario Cammarota3,
Alexandru Nicolau1, and Alexander V. Veidenbaum1(B)

1 Department of Computer Science, University of California, Irvine, USA
{junjies1,zhi2,nicolau,alexv}@ics.uci.edu

2 Accenture Cyber Security Technology Labs, Arlington, VA, USA
nahid.farhady@accenture.com

3 Qualcomm Technologies, Inc., San Diego, USA
rosarioc@qti.qualcomm.com

Abstract. Compiler techniques have been deployed to prevent various
security attacks. Examples include mitigating memory access corruption,
control flow integrity checks, race detection, software diversity, etc.

Hardware fault and side-channel attacks, however, are typically
thought to require hardware protection. Attempts have been made to
mitigate some timing and fault attacks via compiler techniques, but these
typically adversely affected performance and often created opportunities
for other types of attacks. More can and should be done in this area by
the compiler community.

This paper presents such a compiler approach that simultaneously
mitigates two types of attacks, namely a fault and a side-channel attacks.
Continued development in this area using compiler techniques can fur-
ther improve security.

1 Introduction

Compiler techniques have been successfully deployed to prevent various security
attacks. Examples include mitigating memory access corruption, such as buffer
overflow, in which the attacker attempts to subvert the control flow, e.g., via
code reuse attack. Static analysis techniques are used to examine source code to
eliminate bugs that can be exploited. Control-Flow Integrity checks the validity
of the control-flow of an application. Software diversity is used to generate at
compile time a unique binary layout for each compilation, limiting code reuse
attacks. It is also applied at binary loading time to provide a different program
memory layout for each execution, while the binary is fixed.

Hardware fault and side-channel attacks are harder to deal with and are
typically thought to require hardware protection. A fault attack (FA) injects
faults into the underlying microprocessor hardware to alter values in registers or
memory and affect the execution of instructions. The attacker can then observe
the faulty output and finally break the security of the system using systematic
fault analysis models, such as Differential Fault Intensity Analysis (DFIA) [11].
c© Springer Nature Switzerland AG 2019
M. Hall and H. Sundar (Eds.): LCPC 2018, LNCS 11882, pp. 54–60, 2019.
https://doi.org/10.1007/978-3-030-34627-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34627-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-34627-0_4

New Opportunities for Compilers in Computer Security 55

A side-channel attack (SCA) may record sequences of measurements (traces),
taken across cryptographic operations, such as operation counts, power consump-
tion, execution time, etc. Statistical methods, such as Differential Power Analysis
(DPA) [13] and Correlation Power Analysis (CPA) [4], on traces are then used
to identify secret key dependent correlations and perform key extraction.

Mitigation strategies for FA and SCA are designed and deployed indepen-
dently from each other. The former are built on redundancy [2] while the latter
are based on masking and hiding [3]. Integration of both mitigation strategies is
complex because of the interaction between them. The overhead usually exceeds
the combined overhead of the individual mitigation strategies. A single strategy
that mitigates both threats at the same time with overhead comparable to a
typical mitigation strategy against FA or SCA [16] would be highly beneficial.
Equally beneficial would be the integration of the combined mitigation in a com-
piler, because current implementations rely on manual effort by experts, which
is complex and error-prone.

This work highlights one of many opportunities for compiler writers to
address physical security, in collaboration with security experts. A compilation
flow is developed to use vectorization to make code resistant to both fault and
power/electromagnetic attacks. Vectorization is used for operation duplication
and data redundancy in registers/memory, not for ILP. Furthermore, the dupli-
cation is performed in such a way that the Hamming weight of data in a vector
register stays constant. The combined approach is referred to as Twofer .

To the best of our knowledge, this is the first work that exploits vector exten-
sions to protect cryptographic algorithms against both fault and side-channel
attacks within a unified framework.

2 Proposed Mitigation Technique

The compilation framework and the implementation details of the proposed mit-
igation technique are briefly described next. [8] proposed an approach to code
vectorization for vector register value redundancy and operation duplication to
mitigate fault attacks. Checking is performed at certain program points, such as
stores, function calls, and branches, by comparing the equivalence of two result
values in a vector register. In addition, vector gather/scatter instructions were
utilized to duplicate address computations.

Memory contents was not duplicated in [8], however, in line with much prior
work that relied on memory/cache ECC. This is no longer sufficient due to
the recent proliferation of “Rowhammer” based memory attacks. This work,
therefore duplicates all variables of the cryptographic primitives and checks the
memory contents integrity using the duplicated values.

The proposed mitigation uses 1’s complement to compensate the Hamming
weight variance. The compiler can insert additional instructions to invert the
result of a memory load before packing the original and inverted values in a
vector register to form a Hamming weight-constant vector. However, this will
affect the performance significantly since memory loads are very common in block

56 J. Shen et al.

ciphers. More importantly, key-dependent scalar loads are vulnerable to DPA.
The size of key-dependent storage, such as S-box and cipher state arrays in AES,
is therefor increased by 4x. In Twofer , the new array duplicates and interleaves
the value of each element val in the original array with its 1’s complement: (val,∼
val, val,∼ val). The array indices need to be multiplied by four to reflect the
correct location in the new array (i.e., stride-indexing). Arrays are also aligned
to the cache line size so that every (val,∼val) pair fits in a cache line.

A vector memory load reads four consecutive values from the original memory
address simultaneously using the masked vector load primitive. Two data items
are used to counter fault attacks and the other two are used to prevent side-
channel leakage. Stores are handled similar to loads, but are protected using
masked stores. However, vector load and store instructions are more expensive
than their scalar counterparts.

Most ALU instructions can be effectively protected against both FA and
SCA using the proposed 1’s complement approach, but the xor operation can
cancel the masking effect and increase the Hamming weight. This is because both
operand registers for xor always contain the original values and their inverted
values. Hence, the two related lanes of a result vector register will be identical.
An xor operation will produce a vector result with two values where one is the
inverted value of the other if we invert one of the vector lanes in a vector operand
before a xor operation. For example, if the two operands are 〈a,¬a〉 and 〈b,¬b〉,
either ¬a or ¬b needs to be inverted. This pre-processing requires an additional
xor operation, but the performance cost is very low.

3 Evaluation

The evaluation of Twofer was performed by comparing it with Scalar in defend-
ing against side-channel and fault attacks. It used the cryptographic library GNU
Libgcrypt. Pin [14] was used as the base to build a binary instrumentation tool to
collect traces, by recording Hamming weights corresponding to a discrete instant
in time when data is written into registers during the execution of cryptographic
software. This tool provides an accurate representation of the Hamming weight
leakage model for cryptographic implementations in software. The evaluation
of fault attack resistance was performed by injecting 1,000 single-bit faults at
random positions in a cryptographic algorithm execution.

3.1 Resistance Against Side-Channel Attacks

Attacking with DPA. The cumulative differential for each key guess is calcu-
lated. DPA will generate 256 differential traces corresponding to each key byte
guess. The key byte guess with the highest cumulative differential will be the
speculation for the correct byte. The differential analysis is applied on all 16 key
byte positions. For brevity, we only include a single key byte in the analysis.

The differential analysis results of a key byte are presented in Fig. 1. DPA
is applied on a set of randomly generated keys. The unprotected Scalar is com-
pletely broken in the DPA attack with 20,000 traces. On the other hand, Twofer

New Opportunities for Compilers in Computer Security 57

remains invulnerable after the differential analysis to the limits of compliance–
FIPS 140 [10] and BSI AIS [12] series of recommendations for side-channel resis-
tance of cryptographic software modules. The correct byte is indistinguishable
as its cumulative differential is perfectly blended into other guesses. More impor-
tantly, the correct byte in Twofer shows no trend of standing out as more traces
are added in the differential attack.

Attacking with CPA. A more powerful attack, correlation power analysis,
is applied on both Scalar and Twofer . For a given key guess, CPA calculates the
Pearson’s correlation coefficient between the power hypothesis for the Hamming
weight of SubBytes output and the actual power usage (traces).

Figure 2 shows the CPA results on a key byte position. The correlation of the
correct byte in Scalar remains 1 throughout the experiment. In fact, Scalar is
completely broken with merely 5 traces. However, Twofer shows full mitigation
against CPA, benefiting from the constant Hamming weight of key-dependent
instructions.

0.04

0.06

0.08

0.10

0.12

0 20000 40000 60000 80000 100000
Number of Traces

0.04

0.06

0.08

0.10

0.12

N
or
m
al
iz
ed

C
um

ul
at
iv
e
D
iff
er
en

tia
l

Fig. 1. DPA results of Scalar (top) and Twofer (bottom) on a key byte.

3.2 Resistance to Fault Attacks

1,000 single-bit faults were injected to each of the ciphers, similar to the approach
in [8]. Figure 3 presents the results, where detected are the faults detected by
our error checking code; incomplete are faults causing segmentation faults or
causing the cipher to enter an infinite loop; masked are the faults with no effect
on the cipher result (i.e. was masked); and corrupted shows the faults for which
the cipher finishes and generates an incorrect result. The unprotected ciphers
have a 24.34% corruption rate, on average, while Twofer reduces it significantly
– down to 0.53%.

58 J. Shen et al.

0.00

0.25

0.50

0.75

1.00

0 20000 40000 60000 80000 100000
Number of Traces

0.00

0.10

0.20

0.30

C
or
re
la
tio

n

Fig. 2. CPA results of Scalar (top) and Twofer (bottom) on a key byte. The attacks
were performed using 200 to 100,000 traces with a step size of 200.

Fig. 3. Fault injection results. S for Scalar and T for Twofer .

3.3 Overhead Evaluation

The run time and energy overheads of Twofer were collected over 1000 consecu-
tive cipher operations (private and public for public key ciphers, and encryption
and decryption for AES). Twofer incurs a reasonable 2.38x slowdown in perfor-
mance. The overhead is primarily due to (a) extra instructions required for error
checking, and (b) the high latency of AVX-512 vector instructions.

New Opportunities for Compilers in Computer Security 59

The energy consumption was measured with Likwid 4.2.1 [17] using hardware
performance counters. The results show that applying Twofer imposes a 2.32x
energy overhead in comparison to Scalar .

Twofer memory overhead is also negligible because cipher states and S-boxes
only occupy a small fraction of the overall memory footprint in execution. Public
ciphers generally have a small cipher state and are dominated by arithmetic
calculations.

4 Related Work

Prior work for the mitigation of both fault and side-channel attacks exists. For
instance, Wiretap codes that provide resistance against SCA can be used for fault
detection up to a certain level of injection [6]. Bringer et al. proposed a smart card
friendly Orthogonal Direct Sum Masking technique to protect the AES algorithm
against both SCA and FA [5]. This technique is not fully protected against
fault attacks because of the author’s assumption that generating a fault with a
higher Hamming distance is more difficult. An example of such an attack can
be DFA attacks that require random byte fault injection [18]. Similar ideas have
been proposed in [7]. These proposed techniques also have not been automated,
however, unlike the work presented here. The need for combined countermeasures
is also increasing due to recent advances towards combined attacks. Examples
of such attacks are discussed in [1,9,15].

5 Conclusion

Compiler techniques have not been fully examined in the context of physical
attacks and especially in mitigating multiple types of attacks simultaneously.
For instance, countermeasures against fault and side-channel attacks rely on
different techniques. Integrating both countermeasures is a nontrivial task and
often imposes overhead that exceeds the sum of individual countermeasures.

This work demonstrated that a unified compiler-based approach is possible
to tackle both fault and side-channel attacks by leveraging redundancy through
vectorization along with masking.

References

1. Amiel, F., Villegas, K., Feix, B., Marcel, L.: Passive and active combined attacks:
combining fault attacks and side channel analysis. In: FDTC 2007, pp. 92–102.
IEEE (2007)

2. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

3. Bayrak, A.G., Velickovic, N., Regazzoni, F., Novo, D., Brisk, P., Ienne, P.: An
EDA-friendly protection scheme against side-channel attacks. In: DATE 2013, pp.
410–415. EDA Consortium (2013)

60 J. Shen et al.

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

5. Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal direct
sum masking. In: Naccache, D., Sauveron, D. (eds.) WISTP 2014. LNCS, vol. 8501,
pp. 40–56. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43826-
8 4

6. Bringer, J., Chabanne, H., Le, T.H.: Protecting AES against side-channel analysis
using wire-tap codes. J. Cryptogr. Eng. 2, 1–13 (2012)

7. Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-
channel attacks. In: Pinto, R., Malonek, P.R., Vettori, P. (eds.) Coding Theory
and Applications. CSMS, vol. 3, pp. 97–105. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-17296-5 9

8. Chen, Z., Shen, J., Nicolau, A., Veidenbaum, A., Farhady, N.: CAMFAS: a compiler
approach to mitigate fault attacks via enhanced SIMDization. In: FDTC 2017, pp.
57–64. IEEE (2017)

9. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M.: Passive and active combined
attacks on AES combining fault attacks and side channel analysis. In: FDTC 2010,
pp. 10–19. IEEE (2010)

10. FIPS, PUB: 140-2. Security Requirements for Cryptographic Modules 25 (2001)
11. Ghalaty, N.F., Yuce, B., Taha, M., Schaumont, P.: Differential fault intensity anal-

ysis. In: FDTC 2014, pp. 49–58. IEEE (2014)
12. Killmann, W., Lange, T., Lochter, M., Thumser, W., Wicke, G.: Minimum require-

ments for evaluating side-channel attack resistance of elliptic curve implementa-
tions (2011). http://www.bsi.bund.de

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

14. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. ACM SIGPLAN Not. 40, 190–200 (2005)

15. Roche, T., Lomné, V., Khalfallah, K.: Combined fault and side-channel attack on
protected implementations of AES. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol.
7079, pp. 65–83. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
27257-8 5

16. Schneider, T., Moradi, A., Güneysu, T.: ParTI – towards combined hardware
countermeasures against side-channel and fault-injection attacks. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 302–332. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 11

17. Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight performance-oriented
tool suite for x86 multicore environments. In: ICPPW 2010, pp. 207–216. IEEE
(2010)

18. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP
2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21040-2 15

https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-662-43826-8_4
https://doi.org/10.1007/978-3-662-43826-8_4
https://doi.org/10.1007/978-3-319-17296-5_9
https://doi.org/10.1007/978-3-319-17296-5_9
http://www.bsi.bund.de
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-27257-8_5
https://doi.org/10.1007/978-3-642-27257-8_5
https://doi.org/10.1007/978-3-662-53008-5_11
https://doi.org/10.1007/978-3-642-21040-2_15
https://doi.org/10.1007/978-3-642-21040-2_15

Footmark: A New Formulation
for Working Set Statistics

Liang Yuan1(B), Wesley Smith2, Sicong Fan3, Zixu Chen3, Chen Ding3,
and Yunquan Zhang1

1 SKL of Computer Architecture, ICT, CAS, Beijing, China
yuanliang@ict.ac.cn

2 University of Edinburgh, Edinburgh, UK
3 University of Rochester, Rochester, USA

Abstract. The working set (WS) model pioneered by Denning and oth-
ers is the foundation for analyzing memory performance and optimizing
memory management. An important measure is the average working
set size (WSS). In 1968, Denning derived a recursive formula to com-
pute the average WSS. The Denning recursion was originally derived
for infinitely long program executions and later adapted to use on finite
length traces. All previous adaptations, however, have had to modify the
Denning recursion for boundary correction.

This paper presents footmark, which redefines average WSS for finite
length traces. It has three benefits. By definition, footmark satisfies a
new type of symmetry. Mathematically, the paper gives four equivalent
formulas for computing footmark including one that is identical to the
Denning recursion. The mathematical simplicity is beneficial in both for-
mal and practical analysis of working sets. Based on the new formulas,
the paper proves a previously unknown equivalence relation between two
working set definitions. Finally, the paper evaluates three WSS defini-
tions using six test programs from the SPEC 2017 benchmark suite.

Keywords: Locality · Footprint · Working set

1 Introduction

The memory system of a modern computer is organized as a hierarchy. Locality
is the fundamental principle to support memory hardware design and guide
software optimization. We focus on locality metrics, which are widely used in
software and hardware based analyses to manage and optimize a system’s use
of its memory hierarchy. For locality analysis, the basic unit of information is a
data access, and the basic relation is a data reuse. Locality analysis shows the
underlying relation between cache performance and data reuses.

The research was conducted when the first author visited University of Rochester
from September 2017 to September 2018 and when the second author worked at the
university in summer 2018.

c© Springer Nature Switzerland AG 2019
M. Hall and H. Sundar (Eds.): LCPC 2018, LNCS 11882, pp. 61–69, 2019.
https://doi.org/10.1007/978-3-030-34627-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34627-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-34627-0_5

62 L. Yuan et al.

In locality analysis, an important concept is the working set (WS), and a
useful measure is average working set size (WSS). In 1968, Denning derived
the formula to compute the average WSS [5, Sec. 4.4]. The formula was later
expressed as a recursion [7]. We call it the Denning working set recursion or the
Denning recursion in short and will review it in Sect. 2.

The Denning recursion was originally derived for infinite long program exe-
cutions. It was later adapted to use on finite length traces by adding special
boundary corrections [8,13]. More recently, Ding et al. defined a form of average
WSS called the footprint [9,14]. The footprint definition has the property that
it considers all windows of the same length, regardless whether a window is at
the boundary or not. In this paper, we refer to this property as window-length
symmetry. The footprint calculation has to use first- and last-access times, which
are unneeded by the Denning recursion [14].

In this paper, we present footmark, which redefines average WSS. The new
definition combines elements of past work but offers several advantages.

The first is window-count symmetry, which means that every trace element,
whether it is at the boundary or in the middle of the trace, is considered in the
same number of windows when calculating footmark. The second is simplicity.
The paper presents three formulas to compute footmark, which are more succinct
than previous formulas (for finite length traces). Furthermore, footmark can be
computed using the Denning recursion.

We show a proof that footmark numerically differs from the footprint by at
most 1 for small window sizes, even though the two definitions treat bound-
ary windows differently, and the footprint uses significantly more information
about the trace than footmark does. Finally, we demonstrate the equivalence in
experiments using a set of SPEC 2017 benchmark programs.

Although the paper does not show any use of footmark, we note here that its
mathematical simplicity has benefits in both practical and theoretical analysis
of working sets. Operationally, footmark requires only the reuse interval, which
can be measured efficiently through sampling, either at run time [10,12,15] or by
a compiler [3]. In formal analysis, a recent discovery is the effect of interleaving
on the footprint [2]. The simpler footmark formulas may significantly reduce the
complexity of the symbolic reasoning.

In the remainder of the paper, we present the background in Sect. 2 and
footmark in Sect. 3 including its derivation and equivalence relations.

2 Background

A trace is a sequence of references to data or memory locations. Each reference
may be an object identifier or the address of a memory cell, block, or page. We
also call a reference a trace element, and its target a data item. The length of a
trace is n. The number of distinct items is m.

A window A(t, τ) is the τ -length substring of trace A beginning at the tth

element. The window’s working set W (t, τ) is the set of distinct elements in it.
The working set size is the size of its working set, ω(t, τ) = |W (t, τ)| [4]. Note

Footmark: A New Formulation for Working Set Statistics 63

that the original working set definition by Denning uses backward windows [6].
Here we depart from the convention slightly and use forward windows, i.e. the
first parameter is the first element of the window. The choice is to make boundary
windows more easily distinguishable, i.e. all head windows start from 0.

A reuse is defined as two consecutive references of the same data. The reuse
interval is the elapse of logical or physical time between these two references.
It is the same as the interreference interval used in the literature on virtual
memory management [4] and the reuse time used in our earlier papers. The
reuse interval is at most n − 1. The reuse interval histogram is represented by
ri(i) for i ∈ [1, . . . , n − 1], each is the number of reuses with reuse interval i. For
example, in the trace aabb, the reuse interval for a is 1, and ri(1) = 2.

In the working set theory, Denning [6] defines the average working set size
Sn(x) for a trace of finite length n: Sn(x) � 1

n (
∑x−1

t=0 ω(0, t) +
∑n−x

t=0 ω(t, x)).
The average working set size S(x) for an infinite length trace is given by
S(x) � limn→∞ Sn(x). It is impossible to calculate S(x) directly by enumer-
ating all windows since the trace is infinite. By adopting a probabilistic app-
roach, Denning [7] derives the recursive formula for S(x) using a distribution of
reuse interval frequencies ri(i)/n: S(x + 1) = S(x) + limn→∞

∑n−1
i=x+1 ri(i)/n.

For a trace of a finite length, Denning and Slutz derived the recursion as
s(x + 1) = s(x) + mwh(x) [8], which we will discuss in Sect. 3.2.

Xiang et al. defined the footprint fp(x). For integer x ∈ [0, n], fp(x) is the aver-
age working set size among all windows of length x: fp(x) � 1

n−x+1

∑n−x
t=0 ω(t, x).

We denote the total WSS of length-x windows as FP(x) �
∑n−x

t=0 ω(t, x) and have
FP(x) = (n − x + 1)fp(x). Every trace element and every working set are con-
sidered for windows of the same length. We call it the window-length symmetry.

Xiang gave the formula to compute the footprint using the reuse interval
ri(i) for each reuse interval i and the first- and last-access time, ft(e) and < (e),
for each data item e. The Xiang formula uses ri(x + 1 . . . n − 1) to compute the
footprint for window size x. Yuan et al. [16] derived two methods for calculat-
ing the footprint using the same information. They rely on ri(1 . . . n − 1) and
ri(1 . . . x − 1) for window size x respectively. Let d(x) = x if x > 0 and d(x) = 0
otherwise. The three formulas for the footprint are as follows.

FP(x) = m(n − x + 1) −
n−1∑

i=x+1

(i − x) × ri(i) −
m∑

e=1

d(ft(e) − x + 1)

−
m∑

e=1

d(n − x− < (e))

= xm +
n−1∑

i=1

min(i, x) × ri(i) −
m∑

e=1

d(x − 1 − ft(e))

−
m∑

e=1

d(< (e) − (n − x))

64 L. Yuan et al.

= xn −
x−1∑

i=1

(x − i) × ri(i) −
m∑

e=1

d(x − 1 − ft(e))

−
m∑

e=1

d(< (e) − (n − x)) (1)

We call the second the additive formula (since the ri term is additive) and
the third the incremental formula (since it uses ri incrementally). In all these
formulas, the boundary effect is computed by the 2m terms (based on the first-
and last-access times), which add considerable complexity.

3 Footmark

3.1 Definition and Calculation

The footmark is fm(x) = FM(x)/n for 0 < x ≤ n, which is the total WSS
FM(x) divided by the trace length n. The total WSS is as follows and includes
all windows of length x and all head and tail windows of lengths less than x.

FM(x) =
x−1∑

t=1

ω(0, t) +
n−x∑

t=0

ω(t, x) +
x−1∑

t=1

ω(n − x + t, x − t)

The novel feature of this definition is taking the total WSS of n + x − 1
windows but dividing the total by n. Because head and tail windows are shorter
than x, and their total length is (x − 1)x, they are treated as x − 1 windows.

For example, consider the trace abcdef , we have n = 6, x = 4. The first sum
in FM(x) includes all head windows of length smaller than 4: a, ab and abc; the
second sum all windows of length 4, abcd, bcde and cdef ; and the last sum all tail
windows of length smaller than 4, def , ef and f . FM(x) adds the WSS of 5 + x
windows, and the footmark is this sum divided by 6. In particular, fm(x) = x
for 1 ≤ x ≤ 6.

Footmark does not have window-length symmetry, since head and tail win-
dows have different lengths. Instead, it has window-count symmetry : for fm(x),
every trace element is considered in x windows, i.e. x working sets. By itself,
the new symmetry does not seem more useful. In fact, it has to consider more
windows, yet the extra (tail) windows have dubious importance in practice.

The benefit of the new definition, however, is mathematical simplicity. For
the trace abcdef , footmark and footprint actually compute the same result, i.e.
fp(x) = x for 1 ≤ x ≤ 6. However, the calculation differs. The denominator in
footprint decrements from n to 1 as x increases from 1 to n. It is simpler in
footmark — it is always n. Moreover, it is also simpler to represent and compute
the enumerator FM(x).

The middle term of FM(x) is the total WSS of all length-x windows, which
can be computed by the formulas shown in Eq. (1). The other two terms are for
the head and tail windows, which we compute using the following lemma:

Footmark: A New Formulation for Working Set Statistics 65

Lemma 1.

x−1∑

t=1

ω(0, t) =
m∑

e=1

d(x − 1 − ft(e))

x−1∑

t=1

ω(n − x + t, x − t) =
m∑

e=1

d(< (e) − (n − x))

where ft, < are first- and last-access times, and d(x) = x if x > 0 and d(x) = 0
otherwise.

Proof. The first equation computes the total WSS of x − 1 head windows, i.e.
A(0, t) for 1 � t � x − 1, by calculating the contribution to the total WSS by
each data item e in the trace. A data item e appears in a head window if it is first
accessed before time x − 1, i.e. ft(e) ≤ x − 1. The number of windows is appears
in is simply x − 1 − ft(e), i.e. the windows A(0, ft(e)) . . . A(0, x − 1). Since all
windows start from 0, any data reuse does not add to the total WSS. Therefore,
the summing of d(x − 1 − ft(e)) is the total WSS, and the first equation holds.
The second equation can be proved with similar reasoning. ��

Combining Eq. (1) and Lemma 1, we have

FM(x) = mx +
n−1∑

i=1

min(i, x) × ri(i)

= nx −
x−1∑

i=1

(x − i) × ri(i)

= mx −
n−1∑

i=x+1

(i − x) × ri(i) +
m∑

e=1

(< (e) − ft(e)) (2)

We call them the additive, incremental and Xiang formula style respectively.
The incremental formula computes the total WSS iteratively using the reuse
interval histogram. The Xiang formula style uses the ft and < terms, but they
are not strictly necessary, as evident by its equality to the first two formulas.

By considering more windows, footmark achieves the window-count symme-
try, and it is simpler than the footprint, which uses the window-length symmetry.
Since footmark requires only the reuse interval and does not need first- and last-
access times, it can be used in a recent compiler technique of static locality
analysis [3]. In formal analysis, footmark has the same denominator n, which
can simply derivations of mathematical properties, for example, computing the
effect of trace interleaving [2].

3.2 Equivalence

We first show that footmark can be computed by the Denning recursion. In a
finite length trace, we must consider the first accesses of data, i.e. the m accesses

66 L. Yuan et al.

that are not reuses. We use a “trick” to consider them as reuses with the reuse
interval n (actual reuse intervals are at most n − 1).1

From the additive formula FM(x) =
∑n

i=1 min(i, x) × ri(i), we have the
recursive formula for fm, which is the Denning recursion:

fm(x + 1) − fm(x) =
n∑

i=x+1

ri(i)/n.

For a finite length trace, Denning and Slutz derived the recursion as s(x+1) =
s(x) + mwh(x), where mwh(x) includes the reuse intervals but also additional
terms for boundary correction [8]. Footmark does not use additional corrections
and shows what the unchanged Denning recursion means for a finite length trace.

Next we prove a theorem that the footmark and the footprint are practically
numerically identical for small window sizes.

Theorem 1. −1 � fm(x) − fp(x) � 1, When x �√
n.

Proof. We only prove the right inequality. Let FMend(x) = FM(x) − FP(x), we
have:

fm(x) − fp(x) =
FM(x)

n
− fp(x)

=
FMend(x)

n
+

FP(x)
n

− fp(x)

=
FMend(x)

n
+

n − x + 1
n

fp(x) − fp(x)

=
1
n

(FMend(x) + (1 − x)fp(x))

It is easy to see that the upper bound for FMend(x) is x(x−1), and lower bound
for fp(x) is 1. It then follows that fm(x) − fp(x) ≤ 1

n (x(x − 1) + (1 − x)). For
x ≤√

n, we have fm(x) − fp(x) ≤ 1
x2 (x2 − 2x + 1) = (1 − 2

x + 1
x2) ≤ 1. ��

However, there is no such constant bound in general cases. Consider a trace
of length n where the first and last n/4 accesses are all distinct, while the middle
n/2 accesses are all the same. The difference fm(n/2) − fp(n/2) ≈ n/16. In real-
world applications, the windows in FMend tend to contain more distinct data
items, and we can expect fm(x) > fp(x).

3.3 Experimental Evaluation

In Theorem 1, we have proved that the footmark is practically identical to the
Xiang footprint for window sizes up to the square root of n. Next we show the
actual results on 6 test programs in the SPEC CPU2017 suite. The programs
are bwaves, cactusBSSN, gcc, mcf, perlbench, and namd. They are profiled by the
1 This trick was first used by Denning and Slutz to count the end corrections for

space-time working set [8].

Footmark: A New Formulation for Working Set Statistics 67

Loca tool [1], which is based on a binary rewriter tool Pin [11]. Loca instruments
a program and outputs the first- and last-access times and the reuse intervals as
a logarithmic-scale histogram.

From these histograms, we compute average working-set size using three
definitions. We use the first- and last-access time histogram and the reuse interval
histogram to compute the footprint. In addition, we simplify the Xiang formula
to use only the reuse interval. We call it reuse-term footprint. Specifically, it is
rtfp(x) = m−∑n−1

i=x+1(i−x)rt(i)/n. Finally, we compute footmark, which is the
same as the Denning recursion.

Figure 1 shows a comparison between the three definitions. Footmark and
reuse-term footprint use only the reuse interval histogram. Both can be viewed
as an approximation of the footprint. We see that footmark closely matches foot-
print. For infinitely long traces, the reuse-term footprint is the same as footprint,
i.e. limn→∞(fp(x) − rtfp(x)) = 0. For our tests, however, reuse-term footprint
deviates significantly from footprint especially in gcc and perlbench, making it
unsuitable to model finite length traces.

Fig. 1. Comparison of three definitions. The footmark closely matches the footprint,
while the reuse-term footprint does not.

4 Conclusion

We have presented a new working set metric for finite length traces called
footmark. It has the window-count symmetry and shows what the unmodi-
fied Denning recursion means for finite length traces. We have derived non-
recursive including additive and incremental formulas to compute footmark,

68 L. Yuan et al.

proved its equivalence relations with footprint, and demonstrated its accuracy
experimentally.

Acknowledgement. The authors wish to thank Peter Denning for the feedback and
suggestions on the presentation of the paper’s contributions and William Wilson for
help on the use of the loca tool. The funding was provided in part by National Key
R&D Program of China (2016YFB0200803) and NFSC (61432018, 61402441, 61521092,
61502450, 61602443), by the National Science Foundation of the United States (Con-
tract No. CCF-1717877 and CCF-1629376), by an IBM CAS Faculty Fellowship, and
by Guangdong Province Key Laboratory of Popular High Performance Computers
(2017B030314073).

References

1. Loca: Program locality analysis tools (2018). https://github.com/dcompiler/loca
2. Brock, J., Ding, C., Lavaee, R., Liu, F., Yuan, L.: Prediction and bounds on shared

cache demand from memory access interleaving. In: Proceedings of the Interna-
tional Symposium on Memory Management, pp. 96–108 (2018). https://doi.org/
10.1145/3210563.3210565. http://doi.acm.org/10.1145/3210563.3210565

3. Chen, D., Liu, F., Ding, C., Pai, S.: Locality analysis through static parallel sam-
pling. In: Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pp. 557–570 (2018). https://doi.org/10.1145/
3192366.3192402. http://doi.acm.org/10.1145/3192366.3192402

4. Coffman Jr., E.G., Denning, P.J.: Operating Systems Theory. Prentice-Hall, Engle-
wood Cliffs (1973)

5. Denning, P.J.: Resource Allocation in Multiprocess Computer Systems. Ph.D. the-
sis, Massachusetts Institute of Technology (1968)

6. Denning, P.J.: The working set model for program behaviour. Commun. ACM
11(5), 323–333 (1968)

7. Denning, P.J., Schwartz, S.C.: Properties of the working set model. Commun. ACM
15(3), 191–198 (1972)

8. Denning, P.J., Slutz, D.R.: Generalized working sets for segment reference strings.
Commun. ACM 21(9), 750–759 (1978)

9. Ding, C., Chilimbi, T.: All-window profiling of concurrent executions. In: Proceed-
ings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (2008). Poster paper

10. Hu, X., et al.: Fast miss ratio curve modeling for storage cache. ACM
Trans. Storage 14(2), 12:1–12:34 (2018). https://doi.org/10.1145/3185751.
http://doi.acm.org/10.1145/3185751

11. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 190–200 (2005)

12. Pan, C., Hu, X., Zhou, L., Luo, Y., Wang, X., Wang, Z.: PACE: penalty aware
cache modeling with enhanced AET. In: 9th ACM SIGOPS Asia-Pacific Workshop
on Systems (APSys 2018) (2018)

13. Slutz, D.R., Traiger, I.L.: A note on the calculation working set size. Com-
mun. ACM 17(10), 563–565 (1974). https://doi.org/10.1145/355620.361167.
http://doi.acm.org/10.1145/355620.361167

https://github.com/dcompiler/loca
https://doi.org/10.1145/3210563.3210565
https://doi.org/10.1145/3210563.3210565
http://doi.acm.org/10.1145/3210563.3210565
https://doi.org/10.1145/3192366.3192402
https://doi.org/10.1145/3192366.3192402
http://doi.acm.org/10.1145/3192366.3192402
https://doi.org/10.1145/3185751
http://doi.acm.org/10.1145/3185751
https://doi.org/10.1145/355620.361167
http://doi.acm.org/10.1145/355620.361167

Footmark: A New Formulation for Working Set Statistics 69

14. Xiang, X., Bao, B., Ding, C., Gao, Y.: Linear-time modeling of program working
set in shared cache. In: Proceedings of the International Conference on Parallel
Architecture and Compilation Techniques, pp. 350–360 (2011)

15. Xiang, Y., Wang, X., Huang, Z., Wang, Z., Luo, Y., Wang, Z.: DCAPS: dynamic
cache allocation with partial sharing. In: Proceedings of the EuroSys Conference,
pp. 13:1–13:15 (2018). https://doi.org/10.1145/3190508.3190511. http://doi.acm.
org/10.1145/3190508.3190511

16. Yuan, L., Ding, C., Denning, P.J., Zhang, Y.: A measurement theory of locality.
CoRR abs/1802.01254 (2018). http://arxiv.org/abs/1802.01254

https://doi.org/10.1145/3190508.3190511
http://doi.acm.org/10.1145/3190508.3190511
http://doi.acm.org/10.1145/3190508.3190511
http://arxiv.org/abs/1802.01254

Towards an Achievable Performance
for the Loop Nests

Aniket Shivam1(B), Neftali Watkinson1, Alexandru Nicolau1, David Padua2,
and Alexander V. Veidenbaum1

1 Department of Computer Science, University of California, Irvine, Irvine, USA
{aniketsh,watkinso,nicolau,alexv}@ics.uci.edu

2 Department of Computer Science, University of Illinois at Urbana-Champaign,
Champaign, USA

padua@illinois.edu

Abstract. Numerous code optimization techniques, including loop nest
optimizations, have been developed over the last four decades. Loop opti-
mization techniques transform loop nests to improve the performance of
the code on a target architecture, including exposing parallelism. Find-
ing and evaluating an optimal, semantic-preserving sequence of transfor-
mations is a complex problem. The sequence is guided using heuristics
and/or analytical models and there is no way of knowing how close it gets
to optimal performance or if there is any headroom for improvement.

This paper makes two contributions. First, it uses a comparative anal-
ysis of loop optimizations/transformations across multiple compilers to
determine how much headroom may exist for each compiler. And second,
it presents an approach to characterize the loop nests based on their hard-
ware performance counter values and a Machine Learning approach that
predicts which compiler will generate the fastest code for a loop nest.
The prediction is made for both auto-vectorized, serial compilation and
for auto-parallelization. The results show that the headroom for state-of-
the-art compilers ranges from 1.10x to 1.42x for the serial code and from
1.30x to 1.71x for the auto-parallelized code. These results are based on
the Machine Learning predictions.

1 Introduction

Modern architectures have been evolving towards greater number of cores on the
chip, as well as, improving the processing capabilities of individual cores. Each
core in the current multi-core architectures includes the capability to process
Single Instruction Multiple Data (SIMD) or Vector instructions. State-of-the-
art compilers, or code optimizers, use advanced loop transformation techniques
to modify the loop nests so as to take advantage of these SIMD instructions. The
underlying code optimization techniques in the compilers to auto-vectorize the
loop nests [1,19,26] require careful analysis of data dependences, memory access
patterns, etc. Similarly, a serial version of the loop nest may be parallelized i.e.
transformed such that loop iterations can be reordered and scheduled for parallel
c© Springer Nature Switzerland AG 2019
M. Hall and H. Sundar (Eds.): LCPC 2018, LNCS 11882, pp. 70–77, 2019.
https://doi.org/10.1007/978-3-030-34627-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34627-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-34627-0_6

Towards an Achievable Performance for the Loop Nests 71

execution across the multiple cores. These transformations are characterized as
auto-parallelization techniques [3,7,13–16,18] and the end product is a multi-
threaded code.

Some key transformations for optimizing loop nests [12,26] are Distribution,
Fusion, Interchange, Skewing, Tiling and Unrolling. The best set of transforma-
tions for a given loop nest can be any possible sequence of these transformations
with even repeating transformations. Even though the compilers may have the
ability to perform important loop transformations, the built-in heuristics and
analytical models that drive these optimizations to determine the order and the
profitability of these transformations may lead to sub-optimal results. Evaluation
studies [10,17,23] have shown that state-of-the-art compilers may miss out on
opportunities to optimize the code for modern architectures. But a major chal-
lenge in developing heuristics and profitability models is predicting the behavior
of a multi-core processor which has complex pipelines, multiple functional units,
memory hierarchy, hardware data prefetching, etc. Parallelization of loop nests
involve further challenges for the compilers, since communication costs based
on the temporal and spatial data locality among iterations have an impact on
the overall performance too. These heuristics and models differ between com-
pilers which leads to different quality of the generated code for the loop nests
and therefore, the performance may vary significantly. There are various compil-
ers and domain specific loop optimizers that perform auto-vectorization and, in
some cases, auto-parallelization such Intel ICC, GNU GCC, LLVM Clang, etc.
By observing their relative performance one can identify relative headroom.

Embedding Machine Learning models in compilers is continuously being
explored by the research community [2,5,6,9,22–25]. Most of the previous work
used Machine Learning in the domain of auto-vectorization, phase-ordering and
parallelism runtime settings. This work applies Machine Learning on a coarser
level, in order to predict the most suited code optimizer - for serial as well as
parallel code.

Previous studies have shown that hardware performance counters can suc-
cessfully capture the characteristic behavior of the loop nests. In those studies,
Machine Learning models either use a mix of static features (collected from
source code at compile time) and dynamic features (collected from profiling)
[23,24], or exclusively use dynamic features [2,6,25]. This work belongs to the
second class and exclusively uses hardware performance counters collected from
profiling a serial (-O1) version of a loop nest and uses these dynamic features
as the input for the Machine Learning classifiers. It also shows that it is feasible
to use hardware performance counters from an architecture to make predictions
for similar multi-core architectures.

The focus of this work is to consider state-of-the art code optimizers and then
use Machine Learning algorithms to make predictions for better, yet clearly
achievable performance for the loop nests using these code optimizers. This
is what defines a possible headroom. We believe that recognizing the inher-
ent behavior of loop nests using hardware performance counters and Machine
Learning algorithms will present an automated mechanism for compiler writers
to identify where to focus on making improvements in order to achieve better
performance.

72 A. Shivam et al.

2 Experimental Methodology

This section describes the candidate code optimizers and the architectures that
we considered for this work and methodology for conducting the experiments.

2.1 Code Optimizers

In this work we considered 4 candidate code optimizers, as shown in Table 1,
including Polly [11,20], a Polyhedral Model based optimizer for LLVM. 2 out
of those 4 optimizers can perform auto-parallelization of the loop nests. The
hardware performance counters are collected using an executable generated by
icc with flags -O1 -no-vec, in order to disable all loop transformations, and
disable vector code and parallel code generation.

2.2 Benchmarks

The first benchmark suite that we use for our experiment is Test Suite for Vec-
torizing Compilers (TSVC) as used by Callahan et al. [4] and Maleki et al. [17]
for their works. This benchmark was developed to assess the auto-vectorization
capabilities of compilers. Therefore, we only use those loop nests in the serial
code related experiments. The second benchmark suite that we collect loop nests
from is Polybench [21]. This suite consists of 30 benchmarks that perform numer-
ical computations used in various domains such as linear algebra computations,
image processing, physics simulation, etc. We use Polybench for experiments
involving both serial and auto-parallelized code. We use the two largest datasets
from Polybench to create our ML dataset. In our experience, the variance of
both the hardware performance counter values and the most suited code opti-
mizer for the loop nests across the two datasets, was enough to treat them as
two different loop nests. This variance can be attributed to two main reasons.
First, a different set of optimizations being performed by the optimizers based
on the built-in analytical models/heuristics that drive those optimizations, since
properties like loop trip counts usually vary across datasets. Second, the per-
formance across datasets on an architecture with a memory hierarchy, where

Table 1. Candidate Code Optimizer and their flags

Code
optimizer

Version Flags (Auto-Parallelization
flags)

Auto-Parallelization

clang (LLVM) 6.0.0 -Ofast -march=native No

gcc (GNU) 5.4.0 -Ofast -march=native No

icc (Intel) 18.0.0 -Ofast -xHost (-parallel) Yes

polly 6.0.0 -O3 -march=native -polly
-polly-vectorizer=stripmine
-polly-tiling (-polly-parallel)

Yes

Towards an Achievable Performance for the Loop Nests 73

the behavior of memory may change on one or more levels. This analysis was
required to prevent the ML algorithms from overfitting.

2.3 Experimental Platforms

For the experiments, we used two recent Intel architectures. The first architecture
is a four-core Intel Kaby Lake Core i7-7700K. This architecture supports Intel’s
SSE, AVX and AVX2 SIMD instruction set extensions. The second architecture
we use is a two sixteen-core Intel Skylake Xeon Gold 6142. The Skylake architec-
ture supports two more SIMD instruction set extensions, i.e., AVX-512CD and
AVX-512F than the Kaby Lake architecture. For the auto-parallelization related
experiments, only one thread is mapped per core.

We skip dynamic instruction count as a feature and normalize the rest of
the hardware performance counters in terms of per kilo instructions (PKI). We
exclude loop nests that have low value for crucial hardware performance counters
such as instructions retired. From our experiments, we discovered two interesting
correlations among hardware performance counters and the characteristic behav-
ior of the loop nests. First, the hardware performance counters values from Kaby
Lake architecture (after disabling loop transformations and vector code gener-
ation) were sufficient to get well trained ML model to make predictions for a
similar architecture like the Skylake architecture. Second, for predicting the most
suited candidate for serial code and for the auto-parallelized code for a loop nest,
the same set of hardware performance counters, collected from profiling a serial
version, can be used to train the ML model and achieve satisfactory results.

2.4 Machine Learning Model Evaluation

For training and evaluating our Machine Learning model, we use Orange [8]. We
use Random Forest (RF) as the classifier for all the experiments. We randomly
partition our dataset into Training dataset (75%) and Validation dataset (25%).
The training dataset allows us to train and tune the ML models. We evaluate
our trained models on Accuracy and Area Under Curve (AUC). Whereas, the
validation dataset is a set of unseen loop nests that we use to make predictions.
For serial code experiments, there are 209 instances (loop nests) in the training
dataset and 69 instances in the validation dataset. For auto-parallelized code
experiments, there are 147 instances in the training dataset and 49 instances in
the validation dataset. The predicted optimizer’s execution time as compared to
that of the most suited optimizer’s execution time will be same in case of correct
predictions and higher in case of mispredictions.

We repeat our ML experiments thrice in order to validate our results, i.e., we
randomly split the dataset, train new ML models and then make the predictions.
We take into account the unique instances from the three validation datasets
for measurements. Therefore, the number of instances differ between similar
experiments.

74 A. Shivam et al.

3 Experimental Analysis

For evaluating the results, we calculate the speedup of ML predictions over can-
didate code optimizers, i.e., the speedup obtained if the code optimizer recom-
mended by the ML model was used to optimize loop nests instead of a candidate.

Over
Clang

Over
GCC

Over
ICC

Over
Polly

0.8

1

1.2

1.4

1.6

1.39 1.42

1.19
1.26

G
e
o
M

e
a
n

S
p
e
e
d
u
p
s
o
f

M
L

p
re
d
ic
ti
o
n
s

(a) Predictions against individual
compilers on Kaby Lake

Over
Clang

Over
GCC

Over
ICC

Over
Polly

0.8

1

1.2

1.4

1.6

1.34 1.37

1.1

1.35

G
e
o
M

e
a
n

S
p
e
e
d
u
p
s
o
f

M
L

p
re
d
ic
ti
o
n
s

(b) Predictions against individual
compilers on Skylake

Predicted

Actual

Clang GCC ICC Polly
Clang 5 0 13 7 25
GCC 1 0 13 2 16
ICC 2 0 96 2 100
Polly 2 0 15 14 31

10 0 137 25 172

(c) Confusion Matrix for Kaby Lake

Predicted

Actual

Clang GCC ICC Polly
Clang 4 4 14 1 23
GCC 4 10 11 3 28
ICC 4 5 68 4 81
Polly 0 5 8 15 28

12 24 101 23 160

(d) Confusion Matrix for Skylake

Fig. 1. Speedup of predictions for serial code

3.1 Predicting the Most Suited Code Optimizer for Serial Code

Figure 1a and b show the results for the performance gains from the predic-
tions for the Kaby Lake and Skylake architectures, respectively. These predicted
gains can be viewed as the achievable headroom for each compiler. On the vali-
dation dataset, RF classifier predicted with an overall accuracy of 67% for Kaby
Lake and 61% for Skylake as shown in the confusion matrices in Fig. 1c and d
respectively.

Across both architectures, Intel compiler performs well on majority of the
loop nests. Therefore, the Majority Classifier predicted ICC with 58% overall
accuracy for Kaby Lake and 50% overall accuracy for Skylake. The distribution of
performance of the ML predictions compared to ICC, the maximum performance
gain on a loop nest was 27x, whereas the maximum slowdown was 0.2x.

Towards an Achievable Performance for the Loop Nests 75

3.2 Predicting the Most Suited Code Optimizer for
Auto-Parallelized Code

For the auto-parallelization experiments, there are only two candidates: ICC
and Polly. The RF classifier predicted with an overall accuracy of 85% for Kaby
Lake and 72% for Skylake as shown in Fig. 2c. Since the validation dataset was
well balanced for the two targets, the Majority Classifier produced an overall
accuracy of 64% for Kaby Lake and 50% for Skylake. Based on the distribution
of performance of the ML predictions, when compared to ICC, the maximum
gain on a loop nest was 91x whereas the maximum slowdown was 0.09x.

Over
ICC

Over
Polly

1

1.2

1.4

1.6

1.8

1.46 1.51

G
e
o
M

e
a
n

S
p
e
e
d
u
p
s
o
f

M
L

p
re
d
ic
ti
o
n
s

(a) Predictions against
individual compilers

on Kaby Lake

Over
ICC

Over
Polly

1

1.2

1.4

1.6

1.8 1.71

1.3

G
e
o
M

e
a
n

S
p
e
e
d
u
p
s
o
f

M
L

p
re
d
ic
ti
o
n
s

(b) Predictions against
individual compilers

on Skylake

Predicted
ICC Polly

Actual
ICC 65 9 74
Polly 8 33 41

73 42 115

Predicted
ICC Polly

Actual
ICC 40 14 54
Polly 16 38 54

56 52 108

(c) Confusion Matrix for
Kaby Lake (top) and
Skylake (bottom)

Fig. 2. Speedup of predictions for auto-parallelized code

4 Overall Analysis and Discussion

The performance gain from the ML predictions over the candidate code optimiz-
ers range from 1.10x to 1.42x for the serial code and from 1.30x to 1.71x for the
auto-parallelized code across two multi-core architectures. Counters related to
Cycles Per Instruction (CPI), D-TLB, memory instructions, cache performance
(L1, L2 and L3) and stall cycles were crucial indicators of the inherent behavior
of the loop nests.

On analyzing the validation datasets for serial code experiments, we found
that on an average for 95% of the loop nests, there was at least 5% performance
difference between the most suited code optimizer and the worse suited code
optimizer. For auto-parallelized code experiments, on an average for 91.5% of
the loop nests, there was at least 5% performance difference between the most
suited code optimizer and the worse suited code optimizer.

On the other hand, for the serial code experiments, for 68% of the loop
nests, there was at least 5% performance difference between the most suited

76 A. Shivam et al.

code optimizer and the second most suited code optimizer. That suggests that
for the remaining 32% of the loop nests, it would be harder to make a distinc-
tion between the most suited code optimizer and the second one. Since the ML
models’ overall accuracy are 67% for Kaby Lake and 61% for Skylake, we can
infer that they are doing very well on the loop nests that have a clear distinction
about the most suited code optimizer.

Acknowledgments. This work was supported by NSF award XPS 1533926.

References

1. Allen, R., Kennedy, K.: Automatic translation of fortran programs to vector form.
ACM Trans. Program. Lang. Syst. 9(4), 491–542 (1987)

2. Ashouri, A.H., et al.: MiCOMP: mitigating the compiler phase-ordering problem
using optimization sub-sequences and machine learning. ACM Trans. Arch. Code
Optim. (TACO) 14(3), 29 (2017)

3. Bondhugula, U., Baskaran, M., Krishnamoorthy, S., Ramanujam, J., Rountev, A.,
Sadayappan, P.: Automatic transformations for communication-minimized paral-
lelization and locality optimization in the polyhedral model. In: Hendren, L. (ed.)
CC 2008. LNCS, vol. 4959, pp. 132–146. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-78791-4 9

4. Callahan, D., Dongarra, J., Levine, D.: Vectorizing compilers: a test suite and
results. In: Proceedings of the 1988 ACM/IEEE Conference on Supercomputing,
Supercomputing 1988, pp. 98–105. IEEE Computer Society Press, Los Alamitos
(1988)

5. Cammarota, R., Beni, L.A., Nicolau, A., Veidenbaum, A.V.: Optimizing program
performance via similarity, using a feature-agnostic approach. In: Wu, C., Cohen,
A. (eds.) APPT 2013. LNCS, vol. 8299, pp. 199–213. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45293-2 15

6. Cavazos, J., et al.: Rapidly selecting good compiler optimizations using perfor-
mance counters. In: International Symposium on Code Generation and Optimiza-
tion, CGO 2007, pp. 185–197. IEEE (2007)

7. Darte, A., Robert, Y., Vivien, F.: Scheduling and Automatic Parallelization.
Springer, New York (2012). https://doi.org/10.1007/978-1-4612-1362-8

8. Demšar, J., et al.: Orange: data mining toolbox in python. J. Mach. Learn. Res.
14(1), 2349–2353 (2013)

9. Fursin, G., et al.: Milepost GCC: machine learning enabled self-tuning compiler.
Int. J. Parallel Program. 39(3), 296–327 (2011)

10. Gong, Z., et al.: An empirical study of the effect of source-level loop transforma-
tions on compiler stability. Proc. ACM Program. Lang. 2(OOPSLA), 126:1–126:29
(2018)

11. Grosser, T., Groesslinger, A., Lengauer, C.: Polly - performing polyhedral opti-
mizations on a low-level intermediate representation. Parallel Process. Lett. 22(04),
1250010 (2012)

12. Kennedy, K., Allen, J.R.: Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann Publishers Inc., San Francisco
(2002)

https://doi.org/10.1007/978-3-540-78791-4_9
https://doi.org/10.1007/978-3-540-78791-4_9
https://doi.org/10.1007/978-3-642-45293-2_15
https://doi.org/10.1007/978-1-4612-1362-8

Towards an Achievable Performance for the Loop Nests 77

13. Li, W., Pingali, K.: A singular loop transformation framework based on non-
singular matrices. In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D. (eds.)
LCPC 1992. LNCS, vol. 757, pp. 391–405. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-57502-2 60

14. Lim, A.W., Cheong, G.I., Lam, M.S.: An affine partitioning algorithm to maximize
parallelism and minimize communication. In: Proceedings of the 13th International
Conference on Supercomputing, ICS 1999, pp. 228–237. ACM, New York (1999)

15. Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization
with affine partitions. Parallel Comput. 24(3–4), 445–475 (1998)

16. Lim, A.W., Liao, S.-W., Lam, M.S.: Blocking and array contraction across arbitrar-
ily nested loops using affine partitioning. In: Proceedings of the Eighth ACM SIG-
PLAN Symposium on Principles and Practices of Parallel Programming, PPoPP
2001, pp. 103–112. ACM, New York (2001)

17. Maleki, S., et al.: An evaluation of vectorizing compilers. In: 2011 International
Conference on Parallel Architectures and Compilation Techniques, pp. 372–382,
October 2011

18. Padua, D.A., Kuck, D.J., Lawrie, D.H.: High-speed multiprocessors and compila-
tion techniques. IEEE Trans. Comput. C-29(9), 763–776 (1980)

19. Padua, D.A., Wolfe, M.: Advanced compiler optimizations for supercomputers.
Commun. ACM 29(12), 1184–1201 (1986)

20. Polly: LLVM Framework for High-Level Loop and Data-Locality Optimizations.
http://polly.llvm.org

21. PolyBench/C 4.1. http://web.cse.ohio-state.edu/∼pouchet/software/polybench/
22. Stock, K., Pouchet, L.-N., Sadayappan, P.: Using machine learning to improve

automatic vectorization. ACM Trans. Arch. Code Optim. (TACO) 8(4), 50 (2012)
23. Tournavitis, G., et al.: Towards a holistic approach to auto-parallelization: integrat-

ing profile-driven parallelism detection and machine-learning based mapping. In:
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, pp. 177–187. ACM, New York (2009)

24. Wang, Z., O’Boyle, M.F.: Mapping parallelism to multi-cores: a machine learning
based approach. In: Proceedings of the 14th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP 2009, pp. 75–84. ACM, New
York (2009)

25. Watkinson, N., et al.: Using hardware counters to predict vectorization. In: Lan-
guages and Compilers for Parallel Computing, LCPC 2017. Springer, in Press

26. Wolfe, M.J.: High Performance Compilers for Parallel Computing. Addison-Wesley
Longman Publishing Co. Inc., Boston (1995)

https://doi.org/10.1007/3-540-57502-2_60
https://doi.org/10.1007/3-540-57502-2_60
http://polly.llvm.org
http://web.cse.ohio-state.edu/~pouchet/software/polybench/

Extending Index-Array Properties
for Data Dependence Analysis

Mahdi Soltan Mohammadi1(B), Kazem Cheshmi2, Maryam Mehri Dehnavi2,
Anand Venkat3, Tomofumi Yuki4, and Michelle Mills Strout1

1 University of Arizona, Tucson, USA
{kingmahdi,mstrout}@cs.arizona.edu

2 University of Toronto, Toronto, Canada
{kazem,mmehride}@cs.toronto.edu
3 Intel, Santa Clara, United States

anand.venkat@intel.com
4 Univ Rennes, Inria, Rennes, France

tomofumi.yuki@inria.fr

Abstract. Automatic parallelization is an approach where a compiler
analyzes serial code and identifies computations that can be rewritten
to leverage parallelism. Many data dependence analysis techniques have
been developed to determine which loops in a code can be parallelized.
With code that includes indirect array accesses through what are com-
monly called index arrays, such data dependence analysis is restricted in
the conclusions that can be drawn at compile time. Various approaches
that use index array properties such as monotonicity have been shown
to more effectively find parallel loops. In this paper, we extend the kinds
of properties about index arrays that can be expressed, show how to
convert loop-carried data dependence relations and relevant index-array
properties to constraints that can be provided to the Z3 SMT solver, and
evaluate the impact of using such index-array properties on identifying
parallel loops in a set of numerical benchmarks.

Keywords: Data dependence analysis · Sparse matrices · Automatic
parallelization · SMT solvers

1 Introduction

Many numerical computations involve sparse tensors, which are vectors, matri-
ces, and their higher-dimensional analogs, that have so few non-zeros that
compressed storage of some kind is used. These compressed formats result in
indirect array accesses such as x[col[i]] and non-affine loop bounds such as
rowptr[i+1]. The arrays used to index other arrays are referred to as index
arrays as well as subscripted subscripts in the compiler literature [12]. The index
arrays cause difficulties for compile-time data dependence analyses used to find
parallelizable loops. However, there is an opportunity to use properties about

c© Springer Nature Switzerland AG 2019
M. Hall and H. Sundar (Eds.): LCPC 2018, LNCS 11882, pp. 78–93, 2019.
https://doi.org/10.1007/978-3-030-34627-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34627-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-34627-0_7

Extending Index-Array Properties for Data Dependence Analysis 79

1 for (i=0; i<nnz_y; i++) {

2 x[idx[i]] = x[idx[i]] + y[i];

3 }

Fig. 1. Addition of a sparse vector with a dense vector.

the values in such arrays such as monotonicity to determine at compile time that
some of these loops are parallelizable.

As an example, Fig. 1 contains code that performs a vector add of a dense
vector x and a sparse vector y. Since y has been compressed, it only stores non-
zero values while the idx index array stores what dense index is associated with
each value. The values stored in the idx index array are all unique since they
should indicate dense locations of unique non-zeroes in y array. In other words,
the idx index array has the injectivity property.

To determine whether the i-loop in Fig. 1 is fully parallelizable, one must
show there are no loop-carried dependences on the loop. Since the idx index
array is injective, this implies that no two values in the idx array are the same
and therefore each iteration reads and writes to and from different locations of
the x array with the x[idx[i]] access. And, since there is no overlap between
the writes and reads to x[idx[i]] in different iterations of the loop, there is
no loop carried dependence. If the injectivity property is not known, then the
compiler has to assume that any two values in idx[] might be the same and
therefore conservatively assume a loop-carried dependence.

In the past, other research has used index-array properties for finding loop
parallelism. McKinley [12] first pointed out index array properties can be used
to facilitate data dependence analysis, but automating the approach was left
as future work. She detailed how injectivity and monotonicity of index arrays
can show lack of flow, anti, and output dependences for some common access
patterns. Wonnacott and Pugh [16] represented index arrays as uninterpreted
function symbols in their constraint based dependence analysis. That resulted in
them inherently utilizing functional consistency property about index arrays. Lin
and Padua [11] formulated five index array properties including monotonicity,
and four properties about values and bounds of index array being closed-formed
under loop iterators. Fuzzy data dependence analysis [5] uses the range of index
arrays to conservatively approximate dependences. The Hybrid Analysis research
formulated the monotonicity and injectivity properties and used them to find
full parallelism in the PERFECT CLUB and SPEC benchmarks [13,15,18,19].

We can express all of the previously studied index-array properties as univer-
sally quantified affine constraints on index array values, similar to approaches
used in program verification community to formulate properties about general
arrays [6,9,10]. We use constraint-based data dependence analysis to determine
lack of loop-carried data dependences for finding fully parallel loops in number of
popular sparse computations that are building blocks of bigger numerical appli-
cations. Just like [16], we represent index arrays as uninterpreted functions. For
example, the injectivity property for an index array like idx[] in Fig. 1 can be
specified by indicating that for all indices x1 and x2 into the index array where

80 M. S. Mohammadi et al.

x1 is not equal to x2, the values in the index array are also not equal:

(∀x1, x2)(x1 �= x2 =⇒ index(x1) �= index(x2).

In this paper, we experiment with more index-array properties that can
be expressed with such universally quantified constraints including informa-
tion about sparse matrix formats, matrix triangularity information, and peri-
odic monotonicity and injectivity. Oancea and Rauchwerger [14] observed that
periodic monotonicity could help prove loop parallelism, but did not provide a
mechanism for applying the property automatically.

This paper makes the following contributions:

– Specification of more index-array properties, namely triangularity, and peri-
odic monotonicity.

– A constraint-based data dependence analysis that uses an SMT solver to
apply the index array properties for finding fully parallel loops.

– Experimental results showing that the index array properties introduced in
this paper lead to more loops being parallelized and that those loops when
parallelized exhibit improved performance.

– An in-depth comparison of related work based on what index array properties
used and what impact on automatic parallelization such work reported.

2 Background: Data-Dependence Analysis

This section reviews how loop carried array dependence analysis can be specified
as a constraint problem, and how index arrays found in sparse codes can be
represented in these constraints as uninterpreted functions [17].

2.1 Loop-Carried Dependence Constraints for Sparse Codes

A fully parallel loop will not have any loop-carried dependences. A data depen-
dence occurs between two iterations of a loop when both of the iterations access
the same memory location and at least one of the accesses is a write. Such data
dependence constraints can be expressed in the following generic form:

{I I ′|
lexicographical Ordering

︷ ︸︸ ︷

I ≺ I′ ∧ F (I) = G(I′)
︸ ︷︷ ︸

Array Access Equality

∧
Loop Bounds and Conditional Constraints (if,...)

︷ ︸︸ ︷

Constraints(I) ∧ Constraints(I′)}

where I and I′ are iteration vector instances from the same loop nest, I ≺ I′

denotes that iteration I happens lexicographically before iteration I ′, F and G
are macro functions that define array index expressions to the same array with
at least one of the accesses being a write, Constraints is the macro function that
defines conditional expressions, and the loop bounds for the I iteration vectors.

Extending Index-Array Properties for Data Dependence Analysis 81

1 for (int j = 0 ; j < n ; j++){

2 x[j] /= Lx[colPtr[j]] ;

3 for(int p = colPtr[j]+1 ; p < colPtr[j+1] ; p++){

4 x[row[p]] -= Lx[p] * x[j];

5 }}

Fig. 2. Forward Solve computation assuming matrices are stored in CSC sparse matrix
format, code from Cheshmi et al. [7]

In this paper, the term dependence relation is used interchangeably with
dependence constraints by viewing them as a relation between I and I′. If the
constraints in the data dependence relation are shown to be satisfiable, then a
loop-carried dependence exists and the loop is not fully parallelizable. Therefore,
our goal is to find as many UNsatisfiable data dependence relations as possible.

2.2 Data Dependence Analysis Example

As an example, Fig. 2 shows a forward solve computation implemented for any
lower triangular sparse matrix stored in compressed sparse column (CSC) for-
mat. In this code the outer loop j traverses over compressed column indices in
colPtr index array, and the p loop goes over nonzeros. Also, the row index array
stores the row indices, while Lx and x store the values of nonzeros. Consider a
read x[j], and a write x[row[p]] to array x, both in line 4 of Figure 2. The
read after write dependence for the j-loop has the following constraints:

{[j] [j′] : ∃p, p′ :

lexicographical Ordering
︷ ︸︸ ︷

j < j′ ∧
Array Access Equality

︷ ︸︸ ︷

row(p) = j′∧
0 ≤ j, j′ < n ∧ colP tr(j) < p < colP tr(j + 1) ∧ colP tr(j′) < p′ < colP tr(j′ + 1)
︸ ︷︷ ︸

Loop Bounds

}

Also note that, if we define the flow dependence based on the same accesses
for the loop carried dependence of inner loop p it would be as follows:

{[j, p] [j′, p′] :

lexicographical Ordering
︷ ︸︸ ︷

j = j′ ∧ p < p′ ∧
Array Access Equality

︷ ︸︸ ︷

row(p) = j′∧
0 ≤ j, j′ < n ∧ colP tr(j) < p < colP tr(j + 1) ∧ colP tr(j′) < p′ < colP tr(j′ + 1)
︸ ︷︷ ︸

Loop Bounds

}

The difference between two dependences is in the lexicographical ordering.

3 Disproving Dependences with Index-Array Properties

With no information about uninterpreted functions, it is important to assume
they can take on any value. Nonetheless, the index arrays that uninterpreted

82 M. S. Mohammadi et al.

1 for(i = 0; i < n; i++) {

2 val[colPtr[i]] = sqrt(val[colPtr[i]]);

3

4 for(m=colPtr[i]+1; m<colPtr[i+1]; m++){

5 val[m] = val[m] / val[colPtr[i]];

6 }

7 for(m=colPtr[i]+1; m<colPtr[i+1]; m++){

8 for(k = colPtr[row[m]];

9 k < colPtr[row[m]+1]; k++){

10 for(l = m; l < colPtr[i+1]; l++){

11 if(row[l] == row[k]

12 && row[l+1] <= row[k]){

13 val[k] -= val[m]* val[l];

14 }}}}}

{[i,m] → [i′,m′] : ∃k, l, k′, l′ :

i = i′ ∧ m < m′ ∧ k = m′

0 ≤ i, i′ < n ∧ row(l) = row(k)

colP tr(i) < m < colP tr(i+ 1)

colP tr(row(m)) ≤ k

k < colP tr(row(m) + 1)

colP tr(i′) < m′ < colP tr(i′ + 1)

colP tr(row(m′)) ≤ k′

k′ < colP tr(row(m′) + 1)

m ≤ l < colP tr(i+ 1)

m′ ≤ l′ < colP tr(i′ + 1)

row(l′) = row(k′)

row(l′ + 1) ≤ row(k′)}

Fig. 3. Incomplete Cholesky0 implementation from SparseLib++ library [2]

functions represent have various properties that can be used to add more con-
straints to data dependence relations and in some cases can enable showing more
dependences are unsatisfiable. In this section, we first give an example illustrat-
ing a case where a combination of two index array properties enables showing
a dependence is unsatisfiable, show how to implement this approach using an
SMT solver, and present the index array properties we have found useful.

3.1 Example Using New Index Array Properties

For the Incomplete Cholesky code shown in Fig. 3 on the left, the data depen-
dence relation due to the write val[k], and a read val[m] in Line 13 for m-loop
in line 7 is shown on the right side of the figure. Using only original constraints
above, it is not possible to prove this dependence unsatisfiable. Nonetheless,
using additional constraints instantiated from the triangularity and monotonicity
index array properties, explained in Sect. 3.3, can show us that the dependence
is unsatisfiable. Figure 4 depicts the partial ordering between key constraints
from the dependence in question, derivation of new constraints from index array
properties assertions, and the contradiction that proves unsatisfiability.

3.2 Leveraging SMT Solvers

We can leverage SMT solvers to use index array properties to determine the sat-
isfiability of data dependence relations. A common approach used in verification
community to obtain more precise results [6,9,10] is to express array properties
as universally quantified assertions, combine them with their originally extracted
constraints about a program, and ask a SMT solver whether the constraints are
satisfiable. We use the same approach by utilizing Z3 SMT solver [3]. The Z3
SMT solver uses the interface format SMTLIB2 [4]. Therefore, we specify all the

Extending Index-Array Properties for Data Dependence Analysis 83

Fig. 4. Proving a dependence of Incomplete Cholesky unsatisfiable.

constraints from the original dependence and all the user asserted index array
properties for Z3 SMT solver in SMTLIB format. For instance, the following
shows some of the constraints from original dependence used in the unsatisfia-
bility proof in Sect. 3.1 in SMTLIB format:

Original constraint Z3 specification
colP tr(i) = k′ (assert (= (colPtr i) k’))

colP tr(row(m′)) <= k′ (assert (<= (colPtr (row m’)) k’))

(∀x1, x2)(x1 < x2 ⇐⇒
colP tr(x1) < colP tr(x2))

(assert (forall ((e1 Int) (e2 Int)) (=> (< e1 e2)

(< (colPtr e1) (colPtr e2)))))

(assert (forall ((e1 Int) (e2 Int)) (=> (<

(colPtr e1) (colPtr e2)) (< e1 e2))))

(∀x1, x2)(colP tr(x1) <
x2 =⇒ x1 < row(x2))

(assert (forall ((e1 Int) (e2 Int)) (=> (<

(colPtr e1) e2) (< e1 (row e2)))))

3.3 Index-Array Properties as Universally Quantified Assertions

In this section, we describe such index array properties that can be formulated
as universally quantified assertions.

– Functional Consistency: If two inputs to a function are equal then the
function will return equivalent results.

(∀x1, x2)(x1 = x2 ⇒ f(x1) = f(x2))

– Domain and range of index arrays: We assume the input domain and
output range of the index arrays are known and can be expressed as follows:

(∀x)(p ≤ x ≤ q ⇒ LBrange ≤ f(x) <= UBrange).

84 M. S. Mohammadi et al.

– Monotonic index arrays: In several different sparse matrix formats, it is
common to see index arrays that are monotonic. There are four variations of
the monotonicity property:

Increasing: (∀x1, x2)(x1 ≤ x2 ⇒ f(x1) ≤ f(x2)).
Strictly Increasing: (∀x1, x2)(x1 < x2 ⇐⇒ f(x1) < f(x2)).
Decreasing: (∀x1, x2)(x1 ≥ x2 ⇒ f(x1) ≥ f(x2)).
Strictly Decreasing: (∀x1, x2)(x1 > x2 ⇐⇒ f(x1) > f(x2)).

For instance the colPtr in Fig. 3 is monotonically strictly increasing since it
stores the starting point of nonzero row indices in row and values in val, and
computation always operates on matrices that have nonzeros in main diago-
nal, therefore we have (∀x1, x2)(x1 < x2 ⇐⇒ colP tr(x1) < colP tr(x2)).

– Injective index arrays: An index array is injective if none of its values are
the same. Index arrays that have strict monotonicity, also have injectivity
property. Strict monotonicity is a more informative property. Consequently,
in our experimental evaluations, we only utilize strict monotonicity for index
arrays that poses them. Note, in the kernels that we have looked for paral-
lelism, we have not come across any index array that only poses injectivity,
that is why injectivity property does not show up in our results.

Injectivity: (∀x1, x2)(x1 �= x2 ⇒ f(x1) �= f(x2)).

– Periodic injective/monotonic index arrays: Some index arrays are
monotonic or injective in intervals.

Periodic Property: (∀x1, x2, x3)(x2 �� x3 ∧ g(x1) ≤ x2 < g(x1 + 1)
∧ g(x1) < x3 < g(x1 + 1) ⇒ f(x1) �� f(x2)).

Where �� can be �=, ≤, <, ≥, and >, for injectivity and different forms of
monotonicity. For instance the row in Fig. 3 is periodically monotonically
strictly increasing and it is indexed using colPtr. This is because row stores
row index values of nonzeros which are unique for nonzeros in a column.
Therefore, we have:

(∀x1, x2, x3)(x2 < x3 ∧ colP tr(x1) < x2 < colP tr(x1) ∧
colP tr(x1) < x3 < colP tr(x1) ⇐⇒ row(x1) < row(x2)).

– Triangular Matrix (Triangularity): Some numerical computations only
operate on lower or upper triangular parts of matrices. We express this prop-
erty for CSC, Compressed Sparse Row (CSR), and Block CSR (BCSR) for-
mats as following assertions, assuming f is the compressed index array of the
format and g is the non-compressed one:

CSC Lower Triangularity: (∀x1, x2)(f(x1) < x2 ⇐⇒ x1 < g(x2)).
CSC Upper Triangularity: (∀x1, x2)(f(x1) > x2 ⇐⇒ x1 > g(x2)).
(B)CSR Lower Triangularity: (∀x1, x2)(x1 < f(x2) ⇐⇒ f(x1) < x2).
(B)CSR Upper Triangularity: (∀x1, x2)(x1 > f(x2) ⇐⇒ f(x1) > x2).

Extending Index-Array Properties for Data Dependence Analysis 85

For instance the Incomplete Cholesky computation in Fig. 3 operates on lower
triangular matrices. Considering the colPtr compresses the column index
arrays in CSC format, and row stores row indices explicitly, we have:

(∀x1, x2)(colP tr(x1) < x2 =⇒ x1 < row(x2))

This indicates that the integer value of row indices of nonzeros in columns
after column x1 are greater than the integer value of (column index) x1.

4 Impact on Finding Full Parallelism

In this section, we study the effect of utilizing index array properties for find-
ing fully parallel loops in number of popular numerical sparse computations.
Section 4.1 presents the suite of numerical kernels that we compiled to evalu-
ate our approach, and discusses the automatic driver that utilizes index array
properties for finding full parallelism. Section 4.2 presents results for finding
fully parallel loops in each benchmark, we also indicate what kind of index array
properties were needed to prove that a loop is parallel. We also parallelized the
parallel loops found in two of the kernels by hand using simple OpenMP parallel
loop pragma. Section 4.3 reports the performance results for hand parallelized
kernels while comparing performance to serial versions’ performance, and dis-
cusses the implications of this results. Following public git repository hosts this
paper’s artifact, and includes instructions on how to reproduce the evaluation
results: https://github.com/CompOpt4Apps/Artifact-SparseLoopParallelism

The driver depends on CHILL compiler [1], IEGenLib library [22], and Z3
SMT solver. CHiLL is a source-to-source compiler framework for composing and
applying high level loop transformations. IEGenLib is a library for manipulating
integer sets/relations that contain uninterpreted function symbols.

4.1 Sparse Computation Benchmark Suite and Methodology

Table 1 lists the numerical sparse codes that we have used to evaluate usefulness
of utilizing index array properties. The benchmark suite includes the fundamen-
tal blocks in several applications: (1) The Cholesky factorization, Incomplete
Cholesky0, and sparse triangular solver, which are commonly used in direct
solvers and as preconditioners in iterative solvers; (2) sparse matrix vector mul-
tiplication and Gauss-Seidel methods, often used in iterative solvers.

We specify user-defined properties about index arrays in JSON files for each
code. The driver for finding parallel loops uses CHILL to extract the depen-
dences for different loops in a code that would include loops in different levels
and locations of an (im)perfectly nested loop. Then, it converts extracted depen-
dences one at a time alongside related user defined assertions to an input file for
Z3, and queries Z3 whether the constraints are satisfiable. If all the dependences
of a loop are unsatisfiable we say that loop is parallel.

SMT solvers like Z3 use numerous heuristics to detect unsatisfiable set of
constraints quickly. In our experience, Z3 can return with answer for any of

https://github.com/CompOpt4Apps/Artifact-SparseLoopParallelism

86 M. S. Mohammadi et al.

Table 1. The code benchmarks that
we apply our data dependence analysis
on, with formatting and source.

Algorithm name Format Source

Forward solve CSC [7]

Forward solve CSR [25]

Gauss-Seidel solver CSR MKL [26]

Gauss-Seidel solver BCSR MKL [26]

Sparse MV Multiply CSR Common

Incomplete Cholesky CSC(R) [2]

Static Left Cholesky CSC [7]

Table 2. Input Matrices for paral-
lelized codes from [8]. Sorted in order
of Number of Nonzeros per Column

Matrix Columns Nonzeros NNZ
COL

G3 circuit 1,585,478 7,660,826 5

af shell3 504,855 17,562,051 35

bmwcra 1 148,770 10,641,602 72

crankseg 2 63,838 14,148,858 222

nd24k 72,000 28,715,634 399

unsatisfiable (unsat) dependencies in our benchmark suite in less than 1 s. It also
quickly comes back with the answer satisfiable (sat) for some of the dependences.
However, for dependences that there is not enough constraints to determine them
either as sat or unsat, it could run for a long time while deriving new (not helpful)
constraints from universally quantified assertions. Therefore, we use a 2 s timeout
so if Z3 could not detect a single dependence as sat or unsat, it would return
unknown after timeout. In such case, we conservatively consider the dependence
satisfiable.

It takes about 34, 18, and 18 s respectively to determine outer most loops of
Incomplete Cholesky, Static Cholesky, and Gauss-Seidel BCSR, are not parallel.
The dependence analysis of all other loops in all benchmarks takes less than 2.5 s.
The reason why it takes more for those mentioned three loops is that there are
lots of dependences to check for them, some of which exhausts the 2-s timeout
we specified for Z3.

We hand parallelized some of the parallel loops that we found in our bench-
marks to study the pragmatic impact of our methods, the results are presented
in Sect. 4.3. We ran our experiment on a machine with an Intel(R) Core(TM)
i7-6900K CPU, 32 GB of 3000 MHz DDR4 memory, and Ubuntu 16.04 OS. The
CPU has 8 cores, therefore we record performance for 2, 4, and 8 OpenMP
threads while the hyper-threading is disabled. We report mean value of 5 runs,
though there were no significant variation between runs. All codes are compiled
with GCC 5.4.0 with -O3 flag enabled.

Table 2 lists set of five matrices from the University of Florida sparse matrix
collection [8] that we used as input to our experiments. The matrices are listed
in increasing ordered of average nonzeros per column. Generally speaking, the
loops that we are parallelizing usually operate on different nonzeros in a column
(or row). Therefore, one can expect the parallelization result getting better for
matrices with more nonzero per columns (rows).

Extending Index-Array Properties for Data Dependence Analysis 87

4.2 Finding Loop Parallelism

Since we want to study effect of using different index array properties, as well as
using all available properties, we have look into what set of index array properties
can help us prove a loop to be parallel. We listed 6 properties in Sect. 3.3. Of
those properties, we do not need to specify functional consistency for a SMT
solver, since it considers it inherently for any uninterpreted function symbol.
We also just specify domain and range properties while considering effect of
any combination of properties. Additionally, all the injective index arrays in our
benchmarks also have monotonically strictly increasing property.

Table 3. Table lists loops found in our benchmarks, whether they are statically parallel,
and whether we needed index array properties to prove them parallel. The third column,
‘‘Static Par?’’, is indicating whether the loop can be considered statically parallel, if
the loop would require reduction for parallelization it is noted as Reduction. Although,
we are not doing dependence analysis for finding reduction operations at this time. The
fourth column indicates whether we have found the loop parallel. The fifth column lists
what index array property were necessary to detect the loop as parallel, while Linear

indicates that we did not need any, functional consistency would be used by Z3 for all
cases. The shortened names, Mono , PerMono , Tri stand for monotonicity, periodic
monotonicity, and triangularity properties respectively

Algorithm Loop Static Par? Detected? Helps to prove parallel

Forward Solve CSC j No – –

p Yes Yes Tri + PerMono

Forward Solve CSR i No – –

j Reduction – –

Gauss-Seidel CSR i No – –

j Reduction – –

Gauss-Seidel BCSR i No – –

ii1 Yes Yes Linear

j Reduction – –

jj1 Reduction – –

ii2 Yes Yes Linear

ii3 Yes Yes Linear

jj2 Reduction – –

ii4 Yes Yes Linear

Sparse MV Multiply i Yes Yes Linear

j Reduction – –

Incomplete Cholesky i No – –

m − 4 (line 4) Yes Yes Linear

m − 7 (line 7) Yes Yes Tri + Mono + PerMono

k Yes Yes Tri + Mono

l Yes Yes PerMono

Static Left Cholesky colNo No – –

nzNo Yes Yes PerMono

i No – –

l Yes Yes PerMono

j Yes Yes PerMono

88 M. S. Mohammadi et al.

Table 3 presents the result of finding parallel loops while utilizing index array
properties in our benchmark suite. The second column in the table lists all the
unique loops in each kernel by loop’s iterator name. The third column indicates
whether considering the algorithmic property of the computation the loop can be
statically considered parallel. And, the last column indicates what information
has helped us prove the loop as parallel. The Linear keyword indicates that all
the dependences of the loop can be proved unsatisfiable just by looking at their
linear constraints and we would not need using index array property.

The main observation from analyzing Table 3 are: (1) The index array prop-
erties are very helpful for finding parallel loops in three codes, namely Forward
Solve CSC, Incomplete Cholesky, and Static Left Cholesky; (2) We find all the
loops that are parallel considering whether nature of an algorithm allows a loop
to be parallel, except for loops that require parallelization with reduction, which
was explained earlier; (3) All the three none-trivial index array properties that we
have formulated, including Periodic Monotonicity and Triangularity that were
not look at in previous works, are being helpful.

4.3 Performance Impact

Results presented in this section will indicate our dependence analysis can indeed
improve performance of serial implementations of some of the sparse kernels in
our benchmarks. This could be useful in practice, since to the best of our knowl-
edge, library implementations of parallel sparse computations are not common,
and we could not find any open source, parallel libraries for our benchmark
computation. At this time, there is no generic code generator that can generate
transformed code for our sparse benchmarks. Consequently, we only hand par-
allelized the parallel loops that our analysis founds in Forward Solve CSC and
Incomplete Cholesky, simply by using OpenMP parallel pragma’s without any
further optimization. The parallel loop in Forward Solve computation only has
one subtraction and one multiplication operations, hence it is memory-bound. As
could be expected, our experiment results showed that parallelization overhead
only slow downs the Forward Solve CSC compared to serial version. Nonetheless,
we get considerable performance gain by parallelizing Incomplete Cholesky even
without any enabling transformation like tiling.

Table 3 shows that our analysis detects 4 loops as fully parallel in Incomplete
Cholesky. Nonetheless, we have experimented with parallelizing two of those
loops, namely m-7 (line 7 in Fig. 3) and k. Fig. 5 presents relative performance
of parallelizing m-7 and k. The result show steady increase in performance gain
for parallel version over serial as we increase the number of threads compared.
Parallelizing loop m-7 gives us performance gain of 1.3–3.5× in 4 out of 5 while
utilizing 8 threads, For G3 circuit matrix parallelization overhead makes parallel
version slower than sequential version since it has very few nonzeros per columns.
Parallelizing the k loop has worse results compared to m-7 loop for three of the
matrices, but has better results for two of the matrices. This could be attributed
to sparsity structure of matrices that can effect parallel load balancing.

Extending Index-Array Properties for Data Dependence Analysis 89

Fig. 5. Incomplete Cholesky loop parallelization performance. The serial absolute exe-
cution time in order from top are: 1.9, 11.1, 18.1, 202.6, and 725.4 s.

5 Related Work

Several previous works have looked into usefulness of index array properties
for improving data dependence analysis. Nonetheless, it seem that index array
properties have not been taken advantage of in production compilers. In this
section, we describe what properties each previous work has look into, how they
have derived them, and what impact index array properties had on their results.

5.1 Initial Observation of Index Array Property Utility

McKinley [12] studied how using assertions about index arrays can improve depen-
dence testing precision at compile-time. She observed and discussed 5 common
assertions about index arrays that included, injectivity (index(I) �= index(J), I �=
J), monotonically non-decreasing (index(I) ≤ index(I + 1)), monotonically
increasing (index(I) < index(I +1)), monotonically non-increasing (index(I) ≥
index(I +1)), and monotonically decreasing (index(I) > index(I +1)). We usu-
ally refer to later four properties simply as monotonicity. Author then discussed
how these properties can effect founding flow, anti, or output independence in
some common memory access patterns. The report discussed two loops in MDG
from PERFECT club where using monotonicity is necessary to detected the loop
as parallel in compile-time. Automating the approach of utilizing index arrays
was left as future work.

5.2 Exact Data Dependence Analysis

Pugh and Wonnacott [16] presented a constraint based data dependence analysis
that was able to handle nonlinear data access including index arrays. They rep-
resented affine parts of the dependences with Presburger Formulas while repre-
senting index arrays as uninterpreted function symbols. Authors used Ackerman
Reduction procedure that can be applied to Presburger formulas with uninter-
preted function calls [20]. By using that procedure they inherently utilized func-
tional consistency for index arrays. Their framework could also come up with

90 M. S. Mohammadi et al.

sufficient constraints to prove the dependences unsatisfiable for some of codes
that earlier methods could not. Although, solving those constraints required
methods that were not discussed or implemented for that work. Authors used
their methods to do dependence analysis for PERFECT CLUB benchmarks.
They were able to directly find parallel loops in MDG and ARC2D, one in each,
and were able to find sufficient conditions for showing one parallel loops in each
of TRFD, and ARC2D benchmarks.

5.3 Automating the detection of properties

Lin and Padua [11] looked into two types of irregular array accesses, single-index,
and indirect (index array) accesses. The single-index was defined for array index
expressions, and included: Consecutively written accesses, and stack accesses.
They also formulated tests for detecting 5 index array properties: monotonic-
ity, injectiveness, closed-form distance (CFD), closed-form value (CFV), and
closed-form bound (CFB). The closed-formed properties are defined when either
difference of two consecutive values (CFD), or all values (CFV), or upper or
lower bound (CFB), of an index array can be defined with a closed-form expres-
sion over loop iterators. Analyzing benchmarks from PERFECT club, this work
showed following usefulness for those properties: CFV and CFD each separately
helped to find one parallel in TRFD and DYFESM benchmarks respectively,
and CFB helped privatization analysis in two loops inside BDNA and P3M.

5.4 Combining with More General Dependence Analysis

Hybrid analysis (HA) presented over several works is an approach to do gen-
eral data dependence analysis of generic array accesses for optimization pur-
poses [13,15,18,19]. It gathers dependence constraints with inter-procedural
analysis, and represents the gathered summary sets with an intermediate repre-
sentation called Unified Set Representation (USR). The USRs can include unin-
terpreted function calls to represent index arrays. HA formulates flow, anti, and
output independence with USRs, and uses them for for finding full parallelism,
private arrays, and reduction operations. HA also formulates the monotonic-
ity and injectivity properties directly for array access expressions, which could
have index arrays, and uses them in facilitation of different dependence analy-
sis. Hybrid analysis works successfully find many parallel loops in PERFECT
CLUB and SPEC benchmarks, however, the usefulness of index array properties
is not exactly clear in their results, partially because they define the properties
for array indexing expression and not index array, and partially because they
usually just differentiate between finding a loop parallel either in compile-time
or runtime. Nonetheless, their results implies that they do get similar results,
for finding parallel loops and analyzing privatization in MDG, BDNA, TRFD,
and DYFESM, as McKinley [12], and Lin and Padua [11].

Extending Index-Array Properties for Data Dependence Analysis 91

5.5 Other Uses for Index Array Properties

Unlike other works that were either doing general dependence analysis or find-
ing full parallelism, Venkat et al. [23] used index array properties in wavefront
parallelization. They were trying to partially parallelize outer most loops in two
numerical sparse computation, namely Gauss-Seidel, and Incomplete LU0. And,
since the index array values would not be available until runtime, they were using
runtime inspectors to generate dependence graph of loop iterations, which could
be used to generate wavefronts of iterations, which can be run in parallel. One
problem that they addressed was that if one naively generates runtime inspectors
for all the compile-time extracted dependence, the overhead of runtime inspec-
tion would make parallelization useless. Instead, they used index array properties
for two purposes, for one they used them to prove as many dependence as unsat-
isfiable at compile-time, then they also used index array properties to derive new
equality constraints in remaining dependences that made their runtime inspec-
tors faster. They formulated and used two index arrays properties for Incomplete
LU0 namely monotonicity, and correlated monotonicity (a relation between two
related index arrays in this code). They also formulated and used monotonic-
ity property for index arrays in Gauss-Seidel computation. In follow-on work,
Mohammadi et al. [21] formulated these constraints with universally quantified
constraints and instantiated them to ISL [24].

6 Conclusion

In this paper, we showed how properties about index arrays in sparse matrix com-
putation can be formulated with universally quantified assertions and automat-
ically utilized in compile-time dependence analysis. Although, previous works
have looked into usefulness of index array properties, to our knowledge, none of
them has formulated or utilized all the properties formulated in this paper for
dependence analysis. Particularly, we are not aware of any previous work that
would describe triangularity and periodic monotonicity properties. Our results
showed index array properties can help us find several parallel loops in our
benchmarks that would have not been possible without them, at least not with-
out runtime analysis. We also discussed results of parallelization for two of the
codes in our benchmark where detected parallel loops by our framework had been
hand-parallelized. The results showed 1.3–3.5× performance gain for parallelized
Incomplete Cholesky over its sequential version.

References

1. Ctop research group webpage at utah (2018). http://ctop.cs.utah.edu/ctop/
2. Sparselib++ homepage (2018). https://math.nist.gov/sparselib++/
3. Z3 git homepage (2018). https://github.com/Z3Prover/z3/wiki
4. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library

(SMT-LIB) (2016). www.SMT-LIB.org

http://ctop.cs.utah.edu/ctop/
https://math.nist.gov/sparselib++/
https://github.com/Z3Prover/z3/wiki
www.SMT-LIB.org

92 M. S. Mohammadi et al.

5. Barthou, D., Collard, J.F., Feautrier, P.: Fuzzy array dataflow analysis. J. Parallel
Distrib. Comput. 40(2), 210–226 (1997)

6. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005). https://doi.org/10.1007/11609773 28

7. Cheshmi, K., Kamil, S., Strout, M.M., Dehnavi, M.M.: Sympiler: transforming
sparse matrix codes by decoupling symbolic analysis. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2017, pp. 13:1–13:13. ACM, New York (2017). https://doi.org/10.
1145/3126908.3126936

8. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans.
Math. Softw. (TOMS) 38(1), 1:1–1:25 (2011). https://doi.org/10.1145/2049662.
2049663. Article no. 1. http://doi.acm.org/10.1145/2049662.2049663

9. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 25

10. Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about integer arrays?
In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 474–489. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78499-9 33

11. Lin, Y., Padua, D.: Compiler analysis of irregular memory accesses. In: Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, vol. 35, pp. 157–168. ACM, New York, May 2000

12. McKinley, K.: Dependence analysis of arrays subscriptecl by index arrays. Techni-
cal report. TR91187, Rice University (1991)

13. Oancea, C.E., Rauchwerger, L.: Logical inference techniques for loop paralleliza-
tion. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2012. ACM, New York (2012)

14. Oancea, C.E., Rauchwerger, L.: A hybrid approach to proving memory reference
monotonicity. In: Rajopadhye, S., Mills Strout, M. (eds.) LCPC 2011. LNCS, vol.
7146, pp. 61–75. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36036-7 5

15. Paek, Y., Hoeflinger, J., Padua, D.: Simplification of array access patterns for
compiler optimizations. In: Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and Implementation, PLDI 1998, pp. 60–71.
ACM, New York (1998)

16. Pugh, W., Wonnacott, D.: Nonlinear array dependence analysis. In: Third Work-
shop on Languages, Compilers, and Run-Time Systems for Scalable Computers,
Troy, New York, May 1995

17. Pugh, W., Wonnacott, D.: Constraint-based array dependence analysis. ACM
Trans. Program. Lang. Syst. 20(3), 635–678 (1998)

18. Rus, S.: Hybrid analysis of memory references and its application to automatic
parallelization. Ph.D. thesis, Texas A&M (2006)

19. Rus, S., Hoeflinger, J., Rauchwerger, L.: Hybrid analysis: static & dynamic memory
reference analysis. Int. J. Parallel Program. 31(4), 251–283 (2003)

20. Shostak, R.E.: A practical decision procedure for arithmetic with function symbols.
J. ACM 26(2), 351–360 (1979). https://doi.org/10.1145/322123.322137

21. Soltan Mohammadi, M., et al.: Sparse matrix code dependence analysis simplifi-
cation at compile time. ArXiv e-prints, July 2018

https://doi.org/10.1007/11609773_28
https://doi.org/10.1145/3126908.3126936
https://doi.org/10.1145/3126908.3126936
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-540-78499-9_33
https://doi.org/10.1007/978-3-642-36036-7_5
https://doi.org/10.1007/978-3-642-36036-7_5
https://doi.org/10.1145/322123.322137

Extending Index-Array Properties for Data Dependence Analysis 93

22. Strout, M.M., LaMielle, A., Carter, L., Ferrante, J., Kreaseck, B., Olschanowsky,
C.: An approach for code generation in the sparse polyhedral framework. Parallel
Comput. 53(C), 32–57 (2016)

23. Venkat, A., et al.: Automating wavefront parallelization for sparse matrix com-
putations. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2016, pp. 41:1–41:12 (2016)

24. Verdoolaege, S.: Integer Set Library: Manual (2018). http://isl.gforge.inria.fr
25. Vuduc, R., Kamil, S., Hsu, J., Nishtala, R., Demmel, J.W., Yelick, K.A.: Automatic

performance tuning and analysis of sparse triangular solve. ICS (2002)
26. Wang, E., et al.: Intel math kernel library. High-Performance Computing on the

Intel R© Xeon PhiTM, pp. 167–188. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-06486-4 7

http://isl.gforge.inria.fr
https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1007/978-3-319-06486-4_7

Optimized Sound and Complete
Data Race Detection in Structured

Parallel Programs

Kyle Storey, Jacob Powell, Ben Ogles, Joshua Hooker, Peter Aldous ,
and Eric Mercer(B)

Brigham Young University, Provo, UT 84601, USA
kyle.r.storey@gmail.com, s.jacob.powell@gmail.com,

benjaminogles@gmail.com, joshua.d.hooker@gmail.com,

{aldous,egm}@cs.byu.edu

Abstract. Task parallel programs that are free of data race are guaran-
teed to be deterministic, serializable, and free of deadlock. Techniques for
verification of data race freedom vary in both accuracy and asymptotic
complexity. One work is particularly well suited to task parallel programs
with isolation and lightweight threads. It uses the Java Pathfinder model
checker to reason about different schedules and proves the presence or
absence of data race in a program on a fixed input. However, it uses a
direct and inefficient transitive closure on the happens-before relation
to reason about data race. This paper presents Zipper, an alternative
to this näıve algorithm, which identifies the presence or absence of data
race in asymptotically superior time. Zipper is optimized for lightweight
threads and, in the presence of many threads, has superior time complex-
ity to leading vector clock algorithms. This paper includes an empirical
study of Zipper and a comparison against the näıve computation graph
algorithm, demonstrating the superior performance it achieves.

1 Introduction

Correctness in task parallel programs is only guaranteed if the programs are free
of data race. A data race is a pair of concurrent uses of a shared memory location
when at least one use writes to the location. The order in which these uses occur
can change the outcome of the program, creating nondeterminism.

Structured parallelism sometimes takes the form of lightweight tasks. Lan-
guages such as Habanero Java, OpenMP, and Erlang encourage the use of new
tasks for operations that can be done independently of other tasks. As a result,
many programs written in this family of languages use large numbers of threads.
In some cases, the number of threads cannot be statically bounded.

Data race is usually undesirable and there is much work to automatically and
efficiently detect data race statically. However, static techniques often report too
many false positives to be effective tools in practice. Precise data race detection

The research presented here is supported in part by the NSF under grant 1302524.

c© Springer Nature Switzerland AG 2019
M. Hall and H. Sundar (Eds.): LCPC 2018, LNCS 11882, pp. 94–111, 2019.
https://doi.org/10.1007/978-3-030-34627-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34627-0_8&domain=pdf
http://orcid.org/0000-0003-0602-2000
http://orcid.org/0000-0002-2264-2958
https://doi.org/10.1007/978-3-030-34627-0_8

Optimized Sound and Complete 95

for a single input can be achieved dynamically. Many dynamic techniques use
access histories (shadow memory) to track accesses to shared memory locations.

Vector clocks [12,22] are an efficient implementation of shadow memory. One
analysis based on vector clocks is capable of reasoning about multiple schedules
from a single trace [17]. Its complexity is linear if the number of threads and
locks used is constant. Vector clocks have been extended to more efficient repre-
sentations for recursively parallel programs [1,6] that yield improved empirical
results. In all of these cases, the complexity of vector clock algorithms is sensitive
to the number of threads used.

When programs are restricted to structured parallelism, shadow memory can
reference a computation graph that encodes which events are concurrent. This
allows the size of shadow memory to be independent from the number of threads
in the program.

The SP-bags algorithm [11], which has been extended to task parallel lan-
guages with futures [26], detects data race by executing a program in a depth
first fashion and tracking concurrent tasks. Other extensions enable locks [5] and
mutual exclusion [25], but can produce false positives.

As an alternative to shadow memory, each task can maintain sets of shared
memory locations they have accessed. Lu et al. [20] created TARDIS, a tool
that detects data race in a computation graph by intersecting the access sets of
concurrent nodes. TARDIS is more efficient for programs with many sequential
events or where many accesses are made to the same shared memory location.
However, TARDIS does not reason about mutual exclusion.

The computation graph analysis by Nakade et al. [24] for recursively task
parallel programs can reason precisely about mutual exclusion [24]. By model
checking, it is capable of proving or disproving the presence of data race over
all possible schedules. Its algorithm for detecting data races in a single trace is
direct, albeit näıve; it computes the transitive closure of the computation graph.
This quadratic algorithm admits significant improvement.

This paper presents such an improvement in the form of Zipper, a new algo-
rithm for detecting data races on computation graphs. Zipper maintains preci-
sion while utilizing mutual exclusion to improve the efficiency of the computation
graph analysis. This algorithm is superior in asymptotic time complexity to that
of vector clock implementations when the number of threads is large. It also
presents an implementation of the algorithm and a comparison with the näıve
computation graph algorithm. The implementation is an addition to the code
base published by Nakade et al., which allows for a direct comparison of the two.

In summary, the contributions of this paper are:

– An algorithm for identifying data races in the framework of Nakade et al.,
– A discussion of the relative merits of vector clocks and this algorithm, and
– An empirical study of both the näıve computation graph algorithm and the

optimized Zipper algorithm.

The structure of this paper is as follows: Sect. 2 discusses computation graphs
and SP-bags. Section 3 presents the Zipper algorithm, and demonstrates the algo-
rithm on a small graph. Section 4 contains an empirical study that compares

96 K. Storey et al.

Zipper to the original computation graph algorithm. Section 5 details work
related to this paper. Section 6 concludes.

2 Background

2.1 Programming Model

The surface syntax for the task parallel language used in this paper is based on
the language used by Nakade et al. [24] and is given in Fig. 1. A program P is a
sequence of procedures, each of which takes a single parameter l of type L. The
body of a procedure is inductively defined by s. The expression language, e, is
elided.

P ::= (proc p (var l : L) s)∗
s ::= s; s | l := e | skip | [if e then s else s]

| [while e do s] | call l := p e | return e
| async p e | [finish s] | [isolated s]

Fig. 1. The surface syntax for task parallel programs.

The async, finish, and isolated have interprocedural effects that influence
the shape of the computation graph. The remaining statements have their usual
sequential meaning. The async-statement calls a procedure p asynchronously
with argument e. The finish statement waits until all tasks initiated within its
dynamic scope terminate.

This programming model disallows task passing and therefore does not cap-
ture some concurrent language constructs like futures. Futures can result in
non-strict computation graphs that Zipper is not currently able to analyze.
Related work for structured parallelism can reason about programming mod-
els that include futures [20,26] but cannot reason about isolation. ESP-bags can
reason about isolated regions, but only when they commute [25], as discussed in
Sect. 2.3.

Restrictions on task passing are not unique to this programming model. Task
parallel languages usually restrict task passing in some way in order to ensure
deadlock freedom. For example, Habanero Java [4] restricts futures to be declared
final. Deterministic Parallel Ruby [20] requires futures to be completely indepen-
dent and to deep copy their arguments. Extending Zipper to treat task passing
is the subject of further research. Despite this restriction, the collection of con-
current constructs treated in this paper is sufficient to simulate a wide range of
functionality common in modern task parallel languages.

Optimized Sound and Complete 97

2.2 Computation Graph

A Computation Graph for a task parallel program is a directed acyclic graph
representing the concurrent structure of one program execution [7]. The edges
in the graph encode the happens before relation [19] over the set of nodes:
≺⊂ N × N . There is a data race in the graph if and only if there are two nodes,
ni and nj , such that the nodes are concurrent, (ni ||≺ nj ≡ ni ⊀ nj ∧ nj ⊀ ni),
and the two nodes conflict:

conflict(ni, nj) =
ρ(ni) ∩ ω(nj) �= ∅ ∨
ρ(nj) ∩ ω(ni) �= ∅ ∨
ω(ni) ∩ ω(nj) �= ∅,

(1)

where ρ(n) and ω(n) are the sets of read and write accesses recorded in n.
In order to prove or disprove the presence of data race in a program that uses

mutual exclusion, a model checker must be used to enumerate all reorderings
of critical sections [24]. For each reordering, a different computation graph is
generated that must be checked for data race. The main contribution of this
paper is an algorithm that can efficiently check a computation graph for data
race without reporting false positives even in the presence of mutual exclusion.

2.3 The SP-Bags Algorithm

The SP-bags algorithm can check a computation graph for data race with a
single depth first traversal. ESP-bags [25] generalizes SP-bags to task parallel
models similar to the one in Fig. 1. However, it can report false positives when the
isolated regions in a program do not commute. To demonstrate this limitation,
an example is given where it reports a race when in fact there is none.

ESP-bags maintains shadow memory for each shared memory location. The
reader and writer shadow spaces record the last relevant task to read or write to
the location. Similar shadow spaces exist for isolated regions. To check an access
for data race, one must determine if the last task to access a location is executing
concurrently with the current task. Tasks that are executing concurrently with
the current task are stored in “P-bags”. Serialized tasks are stored in “S-bags”.
Therefore, checking an access for data race reduces to checking whether the last
task to access the location is in a P-bag.

When a task is created with async its S-bag is created containing itself. Its
P-bag is empty. When it completes and returns to its parent, its S-bag and P-bag
are emptied into its parent’s P-bag. When a finish block completes the contents
of its S-bag and P-bag are emptied into its parent’s S-bag.

2.4 Example

The program contained in Fig. 2 represents a program with critical sections that
do not commute and therefore cause ESP-bags and similar algorithms to report
races when there are none. There are two isolated blocks in the program. If
the isolated block in procedure main executes first then the shared variable x is

98 K. Storey et al.

1 x := f a l s e // unwritten
2 a := f a l s e
3 proc main () {
4 f i n i s h {
5 async p
6 i s o l a t e d {
7 a := true
8 }
9 y := x

10 }
11 }
12 proc p () {
13 i s o l a t e d {
14 i f (! a)
15 x := true // wr i t t en
16 }
17 }

Fig. 2. A simple example of a task parallel program.

never written. Otherwise, it is written and the isolated block in p happens before
the isolated block in main. Because the happens before relation is transitive, the
read of x in main becomes ordered with the write in p and there is no race.

Table 1 shows the state of the ESP-bags algorithm as it executes the pro-
gram. Only rows that contain state changes are listed. The thread that executes
procedure main is labeled as T1 and the thread that executes procedure p is
labeled T2. The only finish block is labeled F1.

Table 1. ESP-bags state through Fig. 2

Line T1 S F1 P T2 S x I-Writer

0 – – – –

3 T1 – – –

5 T1 – T2 –

15 T1 – T2 T2

17 T1 T2 – T2

The first row shows the initial state of the algorithm. The next two rows
show the correct initialization of T1 and T2 S-bags. On line fifteen, the shared
variable x is written to because of the order in which ESP-bags executes the
critical sections in the program. When T2 completes and the algorithm returns
to the finish block that spawned it, T2 is placed in the P-bag of F1 signifying
that it will be in parallel with all subsequent statements in the finish block.

Optimized Sound and Complete 99

This is the state that is in play when x is read outside of an isolated block on
line nine. Here ESP-bags reports a race because the last isolated writer is in a
P-bag. This is a false positive.

ESP-bags is an efficient algorithm, but its imprecision makes it unsuitable
when false positives are unacceptable. The goal of the computation graph anal-
ysis is to precisely prove or disprove the absence of data race. As such, a com-
parison of the efficiency of ESP-bags with Zipper is not given in this work.

3 The Zipper Algorithm

The algorithm presented by Nakade et al. [24] checks every node against every
other node. While effective, this algorithm is inefficient. This paper presents
the Zipper algorithm, which is more efficient but still sound. Zipper performs
a depth-first search over non-isolation edges in the computation graph, captur-
ing serialization imposed by isolation. Section 3.1 describes the variables and
algorithmic semantics. Section 3.2 presents the algorithm in several procedures.
Lastly, Sect. 3.3 shows an example execution of the algorithm.

3.1 Definitions

Integers have lowercase names and collection names (arrays and sets) are capi-
talized. Their types are as follows:

– Z↓, Z↑: Array of sets of node IDs; indices correspond to isolation nodes
– slider↓, slider↑, next branch id , next bag id : Integer
– Z↓λ, Z↑λ, S , I : Array of sets of node IDs; indices correspond to branch IDs
– C : Array of sets of pairs of node IDs; indices correspond to branch IDs
– R: Set of node IDs
– Bλ: Array of sets of branch IDs; indices correspond to bag IDs
– Bi: Array of sets of isolation indices; indices correspond to bag IDs

Zippers encode serialization. The isolation zipper Z captures serialization
with respect to isolation nodes. The “lambda” zipper Zλ captures nodes not in
the isolation zipper in a particular task.

Traversal begins at the topmost async node. Anytime an async node is
visited, each branch is given a new branch ID (tracked with next branch id)
and are queued for evaluation in arbitrary order. As the algorithm traverses
downward, the visited node IDs are added to the set at the index of the branch
ID in the S array. This continues until an isolation node is visited that has an
outgoing isolation edge. Then, contents of the S array set for the current branch
ID are emptied into the set at the index of the isolation node in the down zipper
Z↓. Once a wait node is visited on the way down, all nodes in the S array set for
the current branch ID are emptied into the set at the index of the current branch
ID in the down lambda zipper Z↓λ. The process is then performed again on the
way up, except isolation nodes that have incoming edges are used to trigger a
dump from S into Z↑. Additionally, when an async node is hit the S set for the
current branch is emptied into the up lambda zipper Z↑λ.

100 K. Storey et al.

When an isolated node is visited, its ID is also placed into the set at the index
of the current branch ID in I , creating an easily-accessible mapping of branch ID
to the isolated nodes on that branch. The ready set R is used to identify which
async nodes have had all children traversed; therefore after the last branch of a
async node is traversed, the async node ID is placed into the set R to signify
that the algorithm can continue with the wait node that corresponds with the
async node, since all children have been processed. Any time an isolation node is
visited on the way down, slider↓ is set to that isolation node’s index; similarly,
slider↑ is set to the index of isolation nodes seen on the way up, restricting data
race checks to the fewest possible nodes.

When returning to an async node, the set in I at the current branch ID is
emptied into the Bi at the current bag ID. The current branch ID is also placed
into the set at the current bag ID index in Bλ. The Bi and Bλ are used to
indicate nodes that are concurrent and are not serialized by an isolation edge
with the current node.

On the way down a branch, each time a node is visited the p bag id is used to
index into the Bλ and Bi sets. Each of the indices in the Bλ set at the p bag id
index is used to index into the Z↓λ to obtain node IDs that are possibly in
parallel with the current node. Each pair of possibly parallel nodes is placed
into the set located in the C array at the current branch ID. A similar process
is used with Bi and Z↓; however, only indices larger than slider↓ that are in the
set in Bi at the p bag id index are paired and placed in C .

On the way up the same process is followed, except Z↑ and Z↑λ are used,
and only indices smaller than slider↑ are used when indexing into Z↑. Also, node
pairs that are possibly in parallel are not placed in C ; instead, node pairs are
checked against C . A node pair discovered in both the upwards and downwards
traversal is actually in parallel and is checked with conflict.

3.2 The Algorithm

The top level of the algorithm is the recursive analyze function. Before it is
invoked, several variables are declared and initialized:

1: Z↓ = []
2: Z↑ = []
3: Z↓λ = []
4: Z↑λ = []
5: slider↓ = NULL
6: slider↑ = NULL
7: next branch id = 1
8: next bag id = 2
9: R = {}

10: S = []
11: I = []
12: C = []

Optimized Sound and Complete 101

13: Bλ = [∅, ∅]
14: Bi = [∅, ∅]
15: recursive analyze (entry , 0, 0, 1)
16: procedure recursive analyze(n, branch id , s bag id, p bag id)
17: if async (n) then
18: async node (n, branch id , s bag id, p bag id)
19: end if
20: if wait (n) then
21: wait node (n, branch id , s bag id, p bag id)
22: end if
23: other node (n, branch id , s bag id, p bag id)
24: end procedure

recursive analyze relies on three helpers. async node analyzes nodes with
async-statements, wait node analyzes nodes that terminate finish-statements,
and other node analyzes other nodes:
1: procedure async node(n, branch id , s bag id, p bag id)
2: thread bag id = next bag id
3: next bag id = next bag id + 1
4: Bλ [thread bag id] = Bλ [p bag id]
5: Bi [thread bag id] = Bi [p bag id]
6: slider↑0 = slider↑
7: slider↓0 = slider↓
8: �slider↑ = slider↑
9: �slider↓� = slider↓

10: for n′ ∈ succs (n) do
11: slider↑ = slider↑0
12: slider↓ = slider↓0
13: id = next branch id
14: next branch id = next branch id + 1
15: S [id] = ∅
16: C [id] = ∅
17: new bag id = next bag id
18: next bag id = next bag id + 1
19: Bλ [new bag id] = ∅
20: Bi [new bag id] = ∅
21: recursive analyze (n,next branch id , new bag id, thread bag id)
22: Z↑λ [id] = S [id]
23: �slider↑ = min(�slider↑, slider↑)
24: �slider↓� = max(�slider↓�, slider↓)
25: Bλ [s bag id] = Bλ [s bag id] ∪ {id}
26: Bi [s bag id] = Bi [s bag id] ∪ I [id]
27: Bλ [thread bag id] = Bλ [thread bag id] ∪ {id}
28: Bi [thread bag id] = Bi [thread bag id] ∪ I [id]
29: end for
30: slider↓= �slider↓�

102 K. Storey et al.

31: R = R ∪ {n}
32: j = get join(n)
33: recursive analyze (j , branch id , s bag id, p bag id)
34: slider↑= �slider↑
35: return
36: end procedure
1: procedure wait node(n, branch id , s bag id, p bag id)
2: a = get async (n)
3: if a ∈ R then
4: c = get child (n)
5: recursive analyze (c, branch id , s bag id, p bag id)
6: return
7: end if
8: Z↓λ [branch id] = Z↓λ[branch id] ∪ S [branch id]
9: S [branch id] = ∅

10: return
11: end procedure
1: procedure other node(n, branch id , s bag id, p bag id)
2: S [branch id] = S [branch id] ∪ {n}
3: if isolated (n) then
4: i = isoindex (n)
5: slider↓ = i
6: if hasOutgoingEdge (n) then
7: Z↓ [i] = Z↓ [i] ∪ S [branch id]
8: S [branch id] = ∅
9: I [branch id] = I [branch id] ∪ {i}

10: end if
11: end if
12: checkDown (n, branch id , p bag id)
13: c = get child (n)
14: recursive analyze (c, branch id , s bag id, p bag id)
15: checkUp (n, branch id , p bag id)
16: S [branch id] = S [branch id] ∪ {n}
17: if isolated (n) then
18: i = isoindex (n)
19: slider↑ = i
20: if hasIncomingEdge (n) then
21: Z↑ [i] = Z↑ [i] ∪ S [branch id]
22: S [branch id] = ∅
23: I [branch id] = I [branch id] ∪ {i}
24: end if
25: end if
26: end procedure

Optimized Sound and Complete 103

Lastly, checkDown and checkUp are used for identifying data races:
1: procedure checkDown(n, branch id , p bag id)
2: for branch id ′ ∈ Bλ [p bag id] do
3: for n′ ∈ Z↓λ

[
branch id ′] do

4: C [branch id] = C [branch id] ∪ {(n, n′)}
5: end for
6: end for
7: for i ∈ isoindex (branch id) do
8: if i <= slider↓ then continue
9: end if

10: for n′ ∈ Z↓ [i] do
11: C [branch id] = C [branch id] ∪ {(n, n′)}
12: end for
13: end for
14: end procedure
1: procedure checkUp(n, branch id , p bag id)
2: for branch id ′ ∈ Bλ [p bag id] do
3: for n′ ∈ Z↑λ

[
branch id ′] do

4: if ((n, n′) ∈ C [branch id]) ∧ conflicts (n, n′) then reportRace()
5: end if
6: end for
7: end for
8: for i ∈ isoindex (branch id) do
9: if i <= slider↑ then continue

10: end if
11: for n′ ∈ Z↑ [i] do
12: if ((n, n′) ∈ C [branch id]) ∧ conflicts (n, n′) then reportRace()
13: end if
14: end for
15: end for
16: end procedure

3.3 Zipper Example

Figure 3 is a computation graph that serves to illustrate the Zipper algorithm,
each step of the algorithm is given in Table 2. The Node column in Table 2
represents the visited nodes, in traversal order. The other columns refer to the
global variables and their values at each step. For brevity, empty sets in the Z↓,
Z↑, Z↓λ, and Z↑λ arrays are omitted and nonempty sets are preceded by their
index. Additionally, the S column shows the set at the current branch ID rather
than the entire S array.

At node a in Fig. 3 all variables are initialized to empty; async node is
then called, which calls recursive analyze on line 21. Node b is then visited
in other node, and added to the S set at the current branch ID. Then, node
b is checked for conflicts at line 12 in other node, however, the Bi and Bλ

104 K. Storey et al.

a

b

c d

e f

g h

i

j

Fig. 3. An example computation graph

at p bag id are empty, so no operation takes place. This is true for the entirety
of the first branch; data race checks are performed while traversing the second
branch. It then recursively visits its child node, c. Node c calls other node
and is an isolated node, therefore slider↓ is set to the index of c (0), on line 5.
Node c is also added to S which is emptied into Z↓ at index 0 on lines 7 and
8. Recursion continues until node g. The slider is set to the index of g, but S
is not emptied because the isolation edge is not outgoing as shown on line 6 in
other node. Execution continues to node i until the wait node j is visited
and wait node is called.

Table 2. Step-by-step Zipper algorithm

Node Z↓ Z↑ Z↓λ Z↑λ slider↓ slider↑ S

a [] [] [] [] – – {}
b [] [] [] [] – – {b}
c [0 : {c, b}] [] [] [] 0 – {b, c}
e [0 : {c, b}] [] [] [] 0 – {e}
g [0 : {c, b}] [] [] [] 3 – {e, g}
i [0 : {c, b}] [] [] [] 3 – {e, g, i}
j [0 : {c, b}] [] [1 : {e, g, i}] [] 3 – {}
i [0 : {c, b}] [] [1 : {e, g, i}] [] 3 – {i}
g [0 : {c, b}] [3 : {i, g}] [1 : {e, g, i}] [] 3 3 {i, g}
e [0 : {c, b}] [3 : {i, g}] [1 : {e, g, i}] [] 3 3 {e}
c [0 : {c, b}] [3 : {i, g}] [1 : {e, g, i}] [] 3 0 {e, c}
b [0 : {c, b}] [3 : {i, g}] [1 : {e, g, i}] [] 3 0 {e, c, b}
a [0 : {c, b}] [3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] – – {}
d [0 : {c, b} , 1 : {d}] [3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] 1 – {d}
f [0 : {c, b} , 1 : {d}] [3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] 1 – {f}
h [0 : {c, b} , 1 : {d} , 2 : {f, h}] [3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] 2 – {f, h}
j [0 : {c, b} , 1 : {d} , 2 : {f, h}] [3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] 2 – {}
h [0 : {c, b} , 1 : {d} , 2 : {f, h}] [2 : {h} , 3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] 2 2 {h}
f [0 : {c, b} , 1 : {d} , 2 : {f, h}] [2 : {h} , 3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] 2 2 {f}
d [0 : {c, b} , 1 : {d} , 2 : {f, h}] [1 : {f, d} , 2 : {h} , 3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] 2 1 {f, d}
a [0 : {c, b} , 1 : {d} , 2 : {f, h}] [1 : {f, d} , 2 : {h} , 3 : {i, g}] [1 : {e, g, i}] [1 : {e, c, b}] – – {}

Optimized Sound and Complete 105

In wait node the S set is emptied into Z↓λ at the current branch ID on
lines 8 and 9. Node i is placed in S on line 2 in other node, then recursion
returns to node g. The S set is then emptied into Z↑ at index 3 (the index of
g) on lines 21 and 22. Execution continues in a similar fashion until it arrives at
a. Take note that since the execution is returning up the first branch, the S set
is not emptied at node c, since it has an outgoing edge (S empties on the way
down on isolation nodes with outgoing edges and on the way up with incoming
edges). It is important to note that c and b are in Z↑λ at the branch index. Then
a recursive call is made to traverse the second branch in the same manner as the
first branch, except data race checks will be performed. The data race checks are
not in the table, but are shown in the algorithm in checkDown and checkUp
and described in Sect. 3.

4 Implementation and Results

4.1 Methods

The implementation of Zipper is an addition to the implementation provided
by Nakade et al. [24] in their paper. The original implementation is available at
https://jpf.byu.edu/jpf-hj/. The benchmarks referenced in their paper, which
are available as part of the same repository, provide a rich comparison of the
two algorithms.

The results of the comparison of the two analyses are included in Table 3. In
the table, the Benchmark column contains the name of the program used. The
Nodes column contains the number of nodes in a computation graph. The Isola-
tion and Race columns indicate, respectively, whether or not isolation and data
race are present. The CG (ms) and Zipper (ms) columns contain the execution
time for the respective analyses in milliseconds. Lastly, Zipper

CG is the ratio of the
two time measurements.

The experimental results measure the time taken to model check over all
possible isolation schedules and reason about each resulting computation graph.
All experiments were run on an Intel(R) Xeon(R) Gold 5120 CPU with 8 GB
RAM.

4.2 Analysis

Zipper performed better on every benchmark (except for DoAll2OrigNo) whose
computation graph had more than 37 nodes. For all of the benchmarks with 37
nodes or fewer, the Zipper analysis performed slower except for IsolatedBlockNo
and PrimeNumCounter. In all of these smaller cases, the analyses’ execution time
was virtually identical. As expected, the degree to which Zipper outperforms the
computation graph analysis grows with the number of nodes.

While the size of the computation graph is the strongest predictor of rela-
tive runtime performance between the two analyses, other factors contribute to
performance. For example, DoAll1OrigNo and DoAll2OrigNo produce compu-
tation graphs with identical structure. However, they differ in both number and

https://jpf.byu.edu/jpf-hj/

106 K. Storey et al.

Table 3. Comparison of the computation graph and Zipper analyses

Benchmark Nodes Isolation Race CG (ms) Zipper (ms) Zipper
CG

ClumpedAcess 11 Y – 4 14 3.5

PrimitiveArrayNoRace 11 – – 1 12 12

PrimitiveArrayRace 11 – Y 1 8 8

SimpleSimpleSimple 11 – Y 1 14 14

SimpleSimpleSimple2 11 – Y 1 7 7

VectorAdd 11 – – 5 18 3.6

DataRaceIsolateSimple 13 Y Y 10 17 1.7

DoubleBranchExample 13 Y – 1 7 7

DataRaceIsolateSimple1 15 Y Y 5 22 4.4

ForallWithIterable 17 – – 4 11 2.75

IsolatedBlockNo 19 Y – 9 2 0.2222

Add 23 – – 18 28 1.5555

PrimeNumCounter 23 Y – 34 22 0.6470

PrimeNumCounterForAll 27 Y – 39 44 1.1282

ScalarMultiply 27 – – 37 41 1.108

TwoDimArrays 27 – – 22 40 1.8181

ReciprocalArraySumFutures 37 – – 32 72 2.25

IntegerCounterIsolated 43 Y – 774 697 0.9005

PrimeNumCounterForAsync 43 Y – 138 103 0.7463

Antidep1VarYes 45 – Y 1271 54 0.0424

Antidep2OrigYes 45 – Y 1234 58 0.0470

ReciprocalArraySum 53 – – 1801 51 0.0283

PipelineWithFutures 62 – – 61 53 0.8688

DoAll1OrigNo 207 – – 650 372 0.5723

DoAll2OrigNo 207 – – 47287 49534 1.0475

Antidep1OrigYes 2005 – Y 247736 58215 0.2349

Antidep2VarYes 2005 – Y 246561 7003 0.0284

placement of shared variable reads and writes in their respective nodes. As a
result, the Zipper analysis executes in half the time that the computation graph
analysis does on DoAll1OrigNo. On the other hand, the two analyses take about
the same amount of time when analyzing DoAll2OrigNo.

The key difference between the Zipper algorithm and the CG algorithm is in
the work done to identify the nodes that need to be checked for data race. The
Zipper algorithm is able to identify the nodes that execute in parallel much more
quickly than the CG algorithm. If there is a large number of reads and writes in
proportion to the number of nodes, the Zipper algorithm performs comparably
to the CG algorithm, since they both spend a majority of the time checking
conflicting nodes for data race in the same way. Conversely, if there are relatively
few reads and writes in proportion to the number of nodes, identifying the nodes

Optimized Sound and Complete 107

that need to be checked becomes much more significant in the analysis time.
This makes Zipper more suitable for recursively parallel programs or any task
parallel programs that utilize many light weight threads. The Zipper algorithm
identifies the nodes that need to be checked much quicker than CG and therefore
the overall time is reduced.

4.3 Comparison with TARDIS, SP-Bags and Vector Clocks

Like SP-bags and TARDIS, the Zipper algorithm operates as a depth first traver-
sal of a computation graph that represents a single execution of the program.
Zipper tracks reads and writes to shared memory locations in a set for each task
and intersects these sets to check for race. However, Zipper does not union access
sets and therefore performs more intersect operations than TARDIS. Unlike
TARDIS and SP-bags, Zipper can reason about mutual exclusion and includes
the scheduled order of isolated regions to reduce the number of intersect opera-
tions necessary to check a graph for race.

The vector clock algorithm by Kini et al. [17] checks a program execution
for data race by comparing the vector clock of shared memory locations after
they are accessed with the current thread’s vector clock in order to ensure that
the last thread to access the same location is not concurrent with the current
thread. The vector clocks are updated after access events and synchronization
events.

The vector clock algorithm takes O(N(L+T 2)) time to analyze a trace where
N is the number of events in the trace, L is the number of locks used and T is
the number of threads. In the programming model used in this paper L is always
one. It is linear in the length of the trace for programs that use a small, bounded
number of locks and threads.

It takes O(M(T + I)) time for Zipper to analyze a computation graph and
compute the pairs of nodes that are parallel with each other. M is the number
of nodes, T is the number of branches in the computation graph and I is the
number of isolated regions. Zipper must take the intersection of the access sets
for O(M2) pairs containing K events. This makes the total complexity of Zipper
O(M(T + I) + M2K).

When a program repeats many accesses to the same shared memory locations
M and K can be much smaller than N , as TARDIS shows. In this case, Zipper
is more efficient than vector clocks and can scale to larger programs. In addition,
it may be possible to apply the ideas of TARDIS to Zipper in order to achieve
a linear number of intersect and union operations.

5 Related Work

This work is an improvement upon the computation graph analysis by Nakade
et al. [24]. Lu et al. [20] implement a similar analysis based on access sets in their
tool TARDIS. TARDIS only requires a linear number of intersect and union
operations to detect data race in a computation graph but does not support
mutual exclusion.

108 K. Storey et al.

Feng and Leiserson’s SP-bags algorithm [11] is a sound and complete data
race detection algorithm for a single program execution but it can only reason
about a subset of task-parallel programs that do not use locks. Work has been
done to apply SP-bags to other task-parallel models with the use of futures [26],
async and finish constructs and isolation [25] with limitations discussed in Sect. 2.
Defined in [5] the ALL-SETS and BRELLY algorithms extend SP-bags to han-
dle locks and enforce lock disciplines but can also report false positives when
the execution order of critical sections change the control flow of the program
being verified. Other SP-bags implementations use parallelization to increase
performance [2].

Mellor-Crummey [23] uses thread labels to determine whether two nodes in
a graph are concurrent and gives a labeling scheme that bounds the length of
labels to be proportional to the nesting level of parallel constructs. This work
however, does not treat critical sections at all.

Many algorithms for detecting data race are based on vector clocks that
map events to timestamps such that the partial order relation on the events is
preserved over the set of timestamps. The complexity of vector clocks algorithm
is sensitive to the number of threads used in a program. Fidge [12] modifies
vector clocks to support dynamic creation and deletion of threads. Christiaens
and Bosschere [6] developed vector clocks that grow and shrink dynamically as
threads are created and destroyed. Flanagan et al. [13] replace vector clocks with
more lightweight “epoch” structures where possible. Audenaert [1] presents clock
trees that are also more suitable for programs with many threads. The time taken
in a typical operation on a clock tree is linear with respect to the level of nested
parallelism in the program. Kini et al. [17] present a vector clock algorithm that
runs in linear time with respect to the number of events in the analyzed execution
assuming the number of threads and the number of locks used is constant. This
assumption also fails in programs that use large numbers of lightweight threads.

This work relies on structured parallelism to reduce the cost of precise
dynamic analysis. Structured parallelism is strict in how threads are created and
joined, for example, a locking protocol leads to static, dynamic, or hybrid lock-
set analyses for data race detection that are often more efficient than approaches
to unstructured parallelism [9,10,28]. Unstructured parallelism defines no pro-
tocol for when and where threads can be created or join together. Data race
detection in unstructured parallelism typically relies on static analysis to approx-
imate parallelism and memory accesses [16,18,27] and then improves precision
with dynamic analysis [3,8,14]. Other approaches reason about threads individ-
ually [15,21]. The work in this paper relies heavily on structured parallelism and
it is hard to directly compare to these more general approaches.

Optimized Sound and Complete 109

6 Conclusion

The computation graph analysis presented by Nakade et al. [24] is well suited
to task parallel programs with isolation and lightweight threads. However, its
admittedly direct algorithm for identifying data races is inefficient. The Zip-
per algorithm achieves the same soundness and completeness as does the direct
algorithm with significantly improved asymptotic time complexity and empirical
performance. In programs with many threads, its time complexity is superior to
that of vector clock implementations. This improved algorithm affords improved
efficiency to the computation graph analysis, enabling it to prove the presence
or absence of data race in larger and more complex task parallel programs.

References

1. Audenaert, K.: Clock trees: Logical clocks for programs with nested parallelism.
IEEE Trans. Softw. Eng. 23(10), 646–658 (1997)

2. Bender, M.A., Fineman, J.T., Gilbert, S., Leiserson, C.E.: On-the-fly maintenance
of series-parallel relationships in fork-join multithreaded programs. In: Proceed-
ings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2004, pp. 133–144. ACM, New York (2004). https://doi.org/
10.1145/1007912.1007933

3. Brat, G., Visser, W.: Combining static analysis and model checking for software
analysis. In: Proceedings 16th Annual International Conference on Automated
Software Engineering (ASE 2001). IEEE Computer Society (2001). https://doi.
org/10.1109/ase.2001.989812

4. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-Java: the new adventures of
old X10, August 2011

5. Cheng, G.I., Feng, M., Leiserson, C.E., Randall, K.H., Stark, A.F.: Detecting data
races in CILK programs that use locks. In: Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures, SPAA 1998, pp. 298–309.
ACM, New York (1998). https://doi.org/10.1145/277651.277696

6. Christiaens, M., De Bosschere, K.: Accordion clocks: logical clocks for data race
detection. In: Sakellariou, R., Gurd, J., Freeman, L., Keane, J. (eds.) Euro-Par
2001. LNCS, vol. 2150, pp. 494–503. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44681-8 73

7. Dennis, J.B., Gao, G.R., Sarkar, V.: Determinacy and repeatability of parallel
program schemata. In: Data-Flow Execution Models for Extreme Scale Computing
(DFM), pp. 1–9. IEEE (2012)

8. Dimitrov, D., Raychev, V., Vechev, M., Koskinen, E.: Commutativity race detec-
tion. SIGPLAN Not. 49(6), 305–315 (2014)

9. Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: a race and transaction-aware Java
runtime. In: Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2007, pp. 245–255. ACM, New York
(2007). https://doi.org/10.1145/1250734.1250762

10. Engler, D., Ashcraft, K.: RacerX: effective, static detection of race conditions and
deadlocks. In: Proceedings of the Nineteenth ACM Symposium on Operating Sys-
tems Principles, SOSP 2003 pp. 237–252. ACM, New York (2003). https://doi.org/
10.1145/945445.945468

https://doi.org/10.1145/1007912.1007933
https://doi.org/10.1145/1007912.1007933
https://doi.org/10.1109/ase.2001.989812
https://doi.org/10.1109/ase.2001.989812
https://doi.org/10.1145/277651.277696
https://doi.org/10.1007/3-540-44681-8_73
https://doi.org/10.1007/3-540-44681-8_73
https://doi.org/10.1145/1250734.1250762
https://doi.org/10.1145/945445.945468
https://doi.org/10.1145/945445.945468

110 K. Storey et al.

11. Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in CILK pro-
grams. Theory Comput. Syst. 32(3), 301–326 (1999). https://doi.org/10.1007/
s002240000120

12. Fidge, C.J.: Partial orders for parallel debugging. In: Proceedings of the 1988 ACM
SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging, PADD
1988, pp. 183–194. ACM, New York (1988). https://doi.org/10.1145/68210.69233

13. Flanagan, C., Freund, S.N.: FastTrack: efficient and precise dynamic race detection.
In: Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, pp. 121–133. ACM, New York (2009).
https://doi.org/10.1145/1542476.1542490

14. Godefroid, P.: Model checking for programming languages using VeriSoft. In: Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 174–186 (1997)

15. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis.
SIGPLAN Not. 42(6), 266–277 (2007)

16. Kahlon, V., Sinha, N., Kruus, E., Zhang, Y.: Static data race detection for concur-
rent programs with asynchronous calls. In: Proceedings of the 7th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, pp. 13–22 (2009)

17. Kini, D., Mathur, U., Viswanathan, M.: Dynamic race prediction in linear time.
In: ACM SIGPLAN Notices, vol. 52, pp. 157–170. ACM (2017)

18. Kulikov, S., Shafiei, N., Van Breugel, F., Visser, W.: Detecting data races with
Java PathFinder (2010). http://nastaran.ca/files/race.pdf

19. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

20. Lu, L., Ji, W., Scott, M.L.: Dynamic enforcement of determinism in a paral-
lel scripting language. SIGPLAN Not. 49(6), 519–529 (2014). https://doi.org/10.
1145/2666356.2594300

21. Malkis, A., Podelski, A., Rybalchenko, A.: Precise thread-modular verification. In:
Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 218–232. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2 14

22. Mattern, F., et al.: Virtual time and global states of distributed systems. Parallel
Distrib. Algorithms 1(23), 215–226 (1989)

23. Mellor-Crummey, J.: On-the-fly detection of data races for programs with nested
fork-join parallelism. In: Proceedings of the 1991 ACM/IEEE Conference on Super-
computing, Supercomputing 1991, pp. 24–33. ACM, New York (1991). https://doi.
org/10.1145/125826.125861

24. Nakade, R., Mercer, E., Aldous, P., McCarthy, J.: Model-checking task parallel
programs for data-race. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018.
LNCS, vol. 10811, pp. 367–382. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-77935-5 25

25. Raman, R., Zhao, J., Sarkar, V., Vechev, M., Yahav, E.: Efficient data race detec-
tion for async-finish parallelism. In: Barringer, H., Falcone, Y., Finkbeiner, B.,
Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV
2010. LNCS, vol. 6418, pp. 368–383. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16612-9 28

26. Surendran, R., Sarkar, V.: Dynamic determinacy race detection for task parallelism
with futures. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp.
368–385. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 23

https://doi.org/10.1007/s002240000120
https://doi.org/10.1007/s002240000120
https://doi.org/10.1145/68210.69233
https://doi.org/10.1145/1542476.1542490
http://nastaran.ca/files/race.pdf
https://doi.org/10.1145/2666356.2594300
https://doi.org/10.1145/2666356.2594300
https://doi.org/10.1007/978-3-540-74061-2_14
https://doi.org/10.1145/125826.125861
https://doi.org/10.1145/125826.125861
https://doi.org/10.1007/978-3-319-77935-5_25
https://doi.org/10.1007/978-3-319-77935-5_25
https://doi.org/10.1007/978-3-642-16612-9_28
https://doi.org/10.1007/978-3-642-16612-9_28
https://doi.org/10.1007/978-3-319-46982-9_23

Optimized Sound and Complete 111

27. Vechev, M., Yahav, E., Raman, R., Sarkar, V.: Automatic verification of deter-
minism for structured parallel programs. In: Cousot, R., Martel, M. (eds.) SAS
2010. LNCS, vol. 6337, pp. 455–471. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15769-1 28

28. Voung, J.W., Jhala, R., Lerner, S.: RELAY: static race detection on millions of
lines of code. In: Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ESEC-FSE 2007, pp. 205–214. ACM, New York (2007).
https://doi.org/10.1145/1287624.1287654

https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1145/1287624.1287654

Compiler Optimizations for Parallel
Programs

Johannes Doerfert(B) and Hal Finkel

Argonne Leadership Computing Facility, Argonne National Laboratory,
Argonne, IL 60439, USA

{jdoerfert,hfinkel}@anl.gov

Abstract. This paper outlines a research and development program to
enhance modern compiler technology, and the LLVM compiler infrastruc-
ture specifically, to directly optimize parallel-programming-model con-
structs. The goal is to produce higher-quality code, and moreover, to
remove abstraction penalties generally associated with such constructs.
We believe that such abstraction penalties are increasing in impor-
tance due to C++ parallel-algorithms libraries and other performance-
portability-motivated programming methods.

In addition, we will discuss when, and more importantly when not,
explicit parallelism-awareness is necessary within the compiler in order
to enable the desired optimization capabilities.

Keywords: Parallel programming · LLVM · OpenMP · Compiler
optimizations · Intermediate representation · Programming models

1 Introduction

Parallel programming, and often heterogeneous programming, is becoming a
ubiquitous part of writing high-performance applications for modern architec-
tures. This raises the question how compilers have to adapt to this new reality.
To this end, we have to look at several important trends that are intersecting at
the present time:

– Parallel processing, and heterogeneous architectures, have become a com-
mon reality across much of modern computing technology. Everything from
mobile devices to supercomputers offer multiple cores and heterogeneous
accelerators.

– Parallel programming models are nowadays commonly used. This includes
source-language directives, e.g., OpenMP [6], and OpenACC, and data-
parallel languages, e.g., CUDA, and OpenCL [17]. While this additional
semantic information should tend to the compiler, the low-level encoding
of parallelism in the otherwise sequential compiler intermediate languages
generally prevent analyses and optimizations to cross the barrier between
sequential and parallel code.

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2019
M. Hall and H. Sundar (Eds.): LCPC 2018, LNCS 11882, pp. 112–119, 2019.
https://doi.org/10.1007/978-3-030-34627-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34627-0_9&domain=pdf
http://orcid.org/0000-0001-7870-8963
http://orcid.org/0000-0002-7551-7122
https://doi.org/10.1007/978-3-030-34627-0_9

Compiler Optimizations for Parallel Programs 113

– The use of parallel libraries, including the new parallel C++ STL, but also
libraries such as Thrust [4], Kokkos [8], and RAJA [10], is increasing. These
libraries provide a way to cleanly integrate parallel and heterogeneous pro-
gramming constructs into software-engineering practices and, in addition,
provides performance-portability benefits.

The result of these trends is that parallel, and heterogeneous, programming
is becoming important for a larger class of applications, and moreover, the
potential for compiler optimizations in this space increases as well. Because
of directives and other language constructs, the compiler can understand the
parallel/heterogeneous semantics. At the same time, the level of abstraction is
rising thanks to high-level parallel-programming libraries and other performance-
portability techniques. To write modular and clean code, a key aspect in modern
software-engineering efforts, the description of parallelism is often separated from
the actual algorithm. This separation, and other aspects of the aforementioned
abstraction, add penalties to the overall performance of the application. It is
therefore clear what needs to be done: The compiler should exploit available
information to perform optimizations that mitigate common abstraction penal-
ties and aid the programmer’s effort to write maintainable, high-performance
code.

The work we present here takes place in the context of the LLVM com-
piler infrastructure [13]. Currently, there are various research groups and com-
panies exploring options to enhance the existing LLVM intermediate representa-
tion (LLVM-IR) with parallelism/heterogeneity-aware optimizations. Given that
there are already several proposals that show promising results [7,12,15,20], we
will primarily focus on a different question, namely: For what purposes do we
require parallelism-aware extensions to the existing code base and when are more
general abstractions better suited to enable the desired optimizations?

To answer this question we will first review some of the fundamental con-
structs provided by parallel programming models in Sect. 2. Our focus will be
on the “default representation” in the LLVM compiler toolchain and the reasons
abstraction penalties occur when these constructs are used. In this context, we
elaborate direct consequences of the internal representation as well as additional
penalties that arise from otherwise-reasonable uses of modularity, e.g., through
parallel libraries. In Sect. 3 we show how the right abstraction can enable classi-
cal compiler optimizations to mitigate abstraction penalties with only marginal
changes to their implementation. The limits of existing (sequential) optimiza-
tion techniques and the need for a specific representation of parallelism in the
compiler is afterwards discussed in Sect. 4. We also provide a brief introduction
into related work in Sect. 5 before we finish with a conclusion and remarks for
future research in Sect. 6.

2 Compiler Representation of Parallel Constructs

Most compilers for non-explicitly-parallel languages are designed with sequential
program execution in mind. The LLVM compiler toolchain, on which our work

114 J. Doerfert and H. Finkel

is build, is no exception. When parallelism is present in the input program, e.g.,
through directive-based language extensions like OpenMP or the (transitive) use
of parallel libraries such as pthreads, a layer of indirection in the internal program
representation is used to ensure the separation of parallel and sequential program
parts. Without this separation, existing optimizations which were written with
sequential program execution in mind, and are consequently unaware of the
parallel semantics, will probably miscompile the code. While there are certainly
differences in the way this code separation is implemented for parallel libraries
and programming models, the general structure is always the same:

– The parallel code is placed into a separate function (or a similar abstraction).
– A runtime-library call is placed at the original location of the parallel code.
– The arguments of the call include the address of the newly-created function

as well as a way to access captured variables, e.g., through pointers.

pragma omp parallel for
for (int i = 0; i < N; i++)

{/* Use i, read In, write Out */ }

(a) Generic parallel loop.

int v = ...

pragma omp task
{/* Use v, read In, write Out */ }

(b) Generic parallel task.

static void body_fn(int i,

float** In, float** Out);

omp_parallel_for(0, N, &body_fn,

&In, &Out);

(c) The loop in part 1a after lowering.

static void task_fn(int *v,

float** In, float** Out);

task = omp_alloc_task(&task_fn, &v,

&In, &Out);

omp_add_task(task);

(d) The task in part 1b after lowering.

Fig. 1. OpenMP constructs (top) and their representation in LLVM (bottom).

In Fig. 1 we illustrate this process through examples that depict the lower-
ing of OpenMP constructs1 as performed by LLVM’s C/C++ front-end Clang.
The example in Fig. 1a features a generic parallel loop. During the lowering to
the LLVM intermediate representation (LLVM-IR) its body is outlined into the
function body fn and the loop is replaced by a runtime library call as shown
in Fig. 1c. Depending on the capture declarations, the variables used in the
parallel function are either passed “by-value” (for firstprivate) or as shown, “by-
reference” (if unspecified or explicitly declared as shared). Depending on the
runtime, variables might be passed directly (as shown) or in a compound object.
The latter, which is commonly known from the pthread create method but
also employed by various parallel libraries, is similar to the way OpenMP tasks

1 It is important to note that we use OpenMP only to improve readability. The same
situation arises for various other parallel programming models and library solutions.

Compiler Optimizations for Parallel Programs 115

are handled. The lowered version of the generic task shown in Fig. 1b is illus-
trated in Fig. 1d. The most important conceptual difference between these two
examples is the point at which the parallel code is invoked. In the first example
the parallel function was directly called, while in the second example a closure
is built and execution is potentially delayed.

Confronted only with a low-level encoding of parallelism through runtime-
library calls, a compiler can generally not conclude anything about the interac-
tion of the sequential code in the caller with the parallel code in the outlined
function. This includes alias information on the pointer values available at the
call site and also argument usage information that can be derived from the par-
allel function. As an example, for the latter we could assume that the compiler
determines both the In pointer and its address, which might be captured by
the runtime calls or the parallel functions (body fn and task fn) are only read.
However, even if that is determined for these parallel functions, the informa-
tion could not be used at the call sites, e.g., to pass the value of the In pointer
directly. From a compiler perspective, the problem with the current encoding of
parallelism is less related to the actual parallel execution but stems mainly from
the indirection through a function pointer and the runtime-library call. While
the uncertainty that is induced by this separation is also the reason we can
actually compile parallel programs with compilers that are generally unaware of
parallel semantics, the information that is lost will often prevent optimizations
in both the caller as well as the parallel function [7].

3 Reuse of Parallelism-Unaware Optimizations

To allow classical, parallelism-unaware optimizations to transform parallel code
we need to describe the semantics of the low-level parallelism encoding from a
sequential standpoint. To this end, we could state that the omp parallel for
function in Fig. 1c will invoke its third argument exactly N times, with some value
between 0 and N-1 passed as i, and the addresses of the pointers In and Out.
Similarly, omp add task would eventually result in the invocation of the “task
function” stored in the closure. Even if we omit the number of invocations and
the value ranges for varying arguments like i, this description already suffices
to perform important transformations using only existing optimization passes.

As an example we can consider function argument promotion, an optimiza-
tion that tries to communicate an argument that is only read and not captured
“by-value” instead of “by-reference”. In the context of OpenMP this transfor-
mation would correspond to a declaration change for that variable from shared
to firstprivate. As LLVM already has an implementation for argument pro-
motion, it would be optimal if we could reuse it in this context. Similarly, we
want to reuse the analyses that propagate information derived for the arguments
of a function to the call site and vise versa. The latter allows for example trans-
formations based on the fact that a pointer argument is only passed through to
the transitively invoked parallel function and there only read and not captured.

116 J. Doerfert and H. Finkel

To perform these kind of optimizations with the existing code base, we intro-
duce transitive call sites to LLVM. Similar to the already available, and ubiq-
uitously used, direct call site abstraction, transitive call sites allow the user to
query information on the callee, caller, arguments, and parameters of a call, with-
out explicitly dealing with the underlying instruction. We currently use manual
annotations to identify transitive call sites, thus we mark functions that might
invoke one of their function pointer arguments later on. The annotation also
describes which arguments to the initial callee are only forwarded to the transi-
tive callee, hence not captured or otherwise inspected. Given this information,
which we plan to automatically derive in the future, we can create the transitive
call abstractions that relate the initial caller with the transitively called function.

While we are still in the development stage we already have two analyses
passes that act on transitive call site information. The first propagates informa-
tion on the parameters to transitive call sites. If all call sites are known, the
second analysis will propagate globally veritable information from arguments to
the corresponding parameters in the callee. In addition, we also enabled argu-
ment promotion to work with transitive call sites. This change required us to
modify less than 50 lines of code, thus less than 5% of the total size.

Even with this minimal investment we already achieve speedups similar to
the ones presented by Doerfert and Finkel [7], thus more than 10% improvement
for the cfd and srad benchmark from the Rodinia suite [5].

While our initial results are already promising and we strongly believe other
existing interprocedural optimizations can be similarly easy generalized to tran-
sitive call sites, there still is the closure abstraction that has to be overcome.
In fact, most parallel runtimes employ at least argument aggregation, e.g., as
known from pthread create function. For lowered OpenMP tasks (ref. Fig. 1d)
the closure even contains the parallel function pointer. To cope with these addi-
tional complications we are looking into different possible extensions of our work,
including interprocedural memory tracking.

4 The Need for Parallelism-Awareness

Classically, compilers are written with a sequential execution model in mind. If
we want to reuse existing analysis and optimization capabilities for parallel pro-
grams, we therefore have to rephrase our problems to match the original sequen-
tial mindset. While this is certainly possible for many low-level optimizations,
this approach is infeasible for transformations that have to explicitly deal with
the parallel semantic. Thus, if we want the compiler to optimize parallel task
granularity, eliminate explicit and implicit barriers, or determine cutoff values for
parallel execution, we will need to introduce new analyses and transformations.

Most of the currently ongoing work in this area (that we are aware of) is in
part considering new optimizations to explicitly alter parallel program execution.
However, this effort is often mixed with concerns about the reuse of existing
scalar analyses and transformations through the embedding of parallel code into
the sequential CFG [12,15,20]. While this is can certainly lead to good solutions,

Compiler Optimizations for Parallel Programs 117

they might be more complex and less focused on their main task, namely to
perform explicit parallelism-aware transformations. Especially if we assume we
can continue to introduce abstractions that allow the reuse of existing scalar
optimizations for parallel programs, it seems non-essential to keep such “reuse”
as a requirement in the design of a parallelism-aware compiler extension.

Going forward, we will explore how these ideas can be employed in the het-
erogeneous setting. Currently, for example, when Clang targets GPUs using
OpenMP offloading, the frontend itself decides on the code-generation strategy
and generates multiple LLVM modules at this early stage in the pipeline (a mod-
ule for the host code and modules for each accelerator target). So-called “late
outlining” approaches have been discussed that will delay this module splitting
and allow for compiler optimizations to take place across the host/accelerator
boundary prior to that point. These may be important because, for example,
deciding how to map OpenMP code onto a GPU kernel might depend on what
OpenMP features are actually used in that kernel (and that may not be known
until after inlining and/or other inter-procedural analyses, plus analysis-enabling
optimizations, are employed). How to best adapt the compiler’s internal repre-
sentation to enable this kind of functionality is yet unknown.

5 Related Work

Various techniques have been proposed to enable compiler optimizations
for parallel programs. Most of them involve some native embedding of
parallelism that allows or simplifies the use of existing transformations [11,12,15,
16,18–21]. In addition, there is a vast body of research on explicitly parallelism-
aware optimizations [1–3,7,9,14].

In contrast to these efforts, we put our focus on simple abstractions that
facilitate the reuse of existing analyses and optimizations. We believe that such
abstractions are, when applicable, superior to most parallelism-representation
schemes. We base this assessment on the required implementation effort for the
already proposed approaches, but also the fact that any change to the com-
piler’s internal program representation induces a non-trivial cost as potential
interactions with existing analysis and transformation have to be checked.

6 Conclusion and Future Work

We believe our initial result show that certain optimizations for parallel pro-
grams are well within reach of a parallelism-unaware compiler. We will continue
to explore the use of transitive call sites and we also plan to investigate new
abstractions to facilitate the optimization of scalar and parallel programs alike.

Since our work is still in a prototype state, we refrained from a dedicated eval-
uation. However, our initial results for the cfd and srad benchmark are already
on a par with the improvements reported by Doerfert and Finkel [7]. We con-
sequently believe that new abstractions, and increased use of the existing one,
will eventually lead to similar results on various benchmarks.

118 J. Doerfert and H. Finkel

To facilitate the adaption of this work, and to create an incentive for further
refinement, we already proposed parts of our implementation to the LLVM com-
munity. While a verdict on the integration was not yet reached, we hope that
our minimal intrusive proposal will foster the development of optimizations that
cross the current optimization barrier between sequential and parallel code.

Acknowledgments. This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations
(Office of Science and the National Nuclear Security Administration) responsible for the
planning and preparation of a capable exascale ecosystem, including software, applica-
tions, hardware, advanced system engineering, and early testbed platforms, in support
of the nation’s exascale computing imperative.

References

1. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May-happen-in-parallel
analysis of X10 programs. In: Proceedings of the 12th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPOPP 2007, San Jose,
California, USA, 14–17 March 2007, pp. 183–193 (2007). https://doi.org/10.1145/
1229428.1229471

2. Barik, R., Sarkar, V.: Interprocedural load elimination for dynamic optimization of
parallel programs. In: PACT 2009, Proceedings of the 18th International Confer-
ence on Parallel Architectures and Compilation Techniques, Raleigh, North Car-
olina, USA, 12–16 September 2009, pp. 41–52 (2009). https://doi.org/10.1109/
PACT.2009.32

3. Barik, R., Zhao, J., Sarkar, V.: Interprocedural strength reduction of critical sec-
tions in explicitly-parallel programs. In: Proceedings of the 22nd International
Conference on Parallel Architectures and Compilation Techniques, Edinburgh,
UK, 7–11 September 2013, pp. 29–40 (2013). https://doi.org/10.1109/PACT.2013.
6618801

4. Bell, N., Hoberock, J.: Thrust: a productivity-oriented library for CUDA. In: GPU
Computing Gems Jade Edition, pp. 359–371. Elsevier (2011)

5. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: Pro-
ceedings of the 2009 IEEE International Symposium on Workload Characteriza-
tion, IISWC 2009, Austin, TX, USA, 4–6 October 2009, pp. 44–54 (2009). https://
doi.org/10.1109/IISWC.2009.5306797

6. Dagum, L., Menon, R.: Openmp: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

7. Doerfert, J., Finkel, H.: Compiler Optimizations for OpenMP. In: Proceedings of
Evolving OpenMP for Evolving Architectures - 14th International Workshop on
OpenMP, IWOMP 2018, Barcelona, Spain, 26–28 September 2018, pp. 113–127
(2018). https://doi.org/10.1007/978-3-319-98521-3 8

8. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014)

9. Grunwald, D., Srinivasan, H.: Data flow equations for explicitly parallel programs.
In: Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (PPOPP), San Diego, California, USA, 19–22 May
1993, pp. 159–168 (1993). https://doi.org/10.1145/155332.155349

https://doi.org/10.1145/1229428.1229471
https://doi.org/10.1145/1229428.1229471
https://doi.org/10.1109/PACT.2009.32
https://doi.org/10.1109/PACT.2009.32
https://doi.org/10.1109/PACT.2013.6618801
https://doi.org/10.1109/PACT.2013.6618801
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1007/978-3-319-98521-3_8
https://doi.org/10.1145/155332.155349

Compiler Optimizations for Parallel Programs 119

10. Hornung, R.D., Keasler, J.A.: The raja portability layer: overview and status.
Technical report, Lawrence Livermore National Laboratory (LLNL), Livermore,
CA, USA (2014)

11. Jordan, H., Pellegrini, S., Thoman, P., Kofler, K., Fahringer, T.: INSPIRE: the
insieme parallel intermediate representation. In: Proceedings of the 22nd Inter-
national Conference on Parallel Architectures and Compilation Techniques, Edin-
burgh, UK, 7–11 September 2013, pp. 7–17 (2013). https://doi.org/10.1109/PACT.
2013.6618799

12. Khaldi, D., Jouvelot, P., Irigoin, F., Ancourt, C., Chapman, B.M.: LLVM parallel
intermediate representation: design and evaluation using OpenSHMEM communi-
cations. In: Proceedings of the Second Workshop on the LLVM Compiler Infras-
tructure in HPC, LLVM 2015, Austin, Texas, USA, 15 November 2015, pp. 2:1–2:8
(2015). https://doi.org/10.1145/2833157.2833158

13. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: 2nd IEEE/ACM International Symposium on Code
Generation and Optimization (CGO 2004), San Jose, CA, USA, 20–24 March 2004,
pp. 75–88 (2004). https://doi.org/10.1109/CGO.2004.1281665

14. Moll, S., Doerfert, J., Hack, S.: Input space splitting for OpenCL. In: Proceedings of
the 25th International Conference on Compiler Construction, CC 2016, Barcelona,
Spain, 12–18 March 2016, pp. 251–260 (2016). https://doi.org/10.1145/2892208.
2892217

15. Schardl, T.B., Moses, W.S., Leiserson, C.E.: Tapir: embedding fork-join parallelism
into LLVM’s intermediate representation. In: Proceedings of the 22nd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, Austin,
TX, USA, 4–8 February 2017, pp. 249–265 (2017). http://dl.acm.org/citation.cfm?
id=3018758

16. Stelle, G., Moses, W.S., Olivier, S.L., McCormick, P.: OpenMPIR: implementing
OpenMP tasks with Tapir. In: Proceedings of the Fourth Workshop on the LLVM
Compiler Infrastructure in HPC, LLVM-HPC@SC 2017, Denver, CO, USA, 13
November 2017, pp. 3:1–3:12 (2017). https://doi.org/10.1145/3148173.3148186

17. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for
heterogeneous computing systems. Comput. Sci. Eng. 12(3), 66–73 (2010). https://
doi.org/10.1109/MCSE.2010.69

18. Tian, X., Girkar, M., Bik, A.J.C., Saito, H.: Practical compiler techniques on effi-
cient multithreaded code generation for OpenMP programs. Comput. J. 48(5),
588–601 (2005). https://doi.org/10.1093/comjnl/bxh109

19. Tian, X., Girkar, M., Shah, S., Armstrong, D., Su, E., Petersen, P.: Compiler
and runtime support for running OpenMP programs on Pentium-and Itanium-
architectures. In: Eighth International Workshop on High-Level Parallel Program-
ming Models and Supportive Environments (HIPS 2003), Nice, France, 22–22 April
2003, pp. 47–55 (2003). https://doi.org/10.1109/HIPS.2003.1196494

20. Tian, X., et al.: LLVM framework and IR extensions for parallelization, SIMD
vectorization and offloading. In: Third Workshop on the LLVM Compiler Infras-
tructure in HPC, LLVM-HPC@SC 2016, Salt Lake City, UT, USA, 14 November
2016, pp. 21–31 (2016). https://doi.org/10.1109/LLVM-HPC.2016.008

21. Zhao, J., Sarkar, V.: Intermediate language extensions for parallelism. In: Con-
ference on Systems, Programming, and Applications: Software for Humanity,
SPLASH 2011, Proceedings of the Compilation of the Co-located Workshops, DSM
2011, TMC 2011, AGERE! 2011, AOOPES 2011, NEAT 2011, and VMIL 2011,
Portland, OR, USA, 22–27 October 2011, pp. 329–340 (2011). https://doi.org/10.
1145/2095050.2095103

https://doi.org/10.1109/PACT.2013.6618799
https://doi.org/10.1109/PACT.2013.6618799
https://doi.org/10.1145/2833157.2833158
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2892208.2892217
https://doi.org/10.1145/2892208.2892217
http://dl.acm.org/citation.cfm?id=3018758
http://dl.acm.org/citation.cfm?id=3018758
https://doi.org/10.1145/3148173.3148186
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1093/comjnl/bxh109
https://doi.org/10.1109/HIPS.2003.1196494
https://doi.org/10.1109/LLVM-HPC.2016.008
https://doi.org/10.1145/2095050.2095103
https://doi.org/10.1145/2095050.2095103

MATE, a Unified Model
for Communication-Tolerant

Scientific Applications

Sergio M. Martin1(B) and Scott B. Baden1,2

1 University of California San Diego, La Jolla, CA 92093, USA
sergiom@eng.ucsd.edu

2 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
baden@lbl.gov

Abstract. We present MATE, a model for developing communication-
tolerant scientific applications. MATE employs a combination of mech-
anisms to reduce or hide the cost of network and intra-node data move-
ment. While previous approaches have been proposed to reduce both
sources of communication overhead separately, the contribution of MATE
is demonstrating the symbiotic effect of reducing both forms of data
movement taken together. Furthermore, MATE provides these bene-
fits within a single unified model, as opposed to hybrid (e.g., MPI+X)
approaches. We demonstrate MATE’s effectiveness in reducing the cost
of communication in three scientific computing motifs on up to 32k cores
of the NERSC Cori Phase I supercomputer.

Keywords: Scientific computing · Communication-Tolerance · SPMD

1 Introduction

The advent of many-core processors and the fast-approaching age of Exascale
computing have rendered the challenge of developing scalable scientific appli-
cations too complex for domain-area experts to tackle without the help of an
HPC expert. Of the many hurdles involved in this endeavor, coping with the
ever-growing cost of communication is perhaps the most daunting as existing
programming models lack adequate support. Our research tackles the two pri-
mary sources of overhead: network communication and intra-node data motion.

Reducing the cost of network communication data motion involves primar-
ily overlapping computation with communication1. This technique requires a
manual restructuring of a program to enable processors to continue computing
sections of the code that are independent of incoming data, e.g., via split-phase
coding [26]. These modifications, however, require significant domain-specific

1 Other approaches include communication reordering [27], concurrency optimizations
[16], and communication avoiding algorithms [13].

c© Springer Nature Switzerland AG 2019
M. Hall and H. Sundar (Eds.): LCPC 2018, LNCS 11882, pp. 120–137, 2019.
https://doi.org/10.1007/978-3-030-34627-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34627-0_10&domain=pdf
http://orcid.org/0000-0002-3628-3992
http://orcid.org/0000-0002-5479-8199
https://doi.org/10.1007/978-3-030-34627-0_10

MATE, a Unified Model for Communication-Tolerant Scientific Applications 121

refactoring of the source code that may prove to be impractical in large appli-
cations and will entangle application logic with implementation policy.

Reducing the cost of intra-node data motion involves replacing message
exchanges among processes on the same node with communication via shared
memory bypass. An optimal approach is to employ two communication models
in the same application, one for inter-node communication (e.g., MPI [1]) and
another for intra-node communication (e.g., OpenMP [2], MPI-SHM [19]). This
solution poses two difficulties: (1) it entangles communication and synchroniza-
tion logic, and (2) it exposes inefficiencies in the interaction between the two
models (e.g., threads synchronize before issuing MPI calls).

To address these shortcomings, we have developed MATE, a programming
model that reduces both sources of communication overhead in scientific applica-
tions while requiring minimal intervention inside application source code. MATE
provides hierarchical decomposition and dependency-driven semantics that sup-
port communication reducing performance programming within a single unified
model. By providing a unified model, MATE exposes its communication-reducing
benefits while avoiding the complexity of combining two programming interfaces.
We have implemented MATE as a programming framework comprising an anno-
tation model, a source code translator, and a runtime system library.

The rest of this paper is organized as follows: Sect. 2 introduces MATE’s hier-
archical decomposition and code scheduling model, Sect. 3 describes the mech-
anisms MATE employs to reduce the cost of communication, Sect. 4 provides
implementation details, Sect. 5 presents our experimental results, Sect. 6 dis-
cusses previous and related work, and Sect. 7 discusses conclusions and future
research directions.

2 The MATE Model

The MATE model re-interprets an application by introducing (1) a hierarchical
rank decomposition, and (2) a code scheduling logic. Together, these two features
enable the programmer to alter program semantics to reduce the cost of commu-
nication. To explain our model, we use a stencil method example that computes
the solution to a partial differential equation on a n-dimensional grid. The appli-
cation splits the grid into rectangular subgrids, each assigned to a different rank.
Figure 1 (top) shows the pseudo-code representation for the solver.

Each rank obtains a unique rank identifier and rank count (lines 1–2), and
then iterate (line 4) on the solution by: (line 5) issuing receive requests for
boundary cells, (line 6) sweeping the subgrid with a stencil operator and swap-
ping grid pointers, (line 7) packing non-contiguous boundary cells, (line 8) send-
ing buffered data to neighbor ranks, (line 9) waiting for communication to finish,
and (line 10) unpacking boundary cells into non-contiguous ghost cells.

MATE supports a hierarchical model with multiple levels of workload decom-
position and locality. At the first level, MATE distributes the workload onto a
set of processes. A MATE Process represents a grouping of ranks that share a
common virtual address space. At the second level, each process is further dis-
tributed among multiple local MATE Ranks. Unlike MPI ranks, MATE ranks

122 S. M. Martin and S. B. Baden

1 MPI_Comm_size(MPI_COMM_WORLD , &nRanks);
2 MPI_Comm_rank(MPI_COMM_WORLD , &myRank);
3
4 for (int i = 0; i < Iterations; i++) {
5 for (n in Neighbors) MPI_Irecv(recvBuf(n)←n);
6 Compute_and_Swap ();
7 for (n in Neighbors) MPI_Pack(bCells→sendBuf(n));
8 for (n in Neighbors) MPI_Isend(sendBuf(n)→n);
9 MPI_Waitall(MPIRequests);

10 for (n in Neighbors) MPI_Unpack(gCells←recvBuf(n));
11 }

1 Mate_local_rank_id (& localRankId);
2 Mate_global_process_id (& myProcessId);
3 Mate_local_rank_count (& localRankCount);
4 Mate_global_process_count (& globalProcessCount);
5
6 for(n in Neighbors) if(Mate_isLocal(n)) Mate_AddLocalNeighbor(n);
7
8 #pragma mate graph
9 for(int i = 0; i < Iterations; i++) {

10 #pragma mate region(request) depends(unpack *)
11 for(n in Neighbors) if(! Mate_isLocal(n)) MPI_Irecv(recvBuf(n)←n);
12 #pragma mate region(compute) depends(pack*, unpack*, compute*@)
13 Compute_and_Swap ();
14 #pragma mate region(pack) depends(compute , send*)
15 for(n in Neighbors) if(! Mate_isLocal(n)) MPI_Pack(bCells→sndBuf(n));
16 #pragma mate region(send) depends(pack)
17 for(n in Neighbors) if(! Mate_isLocal(n)) MPI_Isend(sendBuf(n)→n);
18 #pragma mate region(unpack) depends(compute , request)
19 for(n in Neighbors) if(! Mate_isLocal(n)) MPI_Unpack(gCells←rcvBuf(n));
20 }

Fig. 1. Simplified pseudo-code of (top) a structured grid stencil solver, and (bottom)
the same solver with added MATE directives and API calls.

Fig. 2. MPI vs. MATE’s decomposition of a 2D grid on 4 cores.

living in the same MATE process share the same address space and can com-
municate through shared memory.

To identify a rank, MATE uses a process-level and local-level identifier pair,
as shown in Fig. 2. That is, a MATE rank is identified by combining its par-
ent MATE process identifier, and a unique local identifier within the process.
Figure 1 (bottom) shows how to query a rank’s local id (line 1) and (line 2)
process id, (line 3) the local rank count, and (line 4) the MATE process count.

MATE, a Unified Model for Communication-Tolerant Scientific Applications 123

Under the MATE model, local ranks communicate by either (1) making direct
memory to memory copies, or (2) by exchanging local pointers to their data.
Thus, in the MATE version of our example, ranks belonging to the same process
do not exchange data via messages since they can communicate through shared
memory. MATE provides a guard, Mate isLocal(), to test rank locality. In our
example (lines 11, 15, 17, 19), ranks exchange data only if the neighboring rank
belongs to a different MATE process (i.e. Mate isLocal(n) returns false). The
test for locality compares the process id’s of the caller rank and the n rank.

MATE supports a third level of decomposition that is orthogonal to the
process-rank organization, called regions. MATE regions split a program into a
logical grouping of contiguous code statements. MATE schedules regions inde-
pendently, guided by a dependency graph defined statically by the programmer
via #pragma mate region (name) directives. Lines 10–19 show how MATE direc-
tives split the original code into separate regions. Figure 3 shows the dependency
graph corresponding to the code in Fig. 1 (bottom).

Programmers define dependencies among regions explicitly by appending a
depends(region1, region2,...) clause. Every region name included in the depends
clause will create a new region-to-region dependency. As in traditional dataflow
[10,18], the order in which regions execute is determined by the flow of data in a
dependency graph. A rank will not execute the statements enclosed by a region
directive until it has previously executed all the regions in the depends clause.
For example, the send (line 16) region will not execute until after executing the
pack region. The statements inside a region will execute in order.

MATE annotations enable programmers to express cross-iteration dependen-
cies inside a for loop, by appending the ‘*’ modifier to regions in the depends
clause. This modifier tells the scheduler that the dependency will be satisfied if
the region has executed in the previous iteration. In our example (line 10), the
request region will not issue new MPI requests until the unpack region from the
previous iteration has finished unpacking the receive buffers. Wherever the ‘*’
is not specified, then the dependency refers to the current iteration. Lastly, this
modifier is ignored during the first iteration to avoid deadlocks.

Fig. 3. Code Region Dependency from the example in Fig. 1 (bottom). Solid arrows
represent region dependencies and dotted arrows represent inter-rank dependencies

124 S. M. Martin and S. B. Baden

Since MATE’s hierarchical model enables the use of shared memory, MATE
applications require means for local synchronization. For this purpose, our model
exposes inter-rank dependencies, in which a code region of one given task
depends upon the execution of a code region from another local rank. Program-
mers define inter-rank dependencies by appending a ‘@’ modifier to a region in
the depends clause. This modifier instructs the runtime system that all neighbor
ranks should execute the depended region before the current rank can execute
this region. Ranks call the Mate AddLocalNeighbor(localId) function (line 6),
to indicate which other local ranks are also their neighbors. This distinction is
important since not all local ranks are neighbors (i.e. share a common boundary).

In our example, (line 12), the compute region will not execute until the
compute region from all neighbor ranks have finished, guaranteeing that no read-
after-write violations will occur by updating boundary data that has not yet been
used by neighbors in the previous iteration.

Communication requests (e.g., MPI Irecv, MPI Isend) issued during the exe-
cution of a region need to complete before dependent regions are issued. In our
example, all the MPI Irecv requests instantiated during the execution of request
will have finished before MATE issues the unpack region for execution.

MATE supports incremental development where only part of the application
need be annotated. To execute un-annotated code, MATE implicitly defines a
root region that represents the whole program outside user-defined regions. Upon
finding a #pragma mate graph directive, the root region yields execution until
all regions inside the graph finish, and then resumes execution.

As mentioned previously, MATE enables the program to reorder code blocks,
altering program semantics. The programmer is responsible for ensuring that
their annotations preserve correctness. For example, incorrect dependency anno-
tations could induce a deadlock or execute code using stale data. Furthermore,
to avoid incorrect behavior, annotated for loop iterators (e.g., i) should only be
accessed at the for ’s increment (i++). MATE does not currently support nested
graph blocks. Lastly, reordering could affect numerical results, for example, in
computing convergence criteria.

3 Communication-Reducing Mechanisms

To reduce the cost of network and intra-node communication, MATE employs
a combination of mechanisms. Domain overdecomposition [21] or virtualization
[23] is a well-known technique for hiding the cost of network communication
by overlapping computation with communication. An overdecomposed SPMD
application splits the workload into a number of ranks larger than the number of
cores, pipelining the execution of a rank while another waits for communication.

Although the MPI specification provides few restrictions on how an MPI
library is implemented, its most widely used implementations [5–9] instantiate
each rank as a separate process. Since these libraries delegate process scheduling
to the operating system (which is unaware of communication), overdecomposi-
tion will cause destructive interference for core usage. Therefore, MPI applica-
tions run best when they employ no more processes than available cores.

MATE, a Unified Model for Communication-Tolerant Scientific Applications 125

Fig. 4. Overdecompositions.

Figure 5 (top) shows the execution of a typical
MPI iterative solver under the Bulk-Synchronous
model [38], where every core alternates between
periods of performing actual computation, and
waiting periods. Since they do not overlap com-
munication with computation, these solvers incur
the full cost of communication. On the other
hand, user-level runtime systems, such as MATE,
can instantiate more ranks while avoiding destruc-
tive interference since they do not depend on
the OS scheduler. Figure 4 (top) shows the 2D
grid from Fig. 2 overdecomposed into 16 sub-
grids. This configuration represents an overdecom-
position factor of four, assuming four available
cores. Figure 5 (Middle) shows how MATE swaps
ranks as they suspend to wait for data, achieving
overlap.

Although effective in overlapping communica-
tion and computation, overdecomposition leads to
an increase in internal data motion overhead due
to a higher surface-to-volume ratio in exchange
buffers, as shown in Fig. 4 (top). This increase in
boundary surface exacerbates both data motion
and packing overhead costs and can reverse the
benefits obtained from overlap. We show these
overheads as spurious computation time.

The MATE model avoids this problem via its hierarchical decomposition
model as illustrated in Fig. 4 (bottom). In the example, only the process-level
boundary requires exchanging, while neighboring local ranks access required data
via shared memory without the need to exchange halo cells. As a result, MATE
enables applications to benefit from overdecomposition without intra-node data
copying overheads, as shown in Fig. 5 (bottom). Furthermore, cores can execute
any of the 16 ranks in the process at any given time, maximizing concurrency.

MATE regions enable concurrency within a rank by dividing it into groups of
code statements that execute in a partial order. Regions increase the amount of
available parallelism among computation and communication operations. This
principle is similar to that used in instruction-level-parallel processors [37], in
which instructions execute as sub-instructions that can be pipelined in several
execution ports simultaneously, and also to large grain dataflow [11].

MATE’s code region semantics provide an additional optimization: they
enable local tasks to use lightweight synchronization. Since neighboring local
tasks can execute on the same address space without exchanging messages, they
require a synchronization mechanism to prevent them from violating loop-carried
dependencies on their boundary elements. Whereas a process-wide barrier would
achieve this effect, it would also reduce opportunities for overlap. However, with

126 S. M. Martin and S. B. Baden

Fig. 5. Hypothetical core usage timelines.

inter-rank dependencies, MATE exposes a fine-grained synchronization mecha-
nism that prevents data hazards, maximizing concurrency among local ranks.

4 Implementation

Fig. 6. Decomposition model and implementation of a MATE process.

MATE applications execute as a set of processes distributed across the system.
A MATE process contains (1) a pool of MATE regions, (2) a set of local MATE
ranks, and (3) a pool of MATE workers, as shown in Fig. 6.

A MATE Region is the sole atomic scheduling unit in MATE. Regions can
exist in three possible states: wait, ready, or exec. A region is in the wait state
if at least one of its dependencies is unsatisfied. Once all of its dependencies are
satisfied, it transitions to the ready state, and then to exec during execution. We
developed a source-to-source translator, using the ROSE compiler framework
[22], to parse MATE annotations and inject calls to the MATE runtime system’s

MATE, a Unified Model for Communication-Tolerant Scientific Applications 127

API to create regions and dependencies dynamically and to provide scheduling
logic to support out-of-order region execution.

A MATE Rank is a C++ object comprising an array of MATE regions, and
one user-level thread, re-entrant functions that can yield/resume at any point.
Once a rank resumes execution, it will not yield until all its ready regions have
executed. Conversely, a MATE rank will not execute until at least one of its
regions is ready. Although several regions in a given rank may be ready, only
one of them can execute at a time to preserve stack integrity.

MATE Workers are kernel-level threads mapped to a single processor core
whose goal is to execute MATE ranks. A MATE worker will execute a rank
by resuming its user-level thread, only if at least one of its regions is in the
ready state. After the rank yields execution, a MATE worker will search for the
next available rank. In case no ranks are available, the worker polls for incoming
message requests. Only one MATE worker can poll MPI requests at any given
time to prevent concurrency hazards.

To provide communication-aware scheduling, MATE intercepts communica-
tion requests and performs two operations: (1) it issues an MPI request with
encoded MATE local/process ids in the tag field, and (2) creates a new depen-
dency between the request and every region that depends on the currently exe-
cuting region. This linkage guarantees that dependent regions will wait until
requests have finished before becoming ready.

MATE currently supports latency hiding only for 2-sided operations. While
many MPI collectives are supported, they are not optimized for overlap, as
they do not contribute a significant overhead in our test cases. However, it is
possible to implement overlap-enabled collectives that take advantage of MATE
for applications with frequent collective calls as future research. Though MATE
does not currently support user-defined MPI groups and communicators, we
do not rule out their implementation. Finally, our translator can only process
annotations from C/C++ source. However, since the MATE model is language-
neutral, we could support other languages (ROSE supports Fortran).

5 Experimental Results

For our computational testbed, we used Cori, a Cray XC40 supercomputer [3]
located at the National Energy Research Scientific Computing Center (NERSC)
[31]. We used the Cori Phase I partition, comprising 2,388 compute nodes,
each equipped with two sockets, each populated with a 2.3 GHz 16-core Intel
Xeon E5-2698v3 “Haswell” processor and 128 GB of DRAM. We used Cray’s
PrgEnv-intel/6.0.4 and cray-mpich/7.7.0 modules and the Intel com-
piler version 18.0.1.163 with -O3 optimization (includes auto-vectorization).
To ensure proper optimizations for the Haswell CPU, we employed the
craype-haswell and craype-hugepages2M modules. Other environment mod-
ules and settings were the NERSC default. None of our test cases benefit from
hyperthreading.

128 S. M. Martin and S. B. Baden

5.1 Test Case I: Jacobi3D

Fig. 7. 13-Point stencil.

Our first test case is Jacobi3D, a stencil method that
solves the 3D Poisson equation subject to Dirich-
let boundary conditions using Jacobi’s method. The
computation iterates over a grid using a 13-point cen-
tral difference [39] stencil that updates each element
of the grid with the average of its a central point
and 4 points per axis in a 2-point deep straight line
(see Fig. 7).

We study six variants of the Jacobi3D solver: (1)
Flat-MPI establishes the performance baseline and
does not attempt to overlap communication with
computation. We optimized this code for cache locality with a 2D blocking over
its non-contiguous Y and Z axes. (2) Olap-MPI improves the baseline code with
a split-phase strategy that divides the rank’s grid into smaller tiles. As soon as
it finishes computing a tile, Olap-MPI initiates its boundary exchange requests
and continues to the next tile, overlapping communication with computation. (3)
MPI+OpenMP provides a 2-level decomposition (similar to MATE’s) in which
multiple OpenMP threads share the work assigned to a single process, and thus
do not explicitly move data on-node but does not overlap communication with
computation. (4) OD-Only represents MATE with overdecomposition as the sole
mechanism for hiding the cost of communication and does not use a hierarchical
decomposition. (5) Toucan employs hierarchical overdecomposition but anno-
tates the code with the fixed 3-region syntax prescribed in Toucan Model [30]
without inter-rank dependencies. (6) The MATE variant applies all the opti-
mizations described in Sect. 2 and uses the region graph from Fig. 3.

Speedup:

0.89

0.94

0.88

0.90

1.05

1.03

1.01

1.01

1.06

1.04

1.01

1.03

1.02

1.04

1.03

1.02

1.08

1.12

1.09

1.17

4096 8192 16384 32768
NERSC Cori Phase I Cores

0

8

16

24

32

40

48

56

64

72

P
er

fo
rm

an
ce

 (
T

F
lo

p
/s

)

Flat-MPI
OD-Only
Olap-MPI
Toucan
MPI+OpenMP
MATE Model

Fig. 8. Strong Scaling results for Jacobi3D on 128 to 1024 nodes of Cori Phase I. The
number above each bar represents the speedup relative to the baseline variant.

MATE, a Unified Model for Communication-Tolerant Scientific Applications 129

2.177s 0.695s 1.204s

+21%

+12%

+12%

+13%

+16%

-39%

-64%

-25%

+12%

+48%

-74%

+5%

-25%

-44%

-55%

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
Running Time (s)

MATE Model

MPI+OpenMP

Toucan

Olap-MPI

OD-Only

Flat MPI

Computation
MPI Calls
Buffering
Waiting

Fig. 9. Execution breakdown for Jacobi3D on 32768 cores.

We performed a strong scaling study over a range of 128 to 1024 nodes (4K
to 32K cores; 43% of all available nodes), with 100 solver iterations on a grid
of n = 40963 cells. At 512 nodes, the grid consumes 1.3% of node memory
per variable, which is representative of a structured adaptive mesh solver for
solving combustion problems2. We ran each variant three times (we measured
≤1% variation in running time between runs) and report the best outcome. MPI
variants ran with one process per core. We determined experimentally that the
best configuration for MPI+OpenMP was 4 processes × 8 threads per node.
For MATE variants, we used 4 processes × 8 threads × 64 ranks per node.
Figure 8 shows the results of our study in TFlop/s. The MATE variant was able
to outperform all the variants, yielding a 1.17x speedup on 32768 cores.

To evaluate how each variant affects the solver’s performance, we analyzed
their mean running time breakdown on 1024 nodes. Figure 9 shows this break-
down where: Computation represents the solver kernel time; MPI Calls is time
spent issuing MPI requests; Buffering is the time spent packing/unpacking
buffers, and; Waiting is the time spent waiting on network communication. We
indicate time taken per operation for the base Flat-MPI variant, and the % of
time differential of each variant, compared to Flat-MPI.

Results show that MATE was able to reduce a large amount of the network
communication (74%) on 32768 cores, compared to Flat-MPI. We observed sim-
ilar communication reductions at smaller scales. We also see that, while the
overdecomposition only (OD-Only) variant reduces 55% of network communica-
tion time, its benefits diminish due to a notable increase (48%) in the costs of
intra-node data motion and thus fails to produce any speedup, illustrating the
importance of employing a hierarchical model. On the other hand, the strategy
used in Olap-MPI succeeded in reducing the communication time with a smaller
impact on its intra-node data motion costs.

All our variants suffered an increase in computation time. This increase
comes from a loss in cache efficiency due to lack of prefetching. In the Flat-
MPI variant, the side effect of buffer unpacking is to prefetch grid data before

2 Sam Williams, private conversation, 2018.

130 S. M. Martin and S. B. Baden

Fig. 10. Core Timelines. (Top) Flat-MPI (8 Ranks), (Bottom) MATE (64 Ranks).
(Color figure online)

executing the kernel, which will help speed it up. In turn, the kernel smoother
will improve cache locality of buffer packing. We used the Performance Appli-
cation Programming Interface (PAPI) [36] to activate hardware counters in the
Haswell processor during the main loop of the solver and found that absolute
number of L2 and L3 cache misses increased by 8% in the computational kernel
due when we disabled packing/unpacking operations.

Notably, MATE suffered from a higher increase in computation costs (21%).
We attribute this effect to a disruption of cache locality from dividing the grid
into smaller subgrids. Every time a rank resumes, it reloads its data back into
cache lines, producing an excess in cache misses. This effect also explains why
buffer packing cost in MPI+OpenMP shrinks by a more significant amount than
MATE: 64% vs. 39%.

Threading variants suffer from an additional cost from MPI call overheads.
In MATE, workers serialize the injection of MPI messages due to threading con-
currency limitations in the Cray-MPI library, producing periods of busy-waiting
that extend the rank’s occupancy in the core. The MPI+OpenMP variant suffers
from this limitation as well as it also relies on multi-threading but to a lesser
extent since it does not employ overdecomposition. These results demonstrate
that MATE can improve performance by hiding communication, even though
there is a loss of cache locality in computation and message serialization.

To gain insight into why the MATE variant was able to hide a large portion
of the network communication time, we plotted the activity of 8 cores during the
execution of a short run (30 iterations). Figure 10 shows core usage timelines of

MATE, a Unified Model for Communication-Tolerant Scientific Applications 131

the (top) Flat MPI and (bottom) MATE variants at 1024 nodes (32768 cores).
These timelines show how cores fluctuate between busy time executing a rank
(dark blue) and idle time waiting for network communication (white).

Since Flat-MPI assigns every MPI rank to an MPI process, mapped to a
single core, it cannot perform any useful work while a rank is waiting. The wide
white-space segments in between computation segments in the figure show that
this variant suffers from the full cost of communication. On the other hand, the
MATE variant keeps cores busy by executing ranks while others communicate.
Indeed, the figure shows minimal white space separation between computation
segments. Furthermore, since a MATE process manages a pool of 64 ranks and
8 threads, it maximizes parallelism by allowing ranks to execute in any cores.

5.2 Test Case II: Cannon’s Algorithm

Fig. 11. Cannon variants.

Cannon’s algorithm [15] is a parallel algorithm
for computing the product of two dense square
matrices C = A × B in a series of

√
p steps,

where p is the number of ranks. Each rank owns
a square sub-block of C and local sub-blocks of
A and B. Each step rotates sub-blocks A and
B along rows and columns of the 2D processor
geometry and computes a partial matrix product
using dgemm to update its local portion of C
(C+ = A × B), as shown in Fig. 11 (top).

In this experiment, we show that MATE
improves over a manually optimized MPI vari-
ant. We consider three code variants: the Flat-
MPI variant establishes the performance base-
line, and it does not attempt to overlap commu-
nication with computation, while; the Olap-MPI
is a manually optimized version that overlaps
communication with computation by employing
additional buffers to exchange the rank’s A and
B submatrices for the next step while computing
the current.

The MATE variant adds a hierarchical
decomposition to the overlapping strategy. This
variant divides the input matrices into m0

2 level 0 submatrices, and then subdi-
vides these submatrices into m1

2 level 1 submatrices, where m0
2 is the number

of MATE processes and m1
2 is the number of local ranks. Local ranks declare

inter-rank dependencies only with local ranks in the same row and columns.
Each level 1 rank calculates a level 1 matrix multiplication and then rotates
shared pointers among local neighboring ranks residing in the same level 0 sub-
matrix, avoiding explicit intra-process data movement. This step is repeated
m0 times until the current iteration’s value of C at a process-level completes.

132 S. M. Martin and S. B. Baden

Rank residing in the process boundary then send their level 0 part of the local
A and B matrices to neighboring MATE processes (Fig. 11, bottom).

Cloverleaf3D - Strong Scaling Study

30%

39%

34%Network Communication Hidden:

4096 8192 16384
Cori Phase I Cores

0

2

4

6

8

10

12

P
er

fo
rm

an
ce

 (
G

C
el

ls
/s

) Flat MPI

MATE Model

Cannon2D - Weak Scaling Study

-- --

35%

45%

28%

19%
Network Communication Hidden:

4096 8192 16384
Cori Phase I Cores

0

30

60

90

120

150

180

210

240

270

P
er

fo
rm

an
ce

 (
T

F
lo

p
/s

) Flat MPI
Olap MPI
MATE Model

Fig. 12. Left: Cannon2D, weak scaling. Right: Cloverleaf3D, strong scaling results.
The numbers above each bar represent % of communication hidden.

Since the 2D Cannon algorithm requires that p be a perfect square, we ran
the MPI variants on 4K and 16K cores. The MATE variant provided added
flexibility, via MATE’s support for overdecomposition, enabling us to run on 8K
cores using 2 MATE ranks per core (for 4K and 16K cores, the MATE variant
ran with 4 MATE ranks per core). We performed a weak scaling study, starting
with a matrix size of n = 245762. Figure 12 (left) shows results for 4K, 8K, and
16K cores. On 16K cores, MATE was able to reduce 45% of the communication
cost on 4K cores, yielding a 1.13x speedup. MATE’s results exceeded that of the
manually optimized variant which yielded a 19% communication reduction.

5.3 Test Case III: Cloverleaf3D

Cloverleaf3D [4] is a Lagrangian-Eulerian hydrodynamics benchmark. It solves
the compressible Euler equations on a 3D Cartesian grid using an explicit,
second-order accurate stencil method. The grid is divided into volume cells con-
taining energy, density, pressure, and velocity variables. The computation in
CloverLeaf divides into different kernels that sweep over the entire grid and
updates one or multiple variables based on a kernel-specific stencil.

Cloverleaf3D exchanges boundary cells at different points of the solver ker-
nel among 26 nearest neighbors. The exchange routine uses a 3-stage approach
to reaching corner neighbors. First, ranks pack and exchange boundary face
information across the x-axis, including edges and corners. After unpacking the
incoming x-axis face, ranks pack and exchange face information across the y-axis.
This step is repeated for the z-axis face as well, allowing corner information to

MATE, a Unified Model for Communication-Tolerant Scientific Applications 133

reach neighbors at a 3-deep Manhattan distance. Given the complexity of this
code, it was not reasonable to employ an overlapping strategy manually.

Although Cloverleaf3D is programmed entirely in Fortran, we were able to
apply the MATE model by manually introducing calls to the MATE runtime,
instead of translation assisted by annotations. In the MATE variant, local ranks
do not exchange messages. Instead, each rank copies its boundary cells onto
their neighbors’ ghost cell space directly (i.e., via memcpy), avoiding message
packing, unpacking and exchange costs. Although this does not avoid intra-node
data motion entirely, it reduces the data motion costs considerably. Nevertheless,
we limited MATE to 4 ranks per core since finer decompositions did increase
buffering costs, unacceptably offsetting the benefits of improving overlap.

We performed a strong scaling study, keeping the number of elements fixed
at 10243. We report performance as the number of cells processed per second
(inverse of the time per cell metric provided in the original code). Figure 12
(right) shows results on 4K, 8K, and 16K cores. At 16K cores MATE was able to
reduce communication by 34% and yielded a 1.19x speedup, with similar results
at smaller scales. This result shows that MATE, through minimal modifications,
can reduce the cost of communication even in applications that are too complex
for manual restructuring.

6 Related Work

The MATE model is the successor of our previous project, Toucan [30]. Like
MATE, Toucan relies on overdecomposition and a dependency graph-driven task
parallel program. However, MATE makes three significant contributions. First, it
generalizes Toucan’s dependence model. Whereas Toucan provides a fixed set of
region types, MATE admits user-defined region types. Second, MATE introduces
a hierarchical locality-based decomposition model, which substantially enhances
the benefit of overdecomposition. Third, MATE adds inter-rank dependencies,
which enable efficient local synchronization without process-wide barriers that
impede the advance of ranks that are otherwise ready to continue.

Many parallel programming models have been proposed to reduce the cost
of communication. Source-to-source translation, as employed in Toucan and
MATE, is also used in Bamboo [32]. Although Bamboo supports dependency-
driven execution, it employs static inlining which causes code bloating and does
not support recursive code nor a hierarchical decomposition.

In FPMPI [25], MPI ranks run as user-level threads (ULT), rather than OS
processes. By using ULTs, ranks are no longer tied to the kernel scheduler and
are instead scheduled by a user-level runtime system that enables overdecompo-
sition. MPI+ULT models [14,28] describe how these mechanisms can be used
to overlap communication with computation. AMPI [20] is implemented on top
of Charm++ [24] which uses overdecomposition (virtualization) to support load
balancing. Our experiments using AMPI on stencil methods revealed that it was
unable to hide communication. Furthermore, none of these approaches combine
overdecomposition with a locality-based decomposition model which we have
found beneficial in hiding communication.

134 S. M. Martin and S. B. Baden

Hybrid MPI models, aka “MPI+X ”, use MPI to handle network communica-
tion, and then drop into a threading or shared memory library to avoid moving
data explicitly on-node. The widely used MPI+OpenMP [17] approach offers
the benefits of shared memory but requires a meticulous interaction between
both communication models. Additionally, programmers need to be careful when
using local synchronization mechanisms (e.g., omp barrier) that can stall threads
that are otherwise ready to continue, punishing performance. Another approach,
the MPI+MPI [19] model, extends the MPI interface with shared memory capa-
bilities that facilitate local shared memory access through shared objects (called
windows), which preserve portability since only the MPI interface is required.
MATE, on the other hand, enables shared memory among local ranks with a
simple interface. Similarly, work has been performed to instantiate MPI ranks
themselves as kernel-level threads, providing native shared memory access [35].

MPI/SMPSs [29] integrates the MPI model with SMPSs [34], a task-based
dependency model now used in OpenMP Tasking [33]. MPI/SMPSs provides
a directive-based interface to describe input/output dependencies across func-
tions that can contain MPI code. MATE’s interface is similar: programmers can
use these dependencies to build a valid MPI program that executes based on
data/execution dependencies. However, there is no support for overdecomposi-
tion; the programmer has to implement this capability themselves.

7 Conclusions

We introduced MATE, a new approach to developing distributed scientific appli-
cations that integrates communication-reducing mechanisms into a single, unified
model, providing a benefit that is greater than the sum of the parts. MATE sup-
ports hierarchical decomposition and locality models that enable efficient overde-
composition, a technique that enhances communication/computation overlap,
while preventing an increase in (and even reducing) intra-node data motion
without the need for a hybrid execution model. Results with two stencil meth-
ods and with matrix-matrix multiplication show that MATE can realize a notice-
able reduction in communication cost on large-scale experiments. MATE’s abil-
ity to hide network communication with the help of overdecomposition, while
managing intra-node data motion costs, provides a novel way to manage exces-
sive communication costs on upcoming exascale systems. Future research direc-
tions include: extending the MATE model to handle heterogeneous systems (e.g.,
GPU) and PGAS languages (e.g., UPC++ [12]).

Acknowledgments. This research was supported by the Advanced Scientific Com-
puting Research office of the U.S. Department of Energy under contracts No. DE-
FC02-12ER26118 and DE-FG02-88ER25053. It was also supported in part by the Ful-
bright Foreign Student Program grant from the U.S. Department of State. Scott Baden
dedicates his contributions to this paper to the memory of William Miles Tubbiola
(1934–2018).

MATE, a Unified Model for Communication-Tolerant Scientific Applications 135

References

1. https://www.mpi-forum.org/
2. https://www.openmp.org/
3. http://www.nersc.gov/users/computational-systems/cori/configuration/
4. http://uk-mac.github.io/CloverLeaf3D/
5. Cray MPI. https://pubs.cray.com/
6. Intel MPI library. https://software.intel.com/en-us/intel-mpi-library
7. MPICH library. http://www.mpich.org/
8. MVAPICH library. http://mvapich.cse.ohio-state.edu/
9. Open MPI library. https://www.open-mpi.org/

10. Arvind, K., Nikhil, R.S.: Executing a program on the MIT tagged-token dataflow
architecture. IEEE Trans. Comput. 39(3), 300–318 (1990). https://doi.org/10.
1109/12.48862

11. Babb, R.G.: Parallel processing with large-grain data flow technique. Computer
17(7), 55–61 (1984)

12. Bachan, J., et al.: The UPC++ PGAS library for exascale computing: extended
abstract. In: PAW17: Second Annual PGAS Applications Workshop, p. 4. ACM,
New York, 12–17 November 2017. https://doi.org/10.1145/3144779.3169108

13. Ballard, G., Carson, E., Demmel, J., Hoemmen, M., Knight, N., Schwartz, O.:
Communication lower bounds and optimal algorithms for numerical linear algebra.
Acta Numerica 23, 1–155 (2014)

14. Barrett, R.F., Stark, D.T., Vaughan, C.T., Grant, R.E., Olivier, S.L., Pedretti,
K.T.: Toward an evolutionary task parallel integrated MPI + X programming
model. In: Proceedings of the Sixth International Workshop on Programming Mod-
els and Applications for Multicores and Manycores, PMAM 2015, pp. 30–39. ACM,
New York (2015). https://doi.org/10.1145/2712386.2712388

15. Cannon, L.E.: A Cellular computer to implement the Kalman filter algorithm.
Ph.D. thesis, Bozeman, MT, USA (1969). aAI7010025

16. Chaimov, N., Ibrahim, K.Z., Williams, S., Iancu, C.: Exploiting communication
concurrency on high performance computing systems. In: Proceedings of the Sixth
International Workshop on Programming Models and Applications for Multicores
and Manycores, PMAM 2015, pp. 132–143. ACM, New York (2015). https://doi.
org/10.1145/2712386.2712394

17. Debudaj-Grabysz, A., Rabenseifner, R.: Nesting OpenMP in MPI to implement a
hybrid communication method of parallel simulated annealing on a cluster of SMP
nodes. In: Di Martino, B., Kranzlmüller, D., Dongarra, J. (eds.) EuroPVM/MPI
2005. LNCS, vol. 3666, pp. 18–27. Springer, Heidelberg (2005). https://doi.org/10.
1007/11557265 8

18. Dennis, J.: Data flow supercomputers. IEEE Comput. 13(11), 48–56 (1980)
19. Hoefler, T., et al.: MPI + MPI: a new hybrid approach to parallel programming

with MPI plus shared memory. Computing 95, 1121–1136 (2013). https://doi.org/
10.1007/s00607-013-0324-2

20. Huang, C., Lawlor, O., Kalé, L.V.: Adaptive MPI. In: Rauchwerger, L. (ed.) LCPC
2003. LNCS, vol. 2958, pp. 306–322. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24644-2 20

21. Iancu, C., Hofmeyr, S., Blagojević, F., Zheng, Y.: Oversubscription on multi-
core processors. In: 2010 IEEE International Symposium on Parallel Distributed
Processing (IPDPS), pp. 1–11 (April 2010). https://doi.org/10.1109/IPDPS.2010.
5470434

https://www.mpi-forum.org/
https://www.openmp.org/
http://www.nersc.gov/users/computational-systems/cori/configuration/
http://uk-mac.github.io/CloverLeaf3D/
https://pubs.cray.com/
https://software.intel.com/en-us/intel-mpi-library
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
https://www.open-mpi.org/
https://doi.org/10.1109/12.48862
https://doi.org/10.1109/12.48862
https://doi.org/10.1145/3144779.3169108
https://doi.org/10.1145/2712386.2712388
https://doi.org/10.1145/2712386.2712394
https://doi.org/10.1145/2712386.2712394
https://doi.org/10.1007/11557265_8
https://doi.org/10.1007/11557265_8
https://doi.org/10.1007/s00607-013-0324-2
https://doi.org/10.1007/s00607-013-0324-2
https://doi.org/10.1007/978-3-540-24644-2_20
https://doi.org/10.1007/978-3-540-24644-2_20
https://doi.org/10.1109/IPDPS.2010.5470434
https://doi.org/10.1109/IPDPS.2010.5470434

136 S. M. Martin and S. B. Baden

22. Quinlan, D.: ROSE: compiler support for object-oriented frameworks. Parallel Pro-
cess. Lett. 10, 215–226 (2000)

23. Kalé, L.V.: The virtualization approach to parallel programming: runtime opti-
mizations and the state of the art. In: Los Alamos Computer Science Institute
Symposium-LACSI (2002)

24. Kale, L.V., Krishnan, S.: CHARM++: a portable concurrent object oriented sys-
tem based on C++. In: Proceedings of the Eighth Annual Conference on Object-
oriented Programming Systems, Languages, and Applications, OOPSLA 1993, pp.
91–108. ACM, New York (1993). https://doi.org/10.1145/165854.165874

25. Kamal, H., Wagner, A.: FG-MPI: fine-grain MPI for multicore and clusters. In:
2010 IEEE International Symposium on Parallel Distributed Processing, Work-
shops and Phd Forum (IPDPSW), pp. 1–8, April 2010. https://doi.org/10.1109/
IPDPSW.2010.5470773

26. Krishnamurthy, A., et al.: Parallel programming in split-C. In: Proceedings of the
1993 ACM/IEEE Conference on Supercomputing, Supercomputing 1993, pp. 262–
273. ACM, New York (1993). https://doi.org/10.1145/169627.169724

27. Lavrijsen, W., Iancu, C.: Application level reordering of remote direct memory
access operations. In: 2017 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), pp. 988–997, May 2017. https://doi.org/10.1109/IPDPS.
2017.98

28. Lu, H., Seo, S., Balaji, P.: MPI+ULT: overlapping communication and computa-
tion with user-level threads. In: 2015 IEEE 17th International Conference on High
Performance Computing and Communications, 2015 IEEE 7th International Sym-
posium on Cyberspace Safety and Security, and 2015 IEEE 12th International Con-
ference on Embedded Software and Systems, pp. 444–454, August 2015. https://
doi.org/10.1109/HPCC-CSS-ICESS.2015.82

29. Marjanović, V., Labarta, J., Ayguadé, E., Valero, M.: Overlapping communication
and computation by using a hybrid MPI/SMPSS approach. In: Proceedings of
the 24th ACM International Conference on Supercomputing, ICS 2010, pp. 5–16.
ACM, New York (2010). https://doi.org/10.1145/1810085.1810091

30. Martin, S.M., Berger, M.J., Baden, S.B.: Toucan - a translator for communica-
tion tolerant MPI applications. In: 2017 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pp. 998–1007, May 2017. https://doi.
org/10.1109/IPDPS.2017.44

31. NERSC: National Energy Research Scientific Computing Center. http://www.
nersc.gov

32. Nguyen, T., Cicotti, P., Bylaska, E., Quinlan, D., Baden, S.B.: Bamboo - translat-
ing MPI applications to a latency-tolerant, data-driven form. In: 2012 International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pp. 1–11, November 2012. https://doi.org/10.1109/SC.2012.23

33. OpenMP, ARB: OpenMP 4.0 specification (2013)
34. Perez, J.M., Badia, R.M., Labarta, J.: A dependency-aware task-based program-

ming environment for multi-core architectures. In: 2008 IEEE International Con-
ference on Cluster Computing, pp. 142–151, September 2008. https://doi.org/10.
1109/CLUSTR.2008.4663765

35. Tang, H., Yang, T.: Optimizing threaded MPI execution on SMP clusters. In:
Proceedings of the 15th International Conference on Supercomputing, ICS 2001,
pp. 381–392. ACM, New York (2001). https://doi.org/10.1145/377792.377895

https://doi.org/10.1145/165854.165874
https://doi.org/10.1109/IPDPSW.2010.5470773
https://doi.org/10.1109/IPDPSW.2010.5470773
https://doi.org/10.1145/169627.169724
https://doi.org/10.1109/IPDPS.2017.98
https://doi.org/10.1109/IPDPS.2017.98
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.82
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.82
https://doi.org/10.1145/1810085.1810091
https://doi.org/10.1109/IPDPS.2017.44
https://doi.org/10.1109/IPDPS.2017.44
http://www.nersc.gov
http://www.nersc.gov
https://doi.org/10.1109/SC.2012.23
https://doi.org/10.1109/CLUSTR.2008.4663765
https://doi.org/10.1109/CLUSTR.2008.4663765
https://doi.org/10.1145/377792.377895

MATE, a Unified Model for Communication-Tolerant Scientific Applications 137

36. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance data with
PAPI-C. In: Müller, M.S., Resch, M.M., Schulz, A., Nagel, W.E. (eds.) Tools
for High Performance Computing 2009, pp. 157–173. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11261-4 11

37. Tomasulo, R.M.: An efficient algorithm for exploiting multiple arithmetic units.
IBM J. Res. Dev. 11(1), 25–33 (1967). https://doi.org/10.1147/rd.111.0025

38. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990). https://doi.org/10.1145/79173.79181

39. Zhang, Q., Johansen, H., Colella, P.: A fourth-order accurate finite-volume method
with structured adaptive mesh refinement for solving the advection-diffusion equa-
tion. SIAM J. Sci. Comput. 34(2), B179–B201 (2012). https://doi.org/10.1137/
110820105

https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1145/79173.79181
https://doi.org/10.1137/110820105
https://doi.org/10.1137/110820105

GASNet-EX: A High-Performance,
Portable Communication Library

for Exascale

Dan Bonachea(B) and Paul H. Hargrove

Computational Research Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA

{DOBonachea,PHHargrove}@lbl.gov
https://gasnet.lbl.gov

Abstract. Partitioned Global Address Space (PGAS) models, typified
by languages such as Unified Parallel C (UPC) and Co-Array Fortran,
expose one-sided communication as a key building block for High Per-
formance Computing (HPC) applications. Architectural trends in super-
computing make such programming models increasingly attractive, and
newer, more sophisticated models such as UPC++, Legion and Chapel
that rely upon similar communication paradigms are gaining popularity.
GASNet-EX is a portable, open-source, high-performance communica-
tion library designed to efficiently support the networking requirements
of PGAS runtime systems and other alternative models in future exascale
machines. The library is an evolution of the popular GASNet communica-
tion system, building upon over 15 years of lessons learned. We describe
and evaluate several features and enhancements that have been intro-
duced to address the needs of modern client systems. Microbenchmark
results demonstrate the RMA performance of GASNet-EX is competitive
with several MPI-3 implementations on current HPC systems.

Keywords: HPC · PGAS · RMA · Active Messages · Middleware

1 Introduction

1.1 Background on GASNet-1

The GASNet project began in 2002 [14] as an effort to provide a common,
open-source HPC communication API tailored for use as a compilation tar-
get by Partitioned Global Address Space (PGAS) languages, notably including
UPC [75], Titanium [38], and Co-Array Fortran [65]. Communication behavior in
these models is often characterized by one-sided, remote-memory-access (RMA)
communication (i.e., Puts and Gets operating on physically distributed mem-
ory), and sensitivity to the latency and overheads of fine-grained communication.
The initial GASNet API (hereafter referred to as GASNet-1) offers two primary
modes of communication: (1) a one-sided RMA interface that exposes the RDMA
This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2019
M. Hall and H. Sundar (Eds.): LCPC 2018, LNCS 11882, pp. 138–158, 2019.
https://doi.org/10.1007/978-3-030-34627-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34627-0_11&domain=pdf
http://orcid.org/0000-0002-0724-9349
http://orcid.org/0000-0001-6691-5287
https://doi.org/10.1007/978-3-030-34627-0_11

GASNet-EX: A High-Performance Communication Library for Exascale 139

capabilities of network hardware, enabling their use to directly implement PGAS
Put/Get operations on user data structures, and (2) a streamlined Active Mes-
sage (AM) [30] interface to provide extensibility and efficient management of the
client’s parallel runtime system.

Design goals for the GASNet communication system included: network-
independence (insulating long-lived clients from low-level hardware details and
changes), language-independence (leaving details of the PGAS system such as
global pointer representation and allocation strategy to the client), robust multi-
threading support (efficiently allowing a variety of client threading models on
multi-core architectures), and widespread portability. The GASNet development
effort has focused on providing a high-performance, production-quality commu-
nication layer tailored for the needs of PGAS systems.

The GASNet API [17] has become the de-facto communication standard
targeted by portable PGAS system implementations developed by many institu-
tions. Current and historical GASNet clients include: LBNL UPC++ [3,4,79],
Berkeley UPC [22], GCC/UPC [46], Clang UPC [45], Cray Chapel [19], Stan-
ford Legion [6], Titanium [78], Rice Co-Array Fortran [26], OpenUH Co-
Array Fortran [29], OpenCoarrays in GCC Fortran [32], OpenSHMEM Ref-
erence implementation [70], Omni XcalableMP [57], and several miscellaneous
projects [10,18,20,27,51,52,71]. Some of these clients implement models that fall
outside the traditional PGAS definition, showing that the applicability of GAS-
Net exceeds the original goals. The services provided and the match to modern
hardware capabilities make GASNet an excellent communication substrate for
implementing a wide variety of models.

GASNet uses the term “conduit” to refer to any complete implementation of
the GASNet API which targets a specific network device or lower-level network-
ing layer. GASNet conduits have been written that target a variety of past and
current vendor-proprietary or hardware-specific networking interfaces, includ-
ing: OpenFabrics Verbs/VAPI for InfiniBand [37,42], Mellanox MXM for Infini-
Band [53], Cray GNI for Gemini and Aries fabrics [1,36,41], Intel PSM2 for
Omni-Path [9,44], IBM PAMI for BlueGene/Q (and others) [49], IBM DCMF
for BlueGene/P [50,63], IBM LAPI for SP Colony/Federation [40], Cray Portals
for XT3/XT4 [16], SHMEM for the Cray X1 [8] and SGI Altix [28], Quadrics
elan3/elan4 for QsNetI/II [69], Myricom GM for Myrinet [7,11], and Dolphin
SISCI [73]. There are also GASNet conduits implemented over portable network
APIs that enable deployment on early systems or those lacking HPC networking
hardware. These include: udp-conduit (for any network with a TCP/IP stack,
such as Ethernet) mpi-conduit (for any system providing MPI 1.1 [55] or newer),
ofi-conduit (targeting the portable libfabric API [35]), portals4-conduit (for San-
dia Portals 4 [5]), and smp-conduit (for single-node systems, such as laptops).

Most of the conduits described above were authored by members of our
group, but several conduits have been contributed by a relevant vendor or exter-
nal group. Additionally, some projects have developed forks of GASNet (for
instance to target non-public network APIs), including MVAPICH2-X [47] and
others [48,77]. GASNet’s implementation is designed so that authors of new

140 D. Bonachea and P. H. Hargrove

conduits only need to port a minimal core (consisting of a few job management
routines and the AM interfaces) to achieve full functionality. We provide refer-
ence implementations of all other interfaces, which can be incrementally replaced
with higher-performing native versions. The GASNet implementation is written
in standard C and is very portable across architectures and operating systems.
Over the years, it has been ported to a diverse range of systems, encompassing
over 10 compiler families, 15 operating systems and dozens of architectures –
see [33] for details.

1.2 Philosophy of GASNet-EX Improvements

GASNet-EX is the next generation of the GASNet-1 communication system,
continuing our commitment to provide portable, high-performance, production-
quality, open-source software. The GASNet-EX upgrade is being done over the
next several years as part of the U.S. Department of Energy’s Exascale Comput-
ing Program (ECP). The GASNet interfaces are being redesigned to accommo-
date the emerging needs of exascale supercomputing, providing communication
services to a variety of programming models on current and future HPC archi-
tectures. This work builds on fifteen years of lessons learned with GASNet-1, and
is informed and motivated by the evolving needs of distributed runtime systems.

The end of Moore’s Law scaling for serial processor performance has led to
increasing levels of on-die parallelism, lighter-weight cores, and deeper on-node
memory hierarchies; these trends are expected to continue in future HPC archi-
tectures. We expect future runtime systems and applications will migrate away
from bulk-synchronous parallel algorithms and increasingly adopt approaches
with looser inter-node synchronization, using aggressively asynchronous commu-
nication such as in UPC++ [3] or dynamic tasking features available in systems
such as Chapel [19], Legion [6] and X10 [21]. This motivates a communication
system interface that enables the client to adapt to the dynamic behavior of
the system, for example adjusting the communication schedule on-the-fly based
on network backpressure. There is also motivation to improve the efficiency of
memory buffer behavior in the communication system, for example providing
finer-grained control over buffer lifetime and exposing mechanisms to reduce in-
memory payload copying. Modern HPC networks often include hardware sup-
port for offloading various communication-related tasks from the host processor,
such as packing/unpacking of non-contiguous communication buffers, performing
atomic memory updates initiated by remote peers, and orchestrating collective
communications (e.g., reductions and barriers). Interfaces are being added in
GASNet-EX that allow clients to express these high-level patterns in ways that
can take advantage of such hardware support where available. Finally, there is a
need for improved system abstractions to enable interoperability in hybrid pro-
grams, allow finer-grained or thread-level partitioning of communication work,
and ensure all parts of the communication system scale efficiently to millions of
ranks.

GASNet-EX: A High-Performance Communication Library for Exascale 141

2 Design of GASNet-EX

2.1 Overview of Improvements

The GASNet interface is being redesigned and extended in a number of ways
to meet the needs of exascale runtime systems. Most of the functionality and
abstractions from GASNet-1 are still present, but have been generalized in
several ways. (The GASNet-EX distribution notably includes a backwards-
compatibility layer to enable incremental migration of current GASNet-1 client
software to GASNet-EX). In GASNet-1, initialization was monolithic and
assumed a single client/endpoint/segment per process. In GASNet-EX, initial-
ization becomes more incremental and includes an object model where the Client,
registered memory Segments and communication Endpoints are all managed sep-
arately and explicitly. This design has already enabled several interface improve-
ments, and enables clients to naturally express more complicated use cases. For
example, AM handler registration is now per-Endpoint and can be performed
incrementally, improving client modularity. The Endpoint abstraction allows for
multiple isolated communication contexts to co-exist within a process, for exam-
ple enabling GASNet-EX Active Messages to target specific threads within a
remote process. GASNet-EX adds APIs to scalably query and manage hierar-
chical process layouts and memory Segments residing in inter-process shared
memory.

Here is the signature for a representative non-blocking RMA Put operation
in GASNet to demonstrate some of the changes:

gasnet_handle_t /* GASNet -1 */

gasnet_put_nb(gasnet_node_t node , void *dest_addr ,

void *src_addr , size_t nbytes);

gex_Event_t /* GASNet -EX */

gex_RMA_PutNB(gex_TM_t tm , gex_Rank_t rank ,

gex_Addr_t dest_addr ,

void *src_addr , size_t nbytes ,

gex_Event_t *lc_opt , gex_Flags_t flags);

In both cases the contiguous source payload is indicated by a base address
and size, but everything else has changed. In GASNet-1, the destination process
of every point-to-point operation was indicated using an integer node id. In
GASNet-EX a destination Endpoint is named via a team (TM) and rank id pair
– improving client composability, and enabling Endpoints to be dynamically
added to the system for various purposes. The team argument names not only
an ordered set of Endpoints, but also the local representative Endpoint and its
containing Client. This object hierarchy can be traversed by client code, which
can query various attributes and even set client-owned context attributes.

In the GASNet-1 API, the remote target for the RMA Put is specified using
a virtual address. The GASNet-EX API still allows this, but additionally enables
offset-based addressing into a memory Segment bound to the destination End-
point – potentially improving scalability of client metadata, and enabling future

142 D. Bonachea and P. H. Hargrove

work in binding of memory Segments to non-DRAM device memory. GASNet-
EX adds a flags argument to most functions for extensibility, allowing the seman-
tics and performance characteristics of many calls to be modified by passing
appropriate flags (e.g., passing assertions about the argument values that can
obviate the need for more expensive dynamic checking).

GASNet-1 non-blocking operations return a monolithic handle used for later
synchronization. This concept has been generalized to GASNet-EX Events,
which can have sub-Events representing intermediate steps that occur before
completion of an entire operation, enabling clients to explicitly respond to such
state changes. For example, the RMA Put has an argument for specifying the
local completion behavior of the source memory (i.e. the two options in GASNet-
1 being stall upon injection or delay until remote completion). GASNet-EX
allows the operation to generate a sub-Event, so the client initiating the Put can
independently track both local and remote completion of the same operation.

All figures in the remainder of Sect. 2 are reproduced (with permission) from
our technical report [36] and show the performance of GASNet-EX aries-conduit
on Cray XC40 systems (Cray Aries network) – see the report for full method-
ological details (omitted from this paper due to space constraints).

2.2 Local Completion Control

As mentioned above, GASNet-EX adds sub-Events into the generalization of the
GASNet-1 handle abstraction, and “local completion” is one of the uses for this
new concept. With the new option to independently track local completion, a
client can free or reuse a source buffer as soon as it is safe to do so without the
cost of blocking for local completion in the injection call (the only mechanism
available in GASNet-1 for separating local and remote completion). This provides
an increase in time available for overlap of communication with computation, or
with additional communication. To evaluate the effects of this enhancement, we
measured the bandwidth achieved by a microbenchmark where the client issues
a series of non-blocking Puts but requests each injection to stall for local comple-
tion before return. Figure 1 shows this benchmark can be improved by as much
as 32% through the separation of local completion from operation completion.

2.3 Immediate-Mode Communication Injection

Both GASNet APIs permit “non-blocking” communication injection operations
to block temporarily (stall) when resources are not readily available to initiate
the requested communication. This backpressure behavior arises fundamentally
from a design principle prohibiting unbounded buffering within our GASNet
implementation. However, a client of GASNet-EX can use the new flags argument
to request “immediate mode” injection, wherein an operation that determines
it would stall will instead be cancelled and return a distinguishing value. This
enables the client to dynamically respond to the resource congestion along that
path in a client-specific manner; for example rescheduling the operation for later

GASNet-EX: A High-Performance Communication Library for Exascale 143

Fig. 1. Non-bulk Put flood bandwidth on Cray Aries with and without use of a local
completion event at the GNI level.

retry or electing to attempt communication with a different, less-congested peer
(as one might do when implementing a work-stealing task scheduler).

The effect of stalling can be especially evident in communications using AMs
destined to a peer which is not actively entering the GASNet library (an “inat-
tentive” peer). Our investigation found that exposing backpressure in the Active
Message APIs can reduce running time by as much as 97% on a synthetic bench-
mark simulating communication with inattentive peers. This is illustrated in
Fig. 2 which shows the reduction in overall communication time obtained by
using immediate-mode AM injection to dynamically adjust the communication
schedule in response to backpressure, as compared to three static schedules that
stall on backpressure.

Fig. 2. Reduced communication delays using immediate-mode Active Messages.

144 D. Bonachea and P. H. Hargrove

2.4 Active Message Improvements

Inclusion of AMs in GASNet-1 provides extensibility and efficient management of
the client’s parallel runtime, for instance UPC shared-heap management or locks.
More recent GASNet clients such as Cray Chapel [19] and Stanford Legion [6]
make heavy use of GASNet AMs for moving computation to data. GASNet-
EX introduces several improvements to the AM interfaces, primarily related to
efficient use of memory and reduced in-memory copies. GASNet-EX AM calls
provide for immediate-mode injection and local-completion control, as described
previously. These are notable improvements over GASNet-1, where AM injection
calls unconditionally block until the message is guaranteed to enter the network,
and return only after local completion of the payload. While GASNet-1 has APIs
to query the maximum AM payload for distinct classes of message, GASNet-EX
refines the precision of these queries; this enables the client to, for instance,
take advantage of space otherwise occupied by unused arguments, or to send
significantly larger payloads when the destination is reachable through shared
memory.

In addition to these incremental improvements, GASNet-EX adds an entirely
new family of AM interfaces known as “Negotiated-Payload” AMs (NP-AM).
The new NP-AM feature utilizes a split-phase send that, among other new
capabilities, allows GASNet-EX to provide a network-level buffer into which
the client directly writes its outgoing payload. In clients that construct pay-
loads dynamically (for instance combining a header with data from a higher
layer) this eliminates an in-memory copy often required to concatenate the AM
header and to move the payload into memory registered with the network. Our
measurements show that this use of NP-AM to reduce memory copies in the
critical path improves measured bandwidth on an AM ping-pong benchmark by
as much as 14% relative to the traditional “Fixed-Payload” AMs in GASNet-1,
as illustrated by the upper (red) series in Fig. 3.

Fig. 3. NP-AM speedup of ping-pong test with dynamically generated payload. (Color
figure online)

GASNet-EX: A High-Performance Communication Library for Exascale 145

2.5 Remote Atomics

Remote atomics are a new feature in GASNet-EX, providing non-blocking inter-
faces to perform a rich set of operations atomically on several data types in
distributed memory. The semantic design for GASNet-EX remote atomics is
derived from that used in UPC 1.3 [75], where operations are performed with
respect to an “atomic domain”. An atomic domain is constructed (outside the
critical path) by specifying a data type and a set of atomic operations, and is
later used to initiate any of the given operations on data of the given type. Use
of atomic domains allows for selection of the fastest-available implementation
that can correctly provide the set of atomic operations needed concurrently by
the application. This is important because in general one cannot mix atomics
offloaded to a NIC with others implemented using the host CPU concurrently to
the same target location, due to coherency problems on many modern systems.
Atomic domains address this by selecting NIC offload implementations if and
only if the entire set of operations given at domain creation can be coherently
offloaded, and a CPU-based implementation otherwise. Optional flags to atomic
domain construction can guide algorithm selection in application-specific ways,
for example to favor the performance of accesses across the network, or trade it
off for improved performance of updates from shared-memory peers.

Our measurements show there is significant advantage to offloading of atomic
operations to the network hardware support provided by Cray Aries, as com-
pared to a network-independent reference implementation, such as one a client
author could write using AMs. The latency of a 64-bit fetch-and-add was reduced
by 70% on a point-to-point test, and a hot-spot test was shown to scale robustly
as illustrated in Fig. 4. Future work to offload atomic operations to InfiniBand
network hardware is expected to yield qualitatively similar results.

Fig. 4. Scaling of a remote atomics hot-spot test on the Cray Aries network.

146 D. Bonachea and P. H. Hargrove

2.6 Non-contiguous RMA

A set of extensions to GASNet-1 were proposed in [12] to support non-contiguous
RMA operations. These types of operations may be generated by optimizations
performed by UPC and CAF compilers, or can be used by application authors
or distributed array libraries to express transfer of multidimensional array sec-
tions. The extensions are jointly referred to as “VIS” and include “Vector”,
“Indexed” and “Strided” APIs for Put and Get, differing in the generality (and
thus size) of the metadata used to describe the source and destination regions.
The Strided design for multidimensional array sections was influenced by that of
ARMCI [62]. While GASNet-1 fully implemented the VIS extensions, they were
never included in the formal specification. GASNet-EX incorporates the VIS
APIs (no longer considered extensions) with updates to express local-completion
control and immediate-mode injection. The implementation of VIS in GASNet-
EX leverages new EX features (most notably the Active Message enhancements)
to improve performance relative to GASNet-1. Figure 5 demonstrates the band-
width improvement of a microbenchmark measuring a representative 3-d Strided
Put operation, implemented inside GASNet-EX using traditional AM or NP-
AM, relative to the bandwidth achieved by the GASNet-1 VIS implementation.

Fig. 5. Improved Strided Put performance, relative to GASNet-1.

2.7 Collective Communication

As illustrated in Sect. 2.1, point-to-point communication in GASNet-EX uses a
(team, rank) pair to identify the peer, whereas GASNet-1 took only a rank.
In addition to this role in point-to-point communication, teams name the par-
ticipants in collective communications operations. As with VIS, collectives were
implemented in GASNet-1 [64] but never appeared in a formal specification.
GASNet-EX adds specification and implementation of collective operations, with
key improvements over the APIs implemented in GASNet-1. GASNet-EX col-
lectives are always non-blocking, using the same Event type as all other asyn-
chronous operations, whereas GASNet-1 has a distinct type and APIs for track-
ing completion of collectives. The use of the general Event infrastructure enables

GASNet-EX: A High-Performance Communication Library for Exascale 147

local-completion control for collectives. Finally, the GASNet-EX reduction oper-
ation includes type information, lacking from GASNet-1, which is critical to
enabling network hardware offload.

2.8 Design Improvements for Scalability

One of the primary motivations behind the redesign of GASNet is to improve
scalability of both the implementation and client-facing APIs—a necessary
step towards achieving exascale performance on upcoming systems, which are
expected to reach millions of cores. Several GASNet-1 APIs were designed with-
out sufficient allowance for such extreme-scale systems, and GASNet-EX replaces
these with more scalable alternatives. For example, the GASNet-1 function to
query segment information writes to a client-allocated array with entries for
every process in the job, imposing a non-scalable requirement on both the client
and library. GASNet-EX instead provides a query to retrieve information about
a selected peer, consuming only a small constant amount of memory and enabling
implementations that discover peer information on-demand at scale. There are
also new scalable queries for processes to discover information regarding co-
located peers within a hierarchical system.

GASNet-EX API extensions to use offset-based addressing in RMA calls
(Sect. 2.1) will enable client runtimes supporting symmetric heap features to
eliminate non-scalable base address tables. Immediate-mode injection (Sect. 2.3)
improves support for asynchrony, strengthening latency tolerance and enabling
dynamic adjustment to congestion and load imbalance that become more preva-
lent at scale. The redesigned GASNet-EX teams interface (Sect. 2.7) includes
scalable rank translation queries designed to keep non-scalable tables out of
client data structures. Enhancements enabling NIC hardware offload of collec-
tives (Sect. 2.7) and remote atomics (Sect. 2.5) are expected to become increas-
ingly important at extreme scale.

3 RMA Microbenchmarks

Both the specification and implementation of GASNet-EX are still evolving.
However, as described in the previous section, the new features are already
capable of delivering measurable benefits for use cases of interest. These new fea-
tures have not come at the cost of GASNet-1’s core competencies in RMA and
AM. This section presents microbenchmarks measuring the RMA performance
of GASNet-EX on four systems, demonstrating that it remains competitive with
MPI-3 RMA. Application-level benchmarks would introduce overheads specific
to the client runtime, and are outside the scope of this paper.

Our measurements attempt to reproduce the experience of a non-expert
end-user. On three vendor-integrated systems using environment modules, we
have used the default modules with only one exception to be described below.
On a commodity InfiniBand cluster we have used the compiler pre-installed
as /usr/bin/gcc. When building software (including GASNet-EX and all

148 D. Bonachea and P. H. Hargrove

microbenchmarks) we followed the instructions without the application of any
expert knowledge. No configuration settings, environment variables, or simi-
lar means were used to improve the performance of GASNet-EX or MPI1.
We benchmarked GASNet-EX version 2018.9.0 using two tests selected from
those provided with the source code distribution. For MPI-3 benchmarking we
have selected the publicly available Intel MPI Benchmarks [43] (IMB), version
v2018.1.

3.1 Description of the Systems

The first two systems are the partitions of the Cray XC40 [23,31] system at
NERSC [61], known as “Cori”. Both use a Cray Aries [1] network, but they have
distinct node types: “Cori-I” [59] nodes each have two Intel Xeon E5-2698v3
16-core “Haswell” processors and “Cori-II” [60] nodes each have a single Intel
Xeon Phi 7250 “KNL” processor with 272 hardware threads. All tests on the
Cori systems were compiled with the default programming environment mod-
ules: PrgEnv-intel/6.0.4, intel/18.0.1.163 and cray-mpich/7.7.0. The
only non-default modules used were for CPU-specific optimization: following
NERSC’s user documentation, compilation of code to execute on Cori-I and
Cori-II used the craype-haswell and craype-mic-knl environment modules,
respectively.

The “Gomez” system at JLSE [2] is a commodity InfiniBand cluster. Each
node has two Intel Xeon E7-8867v3 “Haswell-EX” CPUs and is connected to a
100Gb/s EDR InfiniBand network by a Mellanox “ConnectX-4” Host Channel
Adapter (HCA). All tests on this system were compiled with the system-default
GNU compilers, version 4.8.5 20150623 (Red Hat 4.8.5-16). MPI tests used
MVAPICH2 [58], version 2.3.

The “Summitdev” [67] system at OLCF [66] consists of IBM S822LC [76]
nodes, each with two 10-core POWER8 CPUs and connected to a 100 Gb/s EDR
InfiniBand network by two Mellanox “ConnectX-4” HCAs, each with affinity to
a single socket. Software compiled on this system used the default IBM XL com-
pilers, version V13.1.6. MPI tests use the default IBM Spectrum MPI, version
10.2.0.0-20180110.

3.2 RMA Flood Bandwidth Benchmark

A “flood bandwidth” benchmark measures achievable bandwidth at a given
transfer size by initiating a large number of non-blocking transfers and wait-
ing for them all to fully complete. The reported metric is the total volume of
data transferred, divided by the total elapsed time. We report uni-directional
(one initiator to one target) flood bandwidths, where the passive target waits in
a barrier.
1 On Summitdev we set one environment variable to restrict the MPI implementa-

tion to a single rail of the dual-rail network, to provide a meaningful comparison
to GASNet-EX. We recommend this configuration because use of a single rail per
process can yield significant latency improvements.

GASNet-EX: A High-Performance Communication Library for Exascale 149

For GASNet-EX we used the testlarge microbenchmark to measure perfor-
mance of the gex RMA PutNBI and gex RMA GetNBI functions, synchronized with
a final gex NBI Wait. We measured flood bandwidth of the MPI Put and MPI Get
functions using the “Aggregate” timings from, respectively, the Unidir put
and Unidir get tests from the IMB-RMA suite (these tests measure the time to
issue RMA and synchronize using MPI Win flush, within a passive-target access
epoch established by a MPI Win lock(SHARED) call outside the timed region –
see [43] for further details). The testlarge benchmark reports bandwidths in
units of “MiB/s” (220 bytes per second), whereas IMB-RMA uses “MB/s” (106

bytes per second). Both have been converted to “GiB/s” (230 bytes per sec-
ond) for the plots which follow. To allow comparison between RMA and mes-
sage passing, the plots which follow also report uni-directional bandwidth of
MPI Isend/MPI Irecv, from the “Aggregate” timings of the Uniband test from
the IMB-MPI1 suite.

All tests ran between two compute nodes, using a single process per node.
Data was collected from 16 distinct batch jobs, each running one instance of
each GASNet-EX and MPI test back-to-back. Each data point plotted reports
the maximum achieved bandwidth for that benchmark and transfer size. For
RMA tests we used 100, 000 iterations on the Aries systems, and 10, 000 on the
EDR InfiniBand systems. For the message passing test, we used 5, 000 and 500
iterations, respectively.

In Fig. 6, “×” markers denote GASNet-EX RMA, “◦” markers denote MPI-
3 RMA, and “+” markers denote MPI message passing. RMA Put results are
distinguished by the use of solid lines in shades of blue, while RMA Get results
use dot-dashed lines in shades of red. Dashed green lines are message-passing
results.

On three of the four systems, the bandwidth of GASNet-EX Put and Get
are seen to rise rapidly to saturation, at payloads as small as 4 or 8KiB. All
GASNet-EX saturation bandwidths are at least comparable to their MPI-3 RMA
analogue. The KNL-based Cori-II system shows behavior different from the other
three, and this is particularly unexpected because Cori-I and Cori-II use the same
network and software versions. Doerfler et al. [25] identified the cause of the two
maximum bandwidth plateaus on this system as an issue with PCIe bus latency.

3.3 RMA Latency Benchmark

We next report on the round-trip latency of GASNet-EX and MPI-3 RMA
operations. These benchmarks report the mean time to fully complete a sin-
gle RMA Put or Get operation, computed by timing a long sequence of
blocking operations. For GASNet-EX we measured the gex RMA PutBlocking
and gex RMA GetBlocking functions using the testsmall microbenchmark.
For MPI-3 benchmarking we report the “Non-aggregate” timings from the
Unidir put and Unidir get tests from the IMB-RMA suite, which are seman-
tically equivalent to the GASNet-EX test. These are the same tests used to
measure flood bandwidth, but differ by executing a sequence of MPI Put (or
MPI Get) calls alternating with calls to MPI Win flush, whereas the “Aggregate”
timings used for bandwidth have only a single MPI Win flush at the end.

150 D. Bonachea and P. H. Hargrove

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

256 B 512 B 1kiB 2kiB 4kiB 8kiB 16kiB 32kiB 64kiB 128kiB 256kiB 512kiB 1MiB 2MiB 4MiB

Cori-I:
Haswell

Aries
Cray MPI

B
an

dw
id

th
 (

G
iB

/s
)

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

256 B 512 B 1kiB 2kiB 4kiB 8kiB 16kiB 32kiB 64kiB 128kiB 256kiB 512kiB 1MiB 2MiB 4MiB

Cori-II:
KNL
Aries

Cray MPI

B
an

dw
id

th
 (

G
iB

/s
)

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

 0

 2

 4

 6

 8

 10

 12

256 B 512 B 1kiB 2kiB 4kiB 8kiB 16kiB 32kiB 64kiB 128kiB 256kiB 512kiB 1MiB 2MiB 4MiB

Gomez:
Haswell-EX
InfiniBand

MVAPICH2

B
an

dw
id

th
 (

G
iB

/s
)

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

 0

 2

 4

 6

 8

 10

 12

256 B 512 B 1kiB 2kiB 4kiB 8kiB 16kiB 32kiB 64kiB 128kiB 256kiB 512kiB 1MiB 2MiB 4MiB

SummitDev:
POWER8
InfiniBand

IBM Spectrum MPI

B
an

dw
id

th
 (

G
iB

/s
)

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Fig. 6. Uni-directional flood bandwidth versus transfer size.

GASNet-EX: A High-Performance Communication Library for Exascale 151

Data was collected from the same 16 batch jobs described for the flood band-
width benchmark. Our results are summarized in Table 1, which reports the min-
imum latency achieved by each benchmark for the cases of blocking RMA Put
and Get with 8-byte payloads. Each row includes the ratio of the correspond-
ing GASNet-EX and MPI-3 results, which is also representative of timings over
power-of-two sizes from 4 bytes to 1024 bytes (not shown). In all cases mea-
sured, GASNet-EX demonstrated comparable or improved latency relative to
MPI-3 RMA.

Table 1. Round-trip latency of 8-Byte RMA accesses.

System 8-Byte RMA Put latency 8-Byte RMA Get latency

GASNet-EX MPI-3 RMA Ratio GASNet-EX MPI-3 RMA Ratio

Cori-I 1.07 µs 1.20 µs 0.89 1.43 µs 1.57 µs 0.91

Cori-II 2.15 µs 3.42 µs 0.63 2.60 µs 4.06 µs 0.64

Gomez 1.41 µs 1.51 µs 0.94 1.82 µs 1.91 µs 0.95

Summitdev 1.61 µs 8.10 µs 0.20 2.10 µs 8.13 µs 0.26

4 Related Work

The GASNet library provides communication services for a wide variety of run-
time clients, as discussed in Sect. 1.1. The communication requirements of these
clients can be broadly summarized as including portable, high-performance RMA
for one-sided data motion, and Active Messages that trigger remote code exe-
cution as a building block for higher-level distributed protocols. This section
describes competing middleware efforts that provide related facilities.

At the time the GASNet project began, the most notable related effort was
the RMA extensions introduced in the MPI-2 specification [54]. The widespread
availability and investment in MPI implementations over the years makes MPI
a politically attractive communication substrate. However as explained in [15], a
number of fundamental semantic defects in the MPI-2 RMA specification made
it unsuitable for practical use as communication middleware for PGAS run-
times – justifying the investment in approaches tailored to the needs of PGAS
clients, such as GASNet and ARMCI [62]. Most of these defects were subse-
quently addressed fourteen years later in the MPI-3 specification [56]. Most
importantly, the introduction of the (optional) MPI WIN UNIFIED memory model
and dynamic MPI RMA windows made it feasible to use passive-target MPI
RMA to satisfy the basic RMA communication needs of some PGAS runtimes.
Section 3 demonstrates the performance of GASNet-EX RMA is competitive
with that of MPI RMA in several widely used MPI-3 implementations. A num-
ber of efforts are underway to improve the behavior and performance of MPI-3
RMA implementations, for example [34,39]. During the six month interval that

152 D. Bonachea and P. H. Hargrove

we performed data collection in preparation for this paper, we’ve observed notice-
able improvement in the performance of all three MPI-RMA implementations
measured. There are also efforts underway to implement some PGAS systems
using MPI-3 RMA [80]. MPI-3 offers a wide variety of features that are absent
from GASNet-EX, which focuses on providing AM and RMA services for parallel
runtimes.

However the current MPI-3 API still lacks several features that are important
to GASNet-EX’s clients – most notable amongst these is Active Messages, which
are critical to systems such as Berkeley UPC, UPC++, Legion, Chapel, and
others. Prior work [13] has demonstrated that emulating active message func-
tionality over MPI’s message-passing interfaces is possible, but the performance
may be prohibitively expensive relative to native implementations. ComEx [24]
implements the Global Arrays PGAS library using MPI message passing and
hidden progress processes operating on MPI shared memory segments (deliber-
ately avoiding the MPI-RMA interface), however they admit their approach is
insufficient for providing clients with Active Message functionality.

GASNet-EX and MPI-3 RMA differ in other details of relevance to PGAS
clients. For example, GASNet-EX offers fine-grained control over the synchro-
nization of RMA operations, whereas MPI-3 RMA notably lacks the ability to
independently synchronize remote completion of concurrent Put and Accumulate
operations targeting the same remote window. Atomic domains in GASNet-EX
enable aggressive use of offload hardware for remote atomics, even when con-
currently mixing different atomic update operations to the same target location,
whereas MPI’s accumulate semantics disallow this. The GASNet-EX immediate-
mode injection feature introduced in Sect. 2 has no direct analogue in MPI RMA.

There are two relatively recent industry-driven efforts to provide portable,
open-source HPC networking middleware to sit below parallel runtimes, similar
to GASNet-EX. OpenFabrics libfabric [35,68] portably provides one-sided RMA
and remote atomic operations suitable for implementing PGAS-style RMA,
in addition to tag matching and messaging queues suitable for implementing
message-passing APIs. There are implementations of GASNet, OpenSHMEM,
MPI-3 and other models over libfabric, which in turn offers providers that run
across a variety of high-performance network fabrics. Unified Communications
X (UCX) [72,74] is a similar, independent effort to provide a portable net-
work abstraction layer for authors of HPC middleware such as MPI and PGAS
runtimes.

5 Conclusions

This paper describes GASNet-EX, a portable, open-source, high-performance,
next-generation communication library designed to efficiently support the
networking requirements of distributed runtime systems in future exascale
machines. We presented several extensions and enhancements that GASNet-EX
adds to the traditional GASNet APIs, including: independent local-completion

GASNet-EX: A High-Performance Communication Library for Exascale 153

control, immediate-mode communication injection, Active Message improve-
ments, and remote atomic operations, as well as improved support for non-
contiguous RMA, teams and collective communication. Initial evaluations of the
new features and enhancements are positive, showing a potential for improved
communication efficiency by reducing buffer memory size and lifetime, eliminat-
ing injection stalls, and streamlining several GASNet interfaces to maximize scal-
ability. Finally, we presented microbenchmark results demonstrating the RMA
performance of GASNet-EX is competitive with several MPI-3 implementations
on modern HPC-relevant systems.

Acknowledgments. This research was funded in part by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration.

This research used resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

This research used resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-AC02-
06CH11357.

This research used resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

References

1. Alverson, B., Froese, E., Kaplan, L., Roweth, D.: Cray XC series network. White
Paper WP-Aries01-1112, Cray Inc., November 2012. https://www.cray.com/sites/
default/files/resources/CrayXCNetwork.pdf

2. Argonne National Laboratory: Joint Laboratory for System Evaluation. http://
www.jlse.anl.gov

3. Bachan, J., Baden, S.B., Bonachea, D., Hargrove, P.H., Hofmeyr, S., Jacquelin, M.,
Kamil, A., van Straalen, B.: UPC++ specification, v1.0 draft 8. Technical report
LBNL-2001179, Lawrence Berkeley National Laboratory, September 2018. https://
doi.org/10.25344/S45P4X

4. Bachan, J., Bonachea, D., Hargrove, P.H., Hofmeyr, S., Jacquelin, M., Kamil, A.,
van Straalen, B., Baden, S.B.: The UPC++ PGAS library for exascale computing.
In: Proceedings of the Second Annual PGAS Applications Workshop, PAW17, pp.
7:1–7:4. ACM, New York (2017). https://doi.org/10.1145/3144779.3169108

5. Barrett, B.W., Brightwell, R., Hemmert, S., Pedretti, K., Wheeler, K., Underwood,
K., Riesen, R., Maccabe, A.B., Hudson, T.: The Portals 4.0 network program-
ming interface. Technical report SAND2012-10087, Sandia National Laboratories,
November 2012. https://doi.org/10.2172/1088065

6. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Analysis, SC 2012
(2012). https://doi.org/10.1109/SC.2012.71

https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf
https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf
http://www.jlse.anl.gov
http://www.jlse.anl.gov
https://doi.org/10.25344/S45P4X
https://doi.org/10.25344/S45P4X
https://doi.org/10.1145/3144779.3169108
https://doi.org/10.2172/1088065
https://doi.org/10.1109/SC.2012.71

154 D. Bonachea and P. H. Hargrove

7. Bell, C., Bonachea, D.: A new DMA registration strategy for pinning-based high
performance networks. In: Proceedings of the International Parallel and Dis-
tributed Processing Symposium (IPDPS) (2003). https://doi.org/10.1109/IPDPS.
2003.1213363

8. Bell, C., Chen, W., Bonachea, D., Yelick, K.: Evaluating support for global address
space languages on the Cray X1. In: 19th Annual International Conference on
Supercomputing (ICS), June 2004. https://doi.org/10.1145/1006209.1006236

9. Birrittella, M.S., Debbage, M., Huggahalli, R., Kunz, J., Lovett, T., Rimmer, T.,
Underwood, K.D., Zak, R.C.: Intel Omni-Path Architecture: enabling scalable,
high performance fabrics. In: IEEE 23rd Annual Symposium on High-Performance
Interconnects, pp. 1–9, August 2015. https://doi.org/10.1109/HOTI.2015.22

10. Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory for
large scale clusters. In: Proceedings of the ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP 2008), pp. 247–258. ACM,
New York (2008). https://doi.org/10.1145/1345206.1345242

11. Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic,
J.N., Su, W.K.: Myrinet: a gigabit-per-second local area network. IEEE Micro
15(1), 29–36 (1995). https://doi.org/10.1109/40.342015

12. Bonachea, D.: Proposal for extending the UPC memory copy library functions
and supporting extensions to GASNet, v2.0. Technical report LBNL-56495-v2.0,
Lawrence Berkeley National Laboratory, March 2007. https://doi.org/10.2172/
920052

13. Bonachea, D.: AMMPI home page. http://gasnet.lbl.gov/ammpi
14. Bonachea, D.: GASNet specification, v1.1. Technical report, UCB/CSD-02-

1207, University of California, Berkeley, October 2002. https://doi.org/10.25344/
S4MW28

15. Bonachea, D., Duell, J.: Problems with using MPI 1.1 and 2.0 as compilation
targets for parallel language implementations. Int. J. High Perform. Comput. Netw.
1(1–3), 91–99 (2004). https://doi.org/10.1504/IJHPCN.2004.007569

16. Bonachea, D., Hargrove, P., Welcome, M., Yelick, K.: Porting GASNet to Portals:
Partitioned Global Address Space (PGAS) language support for the Cray XT. In:
Cray Users Group (2009). https://doi.org/10.25344/S4RP46

17. Bonachea, D., Hargrove, P.H.: GASNet specification, v1.8.1. Technical report,
LBNL-2001064, Lawrence Berkeley National Laboratory, August 2017. https://
doi.org/10.2172/1398512

18. Buntinas, D., Mercier, G., Gropp, W.: Design and evaluation of Nemesis, a scalable,
low-latency, message-passing communication subsystem. In: Sixth IEEE Interna-
tional Symposium on Cluster Computing and the Grid (CCGRID 2006), vol. 1,
pp. 521–530, May 2006. https://doi.org/10.1109/CCGRID.2006.31

19. Callahan, D., Chamberlain, B.L., Zima, H.P.: The Cascade High Productivity Lan-
guage. In: International Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS), pp. 52–60 (2004). https://doi.org/10.1109/
HIPS.2004.10002

20. Chan, C., Wang, B., Bachan, J., Macfarlane, J.: Mobiliti: scalable transportation
simulation using high-performance parallel computing. In: IEEE International Con-
ference on Intelligent Transportation Systems (ITSC), pp. 634–641 (2018). https://
doi.org/10.1109/ITSC.2018.8569397

https://doi.org/10.1109/IPDPS.2003.1213363
https://doi.org/10.1109/IPDPS.2003.1213363
https://doi.org/10.1145/1006209.1006236
https://doi.org/10.1109/HOTI.2015.22
https://doi.org/10.1145/1345206.1345242
https://doi.org/10.1109/40.342015
https://doi.org/10.2172/920052
https://doi.org/10.2172/920052
http://gasnet.lbl.gov/ammpi
https://doi.org/10.25344/S4MW28
https://doi.org/10.25344/S4MW28
https://doi.org/10.1504/IJHPCN.2004.007569
https://doi.org/10.25344/S4RP46
https://doi.org/10.2172/1398512
https://doi.org/10.2172/1398512
https://doi.org/10.1109/CCGRID.2006.31
https://doi.org/10.1109/HIPS.2004.10002
https://doi.org/10.1109/HIPS.2004.10002
https://doi.org/10.1109/ITSC.2018.8569397
https://doi.org/10.1109/ITSC.2018.8569397

GASNet-EX: A High-Performance Communication Library for Exascale 155

21. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
2005) (2005). https://doi.org/10.1145/1103845.1094852

22. Chen, W., Bonachea, D., Duell, J., Husband, P., Iancu, C., Yelick, K.: A perfor-
mance analysis of the Berkeley UPC compiler. In: Proceedings of the 17th Interna-
tional Conference on Supercomputing (ICS), June 2003. https://doi.org/10.1145/
782814.782825

23. Cray Inc.: Cray XC Series. https://www.cray.com/sites/default/files/Cray-XC-
Series-Brochure.pdf. Accessed 17 July 2018

24. Daily, J., Vishnu, A., Palmer, B., van Dam, H., Kerbyson, D.: On the suitability of
MPI as a PGAS runtime. In: 21st International Conference on High Performance
Computing (HiPC), December 2014. https://doi.org/10.1109/HiPC.2014.7116712

25. Doerfler, D., Austin, B., Cook, B., Deslippe, J., Kandalla, K., Mendygral, P.: Eval-
uating the networking characteristics of the Cray XC-40 Intel Knights Landing-
based Cori supercomputer at NERSC. Concurr. Comput. Pract. Exp. 30(1), e4297
(2017). https://doi.org/10.1002/cpe.4297

26. Dotsenko, Y., Coarfa, C., Mellor-Crummey, J.: A multi-platform Co-array Fortran
compiler. In: Proceedings of the 13th International Conference on Parallel Architec-
ture and Compilation Techniques (PACT) (2004). https://doi.org/10.1109/PACT.
2004.1342539

27. Driscoll, M.: PyGAS. http://mbdriscoll.github.io/pygas
28. Dunigan, T.H., Vetter, J.S., Worley, P.H.: Performance evaluation of the SGI Altix

3700. In: International Conference on Parallel Processing (ICPP 2005), pp. 231–
240, June 2005. https://doi.org/10.1109/ICPP.2005.61

29. Eachempati, D., Jun, H.J., Chapman, B.: An open-source compiler and runtime
implementation for Coarray Fortran. In: Proceedings of the Fourth Conference on
Partitioned Global Address Space Programming Models (PGAS 2010), pp. 13:1–
13:8. ACM (2010). https://doi.org/10.1145/2020373.2020386

30. von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active Messages: a
mechanism for integrated communication and computation. In: Proceedings of the
19th International Symposium on Computer Architecture, Gold Coast, Australia,
pp. 256–266, May 1992. https://doi.org/10.1145/139669.140382

31. Faanes, G., Bataineh, A., Roweth, D., Court, T., Froese, E., Alverson, B., Johnson,
T., Kopnick, J., Higgins, M., Reinhard, J.: Cray Cascade: a scalable HPC system
based on a Dragonfly network. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC 2012,
Los Alamitos, CA, USA, pp. 103:1–103:9. IEEE Computer Society Press (2012).
https://doi.org/10.1109/SC.2012.39

32. Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., Rouson, D.:
OpenCoarrays: open-source transport layers supporting Coarray Fortran compil-
ers. In: Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models, PGAS 2014, pp. 4:1–4:11. ACM, New York
(2014). https://doi.org/10.1145/2676870.2676876

33. GASNet. http://gasnet.lbl.gov
34. Gerstenberger, R., Besta, M., Hoefler, T.: Enabling highly-scalable remote memory

access programming with MPI-3 one sided. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analy-
sis (SC 2013), pp. 53:1–53:12. ACM, New York (2013). https://doi.org/10.1145/
2503210.2503286

https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1145/782814.782825
https://doi.org/10.1145/782814.782825
https://www.cray.com/sites/default/files/Cray-XC-Series-Brochure.pdf
https://www.cray.com/sites/default/files/Cray-XC-Series-Brochure.pdf
https://doi.org/10.1109/HiPC.2014.7116712
https://doi.org/10.1002/cpe.4297
https://doi.org/10.1109/PACT.2004.1342539
https://doi.org/10.1109/PACT.2004.1342539
http://mbdriscoll.github.io/pygas
https://doi.org/10.1109/ICPP.2005.61
https://doi.org/10.1145/2020373.2020386
https://doi.org/10.1145/139669.140382
https://doi.org/10.1109/SC.2012.39
https://doi.org/10.1145/2676870.2676876
http://gasnet.lbl.gov
https://doi.org/10.1145/2503210.2503286
https://doi.org/10.1145/2503210.2503286

156 D. Bonachea and P. H. Hargrove

35. Grun, P., Hefty, S., Sur, S., Goodell, D., Russell, R.D., Pritchard, H., Squyres,
J.M.: A brief introduction to the OpenFabrics interfaces - a new network API
for maximizing high performance application efficiency. In: IEEE 23rd Annual
Symposium on High-Performance Interconnects, pp. 34–39, August 2015. https://
doi.org/10.1109/HOTI.2015.19

36. Hargrove, P.H., Bonachea, D.: GASNet-EX performance improvements due to spe-
cialization for the Cray Aries network. Technical report. LBNL-2001134, Lawrence
Berkeley National Laboratory, March 2018. https://doi.org/10.2172/1430690

37. Hargrove, P.H., Bonachea, D., Bell, C.: Experiences implementing Partitioned
Global Address Space (PGAS) languages on InfiniBand. In: OpenFabrics Alliance
International Workshop, April 2008. http://downloads.openfabrics.org/Media/
Sonoma2008/Sonoma 2008 Wed PGAS%20over%20IB.pdf

38. Hilfinger, P., Bonachea, D., Datta, K., Gay, D., Graham, S., Kamil, A., Liblit,
B., Pike, G., Su, J., Yelick, K.: Titanium language reference manual. Technical
report, UCB/EECS-2005-15.1, University of California, Berkeley, November 2001.
https://doi.org/10.25344/S4H59R

39. Hjelm, N.: An evaluation of the one-sided performance in Open MPI. In: Pro-
ceedings of the 23rd European MPI Users’ Group Meeting, EuroMPI 2016, pp.
184–187. ACM, New York (2016). https://doi.org/10.1145/2966884.2966890

40. IBM: LAPI programming guide. IBM Technical report SA22-7936-00 (2003)
41. Ibrahim, K.Z., Yelick, K.: On the conditions for efficient interoperability with

threads: an experience with PGAS languages using Cray communication domains.
In: Proceedings of the 28th ACM International Conference on Supercomputing,
ICS 2014, pp. 23–32. ACM (2014). https://doi.org/10.1145/2597652.2597657

42. InfiniBand Trade Association. http://www.infinibandta.org
43. Intel Corporation: Introducing Intel R©MPI Benchmarks. https://software.intel.

com/en-us/articles/intel-mpi-benchmarks. Accessed 17 July 2018
44. Intel Corporation: Performance Scaled Messaging 2 (PSM2) Programmer’s Guide,

April 2017. Order No.: H76473–6.0
45. Intrepid Technology Inc.: Clang UPC Compiler. http://clangupc.github.io
46. Intrepid Technology Inc.: GCC/UPC Compiler. http://www.gccupc.org
47. Jose, J., Hamidouche, K., Zhang, J., Venkatesh, A., Panda, D.K.: Optimizing col-

lective communication in UPC. In: IEEE International Parallel Distributed Pro-
cessing Symposium Workshops, pp. 361–370, May 2014. https://doi.org/10.1109/
IPDPSW.2014.49

48. Krasnov, A., Schultz, A., Wawrzynek, J., Gibeling, G., Droz, P.Y.: RAMP Blue:
a message-passing manycore system in FPGAs. In: Proceedings of International
Conference on Field Programmable Logic and Applications, pp. 54–61, August
2007. https://doi.org/10.1109/FPL.2007.4380625

49. Kumar, S., Mamidala, A.R., Faraj, D.A., Smith, B., Blocksome, M., Cernohous,
B., Miller, D., Parker, J., Ratterman, J., Heidelberger, P., Chen, D., Steinmacher-
Burrow, B.: PAMI: a parallel active message interface for the Blue Gene/Q super-
computer. In: 2012 IEEE 26th International Parallel and Distributed Processing
Symposium, pp. 763–773, May 2012. https://doi.org/10.1109/IPDPS.2012.73

50. Kumar, S., Dozsa, G., Almasi, G., Chen, D., Giampapa, M.E., Heidelberger, P.,
Blocksome, M., Faraj, A., Parker, J., Ratterman, J., Smith, B., Archer, C.: The
Deep Computing Messaging Framework: generalized scalable message passing on
the Blue Gene/P supercomputer. In: 22nd Annual International Conference on
Supercomputing (ICS), June 2008. https://doi.org/10.1145/1375527.1375544

https://doi.org/10.1109/HOTI.2015.19
https://doi.org/10.1109/HOTI.2015.19
https://doi.org/10.2172/1430690
http://downloads.openfabrics.org/Media/Sonoma2008/Sonoma_2008_Wed_PGAS%20over%20IB.pdf
http://downloads.openfabrics.org/Media/Sonoma2008/Sonoma_2008_Wed_PGAS%20over%20IB.pdf
https://doi.org/10.25344/S4H59R
https://doi.org/10.1145/2966884.2966890
https://doi.org/10.1145/2597652.2597657
http://www.infinibandta.org
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://clangupc.github.io
http://www.gccupc.org
https://doi.org/10.1109/IPDPSW.2014.49
https://doi.org/10.1109/IPDPSW.2014.49
https://doi.org/10.1109/FPL.2007.4380625
https://doi.org/10.1109/IPDPS.2012.73
https://doi.org/10.1145/1375527.1375544

GASNet-EX: A High-Performance Communication Library for Exascale 157

51. Matsumiya, R., Endo, T.: Scalable RMA-based communication library featuring
node-local NVMs. In: Proceedings of the IEEE High Performance Extreme Com-
puting Conference (HPEC 2018), pp. 1–7 (2018). https://doi.org/10.1109/HPEC.
2018.8547546

52. Mattson, T.G., Cledat, R., Cavé, V., Sarkar, V., Budimlic, Z., Chatterjee, S., Fry-
man, J., Ganev, I., Knauerhase, R., Lee, M., Meister, B., Nickerson, B., Pepperling,
N., Seshasayee, B., Tasirlar, S., Teller, J., Vrvilo, N.: The Open Community Run-
time: a runtime system for extreme scale computing. In: IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–7, September 2016. https://doi.
org/10.1109/HPEC.2016.7761580

53. Mellanox Technologies Inc.: MellanoX Messaging Library User Manual, Rev 2.1
(2014). Document Number: 4113

54. MPI Forum: MPI-2: a message-passing interface standard. Int. J. High Perform.
Comput. Appl. 12, 1–299 (1998). https://www.mpi-forum.org/docs/mpi-2.0/mpi-
20.ps

55. MPI Forum: MPI: a message-passing interface standard, v1.1. Technical report,
University of Tennessee, Knoxville, 12 June 1995. https://www.mpi-forum.org/
docs/mpi-1.1/mpi-11.ps

56. MPI Forum: MPI: a message-passing interface standard, version 3.0. Technical
report, University of Tennessee, Knoxville, 21 September 2012. https://www.mpi-
forum.org/docs/mpi-3.0/mpi30-report.pdf

57. Murai, H., Nakao, M., Iwashita, H., Sato, M.: Preliminary performance evaluation
of Coarray-based implementation of fiber Miniapp suite using XcalableMP PGAS
language. In: Proceedings of the Second Annual PGAS Applications Workshop,
PAW17, pp. 1:1–1:7. ACM (2017). https://doi.org/10.1145/3144779.3144780

58. MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE.
http://mvapich.cse.ohio-state.edu

59. NERSC: Cori Haswell Nodes. https://doi.org/10.25344/S4859K. Accessed 17 July
2018

60. NERSC: Cori Intel Xeon Phi (KNL) Nodes. https://doi.org/10.25344/S4D012.
Accessed 17 July 2018

61. NERSC: National Energy Research Scientific Computing Center. http://www.
nersc.gov

62. Nieplocha, J., Carpenter, B.: ARMCI: a portable remote memory copy library for
distributed array libraries and compiler run-time systems. In: Rolim, J., Mueller,
F., Zomaya, A.Y., Ercal, F., Olariu, S., Ravindran, B., Gustafsson, J., Takada,
H., Olsson, R., Kale, L.V., Beckman, P., Haines, M., ElGindy, H., Caromel,
D., Chaumette, S., Fox, G., Pan, Y., Li, K., Yang, T., Chiola, G., Conte, G.,
Mancini, L.V., Méry, D., Sanders, B., Bhatt, D., Prasanna, V. (eds.) IPPS 1999.
LNCS, vol. 1586, pp. 533–546. Springer, Heidelberg (1999). https://doi.org/10.
1007/BFb0097937

63. Nishtala, R., Hargrove, P.H., Bonachea, D.O., Yelick, K.A.: Scaling
communication-intensive applications on BlueGene/P using one-sided com-
munication and overlap. In: Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS) (2009). https://doi.org/10.1109/
IPDPS.2009.5161076

64. Nishtala, R., Zheng, Y., Hargrove, P., Yelick, K.A.: Tuning collective communica-
tion for Partitioned Global Address Space programming models. Parallel Comput.
37(9), 576–591 (2011). https://doi.org/10.1016/j.parco.2011.05.006

65. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. ACM SIG-
PLAN Fortran Forum 17(2), 1–31 (1998). https://doi.org/10.1145/289918.289920

https://doi.org/10.1109/HPEC.2018.8547546
https://doi.org/10.1109/HPEC.2018.8547546
https://doi.org/10.1109/HPEC.2016.7761580
https://doi.org/10.1109/HPEC.2016.7761580
https://www.mpi-forum.org/docs/mpi-2.0/mpi-20.ps
https://www.mpi-forum.org/docs/mpi-2.0/mpi-20.ps
https://www.mpi-forum.org/docs/mpi-1.1/mpi-11.ps
https://www.mpi-forum.org/docs/mpi-1.1/mpi-11.ps
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://doi.org/10.1145/3144779.3144780
http://mvapich.cse.ohio-state.edu
https://doi.org/10.25344/S4859K
https://doi.org/10.25344/S4D012
http://www.nersc.gov
http://www.nersc.gov
https://doi.org/10.1007/BFb0097937
https://doi.org/10.1007/BFb0097937
https://doi.org/10.1109/IPDPS.2009.5161076
https://doi.org/10.1109/IPDPS.2009.5161076
https://doi.org/10.1016/j.parco.2011.05.006
https://doi.org/10.1145/289918.289920

158 D. Bonachea and P. H. Hargrove

66. Oak Ridge Leadership Computing Facility. https://www.olcf.ornl.gov
67. Summitdev. https://www.olcf.ornl.gov/tag/summitdev/. Accessed 17 July 2018
68. OpenFabrics Libfabric. https://ofiwg.github.io/libfabric/
69. Petrini, F., chun Feng, W., Hoisie, A., Coll, S., Frachtenberg, E.: The Quadrics net-

work (QsNet): high-performance clustering technology. In: HOT 9 Interconnects.
Symposium on High Performance Interconnects, pp. 125–130 (2001). https://doi.
org/10.1109/HIS.2001.946704

70. Pophale, S., Nanjegowda, R., Curtis, T., Chapman, B., Jin, H., Poole, S., Kuehn,
J.: OpenSHMEM performance and potential: a NPB experimental study. In: Pro-
ceedings of the 6th Conference on Partitioned Global Address Space Programming
Models (PGAS 2012) (2012). https://www.osti.gov/biblio/1055092

71. Shah, V.B.: An interactive system for combinatorial scientific computing with an
emphasis on programmer productivity. Ph.D. thesis, University of California at
Santa Barbara, Santa Barbara, CA, USA (2007)

72. Shamis, P., Venkata, M.G., Lopez, M.G., Baker, M.B., Hernandez, O., Itigin, Y.,
Dubman, M., Shainer, G., Graham, R.L., Liss, L., Shahar, Y., Potluri, S., Rossetti,
D., Becker, D., Poole, D., Lamb, C., Kumar, S., Stunkel, C., Bosilca, G., Bouteiller,
A.: UCX: an open source framework for HPC network APIs and beyond. In: IEEE
23rd Annual Symposium on High-Performance Interconnects, pp. 40–43, August
2015. https://doi.org/10.1109/HOTI.2015.13

73. Su, H., Gordon, B., Oral, S., George, A.: SCI networking for shared-memory com-
puting in UPC: blueprints of the GASNet SCI conduit. In: Proceedings of the 29th
Annual IEEE International Conference on Local Computer Networks. LCN 2004,
pp. 718–725. IEEE Computer Society, Washington, DC (2004). https://doi.org/
10.1109/LCN.2004.107

74. UCX: Unified Communication X. http://www.openucx.org/
75. UPC Consortium: UPC Language and Library Specifications, v1.3. Technical

report, LBNL-6623E, Lawrence Berkeley National Laboratory, November 2013.
https://doi.org/10.2172/1134233

76. Vetter, S., Caldeira, A., Kahle, M.E., Saverimuthu, G., Vearner, K.C.: IBM Power
System S822LC Technical Overview and Introduction, December 2015. IBM Form
#REDP-5283-00

77. Willenberg, R., Chow, P.: A heterogeneous GASNet implementation for FPGA-
accelerated computing. In: Proceedings of the 8th International Conference on
Partitioned Global Address Space Programming Models, PGAS 2014, pp. 2:1–2:9.
ACM, New York (2014). https://doi.org/10.1145/2676870.2676885

78. Yelick, K., Hilfinger, P., Graham, S., Bonachea, D., Su, J., Kamil, A., Datta, K.,
Colella, P., Wen, T.: Parallel languages and compilers: perspective from the Tita-
nium experience. Int. J. High Perform. Comput. Appl. 21(3), 266–290 (2007).
https://doi.org/10.1177/1094342007078449

79. Zheng, Y., Kamil, A., Driscoll, M.B., Shan, H., Yelick, K.: UPC++: a PGAS
extension for C++. In: IEEE 28th International Parallel and Distributed Process-
ing Symposium, pp. 1105–1114, May 2014. https://doi.org/10.1109/IPDPS.2014.
115

80. Zhou, H., Mhedheb, Y., Idrees, K., Glass, C.W., Gracia, J., Fürlinger, K.: DART-
MPI: an MPI-based implementation of a PGAS runtime system. In: Proceedings of
the 8th International Conference on Partitioned Global Address Space Program-
ming Models, PGAS 2014, pp. 3:1–3:11 (2014). https://doi.org/10.1145/2676870.
2676875

https://www.olcf.ornl.gov
https://www.olcf.ornl.gov/tag/summitdev/
https://ofiwg.github.io/libfabric/
https://doi.org/10.1109/HIS.2001.946704
https://doi.org/10.1109/HIS.2001.946704
https://www.osti.gov/biblio/1055092
https://doi.org/10.1109/HOTI.2015.13
https://doi.org/10.1109/LCN.2004.107
https://doi.org/10.1109/LCN.2004.107
http://www.openucx.org/
https://doi.org/10.2172/1134233
https://doi.org/10.1145/2676870.2676885
https://doi.org/10.1177/1094342007078449
https://doi.org/10.1109/IPDPS.2014.115
https://doi.org/10.1109/IPDPS.2014.115
https://doi.org/10.1145/2676870.2676875
https://doi.org/10.1145/2676870.2676875

Nested Parallelism with Algorithmic
Skeletons

Alireza Majidi(B), Nathan Thomas, Timmie Smith, Nancy Amato,
and Lawrence Rauchwerger

Texas A&M University, College Station, TX 77840, USA
{a.majidi,nthomas,timmie,amato,rwerger}@tamu.edu

Abstract. Nested parallelism is a natural way to express programs for
hierarchical systems. It enables a compositional programming approach
that can then be mapped onto the system hierarchy. In this paper, we
present nested algorithm composition in the STAPL Skeleton Library
(SSL) which uses a nested dataflow model as its internal representation.
We show how a high level program specification using SSL allows for
asynchronous computation and improved locality. We study both the
specification and performance of the stapl implementation of Kripke, a
mini-app developed by Lawrence Livermore National Laboratory. Kripke
has multiple levels of parallelism and a number of data layouts, making
it an excellent test bed to exercise the effectiveness of a nested parallel
programming approach. Performance results are provided for six differ-
ent nesting orders of the benchmark demonstrating the flexibility and
performance of nested algorithmic skeleton composition in stapl.

Keywords: Algorithmic skeletons · Nested parallelism · Dataflow ·
Kripke mini-app · Sweep algorithm

1 Introduction

Nested parallelism is the invocation of a parallel construct from within another
parallel section, and it is a natural way of expressing algorithms with a hier-
archical nature. Nested parallelism presents a promising approach to address
the complexities of application development on modern, high performance com-
puting systems. However, the composition of nested parallel invocations is only
beginning to find its way into parallel programming frameworks. Even when
present, there is often a trade-off between expressivity and performance.

This research supported in part by NSF awards CNS-0551685, CCF-1439145, CCF-
1423111, IIS-0916053, IIS-0917266, EFRI-1240483, RI-1217991, by NIH NCI R25
CA090301-11, and by DOE awards DE-NA0002376, B575363. This research used
resources of the National Energy Research Scientific Computing Center, which is sup-
ported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

c© Springer Nature Switzerland AG 2019
M. Hall and H. Sundar (Eds.): LCPC 2018, LNCS 11882, pp. 159–175, 2019.
https://doi.org/10.1007/978-3-030-34627-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34627-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-34627-0_12

160 A. Majidi et al.

For example, languages desiring to mimic the syntax of sequential coun-
terparts often adopt a recursive fork-join execution model, requiring barriers
between successive nested parallel sections in the program. This model is suffi-
cient for simple parallel applications with good locality and coarse grain parallel
sections. However, more complex programs will suffer from poor scalability due
to unnecessary global synchronizations between nested parallel sections.

Nested parallel execution is often additionally constrained by the underlying
communication primitives. Some models are effectively limited to two levels of
parallelism: one across shared memory nodes using MPI and one within a node
using OpenMP or a similar library. These lower level concerns become part of the
higher level programming model, decreasing portability and reuse as restrictions
are put both on communication between parallel sections and their placement
in the system.

In [29,30], we introduced the STAPL Skeleton Library (ssl) which includes
a set of operators that enables the composition of a sequence of algorithmic
skeletons into a common parallel section. By using a dataflow model as the
internal representation of skeletons in ssl, the need for global barriers is removed,
allowing asynchronous execution of algorithms with fine-grain, point-to-point
synchronizations between dataflow nodes which greatly improves scalability.

In this paper, we present the nested composition of algorithmic skeletons in
ssl which leads to a nested dataflow model representation of nested parallelism
in stapl. In the following sections, we define nested skeleton composition, give
examples of its use and describe how programs using it can be efficiently mapped
onto the system for execution. Though the composition is static (i.e., strongly
typed, recognized at compile time), the evaluation and mapping is dynamic,
evaluated at runtime and executed using the asynchronous, nested parallelism
support of the stapl runtime described in [24]. Our implementation enables
stapl to support an arbitrary number of levels of nested parallelism and exploit
point-to-point communication across nested sections.

We demonstrate the effectiveness of the proposed functionality by using it in
the stapl implementation of Kripke [19], a parallel transport mini-app developed
at Lawrence Livermore National Laboratories. We compare our implementation
with the reference MPI+OpenMP implementation.

The contributions of this paper are:

– A novel representation for nested composition of skeletons which employs
point-to-point synchronizations in data flow graphs and avoid global syn-
chronization within nested sections.

– Arbitrary levels of nested parallelism using algorithmic skeletons.
– An efficient implementation of the Kripke mini-app using algorithmic skele-

tons which shows competitive performance compared to the hand tuned ref-
erence implementation.

2 STAPL Overview

The Standard Template Adaptive Parallel Library (stapl) [6] is a framework
developed in C++ for parallel programming. It follows the generic design of

Nested Parallelism with Algorithmic Skeletons 161

the Standard Template Library (stl) [22], with extensions and modifications
for parallelism. stapl is a library, requiring only a C++ compiler (e.g., gcc)
and established communication libraries such as MPI. An overview of its major
components is presented in Fig. 1.

Fig. 1. The stapl Library component diagram.

stapl provides parallel algorithms and distributed data structures [14,28]
with interfaces similar to the stl. Instead of iterators, algorithms use views [5]
which decouple the container interfaces from the underlying storage. The skele-
tons framework [29] allows the user to express an application as a composition of
simpler parallel patterns (e.g., map, reduce, scan and others). These skeletons are
instantiated at runtime as task dependence graphs by the PARAGRAPH Executor,
stapl’s data flow engine. It enforces task dependencies and is responsible for
the transmission of intermediate values between tasks.

3 STAPL Skeleton Library

The stapl Skeleton Library is the component of stapl used to specify paral-
lel algorithms implemented in C++. In the following sections, we discuss how
common composition operations found in functional languages are provided in
our library. However, we first discuss parametric dependencies which are a basic
building block of dependence patterns in stapl skeletons.

3.1 Parametric Dependencies

To build data flow graph representations for fundamental skeletons, we use their
finest-grain dependence relations, which we refer to as parametric dependencies
(PDs). A parametric dependency defines the relation between the input elements
of a skeleton and its output as a parametric coordinate mapping and an oper-
ation. Parametric dependency specifications for map, zip and a 2D wavefront
skeleton are provided below in Eqs. 1, 2 and 3, respectively:

162 A. Majidi et al.

zip pd<1>(�) = map pd(�) ≡ {i �→ i,�} (1)
zip-pd<k>(⊕) ≡ {< i, . . . , i

︸ ︷︷ ︸

k

>�→< i >,⊕)} (2)

wavefront pd2D(⊕) ≡ {(i, j − 1), (i − 1, j) �→ (i, j),⊕} (3)

For the zip-pd shown in Eq. 2, which is general form of the map-pd (Eq. 1),
the value of element i of the output is computed by applying the ⊕ work-function
(unary work-function � in case of map-pd), on the ith element of the inputs.
For the wavefront-pd, the value of element (i, j) is result of applying the ⊕ work-
function on the values of elements indexed by (i − 1, j) and (i, j − 1). There is
an assumption that work-functions are functional, the only exception is when
an argument is passed explicitly as a reference. At runtime, PDs are expanded
to generate data flow graph nodes by the elem composition operator, which we
describe next.

3.2 Skeleton Composition

Elem. Elem is the most basic operator employed to build skeletons. It expands
the given parametric dependence over the domain of each input passed to the
skeleton at run-time. The graph generated by the expansion of PDs is encapsu-
lated by skeleton ports. A port provides an interface to access the inputs/outputs
passed to/from skeletons. Ports play an important role as they allow the sending
and receiving of data between skeletons without exposing the internal representa-
tion of skeletons (data-flow graph). For instance, the zip and wavefront skeletons
are built by applying the elem operator to zip-pd and wavefront-pd, respectively:

zip<k>(⊕) = elem(zip pd<k>(⊕)) (4)
wavefront2D(⊕) = elem(wavefront pd2D(⊕)) (5)

Figure 2 shows the ports and data-flow graph generated for zip (2a) and
wavefront (2b) skeletons using the elem operator.

Compose. Function composition, denoted by h = f ◦ g , is the ability to create
a new function of h by applying f to the input of h and then passing the output
to g and then returning the result of that function invocation. The equivalent of
the “◦” is the compose operator in the stapl skeleton library:

Skeleton2 = compose(Skeleton0, Skeleton1) (6)

As shown in Fig. 3(a), compose connects the ports of skeletons passed to it
as an argument in a functional composition manner. In this example, the input
port of sk0 is connected to the input port of sk2 and the sk1 output port will be
the output port of the sk2. Finally, the output port of the sk0 will be connected
to the input port of sk1. Encapsulation of the data-flow graph representation of
skeletons behind their ports makes it possible to access the output of skeletons

Nested Parallelism with Algorithmic Skeletons 163

(a) zip<2>(×) = elem(zip-pd<2>(×))

(b) wavefront2D(+) = elem(wavefront pd2D)

Fig. 2. Building zip and wavefront skeletons and their corresponding ports using elem
operator.

without having any knowledge about the shape of the graph and still allows com-
munication between graph nodes belonging to different skeletons without bulk
synchronization between skeleton executions (the point-to-point synchronization
shown in Fig. 3(a) with black arrows).

Repeat. The repeat operator takes a skeleton as an argument and composes it in
a functional manner with itself some number of times. This allows the expression
of many skeletons which require tree-based or multilevel data-flow graph, such as
reduce or scan. In Fig. 3(b) the reduce skeleton is defined by applying the repeat
operator on one level of the reduce skeleton, which is implemented by utilizing
the elem operator and the reduce parametric dependency.

reduce(⊗) = repeat(elem(reduce pd(⊗))) (7)

(a) sk2 = compose(sk0, sk1)
(b) reduce(+) = repeat(elem(reduce pd(+)))

Fig. 3.

164 A. Majidi et al.

These operators are closed under composition and enable the programmer to
succinctly express complex algorithms in a manner that remains readily translat-
able to a data-flow graph at runtime for execution. Due to space limitations, we
have only provided an overview of existing operators. More details about these
operators as well as other components of our skeleton framework are presented
in [29]. In the next section, we discuss the nested composition operator and its
use to specify nested parallelism in stapl programs.

4 Nested Composition

Algorithmic skeletons are rooted in the functional programming paradigm, where
functions are treated as first-class citizens and are the primary means of building
programs. In functional languages, functions are high-order functions, meaning
they should be able to accept another function as an argument. Similarly, in
our skeleton framework skeletons can receive other skeletons as arguments. This
forms the basis for nested skeleton composition which in turn forms the basis of
nested parallel algorithm specification in stapl.

4.1 Specification

An ideal specification of skeletons should be oblivious of any nested composi-
tion. Consider specification of the map function in Haskell in Eq. 8. Except for
specifying the type of the work-function (a → b) for map, no additional detail
is provided about whether the argument is a simple user-defined function or
another skeleton made by composition operators in the language.

map :: (a → b) → [a] → [b] (8)

Skeleton specifications in ssl follow the same approach. Equation 9 shows
that the general parametric dependency definition doesn’t consider any difference
between a regular user-defined operator and an algorithmic skeleton as a work-
function specified by ⊕.

pd(⊕) ≡ {(i0, . . . , ik
︸ ︷︷ ︸

inputs

) �→ (i),⊕)} (9)

This general specification of parametric dependencies makes algorithmic
skeletons in ssl closed under nesting compositions, which allows arbitrary spec-
ification of nested composition of skeletons. For instance, Listing 1.1 shows a
small kernel written in ssl utilizing a skeleton with three levels of nested com-
position which is functionally composed with another skeleton with two levels of
nesting.

Nested Parallelism with Algorithmic Skeletons 165

Listing 1.1. Example of skeletons nested composition in ssl

// simple reduce skeleton
auto reduce_sk = reduce(plus ());

// 2 level skeletons nesting
auto map_sk = map(reduce_sk);

// 3 level skeletons nestings
auto wavefront_sk = wavefront(map_sk);

// function composition of 3 level skeleton nesting
// with 2 level skeleton nesting
auto new_skeleton = compose(wavefront_sk , zip(zip(plus ()))

Note that inputs to a nested skeleton need to reflect the algorithmic hierarchy.
Specifically, a skeleton with n levels of nesting compositions need input views
with n levels of addressing.

4.2 Execution

As mentioned earlier, there is uniform treatment in the framework of skeletons
specified with or without nested composition. However, during evaluation and
execution of a skeleton, we internally specialize the implementation based on
whether the work-function passed to a skeleton is sequential or another algo-
rithmic skeleton. In this section, we use a wavefront2D(zip(+)) skeleton with
two levels of parallelism, where a zip(+) skeleton is passed as work-function of
wavefront2D skeleton, to show how nested parallel execution is realized in the
stapl skeleton framework.

As shown in Eq. 3, the wavefront skeleton is specified by applying the elem
operator to wavefront-pd. At run-time the elem operator traverses the domain of
its input ports and uses the parametric dependency passed to it to spawn nodes,
adding them to the underlying data-flow engine (PARAGRAPH).

The parametric dependency determines the corresponding inputs of each node
and the work-function which will be applied to its inputs during execution. As
shown in Fig. 4, applying the elem operator on wavefront-pd spawned 4 nodes
(2 × 2) with the wavefront pattern.

Up until this point everything about data-flow graph initialization is the
same, regardless of whether the work-function of the node is an algorithmic
skeleton or a simple sequential operator. At this point, however, we take a dif-
ferent path based on the type of work-function presented to the skeleton. If the
work-function is a sequential operator, we add the node with its corresponding
dependency information to the PARAGRAPH. In the presence of a nested skeleton,
before adding the node to the PARAGRAPH, we tag the node to tell the PARAGRAPH
to initialize a nested parallel section for execution of this node with its own
instance of a nested PARAGRAPH. Creation of nested sections in stapl is dis-
cussed in detail in [24].

166 A. Majidi et al.

In our example where the work-function is a zip(+) skeleton we create a
nested parallel section for each of the nodes in the data-flow graph of the wave-
front skeleton at execution time, which is shown by dashed line in section of
Fig. 4. At each nested section, as soon as the inputs to each node of the zip(+)
skeleton are ready, the PARAGRAPH starts the execution of that node and sends
its corresponding output to its consumer without waiting at a barrier at the end
of each nested section for completion of other tasks. The manner in which the
input and output port of zip(+) skeletons are connected to each other and also
how the input port and output port of the wavefront skeleton are connected to
each node is determined by the wavefront dependence pattern, shown by bigger
arrows in Fig. 4.

Fig. 4. An example of two levels of parallelism in nested composition of skeletons using
point-to-point communication between nested sections (shown by dashed line).

While our example only shows two levels of nested-parallelism, nested compo-
sition of algorithmic skeletons in ssl allows expressing arbitrary levels of nested
parallelism without using any global (or subgroup) synchronization. We discuss
initial findings with additional levels of parallelism in Sect. 6.

There are times when it might be preferable to serialize the execution of some
levels of the nested parallel algorithm specification. Whether it is insufficient
levels of the system hierarchy to map onto or insufficient parallelism in the section
to practically exploit, there are times when one may want to suppress some of
the available parallelism in the algorithm. For this purpose, we provide execution
policy directives that are used to request serial execution without changing the
algorithm specification. Many of the experimental configurations in Sect. 6 use
these directives to mimic the behavior of the reference implementation of Kripke.
For instance, in wavefront2D(zip(+)), user can specify sequential execution
policy for execution of zip(+) as shown in Eq. 10.

Nested Parallelism with Algorithmic Skeletons 167

wavefront2D(zip<seq-exec>(+)) (10)

By using the data-flow model as the internal representation for skeletons,
ssl can specify dependences between nodes in data-flow graph at the most
fine-grain level, exposing all the available parallelism in the program and enabling
an asynchronous nested parallel execution.

5 Kripke, Mini Transport Benchmark

Kripke is a simple mini-app for 3D Sn deterministic particle transport [19]. Mini-
apps are importants tools that capture the essential performance behaviors of
complex applications and allow rapid implementation of new approaches and
exploration of new techniques and architectures. Kripke, like its parent appli-
cation ADRA, is implemented with C++, OpenMP, and MPI. We have imple-
mented Kripke v1.0 [1] using our skeleton framework and studied the perfor-
mance of the sweep kernel with varying levels of parallelism and loop nesting
orders.

5.1 Problem Description and Reference Implementation

Kripke solves the steady state form of the Boltzmann transport equation and
stores the angular flux for every point in the phase space representing every
point in the discretized angle, energy, and 3D spatial dimensions. The mini-app
has three distinct kernels that perform a discrete-to-moments transformation
(LTimes), a moments-to-discrete transformation (LPlusTimes), and a Sweep of
the spatial domain for all discretized points in the energy and angle domains.
The LTimes and LPlusTimes kernels are completely parallel map operations. We
focus on the Sweep kernel and its unique composition challenges in this work.

Algorithm 1. Sweep Algorithm
1: G all groups in the domain problem
2: D all directions in the domain problem
3: Zp zone-set assigned to the current task
4: procedure Sweep-Solver
5: for each Gp in G do
6: for each Dp in D do
7: sweep({Gp, Dp, Zp})
8: end for
9: send/receive local sweep results between MPI tasks

10: end for
11: end procedure

The discretized problem phase space (G ·D ·Z) is partitioned into P subsets,
identified by {Gp,Dp, Zp}p∈P . Each of these subsets are assigned to an MPI task

168 A. Majidi et al.

in the reference implementation. MPI tasks operate on sub-domain of the prob-
lem. The choice of the data-layout for storing these subsets and corresponding
choice of OpenMP loop-level threading for on-node parallelism greatly affects the
performance of the application and is the primary research interest for the mini-
app. The reference implementation supports all six layout orders and provides
computational kernels written for each layout. The layout/loop nesting order is
referred to by the strings (DGZ, DZG, GZD, GDZ, ZGD and ZDG) that indi-
cate the order of the loops in the Sweep kernel. The Sweep kernel for the DGZ
and ZGD nestings are provided as examples in Algorithms 2 and 3, respectively.
The diamond-difference computation and more details about Sweep algorithm
is provided in [19].

Algorithm 2. Sweep Kernel for DGZ nesting order
1: procedure SweepDGZ({Gp, Dp, Zp})
2: for each d in Dp do
3: for each g in Gp do
4: for zk in range Zpk do
5: for zj in range Zpj do
6: for zi in range Zpi do
7: diamond-difference computation
8: end for
9: end for

10: end for
11: end for
12: end for
13: end procedure

Algorithm 3. Sweep Kernel for ZGD nesting order
1: procedure SweepZGD({Gp, Dp, Zp})
2: for zk in range Zpk do
3: for zj in range Zpj do
4: for zi in range Zpi do
5: for each g in Gp do
6: for each d in Dp do
7: diamond-difference computation
8: end for
9: end for

10: end for
11: end for
12: end for
13: end procedure

The partitioning of the problem phase space across MPI tasks in the reference
implementation partitions the spatial dimensions only. The result is that the

Nested Parallelism with Algorithmic Skeletons 169

sweep kernel is a sweep of the spatial domain that is distributed across the
nodes of the system. Within each node, OpenMP is used to parallelize the loop
iterating over the energy or angle domains, depending on the layout chosen.
The outermost of the direction or energy loops is the loop that is parallelized
using OpenMP in the reference implementation. In the SSL implementation,
we follow the same partitioning of the spatial domain across nodes and explore
parallelization at multiple levels in processing a partition of the phase space on
a node.

The sweep algorithm across MPI tasks is provided in Algorithm 1. As men-
tioned above, the sweep is a nested computation since Zones are partitioned into
P sets by partitioning the spatial domain only. The outer sweep is performed for
each direction set (a grouping of directions within the same octant) and energy
group set (a grouping of consecutive energy groups). The on-node operation
for the Sweep is the call to the sweep function in line 7. The communication of
angular flux values from the on-node sweep computation is line 9 in Algorithm 1.

5.2 Kripke Implementation in STAPL

The Sweep implementation of Kripke in stapl follows the same approach for
decomposing the domain problem into set of sub-domains and doing two sweeps,
one over all subdomains and a nested sweep on each sub-domain. In the stapl
implementation, STL containers are replaced by distributed containers called
pContainers [2]. pContainers distribute data across the system and provide
data access operations that encapsulate the details of accessing distributed data.
The stapl container framework supports composition of pContainers which
makes them a natural fit for expressing applications with nested-parallelism.
Listing 1.2 describes the data structure to store the angular fluxes in the stapl
implementation of Kripke using a multiarray container, a generic multidimen-
sional container in the stapl container framework.

Listing 1.2. Container Composition used for angular flux storage in STAPL Kripke.

// storing angular flux storage in
// a 5D space (z_i , z_j , z_k , d, g)
using zoneset_container = multiarray <5, double > ;

// decomposition of zones in a 3D geometry space
using zonesets_container = multiarray <3, zoneset_container >;

The Sweep kernel is implemented by nested composition of algorithmic skele-
tons provided in SSL. A wavefront skeleton captures the sweep pattern, and
the zip skeleton is employed to process the energy and direction domains. In
Listing 1.3, sweep skeletons for two nesting orders, DGZ and ZGD, are shown.
In the first level of the composition, wavefront is used to sweep across all the
ZoneSets, regardless of the nesting order. Based on the nesting order chosen, the
work-function passed to wavefront skeleton will differ.

The use of ssl algorithmic skeletons to describe the sweep algorithm
has several advantages over use of low-level libraries like MPI and OpenMP,

170 A. Majidi et al.

besides programming abstraction and concise specification: First, paralleliz-
ing the second sweep over each ZoneSet using OpenMP is not a trivial task.
However, use of the data-flow graph representation as an internal model for
skeletons enables parallelizing skeletons regardless of the parallel library chosen
for execution. This means the second sweep in the algorithm could be considered
as a candidate to be executed in parallel. Furthermore, ssl supports parallel and
sequential implementation for all provided skeletons, which allows the program-
mer to test different execution policies to find the best configuration. Finally,
using ssl Algorithmic Skeletons enables nested parallel execution beyond the
common two levels, which enables taking advantage of the hierarchical design of
new computer architectures.

Listing 1.3. Nested composition of skeletons to describe DZG and ZGD sweep kernels

// sweep kernel for DGZ nesting order
auto DGZ_sweep_kernel =

wavefront(// sweep over zone -sets
zip(// for loop over groups

zip(// for loop over directions
wavefront(diamond -difference -wf) // sweep over each zone -set

)));

// sweep kernel for ZGD nesting order
auto ZGD_sweep_kernel =

wavefront(// sweep over zone -sets
wavefront(// sweep over each zone -set

zip(// for loop over groups
zip(diamond -difference -wf) // for loop over directions

)));

6 Experimental Results

In this section, we compare the performance of the Kripke reference code with
the stapl implementation. All experiments are performed on a Cray XK7m-
200 with twenty-four compute nodes of 2.1 GHz AMD Opteron Interlagos 16-
core processors. Twelve nodes are single socket with 32 GB RAM, and twelve
are dual socket with 64 GB RAM. We use gcc 4.9 with the O3 optimization
flag and craype-hugepages2M module. We perform two sets of experiments, one
exercising single node scaling and one showing scaling across multiple nodes.
In both experiments, the performance of the stapl implementation of Kripke’s
sweep computation is compared with that of the reference code.

6.1 Single Node Performance

For the single node performance study all zones are decomposed into just one
ZoneSet, meaning that there is no sweep over the ZoneSets (one element).
The reference code uses OpenMP, so we configure the stapl runtime to use

Nested Parallelism with Algorithmic Skeletons 171

OpenMP as well. As a result, strong scaling results show the performance of local
sweep of different kernels with a varying number of threads used on the node.
The problem test used in [19] has 12 × 12 × 12 spatial zones, 8 DirectionSets, 12
Directions per set (96 total Directions) and 1 GroupSet with 64 energy groups.
The authors refer to it as the KP0 configuration. We use KP0 and also define
a KP0′ configuration, increasing the spatial zones to 20 × 20 × 20, number of
directions to 348 (48 directions per DirectionSet) and number of groups to 128.
Figures 5a and b show strong scaling results for all 6 different kernels with the
two configurations of KP0 and KP0′, respectively. For the single node study we
use a larger, 32 core node.

For the DGZ and DZG kernels with the KP0 configuration, stapl sweep
stops scaling after 12 threads since we are parallelizing the second level skeleton
(zip) corresponding to D, while the reference code parallelizes the third level
loop, G, using OpenMP. However, for the KP0′ configuration, due to larger
number of directions, scaling continues for the stapl version and matches the
reference code’s behavior.

The GZD and GDZ kernels show the same behavior for the small configura-
tion of KP0 and the larger configuration of KP0’. However, performance of the
stapl implementation of sweep is more sensitive when the program stops scal-
ing, due to a higher overhead of parallelization, which needs to be investigated
and optimized.

For kernels starting with Z loops (ZGD and ZDG), the ability to parallelize
the inner wavefront skeleton (local sweep) in stapl version allows scaling to a
higher number of threads, while the reference code doesn’t scale after 4 and 8
threads, respectively, due to a lack of this functionality.

16121 2 4 8 32 1 162 4 128 32 1 162 4 128 32

124 81 162 32 1 162 4 128 32 1 162 4 128 32

1 162 324 8 1 162 324 8 1 162 324 8

1 162 324 8 1 162 324 8 1 162 324 8

5

10

5

10

0.00
0.25
0.50
0.75
1.00
1.25

0.00
0.25
0.50
0.75
1.00
1.25 GZD ZDG ZGD

DGZ DZG GDZ

#OpenMP−Threads

Ti
m

e
(s

)

GZD ZDG ZGD

DGZ DZG GDZ

#OpenMP−Threads

Ti
m

e
(s

)

ref
stapl

(b) KP0’ configuration(a) KP0 configuration

Fig. 5. Single node strong scaling for all nesting orders.

6.2 Multi-node Performance

A weak scaling study similar to that in [19] is performed for investigating the
scalability of the outer sweeps over the ZoneSets. All ZoneSets have the KP0
configuration for Fig. 6a and the KP0 ′ configuration for Fig. 6b. Each ZoneSet
is assigned to one MPI task. We have run this experiment for all kernels up to
64 MPI tasks, each with 8 threads (512 cores in total), to compare the sweep
algorithm implemented in stapl with the reference implementation.

172 A. Majidi et al.

Based on the kernel chosen for MPI scaling, the stapl sweep is either faster
or slower than the reference implementation. The choice of 8 threads per Zone-
Set is not the best optimal case for on-node computation as shown in on-node
scaling study. While this number was a reasonable basis of comparison and sup-
ports a large number of possible configurations, we intend to investigate different
configurations of the node’s cores further.

As can be seen in Fig. 6, the stapl implementation of sweep shows much less
variability in scaling results compared to the reference code. This appears to be
due the fact that stapl is able to parallelize the inner wavefront in the nested
section, while the reference’s implementation restricts it to parallelizing the next
lower loop level, resulting in more parallel sections with smaller granularity and
more global synchronizations.

8 12816 25632 51264 8 12816 25632 51264 8 12816 25632 51264

8 12816 25632 51264 8 12816 25632 51264 8 12816 25632 51264
0.1

0.2

0.3

0.4

0.5

0.25

0.50

0.75

1.00

1.25

0.1

0.2

0.3

0.4

0.0

0.5

1.0

1.5

2.0

0.05

0.10

0.15

0.20

0.25

0.1

0.2

0.3

8 12816 25632 51264 8 12816 25632 51264 8 12816 25632 51264

8 12816 25632 51264 8 12816 25632 51264 8 12816 25632 51264
2

4

6

2.5

5.0

7.5

10.0

3

6

9

2.5

5.0

7.5

10.0

12.5

2

3

4

5

6

2

3

4

5

6
GZD ZDG ZGD

DGZ DZG GDZ

#Cores

Ti
m

e
(s

)

(a) KP0 configuration

GZD ZDG ZGD

DGZ DZG GDZ

#Cores

Ti
m

e
(s

)

ref
stapl

(b) KP0’ configuration

Fig. 6. Multi-node weak scaling for all nesting orders.

While we only present results with two levels of parallelism, we have obtained
initial results for the fully parallel configuration of the kernels where all four lev-
els of nested parallelism are employed. We don’t currently see any performance
improvements beyond that of the two level approach. While additional investi-
gation is needed, possible reasons for this lack of improvement are insufficient
work granularity to overcome the overhead of the parallelization and suboptimal
mapping of the data onto the system hierarchy.

7 Related Work

OpenMP [23] supports nested parallelism using the fork-join model. When a
thread inside a nested sections finishes, it waits at a global barrier in the nested
section for other threads to finish. Inefficiencies can arise due to the global barrier
at the end of each nested section. This has lead to the introduction of the Collapse
keyword in OpenMP-3.0, which flattens the nested parallelism.

Several frameworks employ MPI’s ability to partition the MPI communica-
tion groups into subgroups for nested execution. NestStep [18] uses this ability to
partition communications groups into subgroups and run nested sub-supersteps
on these subgroups asynchronously. However, the parent group needs to wait for
all subgroups to finish their supersteps before going to next superstep, which

Nested Parallelism with Algorithmic Skeletons 173

can degrade performance. [10] and [20] follow the same approach in assigning
nested parallel sections to sub-groups of processing elements.

MPI + OpenMP is a common approach to express two level of parallelism in
benchmarks [7,19] and [27]. However, this approach usually results in complex
codes which are hard to maintain and are restricted to two levels of parallelism.

Among the frameworks which support task-level parallelism, Cilk [26] and
TBB [25] allow spawning nested tasks where the system is responsible for map-
ping nested sections to the machine, which degrades the performance due to
loss of locality. X10 [9], Habanero-Java [8], HPX [15], and Fortress [17] allow
users to control task-placement. However, as tasks are independent, there is no
communications between nested sections.

Legion [3] partitions memory into regions for spawning independent tasks
using its dynamic machine mapping model to improve the locality of tasks.
However, there is no support for dependencies between nested tasks, and it is
limited to task level parallelism.

Among the previous frameworks with skeleton specifications with nested
composition support, [16] and [4] only support nesting of task-parallel skele-
tons and do not explicitly address data communication between nested sections.
Skeleton frameworks presented in [21] and [13] support two levels of nesting for
data-parallel skeletons. However, due to the use of a master/slave scheme, their
approach is not scalable, especially on distributed systems.

[11] proposes a construct for modeling the nested data-flow model to analyze
the complexity of algorithms with nested parallelism.

8 Conclusion

We present a novel implementation of nested parallelism using stapl, which
allows the expression of arbitrary levels of parallelism using the nested compo-
sition of algorithmic skeletons. Choosing a data-flow graph representation for
skeletons removes the need for barriers between nested parallel sections, leading
to a fully asynchronous implementation of nested parallelism.

While the initial results with the multiple levels of nesting are promising,
we want to fully utilize the flexibility of the framework to explore various con-
figuration of execution and extend the current to work to support applications
with irregular and dynamic workload. We believe that studying this variety
of platforms will provide better insight into how nested parallelism can help
programmers cope with the deepening hierarchies and heterogeneity present in
modern HPC architectures.

References

1. Co-design: Kripke. https://computation.llnl.gov/projects/co-design/kripke
2. An, P., et al.: STAPL: a standard template adaptive parallel C++ library. In:

Proceedings of the International Workshop on Advanced Compiler Technology for
High Performance and Embedded Processors (IWACT), Bucharest, Romania, July
2001

https://computation.llnl.gov/projects/co-design/kripke

174 A. Majidi et al.

3. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: 2012 International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC), pp. 1–11. IEEE
Computer Society Press, November 2012. https://doi.org/10.1109/SC.2012.71

4. Benoit, A., Cole, M.: Two fundamental concepts in skeletal parallel programming.
In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS
2005. LNCS, vol. 3515, pp. 764–771. Springer, Heidelberg (2005). https://doi.org/
10.1007/11428848 98

5. Buss, A.A., et al.: The STAPL pview. In: Languages and Compilers for Parallel
Computing - 23rd International Workshop, LCPC 2010, Houston, TX, USA, 7–9
October 2010. Revised Selected Papers, pp. 261–275 (2010). https://doi.org/10.
1007/978-3-642-19595-2 18

6. Buss, A.A., et al.: STAPL: standard template adaptive parallel library. In: Proceed-
ings of of SYSTOR 2010: The 3rd Annual Haifa Experimental Systems Conference,
Haifa, Israel, 24–26 May 2010, pp. 1–10. ACM, New York (2010). https://doi.org/
10.1145/1815695.1815713, http://doi.acm.org/10.1145/1815695.1815713

7. Cappello, F., Etiemble, D.: MPI versus MPI+OpenMP on IBM SP for the NAS
benchmarks. In: Proceedings of the 2000 ACM/IEEE Conference on Supercom-
puting, SC 2000. IEEE Computer Society, Washington, DC (2000). http://dl.acm.
org/citation.cfm?id=370049.370071

8. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-Java: the new adven-
tures of old X10. In: Proceedings of the 9th International Conference on Prin-
ciples and Practice of Programming in Java, PPPJ 2011, pp. 51–61. ACM,
New York (2011). https://doi.org/10.1145/2093157.2093165, http://doi.acm.org/
10.1145/2093157.2093165

9. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster com-
puting. In: Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 519–538. ACM Press, New York (2005).
https://doi.org/10.1145/1094811.1094852

10. UPC Consortium: UPC Language Specifications V1.2 (2005). http://www.gwu.
edu/∼upc/publications/LBNL-59208.pdf

11. Dinh, D., Simhadri, H.V., Tang, Y.: Extending the nested parallel model to the
nested dataflow model with provably efficient schedulers. In: Proceedings of the
28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2016, pp. 49–60. ACM (2016). http://doi.acm.org/10.1145/2935764.2935797

12. Fatahalian, K., et al.: Sequoia: programming the memory hierarchy. In: Proceed-
ings of the 2006 ACM/IEEE Conference on Supercomputing, SC 2006. ACM,
New York (2006). https://doi.org/10.1145/1188455.1188543, http://doi.acm.org/
10.1145/1188455.1188543

13. Hamdan, M., Michaelson, G., King, P.: A scheme for nesting algorithmic skeletons,
October 1998

14. Harshvardhan, Fidel, A., Amato, N.M., Rauchwerger, L.: The STAPL parallel
graph library. In: Kasahara, H., Kimura, K. (eds.) LCPC 2012. LNCS, vol. 7760,
pp. 46–60. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37658-
0 4

15. Heller, T., Kaiser, H., Schäfer, A., Fey, D.: Using HPX and LibGeoDecomp for
scaling HPC applications on heterogeneous supercomputers. In: Proceedings of
the Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems,
ScalA 2013, pp. 1:1–1:8. ACM, New York (2013). https://doi.org/10.1145/2530268.
2530269, http://doi.acm.org/10.1145/2530268.2530269

https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1007/11428848_98
https://doi.org/10.1007/11428848_98
https://doi.org/10.1007/978-3-642-19595-2_18
https://doi.org/10.1007/978-3-642-19595-2_18
https://doi.org/10.1145/1815695.1815713
https://doi.org/10.1145/1815695.1815713
http://doi.acm.org/10.1145/1815695.1815713
http://dl.acm.org/citation.cfm?id=370049.370071
http://dl.acm.org/citation.cfm?id=370049.370071
https://doi.org/10.1145/2093157.2093165
http://doi.acm.org/10.1145/2093157.2093165
http://doi.acm.org/10.1145/2093157.2093165
https://doi.org/10.1145/1094811.1094852
http://www.gwu.edu/~upc/publications/LBNL-59208.pdf
http://www.gwu.edu/~upc/publications/LBNL-59208.pdf
http://doi.acm.org/10.1145/2935764.2935797
https://doi.org/10.1145/1188455.1188543
http://doi.acm.org/10.1145/1188455.1188543
http://doi.acm.org/10.1145/1188455.1188543
https://doi.org/10.1007/978-3-642-37658-0_4
https://doi.org/10.1007/978-3-642-37658-0_4
https://doi.org/10.1145/2530268.2530269
https://doi.org/10.1145/2530268.2530269
http://doi.acm.org/10.1145/2530268.2530269

Nested Parallelism with Algorithmic Skeletons 175

16. Jocelyn Sérot, D.G.: Skeletons for parallel image processing: an overview of the
skipper project, December 2002

17. Jr Steele, G.L., et al.: Fortress (sun HPCS language). In: Padua, D.A.
(ed.) Encyclopedia of Parallel Computing, pp. 718–735. Springer, Boston
(2011). https://doi.org/10.1007/978-0-387-09766-4. http://dblp.uni-trier.de/db/
reference/parallel/parallel2011.html#SteeleACFLMR11

18. Keßler, C.W.: NestStep: nested parallelism and virtual shared memory for the
BSP model. J. Supercomput. 17(3), 245–262 (2000). http://dblp.uni-trier.de/db/
journals/tjs/tjs17.html#Kessler00

19. Lawrence Berkeley National Laboratory and United States. Department of Energy
and United States. Department of Energy. Office of Scientific and Technical Infor-
mation: Kripke - a massively parallel transport mini-app. United States. Depart-
ment of Energy (2015)

20. Mellor-Crummey, J., Adhianto, L., Scherer, I.W.N., Jin, G.: A new vision
for coarray Fortran. In: Proceedings of the Third Conference on Partitioned
Global Address Space Programing Models, PGAS 2009, pp. 5:1–5:9. ACM,
New York (2009). https://doi.org/10.1145/1809961.1809969, http://doi.acm.org/
10.1145/1809961.1809969

21. Michaelson, G., Scaife, N., Bristow, P., King, P.: Nested algorithmic skeletons from
higher order functions (2000)

22. Musser, D., Derge, G., Saini, A.: STL Tutorial and Reference Guide, 2nd edn.
Addison-Wesley, Boston (2001)

23. OpenMP, ARB: OpenMP Application Program Interface. Specification (2011).
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

24. Papadopoulos, I., Thomas, N., Fidel, A., Hoxha, D., Amato, N.M., Rauchwerger,
L.: Asynchronous nested parallelism for dynamic applications in distributed mem-
ory. In: Shen, X., Mueller, F., Tuck, J. (eds.) LCPC 2015. LNCS, vol. 9519, pp.
106–121. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29778-1 7

25. Reinders, J.: Intel Threading Building Blocks. O’Reilly & Associates Inc.,
Sebastopol (2007)

26. Robison, A.D.: Composable parallel patterns with Intel Cilk Plus. Comput. Sci.
Eng. 15(2), 0066–71 (2013)

27. Sillero, J., Borrell, G., Jiménez, J., Moser, R.D.: Hybrid OpenMP-MPI turbulent
boundary layer code over 32k cores. In: Cotronis, Y., Danalis, A., Nikolopoulos,
D.S., Dongarra, J. (eds.) EuroMPI 2011. LNCS, vol. 6960, pp. 218–227. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24449-0 25

28. Tanase, G., et al.: The STAPL parallel container framework. In: Proceedings
of the 16th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP 2011, San Antonio, TX, USA, 2–16 February 2011, pp.
235–246 (2011). https://doi.org/10.1145/1941553.1941586, http://doi.acm.org/10.
1145/1941553.1941586

29. Zandifar, M., Jabbar, M.A., Majidi, A., Keyes, D., Amato, N.M., Rauchwerger,
L.: Composing algorithmic skeletons to express high-performance scientific appli-
cations. In: Proceedings of the 29th ACM International Conference on Supercom-
puting (ICS), ICS 2015, pp. 415–424. ACM, New York (2015). https://doi.org/10.
1145/2751205.2751241, http://doi.acm.org/10.1145/2751205.2751241. Conference
Best Paper Award

30. Zandifar, M., Thomas, N., Amato, N.M., Rauchwerger, L.: The stapl skeleton
framework. In: Brodman, J., Tu, P. (eds.) LCPC 2014. LNCS, vol. 8967, pp. 176–
190. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17473-0 12

https://doi.org/10.1007/978-0-387-09766-4
http://dblp.uni-trier.de/db/reference/parallel/parallel2011.html#SteeleACFLMR11
http://dblp.uni-trier.de/db/reference/parallel/parallel2011.html#SteeleACFLMR11
http://dblp.uni-trier.de/db/journals/tjs/tjs17.html#Kessler00
http://dblp.uni-trier.de/db/journals/tjs/tjs17.html#Kessler00
https://doi.org/10.1145/1809961.1809969
http://doi.acm.org/10.1145/1809961.1809969
http://doi.acm.org/10.1145/1809961.1809969
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
https://doi.org/10.1007/978-3-319-29778-1_7
https://doi.org/10.1007/978-3-642-24449-0_25
https://doi.org/10.1145/1941553.1941586
http://doi.acm.org/10.1145/1941553.1941586
http://doi.acm.org/10.1145/1941553.1941586
https://doi.org/10.1145/2751205.2751241
https://doi.org/10.1145/2751205.2751241
http://doi.acm.org/10.1145/2751205.2751241
https://doi.org/10.1007/978-3-319-17473-0_12

HDArray: Parallel Array Interface
for Distributed Heterogeneous Devices

Hyun Dok Cho1(B), Okwan Kwon2, and Samuel P. Midkiff3

1 NVIDIA Corporation, Santa Clara, USA
hyundokc@nvidia.com

2 Apple Inc., Cupertino, USA
o_kwon@apple.com

3 Purdue University, West Lafayette, USA
smidkiff@purdue.edu

Abstract. Heterogeneous clusters with nodes containing one or more
accelerators, such as GPUs, have become common. While MPI pro-
vides inter-address space communication, and OpenCL provides a pro-
cess with access to heterogeneous computational resources, programmers
are forced to write hybrid programs that manage the interaction of both
of these systems. This paper describes an array programming interface
that provides users with automatic and manual distributions of data
and work. Using work distribution, and kernel def and use information,
communication among processes and devices in a process is performed
automatically. By providing a unified programming model to the user,
program development is simplified.

1 Introduction

Both large and small scale multi-node systems with one or more GPUs per
node have become common. These systems, however, complicate already messy
distributed system programming by adding MPI [13] to proprietary host-GPU
mechanisms. Developers must maintain two programming models: one for intra-
process communication among devices and one for inter-process communication
across address spaces.

Several systems have improved the programmability of multi-node systems
with accelerators. SnuCL [16,18], dCuda [15], and IMPACC [17] support trans-
parent access to accelerators on different nodes, and PARRAY [7] and Viñas
et al. [32] provide high-level language abstractions and flexible array representa-
tions. Programmers can develop high-performance applications but must man-
age low-level details of accelerator programming or provide explicit communica-
tion code. Partitioned Global Address Space (PGAS) platforms for accelerators,
XMP-ACC [22], XACC [25], and Potluri et al. [27], relieve programmers from
dealing with data distribution, but data is strongly coupled to threads, making

H. D. Cho—This work was done while at Purdue University.
O. Kwon—This work was done while at NVIDIA Corporation.
c© Springer Nature Switzerland AG 2019
M. Hall and H. Sundar (Eds.): LCPC 2018, LNCS 11882, pp. 176–184, 2019.
https://doi.org/10.1007/978-3-030-34627-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34627-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-34627-0_13

HDArray: Parallel Array Interface for Distributed Heterogeneous Devices 177

performance tuning more difficult. Finally, compiler-assisted runtime systems,
Hydra [29] and OMPD [20], propose a fully automatic approach that allows
OpenMP programs to run on accelerator clusters, presenting an attractive alter-
native for developing repetitive and regular applications, but the distribution
of work and data are limited by OpenMP semantics and expressiveness. Other
related work [1–6,9–11,14,19,21,23,26,28,31,33] is discussed in [8].

In this paper, we describe the Heterogeneous Distributed Array (HDArray)
interface and runtime system. HDArray targets program execution on cluster-
sized distributed systems with nodes containing one or more accelerators, i.e.,
devices. Work is done by OpenCL work items, and HDArray provides ways to
explicitly and implicitly partition work onto devices.

HDArray also provides ways to specify data used by the work on a device.
Data read and written is typically relative to work items and can be specified
either using offsets from the work item, or with an absolute specification of
the data. HDArray then tracks the data defined and used by each work item,
which allows communication to be generated automatically, since, in race-free
programs, HDArray knows where the last written copy of a datum is, and who
needs that value. Importantly, data is not explicitly distributed and is not bound
to, or owned by, a work item, but flows from its defining device to the device
where it is needed.

Finally, HDArray allows work to be repartitioned at any point in the program.
This flexibility allows a programmer to optimize the work distribution and its
necessary communication without any changes to the kernel code.

2 Design of the HDArray Interface

The central structure and concept of the HDArray system is the HDArray itself.
The HDArray encapsulates a host buffer and device buffer by keeping neces-
sary state for communication among processes and kernel computation. Each
MPI process that maps to a single OpenCL device maintains HDArrays and
their structures. The HDArray system provides a collection of APIs and anno-
tations that the programmer uses to access the features of the HDArray system.
These APIs and annotations are translated by the HDArray frontend into calls,
arguments, and initialization files for use by the HDArray runtime. Detailed
information about the interface can be found in [8].

2.1 HDArray Programming Interface

The HDArray programming interface has two types of specifications. First, a
single pragma of the form #pragma hdarray [clauses] allows user-defined
hints to find data to be accessed and partition work item regions to distribute
work. Second, HDArray provides library functions, hiding low-level details of dis-
tributed device programming. We now show a General Matrix Multiply (GEMM)
implemented using HDArray, consisting of C host and OpenCL device code to
perform the matrix multiply C = A×B on three 1024× 1024 2D matrices.

178 H. D. Cho et al.

Line 6 of the host code (Listing 1.1) initializes the MPI and OpenCL environ-
ments. Line 7 evenly partitions the highest dimension of the 2D array domain
with regard to the number of devices. The function returns a partition ID, part0,
which represents the partitioned region and is used throughout the program.

On lines 8–10, the host allocates host and device buffers of HDArrays with the
same size as the user-space arrays. After the allocation, handles (hA, hB, hC) allow
users to access device buffers holding data for their respective program arrays (a,
b, c). Lines 11–13 write user arrays into the device buffer of HDArrays according
to the part0 specification. Therefore, the data is distributed to different devices.
1 void main(int argc, char *argv[]) {
2 int ni = 1024, nj = 1024, nk = 1024;
3 float a[ni][nk], b[nk][nj], c[ni][nj], al, be;
4 HDArray_t *hA, *hB, *hC;
5 ... // initialize variables
6 HDArrayInit(argc, argv, "gemm.cl", NULL);
7 int part0 = HDArrayPartition(ROW, 2, ni, nj, 0, 0, ni, nj);
8 hA = HDArrayCreate("a", "float", a, 2, ni, nk);
9 hB = HDArrayCreate("b", "float", b, 2, nk, nj);

10 hC = HDArrayCreate("c", "float", c, 2, ni, nj);
11 HDArrayWrite(hA, a, part0);
12 HDArrayWrite(hB, b, part0);
13 HDArrayWrite(hC, c, part0);
14 HDArrayApplyKernel("gemm", part0, hA, hB, hC,

al, be, ni, nj, nk);
15 HDArrayRead(hC, c, part0);
16 HDArrayExit();
17 }

Listing 1.1. GEMM host code.

1 #pragma hdarray use(A,(0,*)) use(B,(*,0)) def(C,(0,0))
2 __kernel void gemm(__global float *A,
3 __global float *B,
4 __global float *C,
5 float alph,
6 float beta,
7 int ni,
8 int nj,
9 int nk)

10 {
11 int i = get _global _id(1);
12 int j = get _global _id(0);
13 if ((i < ni) && (j < nj)) {
14 C[i * nj + j] *= beta;
15 for(int k=0; k < nk; k++)
16 C[i*nj+j] += alph * A[i*nk+k] * B[k*nj+j];
17 }
18 }

Listing 1.2. GEMM device code.

On line 14, the host launches the “gemm” kernel using part0 for work distri-
bution and kernel arguments. The runtime then binds HDArray handles and host
variables to kernel arguments, handles necessary communication, and invokes the
kernel. Line 15 reads the result of the computation from the device memory into
user array c. Finally, the host frees all the resources, including HDArrays, and
finalizes the parallel program in line 16.

The device code in Listing 1.2 shows an ordinary OpenCL kernel to be called,
with an annotation added on line 1. The annotation is a #pragma hdarray
statement with use and def offset clauses. These offsets, relative to a work item
index, specify slices of the A, B, and C arrays that are used and defined. The
code informs the runtime system that a single thread reads all elements of the
row of the array A and all elements of the column of the array B. The zero offset
indicates that each thread writes the result of the multiplication to its work
item index of the array C. With the per-thread array element access (offset) and
work partitioning (part0) information, the runtime generates communication
and launches the kernel.

The offsets can be used when a kernel’s array access pattern is relative to
a work item, which is the most common kernel programming pattern. For non-
rectangular access patterns, one can use the absolute section interface with use@
and/or def@ clauses and APIs. The HDArray pragma also enables manual parti-
tions for more programmer control of communication tuning and load balancing.

HDArray: Parallel Array Interface for Distributed Heterogeneous Devices 179

2.2 Communication Generation Using Array Section Analysis

An HDArray contains sets of array sections: global, i.e., across all kernels, def-
inition sections (GDEF); local, i.e., for a particular kernel, definition sections
(LDEF); and local use sections (LUSE). GDEF is a set of written sections not
yet communicated, and two types of GDEFs are maintained: sGDEF to send and
rGDEF to receive. LUSE/LDEF is the set of sections each process reads/writes
in the kernel. HDArray programs are SPMD programs, and each process main-
tains coherent local copies of the aforementioned four sets for all processes, and
thus each process knows the array access information of all other processes.

When the program invokes a kernel, the runtime analyzes LDEF and LUSE
by composing the partitioned work item region with the offset provided by each
kernel. The runtime then communicates only necessary array sections by inter-
secting LUSE with the GDEF. After communication and kernel execution, the
system updates GDEF sets for each HDArray for kernel call k to avoid redun-
dant communication and detect new communication in the future kernel call
k + 1. Handling communication requires the number of array section computa-
tions on each process p that is linear in the number of processes. The HDArray
system reduces the runtime overhead by maintaining a history of LDEF/LUSE
and GDEF, and overlapping communication with GDEF computation [8].

3 Experimental Results

Our evaluation is done using up to 32 OpenCL devices on the XSEDE Comet
GPU cluster [24,30], which consist of NVIDIA P100 and K80 nodes. We use six
micro-kernel benchmarks from PolyBench/ACC [12]. Baseline numbers are found
using the implementations provided by the benchmarks. For HDArray numbers,
OpenCL device and C host code includes HDArray pragmas and library calls.

In this section, we focus on scalability of HDArray programs, but details of
the experimental setup and the evaluation of runtime overhead can be found
in [8].

Figure 1 shows strong scaling with the baseline of an OpenCL device running
without HDArray. All the benchmarks perform a row-wise partition using the
HDArrayPartition function with a ROW argument for work and data distribu-
tion. Most benchmarks running on K80 nodes scale better than those on P100
nodes because the P100 is faster than the K80, and thus the communication
overhead on P100 nodes is a larger fraction of the computation time.

GEMM, shown in Sect. 2.1, uses 10,240× 10,240 matrices with 100 iterations.
The HDArray runtime system detects and generates all-gather collective com-
munication because each OpenCL work-item needs row and column elements of
arrays for computation. Scaling is good to 32 processes, with similar efficiencies
on the K80 (92%) and P100 (90%), due to the low ratio of communication to
kernel execution time. 2MM performs two matrix multiplications, D = A × B
followed by E = C × D. It differs from GEMM in that 2MM runs two ker-
nel functions within a loop and exhibits a data dependency because one kernel
defines the array D used by the other kernel. With the row-wise partitioning,

180 H. D. Cho et al.

Fig. 1. Scalability for the HDArray runtime system on P100 and K80 nodes. We show
the speedup for each benchmark, which is the ratio of the execution time of a single
device to the execution time of the number of devices indicated on the x-axis. All the
benchmarks use an automatic row-wise partitioning for data and work distribution.

the efficiency drops off to about 75% (42%) on the K80 (P100) at 32 processes
because of the communication cost. The cost is proportional to the number of
processes, and every iteration requires the communication: once for the array B,
and 100 times for the array D.

A different partitioning can be used to reduce the communication cost. 2MM
with column-wise partitioning, as shown in Fig. 2, communicates only twice for
arrays A and C, and the efficiency is about 98% (96%) on the K80 (P100) at
32 processes. Table 1 shows communication volumes of all 32 processes and a
noticeable volume difference for 2MM. This performance tuning was done by
simply changing the PART_T argument of HDArrayPartition function.

Fig. 2. Scalability for the HDArray runtime system with different partitioning methods.
2MM uses automatic column-wise partitioning, and Correlation uses manual row- and
column-wise partitionings.

Both Jacobi and Convolution kernels are iterative 4 and 8 point stencil codes.
The use clauses for the first kernel of Jacobi specify four offsets (0,−1), (0,+1),

HDArray: Parallel Array Interface for Distributed Heterogeneous Devices 181

(−1, 0), (+1, 0) for array B. The second kernel transfers the array A to the array
B, and zero offsets are used. Two partition IDs are used: one for entire arrays
and the other that excludes the boundary ghost cells. The kernels have a data
dependence on the array B. The kernels all use 20,480× 24,080 matrices with
100,000 iterations, and the runtime detects and schedules point-to-point commu-
nication. Convolution needs four additional offsets, but has no data dependency.
Both benchmarks scale well with an efficiency of 88% (68%) on the K80 (P100)
for Jacobi, and 91% (93%) on the K80 (P100) for Convolution at 32 processes.

Table 1. Total communication volume for 32 processes

Partition Convolution JACOBI GEMM 2MM Covariance Correlation

Default (Row) 5MB 473GB 12GB 1262GB 1268GB 1268GB
Customized 5MB 473GB 12GB 25GB 811GB 811GB

Covariance and Correlation are data mining benchmarks that compute a mea-
sure from statistics that show how linearly related two variables are. These bench-
marks have triangular-shape array accesses, requiring the absolute section inter-
face discussed in Sect. 2.1. Both use 10,240 vectors and 10,240× 10,240 matrices
with 100 iterations, and the system detects point-to-point and all-gather commu-
nication. Scaling is poor with the default row-wise partitioning, with an efficiency
of 27% (16%) on the K80 (P100) for Correlation (similar to Covariance). This
is because evenly distributing work using HDArrayPartition causes poor work
and communication load balancing for kernels that have triangular access pat-
terns. The most time-consuming computation is done from the upper-triangular
section of an array which later requires communication to make the array sym-
metric. As a result, each device gets a different amount of work, and a device
with the most computation also has the most communication, which leads to an
imbalance of computation and communication across the devices.

Manual partitioning with optimized absolute section updates to balance the
work and communication among devices, gives better scalability with an effi-
ciency of 44% (24%) on the K80 (P100) thanks to the reduced communication
volume as shown in Fig. 2 and Table 1, respectively. This result highlights the
value of integrating manual and automatic partitioning. Also, the performance
tuning does not require any changes in kernel code, but only a few lines of host
code are changed for different absolute section updates and partitioning.

4 Conclusions

We have presented the HDArray interface and runtime system for accelerator
clusters. The interface features a novel global programming model that sepa-
rates work partitioning from the concept of data distribution, enabling straight-
forward and flexible work distribution. The interface abstracts away many low-
level details of multiple address space programming, yet supports a low-level

182 H. D. Cho et al.

array programming environment through annotations and APIs for performance
tuning. The offsets provide an intuitive and simple way to describe kernel access
patterns, and the patterns can be easily changed by simply adjusting partitions
without the modification of kernel code. Finally, the HDArray runtime system
performs efficient and fully automatic communication by managing the array
sections.

Acknowledgments. This material is based upon work supported by the National
Science Foundation (NSF) under Grant No. CNS-1405954, and uses the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE), which is supported by NSF
grant number ACI-1548562. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily reflect
the views of the NSF or XSEDE. We thank Prof. Jeffrey M. Siskind and Purdue ITaP
for providing GPU resources.

References

1. ArrayFire. https://arrayfire.com/
2. The OpenACC Application Programming Interface Version 2.5 (2015). http://

www.openacc.org/sites/default/files/OpenACC_2pt5.pdf
3. Bikshandi, G., et al.: Programming for parallelism and locality with hierarchically

tiled arrays. In: Proceedings of the Eleventh ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP 2006 (2006)

4. Bueno, J., et al.: Productive programming of GPU clusters with OmpSs. In: 2012
IEEE 26th International Parallel and Distributed Processing Symposium (IPDPS),
pp. 557–568 (2012)

5. Catanzaro, B., Garland, M., Keutzer, K.: Copperhead: compiling an embedded
data parallel language. In: Proceedings of the 16th ACM Symposium on Principles
and Practice of Parallel Programming, PPoPP 2011, New York, NY, USA (2011).
https://doi.org/10.1145/1941553.1941562

6. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster com-
puting. In: ACM SIGPLAN Notices, vol. 40, pp. 519–538. ACM (2005)

7. Chen, Y., Cui, X., Mei, H.: PARRAY: a unifying array representation for hetero-
geneous parallelism. In: Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2012 (2012)

8. Cho, H.D., Kwon, O., Midkiff, S.: HDArray: parallel array interface for distributed
heterogeneous devices. arXiv:1809.05657 [cs.DC] (2018). https://arxiv.org/abs/
1809.05657

9. Consortium, U., et al.: UPC Language Specifications V1.2. Lawrence Berkeley
National Laboratory (2005)

10. Cui, X., Li, X., Chen, Y.: Programming heterogeneous systems with array types.
In: 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (2015)

11. Ernsting, S., Kuchen, H.: Data parallel algorithmic skeletons with accelerator sup-
port. Int. J. Parallel Program. 45(2), 283–299 (2017)

12. Grauer-Gray, S., et al.: Auto-tuning a high-level language targeted to GPU codes.
In: 2012 Innovative Parallel Computing (InPar), pp. 1–10, May 2012. https://doi.
org/10.1109/InPar.2012.6339595

https://arrayfire.com/
http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf
http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf
https://doi.org/10.1145/1941553.1941562
http://arxiv.org/abs/1809.05657
https://arxiv.org/abs/1809.05657
https://arxiv.org/abs/1809.05657
https://doi.org/10.1109/InPar.2012.6339595
https://doi.org/10.1109/InPar.2012.6339595

HDArray: Parallel Array Interface for Distributed Heterogeneous Devices 183

13. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message-Passing Interface, vol. 1. MIT Press, Cambridge (1999)

14. Gupta, M., et al.: An HPF compiler for the IBM SP2. In: Proceedings of the 1995
ACM/IEEE Conference on Supercomputing, Supercomputing 1995. ACM (1995).
https://doi.org/10.1145/224170.224422

15. Gysi, T., Bär, J., Hoefler, T.: dCUDA: hardware supported overlap of computa-
tion and communication. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2016 (2016)

16. Kim, J., Jo, G., et al.: A distributed OpenCL framework using redundant computa-
tion and data replication. In: Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016 (2016)

17. Kim, J., et al.: IMPACC: a tightly integrated MPI+ OpenACC framework exploit-
ing shared memory parallelism. In: International Symposium on High-Performance
Parallel and Distributed Computing, HPDC 2016 (2016)

18. Kim, J., et al.: SnuCL: an OpenCL framework for heterogeneous CPU/GPU Clus-
ters. In: Proceedings of the 26th ACM International Conference on Supercomput-
ing, ICS 2012 (2012)

19. Klöckner, A., et al.: PyCUDA and PyOpenCL: a scripting-based approach to GPU
run-time code generation. Parallel Comput. 38(3), 157–174 (2012)

20. Kwon, O., et al.: A hybrid approach of OpenMP for clusters. In: Proceedings
of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2012, pp. 75–84 (2012). https://doi.org/10.1145/2145816.
2145827

21. Lam, S.K.: NumbaPro: High-Level GPU Programming in Python for Rapid Devel-
opment. http://on-demand-gtc.gputechconf.com/

22. Lee, J., Tran, M.T., Odajima, T., Boku, T., Sato, M.: An extension of XcalableMP
PGAS lanaguage for multi-node GPU clusters. In: Bosilca, G., et al. (eds.) Euro-
Par 2011. LNCS, vol. 7155, pp. 429–439. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29737-3_48

23. Majeed, M., et al.: Cluster-SkePU: a multi-backend skeleton programming library
for GPU clusters. In: Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA) (2013)

24. Moore, R.L., et al.: Gateways to discovery: cyberinfrastructure for the long tail of
science. In: Proceedings of the 2014 Annual Conference on Extreme Science and
Engineering Discovery Environment, XSEDE 2014. ACM (2014). https://doi.org/
10.1145/2616498.2616540

25. Nakao, M., et al.: XcalableACC: extension of XcalableMP PGAS language using
OpenACC for accelerator clusters. In: Workshop on Accelerator Programming
Using Directives (WACCPD) (2014). https://doi.org/10.1109/WACCPD.2014.6

26. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. In: ACM
SIGPLAN Fortran Forum, vol. 17, pp. 1–31. ACM (1998)

27. Potluri, S., et al.: Extending openSHMEM for GPU Computing. In: 2013 IEEE
27th International Symposium on Parallel and Distributed Processing (IPDPS),
pp. 1001–1012 (2013)

28. Rice University, CORPORATE: High Performance Fortran Language Specifica-
tion. SIGPLAN Fortran Forum, December 1993. https://doi.org/10.1145/174223.
158909

29. Sakdhnagool, P., Sabne, A., Eigenmann, R.: HYDRA: extending shared address
programming for accelerator clusters. In: Shen, X., Mueller, F., Tuck, J. (eds.)
LCPC 2015. LNCS, vol. 9519, pp. 140–155. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29778-1_9

https://doi.org/10.1145/224170.224422
https://doi.org/10.1145/2145816.2145827
https://doi.org/10.1145/2145816.2145827
http://on-demand-gtc.gputechconf.com/
https://doi.org/10.1007/978-3-642-29737-3_48
https://doi.org/10.1007/978-3-642-29737-3_48
https://doi.org/10.1145/2616498.2616540
https://doi.org/10.1145/2616498.2616540
https://doi.org/10.1109/WACCPD.2014.6
https://doi.org/10.1145/174223.158909
https://doi.org/10.1145/174223.158909
https://doi.org/10.1007/978-3-319-29778-1_9
https://doi.org/10.1007/978-3-319-29778-1_9

184 H. D. Cho et al.

30. Towns, J., et al.: XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16(5),
62–74 (2014)

31. Viñas, M., Bozkus, Z., Fraguela, B.B.: Exploiting heterogeneous parallelism with
the heterogeneous programming library. J. Parallel Distrib. Comput. 73(12), 1627–
1638 (2013)

32. Viñas, M., et al.: Towards a high level approach for the programming of hetero-
geneous clusters. In: 2016 45th International Conference on Parallel Processing
Workshops (ICPPW), pp. 106–114. IEEE (2016)

33. Yan, Y., et al.: HOMP: automated distribution of parallel loops and data in highly
parallel accelerator-based systems. In: 2017 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pp. 788–798. IEEE (2017)

Automating the Exchangeability
of Shared Data Abstractions

Jiange Zhang1(B), Qian Wang2, Qing Yi1, and Huimin Cui3

1 University of Colorado, Colorado Springs, USA
{jzhang3,qyi}@uccs.edu

2 NVidia, Shanghai, China
traz0824@gmail.com

3 Institute of Computing, Chinese Academy of Science, Beijing, China
huimin.cui@gmail.com

Abstract. This paper presents a framework to support the automated
exchange of data abstractions in multi-threaded applications, together
with an empirical study of their uses in PARSEC. Our framework was
able to speedup six of the benchmarks by up to 2x on two platforms.

1 Introduction

Software applications need to use synchronous data abstractions, e.g., queues and
hash maps, to store shared data. The relative efficiency of these abstractions are
not easily predictable when used in different scenarios. To demonstrate, Fig. 2
shows the measured speedups when using C11 queue, TBB concurrent queue,
and Boost deque, to replace a default ring-buffer task-queue on two hardware
platforms. On both platforms, the TBB concurrent queue performs the best
when the batch size is 1 but poorly when batch size is 20, where the C11 queue
is the best on the AMD and the Boost deque the best on the Intel. There is not
a single implementation that always performs the best.

Offline Profiling

Abstraction
Replacement Compiler

Optimized Application

Abstraction
Adapter
Interface

User
Application

Abstraction Efficiency Report

Fig. 1. Overall Workflow

This paper aims to support
the automated exchange of abstrac-
tions in multi-threaded applications.
Figure 1 shows our overall work-
flow, which includes (1) an abstrac-
tion adapter interface that docu-
ments the relations between differ-
ent abstraction implementations and
(2) an abstraction replacement com-
piler that automatically substitutes
abstractions in applications with alternative ones based on the adapter spec-
ifications. Offline profiling is used to drive the optimizations.

The abstraction adapter interface, manually written by developers, is used to
ensure correct optimization. Our technical contributions include the following.

This research is funded by NSF through award CCF-1261584.

c© Springer Nature Switzerland AG 2019
M. Hall and H. Sundar (Eds.): LCPC 2018, LNCS 11882, pp. 185–192, 2019.
https://doi.org/10.1007/978-3-030-34627-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34627-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-34627-0_14

186 J. Zhang et al.

*batch size: the number of tasks a thread can push into or pop from the queue each time;

of prods: # of cons: the number of threads pushing into vs popping from the queue

Fig. 2. Efficiencies of three task queues on a 12-core Intel and 24-core AMD

– A programming interface for documenting the relations between different
abstraction, thus allowing them to be used interchangeably in applications.

– A source-to-source compiler that automatically replaces existing uses of
abstractions in multi-threaded applications with alternative implementations;

– An empirical study of optimizing the use of data abstractions in PARSEC [4].

The rest of the paper presents each of the above components in more detail.

2 The Abstraction Adapter Interface

Figure 3 shows some example adapters defined using our interface, each in the
form of adapt x as y {body}, where x is an existing abstraction being adapted;
y is an abstract type name; and body is a sequence of interface functions, each
defined by borrowing a subset of C++, enhanced with the following notations,

– this, which refers to the abstraction object being adapted;
– val type, which refers to the type of values stored in abstraction x;
– ref(t), which defines a pointer type to objects of type t;
– array(t, n), which defines an array type with n elements of type t;
– the () notation, which refers to an empty type (the void type);
– t1 → t2, which defines a function type that maps type t1 to t2;
– the | operator, which connects multiple implementations of a function;
– syn. mutex lock(v){s}, which uses mutex lock v to synchronize block s;
– syn. wait(c, v), which blocks a thread until the condition variable c is set;
– syn. broadcast(c), which wakes up threads blocked on condition variable c;
– foreach v in lower .. upper .. step do s enddo, which repetitively evaluates

statement s while setting variable v from lower to upper by step.

Automating the Exchangeability of Shared Data Abstractions 187

For two existing abstractions xi and xj to be exchangeable, two adapters ai
and aj must be defined to respectively adapt them to a common abstract type.
Further, the common interface functions in both ai and aj must be sufficient to
cover all uses of xi in the application. Our compiler checks these requirements
and performs the substitution only when all the requirements are satisfied.

(1) adapt struct ::_ringbuffer_t {int head=0; int tail=0; int size=CONFIG;
val_type data[size]; } from dedup/{queue.h,queue.c} as task_queue {

_empty = () -> (this.tail == this.head);
_full = () -> (this.head == (this.tail - 1 + this.size) % this.size)

| (this.tail == (this.head+1) % this.size);
_erase_1 = (val : ref(val_type)) -> syn._mutex_lock(&this.mutex) {

val = this.data[this.tail];
this.tail = this.tail +1; if (this.tail == this.size) this.tail=0;

}
_insert_1 = (x : val_type) -> syn._mutex_lock(&this.mutex) {

this.data[this.head] = x;
this.head = this.head + 1; if (this.head == this.size) this.head = 0;

}
_syn_erase_n = (val : array(val_type,1), n:int, lock : mutex, f1 : ()->(), f2 : ()->())

-> syn._mutex_lock(lock) { f1;
foreach i in 0 .. n ..1 do

this._erase_1(val[i]); if (this._empty()) { i=i+1; break; }
enddo
f2; return i; }

_syn_insert_n = };
(2) adapt tbb::concurrent_queue as task_queue {

_empty = () -> this.empty();
_full = ()->false;
_try_insert_1 = (x : val_type) -> this.try_push(x);
_try_erase_1=(val : ref(val_type))-> this.try_pop(val);
_syn_erase_n = (val : array(val_type,1),n:int, lock : mutex, f1 : ()->(), f2 : ()->())

-> {syn._mutex_lock(lock) { f1; }
foreach i in 0 .. n ..1 do if (!this._try_erase_1(val[i])) break; enddo
syn._mutex_lock(lock) { f2; }
return i; }

_syn_insert_n = };

Fig. 3. Example: abstraction adapter interface

3 The Abstraction Replacement Compiler

Our abstraction compiler takes three inputs: the user application to modify, the
adapter interface that relates different abstractions, and a set of optimization
configurations. The developer is expected to invoke our compiler with the same
configurations on all files to ensure consistency of the substitution results. Each
configuration instructs the compiler to convert an abstraction xi to xj , based on
their adapters ai and aj . To do this, the compiler first finds the abstraction type
and the adapter definitions to make sure they are consistent with each other. It
then tries to convert each variable vi of type xi in each function f of the input
application, by first outlining all uses of vi into invocations of abstract interface
functions in ai. Then, it modifies the type definition of xi: if only a subset of its
member variables are used in ai, a new member variable of type xj is added to
xi to replace these member variables; otherwise, the type of vi is simply changed

188 J. Zhang et al.

from xi to xj . Finally, it inlines each abstract interface operation over vi with
implementations defined in adapter aj over the new vj variable.

The key of the compiler is its outlining algorithm, which includes three steps:
(1) normalize the input code to use higher-level notations defined in the adapter
interface; (2) sort all interface functions in increasing granularity and convert
each interface function fa into a set of patterns, where variables, e.g., val, n,
lock, f1, f2, and this in syn erase n of the task queue in Fig. 3, are converted
to pattern parameters that can be matched to different expressions and state-
ments; and (3) use each implementation pattern generated in step (2) to match
against existing input code, while outlining each matched code fragment into
an invocation of the corresponding interface function. Figure 5(a–b) illustrate
the results of these steps when outlining the dequeue function in Fig. 4, with
the result of instantiating the outlined code by using the TBB concurrent queue
adapter shown in (c). Here the original mutex protected critical section has been
split into three subsections, with the middle section no longer protected by the
lock and instead invoking the already synchronous try erase function of the
TBB queue. Such algorithmic changes are enabled by the adapter definitions,
which can be made quite powerful by integrating knowledge from developers.

struct queue {
int head, tail, size; void** data; int count, threads;
pthread mutex t mutex; pthread cond t empty, full;

};
int dequeue(struct queue *que, int *fetch count, void **to buf) {
1. pthread mutex lock(&que→mutex);
2. while((que→tail==que→head)&&(que→count<que→threads))
3. {pthread wait(&que→empty,&que→mutex);}
4. if((que→tail==que→head)&&(que→count==que→threads)) {
5. pthread cond broadcast(&que→empty); pthread mutex unlock(&que→mutex); return -1;}
6. for((*fetch count)=0; (*fetch count)<16; (*fetch count)++) {
7. to buf[(*fetch count)]=que→data[que→tail]; que→tail++;
8. if (que→tail==que→size) que→tail = 0;
9. if (que→tail==que→head){(*fetch count)++; break;}}
10. pthread cond signal(&que→full); pthread mutex unlock(&que→mutex); return 0;}

Fig. 4. An example queue abstraction

Our compiler follows two steps to outline each implementation pattern from
an input code. First, it traverses all statements in the input code while matching
each of them against all parts of the given pattern, with each successful match
remembering the required values for each pattern parameter. Then, it examines
the saved matches to see whether they can be outlined without violating depen-
dences of the original function, while performing the outlining transformation
only when safe. Specifically, each outlining transformation requires a sequence
of statements in the input code that are matched precisely to the sequence of
statements in the given pattern, without any conflicting assignments of values to
the pattern parameters, and with no dependence cycle involving any other inter-
vening statements in the input code. Note that single pattern parameters such
as variables f1 and f2 in syn erase n of adapter (1) in Fig. 3 can be matched
to a sequence of statements in the input code, to enhance effectiveness.

Automating the Exchangeability of Shared Data Abstractions 189

4 Experimental Evaluation

We have implemented our infrastructure using the POET language [16] on top of
the ROSE C/C++ open-source compiler [12]. We used our adapter interface to
manually document a set of queue and map implementations from the PARSEC
benchmarks [4] and from C++11 std [2], TBB [13] and Boost [1] libraries. We
also identified a number of simple mutex-based synchronization patterns and
automatically correlated them with equivalent non-blocking synchronizations,
illustrated in Fig. 6. We then tried to optimize PARSEC [4] 3.0, by replacing their
existing uses of queue, map, and synchronization abstractions. We used offline profiling
to determine the performance of different abstractions in different use cases.

We evaluated all benchmarks on two platforms, shown in Table 1. All benchmarks
were compiled using icc with -O3 on the Intel machine and using g++ with -O3 on the
AMD. Each benchmark is evaluated by using its native input (the largest input set) and
with a thread configuration that provides the best performance. Each measurement
is repeated 10 times, and the average used to calculate performance speedups. The
variations across different runs of the same code are ≤5%.

Our framework is able to support the exchange of all uses of pre-defined queue,
map, and synchronization abstractions in PARSEC (they are used in 10 of the 13
available benchmarks). Figure 7 shows the overall performance speedups attained by
our compiler, together with a breakdown of the speedups from tuning only the queue,
map, and synchronization abstraction implementations respectively.

Four PARSEC benchmarks (Dedup, Bodytrack, Ferret and Facesim) use the queue
abstraction. However, they are all designed to minimize contention among the threads

int dequeue(struct queue *que, int *fetch count, void **to buf) {
1. syn. mutex lock(&que→mutex): {
2. while((que. empty()&&(que→count<que→threads)) {syn. wait(&que→empty,&que→mutex);}
3. if((que. empty()&&(que→count==que→threads)) { syn. broadcast(&que→empty); return -1;}
4. foreach i in 0 .. 16 .. 1 do
5. to buf[i]=que→data[que→tail]; que→tail=que→tail+1; if (que→tail==que→size) que→tail = 0;
6. if (que. empty()){i=i+1; break;} enddo
7. (*fetch count)=i; syn. signal(&que→full);}; return 0;}

(a) after normalization and outlining empty

int dequeue(struct queue *que, int *fetch count, void **to buf) {
1. (*fetch count) = syn erase n(to buf, 16, &que→mutex,
2. /*f1*/{ while((que. empty()&&(que→count<que→threads)) {syn. wait(&que→empty,&que→mutex);}
3. if((que. empty()&&(que→count==que→threads)) { syn. broadcast(&que→empty); return -1;}},
4. /*f2*/ { syn. signal(&que→full);}); return 0;}

(b) after outlining erase 1 and syn erase n

struct queue {
tbb::concurrent queue<void*> *tbb que; int count, threads;
pthread mutex t mutex; pthread cond t empty, full; };

int dequeue(struct queue *que, int size, void **to buf) {
(1) pthread mutex lock(&que→mutex);
(2) while ((que→tbb que→empty())&&(que→count<que→threads))
(3) {pthread cond wait(&que→empty,&que→mutex);}
(4) if ((que→tbb que→empty())&&(que→count==que→threads)) {
(5) pthread cond broadcast(&que→empty); pthread mutex unlock(&que→mutex); return -1;}},
(6) pthread mutex unlock((&que→mutex);
(7) for(int i=0; i<size; i+=1) { if (!que→tbb que→try pop(to buf[i])) break; }
(8) pthread mutex lock(&que→mutex); pthread cond signal(&que→full);
(9) pthread mutex unlock(&que→mutex); (*fetch count) = i; return 0;}

(c) after replacement

Fig. 5. Example: substitute the queue in Fig. 4 with TBB concurrent queue

190 J. Zhang et al.

adapt { x : val type; pt : syn.mutex; } as atomic var {
(1) syn fetch add = (incr: val type) →

{ syn. mutex lock(this.pt) { tmp : val type =this.x; this.x=this.x + incr; } return tmp;}
(2) syn add fetch = (inc:val type) → { syn. mutex lock(this.pt) { thix.x=this.x + inc; } return this.x;}
(3) syn set value = (v : val type) → { syn. multex lock(this.pt) { this.x=v; } }
(4) syn set and broadcast = (pc : syn.cond var) →

{ syn. multex lock(this.pt) { this.x=v; syn. broadcast(pc) } }
(5) syn wait cond = (cond : bool, pc : syn.cond var) →

{ syn. multex lock(this.pt) { while (cond) syn. wait(pc, this,pt); } } }
(6) adapt ::pthread barrier t as thread barrier {

barrier init = (n threads : int) → {pthread barrier init(this, NULL, n threads);}
barrier wait = () → {pthread barrier wait(this);}
barrier destroy = () → {pthread barrier destroy(this);} }

Fig. 6. Example adapters for synchronization operations

over the queue operations. Due to low contention, a better synchronized queue imple-
mentation does not produce any speedup, unless the overall application is modified
to increase concurrency among the threads. The map abstraction is also used in four
PARSEC benchmarks: Canneal, Dedup, Raytrace and Vips. Speedups of 1.255–1.806x
are achieved for Canneal and Raytrace, by replacing their uses of the C++ std::map,
which is internally a red-black tree. with the faster C++ std::unordered map, which
is internally a hash table. No speedups were attained for Dedup and Vips because
their maps are already quite efficient. Most speedups (1.08–2.35x) are attained by
replacing the underlying implementations of synchronizations in Canneal, Bodytrack,
Fluidanimate, and Streamcluster. All four benchmarks benefited from replacing their
uses of Pthread barriers with a lighter weight implementation using atomic operations
followed by spin waiting. Bodytrack and X264 also benefited from using atomic opera-
tions to replace their mutex-based synchronizations over single global shared variables.

Table 1. Platform configurations

CPU Freq. L1 Cache sz L2 Cache sz # of cores

Intel E5-2420 1.9 GHz 32 KB 256 KB 12

AMD Opteron-6128 2 GHz 64 KB 512 KB 24

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

B
od

yt
ra

ck

C
an

ne
al

D
ed

up

F
ac

es
im

F
er

re
t

F
lu

id
an

im
at

e

R
ay

tr
ac

e

S
tr

ea
m

cl
us

te
r

V
ip

s

X
26

4

S
pe

ed
up

Queue
Map

Synchronization
Overall

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

B
od

yt
ra

ck

C
an

ne
al

D
ed

up

F
ac

es
im

F
er

re
t

F
lu

id
an

im
at

e

R
ay

tr
ac

e

S
tr

ea
m

cl
us

te
r

V
ip

s

X
26

4

S
pe

ed
up

Queue
Map

Synchronization
Overall

(a) on the Intel Platform (b) on the AMD Platform

Fig. 7. Performance speedups attained by our compiler

Automating the Exchangeability of Shared Data Abstractions 191

The results across platforms are mostly consistent. We have observed from tuning these
applications that their uses of abstractions are tightly connected with other aspects of
application design, and replacing a single abstraction in isolation is often not rewarding,
unless the abstraction itself is complex enough to offer significant opportunities.

5 Related Work

The idea of automated data structure selection originated in the context abstract data
types [9]. More recent work has studied the automatic selection of abstraction imple-
mentations for performance optimizations [5,10,14] and the use of nonblocking syn-
chronizations in multi-threaded applications to enable better load balancing and scala-
bility [3,7,8,11,15]. In this paper, we develop compiler support to automate the deploy-
ment of alternative abstraction implementations. Existing frameworks on abstraction-
aware optimizations mostly focus on optimizing a specific type of data abstraction, e.g.,
matrices [6] and arrays [17]. Our framework aims to support the automated selection
of general-purpose abstractions in multi-threaded applications.

6 Conclusion

This paper presents a framework for automatically exchanging abstraction implemen-
tations in multi-threaded applications to enhance performance portability. The frame-
work is used to optimize the use of queues, maps, and synchronization abstractions in
the PARSEC benchmarks.

References

1. Boost 1.56.0 Library Documentation (2014). http://www.boost.org/doc
2. Standard C++ Library reference (2014). http://www.cplusplus.com
3. Barrington, A., Feldman, S.D., Dechev, D.: A scalable multi-producer multi-

consumer wait-free ring buffer. In: Proceedings of the 30th Annual ACM Sympo-
sium on Applied Computing, Salamanca, Spain, 13–17 April 2015, pp. 1321–1328
(2015)

4. Bienia, C., Li, K.: Parsec 2.0: a new benchmark suite for chip-multiprocessors.
In: Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and
Simulation, June 2009

5. Cho, D., Pasricha, S., Issenin, I., Dutt, N., Paek, Y., Ko, S.: Compiler driven data
layout optimization for regular/irregular array access patterns. In: Proceedings
of the 2008 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES 2008), Tucson, AZ, USA, 12–13 June 2008,
pp. 41–50 (2008)

6. Cui, H., Yi, Q., Xue, J., Feng, X.: Layout-oblivious compiler optimization for
matrix computations. ACM Trans. Archit. Code Optim. 9(4), 35:1–35:20 (2013).
https://doi.org/10.1145/2400682.2400694

7. Dechev, D., LaBorde, P., Feldman, S.D.: LC/DC: lockless containers and data
concurrency a novel nonblocking container library for multicore applications. IEEE
Access 1, 625–645 (2013)

http://www.boost.org/doc
http://www.cplusplus.com
https://doi.org/10.1145/2400682.2400694

192 J. Zhang et al.

8. Feldman, S.D., Bhat, A., LaBorde, P., Yi, Q., Dechev, D.: Effective use of non-
blocking data structures in a deduplication application. In: Proceedings of the
2013 Companion Publication for Conference on Systems, Programming, & #38;
Applications: Software for Humanity, SPLASH 2013, pp. 133–142. ACM, New York
(2013)

9. Low, J.R.: Automatic data structure selection: an example and overview. Commun.
ACM 21(5), 376–385 (1978). https://doi.org/10.1145/359488.359498

10. Majeti, D., Barik, R., Zhao, J., Grossman, M., Sarkar, V.: Compiler-driven data
layout transformation for heterogeneous platforms. In: an Mey, D., et al. (eds.)
Euro-Par 2013. LNCS, vol. 8374, pp. 188–197. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54420-0 19

11. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing, Philadelphia, Pennsylvania, USA,
23–26 May 1996, pp. 267–275 (1996)

12. Quinlan, D., Schordan, M., Yi, Q., Saebjornsen, A.: Classification and utilization of
abstractions for optimization. In: ISOLA 2004: The First International Symposium
on Leveraging Applications of Formal Methods, Paphos, Cyprus, October 2004

13. Reinders, J.: Intel Threading Building Blocks, 1st edn. O’Reilly & Associates, Inc.,
Sebastopol (2007)

14. Rubin, S., Bod́ık, R., Chilimbi, T.M.: An efficient profile-analysis framework
for data-layout optimizations. In: Conference Record of POPL 2002: The 29th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Port-
land, OR, USA, 16–18 January 2002, pp. 140–153 (2002)

15. Tsigas, P., Zhang, Y.: Integrating non-blocking synchronisation in parallel applica-
tions: performance advantages and methodologies. In: Workshop on Software and
Performance, pp. 55–66 (2002)

16. Yi, Q.: POET: a scripting language for applying parameterized source-to-source
program transformations. Softw. Pract. Exp. 42, 675–706 (2012)

17. Yi, Q., Quinlan, D.: Applying loop optimizations to object-oriented abstractions
through general classification of array semantics. In: LCPC 2004: The 17th Inter-
national Workshop on Languages and Compilers for Parallel Computing, West
Lafayette, Indiana, USA, September 2004

https://doi.org/10.1145/359488.359498
https://doi.org/10.1007/978-3-642-54420-0_19
https://doi.org/10.1007/978-3-642-54420-0_19

Author Index

Aldous, Peter 94
Amato, Nancy 159

Baden, Scott B. 120
Bonachea, Dan 138

Cammarota, Rosario 54
Chatarasi, Prasanth 1
Chen, Zhi 54
Chen, Zixu 61
Cheshmi, Kazem 78
Cho, Hyun Dok 176
Cohen, Albert 1, 21
Cui, Huimin 185

Dehnavi, Maryam Mehri 78
Ding, Chen 61
Do, Xuan Khanh 21
Doerfert, Johannes 112

Fan, Sicong 61
Finkel, Hal 112

Ghalaty, Nahid Farhady 54

Hargrove, Paul H. 138
Hooker, Joshua 94

Kwon, Okwan 176

Lim, Robert 37
Louise, Stéphane 21

Majidi, Alireza 159
Malony, Allen 37
Martin, Sergio M. 120
Mercer, Eric 94

Midkiff, Samuel P. 176
Mohammadi, Mahdi Soltan 78

Nicolau, Alexandru 54, 70
Norris, Boyana 37

Ogles, Ben 94

Padua, David 70
Powell, Jacob 94

Rauchwerger, Lawrence 159

Sarkar, Vivek 1
Shen, Junjie 54
Shirako, Jun 1
Shivam, Aniket 70
Smith, Timmie 159
Smith, Wesley 61
Storey, Kyle 94
Strout, Michelle Mills 78

Thomas, Nathan 159

Veidenbaum, Alexander V. 54, 70
Venkat, Anand 78

Wang, Qian 185
Watkinson, Neftali 70

Yi, Qing 185
Yuan, Liang 61
Yuki, Tomofumi 78

Zhang, Jiange 185
Zhang, Yunquan 61

	Preface
	Organization
	Contents
	A Unified Approach to Variable Renaming for Enhanced Vectorization
	1 Introduction
	2 Discussion on Variable Renaming Transformations
	2.1 Source Variable Renaming (SoVR)
	2.2 Sink Variable Renaming (SiVR)
	2.3 Synergy Between SoVR and SiVR

	3 Motivating Example
	4 Our Unified Approach to Variable Renaming
	4.1 Dependence Cycles Finder
	4.2 Bipartite Graph Constructor
	4.3 Solver
	4.4 Transformer
	4.5 Bounding Additional Space

	5 Performance Evaluation
	5.1 Experimental Platforms
	5.2 Benchmarks
	5.3 Comparison with ICC
	5.4 Comparison with Calland et al's Approach
	5.5 Comparison with Chu et al's Approach

	6 Related Work
	7 Conclusions and Future Work
	References

	Design and Performance Analysis of Real-Time Dynamic Streaming Applications
	1 Introduction
	2 Model of Computation
	2.1 Basic Model: CSDF
	2.2 Transaction Parameterized Dataflow
	2.3 (max, +) Algebraic Semantics of TPDF

	3 Throughput Analysis
	4 Evaluation
	4.1 Benchmarks
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References

	A Similarity Measure for GPU Kernel Subgraph Matching
	1 Introduction
	2 Prior Work
	3 Background
	4 Methodology
	4.1 Bilinear Interpolation
	4.2 Pairwise Comparison

	5 Experimental Setup
	5.1 Execution Environment
	5.2 Applications

	6 Analysis
	6.1 Application Level
	6.2 CFG Subgraph Matching
	6.3 Discussion

	7 Conclusion
	References

	New Opportunities for Compilers in Computer Security
	1 Introduction
	2 Proposed Mitigation Technique
	3 Evaluation
	3.1 Resistance Against Side-Channel Attacks
	3.2 Resistance to Fault Attacks
	3.3 Overhead Evaluation

	4 Related Work
	5 Conclusion
	References

	Footmark: A New Formulation for Working Set Statistics
	1 Introduction
	2 Background
	3 Footmark
	3.1 Definition and Calculation
	3.2 Equivalence
	3.3 Experimental Evaluation

	4 Conclusion
	References

	Towards an Achievable Performance for the Loop Nests
	1 Introduction
	2 Experimental Methodology
	2.1 Code Optimizers
	2.2 Benchmarks
	2.3 Experimental Platforms
	2.4 Machine Learning Model Evaluation

	3 Experimental Analysis
	3.1 Predicting the Most Suited Code Optimizer for Serial Code
	3.2 Predicting the Most Suited Code Optimizer for Auto-Parallelized Code

	4 Overall Analysis and Discussion
	References

	Extending Index-Array Properties for Data Dependence Analysis
	1 Introduction
	2 Background: Data-Dependence Analysis
	2.1 Loop-Carried Dependence Constraints for Sparse Codes
	2.2 Data Dependence Analysis Example

	3 Disproving Dependences with Index-Array Properties
	3.1 Example Using New Index Array Properties
	3.2 Leveraging SMT Solvers
	3.3 Index-Array Properties as Universally Quantified Assertions

	4 Impact on Finding Full Parallelism
	4.1 Sparse Computation Benchmark Suite and Methodology
	4.2 Finding Loop Parallelism
	4.3 Performance Impact

	5 Related Work
	5.1 Initial Observation of Index Array Property Utility
	5.2 Exact Data Dependence Analysis
	5.3 Automating the detection of properties
	5.4 Combining with More General Dependence Analysis
	5.5 Other Uses for Index Array Properties

	6 Conclusion
	References

	Optimized Sound and Complete Data Race Detection in Structured Parallel Programs
	1 Introduction
	2 Background
	2.1 Programming Model
	2.2 Computation Graph
	2.3 The SP-Bags Algorithm
	2.4 Example

	3 The Zipper Algorithm
	3.1 Definitions
	3.2 The Algorithm
	3.3 Zipper Example

	4 Implementation and Results
	4.1 Methods
	4.2 Analysis
	4.3 Comparison with TARDIS, SP-Bags and Vector Clocks

	5 Related Work
	6 Conclusion
	References

	Compiler Optimizations for Parallel Programs
	1 Introduction
	2 Compiler Representation of Parallel Constructs
	3 Reuse of Parallelism-Unaware Optimizations
	4 The Need for Parallelism-Awareness
	5 Related Work
	6 Conclusion and Future Work
	References

	MATE, a Unified Model for Communication-Tolerant Scientific Applications
	1 Introduction
	2 The MATE Model
	3 Communication-Reducing Mechanisms
	4 Implementation
	5 Experimental Results
	5.1 Test Case I: Jacobi3D
	5.2 Test Case II: Cannon's Algorithm
	5.3 Test Case III: Cloverleaf3D

	6 Related Work
	7 Conclusions
	References

	GASNet-EX: A High-Performance, Portable Communication Library for Exascale
	1 Introduction
	1.1 Background on GASNet-1
	1.2 Philosophy of GASNet-EX Improvements

	2 Design of GASNet-EX
	2.1 Overview of Improvements
	2.2 Local Completion Control
	2.3 Immediate-Mode Communication Injection
	2.4 Active Message Improvements
	2.5 Remote Atomics
	2.6 Non-contiguous RMA
	2.7 Collective Communication
	2.8 Design Improvements for Scalability

	3 RMA Microbenchmarks
	3.1 Description of the Systems
	3.2 RMA Flood Bandwidth Benchmark
	3.3 RMA Latency Benchmark

	4 Related Work
	5 Conclusions
	References

	Nested Parallelism with Algorithmic Skeletons
	1 Introduction
	2 STAPL Overview
	3 STAPL Skeleton Library
	3.1 Parametric Dependencies
	3.2 Skeleton Composition

	4 Nested Composition
	4.1 Specification
	4.2 Execution

	5 Kripke, Mini Transport Benchmark
	5.1 Problem Description and Reference Implementation
	5.2 Kripke Implementation in STAPL

	6 Experimental Results
	6.1 Single Node Performance
	6.2 Multi-node Performance

	7 Related Work
	8 Conclusion
	References

	HDArray: Parallel Array Interface for Distributed Heterogeneous Devices
	1 Introduction
	2 Design of the HDArray Interface
	2.1 HDArray Programming Interface
	2.2 Communication Generation Using Array Section Analysis

	3 Experimental Results
	4 Conclusions
	References

	Automating the Exchangeability of Shared Data Abstractions
	1 Introduction
	2 The Abstraction Adapter Interface
	3 The Abstraction Replacement Compiler
	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	References

	Author Index

