
Anonymous AE

John Chan(B) and Phillip Rogaway

Department of Computer Science, University of California, Davis, USA
jmachan@ucdavis.edu, Rogaway@cs.ucdavis.edu

Abstract. The customary formulation of authenticated encryp-
tion (AE) requires the decrypting party to supply the correct nonce with
each ciphertext it decrypts. To enable this, the nonce is often sent in
the clear alongside the ciphertext. But doing this can forfeit anonymity
and degrade usability. Anonymity can also be lost by transmitting asso-
ciated data (AD) or a session-ID (used to identify the operative key). To
address these issues, we introduce anonymous AE, wherein ciphertexts
must conceal their origin even when they are understood to encompass
everything needed to decrypt (apart from the receiver’s secret state).
We formalize a type of anonymous AE we call anAE, anonymous nonce-
based AE, which generalizes and strengthens conventional nonce-based
AE, nAE. We provide an efficient construction for anAE, NonceWrap,
from an nAE scheme and a blockcipher. We prove NonceWrap secure.
While anAE does not address privacy loss through traffic-flow analysis,
it does ensure that ciphertexts, now more expansively construed, do not
by themselves compromise privacy.

Keywords: Anonymous encryption · Authenticated encryption ·
Nonces · Privacy · Provable security · Symmetric encryption

1 Introduction

Traditional formulations of authenticated encryption (AE) implicitly assume
that auxiliary information is flowed alongside the ciphertext. This information,
necessary to decrypt but not normally regarded as part of the ciphertext, may
include a nonce, a session-ID (SID), and associated data (AD). But flowing these
values in the clear may reveal the sender’s identity.

To realize a more private form of encryption, we introduce a primitive we
call anonymous nonce-based AE, or anAE. Unlike traditional AE [6,10,16,17,
19], anAE treats privacy as a first-class goal. We insist that ciphertexts contain
everything the receiver needs to decrypt other than its secret state (including its
keys), and ask for privacy even then. We show how to achieve anAE, providing a
transform, NonceWrap, that turns a conventional nonce-based AE (nAE) scheme
into an anAE scheme. We claim that anAE can improve not only on privacy,
but on usability, too.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 183–208, 2019.
https://doi.org/10.1007/978-3-030-34621-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_7

184 J. Chan and P. Rogaway

Background. The customary formulation for AE, nAE [14,16,19], requires the
user to provide a nonce not only to encrypt a plaintext, but also to decrypt a
ciphertext. Decryption fails if the wrong nonce is provided.

How is the decrypting party supposed to know the right nonce to use? Some-
times it will know it a priori, as when communicants speak over a reliable channel
and maintain matching counters. But at least as often the nonce is flowed, in
the clear, alongside the ciphertext. The full ciphertext should be understood as
including that nonce, as the decrypting party needs it to decrypt.

Yet transmitting a nonce along with the ciphertext raises both usability and
security concerns. Usability is harmed because the ciphertext is no longer self-
contained: information beyond it and the operative key are needed to decrypt. At
the same time, confidentiality and privacy are harmed because the transmitted
nonce is information, and information likely correlated to identity. Sending a
counter-based nonce, which is the norm, will reveal a message’s ordinality—its
position is the sequence of messages that comprise a session. While the usual
definition for nAE effectively defines this leakage as harmless, is it always so?
A counter-based nonce may be all that is needed to distinguish, say, a high-
frequency stock trader (large counters) from a low-frequency stock trader (small
counters). With a counter-based nonce, multiple sessions at different points in
the sequence can be sorted by point of origin. Perhaps it is nothing but tradition
that has led us to accept that nAE schemes, conventionally used, may leak a
message’s ordinality and the sender’s identity.

This paper is about defining and constructing nonce-based AE schemes that
are more protective of such metadata. We imagine multiple senders simulta-
neously communicating with a receiver, as though by broadcast, each session
protected by its own key. When a ciphertext arrives, the receiver must decide
which session it belongs to. But ciphertexts shouldn’t get packaged with a nonce,
or even an SID (session identifier) or AD (associated data), any of which would
destroy anonymity. Instead, decryption should return these values, along with
the underlying plaintext.

A lousy approach. One way to conceal the operative nonce and SID would be
to encrypt those things under a public key belonging to the receiver. The result-
ing ciphertext would flow along with an ind$-secure nAE-encrypted ciphertext
(where ind$ refers to indistinguishability from uniform random bits [17]). While
this approach can work, moving to the public-key setting would decimate the
trust model, lengthen each ciphertext, and substantially slow each encryption
and decryption, augmenting every symmetric-key operation with a public-key
one. We prefer an approach that preserves the symmetric trust model and has
minimal impact on message lengths and computation time.

Contributions: definitions. We provide a formalization of anonymous AE
that we call anAE, anonymous nonce-based AE. Our treatment makes anAE
encryption identical to encryption under nAE. Either way, encryption is accom-
plished with a deterministic algorithm C = EN,A

K (M) operating on the key K,
nonce N , associated data A, and plaintext M . As usual, ciphertexts so produced
can be decrypted by an algorithm M = DN,A

K (C). But the receiver employing a

Anonymous AE 185

privacy-conscious protocol might not know what K, N , or A to use, as flowing N
or A, or identifying K in any direct way, would damage privacy. So an anAE
scheme supplements the decryption algorithm D with a constellation of alter-
native algorithms. They let the receiver: initialize a session (Init); terminate
a session (Term); associate an AD with a session, or with all sessions (Asso);
disassociate an AD with a session, or with all sessions (Disa); and decrypt a
ciphertext, given nothing else (Dec). The last returns not only the plaintext but,
also, the nonce, SID, and AD.

After formalizing the syntax for anAE we define security, doing this in the
concrete-security, game-based tradition. A single game formalizes confidential-
ity, privacy, and authenticity, unified as a single notion. It is parameterized by
a nonce policy, Nx, which defines what nonces a receiver should consider per-
missible at some point in time. We distinguish this from the nonce or nonces
that are anticipated, or likely, at some point in time, formalized by a different
function, Lx. Our treatment of permissible nonces vs. likely nonces may be useful
beyond anonymity, and can be used to speed up decryption.

Anonymous AE can be formalized without a user-supplied nonce as an input
to encryption, going back to a probabilistic or stateful definition of AE. For
this reason, anAE should be understood as one way to treat anonymous AE,
not the only way possible. That said, our choice to build on nAE was carefully
considered. Maintaining nAE-style encryption, right down to the API, should
facilitate backward compatibility and a cleaner migration path from something
now quite standard. Beyond this, the reasons for a nonce-based treatment of
AE remain valid after privacy becomes a concern. These include minimizing
requirements on user-supplied randomness/IVs.

Contributions: constructions. We next investigate how to achieve anAE.
Ignoring the AD, an obvious construction is to encipher the nonce using a block-
cipher, creating a header Head = EK1(N). This is sent along with an nAE-
encrypted Body = EN,A

K2
(M). But the ciphertext C = Head ‖ Body so produced

would be slow to decrypt, as one would need to trial-decrypt Body under each
receiver-known key K ′

2 until the (apparently) right one is found (according to
the nAE scheme’s authenticity-check). If the receiver has s active sessions and
the message has |M | = m bits, one can expect a decryption time of Θ(ms).

To do better we put redundancy in the header, replacing it with Head =
EK1(N ‖ 0ρ ‖ H(AD)). Look ahead to Fig. 2 for our scheme, NonceWrap. As a
concrete example, if the nonce N is 12 bytes [12] and we use the degenerate
hash H(x) = ε (the empty string), then one could encrypt a plaintext M as
C = AESK1(N ‖032) ‖ GCMN,A

K2
(M). Using the header Head to screen candidate

keys (only those that produce the right redundancy) and assuming ρ ≥ lg s we
can now expect a decryption time of Θ(m+s) for s blockcipher calls and a single
nAE decryption.

In many situations, we can do better, as the receiver will be able to anticipate
each nonce for each session. If the receiver is stateful and maintains a dictionary
ADT (abstract data type) of all anticipated headers expected to arrive, then
a single lookup operation replaces the trial decryptions of Head under each

186 J. Chan and P. Rogaway

prospective key. Using standard data-structure techniques based on hashing or
balanced binary trees, the expected run time drops to Θ(m+lg(s)) for decrypting
a length-m string. And one can always fall back to the Θ(m+ s)-time process if
an unanticipated nonce was used.

Finally, in some situations one can do better still, when all permissible nonces
can be anticipated. In such a case the decrypting party need never invert the
blockcipher E and the header can be truncated, or some other PRF can be used.
In practice, the header could be reduced from 16 bytes to one or two bytes—a
savings over a conventional nAE scheme that transmits the nonce.

While NonceWrap encryption is simple, decryption is not; look ahead to
Figs. 3 and 4. Even on the encryption side, there are multiple approaches for
handling the AD. Among them we have chosen the one that is most bandwidth-
efficient and that seems to make the least fuss over the AD.

Related work. In the CAESAR call for AE algorithms, Bernstein introduced
the notion of a secret message number (SMN) as a possible alternative to a
nonce, which he renamed the public message number (PMN) [7]. When the party
encrypting a message specifies an SMN, the decrypting party doesn’t need to
know it. It was an innovative idea, but few CAESAR submissions supported it [2],
and none became finalists. Namprempre, Rogaway, and Shrimpton formalized
Bernstein’s idea by adjusting the nAE syntax and security notion [13]. Their
definition didn’t capture any privacy properties or advantages of SMNs.

It was also Bernstein who asked (personal communication, 2017) if one could
quickly identify which session an AE-encrypted ciphertext belonged to if one was
unwilling to explicitly annotate it. NonceWrap does this, assuming a stateful
receiver using what we would call a constant-breadth nonce policy.

Coming to the problem from a different angle, Bellare, Ng, and Tackmann
contemporaneously investigated the danger of flowing nonces, and recast decryp-
tion so that a nonce needn’t be provided [5]. Their concern lies in the fact that
an encrypting party can’t select any non-repeating nonce (it shouldn’t depend
on the plaintext or key), and emphasize that the nAE definition fails to specify
which choices are fine.

Our approach to parameterizing anAE’s goal using a nonce policy Nx benefits
from the evolution of treatments on stateful AE [4,8,11,20]. The introduction
of Lx (likely nonces) as something distinct from Nx (permissible nonces) is new.

A privacy goal for semantically secure encryption has been formalized as key
privacy [3] in the public-key setting and as which-key concealing encryption [1]
in the shared-key one. But the intent there was narrow: probabilistic encryption
(not AE), when the correct key is known, out of band, by the decrypting party.

2 Nonce-Based AE (nAE)

Background. An nAE scheme, a nonce-based AE scheme supporting associ-
ated data (AD), is determined by a function E , the encryption algorithm, with
signature E : K × N × A × M → C. We insist that E(K,N,A, ·) be injective for
any K,N,A. This ensures that there’s a well-defined function D = E−1 with

Anonymous AE 187

signature D : K × N × A × C → M ∪ {⊥} defined by D(K,N,A,C) = M if
E(K,N,A,M) = C for some (unique) M ∈ M, while D(K,N,A,C) = ⊥ other-
wise. The symbol ⊥ is used to indicate invalidity. We may write EN,A

K (M) and
DN,A

K (C) for E(K,N,A,M) and D(K,N,A,C). We require that the message
space M ⊆ {0, 1}∗ be a set of strings for which M ∈ M implies {0, 1}|M | ⊆ M.
Finally, we assume that |EN,A

K (M)| = |M | + τ where τ is a constant. We refer
to τ as the expansion of the scheme.

Let E : K×N×A×M → C be an nAE scheme with expansion τ . A customary
way to define nAE security [14,19] associates to an adversary A the real number
Advnae

E (A) = Pr[K�K : AEK(·,·,·), DK(·,·,·) ⇒ 1] − Pr[A$(·,·,·), ⊥(·,·,·) ⇒ 1] where
the four oracles behave as follows: oracle EK(·, ·, ·), on input N,A,M , returns
E(K,N,A,M); oracle DK(·, ·, ·), on input N,A,C, returns D(K,N,A,C); oracle
$(·, ·, ·), on input N,A,M , returns |M | + τ uniform random bits; and oracle
⊥(·, ·, ·), on input N,A,C, returns ⊥. The adversary A is forbidden from asking
its first oracle a query (N,A,M) if it previously asked a query (N,A′,M ′); nor
may it ask its second oracle (N,A,C) if it previously asked its first oracle a
query (N,A,M) and received a response of C.

Privacy-violating assumptions of nAE. The nAE definition quietly embeds
a variety of privacy-unfriendly choices. Beginning with syntax, decryption is
understood to be performed directly by a function, D, that requires input
of K, N , and A. This suggests that the receiver knows the right key to use,
and that the ciphertext will be delivered within some context that explicitly
identifies which session the communication is a part of. But explicitly flowing
such information is damaging to privacy. Similarly, the nonce N and AD A
are needed by the decrypting party, but flowing either will often prove fatal to
anonymity.

Indistinguishability from random bits is routinely understood to buy
anonymity: after all, if the encryption of M under keys K and K ′ are indis-
tinguishable from random bits then they are indistinguishable from each other.
But this glosses over the basic problem that the thing that’s indistinguishable
from random bits isn’t everything the adversary will see.

3 Anonymous Nonce-Based AE (anAE)

Privacy principle. Our anAE notion can be seen as arising from a basic tenet
of secure encryption, which we now make explicit.

Privacy principle. A ciphertext should not by itself compromise the
identity of its sender. This should hold even when the term “ciphertext” is
understood as the full ciphertext—everything the receiver needs to decrypt
and that the adversary might see.

The principle implies that it is not OK to just exclude from our understanding of
the word ciphertext the privacy-violating parts of a transmission that are needed
to decrypt. One needs to understand the ciphertext more expansively.

188 J. Chan and P. Rogaway

Stated as above, the privacy principle may seem so obvious that it is silly
to spell it out. But the fact that nAE blatantly violates this principle, despite
being understood as an extremely strong notion of security, suggests otherwise.

While this paper focuses on privacy, attending to the full ciphertext would
seem to be the appropriate move when it comes to understanding confidentiality
and authenticity as well. Our formulation of anAE does so.

Figuring out how to reflect the privacy principle in a definition is non-trivial.
We now turn to that task.

Syntax. An anAE scheme extends an nAE scheme with five additional algo-
rithms. Formally, an anAE scheme is a six-tuple of deterministic algorithms
Π = (Init, Term, Asso, Disa, Enc, Dec). They create a session, terminate a ses-
sion, register an AD, deregister an AD, encrypt a plaintext, and decrypt a cipher-
text. The encryption algorithm E = Enc must be an nAE scheme in its own right.
In particular, this means that Enc automatically has an inverse D = Enc−1,
which is not what we are denoting Dec. Algorithms Init, Term, Asso, Disa,
and Dec are run by the decrypting party (they are, in effect, an alternative to
D = Enc−1) and able to mutate its persistent state K ∈ K. Specifically,

– Init, the receiver’s session-initialization algorithm, takes a key K ∈ K and
returns a session-ID � ∈ L that will subsequently be used to name this session.
We assume that returned SIDs are always distinct.

– Term, the receiver’s session-termination algorithm, takes a session-ID � ∈ L

and returns nothing.
– Asso, the receiver’s AD-association algorithm, on input of either A ∈ A or
(A, �) ∈ A × L, returns nothing.

– Disa, the receiver’s AD-disassociation algorithm, on input of either A ∈ A or
(A, �) ∈ A × L, returns nothing.

– Dec, the receiver’s decryption algorithm, takes as input a ciphertext C ∈ C

and returns either (�,N,A,M) ∈ L × N × A × M or the symbol ⊥.

The sets referred to above, all nonempty, are as follows:

– A is an arbitrary set, the AD space.
– C is a set of strings, the ciphertext space.
– K is a finite set of strings, the key space.
– K is an arbitrary set, the receiver’s persistent state.
– L is an arbitrary set, the session names.
– M is a set of strings, the message space.
– N is a finite set, the nonce space.

Observe that decryption via Dec is only given the ciphertext C (and, implicitly,
the state that the receiver maintains) but is expected, from this alone, to return
not only the message but also the operative SID, nonce, and AD. The SID
identifies the operative key. For the remainder of the text, we treat the SIDs as
natural numbers, that is, we assume as L = N.

Nonce policy. In an AE scheme with stateful decryption [4,8,11,20] the
receiver will, at any given point in time, have some set of nonces that it deems

Anonymous AE 189

acceptable. We allow this set to depend on the nonces already received, but
on nothing else. We formalize this by defining a nonce policy as a function
Nx : N≤d → P(N). By P(S) we mean the set of all subsets of the set S. The
name Nx is meant to suggest the words next and nonce. The set Nx(N) are
the permissible nonces given the history N . The history is a list of previously
received nonces. The value d = depth(Nx) ∈ N ∪ {∞} is the depth of the policy,
capturing how many nonces one needs to record in order to know what the next
nonce may be. One could reasonably argue that practical nonce policies must
have bounded depth, as they would otherwise require the receiver to maintain
unlimited state, and decryption would slow as connections grew old. The value
b = breadth(Nx) = maxN ∈dom(Nx) |Nx(N)| is the breadth of the policy, the max-
imum number of permissible nonces. For a function F : A → B we are writing
dom(F) = A for its domain. Similarly, we write range(F) = B for its range.

We single out two policy extremes. The permissive policy Nx(Λ) = N captures
what happens in a stateless AE scheme, where repetitions, omissions, and out-
of-order delivery are all permitted. (The symbol Λ denotes the empty list.) The
permissive policy has depth d = 0 and breadth b = |N|. Note that while the
decryption algorithm itself treats all nonces as permissible, there could be some
other, higher-level process that restricts this. At the other extreme, assuming
a nonce space of N = [0..Nmax], the strict policy Nx(Λ) = {0}, Nx((N)) =
{N+1} (for N < Nmax), and Nx((Nmax)) = ∅ demands an absence of repetitions,
omissions, and out-of-order delivery. The nonce starts at zero and must keep
incrementing. The depth d and breadth b are both 1. On a reliable channel,
this is a natural policy. There is a rich set of policies between these extremes
[4,8,11,20].

AD registration. A sender may have some data that needs to be authenticated
with the ciphertext it sends. Flowing that data in the clear would compromise
anonymity. Instead, the receiver will maintain a set of AD values for each session.
We can register or remove AD values one-by-one with Asso and Disa.

There are use cases where an AD value may not be specific to a session. For
example, the use of AD in TLS 1.3 does not involve session-specific information;
instead, the AD consists of several constants along with the ciphertext length.1
To accommodate this, we envisage a further set of AD values that are effectively
registered to all sessions. We refer to this as the set of global ADs. These too
are added and removed one at a time. When a ciphertext needs to be decrypted,
the only AD values that can match it are the global ones and those registered
for the session that the ciphertext is seen as belonging to (which the decrypting
party will have to determine).

Despite the generality of this treatment, the utility of AD is limited in anAE
precisely because AD values can’t flow in the clear; the only AD values that
parties should use are those that can be determined a priori by the receiver.

1 While we define anAE to accommodate this use case, it was pointless for TLS to
put length of the ciphertext in the AD: nAE ensures that ciphertexts are authenti-
cated, which implies that their length is authenticated. Throwing |C| into the AD
contributes nothing to security but does add complexity.

190 J. Chan and P. Rogaway

Defining security. Let Π = (Init, Term, Asso, Disa, Enc, Dec) be an anAE
scheme and let Nx be a nonce policy. The anAE security of Π with respect
to Nx is captured by the pair of games in Fig. 1. The adversary interacts with
either the RealanaeΠ,Nx game or the IdealanaeΠ,Nx game and tries to guess which. The
advantage of A attacking Π with respect to Nx is defined as

Advanae
Π,Nx(A) = Pr[ARealanae

Π,Nx →1] − Pr[AIdealanae
Π,Nx →1] ,

the difference in probability that the adversary outputs “1” in the two games.
In our pseudocode, integers, strings, lists, and associative arrays are silently

initialized to 0, ε, Λ, and ∅. For a nonempty list x = (x1, . . . , xn) we let tail(x) =
(x2, . . . , xn). We write A

∪← B, A
�← B, and A

‖← B for A ← A ∪ B, A ← A \
B, and A ← A ‖ B. When iterating through a string-valued set, we do so in
lexicographic order.

We use associative arrays (also called maps or dictionaries) both in our
games defining security and in the NonceWrap scheme itself. These are collec-
tions of (key, value) pairs with at most one value per key. We write A[K] for
doing a lookup in A for the value associated to the key K, returning that value.
We write A[K] ← X to mean adding or reassigning value X to key K. We write
A.keys to denote the set of all keys in A. Similarly, A.values denotes the set of
all values in A. The last two operations are not always mentioned in abstract
treatments of dictionaries, but programming languages like Python do support
these methods, and realizations of dictionaries invariably enable them.

Explanation. The “real” anAE game surfaces to the adversary the six proce-
dures of an anAE scheme. Modeling correct use, the Init procedure generates
random keys, while calls to Enc may not repeat a nonce within the given session,
nor may they employ a fictitious SID or the SID of a terminated session. The
game does the needed bookkeeping to keep track of those things, with K� being
the key associated to session � and L recording the set of active session labels
and NE[�] being the set of nonces already used for session �.

The “ideal” anAE game provides the same entry points as the “real” one
but employs the protocol Π only insofar as INIT returns the same sequence of
labels used by Init and, also, the ideal game uses the expansion constant σ
from Enc. The sequence of labels returned by INIT could just as well have been
fixed as 1, 2, 3, The central idea is that encryption returns uniformly random
bits (line 242) regardless of the SID, nonce, AD, or plaintext. This captures both
confidentiality and anonymity, and in a strong sense. The same idea is used in the
ind$-form of the nAE definition, but the constraint isn’t on the full ciphertext.

As with the all-in-one definition for nAE [19], authenticity is ensured by
having the counterpart of the real decryption oracle routinely return ⊥. When
should it not return ⊥? As with nAE, we want the ideal game to return ⊥ if
the ciphertext C was not previously returned from an ENC query (line 250).
But we also want DEC to return ⊥ if the relevant session has been torn down,
if the relevant nonce is out-of-policy, or if the relevant AD is unregistered. We
also want DEC to return ⊥ if there is more than one in-policy explanation for
this ciphertext. All of this is captured in lines 250–253. To express those lines,

Anonymous AE 191

RealanaeΠ,Nx

procedure INIT()
100 K K

101 � Π.Init(K) Guaranteed new

102 K[�] K; L ∪ {�}; NE[�] ∅
103 return �

procedure TERM(�)
110 Π.Term(�); L � {�}

procedure ASSO(A)
120 Π.Asso(A)
procedure ASSO(A, �)
121 Π.Asso(A, �)

procedure DISA(A)
130 Π.Disa(A)
procedure DISA(A, �)
131 Π.Disa(A, �)

procedure ENC(�, N, A, M)
140 if � �∈ L or N ∈ NE[�] then
141 return ⊥
142 NE[�] ∪ {N}
143 return Π.Enc(K[�], N, A, M)

procedure DEC(C)
150 return Π.Dec(C)

IdealanaeΠ,Nx

procedure INIT()
200 K K

201 � Π.Init(K)
202 A[�] ∅; L ∪ {�}
203 NE[�] ∅; ND[�] Λ
204 return �

procedure TERM(�)
210 L � {�}

procedure ASSO(A)
220 AD ∪ {A}
procedure ASSO(A, �)
221 A[�] ∪ {A}

procedure DISA(A)
230 AD � {A}
procedure DISA(A, �)
231 A[�] � {A}

procedure ENC(�, N, A, M)
240 if � /∈ L or N ∈ NE[�] then
241 return ⊥
242 C�{0, 1}|M|+τ

243 NE[�] ∪ {N}
244 H[C] ∪ {(�, N, A, M)}
245 return C

procedure DEC(C)
250 if H[C] = ∅ then return ⊥
251 if ∃ unique (�, N, A, M) ∈ H[C] s.t.
252 � ∈ L and N ∈ Nx(ND[�]) and
253 A ∈ AD ∪ A[�] then
254 ND[�]

‖
N

255 if |ND[�]| > d then
256 ND[�] tail(ND[�])
257 return (�, N, A, M)
258 return ⊥

Fig. 1. Defining anAE security. The games depend on an anAE scheme Π and a
nonce policy Nx. The adversary must distinguish the game on the left from the one on
the right. Privacy, confidentiality, and authenticity are simultaneously captured.

192 J. Chan and P. Rogaway

we need more bookkeeping than the real game did, also recording, in H (for
“history”), the (�,N,A,M) value(s) that gave rise to C (line 244); recording
in ND[�] the sequence of nonces already observed on session � (lines 255–256
truncate the history to only that needed for our decision making); and recording
in associative arrays AD and A[�] the currently registered AD values.

1AD/Session. We anticipate that, in most settings, the user will associate a
single AD to a session at any given time. It might be associated to a particular
session, or to all sessions, but, once a session has been identified, there is an
understood AD for it. A decrypting party that operates in this way is said to be
following the one-AD-per-session restriction, abbreviated 1AD/session.

Stateless schemes. Our formalization treats the decrypting party as stateful.
Even if there was only one session and one AD, the decrypting party should
register K with an Init call, register A with an Asso call, and then call Dec(C).
But this sort of use of state is an artifact of the generality of our formulation.
To draw out this distinction, we say that an anAE scheme is stateless if calls to
its Dec algorithm never modify the receiver state.

For stateless anAE, one might provide an alternative API in which keys
and AD are provided on each call, as in Dec1(K,A,C). Alternatively, one could
initialize a data structure to hold the operative keys and AD values, and this
data structure would be provided for decryption, but not side-effected by it. That
is what happens in most crypto libraries today, where it is not a string-valued
key that is passed to the encryption or decryption algorithms, but an opaque
data structure created by a key-preprocessing step.

4 The NonceWrap Scheme

Ciphertext structure. Encryption under NonceWrap is illustrated in Fig. 2.
The method uses two main primitives: an n-bit blockcipher E and an nAE
scheme E . The blockcipher is invoked once for each message encrypted, while
the nAE scheme does the bulk of the work. NonceWrap also employs a hash
function H, but it is used only for AD processing, outputs only a few bits (we do
not seek collision-resistance), and indeed there is no security property from H
on which we depend. A poor choice of H (like the constant function) would slow
down decryption (in the case of multiple AD values per session), but would have
no other adverse effect.

There are two parts to a NonceWrap-produced ciphertext: a header and a
body. The header Head would typically be 16 bytes. It not only encodes the
nonce N , which would usually be 12 bytes [12], but also some redundancy and
a hash of the AD. To create a ciphertext C, the header is generated using a
blockcipher E and is prepended to the ciphertext body Body, which is produced
using nAE encryption on the nonce, AD, and plaintext. The total length of the
ciphertext for M is |M |+λ+ τ where λ is the header length—which is, for now,
the blocksize λ = n of E, and τ is the expansion of the nAE scheme.

When presented with a ciphertext C = Head ‖ Body, a receiver will often be
able to determine that it does not belong to a candidate session just by looking

Anonymous AE 193

Fig. 2. Scheme illustration. NonceWrap encryption outputs a ciphertext that con-
sists of two parts: a header Head, which is produced from a blockcipher E, and a body
Body, which is produced from an nAE scheme E . The hashed AD in the header can be
omitted in the customary case where there is one AD per session at any time.

at the prefix Head. It is deciphered with the candidate session key and if the
resulting block does not contain the mandated block of zero bits, or the nonce
is not within nonce policy, or if the hash field does not contain the hash of a
registered AD for this session, then the ciphertext as a whole must be invalid.

The hash of the AD is omitted if 1AD/session is assumed (equivalently, the
hash returns the empty string). With a 16-byte header encrypting a 12-byte
nonce, there would then be 4 bytes of zeros and roughly a 2−32 chance that a
header for one session would be considered as a plausible candidate for another.
When that does happen, it results in an nAE decryption of a ciphertext Body,
not attribution of a ciphertext to an incorrect session. For that to happen, the
ciphertext body would also have to verify as authentic when decrypted under
the incorrect key. It is a little-mentioned property of nAE-secure encryption
that a plaintext encrypted under one random key will almost always be deemed
inauthentic when decrypted under an independent random key.

Anticipated nonces. Since the header is computed from the nonce and AD,
it may be possible for the receiver to precompute a header before it arrives.
This is because the nonce must fall within the protocol’s nonce policy and the
AD must be registered either specifically to a session or globally across sessions.
But even under the 1AD/session assumption, the number of potential headers
to precompute would be large if the breadth of the nonce policy is large (as with
the permissive policy Nx(Λ) = N). To get around this, we introduce a function
to name the anticipated (or likely) nonces, Lx. Given the last few nonces received
so far, it returns the nonce or set of nonces that are likely to come next. This is
in contrast with Nx, which names the set of nonces that are permissible to come
next—anything else should be deemed inauthentic. Like the nonce policy Nx,

194 J. Chan and P. Rogaway

the signature of the anticipated-nonce function is Lx: N≤d → P(N). We demand
that that which is likely is possible: Lx(n) ⊆ Nx(n) for all n ∈ N≤d.

An anAE scheme that employs Lx and Nx functions is said to be sharp if
Lx = Nx. With a sharp scheme, a ciphertext must be deemed invalid if it employs
an unanticipated nonce. Sharpness can aid in efficient decryption.

Algorithmic details. We now descend more deeply into the structure of
NonceWrap. The construction is defined in Fig. 3 and a list of data structures
employed is given in Fig. 4.

The NonceWrap scheme maintains a number of dictionaries. The dictionary
LNA maps anticipated headers to the set of session, nonce, and AD triples that
explain the header. When a session is initialized, the dictionary is populated with
headers based on anticipated nonces from an empty nonce history and the set
of globally registered ADs. When a session is torn down, all headers belonging
to that session are expunged from the dictionary. When a new AD is registered
globally, headers are precomputed for each session and their anticipated nonces.
If the AD is registered specific to a session, headers are computed for just that
session. ADs are also managed in their own associative arrays—one for global and
one for session-specific—that map AD hashes to sets of ADs that are preimages of
the hash. Deregistering an AD removes it from its respective array and expunges
its associated headers from the main dictionary.

NonceWrap decryption comes in three phases. Phase-1 attempts to use the
precomputed headers in LNA to quickly determine which session, nonce, and AD
are associated to a received ciphertext. As there may be multiple (�,N,A) triples
mapped to the header, the receiver tries to decrypt the ciphertext body with each
until it arrives at a valid message. If no message is found within this phase, then
it falls through to the phase-2, where it attempts to extract the nonce and AD
directly by trial-deciphering the header. The receiver tries each session key on
the header until it finds a nonce within the session’s policy appended with ρ
redundant 0-bits. If there are multiple AD values per session, the hash of an AD
would be appended. If the AD is properly registered with the receiver, then the
receiver has a mapping between the AD hash and its possible preimages. With
this, the receiver may now trial-decrypt the ciphertext body. The second phase
is repeated until a valid message is found. If none is, then decryption returns ⊥
and the ciphertext is deemed invalid.

If either phase-1 or phase-2 recovers a valid plaintext, they go into phase-3,
where precomputation for the next anticipated header occurs. Entering phase-3
means the receiver knows the (�,N,A,M) for the ciphertext. It can then compute
the old set of anticipated nonces prior to receiving N using Lx. It can also
compute a new set of anticipated nonces with a nonce history updated with N .
With the former, it can expunge all old headers from LNA and, with the latter,
it can populate LNA with the next expected headers.

Efficiency. Let s denote the maximum number of active sessions. Let t be
the time it takes to compute the E or E−1. Assume an anticipated-nonce pol-
icy Lx whose breadth is a small constant. Assume the maximum number of
AD values registered either globally or to any one session is a small constant.

Anonymous AE 195

Fig. 3. Constructing an anAE scheme. Scheme Π = NonceWrap[E, H, E ,Lx,Nx]
depends on a blockcipher E: {0, 1}k1×{0, 1}n → {0, 1}n, a nonce policy Nx: {0, 1}≤d →
P(N), a hash function H : {0, 1}∗ → {0, 1}β , an nAE scheme E : K × N × A × M → C

and an anticipated nonce function Lx which always outputs a subset of what policy Nx
permits. Data structures employed are described in Fig. 4.

196 J. Chan and P. Rogaway

K.L Set of SIDs

K.K1 Dictionary mapping an SID to a key for the blockcipher E

K.K2 Dictionary mapping an SID to a key for the nAE scheme E
K.N Dictionary mapping an SID to a list of nonces

K.A Dictionary mapping an SID to a dict. mapping a hashed AD to a set of ADs

K.AD Dictionary mapping a hashed AD to a set of ADs

K.LNA Dictionary mapping a header to a set of (SID, nonce, AD) triples

Fig. 4. Data structures employed for NonceWrap. To achieve good decryption-
time efficiency, NonceWrap employs a set ADT and multiple dictionaries, one of which
has dictionary-valued entries. Some simplifications are possible for the customary case
of 1AD/session.

Assume an amount of redundancy ρ ∈ O(lg s) used to create headers. Assume
the nAE scheme E uses time O(m + a) to decrypt a length m + τ ciphertext
with AD A. Assume a nonce can be checked as being in-policy, according to
Nx, in constant time. Assume dictionaries are implemented in some customary
way, with expected log-time operations. Then the expected time to decrypt a
valid ciphertext that used an anticipated nonce will be O(m+ a+ t+ lg s). The
expected time to decrypt an invalid ciphertext, or a valid ciphertext that used
an unanticipated nonce, will be O(m+ a+ st). For a sharp policy we may safely
omit phase-2 and get a decryption time of O(m+a+ t+lg s) for any ciphertext.

Optimizations. For a sharp scheme, Nx = Lx, the anticipated nonces within
LNA encompass all valid nonces; a header not stored in the dictionary is neces-
sarily invalid. For such a scheme, phase-2 can be ignored. This improves effi-
ciency and allows for some natural simplifications. In addition, in this case
we never compute the inverse E−1 of the blockcipher, so there is not longer
any need for it to be a blockcipher. One can therefore replace the blockcipher
E : {0, 1}n → {0, 1}n by a PRF F : {0, 1}n → {0, 1}λ where λ is considerable
smaller than n. One or two bytes would typically suffice. After all, all that hap-
pens when a collision does occur is that one needs to perform a trial decryption
of the ciphertext body. A convenient way to construct the PRF F would be by
truncating the blockcipher E, setting FK1(x) = (EK1(x))[1..λ].

At the opposite extreme, when Lx(n) = ∅ for all n, NonceWrap does not
anticipate any nonces. In that case only the phase-2 is executed, and LNA can
be disregarded. This variant is close to standard nAE decryption, and is useful
when we need a stateless receiver.

5 NonceWrap Security

Alternative characterization of nAE. We will find it convenient to
use the following alternative formulation of nAE security, which directly mod-
els multiple keys and more precisely attends to what is possible for a given

Anonymous AE 197

expansion. Recall that the expansion of an nAE scheme E is a constant τ
such that |EN,A

K (M)| = |M | + τ . Let E and τ be an nAE scheme and its
expansion. Let T be an arbitrary nonempty set. Let InjTτ (M) be the set of
all functions f : T × M → {0, 1}∗ such that |f(T,M)| = |M | + τ for all
M ∈ {0, 1}∗ and f(T, ·) is an injection for all T ∈ T. For f ∈ InjTτ define
f−1 : T × {0, 1}∗ → M ∪ {⊥} by f−1(T, Y) = X when f(T,X) = Y for some
(unique) X ∈ M, and f−1(T, Y) = ⊥ otherwise. Now given an adversary A,
define its advantage in attacking the nae-security of E as the real number

Advnae∗
E (A) = Pr[for i ∈ N do Ki�K: AEK (·,·,·,·),DK (·,·,·,·)⇒1]

−Pr[f�InjN×N×A
τ (M): AEf (·,·,·,·),Df (··,·,·) ⇒ 1]

where the oracles behave as follows: oracle EK , on query (i,N,A,M), returns
E(Ki, N,A,M); oracle DK , on query (i,N,A,C), returns E−1(Ki, N,A,C); ora-
cle Ef , on query (i,N,A,M), returns f((i,N,A),M); and oracle Df , on query
(i,N,A,C), returns f−1((i,N,A), C). The adversary A is forbidden from asking
its first oracle any query (i,N,A,M) if it previously asked a query (i,N,A′,M ′).

It is a standard exercise, following the PRI-characterization of misuse-
resistant AE schemes [18], to show the equivalence of nae (presented in Sect. 2)
and nae∗ security.

Multi-key strong-PRP security. It’s also useful for us to define a notion of
multi-key strong PRP security, which we denote as prp∗-security. In customary
strong PRP security, like conventional PRP security, the adversary has access
to a forward direction oracle that computes a real or ideal permutation. Strong
PRP security adds a backward direction oracle that computes the inverse. To
adapt this to the multi-key setting, we treat the PRP as a length-preserving
PRI. Define InjT({0, 1}n) = InjT0 ({0, 1}n). For an adversary A, we define its
advantage in attacking the prp∗-security of an n-bit PRP E as the real number

Advprp∗
E (A) = Pr[for i ∈ N do Ki�K: AFK (·,·),GK (·,·)⇒1]

−Pr[p�InjN({0, 1}n): AFp(·,·),Gp(·,·) ⇒ 1]

where the oracles behave as follows: oracle FK , on query (i,X), returns
E(Ki,X); oracle GK , on query (i,X), returns E−1(Ki,X); oracle Fp, on query
(i,X), returns p(i,X); and oracle Gp, on query (i,X), returns p−1(i,X).

NonceWrap security. To show the security of NonceWrap, we establish that
its anae-security is good if E is prp∗-secure and E is nae∗-secure.

Theorem 1. There exists a reduction �, explicitly given in the proof of this
theorem, as follows: Let E : {0, 1}k1 × {0, 1}n → {0, 1}n be a blockcipher, let
H : {0, 1}∗ → {0, 1}β be a hash function, let E : KE × N × A × M → CE be
an nAE scheme, and let Nx: N≤d → P(N) be a nonce policy with depth d. Let
Lx be an anticipated-nonce function with the same signature as Nx such that
Lx(n) ⊆ Nx(n) for all n ∈ N≤d. Let Π = NonceWrap[E,H, E ,Lx,Nx] be a
NonceWrap scheme. Let σ be the expansion of Π and τ be the expansion of E.

198 J. Chan and P. Rogaway

Let A be an adversary that attacks Π. Then � transforms A into a pair of
adversaries (B1,B2) such that

Advanae
Π,Nx(A) ≤ Advprp∗

E (B1) +Advnae∗
E (B2)

+
q2e

2n+1
+

q2e
2τ+1

+
q2e + q2d
2σ+1

+
q4e

2n+τ+2

where qe and qd are the number of encryption and decryption queries that A
makes. The resource usage of B1 and B2 are similar to that of A.

Proof. We define a sequence of hybrid games that transition the real anae game
to the ideal anae game, where the games are using Π and Nx. The first of
these hybrids, G1 replaces the blockcipher E with a random function P from
InjN({0, 1}n). Note that P (i, ·) is an injection for all i ∈ N and is length-
preserving, so it is a permutation. We construct an adversary B1 that attacks
the blockcipher E by having it simulate these two games. Whenever A makes a
query, B1 follows the protocol defined in the real anae game. If the query requires
a blockcipher operation, B1 would query its own forward direction oracle and use
that output for the operation instead. It can use its backward direction oracle for
inverting the blockcipher. At the end, B1 outputs the same bit A returns. The
advantage of B1 is equivalent to A’s advantage in distinguishing the games it
simulates as the ciphertexts that the simulated encryption oracles would produce
would be identical with the exception of the header, which depends on whether
B1’s oracle is using P or the real blockcipher E. With that, we have:

Pr[ARealanae
Π] − Pr[AG1] ≤ Advprp∗

E (B1)

The next hybrid G2 replaces NonceWrap’s underlying nAE scheme E with a
random function F from InjN×N×A

τ (M). We construct an adversary B2 that
attacks the nAE scheme by simulating the two hybrid games. Like B1, adversary
B2 will just follow protocol except it replaces any nAE operations with its oracles.
For any blockcipher operations, it simulates P as described in the previous step.
It returns the same bit that A returns. The advantage of B2 is equivalent to A’s
advantage in distinguishing the games it simulates as the only difference between
the simulated games is how the ciphertext body is produced, which depends on
whether B2’s oracle is using F or the real nAE scheme E . With that, we have:

Pr[AG2] − Pr[AG3] ≤ Advnae∗
E (B2)

At this point we have a real anae game using a NonceWrap scheme built on ideal
primitives and we want to measure how well A can distinguish it from the ideal
anae game. For the upcoming parts, we modify the ideal game step-by-step until
it is indistinguishable from the real game.

The first hybrid, G7, makes a simple change to the decryption oracle. Refer-
ring to the code in Fig. 1, on line 251, there is a condition that the tuple in
the history must be unique. This hybrid simply removes the “unique” condition.
Instead, if there are multiple valid tuples that map to a queried ciphertext, the

Anonymous AE 199

oracle will return the lexicographically first tuple instead of returning ⊥. Clearly,
to distinguish between G7 and the ideal game, A would need to call decryption
on a ciphertext with multiple valid tuples as the former would return a tuple and
the latter would return ⊥. The probability that this occurs is upper-bounded by
the probability that two ciphertexts from encryption are the same as multiple
tuples need to be mapped to the same ciphertext in H for there to be multiple
valid tuples. Hence, the advantage A has for distinguishing between these two
games is

Pr[AIdealanae
Π] − Pr[AG7] ≤ q2e

2σ+1

The next modification only changes how ciphertexts are generated. Instead
of randomly sampling from {0, 1}|M |+τ on an encryption query, the encryption
oracle will instead use a pair of PRIs to generate a “header” and “body” to create
the ciphertext. To do this, we modify the code for the ENC oracle to use the
procedure F defined in the top half of Fig. 5. The bottom half of the figure shows
the modified encryption oracle. The procedure captures the lazy-sampling of the
forward direction of a random function or injection depending on whether the
code in grey is executed. Without the grey, the code simulates a function for
each tweak T ; With the grey, it simulates an injection for each T . Having that,
we can use F to capture the pair of PRIs: one from InjN×N×A

τ (M) for creating
the body and one from InjN({0, 1}n) for creating the header.

We can think of G7 as using two different instances of F , which we label as FE

and FE , without the grey to generate a header and body and concatenating the
two results. This is the same as generating a random string of the same length
since queries to the encryption oracle can’t be repeated, so a random header and
body is sampled each time. When we replace the random ciphertext generation
with the pair of PRIs, we use FE and FE with the grey code. We refer to the
game using F for the PRIs as G6.

To distinguish between G6 and G7, A would need to distinguish the difference
between F with and without the grey code. This is the probability that bad gets
set to true in F . For now, we don’t need to worry about F−1 as the adversary
has no way of accessing it. On the ith encryption query, the probability that bad
gets set to true is at most (i− 1)/2w. It follows that the probability bad gets set
to true is at most q2e/2w+1 for qe encryption queries. The adversary may observe
this event in either FE or FE . Thus, A’s advantage here is

Pr[AG7] − Pr[AG6] ≤ q2e
2n+1

+
q2e

2τ+1

Our next hybrid G5 changes the decryption oracle and is shown in Fig. 6. The
other oracles remain the same. Instead of identifying the SID, nonce, and AD
using H[C] right away, the oracle will search for the tuple by going through
all � ∈ L, N ∈ Nx(ND[�]), and A ∈ A[�] ∪ AD. For each of those tuples, it
will try to invert the injection on Body to recover M . Now it’s possible that the
inversion results in an M that wasn’t recorded in H since F−1 as defined in Fig. 5
can return values that weren’t given by the forward oracle. However, we check

200 J. Chan and P. Rogaway

on line 555 to make sure that the (�,N,A,M) we found is actually mapped
to C, which is something required to return a valid tuple in G6’s decryption.
The other validity conditions on �, N , and A are already accounted for since
we iterate through the sets that validate them. We also iterate through them
in lexicographic order, which guarantees that if there are multiple valid tuples,
we return the lexicographically first one. Essentially, G5 does the same as G6’s
decryption; it just does it in a roundabout way by searching for the tuple. Hence,
G5 and G6 are indistinguishable from each other to A.

Instead of looping through the permitted nonces and ADs, we can use the
header to figure out the nonce and AD. The header as generated in the previous
hybrid’s encryption contains the nonce and a hash of the AD. This is just like

procedure F (T, X)
900 if X ‖ 0w−u ∈ dom(f(t, ·)) then
901 return f(T, X)
902 Y �{0, 1}v

903 if Y ∈ range(f(T, ·)) then
904 bad ← true
905 Y �{0, 1}v \ range(f(T, ·))
906 f(T, X ‖ 0w−u) ← Y

907 return Y

procedure F −1(T, Y)
910 if Y ∈ range(f(T, ·))
911 X ′ ‖ R ← f−1(T, Y)
912 where |X ′| = u

913 if R = 0w−u then return X ′

914 return ⊥
915 X�{0, 1}w

916 if X ∈ dom(f(T, ·)) then
917 bad ← true
918 X�{0, 1}v \ dom(f(T, ·))
919 f(T, X) ← Y

91A X ′ ‖ R ← X where |X ′| = u

91B if R = 0w−u then return X ′

91C return ⊥

procedure G6.ENC(�, N, A, M)
640 if � �∈ L or N ∈ NE[�] then return ⊥
641 NE[�] ∪← {N}
642 Head ← FE(�, N ‖ 0ρ ‖ H(A))
643 Body ← FE((�, N, A), M)
644 C ← Head ‖ Body
645 H[C] ∪← {(�, N, A, M)}; return C

Fig. 5. Top. Lazy-sampling of random functions or injections in the multi-key setting.
With the code in grey, the procedures simulate a random injection for each T from u
bits to w bits. Without the code in grey, the procedures simulate a random function
for each T . Bottom. Modified encryption oracle that uses either random functions or
random injections to generate the ciphertext. Here, ρ = n−η −β where η is the length
of the nonce. The game using injections is called G6.

Anonymous AE 201

procedure G5.DEC(C)
550 Head ‖ Body C where |Head| = n

551 for � ∈ L do
552 for N ∈ Nx(ND[�]) do
553 for A ∈ A[�] ∪ AD do
554 M F −1

E ((�, N, A),Body)
555 if (�, N, A, M) ∈ H[C] then
556 ND[�]

‖
N

557 if ND[�] /∈ dom(Nx) then ND[�] tail(ND[�])
558 return (�, N, A, M)
559 return ⊥

Fig. 6. G5’s decryption oracle. This decryption oracle searches for a (�, N, A) triple
to use to recover M . It then validates the resulting quadruple by making sure that it
maps to the ciphertext in the history H.

procedure G4.ASSO(A)
420 B H(A); AD[B] ∪

A}
procedure G4.ASSO(A, �)
421 B H(A); A[�][B] ∪

A}

procedure G4.DISA(A)
430 B H(A); AD[B] �

A}
procedure G4.DISA(A, �)
431 B H(A); A[�][B] �

{

{

{

{A}

procedure G4.DEC(C) Resembles phase-2

450 Head ‖ Body C where |Head| = n

451 for � ∈ L do
452 N ‖ R ‖ B F −1

E (�,Head)
453 where |N | = η and |R| = r

454 if R �= 0ρ or N /∈ Nx(ND[�])
455 then continue
456 for A ∈ A[�][B] ∪ AD[B] do
457 M f−1

E ((�, N, A),Body)
458 if (�, N, A, M) ∈ H[C] then
459 ND[�]

‖
N

45A if ND[�] /∈ dom(Nx) then
45B ND[�] tail(ND[�])
45C return (�, N, A, M)
45D return ⊥

Fig. 7. G4’s decryption oracle. This decryption oracle resembles phase-2 of Non-
ceWrap. Functionally, it does what the ideal decryption oracle does except instead of
looking up a valid tuple in the ciphertext history it iterates through every possibility
to search for one.

in NonceWrap encryption. We make modifications to the decryption oracle to
do just this. For us to use the AD hash, we also need to modify the ASSO and
DISA oracles. The result of these modifications leaves us with hybrid G4, which
is presented in Fig. 7.

Note that decryption now resembles phase-2 of NonceWrap decryption. It’s
clear that any session it returns is active and any nonce it returns is within

202 J. Chan and P. Rogaway

the policy as the former is found through iteration and there is an explicit
check of the latter. It’s also clear that any AD that it returns is registered as
A[�][B] ∪ AD[B] is a subset of all the �’s ADs and all the global ADs.

But does G4 decryption always behave like G5’s decryption? If queried with
a C that did not come from the encryption oracle, then both of them return ⊥
as they both check to make sure (�,N,A,M) ∈ H[C] before returning a tuple.
If queried with a C that did, assuming that C was made with an active session
key, a nonce under the session’s policy, and a properly registered AD, then both
decryptions return the same tuple. It’s clear that G5 will find the first lexico-
graphic tuple due to its iteration. If there’s only one valid tuple explaining C,
then, trivially, the first tuple is returned.

But if there are multiple valid tuples, what happens? If the tuples are under
different SIDs, then we arrive at the lexicographically first SID by iteration. If
the SIDs are the same, then the header is deciphered and the nonce and AD hash
are found. This SID can only have one valid nonce mapped to this header since
the header was generated by an injection. Even though G5 doesn’t decipher the
header, it still checks the association between nonce and header since it checks
whether the tuple is in H[C]. This means that G5, for a fixed session, can only
find one nonce—the same nonce as G4—that is in H[C] even if it iterated through
the entirety of the policy. Similarly, the SID can only have one AD hash mapped
to this header for the same reason. Even though G5 iterates through all registered
ADs, the ones that it finds that are in H[C] would have their hashes associated
to the header. Since G4 lexicographically iterates through the A[�][B] ∪ AD[B]
subset of registered ADs, it would arrive at the same AD as G5. Hence, G5

and G4 always arrive at the same result for a given ciphertext, making the two
indistinguishable.

The next modification adds dictionary LNA from NonceWrap into the game.
To start, suppose that we add LNA into the ideal game without actually using
it for decryption yet. All other data structures that are needed to support LNA
are already exist in our hybrids up to this point; we already manage the active
SIDs in the set L and the nonce history of a session in ND[�]. The structures
for ADs were modified from sets into dictionaries in G4, but we can still derive
the set of all valid ADs for a session � from them. The union of all sets in
A[�].values ∪ AD.values is just that. We’ll denote this set as A�. All of these
data structures are needed to add or remove tuples from LNA. The code for this
hybrid G3 is presented in Fig. 8, but disregard the phase-1 decryption block for
now. First, we want to assert a property of LNA.

Lemma 2. Let L, ND, A, AD, and LNA be the data structures used in hybrid
game G3. Let X be the union of all sets in LNA.values. For any SID �, let A�

be the union of all sets in A[�].values ∪ AD.values. If (�,N,A) ∈ X then � ∈ L,
N ∈ Nx(ND[�]), and A ∈ A�.

Proof. Suppose there exists some (�,N,A) ∈ X such that one of the conditions
described in the lemma is false. There are two ways that this can happen: either

Anonymous AE 203

a value was added into LNA that violated one of the conditions or the condition
itself was modified, but LNA was not modified accordingly. We exhaustively
check for a case in which this can occur, specifically looking at when we add a
tuple or modify the condition.

– Case: (�,N,A) ∈ X and � /∈ L.
• When tuple is added in INIT, � ∈ L since INIT adds it to L.
• When tuple is added in ASSO(A), � ∈ L since the procedure iterates

through � to add it.
• When tuple is added in ASSO(A, �), � ∈ L by assumption.
• When tuple is added in DEC, � ∈ L since the tuple is added on successful

decryption, which happens by iterating through L and finding �.
• When � is removed from L, all tuples with � as an element are removed

from LNA.
– Case: (�,N,A) ∈ X and A /∈ A�.

• When tuple is added in INIT, A ∈ A� since the procedure iterates through
AD to get A.

• When tuple is added in ASSO(A), A ∈ A� since the procedure adds A to
AD before adding the tuple to LNA.

• When tuple added in ASSO(A, �), A ∈ A� since the procedure adds A to
A[�] before adding the tuple to LNA.

• When tuple is added in DEC, A ∈ A� since the procedure iterates through
A� to add each A.

• When A is removed in DISA(A), all tuples with A as an element are
removed from LNA.

• When A is removed in DISA(A, �), all tuples with both � and A are
removed from LNA. If a tuple containing A is still in X, then it must
have a different SID from �.

– Case: (�,N,A) ∈ X and N /∈ Nx(ND[�]).
• When tuple is added in INIT, N ∈ Nx(ND[�]) since ND[�] is initialized to

the empty list and the procedure iterates over Lx(Λ), which is a subset
of Nx(Λ).

• When tuple is added in either ASSO, N ∈ Nx(ND[�]) since the procedure
iterates through each nonce in Lx(ND[�]), which is a subset of Nx(ND[�]).

• When tuple is added in DEC, ND[�] is appended with a new nonce N ′

first. Two sets are generated here: Lx(ND[�]) and Lx(ND[�] ‖ N ′). The
former is Old and the latter is New in the pseudocode. The procedure
iterates over New\Old, which is a subset of Nx(ND[�] ‖ N ′) when adding
new tuples.

• When tuple is removed in DEC, the sets Old and New are used again. The
procedure iterates over Old \ New and removes tuples containing those
nonces from LNA. Hence, any tuple with a nonce not in Lx(ND[�] ‖ N ′)
is removed.

None of these cases provide a situation where (�,N,A) ∈ X such that � /∈ L,
N /∈ Nx(ND[�]), or A /∈ A�. The lemma follows. ��

204 J. Chan and P. Rogaway

procedure G3.INIT()
300 K K

301 � Π.Init(K)
302 K[�] K; L ∪ {�}; NE[�] ∅
303 for N ∈ Lx(Λ) do
304 for ADs ∈ AD.values do
305 for A ∈ ADs do
306 head N ‖ 0ρ ‖ H(A)
307 Head FE(�, head)
308 LNA[Head] ∪ {(�, N, A)}
309 return �

procedure G3.TERM(�)
310 for S ∈ LNA.values do
311 S

�

�} × N × A

312 L �

{
{�}

procedure G3.ASSO(A)
320 B H(A); AD[B] ∪ {A}
321 for � ∈ L do
322 for N ∈ Lx(ND[�]) do
323 Head FE(�, N ‖ 0ρ ‖ B)
324 LNA[Head] ∪ {(�, N, A)}
procedure G3.ASSO(A, �)
325 B H(A); A[�][B] ∪ {A}
326 for N ∈ Lx(ND[�]) do
323 Head FE(�, N ‖ 0ρ ‖ B)
324 LNA[Head] ∪ {(�, N, A)}

procedure G3.DISA(A)
330 B H(A); AD[B] � {A}
331 for S ∈ LNA.values do
332 S

�

L × N × {A}
procedure G3.DISA(A, �)
333 B H(A); A[�][B] �

A}
334 for S ∈ LNA.values do
335 S

�

{

{�} × N × {A}

procedure G3.DEC(C) Phase-1

350 Head ‖ Body C where |Head| = n

351 for (�, N, A) ∈ LNA[Head] do
352 M F −1

E ((�, N, A),Body)
353 if (�, N, A, M) ∈ H[C] then
354 goto 35F

355 for � ∈ L do P-2, same as G4’s

356 N ‖ R ‖ B F −1
E (�,Head)

357 where |N | = η and |R| = r

358 if R �= 0r or N /∈ Nx(ND[�])
359 then continue
35A for A ∈ A[�][B] ∪ AD[B] do
35B M F −1

E ((�, N, A),Body)
35C if (�, N, A, M) ∈ H[C] then
35D goto 35F
35E return ⊥

35F Old Lx(ND[�]) Phase-3

35G ND[�]
‖

N

35H if |ND[�]| > d then
35I ND[�] tail(ND[�])
35J New Lx(ND[�])
35K for N ′ ∈ Old \ New do
35L for S ∈ LNA.values do
35M S

� {�} × {N ′} × A

35N for N ′ ∈ New \ Old do
35O for B ∈ A[�].keys ∪ AD.keys do
35P Head FE(�, N ′ ‖ 0ρ ‖ B)
35Q for A′ ∈ A[�][B] ∪ AD[B] do
35R LNA.[Head] ∪ {(�, N ′, A′)}
35S return (�, N, A, M)

Fig. 8. Hybrid game resembling NonceWrap. Game G3 executes procedures sim-
ilar to those of NonceWrap. For decryption on a ciphertext to succeed, it follows the
ideal game. If decryption returns a tuple, then that tuple must have been used to make
the queried ciphertext. The encryption oracle is omitted as it is the same as G5’s, which
is in Fig. 6.

Anonymous AE 205

As per Lemma 2, we have that all tuples recorded in LNA satisfy the validity
conditions in ideal decryption. Now when phase-1 decryption is accounted for in
G3 we observe that any successful decryption that occurs must have happened
on a tuple in LNA, meeting the validity conditions. Here, success is defined
as executing the goto instruction on line 354, which instructs the procedure
to enter phase-3. The third phase does not modify the tuple being returned
in any way; it only does bookkeeping to update the data structures, making
sure that they are compliant to the validity conditions. So, whatever tuple was
acquired in phase-1 would be returned. If no tuple was found in phase-1, the
procedure will enter phase-2 where it iterates through every session as done in
G4’s decryption. Whether the valid tuple (�,N,A,M) being returned is found in
phase-1 or phase-2, the conditions placed on each component of the tuple remains
the same: � must be in L, N must be in Nx(ND[�]), A must be in A[�]∪AD, and
the entire tuple must be in H[C]. Thus, G3 decryption always returns a valid
tuple under the same conditions as G4.

However, in some cases, G3 does not return the lexicographically first tuple.
Suppose that the adversary makes two encryption queries with tuples T1 and T2

such that the tuples are different and their parameters are valid for decryption.
Suppose it gets back the same ciphertext C both times. Let’s say T1 is the
lexicographically first tuple, but its nonce is not within Lx(·). Let’s say T2’s nonce
is within Lx(·). When the adversary queries decryption with C, in G4, it gets
back T1. On the other hand, it gets back T2 in G3 since phase-1 decryption would
find T2 first. The probability this occurs is upper-bounded by the probability of
getting the same ciphertext from the encryption oracle, which occurs if the same
header and body are outputted by their respective injections. In regards to just
the header, the probability that any two headers is the same is 1/2n. After qe

encryption queries, any of those pairs of queries can have such a collision. There
are about q2e/2 ways to choose such a pair. Applying the same logic to the
ciphertext body, A gets a collision in both header and body and distinguishes
the two hybrids with probability

Pr[AG4] − Pr[AG3] ≤ q2e
2n+1

· q2e
2τ+1

=
q4e

2n+τ+2

Observe that G3 executes almost exactly the same as G2, which is the real
game with ideal primitives does. The only differences in code are the checks for
successful decryption. On lines 353 and 35C for G3, we verify that the tuple was
actually used in encryption. On the other hand, in G2, we move to phase-3 if
M �= ⊥. This difference can result in the two returning different values. More
precisely, if queried with a ciphertext C that was not the result of an encryption
query, G2 may return a tuple while G3 would never return a tuple. The probability
this occurs is upper-bounded by the probability that the function F−1

E on query
(T, Y) returns a non-⊥ value given that Y was not an output of FE . This is the
probability that line 91B in the top half of Fig. 5 returns. That is, the advantage
A has in distinguishing G3 and G2 is

206 J. Chan and P. Rogaway

Pr[AG3] − Pr[AG2] ≤ q2d
2σ+1

Summing up all of the bounds computed over the hybrid argument, we get
the bound in the theorem statement. ��

6 Remarks

Complexity. While we don’t find the anAE definition excessively complex,
NonceWrap decryption is quite complicated. One complicating factor is the rich
support we have provided for AD values—despite our expectation that imple-
mentations will assume the 1AD/Session restriction. Yet we have found that
building in the 1AD/Session restriction would only simplify matters modestly.
It didn’t seem worth it.

We suspect that, no matter what, decryption in anonymous-AE schemes is
going to be complicated compared to decryption under conventional nAE. The
privacy principle demands that ciphertexts contain everything the receiver needs
to decrypt, yet no adversarially worthwhile metadata. The decrypting party must
infer this metadata, and it should do so quite efficiently.

Timing side-channels. Our anAE definition does not address timing side-
channels, and NonceWrap raises several concerns with leaking identity informa-
tion through decryption times. Timing information might leak how many sessions
a header can belong to. In phase-2, nAE decryption is likely to be the operation
that takes the longest, and it is possible that an observer might learn information
on the number of sessions that produced a valid-looking header. Then there is
the timing side-channel that arises from the usage of Lx and Nx. Phase-1 only
works on headers in Lx, and is expected to be faster than phase-2, leaking infor-
mation about whether a nonce was anticipated. We leave the modeling, analysis,
and elimination of timing side-channels as an open problem.

The usage puzzle. There is an apparent paradox in the use of anonymous
AE. If used in an application-layer protocol over something like TCP/IP, then
anonymous AE would seem irrelevant because communicated packets already
reveal identity. But if used over an anonymity layer like Tor [9], then use of that
service would seem to obviate the need for privacy protection. It would seem
as though anonymous AE is pointless if the transport provides anonymity, and
that pointless if the transport does not provide anonymity.

This reasoning is specious. First, an anonymity layer like Tor only protects
a packet while it traverses the Tor network; once it leaves an exit node, the
Tor-associated encryption is gone, and end-to-end privacy may still be desired.
Second, it simply is not the case that every low-level transport completely leaks
identity. For example, while a UDP packet includes a source port, the field need
not be used.

To give a concrete example for potential use, consider how NonceWrap (and
anAE in general) might fit in with DTLS 1.3 over UDP [15]. Unlike TLS, where

Anonymous AE 207

session information is presumptively gathered from the underlying transport,
DTLS transmits with each record an explicit (sometimes partially explicit) epoch
and sequence number (SN). Since UDP itself does not use SNs, the explicit SNs
of DTLS are used for replay protection. While DTLS has a mechanism for SN
encryption in its latest draft, NonceWrap would seem to improve upon it. The
way DTLS associates a key with encrypted records is through the sender’s IP
and port number at the UDP level. Using NonceWrap, these identifiers could
be omitted. If the receiver needs to know source IP and port in order to reply,
those values can be moved to the encrypted payload.

Further features of DTLS over UDP might be facilitated by NonceWrap. It
provides a mechanism in which an invalid record can often be quickly identified,
a feature useful in DTLS. In DTLS, when an SN greater than the next expected
one is received, there is an option to either discard the message or keep it in a
queue for later. This aligns with NonceWrap’s formulation of Lx and Nx.

It is rarely straightforward to deploy encryption in an efficient, privacy-
preserving way, and anAE is no panacea. But who’s to say how privacy protocols
might evolve if one of our most basic tools, AE, is re-envisioned as something
more privacy friendly?

Acknowledgments. We thank Dan Bernstein for inspiring this work. Within the
CAESAR call, he suggested the use of “secret message numbers” in lieu of nonces; in
private communications with the second author, he asked how one might efficiently
demultiplex multiple AE communication streams without having marked them in a
privacy-compromising manner.

We thank the anonymous ASIACRYPT referees. Their comments brought home
that anonymous AE was a concern that transcended our formulation of it. They sug-
gested the name anAE.

This work was supported by NSF CNS 1717542 and NSF CNS 1314855. Many
thanks to the NSF for their years of financial support.

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). J. Cryptol. 15(2), 103–127 (2002)

2. Abed, F., Forler, C., Lucks, S.: General classification of the authenticated encryp-
tion schemes for the CAESAR competition. Comput. Sci. Rev. 22, 13–26 (2016)

3. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_33

4. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the
SSH authenticated encryption scheme: a case study of the encode-then-encrypt-
and-MAC paradigm. ACM Trans. Inf. Syst. Secur. 7(2), 206–241 (2004)

5. Bellare, M., Ng, R., Tackmann, B.: Nonces are noticed: AEAD revisited. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp.
235–265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_9

https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/978-3-030-26948-7_9

208 J. Chan and P. Rogaway

6. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3_24

7. Bernstein, D.: Cryptographic competitions: CAESAR call for submissions. Web-
page, January 2014. https://competitions.cr.yp.to/caesar-call.html

8. Boyd, C., Hale, B., Mjølsnes, S.F., Stebila, D.: From Stateless to Stateful: Generic
Authentication and Authenticated Encryption Constructions with Application to
TLS. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 55–71. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-29485-8_4

9. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: Blaze, M. (ed.) Proceedings of the 13th USENIX Security Symposium,
August 9–13, 2004, San Diego, CA, USA, pp. 303–320. USENIX (2004)

10. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44706-7_20

11. Kohno, T., Palacio, A., Black, J.: Building secure cryptographic transforms, or how
to encrypt and MAC. IACR Cryptology ePrint Archive 2003:177 (2003)

12. McGrew, D.: An interface and algorithms for authenticated encryption. IETF RFC
5116, January 2018

13. Namprempre, C., Rogaway, P., Shrimpton, T.: AE5 security notions: definitions
implicit in the CAESAR call. IACR Cryptology ePrint Archive 2013:242 (2013)

14. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5_15

15. Rescorla, E., Tschofenig, H., Modadugu, N.: The datagram transport layer secu-
rity (DTLS) protocol version 1.3. Internet-Draft draft-ietf-tls-dtls13-31, Internet
Engineering Task Force, March 2019. Work in Progress

16. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 02: 9th Conference on Computer and Communications Security, pp.
98–107. ACM Press, Washington D.C., 18–22 November 2002

17. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of oper-
ation for efficient authenticated encryption. In: ACM CCS 01: 8th Conference on
Computer and Communications Security, pp. 196–205. ACM Press, Philadelphia,
5–8 November 2001

18. Rogaway, P., Shrimpton, T.: Deterministic authenticated-encryption: a provable-
security treatment of the key-wrap problem. Cryptology ePrint Archive, Report
2006/221 (2006). http://eprint.iacr.org/2006/221

19. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_23

20. Rogaway, P., Zhang, Y.: Simplifying game-based definitions. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 3–32. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_1

https://doi.org/10.1007/3-540-44448-3_24
https://competitions.cr.yp.to/caesar-call.html
https://doi.org/10.1007/978-3-319-29485-8_4
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
http://eprint.iacr.org/2006/221
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/978-3-319-96881-0_1

	Anonymous AE
	1 Introduction
	2 Nonce-Based AE (nAE)
	3 Anonymous Nonce-Based AE (anAE)
	4 The NonceWrap Scheme
	5 NonceWrap Security
	6 Remarks
	References

