
Steven D. Galbraith
Shiho Moriai (Eds.)

LN
CS

 1
19

22

25th International Conference on the Theory
and Application of Cryptology and Information Security
Kobe, Japan, December 8–12, 2019
Proceedings, Part II

Advances in Cryptology –
ASIACRYPT 2019

Lecture Notes in Computer Science 11922

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Steven D. Galbraith • Shiho Moriai (Eds.)

Advances in Cryptology –

ASIACRYPT 2019
25th International Conference on the Theory
and Application of Cryptology and Information Security
Kobe, Japan, December 8–12, 2019
Proceedings, Part II

123

Editors
Steven D. Galbraith
University of Auckland
Auckland, New Zealand

Shiho Moriai
Security Fundamentals Lab
NICT
Tokyo, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-34620-1 ISBN 978-3-030-34621-8 (eBook)
https://doi.org/10.1007/978-3-030-34621-8

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7114-8377
https://orcid.org/0000-0002-6072-6183
https://doi.org/10.1007/978-3-030-34621-8

Preface

ASIACRYPT 2019, the 25th Annual International Conference on Theory and
Application of Cryptology and Information Security, was held in Kobe, Japan, during
December 8–12, 2019.

The conference focused on all technical aspects of cryptology, and was sponsored
by the International Association for Cryptologic Research (IACR).

We received a total of 307 submissions from all over the world. This was a sig-
nificantly higher number of submissions than recent Asiacrypt conferences, which
necessitated a larger Program Committee (PC) than we had originally planned. We
thank the seven additional PC members who accepted our invitation at extremely short
notice. They are Gorjan Alagic, Giorgia Azzurra Marson, Zhenzhen Bao, Olivier
Blazy, Romain Gay, Takanori Isobe, and Daniel Masny.

The PC selected 71 papers for publication in the proceedings of the conference. The
two program chairs were supported by a PC consisting of 55 leading experts in aspects
of cryptology. Each submission was reviewed by at least three Program Committee
members (or their sub-reviewers) and five PC members were assigned to submissions
co-authored by PC members. The strong conflict of interest rules imposed by the IACR
ensure that papers are not handled by PC members with a close working relationship
with authors. There were approximately 380 external reviewers, whose input was
critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and
first-round discussions the PC selected 193 submissions to proceed to the second
round. The authors of those 193 papers were then invited to provide a short rebuttal in
response to the referee reports. The second round involved extensive discussions by the
PC members. Indeed, the total number of text items in the online discussion (including
reviews, rebuttals, questions to authors, and PC member comments) exceeded 3,000.

The three volumes of the conference proceedings contain the revised versions of the
71 papers that were selected, together with 1 invited paper. The final revised versions
of papers were not reviewed again and the authors are responsible for their contents.

The program of Asiacrypt 2019 featured excellent invited talks by Krzysztof
Pietrzak and Elaine Shi. The conference also featured a rump session which contained
short presentations on the latest research results of the field.

The PC selected the work “Wave: A New Family of Trapdoor One-Way Preimage
Sampleable Functions Based on Codes” by Thomas Debris-Alazard, Nicolas Sendrier,
and Jean-Pierre Tillich for the Best Paper Award of Asiacrypt 2019. Two more papers
were solicited to submit a full version to the Journal of Cryptology. They are “An LLL
Algorithm for Module Lattices” by Changmin Lee, Alice Pellet-Mary, Damien Stehlé,
and Alexandre Wallet, and “Numerical Method for Comparison on Homomorphically
Encrypted Numbers” by Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee
Lee, and Keewoo Lee.

The Program Chairs are delighted to recognize the outstanding work by Mark
Zhandry and Shweta Agrawal, by awarding them jointly the Best PC Member Award.

Many people have contributed to the success of Asiacrypt 2019. We would like to
thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge
and expertise, and for the tremendous amount of work that was done with reading
papers and contributing to the discussions.

We are greatly indebted to Mitsuru Matsui, the general chair, for his efforts and
overall organization.

We thank Mehdi Tibouchi for expertly organizing and chairing the rump session.
We are extremely grateful to Lukas Zobernig for checking all the latex files and for

assembling the files for submission to Springer.
Finally we thank Shai Halevi and the IACR for setting up and maintaining the Web

Submission and Review software, used by IACR conferences for the paper submission
and review process. We also thank Alfred Hofmann, Anna Kramer, Ingrid Haas,
Anja Sebold, Xavier Mathew, and their colleagues at Springer for handling the
publication of these conference proceedings.

December 2019 Steven Galbraith
Shiho Moriai

vi Preface

ASIACRYPT 2019

The 25th Annual International Conference on Theory
and Application of Cryptology and Information Security

Sponsored by the International Association for Cryptologic Research (IACR)

Kobe, Japan, December 8–12, 2019

General Chair

Mitsuru Matsui Mitsubishi Electric Corporation, Japan

Program Co-chairs

Steven Galbraith University of Auckland, New Zealand
Shiho Moriai NICT, Japan

Program Committee

Shweta Agrawal IIT Madras, India
Gorjan Alagic University of Maryland, USA
Shi Bai Florida Atlantic University, USA
Zhenzhen Bao Nanyang Technological University, Singapore
Paulo S. L. M. Barreto UW Tacoma, USA
Lejla Batina Radboud University, The Netherlands
Sonia Belaïd CryptoExperts, France
Olivier Blazy University of Limoges, France
Colin Boyd NTNU, Norway
Xavier Boyen Queensland University of Technology, Australia
Nishanth Chandran Microsoft Research, India
Melissa Chase Microsoft Research, USA
Yilei Chen Visa Research, USA
Chen-Mou Cheng Osaka University, Japan
Nils Fleischhacker Ruhr-University Bochum, Germany
Jun Furukawa NEC Israel Research Center, Israel
David Galindo University of Birmingham and Fetch AI, UK
Romain Gay UC Berkeley, USA
Jian Guo Nanyang Technological University, Singapore
Seokhie Hong Korea University, South Korea
Andreas Hülsing Eindhoven University of Technology, The Netherlands
Takanori Isobe University of Hyogo, Japan
David Jao University of Waterloo and evolutionQ, Inc., Canada

Jérémy Jean ANSSI, France
Elena Kirshanova ENS Lyon, France
Virginie Lallemand CNRS, France
Jooyoung Lee KAIST, South Korea
Helger Lipmaa Simula UiB, Norway
Feng-Hao Liu Florida Atlantic University, USA
Atul Luykx Swirlds Inc., USA
Hemanta K. Maji Purdue, USA
Giorgia Azzurra Marson NEC Laboratories Europe, Germany
Daniel Masny Visa Research, USA
Takahiro Matsuda AIST, Japan
Brice Minaud Inria and ENS, France
David Naccache ENS, France
Kartik Nayak Duke University and VMware Research, USA
Khoa Nguyen Nanyang Technological University, Singapore
Svetla Nikova KU Leuven, Belgium
Carles Padró UPC, Spain
Jiaxin Pan NTNU, Norway, and KIT, Germany
Arpita Patra Indian Institute of Science, India
Thomas Peters UCL, Belgium
Duong Hieu Phan University of Limoges, France
Raphael C.-W. Phan Monash University, Malaysia
Carla Ràfols Universitat Pompeu Fabra, Spain
Ling Ren VMware Research and University of Illinois,

Urbana-Champaign, USA
Yu Sasaki NTT laboratories, Japan
Junji Shikata Yokohama National University, Japan
Ron Steinfeld Monash University, Australia
Qiang Tang New Jersey Institute of Technology, USA
Mehdi Tibouchi NTT Laboratories, Japan
Hoeteck Wee CNRS and ENS, France
Mark Zhandry Princeton University, USA
Fangguo Zhang Sun Yat-sen University, China

Local Organizing Committee

General Chair

Mitsuru Matsui Mitsubishi Electric Corporation, Japan

Honorary Advisor

Tsutomu Matsumoto Yokohama National University, Japan

viii ASIACRYPT 2019

External Reviewers

Masayuki Abe
Parhat Abla
Victor Arribas Abril
Divesh Aggarwal
Martin Albrecht
Bar Alon
Prabhanjan Ananth
Elena Andreeva
Yoshinori Aono
Daniel Apon
Toshinori Araki
Seiko Arita
Tomer Ashur
Nuttapong Attrapadung
Man Ho Allen Au
Benedikt Auerbach
Saikrishna

Badrinarayanan
Vivek Bagaria
Josep Balasch
Gustavo Banegas
Laasya Bangalore
Subhadeep Banik
Achiya Bar-On
Manuel Barbosa
James Bartusek
Carsten Baum
Arthur Beckers
Rouzbeh Behnia
Francesco Berti
Alexandre Berzati
Ward Beullens
Shivam Bhasin
Nina Bindel
Nicolas Bordes
Jannis Bossert
Katharina Boudgoust
Christina Boura
Florian Bourse
Zvika Brakerski
Anne Broadbent
Olivier Bronchain
Leon Groot Bruinderink

Megha Byali
Eleonora Cagli
Ignacio Cascudo
Pyrros Chaidos
Avik Chakraborti
Donghoon Chang
Hao Chen
Jie Chen
Long Chen
Ming-Shing Chen
Qian Chen
Jung Hee Cheon
Céline Chevalier
Ilaria Chillotti
Wonhee Cho
Wonseok Choi
Wutichai Chongchitmate
Jérémy Chotard
Arka Rai Choudhuri
Sherman Chow
Michele Ciampi
Michael Clear
Thomas De Cnudde
Benoît Cogliati
Sandro Coretti-Drayton
Edouard Cuvelier
Jan Czajkowski
Dana Dachman-Soled
Joan Daemen
Nilanjan Datta
Gareth T. Davies
Patrick Derbez
Apporva Deshpande
Siemen Dhooghe
Christoph Dobraunig
Rafael Dowsley
Yfke Dulek
Avijit Dutta
Sébastien Duval
Keita Emura
Thomas Espitau
Xiong Fan
Antonio Faonio

Oriol Farràs
Sebastian Faust
Prastudy Fauzi
Hanwen Feng
Samuele Ferracin
Dario Fiore
Georg Fuchsbauer
Thomas Fuhr
Eiichiro Fujisaki
Philippe Gaborit
Tatiana Galibus
Chaya Ganesh
Daniel Gardham
Luke Garratt
Pierrick Gaudry
Nicholas Genise
Esha Ghosh
Satrajit Ghosh
Kristian Gjøsteen
Aarushi Goel
Huijing Gong
Junqing Gong
Alonso González
Dahmun Goudarzi
Rishabh Goyal
Jiaxin Guan
Aurore Guillevic
Chun Guo
Kaiwen Guo
Qian Guo
Mohammad Hajiabadi
Carmit Hazay
Jingnan He
Brett Hemenway
Nadia Heninger
Javier Herranz
Shoichi Hirose
Harunaga Hiwatari
Viet Tung Hoang
Justin Holmgren
Akinori Hosoyamada
Kexin Hu
Senyang Huang

ASIACRYPT 2019 ix

Yan Huang
Phi Hun
Aaron Hutchinson
Chloé Hébant
Kathrin Hövelmanns
Ilia Iliashenko
Mitsugu Iwamoto
Tetsu Iwata
Zahra Jafargholi
Christian Janson
Ashwin Jha
Dingding Jia
Sunghyun Jin
Charanjit S. Jutla
Mustafa Kairallah
Saqib A. Kakvi
Marc Kaplan
Emrah Karagoz
Ghassan Karame
Shuichi Katsumata
Craig Kenney
Mojtaba Khalili
Dakshita Khurana
Duhyeong Kim
Hyoseung Kim
Sam Kim
Seongkwang Kim
Taechan Kim
Agnes Kiss
Fuyuki Kitagawa
Michael Klooβ
François Koeune
Lisa Kohl
Stefan Kölbl
Yashvanth Kondi
Toomas Krips
Veronika Kuchta
Nishant Kumar
Noboru Kunihiro
Po-Chun Kuo
Kaoru Kurosawa
Ben Kuykendall
Albert Kwon
Qiqi Lai
Baptiste Lambin
Roman Langrehr

Jason LeGrow
ByeongHak Lee
Changmin Lee
Keewoo Lee
Kwangsu Lee
Youngkyung Lee
Dominik Leichtle
Christopher Leonardi
Tancrède Lepoint
Gaëtan Leurent
Itamar Levi
Baiyu Li
Yanan Li
Zhe Li
Xiao Liang
Benoît Libert
Fuchun Lin
Rachel Lin
Wei-Kai Lin
Eik List
Fukang Liu
Guozhen Liu
Meicheng Liu
Qipeng Liu
Shengli Liu
Zhen Liu
Alex Lombardi
Julian Loss
Jiqiang Lu
Xianhui Lu
Yuan Lu
Lin Lyu
Fermi Ma
Gilles Macario-Rat
Urmila Mahadev
Monosij Maitra
Christian Majenz
Nikolaos Makriyannis
Giulio Malavolta
Sogol Mazaheri
Bart Mennink
Peihan Miao
Shaun Miller
Kazuhiko Minematsu
Takaaki Mizuki
Amir Moradi

Kirill Morozov
Fabrice Mouhartem
Pratyay Mukherjee
Pierrick Méaux
Yusuke Naito
Mridul Nandi
Peter Naty
María Naya-Plasencia
Anca Niculescu
Ventzi Nikov
Takashi Nishide
Ryo Nishimaki
Anca Nitulescu
Ariel Nof
Sai Lakshmi Bhavana

Obbattu
Kazuma Ohara
Emmanuela Orsini
Elena Pagnin
Wenlun Pan
Omer Paneth
Bo Pang
Lorenz Panny
Jacques Patarin
Sikhar Patranabis
Alice Pellet-Mary
Chun-Yo Peng
Geovandro Pereira
Olivier Pereira
Léo Perrin
Naty Peter
Cécile Pierrot
Jeroen Pijnenburg
Federico Pintore
Bertram Poettering
David Pointcheval
Yuriy Polyakov
Eamonn Postlethwaite
Emmanuel Prouff
Pille Pullonen
Daniel Puzzuoli
Chen Qian
Tian Qiu
Willy Quach
Håvard Raddum
Ananth Raghunathan

x ASIACRYPT 2019

Somindu Ramanna
Kim Ramchen
Shahram Rasoolzadeh
Mayank Rathee
Divya Ravi
Joost Renes
Angela Robinson
Thomas Roche
Miruna Rosca
Mélissa Rossi
Mike Rosulek
Yann Rotella
Arnab Roy
Luis Ruiz-Lopez
Ajith Suresh
Markku-Juhani

O. Saarinen
Yusuke Sakai
Kazuo Sakiyama
Amin Sakzad
Louis Salvail
Simona Samardjiska
Pratik Sarkar
Christian Schaffner
John Schanck
Berry Schoenmakers
Peter Scholl
André Schrottenloher
Jacob Schuldt
Sven Schäge
Sruthi Sekar
Srinath Setty
Yannick Seurin
Barak Shani
Yaobin Shen
Sina Shiehian
Kazumasa Shinagawa
Janno Siim
Javier Silva
Mark Simkin

Boris Skoric
Maciej Skórski
Yongsoo Song
Pratik Soni
Claudio Soriente
Florian Speelman
Akshayaram Srinivasan
François-Xavier Standaert
Douglas Stebila
Damien Stehlé
Patrick Struck
Valentin Suder
Bing Sun
Shifeng Sun
Siwei Sun
Jaechul Sung
Daisuke Suzuki
Katsuyuki Takashima
Benjamin Hong Meng

Tan
Stefano Tessaro
Adrian Thillard
Yan Bo Ti
Jean-Pierre Tillich
Radu Ţiţiu
Yosuke Todo
Junichi Tomida
Viet Cuong Trinh
Rotem Tsabary
Hikaru Tsuchida
Yi Tu
Nirvan Tyagi
Bogdan Ursu
Damien Vergnaud
Jorge Luis Villar
Srinivas Vivek
Christine van Vredendaal
Satyanarayana Vusirikala
Sameer Wagh
Hendrik Waldner

Alexandre Wallet
Michael Walter
Han Wang
Haoyang Wang
Junwei Wang
Mingyuan Wang
Ping Wang
Yuyu Wang
Zhedong Wang
Yohei Watanabe
Gaven Watson
Weiqiang Wen
Yunhua Wen
Benjamin Wesolowski
Keita Xagawa
Zejun Xiang
Hanshen Xiao
Shota Yamada
Takashi Yamakawa
Kyosuke Yamashita
Avishay Yanai
Guomin Yang
Kan Yasuda
Masaya Yasuda
Aaram Yun
Alexandros Zacharakis
Michal Zajac
Bin Zhang
Cong Zhang
En Zhang
Huang Zhang
Xiao Zhang
Zheng Zhang
Chang-An Zhao
Raymond K. Zhao
Yongjun Zhao
Yuanyuan Zhou
Jiamin Zhu
Yihong Zhu
Lukas Zobernig

ASIACRYPT 2019 xi

Contents – Part II

Codes

Collision Resistant Hashing from Sub-exponential Learning Parity
with Noise . 3

Yu Yu, Jiang Zhang, Jian Weng, Chun Guo, and Xiangxue Li

New Code-Based Privacy-Preserving Cryptographic Constructions 25
Khoa Nguyen, Hanh Tang, Huaxiong Wang, and Neng Zeng

Lattices (2)

An LLL Algorithm for Module Lattices . 59
Changmin Lee, Alice Pellet-Mary, Damien Stehlé, and Alexandre Wallet

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 91
Madalina Bolboceanu, Zvika Brakerski, Renen Perlman,
and Devika Sharma

On the Non-existence of Short Vectors in Random Module Lattices 121
Ngoc Khanh Nguyen

Authenticated Encryption

Forkcipher: A New Primitive for Authenticated Encryption
of Very Short Messages . 153

Elena Andreeva, Virginie Lallemand, Antoon Purnal,
Reza Reyhanitabar, Arnab Roy, and Damian Vizár

Anonymous AE . 183
John Chan and Phillip Rogaway

Sponges Resist Leakage: The Case of Authenticated Encryption 209
Jean Paul Degabriele, Christian Janson, and Patrick Struck

Isogenies (2)

Dual Isogenies and Their Application to Public-Key Compression
for Isogeny-Based Cryptography . 243

Michael Naehrig and Joost Renes

Optimized Method for Computing Odd-Degree Isogenies
on Edwards Curves . 273

Suhri Kim, Kisoon Yoon, Young-Ho Park, and Seokhie Hong

Hard Isogeny Problems over RSA Moduli and Groups
with Infeasible Inversion . 293

Salim Ali Altuğ and Yilei Chen

Multilinear Maps

On Kilian’s Randomization of Multilinear Map Encodings 325
Jean-Sébastien Coron and Hilder V. L. Pereira

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots. 356
Jean-Sébastien Coron and Luca Notarnicola

Algebraic XOR-RKA-Secure Pseudorandom Functions
from Post-Zeroizing Multilinear Maps . 386

Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue

Homomorphic Encryption

Numerical Method for Comparison on Homomorphically
Encrypted Numbers . 415

Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee Lee,
and Keewoo Lee

Multi-Key Homomorphic Encryption from TFHE . 446
Hao Chen, Ilaria Chillotti, and Yongsoo Song

Homomorphic Encryption for Finite Automata . 473
Nicholas Genise, Craig Gentry, Shai Halevi, Baiyu Li,
and Daniele Micciancio

Combinatorial Cryptography

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 505
Qi Chen, Chunming Tang, and Zhiqiang Lin

Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead. 537
Michael Raskin and Mark Simkin

How to Correct Errors in Multi-server PIR . 564
Kaoru Kurosawa

xiv Contents – Part II

Multiparty Computation (2)

UC-Secure Multiparty Computation from One-Way Functions Using
Stateless Tokens . 577

Saikrishna Badrinarayanan, Abhishek Jain, Rafail Ostrovsky,
and Ivan Visconti

Efficient UC Commitment Extension with Homomorphism for Free
(and Applications) . 606

Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Döttling,
Rafael Dowsley, and Irene Giacomelli

Scalable Private Set Union from Symmetric-Key Techniques 636
Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang

Author Index . 667

Contents – Part II xv

Codes

Collision Resistant Hashing
from Sub-exponential Learning

Parity with Noise

Yu Yu1,2,7(B), Jiang Zhang2(B), Jian Weng3, Chun Guo4,5(B),
and Xiangxue Li6,7(B)

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China
yuyuathk@gmail.com

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
jiangzhang09@gmail.com

3 Jinan University, Guangzhou 510632, China
cryptjweng@gmail.com

4 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Qingdao 266237, China

chun.guo.sc@gmail.com
5 School of Cyber Science and Technology, Shandong University,

Qingdao 266237, China
6 School of Software Engineering, East China Normal University,

Shanghai 200062, China
xiangxueli@gmail.com

7 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. The Learning Parity with Noise (LPN) problem has recently
found many cryptographic applications such as authentication protocols,
pseudorandom generators/functions and even asymmetric tasks includ-
ing public-key encryption (PKE) schemes and oblivious transfer (OT)
protocols. It however remains a long-standing open problem whether
LPN implies collision resistant hash (CRH) functions. Inspired by the
recent work of Applebaum et al. (ITCS 2017), we introduce a general
construction of CRH from LPN for various parameter choices. We show
that, just to mention a few notable ones, under any of the following
hardness assumptions (for the two most common variants of LPN)

1. constant-noise LPN is 2n0.5+ε

-hard for any constant ε > 0;
2. constant-noise LPN is 2Ω(n/ log n)-hard given q = poly(n) samples;

3. low-noise LPN (of noise rate 1/
√

n) is 2Ω(
√

n/ log n)-hard given q =
poly(n) samples.

there exists CRH functions with constant (or even poly-logarithmic)
shrinkage, which can be implemented using polynomial-size depth-3 cir-
cuits with NOT, (unbounded fan-in) AND and XOR gates. Our technical
route LPN → bSVP → CRH is reminiscent of the known reductions for
the large-modulus analogue, i.e., LWE → SIS → CRH, where the binary
Shortest Vector Problem (bSVP) was recently introduced by Applebaum
et al. (ITCS 2017) that enables CRH in a similar manner to Ajtai’s CRH
functions based on the Short Integer Solution (SIS) problem.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 3–24, 2019.
https://doi.org/10.1007/978-3-030-34621-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_1

4 Y. Yu et al.

Furthermore, under additional (arguably minimal) idealized assump-
tions such as small-domain random functions or random permutations
(that trivially imply collision resistance), we still salvage a simple and ele-
gant collision-resistance-preserving domain extender combining the best
of the two worlds, namely, maximized (depth one) parallelizability and

polynomial shrinkage. In particular, assume 2n0.5+ε

-hard constant-noise

LPN or 2n0.25+ε

-hard low-noise LPN, we obtain a collision resistant hash
function that evaluates in parallel only a single layer of small-domain
random functions (or random permutations) and shrinks polynomially.

1 Introduction

1.1 Learning Parity with Noise

Learning Parity with Noise. The computational version of the Learning
Parity with Noise (LPN) assumption with secret size n ∈ N and noise rate
0 < μ < 1/2 postulates that given any number of samples q = poly(n) it is com-
putationally infeasible for any probabilistic polynomial-time (PPT) algorithm

to recover the random secret x $←− {0, 1}n given (A, A · x + e), where A is a
random q×n Boolean matrix, e follows Bq

μ = (Bμ)q, Bμ denotes the Bernoulli
distribution with parameter μ (taking the value 1 with probability μ and the
value 0 with probability 1 − μ), ‘·’ and ‘+’ denote (matrix-vector) multiplica-
tion and addition over GF(2) respectively. The decisional version of LPN simply
assumes that (A, A ·x+e) is pseudorandom. The two versions are polynomially
equivalent [6,14,39].

Hardness of LPN. The computational LPN problem can be seen as the
average-case analogue of the NP-complete problem “decoding random linear
codes” [10]. LPN has been also extensively studied in learning theory, and it was
shown in [33] that an efficient algorithm for LPN would allow to learn several
important function classes such as 2-DNF formulas, juntas, and any function
with a sparse Fourier spectrum. When the noise rate μ is constant (i.e., inde-
pendent of secret size n), Blum, Kalai and Wasserman [15] showed how to solve
LPN with time/sample complexity 2O(n/ log n). Lyubashevsky [45] observed that
one can produce almost as many LPN samples as needed using only q = n1+ε

LPN samples (of a lower noise rate), which implies a variant of the BKW attack
[15] with time complexity 2O(n/ log log n) and sample complexity n1+ε. If one is
restricted to q = O(n) samples, then the best attack has exponential complex-
ity 2O(n) [50]. Under low noise rate μ = 1/

√
n, the best attacks [9,11,18,42]

solve LPN with time complexity 2O(
√

n). The low-noise LPN is mostly believed
a stronger assumption than constant-noise LPN. In noise regime μ = 1/

√
n,

LPN can be used to build public-key encryption (PKE) schemes [2] and obliv-
ious transfer (OT) protocols. Quantum algorithms [32] that build upon Grover
search may achieve a certain level (up to quadratic) of speedup over classic ones
in solving LPN, which does not change the asymptotic order (up to the constant

Collision Resistant Hashing from Sub-exponential Learning Parity 5

in the exponent) of the complexity of the problem. This makes LPN a promis-
ing candidate for “post-quantum cryptography”. Furthermore, LPN enjoys sim-
plicity and is more suited for weak-power devices (e.g., RFID tags) than other
quantum-secure candidates such as Learning with Errors (LWE) [58] as the many
modular additions and multiplications in LWE would be simplified to AND and
XOR gates in LPN.

Symmetric-key cryptography from constant-noise LPN. LPN was used
to build lightweight authentication schemes (e.g. [35,38,39], just to name a few).
Kiltz et al. [41] and Dodis et al. [26] constructed randomized MACs from LPN,
which implies a two-round authentication scheme with security against active
adversaries. Lyubashevsky and Masny [47] gave a more efficient three-round
authentication scheme from LPN and recently Cash, Kiltz, and Tessaro [19]
reduced the round complexity to 2 rounds. Applebaum et al. [4] used LPN to
construct efficient symmetric encryption schemes with certain key-dependent
message (KDM) security. Jain et al. [37] constructed an efficient perfectly bind-
ing string commitment scheme from LPN. We refer to the survey [56] about
cryptography from LPN.

Public-key cryptography and more from low-noise LPN. Alekhnovich
[2] established the feasibility result that public-key encryption (PKE) can be
based on LPN in the low-noise regime of μ = 1/

√
n. Döttling et al. [30] and

Kiltz et al. [40] further showed that low-noise LPN alone already suffices for
PKE schemes with CCA (and KDM [29]) security. Once we obtain a PKE, it
is perhaps not so surprising to build an oblivious transfer (OT) protocol. That
is, LPN-based PKE uses pseudorandom public keys (so that one can efficiently
fake random public keys that are computationally indistinguishable from real
ones) and in this scenario Gertner et al. [34] showed how to construct an OT
protocol in a black-box manner. This observation was made explicit in [23], where
universally composable OT protocols were constructed from low-noise LPN. All
the above schemes are based on LPN of noise rate 1/

√
n. The only exception

seems to be the recent result by Yu and Zhang [64] that PKE and OT can also
be based on constant-noise LPN with hardness 2n1/2+ε

.

Open problems and recent progress. It remains open [46,56] whether LPN
implies other advanced cryptographic objects, such as fully homomorphic encryp-
tion (FHE) and collision resistant hash (CRH) functions. Brakerski [16] reported
some negative result that straightforward LPN-based encryptions are unlikely
to achieve full homomorphism. As for LPN-based CRH, a notable progress was
recently made by Applebaum et al. [5], who showed that 2Ω(n/ log n)-hard constant-
noise LPN implies CRH1. Based on some ideas (in particular, the bSVP assump-
tion) from [5], we introduce a general construction of CRH from LPN with various
tunable trade-offs between the parameters (e.g., noise rate, hardness, shrinkage),
and then present the main feasibility results in commonly assumed noise regimes.

1 More precisely, [5] obtains a win-win result that either constant-noise LPN implies
CRH or one achieves arbitrary polynomial speedup over the BKW algorithm [15].

6 Y. Yu et al.

On the concurrent work of [17]. Concurrently and independent of this
work, Brakerski et al. [17] used essentially the same technique as [5] and ours and
constructed CRH from LPN at the (extremely low) noise rate of μ = log2 n/n,
which can be derived as a special case under our framework.

1.2 Cryptographic Hash Functions

A cryptographic hash function {0, 1}∗ → {0, 1}n is a deterministic func-
tion that maps arbitrarily (or at least sufficiently) long bit strings into digests of a
fixed length. The function was originally introduced in the seminal work of Diffie
and Hellman [25] to produce more efficient and compact digital signatures. As
exemplified by MD5 and SHA-1/2/3, it is now one of the most widely used cryp-
tographic primitives in security applications and protocols, such as SSL/TLS,
PGP, SSH, S/MIME, IPsec and Bitcoin. Merkle [53] formulated three main secu-
rity properties (that still remain in use to date) of a cryptographic hash function:
preimage resistance, second preimage resistance and collision resistance, of which
collision resistance seems the most essential and suffices for many aforementioned
applications2. Similar to the mode of operations for data encryption, the design
of cryptographic hash functions proceeds in two steps: one first designs a com-
pression function that operates on fixed-length inputs and outputs, and then
applies a domain extender to accept messages of arbitrary length. This dates
back to the independent work of Merkle [55] and Damg̊ard [22], who proposed
a domain extender, and showed that if the underlying compression function is
collision resistant then so is the hash function based on the Merkle-Damg̊ard
construction. We refer to [3] for a survey about various domain extenders for
cryptographic hash functions. For the rest of this paper we will focus on such
length-regular collision resistant compression functions, namely, CRH functions.

Collision Resistant Hashing. Theoretical constructions of CRH functions
can be based on the hardness of factoring and discrete logarithm (via the con-
struction of claw-free permutations [21]), which are however far from practi-
cal. Ajtai [1] introduced an elegant and (conceptually) simple construction:
fA : {0, 1}m → Z

n
p that for a random A ∈ Z

n×m
p and some (at least poly-

nomially) large p and on input z ∈ {0, 1}m it computes

fA(z) = A · z mod p, (1)

which is collision resistant via a security reduction from the Short Integer Solu-
tion (SIS) problem, and is thus at least as hard as lattice problems such as
GapSVP and SIVP. Lyubashevsky et al. [48] gave a ring-based variant of Ajtai’s
construction, called SWIFFT, which admits FFT and precomputation tech-
niques for improved efficiency while preserves an asymptotic security proof from
2 Unlikely collision resistance whose definition is unique and unambiguous, there are

several variants of (second) preimage resistance for which people strive to find a com-
promise that facilitates security proofs yet captures the needs of most applications.
Some variants of (second) preimage resistance are implied by collision resistance in
the conventional or provisional sense [60].

Collision Resistant Hashing from Sub-exponential Learning Parity 7

ideal lattices at the same time. Despite a substantial gap between the claimed
security level and the actual security bounds proved, SWIFFT [48] and its mod-
ified version (as a SHA-3 candidate) SWIFFTX [7] are among the very few hash
function designs combining the best of two worlds (i.e., practical efficiency and
rigorous security proof).

The Expand-then-Compress Approach. Recently, Applebaum et al. [5] con-
structed a function hM : {0, 1}k → {0, 1}n keyed by a random n×q binary matrix
M as:

hM(y) = M · Expand(y), (2)

where Expand is an injective function that expands y into a much longer yet
sparse string, i.e., for every y ∈ {0, 1}k: t = |Expand(y)| < n < k < q. Note that
hM can be viewed as a binary version of Ajtai’s CRH (see fA in (1)), where
matrix A over Zp is simplified to a binary matrix M, and binary vector z is fur-
ther flattened to a sparse binary vector Expand(y). Thanks to the simplification
to the binary field, hM can be implemented rather efficiently both in the asymp-
totic sense and in practice. Under certain realizations of Expand (see Lemma 3.1),
hM (for any specified M) can be directly translated to a polynomial-size circuit
of NOT, (unbounded fan-in) XOR and AND gates in depth 3 (or even depth 2
if the input includes not only the individual bits of y but also their respective
complements). Interestingly, the FSB hash proposal [8] and its variant the RFSB
hash [12] fall into concrete (but over optimistic) instantiations of hM.3

Binary SVP. In order to justify the asymptotic security of the EtC hash, Apple-
baum et al. [5] introduced the binary Shortest Vector Problem (binary SVP or
bSVP in short). Informally, the bSVP assumption asserts that given a random

matrix distribution4 M $←− {0, 1}n×q, it is computationally infeasible to find a
non-zero x ∈ {0, 1}q of Hamming weight t � q such that Mx = 0. From a code-
theoretic perspective, M specifies the n × q parity check matrix of a random
binary linear code of rate 1 − n/q, where the rows of M are linearly indepen-
dent (except with negligible probability), and therefore the bSVP postulates
that finding a short codeword is hard in the average case. We refer to [5] for dis-
cussions about meaningful regimes of (t/q) that give rise to one-way functions
and collision resistant hash functions. Similar to SIS, bSVP immediately implies
CRH as any efficient algorithm that comes up with a collision hM(y) = hM(y′)
for y �= y′ immediately implies a solution to bSVP, i.e., M · x = 0, where
x = Expand(y) − Expand(y′) has weight no greater than 2t. We mention that in
the worst case, it is NP-hard to compute (or even to approximate by a constant
factor) the distance of a linear code [31,63]. However, as an average-case hard-
ness assumption, bSVP is relatively new and deserves further investigation. A
shortcut and promising direction is to see whether bSVP is reducible from the
learning parity with noise (LPN) problem since they are both related to random
3 However, our results do not immediately constitute security proofs for the FSB-style

hash functions as there remains a substantial gap between the security proved and
security level claimed by the FSB instantiation.

4 M in our consideration has dimension n × q instead of αn × n considered by [5].

8 Y. Yu et al.

binary linear codes, and the average-case hardness of the latter is well under-
stood. However, the work of [5] only established a weak connection between
bSVP and LPN. That is, they show that at least one of the following is true:

1. One can achieve an arbitrary polynomial speedup over the BKW algorithm
[15], i.e., for every constant ε > 0 there exists an algorithm that solves
constant-noise LPN with time and sample complexity 2

εn
log n for infinitely

many n’s.
2. There exist CRH functions of constant shrinkage and logarithmic degree.

Otherwise stated, assume that the BKW algorithm cannot be further improved
asymptotically, then bSVP (for certain parameters) and CRH are implied.

1.3 The Construction of CRH from LPN

Duality between LPN and bSVP. We explain the high-level intuition of
how LPN relates (and reduces) to bSVP (deferring the choices of non-trivial
parameters to next paragraph), which in turn implies CRH. Under the theme of
“decoding random linear codes” where row vector sT is the message, M is an n×q
generator matrix and sTM is the codeword, the idea is to use a (sparse) column
vector x from the corresponding parity matrix such that any (noisy) codeword
multiplied by x is (biased to) 0, regardless of the value of s. Informally, assume
for contradiction that a useful bSVP solver succeeds in finding a sparse vector
x for an n × q matrix M such that Mx = 0, then this leads to a distinguishing
attack against the LPN instance (M, sTM + eT) by computing

(sTM + eT) · x = eTx

which is a biased bit (and thus distinguishable from uniform) due to the sparse-
ness of x and e. This already constitutes a contradiction to the decisional LPN,
and one can repeat the above on sufficiently many independent samples (with a
majority voting) to gain a constant advantage, and further transform it into a
key-recovery attack using the same number of samples [6].

Main feasibility results. By exploiting the duality between LPN and bSVP,
we present a general framework stated in Theorem 1.1 below (and more for-
mally in Theorem3.1) that enables to construct CRH from LPN for various tun-
able parameter choices, as stated in Corollary 1.1 (and more formally in Corol-
lary 3.1). The constructions follow the Expand-then-Compress approach and can
be implemented by a polynomial-size depth-3 circuit with NOT, (unbounded
fan-in) AND and XOR gates5. The framework, in particular, when tuned to
params #2 and #4 of Corollary 1.1, encompasses the known results obtained in
[6] and the concurrent work of [17]. In addition, it establishes feasibility results
for constant-noise LPN assuming much less hardness (see param #1 of Corol-
lary 1.1) and for low-noise LPN (see param #3 of Corollary 1.1), which was
not previously known. We remark that the 2Ω(

√
n/ log n)-hardness assumption for

5 The circuit falls into the class AC0(MOD2). See Sect. 2 for a formal definition.

Collision Resistant Hashing from Sub-exponential Learning Parity 9

low-noise LPN is quite reasonable as the current best attacks need complexity
poly(n) · e

√
n [43] for which even improving upon the constant in the exponent

seems nontrivial. Further, the 2n0.501
-hardness assumed for constant-noise LPN

offers even more generous security margins as the best attack goes even beyond
2n0.999

[15].

Theorem 1.1 (main framework, informal). Let n be the security parameter,
and let μ = μ(n), k = k(n), q = q(n), t = t(n) and T = T (n) such that
t2 ≤ q ≤ T ≈ 2

8μt
ln 2(1−2μ) . Assume that the (decisional) LPN problem of size n

and noise rate μ is T -hard given q samples, and let

hM : {0, 1}k → {0, 1}n, hM(y) = M · Expand(y), Expand : {0, 1}k → {0, 1}q,

be functions satisfying the following conditions:

1. (hM is compressing). k > n;
2. (Expand has sparse outputs). for all y ∈ {0, 1}k: |Expand(y)| = t;
3. (Expand is injective). Expand is an injection with k ≈ log

(
q
t

)
= (1 +

o(1)) log(q/t)t > t log q/2 (see Fact 2), where the inequality is due to t ≤ √
q.

Then, hM
6 is a CRH function with shrinkage factor n

k .

Rationale. Upon any collision y �= y′ we get that x = Expand(y)−Expand(y′)
such that eTx, i.e., the XOR sum of up to 2t bits drawn from Bμ is

1
2

+
2−(log 1

1−2μ)2t

2
≥ 1

2
+

2− 4μt
ln 2(1−2μ)

2

biased to 0 by the Piling up lemma (Lemma 2.1) and inequality ln(1 + x) ≤ x.

Otherwise said, the underlying decisional LPN must be 2
Ω(μt)
(1−2μ) -hard to counter-

act the aforementioned attack. We refer to Theorem3.1 for a more formal state-
ment and a rigorous proof. The framework allows for various trade-offs between
μ, q and T (via the intermediate parameter t) and we state a few notable ones in
Corollary 1.1 below. Moreover, the CRH can be contained in AC0(MOD2) based
on a parallel implementation of the underlying function Expand in AC0.

Corollary 1.1 (LPN → CRH). Type LPN with Hardness implies CRH with
Shrinkage in AC0(MOD2), where (Type, Hardness, Shrinkage) can be (but are not
limited to) any of the following:

1. (Constant-noise, less hardness, poly-logarithmic shrinkage).
μ = O(1), T = 2n0.5+ε

, q = 2n0.5
and n

k < 16μ
ln 2(1−2μ)nε = 16μ

ln 2(1−2μ) log2ε λ
for

any constant ε > 0.

6 More strictly speaking, the resulting CRH is either hM itself or its domain-extended
version (by a parallel repetition).

10 Y. Yu et al.

2. (Constant-noise, more hardness, constant shrinkage).
μ = O(1), T = 2

εn
log n , q = nCε,μ , n

k < 1
2 for any constant ε > 0 and Cε,μ =

max(32μ
ε ln 2(1−μ) , 2).

3. (Low-noise, more hardness, constant shrinkage).

μ = 1/
√

n, T = 2
ε

√
n

log n , q = nCε,μ , n
k < 1

2 for any constant ε > 0 and
C ′

ε,μ = max(32
ε ln 2 , 2).

4. (Extremely low-noise, standard hardness, constant shrinkage).
μ = (log n)2

n , T = q > poly(n) for every poly, and n
k < 1

2 .

Intuitions about parameters choices. The aforementioned parameter
choices are not exhaustive but they follow quite naturally from the respec-
tive noise rates. We explain the underlying intuitions for making such choices
(and refer to Corollary 3.1 and its proof for formal details). For immediate effi-
ciency we set q = poly(n) (s.t. the dimensions of M are polynomially related)
and constant shrinkage factor n

k < 2n
t log q = 1

2 , and therefore t = Ω(n/ log n)
and it requires hardness T = 2Ω(μn/ log n). This yields the parameter settings
#2, #3 and #4 for constant, low and extremely low noise rates respectively.
Alternatively, in favor of minimized hardness assumed for constant-noise LPN,
we let the sample complexity be nearly the same as time complexity up to
a factor nε,7 i.e., log(q) = Ω(log T

nε) = Ω(t
nε) and thus the injective condition

becomes k = Ω(t2/nε) and n
k < n1+ε

Ω(t2) , which results in param #1 by setting
t = Ω(n0.5+ε). However, now the issue is that the dimensions q and n of M are
not polynomially related and thus it does not immediately give rise to an effi-
cient CRH. This motivates us to switch to another parameter λ = q = 2

√
n such

that hM : {0, 1}Ω(log2+2ε λ) → {0, 1}log2 λ for M ∈ {0, 1}log2 λ×λ is a λΩ(log2ε λ)-
hard CRH function computable in time poly(λ), which further implies a domain-
extended CRH h′

M : {0, 1}Ω(λ log2ε λ) → {0, 1}λ by a parallel repetition.

Feasibilities vs. limits. Admittedly, the limits of the framework are obvi-
ous: unless under extremely low noise rate [17] the hardness assumed is much
beyond polynomial (although still reasonable given the current state-of-the-art).
Moreover, the parameter-switching technique (that helps to reduce hardness
assumed) dramatically downgrades the security and deteriorates the shrinkage
factor from polynomial to poly-logarithmic. Further, the technique only applies
to constant noise: if the noise rate μ depends on n, e.g., μ = 1/

√
n, then switch-

ing to a new parameter, say λ = 2n0.25
, yields lifted noise rate μ = 1/ log2 λ.

We offer an alternative to avoid the efficiency/security loss by assuming a min-
imal amount of heuristics, e.g., a small domain random function. This helps
to obtain a polynomially shrinking domain extender that makes only a single
layer of evaluations on the underlying random function. In terms of paralleliz-
ability, this beats generic (collision-resistance-preserving) domain extenders such

7 By switching to a new security parameter, we eventually obtain a CRH function
with polynomial running time and super-polynomial security for which the nε gap
factor plays a vital role.

Collision Resistant Hashing from Sub-exponential Learning Parity 11

as Merkle-Damg̊ard [22,55] and the Merkle-tree [44,54], where to achieve poly-
nomial shrinkage even the latter needs to evaluate a tree of depth O(log n) on
length-halving CRHs. A price to pay is that we make additional (but reasonable)
hardness assumptions, e.g., that the low-noise LPN problem is 2n0.25+ε

-hard.

Corollary 1.2 (A polynomially shrinking domain extender, informal).
Assume that (n, μ, q)-DLPN is T -hard and R : {0, 1}log(q) → {0, 1}n with
log(q) � n behaves like a random function, then for y = y1‖ · · · ‖yt parsed
as t = k/L blocks, each of size L = log(q/t), we have

hR : {0, 1}k → {0, 1}n, hR(y) =
t⊕

i=1

R(i‖yi),

is a CRH function with shrinkage n
k , where (μ, T, q, n

k) can be either below:

1. (Constant-noise, less hardness, polynomial shrinkage).
μ = O(1), T = 2n0.5+ε

, q = 2n0.5
and n

k < 16μ
ln 2(1−2μ)nε for any constant ε > 0.

2. (Low-noise, less hardness, polynomial shrinkage).
μ = 1/

√
n, T = 2n0.25+ε

, q = 2n0.25
and n

k < 16
ln 2·nε for any constant ε > 0.

On related heuristic-based approaches. It may seem trivial to obtain
CRHs from idealized heuristics such as random oracles and ideal ciphers, but we
stress that we only make a quite light use of idealism by assuming a small-domain
random function with inputs much shorter than outputs (for which domain
extension is non-trivial), which can be efficiently instantiated from practical
objects such as blockciphers (assuming that a blockcipher on a public random
key behaves like a random permutation). In contrast, most previous blockcipher-
based compression functions (e.g. [13,55,57]) reside in the (much stronger) Ideal
Cipher Model that a block cipher on every key behaves independently like a ran-
dom permutation. Moreover, existing permutation-based solutions either only
offer a constant shrinkage factor (typically 1/2) [51,62], or require permutations
with a large domain (e.g., [28] needs a large permutation over {0, 1}n2

to obtain
a CRH function with shrinkage factor 1/n).

2 Preliminaries

Notations and definitions. Column vectors are represented by bold lower-
case letters (e.g., s), row vectors are denoted as their transpose (e.g., sT), and
matrices are denoted by bold capital letters (e.g., A). |s| refers to the Hamming
weight of binary string s. We use Bμ to denote the Bernoulli distribution with
parameter μ, while Bq

μ denotes the concatenation of q independent copies of

Bμ. We use log(·) to denote the binary logarithm. x $←− X refers to drawing x
from set X uniformly at random, and x ← X means drawing x according to
distribution X. a‖b denotes the concatenation of a and b. A function negl(·)

12 Y. Yu et al.

is negligible if for any constant Nc we have that negl(n) < 1/poly(n) for every
polynomial poly and all sufficiently large n. AC0 refers to the class of polynomial-
size, constant-depth circuit families with unbounded fan-in AND and OR gates,
where NOT gates are allowed only at input level. AC0(MOD2) refers to the class
of polynomial-size, constant-depth circuit families with unbounded fan-in AND,
OR and XOR gates.

We define decisional and computational LPN problems, and we just use
the decisional one due to their polynomial equivalence. In particular, there are
computational-to-decisional reductions even for the same sample complexity [6].

Definition 2.1 (Learning Parity with Noise). Let n be the security param-
eter, and let μ = μ(n), q = q(n) and T = T (n). The decisional LPN problem
with secret length n, noise rate 0 < μ < 1/2 and sample complexity q, denoted
by (n, μ, q)-DLPN, is T -hard if every probabilistic algorithm D of running time
T we have that the following holds for all sufficiently large n’s

∣
∣ Pr[D(A, A·x+e) = 1] − Pr[D(A,y) = 1]

∣
∣ ≤ 1

T
, (3)

and the computational LPN problem with the same n, μ and q, denoted by
(n, μ, q)-LPN, is T -hard if for every probabilistic algorithm D of running time T
we have that the following holds for all sufficiently large n’s

Pr[D(A, A·x+e) = x] ≤ 1
T

, (4)

where q × n matrix A $←− {0, 1}q×n and x $←− {0, 1}n, y $←− {0, 1}q and e ← Bq
μ.

Standard hardness. We recall that standard polynomial hardness requires that
T > poly(n), q > poly(n) and for every poly and all sufficiently large n’s.

Unlike other primitives (such as one-way functions, pseudorandom generators
and functions) whose security parameter is typically the input/key length, the
security strength of collision resistant hash functions are more often represented
as a function of the output length n and it is upper bounded by 2n/2 due to
birthday attacks. In practice, a fixed output size (e.g. 128, 160) typically corre-
sponds to a single function (e.g., MD5, SHA1) instead of a collection of ones8.
One can just stick to a hM for some pre-fixed random M.

Definition 2.2 (Collision Resistant Hash Functions). A collection of func-
tions

H =
{

hz : {0, 1}k(n) → {0, 1}n, z ∈ {0, 1}s(n)
}

8 Recall that a non-uniform attacker can obtain polynomial-size non-uniform advice.
Thus, if every security parameter corresponds to only a single function h then the
attacker can include a pair of x and x′ with h(x) = h(x′) as part of the advice.

Collision Resistant Hashing from Sub-exponential Learning Parity 13

is a collision-resistant hash (CRH) function if the following hold:

– (Shrinking). The shrinkage factor of H, defined as ratio n
k , is less than 1

for every n.
– (Efficient). There are efficient algorithms H and G: (1) on input z ∈ {0, 1}s

and y ∈ {0, 1}k, H outputs hz(y); and (2) given 1n as input G returns an
index z ∈ {0, 1}s.

– (Collision-resistant). For every probabilistic polynomial-time (PPT)
adversary A

Pr
z←G(1n)

[(y, y′) ← A(z) : y �= y′ ∧ hz(y) = hz(y′)] = negl(n).

The shrinkage is linear if n/k ≤ 1 − ε, and it is poly-logarithmic (resp., polyno-
mial) if n/k ≤ 1/ logε n (resp., n/k ≤ 1/nε) for some positive constant ε > 0.

T -hardness. For T = T (n) we call H a T -hard CRH if no probabilistic adver-
sary A of running time T finds any collision with probability more than 1/T .

The indifferentiability framework [20,49] is widely adopted to analyze and
prove the security of the construction of one idealized primitive from another,
typically in settings where the underlying building blocks have no secrets.

Definition 2.3 (Indifferentiability [20]). A Turing machine C with oracle
access to an ideal primitive P is (q, σ, t, ε)-indifferentiable from an ideal prim-
itive R, if there exists a simulator S with oracle access to R such that for any
distinguisher D that makes at most q queries, it holds that

∣
∣
∣
∣ Pr[DCP ,P = 1] − Pr[DR,SR

= 1]
∣
∣
∣
∣ ≤ ε,

where S makes σ queries and runs in time t when interacting with D and R.

The implication is that CP can securely replace R in many scenarios. We refer
to [24,59] for discussions on the (in)applicability of indifferentiability results.

Lemma 2.1 (Piling-up lemma). For 0 < μ < 1/2 and random variables E1,
E2, · · · , E� that are i.i.d. to Bμ we have

Pr
[�⊕

i=1

Ei = 0
]

=
1
2
(1 + (1 − 2μ)�) =

1
2

+ 2−cμ�−1,

where cμ = log 1
1−2μ .

Fact 1. For any 0 ≤ x ≤ 1 it holds that log(1 + x) ≥ x; and for any x > −1 we
have log(1 + x) ≤ x/ ln 2.

Fact 2. For k = o(n) we have log
(
n
k

)
= (1 + o(1))k log n

k .

14 Y. Yu et al.

3 Collision Resistant Hash Functions

3.1 The Expand-then-Compress Construction

We give a high-level overview about the EtC construction from [5]. Fix a ran-
dom n× q matrix M which specifies the function. On input y, hM first stretches
it into a long-but-sparse vector, i.e., Expand(y), and then multiply it with M,
which compresses into n bits. There are many ways to instantiate hM and we
use the following one which fulfills all properties needed by our framework (cf.
Theorem 1.1). In addition, Expand is highly parallel and can be efficiently imple-
mented by a single layer of (unbounded fan-in) AND gates (assuming input
includes both the individual bits of y and also their respective complements),
and therefore hM simply builds upon Expand by adding a layer of XOR gates.
Furthermore, the Expand function can be efficiently instantiated with idealized
heuristics (see Lemma 3.3).

Lemma 3.1 (A realization of the expanding function [5]). Let n be the
security parameter and let k ≤ poly(n), L = O(log n), t = t(n), q = q(n) be
integer-valued functions such that k = L · t, q = t · 2L. Let Expand : {0, 1}k →
{0, 1}q be a function that parses the k-bit input into L-bit blocks as

y = y1 · · · yL‖yL+1 · · · y2L‖ · · · ‖yL(t−1)+1 · · · yLt

and produces as output

Expand(y) = DeMul(y1 · · · yL)‖ · · · ‖DeMul(yL(t−1)+1 · · · yLt)

where DeMul : {0, 1}L → {0, 1}2L

is a demultiplexer function that on input
z ∈ {0, 1}L outputs a 2L-bit string which is 1 in exactly the z-th location (and 0
everywhere else). Then, we have that

1. (Expand has sparse outputs). for all y ∈ {0, 1}k: |Expand(y)| = t;
2. (Expand is injective). Expand is injection with k = L · t = log(q/t)t.
3. (Expand is parallelizable). Expand is contained in AC0.

Our framework is based on the following expand-then-compress construction.

Construction 3.1. Let k = k(n) and q = q(n) be integer valued functions,
and let Expand : {0, 1}k → {0, 1}q be an expanding function as in Lemma 3.1.
A collection of functions Hk,n = {hM : {0, 1}k → {0, 1}n,M ∈ {0, 1}n×q} is
defined as

hM(x) = M · Expand(x)

where the key-sampler G(1n) samples an n × q matrix M $←− {0, 1}n×q.

Collision Resistant Hashing from Sub-exponential Learning Parity 15

3.2 The Main Framework of LPN-based CRH

We state our main framework in Theorem 3.1 and then derive the main feasibility
results in Corollary 3.1.

Theorem 3.1 (The main framework). Let n be the security parameter, and
let μ = μ(n), k = k(n), q = q(n), t = t(n) and T = T (n) such that t2 ≤ q ≤
T = 2

8μt
ln 2(1−2μ) . Assume that the (n, μ, q)-DLPN problem is T -hard, and let hM

and Expand be defined as in Lemma 3.1 and Construction 3.1 respectively. Then,
for every probabilistic adversary A of running time T ′ = 2

4μt
ln 2(1−2μ)−1

Pr
M

$←−{0,1}n×q

[(y,y′) ← A(M) : y �= y′ ∧ hM(y) = hM(y′)] ≤ 1
T ′ .

We do not say “hM is a T ′-hard CRH” as it may not be poly(n)-time computable.

Proof. Suppose for contradiction that A finds out a collision with probability
more than 1/T ′ s.t. y �= y′ and hM(y) = hM(y′), then we have M ·x = 0, where
x = Expand(y) − Expand(y′) �= 0 due to the distinctiveness of Expand, and

|x| ≤ |Expand(y)| + |Expand(y′)| ≤ 2t.

We define in Algorithm 1 below an LPN distinguisher D that on input (MT,

z), where MT $←− {0, 1}q×n, and either z = MTs + e (for e ← Bq
μ) or z $←−

{0, 1}q, invokes A on M, and if a collision (y,y′) is found, it outputs xTz for
x = Expand(y) − Expand(y′), and otherwise it outputs a uniform random bit.
On a successful collision, we have by Lemma 2.1 and Fact 1

Pr[xTz = xTe = 0] ≥ 1
2

+
2−(log 1

1−2μ)2t

2
≥ 1

2
+

2− 4μt
ln 2(1−2μ)

2
.

Therefore, D achieves an overall advantage of

Pr[D(MT,MTs + e) = 0] − Pr
z

$←−{0,1}q

[D(MT, z) = 0]

>
1
T ′ · 2− 4μt

ln 2(1−2μ)

2
≥ 2− 8μt

ln 2(1−2μ) ,

which is a contradiction to the assumption.

16 Y. Yu et al.

Algorithm 1. A distinguisher D for (n, μ, q)-DLPN
Input: (MT, z), where MT ∈ {0, 1}q×n and z ∈ {0, 1}q

(y,y′) ← A(M);
x = y − y′;
if 0 < |x| ≤ 2t ∧ Mx = 0 then

v = xTz
else

v
$←− {0, 1}

end if
Output: v

Corollary 3.1 (Main feasibility results). Assume that (n, μ, q)-DLPN is T -
hard, then T ′-hard CRH functions with shrinkage n

k exist in AC0(MOD2), where
(μ, T, q, T ′, n

k) can be any of the following:

1. (Constant-noise, less hardness, poly-logarithmic shrinkage).
μ = O(1), T = 2n0.5+ε

, q = 2n0.5
, T ′ ≈ 2n0.5+ε/2 = λlog2ε λ/2 and n

k <
16μ

ln 2(1−2μ)nε = 16μ
ln 2(1−2μ) log2ε λ

for any constant ε > 0.
2. (Constant-noise, maximal efficiency, constant shrinkage).

μ = O(1), T = 2
εn

log n , q = nCε,μ , T ′ ≈ 2
εn

2 log n , n
k < 1

2 for any constant ε > 0
and Cε,μ = max(32μ

ε ln 2(1−μ) , 2).
3. (Low-noise, maximal efficiency, constant shrinkage).

μ = 1/
√

n, T = 2
ε

√
n

log n , q = nCε,μ , T ′ ≈ 2
ε

√
n

2 log n , n
k < 1

2 for any constant ε > 0
and C ′

ε,μ = max(32
ε ln 2 , 2).

4. (Extremely-low-noise, standard hardness, constant shrinkage).
μ = (log n)2

n , T = q > poly(n) and T ′ > poly(n) for every poly, and n
k < 1

2 .

Proof. Recall that T = 2
8μt

ln 2(1−2μ) and n
k = n

log(q/t)t < 2n
t log q . To prove param

#1, we let 8μt
ln 2(1−2μ) = n0.5+ε and thus t = ln 2(1−2μ)n0.5+ε/8μ, and then with

q = 2
√

n we get
n

k
<

2
√

n

t
<

16μ

ln 2(1 − 2μ)nε
.

However, hM that corresponds to param #1 is not computable in poly(n),
and we need to switch to security parameter λ = 2

√
n s.t. n = log2 λ, k =

Ω(n1+ε) = Ω(log2+2ε λ), T ′ = λlog2ε λ/2. The resulting hM : {0, 1}Ω(log2+2ε λ) →
{0, 1}log2 λ is a T ′-hard CRH function on security parameter λ but only oper-
ates on small inputs and outputs, and we use parallel repetition (Lemma3.2)
to get a domain/range-extended CRH h′

M : {0, 1}Ω(λ log2ε λ) → {0, 1}λ for
M ∈ {0, 1}log2 λ×λ, which is T ′-hard and is computable in time poly(λ).

Collision Resistant Hashing from Sub-exponential Learning Parity 17

Now proceed to params #2 and #3: set 8μt
ln 2(1−2μ) to εn

log n for μ = O(1) or

to ε
√

n
log n for μ = 1/

√
n, and let 2n

t log q = 1
2 so that

t = ln 2·ε(1−2μ)n
8μ log n , log q =

32μ log n

ε ln 2(1 − 2μ)
for μ = O(1);

t = ln 2·ε·n
8 log n , log q =

32 log n

ε ln 2
for μ = 1/

√
n.

Note that we also need q ≥ n2 in respect of the t ≤ √
q condition. Finally, param

#4 is seen by the following: for μ = (log n)2

n , any q = poly(n) and t satisfying
2n

t log q = 1/2 we have that T = 2
8μt

ln 2(1−2μ) is another polynomial in n.

Lemma 3.2. (Parallel repetitions of CRH). Let k = k(λ), d = d(λ) and
T = T (λ) be integer valued functions. If Hk,λ = {hs : {0, 1}k → {0, 1}λ, s ∈
{0, 1}poly(λ)} is a T -hard CRH function, then H′

dk,dλ = {h′
s : {0, 1}dk →

{0, 1}dλ, s ∈ {0, 1}poly(λ)}, where

h′
s(y1, · · · ,yd) =

(
hs(y1), · · · , hs(yd)

)
, y1, · · · ,yd ∈ {0, 1}k,

is a (T/d)-hard CRH function.

3.3 Assume Less, Shrink More and in Parallel at the Same Time

Although already assuming much less hardness than previously known, the CRH
immediately implied by constant-noise LPN (as specified by param #1 of Corol-
lary 3.1) is inefficient as M is of dimension n × 2

√
n and thus the resulting hash

function has computation time far beyond polynomial. The solution by switch-
ing to another parameter λ = 2

√
n makes the hash function computable in time

polynomial in λ but at the same time it dramatically downgrades the security
from 2Ω(n1/2+ε) to λΩ(log2ε λ), and deteriorates the shrinkage factor from polyno-
mial to poly-logarithmic. Otherwise said, we mainly establish feasibility results
about basing CRH on constant-noise LPN with minimal hardness possible.

LPN+RF → more efficient domain extenders. In this subsection, we dis-
cuss an alternative to void the security/efficiency loss, i.e., to preserve security,
polynomial shrinkage and efficiency at the same time. In addition to LPN, the
construction relies on (arguably minimal) idealized assumptions such as a small-
domain random function (whose domain is much smaller than the range) or a
random permutation (which can be instantiated with a block cipher keyed by
a random public string). Unlike the parameter-switching technique, this app-
roach applies also to low-noise LPN with even reduced hardness. Note that
idealized heuristics such as a RF trivially implies collision resistance, e.g., a RF
R : {0, 1}� → {0, 1}n with � > n (or otherwise truncating the output to make
it compressing) is collision resistant. Therefore, based on a small-domain RF
(with � � n) our main contribution is a simple and elegant collision-resistance-
preserving domain extender combining the best of the two worlds: maximized
(depth-1) parallelizability and polynomial shrinkage. More specifically, simply

18 Y. Yu et al.

parse the input y into polynomially many blocks y1, . . ., yt, evaluate R on them
independently and in parallel, and output the XOR sum as below:

R : {0, 1}� → {0, 1}n (� � n)
hR : {0, 1}k → {0, 1}n (k = n1+ε)

hR(y) =
t⊕

i=1

R(i‖yi),

which yields a domain extender with polynomially shrinkage, i.e., n/k < 1/nΩ(1).

An idealized realization of hM. We recall that hM(y) = M · Expand(y)
for an n × (q = t · 2L) matrix M and that Expand parses y into t = k/L
blocks and produces same number of output blocks accordingly. We also parse
M into t equal-size submatrices M1, · · · , Mt, each of dimension n × 2L. Let
R : {0, 1}log(q) → {0, 1}n be a random function that describes M, i.e., for every
j ∈ {0, 1}log(q) the output R(j) corresponds to the j-th column of M. Thus,

hM(y) =
[
M1 · · · Mt

]

︸ ︷︷ ︸
M

·

⎡

⎢
⎣

DeMul(y1)
...

DeMul(yt)

⎤

⎥
⎦

︸ ︷︷ ︸
Expand(y)

=
t⊕

i=1

R(i‖yi) (5)

where R(i‖yi) = Mi · DeMul(yi) simply follows the definition of R and DeMul.
Therefore, computing hM is now reduced to instantiating a small-domain random
function R : {0, 1}log(q) → {0, 1}n for log(q) � n, where the access to the huge
amount of randomness in M is efficiently implemented by R, as stated below.

Lemma 3.3. (An idealized realization of hM). Let k = k(n), t = t(n),
q = q(n) and L = L(n) be integer valued functions such that q/t = 2L.
Assume that R : {0, 1}log(q) → {0, 1}n behaves like a random function, then
hR(y) =

⊕t
i=1 R(i‖yi) as defined in (5) perfectly realizes hM specified in Con-

struction 3.1.

With the idealized realization of hM, we immediately obtain a simple and
efficient way to extend the domain of random functions polynomially while pre-
serving collision resistance, stated below as a corollary of Theorem3.1.

Corollary 3.2. (A polynomially-shrinking domain extender). Let n be
the security parameter, and let μ = μ(n), k = k(n), q = q(n), t = t(n) and
T = T (n) such that t2 ≤ q ≤ T = 2

8μt
ln 2(1−2μ) . Assume that (n, μ, q)-DLPN is

T -hard and R : {0, 1}log(q) → {0, 1}n behaves like a random function, then for
y = y1‖ · · · ‖yt parsed as t = k/L blocks, each of size L = log(q/t), we have

hR : {0, 1}k → {0, 1}n, hR(y) =
t⊕

i=1

R(i‖yi),

is a T ′-hard CRH function with shrinkage n/k, where (μ, T, q, T ′, n
k) can be either

of the following:

Collision Resistant Hashing from Sub-exponential Learning Parity 19

1. (Constant-noise, less hardness, polynomial shrinkage).
μ = O(1), T = 2n0.5+ε

, q = 2n0.5
, T ′ ≈ 2n0.5+ε/2 and n

k < 16μ
ln 2(1−2μ)nε for any

constant ε > 0.
2. (Low-noise, less hardness, polynomial shrinkage).

μ = 1/
√

n, T = 2n0.25+ε

, q = 2n0.25
, T ′ ≈ 2n0.25+ε/2 and n

k < 16
ln 2·nε for any

constant ε > 0.

Proof. First, assume that hR is functionally equivalent to hM. Then, param #1
is the same as the counterpart in Corollary 3.1 but we refrain from switching
to a new security parameter. To prove param #2, we recall that T = 2

8μt
ln 2(1−2μ)

and n
k = n

log(q/t)t < 2n
t log q (see Theorem 3.1). Let 8μt

ln 2(1−2μ) = n0.25+ε and thus

t ≈ ln 2 · n0.75+ε/8, and then with q = 2n0.25
we get

n

k
<

2n0.75

t
<

16
ln 2 · nε

.

The conclusion then follows from Lemma 3.3 that hR perfectly instantiates hM.

One may want to instantiate R with a pseudorandom function (with key
made public), but the security cannot be achieved with a standard reducibil-
ity argument due to the distinction between public-coin and secret-coin CRH
functions [36]. We thus resort to random permutations or idealized blockciphers.

Random functions vs. permutations. The small-domain random function
(to be instantiated) is not commonly found in practice, but it is implied by a
large-domain random function for free, i.e., R(x) = F (0l‖x) is a random function
if F is a random one. Thus, we simply consider a length-preserving random
function, which can be in turn based on a random permutation (and instantiated
with block ciphers). For example, for random permutations π, π1, π2, we have
that π ⊕ π−1 [27] (or π1 ⊕ π2 [52]) is indifferentiable from a length-preserving
random function. This means that R on input x can be instantiated as

AESk(0l‖x) ⊕ AES−1
k (0l‖x) or AESk1(0

l‖x) ⊕ AESk2(0
l‖x)

where l = n − �log(q)� bits are padded to fit into a permutation, k, k1, and k2
are public random keys. Intuitively, the XOR of a permutation and its inverse
(or two independent permutations) is to destroy the permutation structure as its
inversibility could give the adversary additional advantages in collision finding.
The former instantiation relies on the assumption that a practical block cipher
like AES on a random key behaves like a random permutation. We reproduce
below the results by Dodis et al. [27] that π ⊕ π−1 is indifferentiable from a
(length-preserving) random function. Therefore, instantiation of a random func-
tion with a blockcipher only incurs a factor of 2 in the number of calls to the
underlying primitive.

Lemma 3.4. (Lemma 4 from [27]). Let n be the security parameter, let q =
q(n) and let π be a random permutation over {0, 1}n. We have that π ⊕ π−1 is
(q, q, O(nq), O(q2

2n))-indifferentiable from an n-to-n-bit random function.

20 Y. Yu et al.

On related works. We offer a new and simple construction of polynomially
shrinking domain extenders from random functions/permutations/fixed-key block
ciphers. Compared with the traditional blockcipher-based compression functions,
e.g. [13,55,57], our solution avoids the key-setup costs and eliminates the need
for related-key security on a large space of keys. That is, (using AES-128 as
an example) we only assume that “AES on a single random key behaves like a
random permutation”, instead of that “AES on 2128 keys yields 2128 independent
random permutations”, as imposed by the Ideal Cipher Model. On the other
hand, existing permutation-based solutions either only offer a constant shrinkage
factor (typically 1/2) [51,62], or require permutations with a large domain (e.g.,
[28] needs a large permutation on n2-bit strings to obtain a CRH function with
shrinkage factor 1/n), and in contrast our construction runs in parallel and
compresses polynomially.

4 Concluding Remarks

We construct CRH from LPN for a broad spectrum of parameter choices, and
thus resolve the problem whether CRH functions can be based on the (reason-
able) hardness of LPN. We also discuss how to improve the efficiency using ide-
alized heuristics. We leave it as future work to investigate more efficient instan-
tiation (based on Ring-LPN), and to compare it with SWIFFT/SWIFFTX.

Acknowledgments. Yu Yu was supported by the National Natural Science Foun-
dation of China (Grant Nos. 61872236 and 61572192) and the National Cryptog-
raphy Development Fund (Grant No. MMJJ20170209). Jiang Zhang is supported
by the National Key Research and Development Program of China (Grant No.
2017YFB0802005, 2018YFB0804105), the National Natural Science Foundation of
China (Grant Nos. 6160204661932019), and the Young Elite Scientists Sponsorship
Program by CAST (2016QNRC001). Jian Weng was partially supported by National
Natural Science Foundation of China (Grant Nos. 61825203, U1736203, 61732021).
Chun Guo was supported by the Program of Qilu Young Scholars of Shandong Univer-
sity, and also partly funded by Francois-Xavier Standaert via the ERC project SWORD
(724725). Xiangxue Li was supported by the National Cryptography Development Fund
(Grant No. MMJJ20180106) and the National Natural Science Foundation of China
(Grant Nos. 61572192, 61971192). This research is funded in part by the Anhui Ini-
tiative in Quantum Information Technologies (Grant No. AHY150100) and Sichuan
Science and Technology Program (Grant No. 2017GZDZX0002).

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing (STOC 1996), pp. 99–108 (1996)

2. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
Annual Symposium on Foundations of Computer Science, Cambridge, Mas-
sachusetts, pp. 298–307. IEEE, October 2003

Collision Resistant Hashing from Sub-exponential Learning Parity 21

3. Andreeva, E., Mennink, B., Preneel, B.: Security properties of domain extenders for
cryptographic hash functions. J. Inf. Process. Syst. 6(4), 453–480 (2010). https://
doi.org/10.3745/JIPS.2010.6.4.453

4. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

5. Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikuntanathan, V.: Low-
complexity cryptographic hash functions. In: Proceedings of the 2017 Conference
on Innovations in Theoretical Computer Science (ITCS 2017), pp. 7:1–7:31 (2017)

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input local-
ity. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 92–110. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 6

7. Arbitman, Y., Dogon, G., Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.:
SWIFFTX: a proposal for the SHA-3 standard (2009). http://www.eecs.harvard.
edu/∼alon/PAPERS/lattices/swifftx.pdf

8. Augot, D., Finiasz, M., Gaborit, P., Manuel, S., Sendrier, N.: SHA-3 proposal: FSB
(2008). https://www.rocq.inria.fr/secret/CBCrypto/fsbdoc.pdf

9. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 31

10. Berlekamp, E., McEliece, R.J., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

11. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision
decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 42

12. Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Really fast syndrome-based
hashing. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol.
6737, pp. 134–152. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21969-6 9

13. Black, J., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the blockcipher-
based hash functions from PGV. J. Cryptol. 23(4), 519–545 (2010)

14. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on
hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 24

15. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

16. Brakerski, Z.: When homomorphism becomes a liability. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 143–161. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36594-2 9

17. Brakerski, Z., Lyubashevsky, V., Vaikuntanathan, V., Wichs, D.: Worst-case hard-
ness for LPN and cryptographic hashing via code smoothing. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 619–635. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17659-4 21

18. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Trans. Inf. Theory 44(1), 367–378 (1998)

19. Cash, D., Kiltz, E., Tessaro, S.: Two-round man-in-the-middle security from LPN.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 225–248.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 10

https://doi.org/10.3745/JIPS.2010.6.4.453
https://doi.org/10.3745/JIPS.2010.6.4.453
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-540-74143-5_6
http://www.eecs.harvard.edu/~alon/PAPERS/lattices/swifftx.pdf
http://www.eecs.harvard.edu/~alon/PAPERS/lattices/swifftx.pdf
https://www.rocq.inria.fr/secret/CBCrypto/fsbdoc.pdf
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-22792-9_42
https://doi.org/10.1007/978-3-642-21969-6_9
https://doi.org/10.1007/978-3-642-21969-6_9
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/978-3-642-36594-2_9
https://doi.org/10.1007/978-3-642-36594-2_9
https://doi.org/10.1007/978-3-030-17659-4_21
https://doi.org/10.1007/978-3-662-49096-9_10

22 Y. Yu et al.

20. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup [61], pp. 430–448

21. Damg̊ard, I.B.: Collision free hash functions and public key signature schemes. In:
Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–216.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5 19

22. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 39

23. David, B., Dowsley, R., Nascimento, A.C.A.: Universally composable oblivious
transfer based on a variant of LPN. In: Gritzalis, D., Kiayias, A., Askoxylakis, I.
(eds.) CANS 2014. LNCS, vol. 8813, pp. 143–158. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-12280-9 10

24. Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indifferentiability.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
664–683. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 39

25. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory IT–22(6), 644–654 (1976)

26. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 355–
374. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 22

27. Dodis, Y., Pietrzak, K., Puniya, P.: A new mode of operation for block ciphers
and length-preserving MACs. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 198–219. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78967-3 12

28. Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indifferentiability of permutation-
based compression functions and tree-based modes of operation, with applica-
tions to MD6. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 104–121.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03317-9 7

29. Döttling, N.: Low noise LPN: KDM secure public key encryption and sample ampli-
fication. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 604–626. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 27

30. Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: IND-CCA secure cryptog-
raphy based on a variant of the LPN problem. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 485–503. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 30

31. Dumer, I., Micciancio, D., Sudan, M.: Hardness of approximating the minimum
distance of a linear code. IEEE Trans. Inf. Theory 49(1), 22–37 (2003)

32. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 17

33. Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.K.: New results for learning
noisy parities and halfspaces. In: 47th Symposium on Foundations of Computer
Science, Berkeley, CA, USA, pp. 563–574. IEEE, 21–24 October 2006

34. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relation-
ship between public key encryption and oblivious transfer. In: Proceedings of the
41st Annual Symposium on Foundations of Computer Science, pp. 325–335 (2000).
https://doi.org/10.1109/SFCS.2000.892121

35. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 4

https://doi.org/10.1007/3-540-39118-5_19
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/978-3-319-12280-9_10
https://doi.org/10.1007/978-3-319-12280-9_10
https://doi.org/10.1007/978-3-642-38348-9_39
https://doi.org/10.1007/978-3-642-38348-9_39
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-540-78967-3_12
https://doi.org/10.1007/978-3-540-78967-3_12
https://doi.org/10.1007/978-3-642-03317-9_7
https://doi.org/10.1007/978-3-662-46447-2_27
https://doi.org/10.1007/978-3-642-34961-4_30
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1109/SFCS.2000.892121
https://doi.org/10.1007/3-540-45682-1_4

Collision Resistant Hashing from Sub-exponential Learning Parity 23

36. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 92–105. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
28628-8 6

37. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-
knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 40

38. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In:
Shoup [61], pp. 293–308

39. Katz, J., Shin, J.S.: Parallel and concurrent security of the HB and HB+ protocols.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 6

40. Kiltz, E., Masny, D., Pietrzak, K.: Simple chosen-ciphertext security from low-
noise LPN. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 1–18. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 1

41. Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient authentication
from hard learning problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 7–26. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-20465-4 3

42. Kirchner, P.: Improved generalized birthday attack. Cryptology ePrint Archive,
Report 2011/377 (2011)

43. Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applica-
tions to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015, Part I. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 3

44. Lamport, L.: Constructing digital signatures from a one way function. Technical
report CSL-98, SRI International, October 1979

45. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX/RANDOM 2005. LNCS, vol. 3624, pp. 378–
389. Springer, Heidelberg (2005). https://doi.org/10.1007/11538462 32

46. Lyubashevsky, V.: The LPN problem in cryptography. In: Invited Talk at the
14th IMA International Conference on Cryptography and Coding (2013). Slides
goo.gl/zpHFp7

47. Lyubashevsky, V., Masny, D.: Man-in-the-middle secure authentication schemes
from LPN and weak PRFs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 308–325. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 18

48. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest pro-
posal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4 4

49. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

50. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 6

https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-642-34961-4_40
https://doi.org/10.1007/11761679_6
https://doi.org/10.1007/978-3-642-54631-0_1
https://doi.org/10.1007/978-3-642-20465-4_3
https://doi.org/10.1007/978-3-642-20465-4_3
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/11538462_32
http://goo.gl/zpHFp7
https://doi.org/10.1007/978-3-642-40084-1_18
https://doi.org/10.1007/978-3-642-40084-1_18
https://doi.org/10.1007/978-3-540-71039-4_4
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-642-25385-0_6

24 Y. Yu et al.

51. Mennink, B., Preneel, B.: Hash functions based on three permutations: a generic
security analysis. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 330–347. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 20

52. Mennink, B., Preneel, B.: On the XOR of multiple random permutations. In:
Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015.
LNCS, vol. 9092, pp. 619–634. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-28166-7 30

53. Merkle, R.: Secrecy, authentication, and public key systems. Ph.D. thesis (1979)
54. Merkle, R.C.: A digital signature based on a conventional encryption function.

In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

55. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0 40

56. Pietrzak, K.: Cryptography from learning parity with noise. In: Bieliková, M.,
Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 99–114. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27660-6 9

57. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 31

58. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM, New York (2005)

59. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 27

60. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, impli-
cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371–388. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-
4 24

61. Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218

62. Shrimpton, T., Stam, M.: Building a collision-resistant compression function from
non-compressing primitives (extended abstract). In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part II. LNCS, vol. 5126, pp. 643–654. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-70583-3 52

63. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE
Trans. Inf. Theory 43(6), 1757–1766 (1997)

64. Yu, Y., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-
noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
214–243. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 9

https://doi.org/10.1007/978-3-642-32009-5_20
https://doi.org/10.1007/978-3-642-32009-5_20
https://doi.org/10.1007/978-3-319-28166-7_30
https://doi.org/10.1007/978-3-319-28166-7_30
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/978-3-642-27660-6_9
https://doi.org/10.1007/978-3-642-27660-6_9
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/11535218
https://doi.org/10.1007/978-3-540-70583-3_52
https://doi.org/10.1007/978-3-540-70583-3_52
https://doi.org/10.1007/978-3-662-53018-4_9
https://doi.org/10.1007/978-3-662-53018-4_9

New Code-Based Privacy-Preserving
Cryptographic Constructions

Khoa Nguyen(B), Hanh Tang, Huaxiong Wang, and Neng Zeng

School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

khoantt@ntu.edu.sg

Abstract. Code-based cryptography has a long history but did suffer
from periods of slow development. The field has recently attracted a lot
of attention as one of the major branches of post-quantum cryptography.
However, its subfield of privacy-preserving cryptographic constructions is
still rather underdeveloped, e.g., important building blocks such as zero-
knowledge range proofs and set membership proofs, and even proofs of
knowledge of a hash preimage, have not been known under code-based
assumptions. Moreover, almost no substantial technical development has
been introduced in the last several years.

This work introduces several new code-based privacy-preserving cryp-
tographic constructions that considerably advance the state-of-the-art in
code-based cryptography. Specifically, we present 3 major contributions,
each of which potentially yields various other applications. Our first con-
tribution is a code-based statistically hiding and computationally binding
commitment scheme with companion zero-knowledge (ZK) argument of
knowledge of a valid opening that can be easily extended to prove that
the committed bits satisfy other relations. Our second contribution is the
first code-based zero-knowledge range argument for committed values,
with communication cost logarithmic in the size of the range. A special
feature of our range argument is that, while previous works on range
proofs/arguments (in all branches of cryptography) only address ranges
of non-negative integers, our protocol can handle signed fractional num-
bers, and hence, can potentially find a larger scope of applications. Our
third contribution is the first code-based Merkle-tree accumulator sup-
ported by ZK argument of membership, which has been known to enable
various interesting applications. In particular, it allows us to obtain the
first code-based ring signatures and group signatures with logarithmic
signature sizes.

1 Introduction

Code-based cryptography, pioneered by McEliece [50] in 1978, is the study of
cryptosystems based on conjectured hard problems from coding theory and is
one of the oldest branches of public-key cryptography. The field did suffer from
periods of relatively slow development, but recent years have witnessed its resur-
gence. On the one hand, solutions to important theoretical problems such as con-
structing identity-based encryption [14,33] and obtaining worst-case hardness for
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 25–55, 2019.
https://doi.org/10.1007/978-3-030-34621-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_2

26 K. Nguyen et al.

Learning Parity with Noise (LPN) [15] have been introduced. On the other hand,
plausible algorithms for practical applications are being recognized by the com-
munity: with 7 PKE/KEM from codes accepted into the second round of the
NIST Post-Quantum Cryptography Standardization process, the field stands
together with lattice-based cryptography [2] as the two most promising candi-
dates for post-quantum cryptography. Nevertheless, many interesting questions
are still left open in the scope of code-based cryptography.

A prominent subfield of cryptography research is the designs of advanced
schemes aiming to protect both privacy and security of users, namely, privacy-
preserving cryptographic constructions. The major tools for building those con-
structions are zero-knowledge (ZK) proof [36] and argument [17,34] systems that
allow to prove the truth of a statement while revealing no additional information.
Almost all known zero-knowledge proof/argument systems used in code-based
cryptography follow Stern’s framework [63], in which the main technical idea
is to employ random permutations to prove some specific properties of binary
secret vectors, e.g., the secret vectors have a fixed Hamming weight. Variants
of Stern’s protocol have been employed to design a few privacy-preserving con-
structions, e.g., proofs of plaintext knowledge for code-based encryption [54],
linear-size ring signatures [16,27,51,52], linear-size and sublinear-size group sig-
natures [3,31], proofs of valid openings for LPN-based computationally hiding
commitments [41] and proofs for general relations [41]. However, this line of
research is still rather underdeveloped, since many important building blocks for
privacy-preserving code-based cryptography are still missing, ranging from very
basic ones like proof of knowledge of a hash preimage to advanced ones such
as range proofs and set membership proofs. Even more worrisome is the slow
progress in the field, with almost no substantial technical development being
introduced in the last 6 years. This unsatisfactory state-of-affairs motivates our
work.

Our Results. In this work, we introduce several new privacy-preserving con-
structions that we believe will considerably advance the state-of-the-art in code-
based cryptography. Specifically, we provide 3 main contributions, each of which
potentially yields various other applications.

First, we put forward a code-based statistically hiding and computation-
ally binding commitment scheme with companion zero-knowledge argument of
knowledge (ZKAoK) of a valid opening. The commitment scheme is based on
a family of collision-resistant hash functions introduced by Augot, Finiasz and
Sendrier (AFS) [6,7], similar variants of which was recently studied in [4,15,64].
The design of the scheme is quite standard, in which we plug in a randomness
with sufficient min-entropy and make use of the left-over hash lemma [35]. Our
non-trivial contribution here is a companion ZK argument system that makes
the commitment scheme much more useful for privacy-preserving protocols. In
many advanced protocols, one typically works with different sub-protocols that
share a common secret, and a commitment supported by ZK proofs/arguments
can greatly help in bridging these layers. In the code-based setting, such a com-
mitment was proposed in [41], but it relies on the hardness of the LPN problem

New Code-Based Privacy-Preserving Cryptographic Constructions 27

and operates in the computationally-hiding setting. In our setting, to base secu-
rity on a variant of the Syndrome Decoding problem, the committed message has
to be non-linearly encoded into a low-weight vector of larger dimension before
being hashed. This makes proving knowledge of a valid opening quite challenging,
since one has to prove that the non-linear encoding process is done correctly. We
overcome this problem by employing a specific permuting technique that works
in the framework of Stern’s protocol [63] and that enables us to keep fine-grained
control on how each bit of the message behaves in the encoding process. The fact
that we can “keep track” of the secret committed bits indeed makes our protocol
composable with other privacy-preserving protocols, where we can additionally
prove that these bits satisfy other relations. In particular, it paves the way for
our next 2 contributions.

Second, we provide zero-knowledge range arguments for signed fractional
numbers committed via our code-based commitment. For � > 0 and f ≥ 0,
we consider fractional numbers X represented as x�x�−1 . . . x0 • x−1x−2 . . . x−f ,
where x� is the sign bit, x�−1, . . . , x0 are the integer bits, and x−1, . . . , x−f are
the fractional bits. Our techniques allow to prove in zero-knowledge that a com-
mitted number X satisfies inequalities X ≤ Y or X < Y , where Y is another
signed fractional number (that could be publicly given or be committed). These
techniques directly yield range arguments addressing both public and hidden
ranges with communication cost logarithmic in the sizes of the ranges. This not
only solves an open problem in code-based cryptography but also brings a novel
feature to the topic of range proofs in general. Range proofs, introduced by Brick-
ell et al. [18], serve as building blocks in various applications, including anony-
mous credentials [22], auctions [48], e-voting [39] and anonymous e-cash [20].
Efficient constructions [19,24,26,30,37,40,46,47] have been proposed in almost
all major branches of cryptography, but up to our knowledge, they only address
non-negative integers. Negative numbers do often appear in our daily life in the
forms of financial loss, bad reputation, medical data, etc., and it would be desir-
able to be able to handle them in a privacy-preserving manner. Moreover, these
data values could be stored as fractional numbers, e.g., bank account balances,
GPAs and tax records, and hence, a protocol addressing them directly in such
forms would potentially be interesting. This inspires our investigation of range
arguments for signed fractional numbers.

Our third contribution is the first code-based accumulator [9] supported by
ZK arguments of valid accumulated values, which directly imply ZK arguments of
set membership. Accumulators are essential building blocks in numerous authen-
tication mechanisms, including ring and group signatures [28,29,45], anony-
mous credentials [1,21,23], e-cash [5], and authenticated data structures [59,60].
Accumulators with companion ZK proofs have been proposed from number-
theoretic assumptions [9,57], lattice assumptions [45] and from symmetric-key
primitives [13,28], but have not been known in the scope of code-based cryptog-
raphy. Our construction fills in this gap and opens up a wide range of applications
that have not been achieved from code-based assumptions. Our design resembles
Libert et al.’s approach for lattices [45], which relies on Merkle hash trees [53]

28 K. Nguyen et al.

and ZKAoK of a tree path from the root to a secret leaf. However, unlike the lat-
tice setting where smallness (and computational hardness) can be defined with
respect to various metrics and the output of each hashing can be easily decom-
posed into binary to serve as the input of the next step, the binary linear code
setting with Hamming metric makes the problem more challenging. At each step,
we have to encode the hash output to a small-weight vector (with respect to its
dimension) before going to the next step, and prove that the whole recursive
process is done correctly. Fortunately, this difficulty can be overcome with our
ZK techniques. As applications, we put forward 2 prominent anonymity-oriented
constructions: ring signature [62] and group signature [25].

Our ring signature scheme is the first one from code-based assumptions
that achieves signature size logarithmic in the cardinality of the ring. Previ-
ous constructions [16,27,51,52] all suffer from linear-size signatures. Design-
ing logarithmic-size ring signatures is generally a hard problem, which usually
requires a powerful supporting technique, which is - in this case - an accumulator
that enables logarithmic-size arguments of set membership.

Our group signature scheme is also the first one that produces logarithmic-
size signatures in the scope of code-based cryptography. Compared with previ-
ous works [3,31], our scheme not only has shorter signatures (for large groups),
but also achieve the stronger notion of CCA-anonymity. The scheme is also
appealing in the sense that it is the first time in all branches of cryptography
a CCA-anonymous group signature scheme is achieved before a standard-model
signature compatible with ZK proofs is known. (The latter is traditionally con-
sidered to be a necessary ingredient for building the former in a generic manner.)

Our Techniques. Let us first discuss our basic techniques for proving in zero-
knowledge the knowledge of a preimage of a hash, computed via the AFS hash
function Hafs : {0, 1}k → {0, 1}n. Let B $←− Z

n×2c·k/c
2 , for some constant c

dividing k. Let RE: {0, 1}k → {0, 1}2c·k/c be an encoding function that maps
x to RE(x), defined as follows. First, write x block-wise as x = (x1‖ . . . ‖xk/c),
where xj = (xj,1, . . . , xj,c)� for j ∈ [k/c]. Denote by Δ2c(xj) the binary vec-
tor of dimension 2c and Hamming weight 1 whose sole 1 entry is at the tj-th
position, for tj = Σc

i=12
c−i · xj,i ∈ [0, 2c − 1]. Then RE(x) is defined to be

(Δ2c(x1)‖ . . . ‖Δ2c(xk/c)), and the hash output is set as u = B · RE(x). Given
(B,u), to prove that we know x such that Hafs(x) = u, we have to demonstrate
that the encoding RE(·) is done correctly for x. To this end, we introduce the
following permuting technique.

For every vector s = (s1, . . . , sc) ∈ {0, 1}c, define the permutation Es that
transforms vector x = (x0,0,...,0, . . . , xi1,...,ic

, . . . , x1,1,...,1) ∈ {0, 1}2c

into vector
Es(x) = (x′

0,0,...,0, . . . , x
′
1,1,...,1), where for each (i1, . . . , ic) ∈ {0, 1}c, we have

xi1,...,ic
= x′

i1⊕s1,...,ic⊕sc
.

Note that, for any s,v ∈ {0, 1}c, we have:

x = Δ2c(v) ⇐⇒ Es(x) = Δ2c(v ⊕ s). (1)

For t = (t1‖ . . . ‖tk/c) ∈ {0, 1}k consisting of k/c blocks of length c, define
the permutation E′

t that transforms vector y = (y1‖ . . . ‖yk/c) ∈ {0, 1}2c·k/c

New Code-Based Privacy-Preserving Cryptographic Constructions 29

consisting of k/c blocks of length 2c into vector of the following form E′
t(y) =(

Et1(y1)‖ . . . ‖Etn/c
(yn/c)

)
. Note that, for any t,x ∈ {0, 1}k, we have:

y = RE(x) ⇐⇒ E′
t(y) = RE(x ⊕ t). (2)

In the framework of Stern’s protocol [63], the equivalence in (2) enables us
to prove that y is the correct encoding of x, as follows. The prover samples
uniformly random t and demonstrates to the verifier that the right-hand side
of (2) holds. The verifier is thus convinced that its left-hand side also holds, while
learning no additional information about x, thanks to the “one-time pad” t.
Moreover, this permuting technique allows us to keep control over the bits of x,
in order to prove that they satisfy other relations. To this end, it suffices to use
the same “one-time pad” at other appearances of x.

Our discussed above technique then readily extends to handle the case when
there are two inputs to the hash function, i.e., Hafs : {0, 1}� × {0, 1}k → {0, 1}n.
If we set k sufficiently large so that the leftover hash lemma [35] applies, then
we obtain a statistically hiding commitment scheme that is supported by our
ZK technique. On the other hand, if we set � = k = n, then we get a function
that compresses two child-inputs of n bits to one parent-output, which is then
can be used to build a Merkle hash tree. Then, by combining the ZK techniques
from [45] and our techniques for proving correctness of re-encoding at each step
in a tree path, we get a Merkle-tree-accumulator supported by logarithmic-size
zero-knowledge arguments.

To build a ring signature, we add one more level of secret under every leaf
in the tree, so that each leaf corresponds to a user’s public key, and define
the signing process as the process of proving knowledge of an extended path
from beneath a leaf up to the root of the tree. Furthermore, as in [45], by
adding a CCA2-secure encryption layer supported by zero-knowledge arguments
of plaintext knowledge, we can build a secure group signature. To this end, we
employ the randomized McEliece scheme [58] and make it CCA2-secure in the
random oracle model via the Naor-Yung transformation [55]. Both our ring and
group signatures feature logarithmic-size signatures, thanks to the tree structure.

Let us next discuss our techniques for handling inequalities among signed
fractional numbers, which lead to our range arguments. Comparing signed frac-
tional numbers in zero-knowledge is highly non-trivial, due to 2 main reasons.
First, unlike for non-negative numbers, the order of (binary) signed numbers
is not lexicographical, e.g., for (�, f) = (5, 2), the number 110110 • 11 is lexi-
cographically larger than 000011 • 00, yet its decimal value is −9.25, which is
smaller than the decimal value 3 of the latter. Thus, it is counterintuitive when
we compare them in zero-knowledge. Second, the approach of proving X ≤ Y via
demonstrating the existence of Z ≥ 0 such that X+Z = Y (as used in [46]) is not
easily applicable here, due to the problem of overflows. For instance, the binary
addition (with carries) of 011110 • 11 and 000011 • 00 would yield 100001 • 11,
which is translated into an incorrect expression 30.75 + 3 = −30.25. Therefore,
we have to carefully address the complications caused by the signed bits and to
ensure that overflows do not occur.

30 K. Nguyen et al.

Our idea is to derive necessary and sufficient conditions for X ≤ Y , in a
way such that these conditions can be correctly and efficiently proved in ZK. Let
(x�, . . . , x0, x−1, . . . , x−f), (y�, . . . , y0, y−1, . . . , y−f) be the bits representing X
and Y , respectively. We observe and then formally prove that X ≤ Y if and only if
there exist bits z�, z�−1, . . . , z0, z−1, . . . , z−f , c�+1, c�, c�−1, . . . , c0, c−1, . . . , c−f+1

satisfying
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c−f+1 = x−f · z−f

ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1, ∀i ∈ [−f + 2, � + 1]
y−f = x−f ⊕ z−f

yi = xi ⊕ zi ⊕ ci, ∀i ∈ [−f + 1, �]
y� = x� ⊕ c�+1.

This simple-yet-vital result allows us to reduce the inequality relations among
signed fractional numbers to simple relations among bits, which can be effectively
addressed using existing techniques [44,45] for Stern’s protocol.

Organization. The rest of the paper is organized as follows. In Sect. 2, we
recall the background on code-based hash functions, ZK arguments and previous
Stern-like techniques. Our commitment scheme together with our techniques
for proving knowledge of code-based hash preimages and committed values are
described in Sect. 3. In Sect. 4, we present our treatment of signed fractional
numbers and construct ZK range arguments for committed signed fractional
numbers. Our accumulator and its supporting ZK argument of membership are
given in Sect. 5. Applications of to ring signatures and group signatures are then
discussed in Sect. 6. Due to space restriction, the descriptions and analyses of
our ring and group signature schemes are deferred to the full version [56].

2 Background

2.1 Code-Based Collision-Resistant Hash Functions

This section recalls the family of code-based hash functions proposed by Augot,
Finiasz and Sendrier (AFS) [6,7], which is based on the hardness of the 2-
Regular Null Syndrome Decoding (2-RNSD) problem. We note that the more
recent proposals of code-based hash functions [4,15,64], although relying on dif-
ferent assumptions, are syntactically similar to the AFS family at a high level.
Working with the AFS family allows us to derive practical parameters, based on
the analyses of [11,12]. Let us begin by introducing some supporting notations.

Notations. We identify Z2 as the set {0, 1}. The set {a, . . . , b} is denoted by
[a, b]. We often write [b] when a = 1. Let ⊕ denote the bit-wise addition operation

modulo 2. If S is a finite set, then x
$←− S means that x is chosen uniformly at

random from S. Throughout this paper, all vectors are column vectors. When
concatenating vectors x ∈ Z

m
2 and y ∈ Z

k
2 , for simplicity, we use the notation

(x‖y) ∈ Z
m+k
2 instead of (x�‖y�)�. Denote B(n, ω) to be the set of all binary

New Code-Based Privacy-Preserving Cryptographic Constructions 31

vectors of length n with weight ω and the symmetric group of all permutations
of n elements to be Sn.

For c ∈ Z
+ and for k divisible by c, define the following.

– Regular(k, c): the set of all vectors w = (w1‖ . . . ‖wk/c) ∈ {0, 1}2c·k/c con-
sisting of k/c blocks, each of which is an element of B1

2c . Here B1
2c is the

set that contains all the elements in {0, 1}2c

with Hamming weight 1. If
w ∈ Regular(k, c) for some k, c, then we call w a regular word.

– RE: {0, 1}k → {0, 1}2c·k/c, a regular encoding function that maps x to RE(x),
defined as follows. Denote x = (x1‖ . . . ‖xk/c), where xj = (xj,1, . . . , xj,c)� for
j ∈ [k/c]. Then compute tj = Σc

i=12
c−i · xj,i. Denote by Δ2c(xj) the element

in B1
2c whose sole 1 entry is at the tj-th position for tj ∈ [0, 2c − 1].

RE(x) is then defined to be (Δ2c(x1)‖ . . . ‖Δ2c(xk/c)). One can check that
RE(x) ∈ Regular(k, c).

– 2-Regular(k, c): the set of all vectors x ∈ {0, 1}2c·k/c, such that there exist
regular words v,w ∈ Regular(k, c) satisfying x = v ⊕ w. Note that, x ∈
2-Regular(k, c) if and only if x can be written as the concatenation of k/c blocks
of length 2c, each of which has Hamming weight 0 or 2. If x ∈ 2-Regular(k, c)
for some k, c, then we call x a 2-regular word.

The 2-RNSD Problem. Introduced by Augot, Finiasz and Sendrier [6,7], the
2-RNSD problem asks to find low-weight 2-regular codewords in random binary
linear codes. This problem is closely related to the Small Codeword Problem [49]
and binary Shortest Vector Problem [4], with an additional and strong constraint
that the solution codeword must be 2-regular.

Definition 1. The 2-RNSDn,k,c problem, parameterized by integers n, k, c, is as
follows. Given a uniformly random matrix B ∈ Z

n×m
2 , where m = 2c · k/c, find

a non-zero vector z ∈ 2-Regular(k, c) ⊆ {0, 1}m such that B · z = 0.

The problem is shown to be NP-complete in the worst case [6]. In practice,
for appropriate choices of n, k, c, the best known algorithms require exponential
times in the security parameter. See [11] for a comprehensive discussion of known
attacks and parameter settings.

The AFS Hash Functions. Let λ be the security parameter. The AFS family
of hash functions Hafs maps {0, 1}k to {0, 1}n, where n, k = Ω(λ) and k > n.

Each function in the family is associated with a matrix B $←− Z
n×2c·k/c
2 , for

some properly chosen constant c dividing k. To compute the hash value of x ∈
{0, 1}k, one encodes it to the corresponding regular word RE(x) ∈ {0, 1}2c·k/c

and outputs B · RE(x).
The above hash functions are collision-resistant assuming the hardness of the

2-RNSDn,k,c problem. Suppose that the adversary can produce distinct x0,x1

such that B · RE(x0) = B · RE(x1). Let z = RE(x0) ⊕ RE(x1) = 0 then we
have z ∈ 2-Regular(k, c) and B · z = 0. In other words, z is a solution to the
2-RNSDn,k,c problem associated with matrix B.

32 K. Nguyen et al.

In this work, we rely on the above hash function family to develop two tools
for privacy-preserving code-based cryptography: (i) computationally binding and
statistically hiding commitments supporting by ZK arguments of knowledge of
valid openings; (ii) Cryptographic accumulators supporting by ZK arguments of
accumulated values.

2.2 Zero-Knowledge Argument Systems and Stern-Like Protocols

We will work with statistical zero-knowledge argument systems, namely, inter-
active protocols where the zero-knowledge property holds against any cheat-
ing verifier, while the soundness property only holds against computationally
bounded cheating provers. More formally, let the set of statements-witnesses
R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗ be an NP relation. A two-party game 〈P,V〉 is
called an interactive argument system for the relation R with soundness error e
if the following conditions hold:

– Completeness. If (y, w) ∈ R then Pr
[〈P(y, w),V(y)〉 = 1

]
= 1.

– Soundness. If (y, w) ∈ R, then ∀ PPT P̂: Pr[〈P̂(y, w),V(y)〉 = 1] ≤ e.

An argument system is called statistical zero-knowledge if there exists a PPT
simulator S(y) having oracle access to any V̂(y) and producing a simulated
transcript that is statistically close to the one of the real interaction between
P(y, w) and V̂(y). A related notion is argument of knowledge, which requires
the witness-extended emulation property. For protocols consisting of 3 moves
(i.e., commitment-challenge-response), witness-extended emulation is implied by
special soundness [38], where the latter assumes that there exists a PPT extractor
which takes as input a set of valid transcripts w.r.t. all possible values of the
“challenge” to the same “commitment”, and outputs w′ such that (y, w′) ∈ R.

Stern-Like Protocols. The statistical zero-knowledge arguments of knowledge
presented in this work are Stern-like [63] protocols. In particular, they are Σ-
protocols in the generalized sense defined in [10,41] (where 3 valid transcripts
are needed for extraction, instead of just 2). The basic protocol consists of 3
moves: commitment, challenge, response. If we employ our first explicit construc-
tion of statistically hiding string commitment from a code-based assumption in
the first move, then one obtains a statistical zero-knowledge argument of knowl-
edge (ZKAoK) with perfect completeness, constant soundness error 2/3. In many
applications, the protocol is repeated a sufficient number of times to make the
soundness error negligibly small. For instance, to achieve soundness error 2−80,
it suffices to repeat the basic protocol 137 times.

An Abstraction of Stern’s Protocols. We recall an abstraction, adapted
from [43], which captures the sufficient conditions to run a Stern-like protocol.
Looking ahead, this abstraction will be helpful for us in presenting our ZK
argument systems: we will reduce the relations we need to prove to instances
of the abstract protocol, using our specific techniques. We recall an abstraction
proposed in [43]. Let K,L be positive integers, where L ≥ K, and let VALID be a

New Code-Based Privacy-Preserving Cryptographic Constructions 33

subset of {0, 1}L. Suppose that S is a finite set such that one can associate every
φ ∈ S with a permutation Γφ of L elements, satisfying the following conditions:

{
w ∈ VALID ⇐⇒ Γφ(w) ∈ VALID,

If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.
(3)

We aim to construct a statistical ZKAoK for the following abstract relation:

Rabstract =
{
(M,v),w ∈ Z

K×L
2 × Z

K
2 × VALID : M · w = v

}
.

The conditions in (3) play a crucial role in proving in ZK that w ∈ VALID: To

do so, the prover samples φ
$←− S and lets the verifier check that Γφ(w) ∈ VALID,

while the latter cannot learn any additional information about w thanks to the
randomness of φ. Furthermore, to prove in ZK that the linear equation holds,
the prover samples a masking vector rw

$←− Z
L
2 , and convinces the verifier instead

that M · (w ⊕ rw) = M · rw ⊕ v.
The interaction between prover P and verifier V is described in Fig. 1. The

protocol employs a statistically hiding and computationally binding string com-
mitment scheme COM.

1. Commitment: Prover samples rw
$←− Z

L
2 , φ

$←− S and randomness ρ1, ρ2, ρ3 for
COM. Then he sends CMT = C1, C2, C3

)
to the verifier, where

C1 = COM(φ,M · rw; ρ1), C2 = COM(Γφ(rw); ρ2),

C3 = COM(Γφ(w ⊕ rw); ρ3).

2. Challenge: The verifier sends a challenge Ch
$←− {1, 2, 3} to the prover.

3. Response: Depending on Ch, the prover sends RSP computed as follows:

– Ch = 1: Let tw = Γφ(w), tr = Γφ(rw), and RSP = (tw, tr, ρ2, ρ3).

– Ch = 2: Let φ2 = φ, w2 = w ⊕ rw, and RSP = (φ2,w2, ρ1, ρ3).

– Ch = 3: Let φ3 = φ, w3 = rw, and RSP = (φ3,w3, ρ1, ρ2).

Verification: Receiving RSP, the verifier proceeds as follows:

– Ch = 1: Check that tw ∈ VALID, C2 = COM(tr; ρ2), C3 = COM(tw ⊕ tr; ρ3).

– Ch = 2: Check that C1 = COM(φ2,M · w2 ⊕ v; ρ1), C3 = COM(Γφ2(w2); ρ3).

– Ch = 3: Check that C1 = COM(φ3,M · w3; ρ1), C2 = COM(Γφ3(w3); ρ2).

In each case, the verifier outputs 1 if and only if all the conditions hold.

Fig. 1. Stern-like ZKAoK for the relation Rabstract.

The properties of the protocols are summarized in Theorem 1, whose proof
can be found in [43] or the full version of the present paper [56].

34 K. Nguyen et al.

Theorem 1 ([43]). Assume that COM is a statistically hiding and computa-
tionally binding string commitment scheme. Then, the protocol in Fig. 1 is a
statistical ZKAoK with perfect completeness, soundness error 2/3, and commu-
nication cost O(L). In particular:

– There exists a polynomial-time simulator that, on input (M,v), outputs an
accepted transcript statistically close to that produced by the real prover.

– There exists a polynomial-time knowledge extractor that, on input a commit-
ment CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible values
of the challenge Ch, outputs w′ ∈ VALID such that M · w′ = v.

2.3 Previous Extending-then-Permuting Techniques

We next recall the extending-then-permuting techniques for proving in Stern’s
framework the knowledge of a single secret bit x and a product of 2 secret bits
x1 · x2, presented in [45] and [44], respectively.

Let ⊕ denote the bit-wise addition operation modulo 2. For any bit b ∈ {0, 1},
denote by b the bit b = b ⊕ 1. Note that, for any b, c ∈ {0, 1}, we have b ⊕ c =
b ⊕ c ⊕ 1 = b ⊕ c. For any bit b, let enc(b) = (b, b) ∈ {0, 1}2.

For any bit c ∈ {0, 1}, define Fc as the permutation that transforms integer
vector v = (v0, v1) ∈ Z

2 into vector Fc(v) = (vc, vc). Namely, if c = 0 then Fc

keeps the arrangement the coordinates of v; or swaps them if c = 1. Note that:

v = enc(b) ⇐⇒ Fc(v) = enc(b ⊕ c). (4)

The authors of [45] showed that the equivalence (4) is helpful for proving
knowledge of a secret bit x that may appear in several correlated linear equations.
To this end, one extends x to enc(x) ∈ {0, 1}2, and permutes the latter using Fc,
where c is a uniformly random bit. Then one demonstrates to the verifier that
the permuted vector is enc(x ⊕ c), which implies that the original vector enc(x)
is well-formed - which in turn implies knowledge of some bit x. Meanwhile, the
bit c acts as a “one-time pad” that completely hides x.

In [44], Libert et al. proposed a method for proving the well-formedness of
the product of two secret bits x1, x2, based on the following technique.

– For any two bits b1, b2, define the vector

ext(b1, b2) = (b1 · b2, b1 · b2, b1 · b2, b1 · b2) ∈ {0, 1}4,
that is an extension of the bit product b1 · b2.

– For any two bits c1, c2 ∈ {0, 1}, define Tc1,c2 as the permutation that trans-
forms vector v = (v0,0, v0,1, v1,0, v1,1) ∈ Z

4 into vector

Tc1,c2(v) =
(
vc1,c2 , vc1,c2 , vc1,c2 , vc1,c2

) ∈ Z
4.

Then, the following equivalence holds. For any bits b1, b2, c1, c2 and any vector
v = (v0,0, v0,1, v1,0, v1,1) ∈ Z

4,

v = ext(b1, b2) ⇐⇒ Tc1,c2(v) = ext(b1 ⊕ c1, b2 ⊕ c2). (5)

New Code-Based Privacy-Preserving Cryptographic Constructions 35

As a result, to prove that a bit has the form x1 · x2, one can extend it to
vector ext(x1, x2), then permute the latter using Tc1,c2 , where c1, c2 are uniformly
random bits. One then demonstrates to the verifier that the permuted vector is
ext(x1 ⊕ c1, x2 ⊕ c2). This convinces the verifier that the original vector, i.e.,
ext(x1, x2), is well-formed, while learning no additional information about x1

and x2, thanks to the randomness of c1 and c2.

3 Code-Based Statistically Hiding Commitments
with Companion Zero-Knowledge Protocols

In Sect. 3.1, we develop the AFS hash function to obtain a code-based computa-
tionally binding and statistically hiding commitment scheme. Then, in Sect. 3.2,
we build up our techniques for proving in zero-knowledge the correct encoding of
binary strings into regular words. Relying on these techniques, we put forward
in Sect. 3.3 a ZKAoK of a valid opening for the given commitment scheme. This
building block will further be used in other advances constructions, which will
be presented later in the paper.

3.1 Our Construction

Given security parameter λ, choose n = O(λ), k ≥ n + 2λ + O(1). Let the
message space be M = {0, 1}L, and let c be a constant dividing L and k. Let
m0 = 2c · L/c, m1 = 2c · k/c and m = m0 + m1. Our scheme works as follows.

– KGen: Sample B0
$←− Z

n×m0
2 , B1

$←− Z
n×m1
2 , and output commitment key

pk = B = [B0 | B1] ∈ Z
n×m
2 .

– Com: On input a message x ∈ {0, 1}L and commitment key pk, sample ran-

domness s $←− {0, 1}k, compute c = B0 ·RE(x) ⊕B1 ·RE(s) ∈ Z
n
2 , and output

commitment c together with opening s. Here, RE(·) is the regular encoding
function from Sect. 2.1.

– Open: On input commitment key pk, a commitment c ∈ Z
n
2 , a message x ∈

{0, 1}L and an opening s ∈ {0, 1}k, output 1 if c = B0 · RE(x) ⊕ B1 · RE(s),
or 0 otherwise.

One can check that the proposed scheme is correct. Let us now prove the
computationally binding and statistically hiding properties.

Lemma 1. The scheme is computationally binding, assuming the hardness of
the 2-RNSDn,L+k,c problem.

Proof. Suppose that the adversary outputs c,x,x′, s, s′ such that x = x′ and

c = B0 · RE(x) ⊕ B1 · RE(s) = B0 · RE(x′) ⊕ B1 · RE(s′).

Let z = RE(x) ⊕ RE(x′) = 0 and y = RE(s) ⊕ RE(s′). Then B0 · z + B1 · y = 0.
Next, let t = (z‖y) then we have t = 0, t ∈ 2-Regular(L + k, c) and B · t = 0.
In other words, t is a solution to the 2-RNSDn,L+k,c problem associated with
uniformly random matrix B. ��

36 K. Nguyen et al.

The statistically hiding property of the scheme is based on the following
leftover hash lemma.

Lemma 2 (Leftover hash lemma, adapted from [35]). Let D be a distribu-
tion over {0, 1}t with min-entropy k. For any ε > 0 and n ≤ k−2 log(1/ε)−O(1),

the statistical distance between the joint distribution of (B,B · t), where B $←−
Z

n×t
2 and t ∈ {0, 1}t is drawn from distribution D, and the uniform distribution

over Z
n×t
2 × Z

n
2 is at most ε.

If t is uniformly random over {0, 1}k, then the distribution of RE(t) over {0, 1}m1

has min-entropy exactly k. Since k ≥ n+2λ+O(1), the distribution of B1·RE(s) is
at most 2−λ-far from the uniform distribution over Zn

2 . Then, for any x ∈ {0, 1}L,
the distribution of c = B0 · RE(x) ⊕ B1 · RE(s) is statistically close to uniform
over Z

n
2 . As a result, the scheme is statistically hiding.

Remark 1. As for the lattice-based commitment scheme from [42], we can extend
the message space of our scheme to {0, 1}L for arbitrary L = poly(λ) using the
Merkle-Damgard technique together with the AFS hash function.

3.2 Techniques for Handling Well-Formed Regular Words

In our ZKAoK of a valid opening for the given commitment scheme, which will
be presented in Sect. 3.3, as well as in all subsequent argument systems of this
paper, we need a special mechanism allowing to prove the correctness of the
(non-linear) encoding process from v ∈ {0, 1}m, for some m ∈ Z

+, to regular
word y = RE(v) ∈ Regular(m, c), where c divides m. To this end, we introduce
the following notations and techniques.

– Let c ∈ Z
+. For every s = (s1, . . . , sc) ∈ {0, 1}c, define the permutation Es

that transforms vector x = (x0,0,...,0, . . . , xi1,...,ic
, . . . , x1,1,...,1) ∈ {0, 1}2c

into
vector Es(x) = (x′

0,0,...,0, . . . , x
′
1,1,...,1), where for each (i1, . . . , ic) ∈ {0, 1}c,

we have xi1,...,ic
= x′

i1⊕s1,...,ic⊕sc
.

Note that, for any s,v ∈ {0, 1}c, we have:

x = Δ2c(v) ⇐⇒ Es(x) = Δ2c(v ⊕ s). (6)

– For t = (t1‖ . . . ‖tn/c) ∈ {0, 1}n consisting of n/c blocks of length c, define
the permutation E′

t that transforms vector y = (y1‖ . . . ‖yn/c) ∈ {0, 1}2c·n/c

consisting of n/c blocks of length 2c into vector of the following form E′
t(y) =(

Et1(y1)‖ . . . ‖Etn/c
(yn/c)

)
. Note that, for any t,v ∈ {0, 1}n, we have:

y = RE(v) ⇐⇒ E′
t(y) = RE(v ⊕ t). (7)

The equivalence in (7) enables us to prove that y is the correct encoding of
v, as follows. The prover samples uniformly random t and demonstrates to the
verifier that the right-hand side of (7) holds. The verifier is thus convinced that
its left-hand side also holds, while learning no additional information about v,
thanks to the “one-time pad” t.

New Code-Based Privacy-Preserving Cryptographic Constructions 37

3.3 ZKAoK of a Valid Opening

We now describe a ZKAoK of a valid opening for the commitment scheme from
Sect. 3.1. Specifically, we consider the relation Rcom, defined as:

Rcom =
{(

(B = [B0 | B1], c),x, s
)

: B0 · RE(x) + B1 · RE(s) = c
}
.

The protocol is realized based on the permuting technique of Sect. 3.2. Let z =
(x ‖ s) ∈ {0, 1}L+k and wcom = RE(z) ∈ Regular(L + k, c) ⊂ {0, 1}2c·(L+k)/c.
Then the equation B0 · RE(x) + B1 · RE(s) = c can be written as B · wcom = c.

Next, define the sets VALIDcom = Regular(L + k, c) and S = {0, 1}L+k. For
t = (t1‖ . . . ‖t(L+k)/c) ∈ S consisting of (L + k)/c blocks of length c, it follows
from (7) that we have

wcom = RE(z) ⇐⇒ E′
t(wcom) = RE(z ⊕ t). (8)

Moreover, if t is chosen uniformly at random in S, then E′
t(wcom) is uniformly

random in VALIDcom. In other words, the conditions of (3) hold, and relation Rcom

can be reduced to an instance of Rabstract in Sect. 2.2. As a result, we can run
the interactive protocol in Fig. 1 with public input (B, c) and prover’s witness
wcom, and obtain a ZKAoK for Rcom.

4 Range Arguments for Signed Fractional Numbers

In this section, we present our techniques for obtaining zero-knowledge argu-
ments that signed fractional numbers, committed via the code-based commit-
ment scheme of Sect. 3, belong to a (hidden or given) range. We first describe
our method for handling signed fractional numbers and establish the crucial the-
oretical foundations of our range arguments in Sect. 4.1. Next, in Sect. 4.2, we
present our protocol for proving in zero-knowledge that two committed signed
fractional numbers X,Y satisfies the inequality X ≤ Y . In Sect. 4.3, we then
discuss how to handily derive various variants of range arguments, based on the
results of Sects. 4.1 and 4.2.

Notations. For a, b ∈ Z and c ∈ Q, we let [a, b] denote the set of all integers
between a and b (inclusive), and let c · [a, b] denote the set {c · x | x ∈ [a, b]}.

4.1 A Treatment of Signed Fractional Numbers

We will work with signed fractional numbers represented in fixed-point binary
format. For integers � > 0, f ≥ 0, define the set

Q〈� • f〉 = 2−f · [−2�+f , 2�+f − 1]

=
{ − 2� · x� +

�−1∑

i=−f

2i · xi | (x�, x�−1, . . . , x0, x−1, . . . , x−f) ∈ {0, 1}1+�+f}
.

38 K. Nguyen et al.

Each element X ∈ Q〈� • f〉 can be represented as x�x�−1 . . . x0 •x−1x−2 . . . x−f ,
where x� is the sign bit, x�−1, . . . , x0 are the integer bits, and x−1, . . . , x−f are
the fractional bits.

The binary vector (x�, x�−1, . . . , x0, x−1, . . . , x−f) ∈ {0, 1}1+�+f representing
X is denoted as sbin�,f (A). For notational convenience, we write A = sbin−1

�,f (a)
if a = sbin�,f (A). In this way, we have Q〈� • f〉 = {sbin−1

�,f (a) | a ∈ {0, 1}1+�+f}.
We aim to prove in zero-knowledge inequality relations among elements of

Q〈� • f〉, e.g., to prove that X ≤ Y for secret/committed X,Y . As we have
discussed in Sect. 1, handling inequalities over Q〈� • f〉 is highly non-trivial, due
to 2 main reasons: the existence of the signed bit and the problem of overflows.

Our idea is to derive necessary and sufficient conditions for X ≤ Y, with
X,Y ∈ Q〈� • f〉, in a way such that these conditions can be correctly and effi-
ciently proved in zero-knowledge. Theorem 2 captures this idea via the existence
of 2(� + f + 1) extra bits that are related to the bits representing X and Y via
2(� + f) + 3 simple equations modulo 2. This result lays the vital foundation for
the argument system we will construct in Sect. 4.2.

Theorem 2. Let X,Y ∈ Q〈� • f〉 and let sbin�,f (X) = (x�, . . . , x0, x−1, . . . ,
x−f), sbin�,f (Y) = (y�, . . . , y0, y−1, . . . , y−f). Then, X ≤ Y if and only if there
exist bits z�, z�−1, . . . , z0, z−1, . . . , z−f , c�+1, c�, c�−1, . . . , c0, c−1, . . . , c−f+1 sat-
isfying

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c−f+1 = x−f · z−f

ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1, ∀i ∈ [−f + 2, � + 1]
y−f = x−f ⊕ z−f

yi = xi ⊕ zi ⊕ ci, ∀i ∈ [−f + 1, �]
y� = x� ⊕ c�+1.

(9)

Before proving Theorem 2, we first introduce a few notations, definitions and a
technical lemma.

Additions. To avoid the problem of overflows, we will treat elements of Q〈�•f〉
as elements of Q〈(�+2)•f〉. If X ∈ Q〈�•f〉 with sbin�,f (X) = (x�, x�−1, . . . , x−f)
then we have

A = −2� · x� +
�−1∑

i=−f

2i · xi = (−2�+2 + 2�+1 + 2�) · x� +
�−1∑

i=−f

2i · xi,

and thus sbin�+2,f (X) = (x�, x�, x�, x�−1, . . . , x−f) ∈ {0, 1}3+�+f .
Now, let X,Z ∈ Q〈(�+2) • f〉. The addition of X and Z when executed in a

conventional computer is indeed the addition of two fractional binary numbers
whose decimal encodings are equal to X and Z. Such addition is formally defined
as follows.

Definition 2 (Signed Fractional Additions in Binary). Let X,Z be ele-
ments of Q〈(� + 2) • f〉. The sum sbin�+2,f (X) ��+2,f sbin�+2,f (Z) is a vector

New Code-Based Privacy-Preserving Cryptographic Constructions 39

y = (y�+2, y�+1, . . . , y−f) associated with a vector c = (c�+2, c�+1, . . . , c−f+1)
such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c−f+1 = x−f · z−f

ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1, ∀i ∈ [−f + 2, � + 2]
y−f = x−f ⊕ z−f

yi = xi ⊕ zi ⊕ ci, ∀i ∈ [−f + 1, � + 2].

The above definition is similar to computing sum of two’s complement inte-
gers up to a scaled factor [61, Sect. 3.2]. Intuitively, Definition 2 can be viewed
as a binary addition of two binary numbers x,y while sequence c plays a role as
a sequence of carries computed in each step (the last carry-out bit is discarded).

c�+2 c�+1 . . . c1 c0 . . . c−f+1 0
x�+2 x�+1 . . . x1 x0 . . . x−f+1 x−f

+ z�+2 z�+1 . . . z1 z0 . . . z−f+1 z−f

y�+2 y�+1 . . . y1 y0 . . . y−f+1 y−f

It is clear that y−f = x−f ⊕ z−f and, ∀i ∈ [−f +1, �+2], yi = xi ⊕ zi ⊕ ci.
Regarding computing carries, ci = (xi−1 · zi−1) ⊕ (ci−1 · (xi−1 ⊕ zi−1)), ∀i ∈
[−f + 1, � + 2] and c−f = 0. It is easy to verify that, ∀i ∈ [−f + 1, � + 2],
ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1.

Overflows. Note that Q〈(� + 2) • f〉 = 2−f · [−22+�+f , 22+�+f − 1]. For X,Y ∈
Q〈(�+2)•f〉, where X +Y falls out of the range 2−f · [−22+�+f , 22+�+f −1], i.e.,
X + Y < −22+� or X + Y > 22+� − 2−f , the addition would yield an overflow.
This phenomenon is formally defined as follows.

Definition 3 (Overflows). Let X,Y ∈ Q〈(�+2)•f〉 and let x = sbin�+2,f (X),
y = sbin�+2,f (Y). The signed fractional addition x ��+2,f y is called to cause
an overflow (with respect to � + 2 and f) if and only if X + Y < −22+� or
X + Y > 22+� − 2−f .

The following lemma implies that, if we are given X,Y ∈ Q〈� • f〉 but we
compute their sum over Q〈(� + 2) • f〉, then we can avoid overflows, and hence,
can reliably capture the inequality X ≤ Y via addition.

Lemma 3. Let X,Y ∈ Q〈�•f〉 ⊂ Q〈(�+2)•f〉. Then X ≤ Y if and only if Z =
Y −X ∈ 2−f ·[0, 21+�+f −1] ⊂ Q〈(�+2)•f〉 and sbin�+2,f (X) ��+2,f sbin�+2,f (Z)
does not cause an overflow. As a corollary, sbin�+2,f (X) ��+2,f sbin�+2,f (Z) =
sbin�+2,f (Y) and sbin�+2,f (Z) = (0, 0, z�, z�−1, . . . , z−f).

Proof. Assume that X ≤ Y and let Z = Y − X (over Q). Since we have X,Y ∈
2−f · [−2�+f , 2�+f − 1], it follows that

Z ∈ 2−f · [0, 21+�+f − 1] ⊂ 2−f · [−2�+2+f , 2�+2+f − 1] = Q〈(� + 2) • f〉.
Furthermore, X +Z ∈ 2−f · [−2�+f , 21+�+f +2�+f −2]. Hence, we have −2�+2 <
X +Z < 2�+2 − 2−f . As a result, the addition sbin�+2,f (X) ��+2,f sbin�+2,f (Z)
does not cause an overflow and produces the correct result sbin�+2,f (Y).

40 K. Nguyen et al.

For the reverse direction, if sbin�+2,f (X) ��+2,f sbin�+2,f (Z) does not cause
an overflow, then sbin�+2,f (X) ��+2,f sbin�+2,f (Z) = sbin�+2,f (Y) and hence
X + Z = Y . Moreover, since Z ∈ 2−f · [0, 21+�+f − 1], we have Z ≥ 0. It then
follows that X ≤ Y .

To see that the first two bits of sbin�+2,f (Z) are 0, let Z ′ := 2f · Z. Then
Z ′ is a non-negative integer in the range [0, 21+�+f − 1] ⊂ [−22+�+f , 22+�+f − 1]
which needs exactly 1 + � + f bits to store in place of 3 + � + f bits.
Therefore, sbin�+2,f (Z ′) = (0, 0, z′

�+f , z′
�+f−1, . . . , z

′
0) and thus sbin�+2,f (Z) =

(0, 0, z�, z�−1, . . . , z−f). ��
We are now ready to prove Theorem 2.

Proof of Theorem 2. We first assume that X,Y ∈ Q〈� • f〉 and X ≤ Y.
Let x = sbin�+2,f (X) = (x�, x�, x�, x�−1, . . . , x−f) and y = sbin�+2,f (Y) =
(y�, y�, y�, y�−1, . . . , y−f). By Lemma 3, Z = Y − X ∈ Q〈(� + 2) • f〉 such
that sbin�+2,f (Z) = (0, 0, z�, . . . , z−f) and sbin�+2,f (X) ��+2,f sbin�+2,f (Z) =
sbin�+2,f (Y) where the signed fractional addition does not cause an overflow.
Let c be the sequence of carries as in Definition 2. It follows that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c−f+1 = x−f · z−f

ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1, ∀i ∈ [−f + 2, � + 1]
c�+2 = y� · c�+1 ⊕ c�+1

y−f = x−f ⊕ z−f

yi = xi ⊕ zi ⊕ ci, ∀i ∈ [−f + 1, �]
y� = x� ⊕ c�+i, ∀i ∈ [1, 2].

We can deduce that c�+1 = y� ⊕ x� = c�+2. Hence, we obtain the system of
equations in (9).

We now prove the reverse direction. If there exists bits z�, z�−1, . . . , z−f , c�+1,
c�, . . . , c−f+1 satisfying (9), then we can construct the following vectors: x =
(x′

�+2, x
′
�+1, . . . , x

′
−f) = (x�, x�, x�, x�−1, . . . , x−f),y = (y′

�+2, y
′
�+1, . . . , y

′
−f) =

(y�, y�, y�, y�−1, . . . , y−f), z = (z′
�+2, z

′
�+1, . . . , z

′
−f) = (0, 0, z�, z�−1, . . . , z−f), and

c = (c′
�+2, c

′
�+1, . . . , c

′
−f+1) = (c�+1, c�+1, c�, c�−1, . . . , c−f+1). From the assump-

tion, we deduce that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c′
−f+1 = x′

−f · z′
−f

c′
i = x′

i−1 · z′
i−1 ⊕ y′

i−1 · c′
i−1 ⊕ c′

i−1, ∀i ∈ [−f + 2, � + 1]
y′

−f = x′
−f ⊕ z′

−f

y′
i = x′

i ⊕ z′
i ⊕ c′

i, ∀i ∈ [−f + 1, � + 2].

It remains to show that c′
�+2 = x′

�+1 · z′
�+1 ⊕ y′

�+1 · c′
�+1 ⊕ c′

�+1. We have

y′
�+1 · c′

�+1 ⊕ c′
�+1 = y� · c�+1 ⊕ c�+1

= y� · (x� · z� ⊕ y� · c� ⊕ c�) ⊕ c�+1 = y� · x� · z� ⊕ c�+1.

We claim that y� · x� · z� = 0. To prove this claim, we assume by contradiction
that y� · x� · z� = 1. This is equivalent to x� = z� = y� = 1. Hence c′

� = 1

New Code-Based Privacy-Preserving Cryptographic Constructions 41

because y′
� = x′

� ⊕ z′
� ⊕ c′

�. This also implies that x′
�+1 = 1 and c′

�+1 = 1 because
c′
�+1 = x′

� · z′
� ⊕ y′

� · c′
� ⊕ c′

�. Since y′
�+1 = x′

�+1 ⊕ z′
�+1 ⊕ c′

�+1 and z′
�+1 = 0, we

have y′
�+1 = 0 = y′

�, which is a contradiction. Therefore, the claim follows. Thus
y′

�+1 · c′
�+1 ⊕ c′

�+1 = c�+1 and, since z′
�+1 = 0, we deduce that x′

�+1 · z′
�+1 ⊕ y′

�+1 ·
c′
�+1 ⊕ c′

�+1 = c�+1 = c′
�+2.

By Definition 2, the above facts imply that x ��+2,f z = y. It is clear that
X = sbin−1

�+2,f (x) and Y = sbin−1
�+2,f (y) ∈ Q〈� • f〉. Let Z := sbin−1

�+2,f (z) ∈
2−f · [0, 21+�+f − 1]. By Definition 3, the addition x ��+2,f z does not cause an
overflow. Therefore, X + Z = Y , and since Z ≥ 0, we obtain that X ≤ Y . This
completes the proof. ��
We also obtain necessary and sufficient conditions for strict inequalities of ele-
ments in Q〈� • f〉, which allow us to handle those of the form X < Y in zero-
knowledge. This result is stated in Theorem 3, whose proof follows the same
lines as that of Theorem 2, and is thus omitted.

Theorem 3. Let X,Y ∈ Q〈� • f〉 and let sbin�,f (X) = (x�, . . . , x0, x−1, . . . ,
x−f), sbin�,f (Y) = (y�, . . . , y0, y−1, . . . , y−f). Then, X < Y if and only if
there exist bits z�, z�−1, . . . , z0, z−1, . . . , z−f , c�+1, c�, c�−1, . . . , c0, c−1, . . . , c−f+1

satisfying
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c−f+1 = x−f · z−f ⊕ y−f ⊕ 1
ci = xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1, ∀i ∈ [−f + 2, � + 1]
y−f = x−f ⊕ z−f ⊕ 1
yi = xi ⊕ zi ⊕ ci, ∀i ∈ [−f + 1, �]
y� = x� ⊕ c�+1.

4.2 Proving Inequalities Between Committed Elements of Q〈� • f〉
Let � > 0, f ≥ 0 be integers, and let L = 1 + � + f . Consider the code-based
commitment scheme of Sect. 3 with parameters n, k, c, m0, m1, m and L and
commitment key B = [B0 | B1] ∈ Z

n×m
2 .

Let X,Y ∈ Q〈� • f〉, whose binary representations

x = sbin�,f (X) = (x�, x�−1, . . . , x0, x−1, . . . , x−f) ∈ {0, 1}L,

y = sbin�,f (Y) = (y�, y�−1, . . . , y0, y−1, . . . , y−f) ∈ {0, 1}L.

are committed as

ex = B0 · RE(x) ⊕ B1 · RE(sx) ∈ Z
n
2 , ey = B0 · RE(y) ⊕ B1 · RE(sy) ∈ Z

n
2 ,

respectively. Our goal is to design an argument system allowing the prover to
convince the verifier in zero-knowledge that the vectors x,y committed in ex, ey

satisfy sbin−1
�,f (x) ≤ sbin−1

�,f (y), i.e., they represent numbers X,Y ∈ Q〈� • f〉 such
that X ≤ Y . Formally, we will build a ZKAoK for the relation Rineq defined as
follows.

Rineq =
{(

(B = [B0 | B1], ex, ey),x,y, sx, sy

)
: sbin−1

�,f (x) ≤ sbin−1
�,f (y) ∧

ex = B0 · RE(x) ⊕ B1 · RE(sx) ∧ ey = B0 · RE(y) ⊕ B1 · RE(sy)
}
.

42 K. Nguyen et al.

To prove in zero-knowledge that the inequality sbin−1
�,f (x) ≤ sbin−1

�,f (y) holds,
we rely on the results established in Sect. 4.1. Specifically, based on Theorem 2,
we can equivalently prove the existence of bits z�, z�−1, . . . , z0, z−1, . . . , z−f , c�+1,
c�, c�−1, . . . , c0, c−1, . . . , c−f+1 satisfying the following 2(� + f) + 3 = 2L + 1
equations modulo 2:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c−f+1 ⊕ x−f · z−f = 0,

ci ⊕ xi−1 · zi−1 ⊕ yi−1 · ci−1 ⊕ ci−1 = 0, ∀i ∈ [−f + 2, � + 1]
y−f ⊕ x−f ⊕ z−f = 0,

yi ⊕ xi ⊕ zi ⊕ ci = 0, ∀i ∈ [−f + 1, �]
y� ⊕ x� ⊕ c�+1 = 0.

(10)

Now, to handle (10) in zero-knowledge, we can use the extending-then-permuting
techniques of Sect. 2.3. To this end, we first perform the following extensions for
each i ∈ [−f, �]

xi �→ xi = enc(xi), yi �→ yi = enc(yi), zi �→ zi = enc(zi), ci+1 �→ enc(ci+1),

as well as the following extensions

∀i ∈ [−f + 1, � + 1] : xi−1 · zi−1 �→ ti−1 = ext(xi−1, zi−1);
∀i ∈ [−f + 2, � + 1] : yi−1 · ci−1 �→ gi−1 = ext(yi−1, ci−1).

Let M2 = (0, 1) ∈ Z
1×2
2 and M4 = (0, 0, 0, 1) ∈ Z

1×4
2 . Then (10) can be

rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M2 · c−f+1 ⊕ M4 · t−f = 0,

M2 · ci ⊕ M4 · ti−1 ⊕ M4 · gi−1 ⊕ M2 · ci−1 = 0, ∀i ∈ [−f + 2, � + 1]

M2 · y−f ⊕ M2 · x−f ⊕ M2 · z−f = 0,

M2 · yi ⊕ M2 · xi ⊕ M2 · zi ⊕ M2 · ci = 0, ∀i ∈ [−f + 1, �]

M2 · y� ⊕ M2 · x� ⊕ M2 · c�+1 = 0,

which then can be combined via linear algebra into one equation of the form
M0 · w0 = 0, where M0 ∈ Z

(2L+1)×16L
2 is a public matrix, and w0 ∈ {0, 1}16L

has the form:

w0 =
(
x� ‖ . . . ‖ x−f ‖ y� ‖ . . . ‖ y−f ‖ z� ‖ . . . ‖ z−f ‖ c�+1 ‖ . . . ‖ c−f+1 ‖
t� ‖ . . . ‖ t−f ‖g�+1 ‖ . . . ‖ g−f+1

)
. (11)

Next, by combining equation M0 ·w0 = 0 with the two equations underlying
the commitments ex, ey, we can obtain a unified equation of the form M · w =
v, where M ∈ Z

(2L+2n+1)×(16L+2m)
2 and v ∈ Z

2L+2n+1
2 are public, and w ∈

{0, 1}16L+2m has the form

w =
(
w0 ‖ RE(x) ‖ RE(y) ‖ RE(sx) ‖ RE(sy)

)
. (12)

New Code-Based Privacy-Preserving Cryptographic Constructions 43

At this point, we have translated our task into proving knowledge of a well-
formed vector w ∈ {0, 1}16L+2m satisfying equation M · w = v. We next will
reduce the latter task to an instance of the abstraction of Stern’s protocol in
Sect. 2.2. To this end, we will specify the sets VALIDineq,S and permutations
{Γφ : φ ∈ S} that meet the requirements in (3).

Define VALIDineq as the set of all vectors w ∈ {0, 1}16L+2m that has the
form (12), where sx, sy ∈ {0, 1}k and

� x = (x�, . . . , x0, . . . , x−f) ∈ {0, 1}L, y = (y�, . . . , y0, . . . , y−f) ∈ {0, 1}L;
� w0 has the form (11), where: for each i ∈ [−f, �], there exist bits zi, ci+1

satisfying
(i) For each i ∈ [−f, �], one has xi = enc(xi), yi = enc(yi), zi = enc(zi), and

ci+1 = enc(ci+1);
(ii) For each i ∈ [−f + 1, � + 1], one has ti−1 = ext(xi−1, zi−1);
(iii) For each i ∈ [−f + 2, � + 1], one has gi−1 = ext(yi−1, ci−1).

It can be observed that the vector w we obtained from the above transfor-
mations is an element of this tailored set VALIDineq. Next, we will employ the
permuting techniques from Sects. 2.3 and 3.2 to handle the special constraint of
w.

Define S as the set {0, 1}4L+2k and for each element φ ∈ S of the form

φ =
(
bx,�, . . . , bx,−f , by,�, . . . , by,−f , bz,�, . . . , bz,−f , bc,�+1, . . . , bc,−f+1,bs,x,bs,y

)
,

where bs,x,bs,y ∈ {0, 1}k, define the permutation Γφ that, when applying to
vector t ∈ Z

16L+2m, whose blocks are denoted as
(

x� ‖ . . . ‖ x−f ‖ y� ‖ . . . ‖ y−f ‖ z� ‖ . . . ‖ z−f ‖ c�+1 ‖ . . . ‖ c−f+1 ‖
t� ‖ . . . ‖ t−f ‖g�+1 ‖ . . . ‖ g−f+1 ‖ RE(x) ‖ RE(y) ‖ RE(sx) ‖ RE(sy)

)
,

it transforms t as follows:

� ∀i ∈ [−f, �]: xi �→ Fbx,i
(xi); yi �→ Fby,i

(yi); zi �→ Fbz,i
(zi); ci+1 �→

Fbc,i+1(ci+1)
� ∀i ∈ [−f + 1, � + 1]: ti−1 �→ Tbx,i−1,bz,i−1(ti−1)
� ∀i ∈ [−f + 2, � + 1]: gi−1 �→ Tby,i−1,bc,i−1(gi−1)
� RE(x) �→ E′

bx
(RE(x)), where bx = (bx,�, . . . , bx,−f).

� RE(y) �→ E′
by

(RE(y)), where by = (by,�, . . . , by,−f).
� RE(sx) �→ E′

bs,x
(RE(sx)), RE(sy) �→ E′

bs,y
(RE(sy)).

Based on the equivalences observed in (4), (5) and (7), one can verify that the
requirements in (3) are satisfied. In other words, we have reduced the considered
relation Rineq to an instance of the relation Rabstract in Sect. 2.2.

The Interactive Protocol. Given the above preparations, our protocol now
goes as follows.

44 K. Nguyen et al.

– The public input consists of matrix M and vector v, which are constructed
from the original public input, as discussed above.

– The prover’s witness consists of vector w ∈ VALIDineq, which is built from the
initial secret input, as described above.

The prover and the verifier then interact as in Fig. 1. The protocol employs
the statistically hiding and computationally binding string commitment scheme
from Sect. 3 to obtain the desired statistical ZKAoK. As a corollary of Theorem 1,
we obtain the following theorem, which summarized the properties our protocol
for inequality relation between committed signed fractional numbers.

Theorem 4. There exists a statistical zero-knowledge argument of knowledge
for the relation Rineq with perfect completeness, soundness error 2/3 and com-
munication cost O(L + m) = O(� + f).

For simulation, we simply invoke the simulator of Theorem 1. For extraction, we
first run the knowledge extractor of Theorem 1 to obtain w′ ∈ VALIDineq such
that M · w′ = v. Then, by backtracking the transformations presented above,
we can obtain x′,y′, s′

x, s′
y such that sbin−1

�,f (x′) ≤ sbin−1
�,f (y′) and

ex = B0 · RE(x′) ⊕ B1 · RE(s′
x) ∧ ey = B0 · RE(y′) ⊕ B1 · RE(s′

y).

In particular, let X ′ = sbin−1
�,f (x′) ∈ Q〈� • f〉 and Y ′ = sbin−1

�,f (Y′) ∈ Q〈� • f〉,
then we have X ′ ≤ Y ′.

4.3 Range Arguments

We now discuss how to use our results in Sects. 4.1 and 4.2 to derive various
variants of range arguments for signed fractional numbers. Depending on the
application contexts, different range types could be considered. Let us name a
few of them.

1. Hidden ranges with non-strict inequalities. This requires to prove that
T ≤ X ≤ Y , where T,X, Y are all committed. Such a range argument can be
easily obtained by running two instances of our protocol of Sect. 4.2.

2. Hidden ranges with strict inequalities. In this setting, T,X, Y are hidden
and the range relations are defined as T < X < Y , or T ≤ X < Y . Here, a
zero-knowledge argument of strict inequality is required. Such a protocol can
be obtained by results of Theorem 3 and the techniques used in Sect. 4.2.

3. Public ranges: This type of range arguments is the easiest one, where A,B
are publicly given and one proves that A ≤ X ≤ B or A < X < B, for
a committed number X. In fact, inequality X ≤ B can be handled using a
simplified version of the protocol in Sect. 4.2, where the bits representing B
are not required to be kept secret. Meanwhile, strict inequality X < B can
simply be interpreted as X ≤ B′ for public B′ = B − 2−f .

In all cases considered above, the size of range arguments remains O(� + f),
i.e., it is logarithmic in the size of the range.

New Code-Based Privacy-Preserving Cryptographic Constructions 45

5 Code-Based Accumulators and Logarithmic-Size
Zero-Knowledge Arguments of Set Membership

In this section, we provide a code-based accumulator scheme supported by zero-
knowledge argument of knowledge of an accumulated value. Such an argument
system is essentially an argument of set membership, in which the prover con-
vinces the verifier in zero-knowledge that his data item (e.g., his public key or
his pseudonym) belongs to a given set, and is a highly desirable building block
in various privacy-preserving applications. Our accumulator relies on a Merkle
hash tree that is built from a suitable variant of the AFS hash function. To
design a supporting zero-knowledge protocol for the hash tree, we first use the
techniques for handling regular words from Sect. 3.2 to prove knowledge of hash
preimages and images in the path from a leaf to the tree root, and then adapt
Libert et al.’s method [45] to hide the bits determining steps in the path. As
the tree depth is logarithmic in its size, we obtain an argument system for set
membership with size logarithmic in the cardinality of the set.

In Sect. 5.1, we first recall the definitions and security requirement for cryp-
tographic accumulators. Then, in Sect. 5.2, we modify the AFS hash function to
support hashing with two inputs, upon which we build our Merkle-tree accumu-
lator in Sect. 5.3. In Sect. 5.4, we describe our zero-knowledge argument system.

5.1 Cryptographic Accumulators

We recall the definitions and security requirement for accumulators.

Definition 4. An accumulator scheme is a tuple of polynomial-time algorithms
(Setup,Accu,WitGen,Verify):

– Setup(1λ) Given a security parameter 1λ, outputs the public parameter pp.
– Accupp(R) Take as input a set R with n data values as R = {d0, . . . ,dN−1},

outputs an accumulator value u.
– WitGenpp(R,d) Take as input the set R and a value d, outputs a witness w

such that d is accumulated in TAcc(R), otherwise returns ⊥ if d ∈ R.
– Verifypp(u, (d, w)) This deterministic algorithm takes as inputs the accumu-

lator value u and (d, w), outputs 1 if (d, w) is valid for the accumulator u,
otherwise returns 0 if invalid.

Correctness. For all pp ← Setup(n), the following holds:

Verifypp

(
Accupp(R),d,WitGenpp(R,d)

)
= 1 for d ∈ R.

An accumulator is secure, as defined in [8,23], if it is infeasible to output a valid
witness for a value d∗ that is not chosen from the data value set.

Definition 5. An accumulator scheme is secure if for all PPT adversaries A:

Pr
[
pp ← Setup(λ); (R,d∗, w∗) ← A(pp) :

d∗ ∈ R ∧ Verifypp(Accupp(R),d∗, w∗) = 1
]

= negl(λ).

46 K. Nguyen et al.

5.2 Hashing with Two Inputs

We aim to build a Merkle-tree accumulator based on the AFS family of hash
functions. Since in Merkle trees, every internal node is the hash of its two children
nodes, we slightly modify the AFS hash functions so that the function takes two
inputs instead of just one.

Definition 6. Let m = 2 · 2c · n/c. The function family H mapping {0, 1}n ×
{0, 1}n to {0, 1}n is defined as H = {hB | B ∈ Z

n×m
2 }, where for B = [B0|B1]

with B0,B1 ∈ Z
n×m/2
2 , and for any (u0,u1) ∈ {0, 1}n × {0, 1}n, we have:

hB(u0,u1) = B0 · RE(u0) ⊕ B1 · RE(u1) ∈ {0, 1}n.

Lemma 4. The function family H, defined in Definition 6 is collision-resistant,
assuming the hardness of the 2-RNSDn,2n,c problem.

Proof. Given B = [B0|B1]
$←− Z

n×m
2 , if one can find two distinct pairs (u0,u1) ∈

({0, 1}n
)2 and (v0,v1) ∈ ({0, 1}n

)2 such that hB(u0,u1) = hB(v0,v1), then

one can obtain a non-zero vector z =
(
RE(u0) ⊕ RE(v0)
RE(u1) ⊕ RE(v1)

)
∈ 2-Regular(2n, c)

such that
B · z = hB(u0,u1) ⊕ hB(v0,v1) = 0.

In other words, z is a valid solution to the 2-RNSDn,2n,c problem associated with
matrix B. ��

5.3 Code-Based Merkle-Tree Accumulator

We now describe our Merkle-tree accumulator based on the code-based hash
functions H in Definition 6. The construction is adapted from the blueprint by
Libert et al. [45].

Setup(λ). Given n = O(λ), c = O(1) and m = 2 · 2c · n/c. Sample B $←− Z
n×m
2 ,

and output the public parameter pp = B.
AccuB(R = {d0, . . . ,dN−1} ⊆ ({0, 1}n)N). Let the binary representation of j be

(j1, . . . , j�) ∈ {0, 1}�, re-write dj as uj1,...,j�
. Build a binary tree with N = 2�

leaves u0,0,...,0, . . . ,u1,1,...,1 in the following way:
1. At depth i ∈ [1, � − 1], for the nodes ua1,...,ai,0 ∈ {0, 1}n and ua1,...,ai,1 ∈

{0, 1}n, compute hB(ua1,...,ai,0,ua1,...,ai,1) and define it to be ua1,...,ai
for

all (a1, . . . , ai) ∈ {0, 1}i.
2. At depth 0, for the nodes u0 ∈ {0, 1}n and u1 ∈ {0, 1}n, compute

hB(u0,u1) and define it to be the root value u.
Output the accumulated value u.

WitGenB(R,d). If d /∈ R, the algorithm outputs ⊥. Otherwise, it outputs the
witness w for d as follows.
1. Set d = dj for some j ∈ [0, N − 1]. Re-write dj as uj1,...,j�

using the
binary representation of the index j.

New Code-Based Privacy-Preserving Cryptographic Constructions 47

2. Consider the path from uj1,...,j�
to the root u, the witness w then consists

of the binary representation (j1, . . . , j�) for j as well as all the sibling nodes
of the path. Specifically,

w =
(
(j1, . . . , j�), (uj1,...,j�−1,j̄�

, . . . ,uj1,j̄2 ,uj̄1)
) ∈ {0, 1}� × ({0, 1}n

)�
,

VerifyB
(
u,d, w

)
. Let w be of the following form:

w =
(
(j1, . . . , j�), (w�, . . . ,w1)

) ∈ {0, 1}� × ({0, 1}n
)�

.

This algorithm then computes v�, . . . ,v0. Let v� = d and

∀i ∈ {� − 1, . . . , 1, 0} : vi =

{
hB(vi+1,wi+1), if ji+1 = 0;
hB(wi+1,vi+1), if ji+1 = 1.

Output 1 if v0 = u or 0 otherwise.

The correctness of the above Merkle-tree accumulator scheme follows imme-
diately from the construction. Its security is based on the collision resistance
of the hash function family H: if an adversary can break the security of the
accumulator, then one can find a solution to the 2-RNSDn,2n,c problem.

Theorem 5. Assume that the 2-RNSDn,2n,c problem is hard, then the given
accumulator scheme is secure.

Proof. Assume that there exists a PPT adversary B who breaks the security of
the given accumulator scheme with non-negligible probability. By Definition 5,
B first receives a uniformly random matrix B ∈ Z

n×m
2 generated by Setup(1λ),

and then outputs (R = (d0, . . . ,dN−1),d∗, w∗) such that d∗ ∈ R and
VerifyB(u∗,d∗, w∗) = 1, where u∗ = AccuB(R).

Let w∗ =((j∗
1 , . . . , j∗

�), (w∗
� , . . . ,w∗

1)) and (j∗
1 , . . . , j∗

�) be the binary represen-
tation of some index j∗∈ [0, N−1], then we can find a path that starts from dj∗

to the accumulated value u: uj∗
1 ,...,j∗

�
= dj∗ ,uj∗

1 ,...,j∗
�−1

, . . . ,uj∗
1
,u∗.

On the other hand, the algorithm VerifyB(u∗,d∗, w∗) can compute another
path: k∗

� = d∗,k∗
�−1, . . . ,k

∗
1,k

∗
0 = u∗.

Since d∗ ∈ R, then d∗ = dj∗ . Comparing two paths, dj∗ ,uj∗
1 ,...,j∗

�−1
, . . . ,

uj∗
1
,u∗ and d∗,k∗

�−1, . . . ,k
∗
1,u

∗, we can find the smallest integer i ∈ [�], such that
k∗

i = uj∗
1 ,...,j∗

i
. So we obtain two distinct solutions to form a collision solution to

the hash function hB at the parent node of uj∗
1 ,...,j∗

i
. ��

5.4 Logarithmic-Size Arguments of Set Membership

In this section, we describe a statistical zero-knowledge argument that allows
prover P to convince verifier V in zero-knowledge that P knows a value that was
correctly accumulated into the root of the above code-based Merkle tree. Our
protocol directly implies a logarithmic-size argument of set membership, with
respect to the set of all data items accumulated into the tree root.

48 K. Nguyen et al.

Given a uniformly random matrix B ∈ Z
n×m
2 and the accumulated value

u ∈ {0, 1}n as input, the goal of P is to convince V that it possesses a value d
and a valid witness w. We define the associated relation Racc as follows:

Racc =
{(

(B,u) ∈ Z
n×m
2 × {0, 1}n;d ∈ {0, 1}n, w ∈ {0, 1}� × ({0, 1}n)�

)
:

VerifyB
(
u,d, w

)
= 1

}
.

Before constructing a ZKAoK for the above relation, we first present several
additional permuting techniques, which are developed from [45] and from our
permuting technique presented Sect. 3.2.

– For vector b = (b1, . . . , bn) ∈ {0, 1}n, where n ∈ Z
+, denote by Encode(b)

the vector (b̄1, b1, . . . , b̄n, bn) ∈ {0, 1}2n.
– Let I∗

n ∈ Z
n×2n
2 be an extension of the identity matrix In, obtained by insert-

ing a zero-column 0n right before each of the columns of In. Note that if
b ∈ {0, 1}n, then b = I∗

n · Encode(b).
– For t = (t1, . . . , tn)� ∈ {0, 1}n, define the permutation F ′

t that transforms
vector w = (w1,0, w1,1, . . . , wn,0, wn,1)� ∈ {0, 1}2n into:

F ′
t(w) = (w1,t1 , w1,t̄1 , . . . , wn,tn

, wn,t̄n
)�.

Note that, for any t,v ∈ {0, 1}n, we have:

w = Encode(b) ⇐⇒ F ′
t(w) = Encode(b ⊕ t). (13)

– For b ∈ {0, 1} and v ∈ {0, 1}m/2, we denote Ext(b,v) as
(

b̄ · v
b · v

)
.

– For e ∈ {0, 1}, for t ∈ {0, 1}n, define the permutation Ψe,t that acts on

z =
(
z0
z1

)
∈ {0, 1}m, where z0, z1 ∈ {0, 1}m/2, as follows. It transforms z

to Ψe,t(z) =
(

E′
t(ze)

E′
t(zē)

)
. Namely, it rearranges the blocks of z according to e

and permutes each block using E′
t.

– For any b, e ∈ {0, 1} and v,w, t ∈ {0, 1}n, it follows from (7) that the following
equivalences hold:

{
z = Ext(b,RE(v)) ⇐⇒ Ψe,t(z) = Ext(b ⊕ e,RE(v ⊕ t))
y = Ext(b̄,RE(w)) ⇐⇒ Ψē,t(y) = Ext(b̄ ⊕ ē,RE(w ⊕ t)).

(14)

Now let us examine the equations associated with the relation Racc. Note that
algorithm Verify computes the path v� = d,v�−1, . . . ,v1,v0 = u, where vi for
i ∈ {� − 1, . . . , 1, 0} is computed as follows:

vi =

{
hB(vi+1,wi+1), if ji+1 = 0;
hB(wi+1,vi+1), if ji+1 = 1.

(15)

New Code-Based Privacy-Preserving Cryptographic Constructions 49

We translate Eq. (15) into the following equivalent form.

vi = j̄i+1 · hB(vi+1,wi+1) ⊕ ji+1 · hB(wi+1,vi+1)

= j̄i+1 ·(B0 ·RE(vi+1)⊕B1 ·RE(wi+1)
)⊕ji+1 ·(B0 ·RE(wi+1)⊕B1 ·RE(vi+1)

)

= B ·
(

j̄i+1 · RE(vi+1)
ji+1 · RE(vi+1)

)
⊕ B ·

(
ji+1 · RE(wi+1)
j̄i+1 · RE(wi+1)

)

= B · Ext(ji+1,RE(vi+1)) ⊕ B · Ext(j̄i+1,RE(wi+1))

Therefore, to obtain a ZKAoK for Racc, it is necessary and sufficient to construct
an argument system in which P convinces V in zero-knowledge that P knows
j1, . . . , j� ∈ {0, 1}� and v1, . . . ,v�,w1, . . . ,w� ∈ {0, 1}n satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B · Ext(j1,RE(v1)) ⊕ B · Ext(j̄1,RE(w1)) = u;
B · Ext(j2,RE(v2)) ⊕ B · Ext(j̄2,RE(w2)) ⊕ v1 = 0.

· · · · · · · · ·
B · Ext(j�,RE(v�)) ⊕ B · Ext(j̄�,RE(w�)) ⊕ v�−1 = 0.

(16)

Next, we apply the function Encode defined above to vectors v�−1, . . . ,v1.
Let xi = Encode(vi) ∈ {0, 1}2n for i ∈ [� − 1]. Then we have vi = I∗

n · xi for
i ∈ [� − 1]. For ease of notation, for i ∈ [�], denote

{
yi = Ext(ji,RE(vi)) ∈ {0, 1}m

zi = Ext(j̄i,RE(wi)) ∈ {0, 1}m
(17)

Therefore, the equations in (16) is equivalent to the following.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B · y1 ⊕ B · z1 = u;
B · y2 ⊕ B · z2 ⊕ I∗

n · x1 = 0.

· · · · · · · · ·
B · y� ⊕ B · z� ⊕ I∗

n · x�−1 = 0.

(18)

Now, using linear algebra, we can transform the equations in (18) into a
unifying equation of the form MA ·wA = vA, where MA ∈ Z

�n×L
2 ,vA ∈ Z

�n
2 are

public and wA ∈ {0, 1}L is secret with L = 2�m + 2(� − 1)n and

wA =
(
y1 ‖ . . . ‖ y� ‖ z1 ‖ . . . ‖ z� ‖ x1 ‖ . . . ‖ x�−1

)
(19)

At this point, let us specify the set VALIDA containing our secret vector wA,
the set SA and permutations {Γφ : φ ∈ SA} such that the conditions in (3) hold.
Let VALIDA be the set of all w′

A =
(
y′
1‖ . . . ‖y′

�‖z′
1‖ . . . ‖z′

�‖x′
1‖ . . . ‖x′

�−1

) ∈
{0, 1}L satisfying the following conditions:

– For i ∈ [�], there exists v′
i,w

′
i ∈ {0, 1}n, j′

i ∈ {0, 1} such that

y′
i = Ext(j′

i,RE(v′
i)) ∈ {0, 1}m, and z′

i = Ext(j̄′
i,RE(w′

i)) ∈ {0, 1}m.

50 K. Nguyen et al.

– For i ∈ [� − 1], x′
i = Encode(v′

i) ∈ {0, 1}2n.

Let SA =
({0, 1}n

)� × ({0, 1}n
)� × {0, 1}�. Then, for each element

φ =
(
b1 ‖ . . . ‖ b� ‖ e1 ‖ . . . ‖ e� ‖ g1 ‖ . . . ‖ g�

) ∈ SA,

define the permutation Γφ that transforms

w∗
A =

(
y∗
1‖ . . . ‖y∗

�‖z∗
1‖ . . . ‖z∗

�‖x∗
1‖ . . . ‖x∗

�−1

) ∈ {0, 1}L

with y∗
i , z∗

i ∈ {0, 1}m for i ∈ [�] and x∗
i ∈ {0, 1}2n for i ∈ [� − 1] into

Γφ(w∗
A) =

(
Ψg1,b1(y

∗
1)‖ . . . ‖Ψg�,b�

(y∗
�)‖Ψḡ1,e1(z

∗
1)‖ . . . ‖Ψḡ�,e�

(z∗
�)‖

F ′
b1

(x∗
1)‖ . . . ‖F ′

b�−1
(x∗

�−1)
)
.

Based on the equivalences observed in (13) and (14), it can be checked that
the conditions in (3) are satisfied. We thus have reduced the considered relation
into an instance of Rabstract.

The Interactive Protocol. Given the above preparations, our protocol goes
as follows.

– The public input consists of matrix MA and vector vA, which are constructed
from the original public input, as discussed above.

– The prover’s witness consists of vector wA ∈ VALIDA, which is built from the
initial secret input, as described above.

The prover and the verifier then interact as in Fig. 1. The protocol utilizes the
statistically hiding and computationally binding string commitment scheme from
Sect. 3 to obtain the desired statistical ZKAoK. The protocol has communication
cost O(L) = � · O(m + n) = O(log N) bits and soundness error 2/3.

6 Applications to Ring and Group Signatures

Our Merkle-tree accumulator together with its supporting zero-knowledge argu-
ment of set membership do enable a wide range of applications in code-based
anonymity-oriented cryptographic protocols. In particular, these building blocks
pave the way for the designs of logarithmic-size ring signatures and group signa-
tures from code-based assumptions. In the following, we provide the high-level
ideas of our constructions. The detailed descriptions and analyses can be found
in the full version [56].

Ring signatures are arguably the most natural applications of accumulators,
due to their decentralized setting and the observation that the ring signing pro-
cedure does capture a proof of ownership of a secret key corresponding to one
of the public keys in the given ring. In our instantiation, the secret x of each
user is an AFS hash preimage, while its image d = B ·RE(x) serves as the user’s
public key. To issue a signature with respect to a ring R = {d0, . . . ,dN−1} con-
taining his public key, the user builds a Merkle tree on top of R, and proves

New Code-Based Privacy-Preserving Cryptographic Constructions 51

knowledge of an extended path of hash preimages from his own secret key to the
leaf corresponding to his public key, and then, from there to the tree root. This
can be done by extending the ZKAoK from Sect. 5.4 to handle one more layer
of hashing. The obtained interactive zero-knowledge protocol is then repeated a
sufficient number of times to achieve negligibly small soundness error, and then
converted to a ring signature in the random oracle model via the Fiat-Shamir
transformation [32]. The scheme is statistically anonymous and is unforgeable
thanks to the security of the AFS hash function.

Building group signatures from accumulators is somewhat less intuitive. In
fact, accumulators have been mainly used in group signatures for handling revo-
cations. Libert et al. [45], however, showed that one in fact can design fully-
anonymous group signatures from a Merkle-tree-based ring signature and a
CCA2-secure encryption scheme where the latter admits a zero-knowledge argu-
ment of plaintext knowledge that is compatible with the supporting ZKAoK of
the former. Since we have already obtained the ring signature block, to adapt the
blueprint of [45], it remains to seek a suitable CCA2-secure encryption scheme
and make them work together. To this end, we employ the Naor-Yung double
encryption technique [55] to a randomized variant of the McEliece encryption
scheme [50], suggested in [58]. The resulting CCA2-secure encryption mechanism
is used to encrypt the identity of the signer - which is defined to be the log N
bits determining the path from the tree leaf corresponding to the signer to the
tree root. To complete the picture, we develop a Stern-like zero-knowledge layer
for proving that such CCA2 ciphertexts are well-formed, which works smoothly
with the zero-knowledge underlying the ring signature.

Acknowledgements. We thank Duong Hieu Phan, Benôıt Libert, Nicolas Sendrier
and Ayoub Otmani and the anonymous reviewers of ASIACRYPT 2019 for their com-
ments and suggestions. The research is supported by the Singapore Ministry of Edu-
cation under Research Grant MOE2016-T2-2-014(S). Khoa Nguyen is also supported
by the Gopalakrishnan – NTU Presidential Postdoctoral Fellowship 2018.

References

1. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In:
Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol.
6571, pp. 423–440. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19379-8 26

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC 1996, pp. 99–108. ACM (1996)

3. Alamélou, Q., Blazy, O., Cauchie, S., Gaborit, P.: A code-based group signature
scheme. Des. Codes Crypt. 82(1–2), 469–493 (2017)

4. Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikuntanathan, V.: Low-
complexity cryptographic hash functions. In: ITCS 2017. LIPIcs, vol. 67, pp. 7:1–
7:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

5. Au, M.H., Wu, Q., Susilo, W., Mu, Y.: Compact e-cash from bounded accumu-
lator. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 178–195. Springer,
Heidelberg (2006). https://doi.org/10.1007/11967668 12

https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/11967668_12

52 K. Nguyen et al.

6. Augot, D., Finiasz, M., Sendrier, N.: A fast provably secure cryptographic hash
function. IACR Cryptology ePrint Archive, 2003:230 (2003)

7. Augot, D., Finiasz, M., Sendrier, N.: A family of fast syndrome based cryptographic
hash functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715,
pp. 64–83. Springer, Heidelberg (2005). https://doi.org/10.1007/11554868 6

8. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 33

9. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 24

10. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 29

11. Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Faster 2-regular information-
set decoding. In: Chee, Y.M., et al. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 81–98.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7 5

12. Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Really fast syndrome-based
hashing. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol.
6737, pp. 134–152. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21969-6 9

13. Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum group signatures from sym-
metric primitives. IACR Cryptology ePrint Archive, 2018:261 (2018)

14. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 20

15. Brakerski, Z., Lyubashevsky, V., Vaikuntanathan, V., Wichs, D.: Worst-case hard-
ness for LPN and cryptographic hashing via code smoothing. Electronic Collo-
quium on Computational Complexity (ECCC), 25:56 (2018)

16. Branco, P., Mateus, P.: A code-based linkable ring signature scheme. In: Baek, J.,
Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 203–219. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01446-9 12

17. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

18. Brickell, E.F., Chaum, D., Damg̊ard, I.B., van de Graaf, J.: Gradual and verifiable
release of a secret (extended abstract). In: Pomerance, C. (ed.) CRYPTO 1987.
LNCS, vol. 293, pp. 156–166. Springer, Heidelberg (1988). https://doi.org/10.1007/
3-540-48184-2 11

19. Camenisch, J., Chaabouni, R., shelat, a.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
7 15

20. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 18

https://doi.org/10.1007/11554868_6
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-642-20901-7_5
https://doi.org/10.1007/978-3-642-21969-6_9
https://doi.org/10.1007/978-3-642-21969-6_9
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-030-01446-9_12
https://doi.org/10.1007/3-540-48184-2_11
https://doi.org/10.1007/3-540-48184-2_11
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/11426639_18

New Code-Based Privacy-Preserving Cryptographic Constructions 53

21. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00468-1 27

22. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

23. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

24. Chaabouni, R., Lipmaa, H., Zhang, B.: A non-interactive range proof with constant
communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 14

25. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

26. Couteau, G., Peters, T., Pointcheval, D.: Removing the strong RSA assumption
from arguments over the integers. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 321–350. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56614-6 11

27. Dallot, L., Vergnaud, D.: Provably secure code-based threshold ring signatures.
In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 222–235. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6 13

28. Derler, D., Ramacher, S., Slamanig, D.: Post-quantum zero-knowledge proofs for
accumulators with applications to ring signatures from symmetric-key primitives.
In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 419–
440. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3 20

29. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad
Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 36

30. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
new techniques for shorter and faster constructions and applications. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 5

31. Ezerman, M.F., Lee, H.T., Ling, S., Nguyen, K., Wang, H.: A provably secure group
signature scheme from code-based assumptions. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 260–285. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48797-6 12

32. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

33. Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.-P.: Identity-based encryption
from codes with rank metric. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 194–224. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63697-9 7

https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-642-32946-3_14
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-319-56614-6_11
https://doi.org/10.1007/978-3-319-56614-6_11
https://doi.org/10.1007/978-3-642-10868-6_13
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-662-48797-6_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-63697-9_7
https://doi.org/10.1007/978-3-319-63697-9_7

54 K. Nguyen et al.

34. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in
zero-knowledge and a methodology of cryptographic protocol design (extended
abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 11

35. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: ICS 2010, pp. 230–240. Tsinghua University
Press (2010)

36. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

37. González, A., Ráfols, C.: New techniques for non-interactive shuffle and range
arguments. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS,
vol. 9696, pp. 427–444. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39555-5 23

38. Groth, J.: Evaluating security of voting schemes in the universal composability
framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol.
3089, pp. 46–60. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24852-1 4

39. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis,
J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482.
Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 32

40. Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic com-
mitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
431–448. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 23

41. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-
knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 40

42. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 23

43. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 13

44. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge
arguments for matrix-vector relations and lattice-based group encryption. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 101–131.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 4

45. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

46. Libert, B., Ling, S., Nguyen, K., Wang, H.: Lattice-based zero-knowledge argu-
ments for integer relations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10992, pp. 700–732. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 24

https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/978-3-319-39555-5_23
https://doi.org/10.1007/978-3-319-39555-5_23
https://doi.org/10.1007/978-3-540-24852-1_4
https://doi.org/10.1007/978-3-540-24852-1_4
https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-34961-4_40
https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-662-53890-6_4
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-96881-0_24
https://doi.org/10.1007/978-3-319-96881-0_24

New Code-Based Privacy-Preserving Cryptographic Constructions 55

47. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5 26

48. Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without threshold trust.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36504-4 7

49. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. J. Cryptol. 31(3), 774–797 (2018)

50. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep
Space Netw. Prog. Rep. 44, 114–116 (1978)

51. Aguilar Melchor, C., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring sig-
nature scheme based on coding theory. In: Buchmann, J., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88403-3 1

52. Melchor, C.A., Cayrel, P.-L., Gaborit, P., Laguillaumie, F.: A new efficient thresh-
old ring signature scheme based on coding theory. IEEE Trans. Inf. Theory 57(7),
4833–4842 (2011)

53. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

54. Morozov, K., Takagi, T.: Zero-knowledge protocols for the McEliece encryption. In:
Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 180–193.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3 14

55. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC 1990, pp. 427–437. ACM (1990)

56. Nguyen, K., Tang, H., Wang, H., Zeng, N.: New code-based privacy-preserving
cryptographic constructions. IACR Cryptology ePrint Archive, 2019:513 (2019)

57. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

58. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece
cryptosystem without random oracles. Des. Codes Crypt. 49(1–3), 289–305 (2008)

59. Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data
structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 353–370. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38348-9 22

60. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In:
ACM-CCS 2008, pp. 437–448. ACM (2008)

61. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design, Fifth Edition:
The Hardware/Software Interface, 5th edn. Morgan Kaufmann Publishers Inc.,
Burlington (2013)

62. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

63. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 1757–1768 (1996)

64. Yu, Y., Zhang, J., Weng, J., Guo, C., Li, X.: Collision resistant hashing from
learning parity with noise. IACR Cryptology ePrint Archive, 2017:1260 (2017)

https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1007/3-540-36504-4_7
https://doi.org/10.1007/978-3-540-88403-3_1
https://doi.org/10.1007/978-3-540-88403-3_1
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-642-31448-3_14
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/3-540-45682-1_32

Lattices (2)

An LLL Algorithm for Module Lattices

Changmin Lee1, Alice Pellet-Mary1, Damien Stehlé1(B), and Alexandre Wallet2

1 Univ. Lyon, EnsL, UCBL, CNRS, Inria, LIP, 69342 Lyon Cedex 07, France
changmin.lee@ens-lyon.fr

2 NTT Secure Platform Laboratories, Tokyo, Japan

Abstract. The LLL algorithm takes as input a basis of a Euclidean lat-
tice, and, within a polynomial number of operations, it outputs another
basis of the same lattice but consisting of rather short vectors. We pro-
vide a generalization to R-modules contained in Kn for arbitrary number
fields K and dimension n, with R denoting the ring of integers of K. Con-
cretely, we introduce an algorithm that efficiently finds short vectors in
rank-n modules when given access to an oracle that finds short vectors
in rank-2 modules, and an algorithm that efficiently finds short vectors
in rank-2 modules given access to a Closest Vector Problem oracle for a
lattice that depends only on K. The second algorithm relies on quantum
computations and its analysis is heuristic.

1 Introduction

The NTRU [HPS98], RingSIS [LM06,PR06], RingLWE [SSTX09,LPR10], Mod-
uleSIS and ModuleLWE [BGV14,LS15] problems and their variants serve as
security foundations of numerous cryptographic protocols. Their main advan-
tages are their presumed quantum hardness, their flexibility for realizing
advanced cryptographic functionalities, and their efficiency compared to their
SIS and LWE counterparts [Ajt96,Reg09]. As an illustration of their popularity
for cryptographic design, we note that 11 out of the 26 candidates at Round 2 of
the NIST standardization process for post-quantum cryptography rely on these
problems or variants thereof.1 From a hardness perspective, these problems are
best viewed as standard problems on Euclidean lattices, restricted to random
lattices corresponding to modules over the rings of integers of number fields.
Further, for some parametrizations, there exist reductions from and to standard
worst-case problems for such module lattices [LS15,AD17,RSW18].

Let K be a number field and R its ring of integers. In this introduction, we
will use the power-of-2 cyclotomic fields K = Q[x]/(xd + 1) and their rings of
integers R = Z[x]/(xd + 1) as a running example (with d a power of 2). An
R-module M ⊂ Kn is a finitely generated subset of vectors in Kn that is sta-
ble under addition and multiplication by elements of R. As an example, if we
consider h ∈ R/qR for some integer q, the set {(f, g)T ∈ R2 : fh = g mod q} is
a module. If h is an NTRU public key, the corresponding secret key is a vector
1 See https://csrc.nist.gov/projects/post-quantum-cryptography.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 59–90, 2019.
https://doi.org/10.1007/978-3-030-34621-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_3&domain=pdf
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.1007/978-3-030-34621-8_3

60 C. Lee et al.

in that module, and its coefficients are small. Note that for K = Q and R = Z,
we recover Euclidean lattices in Qn. A first difficulty for handling modules com-
pared to lattices is that R may not be a Euclidean domain, and, as a result, a
module M may not be of the form M =

∑
i Rbi for some linearly independent

bi’s in M . However, as R is a Dedekind domain, for every module M , there exist
K-linearly independent bi’s and fractional ideals Ii such that M =

∑
Iibi (see,

e.g., [O’M63, Th. 81:3]). The set ((Ii,bi))i is called a pseudo-basis of M . A mod-
ule in Kn can always be viewed as a lattice in Cnd by mapping elements of K
to Cd via the canonical embedding map (for our running example, it is equivalent
to mapping a polynomial of degree <d to the vector of its coefficients).

Standard lattice problems, such as finding a full-rank set of linearly indepen-
dent short vectors in a given lattice, are presumed difficult, even in the context of
quantum computations. In order to assess the security of cryptographic schemes
based on NTRU/RingSIS/etc, an essential question is whether the restriction to
module lattices brings vulnerabilities. Putting aside small polynomial speed-ups
relying on the field automorphisms (multiplication by x in our running example),
the cryptanalytic state of the art is to view the modules as arbitrary lattices,
i.e., forgetting the module structure.

LLL [LLL82] is the central algorithm to manipulate lattice bases. It takes as
input a basis of a given lattice, progressively updates it, and eventually outputs
another basis of the same lattice that is made of relatively short vectors. Its
run-time is polynomial in the input bit-length. For cryptanalysis, one typically
relies on BKZ [SE94] which extends this principle to find shorter vectors at a
higher cost. Finding an analogue of LLL for module lattices has been an elusive
goal for at least two decades, a difficulty being to even define what that would
be. Informally, it should:

• work at the field level (in particular, it should not forget the module structure
and view the module just as a lattice);

• it should find relatively short module pseudo-bases by progressively updating
the input pseudo-basis;

• it should run in polynomial-time with respect to the module rank n and the
bit-lengths of the norms of the input vectors and ideals.

The state of the art is far from these goals. Napias [Nap96] proposed such an
algorithm for fields whose rings of integers are norm-Euclidean, i.e., Euclidean
for the algebraic norm. In our running example, this restricts the applicability
to d ≤ 4 (see [Cer05,Lez14] for other families of fields). Fieker and Pohst [FP96]
proposed a general-purpose algorithm. However, it was not proved to provide
pseudo-bases consisting of short module vectors, and a cost analysis was pro-
vided only for free modules over totally real fields. Fieker [Fie97, p. 47] sug-
gested to use rank-2 module reduction to achieve rank-n module reduction, but
there was no follow-up on this approach. Gan, Ling and Mow [GLM09] described
and analyzed an LLL algorithm for Gauss integers (i.e., our running example
instantiated to d = 2). Fieker and Stehlé [FS10] proposed to apply the LLL
algorithm on the lattice corresponding to the module to find short vectors in
polynomial time and reconstruct a short pseudo-basis afterwards. More recently,

An LLL Algorithm for Module Lattices 61

Kim and Lee [KL17] described such an LLL algorithm for biquadratic fields
whose rings of integers are norm-Euclidean, and provided analyses for the short-
ness of the output and the run-time. They also proposed an extension to arbitrary
norm-Euclidean rings, still with a run-time analysis but only conjecturing and
experimentally supporting the output quality.

The rank-2 restriction already captures a fundamental obstacle. The LLL
algorithm for 2-dimensional lattices (which is essentially Gauss’ algorithm) is a
succession of divide-and-swap steps. Given two vectors b1,b2 ∈ Q2, the ‘divi-
sion’ consists in shortening b2 by an integer multiple of b1. This integer k is
the quotient of the Euclidean division of 〈b1,b2〉 by ‖b1‖2. This leads to a vec-
tor b′

2. If the latter is shorter than b1, then b1 and b2 are swapped and a new
iteration starts. Crucial to this procedure is the fact that if the projection of b2

orthogonally to b1 is very small compared to ‖b1‖, then the division will provide
a vector b′

2 that is shorter than b1. When a swap cannot be made, it means that
the projection of b2 orthogonally to b1 is not too small, and hence the basis is
of good quality, i.e., somewhat orthogonal and hence made of somewhat short
vectors. What provides the convergence to a short basis is the Euclideanity of Z.
This is why prior works focused on this setup. Put differently, the crucial prop-
erty is the fact that the covering radius of the Z lattice is smaller than 1: this
makes it possible to shorten a vector b2 whose projection is sufficiently small by
an appropriate integer multiple such that b′

2 becomes smaller than b1. When we
extend to modules, the corresponding lattice becomes R, and its covering radius
has no a priori reason to be smaller than 1 (for our running example, it is

√
d/2).

Even if we allow an infinite amount of time to find an optimal k ∈ R, the result-
ing b2 − kb1 may still be longer than b1, even if b2 is in the K-span of b1.
This leads us to the following question: does there exist a lattice L depending
only on K such that being able to solve the Closest Vector Problem (CVP) with
respect to L allows to find short bases of modules in K2?

Contributions. The LLL algorithm for Euclidean lattices can be viewed as a
way to leverage the ability of Gauss’ algorithm to reduce 2-dimensional lattice
bases, to reduce n-dimensional lattice bases for any n ≥ 2. We propose extensions
to modules of both Gauss’ algorithm and of its LLL leveraging from 2 to n
dimensions, hence providing a full-fledged framework for LLL-like reduction of
module pseudo-bases.

Our first contribution is an oracle-based algorithm which takes as input a
pseudo-basis of a module M ⊂ Kn over the ring of integers R of an arbitrary
number field K, updates it progressively in a fashion similar to the LLL algo-
rithm, and outputs a pseudo-basis of M . The first output vector is short, and
the algorithm runs in time polynomial in n and the bit-lengths of the norms of
the input vectors and ideals. It makes a polynomial number of calls to an oracle
that finds short vectors in rank-2 modules. This oracle-based LLL-like algorithm
for modules allows us to obtain the following result for our running example (see
Theorem 3.9 for a general statement).

Theorem 1.1. Let K = Q[x]/(xd+1) and R = Z[x]/(xd+1), for d a power of 2.
There is a polynomial-time reduction from finding a (2γ

√
d)2n−1-approximation

62 C. Lee et al.

to a shortest non-zero vector in modules in Kn (with respect to the Euclidean
norm inherited from mapping an element of Kn to the concatenation of its n
coefficient vectors) to finding a γ-approximation to a shortest non-zero vector in
modules in K2.

For example, if n is constant, then the reduction allows to obtain polynomial
approximation factors in modules in Kn from polynomial approximation factors
in modules in K2.

Our second contribution is a heuristic algorithm to find a very short non-zero
vector in an arbitrary module in K2, given access to a CVP oracle with respect
to a lattice depending only on K. We obtain the following result for our running
example (combine Corollary 4.10 with Lemma 2.3 for a general statement).

Theorem 1.2 (Heuristic). There exists a sequence of lattices Ld and an algo-
rithm A such that the following holds. Algorithm A takes as input a pseudo-basis
of a rank-2 module M ⊂ (Q/(xd + 1))2, and outputs a vector v ∈ M \ {0} that
is no more than 2(log d)O(1)

longer than a shortest non-zero vector of M . If given
access to an oracle solving CVP in Ld in polynomial time, then it runs in quan-
tum polynomial time. Finally, for any η > 0, the lattice Ld can be chosen of
dimension O(d2+η).

The quantum component of the algorithm is the decomposition of an ideal
as the product of a subset of fixed ideals and a principal ideal with a gener-
ator [BS16]. By relying on [BEF+17] instead, one can obtain a dequantized
variant of Theorem 1.2 relying on more heuristics and in which the algorithm
runs in 2 ˜O(

√
d) classical time.

We insist that the result relies on heuristics. Some are inherited from prior
works (such as [PHS19]) and one is new (Heuristic 1 in Sect. 4). The new heuristic
quantifies the distance to Ld of vectors in the real span of Ld that satisfy some
properties. This heuristic is difficult to prove as the lattice Ld involves other
lattices that are not very well understood (the log-unit lattice and the lattice
of class group relations between ideals of small algebraic norms). We justify
this heuristic by informal counting arguments and by some experiments in small
dimensions.

Finally, we note that the dimension of Ld is near-quadratic in the degree d
of the field. This is much more than the lattice dimension d of R, but we do not
know how to use a CVP oracle for R to obtain such an algorithm to find short
vectors in rank-2 modules. An alternative approach to obtain a similar reduction
from finding short non-zero vectors in rank-2 modules to CVP with preprocessing
would be as follows: to reach the goal, it suffices to find a short non-zero vector
in a (2d)-dimensional lattice; by using the LLL algorithm and numerical approx-
imations (see, e.g., [SMSV14]), it is possible to further assume that the bit-size
of the inputs is polynomial in d; by Kannan’s search-to-decision reduction for the
shortest vector problem [Kan87], it suffices to obtain an algorithm that decides
whether or not a lattice contains a non-zero vector of norm below 1; the latter
task can be expressed as an instance of 3SAT, as the corresponding language

An LLL Algorithm for Module Lattices 63

belongs to NP; finally, 3SAT reduces to CVP with preprocessing [Mic01]. Over-
all, this gives an alternative to Theorem 1.2 without heuristics, but lattices Ld

of much higher dimensions (which still grow polynomially in d).

Technical overview. One of the technical difficulties of extending LLL to
modules is the fact that the absolute value | · | over Q has two canonical gen-
eralizations over K: the trace norm and the algebraic norm. Let (σi)i≤d denote
the embedding of K into C. The trace norm and algebraic norm of x ∈ K are
respectively defined as (

∑
i |σi(x)|2)1/2 and

∏
i σi(x). When K = Q, the only

embedding is the identity map, and both the trace norm and the absolute value
of the algebraic norm collapse to the absolute value. When the field degree is
greater than 1, they do not collapse, and are convenient for diverse properties.
For instance, the trace norm is convenient to measure smallness of a vector
over Kn. A nice property is that the bit-size of an element of R is polynomially
bounded in the bit-size of the trace norm (for a fixed field K). Oppositely, an
element in R may have algebraic norm 1 (in this case, it is called a unit), but can
have arbitrarily large bit-size. On the other hand, the algebraic norm is multi-
plicative, which interacts well with determinants. For example, the determinant
of the lattice corresponding to a diagonal matrix over K is simply the product
of the algebraic norms of the diagonal entries (up to a scalar depending only on
the field K). LLL relies on all these properties, that are conveniently satisfied
by the absolute value.

In our first contribution, i.e., the LLL-like algorithm to reduce module
pseudo-bases, we crucially rely on the algebraic norm. Indeed, the progress made
by the LLL algorithm is measured by the so-called potential function, which is
a product of determinants. As observed in prior works [FP96,KL17], using the
algebraic norm allows for a direct generalization of this potential function to
module lattices. What allowed us to go beyond norm-Euclidean number fields
is the black-box handling of rank-2 modules. By not considering this difficult
component, we can make do with the algebraic norm for the most important
parts of the algorithm. The trace norm is still used to control the bit-sizes of
the module pseudo-bases occurring during the algorithm, allowing to extend the
so-called size-reduction process within LLL, but is not used to “make progress”.
The black-boxing of the rank-2 modules requires the introduction of a modified
condition for deciding which 2-dimensional pseudo-basis to consider to “make
progress” on the n-dimensional pseudo-basis being reduced. This condition is
expressed as the ratio between 2-determinants, which is compatible with the
exclusive use of the algebraic norm to measure progress. It involves the coef-
ficient ideals, which was unnecessary in prior works handling norm-Euclidean
fields, as for such fields, all modules can be generated by a basis instead of a
pseudo-basis.

Our algorithm for finding short non-zero vectors in rank-2 modules iterates
divide-and-swap steps like 2-dimensional LLL (or Gauss’ algorithm). The crucial
component is the generalization of the Euclidean division, from Z to R. We are
given a ∈ K \ {0} and b ∈ K, and we would like to shorten b using R-multiples
of a. In the context of a ∈ Q\{0} and b ∈ Q, a Euclidean division provides us with

64 C. Lee et al.

u ∈ Z such that |b+ua| ≤ |a|/2. We would like to have an analogous division in R.
However, the ring R may not be Euclidean. Moreover, the covering radius of the
ring R (viewed as a lattice) can be larger than 1, and hence, in most cases, there
will not even exist an element u ∈ R such that ‖b+au‖ ≤ ‖a‖ (here ‖·‖ refers to
the trace norm). In order to shorten b using a, we also allow b to be multiplied
by some element v ∈ R. For this extension to be non-trivial (and useful), we
require that v is not too large (otherwise, one can always take u = b and v = −a
for instance, if a, b ∈ R, and extend this approach for general a, b ∈ K). Hence,
we are interested in finding u, v such that ‖ua + vb‖ ≤ ε‖a‖ and ‖v‖ ≤ C for
some ε < 1 and C to be determined later. Intuitively, if we allow for a large
number of such multiples v (proportional to 1/ε and to the determinant of the
lattice corresponding to R, i.e., the square root of the field discriminant), there
should be one such v such that there exists u ∈ R with ‖vb + au‖ ≤ ε‖a‖. We
do not know how to achieve the result with this heuristically optimal number
of v’s and use potentially larger v’s. The astute reader will note that if we use
such a v inside a divide-and-swap algorithm, we may end up computing short
vectors in sub-modules of the input modules. We prevent this from happening
by using the module Hermite Normal Form [BP91,Coh96,BFH17].

To find u, v such that ‖vb+au‖ is small, we use the logarithm map Log over K.
For this discussion, we do not need to explain how it is defined, but only that it
“works” like the logarithm map log over R>0. In particular if x ≈ y, then Log x ≈
Log y. We would actually prefer to have the converse property, but it does not
hold for the standard Log over K. In Subsect. 4.1, we propose an extension Log
such that Logx ≈ Logy implies that x ≈ y. In our context, this means that we
want to find u, v such that Logv − Logu ≈ Log(b) − Log(a). To achieve this,
we will essentially look for such u and v that are product combinations of fixed
small elements in R. When applying the Log function, the product combinations
become integer combinations of the Log’s of the fixed elements. This gives us
our CVP instance: the lattice is defined using the Log’s of the fixed elements and
the target is defined using Log(b) − Log(a). This description is only to provide
intuition, as reality is more technical: we use the log-unit lattice and small-norm
ideals rather than small-norm elements.

One advantage of using the Log map is that the multiplicative structure of K
is mapped to an additive structure, hence leading to a CVP instance. On the
downside, one needs extreme closeness in the Log space to obtain useful closeness
in K (in this direction, we apply an exponential function). Put differently, we
need the lattice to be very dense so that there is a lattice vector that is very
close to the target vector. This is the fundamental reason why we end up with a
large lattice dimension: we add a large number of Log’s of small-norm ideals to
densify the lattice. This makes the analysis of the distance to the lattice quite
cumbersome, as the Gaussian heuristic gives too crude estimates. For our running
example, we have a lattice of dimension ≈ d2 and determinant ≈ 1, hence we
would expect a ‘random’ target vector to be at distance ≈ d from the lattice.
We argue for a distance of at most ≈ √

d for ‘specific’ target vectors. Finally,
we note that the lattice and its analysis share similarities with the Schnorr-
Adleman lattice that Ajtai used to prove NP-hardness of SVP under randomized
reductions [Ajt98,MG02] (but we do not know if there is a connection).

An LLL Algorithm for Module Lattices 65

Impact. Recent works have showed that lattice problems restricted to ideals of
some cyclotomic number fields can be quantumly solved faster than for arbitrary
lattices, for some ranges of parameters [CDW17], and for all number fields with
not too large discriminant, if allowing preprocessing that depends only on the
field [PHS19]. Recall that ideal lattices are rank-1 module lattices. Our work
can be viewed as a step towards assessing the existence of such weaknesses for
modules of larger rank, which are those that appear when trying to cryptan-
alyze cryptosystems based on the NTRU, RingSIS, RingLWE, ModuleSIS and
ModuleLWE problems and their variants.

Similarly to [CDW17,PHS19], our results use CVP oracles for lattices defined
in terms of the number field only (i.e., defined independently of the input mod-
ule). In [CDW17,PHS19], the weaknesses of rank-1 modules stemmed from two
properties of these CVP instances: the lattices had dimension quasi-linear in the
log-discriminant (quasi-linear in the field degree, for our running example), and
either the CVP instances were easy to solve [CDW17], or approximate solutions
sufficed [PHS19] and one could rely on Laarhoven’s CVP with preprocessing algo-
rithm [Laa16]. In our case, we need (almost) exact solutions to CVP instances
for which we could not find any efficient algorithm, and the invariant lattice has
a dimension that is more than quadratic in the log-discriminant (in the field
degree, for our running example). It is not ruled out that there could be efficient
CVP algorithms for such lattices, maybe for some fields, but we do not have any
lead to obtain them.

As explained earlier, CVP with preprocessing is known to be NP-complete,
so there always exists a fixed lattice allowing to solve the shortest vector problem
in lattices of a target dimension. However, the dimension of that fixed lattice
grows as a high degree polynomial in the target dimension. The fact that we
only need near-quadratic dimensions (when the log-discriminant is quasi-linear
in the field degree) may be viewed as a hint that finding short non-zero vectors in
rank-2 modules might be easier than finding short non-zero vectors in arbitrary
lattices of the same dimension.

Finally, our first result shows the generality of rank-2 modules towards finding
short vectors in rank-n modules for any n ≥ 2. The reduction allows to stay in the
realm of polynomial approximation factors (with respect to the field degree) for
any constant n. This tends to back the conjecture that there might be a hardness
gap between rank-1 and rank-2 modules, and then a smoother transition for
higher rank modules.

Notations. For two real valued functions f and g, we write f(x) = Õ(g(x)) if
and only if there exists some constant c > 0 such that f(x) = O(g(x)·| log g(x)|c).
By abuse of notations, we write O(xαpoly(log x)) as Õ(xα) even if α = 0. We let
Z, Q, R, and C denote the sets of integers, rational, real, and complex numbers,
respectively. For x ∈ C, we let x̄ denote its complex conjugate. We use lower-case
(resp. upper-case) bold letters for vectors (resp. matrices). For vectors xi = (xij)j

for i ≤ k, we write (x1‖ . . . ‖xk) to denote the vector obtained by concatenation.
By default, the matrices are written with column vectors.

66 C. Lee et al.

For a vector x = (xi)i ∈ Cn, we write ‖x‖i for i ∈ {1, 2,∞} to denote
�i-norm, and we typically omit the subscript when i = 2. For a lattice Λ ⊂ Rn,
we let ρ(Λ) denote the covering radius with respect to Euclidean norm.

Supplementary material. Due to lack of space, some material is provided
only in the full version [LPSW19]. This includes: background on computational
aspects on number fields, several proofs, and reports on experiments backing the
heuristic claims.

2 Preliminaries

In this section, we first recall some necessary algebraic number theory back-
ground and discuss some computational aspects. We then extend Gram-Schmidt
orthogonalization to matrices over number fields. In this section, we assume that
the reader is somehow familiar with the algebraic notions used in this article and
in previous works. For more details on these mathematical objects, we refer the
reader to [Neu99, Chapter 1] for algebraic number theory questions, to [Hop98]
for anything related to modules and to [PHS19] where the same techniques were
used in a simpler setting.

2.1 Algebraic Background

Number fields. We let K be a number field of degree d and KR = K ⊗Q R.
A number field comes with r1 real embeddings and 2r2 complex embeddings
σi’s, where r1 + 2r2 = d. The field norm is defined as N (x) =

∏
i≤d σi(x) and

the field trace is Tr(x) =
∑

i≤d σi(x). The canonical embedding of K is then
defined as σ(x) ∈ Rr1 × C2r2 , where σr1+i(x) = σr1+r2+i(x) for 1 ≤ i ≤ r2.
The field trace then induces a Hermitian inner product over KR whose associ-
ated Euclidean norm is ‖x‖ = (

∑
1≤i≤d |σi(x)|2)1/2 for x ∈ KR. We also define

‖x‖∞ = maxi∈[d] |σi(x)|.
In this work, elements of K are identified to their canonical embeddings.

From this perspective, the set KR is also identified to {y ∈ Rr1 × C2r2 :
∀i ≤ r2 , yr1+r2+i = yr1+i} (the embedding map σ provides a ring isomorphism
between KR and the latter subspace of Rr1 × C2r2). We write K×

R
for the subset

of vectors in KR with non-zero entries (it forms a group, for component-wise mul-
tiplication). We also write K+

R
for the subset of vectors in KR with non-negative

(real) coefficients. For x ∈ KR, we let x̄ refer to the element of KR obtained
by complex conjugation of every coordinate.2 We can also define a square-root√· : K+

R
→ K+

R
by taking coordinate-wise square roots.

We let R be the ring of integers of K. It is a free Z-module of rank d, and
can be seen as a lattice via the canonical embedding. The discriminant ΔK of K

2 Observe that even if complex conjugation might not be well defined over K (i.e., the
element x̄ might not be in K even if x is), it is however always defined over KR. In
this article, complex conjugation will only be used on elements of KR, and we make
no assumption that K should be stable by conjugation.

An LLL Algorithm for Module Lattices 67

is then the squared volume of R, i.e., ΔK = det((σi(xj))ij)2 for any Z-basis
(xi)i≤d of R. We will often use the inequality log ΔK ≥ Ω(d) to simplify cost
estimates.

We let R× = {u ∈ R | ∃ v ∈ R : uv = 1} denote the group of units
of R. Dirichlet’s unit theorem states that R× is isomorphic to the Cartesian
product of a finite cyclic group (formed by the roots of unity contained in K)
with the additive group Zr1+r2−1. We define Log : K×

R
→ Rd by Log(x) =

(log(|σ1(x)|), . . . , log(|σd(x)|))T . Let E = {x ∈ Rd | ∀r1 ≤ i ≤ r2 : xi = xi+r2}.
We have Log(K×

R
) ⊆ E. We also define H = {x ∈ Rd :

∑
i∈[d] xi = 0} and 1 =

(1, . . . , 1)T , which is orthogonal to H in Rd. The set Λ = {Log(u) : u ∈ R×} is a
lattice, called “log-unit” lattice. It has rank r1 +r2 −1, by Dirichlet’s units theo-
rem and is full rank in E∩H. Further, its minimum satisfies λ1(Λ) ≥ (ln d)/(6d2)
(see [FP06, Cor. 2]).

Ideals. A fractional ideal I of K is an additive subgroup of K which is also stable
by multiplication by any element of R, and such that xI ⊆ R for some x ∈ Z\{0}.
Any non-zero fractional ideal is also a free Z-module of rank d, and can therefore
be seen as a lattice in KR using the canonical embedding: such lattices are called
ideal lattices. The product IJ of two fractional ideals I and J is the fractional
ideal generated by all elements xy with x ∈ I and y ∈ J . Any non-zero fractional
ideal I is invertible, i.e., there exists a unique ideal I−1 = {x ∈ K : xI ⊆ R}
such that II−1 = R. When I ⊆ R, it is said to be an integral ideal. An integral
ideal p is said to be prime if whenever p = IJ with I and J integral, then either
I = p or J = p. For any g ∈ K, we write 〈g〉 = gR the smallest fractional ideal
containing g, and we say that it is a principal ideal. The quotient of the group of
non-zero fractional ideals (for ideal multiplication) by the subgroup consisting
in principal ideals is the class group ClK . Its cardinality hK is called the class
number. Under the GRH, there is a set of cardinality ≤ log hK = Õ(log ΔK)
of prime ideals of norms ≤12 log2 ΔK that generates ClK (see, e.g., [PHS19,
Se. 2.3]). We also will use the bound hK · (det Λ) ≤ 2 ˜O(log ΔK) (see, e.g., [PHS19,
Se. 2.4]).

The algebraic norm N (I) of an integral ideal I is its index as a subgroup of R,
and is equal to det(σ(I))/Δ1/2

K . The algebraic norm of a prime ideal is a power of
a prime number. For a principal ideal, we also have N (〈g〉) = |N (g)|. The norm
extends to fractional ideals using N (I) = N (xI)/|N (x)|, for any x ∈ R \ {0}
such that xI ⊆ R. We have N (IJ) = N (I)N (J) for all fractional ideals I, J .

Lemma 2.1 ([BS96, Th. 8.7.4]). Assume the GRH. Let πK(x) be the number
of prime integral ideals of K of norm ≤x. Then there exists an absolute con-
stant C (independent of K and x) such that |πK(x) − li(x)| ≤ C · √

x(d log x +
log ΔK), where li(x) =

∫ x

2
dt
ln t ∼ x

lnx .

Module lattices and their geometry. In this work, we call (R-)module any
set of the form M = I1b1+. . .+Inbn, where the Ij ’s are non-zero fractional ideals
of R and the bj ’s are KR-linearly independent3 vectors in Km

R
, for some m > 0.

3 The vectors bj ’s are said to be KR-linearly independent if and only if there is no
non-trivial ways to write the zero vector as a KR-linear combination of the bj ’s.

68 C. Lee et al.

The tuple of pairs ((I1,b1), . . . , (In,bn)) is called a pseudo-basis of M , and n
is its rank. Note that the notion of rank of a module is usually only defined
when the module has a basis (i.e., is of the form M = Rb1 + . . . + Rbn, with all
the ideals equal to R). In this article, we consider an extension of the definition
of rank, defined even if the module does not have a basis, as long as it has a
pseudo-basis. In particular, fractional ideals are rank-1 modules contained in K,
and sets of the form α ·I for α ∈ K×

R
and a non-zero fractional ideal I are rank-1

modules in KR. We refer to [Hop98] for a thorough study of R-modules, and
concentrate here on the background necessary to the present work.

Two pseudo-bases ((I1,b1), . . . , (In,bn)) and ((J1, c1), . . . , (Jn, cn)) repre-
sent the same module if and only if there exists U = (uij)i,j ∈ Kn×n

invertible such that C = B · U; we have uij ∈ IiJ
−1
j and u′

ij ∈ JiI
−1
j for

all i, j and for U′ = (u′
ij)i,j := U−1. Here, the matrix B is the concate-

nation of the column vectors bi (and similarly for C). If n > 0, we define
detKR

M = det(B
�
B)1/2 · ∏

i Ii. It is an R-module in KR. Note that it is a
module invariant, i.e., it is identical for all pseudo-bases of M .

We extend the canonical embedding to vectors v = (v1, . . . , vm)T ∈ Km
R

by defining σ(v) as the vector of Rdm obtained by concatenating the canonical
embeddings of the vi’s. This extension of the canonical embedding maps any
module M of rank n to a (dn)-dimensional lattice in Rdm. We abuse notation
and use M to refer to both the module and the lattice obtained by applying the
canonical embedding.

The determinant of a module M seen as a lattice is det M = Δ
n/2
K ·

N (detKR
M). This matches with the module determinant definition from [FS10,

Se. 2.3]. Since det(M) �= 0, this shows in particular that the diagonal coefficients
rii of the R-factor are invertible in KR (otherwise, one of their embedding would
be 0 and so would be their norm).

We consider the following inner products for a,b ∈ Km
R

:

〈a,b〉KR
=

∑

i∈[m]

aibi ∈ KR and 〈a,b〉 = Tr(
∑

i∈[m]

aibi) ∈ C.

Note that we have 〈v,v〉KR
∈ K+

R
, as all σi(〈v,v〉KR

)’s are non-negative. For
v ∈ Km

R
, we define ‖v‖KR

=
√〈v,v〉KR

and ‖v‖ =
√

Tr(〈v,v〉KR
) =

√〈v,v〉.
Observe that ‖v‖ correspond to the Euclidean norm of v when seen as a vector
of dimension dm via the canonical embedding. We extend the infinity norm to
vectors v ∈ Km

R
by ‖v‖∞ = maxi∈[m] ‖vi‖∞, where v = (v1, . . . , vm). We also

extend the algebraic norm to vectors v ∈ Km
R

by setting N (v) := N (‖v‖KR
).

For m = 1, we see that N (v) = |N (v)|. By the arithmetic-geometric inequal-
ity, we have

√
d · N (a)1/d ≤ ‖a‖ for a ∈ Km

R
. Observe also that for any vector

v = (v1, . . . , vm)T ∈ KR, we have N (v) ≥ maxi(N (vi)), because for any embed-
ding σj , it holds that |σj(v1v1 + · · · + vmvm)| = |σj(v1)|2 + · · · + |σj(vm)|2 ≥
maxi |σj(vi)|2.

Because KR is a ring and not a field, this definition is stronger than requiring that
none of the bj ’s is in the span of the others.

An LLL Algorithm for Module Lattices 69

We define the module minimum λ1(M) as the norm of a shortest non-zero
element of M with respect to ‖ · ‖. Our module-LLL algorithm will rely on the
algebraic norm rather than the Euclidean norm. For this reason, we will also be
interested to the minimum λN

1 (M) = inf(N (v) : v ∈ M \ {0}). We do not know
if this minimum is always reached for some vector v ∈ M , but we can find an
element of M whose algebraic norm is arbitrarily close to λN

1 (M). The following
lemma provides relationships between λ1(M) and λN

1 (M).

Lemma 2.2. For any rank-n module M , we have:

d−d/2λ1(M)dΔ
−1/2
K ≤ λN

1 (M) ≤ d−d/2λ1(M)d ≤ nd/2Δ
1/2
K N (detKR

M)1/n.

2.2 Computing over Rings

Background on field and ideal arithmetic is provided in the full ver-
sion [LPSW19].

Computations with an oracle. In Sect. 4, we will assume that we have
access to an oracle for the Closest Vector Problem, for lattices related to K. For
example, we will assume that we can solve CVP for the lattice corresponding
to R, with respect to ‖ · ‖. This lattice has dimension d.

In a similar vein, we will use the following adaptation from [PHS19, Th. 3.4],
to find short elements in rank-1 modules.

Lemma 2.3 (Heuristic). There exists a lattice LK (that only depends on K

and has dimension Õ(log ΔK)) such that, given an oracle access to an algorithm
that solves CVP for LK , the following holds. There exists a heuristic quantum
polynomial-time algorithm that takes as input an ideal I of K and any α ∈ K×

R
,

and outputs x ∈ αI \ {0} such that

‖x‖∞ ≤ c · |N (α)|1/d · N (I)1/d,

where c = 2 ˜O(log |Δ|)/d. In particular, we have ‖x‖∞ ≤ c · |N (x)|1/d.

The result assumes GRH and Heuristic 4 from [PHS19]. The quantum com-
putation performed by the algorithm derives from [BS16] and consists in com-
puting the log-unit lattice, finding a small generating set ([pi])i of the class
group ClK of K, and decomposing the class [I] of I in ClK in terms of that gen-
erating set. These quantum computations can be replaced by classical ones (e.g.,
[BF14,BEF+17]), at the expense of increased run-times and additional heuristic
assumptions.

The lemma can be derived from [PHS19, Th. 3.4] by replacing Laarhoven’s
CVPP algorithm [Laa16] by an exact CVPP oracle. In [PHS19], the CVPP
algorithm is used with a target vector t derived from the decomposition of [I]
on the [pi]’s and the logarithm Log(g) of an element g ∈ K. To obtain the
statement above, we replace Log(g) by Log(g · α) = Log(g) + Log(α). The last
lemma statement ‖x‖∞ ≤ c|N (x)|1/d comes from the observation that |N (x)| ≥
N (α) · N (I) (which holds because x belongs to αI \ {0}).

70 C. Lee et al.

2.3 Gram-Schmidt Orthogonalization

We extend Gram-Schmidt Orthogonalization from matrices over the real num-
bers to matrices over Km

R
. For (b1, . . . ,bn) ∈ Km×n

R
such that b1, . . . ,bn are

KR-linearly independent, we define b∗
1 = b1 and, for 1 < i ≤ n:

b∗
i = bi −

∑

j<i

μijb
∗
j with ∀j < i : μij =

〈bi,b
∗
j 〉KR

〈b∗
j ,b

∗
j 〉KR

.

It may be checked that 〈b∗
i ,b

∗
j 〉 = 0 for i �= j, and that b∗

i = argmin(‖bi −∑
j<i yjbj‖ | ∀j : yj ∈ KR).
We also extend the QR-factorization to matrices over KR. We define rii =

‖b∗
i ‖KR

for i ≤ n, rij = μjirii when i < j, and rij = 0 when i > j. We then have
B = Q ·R, where Q ∈ Km×n

R
is the matrix whose columns are the b∗

i /‖b∗
i ‖KR

’s
and R = (rij)ij . Note that Q

T
Q = Id and that R is upper-triangular with

diagonal coefficients in K+
R

.
The following lemma provides relationships between some module invariants

and the QR-factorization.

Lemma 2.4. Let M ⊂ Km
R

be a module with pseudo-basis ((Ii,bi))i≤n. Let R
be the R-factor of B. Then, we have detKR

M =
∏

i riiIi and det M =
Δ

n/2
K

∏
i N (riiIi). Further, for any vector v ∈ Km

R
and fractional ideal I ⊂ K

such that 0 � vI ⊆ M , it holds that N (v) · N (I) ≥ mini N (riiIi). This implies
in particular that λN

1 (M) = infs∈M\{0} N (s) ≥ mini N (riiIi).

In this work, we will mostly rely on QR-factorization. It carries the same
information as Gram-Schmidt orthogonalization, but allows for simpler explana-
tions. However, from a computational perspective, the R-factor may be difficult
to represent exactly even for modules contained in Km, because of the square
roots appearing in its definition. This difficulty is circumvented by computing
the Gram-Schmidt orthogonalization instead, and using it as a means to rep-
resent the R-factor. In the full version, we explain how to efficiently compute
Gram-Schmidt orthogonalizations.

For lattices, if we have a basis and a full-rank family of short vectors, then we
can efficiently obtain a basis of the lattice whose Gram-Schmidt vectors are no
longer than those of the full-rank family of short vectors. This was generalized to
modules in [FS10], relying on the extension to modules of the Hermite Normal
Form [BP91,Coh96,BFH17].

Lemma 2.5 ([FS10, Th. 4]). There exists an algorithm that takes as inputs
a pseudo-basis ((Ii,bi))i≤n of a module M ⊂ Km

R
and a full-rank set of vec-

tors (si)i≤n of M and outputs a pseudo-basis ((Ji, ci))i≤n such that ci ∈ M
and c∗

i = s∗
i for all i. If M ⊂ Km, then it terminates in polynomial-time.

Note that the condition that ci ∈ M implies that R ⊆ Ji, for all i.

An LLL Algorithm for Module Lattices 71

3 LLL-Reduction of Module Pseudo-bases

LLL-reduction of lattice bases is defined in terms of Gram-Schmidt orthogonal-
ization (or, equivalently, QR-factorization). A basis is said LLL-reduced if two
conditions are satisfied. The first one, often referred to as size-reduction condi-
tion, states that any off-diagonal coefficients rij of the R-factor should have a
small magnitude compared to the diagonal coefficient rii on the same row. The
second one, often referred to as Lovász’ condition, states that the 2-dimensional
vector (ri,i, 0)T is no more than 1/δ times longer than (ri,i+1, ri+1,i+1)T , for some
parameter δ < 1. The size-reduction condition allows to ensure that the norms
of the vectors during the LLL execution and at its completion stay bounded.
More importantly, in combination with Lovász’ condition, it makes it impossible
for ri+1,i+1/ri,i to be arbitrarily small (for an LLL-reduced basis). The latter is
the crux of both the LLL output quality and its fast termination.

3.1 An LLL Algorithm for Module Lattices

When extending to rings, the purpose of the size-reduction condition is better
expressed in terms of the Euclidean norm ‖ · ‖, whereas the bounded decrease of
the rii’s is better quantified in terms of the algebraic norm N (·). This discrep-
ancy makes the definition of a LLL-reduction algorithm for modules difficult. In
this section, we circumvent this difficulty by directly focusing on the decrease
of the rii’s, deferring to later sections the handling of the rank-2 modules of
pseudo-bases ((Ii, (ri,i, 0)T), (Ii+1, (ri,i+1, ri+1,i+1)T)). We also defer to later the
bounding of bit-sizes.

Definition 3.1 (LLL-reducedness of a pseudo-basis). A module pseudo-
basis ((Ii,bi))i≤n is called LLL-reduced with respect to a parameter αK ≥ 1 if,
for all i < n, we have:

N (ri+1,i+1Ii+1) ≥ 1
αK

· N (ri,iIi), (3.1)

where R = (ri,j)i,j refers to the R-factor of the matrix basis B.

We first explain that LLL-reduced pseudo-bases are of interest, and we will
later discuss their computation (for some value of αK).

Lemma 3.2. Assume that ((Ii,bi))i≤n is an LLL-reduced pseudo-basis of a
module M . Then:

N (I1)N (b1) ≤ α
(n−1)/2
K · (N (detKR

M))1/n,

N (I1)N (b1) ≤ αn−1
K · λN

1 (M).

Our LLL algorithm for modules is very similar to the one over the integers.
The algorithm proceeds by finding an approximation to a shortest non-

zero element in a rank-2 module, with respect to the algebraic norm. Using

72 C. Lee et al.

Algorithm 3.1. LLL-reduction over K

Input: A pseudo-basis ((Ii,bi))i≤n of a module M ⊂ Km.
Output: An LLL-reduced pseudo-basis of M .
1: while there exists i < n such that αK · N (ri+1,i+1Ii+1) < N (ri,iIi) do
2: Define Mi as the rank-2 module spanned by ((Ii,ai), (Ii+1,ai+1)), with ai =

(rii, 0)T and ai+1 = (ri,i+1, ri+1,i+1)
T ;

3: Find si ∈ Mi \ {0} such that N (si) ≤ γd · λN
1 (Mi);

4: Set si+1 = ai if it is linearly independent with si, and si+1 = ai+1 otherwise;
5: Call the algorithm of Lemma 2.5 with ((Ii,ai), (Ii+1,ai+1)) and (si, si+1) as

inputs, and let ((I ′
i,a

′
i), (I

′
i+1,a

′
i+1)) denote the output;

6: Update Ii := I ′
i, Ii+1 := I ′

i+1 and [bi|bi+1] := [bi|bi+1] · A−1 · A′

(where A = [ai|ai+1] and A′ = [a′
i|a′

i+1]).
7: end while
8: return ((Ii,bi))i≤n.

Lemma 2.2, we obtain a sufficient condition on αK such that Algorithm 3.1
terminates. In particular, if αK is sufficiently large, then N (ri+1,i+1Ii+1) <
1

αK
N (ri,iIi) implies that there is a vector s in the local projected rank-2 module

of norm significantly less than N (ri,iIi).

Lemma 3.3. Take the notations of Algorithm 3.1, and consider an index i < n

such that αK ·N (ri+1,i+1Ii+1) < N (ri,iIi). We have N (si) ≤ γd
√

2dΔK

αK
N (ri,iIi).

We are now ready to prove the main result of this section.

Theorem 3.4. Assume that Step 3 of Algorithm 3.1 is implemented with
some algorithm O for some parameter γ. Assume that αK > γ2d2dΔK . Then
Algorithm 3.1 terminates and outputs an LLL-reduced pseudo-basis of M . Fur-
ther, the number of loop iterations is bounded by

n(n + 1)
log(αK/(γ2d2dΔK))

· log
maxN (riiIi)
minN (riiIi)

,

where the Ii’s and rii’s are those of the input pseudo-basis.

Proof. We first show that at every stage of the algorithm, the current pseudo-
basis ((Ii,bi))i≤n is a pseudo-basis of M . For this, it suffices to show that
the operations performed on it at Step 6 preserve this property. This is pro-
vided by the fact that A−1 · A′ maps the pseudo-basis ((Ii,ai), (Ii+1,ai+1))
into the pseudo-basis ((I ′

i,a
′
i), (I

′
i+1,a

′
i+1)) of the same rank-2 module (by

Lemma 2.5). Applying the same transformation to ((Ii,bi), (Ii+1,bi+1)) pre-
serves the spanned rank-2 module. The correctness of Algorithm 3.1 is implied
by termination and the above.

We now prove a bound on the number of loop iterations, which will in par-
ticular imply termination. Consider the quantity

Π :=
∏

i≤n

N (riiIi)n−i+1.

An LLL Algorithm for Module Lattices 73

This quantity if bounded from above by maxN (riiIi)n(n+1)/2 and from below
by minN (riiIi)n(n+1)/2. Below, we show that Π never increases during the
execution of the algorithm, and that at every iteration of the while loop,
it decreases by a factor ≥

√
αK/(γ2d2dΔK). We also show that the quan-

tity minN (riiIi)n(n+1)/2 can only increase during the execution of the algorithm,
hence the lower bound above holds with respect to the input rii and Ii at every
step of the algorithm. Combining the decrease rate with the above upper and
lower bounds, this implies that the number of loop iterations is bounded by

n(n + 1)
log(αK/(γ2d2dΔK))

· log
maxN (riiIi)
minN (riiIi)

,

where the Ii’s and rii’s are those of the input pseudo-basis.
Consider an iteration of the while loop, working at index i. We have αK ·

N (ri+1,i+1Ii+1) < N (ri,iIi). Step 6 is the only one that may change Π. Observe
that we have

Π =
∏

j≤n

N (
detKR

(
((Ii,bi))i≤j

))
.

During the loop iteration, none of the n modules in the expression above changes,
except possibly the i-th one. Now, note that

N (
detKR

(
((Ik,bk))k≤i

))
=

∏

k≤i

N (rkkIk).

During the loop iteration under scope, only the i-th term in this product may
change. At Step 6, it is updated from N (riiIi) to N (I ′

i)N (a′
i). By Lemma 2.5,

we have N (I ′
i) ≤ 1 and a′

i = si. Now, by Lemma 3.3, we have that N (si) ≤
γd

√
2dΔK

αK
N (riiIi). Overall, this gives that N (riiIi) and hence Π decrease by a

factor ≥ √
αK/(γ2d2dΔK).

To show that minN (riiIi) can only increase during the execution of the algo-
rithm, observe that, during a loop iteration, only N (riiIi) and N (ri+1,i+1Ii+1)
may be modified. Let us call N (r′

iiI
′
i) and N (r′

i+1,i+1I
′
i+1) the corresponding

values at the end of the iteration. We have seen above that N (r′
iiI

′
i) ≤ N (riiIi),

which implies that N (r′
iiI

′
i) ≤ max(N (riiIi),N (ri+1,i+1Ii+1)). We also know

from Lemma 2.4 that N (r′
iiI

′
i) ≥ min(N (riiIi),N (ri+1,i+1Ii+1)). As the deter-

minant of Mi is constant, we have

N (r′
iiI

′
i) · N (r′

i+1,i+1I
′
i+1) = N (riiIi) · N (ri+1,i+1Ii+1).

This implies that N (r′
i+1,i+1I

′
i+1) ≥ min(N (riiIi),N (ri+1,i+1Ii+1)). Overall, we

have that N (r′
iiI

′
i),N (r′

i+1,i+1I
′
i+1) ≥ min(N (riiIi),N (ri+1,i+1Ii+1)). ��

3.2 Handling Bit-Sizes

In terms of bit-sizes of the diverse quantities manipulated during the execu-
tion of the algorithm, there can be several sources of bit-size growth. Like in

74 C. Lee et al.

the classical LLL-algorithm, the Euclidean norms of off-diagonal coefficients rij

for i < j could grow during the execution. We handle this using a general-
ized size-reduction algorithm. Other annoyances are specific to the number field
setup. There is too much freedom in representing a rank-1 module Iv: scaling
the ideal I by some x ∈ K and dividing v by the same x preserves the module.
In the extreme case, it could cost an arbitrarily large amount of space, even to
store a trivial rank-1 module such as R · (1, 0, . . . , 0)T , if such a bad scaling is
used (e.g., using such an x with large algebraic norm). Finally, even if the ideal I
is “scaled”, we can still multiply v by a unit: this preserves the rank-1 module,
but makes its representation longer.4

Definition 3.5. A pseudo-basis ((Ii,bi))i≤n, with Ii ⊂ K and bi ∈ Km
R

for
all i ≤ n, is said scaled if, for all i ≤ n,

R ⊆ Ii, N (Ii) ≥ 2−d2
Δ

−1/2
K and ‖rii‖ ≤ 2dΔ

1/(2d)
K N (riiIi)1/d.

It is said size-reduced if ‖rij/rii‖ ≤ (4d)dΔ
1/2
K for all i < j ≤ n.

Note that if ((Ii,bi))i≤n is scaled, then N (Ii) ≤ 1 for all i ≤ n. Further, if the
spanned module is contained in Rm, then bi ∈ Rm for all i ≤ n. Algorithm 3.2
transforms any pseudo-basis into a scaled pseudo-basis of the same module.

Algorithm 3.2. Scaling the ideals.
Input: A pseudo-basis ((Ii,bi))i≤n of a module M .
Output: A scaled pseudo-basis ((I ′

i,b
′
i))i≤n of M .

1: for i = 1 to n do
2: Use LLL to find si ∈ rii · Ii \ {0} such that ‖si‖ ≤ 2dΔ

1/(2d)
K N (riiIi)

1/d;
3: Write si = rii · xi, with xi ∈ Ii;
4: Define I ′

i = Ii · 〈xi〉−1 and b′
i = xibi.

5: end for
6: return ((I ′

i,b
′
i))i≤n.

Lemma 3.6. Algorithm 3.2 outputs a scaled pseudo-basis of the module M gen-
erated by the input pseudo-basis and preserves the N (riiIi)’s. If M ⊆ Rm, then
it runs in time polynomial in the input bit-length and in log ΔK .

Algorithm 3.3 aims at size-reducing a scaled pseudo-basis. It relies on a �·�R

operator which takes as input a y ∈ KR and rounds it to some k ∈ R by
writing y =

∑
yiri for some yi’s in R, and rounding each yi to the nearest

integer: k =
∑

kiri =
∑�yi�ri (remember that the ri’s form an LLL-reduced

basis of R). For computations, we will apply this operator numerically, so that
we may not have maxi |ki−yi| ≤ 1/2 but, with a bounded precision computation,
we can ensure that maxi |ki − yi| ≤ 1.
4 Note that ideal scaling and size-reduction have been suggested in [FS10, Se. 4.1], but

without a complexity analysis (polynomial complexity was claimed but not proved).

An LLL Algorithm for Module Lattices 75

Algorithm 3.3. Size-reduction.
Input: A scaled pseudo-basis ((Ii,bi))i≤n of a module M .
Output: A size-reduced pseudo-basis of M .
1: for j = 1 to n do
2: for i = j − 1 to 1 do
3: Compute xi = �rij/rii	R;
4: bj := bj − xibi.
5: end for
6: end for
7: return ((Ii,bi))i≤n.

Lemma 3.7. Algorithm 3.3 outputs a scaled size-reduced pseudo-basis of the
module M generated by the input pseudo-basis and preserves the N (riiIi)’s.
If M ⊆ Rm, then it runs in time polynomial in the input bit-length and in log ΔK .

We now consider Algorithm 3.4, which is a variant of Algorithm 3.1 that
allows us to prove a bound on the bit cost. The only difference (Step 7) is
that we call Algorithms 3.2 and 3.3 at every loop iteration of Algorithm3.1, so
that we are able to master the bit-lengths during the execution. Without loss
of generality, we can assume that the pseudo-basis given as input is scaled and
size-reduced: if it is not the case, we can call Algorithms 3.2 and 3.3, which will
produce a pseudo-basis of the same module, whose bit-length is polynomial in
the input bit-length and in log ΔK .

Algorithm 3.4. LLL-reduction over K with controlled bit-lengths
Input: A scaled size-reduced pseudo-basis ((Ii,bi))i≤n of a module M ⊆ Rm.
Output: An LLL-reduced pseudo-basis of M .
1: while there exists i < n such that αK · N (ri+1,i+1Ii+1) < N (ri,iIi) do
2: Let Mi be the rank-2 module spanned by the pseudo-basis ((Ii,ai), (Ii+1,ai+1)),

with ai = (rii, 0)T and ai+1 = (ri,i+1, ri+1,i+1)
T ;

3: Find si ∈ Mi \ {0} such that N (si) ≤ γd · λN
1 (Mi);

4: Set si+1 = ai if it is linearly independent with si, and si+1 = ai+1 otherwise;
5: Call the algorithm of Lemma 2.5 with ((Ii,ai), (Ii+1,ai+1)) and (si, si+1) as

inputs, and let ((I ′
i,a

′
i), (I

′
i+1,a

′
i+1)) denote the output;

6: Update Ii := I ′
i, Ii+1 := I ′

i+1 and [bi|bi+1] := [bi|bi+1] · A−1 · A′

(where A = [ai|ai+1] and A′ = [a′
i|a′

i+1]);
7: Update the current pseudo-basis by applying Algorithm 3.2 and then Algo-

rithm 3.3 to it.
8: end while
9: return ((Ii,bi))i≤n.

Theorem 3.8. Assume that Step 3 of Algorithm 3.4 is implemented with some
algorithm O for some parameter γ. Assume that αK > γ2d2dΔK . Given as input
a scaled and size-reduced pseudo-basis of a module M ⊆ Rm, Algorithm 3.4

76 C. Lee et al.

outputs an LLL-reduced pseudo-basis of M in time polynomial in the bit-length
of the input pseudo-basis, log ΔK and 1/ log(αK/(γ2d2dΔK)).

3.3 Finding Short Vectors for the Euclidean Norm

By Lemma 3.2 and Theorem 3.8 with αk = (1 + c/n) · γ2d2dΔK for a well-
chosen constant c, Algorithm 3.4 may be interpreted as a reduction from finding
a 2 · (γ2d2dΔK)n approximation to a vector reaching λN

1 in rank-n modules, to
finding a γd approximation to a vector reaching λN

1 in rank-2 modules.
By using Lemma 2.2, we can extend the above to the Euclidean norm instead

of the algebraic norm.

Theorem 3.9. Let γ ≥ 1, assume that log ΔK is polynomially bounded, and
assume that a Z-basis of R is known. Then there exists a polynomial-time reduc-
tion from solving SVPγ′ in rank-n modules (with respect to ‖·‖) to solving SVPγ

in rank-2 modules, where γ′ = (2γΔ
1/d
K)2n−1.

Proof. The reduction consists in first using Algorithm 3.4 with Step 3 imple-
mented using the oracle solving SVPγ in rank-2 modules. Using the arithmetic-
geometric inequality and Lemma 2.2, one can see that a vector s satisfying
‖s‖ ≤ γ · λ1(M) also satisfies N (s) ≤ γd · Δ

1/2
K · λN

1 (M). Hence, we have an
oracle computing a γN = γ · Δ

1/(2d)
K approximation of λN

1 (M). We then run
Algorithm 3.4 with this oracle by setting the parameter αK to (1+c/n)·γ2d2dΔ2

K ,
where c is a constant such that (1 + c/n)n−1 ≤ 2.

By Theorem 3.8, the reduction runs in in polynomial time. Further, by
Lemma 3.2, the output pseudo-basis satisfies N (I1)N (b1) ≤ αn−1

K · λN
1 (M).

By Lemma 2.2 and by definition of αK , this gives:

N (I1)N (b1) ≤ 2(γ2d2dΔ2
K)n−1 · d−d/2λ1(M)d.

Now, an SVPγ solver for rank-2 modules directly provides an SVPγ solver
for rank-1 module. We hence use our oracle again, on I1b1. This provides a
non-zero vector s ∈ I1b1 ⊆ M such that ‖s‖ ≤ γ

√
dΔ

1/(2d)
K · (N (I1)N (b1))1/d,

by Minkowski’s theorem. Combining the latter with the above upper bound on
N (I1)N (b1) provides the result. ��

4 The Divide-and-Swap Algorithm

We now focus on how to implement Step 3 of Algorithm 3.1, using a CVP oracle
for a lattice depending on K only. To handle projected 2-dimensional lattices, the
LLL algorithm for integer lattices proceeds like the Gauss/Lagrange reduction
algorithm for 2-dimensional lattices. It relies on a divide-and-swap elementary
procedure: first shorten the second vector using a Z-multiple of the first one
(using a Euclidean division, or, more pedantically, a CVP solver for the trivial
lattice Z); then swap these two vectors if the second has become (significantly)

An LLL Algorithm for Module Lattices 77

shorter than the first one. It has the effect that if this 2-dimensional basis is
not reduced, then a swap occurs, and some progress is made towards reduced-
ness of the 2-dimensional basis. This elementary step is repeated as many times
as needed to achieve reduction of the lattice under scope. In this section, we
generalize this process to rank-2 modules.

We first describe a lattice L that depends only on K and for which we
will assume that we possess a CVP oracle. Then, we give an algorithm whose
objective is to act as a Euclidean algorithm, i.e., enabling us to shorten an
element of KR using R-multiples of another. Once we have this generalization
of the Euclidean algorithm, we finally describe a divide-and-swap algorithm for
rank-2 modules.

4.1 Extending the Logarithm

The lattice L is defined using (among others) the log-unit lattice Λ. However,
the Log function does not suffice for our needs. In particular, for a, b ∈ K×

R
, the

closeness between a and b is not necessarily implied by the closeness of Log a
and Log b, because Log does not take into account the complex arguments
of the entries of the canonical embeddings of a and b. However, we will need
such a property to hold. For this purpose, we hence extend the Log function.
For x ∈ K×

R
, we define Log x := (θ1, . . . , θr1+r2 , log |σ1(x)|, . . . , log |σd(x)|)T ,

where σi(x) = |σi(x)| · eIθi for all i ≤ r1 + r2 and I is a complex root of x2 + 1.
The Log function takes values in (πZ/2πZ)r1 × (R/(2πZ))r2 × Rd.

Lemma 4.1. For x, y ∈ K×
R

, we have:

‖x − y‖∞ ≤
(
e
√
2‖Logx−Logy‖∞ − 1

)
· min(‖x‖∞, ‖y‖∞).

Observe that for t ≤ (ln 2)/
√

2, we have e
√
2t − 1 ≤ 2

√
2t.

4.2 The Lattice L

Let r = poly(d) and β > 0 be some parameter to be chosen later. Let
Λ denote the log-unit lattice. Let B0 = {p1, . . . , pr0} be a set of cardinal-
ity r0 ≤ log hK of prime ideals generating ClK , with algebraic norms ≤ 2δ0 ,
with δ0 = O(log log |Δ|). We will also consider another set B = {q1, . . . , qr}
of cardinality r, containing prime ideals (not in B0) of norms ≤ 2δ, for some
parameters r and δ ≤ δ0 to be chosen later. We also ask that among these ideals
qj , at least half of them have an algebraic norm ≥

√
2δ. Because we want r such

ideals, we should make sure that the number of prime ideals of norm bounded
by 2δ in R is larger than r. This will asymptotically be satisfied if r ≤ O(2δ/δ)
(by Lemma 2.1). The constraint that at least r/2 ideals should have norm larger
than

√
2δ is not very limiting, as we expect that roughly 2δ −

√
2δ ≥ r−√

r ideals
should have algebraic norm between

√
2δ and 2δ (forgetting about the poly(δ)

terms).
We now define L as the lattice of dimension ν = 2(r1 + r2) + r0 + r − 1

(included in Rν+1) spanned by the columns of the following basis matrix:

78 C. Lee et al.

β · BΛ β · hg2(r1+r2) · · · β · hgν

BΛ0 wν−r+1
· · · wν

1
. . .

1

β · 2π
. . .
β · 2π

0

0

0

0

β · θgr1+r2+1 · · · β · θgν

β · ag2(r1+r2) · · · β · agν

BL :=

2(r1 + r2) − 1 r0 + r

r1 + r2

r1 + r2 − 1

r

r0

1

where

• BΛ is a basis of Λ, and we let (hi)r1+r2<i<2(r1+r2) denote its columns;
• BΛ0 is a basis of the lattice Λ0 := {(xi)i ∈ Zr0 :

∏
i p

xi
i is principal}, and we

let (wi)2(r1+r2)≤i≤ν−r denote its columns;
• for any g ∈ K, we have ag = (log |N (g)|)/√

d ;
• for any g ∈ K, the vector θg consists of the first r1 + r2 entries of Log(g);
• for any g ∈ K, we have hg = iH∩E(ΠH(Log(g))), where ΠH is the orthogonal

projection on H and iH∩E is an isometry mapping H ∩ E to Rr1+r2−1;
• for any i > r1 + r2, if we parse the bottom r0 + r coordinates of the i-th

column vector as (wi,1, . . . , wi,r0 , w
′
i,1, . . . , w

′
i,r), then we have that 〈gi〉 =

∏
j p

wij

j · ∏
j q

w′
ij

j ;
• the gi’s for i > r1 + r2 are in K and, among them, gr1+r2+1, . . . g2(r1+r2)−1

are the units of R corresponding to the columns of BΛ.

We now list a few properties satisfied by vectors in this lattice.

Lemma 4.2. For every vector (βa‖βθ‖βh‖w‖w′) ∈ L \ {0} (with blocks of
dimensions 1, r1 + r2, r1 + r2 − 1, r0 and r), there exists g ∈ K \ {0} with

• a = (log|N (g)|)/√
d

• Log(g) = (θ′‖Log(g)) with θ′ = θ mod 2π.
• h = iH∩E(ΠH(Log(g)))

• 〈g〉 =
∏

j p
wj

j

∏
j q

w′
j

j , where w = (w1, · · · , wr0) and w′ = (w′
1, · · · , w′

r).

Further, we have that ‖Log(g)‖2 = ‖(a,h)‖2.

An LLL Algorithm for Module Lattices 79

4.3 On the Distance of Relevant Vectors to the Lattice

In this section, we make a heuristic assumption on the distance between target
vectors of a specific form and the lattice L defined in the previous section. This
heuristic is backed with a counting argument and numerical experiments (see the
full version). As L is not full rank, we only consider target vectors t lying in the
span of L. Also, as BL contains the identity matrix in its bottom right corner,
we cannot hope to have a covering radius that is much smaller than

√
r. In our

case, the lattice dimension ν will be of the order of r, but in our application we
will need a vector of L much closer to t than

√
r ≈ √

ν. In order to go below this
value, we only consider target vectors t whose last r coordinates are almost 0.

Heuristic 1. Assume that there exist some integer B ≤ r such that B ≥ 100 ·
(log hK) · δ0/δ and that

α0 :=
√

2π
((2B

r0.96

)B · δB(det Λ)hK

)1/d

≤ ln d

12d2.5
.

Assume that the scaling parameter β in BL is set to 1
α0

√
0.01·B

2d . Then for any
t ∈ Span(L) whose last r coordinates w′

t satisfy ‖w′
t‖2 ≤ 0.01 · B/

√
r, we

have dist(t, L) ≤ √
1.05 · B.

Discussion about Heuristic 1. We provide below a counting argument to justify
Heuristic 1. We consider the following set of vectors of L, parametrized by B ≤ r,
which we view as candidates for very close vectors to such target vectors:

SB := {s = (βas‖βθs‖βhs‖ws‖w′
s) ∈ L : w′

s ∈ {−1, 0, 1}r ∧ ‖w′
s‖1 = B}.

We argue that there is a vector in SB that is very close to t. Our analysis is
heuristic, but we justify it with both mathematical arguments and experiments.
We are going to examine the vectors s ∈ SB such that s−t is reduced modulo L.
Let us write t = (βat‖βθt‖βht‖wt‖w′

t)
T . We define:

S
(1)
B,t := {(βas‖βθs‖βhs‖ws‖w′

s) ∈ L : w′
s ∈ {−1, 0, 1}r ∧ ‖w′

s‖1 = B,

ws − �wt� ∈ V(Λ0),
ht − hs ∈ V(Λ),
θt − θs ∈ (−π, π]r1+r2},

where the notation V refers to the Voronoi cell (i.e., the set of points which
are closer to 0 than to any other point of the lattice). The choice of w′

s fully
determines s ∈ S

(1)
B,t, which gives the bound |S(1)

B,t| = 2B · (
r
B

) ≥ (2r/B)B .

We consider the following subset of S
(1)
B,t:

S
(2)
B,t = S

(1)
B,t ∩ {(βas‖βθs‖βhs‖ws‖w′

s) ∈ L : ws = �wt�}.

We heuristically assume that when we sample a uniform vector in S
(1)
B,t, the

components ws of the vectors s ∈ S
(1)
B,t are uniformly distributed modulo Λ0.

80 C. Lee et al.

Then the proportion of those for which ws = �wt� mod Λ0 is 1/det(Λ0) = 1/hK .
Hence, we expect that |S(2)

B,t| ≈ |S(1)
B,t|/hK .

We consider the following subset of S
(2)
B,t, parametrized by α ≤ (ln d)/(12d2.5):

S
(3)
B,α,t = S

(2)
B,t ∩ {(βas‖βθs‖βhs‖ws‖w′

s) ∈ L : ‖(θs‖hs) − (θt‖ht)‖∞ ≤ α}.

We heuristically assume that when we sample a uniform vector in S
(2)
B,t, the com-

ponents (θs,hs) are uniformly distributed modulo 2πZr1+r2 × Λ. Observe that
the first r1 coordinates of θs (corresponding to real embeddings) are either 0 or π.
Hence, the probability that θs = θt on these coordinates is 2−r1 . Once these first
r1 coordinates are fixed, the remaining coordinates of (θs,hs) have no a priori
reason to be bound to a sublattice of 2πZr2 ×Λ and we heuristically assume them
to be uniformly distributed in Rr1+2r2−1/(2πZr2 × Λ). Overall, the probability
that a vector s ∈ S

(2)
B,t satisfies ‖(θs,hs) − (θt,ht)‖∞ ≤ α is ≈ αr1+2r2−1

2r1 ·(2π)r2 ·det(Λ) .
Here, we used the fact that

√
r1 + 2r2 − 1 · α is smaller than λ1(2πZr2 × Λ)/2

(recall from preliminaries that λ
(∞)
1 (Λ) ≥ (ln d)/(6d2)). We conclude that

|S(3)
B,α,t| ≈ |S(2)

B,t|
αr1+2r2−1

2r1 · (2π)r2 · det(Λ)
≥ |S(2)

B,t|
αd−1

(2π)d/2 · det(Λ)
.

Finally, we consider the following subset of S
(3)
B,α,t:

S
(4)
B,α,t = S

(3)
B,α,t ∩ {(βas‖βθs‖βhs‖ws‖w′

s) ∈ L : |as − at| ≤ α}.

We will assume that

|S(4)
B,α,t| ≥ 0.344B · α

√
d

δB · r0.04·B · |S(3)
B,α,t|.

This assumption is backed with mathematical arguments as well as numerical
experiments in the full version. Overall, we obtain that

|S(4)
B,α,t| ≥ 0.344B · α

√
d

δB · r0.04·B · αd−1

(2π)d/2 · det(Λ)
· 1
hK

·
(

2r

B

)B

≥
(

α√
2π

)d 1
δB · det(Λ) · hK

(
0.344 · 2r

B · r0.04

)B

≥
(

α√
2π

)d 1
δB · det(Λ) · hK

(
r0.96

2B

)B

.

When the above is ≥1, we expect that there exists s ∈ S
(4)
B,α,t. If that is the

case, then we have

‖s − t‖2 ≤ (β ·
√

2d · α)2 + r0 + ‖w′
t − w′

s‖2.
By condition on B, we know that r0 ≤ 0.01 ·B. Also, by choice of w′

t (and using
the fact that r ≥ B), we have that ‖w′

t −w′
s‖2 ≤ (

√
B + 0.01 · √B)2 ≤ 1.03 · B.

Finally, choosing α minimal provides the result.

An LLL Algorithm for Module Lattices 81

Numerical Experiments. Heuristic 1 is also backed with numerical experiments.
We performed the experiments with r of the order of d2 (looking forward, this is
the value of r that will be used by our algorithm). This means that our lattice L
has dimension roughly d2, and so solving CVP in it quickly becomes impractical.
We were still able to check that our heuristic seems correct in cyclotomic num-
ber fields of very small degree (up to d = 8). More details on these numerical
experiments can be found in the full version.

4.4 A “Euclidean Division” over R

We will need the following technical observation that, given a, b ∈ KR, it is
possible to add a small multiple ka of a to b to ensure that N (b + ka) ≥ N (a).

Lemma 4.3. For any a ∈ K×
R

and b ∈ KR, there exists k ∈ [−d, d] ∩ Z such
that |N (b + ka)| ≥ |N (a)|.

Note that an integer k such as in Lemma 4.3 can be found efficiently by
exhaustive search.

We can now describe our “Euclidean division” algorithm over R. Our algo-
rithm takes as input a fractional ideal a and two elements a, b ∈ KR, and outputs
a pair (u, v) ∈ R × a. The first five steps of this algorithm aim at obtaining, for
any input (a, b), a replacement (a1, b1) that satisfies some conditions. Namely,
we would like a1 to be balanced, i.e., ‖a1‖ should not be significantly more than
N (a1)1/d. We also would like b1 to be not much larger that a1 and N (a1/b1) to
be close to 1. These conditions are obtained by multiplying the element a by an
appropriate element of R, and removing a multiple of a from b. Note that we
require that the output element v should not be too large. As b is not multiplied
by anything, these normalization steps will not impact this output property.
After these first five steps, the core of the algorithm begins. It mainly consists in
the creation of a good target vector t in Rν+1, followed by a CVP computation
in the lattice L.

Theorem 4.4 (Heuristic). Assume that a satisfies c−d ≤ N (a) ≤ cd, with c
as in Lemma 2.3. Assume also that B and r are chosen so that

B ≥ max
(

100 · d · log[(ρ(R) + d)c4], log hK · (103 · δ0
δ

)2
)

,

α0 :=
√

2π
((2B

r0.96

)B · δB(detΛ)hK

)1/d

≤ ε

43 · √d · (ρ(R) + d)c4 · 20.55·δ·B/d
,

for some ε > 0. Assume also that α0 ≤ (ln d)/(12d2.5), and set the scaling
parameter β of BL as in Heuristic 1. Then, under Heuristic 1 and the heuristics
of Lemma 2.3, Algorithm 4.1 outputs a pair (u, v) ∈ R × a with

‖ua + vb‖∞ ≤ ε · ‖a‖∞,

‖v‖∞ ≤ c · 20.55·δ·B/d.

82 C. Lee et al.

Algorithm 4.1. A Euclidean division over R

Input: A fractional ideal a, and two elements a ∈ K×
R

and b ∈ KR.
Output: A pair (u, v) ∈ R × a.

Computing a better pair (a1, b1)
1: Find s ∈ a−1 \ {0} such that ‖s‖∞ ≤ c · N (a−1)1/d as in Lemma 2.3.
2: Find y ∈ R \{0} such that ‖ya‖∞ ≤ c · |N (a)|1/d as in Lemma 2.3 (with ideal 〈a〉).

Define a1 = ya.
3: Solve CVP in R to find x ∈ R such that ‖b/(s · a1) − x‖ ≤ ρ(R).
4: Find k ∈ Z ∩ [−d, d] such that |N (b − xsa1 + ksa1)| ≥ |N (sa1)| (see Lemma 4.3).
5: Define b1 = b + (k − x)s · a1.

Defining the target vector and solving CVP
6: Compute (wt,j)j≤r0 and gt such that a−1 =

∏
j p

wt,j

j 〈gt〉. Let wt = (wt,j)j≤r0 .

7: Let at = (log N|b1/(a1gt)|)/
√

d, θt be the first r1+r2 coordinates of Log(b1/(a1gt))
and ht = iE∩H(ΠH(Log(b1/(a1gt))).

8: Define t = (βat‖βθt‖βht‖wt‖0).
9: Solve CVP in L with target vector t, to obtain a vector s.

Using s to create a good ring element
10: Write s = (βas‖βθs‖βhs‖ws‖w′

s) and let gs ∈ K∗ be the associated element as in
Lemma 4.2.

11: Define the ideal I = a
∏

j:ws,j−wt,j<0 p
wt,j−ws,j

j

∏
j:w′

s,j<0 q
−w′

s,j

j .

12: Find v ∈ I \ 0 such that ‖v‖∞ ≤ c · N (I)1/d as in Lemma 2.3.
13: Define u′ = gs · gt · v.
14: return (u′y + (k − x)sy · v, v).

Apart from the CVP calls in R,LK and L, Algorithm 4.1 runs in quantum
polynomial time.

Proof. Throughout the proof, we keep the notations of Algorithm 4.1.
We first prove that (u, v) ∈ R × a. As s ∈ a−1 and x, k, y ∈ R, it suffices to

prove that (u′, v) ∈ R × a. By definition of gt and gs, we have

〈gsgt〉 = a−1
∏

j

p
ws,j−wt,j

j

∏

j

q
w′

s,j

j = J · I−1,

with J =
∏

j:ws,j−wt,j>0 p
ws,j−wt,j

j

∏
j:w′

s,j>0 q
w′

s,j

j . As the pj ’s and qj ’s are inte-
gral ideals, we see that J ⊆ R and I ⊆ a. As v ∈ I, we obtain that v ∈ a. Since
gs · gt ∈ JI−1 and v ∈ I, we also have u′ = gsgtv ∈ JI−1I = J ⊆ R. This gives
our first claim.

As a preliminary step towards bounding ‖ua + bv‖∞ = ‖u′a1 + vb1‖∞, we
study the sizes of a1 and b1. Using the equality b1 = b − xsa1 + ksa1, we have

‖b1‖∞ ≤ (‖b/(sa1) − x‖∞ + |k|) · ‖sa1‖∞ ≤ (ρ(R) + d) · ‖s‖∞ · ‖a1‖∞.

An LLL Algorithm for Module Lattices 83

By definition of a1, we have ‖a1‖∞ ≤ c‖a‖∞. By assumption on a, we also have
‖s‖∞ ≤ c · N (a−1)1/d ≤ c2. Hence, we obtain

‖b1‖∞ ≤ (ρ(R) + d)c3‖a‖∞.

Now, by definition of a1, we know that ‖a1‖∞ ≤ c · |N (a1)|1/d. Hence, we obtain

c−1 ≤ |N (b1/a1)|1/d ≤ c · ‖b1‖∞
‖a1‖∞

≤ (ρ(R) + d) · c3.

The left inequality is provided by the choice of k at Step 4 (and the fact that
N (s) ≥ N (a−1)).

To bound ‖u′a1 + vb1‖∞, we estimate the closeness of t and s. If t was in
Span(L), then we could apply Heuristic 1. As this is not necessarily the case, we
first need to compute the distance between t and Span(L). This is done in the
proof of the following lemma, which is provided in the full version.

Lemma 4.5 (Heuristic). Under the assumptions of Theorem 4.4, we have
‖s − t‖2 ≤ √

1.06 · B.

This lemma implies that

‖(as‖θs‖hs) − (at‖θt‖ht)‖2 ≤
√

1.06 · B/β ≤ 15 ·
√

d · α0.

By definition of t and construction of L, this means that

‖Log(gtgs · a1/b1)‖2 = ‖(as‖θs‖hs) − (at‖θt‖ht)‖2 ≤ 15 ·
√

d · α0.

Recall that u′/v = gtgs. Hence we have ‖Log(u′a1) − Log(vb1)‖∞ ≤ 15 · √d · α0.
Using Lemma 4.1, we deduce that

‖u′a1 − vb1‖∞ ≤ (e15·√2d·α0 − 1) · ‖b1‖∞ · ‖v‖∞

≤ 43 ·
√

d · α0 · ‖b1‖∞ · ‖v‖∞,

where we used the fact that α0 ≤ (ln d)/(12d2.5) and so the exponent should be
smaller than (ln 2)/

√
2 for d large enough. We have already bounded ‖b1‖∞. We

now bound ‖v‖∞. By definition of v, we have ‖v‖∞ ≤ c · N (I)1/d. The task is

then to provide an upper bound on N (I). As IJ = a · ∏j p
|ws,j−wt,j |
j · ∏j q

|w′
s,j |

j ,
we have:

logN (IJ) = logN (a) +
∑

j

|ws,j − wt,j |logN (pj) +
∑

j

|w′
s,j | · logN (qj)

≤ logN (a) + ‖ws − wt‖1 · δ0 + ‖w′
s‖1 · δ

Recall from Lemma 4.5 that we have ‖s − t‖2 ≤ √
1.06 · B. This implies that

‖ws − wt‖2, ‖w′
s‖2 ≤ √

1.06 · B. Note that

‖ws − wt‖1 ≤ √
r0 · ‖ws − wt‖2 ≤ 1.03 ·

√
B · r0 ≤ 0.01 · δ

δ0
· B,

84 C. Lee et al.

by assumption on B and the fact that r0 ≤ log hK . For w′
s, we use the fact that

it has integer coordinates, to obtain ‖w′
s‖1 ≤ ‖w′

s‖22 ≤ 1.06 · B. We thus obtain

logN (IJ) ≤ logN (a) + 1.07 · δ · B.

As J is integral, this gives an upper bound on N (I). However this upper bound
is not sufficient for our purposes. We improve it by giving an upper bound on
log N (IJ−1), using the fact that the ideal IJ−1 is designed to have an algebraic
norm close to the one of a1/b1. Recall that a1 and b1 are constructed so that
N (a1/b1) is close to 1, which means that I and J should have roughly the
same norm. More precisely, it is worth recalling that I−1J = 〈gsgt〉, and that
‖Log(gtgs·a1/b1)‖2 ≤ 15·√d·α0. Looking at the first coordinate of the Log vector
and multiplying it by

√
d shows that | log |N (gsgt)|+log |N (a1/b1)| | ≤ 15 ·d ·α0.

This gives us
logN (IJ−1) ≤ |log|N (a1/b1)| | + 15 · d · α0

Combining the bounds on logN (IJ) and logN (IJ−1), we finally obtain that

logN (I) ≤ 1
2

· |logN (a)| + 0.535 · δ · B +
1
2

· | log |N (a1/b1)|| + 7.5 · d · α0.

We have seen that c−1 ≤ |N (b1/a1)|1/d ≤ (ρ(R) + d) · c3. Finally, recall that
c−d ≤ N (a) ≤ cd. Hence, we conclude that |log|N (a1/b1)|| + |logN (a)| ≤ d ·
log((ρ(R) + d) · c4) ≤ 0.01 · B by assumption on B. Recall that we assumed
that α0 ≤ (ln d)/(12d2.5) ≤ 1/d. Hence, we have d · α0 ≤ 1. Using the fact
that B ≥ 750 (which is implied by the second term in the max), we obtain
7.5 · d · α0 ≤ 0.01 · B. We conclude that

logN (I) ≤ 0.55 · δ · B.

Collecting terms and using the assumptions, this allows us to write

‖u′a1 − vb1‖∞ ≤ 43 ·
√

d · α0 · ‖b1‖∞ · ‖v‖∞

≤ α0 · 43 ·
√

d · 20.55·δ·B/d · (ρ(R) + d)c4‖a‖∞
≤ ε · ‖a‖∞.

Finally, the run-time bound follows by inspection. ��
We observe that the parameters r and B of Theorem 4.4 can be instantiated

as B = Õ(log |Δ| + d log ρ(R)) and r0.96 = Θ((1/ε)d/B · B · 20.55δ). Thanks
to the 0.55 in the exponent, this choice of r is compatible with the condition
r ≤ O(2δ/δ) which was required for the construction of the lattice L (recall
that we want r prime ideals of norm smaller than 2δ). We note also that the
constants 0.96 and 0.55 appearing in the exponent can be chosen as close as we
want to 1 and 0.5 respectively, by adapting the argument above. Hence, assuming
(1/ε)d/B = O(1), we expect to be able to choose 2δ as small as B2+η for any
η > 0. Overall, the following corollary gives an instantiation of Theorem 4.4 with
parameters that are relevant to our upcoming divide-and-swap algorithm.

An LLL Algorithm for Module Lattices 85

Corollary 4.6 (Heuristic). Let ε = 1/2 ˜O(log ΔK)/d. For any η > 0, there
exists a lattice L′ of dimension Õ((log |ΔK | + d log ρ(R))2+η), an upper bound
C = 2 ˜O(log |ΔK |+d log ρ(R))/d and an algorithm A that achieve the following. Under
Heuristic 1 and the heuristics of Lemma 2.3, algorithm A takes as inputs a ∈
K×

R
, b ∈ KR and an ideal a satisfying c−d ≤ N (a) ≤ cd, and outputs u, v ∈ R×a

such that

‖ua + bv‖∞ ≤ ε · ‖a‖∞
‖v‖∞ ≤ C.

If given access to an oracle solving the closest vector problem in L′ in polynomial
time, and when restricted to inputs a, b belonging to K, Algorithm 4.1 runs in
quantum polynomial time.

4.5 The Divide-and-Swap Algorithm

In this subsection, we describe a divide-and-swap algorithm, which takes as input
a pseudo-basis of a rank-2 module and outputs a short non-zero vector of this
module (for the algebraic norm). In order to do so, we will need to link the
Euclidean and algebraic norms of vectors appearing during the execution, and
limit the degree of freedom of the ideal coefficients. For this purpose we use a
strengthening of the notion of scaled pseudo-bases from Sect. 3.2.

Definition 4.7. A pseudo-basis ((Ii,bi))i≤n, with Ii ⊂ K and bi ∈ Km
R

for
all i ≤ n, is said strongly scaled if, for all i ≤ n,

R ⊆ Ii, N (Ii) ≥ c−d and ‖rii‖∞ ≤ c · N (riiIi)1/d,

where c is as in Lemma 2.3.

Algorithm 4.2 below strongly scales a given module pseudo-basis. It is a
direct adaptation of Algorithm 3.2 in which the LLL algorithm is replaced by
the algorithm from Lemma 2.3 (relying on a CVP oracle for LK).

Algorithm 4.2. Strongly scaling the ideals.
Input: A pseudo-basis ((Ii,bi))i≤n of a module M .
Output: A strongly scaled pseudo-basis ((I ′

i,b
′
i))i≤n of M .

1: for i = 1 to n do
2: Use Lemma 2.3 to find si ∈ rii · Ii \ {0} such that ‖si‖∞ ≤ c · N (riiIi)

1/d;
3: Write si = rii · xi, with xi ∈ Ii;
4: Define I ′

i = Ii · 〈xi〉−1 and b′
i = xibi.

5: end for
6: return ((I ′

i,b
′
i))i≤n.

86 C. Lee et al.

Lemma 4.8. Algorithm 4.2 outputs a strongly scaled pseudo-basis of the mod-
ule M generated by the input pseudo-basis and preserves the N (riiIi)’s. If given
access to an oracle that solves CVP in the lattice LK of Lemma 2.3, and
if M ⊆ Rm, then it runs quantumly in time polynomial in the input bit-length
and in log ΔK .

We can now describe Algorithm 4.3, our divide-and-swap algorithm. During
the execution of the algorithm, the R-factor of the current matrix (b1|b2) is
always computed. The algorithm is very similar to the LLL algorithm in dimen-
sion 2, except for Step 4, which is specific to this algorithm. This step ensures that
when we swap the vectors, we still obtain a pseudo-basis of the input module.
This seems necessary, as our Euclidean division over R involves a multiplication
of the second vector by a ring element, and hence the new vector and the sec-
ond pseudo-basis vector may not span the whole module anymore. At Step 4,
note that the gcd is well-defined, as 〈u〉 and 〈v〉a−1 are integral ideals. As an
alternative to Step 4, we could use Lemma 2.5 as in Algorithm 3.1.

Algorithm 4.3. Divide-and-swap.
Input: A pseudo-basis ((a1,b1), (a2,b2)) of a module M ⊂ K2

R.
Output: A vector v ∈ M .
1: while (γ/c)dN (r22a2) < N (r11a1) do
2: Strongly scale the pseudo-basis ((a1,b1), (a2,b2)) using Algorithm 4.2.
3: Apply Algorithm 4.1 to (a, b, a) = (r11, r12, a2 · a−1

1) and ε = 1/(4c). Let (u, v)
be the output.

4: Let b = gcd(〈u〉, 〈v〉a−1), find x ∈ a−1b−1 and y ∈ b−1 such that uy − vx = 1.
5: Update (b1,b2) ← (ub1 + vb2, xb1 + yb2) and (a1, a2) ← (a1b

−1, a2b).
6: end while
7: Strongly scale the pseudo-basis ((a1,b1), (a2,b2)) using Algorithm 4.2.
8: return b1

Lemma 4.9. Let γ ≥ 4 · C · c2, where C is as in Corollary 4.6. Then, given
as input a pseudo-basis of a rank-2 module M ⊂ K2

R
, Algorithm 4.3 outputs a

vector v ∈ M \ {0} such that N (v) ≤ γdλN
1 (M). Further, if M ⊆ Rm and

Algorithms 4.1 and 4.2 run in polynomial time, then Algorithm 4.3 runs in time
polynomial in the input bit-length and in log ΔK .

Proof. We only prove here that at each loop iteration, the value N (r11a1)
decreases by a factor at least 2d. As in the LLL algorithm, this is the main
technical part of the proof. The rest of the proof can be found in the full version.

Recall that at the end of Step 2, we have ‖rii‖∞ ≤ c ·N (riiai)1/d for i = 1, 2.
Recall also that Algorithm 4.1 outputs u, v such that ‖ur11 +vr12‖∞ ≤ ε‖r11‖∞
and ‖v‖∞ ≤ C. The new vector b1 at the end of the loop iteration is ub1 + vb2.

An LLL Algorithm for Module Lattices 87

We compute an upper bound on its algebraic norm:

N (ub1 + vb2) ≤ (
√

d)−d‖ub1 + vb2‖d = (
√

d)−d

∥
∥
∥
∥

(
ur11 + vr12

vr22

)∥
∥
∥
∥

d

≤ (
√

d)−d (‖ur11 + vr12‖ + ‖vr22‖)d

≤ (‖ur11 + vr12‖∞ + ‖vr22‖∞)d

≤ (ε‖r11‖∞ + ‖v‖∞ · ‖r22‖∞)d
.

Using the facts that the basis is c-strongly scaled and that the condition of Step 1
is satisfied, we have:

N (ub1 + vb2) ≤ cd ·
(
εN (r11a1)1/d + C · N (r22a2)1/d

)d

≤ cd · (ε + C · (c/γ))d · N (r11a1).

Now, by choice of ε and γ:

N (ub1 + vb2) ≤ cd ·
(

1
4c

+
1
4c

)d

· N (r11a1) = 2−d · N (r11a1).

Recall that a1 is also updated as a1b
−1. Hence, to conclude, we argue that

N (a1b−1) ≤ 1. Note that N (a1) ≤ 1 holds due to scaling, and that N (b) ≥ 1
holds because b is integral. Overall, we obtain that N (r11a1) decreases by a
factor ≥ 2d during a loop iteration. ��

Instantiating this lemma with the value of C obtained in Corollary 4.6, we
obtain the following corollary.

Corollary 4.10 (Heuristic). For any number field K and any η > 0, there
exists a lattice L′ of dimension Õ((log |ΔK | + d log ρ(R))2+η), a choice of the
approximation factor γ = 2 ˜O(log |ΔK |+d log ρ(R))/d and an algorithm A such that
the following holds. Under Heuristic 1 and the heuristics of Lemma 2.3, algo-
rithm A takes as input a pseudo-basis of a rank-2 module M ⊂ K2

R
, and outputs

a vector v ∈ M such that N (v) ≤ γdλN
1 (M). If given access to an oracle solv-

ing the closest vector problem in L′ in polynomial time, and when restricted to
modules contained in K2, Algorithm A runs in quantum polynomial time.

Acknowledgments. We thank Léo Ducas for helpful discussions. This work was sup-
ported in part by BPI-France in the context of the national project RISQ (P141580), by
the European Union PROMETHEUS project (Horizon 2020 Research and Innovation
Program, grant 780701) and by the LABEX MILYON (ANR-10-LABX-0070) of Uni-
versité de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007)
operated by the French National Research Agency (ANR).

88 C. Lee et al.

References

[AD17] Albrecht, M.R., Deo, A.: Large modulus Ring-LWE ≥ Module-LWE. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 267–
296. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 10

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems. In: STOC (1996)
[Ajt98] Ajtai, M.: The shortest vector problem in l2 is NP-hard for randomized

reductions. In: STOC (1998)
[BEF+17] Biasse, J.-F., Espitau, T., Fouque, P.-A., Gélin, A., Kirchner, P.: Computing

generator in cyclotomic integer rings. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10210, pp. 60–88. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56620-7 3

[BF14] Biasse, J.-F., Fieker, C.: Subexponential class group and unit group com-
putation in large degree number fields. LMS J. Comput. Math. 17, 385–403
(2014)

[BFH17] Biasse, J.-F., Fieker, C., Hofmann, T.: On the computation of the HNF of
a module over the ring of integers of a number field. J. Symb. Comput. 80,
581–615 (2017)

[BGV14] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ToCT 6, 13 (2014)

[BP91] Bosma, W., Pohst, M.: Computations with finitely generated modules over
Dedekind domains. In: ISSAC (1991)

[BS96] Bach, E., Shallit, J.O.: Algorithmic Number Theory: Efficient Algorithms.
MIT Press, Cambridge (1996)

[BS16] Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing class
groups and solving the principal ideal problem in arbitrary degree number
fields. In: SODA (2016)

[CDW17] Cramer, R., Ducas, L., Wesolowski, B.: Short stickelberger class relations
and application to ideal-SVP. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10210, pp. 324–348. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56620-7 12

[Cer05] Cerri, J.-P.: Spectres euclidiens et inhomogènes des corps de nombres. Ph.D.
thesis, Université Henri Poincaré, Nancy (2005)

[Coh96] Cohen, H.: Hermite and Smith normal form algorithms over Dedekind
domains. Math. Comput. 65, 1681–1699 (1996)

[Fie97] Fieker, C.: Über relative Normgleichungen in älgebraischen Zahlkörpern.
Ph.D. thesis, TU Berlin (1997)

[FP96] Fieker, C., Pohst, M.E.: On lattices over number fields. In: Cohen, H. (ed.)
ANTS 1996. LNCS, vol. 1122, pp. 133–139. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61581-4 48

[FP06] Fieker, C., Pohst, M.E.: Dependency of units in number fields. Math. Com-
put. 75, 1507–1518 (2006)

[FS10] Fieker, C., Stehlé, D.: Short bases of lattices over number fields. In:
Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS 2010. LNCS, vol. 6197,
pp. 157–173. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14518-6 15

[GLM09] Gan, Y.H., Ling, C., Mow, W.H.: Complex lattice reduction algorithm for
low-complexity full-diversity MIMO detection. IEEE Trans. Signal Process.
57, 2701–2710 (2009)

https://doi.org/10.1007/978-3-319-70694-8_10
https://doi.org/10.1007/978-3-319-56620-7_3
https://doi.org/10.1007/978-3-319-56620-7_12
https://doi.org/10.1007/3-540-61581-4_48
https://doi.org/10.1007/978-3-642-14518-6_15
https://doi.org/10.1007/978-3-642-14518-6_15

An LLL Algorithm for Module Lattices 89

[Hop98] Hoppe, A.: Normal forms over Dedekind domains, efficient implementation
in the computer algebra system KANT. Ph.D. thesis, TU Berlin (1998)

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–
288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

[Kan87] Kannan, R.: Minkowski’s convex body theorem and integer programming.
Math. Oper. Res. 12, 415–440 (1987)

[KL17] Kim, Taechan, Lee, Changmin: Lattice reductions over Euclidean rings with
applications to cryptanalysis. In: O’Neill, Máire (ed.) IMACC 2017. LNCS,
vol. 10655, pp. 371–391. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-71045-7 19

[Laa16] Laarhoven, T.: Sieving for closest lattice vectors (with preprocessing). In:
Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 523–542.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 28

[Lez14] Lezowski, P.: Computation of the euclidean minimum of algebraic number
fields. Math. Comput. 83(287), 1397–1426 (2014)

[LLL82] Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with
rational coefficients. Math. Ann. 261, 515–534 (1982)

[LM06] Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are col-
lision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 13

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 1

[LPSW19] Lee, C., Pellet-Mary, A., Stehlé, D., Wallet, A.: An LLL algorithm for mod-
ule lattices (full version). Cryptology ePrint Archive (2019)

[LS15] Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module
lattices. Des. Codes Cryptogr. 75, 565–599 (2015)

[MG02] Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryp-
tographic Perspective. Kluwer Academic Press, Dordrecht (2002)

[Mic01] Micciancio, D.: The hardness of the closest vector problem with preprocess-
ing. Trans. Inf. Theory 47, 1212–1215 (2001)

[Nap96] Napias, H.: A generalization of the LLL-algorithm over Euclidean rings or
orders. J. théorie des nombres de Bordeaux 8, 387–396 (1996)

[Neu99] Neukirch, J.: Algebraic number theory. In: Grundlehren der Mathematis-
chen Wissenschaften, vol. 322. Springer, Heidelberg (1999). https://doi.org/
10.1007/978-3-662-03983-0

[O’M63] O’Meara, O.T.: Introduction to Quadratic Forms. Springer, Heidelberg
(1963). https://doi.org/10.1007/978-3-642-62031-7

[PHS19] Pellet-Mary, A., Hanrot, G., Stehlé, D.: Approx-SVP in ideal lattices with
pre-processing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 685–716. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3 24

[PR06] Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). https://doi.
org/10.1007/11681878 8

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM 56, 34 (2009)

https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-319-71045-7_19
https://doi.org/10.1007/978-3-319-71045-7_19
https://doi.org/10.1007/978-3-319-69453-5_28
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-662-03983-0
https://doi.org/10.1007/978-3-662-03983-0
https://doi.org/10.1007/978-3-642-62031-7
https://doi.org/10.1007/978-3-030-17656-3_24
https://doi.org/10.1007/978-3-030-17656-3_24
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/11681878_8

90 C. Lee et al.

[RSW18] Rosca, M., Stehlé, D., Wallet, A.: On the Ring-LWE and Polynomial-LWE
problems. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 146–173. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 6

[SE94] Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical
algorithms and solving subset sum problems. Math. Program. 66, 181–199
(1994)

[SMSV14] Morel, I., Stehlé, D., Villard, G.: LLL Reducing with the most significant
bits. In: ISSAC (2014)

[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key
encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10366-7 36

https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

Order-LWE and the Hardness
of Ring-LWE with Entropic Secrets

Madalina Bolboceanu1(B), Zvika Brakerski2, Renen Perlman2,
and Devika Sharma2

1 Bitdefender, Bucharest, Romania
mbolboceanu@bitdefender.com

2 Weizmann Institute of Science, Rehovot, Israel

Abstract. We propose a generalization of the celebrated Ring Learning
with Errors (RLWE) problem (Lyubashevsky, Peikert and Regev, Euro-
crypt 2010, Eurocrypt 2013), wherein the ambient ring is not the ring
of integers of a number field, but rather an order (a full rank subring).
We show that our Order-LWE problem enjoys worst-case hardness with
respect to short-vector problems in invertible-ideal lattices of the order.

The definition allows us to provide a new analysis for the hardness of
the abundantly used Polynomial-LWE (PLWE) problem (Stehlé et al.,
Asiacrypt 2009), different from the one recently proposed by Rosca,
Stehlé and Wallet (Eurocrypt 2018). This suggests that Order-LWE may
be used to analyze and possibly design useful relaxations of RLWE.

We show that Order-LWE can naturally be harnessed to prove security
for RLWE instances where the “RLWE secret” (which often corresponds
to the secret-key of a cryptosystem) is not sampled uniformly as required
for RLWE hardness. We start by showing worst-case hardness even if the
secret is sampled from a subring of the sample space. Then, we study
the case where the secret is sampled from an ideal of the sample space
or a coset thereof (equivalently, some of its CRT coordinates are fixed
or leaked). In the latter, we show an interesting threshold phenomenon
where the amount of RLWE noise determines whether the problem is
tractable.

Lastly, we address the long standing question of whether high-entropy
secret is sufficient for RLWE to be intractable. Our result on sampling
from ideals shows that simply requiring high entropy is insufficient. We
therefore propose a broad class of distributions where we conjecture that
hardness should hold, and provide evidence via reduction to a concrete
lattice problem.

The full version of this work which contains details and full proofs is available at
https://eprint.iacr.org/2018/494.
Bitdefender—A large portion of this study was conducted while visiting the Weizmann
Institute of Science, Israel, supported by the European Union Horizon 2020 Research
and Innovation Program via Project PROMETHEUS (Grant 780701).
Weizmann Institute of Science—Supported by the Israel Science Foundation (Grant
No. 468/14), Binational Science Foundation (Grants No. 2016726, 2014276), and by
the European Union Horizon 2020 Research and Innovation Program via ERC Project
REACT (Grant 756482) and via Project PROMETHEUS (Grant 780701).

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 91–120, 2019.
https://doi.org/10.1007/978-3-030-34621-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_4&domain=pdf
https://eprint.iacr.org/2018/494
https://doi.org/10.1007/978-3-030-34621-8_4

92 M. Bolboceanu et al.

Keywords: Ring-LWE · Lattice problems · Entropic secrets

1 Introduction

The Learning with Errors (LWE) problem, as introduced by Regev [38], provides
a convenient way to construct cryptographic primitives whose security is based
on the hardness of lattice problems. The assumption that LWE is intractable
was used as a basis for various cryptographic designs, including some cutting
edge primitives such as fully homomorphic encryption (FHE) [14], and attribute
based encryption (ABE) for general policies [9,25]. Two of the most appealing
properties of the LWE problem are the existence of a reduction from worst-case
lattice problems [12,34,36,38] (which is most relevant to this work), and its
conjectured post-quantum security.

On the other hand, one of the shortcomings of the LWE assumption is the
relatively high computational complexity and large instance size (as a function of
the security parameter) that it induces. This results, for example, in LWE-based
encryption schemes having long keys and ciphertexts, and also high encryption
complexity. It was known since the introduction of the NTRU cryptosystem [29]
and more rigorously in [30,37] that these aspects can be significantly improved by
relying on lattices that stem from algebraic number theory.1 In [31,32], Lyuba-
shevsky, Peikert and Regev defined an algebraic number theoretic analog of the
LWE problem, called Ring-LWE (RLWE). Similar to Regev’s original result,
they showed that RLWE is as hard as solving worst-case ideal lattice problems.

Ring-LWE and its extensions quickly became a useful resource for the con-
struction of various cryptographic primitives [2,3,7,8,11,13,15,21,23,26] (an
extremely non-exhaustive list of examples). RLWE is appealing due to its
improved efficiency, and its provable security guarantee based on the hardness of
worst case (ideal) lattice problems. However, in concrete instantiations, parame-
ters are not set based on provable hardness guarantees, but rather on the minimal
parameters that prevent known and conceivable attacks, in order to achieve the
best possible efficiency. In the case of RLWE, parameters are set way beyond the
regime where we have provable guarantee in terms of choice of security parameter
and, most relevant to this work, in terms of sampling secrets from different dis-
tributions than those for which provable security applies.2 While a gap between
the provable and concrete security properties of a cryptosystem is expected, one
would at least like to make sure that changing the distribution does not make
the problem qualitatively easy. In other words, we would like to show that the
problem remains at least asymptotically hard with the new distributions.

Over the years, it has been shown that the LWE problem is quite robust
to changes in the prescribed distribution, thus providing desired evidence for
the safety of using the assumption in various settings. More precisely, it was
shown that LWE hardness holds even if the secret (a vector that, very roughly,
1 This inefficiency is common to cryptographic constructions based on “generic” lat-

tices. Indeed, NTRU was introduced before the LWE assumption was formulated.
2 Sometimes this is done not for efficiency but for functionality purposes, e.g. [15].

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 93

represents the coordinates of a hidden lattice point) is not sampled uniformly,
as tradition, but is rather leaked [1,20] or is chosen from a binary distribution of
sufficient entropy [12,24] (with obvious loss coming from the secret having lower
entropy). It is almost trivial to verify that if the LWE secret is chosen uniformly
from a linear subspace of its prescribed space, then security degrades gracefully
with the dimension of the space of secrets. (We note that there has also been
much work on modifying the noise distribution of LWE, e.g. [6,33]. However,
the focus of this work is the distribution of secrets.)

Much less is known for RLWE. This is because its algebraic structure (which
is the very reason for efficiency gains) prevents the use of techniques like ran-
domness extraction that are instrumental to the aforementioned LWE robustness
results.

This Work. Motivated by the task to investigate the behavior of the RLWE
problem on non-uniform secret distributions, we present new tools to prove secu-
rity in some cases and insecurity in others. The main tool that we introduce is a
generalization of the RLWE problem that we call Order-LWE, and prove a worst-
case hardness result for this problem.3 We show that the Order-LWE abstraction
naturally implies a new proof for a previous result in the literature [40] with new
and comparable parameters.

We justify that the formulation of Order-LWE is quite useful in exploring
variants of RLWE where the distribution of secrets has some algebraic struc-
ture (a special case of secrets from a subfield was studied in [22]). We prove
Order-LWE hardness (and thus worst-case hardness) when the secret is sam-
pled from any subring of the prescribed space. We use this approach to address
the fundamental question of whether any distribution of secrets with sufficiently
high entropy implies RLWE hardness. We show that in some settings, RLWE
with uniform secrets is intractable (under conservative worst-case ideal lattice
assumptions), but a slight decrease in entropy leads to a complete break. This
is the case when the distribution of secrets is supported over an ideal (or a coset
thereof). On the other hand, we show that increasing the noise in the RLWE
instance can compensate for the deficiency in secret entropy in this setting.

Finally, we address the more ambitious goal of proving security for secrets
with no algebraic structure. Since, as we mentioned above, high entropy is insuf-
ficient as condition by itself for security, we identify a family of high-entropy
distributions that capture (at least approximately) many of the relaxed variants
of RLWE. We show that a particular (average case) hardness assumption implies
hardness for this class of distributions.

Paper Organization. We provide an overview of our results and techniques
below. Section 2 contains preliminaries and definitions. The Order-LWE problem
is formally defined in Sect. 3, where the worst case hardness reduction is proved
as well. The new hardness result for PLWE appears in Sect. 4. We then present

3 As a reader with background in algebraic number theory would speculate, this is a
setting where RLWE is instantiated respective to orders in a number field, rather
than its ring of integers.

94 M. Bolboceanu et al.

our results on sampling secrets from subrings in Sect. 5, on sampling secrets
from ideals in Sect. 6, and finally on sampling secrets from k-wise independent
distributions in Sect. 7.

Due to space constraints, some material was deferred to the full version.

1.1 Background

Recall that in the LWE problem, a secret vector s is sampled from Z
n
q for some

modulus q; an adversary gets oracle access to samples of the form (a, b = 〈a, s〉+e
(mod q)) where each a ∈ Z

n
q is uniform and e is a small integer, say sampled from

a discrete Gaussian with parameter � q. The adversary’s goal is to distinguish
this oracle from the one where b ∈ Zq is random.

In the RLWE problem, the sample spaces are also vector spaces over Zq but
with a ring structure. In this high level overview, for the sake of simplicity of
notation and algebraic structure, we restrict to the case where the ring is the
ring of integers in the power-of-two cyclotomic field Q[x]/(xn +1). An interested
reader may see Sect. 2 for precise definitions in the general case. The cyclotomics
is a particularly simple case: the so called ring of integers in this case is the
ring of polynomials R = Z[x]/(xn + 1). In this setting, the RLWE problem
with modulus q is as follows: sample a random secret s ∈ Rq = R/qR, and
provide the adversary with oracle access to samples of the form (a, as+ e) ∈ R2

q ,
where a is uniform and e is sampled from some “small” noise distribution (for
our purposes, think of e as polynomial with Gaussian coefficients � q). The
arithmetics is over Rq, and the goal is to distinguish these samples from uniform
R2

q samples.4 For this overview, we will assume for simplicity that q is a prime,
and focus on the setting (which is most commonly used in cryptography) where
q splits completely as an ideal in R into a product of n distinct prime ideals.
(In the case of the cyclotomics, this condition amounts to q ≡ 1 (mod 2n).) By
the Chinese Remainder Theorem, the quotient Rq := R/qR � Z[x]/(xn + 1, q)
is isomorphic to Z

n
q and hence an element in Rq can be represented as a vector

of n elements in Zq with pointwise addition and multiplication. This is called
the CRT representation of elements in Rq and for c ∈ Rq, we denote its CRT
coordinates by c[1], . . . , c[n].

1.2 Our Results

The Order-LWE Problem. We formulate a version of R-LWE where R is
replaced by an order O in K. An order in a number field is a subring of R
which has full rank (i.e. can be described as a Z-span of exactly n elements).5

4 An informed reader may notice that in the formal RLWE definition, s needs to be
sampled from the dual of Rq, and e needs to be small in the so called “canonical
embedding”. However, in the cyclotomic setting these distinction makes little differ-
ence and our choice makes the presentation simpler. Another simplifying choice for
the exposition is to only consider discrete noise distributions.

5 The full-rank condition arises naturally in applications as we discuss below.

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 95

We furthermore generalize the modulus of the RLWE equations, and instead of
taking the equations modulo (the ideal generated by) the integer q, we allow to
mod out by any ideal in the order. We call this problem Order-LWE and denote
it as O-LWE. More precisely, we define two variants of the problem O-LWE and
O∨-LWE which have a duality relation between them (and which are equivalent
to each other when O = R). As explained above, R-LWE is a special case of
O-LWE (and, in a different notation, of O∨-LWE).

Recalling that Ring-LWE was shown to be as hard to solve as worst-case lat-
tice problems over ideal lattices from the ring R, we propose an analogous claim
for Order-LWE. Using similar techniques as those used for proving Ring-LWE
hardness, but with some necessary adaptations, we show that solving O-LWE
is at least as hard as solving short-vector problems on a class of lattices that is
defined by the set of invertible ideals in the order O. This result generalizes the
known result on R-LWE (note that in R all ideals are invertible). For O∨-LWE,
worst-case hardness follows for lattices whose dual is an invertible O-ideal (again,
in R this holds for all ideals). We mention that these sets of lattices coincide in
the case when the dual of the order O is an invertible O-ideal.

We show that using a larger order makes the O∨-LWE problem harder, and
in that sense R-LWE is harder than any other O∨-LWE problem. This is the case
even though formally the set of duals of (invertible) O-ideals is disjoint from the
set of R-ideals. We believe that this is due to the fact that any O-ideal lattice
can be (efficiently) mapped to an R ideal that contains it as a sublattice.

See Sect. 3 for a formal and general definition of O-LWE, its dual O∨-LWE
and the respective worst-case hardness results.

A Corollary: New Hardness for Polynomial-LWE. Our definition of
Order-LWE gives insight on the hardness of other computational problems
underlying cryptographic constructions; specifically, the Polynomial-LWE prob-
lem (PLWE) [13,41]. In PLWE, s and a are simply random polynomials with
integer coefficients modulo a polynomial f and an integer q, and the noise e is a
polynomial with small coefficients. It is evident that the PLWE problem provides
the simplest interface for LWE over polynomial rings. In many useful cases, for
example the power-of-two cyclotomic case, it is straightforward to relate PLWE
and RLWE. However, for general polynomials f the connection is far from imme-
diate, since the ring of integers of an arbitary number field does not look like
Z[x]/(f). Recently, Rosca, Stehlé and Wallet [40] showed a reduction relating
the hardness of PLWE in the general case from RLWE and thus from worst-case
lattice problems.

We observe that we can straightforwardly address this problem using our
Order-LWE machinery. The ambient space for the PLWE problem is the ring
Z[x]/(f), for a polynomial f ∈ Z[x]. This ring is a subring of full rank of the ring
of integers of K := Q[x]/(f), and hence indeed an order. Therefore translation
between PLWE and O-LWE has two aspects: “reshaping” the noise distribution
(identically to [40]), and syntactic mapping of the secret to the dual domain.
The [40] reduction requires a few additional steps and in this sense our reduction
is more direct.

96 M. Bolboceanu et al.

Pinpointing the exact relation of our reduction to the one of [40] is not
straightforward. The class of lattices for which we show worst-case hardness is
different (and in fact formally disjoint) from the class of lattices in [40]. This
is because the hardness result of Order-LWE deals with the worst case lattice
problems on invertible O-ideals. However, any O-ideal can be translated into
R-ideal which contains it as a sublattice. It therefore appears that R-lattices as
in [40] may provide stronger evidence of intractability. On the other hand, the
approximation factor achieved by our reduction is never larger and in many cases
should be much smaller than that achieved by [40], depending on the specific
number field.

This result suggests that perhaps it is instructive to think about orders where
objects can be represented and operated on efficiently (more efficiently than over
R), and in those orders O-LWE could be a simple way to argue about the security
of a cryptosystem with simpler interface than RLWE. We did not explore this
avenue further. See Sect. 4 for the full details of our PLWE proof and comparison
with [40].

Ring-LWE with Secrets From a Subring/Order. We consider the hardness
of the Ring-LWE problem, in the setting where the secret s is sampled from some
subset with algebraic structure. As we described above, the proper distribution
of secrets is uniform over the ring Rq (R modulo q). In this paper we consider
a subring of this ring, but we note that this subring must still contain qR,
since Ring-LWE equations are taken modulo q. This naturally imposes full-
rank condition on the subring and thus orders naturally arise again. Indeed, we
consider distributions that are uniform over Oq = O/qO for an order O.

To motivate the setting of sampling the secret from a subring and illustrate
its importance, we start with an analogy with (standard) LWE. In the LWE
context, if the secret is sampled from a k-dimensional linear subspace of Zn

q , the
problem easily translates to an LWE instance where n is replaced by k. In the ring
setting, the rich algebraic structure makes the task of defining and analyzing such
straightforward transformations much more involved. Previous works [3,11,22]
considered the notion of ring-switching which implies the hardness of RLWE
when the secret is sampled from the ring of integers of a subfield of the field
K. However, such transformations do not apply when K has no subfields of
dimension k or no proper subfields at all. Our proposed setting allows to sample
s from a subring of Rq that is isomorphic to Z

k
q , for 1 ≤ k ≤ n and thus provides

an algebraic analog of the linear subspace property.
One can view the subring property also in terms of the CRT coordinates

(when q splits over R). A subring of Rq that is isomorphic to Z
k
q is in one-to-one

correspondence with an onto mapping α : [n] → [k] as follows; sample k elements
r1, . . . , rk from Zq uniformly, and set the CRT coordinates of an element s ∈ Rq

as s[j] = rα(j), for j ∈ [n]. One can verify that this set forms a subring.
In Sect. 5, we show that the RLWE problem with secret sampled from an

order O is harder than the O∨-LWE problem, which in turn is harder than the
worst case problems on the duals of (invertible) O-ideal lattices. In fact, given
two orders O′ ⊆ O, we show that O∨-LWE is at least as hard as O′∨-LWE

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 97

(albeit with increase in noise which is comparable to the norm of a minimal
generating set of O∨ over O′∨). Since O ⊆ R, this shows that R-LWE is harder
than O∨-LWE with appropriate noise increase. This result is in a similar flavor
to the one of [22] which shows that R-LWE in a field K is harder than R′-LWE
in a subfield K ′ ⊆ K. Since R′, the ring of integers of K ′, is contained in R as
a subring, our result implies hardness in this setting as well.

Ring-LWE with Secrets From Ideals, and High-Entropy Secrets. As
we already mentioned, understanding the behavior of Ring-LWE in the setting
where the secret is sampled from an arbitrary high-entropy distribution is a
central subject of inquiry in the area. We show that if we sample s from a
“dense” ideal (or equivalently zero-out a few of its CRT coordinates), then we
may end up with a distribution that is high-entropy on one hand but makes Ring-
LWE insecure on the other. More concretely, consider RLWE samples where the
secret s is sampled from Rq such that its j-th CRT coordinate, s[j], is uniformly
chosen from Zq, for all j ∈ T , a randomly chosen subset of [n], and s[j] = 0,
for j /∈ T . This is equivalent to choosing s uniformly from Pq := P/qR, where
P is the ideal of R that contains qR.6 If |T | = k and we denote ε = k

n , then
the distribution of secret will have min-entropy (1 − ε)n log q. A good running
example is ε which is a small constant (e.g. ε = 0.1).

One can view this as a more structured analog of an LWE instance with
a composite modulus q = p1p2, where the secret s is a multiple of p1. It is
straightforward to see that, in such a LWE instance, if the magnitude of the error
e is sufficiently smaller than p1, this instance can be easily solved by dividing
b by p1 and rounding to the nearest integer, thereby yielding a noiseless set of
equations modulo p2. However, if the noise magnitude is sufficiently larger than
p1, then the instance is secure (intuitively, since one can essentially view it as
scaling up of a mod p2 LWE instance).

Things are more involved in the ring setting as we cannot just round to the
nearest integer. Instead, we can interpret the factors of q as lattices. If the lattice
corresponding to P has a good decoding basis, it means that we can recover e
when small enough. We also provide a ring analog of the complementary result
by showing that if the noise is sufficiently large, then RLWE hardness holds.
The latter is done by viewing the instance, again, as a scaled up RLWE instance
modulo Q, only now Q is not an integer but an ideal. Our O-LWE generalization
of RLWE allows us to derive RLWE hardness in this setting.

Thus, we show that high entropy of secrets alone is insufficient to argue
RLWE security and demonstrate an interplay between the entropy of the secret
and the amplitude of noise. Interestingly, we exhibit a threshold phenomenon
where the RLWE instance with secret sampled from an ideal is insecure if the
error is modestly below the threshold of roughly q−(1−ε), and secure if it is
modestly above this value. The “modest” factors depend on the number field,

6 As we hinted above, s is actually an element of the dual of R which is not a ring
and doesn’t have ideals, however there is a natural translation between the dual
and primal domain that captures the CRT/ideal structure. See Sect. 6 for the formal
treatment.

98 M. Bolboceanu et al.

but correspond to a fixed polynomial in the degree n in the cyclotomic case. The
formal and general analysis of these results appears in Sect. 6.

Ring-LWE with Secrets From a k-Wise Independent Distribution.
Given that a general result for high-entropy distributions cannot be achieved,
we consider in the final section of the paper a subclass of high-entropy distribu-
tions. These distributions do not adhere to uniform sampling from an algebraic
structure but instead have the following property; the marginal distribution over
any subset of k CRT coordinates is jointly (statistically close to) uniform.7 In
terms of entropy, such distributions must have min-entropy at least k log q, and
this entropy is also spread evenly across all k-tuples of CRT coordinates.

We speculate that the k-wise independence condition is sufficient for obtain-
ing RLWE hardness. However, we are unable to show this via worst-case hard-
ness. Instead, we define an average case problem, which we call Decisional
Bounded Distance Decoding on a Hidden Lattice (HLBDD) and show that the
RLWE problem with secret sampled from a k-wise distribution is at least as
hard as this problem. In HLBDD, the adversary needs to distinguish between a
random oracle on Rq and an oracle of the following form. Upon initialization of
the oracle, a set T ⊆ [n] of cardinality k is sampled. For every oracle call, the
oracle generates elements v, e as described next, and returns v + e (mod q). For
the element v, the CRT coordinate v[j] is random if j ∈ T , and 0 otherwise.
The element e is a small noise element, say Gaussian. This can be viewed as the
decisional version of the bounded distance decoding (BDD) problem on the ideal
lattice I :=

∏
j∈T pj (where {pi}i are the prime factors of the ideal qR), since

the element v is sampled from I. We stress that this is the hidden version as T
is sampled randomly at the invocation of the oracle, causing I to be hidden. As
in the standard BDD problem, we can consider HLBDD with worst-case noise
and also with arbitrary noise distributions. Given the current understanding of
the hardness of lattice problems, discrete Gaussian noise seems natural.

The HLBDD assumption is similar to one made in [28]. However, they only
require k = n/2, whereas we attempt to take k to be very small, e.g. k = n0.1.
We assert that the hardness of the problem relies crucially on the set T being
chosen at random in the beginning of the experiment rather than being fixed
throughout. In other words, we cannot allow preprocessing that depends on T .
This is because computing a good basis for the ideal lattice I, defined by T ,
makes the HLBDD problem easy. It is also important to mention that T itself
does not need to be known to the adversary; in this sense HLBDD resembles
the approximate GCD problem [19]. Lastly, we note that it is sufficient for our
purposes to limit the adversary to only make 2 oracle calls. Namely, the problem
is to distinguish two samples (v1 + e1, v2 + e2) from two uniform elements in
Rq. Despite our efforts, we were unable to find additional corroboration to the
hardness of this problem and we leave it as an interesting open problem to
characterize its hardness.

Let us try to motivate and justify our assertion that the class of k-wise
independent distributions is meaningful. Indeed, this class captures the spirit

7 A computational variant is also possible, but needs to carefully define the indistin-
guishability experiment.

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 99

of some of the heuristic entropic distributions that were considered for RLWE.
For example, consider the representation of the secret s as a formal polyno-
mial modulo q (recall that Rq � Z[x]/(f, q) is a ring of polynomials). If each
coefficient of s is sampled from a Gaussian so that the total distribution has
sufficient entropy (slightly above the necessary k log q), then this distribution
will be k-wise independent (as follows from a standard “smoothing” argument).
This shows that sampling secrets with very low norm does not violate security
under our new assumption. While it was previously known that sampling the
secret from the noise distribution keeps security intact (also known as RLWE
in Hermite Normal Form [4]), we are not aware of a proof of security when s
is chosen from a narrower distribution than the error. This can be seen as a
step in the direction of matching the robustness of LWE results [12,24], that
show that LWE remains hard even with high entropy binary secrets. We note
that low norm secrets are of importance in the FHE literature (e.g. [11,26,27]).
In fact, in the HElib implementation [26,27] the secret is chosen to be a ran-
dom extremely sparse polynomial. Heuristically, it seems plausible that random
sparse polynomials should translate into k-wise independent distributions but
we do not have a proof for this speculation as yet. (Intuitively, this follows from
the fact that the translation between the coefficient and CRT representation is a
linear transformation defined by a Vandemonde matrix. In order to prove k-wise
independence we need to show that any subset of k rows of the Vandermonde
matrix constitutes a deterministic extractor from a uniform distribution over a
Hamming ball. Analogous theorems exist in other contexts, but we do not have
a proof as of yet.)

Another example of an interesting k-wise independent distribution is the
“entropic RLWE” formulation that came up in the obfuscation literature [15].
That setting consists of a large number of public elements s1, . . . , sm, sampled
from the noise distribution (which is Gaussian in the polynomial coefficient rep-
resentation and thus can be shown to be k-wise independent in the CRT repre-
sentation). The secret is generated by sampling a binary vector �z = (z1, . . . , zm)
and outputting s =

∏
szi

i . Using the leftover hash lemma, one can show that so
long as �z has entropy sufficiently larger than k log q, the resulting distribution
will be k-wise independent as well. It is worth noting that in order to achieve the
strongest notion of security for their obfuscator, [15] use �z with entropy � log q
to which our technique does not directly apply.

See Sect. 7 for more details on this result.

2 Preliminaries

For a vector x in C
n and p ∈ [1,+∞), we mean by �p norm ‖x‖p = (

∑
i |xi|p|)1/p

and by �∞ norm ‖x‖∞ = maxi |xi|. We refer to �2 norm if p is omitted. Let D be
a distribution. When writing x←D we mean sampling an element x according to
the distribution D. Similarly, for a finite set Ω, we denote by x

$← Ω sampling an
element x from Ω uniformly at random. For two distributions D1 and D2 over
the same measurable set Ω, we consider their statistical distance as Δ(D1,D2) =

100 M. Bolboceanu et al.

1
2

∫
Ω

|D1(x) − D2(x)|dx. When the support of D is a finite set Ω, we define the
entropy of D to be H(D) :=

∑
ω∈Ω D(Ω) · log2 (1/D(ω)). In a similar way, its

min-entropy is defined by H∞(D) := minω∈Ω log2 (1/D(ω)). It is easy to verify
that H(D),H∞(D) ≤ log2 |Ω| with equality if and only if D is the uniform
distribution over Ω. When discussing computational problems, we consider by
default the standard (nonuniform) polynomial time adversarial model.

We use standard notations and definitions of lattices, Gaussians, and text-
book material in algebraic number theory. See full version for detailed definitions.

Lattice Problems. Let L be a lattice in H represented by a basis B and let e+L
be a lattice coset represented by its unique representative e = (e + L) ∩ P(B)
in the fundamental parallelepiped P(B) := B · [−1/2, 1/2)n of B. We state the
standard lattice problems.

Definition 2.1 (Shortest Independent Vectors Problem). For an approx-
imation factor γ = γ(n) ≥ 1 and a family of lattices L, the L-SIVPγ problem is:
given a lattice L ∈ L, output n linearly independent lattice vectors of norm at
most γ · λn(L).

Definition 2.2 (Discrete Gaussian Sampling). For a family of lattices L
and a function γ that maps lattices from L to G := {r ∈ (R+)n : rs1+s2+i =
rs1+i, for 1 ≤ i ≤ s2}, the L-DGSγ problem is: given a lattice L ∈ L and a
parameter r ≥ γ(L), output an independent sample from a distribution that is
within negligible statistical distance of DL,r.

Definition 2.3 (Bounded Distance Decoding). For a family of lattices L
and a function δ that maps lattices from L to positive reals, the L-BDDδ problem
is: given a lattice L ∈ L, a distance bound d ≤ δ(L), and a coset e + L where
‖e‖ ≤ d, output e.

Lemma 2.4 (Babai’s round-off algorithm [5], [32, Claim 2.10]). For
every family of lattices L, there is an efficient algorithm that given as input
a lattice L ∈ L, a set of linearly independent vectors {v1, v2, . . . , vn} in L∗ and
a coset e + L such that |〈e, vi〉| ≤ 1

2 , solves L-BDDδ for δ(L) = 1
2λn(L∗) .

Definition 2.5 (Gaussian Decoding Problem [36]). For a lattice L ⊂ H
and a Gaussian parameter g > 0, the GDPL,g problem is: given a coset e + L
where e ∈ H was drawn from Dg, find e.

2.1 Algebraic Number Theory

Cancellation of Ideals. The next lemma is a generalization of [31, Lemma
2.15]. It is crucially used to make a BDD instance and a DGS sample into an
Order-LWE instance in the hardness result in Sect. 3. Generally speaking, the
lemma allows us to cancel invertible factors in the quotient IL/IJ L to yield an
isomorphism onto L/J L by multiplying by an appropriate “tweak” factor. The
proof of the lemma uses a generalization of the Chinese Remainder Theorem
adapted for ideals over orders. A proof is provided in the full version.

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 101

Lemma 2.6. Let I,J be integral ideals in an order O and let L be a frac-
tional O-ideal. Assume that I is invertible. Given the associated primes of J ,
p1, p2, · · · , pk, and an element t ∈ I\⋃k

i=1 piI the map

θt : L/J L → IL/IJ L
x �→ t · x

is well-defined, and induces an isomorphism of O-modules. Moreover, θt is effi-
ciently inverted given I,J ,L and t. Finally, such t can be computed given I and
p1, p2, · · · , pk.

We present a “counting lemma” whose proof is provided in the full version.

Lemma 2.7. Let K be a degree n number field and O an order, let q be a rational
prime. Let Q be an invertible O-ideal and q1, . . . , qk be the associated primes of

qO. Then there exists u ∈ Q−1 \
⋃

i

Q−1qi of norm ‖u‖∞ ≤ O

(
n

√
log nΔ

1/n
O

N(Q)1/n

)

.

2.2 The Ring-LWE Problem

Let q ≥ 2 be a (rational) integer. Let T = KR/R∨ denote a torus in the
Minkowski space. For any fractional ideal I of R, let Iq := I/qI.

Definition 2.8 (Ring-LWE Distribution). For s ∈ R∨
q , referred to as “the

secret”, and an error distribution ψ over KR, a sample from the R-LWE distri-

bution As,ψ over Rq ×T is generated by sampling a
$← Rq, e ← ψ, and outputting

(a, b = a · s/q + e mod R∨).

Definition 2.9 (Ring-LWE, Average-Case Decision Problem). Let ϕ be
a distribution over R∨

q , and let Υ be a distribution over a family of error dis-
tributions, each over KR. The average-case Ring-LWE decision problem, denoted
R-LWEq,ϕ,Υ , is to distinguish between independent samples from As,ψ for a ran-
dom choice of a “secret” s←ϕ, and an error distribution ψ←Υ , and the same
number of uniformly random and independent samples from Rq × T.

Definition 2.10 (Following [36, Definition 6.1]). Fix an arbitrary f(n) =
ω(

√
log n). For a real α > 0, a distribution sampled from Υα is an elliptical

Gaussian Dr, where r ∈ G is sampled as follows: for each 1 ≤ i ≤ s1, sample
xi ← D1 and set r2i = α2(x2

i + f2(n))/2. For each s1 + 1 ≤ i ≤ s1 + s2, sample
xi, yi ← D1/

√
2 and set r2i = r2i+s2

= α2(x2
i + y2

i + f2(n))/2.

Theorem 2.11 ([36, Theorem 6.2]). Let K be an arbitrary field of degree n
and R = OK its ring of integers. Let α = α(n) ∈ (0, 1), and let q = q(n) ≥ 2 be
a (rational) integer such that αq ≥ 2ω(1). There is a polynomial-time quantum
reduction from I(R)-DGSγ to R-LWEq,U(R∨

q),Υα
, where

γ = max
{

η (L) ·
√

2/α · ω(1),
√

2n/λ1 (L∨)
}

.

102 M. Bolboceanu et al.

3 Order-LWE: Definition, Variants and Worst-Case
Hardness

The ring of integers R of a number field K plays a central role in the definition
and use of the Ring-LWE problem. However, the ring of integers is a special
member of a family of rings in a number field, known as orders. We present a
generalization of Ring-LWE which we call Order-LWE, and show that similar
to Ring-LWE it also enjoys worst-case hardness, but with respect to a different
set of lattices. Generalizing the problem to the setting of orders also exposes
a difference between two variants of Ring-LWE that are indeed identical when
considering the ring of integers, but are distinct for general orders. Some back-
ground on algebraic number theory and particularly on orders can be found in
Sect. 2.1.

In the original R-LWE definition [31], the secret s was sampled from the dual
of the ring of integers R∨ (modulo q), and the coefficients a were sampled from R
(modulo q). We similarly define O-LWE as a sequence of noisy linear univariate
equations where the secret is sampled from O∨ and the coefficients are sampled
from O. As pointed out in [31], a dual version where s is sampled from R and a
from R∨ can also be defined, and is equivalent to the original one. Indeed some
followup works used the alternative definition (e.g. [22]). In the context of orders,
we show that this distinction can make a difference. We denote the dual version
by O∨-LWE. While we are able to show worst-case hardness reductions for both
O-LWE and O∨-LWE, the classes of lattices for which worst-case hardness holds
is different for the two variants; one is the dual of the other. Our definition also
generalizes R-LWE in another dimension, by allowing to take equations modulo
arbitrary ideals, and not necessarily modulo (an ideal generated by) a rational
integer q. In this section we define the variants of Order-LWE and present the
worst-case hardness results.

To set up the problems, let K be a number field, and let O be an order in
it. Let Q be an integral O-ideal, and let u ∈ (O : Q) := {x ∈ K : xQ ⊆ O}. For
fractional O-ideals J and L, define JL := J /J L, and let TO∨ := KR/O∨.

Definition 3.1 (O-LWE Distribution). For s ∈ O∨
Q and an error distribu-

tion ψ over KR, a sample from the O-LWE distribution Os,ψ,u over OQ × TO∨

is generated by sampling a
$← OQ, e ← ψ and outputting (a, b = u · (a · s) + e

mod O∨).

Definition 3.2 (O-LWE, Average-Case Decision Problem). Let ϕ be a
distribution over O∨

Q and let Υ be a distribution over a family of error dis-
tributions, each over KR. The average-case O-LWE decision problem, denoted
O-LWE(Q,u),ϕ,Υ , is to distinguish between independent samples from Os,ψ,u, for
a random choice of a “secret” s←ϕ, and an error distribution ψ←Υ , and the
same number of uniformly random and independent samples from OQ × TO∨ .

When the secret is sampled from the uniform distribution over O∨
Q, we some-

times omit it from the subscript. Observe that when O = OK , Q = qOK and
u = 1/q, the O-LWE problem coincides with the Ring-LWE problem.

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 103

In our definition of an O-LWE distribution, the secret s ∈ O∨
Q and a ∈ OQ.

One can also consider a dual variant of O-LWE where a ∈ O∨
Q and s ∈ OQ. In

general, these two variants are not equivalent, unlike in the case of Ring-LWE
(see Remark 3.5), but for special orders O they are, namely for orders O such
that their duals O∨ are invertible as O-ideals. For example, if f is the minimal
polynomial of the number field K, then the ring O = Z[x]/(f) is an order in K,
whose dual is invertible.

Definition 3.3 (O-LWE Distribution). For s ∈ OQ and an error distribu-
tion ψ over KR, a sample from the O∨-LWE distribution O∨

s,ψ,u over O∨
Q ×TO∨

is generated by sampling a
$← O∨

Q, e ← ψ, and outputting (a, b = u · a · s + e
mod O∨).

Definition 3.4 (O-LWE, Average-Case Decision Problem). Let ϕ be a
distribution over OQ, and let Υ be a distribution over a family of error dis-
tributions, each over KR. The average-case O∨-LWE decision problem, denoted
O∨-LWE(Q,u),ϕ,Υ , is to distinguish between independent samples from O∨

s,ψ,u,
for a random choice of a “secret” s←ϕ, and an error distribution ψ←Υ , and the
same number of uniformly random and independent samples from O∨

Q × TO∨ .

As before, when the secret is sampled from the uniform distribution over OQ,
we sometimes omit it from the subscript. Similar to the case of O-LWE, when
O = OK , Q = qOK and u = 1/q, the O∨-LWE problem coincides with the
variant of the Ring-LWE problem where a is sampled from R∨/qR∨ and s is
sampled from R/qR.

Remark 3.5. The O-LWE problem and the O∨-LWE problem are equivalent
as long as O∨ is an invertible O-ideal. By Lemma 2.6, the invertibility of O∨

yields an isomorphism from O∨
Q to OQ induced by multiplication by t ∈ (O∨)−1.

Therefore, the samples of the form (a, b = u · a · s + e mod O∨) are transformed
to (a′ = a · t, b′ = b = u · a′ · s′ + e mod O∨), where a′ = a · t ∈ OQ and
s′ = s ·t−1 ∈ O∨

Q. In the particular case of O being the ring of integers, we obtain
the equivalence between Ring-LWE and the variant of Ring-LWE previously
described.

The O∨-LWE definition is inspired by [22], where the authors show that for
the variant of Ring-LWE with a from the dual and s from the ring, problem
becomes harder as the number field grows. In Sect. 5, we prove an analogue of
this result for the set of orders under inclusion, i.e., the bigger the order is, the
harder the O∨-LWE problem is. Since the ring of integers is the maximal order
in the field, the Ring-LWE problem is harder than any O∨-LWE problem.

3.1 Worst-Case Hardness for O-LWE and O∨-LWE

We now state the hardness results of the O-LWE and O∨-LWE problems and
derive the hardness of the Ring-LWE problem (see Theorem 2.11) as a special
case. We begin by generalizing Definition 2.10 of the error distribution Υα to be
elliptical according to u.

104 M. Bolboceanu et al.

Definition 3.6. Fix an arbitrary f(n) = ω(
√

log n). For α > 0 and u ∈ K,
a distribution sampled from Υu,α is an elliptical Gaussian Dr, where r ∈ G is
sampled as follows: for i = 1, . . . , s1, sample xi ← D1 and set r2i = α2(x2

i +
(f(n) · |σi(u)| / ‖u‖∞)2)/2. For i = s1 + 1, . . . , s1 + s2, sample xi, yi ← D1/

√
2

and set r2i = r2i+s2
= α2(x2

i + y2
i + (f(n) · |σi(u)| / ‖u‖∞)2)/2.

Note that when u ∈ K satisfies σ1(u) = . . . = σn(u) (and therefore is rational),
the distribution Υu,α degenerates to Υα. Otherwise, Υu,α is strictly narrower than
Υα.

Let I(O) be the set of invertible fractional ideals over the order O. Our
hardness results for O-LWE and O∨-LWE are as follows.

Theorem 3.7. Let K be an arbitrary number field of degree n and O ⊂ K
an order. Let Q be an integral O-ideal, u ∈ (O : Q) and let α ∈ (0, 1) be such
that α/ ‖u‖∞ ≥ 2 · ω(1). There is a polynomial-time quantum reduction from
I(O)-DGSγ to O-LWE(Q,u),Υu,α

, where

γ = max
{

η(QL) ·
√

2 ‖u‖∞ /α · ω(1),
√

2n/λ1 (L∨)
}

. (1)

Theorem 3.8. Let K be an arbitrary number field of degree n and O ⊂ K
an order. Let Q be an integral O-ideal, u ∈ (O : Q) and let α ∈ (0, 1) be such
that α/ ‖u‖∞ ≥ 2 · ω(1). There is a polynomial-time quantum reduction from
I(O) · O∨-DGSγ to O∨-LWE(Q,u),Υu,α

, where

γ = max
{

η(QL) ·
√

2 ‖u‖∞ /α · ω(1),
√

2n/λ1 (L∨)
}

. (2)

We note that the class I(O) ·O∨ is exactly the class of all lattices whose dual
is in I(O). Thus we see that the effect of changing the domains of a and s to the
dual of their previous domains is that the class of lattices for which the hardness
result applies is the dual of the previous class. The classes are the same if O∨

itself is an invertible ideal in O. An equivalence between the problems can be
shown in this case directly, similar to the setting in Ring-LWE.

Remark 3.9. Consider the special case where O = R, the ideal Q = qR and
u = 1/q. Then the O∨-LWE(Q,u),Υu,α

problem is equivalent to the R-LWEq,Υα

problem as mentioned in Remark 3.5. Moreover, the sets I(R) ·R∨ and I(R) are
equal as all fractional R-ideals are invertible, and finally η(QL) ‖u‖∞ = η(L)
shows that the parameters γ from Theorem 2.11, Theorems 3.7 and 3.8 coincide.
In fact, the expression for γ in Theorem 3.7 is achieved in the latter two results
when Q = qO and u = 1/q, for any order O.

Remark 3.10. Another important special case is the R-LWE distribution with
an ideal modulus Q in place of the integer modulus qR. Formally, we let O be
R, choose u ∈ (R : Q) = Q−1 such that ‖u‖∞ = λ∞

1 (Q−1) and α <
√

log n/n.
Then the theorem above implies a reduction from I(R)-DGSγ to R-LWE(Q,u),Υu,α

with γ greater than at most Δ
1/n
K times the γ obtained when Q = qR and

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 105

u = 1/q, as in Theorem 2.11. Making a similar comparison with modulus Q, an
invertible O-ideal, we get reductions from I(O)-DGSγ to O-LWE(Q,u),Υu,α

and
from I(O) · O∨-DGSγ to O∨-LWE(Q,u),Υu,α

with γ greater than at most Δ
1/n
O

times the γ obtained when Q = qO and u = 1/q in Theorems 3.7 and 3.8.

We present an overview of the proof of Theorem 3.7 here. For a detailed
proof, see the full version of this paper. The proof for Theorem 3.8 is completely
analogous and follows by replacing the point of reference from lattices in I(O)
to their dual. Our proofs are related to ones in previous works and in particular
to the one in [36].

Proof Overview. At the heart of the reduction, we use an iterative step that
transforms discrete Gaussian samples into slightly narrower ones. Initially, we
generate samples from a Gaussian distribution with large enough parameter such
that these samples can be generated efficiently. Then we repeatedly apply the
iterative step to generate narrower and narrower samples until we obtain the
desired parameter.

The proof of the promised iteration has two components. First, we show
how to transform an O-LWE solver into a GDP solver given polynomially many
discrete Gaussian sample. This lemma assumes that we are given an efficient
algorithm that transforms BDD like instances into O-LWE samples. The second
step uses a quantum algorithm to generate narrower discrete Gaussian samples
via a GDP solver.

4 New Worst-Case Hardness for Polynomial-LWE

The Polynomial Learning with Errors problem, or PLWE in short, introduced
by Stehlé et al. [41]8 is closely related to both the Ring-LWE and Order-LWE
problems. PLWE has an advantage of having very simple interface which is
useful for manipulations and thus also for applications and implementations. In
a recent work, Rosca, Stehlé and Wallet [40] showed a reduction from worst-case
ideal-lattice problems to PLWE. In this section, we show that the hardness of
O-LWE that we proved in Sect. 3 implies a different worst-case hardness result
for PLWE, essentially by relating it to a different class of lattices than those
considered in [31,36]. In what follows we start with an informal description of
the PLWE problem, the current hardness result of PLWE, our result and a
comparison. This is followed by a more detailed and formal treatment.

4.1 Overview

Consider a number field K defined by an irreducible polynomial f , so that K =
Q[x]/(f). Recall that the Ring-LWE distribution involves elements a and s of the
ring of integers R := OK and its dual R∨, respectively. The O-LWE distribution
is defined similarly, but with a and s coming from an arbitrary order in K and

8 As “ideal-LWE”. The name PLWE was used in [13].

106 M. Bolboceanu et al.

its dual, respectively. In the PLWE setting, both a and s are elements of the
ring O := Z[x]/(f), i.e. polynomials with integer coefficients in the number field.
There are number fields for which R �= O, however it is always true that O is an
order of K. We highlight that in PLWE, unlike in Ring-LWE and Order-LWE,
both a and s are elements of the order itself.9

The aforementioned [40] presented a reduction from Ring-LWE to PLWE (see
Theorem 4.2 for the formal statement). Their reduction is based on the so called
“Cancellation Lemma” (Lemma 2.6) which, informally, allows to “reshape”
orders and ideals at the cost of increasing the size of the error. As mentioned
above, in PLWE both a and s are elements of O, whereas in Ring-LWE a and
s are elements of R and R∨ respectively. The reduction of [40] applies the Can-
cellation Lemma to reshape both R and R∨ into O. We mention that using the
Cancellation Lemma to reshape ideals of the ring of integers R is a known tech-
nique (see [35, Section 2.3.2]). The novel contribution of [40] is both in analyzing
the increase of the error and in reshaping ideals of one order into another.

We suggest an alternative reduction from O-LWE to PLWE in Theorem 4.4.
Our reduction is also based on the reshaping procedure, but with a single appli-
cation of the Cancellation Lemma. More specifically, we only need to reshape
O∨ into O. We show below that our reduction increases the error by a smaller
factor than in the reduction of [40] from Ring-LWE. See Proposition 4.8 for the
formal statement.

4.2 Hardness of PLWE

The formal definitions and hardness results follow, along with a more detailed
and formal comparison of the results. We let K be a number field of degree n
defined by a polynomial f . We denote O := Z[x]/(f), and R := OK . The PLWE
distribution and problem are defined as follows.

Definition 4.1 (PLWE Distribution and Problem [41]). For a rational
integer q ≥ 2, a ring element s ∈ Oq, and an error distribution ψ over KR/O, the
PLWE distribution over Oq ×KR/O, denoted by Ps,ψ, is sampled by independently
choosing a uniformly random a

$← Oq and an error term e←ψ, and outputting
(a, b = (a · s)/q + e mod O).

For a distribution Υ over a family of error distributions, each over KR/O, the
PLWE decision problem, denoted PLWEq,Υ , is to distinguish between independent
samples from Ps,ψ for a random choice of s

$← Oq, and an error distribution
ψ←Υ , and the same number of uniformly random and independent samples from
Oq × KR/O.

9 Another difference between Ring/Order-LWE and PLWE is that in the latter, the
error distribution is specified using the so called coefficients embedding, and not the
canonical embedding. For the sake of simplicity, we focus on a variant of PLWE which
uses the canonical embedding, (called PLWEσ in [40]) but we call it likewise, and we
avoid the distinction between the embeddings. Both hardness results in this section
can be further extended to the hardness of PLWE.

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 107

For a distribution ϕ and an element t ∈ K we denote by t ·ϕ the distribution
obtained by sampling an element x←ϕ and outputting t · x. Similarly, for a
family distribution Υ , we denote by t ·Υ the family obtained by multiplying each
distribution by t.

We now turn to present and compare the two worst-case to average-case
reductions. Let CO denote the conductor ideal of O. [40] showed the following
reduction from Ring-LWE to PLWE.

Theorem 4.2 ([35, Section 2.3.2][40, Theorem 4.2]). Let q ≥ 2 be some
rational integer such that qR+CO = R, and let Υ be a distribution over a family
of error distributions, each over KR/O. There exists a probabilistic polynomial
time reduction from R-LWEq,Υ to PLWEq,t1t22·Υ , where t1 ∈ (R : R∨)\⋃

i pi(R :
R∨) and t2 ∈ CO \ ⋃

i piCO, where pi’s are the prime ideals of qR.

Combining the reduction above with the hardness of Ring-LWE stated in
Theorem 2.11 we get the following:

Corollary 4.3 (Worst-Case Hardness of PLWE from Ring-LWE). With
the same notations as above, let α ∈ (0, 1) such that αq ≥ 2

∥
∥t1t

2
2

∥
∥

∞ ω(1). There
is a reduction from I(R)-DGSγ to PLWEq,Υα

for any

γ = max
{

η (L) ·
√

2/α · ∥∥t1t
2
2

∥
∥

∞ · ω(1),
√

2n/λ1 (L∨)
}

.

We now state the hardness result based on the hardness of O-LWE. First,
using a reduction similar to the one from [35, Section 2.3.2], we obtain an analo-
gous reduction from O-LWE to PLWE. The proof is provided in the full version.

Theorem 4.4 Let q ≥ 2 be some rational integer, and let Υ be a distribution
over a family of error distributions, each over KR/O. There exists a probabilistic
polynomial time reduction from O-LWEq,Υ to PLWEq,t·Υ , where t ∈ (O : O∨) \⋃

i p̃i(O : O∨), where p̃i’s are the associated primes of qO.

Now, using the hardness of O-LWE from Theorem 3.7 we obtain:

Corollary 4.5 (Worst-Case Hardness of PLWE from Order-LWE). Let
q ≥ 2 be some rational integer, and let α ∈ (0, 1) be such that αq ≥ 2‖t‖∞ω(1).
Then there is a reduction from I(O)-DGSγ to PLWEq,Υα

for any

γ = max
{

η (L) ·
√

2/α · ‖t‖∞ · ω(1),
√

2n/λ1 (L∨)
}

.

4.3 On the Existence of Small Multipliers

In the following, we let α be a root of the defining polynomial f of the field K,
so Z[x]/(f) = Z[α]. We also denote by p̃1, . . . , p̃k the associated primes of qO,
where q is a rational prime. We assert that a short element t as in Theorem 4.4
exists and can be found using the combinatorial argument from Lemma 2.7.
Detailed proof of the statements in this section are given in the full version.

108 M. Bolboceanu et al.

Corollary 4.6. There exists an element t in (O : O∨)\⋃
i(O : O∨)p̃i whose

norm is bounded by

‖t‖ ≤ O(n ·
√

n log n · N(f ′(α))1/n · Δ
1/n
O).

A short element t as in Theorem 4.4 can also be obtained by sampling via a Gaus-
sian distribution over (O : O∨) with an appropriately small parameter, exactly
as in [40, Theorem 3.1]. We refer to the full version for the formal statement and
proof.

Corollary 4.7. Assuming q is coprime to the conductor, there exists an element
t in (O : O∨)\⋃

i(O : O∨)p̃i whose norm is bounded with high probability by

‖t‖ ≤ √
q · √

n · q2δ · N(f ′(α))1/n · Δ
1/n
O ,where δ ∈

[
4n + log ΔO

n log q
, 1

]

.

The bounds from Corollaries 4.6 and 4.7 do have some common factors,
namely Δ

1/n
O , N(f ′(α))1/n and

√
n. Therefore, it is enough to compare

√
q · q2δ

and M ·n·√log n, respectively, where M is the hidden constant from Corollary 4.6
and q = poly(n). An asymptotic comparison shows that Corollary 4.6 yields a
better bound than Corollary 4.7. Also, recall that the latter result assumes q
to be coprime to the conductor, whereas the earlier one is true for all rational
primes q.

4.4 Comparison

Both Corollaries 4.3 and 4.5 relate PLWE to worst-case ideal lattice problems.
The former result involves invertible R-ideals, whereas the family of lattices in
the latter is the set of invertible O-ideals. These two families are disjoint, as any
ideal can be invertible in at most a single order. In this regard, the two results
are incomparable. We note that despite being disjoint, they are known to be
related by the conductor ideal, see [17] for reference. We leave exploring this
connection to future work.

Another parameter for comparison is the increase of the error in both hard-
ness results. In the proposition below we show that the element t from Theo-
rem 4.4 can be chosen to be smaller than the product t1t

2
2 from Theorem 4.2.

Before doing so we give a short description of the elements t, t1 and t2 in the
case where qR is coprime to the conductor. We provide more details in the full
version.

Let q ≥ 2 be some rational integer such that qR + CO = R, and let qR =∏k
i=1 p

ei
i be its factorization into prime ideals in R. In this setting, the elements

t, t1, t2 are any elements satisfying the following conditions:

1. t ∈ (O : O∨) and t /∈ (pi ∩ O)(O : O∨) for all i ∈ [k].
2. t1 ∈ (R : R∨) and t1 /∈ pi(R : R∨) for all i ∈ [k].
3. t2 ∈ CO and t2 /∈ piCO for all i ∈ [k]. Notice that t22 satisfies same properties.

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 109

Proposition 4.8. With the same notations as above, for any t1 and t2 satis-
fying conditions 2 and 3, the product t∗ = t1t

2
2 satisfies condition 1. In partic-

ular, letting t to be the shortest satisfying condition 1, and t1 and t2 satisfying
conditions 2 and 3, respectively, such that t1t

2
2 is the shortest, we have that

‖t‖∞ ≤ ∥
∥t1t

2
2

∥
∥

∞.

The proof is provided in the full version of the paper.

5 Sampling Secrets from Orders

In this section, we consider a setting where the RLWE secret s is sampled from
a subring of its designated space. For this purpose, it is more convenient to work
with the dual version of R-LWE, which is used interchangeably in the literature
but according to our notation should be denoted R∨-LWE. In this variant a is
sampled from R∨ and the secret s comes from R.

More formally, we assume the following setting. Let q ≥ 2 be a rational
prime that splits completely over R.10 Then Rq � Z

n
q , as rings, and a subring

S ⊆ Rq isomorphic to Z
k
q corresponds to an order O satisfying qR ⊆ O ⊆ R.

We show that this version of the Ring-LWE problem is at least as hard as
the O∨-LWE problem, defined in Sect. 3. In fact, this reduction follows as a
corollary of a stronger result that shows that the O∨-LWE problem becomes
harder as the order becomes bigger. This result can be viewed as an analogue of
[22, Lemma 3.1], for the O∨-LWE problem, instead of the ring variant.

Given two orders O′ ⊆ O, their duals satisfy O∨ ⊆ O′∨, as fractional
O′-ideals, and there exist {v1, v2, . . . , vm} ⊆ O′ s.t. O∨ =

∑
i O′∨vi.11 We will

be interested in finding such set with the smallest possible norm (that is, the �2
of the concatenation of the canonical embeddings of all vi).

Theorem 5.1. Let O′ ⊆ O ⊂ K be orders, Q′ an integral O′-ideal and Q an
integral O-ideal such that Q = Q′O. Let {v1, v2, . . . , vm} ⊆ O′ be s.t. O∨ =∑

i O′∨vi. Let ϕ be a distribution over O′
Q′ , let Υ be a family of distributions,

each over KR/O′∨, and let u ∈ (O′ : Q′). Then there is a probabilistic polynomial
time reduction from O′∨-LWE(Q′,u),ϕ,Υ to O∨-LWE(Q,u),ϕ,〈Υ,v〉, where 〈Υ,�v〉 is
the distribution (over distributions) that samples ϕ ← Υ , and then outputs the
distribution that e1, . . . , em from ϕ and outputs

∑
i eivi.

Proof. We describe an efficient transformation that takes m elements from
O′∨

Q′ × KR/O′∨ and outputs an element in O∨
Q × KR/O∨. We show that this

transformation maps uniform samples to uniform ones, and O′∨
s,ψ,u samples to

O∨
s,〈ψ,v〉,u samples for any s←ϕ and ψ←Υ .

Given m samples {(a′
i, b

′
i)}i∈[m], the transformation outputs (a =

∑
i a′

ivi, b =∑
i b′

ivi). Since O∨ =
∑

i O′∨vi and QO∨ =
∑

i Q′O′∨vi, this map is well-defined

10 A similar argument can be stated for the general case. However, this leads to a very
cumbersome statement, and we prefer to avoid it.

11 It is even possible to do so with m = 2, but we will be interested in vi with small
norm, in which case it is sometimes beneficial to use larger m.

110 M. Bolboceanu et al.

over the cosets that arise in the distributions and maps uniform distribution over
O′∨

Q′ × TO′∨ to uniform distribution over O∨
Q × TO∨ , respectively.

Now, assume that {(a′
i, b

′
i)}i∈[m] are sampled from O′∨

s,ψ,u. Then, for i ∈ [m],
the element b′

i = u · a′
i · s + e′

i, where e′
i←ψ. As

b =
∑

i

b′
ivi = u ·

∑

i

a′
ivi · s +

∑

i

eivi = u · a · s + e,

where e =
∑

i eivi is sampled from 〈ψ,�v〉, so the tuple (a, b) lies in O∨
s,〈ψ,v〉,u.

This concludes the proof. ��
Corollary 5.2. Let O ⊂ R be an order such that qR ⊆ O, and let �v =
{v1, v2, . . . vm} ⊂ O be short elements such that they generate R∨ over O∨, i.e.,
R∨ =

∑
i O∨vi. Let Υ be a family of error distributions, each over KR/O∨.

Then, there exists a polynomial time reduction from O∨-LWE(qR,1/q),Υ to
R-LWEq,U(O/qR),〈Υ,v〉.

We note that in this case, the elements v1, v2, . . . , vm are generators of the con-
ductor ideal CO as an R-ideal.

Proof. The proof follows easily as a special case of Theorem 5.1; take O′ = O
and O = R, Q′ = Q = qR, and u = 1/q.

Important Special Cases. We now discuss a family of orders O that give
rise to interesting secret distributions. Assume that q splits completely in R. Let
qR =

∏
pi denote the prime factorization of q in R. Then the Chinese remainder

theorem yields the following isomorphism:

Rq
∼−→ ∏

i

(
R
pi

)
� Z

n
q

x �→ (x mod pi)i∈[n].

Let Ω = (Ω1, . . . , Ωk) be a partition of [n] into k disjoint subsets. Define

S := {x ∈ Z
n
q | xj = xj′ , for j, j′ ∈ Ωi, and i ∈ [k]}.

Then, the set S is isomorphic to Z
k
q and can be written as O/qR, for an order

O such that qR ⊆ O ⊆ R. Due to Corollary 5.2, we can get hardness of the
Ring-LWE with the secret sampled from O/qR from the hardness of O∨-LWE
and therefore, from the hardness of I(O) · O∨-DGS.

In particular, if we consider K ′ a subfield of K, then its ring of integers
R′ = OK′ is a subring of R. Hence we can consider the following order O =
R′ + qR in R and see that O/qR corresponds to some partition of [n]. Using the
hardness result of Ring-LWE (in K ′) and the comparison result in [22, Lemma
3.1], one gets that the Ring-LWE problem (in K) with the secret sampled from
O = R′ + qR is at least as hard as I(R′)-DGS (in K ′).

On the other hand, using the hardness result of O∨-LWE (Theorem 3.8) and
Corollary 5.2, we get that the Ring-LWE problem (in K) with the secret sampled

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 111

from O is at least as hard as I(O) · O∨-DGS (in K). One may wonder about a
relation between the sets I(R′) and I(O) · O∨. It is not too hard to check that
the set of invertible ideals I(R′) embeds into I(O) · O∨ as follows:

I(R′) ↪→ I(O) · O∨

L′ �→ L′O · O∨ = (L′ + qL′R) · O∨ .

6 RLWE Secrets from Ideals: High Entropy is Not
Enough

In this section we show, perhaps surprisingly, that sampling Ring-LWE secrets
from a high-entropy distribution is not necessarily sufficient to guarantee secu-
rity. Specifically, we investigate the security of Ring-LWE in the case where the
distribution of secrets is uniform over an ideal. We note that by definition this
ideal must be a factor of the ideal qR (i.e. the ideal generated by the modulus q
in the number field). In many applications of RLWE it is common to choose a
value of q as a prime integer which nevertheless factors (splits completely) as an
ideal over R.12 This means that elements in Rq = R/qR can be represented using
the Chinese Remainder Theorem as tuples of elements in Zq = Z/qZ, and the
factors of qR represent elements where some of the CRT coordinates are fixed to
zero. Indeed, this CRT representation allows for more efficient operations over
Rq and is the reason why such values of q are chosen in the first place. It is
therefore natural to investigate whether setting a subset of the CRT coordinates
to 0 has an effect on security.

We show that, as mentioned above, fixing a very small ε fraction of the
CRT coordinates (thus only eliminating ε fraction of entropy) could result in
complete loss of security. That is, we consider a RLWE instance with uniform
secret, where worst-case to average-case reductions guarantee plausible security
under the current state of the art in algorithms. We then show that by fixing
any ε fraction of the CRT coordinates, the instance becomes insecure. The value
of ε depends on the noise level of the RLWE instance. We complement this
with a positive result, showing that taking ε that is slightly smaller than the
aforementioned prescribed value is insufficient and worst-case hardness can still
be established.

Notation. We use the standard RLWE setting where K is a number field of
degree n with R as its ring of integers. We usually omit the asymptotic termi-
nology to reduce clutter of notation.

Letting P ⊃ qR be an integral ideal in R, we let Q = qP−1 denote its
complement with respect to qR. We note that Q is also an integral ideal in R.
We further note that as per the above exposition, P (or more accurately P/qR)
represents a subset of the CRT coordinates defined by the decomposition of qR
in R. Since, formally RLWE is defined with secrets distributed over R∨/qR∨,
therefore formally we will sample our secret from PR∨/qR∨ rather than P/qR

12 Sometimes a product of such primes is used.

112 M. Bolboceanu et al.

itself. Note that the two spaces are isomorphic, due to the cancellation lemma
(Lemma 2.6), and this distinction is mere formalism. We would also like to point
out that the dual of 1

q PR∨ is Q. To see this observe that Q∨ = (qP−1)∨ =
1
q (P−1)∨ = 1

q PR∨.

Remark 6.1. As stated above, the results in this section capture secret distribu-
tions, or leakage scenarios, where a fixed subset of the CRT coordinates is known
to be 0. We remark that all the results below generalize easily to the case where
an ε fraction of the CRT coordinates is any fixed-value. As one would expect,
fixing to some non-zero value corresponds to sampling the secret from a coset of
an ideal.

6.1 Insecure Instances

Theorem 6.2. Let K, R be a degree n number field and its ring of integers,
respectively. Let P ⊃ qR be an integral R-ideal and Q = qP−1 its complement as
described above. There is a non-uniform algorithm such that for any distribution
ψ satisfying Pre←ψ[‖e‖ < 1/(2λn(Q))] is non-negligible and any distribution ϕ
over PR∨/qR∨, the algorithm solves search R-LWEq,ϕ,{ψ} with non-negligible
probability given a single sample.

We note that the theorem immediately implies that the same holds for
R-LWEq,ϕ,Υ where Υ is a distribution over distributions ψ so long as the prob-
ability to sample ψ as required in the theorem is non-negligible.

Proof. The algorithm will use a non-uniform advice string containing short
vectors in Q that will be used for decoding in the lattice P. Specifically let
V = {v1, . . . , vn} ⊂ Q be a set of Z-linearly independent vectors satisfying
‖vi‖ ≤ λn(Q).

The algorithm executes as follows. Given the input (a, b), we let ā denote the
inverse of a over Rq. This inverse exists with high probability, and is efficiently
computable. It then considers b as an element in KR by taking an arbitrary
representative. It further applies Babai’s BDD algorithm (Lemma 2.4) on input
b with respect to the lattice 1

q PR∨, and with V as the decoding basis. The
BDD subroutine returns an element b′ in 1

q PR∨. Finally it returns s′ = qāb′

(mod qR∨) ∈ PR∨/qR∨.
We show that the algorithm succeeds whenever a is invertible and e satis-

fies ‖e‖ < 1/(2λn(Q)). These conditions occur concurrently with non-negligible
probability. We recall that b = as/q + e mod R∨, and note that as/q ∈
1
q PR∨/R∨. Therefore when casting b as an element in KR this element is of
the form y + e where y ∈ 1

q PR∨ and y = as/q (mod R∨). We furthermore have
that, for all i,

|Tr(e · vi)| =
∣
∣
∣〈σ(e), σ(vi)〉

∣
∣
∣ ≤ ‖e‖ · ‖vi‖ < 1/2 .

Therefore, recalling that Q is the dual of 1
q PR∨, we can apply Lemma 2.4 and

deduce that the rounding algorithm recovers the value y.

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 113

Finally, the output value will be s′ = qāy (mod qR∨) = qāas/q
(mod qR∨) = s (mod qR∨) and the result follows. ��

6.2 Secure Instances

We now show that the vulnerability exposed in Theorem 6.2 can be mitigated
by increasing the noise rate of the instance. Indeed, we show that sampling the
secret from a distribution with lower entropy preserves worst-case hardness so
long as the noise level is sufficiently high. To this end, we use our definition of
Order-LWE (Definition 3.2), but with the order O being the ring of integers R.
This definition still generalizes the classical R-LWE since it allows us to consider
a “modulus” which is not necessarily an integer q but an ideal Q. In terms of
terminology, O-LWE with O = R will still be denoted R-LWE, so we overload
the notation of the standard RLWE problem.

Theorem 6.3. Let K, R be a degree n number field and its ring of integers
respectively. Let P ⊃ qR be an integral R-ideal and Q = qP−1 its complement
as described above. Let u ∈ Q−1 and Υ be arbitrary. Then there is a polynomial
time reduction from R-LWE(Q,u),Υ to R-LWEq,U(PR∨/qR∨),Υ .

Proof. We prove the theorem by showing a (randomized) transformation T that
takes as input a ∈ RQ and outputs ã = T (a) ∈ Rq such that

1. If a is uniform over its domain, then so is T (a) over its domain.
2. For all s ∈ R∨/QR∨, there exists s̃ ∈ PR∨/qR∨ s.t. uas = ãs̃/q (mod R∨),

for all a ∈ RQ.

If indeed such a transformation exists, then the reduction works as follows.
Start by sampling s0 uniformly from PR∨/qR∨. Then, given a sequence of
samples (a, b) for R-LWE(Q,u),Υ , apply the transformation (a, b) → (ã, b̃) =
(T (a), b + ãs0/q) on each sample and output the resulting samples as R-
LWEq,U(PR∨/qR∨),Υ samples. By the properties of the transformation indeed
ã is uniform, and b̃ = uas + e + ãs0/q = ã(s̃ + s0)/q + e (mod R∨). Since s0 is
uniform over PR∨/qR∨ then so is (s̃ + s0) and indeed the output samples are
distributed as required.

The transformation T is as follows. Given a as input, sample a random a′

from Q/qR and output ã = a + a′ (mod qR). The first property holds since a
is uniformly distributed over all cosets of a′. As for the second property, define
s̃ = qus (mod qR∨). Since u ∈ Q−1, it holds that qu ∈ P and therefore indeed
s̃ ∈ PR∨/qR∨. We have

ãs̃/q = (a + a′)qus/q = uas + ua′s (mod R∨) .

Since a′ ∈ Q/qR, u ∈ Q−1 and s ∈ R∨/QR∨ we have that ua′s = 0 (mod R∨)
and the result follows. ��

114 M. Bolboceanu et al.

6.3 A Threshold Phenomenon

Combining the results from Theorems 6.2 and 6.3, we show a (commonly used)
setting where reducing the entropy of the secret results in tractability of the
RLWE instance on one hand, but either using fully uniform secret (with the
same noise level) or a modest increase in the noise level (with the same imperfect
secret) results in the problem’s intractability being resumed.

We consider the setting where K is a cyclotomic number field (so that we
have a good bound on the discriminant ΔK) and where q is a prime for which
the ideal qR splits completely as an ideal over R. The latter condition is the
formal description of the fact that elements in Rq (and also in R∨

q , due to
Lemma 2.6) can be written in CRT form as tuples in Z

n
q . We can thus con-

sider secret distributions where k out of the n CRT coordinates are set to be 0,
and the remaining (n − k) coordinates are uniform. Naturally, this distribution
has entropy (1− k

n)n log q, i.e. (1− k
n)-fraction of the full entropy. Formally, this

corresponds to sampling the RLWE secret from an ideal P ⊃ qR with algebraic
norm N(P) = qk. The formal statement follows and we provide its proof in the
full version of the paper.

Corollary 6.4. Let K, R be a degree n number field and its ring of integers
respectively, and assume furthermore that K is cyclotomic. Then for every inte-
ger k ∈ [0, n], letting ε = k/n, there exist q = qε = nO(1/ε), α = αε = poly(n)/q
and a distribution ϕ over R∨

q with entropy (1 − ε)n log q s.t. R-LWEq,ϕ,Υα
is

solvable in polynomial time.
On the other hand, solving the problems R-LWEq,Υα

and R-LWEq,ϕ,Υβ
for

any β = α · ω(n5/2) is as hard as solving I(R)-DGSγ for γ = η · poly(n1/ε).

Solving DGS with γ as above corresponds to approximating the Shortest
Independent Vector Problem (SIVP) to within poly(n1/ε) factor. At least for
constant ε, achieving such DGS/SIVP approximation is intractable using current
state of the art algorithmic techniques. Therefore, we show a threshold effect in
two different aspects. First, in terms of entropy, we show a RLWE problem which
is plausibly intractable if the secret is uniformly random, becomes tractable when
the entropy is slightly reduced. Second, even if the entropy is reduced, a relatively
modest increase in the noise level restores intractability.

7 k-Wise Independent Secrets and Hidden Lattice BDD

In this section, we propose a class of high-entropy distributions for RLWE secrets
for which we believe worst-case hardness should hold. As evidence, we show how
to prove hardness based on a new average-case lattice problem. This new problem
is a decision variant of the bounded distance decoding (BDD) problem. In our
variant, BDD is to be solved on an ideal lattice which is sampled from a large
family of ideals. It allows us to prove the hardness for distributions of RLWE
secrets with norm bounded away from q and whose marginal distribution over
this family of ideals (i.e. sampling an element from this distribution and taking
its product with the ideal) is indistinguishable from uniform.

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 115

The Setting and Notation. In this section, we choose to use a simpler notation
at the cost of some restriction on the generality of our discussion. This will allow
us to present our results in a more digestible manner. In particular, we limit the
discussion to cyclotomic number fields, our modulus to completely splitting, and
the regime of the RLWE samples to be over Rq × Rq, i.e. discrete and integral,
instead of Rq × KR/R∨.

Formally, we let K be a cyclotomic number field of degree n, and denote its
ring of integers by R. In this case, the ideal R∨ is just a scalar multiple of R,
R∨ = tR, for t ∈ K [18, Theorem 3.7]. Therefore, we can assume that the RLWE
distribution is obtained by sampling s from Rq instead of from R∨

q . Moreover,
we consider that the error e from a discrete Gaussian over R. This setting is
quite commonly used (and is perhaps the most popular use of RLWE) and its
worst case hardness is presented in [32, Lemma 2.23].

Defining k-Wise Independent Distributions. As explained above, we con-
sider the case where q is an integer prime which splits completely, qR =

∏n
i=1 pi,

where each pi ⊆ R is a prime ideal. For k ∈ [n], we define the following family
of ideals

Pk :=

{
∏

i∈T

pi | T ⊆ [n], |T | = k

}

.

Our class of (perfect/statistical/computational) k-wise independent distri-
butions are those whose marginals are (perfectly/statistically/computationally)
indistinguishable from uniform modulo any product of k prime ideals from q, so
modulo any P ∈ Pk. Recalling the CRT representation of Rq, this is equivalent
to any k-tuple of CRT coordinates being indistinguishable from uniform.

Definition 7.1. A distribution ϕ over Rq is (perfectly/statistically/computa-
tionally) k-wise independent if the random variables (s mod P) and (z mod P)
are (perfectly/statistically/computationally) indistinguishable, where s ← ϕ, z ←
Rq and P ← Pk. The asymptotics are over the dimension n and k = k(n) is
some integer function.

Lemma 7.2. Let ϕ be k-wise independent, and consider the following probability
space. Sample P ← Pk and let Q = P−1q ∈ Pn−k. Sample x1, x2 ← Q/qR

conditioned on x1 being invertible modulo P, and s
$← ϕ. Then the distributions

(x1, x1 · s) and (x1, x2) are indistinguishable.

Proof. Let s′ be any representative of s (mod P). Then (x1, x1 · s) = (x1, x1 · s′)
since x1 ∈ Q and P + Q = qR. Thus, Definition 7.1 implies that (x1, x1 · s) is
indistinguishable from (x1, x1 · z) where z is uniform in Rq.

Now fix any P, x1, we will show that x1z and x2 are identically distributed.
Since x1 is invertible modulo P, then x1z is uniform modulo P. Since x1 ∈ Q/qR
it follows that x1z = 0 (mod Q). Therefore x1z is uniform in Q/qR.

116 M. Bolboceanu et al.

7.1 Hidden-Lattice Decision Bounded Distance Decoding

We first define the hidden lattice BDD (HLBDD) distribution, and then the
decisional problem associated with it. We use Gaussian noise but other noise
distributions can be considered as well, the property that we use in our proof is
that the distribution is bounded.

Definition 7.3 (Hidden Lattice BDD Distribution). Let L1 and L2 be two
given lattices, and let L be a finite family of lattices, where each member L′ ∈ L
satisfies L1 ⊆ L′ ⊆ L2. Let r ∈ G be a Gaussian parameter. The Hidden Lattice
BDD Distribution over L2/L1, denoted by CL1,L,DL2,r , is sampled by choosing

uniformly at random a lattice L′ $← L, an element x
$← L′/L1, and an error

term e←DL2,r and outputting y = x + e mod L1.

One should think of the lattice L2 as the “ambient space”, i.e. Zn for general
Euclidean setting or the ring of integer R in the algebraic setting. Note that
it is possible to define the distribution with a continuous noise term e. The
usual connection between discrete and continuous distribution from LWE/RLWE
apply here as well (see, e.g., [32, Lemma 2.23]).

Definition 7.4 (HLBDD Problem). Let L1,L2,L, r be as in Definition 7.3.
The HLBDD Problem, denote by HLBDDL1,L,DL2,r is to distinguish between two
samples from the distribution CL1,L,DL2,r , and two samples from the uniform
distribution over L2/L.

For the purpose of this section we will set L2 = R (the ring of integers of our
number field) and L = Pk, for k = nΩ(1).

Hardness and Variants. We defined HLBDD as the problem where the distin-
guisher only gets 2 samples from the HLBDD distribution. This is the minimal
definition that is needed for our application. However, we note that we do not
know of polynomial time algorithms even for weaker variants. For example, one
where polynomially many samples are given to the distinguisher instead of only
2, or one where the distinguisher is provided with a (canonical) Z-basis of the
lattice P in addition to the samples. We note that the latter variant is at least
as easy as the former since it is possible to use a hybrid argument to show that
if P is known then indistinguishability for one sample implies indistinguishabil-
ity for polynomially many samples. The connections to other problems in the
literature, e.g. [28], is described in the introduction.

7.2 Stating and Proving Hardness

The reduction from HLBDD to RLWE with s from a k-wise distribution consists
of two main steps. The formal theorem statement and proof are provided in the
full version. We present an outline below.

Step 1. A reduction from RLWE where the adversary gets only one RLWE
sample, to the version with polynomially many samples. This reduction applies

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 117

to any distribution of secrets which is bounded (and is the same on both the
initial and final instances). The reduction assumes in addition the hardness of
the standard RLWE problem (with the usual noise distribution).

The reduction follows using a rerandomization technique from [32,
Section 8.2], [13, Lemma 4]. This transformation unfortunately also requires
“noise swallowing”, a technique that uses the fact that adding a Gaussian with
super-polynomial Gaussian parameter will mask any random variable with poly-
nomial amplitude.

Step 2. A reduction from HLBDD to RLWE with a single sample. For this we
assume that there is an adversary that can distinguish between a single RLWE
sample (a, b = as + e) and a uniform one.

We begin by replacing a with a decisional hidden-lattice BDD sample
(v1 + e1), where v1 only has k nonzero CRT coordinates (randomly chosen)
and e1 is small. The decisional hidden-lattice BDD assumption asserts that this
distribution will be indistinguishable from the original one. Namely, we now have
(v1 + e1, b = (v1 + e1)s + e). Opening the parenthesis, we have b = v1s + e1s + e.

We again use noise swallowing to argue that b is statistically close to b =
v1s + e, i.e. we use e to swallow e1s, which can be done so long as s is small
enough and e is large enough. Now we observe that since v1 is zero on all but
k CRT coordinates, and s is close to uniform in any subset of k coordinates,
it follows that v1s is statistically close to a fresh v2 that is sampled from the
same distribution as v1 (i.e. has the same set of nonzero coordinates, but the
value in each coordinate is randomly chosen). We get b = v2 + e. We now apply
decisional hidden-lattice BDD again to claim that (a, b) = (v1 + e1, v2 + e) is
indistinguishable from uniform, which completes the proof.

Acknowledgments. We thank the anonymous referees for their insightful comments
and useful suggestions.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-00457-5 28

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, 10–12 August 2016, pp. 327–343. USENIX
Association (2016)

3. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Canetti and Garay [16], pp. 1–20

4. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

5. Babai, L.: On lovász’lattice reduction and the nearest lattice point problem. Com-
binatorica 6(1), 1–13 (1986)

https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-03356-8_35

118 M. Bolboceanu et al.

6. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

7. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 305–325.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 16

8. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 10

9. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

10. Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.): Symposium on Theory of
Computing Conference, STOC 2013, Palo Alto, CA, USA 1–4 June 2013. ACM
(2013)

11. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325.
Invited to ACM Transactions on Computation Theory. ACM (2012)

12. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Boneh et al. [10], pp. 575–584

13. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

14. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106. IEEE (2011)

15. Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions
under entropic ring LWE. In: Sudan, M. (ed.) Proceedings of the 2016 ACM Con-
ference on Innovations in Theoretical Computer Science, Cambridge, MA, USA,
14–16 January 2016, pp. 147–156. ACM (2016)

16. Canetti, Ran, Garay, Juan A. (eds.): CRYPTO 2013. LNCS, vol. 8042. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4

17. Conrad, K.: The conductor ideal. Expository papers/Lecture notes. http://www.
math.uconn.edu/∼kconrad/blurbs/gradnumthy/conductor.pdf

18. Conrad, K.: The different ideal. Expository papers/Lecture notes. http://www.
math.uconn.edu/∼kconrad/blurbs/gradnumthy/different.pdf

19. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

20. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-11799-2 22

21. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti and Garay [16], pp. 40–56

22. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in BGV-style homo-
morphic encryption. J. Comput. Secur. 21(5), 663–684 (2013)

https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-319-24174-6_16
https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-40041-4
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/conductor.pdf
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/conductor.pdf
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/different.pdf
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/different.pdf
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-11799-2_22
https://doi.org/10.1007/978-3-642-11799-2_22

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets 119

23. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

24. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: Yao, A.C. (ed.) Innovations in Computer Sci-
ence - ICS 2010, Tsinghua University, Beijing, China, 5–7 January 2010. Proceed-
ings, pp. 230–240. Tsinghua University Press (2010)

25. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh et al. [10], pp. 545–554

26. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

27. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 25

28. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W.: Practical
signatures from the partial fourier recovery problem. In: Boureanu, I., Owesarski,
P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 476–493. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07536-5 28

29. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

30. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/
10.1007/11787006 13

31. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

32. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for Ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

33. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In:
Canetti and Garay [16], pp. 21–39

34. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) STOC, pp. 333–342. ACM (2009)

35. Peikert, C.: How (Not) to instantiate Ring-LWE. In: Zikas, V., De Prisco, R. (eds.)
SCN 2016. LNCS, vol. 9841, pp. 411–430. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-44618-9 22

36. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of Ring-LWE
for any ring and modulus. IACR Cryptology ePrint Archive 2017, vol. 258 (2017)

37. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 8

38. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM (2005). Full version
in [39]

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34 (2009)

https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-319-07536-5_28
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-319-44618-9_22
https://doi.org/10.1007/978-3-319-44618-9_22
https://doi.org/10.1007/11681878_8

120 M. Bolboceanu et al.

40. Rosca, M., Stehlé, D., Wallet, A.: On the Ring-LWE and Polynomial-LWE prob-
lems. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 146–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 6

41. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

On the Non-existence of Short Vectors
in Random Module Lattices

Ngoc Khanh Nguyen1,2(B)

1 IBM Research – Zurich, Rüschlikon, Switzerland
nkn@zurich.ibm.com

2 Ruhr Universität Bochum, Bochum, Germany

Abstract. Recently, Lyubashevsky & Seiler (Eurocrypt 2018) showed
that small polynomials in the cyclotomic ring Zq[X]/(Xn + 1), where
n is a power of two, are invertible under special congruence conditions
on prime modulus q. This result has been used to prove certain security
properties of lattice-based constructions against unbounded adversaries.
Unfortunately, due to the special conditions, working over the corre-
sponding cyclotomic ring does not allow for efficient use of the Number
Theoretic Transform (NTT) algorithm for fast multiplication of polyno-
mials and hence, the schemes become less practical.

In this paper, we present how to overcome this limitation by analysing
zeroes in the Chinese Remainder (or NTT) representation of small poly-
nomials. As a result, we provide upper bounds on the probabilities related
to the (non)-existence of a short vector in a random module lattice with
no assumptions on the prime modulus. We apply our results, along with
the generic framework by Kiltz et al. (Eurocrypt 2018), to a number of
lattice-based Fiat-Shamir signatures so they can both enjoy tight secu-
rity in the quantum random oracle model and support fast multiplication
algorithms (at the cost of slightly larger public keys and signatures), such
as the Bai-Galbraith signature scheme (CT-RSA 2014), Dilithium-QROM
(Kiltz et al., Eurocrypt 2018) and qTESLA (Alkim et al., PQCrypto
2017). Our techniques can also be applied to prove that recent commit-
ment schemes by Baum et al. (SCN 2018) are statistically binding with
no additional assumptions on q.

Keywords: Lattice-based cryptography · Fiat-Shamir signatures ·
Module lattices · Lossy identification schemes · Provable security

1 Introduction

Cryptography based on the hardness of lattice problems, such as Module-SIS or
Module-LWE [16,18,21], seems to be a very likely replacement for traditional
cryptography after the eventual arrival of quantum computers. With the ongoing
NIST PQC Standardization Process, we are closer to using quantum-resistant
encryption schemes and digital signatures in real life. For additional efficiency,
many practical lattice-based constructions work over fully-splitting polynomial
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 121–150, 2019.
https://doi.org/10.1007/978-3-030-34621-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_5

122 N. K. Nguyen

rings Rq := Zq[X]/(f(X)) where f(X) = Xn + 1 is a cyclotomic polynomial, n
is a power of two and the prime q is selected so that f(X) splits completely into
n linear factors modulo q. With such a choice of parameters, multiplication in
the polynomial ring can be performed very quickly using the Number Theoretic
Transform (NTT), e.g. [3,10,15,24]. Indeed, one obtains a speed-up of about a
factor of 5 by working over rings where Xn + 1 splits completely versus just 2
factors (for primes of size between 220 and 229 [19]). Moreover, the structure of
fully-splitting rings allows us to perform various operations in parallel as well
as conveniently cache and sample polynomials which also significantly improves
efficiency of the schemes.

Unfortunately, it is sometimes difficult to prove security of lattice-based con-
structions when working over fully-splitting polynomial rings [5,8,11]. Usually,
the reason is that these security proofs rely on the assumption that polynomials
of small norm are invertible. Recently, Lyubashevsky and Seiler [19] (generalis-
ing [17]) showed that when n is a power of two and under certain conditions on
prime modulus q, small elements of Rq are indeed invertible. The result, how-
ever, is meaningful only when Xn + 1 does not split into many factors modulo q
(e.g. at most 32 for n = 512). Consequently, we cannot apply the standard NTT
algorithm in such polynomial rings unless we drop the invertibility assumption1.

In this paper, we present techniques to avoid the invertibility assumption
in security proofs. This allows us to construct lattice-based primitives with-
out any conditions on prime modulus q and consequently, we can work over
fully-splitting rings and at the same time, use the NTT algorithm for fast mul-
tiplication of polynomials. We apply our results to the second-round candidates
of the NIST PQC Standardization Process. Namely, we improve the efficiency
of Dilithium-QROM [11] (which is the modified version of Dilithium [15] secure
in the quantum random oracle model) as well as qTESLA [8]. We also briefly
explain how our techniques can be applied to recent lattice-based commitment
schemes [5].

1.1 Our Contribution

Main Results. Our main technical result is an upper bound on the probability
of existence of a short vector in a random module lattice (see Theorem 1.1,
formally Corollary 3.9) and other related probabilities (Theorems 3.8 and 3.10).
Informally, it states that the probability, over the uniformly random matrix A,
that there exists a pair of vectors (z1, z2), which consists of small polynomials
in Rq and z1 �= 0, such that Az1 + z2 = 0 is small (for a suitable choice of
parameters). In the context of Fiat-Shamir identification and signature schemes,
A represents a public key matrix and z1 (and sometimes z2 as well) represents
a difference of two signatures/responses. Our upper bound depends on the tail
function T . For readability, we hide the concrete formula for T here and we refer
to the formal statement in Corollary 3.9.

1 Lyubashevsky and Seiler [19] showed, however, how to combine the FFT algorithm
and Karatsuba multiplication in order to multiply in partially-splitting rings faster.

On the Non-existence of Short Vectors in Random Module Lattices 123

We recall that a similar result was presented by Kiltz et al. (e.g. Lemma 4.6
in [11]) but they only consider the case when q ≡ 5 (mod 8) so that invertibility
properties can be applied [17,19]. Here, we generalise their result on how to
bound that probability without any assumptions on the prime modulus q.

Theorem 1.1 (Informal). Denote Sα := {y ∈ Rq : ||y||∞ ≤ α} and let
�, k, α1, α2 ∈ N. Then

Pr
A←Rk×�

q

[∃(z1, z2) ∈ S�
α1\{0} × Sk

α2 : Az1 + z2 = 0]

≤ |Sα1 |� · |Sα2 |k
qnk

+ T (q, �, k, α1, α2),

(1)
where T (q, �, k, α1, α2) is a function defined in Corollary 3.9.

Figure 1 shows values of the tail function T for different prime moduli q. We
observe that the more f(x) = Xn + 1 splits modulo q then the larger the value
of T . When f(x) only splits into two factors, our upper bound is essentially
equal to

|Sα1 |� · |Sα2 |k
qnk

.

Indeed, in this case the value of T is negligible and hence, we obtain an upper
bound identical to Kiltz et al. On the other hand, if we want to work over fully-
splitting polynomial rings in order to apply the Number Theoretic Transform
algorithm, we would have to increase q as well as the dimensions (k, �) of the
matrix A so that T (q, �, k, α1, α2) stays small. Unfortunately, this implies larger
public key and signature size.

Key techniques. We provide an overview of the proof of Theorem1.1. Let d
be the divisor of n such that

Xn + 1 ≡
d∏

i=1

fi(X) (mod q)

for distinct polynomials fi(X) of degree n/d that are irreducible in Zq[X]. In
other words, Xn + 1 splits into d irreducible polynomials modulo q. The proof
sketch goes as follows.
Step 1: We apply the union bound:

Pr
A←Rk×�

q

[∃(z1, z2) ∈ S�
α1

\{0} × Sk
α2

: Az1 + z2 = 0]

≤
∑

(z1,z2)∈S�
α1

\{0}×Sk
α2

Pr
A←Rk×�

q

[Az1 + z2 = 0].
(2)

Step 2: We identify the subset Z of S�
α1

\{0} × Sk
α2

which satisfies:

(z1, z2) ∈ Z ⇐⇒ Pr
A←Rk×�

q

[Az1 + z2 = 0] > 0.

124 N. K. Nguyen

Fig. 1. Let (n, q, �, k, α1, α2) = (512, ≈ 245, 4, 4, 1.8 · 106, 3.6 · 106). The graph presents
values of log(T (q, �, k, α1, α2)) depending on the number of irreducible polynomials d
that Xn + 1 splits into modulo q. One notes that for prime moduli q ≈ 245 such that
d ∈ {2, 4}, the value of T is sufficiently small, hence so is the right-hand side of Eq. (1).
On the other hand, values of T rocket for d ≥ 8 and therefore q or dimensions (k, �) of
the matrix A must be increased in order to keep the upper bound in (1) small enough.

Hence, the probability in Eq. (1) can be bounded by
∑

(z1,z2)∈Z

Pr
A←Rk×�

q

[Az1 + z2 = 0].

Step 3: Next, we propose a partitioning of the set Z into subsets Z0, Z1, ..., Zd,
i.e. Z =

⋃d
i=0 Zi. Then, we show that for each (z1, z2) ∈ Zi, the probability

pi := Pr
A←Rk×�

q

[Az1 + z2 = 0]

is the same and we compute it. Thus, the probability in Eq. (1) can now be
bounded by:

d∑

i=0

∑

(z1,z2)∈Zi

pi =
d∑

i=1

|Zi| · pi

Step 4: We find an upper bound on |Zi|.
Zero function. In this paper, we will consider zeroes in the “Chinese Remain-
der representation”2 of polynomials in Rq

3. Formally, we define the following
Zero function:
2 Alternatively, we call it “FFT/NTT representation” in the fully-splitting case.
3 This technique has already been investigated in the literature for e.g. constructing

provably secure variants of NTRUEncrypt [25].

On the Non-existence of Short Vectors in Random Module Lattices 125

Zero(y) := {i : y ≡ 0 (mod (fi(X), q))} and Zero(y) :=
k⋂

j=1

Zero(yj),

where y ∈ Rq and y = (y1, ..., yk) ∈ Rk
q . Note that if y is invertible then

|Zero(y)| = 0. Lyubashevsky and Seiler [19] proved that whenever a non-zero
y has small Euclidean norm then |Zero(y)| = 0. Here, we extend it and pro-
vide a relationship between the Euclidean norm of y and the size of set Zero(y)
(see Lemma 3.2). In particular, the result implies that relatively small elements
of Rq have only a few zeroes in the Chinese Remainder representation. This
observation will be crucial for Steps 3 and 4.

Zero rows. Consider the equation Az1 + z2 = 0 and let j ∈ Zero(z1). If we
look at this equation modulo (fj(X), q) then we just end up with z2 = 0, i.e.
j ∈ Zero(z2) and thus j ∈ Zero(z1||z2) where || denotes usual concatenation of
vectors. Consequently, Zero(z1) ⊆ Zero(z1||z2). Clearly, we have Zero(z1||z2) ⊆
Zero(z1) and therefore these two sets are equal. This implies that the subset Z
introduced in Step 2 can be identified as:

Z = {(z1, z2) : Zero(z1) = Zero(z1||z2)}.

Define Zi = {(z1, z2) : Zero(z1) = Zero(z1||z2) ∧ |Zero(z1)| = i} ⊆ Z (Step 3).
Informally, we say that (z1, z2) ∈ Zi has i zero rows, since if we write down the
components of z1 and z2 in the Chinese Remainder representation, in columns,
then we get exactly i rows filled with zeroes.

For fixed (z1, z2) ∈ Zi, we compute the probability pi defined in Step 3 by
counting the number of possible A which satisfy Az1 + z2 = 0. This could be
done by considering the equation modulo (fj(X), q) for all j �∈ Zero(z1). Indeed,
for such j there is a simple way to count all A ∈ (Zq[X]/(fj(x)))k×� which
satisfy Az1 + z2 = 0 modulo fj(X). Concretely, one of the components of z1,
say zu, is going to be invertible modulo fj(X) and therefore all entries of A not
related to zu can be chosen arbitrarily. The rest, however, will be adjusted so
that the equation holds. On the other hand, if j ∈ Zero(z1) = Zero(z1||z2) then
Az1 +z2 is simply equal to 0 modulo (fj(X), q) for any A. By applying Chinese
Remainder Theorem, we obtain the total number of possible A ∈ Rk×�

q which
satisfy the equation above.

The only thing left is to provide an upper bound on |Zi| (Step 4). Firstly, we
observe that if (z1, z2) ∈ Zi then clearly |Zero(zj)| ≥ i for j = 1, ..., � where z1 =
(z1, ..., z�). Since each component of z1 ∈ S�

α1
\{0} has infinity norm at most α1,

and assuming this value is relatively small, we get that each component of z1 has
only a few zeroes in the Chinese Remainder representation (Lemma 3.2). Hence,
for some larger values of i, we simply get Zi = ∅. The second observation is that
if (z1, z2) ∈ Zi and y1,y2 are vectors of some “small” polynomials then (z1 +
y1, z2 + y2) is likely not to have exactly i zero rows. For example, suppose that

Zero(z1 + y1, z2 + y2) = Zero(z1 + y′
1, z2 + y′

2)

126 N. K. Nguyen

for some other small y′
1,y

′
2. This implies that (y1−y′

1,y2−y′
2) has at least i zero

rows. In particular, each component of y1−y′
1, say ŷj , has at least i zeroes in the

Chinese Remainder representation. However, we know that ŷj is a polynomial
of small norm by the choice of y1 and y′

1. Therefore, ŷj has only a few zeroes
(by the observation above or Lemma 3.2). By picking sufficiently small y1 and
y′

1 we can make sure that each component ŷj of y1 − y′
1 has less than i zeroes.

This would lead to a contradiction. In conclusion, our approach for bounding
|Zi| is to, for each (z1, z2) ∈ Zi, generate all pairs of form (z1 +y1, z2 +y2) �∈ Zi,
for vectors of sufficiently small polynomials y1,y2, and applying the pigeonhole
principle along with other simple counting arguments.

1.2 Applications

Digital Signatures. Kiltz et al. [11] presented a generic framework for con-
structing secure Fiat-Shamir signatures in the quantum random oracle model
(QROM). As a concrete instantiation, they introduced a new signature scheme
Dilithium-QROM, which is a modification of the original Dilithium scheme [15],
and is tightly based on the hardness of Module-LWE problem in the QROM.
However, in order to obtain security of Dilithium-QROM, Kiltz et al. choose the
prime modulus q to be congruent to 5 modulo 8. This assumption assures that
the underlying polynomial ring Zq[X]/(Xn + 1) splits into two subrings mod-
ulo q and invertibility results can be applied [17,19]. Unfortunately, polynomial
multiplication algorithms in such rings are not efficient. We show how to apply
our probability results to the security of Dilithium-QROM4 so that one can avoid
such special assumptions on q (in particular, one could choose q so that Rq splits
completely and NTT along with other optimisations can be applied). The only
disadvantage is that, in order to keep the probabilities small, one should slightly
increase the size of q and dimensions (k, �). Unfortunately, this results in having
both considerably larger public keys and signatures.

General results by Kiltz et al. can also be applied to obtain a security proof
in the QROM for a number of existing Fiat-Shamir signature schemes similar to
Dilithium such as the Bai-Galbraith scheme [4] (see Sect. 4) or qTESLA [8]. So
far, security of the latter scheme in the quantum random oracle model is proven
assuming a certain non-standard conjecture. However, one can also obtain it by
applying the framework by Kiltz et al. and using our probability upper bounds.
Consequently, one gets a tightly secure version of qTESLA in the QROM without
any non-standard conjecture. We recall that our results allow this signature
scheme to work over fully-splitting rings so that the use of NTT for polynomial
multiplication is possible. However, as in the case of Dilithium-QROM, we would
end up with larger public key and signature size compared to the original qTESLA
(see Table 2).

Commitment schemes. Recently, Baum et al. [5] presented efficient commit-
ment schemes from Module-SIS and Module-LWE. However, both their new

4 We present it in the full version of this paper [20].

On the Non-existence of Short Vectors in Random Module Lattices 127

statistically binding commitment scheme and their improved construction from
[7] rely on the general invertibility result from [19], i.e. special congruence condi-
tions on the prime modulus q. Our probability upper bounds can be applied to
prove the statistically binding property of these constructions, and consequently,
one could now consider working in fully-splitting rings. As before, we observe
that choosing primes q such that Xn+1 splits into many factors modulo q results
in having both larger commitment and proof size.

1.3 Related Works

The first asymptotically-efficient lattice-based signature scheme using the “Fiat-
Shamir with Aborts” paradigm was presented in [13] which is based on the
Ring-SIS problem. Later on, Lyubashevsky [14] improved the scheme by basing
it on the combination of Ring-SIS and Ring-LWE. Since then, many substantial
improvements have been proposed [4,8,10,15]. In the meantime, lossy identifi-
cation schemes were introduced and used to construct secure digital signatures
in the quantum random oracle model [1,2,11,27].

Invertibility of “small” polynomials5 is an important property in the con-
text of (approximate) zero-knowledge proofs based on lattices. For example, one
usually needs the difference set C − C to contain only invertible polynomials
for extraction purposes [7,26] where C is a challenge set. Lyubashevsky and
Neven [17] proved that if q is congruent to 5 modulo 8 then the polynomial ring
Rq = Zq[X]/(Xn + 1) splits into two subrings and elements of small infinity
norm are indeed invertible. This result was generalised by Lyubashevsky and
Seiler [19]. Concretely, they showed that if q ≡ 2k + 1 (mod 4k) for some k then
Xn + 1 splits into k irreducible polynomials modulo q and also small elements
in Rq are invertible. These results have been recently applied in the context of
computing probabilities related to the security of lattice-based signatures and
commitment schemes, e.g. [5,11].

2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n}. For a set S, |S| is the cardinality of S, P(S)
is the power set of S and Pi(S) is the set of all subsets of S of size i. If S is
finite, we denote the sampling of a uniform random element x by x ← S, while
we denote the sampling according to some distribution D by x ← D. By �B� we
denote the bit that is 1 if the Boolean statement B is true, and 0 otherwise.

Algorithms. Unless stated otherwise, we assume all our algorithms to be prob-
abilistic. We denote by y ← A(x) the probabilistic computation of algorithm A
on input x. If A is deterministic, we write y := A(x). The notation y ∈ A(x)
is used to indicate all possible outcomes y of the probabilistic algorithm A on
input x. We can make any probabilistic A deterministic by running it with fixed

5 What we mean by “small” is that the polynomial has small infinity or Euclidean
norm.

128 N. K. Nguyen

randomness. We write y := A(x; r) to indicate that A is run on input x with ran-
domness r. The notation A(x) ⇒ y denotes the event that A on input x returns
y. Eventually, we write Time(A) to denote the running time of A.

2.1 Cyclotomic Rings

Let n be a power of two. Denote R and Rq respectively to be the rings
Z[X]/(Xn + 1) and Zq[X]/(Xn + 1), for a prime q. We also set d to be the
divisor of n such that

Xn + 1 ≡
d∏

i=1

fi(X) (mod q)

for distinct polynomials fi(X) of degree n/d that are irreducible in Zq[X]. Alter-
natively, we say that Xn + 1 splits into d polynomials modulo q. If d = n then
Xn + 1 fully splits. By default, all the equalities and congruences between ring
elements in this paper are modulo q.

Regular font letters denote elements in R or Rq and bold lower-case letters
represent column vectors with coefficients in R or Rq. Bold upper-case letters
denote matrices. By default, all vectors are column vectors.

Modular reductions. For an even (resp. odd) positive integer α, we define r′ =
r mod± α to be the unique element r′ in the range −α

2 < r′ ≤ α
2 (resp. −α−1

2 ≤
r′ ≤ α−1

2) such that r′ = r mod α. For any positive integer α, we define r′ =
r mod+α to be the unique element r′ in the range 0 ≤ r′ < α such that r′ = r mod
α. When the exact representation is not important, we simply write r mod α.

Sizes of elements. For an element w ∈ Zq, we write ‖w‖∞ to mean
|w mod± q|. Define the �∞ and �2 norms for w = w0+w1X+. . .+wn−1X

n−1 ∈ R
as follows:

‖w‖∞ = max
i

‖wi‖∞, ‖w‖ =
√

‖w0‖2∞ + . . . + ‖wn−1‖2∞.

Similarly, for w = (w1, . . . , wk) ∈ Rk, we define

‖w‖∞ = max
i

‖wi‖∞, ‖w‖ =
√

‖w1‖2 + . . . + ‖wk‖2.

For a finite set S ⊆ Rk, however, we set

‖S‖∞ = max
w∈S

‖w‖∞, ‖S‖ = max
w∈S

‖w‖.

We write Sη to denote all elements w ∈ R such that ‖w‖∞ ≤ η.

Extracting high-order and low-order bits. To reduce the size of the
public key, we need some algorithms that extract “higher-order” and “lower-
order” bits of elements in Zq. The goal is that when given an arbitrary element
r ∈ Zq and another small element z ∈ Zq, we would like to be able to recover the
higher order bits of r + z without needing to store z. The algorithms are exactly
as in [9,11], and we repeat them for completeness in Fig. 2. They are described
as working on integers modulo q, but one can extend it to polynomials in Rq by
simply being applied individually to each coefficient.

On the Non-existence of Short Vectors in Random Module Lattices 129

Fig. 2. Supporting algorithms for Dilithium and Dilithium-QROM [11].

Lemma 2.1. Suppose that q and α are positive integers satisfying q > 2α, q ≡ 1
(mod α) and α even. Let r and z be vectors of elements in Rq where ‖z‖∞ ≤ α/2,
and let h,h′ be vectors of bits. Then the HighBitsq, MakeHintq, and UseHintq
algorithms satisfy the following properties:

1. UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r + z, α).
2. Let v1 = UseHintq(h, r, α). Then ‖r − v1 · α‖∞ ≤ α + 1.
3. For any h,h′, if UseHintq(h, r, α) = UseHintq(h′, r, α), then h = h′.

Lemma 2.2. If ‖s‖∞ ≤ β and ‖LowBitsq(r, α)‖∞ < α/2 − β, then

HighBitsq(r, α) = HighBitsq(r + s, α).

Ideal lattices. An integer lattice of dimension n is an additive subgroup of
Z

n. For simplicity, we only consider full-rank lattices. The determinant of a full-
rank lattice Λ of dimension n is equal to the size of the quotient group Z

n/Λ.
We denote λ1(Λ) = min‖w‖∈Λ ‖w‖. We say that Λ is an ideal lattice in R if Λ is
an ideal of R. There exists a lower bound on λ1(Λ) if Λ is an ideal lattice [19,22].
Assuming that n is a power of two, we get a simplified bound.

Lemma 2.3 ([19], Lemma 2.7). If Λ is an ideal lattice in R, then λ1(Λ) ≥
det(Λ)1/n.

TheMLWE Assumption. For integers m, k, and a probability distribution D :
Rq → [0, 1], we say that the advantage of algorithm A in solving the decisional
MLWEm,k,D problem over the ring Rq is

AdvMLWE
m,k,D :=

∣∣Pr[A(A, t) ⇒ 1 | A ← Rm×k
q ; t ← Rm

q]

− Pr[A(A,As1 + s2) ⇒ 1 | A ← Rm×k
q ; s1 ← Dk; s2 ← Dm]

∣∣ .

130 N. K. Nguyen

The MLWE assumption states that the above advantage is negligible for all
polynomial-time algorithms A. It was introduced in [12], and is a generalization
of the LWE assumption from [23]. The Ring-LWE assumption [18] is a special
case of MLWE where k = 1. Analogously to LWE and Ring-LWE, it was shown in
[12] that solving the MLWE problem for certain parameters is as hard as solving
certain worst-case problems in certain algebraic lattices.

3 Zeroes in the Chinese Remainder Representation

In this section, we present general results about existence of solutions (A, t) ∈
Rk×�

q × Rk to the equation Az1 + z2 = ct (and other similar ones), for some
z1 ∈ R�

q, z2 ∈ Rk
q , c ∈ Rq\{0}, and compute the probability of satisfying such

equations for uniformly random A and t. The results are crucial for security anal-
ysis of Fiat-Shamir signature schemes. For instance, security of Dilithium-QROM
[11] relies heavily on the assumption that c is invertible in Rq or z1 contains an
invertible component. In such a case, the probability can be calculated straight-
forwardly. Hence, q is chosen so that q ≡ 5 (mod 8) because then, polynomials
in Rq of small (infinity) norm are proved to be invertible [17,19]. We avoid such
assumptions and analyse “zeroes in the Chinese Remainder Representation” of
z1, z2 and c in order to provide general upper bounds on the probabilities.

3.1 Zero Rows

We start by introducing the Zero function.

Definition 3.1. Let y ∈ Rq. We define a set

Zero(y) := {i ∈ [d] : y ≡ 0 (mod fi(X))}.

For a vector y = (y1, ..., yk) ∈ Rk
q , we set Zero(y) :=

⋂k
j=1 Zero(yj) and similarly

for multiple vectors y1, ...,y� over Rq, Zero(y1, ...,y�) :=
⋂�

j=1 Zero(yj).

Informally, we say that y has i zeroes in the Chinese Remainder Representation
if |Zero(y)| = i. One observes that Zero(y) = ∅ if and only if y is invertible, by
the Chinese Remainder Theorem. Also, Zero(y) = [d] ⇐⇒ y = 0.

Lyubashevsky and Seiler [19] showed that if ‖y‖ < q1/d then y is invertible.
Obviously, it is not very interesting if d is large (e.g. d = n). Here, we extend the
result to consider the number of zeroes in the Chinese Remainder Representation.

Lemma 3.2. Let y ∈ Rq such that 0 < ||y|| < qm/d for some m ∈ [d]. Then,
|Zero(y)| < m.

Proof. Suppose that |Zero(y)| ≥ m and pick any i1, ..., im ∈ Zero(y). Define the
following set:

Λ = {z ∈ R : ∀j ∈ [m], z ≡ 0 (mod fij
(X))}.

On the Non-existence of Short Vectors in Random Module Lattices 131

Firstly, note that Λ is an additive group and y ∈ Λ. Moreover, for any z ∈ Λ, we
have z · X ∈ Λ since each fij

(X) is a factor of Xn + 1 modulo q. Therefore, Λ
is an ideal of R, and hence an ideal lattice in the ring R. Consider the Chinese
Remainder representation modulo q of all the elements in Λ. Note that they
have 0 in the coefficients corresponding to fij

(X) for j ∈ {1, ...,m} and arbitrary
values everywhere else. This implies that det(Λ) = |Zn/Λ| = qnm/d. Hence, by
Lemma 2.3 we have λ1(Λ) ≥ qm/d. However, we know that ||y|| > 0, thus y
is non-zero. Eventually, we obtain ||y|| < qm/d ≤ λ1(Λ) ≤ ||y|| which leads to
contradiction. ��

The lemma above implies that if a polynomial y ∈ Rq is short enough, then
it has only a few zeroes in the Chinese Remainder Representation (but is not
necessarily invertible).

We now introduce the notion of ZeroRows which will be crucial in proving
the main theorem.

Definition 3.3. Let k ∈ N and A ⊆ Rk
q be a non-empty set. Then, we write

ZeroRowsi(A) to denote

ZeroRowsi(A) := {a ∈ A : |Zero(a)| = i}.

We say that a ∈ ZeroRowsi(A) has i zero rows.

Name ZeroRows comes from the fact that if a = (a1, ..., ak) ∈ ZeroRowsi(A) and
if we write down the Chinese Remainder Representation of a1, ..., ak as column
vectors6 then we get exactly i rows filled only with zeroes.

The next result gives an upper bound on ZeroRowsi(Sk
α) for fixed i > 0, k

and α. The key idea of the proof is as follows. For simplicity, consider z′ :=
z+Xj , z′′ := z+X� for some distinct j, � ∈ [2n] and z ∈ Rq. To begin with, note
that Zero(z′)∩Zero(z′′) = ∅. Indeed, if there exists some u ∈ Zero(z′)∩Zero(z′′)
then

z + X� ≡ z′′ ≡ 0 ≡ z′ ≡ z + Xj (mod fu(X)).

Hence, we get a contradiction, since Xj − X� is invertible [6]. Therefore,

|{z + Xj ∈ ZeroRowsi(Sα) : j ∈ [2n]}| ≤ �d/i� .

This is because if size of the set is strictly larger than d/i then, by definition
of ZeroRowsi(Sα) and the pigeonhole principle, we would have Zero(z + Xj) ∩
Zero(z + X�) �= ∅ for some distinct j, �. Thus, we end up with:

|{z + Xj �∈ ZeroRowsi(Sα) : j ∈ [2n]}| ≥ 2n − �d/i� .

Our main strategy is that for each z ∈ ZeroRowsi(Sk
α), we count all z′ of form

z + y (where y is a somewhat small polynomial) such that z′ �∈ ZeroRowsi(Sk
α)

similarly as above, and eventually, obtain an upper bound on |ZeroRowsi(Sk
α)|.

The bound depends on the size of a set Wi ⊆ Rq, which satisfies the following

6 Namely, for each ai we define a corresponding column vector (a′
i,1, ..., a

′
i,d), where

a′
i,j is the element of Zq[X]/(fj(X)), such that ai ≡ a′

i,j (mod fj(X)), for j ∈ [d].

132 N. K. Nguyen

property: for any two distinct u, v ∈ Wi, |Zero(u − v)| < i7. Later on, we show
how to use our previous result, i.e. Lemma 3.2, to construct such sets.

Lemma 3.4. Let k, α ∈ N, i ∈ [d] and Wi ⊆ Rq be a set of polynomials in Rq

such that for any two distinct u, v ∈ Wi, |Zero(u − v)| < i. Then,

|ZeroRowsi(Sk
α)| ≤

(
d
i

)
· |Sα+‖Wi‖∞ |k

|Wi|k
.

Proof. Firstly, take any z = (z1, ..., zk) ∈ Sk
α and define

Bad(z1, ..., zk) := {(z1 + y1, ..., zk + yk) ∈ ZeroRowsi(Sk
α) : y1, ..., yk ∈ Wi}.

We claim that |Bad(z1, ..., zk)| ≤
(
d
i

)
. Indeed, suppose |Bad(z1, ..., zk)| >

(
d
i

)
and

define the function

F : Bad(z1, ..., zk) → Pi([d]), (z′
1, ..., z

′
k) �−→ Zero(z′

1, ..., z
′
k).

Note that F is well-defined by definition of Bad. Also, |Bad(z1, ..., zk)| >
(
d
i

)
=

|Pi([d])| implies that F is not injective. Hence,

F (z1 + y1, ..., zk + yk) = I = F (z1 + y′
1, ..., zk + y′

k)

for some set I ∈ Pi([d]), y1, ..., yk, y′
1, ..., y

′
k ∈ Wi and yj �= y′

j for some index j.
Take any u ∈ I. Then, zj + yj ≡ 0 ≡ zj + y′

j (mod fu(X)) and consequently,
yj − y′

j ≡ 0 (mod fu(X)). Since we picked arbitrary u ∈ I, we proved that
|Zero(yj − y′

j)| ≥ i. However, this leads to a contradiction by the definition of
the set Wi.

Now, define a set

Good(z1, ..., zk) := {(z1 + y1, ..., zk + yk) �∈ ZeroRowsi(Sk
α) : y1, ..., yk ∈ Wi}.

Clearly, |Good(z1, ..., zk)| = |Wi|k − |Bad(z1, ..., zk)| ≥ |Wi|k −
(
d
i

)
. Consider the

following set
S =

⋃

(z1,...,zk)∈ZeroRowsi(Sk
α)

Good(z1, ..., zk).

One observes that S ⊆ Sk
α+‖Wi‖∞\ZeroRowsi(Sk

α) by definition of Good, which
gives us an upper bound on |S|. We are now interested in finding a lower bound
for |S|. Let (ẑ1, ..., ẑk) be an element of S and denote

COUNT(ẑ1, ..., ẑk) := {(z1, ..., zk) ∈ ZeroRowsi(S
k
α) : (ẑ1, ..., ẑk) ∈ Good(z1, ..., zk)}.

We claim that |COUNT(ẑ1, ..., ẑk)| ≤
(
d
i

)
. Informally, this means that (ẑ1, ..., ẑk)

belongs to at most
(
d
i

)
“good” sets (out of |ZeroRowsi(Sk

α)|). Just like before,
assume that |COUNT(ẑ1, ..., ẑk)| >

(
d
i

)
and define a function

F : COUNT(ẑ1, ..., ẑk) → Pi([d]), (z1, ..., zk) �−→ Zero(z1, ..., zk).
7 In the example above, W1 is represented by the set {Xj : j ∈ [2n]}. Indeed,

|Zero(Xj − Xk)| < 1 for all distinct j, k.

On the Non-existence of Short Vectors in Random Module Lattices 133

Then,
F (z1, ..., zk) = I = F (z′

1, ..., z
′
k)

for some set I ∈ Pi([d]) and z1, ..., zk, z′
1, ..., z

′
k ∈ Sα such that there exists

an index j which satisfies zj �= z′
j . Since (ẑ1, ..., ẑk) ∈ Good(z1, ..., zk) and

(ẑ1, ..., ẑk) ∈ Good(z′
1, ..., z

′
k), we have that zj + yj = ẑj = z′

j + y′
j for some

distinct yj , y
′
j ∈ Wi. Take any u ∈ I and note that zj ≡ 0 ≡ z′

j (mod fu(X)).
Therefore,

yj ≡ ẑj − zj ≡ ẑj ≡ ẑj − z′
j ≡ y′

j (mod fu(X)).

Hence, |Zero(yj − y′
j)| ≥ i. Similarly as before, we observe that this leads to

a contradiction by the definition of Wi. Thus, |COUNT(ẑ1, ..., ẑk)| ≤
(
d
i

)
. This

implies:

|S| ≥
∑

z∈ZeroRowsi(Sk
α) |Good(z)|

(
d
i

) ≥
∑

z∈ZeroRowsi(Sk
α) |Wi|k −

(
d
i

)
(
d
i

)

Combining the lower bound as well as the upper bound for |S| we get:

|Sα+‖Wi‖∞ |k − |ZeroRowsi(Sk
α)| ≥ |S|

≥ 1
(

d
i

) |ZeroRowsi(Sk
α)| · |Wi|k − |ZeroRowsi(Sk

α)|.

(3)

Therefore, |ZeroRowsi(Sk
α)| ≤ (d

i)·|Sα+‖Wi‖∞ |k
|Wi|k . ��

We point out that the proof does not work for i = 0. In this case, we can use
the obvious upper bound: ZeroRows0(Sk

α) ≤ |Sk
α|.

Consider again the equation Az1 + z2 = ct, where A and t are variables,
and denote A = (ai,j) and t = (t1, ..., tk). Clearly, we have Zero(z1, c, z2) ⊆
Zero(z1, c). Suppose that Zero(z1, c, z2) �= Zero(z1, c). If we write z1 = (z1, ..., z�)
and z2 = (z′

1, ..., z
′
k), then there exist some i, j such that i ∈ Zero(z1, c) and

i �∈ Zero(z1, c, z
′
j). Note that

Az1 + z2 = ct =⇒ aj,1z1 + ... + aj,�z� + z′
j = ctj .

However,

0 �≡ z′
j ≡ aj,1z1 + ... + aj,�z� + z′

j ≡ ctj ≡ 0 (mod fi(X)),

which leads to a contradiction. Therefore, if Zero(z1, c, z2) �= Zero(z1, c) then we
end up with no solutions. This motivates us to extend the ZeroRows function as
follows.

Definition 3.5. Let k ∈ N and A ⊆ Rk
q , B ⊆ R�

q be non-empty sets. Then, we
define ZeroRowsi(A;B) to be

ZeroRowsi(A;B) := {(a, b) ∈ A × B : Zero(a, b) = Zero(a) ∧ |Zero(a)| = i}.

Sometimes, we write ZeroRowsi(A1, A2;B) to denote ZeroRowsi(Ā;B), where
Ā = A1 × A2.

134 N. K. Nguyen

Using the same techniques as before, one can prove a similar result to Lemma
3.4 which is related to the modified ZeroRows function.

Lemma 3.6. Let k, �, α1, α2 ∈ N, i ∈ [d] and Wi ⊆ Rq be a set of polynomials
in Rq such that for any two distinct u, v ∈ Wi, |Zero(u − v)| < i. Take any set
D ⊆ Rq\{0} and define e to be the largest integer which satisfies ‖D‖ ≥ qe/d.
Then,

|ZeroRowsi(S�
α1

,D;Sk
α2

)| ≤
(
e
i

)
· |Sα1+‖Wi‖∞ |� · |Sα2+‖Wi‖∞ |k · |D|

|Wi|�+k
.

Proof. Since we follow the same strategy as in the proof of Lemma 3.4, we only
provide a proof sketch. To begin with, take any z1 = (z1, ..., z�) ∈ S�

α1
, c ∈

D, z2 = (z′
1, ..., z

′
k) ∈ Sk

α2
and define

Bad(z1, c, z2) := {(z1 + y, c, z2 + y′) ∈ ZeroRowsi(S
�
α1 , D; Sk

α2) : y ∈ W �
i ,y′ ∈ W k

i }.

We point out that c stays still. Using the same technique as before, one can
prove that |Bad(z1, c, z2)| ≤

(
e
i

)
. Informally, this is because we only consider all

subsets of Zero(c) (instead of [d] like last time) of size i and c has at most e
zeroes in the Chinese Remainder Representation (Lemma 3.2).

Now, we define a set

Good(z1, c, z2) := {(z1 + y, c, z2 + y′) �∈ ZeroRowsi(S
�
α1 , D; Sk

α2) : y ∈ W �
i ,y′ ∈ W k

i }.

As before, we have |Good(z1, c, z2)| = |Wi|�+k − |Bad(z1, c, z2)| ≥ |Wi|�+k −
(
e
i

)
.

Consider the following set

S =
⋃

(z1,c,z2)∈ZeroRowsi(S�
α1

,D;Sk
α2

)

Good(z1, c, z2).

We have that

S ⊆ S�
α1+‖Wi‖∞ × D × Sk

α2+‖Wi‖∞\ZeroRowsi(Sk
α)

by definition of Good. Let (z′
1, c, z

′
2) be an element of S and denote

COUNT(z′
1, c, z

′
2) := {(z1, c, z2) ∈ ZeroRowsi(Sk

α) : (z′
1, c, z

′
2) ∈ Good(z1, c, z2)}.

Similarly as before, we can show that |COUNT(ẑ1, ..., ẑk)| ≤
(
e
i

)
. Hence, we get:

|S| ≥
∑

(z1,c,z2)∈ZeroRowsi(S�
α1

,D;Sk
α2

) |Good(z1, c, z2)|
(
e
i

)

≥
∑

(z1,c,z2)∈ZeroRowsi(S�
α1

,D;Sk
α2

) |Wi|�+k −
(
e
i

)

(
e
i

)
(4)

Combining the lower bound as well as upper bound for |S| we get:

|Sα1+‖Wi‖∞ |� · |D| · |Sα2+‖Wi‖∞ |k − |ZeroRowsi(S�
α1

,D;Sk
α2

)| ≥ |S|,

On the Non-existence of Short Vectors in Random Module Lattices 135

and

|S| ≥ 1(
e
i

) |ZeroRowsi(S�
α1

,D;Sk
α2

)| · |Wi|�+k − |ZeroRowsi(S�
α1

,D;Sk
α2

)|.

Therefore, |ZeroRowsi(S�
α1

,D;Sk
α2

)| ≤ (e
i)·|Sα1+‖Wi‖∞ |�·|Sα2+‖Wi‖∞ |k·|D|

|Wi|�+k . ��

Again, we note that the lemma does not hold for i = 0. In this case, we use a
simple bound: |ZeroRows0(S�

α1
,D;Sk

α2
)| ≤ |Sα1 |� · |Sα2 |k · |D|.

In Lemma 3.6 we have an additional condition 0 �∈ D. This is because other-
wise we cannot define the integer e. Recall that e represents the maximal number
of zeroes in the Chinese Remainder Representation that an element in D can
have. Hence, in case D = {0}, we can simply set e = d and follow the strategy
as in Lemma 3.6. Thus, we end up with the following corollary.

Corollary 3.7. Let k, �, α1, α2 ∈ N, i ∈ [d] and Wi ⊆ Rq be a set of polynomials
in Rq such that for any two distinct u, v ∈ Wi, |Zero(u − v)| < i. Then,

|ZeroRowsi(S�
α1

;Sk
α2

)| ≤
(
d
i

)
· |Sα1+‖Wi‖∞ |� · |Sα2+‖Wi‖∞ |k

|Wi|�+k
.

3.2 Computing Probabilities

We state and prove the main results of our paper. The first one provides an
upper bound on the probability (over A and t) of existence of (z1, z2, c) which
satisfy Az1 + z2 = ct. This can be applied to the security analysis of the Bai-
Galbraith scheme [4] or qTESLA [2,8]. The second one, however, considers a
slightly different equation: Az1 + z2 = ct1 · 2δ where t1 = Power2Roundq(t, δ)
for some δ, and can be applied to the security analysis of Dilithium-QROM [11].

Theorem 3.8. Let α1, α2 ∈ N and D ⊆ Rq\{0}. Also, for i = 1, ..., d, define
Wi ⊆ Rq to be a set of polynomials such that for any two distinct u, v ∈ Wi,
|Zero(u − v)| < i. Then

Pr
A←Rk×�

q ,t←Rk
q

[∃(z1, z2, c) ∈ S�
α1 × Sk

α2 × D : Az1 + z2 = ct]

≤ |Sα1 |� · |Sα2 |k · |D|
qnk

+

e∑

i=1

(
e
i

)
· |Sα1+‖Wi‖∞ |� · |Sα2+‖Wi‖∞ |k · |D|

|Wi|�+k · qnk(1−i/d)

(5)
where e is the largest integer such that ||D|| ≥ qe/d.

Proof. Fix z1 = (z1, ..., z�), z2 = (z′
1, ..., z

′
k) and c. We first prove that

Zero(z1, c) �= Zero(z1, c, z2) =⇒ Pr
A←Rk×�,t←Rk

q

[Az1 + z2 = ct] = 0.

Suppose that Zero(z1, c) �= Zero(z1, c, z2). Then, there exists some i ∈ [d] such
that i ∈ Zero(z1, c) and i �∈ Zero(z1, c, z2). This implies that there is some j ∈ [k]

136 N. K. Nguyen

so that i �∈ Zero(z1, c, z
′
j) (otherwise i ∈ Zero(z1, c, z2)). In particular, we have

z′
j �≡ 0 (mod fi(X)). Denote A = (ai,j) and t = (t1, ..., tk) and note that

Az1 + z2 = ct =⇒ aj,1z1 + ... + aj,�z� + z′
j = ctj .

However,

0 �≡ z′
j ≡ aj,1z1 + ... + aj,�z� + z′

j ≡ ctj ≡ 0 (mod fi(X)),

contradiction.
Hence, there are no A, t which satisfy Az1 + z2 = ct. Thus, we only con-

sider (z1, c, z2) such that Zero(z1, c) = Zero(z1, c, z2), alternatively (z1, c, z2) ∈
ZeroRowsi(S�

α1
,D;Sk

α2
) for some i ≤ e. We claim that

Pr
A←Rk×�,t←Rk

q

[Az1 + z2 = ct] = 1/qnk(1−i/d).

Note that we can write:

Pr
A←Rk×�,t←Rk

q

[Az1 +z2 = ct] =
k∏

i=1

Pr
ai,1,...,ai,�,ti←Rq

[ai,1z1 + ...+ai,�z� +z′
i = c · ti].

Let us fix an index i and define

A = {(a1, ..., a�, t) ∈ R�+1
q :

�∑

j=1

ajzj + z′
i = c · t}.

We want to show that |A| = qn(�+i/d). Take any u ∈ [d] and consider the set

Au = {(a1, ..., a�, t) ∈ (Zq[X]/(fu(X)))�+1 : a1z1 + ... + a�z� + z′
i ≡ c · t (mod fu(X))}.

If u ∈ Zero(z1, c, z2) then any a1, ..., a�, t satisfy the equation, because

z1 ≡ ... ≡ z� ≡ z′
i ≡ c ≡ 0 (mod fu(X)).

Hence, |Au| = q(l+1)·n/d. If u �∈ Zero(z1, c, z2) then one of z1, ..., z�, c
is invertible modulo (fu(X), q), without loss of generality say zj . Then,
a1,, aj−1, aj+1, ..., a�, c can be chosen arbitrarily and aj is picked such that
the equation is satisfied. Therefore, |Au| = q�·n/d. Now, by the Chinese Remain-
der Theorem we have that

|A| =
d∏

u=1

|Au| = qi·(�+1)·n/d+(d−i)·�·n/d = qn(�+i/d).

Hence,

Pr
ai,1,...,ai,�,ti←Rq

[ai,1z1 + ... + ai,�z� + z′
i = c · ti] =

|A|
q(�+1)·n = 1/qn(1−i/d).

Eventually, we obtain PrA←Rk×�,t←Rk
q
[Az1 + z2 = ct] = 1/qnk(1−i/d).

On the Non-existence of Short Vectors in Random Module Lattices 137

Now, we combine the observations above and Lemma 3.6. For clarity, set
Zi = ZeroRowsi(S�

α1
,D;Sk

α2
). Then,

Pr
A←Rk×�,t←Rk

q

[∃(z1, z2, c) ∈ S�
α1

× Sk
α2

× D : Az1 + z2 = ct]

≤
∑

z1∈S�
α1

,c∈D,z2∈Sk
α2

Pr
A←Rk×�,t←Rk

q

[Az1 + z2 = ct]

≤
e∑

i=0

∑

(z1,c,z2)∈Zi

Pr
A←Rk×�,t←Rk

q

[Az1 + z2 = ct]

≤
e∑

i=0

∑

(z1,c,z2)∈Zi

1/qnk(1−i/d)

≤
e∑

i=0

|Zi|/qnk(1−i/d)

≤ |Sα1 |� · |Sα2 |k · |D|
qnk

+

e∑

i=1

(e
i

) · |Sα1+‖Wi‖∞ |� · |Sα2+‖Wi‖∞ |k · |D|
|Wi|�+k · qnk(1−i/d)

.

(6)

��

We can obtain a very similar result for D = {0} using Corollary 3.7. We just
need to pick e to be the integer, such that any non-zero (z1, z2) ∈ S�

α1
×Sk

α2
has

at most e zero rows. Since each component of z1 has norm at most α1
√

n, we
could choose the maximal e so that α1

√
n ≥ qe/d. We omit the proof since it is

very similar to the one for Theorem3.8.

Corollary 3.9. Let α1, α2 ∈ N. Also, for i = 1, ..., d, define Wi ⊆ Rq to be a set
of polynomials such that for any two distinct u, v ∈ Wi, |Zero(u − v)| < i. Then

Pr
A←Rk×�

q

[∃(z1, z2) ∈ S�
α1

\{0} × Sk
α2

: Az1 + z2 = 0]

≤ |Sα1 |� · |Sα2 |k
qnk

+

e∑

i=1

(d
i

) · |Sα1+‖Wi‖∞ |� · |Sα2+‖Wi‖∞ |k
|Wi|�+k · qnk(1−i/d)

,

(7)
where e is the largest integer such that α1

√
n ≥ qe/d.

The next theorem considers a modified equation Az1 + z2 = ct1 · 2δ where t1 =
Power2Roundq(t, δ) for some δ ∈ N. However, we need to take a slightly different
approach in order to provide a reasonable upper bound for the probability due
to the appearance of Power2Roundq function.

Theorem 3.10. Let α1, α2, δ ∈ N and D ⊆ Rq\{0}. Also, for i = 1, ..., d, define
Wi ⊆ Rq to be a set of polynomials such that for any two distinct u, v ∈ Wi,
|Zero(u − v)| < i. Then

Pr
A←Rk×�

q ,t←Rk
q

[∃(z1, z2, c) ∈ S�
α1

× Sk
α2

× D : Az1 + z2 = ct1 · 2δ]

≤ |D| · |Sα2 |k · ((
2δ

q(1−e1/d)
)nk +

|Sα1 |�
qnk

+
e2∑

i=1

(
d
i

)
· |Sα1+‖Wi‖∞ |�

|Wi|� · qnk(1−i/d)
)

(8)

138 N. K. Nguyen

where t1 = Power2Roundq(t, δ) and e1 (resp. e2) is the largest integer such that
||D|| ≥ qe1/d (resp. α1

√
N ≥ qe2/d).

Proof. Case 1. suppose that z1 = 0. Then, the probability becomes:

Pr
t←Rk

q

[∃(z2, c) ∈ Sk
α2

× D : z2 = ct1 · 2δ].

Fix z2 = (z1, ..., zk), c and denote t = (t1, ..., tk). Consider the following proba-
bility:

Pr
t←Rk

q

[z2 = ct] =
k∏

j=1

Pr[zj = ctj].

By definition of e1, we have |Zero(c)| ≤ e1 by Lemma 3.2. Take arbitrary j ∈ [k].
We compute the maximal number of polynomials tj satisfying zj = ctj . Define
a set

Tu = {t ∈ Zq[X]/(fu(X)) : zj ≡ ct (mod fu(X))}.

Clearly, |Tu| ≤ qn/d. Let u �∈ Zero(c). Then, c is invertible modulo (fu(X), q).
Therefore, |Tu| = 1. By the Chinese Remainder Theorem, the number of poly-
nomials tj satisfying zj = ctj is at most

k∏

u=1

|Tu| ≤ q|Zero(c)|·n/d ≤ qe1·n/d.

Hence, we end up with

Pr[zj = ctj] ≤ qe1·n/d

qn
=

1
qn(1−e1/d)

.

Thus:

Pr
t←Rk

q

[z2 = ct] =
k∏

j=1

Pr[zj = ctj] ≤ 1
qnk(1−e1/d)

.

For t ∈ Rk
q , the most frequent value of each coefficient of t1 occurs at most 2δ

times. Hence,

Pr
t←Rk

q

[z2 = ct1 · 2δ] ≤ (
2δ

q(1−e1/d)
)nk.

Eventually, by the union bound we obtain:

Pr
t←Rk

q

[∃(z2, c) ∈ Sk
α2

× D : z2 = ct1 · 2δ] ≤
∑

z2∈Sk
α2

,c∈D
(

2δ

q(1−e1/d)
)nk,

and the sum is equal to |D| · |Sα2 |k · (2δ

q(1−e1/d))nk.

On the Non-existence of Short Vectors in Random Module Lattices 139

Case 2. Suppose that z = (z1, ..., z�) �= 0 and fix z2 = (z′
1, ..., z

′
k) and c.

Also, denote A = (ai,j), t = (t1, ..., tk) and t′i = Power2Roundq(ti, δ) for i ∈ [k].
Then,

Pr
A←Rk×�,t←Rk

q

[Az1 +z2 = ct1 ·2δ] =
k∏

i=1

Pr
ai,1,...,ai,�,ti←Rq

[
�∑

j=1

ai,jzj +z′
i = c · t′i ·2δ].

Let us fix an index i and consider the set

At = {(a1, ..., a�) ∈ R�
q :

�∑

j=1

ajzj + z′
i = c · t′ · 2δ},

where t′ = Power2Roundq(t). We want to prove that |At| ≤ qn(�−1+m/d), where
m = |Zero(z1, ..., z�)|. Define

Au
t = {(a1, ..., a�) ∈ (Zq[X]/(fu(X)))� :

�∑

j=1

ajzj ≡ c · t′ · 2δ − z′
i (mod fu(X))}.

Clearly, we have |Au
t | ≤ q�·n/d. Consider u �∈ Zero(z1, ..., z�). This means that

zw is invertible modulo (fu(X), q) for some w ∈ [�]. Hence, we can pick any
possible values for a1, ..., aw−1, aw+1, ..., a� and then adjust aw so that it satisfies
the equation. Note that for fixed a1, ..., aw−1, aw+1, ..., a�, there is exactly one
such aw. Thus, |Au

t | = q(�−1)·n/d. By the Chinese Remainder Theorem, we get

|At| =
d∏

u=1

|Au
t | ≤ qm·n�/d · q(d−m)·(�−1)n/d = qn(�−1+m/d).

Since we consider uniform distribution for ai,1, ..., ai,�, ti, we can conclude that:

Pr
ai,1,...,ai,�,ti←Rq

[

�∑

j=1

ai,jzj +z′
i = c ·t′

i ·2δ] =

∑
ti∈Rq

Ati

q�·n · qn
≤ qn(�−1+m/d)

q�·n = 1/qn(1−m/d).

Therefore, PrA←Rk×�,t←Rk
q
[Az1 + z2 = ct1 · 2δ] ≤ 1/qnk(1−m/d).

Now we can apply the union bound. First of all, note that if i > e2 then
ZeroRowsi(S�

α1
\{0}) = ∅ by Lemma 3.2. Hence,

S�
α1

\{0} =
d⋃

i=0

ZeroRowsi(S�
α1

\{0}) =
e2⋃

i=0

ZeroRowsi(S�
α1

\{0}).

140 N. K. Nguyen

For simplicity, denote Zi = ZeroRowsi(S�
α1

\{0}). Then,

Pr[∃(z1, z2, c) ∈ S�
α1

× Sk
α2

× D : Az1 + z2 = ct1 · 2δ]

≤
∑

z1∈S�
α1

\{0},z2∈Sk
α2

,c∈D
Pr[Az1 + z2 = ct1 · 2δ]

≤
∑

z2∈Sk
α2

,c∈D

e2∑

i=0

∑

z1∈Zi

Pr[Az1 + z2 = ct1 · 2δ]

≤
∑

z2∈Sk
α2

,c∈D

e2∑

i=0

∑

z1∈Zi

1/qnk(1−i/d)

≤
∑

z2∈Sk
α2

,c∈D

e2∑

i=0

|Zi|/qnk(1−i/d).

(9)

By Lemma 3.4, |Zi| ≤ (d
i)·|Sα1+||Wi||∞ |�

|Wi|� . Also, we have |Z0| ≤ |Sα1 |�. Therefore,
we can bound the probability above by:

|D| · |Sα2 |k · (|Sα1 |�/qnk +
e2∑

i=1

(
d
i

)
· |Sα1+‖Wi‖∞ |�

|Wi|� · qnk(1−i/d)
). (10)

The theorem now follows from combining the two cases. ��

3.3 Constructing Wi

All the probability results presented in the previous subsection depend on the
sizes of sets Wi. Recall that a set Wi satisfies a condition that for any two distinct
u, v ∈ Wi, we have |Zero(u−v)| < i. Based on the upper bounds obtained above,
we would like to construct large sets Wi but with small infinity norm ||Wi||∞.

Let us start by constructing W1. We choose

W1 := {Xi : i ∈ [2n]}.

Clearly, Xi − Xj ∈ Rq is invertible, for i �= j, so |Zero(Xi − Xj)| = 0 < 1. Also,
|W1| = 2n and ||W1||∞ = 1.

Now, let us fix i ≥ 2. The main idea is to set Wi to be a subset of S = {u ∈
Rq : ||u|| < 1

2qi/d}, i.e ||Wi|| < 1
2qi/d. Note that if we pick two distinct u, v ∈ S,

then 0 < ||u − v|| < qi/d by the triangle inequality. Hence, by Lemma 3.2 we get
that |Zero(u − v)| < i. Therefore, any subset of S will satisfy the condition for
Wi

8.
If t :=

⌊
qi/d

2

⌋
is smaller than

√
n then we set

Wi := {
t2∑

j=1

εj · Xαj ∈ Rq : ε1, ..., εt2 ∈ {−1, 0, 1}, {α1, ..., αt2} ∈ Pt2([n])}.

8 Note that this technique can also be used for W1 as long as q1/d is large enough.

On the Non-existence of Short Vectors in Random Module Lattices 141

Then, ||Wi||∞ = 1, ||Wi|| = t < 1
2qi/d and

|Wi| =
t2∑

j=0

(
n

j

)
· 2j .

Suppose that t ≥ √
n. In this case, we provide two constructions of Wi and

in the experiments we choose the one that minimises the overall probability.

1. Set Wi := S. Then, ||Wi||∞ =
⌊

1
2qi/d

⌋
and |Wi| ≥ Vn(1

2qi/d − √
n)9 where

VN (r) is the volume of an n-dimensional ball of radius r.
2. Set Wi := S�t/

√
n�. Clearly, we have the following properties: Wi ⊆ S,

||Wi||∞ = �t/√
n� and |Wi| = (2 �t/√

n� + 1)n.

4 Applications to the Bai-Galbraith Scheme

We present a slightly modified version of Bai-Galbraith scheme [4] whose security
is based on MLWE in the quantum random oracle model. First, we construct the
corresponding lossy identification protocol10. Results from the previous section
will be used to prove security properties of this ID scheme. Then, using the main
result of [11], we obtain the secure signature scheme in the QROM. Note that
identical techniques can be applied to other closely related signature schemes,
such as qTESLA [2,8] or the original scheme [4]. We focus on the modified scheme
because it is actually a simpler version of Dilithium-QROM. Since the highly-
optimised version of Dilithium-QROM can be somewhat overwhelming to readers
who are not already comfortable with such constructions, we consider its sim-
plified version here.

4.1 The Identification Protocol

The algorithms for identification protocol ID = (IGen,P1,P2,V) are described in
Fig. 3 with the concrete parameters par = (q, d, n, k, �, γ, γ′, η, β) given later in
Tables 1 and 2.

We want the challenge space in these ID and signature schemes to be a subset
of the ring R, have size a little larger than 2256, and consist of polynomials with
small norms. In this paper, we set the dimension n of the ring R to be equal to
512. Hence, let us define the following challenge set:

ChSet := {c ∈ R | ‖c‖∞ = 1 and ‖c‖ =
√

46}. (11)

Hence, ChSet consists of elements in R with −1/0/1 coefficients that have exactly
46 non-zero coefficients. The size of this set is

(
n
46

)
· 246, which for n = 512 is

greater than 2265.
9 This can be proven similarly as in [5] by putting a box of side-length 1 centered on

every integer point and checking that the ball is completely covered by these boxes.
10 For readers not familiar with definitions of lossy and canonical identification schemes,

we provide all necessary background in [20].

142 N. K. Nguyen

Key Generation. The key generation starts with choosing a random 256-bit
seed ρ and expanding into a matrix A ∈ Rk×�

q by an extendable output function
Sam, i.e. a function on bit strings in which the output can be extended to any
desired length, modeled as a random oracle. The secret keys (s1, s2) ∈ S�

η × Sk
η

have uniformly random coefficients between −η and η (inclusively). The value
t = As1 + s2 is then computed. The public key needed for verification is (ρ, t)
and the secret key is (ρ, s1, s2).

Protocol Execution. The prover starts the identification protocol by recon-
structing A from the random seed ρ. The next step has the prover sample
y ← S�

γ′−1 and then compute w = Ay. He then writes w = 2γ · w1 + w0,
with w0 between −γ and γ (inclusively), and then sends w1 to the verifier.

The set ChSet is defined as in Eq. (11), and ZSet = S�
γ′−β−1 × {0, 1}k. The

set of commitments WSet is defined as WSet = {w1 : ∃y ∈ S�
γ′−1 s.t. w1 =

HighBitsq(Ay, 2γ)}.
The verifier generates a random challenge c ← ChSet and sends it to the

prover. The prover computes z = y + cs. If z /∈ S�
γ′−β−1, then the prover sets

his response to ⊥. He also replies with ⊥ if LowBitsq(w − cs2, 2γ) /∈ Sk
γ−β−1.

Eventually, the verifier checks whether ‖z‖∞ < γ′ − β and that Az − ct.

4.2 Security Analysis

We omit proofs of correctness and non-abort honest verifier zero-knowledge prop-
erties since they have already been analysed in the previous works [2,4,9,11].
Instead, we focus on lossyness, min entropy and computational unique response.
We recall that sets Wi are introduced in Sect. 3.3.

Lemma 4.1. If β ≥ maxs∈Sη,c∈ChSet ||cs||∞, then ID is perfectly naHVZK and
has correctness error ν ≈ 1 − exp(−βn · (k/γ + �/γ′)).

Fig. 3. Modified Bai-Galbraith identification protocol.

On the Non-existence of Short Vectors in Random Module Lattices 143

Lossyness. Let us consider the scheme in which the public key is generated
uniformly at random (Fig. 4), rather than as in IGen of Fig. 3. It is enough to show
that even if the prover is computationally unbounded, he only has approximately
a 1/|ChSet| probability of making the verifier accept during each run of the
identification scheme.

Fig. 4. The lossy instance generator LossyIGen.

Since the output of LossyIGen is uniformly random over Rk×�
q × Rk

q and the
output of IGen in Fig. 3 is (A,As1+s2) where A ← Rk×�

q and (s1, s2) ← S�
η ×Sk

η ,
we get that

AdvLOSS
ID (A) = AdvMLWE

k,�,D (A),

where D is the uniform distribution over Sη.

Lemma 4.2. Let e� be the largest integer which satisfies qe�/d ≤ 2
√

46. Then,
ID has εls-lossy soundness, where

εls ≤ 1
|ChSet| +

|S2(γ′−β−1)|� · |S4γ+2|k · |ChSet|2
qnk

+
e�∑

i=1

(
e�

i

)
· |S2(γ′−β−1)+‖Wi‖∞ |� · |S4γ+2+‖Wi‖∞ |k · |ChSet|2

|Wi|�+k · qnk(1−i/d)
.

(12)

Proof. Consider an unbounded adversary C that is executed in game LOSSY-IMP
of Fig. 5.

Fig. 5. The lossy impersonation game LOSSY-IMP.

144 N. K. Nguyen

Assume that for some w1, there exist two c �= c′ ∈ ChSet and two z, z′ that
lead to C winning, i.e. ‖z‖∞, ‖z′‖∞ < γ′ − β and

w1 = HighBitsq(Az − tc, 2γ),
w1 = HighBitsq(Az′ − tc′, 2γ).

By Lemma 2.1, we know that this implies

‖Az − tc − w1 · 2γ‖∞ ≤ 2γ + 1,

‖Az′ − tc′ − w1 · 2γ‖∞ ≤ 2γ + 1.

By the triangle inequality, we have that

‖A(z − z′) − t · (c − c′)‖∞ ≤ 4γ + 2 ,

which can be rewritten as

A(z − z′) + u = t · (c − c′) (13)

for some u such that ‖u‖∞ ≤ 4γ + 2 (and ‖z − z′‖∞ ≤ 2(γ′ − β − 1)).
If A ← Rk×�

q and t ← Rk
q , then, by Theorem 3.8, we have that Eq. (13) is

satisfied with probability less than

|S2(γ′−β−1)|� · |S4γ+2|k · |D|
qnk

+

e�∑

i=1

(
e�
i

)
· |S2(γ′−β−1)+‖Wi‖∞ |� · |S4γ+2+‖Wi‖∞ |k · |D|

|Wi|�+k · qnk(1−i/d) ,

where D := {c − c′ : c, c′ ∈ ChSet}\{0} and sets Wi’s are defined in Sect. 3.3.
Thus, except with the above probability, for every w1, there is at most one

possible c that allows C to win. In other words, except with the above probability,
C has at most a 1/|ChSet| chance of winning. ��

Note that we do not make any assumptions on the prime q. However, small d
(e.g. d = 2 for q ≡ 3 or 5 (mod 8)) implies small e�. As a consequence, the
smaller d we choose, then the probability above also decreases.

Min-entropy. Now, we prove that the w1 sent by the honest prover in the first
step is extremely likely to be distinct for every run of the protocol.

Lemma 4.3. Let em be the largest integer which satisfies qem/d ≤ 2γ′√n. Then
the identification scheme ID in Fig. 3 has

α > log
(

min
{

1
M

, (2γ′ − 1)n�

})

bits of min-entropy, where

M :=
|S2γ′ |� · |S2γ |k

qnk
+

em∑

i=1

(
d
i

)
· |S2γ′+‖Wi‖∞ |� · |S2γ+‖Wi‖∞ |k

|Wi|�+k · qnk(1−i/d)
.

On the Non-existence of Short Vectors in Random Module Lattices 145

Proof. We claim that

Pr
A←Rk×�

q

[∃y �= y′ ∈ S�
γ′−1 s.t. HighBitsq(Ay, 2γ) = HighBitsq(Ay′, 2γ)]

≤ |S2γ′ |� · |S2γ |k
qnk

+
em∑

i=1

(
d
i

)
· |S2γ′+‖Wi‖∞ |� · |S2γ+‖Wi‖∞ |k

|Wi|�+k · qnk(1−i/d)
. (14)

Indeed, if we write

Decomposeq(Ay, 2γ) = (w1,w0) and Decomposeq(Ay′, 2γ) = (w′
1,w

′
0),

then HighBitsq(Ay, 2γ) = HighBitsq(Ay′, 2γ) implies that Ay = w1 · 2γ + w0

and Ay′ = w′
1 · 2γ + w′

0 with w1 = w′
1 and ‖w0‖∞, ‖w′

0‖∞ ≤ γ. Hence,

A(y − y′) − (w0 − w′
0) = 0 (15)

where
‖y − y′‖∞ < 2γ′, ‖w0 − w′

0‖∞ ≤ 2γ.

Corollary 3.9 shows that the probability over the choice of A ← Rk×�
q , that

there exist two non-zero elements of norm less than 2γ and 2γ′, respectively,
which satisfy Eq. (15) is at most

|S2γ′ |� · |S2γ |k
qnk

+
em∑

i=1

(
d
i

)
· |S2γ′+‖Wi‖∞ |� · |S2γ+‖Wi‖∞ |k

|Wi|�+k · qnk(1−i/d)
= M.

This proves Eq. (14).
Now, we know that with probability at least 1 − M over the choice of

A ← Rk×�
q , each W = HighBitsq(Ay, 2γ) has exactly a 1∣

∣
∣S�

γ′−1

∣
∣
∣

= (2γ′ − 1)−n�

probability of being output. Thus, the claim in the lemma follows directly from
the definition. ��

Computational Unique Response. Here, we show the Computational Unique
Response (CUR) property required for strong-unforgeability of the signature
scheme.

Lemma 4.4. Let ec be the largest integer such that qec/d ≤ 2(γ′ −β)
√

n. Then

AdvCUR
ID (A) ≤ |S2(γ′−β)|� · |S4γ+2|k

qnk
+

ec∑

i=1

(
d
i

)
· |S2(γ′−β)+‖Wi‖∞ |� · |S4γ+2+‖Wi‖∞ |k

|Wi|�+k · qnk(1−i/d)

for all (even unbounded) adversaries A.

Proof. Let (W, c, Z) = (w1, c, z) be any valid transcript and suppose A is able
to generate a valid Z ′ = z′ �= Z such that V(pk = (A, t),w1, c, z′) = 1. Thus,
we have

w1 = UseHintq(h,Az − ct, 2γ) and w1 = UseHintq(h′,Az′ − ct, 2γ).

146 N. K. Nguyen

Table 1. Prime moduli q for each possible value of d. We used the main result of [19]
for finding q. For each case, we also provide values γ such that 2γ|q − 1. Just like in
[11], we set γ′ = γ.

q d γ

244 − 17043 2 592493

244 − 8583 4 593431

244 − 13743 8 305156

244 − 7583 16 282832

244 − 1599 32 285978

245 − 36991 64 364254

245 − 58111 128 353952

245 − 511 256 360620

245 − 23551 512 359769

The above two equations imply (by Lemma 2.1) that

‖Az − ct − w1 · 2γ‖∞ ≤ 2γ + 1 and ‖Az′ − ct − w1 · 2γ‖∞ ≤ 2γ + 1.

By the triangle inequality, we have

A(z − z′) + u = 0

for some u such that ‖u‖ ≤ 4γ +2 and ‖z−z′‖ < 2(γ′ −β). Hence, by Corollary
3.9, the probability over the choice of A ← Rk×�

q , that there exist such v,u is
at most

|S2(γ′−β)|� · |S4γ+2|k
qnk

+
ec∑

i=1

(
d
i

)
· |S2(γ′−β)+‖Wi‖∞ |� · |S4γ+2+‖Wi‖∞ |k

|Wi|�+k · qnk(1−i/d)
. ��

4.3 Concrete Parameteres

In this subsection, we instantiate the modified Bai-Galbraith mBG signature
scheme obtained by the Fiat-Shamir transformation from ID with concrete
parameters (Tables 1 and 2). We consider nine different instantiations of mBG
for all possible d ∈ {2i : i ∈ [9]}.

For each value of d, we have selected parameters (e.g. prime modulus q and
γ) such that the ID scheme satisfies the following security properties: (i) εzk = 0,
(ii) the scheme has more than 2845 bits of min-entropy, i.e. α > 2845, (iii)
εls ≤ 2−264, (iv) AdvCUR

ID (C) ≤ 2−288. Following the steps in [11], one can prove
security of the modified Bai-Galbraith scheme in the quantum random oracle
model (see [20]).

We compare the nine different instantiations of the modified Bai-
Galbraith scheme (Table 2) with respect to recommended parameters in Table 2.

On the Non-existence of Short Vectors in Random Module Lattices 147

Table 2. Parameters for the modified Bai-Galbraith scheme. Recall that ν is the
maximum coefficient of secret keys s1, s2 and β = ν · (# of ± 1’s in c ∈ ChSet). On
the other hand, variables e�, ec, em, α, εls, AdvCUR

ID (A), ν are defined in Sect. 4.2.

d 2 4 8 16 32 64 128 256 512

n 512 512 512 512 512 512 512 512 512

(k, �) (dimensions of A) (4, 4) (4, 4) (5, 5) (5, 5) (5, 5) (5, 5) (5, 5) (5, 5) (5, 5)

of ±1′s in c ∈ ChSet 46 46 46 46 46 46 46 46 46

η (max. coeff. of s1, s2) 5 5 2 2 2 2 2 2 2

β(= η · (#of 1’s in c)) 230 230 92 92 92 92 92 92 92

e� (lossyness) 0 0 0 1 2 5 10 21 42

ec (CUR) 1 2 4 8 17 34 68 136 272

em (min-entropy) 1 2 4 8 17 34 68 136 272

log(εls) −264 −264 −264 −264 −264 −264 −264 −264 −264

log(AdvCUR
ID (A)) −1326 −1317 −592 −924 −288 −799 −986 −766 −677

α 3373 3363 3149 3481 2845 3356 3543 3324 3235

pk size (kilobytes) 11.29 11.29 14.11 14.11 14.11 14.43 14.43 14.43 14.43

sig size (kilobytes) 5.69 5.69 6.76 6.76 6.76 6.76 6.76 6.76 6.76

Exp. Repeats 1
1−ν 4.94 4.93 4.68 5.29 5.19 3.64 3.78 3.69 3.70

BKZ block-size to break LWE 480 480 600 600 600 585 585 585 585

Best known classical bit-cost 140 140 175 175 175 171 171 171 171

Best known quantum bit-cost 127 127 159 159 159 155 155 155 155

Firstly, observe that for d ≤ 4, we pick q ≈ 244. In this case, we end up with
public key and signature size 11.29 kB and 5.69 kB respectively.

The situation changes for d = 8. Interestingly, if one keeps the same param-
eters as for d = 4 then one still gets εls ≤ 2−264, hence the lossyness property
is still preserved. The problem is, however, that the advantage AdvCUR

ID (A) gets
extremely big. Concretely, for parameters above we have log(AdvCUR

ID (A)) ≈ 3483.
We found out that one of the compounds in the sum is actually dominating (see
Lemma 4.4). Namely, we get:

log(

(
8
1

)
· |S2(γ′−β)+‖W1‖∞ |� · |S4γ+2+‖W1‖∞ |k

|W1|�+k · qnk(1−1/8)
) ≈ 3483.

We believe the reason for it being so large is because for d = 8, i = 1 and
q ≈ 244 we have t :=

⌊
qi/d

2
√

n

⌋
= 1 (introduced in Sect. 3.3). Hence, W1 has only

3512 elements. As a consequence, the value above is still big. Thus, a natural
way to solve this issue would be to increase q. Unfortunately, in order to keep
the MLWE problem hard, this would imply increasing the size of secret keys,
i.e. η. Hence, β would also get bigger, so in order to keep the repetition rate
1/(1 − ν) small, we would have to increase the value of γ (and γ′). In this case,
probabilities related to the security of ID, e.g. εls, log(AdvCUR

ID (A)), would get
considerably bigger, so one would need to consider larger q again and eventually,
we would end up in a vicious circle. We avoid that by increasing dimensions

148 N. K. Nguyen

(k, �) = (5, 5) of the matrix A. Unfortunately, this comes at a price of larger
public key (14.11 kB) and signature (6.76 kB) sizes. In order to minimise such
costs, we decrease the size of secret keys η = 2 and thus, we select smaller values
for γ. As before, we choose q ≈ 244. We pick almost identical parameters for
d = 16 and d = 32.

Next, we consider d ≥ 64. If we choose the parameters as for d = 32 then the
lossyness probability εls is no longer small and therefore, we need to increase the
q ≈ 245. We observe that the new parameters still provide much more than 128
bits of security for MLWE. The public key gets slightly larger (14.43 kB) and the
signature size stays the same as before.

In order to maintain security of the Bai-Galbraith scheme in the quantum
random oracle model for bigger d (i.e. d ≥ 256), we need to increase both dimen-
sions (k, �) of the matrix A as well as the prime modulus q. This results in having
3.13 kB larger public key and 1.07 kB signature sizes than for d = 2. We remark
that security parameters were chosen such that the expected number of repeti-
tions of the protocol 1/(1 − ν) is at most six. Indeed, admitting small repetition
rate as well as supporting the use of the Number Theoretic Transform, efficient
caching and polynomial sampling assures us that the protocol can be performed
very efficiently.

Acknowledgments. The author would like to thank Vadim Lyubashevsky for fruit-
ful discussions and anonymous reviewers for their useful comments. This work was
supported by the SNSF ERC Transfer Grant CRETP2-166734 FELICITY.

References

1. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 34

2. Alkim, E., et al.: Revisiting TESLA in the quantum random oracle model. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 143–162.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 9

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 327–343.
USENIX Association, August 2016

4. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

5. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

6. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group sig-
natures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol.
8873, pp. 551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45611-8 29

https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-319-59879-6_9
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29

On the Non-existence of Short Vectors in Random Module Lattices 149

7. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015, Part I. LNCS, vol. 9326, pp.
305–325. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 16

8. Bindel, N., et al.: qTESLA. Technical report, National Institute of Standards and
Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions

9. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.:
CRYSTALS - Dilithium: digital signatures from module lattices. IACR Cryptology
ePrint Archive 2017, 633 (2017). To appear in TCHES 2018

10. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8 31

11. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of fiat-shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 552–586. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 18

12. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75(3), 565–599 (2015)

13. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

14. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

15. Lyubashevsky, V., et al.: Crystals-dilithium. Technical report, National Institute of
Standards and Technology (2017). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions

16. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006, Part II. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://
doi.org/10.1007/11787006 13

17. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp.
293–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 11

18. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

19. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclo-
tomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 204–224.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 8

20. Nguyen, N.K.: On the non-existence of short vectors in random module lattices.
Cryptology ePrint Archive, Report 2019/973 (2019). https://eprint.iacr.org/2019/
973

21. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 8

https://doi.org/10.1007/978-3-319-24174-6_16
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-319-78381-9_8
https://eprint.iacr.org/2019/973
https://eprint.iacr.org/2019/973
https://doi.org/10.1007/11681878_8

150 N. K. Nguyen

22. Peikert, C., Rosen, A.: Lattices that admit logarithmic worst-case to average-case
connection factors. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 478–
487. ACM Press, June 2007

23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005

24. Schwabe, P., et al.: Crystals-kyber. Technical report, National Institute of
Standards and Technology (2017). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions

25. Stehlé, D., Steinfeld, R.: Making NTRUEncrypt and NTRUSign as secure as stan-
dard worst-case problems over ideal lattices. Cryptology ePrint Archive, Report
2013/004 (2013). http://eprint.iacr.org/2013/004

26. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

27. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 3

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://eprint.iacr.org/2013/004
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-319-70694-8_3

Authenticated Encryption

Forkcipher: A New Primitive
for Authenticated Encryption of Very

Short Messages

Elena Andreeva1(B), Virginie Lallemand2, Antoon Purnal1,
Reza Reyhanitabar3P, Arnab Roy4, and Damian Vizár5

1 imec-COSIC, KU Leuven, Leuven, Belgium
{elena.andreeva,antoon.purnal}@esat.kuleuven.be

2 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
virginie.lallemand@loria.fr

3 TE Connectivity, Niederwinkling, Germany
reza.reyhanitabar@te.com

4 University of Bristol, Bristol, UK
arnab.roy@bristol.ac.uk

5 CSEM, Neuchâtel, Switzerland
damian.vizar@csem.ch

Abstract. Highly efficient encryption and authentication of short mes-
sages is an essential requirement for enabling security in constrained sce-
narios such as the CAN FD in automotive systems (max. message size
64 bytes), massive IoT, critical communication domains of 5G, and Nar-
rowband IoT, to mention a few. In addition, one of the NIST lightweight
cryptography project requirements is that AEAD schemes shall be “opti-
mized to be efficient for short messages (e.g., as short as 8 bytes)”.

In this work we introduce and formalize a novel primitive in sym-
metric cryptography called forkcipher. A forkcipher is a keyed primitive
expanding a fixed-lenght input to a fixed-length output. We define its
security as indistinguishability under a chosen ciphertext attack (for n-
bit inputs to 2n-bit outputs). We give a generic construction validation
via the new iterate-fork-iterate design paradigm.

We then propose ForkSkinny as a concrete forkcipher instance with a
public tweak and based on SKINNY: a tweakable lightweight cipher fol-
lowing the TWEAKEY framework. We conduct extensive cryptanalysis
of ForkSkinny against classical and structure-specific attacks.

We demonstrate the applicability of forkciphers by designing three
new provably-secure nonce-based AEAD modes which offer performance
and security tradeoffs and are optimized for efficiency of very short mes-
sages. Considering a reference block size of 16 bytes, and ignoring possible
hardware optimizations, our new AEAD schemes beat the best SKINNY-
based AEAD modes. More generally, we show forkciphers are suited
for lightweight applications dealing with predominantly short messages,
while at the same time allowing handling arbitrary messages sizes.

Furthermore, our hardware implementation results show that when we
exploit the inherent parallelism of ForkSkinny we achieve the best perfor-
mance when directly compared with the most efficient mode instantiated
with SKINNY.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 153–182, 2019.
https://doi.org/10.1007/978-3-030-34621-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_6

154 E. Andreeva et al.

Keywords: Authenticated encryption · New primitive · Forkcipher ·
ForkSkinny · Lightweight cryptography · Short messages

1 Introduction

Authenticated encryption (AE) aims at achieving the two fundamental secu-
rity goals of symmetric-key cryptography: confidentiality (privacy) and integrity
(together with authentication). Historically, these two goals were achieved by the
generic composition of an encryption scheme (for confidentiality) and a message
authentication code (MAC) [23]. For instance, old versions of major security
protocols such as TLS, SSH and IPsec included variants of generic composi-
tion, namely MAC-then-Encrypt, Encrypt-and-MAC and Encrypt-then-MAC
schemes, respectively. But it turned out that this approach is neither the most
efficient (as it needs processing the whole message twice) nor the most robust to
security and implementation issues [22,43,44]; rather it is easy for practitioners
to get it wrong even when using the best known method among the three, i.e.
Encrypt-then-MAC, following standards [41].

The notion of AE as a primitive in its own right—integrating encryption and
authentication by exposing a single abstract interface—was put forth by Bellare
and Rogaway [25] and independently by Katz and Yung [34] in 2000. It was fur-
ther enhanced by Rogaway [46] to authenticated encryption with associated data
(AEAD). Being able to process associated data (AD) is now a default require-
ment for any authenticated encryption scheme; hence we use AE and AEAD
interchangeably. After nearly two decades of research and standardization activ-
ities, recently fostered by the CAESAR competition (2014–2018)[26], we now
have a rich set of general-purpose AEAD schemes, some already standardized
(e.g. GCM and CCM) and some expected to be adopted by new applications and
standards (e.g. the CAESAR finalists Ascon [30], ACORN [53], AEGIS-128 [55],
OCB [36], COLM [9], Deoxys II [32], and MORUS [54]).

This progress may lead to the belief that the AEAD problem is “solved”.
However, as evidenced by the ECRYPT-CSA report in 2017 [14], several critical
ongoing “Challenges in Authenticated Encryption” still need research efforts
stretching years into the future. Thus, it is interesting to investigate to what
extent CAESAR has resulted in solutions to these problems.

Our Target Challenge. Among the four categories of challenges—security,
interface, performance, mistakes and malice—reported by the ECRYPT-CSA
[14], we aim at delving into the performance regarding authenticated encryption
of very short messages. General-purpose AEAD schemes are usually optimized
for handling (moderately) long messages, and often incur some initialization
and/or finalization cost that is amortized when the message is long. To quote the
ECRYPT-CSA report: “The performance target is wrong · · · Another increas-
ingly common scenario is that an authenticated cipher is applied to many small
messages · · · The challenge here is to minimize overhead.”

Therefore, designing efficient AEAD for short messages is an important
objective as also evidenced by NIST’s first call for submissions (May 14, 2018)
for lightweight cryptography [42], where it is stressed as a design requirement

Forkcipher: A New Primitive for Authenticated Encryption 155

that lightweight AEAD submissions shall be “optimized to be efficient for short
messages (e.g., as short as 8 bytes)”.

Plenty of Use Cases. The need for high-performance and low-latency process-
ing of short messages is identified as an essential requirement in a multitude of
security and safety critical use cases in various domains. Examples are Secure On
board Communication (SecOC) in automotive systems [6], handling of short data
bursts in critical communication and massive IoT domains of 5G [1], and Nar-
rowband IoT (NB-IoT) [2,5] systems. For example, the new CAN FD standard
(ISO 11898-1) for vehicle bus technology [3,4], which is expected to be imple-
mented in most cars by 2020, allows for a payload up to 64 bytes. In NB-IoT
standards [2,5] the maximum transport block size (TBS) is 680 bits in downlink
and 1000 bits in uplink (the minimum TBS size is 16 bits in both cases). Low
energy protocols also come with stringent requirements on the maximum packet
size: the Bluetooth, SigFox, LoraWan and ZigBee protocols allow for maximum
sizes of 47, 12, 51–255 (51 bytes for slowest data rate, 255 for the fastest), and
84 bytes packet sizes, respectively. In use cases with tight requirements on delay
and latency, the typical packet sizes should be small as large packets occupy a
link for more time, causing more delays to subsequent packets and increasing
latency. Furthermore, in applications such as smart parking lots the data to be
sent is just one bit (“free” or “occupied”), so a minimum allowed TBS size of
2 bytes (16 bits) would suit the application. Even more, most medical implant
devices, such as pacemakers, permit the exchange of messages of length at most
16 bytes between the device programmer and the device.

Our Goal. Our main objective is to construct secure, modular (provably secure)
AEAD schemes that excel in efficiency over previous modular AEAD construc-
tions at processing very short inputs, while also being able to process longer
inputs, albeit somewhat less efficiently. We insist that our AEAD schemes ought
to be able to securely process inputs of arbitrary lengths to be fairly comparable
to other general-purpose (long message centric) schemes, and to be qualified as a
full-fledged variable-input-length AEAD scheme according to the requirements
in NIST’s call for lightweight cryptography primitives.

Towards this goal, we take an approach that can be seen as a parallel to the
shift from generic composition to dedicated AEAD designs, but on the level of
the primitive. We rethink the way a low level fixed-input-length (FIL) primitive
is designed, and how variable-input-length (VIL) AEAD schemes are constructed
from such a new primitive.

The Gap between the Primitives and AEAD. Our first observation is that
there is a large gap between the high level security goal to be achieved by the VIL
AEAD schemes and the security properties that the underlying FIL primitives
can provide. Modular AEAD designs typically confine the AE security to the
mode of operation only; the lower-level primitives, such as (tweakable) block
ciphers, cryptographic permutations and compression functions, are never meant
to possess any AE-like features, and in particular they are never expanding as
needed to ensure ciphertext integrity in AEAD. Hence, a VIL AEAD scheme Π
designed as a mode of operation for an FIL primitive F plays two roles: not only

156 E. Andreeva et al.

does it extend the domain of the FIL primitive but it also transforms and boosts
the security property of the primitive to match the AEAD security notion. A
natural question then arises, whether by explicitly decoupling these two AEAD
roles we can have more efficient designs and more transparent security proofs.

The first, most obvious approach to resolving the latter question is to remove
the security gap between the mode and its primitive altogether, i.e., to start from
a FIL primitive F which itself is a secure FIL AEAD. This way a VIL AEAD
mode will only have one role: a property-preserving domain extender for the
primitive F. Property-preserving domain extension is a well-studied and popular
design paradigm for other primitives such as hash functions [11,24,45].

Informally speaking, the best possible security that a FIL AEAD scheme
with a fixed ciphertext expansion (stretch) can achieve is to be indistinguishable
from a tweakable random injective function, i.e., to be a tweakable pseudorandom
injection (PRI) [31,48]. But starting directly with a FIL tweakable PRI, we did
not achieve a desirable solution in our quest for the most efficient AEAD design
for short messages.1 It seems that, interestingly, narrowing the security gap
between the mode and its primitive, but not removing the gap entirely, is what
helps us achieve our ultimate goal.

Contribution 1: Forkcipher – A New Symmetric Primitive. We introduce
a novel primitive—a tweakable forkcipher—that yields efficient AEAD designs
for short messages. A tweakable forkcipher is nearly, but not exactly, a FIL AE
primitive; “nearly” because it produces expanded ciphertexts with a non-trivial
redundancy, and not exactly because it has no integrity-checking mechanisms.2

When keyed and tweaked, we show how a forkcipher maps an n-bit input block
M to an output C of 2n bits. Intuitively, this is equivalent to evaluating two
independent tweakable permutations on M but with an amortized computational
cost (see Fig. 1 for an illustration of the forkcipher’s high-level structure). We
give a strict formalization of the security of such a forkcipher. Our new notion
of pseudorandom tweakable forked permutation captures the game of indistin-
guishability of a n-bit to 2n-bits forkcipher from a pair of random permutations
in the context of chosen ciphertext attacks.

Contribution 2: Instantiating a Forkcipher. We give an efficient instance of
the tweakable forkcipher and name it ForkSkinny. It is based on the lightweight
tweakable block cipher SKINNY[18]. Building ForkSkinny on an existing block
cipher enables us to rely on the cryptanalysis results behind SKINNY[12,13,49,
51,56,57], and in addition, helps us provide systematic analysis for the necessary
forkcipher alterations. We also inherit the cipher’s efficiency features and obtain
a natural and consistent metric for comparison of the forkcipher performance
with that of its underlying block cipher.

SKINNY comes with multiple optimization tradeoffs in area, throughput,
power, efficiency and software performance in lightweight applications. Addi-
tionally, SKINNY also provides a number of choices for its block size and tweak
1 See the discussion section in full version [10].
2 We demonstrate that when used in a minimalistic mode of operation, a secure tweak-

able forkcipher yields a miniature FIL AEAD scheme which achieves tweakable PRI
security.

Forkcipher: A New Primitive for Authenticated Encryption 157

size which we incorporate naturally into ForkSkinny. We have performed crypt-
analyses of ForkSkinny against differential, linear, algebraic, impossible differen-
tial, MITM, integral attacks and boomerang attacks. We have taken the security
analysis of ForkAES [17] into account to ensure that the same type of attacks is
not possible against ForkSkinny.

To obtain ForkSkinny, we apply our newly proposed iterate-fork-iterate (IFI)
paradigm: when encrypting a block M of n bits with a secret key and a tweak
(public), we first transform M into M ′ using rinit SKINNY rounds together with
the tweakey schedule. Then, we fork the encryption process by applying two par-
allel paths (left and right) each comprising r SKINNY rounds. Along left path the
state of the cipher is processed using tweakey schedule of SKINNY, thus producing
the same ciphertext as SKINNY. Along the right path the state is processed with a
tweakey schedule which differs from that of the left path at each round. The IFI
design strategy also provides a scope of parallelizing the implementation of the
design. The IFI paradigm is conceptually easy, and supports the transference of
security and performance results based on the underlying tweakable cipher. We
also provide arguments for the generic security of the IFI construction paradigm
assuming that the building blocks are behaving as secure pseudorandom permu-
tations. Our generic result is indicative of the forkcipher structural soundness
(but does not directly imply security, because a real forkcipher is never built
from a secure pseudorandom permutation). While a forkcipher inherits some of
the side-channel security features of its underlying structure, the fully-fledged
side-channel security of forkciphers is out of the scope of this paper.

Contribution 3: New AEAD Modes. In our work we follow the well-
established modular AE design approach for arbitrary long data in the prov-
able security framework. There is no general consensus in the cryptographic
community if AEAD schemes can claim higher merits for being modular and
provably secure or not. For instance, 3 out of 7 CAESAR [26] finalists, namely
ACORN, AEGIS and MORUS are monolithic designs and do not follow the
provable security paradigms. Nonetheless, we trust and follow in the modular
and provable security methodology for its well-known security benefits [20,47].
Moreover, the class of provably secure AEAD designs includes all currently stan-
dardized AEAD schemes, as well as the majority of CAESAR finalists. We also
emphasize that, by defining the forkcipher as a new fully-fledged primitive and
building modes on top in a provable way, we clearly differentiate ourselves from
the “prove-then-prune” design approaches.

Regarding the state of the art in AE designs, it appears that aiming for
a provably secure AEAD mode that achieves the best performance for both
long and short message scenarios is an ambitious goal. Instead, we design high-
performance AEAD modes for very short inputs whilst maintaining the function-
ality and security for long ones. All our three modes, PAEF, SAEF and RPAEF
can be further implemented very efficiently when instantiated with ForkSkinny.

Our first scheme PAEF (Parallel AEAD from a forkcipher) makes � calls
to a forkcipher to process a message of � blocks. PAEF is fully parallelizable

158 E. Andreeva et al.

and thus can leverage parallel computation. We prove its optimal security: n bit
confidentiality and n-bit authenticity (for an n-bit block input).

Our second scheme RPAEF (Reduced Parallel AEAD from a forkcipher) is
also fully parallelizable, but in contrast to PAEF only uses the left forkcipher
path for the first (�−1) blocks, and the full (left and right) forkcipher evaluation
for the final block (first block for the single block-message). When instantiated
with ForkSkinny, RPAEF computes the equivalent of (�−1) calls to SKINNY and 1
call to ForkSkinny. This general mode optimization, as compared to PAEF, comes
at the cost of restrictive use of large tweaks (as large as 256 bits) and increased
HW area footprint. Similarly to PAEF, we prove that RPAEF achieves optimal
quantitative security.

Our third scheme SAEF (Sequential AEAD from a forkcipher) encrypts each
block “on-the-fly” in a sequential manner (and hence is not parallelizable). SAEF
lends itself well to low-overhead implementations (as it does not store the nonce
and the block counter) but its security is birthday-bounded in the block size
(n/2-bit confidentiality and authenticity for n-bit block).

Contribution 4: Hardware Performance and Comparisons. PAEF and
SAEF need an equivalent of about 1 and 1.6 SKINNYevaluation per block of AD
and message, respectively (both encryption and decryption). RPAEF reduces
further the computational cost for all but the last message blocks to an equiv-
alent of 1 SKINNYevaluation. When compared directly with block cipher modes
instantiated with SKINNYwith a fixed tweak (to facilitate the comparison), such
as the standardized GCM [40], CCM [52], and OCB [37], we outperform those
significantly for predominantly short data sizes of up to four blocks. We achieve
a performance gain in the range of (10−50)% for data ranging from 4 blocks
down to 1 block, respectively. The additional overhead for all block-cipher-based
modes is incurred by at least two additional cipher calls: one for subkey/mask
generation and one for tag computation.

We provide a hardware comparison (in Sect. 7, Fig 10) of our three modes
(with different ForkSkinny variants) with Sk-AEAD. The Sk-AEAD is the tweak-
able cipher mode TAE [38], which is same as ΘCB [37], instantiated with
Skinny-AEAD M1/M2, M5/M6 [19]. We compare on the bases of block size,
nonce, and tag sizes variants. Based on the round-based implementations all of
our three modes perform faster (in terms of cycles) for short data (up to 3 blocks)
with about the same area. RPAEF beats its competitor for all message sizes at
the cost of a area increase of about 20% (for only one of its variants). We fur-
ther optimize the performances by exploiting the in-built parallelism (//) in the
ForkSkinny primitive and obtain superior performance results. Namely, for mes-
sages up to three 128-bit blocks, the speed-up of PAEF and SAEF (both parallel
(//)) ranges from 25% to 50%, where the advantage is largest for the single-block
messages. Most importantly, the RPEAF, PAEF, and SAEF(//) instances result
in fewer cycles than the ΘCB variants for all message sizes at a small cost in
area increase. However, the relative advantage of the latter instances is more
explicit for short messages; as it diminishes asymptotically with the message
blocks. For message sizes up to 8 bytes, which is emphasized by NIST [42],

Forkcipher: A New Primitive for Authenticated Encryption 159

the Paef-ForkSkinny-64-192 instances are more than 58% faster with also a
considerably smaller implementation size.

Related Work. An AE design which bears similarities with our forkcipher idea
is Manticore [8] (the CS scheme). They use the middle state of a block cipher
to evaluate a polynomial hash function for authentication purposes. Yet, for
a single block, Manticore needs 2 calls to the block cipher (compared to ≈1.6
SKINNY calls in ForkSkinny), thus failing to realize optimal efficiency for very short
messages. The CS design, which has been shown insecure [50] (and fixed with
an extra block cipher call), necessitates a direct cryptanalysis on the level of an
AE scheme, which is a much more daunting task than dedicated cryptanalysis
of a compact primitive. In [15], Avanzi proposes a somewhat similar design
approach which splits an intermediate state to process them separately. More
concretely, it uses a nonce addition either prior to the encryption or in the middle
of the encryption rounds, specifically at the splitting phase. Yet, the fundamental
difference with our design is that we use a different framework (TWEAKEY [33])
which considers the nonce and key together and injects a transformation of those
throughout the forkcipher rounds. Moreover, it seems impossible to describe the
latter designs [8,15] as neither primitives nor modes with clearly defined security
goals, whereas our approach aims the opposite.

It is worth mentioning that the recent permutation based construction Far-
falle [27] also has superficially similar design structure. For example, in Farfalle
with a fixed input length message it is possible to produce two or more fixed
length outputs. However, the design strategy of ForkSkinny and Farfalle are differ-
ent in two aspects: 1. ForkSkinny follows an iterative design strategy (with round
keys, round constants etc.), while Farfalle is a permutation based design, and
2. ForkSkinny has an explicit tweak input which is processed using the tweakey
framework.

2 Preliminaries

All strings are binary strings. The set of all strings of length n (for a positive
integer n) is denoted {0, 1}n. We let {0, 1}≤n =

⋃n
i=0{0, 1}n. We denote by

Perm(n) the set of all permutations of {0, 1}n. We denote by Func(m,n) the set
of all functions with domain {0, 1}m and range {0, 1}n, and we let Inj(m)n ⊂
Func(m)n denote the set of all injective functions with the same signature.

For a string X of � bits, we let X[i] denote the ith bit of X for i = 0, . . . , �−1
(starting from the left) and X[i . . . j] = X[i]‖X[i + 1]‖ . . . ‖X[j] for 0 ≤ i <
j < �. We let left�(X) = X[0 . . . (� − 1)] denote the � leftmost bits of X and
rightr(X) = X[(|X| − r) . . . (|X| − 1)] the r rightmost bits of X, such that
X = leftχ(X)‖right|X|−χ(X) for any 0 ≤ χ ≤ |X|. Given a (possibly implicit)
positive integer n and an X ∈ {0, 1}∗, we let denote X‖10n−(|X| mod n)−1 for
simplicity. Given an implicit block length n, we let pad10(X) = X‖10∗ return
X if |X| ≡ 0 (mod n) and X‖10∗ otherwise.

Given a string X and an integer n, we let X1, . . . , Xx,X∗
n←− X denote

partitioning X into n-bit blocks, such that |Xi| = n for i = 1, . . . , x, 0 ≤ |X∗| ≤ n

160 E. Andreeva et al.

and X = X1‖ . . . ‖Xx‖X∗, so x = max(0, 	X/n
 − 1). We let |X|n = �X/n�. We
let (M ′,M∗) = msplitn(M) (as in message split) denote a splitting of a string
M ∈ {0, 1}∗ into two parts M ′‖M∗ = M , such that |M∗| ≡ |M | (mod n) and
0 ≤ |M∗| ≤ n, where |M∗| = 0 if and only if |M | = 0. We let (C ′, C∗, T) =
csplitn(C) (as in ciphertext split) denote splitting a string C of at least n bits
into three parts C ′‖C∗‖T = C, such that |C∗| = n, |T | ≡ |C| (mod n), and 0 ≤
|T | ≤ n, where |T | = 0 if and only if |C| = n. Finally, we let C ′

1, . . . , C
′
m, C∗, T ←

csplit-bn(C) (as in csplit to blocks) denote the result of csplitn(C) followed by
partitioning of C ′ into |C ′|n blocks of n bits, such that C ′ = C ′

1‖ . . . ‖C ′
m.

The symbol ⊥ denotes an error signal, or an undefined value. We denote
by X ←$ X sampling an element X from a finite set X following the uniform
distribution.

3 Forkcipher

We formalize the syntax and security goals of a forkcipher. Informally, a forkci-
pher is a symmetric primitive that takes as input a fixed-length block M of n
bits with a secret key K and possibly a public tweak T , and expands it to an
output block of fixed length greater than n bits.

In this article we formalize and instantiate the forkcipher as a tweakable
keyed function which maps an n-bit input M to a 2n-bit output block C0‖C1.
We additionally require that the input M is computable from either of the two
output blocks C0 or C1. Also, given one half of the output C0, the other half C1

should be reconstructible from it, and vice versa. These are the basic properties
imposed in the syntax of our n-bit to 2n-bit forkcipher.

When used with a random key, the ideal forkcipher implements a pair of
independent random permutations π0 and π1 for every tweak T , namely C0 =
π0(M) and C1 = π1(M). We define a secure forkcipher to be computationally
indistiguishable from such an idealized object - a tweak-indexed collection of
pairs of random permutations.

A Trivial Forkcipher. It may be clear at this point that the security notion
towards which we are headed can be achieved with two instances of a secure
tweakable block cipher that are used in parallel. One could thus instantiate a
forkcipher by a secure tweakable block cipher used with two independent keys
(or a tweak-space separation mechanism).

The main novelty in a forkcipher is that it provides the same security as a pair
of tweakable block ciphers at a reduced cost. Yet this reduction of complexity
has nothing to do with the security goals and syntax; these only model the kind
of object a forkcipher inevitably is, and which security properties it aspires to
achieve.

Forkcipher: A New Primitive for Authenticated Encryption 161

Fig. 1. Forkcipher encryption (two leftmost): the output selector s outputs both output
blocks C0, C1 if s = b, the “left” ciphertext block C0 if s = 0 (if s = b then C1).
Forkcipher decryption (three rightmost): the first indicator b = 0 denotes the left
ciphertext block is input (b = 1 when right). The second output selector s = i when
the ciphertext is inverted to block M (middle); s = b when both blocks M, C′ are
output; and s = o when the other ciphertext block C′ is output.

3.1 Syntax

A forkcipher is a pair of deterministic algorithms, the encryption3 algorithm:

F : {0, 1}k × T × {0, 1}n × {0, 1, b} → {0, 1}n ∪ {0, 1}n × {0, 1}n

and the inversion algorithm:

F−1{0, 1}k × T × {0, 1}n × {0, 1} × {i, o, b} → {0, 1}n ∪ {0, 1}n × {0, 1}n.

The encryption algorithm takes a key K, a tweak T ∈ T , a plaintext block M and
an output selector s, and outputs the “left” n-bit ciphertext block C0 if s = 0, the
“right” n-bit ciphertext block C1 if s = 1, and a both blocks C0, C1 if s = b. We
write F(K,T,M, s) = FK(T,M, s) = FT

K(M, s) = FT,s
K (M) interchangeably. The

decryption algorithm takes a key K, a tweak T, a ciphertext block C (left/right
half of output block), an indicator b of whether this is the left or the right
ciphertext block and an output selector s, and outputs the plaintext (or inverse)
block M if s = i, the other ciphertext block C ′ if s = o, and both blocks M,C ′

if s = b. We write F−1(K,T,M, b, s) = F−1
K(T,M, b, s) = F−1T

K(M, b, s) =
FT,b,s

K (M) interchangeably. We call k, n and T the keysize, blocksize and tweak
space of F, respectively.

A tweakable forkcipher F meets the correctness condition, if for every K ∈
{0, 1}k,T ∈ T ,M ∈ {0, 1}n and β ∈ {0, 1} all of the following conditions are met:

1. F−1(K,T,F(K,T,M, β), β, i) = M
2. F−1(K,T,F(K,T,M, β), β, o) = F(K,T,M, β ⊕ 1)
3. (F(K,T,M, 0),F(K,T,M, 1)) = F(K,T,M, b)
4.

(
F−1(K,T, C, β, i),F−1(K,T, C, β, o)

)
= F−1(K,T, C, β, b)

In other words, for each pair of key and tweak, the forkcipher applies two inde-
pendent permutations to the input to produce the two output blocks. We focus
on a specific form of T only: when T = {0, 1}t for some positive t.
3 We again conflate the label for the primitive with the label of the encryption algo-

rithm.

162 E. Andreeva et al.

The formalization we just gave faithfully models how a forkcipher is used to
realize its full potential. As explained in the discussion section of the full version
[10], the most suitable FIL expanding cipher to construct modes of operation
is a forkcipher, which implements two parallel tweakable permutations. Such a
primitive can be formalized with a simpler syntax and equivalent functionality,
such as by fixing the selector to b in both the algorithms (one could discard an
unneeded output block). Yet, such a syntax would not align well with the way a
forkcipher is used (for example in Sect. 6): our syntax of choice allows the user of a
forkcipher to precisely select what gets computed, to do so more efficiently when
both output blocks are needed, and without wasting computations if only one
output block is required. This will become clear upon inspection of ForkSkinny
in Sect. 4.

3.2 Security Definition

We define the security of forkciphers by indistiguishability from the closest, most
natural idealized version of the primitive, a pseudorandom tweakable forked
permutation, with the help of security games in Fig. 2. A forked permutation is
a pair of oracles, that make use of two permutations, s.t. the two permutations
are always used with the same preimage, no matter if the query is made in the
forward or the backward direction.

An adversary A that aims at breaking a tweakable forkcipher F plays the
games prtfp-real and prtfp-ideal. We define the advantage of A at distin-
guishing F from a pair of random tweakable permutations in a chosen ciphertext
attack as

Advprtfp
F (A) = Pr[Aprtfp-realF ⇒ 1] − Pr[Aprtfp-idealF ⇒ 1].

3.3 Iterate-Fork-Iterate

One approach to build a forkcipher from an existing iterated tweakable cipher
is by applying our novel iterate-fork-iterate (IFI) paradigm. Following the IFI,
in encryption a fixed length message block M is transformed via a fixed number
of rounds or iterations of a tweakable cipher to M ′. Then, M ′ is forked and
two copies of the internal state are created, which are iterated to produce C0

and C1. Two of the main objectives of designing forkcipher in the IFI paradigm
are (partial) transference of security results and maintaining forkcipher security
without increasing the original cipher key size. In order to rule out that the
IFI design succumbs to generic attacks (i.e., attacks that treat the primitive
as a blackbox), we carry out a provable generic analysis. This result indicates
structural soundness in the sense that no additional exploitable weakness are
introduced, but does not directly imply security of IFI forkciphers, because a
real forkcipher never uses a number of rounds in the partial iteration that is a
secure pseudorandom permutation.

Forkcipher: A New Primitive for Authenticated Encryption 163

Game prtfp-realF

K ←$ {0, 1}k

b ← AEnc,Dec

return b

Oracle Enc(T, M, s)
return F(K,T, M, s)

Oracle Dec(T, C, β, s)
return F−1(K,T, C, β, s)

Game prtfp-idealF

for T ∈ T do πT,0, πT,1 ←$ Perm(n)
b ← AEnc,Dec

return b

Oracle Enc(T, M, s)
if s = 0 then return πT,0(M)
if s = 1 then return πT,1(M)
if s = b then return πT,0(M),
πT,1(M)

Oracle Dec(T, C, β, s)
if s = i then return π−1

T,β(C)
if s = o then return πT,(β⊕1)(π−1

T,β(C))
if s = b then return π−1

T,β(C),
πT,(β⊕1)(π−1

T,β(C))

Fig. 2. Games prtfp-real and prtfp-ideal defining the security of a (strong) forkci-
pher.

IFI Generic Validation. We show that a IFI forkcipher is a structurally
sound construction as long as the three components: three tweak-indexed col-
lections of permutations are ideal tweak permutations in the full version of
the paper. Fix the block length n and the tweak length t. Formally, for three
tweakable random permutations p, p0, p1 (i.e. p = (pT ←$ Perm(n))T∈{0,1}t

is a collection of independent uniform elements of Perm(n) indexed by the
elements of T ∈ {0, 1}t, and similar applies for p0 and p1), the forkcipher
F = IFI[p, p0, p1] is defined by FT,b(M) = pT,0(pT(M)), pT,1(pT(M)), and by
F−1T,b,b(C) = p−1

T (p−1
T,b(C)), pT,b⊕1(p−1

T,b(C)) (the rest follows from the correct-
ness). We note that the three tweakable random permutations act as a key for
IFI[p, p0, p1] and we omit them for the sake of simplicity. In the full version [10],
we prove the indistinguishability of the IFI construction from a single forked
random permutation in the information-theoretic setting.

Our IFI Instantiation. IFI is motivated by the most popular design strategy
for block cipher design - iterative or round-based structure where the round
functions are typically identical, up to round keys and constants. In forkcipher,
after an initial number of rounds rinit two copies of the internal state are processed
with different tweakeys. The number of rounds after the forking step, r0 (left)
and r1 (right), are determined from the cryptanalytic assurances of the IFI block
cipher instantiation. The block cipher round functions instantiate the forkcipher
round functions (both before and after forking), again up to constants and round
key addition. The single (secret) key SK security of both (left and right) forward
FT,0, FT,1 and inverse F−1T,0,i (resp. F−1T,1,i) forkcipher transformations, and
the related-key (RK) security of FT,1 follow easily from the underlying security

164 E. Andreeva et al.

of the block cipher. We further perform the SK and RK analysis for FT,0 and
the reconstruction F−1T,0,o (resp. F−1T,1,o) transformations.

In our instantiation, r0 = r1 as a direct consequence of the IFI design app-
roach. Suppose, in the SK model FT,0 is secure using rinit + r0 number of rounds.
Such FT,0 can be instantiated using any existing (secure) off-the-shelf tweakable
block cipher, which is the approach taken here. Then, having rinit + r1 rounds,
where r1 < r0, for FT,1 will obviously weaken the security of the forkcipher.
This is true, assuming that we apply the same round function in both fork-
ing branches. In this article we choose a tweakable SPN-based block cipher to
construct a forkcipher.

4 ForkSkinny

We design the forkcipher ForkSkinny using the recently published lightweight
tweakable block cipher SKINNY [18]. As detailed in Table 1, we propose several
instances, with various block and tweakey sizes, in order to fit the different use
cases. For simplifying the notation, in the rest of this section we will denote the
transformations Cb ← ForkSkinnyT,b

K (M) as ForkSkinnyb, where b = 0 or 1 and

the corresponding inverse transformations ForkSkinny−1T,b,i

K as ForkSkinny−1
b .

4.1 Specification

RF RF

TKS TKS

M

K‖T

RF RF

TKS TKS

BC

C1

Tw

RF RF

TKS TKS

C0

Tw

Fig. 3. ForkSkinny encryption with selector s = b. A plaintext M , a key K and a tweak
T (blue) are used to compute a ciphertext C = C0‖C1 (red) of twice the size of the
plaintext. RF is a single round function of SKINNY (with modified round constant),
TKS is round tweakey update function [18], and BC is a branch constant that we
introduce. (Color figure online)

Overall Structure. We illustrate our design in Fig. 3 for ForkSkinny-128-192.
This version takes a 128-bit plaintext M , a 64-bit tweak T and a 128-bit
secret key K as input, and outputs two 128-bit ciphertext blocks C0 and C1

(i.e., ForkSkinny(K,T,M, b) = C0, C1). The first rinit = 21 rounds of ForkSkinny
are almost identical to the one of SKINNY and only differ in the value of the

Forkcipher: A New Primitive for Authenticated Encryption 165

constant added to the internal state. After that, the encryption is forked, which
means that two copies of the internal state are further modified with different
sets of tweakeys. For reasons that we detail below, a constant denoted by BC
(Branch Constant) is added to the internal state used to compute C1, right
after forking. Then, ForkSkinny0 iterates r0 = 27 rounds and ForkSkinny1 iter-
ates r1 = 27 rounds. As illustrated in Fig. 3, after forking, the tweakeys for the
round functions of ForkSkinny0 are computed from the tweakey state obtained
after rinit rounds, while the tweakeys for the round functions of ForkSkinny1 are
derived from the tweakey state at the end of rinit + r0 rounds (denoted by Tw).
Figure 4 details the ForkSkinny construction, where Enc-Skinnyr(·, ·) denotes the
SKINNYencryption using r round functions taking as input a plaintext or state
together with a tweakey. Similarly, Dec-Skinnyr(·, ·) denotes the corresponding
decryption algorithm using r rounds.

1: function ForkSkinnyEnc(M, K, T, s)
2: tk ← K||T
3: L ← Enc-Skinnyrinit

(M, tk)
4: if s = 0 or s = b then
5: C0 ← Enc-Skinnyr0

(L,TKSrinit(tk))
6: end if
7: if s = 1 or s = b then
8: tk′ ← TKSrinit+r0(tk)
9: C1 ← Enc-Skinnyr1

(L ⊕
BC, tk′)

10: end if
11: if s = 0 return C0

12: if s = 1 return C1

13: if s = b return C0, C1

14: end function

1: function ForkSkinnyDec(C, K, T, b, s)
2: tk ← K||T
3: tk′ ← TKSrinit(tk)
4: if b = 0 then
5: L ← Dec-Skinnyr0

(C, tk′)
6: else if b = 1 then
7: tk′′ ← TKSr0(tk

′)
8: L ← Dec-Skinnyr1

(Cb, tk
′′) ⊕

BC
9: end if
10: if s = i or s = b then
11: M ← Dec-Skinnyrinit

(L, tk)
12: end if
13: if s = o or s = b then
14: if b = 0 then tk′ ← TKSr0(tk

′)
15: C′ ← Enc-Skinnyrb⊕1

(L, tk′)
16: end if
17: if s = i return M
18: if s = o return C′

19: if s = b return M, C′

20: end function

Fig. 4. ForkSkinny encryption and decryption algorithms. Here TKS denotes the round
tweakey scheduling function of SKINNY. TKSr depicts r rounds of TKS.

Round Function. As stated previously, the round function used in ForkSkinny
is derived from the one of SKINNY and can be described as:

Ri = Mixcolumn ◦ Addconstant ◦ Addroundtweakey ◦ Shiftrow ◦ Subcell

where Subcell, Shiftrow and Mixcolumn are identical to the ones of
SKINNY. The Addroundtweakey function and the tweakey schedule are also left
unchanged. Note that in ForkSkinny more tweakeys than in SKINNY are produced

166 E. Andreeva et al.

since we have rinit+r0+r1 rounds. To keep the content short, we leave the details
of these operations to full version [10] of this article.

The only change we made in the round function of ForkSkinny stands in the
AddConstants step. Instead of using 6 bit round constants (generated with an
LFSR), we use 7 bit ones. This change was required to avoid adding the same
round constant to different rounds, as 6 bit round constants only provides 64
different values while some of our instances require a number of iterations higher
than that. These 7 bit round constants may be chosen randomly and fixed. In
our implementation we use an affine 7 bit LFSR to generate the round constant.
The update function is defined as:

(rc6||rc5|| . . . ||rc0) → (rc5||rc4|| . . . ||rc0||rc6 ⊕ rc5 ⊕ 1)

The 7 bits are initialized to 0 and updated before using in the round function.
The bits from the LFSR are used exactly the same way as in Skinny. The 4 × 4
array ⎛

⎜
⎜
⎝

c0 0 0 0
c1 0 0 0
c2 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

is constructed depending on the size of the internal state, where c2 = 0x2 and

(c0, c1) = (rc3||rc2||rc1||rc0, 0||rc6||rc5||rc4) when each cell is 4 bits

(c0, c1) = (0||0||0||0||rc3||rc2||rc1||rc0, 0||0||0||0||0||rc6||rc5||rc4) when each cell is 8 bits.

Branch Constant. We introduce constants to be added right after the forking
point. When each cell is made of 4 bits we add BC4, and when each cell is a
byte we add BC8, where:

BC4 =

⎛

⎜
⎜
⎝

1 2 4 9
3 6 d a
5 b 7 f
e c 8 1

⎞

⎟
⎟
⎠ BC8 =

⎛

⎜
⎜
⎝

01 02 04 08
10 20 41 82
05 0a 14 28
51 a2 44 88

⎞

⎟
⎟
⎠ .

This addition is made right after forking, to the right branch leading to
C1. Note that these constants are generated by clocking LFSRs, given by:
(x3||x2||x1||x0) → (x2||x1||x0||x3 ⊕ x2), and initialised with x0 = 1, x1 =
x2 = x3 = 0 for BC4, and with the LFSR (x7||x6||x5||x4||x3||x2||x1||x0) →
(x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5), again initialised with x0 = 1 and all the
other bits equal to 0 for BC8.

This introduction is necessary to avoid that two SubCells steps cancel each
others when looking at the sequence of operations relating C0 and C1 in the
reconstruction scenario.

Variants. Other sets of parameters can be chosen. We propose some variants
in Table 1. Note that their exact number of rounds (that are the parameters
r0 = r1 and rinit), were determined from the security analysis of the cipher,
detailed below.

Forkcipher: A New Primitive for Authenticated Encryption 167

4.2 Design Rationale

Using SKINNY. A forkcipher in IFI paradigm can be instantiated in various
ways. We build our forkcipher design reusing the iterative structure of the SPN-
based lightweight tweakable block cipher SKINNY. SPNs are very well-researched
and allow to apply existing cryptanalysis techniques to the security analysis
of our forkcipher. A large number of cryptanalytic results [12,13,49,51,56,57]
have further been published against round reduced SKINNY showing that the full
version of the cipher have comfortable security margins. Unlike other lightweight
block ciphers, such as Midori [16], PRINCE [29], the SKINNYdesign is constructed
following the TWEAKEY framework, and in addition supports a number of
choices for the tweak size; an important aspect for the choice of SKINNYfor our
design. SKINNYis good for lightweight applications on both hardware and software
platforms. We also assume that the target application platform does not have
AES instruction set available, hence avoiding AES based instantiation.

ForkSkinny Components. In ForkSkinny we have introduced features which
aim to serve the forkcipher construction characteristics and security require-
ments. The 7 bit LFSR introduced in Addconstant avoids the repetition of round
constants that could have possibly lead to slide attack -like cryptanalyses. The
Branch Constant added after forking ensures that in the reconstruction scenario
the two non-linear layers positioned around the forking point do not cancel each
other. Finally, the required round tweakeys are computed by extending the key
schedule of SKINNY by the necessary number of rounds. We chose this particular
way of computing the extra tweakeys due to its simplicity, ability to maximally
reuse components of SKINNY, and because it was among the most conservative
options security-wise.

5 Security Analysis

For most attacks (for instance differential and linear cryptanalysis), the results
devised on SKINNY give sufficient arguments to show the resistance of ForkSkinny.
First, the series of operations leading M to C0 correspond exactly to one encryp-
tion with SKINNY (up to the round constants) so the existing results transfer

Table 1. The ForkSkinny primitives with their internal parameters for round numbers
rinit, r0 and r1 and their corresponding external parameters of block and tweakey sizes
(in bits) for fixed 128 bit keys.

Primitive block tweak tweakey rinit r0 r1

ForkSkinny-64-192 64 64 192 17 23 23

ForkSkinny-128-192 128 64 192 21 27 27

ForkSkinny-128-256 128 128 256 21 27 27

ForkSkinny-128-288 128 160 288 25 31 31

ForkSkinny-128-384 128 256 384 25 31 31

168 E. Andreeva et al.

easily in this case. Then, when looking at the relation between M and C1 we
have a version of SKINNY with different round constants and a different tweak
after rinit rounds. One way to give security arguments here is to look at what
happens in the first rinit rounds and independently, in the next r1 rounds to
have a (pessimistic) estimation (for instance of the number of active Sboxes). A
similar technique can be applied to study the reconstruction path. In both cases,
the very large security margins4 of SKINNY imply that ForkSkinny appears out
of reach of the attacks we considered.

Our full security analysis is detailed in the full version [10] of this article. It
covers truncated, impossible differential, boomerang, meet-in-the-middle, inte-
gral and algebraic attacks. We particularly stress that the boomerang type attack
which was shown against ForkAES [17], is not applicable to ForkSkinny. This is
due to two reasons: first, the number of rounds after the forking step protects
against such attacks by making the boomerang path of very low probability. Sec-
ond, the branch constant introduced in the right branch protects against such
attacks by making the state of two branches different immediately after forking.
Note that the attack in [17] against (9 out of 10 rounds) ForkAES in fact uses
the property for which there is no difference between the states after forking.

We detail below our analysis of differential and linear attacks.

5.1 Detail of the Evaluation of Differential and Linear Attacks

Arguments in favor of the resistance of ForkSkinny to differential [28] and lin-
ear [39] cryptanalysis can easily be deduced from the available analysis on
SKINNY. First, we refer to the bounds on the number of active Sboxes provided
in the SKINNY specification document (recalled in the full version [10]). These
bounds were later refined, and for instance Abdelkhalek et al. [7] showed that
in the single key scenario there are no differential characteristics of probability
higher than 2−128 for 14 rounds or more of SKINNY-128.

The previous results transfer to the case where we look at a trail covering
the path from the input message up to C0. Due to the change in the tweakey
schedule we expect different bounds in the related-tweakey for the path from
the input message up to C1. A rough estimate of the minimal number of active
Sboxes on this trail can be obtained by summing the bound on rinit rounds and
the bound on r1 rounds. For instance for ForkSkinny-128-192 (in TK2 model), 21
rounds activate at least 59 Sboxes. If we consider that the branch starting from
the forking point is independent and can start from any internal state difference
and tweakey difference (this is the very pessimistic case), only 8 rounds after
forking are necessary to go below the characteristic probability of 2−128.

The last case that needs to be evaluated is the reconstruction path scenario.
An estimate can be computed following the same idea as before: the number of
active Sboxes can be upper bounded by the bound obtained by summing the one
for r0 rounds and the one for r1 rounds. If we consider that r0 = r1 as for our
concrete instances, we obtain that 16 rounds are required to get more than 64

4 At the time of writing, the best attacks on SKINNY cover at most 55% of the cipher.

Forkcipher: A New Primitive for Authenticated Encryption 169

active Sboxes. For ForkSkinny-128-192, 30 rounds are required to get more than
64 active Sboxes.

With respect to the parameters we chose, these (optimistic for the attacker)
evaluations make us believe that differential attacks pose no threat to our pro-
posal.

Similar arguments lead to the same conclusion for linear attacks. Also, we
refer to the FSE 2017 paper [35] by Kranz et al. that looks at the linear hull
of a tweakable block cipher and shows that the addition of a tweak does not
introduce new linear characteristics, so that no additional precaution should be
taken in comparison to a key-only cipher.

6 Tweakable Forkcipher Modes

We demonstrate the applicability of forkciphers by designing provably secure
AEAD modes of operation for a tweakable forkcipher. Our AEAD schemes are
designed such that (1) they are able to process strings of arbitrary length but
(2) they are most efficient for data whose total number of blocks (in AD and
message) is small, e.g. below four.

We define three forkcipher, nonce-based AEAD modes of operation: PAEF,
SAEF and RPAEF. The first mode is fully parallelizable and (quantitatively)
optimally secure in the nonce respecting model. The second mode SAEF sequen-
tially encrypts “on-the-fly”, has birthday-bounded security, and lends itself to
low-overhead implementations. The third mode RPAEF is derived from the first
one; it only uses both output blocks of a forkcipher in the final call, allowing
to further reduce computational cost even for longer messages. The improved
efficiency comes at the price of an n-bit larger tweak, and thus increased HW
area footprint.

A Small AE Primitive. While a secure forkcipher does not directly capture
integrity, we show in Sect. 6.9 that a secure forkcipher can be used as an AEAD
scheme with fixed length messages and AD in the natural way, provably deliv-
ering strong AE security guarantees.

6.1 Syntax and Security of AEAD

Our modes following the AEAD syntax proposed by Rogaway [46]. A nonce-
based AEAD scheme is a triplet Π = (K, E ,D). The key space K is a finite set.
The deterministic encryption algorithm E : K × N × A × M → C maps a secret
key K, a nonce N , an associated data A and a message M to a ciphertext C =
E(K,N,A,M). The nonce, AD and message domains are all subsets of {0, 1}∗.
The deterministic decryption algorithm D : K × N × A × C → M ∪ {⊥} takes
a tuple (K,N,A,C) and either returns a message M ∈ M, or a distinguished
symbol ⊥ to indicate an authentication error.

We require that for every M ∈ M, we have {0, 1}|M | ⊆ M (i.e. for any
integer m, either all or no strings of length m belong to M) and that for all

170 E. Andreeva et al.

K,N,A,M ∈ K×N ×A×M we have |E(K,N,A,M)| = |M |+ τ for some non-
negative integer τ called the stretch of Π. For correctness of Π, we require that
for all K,N,A,M ∈ K × N × A × M we have M = D(K,N,A, E(K,N,A,M)).
We let EK(N,A,M) = E(K,N,A,M) and DK(N,A,M) = D(K,N,A,M).

We followRogaway’s two-requirementdefinition ofAEsecurity.A chosenplain-
text attack of an adversary A against the confidentiality of a nonce-based AE
scheme Π is captured with the help of the security gamespriv-real andpriv-real.
In both games, the adversary can make arbitrary chosen plaintext queries to a
blackbox encryption oracle, such that each query must have a unique nonce, and
such that the queries are replied with the scheme Π using a random secret key
(real), or with independent uniform strings of the same length (ideal). The goal of
A is to distinguish the two games.Wedefine the advantage ofA in breaking the con-
fidentiality of Π as Advpriv

Π (A) = Pr[Apriv-realΠ ⇒ 1] − Pr[Apriv-idealΠ ⇒ 1].
A chosen ciphertext attack against the integrity of Π is captured with the

game auth, in which an adversary can make nonce-respecting chosen plaintext
and arbitrary chosen ciphertext queries to a black-box instance of Π with the
goal of finding a forgery: a tuple that decrypts correctly but is not trivially
knwn from the encryption queries. We define the advantage of A in breaking
the integrity of Π as Advpriv

Π (A) = Pr[AauthΠ forges] where “A forges” denotes
a decryption query that returns a value �= ⊥. (For convenience, the games are
included in full version of this article.)

6.2 Parallel AE from a Forkcipher

The nonce-based AEAD scheme PAEF (“Parallel AE from a Forkcipher”) is
parameterized by a forkcipher F (Sect. 3) with T = {0, 1}t for a positive t. It is
further parameterized by a nonce length 0 < ν ≤ t−4. An instance PAEF[F, ν] =
(K, E ,D) has K = {0, 1}k and the encryption (Fig. 6) and decryption algorithms
are defined in Fig. 5. Its nonce space is N = {0, 1}ν , and its message and AD
space are respectively M = {0, 1}≤n·(2(t−ν−3)−1), and A = {0, 1}≤n·(2(t−ν−3)−1)

(i.e., AD and message can have at most 2(t−ν−3) − 1 blocks). The ciphertext
expansion of PAEF[F, ν] is n bits.

In an encryption query, AD and message are partitioned into blocks of n bits.
Each block is processed with one call to F using a tweak that is composed of: 1)
the nonce; 2) a three-bit flag f0‖f1‖f2; 3) a (t − ν − 3)-bit encoding of the block
index (unique for both AD and message). The nonce-length is a parameter that
allows to make a trade-off between the maximal message length and maximal
number of queries with the same key. The bit f0 = 1 iff the final block of message
is being processed, f1 = 1 iff a block of message is being processed, and f2 = 1 iff
the final block of the current input (depending on f1) is processed and the block
is incomplete. The ciphertext blocks are the “left” output blocks of F applied to
message blocks, and the right “right” output blocks are xor-summed with the
AD output blocks, and the result xored to the final ciphertext block.

The decryption proceeds similarly as the encryption, except that “right”
output blocks of the message blocks are reconstructed from ciphertext blocks
(using the reconstruction algorithm) to recompute the tag, which is then checked.

Forkcipher: A New Primitive for Authenticated Encryption 171

6.3 Security of PAEF

We state the formal claim about the nonce-based AE security of PAEF in The-
orem 1.

Theorem 1. Let F be a tweakable forkcipher with T = {0, 1}t, and let 0 < ν ≤
t−4. Then for any nonce-respecting adversary A whose queries lie in the proper
domains of the encryption and decryption algorithms and who makes at most qv

decryption queries, we have

Advpriv
PAEF[F,ν](A) ≤ Advprtfp

F (B) and Advauth
PAEF[F,ν](A) ≤ Advprfp

F (C) +
qv · 2n

(2n − 1)2

for some adversaries B and C who make at most twice as many queries in
total as is the total number of blocks in all encryption, respectively all encryption
and decryption queries made by A, and who run in time given by the running
time of A plus an overhead that is linear in the total number of blocks in all A’s
queries.

Proof (sketch). The full proof appears in the full version of the paper [10]. For
both confidentiality and authenticity, we first replace F with a pair of indepen-
dent random tweakable permutations. Using a standard hybrid argument we
have that Advpriv

PAEF[F,ν](A) ≤ Advprtfp
F (B) + Advpriv

PAEF[(π0,π1),ν]
(A), and also

that Advauth
PAEF[F,ν](A) ≤ Advprtfp

F (C) + Advpriv
PAEF[(π0,π1),ν]

(A).
For confidentiality, it is easy to see that in a nonce-respecting attack, every

ciphertext block, and each tag is processed using a unique tweak-permutation
combination, and all are uniformly distributed. Thus Advpriv

PAEF[(π0,π1),ν]
(A) = 0.

For authenticity, we analyse the probability of forgery for an adversary A′

that makes a single decryption query against PAEF[(π0, π1), ν] by the means
of a case analysis, and then use a result of Bellare et al. [21] to obtain
Advauth

PAEF[(π0,π1),ν](A) ≤ qv · Advauth
PAEF[(π0,π1),ν](A′).

6.4 Sequential AE from a Forkcipher

SAEF (as in “Sequential AE from a Forkcipher,” pronounce as “safe”) is a nonce-
based AEAD scheme parameterized by a tweakable forkcipher F (as defined in
Sect. 3) with T = {0, 1}t for a positive t ≤ n. An instance SAEF[F] = (K, E ,D)
has a key space K = {0, 1}k, nonce space N = {0, 1}t−4, and the AD and message
spaces are both {0, 1}∗ (although the maximal AD/message length influences
the security). The ciphertext expansion of SAEF[F] is n bits. The encryption
and decryption algorithms are defined in Fig. 7 and the encryption algorithm is
illustrated in Fig. 8.

In an encryption query, first AD and then message are processed in blocks
of n bits. Each block is processed with exactly one call to F, using a tweak
that is composed of: (1) the nonce followed by a 1-bit in the initial F call, and
the string 0τ−3 otherwise, (2) three-bit flag f . The binary flag f takes different
values for processing of different types of blocks in the encryption algorithm.

172 E. Andreeva et al.

Fig. 5. The PAEF[F, ν] (unmarked lines and �-marked lines) and the RPAEF[F, ν]
(unmarked lines and ◦-marked lines) AEAD schemes. Here 〈i〉� is the canonical encod-
ing of an integer i as an �-bit string.

Forkcipher: A New Primitive for Authenticated Encryption 173

Fig. 6. The encryption algorithm of PAEF[F] mode. The picture illustrates the pro-
cessing of AD when length of AD is a multiple of n (top left) and when the length of
AD is not a multiple of n (top right), and the processing of the message when length
of the message is a multiple of n (bottom left) and when the length of message is not
a multiple of n (bottom right). The white hatching denotes that an output block is
not computed.

The values f = {000, 010, 011, 110, 111, 001, 100, 101} indicate the processing of
respectively: non-final AD block; final complete AD block; final incomplete AD
block; final complete AD block to produce tag; final incomplete AD block to
produce tag; non-final message block; final complete message block; and final
incomplete message block.

One output block of every F call is used as a whitening mask for the following
F call, masking either the input (in AD processing) or both the input and the
output (in message processing) of this subsequent call. The initial F call in the
query is unmasked. The tag is the last “right” output of F produced in the
query. The decryption proceeds similarly to the encryption, except that the
plaintext blocks and the right-hand outputs of F in the message processing part
are computed with the inverse F algorithm.

6.5 Security of SAEF

We state the formal claim about the nonce-based AE security of SAEF in The-
orem 2.

Theorem 2. Let F be a tweakable forkcipher with T = {0, 1}τ . Then for any
nonce-respecting adversary A whose makes at most q encryption queries, at most
qv decryption queries such that the total number of forkcipher calls induced by
all the queries is at most σ, with σ ≤ 2n/2, we have

Advpriv
SAEF[F](A) ≤Advprtfp

F (B) + 2 · (σ − q)2

2n
,

Advauth
SAEF[F](A) ≤Advprtfp

F (C) +
(σ − q + 1)2

2n
+

σ(σ − q)

2n
+

qv(q + 2)

2n

174 E. Andreeva et al.

Fig. 7. The SAEF[F] AEAD scheme.

Forkcipher: A New Primitive for Authenticated Encryption 175

Fig. 8. The encryption algorithm of SAEF[F] mode. The bit noM = 1 iff |M | = 0. The
picture illustrates the processing of AD when length of AD is a multiple of n (top left)
and when the length of AD is not a multiple of n (top right), and the processing of
the message when length of the message is a multiple of n (bottom left) and when the
length of message is not a multiple of n (bottom right). The white hatching denotes
that an output block is not computed.

for some adversaries B and C who make at most 2σ queries, and who run in
time given by the running time of A plus γ · σ for some constant γ.

Proof (sketch). The full proof appears in the full version of the paper [10]. As
with PAEF, we first replace F with a pair of independent random tweakable
permutations, resulting in a similar birthday gap.

For confidentiality, we further replace tweakable permutations by random
“tweakable” functions, further increasing the bound by 2 · (σ − q)2/2n+1 due to
an RP-RF switch. Unless there is a non-trivial collision of inputs to f0 and f1,
confidentiality of SAEF[(f0, f1), ν] is perfect. With such a collision appearing
with a probability no greater than 2 · (σ − q)2/2n+1, we obtain the bound.

In the proof of integrity, we replace certain random permutations (indexed by a
specific subset of tweaks) of the underlying tweakable permutations by tweakable
functions with the same signature, increasing the bound by (σ − q + 1)2/2n+1 due
to an RP-RF switch. We then define a variant of the auth game (call it auth′),
which prevents A to win if an primitive input collision occurs in any of the encryp-
tion queries. The transition to the new game increases the bound by σ(σ − q)/2n.
Finally, (using the result of Bellare as for PAEF), we bound the probability of a
successful forgery in auth′ with help of a case analysis by 2 · qv/(2n − 1).

6.6 Reduced Parallel AE from a Forkcipher

The nonce-based AEAD scheme RPAEF (“Reduced Parallel AE from a Forkci-
pher”) is a derivative of PAEF that only uses the left output block of the underly-
ing forkcipher for most of the message blocks. This allows for reducing the compu-
tational cost if the unevaluated fork can be switched off (as in ForkSkinny) at the
expense of increasing the required tweak size. It is parameterized by a forkcipher
F (Sect. 3) with T = {0, 1}t for a positive t ≥ n + 5. It is further parameterized

176 E. Andreeva et al.

by a nonce length 0 < ν ≤ t− (n+4). An instance RPAEF[F, ν] = (K, E ,D) has
K = {0, 1}k and the encryption (Fig. 9) and decryption algorithms are defined in
Fig. 5. Its nonce space is N = {0, 1}ν , and its message and AD space are respec-
tively M = {0, 1}≤n·(2(t−(n+ν+3))−1), and A = {0, 1}≤n·(2(t−(n+ν+3))−1) (i.e. AD
and message can have at most 2(t−(n+ν+3))−1 blocks). The ciphertext expansion
of PAEF[F, ν] is n bits.

In an encryption query, AD and message are processed in blocks of n bits.
Each block is processed with one call to F using a tweak in which the first t
bits are the same as in PAEF and the remaining n bits are either equal to a
“checksum” of of all AD blocks and all-but-last message blocks, or to n zero
bits (all other F calls). For all message blocks except the last one, only the left
output block of F is used. The decryption proceeds similarly as the encryption,
except that putative message blocks are reconstructed from ciphertext blocks to
recompute the “checksum”.

Fig. 9. The encryption algorithm of RPAEF[F] mode. The picture illustrates the pro-
cessing of AD when length of AD is a multiple of n (top left) and when the length of
AD is not a multiple of n (top right), and the processing of the message when length
of the message is a multiple of n (bottom left) and when the length of message is not
a multiple of n (bottom right). The white hatching denotes that an output block is
not computed.

6.7 Security of RPAEF

Theorem 3. Let F be a tweakable forkcipher with T = {0, 1}t and t ≥ n + 5,
and let 0 < ν ≤ t − 4. Then for any nonce-respecting adversary A whose queries
lie in the proper domains of the encryption and decryption algorithms and who
makes at most qv decryption queries, we have

Advpriv
PAEF[F,ν](A) ≤ Advprtfp

F (B) and Advauth
PAEF[F,ν](A) ≤ Advprfp

F (C) +
2 · qv

(2n − 1)

for some adversaries B and C who make at most twice as many queries in total
as is the total number of blocks in all encryption, respectively all encryption and
decryption queries made by A, and who run in time given by the running time of
A plus an overhead that is linear in the total number of blocks in all A’s queries.

Forkcipher: A New Primitive for Authenticated Encryption 177

Proof (sketch). The full proof appears in the full version of the paper [10]. For
both confidentiality and authenticity, we first replace F with a pair of indepen-
dent random tweakable permutations, similarly as for PAEF.

For confidentiality, it is easy to see that, exactly as with PAEF, in a nonce-
respecting attack every ciphertext block and all tags are uniformly distributed.
We have Advpriv

PAEF[(π0,π1),ν]
(A) = 0.

For authenticity, we combine a case analysis and the same result of Bellare
et al. [21] as used for PAEF to obtain the bound.

6.8 Aggressive RPAEF Instance

We remark that when instantiated with ForkSkinny-128-384 (smaller tweakey
would not make sense due to RPAEF’s tweak size requirements), one of the three
128-bit tweakey schedule registers is effectively unused for all but last message
blocks (it holds the the 0n tweak component). Based on this observation, we
consider a further, more aggressive optimization of RPAEF, which consists in
lowering the numbers of applied rounds to those from ForkSkinny-128-256 for
all but last message blocks, and for all AD blocks. A thorough analysis of this
aggressive variant of ForkSkinny with a number of rounds adjusted to the effective
tweak size is left as an open question. We do note, however that every tweak will
only ever be used with a fixed number of rounds.

6.9 Deterministic MiniAE

In the introduction, we stated that a forkcipher is nearly, but not exactly, an AE
primitive: we clarify this statement in the full version of the paper [10]. In short:
it is easy to see that the syntax and security goals of a forkcipher, as proposed in
Sect. 3, capture neither AE functionality nor AE security goals. Yet, construct-
ing a secure PRI (with the same signature) from the forkcipher is trivial: just
set E(K,N,A,M) = F

N‖A,b
K (M) and D(K,N,A,C‖T) = F−1N‖A,0,i

K (C) iff T =
F−1N‖A,0,o

K (C). We prove that when used in this minimalistic “mode” of opera-
tion, a secure forkcipher yields a miniature AE scheme for fixed-size messages,
which achieves PRI security [48].

7 Hardware Performance

Due to the independent branching of the data flow after the forking point,
ForkSkinny comes with inherent data-level parallelism that does not exist in nor-
mal (tweakable) blockciphers like SKINNY. We illustrate how round-based hard-
ware implementations amplify the performance boost of our forkcipher modes,
well beyond the reduction of blockcipher rounds as argued in Sect. 1. We give
a preliminary hardware implementation of all ForkSkinny variants in our three
modes of operation, and compare the results with Skinny-Aead [19] as the
most fairly comparable TBC mode of operation based on SKINNY.

178 E. Andreeva et al.

Implementations. Figure 10 presents hardware synthesis results (ASIC) for
open cell library Nangate45nm in typical operating conditions. Messages as
small as 8 bytes (64 bits) are considered separately, for which we select M6 as
the most suitable Skinny-Aead family member. For processing 128-bit blocks,
concrete instances are partitioned based matching tweakey lengths. The hard-
ware area is partly based on synthesis results (i.e. the primitive) and partly
estimated (i.e. the mode). For details on implementation assumptions, area esti-
mation methodology and synthesis flow, please refer to [10].

For Skinny-Aead, we resynthesize the publicly available SKINNY round-
based encryption implementations5 The ForkSkinny implementations are a modi-
fication thereof, with a second state register, branch constant logic and extended
round constant. We then go on to obtain parallel ForkSkinny implementations,
denoted (//), by adding an extra copy of the round function to compute both
branches simultaneously. We also implement the aggressive variant of RPAEF
with tuned-down number of SKINNY rounds (see Sect. 6.8).

Results Interpretation. When implementations exploit the available
primitive-level parallelism, the forkcipher performance boost is substantial. For
instance, for messages up to three 128-bit blocks, the speed-up of PAEF and

Implementation
(round-based)

Area
[GE]

fmax

[MHz]

Nb. cycles for encrypting (a + m) 64-bit blocks
a = 0 a = 1

General
m=1 m=2 m=3 m=0 m=1 m=2

Sk-Aead M6 6288 1075 96 96 144 48 96 96 48(�a
2 �+�m

2 �+1)
Paef-64-192 4205 1265 63 126 189 40 103 166 40(a + 1.575m)

Paef-64-192 (//) 4811 1265 40 80 120 40 80 120 40(a + m)

Implementation
(round-based)

Area
[GE]

fmax

[MHz]

Nb. cycles for encrypting (a + m) 128-bit blocks
a = 0 a = 1

General (m≥1)
m=1 m=2 m=3 m=0 m=1 m=2

Sk-Aead M5 6778 1075 96 144 192 96 144 192 48(a + m + 1)

Paef-128-256 7189 1053 75 150 225 48 123 198 48(a + 1.562m)
Paef-128-256 (//) 8023 1042 48 96 144 48 96 144 48(a+m)
Saef-128-256 (//) 7064 1042 48 96 144 48 96 144 48(a+m)
Rpaef (aggr.) 8203 1052 87 135 183 48 135 183 48(a+m)+39

Sk-Aead M1-2 8210 1000 112 168 224 112 168 224 56(a + m + 1)

Paef-128-288 7989 971 87 174 261 56 143 230 56(a + 1.553m)
Paef-128-288 (//) 9308 962 56 112 168 56 112 168 56(a+m)
Rpaef (cons.) 8178 1052 87 143 199 56 143 199 56(a+m)+31

Fig. 10. Synthesis results and cycles for encrypting a blocks associated data and m
blocks message. Superior performance w.r.t. the baseline (Sk-Aead [19]) is indicated in
bold. The area is a partly synthesized and partly estimated. Rpaef (conservative) is
RPAEF instantiated with ForkSkinny-128-384, and Rpaef (aggressive) is described
in Sect. 6.8.

5 Available at https://sites.google.com/site/skinnycipher/implementation.

https://sites.google.com/site/skinnycipher/implementation

Forkcipher: A New Primitive for Authenticated Encryption 179

SAEF (both parallel(//)) ranges from 25% to 50%, where the advantage is largest
for the single-block messages. RPAEF shows similar numbers, with a 5% − 22%
speed-up for the “aggressive” version. Most notably, for parallel instances(//) the
forkcipher invocations are essentially equally fast as block cipher invocations,
which results in fewer cycles than Skinny-Aead for all message sizes. However,
this advantage diminishes asymptotically with the message size (cf. the general
column). For message sizes up to 8 bytes, emphasized by NIST [42], the Paef-
ForkSkinny-64-192 instances are more than 58% faster (40 vs. 96 cycles) at a
considerably smaller implementation size. Saef has the disadvantage of being a
serial mode but it has the smallest area (no block counter and nonce in tweak).

8 Conclusion

The idea of forkcipher opens up numerous interesting open question and research
directions. For a detailed discussion we refer to the full version of this article [10].

Ackowledgements. Elena Andreeva was supported in part by the Research Council
KU Leuven C1 on Security and Privacy for Cyber-Physical Systems and the Internet
of Things with contract number C16/15/058 and by the Research Council KU Leu-
ven, C16/18/004, through the EIT Health RAMSES project, through the IF/C1 on
New Block Cipher Structures, and through the NIST project. In addition, this work
was supported by the European Commission through the Horizon 2020 research and
innovation programme under grant agreement H2020-DS-2014-653497 PANORAMIX
and through the grant H2020-DS-SC7-2016-740507 Eunity. The work is supported in
part by funding from imec of the Flemish Government. Antoon Purnal is supported by
the Horizon 2020 research and innovation programme under Cathedral ERC Advanced
Grant 695305. Reza Reyhanitabar’s work on this project was initiated when he was
with KU Leuven and supported by an EU H2020-MSCA-IF fellowship under grant ID
708815, continued and submitted when he was with Elektrobit Automotive GmbH, and
revised while he is now with TE Connectivity. Arnab Roy is supported by the EPSRC
grant No. EPSRC EP/N011635/1.

References

1. 3GPP TS 22.261: Service requirements for next generation new services and mar-
kets. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.
aspx?specificationId=3107

2. 3GPP TS 36.213: Evolved Universal Terrestrial Radio Access (E-UTRA); Phys-
ical layer procedures. https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=2427

3. CAN FD Standards and Recommendations. https://www.can-cia.org/news/cia-
in-action/view/can-fd-standards-and-recommendations/2016/9/30/

4. ISO 11898–1:2015: Road vehicles - Controller area network (CAN) - Part 1: Data
link layer and physical signalling. https://www.iso.org/standard/63648.html

5. NB-IoT: Enabling New Business Opportunities. http://www.huawei.com/
minisite/iot/img/nb iot whitepaper en.pdf

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3107
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3107
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427
https://www.can-cia.org/news/cia-in-action/view/can-fd-standards-and-recommendations/2016/9/30/
https://www.can-cia.org/news/cia-in-action/view/can-fd-standards-and-recommendations/2016/9/30/
https://www.iso.org/standard/63648.html
http://www.huawei.com/minisite/iot/img/nb_iot_whitepaper_en.pdf
http://www.huawei.com/minisite/iot/img/nb_iot_whitepaper_en.pdf

180 E. Andreeva et al.

6. Specification of Secure Onboard Communication. https://www.autosar.
org/fileadmin/user upload/standards/classic/4-3/AUTOSAR SWS
SecureOnboardCommunication.pdf

7. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP model-
ing for (large) s-boxes to optimize probability of differential characteristics. IACR
Trans. Symmetric Cryptol. 2017(4), 99–129 (2017)

8. Anderson, E., Beaver, C., Draelos, T., Schroeppel, R., Torgerson, M.: ManTi-
Core: encryption with joint cipher-state authentication. In: Wang, H., Pieprzyk,
J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 440–453. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9 38

9. Andreeva, E., et al.: COLM v1 (2014). https://competitions.cr.yp.to/round3/
colmv1.pdf

10. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizar, D.:
Forkcipher: a new primitive for authenticated encryption of very short mes-
sages. Cryptology ePrint Archive, Report 2019/1004 (2019). https://eprint.iacr.
org/2019/1004

11. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving
iterated hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol.
4833, pp. 130–146. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-76900-2 8

12. Ankele, R., Banik, S., Chakraborti, A., List, E., Mendel, F., Sim, S.M., Wang, G.:
Related-key impossible-differential attack on reduced-round Skinny. In: Gollmann,
D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 208–228.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 11

13. Ankele, R., Kölbl, S.: Mind the gap - a closer look at the security of block ciphers
against differential cryptanalysis. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018.
LNCS, vol. 11349, pp. 163–190. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-10970-7 8

14. Aumasson, J.P., et al.: CHAE: challenges in authenticated encryption. ECRYPT-
CSA D1.1, Revision 1.05, 1 March 2017

15. Avanzi, R.: Method and apparatus to encrypt plaintext data. US patent 9294266B2
(2013). https://patents.google.com/patent/US9294266B2/

16. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 17

17. Banik, S., et al.: Cryptanalysis of forkaes. Cryptology ePrint Archive, Report
2019/289 (2019). https://eprint.iacr.org/2019/289

18. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

19. Beierle, C., et al.: Skinny-AEAD and Skinny-Hash. NIST LWC Candidate (2019)
20. Bellare, M.: Practice-oriented provable-security. In: Okamoto, E., Davida, G.,

Mambo, M. (eds.) ISW 1997. LNCS, vol. 1396, pp. 221–231. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0030423

21. Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in
message authentication and authenticated encryption. IACR Cryptology ePrint
Archive 2004, 309 (2004)

22. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the SSH
authenticated encryption scheme: a case study of the encode-then-encrypt-and-mac
paradigm. ACM Trans. Inf. Syst. Secur. 7(2), 206–241 (2004)

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://doi.org/10.1007/978-3-540-27800-9_38
https://competitions.cr.yp.to/round3/colmv1.pdf
https://competitions.cr.yp.to/round3/colmv1.pdf
https://eprint.iacr.org/2019/1004
https://eprint.iacr.org/2019/1004
https://doi.org/10.1007/978-3-540-76900-2_8
https://doi.org/10.1007/978-3-540-76900-2_8
https://doi.org/10.1007/978-3-319-61204-1_11
https://doi.org/10.1007/978-3-030-10970-7_8
https://doi.org/10.1007/978-3-030-10970-7_8
https://patents.google.com/patent/US9294266B2/
https://doi.org/10.1007/978-3-662-48800-3_17
https://eprint.iacr.org/2019/289
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/BFb0030423

Forkcipher: A New Primitive for Authenticated Encryption 181

23. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

24. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006). https://doi.org/10.1007/
11935230 20

25. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 24

26. Bernstein, D.J.: Cryptographic competitions: CAESAR. http://competitions.cr.
yp.to

27. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: parallel permutation-based cryptography. IACR Transactions on Symmet-
ric Cryptology 2017, (2017). https://tosc.iacr.org/index.php/ToSC/article/view/
855

28. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

29. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 14

30. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: ASCON v1.2 (2014).
https://competitions.cr.yp.to/round3/asconv12.pdf

31. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 2

32. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41 v1 (2016). https://
competitions.cr.yp.to/round3/deoxysv141.pdf

33. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

34. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44706-7 20

35. Kranz, T., Leander, G., Wiemer, F.: Linear cryptanalysis: key schedules and tweak-
able block ciphers. IACR Trans. Symmetric Cryptol. 2017(1), 474–505 (2017)

36. Krovetz, T., Rogaway, P.: OCB v1.1 (2014). https://competitions.cr.yp.to/round3/
ocbv11.pdf

37. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 18

38. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/11935230_20
https://doi.org/10.1007/11935230_20
https://doi.org/10.1007/3-540-44448-3_24
http://competitions.cr.yp.to
http://competitions.cr.yp.to
https://tosc.iacr.org/index.php/ToSC/article/view/855
https://tosc.iacr.org/index.php/ToSC/article/view/855
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://competitions.cr.yp.to/round3/asconv12.pdf
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/3-540-44706-7_20
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3

182 E. Andreeva et al.

39. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

40. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9 27

41. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5 15

42. NIST: DRAFT Submission Requirements and Evaluation Criteria for the
Lightweight Cryptography Standardization Process (2018). https://csrc.nist.gov/
Projects/Lightweight-Cryptography

43. Paterson, K.G., Yau, A.K.L.: Cryptography in theory and practice: the case of
encryption in ipsec. IACR Cryptology ePrint Archive 2005, 416 (2005). http://
eprint.iacr.org/2005/416

44. Paterson, K.G., Yau, A.K.L.: Cryptography in theory and practice: the case of
encryption in IPsec. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 12–29. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 2

45. Reyhanitabar, M.R., Susilo, W., Mu, Y.: Analysis of property-preservation capa-
bilities of the ROX and ESh hash domain extenders. In: Boyd, C., González Nieto,
J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 153–170. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02620-1 11

46. Rogaway, P.: Authenticated-encryption with associated-data. ACM CCS 2002,
98–107 (2002)

47. Rogaway, P.: Practice-oriented provable security and the social construction of
cryptography. IEEE Secur. Priv. 14(6), 10–17 (2016)

48. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

49. Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of reduced round SKINNY
block cipher. IACR Trans. Symmetric Cryptol. 2018(3), 124–162 (2018)

50. Sui, H., Wu, W., Zhang, L., Wang, P.: Attacking and fixing the CS mode. In: Qing,
S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 318–330. Springer,
Cham (2013). https://doi.org/10.1007/978-3-319-02726-5 23

51. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanalysis
of reduced-round SKINNY. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017.
LNCS, vol. 10239, pp. 117–134. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57339-7 7

52. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). IETF
RFC 3610 (Informational), September 2003. http://www.ietf.org/rfc/rfc3610.txt

53. Wu, H.: ACORN v3 (2014). https://competitions.cr.yp.to/round3/acornv3.pdf
54. Wu, H., Huang, T.: MORUS v2 (2014). https://competitions.cr.yp.to/round3/

morusv2.pdf
55. Wu, H., Preneel, B.: AEGIS v1.1 (2014). https://competitions.cr.yp.to/round3/

aegisv11.pdf
56. Zhang, P., Zhang, W.: Differential cryptanalysis on block cipher skinny with MILP

program. Secur. Commun. Netw. 2018, 3780407:1–3780407:11 (2018)
57. Zhang, W., Rijmen, V.: Division cryptanalysis of block ciphers with a binary dif-

fusion layer. IET Inf. Secur. 13(2), 87–95 (2019)

https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
http://eprint.iacr.org/2005/416
http://eprint.iacr.org/2005/416
https://doi.org/10.1007/11761679_2
https://doi.org/10.1007/978-3-642-02620-1_11
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/978-3-319-02726-5_23
https://doi.org/10.1007/978-3-319-57339-7_7
https://doi.org/10.1007/978-3-319-57339-7_7
http://www.ietf.org/rfc/rfc3610.txt
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/morusv2.pdf
https://competitions.cr.yp.to/round3/morusv2.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf

Anonymous AE

John Chan(B) and Phillip Rogaway

Department of Computer Science, University of California, Davis, USA
jmachan@ucdavis.edu, Rogaway@cs.ucdavis.edu

Abstract. The customary formulation of authenticated encryp-
tion (AE) requires the decrypting party to supply the correct nonce with
each ciphertext it decrypts. To enable this, the nonce is often sent in
the clear alongside the ciphertext. But doing this can forfeit anonymity
and degrade usability. Anonymity can also be lost by transmitting asso-
ciated data (AD) or a session-ID (used to identify the operative key). To
address these issues, we introduce anonymous AE, wherein ciphertexts
must conceal their origin even when they are understood to encompass
everything needed to decrypt (apart from the receiver’s secret state).
We formalize a type of anonymous AE we call anAE, anonymous nonce-
based AE, which generalizes and strengthens conventional nonce-based
AE, nAE. We provide an efficient construction for anAE, NonceWrap,
from an nAE scheme and a blockcipher. We prove NonceWrap secure.
While anAE does not address privacy loss through traffic-flow analysis,
it does ensure that ciphertexts, now more expansively construed, do not
by themselves compromise privacy.

Keywords: Anonymous encryption · Authenticated encryption ·
Nonces · Privacy · Provable security · Symmetric encryption

1 Introduction

Traditional formulations of authenticated encryption (AE) implicitly assume
that auxiliary information is flowed alongside the ciphertext. This information,
necessary to decrypt but not normally regarded as part of the ciphertext, may
include a nonce, a session-ID (SID), and associated data (AD). But flowing these
values in the clear may reveal the sender’s identity.

To realize a more private form of encryption, we introduce a primitive we
call anonymous nonce-based AE, or anAE. Unlike traditional AE [6,10,16,17,
19], anAE treats privacy as a first-class goal. We insist that ciphertexts contain
everything the receiver needs to decrypt other than its secret state (including its
keys), and ask for privacy even then. We show how to achieve anAE, providing a
transform, NonceWrap, that turns a conventional nonce-based AE (nAE) scheme
into an anAE scheme. We claim that anAE can improve not only on privacy,
but on usability, too.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 183–208, 2019.
https://doi.org/10.1007/978-3-030-34621-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_7

184 J. Chan and P. Rogaway

Background. The customary formulation for AE, nAE [14,16,19], requires the
user to provide a nonce not only to encrypt a plaintext, but also to decrypt a
ciphertext. Decryption fails if the wrong nonce is provided.

How is the decrypting party supposed to know the right nonce to use? Some-
times it will know it a priori, as when communicants speak over a reliable channel
and maintain matching counters. But at least as often the nonce is flowed, in
the clear, alongside the ciphertext. The full ciphertext should be understood as
including that nonce, as the decrypting party needs it to decrypt.

Yet transmitting a nonce along with the ciphertext raises both usability and
security concerns. Usability is harmed because the ciphertext is no longer self-
contained: information beyond it and the operative key are needed to decrypt. At
the same time, confidentiality and privacy are harmed because the transmitted
nonce is information, and information likely correlated to identity. Sending a
counter-based nonce, which is the norm, will reveal a message’s ordinality—its
position is the sequence of messages that comprise a session. While the usual
definition for nAE effectively defines this leakage as harmless, is it always so?
A counter-based nonce may be all that is needed to distinguish, say, a high-
frequency stock trader (large counters) from a low-frequency stock trader (small
counters). With a counter-based nonce, multiple sessions at different points in
the sequence can be sorted by point of origin. Perhaps it is nothing but tradition
that has led us to accept that nAE schemes, conventionally used, may leak a
message’s ordinality and the sender’s identity.

This paper is about defining and constructing nonce-based AE schemes that
are more protective of such metadata. We imagine multiple senders simulta-
neously communicating with a receiver, as though by broadcast, each session
protected by its own key. When a ciphertext arrives, the receiver must decide
which session it belongs to. But ciphertexts shouldn’t get packaged with a nonce,
or even an SID (session identifier) or AD (associated data), any of which would
destroy anonymity. Instead, decryption should return these values, along with
the underlying plaintext.

A lousy approach. One way to conceal the operative nonce and SID would be
to encrypt those things under a public key belonging to the receiver. The result-
ing ciphertext would flow along with an ind$-secure nAE-encrypted ciphertext
(where ind$ refers to indistinguishability from uniform random bits [17]). While
this approach can work, moving to the public-key setting would decimate the
trust model, lengthen each ciphertext, and substantially slow each encryption
and decryption, augmenting every symmetric-key operation with a public-key
one. We prefer an approach that preserves the symmetric trust model and has
minimal impact on message lengths and computation time.

Contributions: definitions. We provide a formalization of anonymous AE
that we call anAE, anonymous nonce-based AE. Our treatment makes anAE
encryption identical to encryption under nAE. Either way, encryption is accom-
plished with a deterministic algorithm C = EN,A

K (M) operating on the key K,
nonce N , associated data A, and plaintext M . As usual, ciphertexts so produced
can be decrypted by an algorithm M = DN,A

K (C). But the receiver employing a

Anonymous AE 185

privacy-conscious protocol might not know what K, N , or A to use, as flowing N
or A, or identifying K in any direct way, would damage privacy. So an anAE
scheme supplements the decryption algorithm D with a constellation of alter-
native algorithms. They let the receiver: initialize a session (Init); terminate
a session (Term); associate an AD with a session, or with all sessions (Asso);
disassociate an AD with a session, or with all sessions (Disa); and decrypt a
ciphertext, given nothing else (Dec). The last returns not only the plaintext but,
also, the nonce, SID, and AD.

After formalizing the syntax for anAE we define security, doing this in the
concrete-security, game-based tradition. A single game formalizes confidential-
ity, privacy, and authenticity, unified as a single notion. It is parameterized by
a nonce policy, Nx, which defines what nonces a receiver should consider per-
missible at some point in time. We distinguish this from the nonce or nonces
that are anticipated, or likely, at some point in time, formalized by a different
function, Lx. Our treatment of permissible nonces vs. likely nonces may be useful
beyond anonymity, and can be used to speed up decryption.

Anonymous AE can be formalized without a user-supplied nonce as an input
to encryption, going back to a probabilistic or stateful definition of AE. For
this reason, anAE should be understood as one way to treat anonymous AE,
not the only way possible. That said, our choice to build on nAE was carefully
considered. Maintaining nAE-style encryption, right down to the API, should
facilitate backward compatibility and a cleaner migration path from something
now quite standard. Beyond this, the reasons for a nonce-based treatment of
AE remain valid after privacy becomes a concern. These include minimizing
requirements on user-supplied randomness/IVs.

Contributions: constructions. We next investigate how to achieve anAE.
Ignoring the AD, an obvious construction is to encipher the nonce using a block-
cipher, creating a header Head = EK1(N). This is sent along with an nAE-
encrypted Body = EN,A

K2
(M). But the ciphertext C = Head ‖ Body so produced

would be slow to decrypt, as one would need to trial-decrypt Body under each
receiver-known key K ′

2 until the (apparently) right one is found (according to
the nAE scheme’s authenticity-check). If the receiver has s active sessions and
the message has |M | = m bits, one can expect a decryption time of Θ(ms).

To do better we put redundancy in the header, replacing it with Head =
EK1(N ‖ 0ρ ‖ H(AD)). Look ahead to Fig. 2 for our scheme, NonceWrap. As a
concrete example, if the nonce N is 12 bytes [12] and we use the degenerate
hash H(x) = ε (the empty string), then one could encrypt a plaintext M as
C = AESK1(N ‖032) ‖ GCMN,A

K2
(M). Using the header Head to screen candidate

keys (only those that produce the right redundancy) and assuming ρ ≥ lg s we
can now expect a decryption time of Θ(m+s) for s blockcipher calls and a single
nAE decryption.

In many situations, we can do better, as the receiver will be able to anticipate
each nonce for each session. If the receiver is stateful and maintains a dictionary
ADT (abstract data type) of all anticipated headers expected to arrive, then
a single lookup operation replaces the trial decryptions of Head under each

186 J. Chan and P. Rogaway

prospective key. Using standard data-structure techniques based on hashing or
balanced binary trees, the expected run time drops to Θ(m+lg(s)) for decrypting
a length-m string. And one can always fall back to the Θ(m+ s)-time process if
an unanticipated nonce was used.

Finally, in some situations one can do better still, when all permissible nonces
can be anticipated. In such a case the decrypting party need never invert the
blockcipher E and the header can be truncated, or some other PRF can be used.
In practice, the header could be reduced from 16 bytes to one or two bytes—a
savings over a conventional nAE scheme that transmits the nonce.

While NonceWrap encryption is simple, decryption is not; look ahead to
Figs. 3 and 4. Even on the encryption side, there are multiple approaches for
handling the AD. Among them we have chosen the one that is most bandwidth-
efficient and that seems to make the least fuss over the AD.

Related work. In the CAESAR call for AE algorithms, Bernstein introduced
the notion of a secret message number (SMN) as a possible alternative to a
nonce, which he renamed the public message number (PMN) [7]. When the party
encrypting a message specifies an SMN, the decrypting party doesn’t need to
know it. It was an innovative idea, but few CAESAR submissions supported it [2],
and none became finalists. Namprempre, Rogaway, and Shrimpton formalized
Bernstein’s idea by adjusting the nAE syntax and security notion [13]. Their
definition didn’t capture any privacy properties or advantages of SMNs.

It was also Bernstein who asked (personal communication, 2017) if one could
quickly identify which session an AE-encrypted ciphertext belonged to if one was
unwilling to explicitly annotate it. NonceWrap does this, assuming a stateful
receiver using what we would call a constant-breadth nonce policy.

Coming to the problem from a different angle, Bellare, Ng, and Tackmann
contemporaneously investigated the danger of flowing nonces, and recast decryp-
tion so that a nonce needn’t be provided [5]. Their concern lies in the fact that
an encrypting party can’t select any non-repeating nonce (it shouldn’t depend
on the plaintext or key), and emphasize that the nAE definition fails to specify
which choices are fine.

Our approach to parameterizing anAE’s goal using a nonce policy Nx benefits
from the evolution of treatments on stateful AE [4,8,11,20]. The introduction
of Lx (likely nonces) as something distinct from Nx (permissible nonces) is new.

A privacy goal for semantically secure encryption has been formalized as key
privacy [3] in the public-key setting and as which-key concealing encryption [1]
in the shared-key one. But the intent there was narrow: probabilistic encryption
(not AE), when the correct key is known, out of band, by the decrypting party.

2 Nonce-Based AE (nAE)

Background. An nAE scheme, a nonce-based AE scheme supporting associ-
ated data (AD), is determined by a function E , the encryption algorithm, with
signature E : K × N × A × M → C. We insist that E(K,N,A, ·) be injective for
any K,N,A. This ensures that there’s a well-defined function D = E−1 with

Anonymous AE 187

signature D : K × N × A × C → M ∪ {⊥} defined by D(K,N,A,C) = M if
E(K,N,A,M) = C for some (unique) M ∈ M, while D(K,N,A,C) = ⊥ other-
wise. The symbol ⊥ is used to indicate invalidity. We may write EN,A

K (M) and
DN,A

K (C) for E(K,N,A,M) and D(K,N,A,C). We require that the message
space M ⊆ {0, 1}∗ be a set of strings for which M ∈ M implies {0, 1}|M | ⊆ M.
Finally, we assume that |EN,A

K (M)| = |M | + τ where τ is a constant. We refer
to τ as the expansion of the scheme.

Let E : K×N×A×M → C be an nAE scheme with expansion τ . A customary
way to define nAE security [14,19] associates to an adversary A the real number
Advnae

E (A) = Pr[K�K : AEK(·,·,·), DK(·,·,·) ⇒ 1] − Pr[A$(·,·,·), ⊥(·,·,·) ⇒ 1] where
the four oracles behave as follows: oracle EK(·, ·, ·), on input N,A,M , returns
E(K,N,A,M); oracle DK(·, ·, ·), on input N,A,C, returns D(K,N,A,C); oracle
$(·, ·, ·), on input N,A,M , returns |M | + τ uniform random bits; and oracle
⊥(·, ·, ·), on input N,A,C, returns ⊥. The adversary A is forbidden from asking
its first oracle a query (N,A,M) if it previously asked a query (N,A′,M ′); nor
may it ask its second oracle (N,A,C) if it previously asked its first oracle a
query (N,A,M) and received a response of C.

Privacy-violating assumptions of nAE. The nAE definition quietly embeds
a variety of privacy-unfriendly choices. Beginning with syntax, decryption is
understood to be performed directly by a function, D, that requires input
of K, N , and A. This suggests that the receiver knows the right key to use,
and that the ciphertext will be delivered within some context that explicitly
identifies which session the communication is a part of. But explicitly flowing
such information is damaging to privacy. Similarly, the nonce N and AD A
are needed by the decrypting party, but flowing either will often prove fatal to
anonymity.

Indistinguishability from random bits is routinely understood to buy
anonymity: after all, if the encryption of M under keys K and K ′ are indis-
tinguishable from random bits then they are indistinguishable from each other.
But this glosses over the basic problem that the thing that’s indistinguishable
from random bits isn’t everything the adversary will see.

3 Anonymous Nonce-Based AE (anAE)

Privacy principle. Our anAE notion can be seen as arising from a basic tenet
of secure encryption, which we now make explicit.

Privacy principle. A ciphertext should not by itself compromise the
identity of its sender. This should hold even when the term “ciphertext” is
understood as the full ciphertext—everything the receiver needs to decrypt
and that the adversary might see.

The principle implies that it is not OK to just exclude from our understanding of
the word ciphertext the privacy-violating parts of a transmission that are needed
to decrypt. One needs to understand the ciphertext more expansively.

188 J. Chan and P. Rogaway

Stated as above, the privacy principle may seem so obvious that it is silly
to spell it out. But the fact that nAE blatantly violates this principle, despite
being understood as an extremely strong notion of security, suggests otherwise.

While this paper focuses on privacy, attending to the full ciphertext would
seem to be the appropriate move when it comes to understanding confidentiality
and authenticity as well. Our formulation of anAE does so.

Figuring out how to reflect the privacy principle in a definition is non-trivial.
We now turn to that task.

Syntax. An anAE scheme extends an nAE scheme with five additional algo-
rithms. Formally, an anAE scheme is a six-tuple of deterministic algorithms
Π = (Init, Term, Asso, Disa, Enc, Dec). They create a session, terminate a ses-
sion, register an AD, deregister an AD, encrypt a plaintext, and decrypt a cipher-
text. The encryption algorithm E = Enc must be an nAE scheme in its own right.
In particular, this means that Enc automatically has an inverse D = Enc−1,
which is not what we are denoting Dec. Algorithms Init, Term, Asso, Disa,
and Dec are run by the decrypting party (they are, in effect, an alternative to
D = Enc−1) and able to mutate its persistent state K ∈ K. Specifically,

– Init, the receiver’s session-initialization algorithm, takes a key K ∈ K and
returns a session-ID � ∈ L that will subsequently be used to name this session.
We assume that returned SIDs are always distinct.

– Term, the receiver’s session-termination algorithm, takes a session-ID � ∈ L

and returns nothing.
– Asso, the receiver’s AD-association algorithm, on input of either A ∈ A or
(A, �) ∈ A × L, returns nothing.

– Disa, the receiver’s AD-disassociation algorithm, on input of either A ∈ A or
(A, �) ∈ A × L, returns nothing.

– Dec, the receiver’s decryption algorithm, takes as input a ciphertext C ∈ C

and returns either (�,N,A,M) ∈ L × N × A × M or the symbol ⊥.

The sets referred to above, all nonempty, are as follows:

– A is an arbitrary set, the AD space.
– C is a set of strings, the ciphertext space.
– K is a finite set of strings, the key space.
– K is an arbitrary set, the receiver’s persistent state.
– L is an arbitrary set, the session names.
– M is a set of strings, the message space.
– N is a finite set, the nonce space.

Observe that decryption via Dec is only given the ciphertext C (and, implicitly,
the state that the receiver maintains) but is expected, from this alone, to return
not only the message but also the operative SID, nonce, and AD. The SID
identifies the operative key. For the remainder of the text, we treat the SIDs as
natural numbers, that is, we assume as L = N.

Nonce policy. In an AE scheme with stateful decryption [4,8,11,20] the
receiver will, at any given point in time, have some set of nonces that it deems

Anonymous AE 189

acceptable. We allow this set to depend on the nonces already received, but
on nothing else. We formalize this by defining a nonce policy as a function
Nx : N≤d → P(N). By P(S) we mean the set of all subsets of the set S. The
name Nx is meant to suggest the words next and nonce. The set Nx(N) are
the permissible nonces given the history N . The history is a list of previously
received nonces. The value d = depth(Nx) ∈ N ∪ {∞} is the depth of the policy,
capturing how many nonces one needs to record in order to know what the next
nonce may be. One could reasonably argue that practical nonce policies must
have bounded depth, as they would otherwise require the receiver to maintain
unlimited state, and decryption would slow as connections grew old. The value
b = breadth(Nx) = maxN ∈dom(Nx) |Nx(N)| is the breadth of the policy, the max-
imum number of permissible nonces. For a function F : A → B we are writing
dom(F) = A for its domain. Similarly, we write range(F) = B for its range.

We single out two policy extremes. The permissive policy Nx(Λ) = N captures
what happens in a stateless AE scheme, where repetitions, omissions, and out-
of-order delivery are all permitted. (The symbol Λ denotes the empty list.) The
permissive policy has depth d = 0 and breadth b = |N|. Note that while the
decryption algorithm itself treats all nonces as permissible, there could be some
other, higher-level process that restricts this. At the other extreme, assuming
a nonce space of N = [0..Nmax], the strict policy Nx(Λ) = {0}, Nx((N)) =
{N+1} (for N < Nmax), and Nx((Nmax)) = ∅ demands an absence of repetitions,
omissions, and out-of-order delivery. The nonce starts at zero and must keep
incrementing. The depth d and breadth b are both 1. On a reliable channel,
this is a natural policy. There is a rich set of policies between these extremes
[4,8,11,20].

AD registration. A sender may have some data that needs to be authenticated
with the ciphertext it sends. Flowing that data in the clear would compromise
anonymity. Instead, the receiver will maintain a set of AD values for each session.
We can register or remove AD values one-by-one with Asso and Disa.

There are use cases where an AD value may not be specific to a session. For
example, the use of AD in TLS 1.3 does not involve session-specific information;
instead, the AD consists of several constants along with the ciphertext length.1
To accommodate this, we envisage a further set of AD values that are effectively
registered to all sessions. We refer to this as the set of global ADs. These too
are added and removed one at a time. When a ciphertext needs to be decrypted,
the only AD values that can match it are the global ones and those registered
for the session that the ciphertext is seen as belonging to (which the decrypting
party will have to determine).

Despite the generality of this treatment, the utility of AD is limited in anAE
precisely because AD values can’t flow in the clear; the only AD values that
parties should use are those that can be determined a priori by the receiver.

1 While we define anAE to accommodate this use case, it was pointless for TLS to
put length of the ciphertext in the AD: nAE ensures that ciphertexts are authenti-
cated, which implies that their length is authenticated. Throwing |C| into the AD
contributes nothing to security but does add complexity.

190 J. Chan and P. Rogaway

Defining security. Let Π = (Init, Term, Asso, Disa, Enc, Dec) be an anAE
scheme and let Nx be a nonce policy. The anAE security of Π with respect
to Nx is captured by the pair of games in Fig. 1. The adversary interacts with
either the RealanaeΠ,Nx game or the IdealanaeΠ,Nx game and tries to guess which. The
advantage of A attacking Π with respect to Nx is defined as

Advanae
Π,Nx(A) = Pr[ARealanae

Π,Nx →1] − Pr[AIdealanae
Π,Nx →1] ,

the difference in probability that the adversary outputs “1” in the two games.
In our pseudocode, integers, strings, lists, and associative arrays are silently

initialized to 0, ε, Λ, and ∅. For a nonempty list x = (x1, . . . , xn) we let tail(x) =
(x2, . . . , xn). We write A

∪← B, A
�← B, and A

‖← B for A ← A ∪ B, A ← A \
B, and A ← A ‖ B. When iterating through a string-valued set, we do so in
lexicographic order.

We use associative arrays (also called maps or dictionaries) both in our
games defining security and in the NonceWrap scheme itself. These are collec-
tions of (key, value) pairs with at most one value per key. We write A[K] for
doing a lookup in A for the value associated to the key K, returning that value.
We write A[K] ← X to mean adding or reassigning value X to key K. We write
A.keys to denote the set of all keys in A. Similarly, A.values denotes the set of
all values in A. The last two operations are not always mentioned in abstract
treatments of dictionaries, but programming languages like Python do support
these methods, and realizations of dictionaries invariably enable them.

Explanation. The “real” anAE game surfaces to the adversary the six proce-
dures of an anAE scheme. Modeling correct use, the Init procedure generates
random keys, while calls to Enc may not repeat a nonce within the given session,
nor may they employ a fictitious SID or the SID of a terminated session. The
game does the needed bookkeeping to keep track of those things, with K� being
the key associated to session � and L recording the set of active session labels
and NE[�] being the set of nonces already used for session �.

The “ideal” anAE game provides the same entry points as the “real” one
but employs the protocol Π only insofar as INIT returns the same sequence of
labels used by Init and, also, the ideal game uses the expansion constant σ
from Enc. The sequence of labels returned by INIT could just as well have been
fixed as 1, 2, 3, The central idea is that encryption returns uniformly random
bits (line 242) regardless of the SID, nonce, AD, or plaintext. This captures both
confidentiality and anonymity, and in a strong sense. The same idea is used in the
ind$-form of the nAE definition, but the constraint isn’t on the full ciphertext.

As with the all-in-one definition for nAE [19], authenticity is ensured by
having the counterpart of the real decryption oracle routinely return ⊥. When
should it not return ⊥? As with nAE, we want the ideal game to return ⊥ if
the ciphertext C was not previously returned from an ENC query (line 250).
But we also want DEC to return ⊥ if the relevant session has been torn down,
if the relevant nonce is out-of-policy, or if the relevant AD is unregistered. We
also want DEC to return ⊥ if there is more than one in-policy explanation for
this ciphertext. All of this is captured in lines 250–253. To express those lines,

Anonymous AE 191

RealanaeΠ,Nx

procedure INIT()
100 K K

101 � Π.Init(K) Guaranteed new

102 K[�] K; L ∪ {�}; NE[�] ∅
103 return �

procedure TERM(�)
110 Π.Term(�); L � {�}

procedure ASSO(A)
120 Π.Asso(A)
procedure ASSO(A, �)
121 Π.Asso(A, �)

procedure DISA(A)
130 Π.Disa(A)
procedure DISA(A, �)
131 Π.Disa(A, �)

procedure ENC(�, N, A, M)
140 if � �∈ L or N ∈ NE[�] then
141 return ⊥
142 NE[�] ∪ {N}
143 return Π.Enc(K[�], N, A, M)

procedure DEC(C)
150 return Π.Dec(C)

IdealanaeΠ,Nx

procedure INIT()
200 K K

201 � Π.Init(K)
202 A[�] ∅; L ∪ {�}
203 NE[�] ∅; ND[�] Λ
204 return �

procedure TERM(�)
210 L � {�}

procedure ASSO(A)
220 AD ∪ {A}
procedure ASSO(A, �)
221 A[�] ∪ {A}

procedure DISA(A)
230 AD � {A}
procedure DISA(A, �)
231 A[�] � {A}

procedure ENC(�, N, A, M)
240 if � /∈ L or N ∈ NE[�] then
241 return ⊥
242 C�{0, 1}|M|+τ

243 NE[�] ∪ {N}
244 H[C] ∪ {(�, N, A, M)}
245 return C

procedure DEC(C)
250 if H[C] = ∅ then return ⊥
251 if ∃ unique (�, N, A, M) ∈ H[C] s.t.
252 � ∈ L and N ∈ Nx(ND[�]) and
253 A ∈ AD ∪ A[�] then
254 ND[�]

‖
N

255 if |ND[�]| > d then
256 ND[�] tail(ND[�])
257 return (�, N, A, M)
258 return ⊥

Fig. 1. Defining anAE security. The games depend on an anAE scheme Π and a
nonce policy Nx. The adversary must distinguish the game on the left from the one on
the right. Privacy, confidentiality, and authenticity are simultaneously captured.

192 J. Chan and P. Rogaway

we need more bookkeeping than the real game did, also recording, in H (for
“history”), the (�,N,A,M) value(s) that gave rise to C (line 244); recording
in ND[�] the sequence of nonces already observed on session � (lines 255–256
truncate the history to only that needed for our decision making); and recording
in associative arrays AD and A[�] the currently registered AD values.

1AD/Session. We anticipate that, in most settings, the user will associate a
single AD to a session at any given time. It might be associated to a particular
session, or to all sessions, but, once a session has been identified, there is an
understood AD for it. A decrypting party that operates in this way is said to be
following the one-AD-per-session restriction, abbreviated 1AD/session.

Stateless schemes. Our formalization treats the decrypting party as stateful.
Even if there was only one session and one AD, the decrypting party should
register K with an Init call, register A with an Asso call, and then call Dec(C).
But this sort of use of state is an artifact of the generality of our formulation.
To draw out this distinction, we say that an anAE scheme is stateless if calls to
its Dec algorithm never modify the receiver state.

For stateless anAE, one might provide an alternative API in which keys
and AD are provided on each call, as in Dec1(K,A,C). Alternatively, one could
initialize a data structure to hold the operative keys and AD values, and this
data structure would be provided for decryption, but not side-effected by it. That
is what happens in most crypto libraries today, where it is not a string-valued
key that is passed to the encryption or decryption algorithms, but an opaque
data structure created by a key-preprocessing step.

4 The NonceWrap Scheme

Ciphertext structure. Encryption under NonceWrap is illustrated in Fig. 2.
The method uses two main primitives: an n-bit blockcipher E and an nAE
scheme E . The blockcipher is invoked once for each message encrypted, while
the nAE scheme does the bulk of the work. NonceWrap also employs a hash
function H, but it is used only for AD processing, outputs only a few bits (we do
not seek collision-resistance), and indeed there is no security property from H
on which we depend. A poor choice of H (like the constant function) would slow
down decryption (in the case of multiple AD values per session), but would have
no other adverse effect.

There are two parts to a NonceWrap-produced ciphertext: a header and a
body. The header Head would typically be 16 bytes. It not only encodes the
nonce N , which would usually be 12 bytes [12], but also some redundancy and
a hash of the AD. To create a ciphertext C, the header is generated using a
blockcipher E and is prepended to the ciphertext body Body, which is produced
using nAE encryption on the nonce, AD, and plaintext. The total length of the
ciphertext for M is |M |+λ+ τ where λ is the header length—which is, for now,
the blocksize λ = n of E, and τ is the expansion of the nAE scheme.

When presented with a ciphertext C = Head ‖ Body, a receiver will often be
able to determine that it does not belong to a candidate session just by looking

Anonymous AE 193

Fig. 2. Scheme illustration. NonceWrap encryption outputs a ciphertext that con-
sists of two parts: a header Head, which is produced from a blockcipher E, and a body
Body, which is produced from an nAE scheme E . The hashed AD in the header can be
omitted in the customary case where there is one AD per session at any time.

at the prefix Head. It is deciphered with the candidate session key and if the
resulting block does not contain the mandated block of zero bits, or the nonce
is not within nonce policy, or if the hash field does not contain the hash of a
registered AD for this session, then the ciphertext as a whole must be invalid.

The hash of the AD is omitted if 1AD/session is assumed (equivalently, the
hash returns the empty string). With a 16-byte header encrypting a 12-byte
nonce, there would then be 4 bytes of zeros and roughly a 2−32 chance that a
header for one session would be considered as a plausible candidate for another.
When that does happen, it results in an nAE decryption of a ciphertext Body,
not attribution of a ciphertext to an incorrect session. For that to happen, the
ciphertext body would also have to verify as authentic when decrypted under
the incorrect key. It is a little-mentioned property of nAE-secure encryption
that a plaintext encrypted under one random key will almost always be deemed
inauthentic when decrypted under an independent random key.

Anticipated nonces. Since the header is computed from the nonce and AD,
it may be possible for the receiver to precompute a header before it arrives.
This is because the nonce must fall within the protocol’s nonce policy and the
AD must be registered either specifically to a session or globally across sessions.
But even under the 1AD/session assumption, the number of potential headers
to precompute would be large if the breadth of the nonce policy is large (as with
the permissive policy Nx(Λ) = N). To get around this, we introduce a function
to name the anticipated (or likely) nonces, Lx. Given the last few nonces received
so far, it returns the nonce or set of nonces that are likely to come next. This is
in contrast with Nx, which names the set of nonces that are permissible to come
next—anything else should be deemed inauthentic. Like the nonce policy Nx,

194 J. Chan and P. Rogaway

the signature of the anticipated-nonce function is Lx: N≤d → P(N). We demand
that that which is likely is possible: Lx(n) ⊆ Nx(n) for all n ∈ N≤d.

An anAE scheme that employs Lx and Nx functions is said to be sharp if
Lx = Nx. With a sharp scheme, a ciphertext must be deemed invalid if it employs
an unanticipated nonce. Sharpness can aid in efficient decryption.

Algorithmic details. We now descend more deeply into the structure of
NonceWrap. The construction is defined in Fig. 3 and a list of data structures
employed is given in Fig. 4.

The NonceWrap scheme maintains a number of dictionaries. The dictionary
LNA maps anticipated headers to the set of session, nonce, and AD triples that
explain the header. When a session is initialized, the dictionary is populated with
headers based on anticipated nonces from an empty nonce history and the set
of globally registered ADs. When a session is torn down, all headers belonging
to that session are expunged from the dictionary. When a new AD is registered
globally, headers are precomputed for each session and their anticipated nonces.
If the AD is registered specific to a session, headers are computed for just that
session. ADs are also managed in their own associative arrays—one for global and
one for session-specific—that map AD hashes to sets of ADs that are preimages of
the hash. Deregistering an AD removes it from its respective array and expunges
its associated headers from the main dictionary.

NonceWrap decryption comes in three phases. Phase-1 attempts to use the
precomputed headers in LNA to quickly determine which session, nonce, and AD
are associated to a received ciphertext. As there may be multiple (�,N,A) triples
mapped to the header, the receiver tries to decrypt the ciphertext body with each
until it arrives at a valid message. If no message is found within this phase, then
it falls through to the phase-2, where it attempts to extract the nonce and AD
directly by trial-deciphering the header. The receiver tries each session key on
the header until it finds a nonce within the session’s policy appended with ρ
redundant 0-bits. If there are multiple AD values per session, the hash of an AD
would be appended. If the AD is properly registered with the receiver, then the
receiver has a mapping between the AD hash and its possible preimages. With
this, the receiver may now trial-decrypt the ciphertext body. The second phase
is repeated until a valid message is found. If none is, then decryption returns ⊥
and the ciphertext is deemed invalid.

If either phase-1 or phase-2 recovers a valid plaintext, they go into phase-3,
where precomputation for the next anticipated header occurs. Entering phase-3
means the receiver knows the (�,N,A,M) for the ciphertext. It can then compute
the old set of anticipated nonces prior to receiving N using Lx. It can also
compute a new set of anticipated nonces with a nonce history updated with N .
With the former, it can expunge all old headers from LNA and, with the latter,
it can populate LNA with the next expected headers.

Efficiency. Let s denote the maximum number of active sessions. Let t be
the time it takes to compute the E or E−1. Assume an anticipated-nonce pol-
icy Lx whose breadth is a small constant. Assume the maximum number of
AD values registered either globally or to any one session is a small constant.

Anonymous AE 195

Fig. 3. Constructing an anAE scheme. Scheme Π = NonceWrap[E, H, E ,Lx,Nx]
depends on a blockcipher E: {0, 1}k1×{0, 1}n → {0, 1}n, a nonce policy Nx: {0, 1}≤d →
P(N), a hash function H : {0, 1}∗ → {0, 1}β , an nAE scheme E : K × N × A × M → C

and an anticipated nonce function Lx which always outputs a subset of what policy Nx
permits. Data structures employed are described in Fig. 4.

196 J. Chan and P. Rogaway

K.L Set of SIDs

K.K1 Dictionary mapping an SID to a key for the blockcipher E

K.K2 Dictionary mapping an SID to a key for the nAE scheme E
K.N Dictionary mapping an SID to a list of nonces

K.A Dictionary mapping an SID to a dict. mapping a hashed AD to a set of ADs

K.AD Dictionary mapping a hashed AD to a set of ADs

K.LNA Dictionary mapping a header to a set of (SID, nonce, AD) triples

Fig. 4. Data structures employed for NonceWrap. To achieve good decryption-
time efficiency, NonceWrap employs a set ADT and multiple dictionaries, one of which
has dictionary-valued entries. Some simplifications are possible for the customary case
of 1AD/session.

Assume an amount of redundancy ρ ∈ O(lg s) used to create headers. Assume
the nAE scheme E uses time O(m + a) to decrypt a length m + τ ciphertext
with AD A. Assume a nonce can be checked as being in-policy, according to
Nx, in constant time. Assume dictionaries are implemented in some customary
way, with expected log-time operations. Then the expected time to decrypt a
valid ciphertext that used an anticipated nonce will be O(m+ a+ t+ lg s). The
expected time to decrypt an invalid ciphertext, or a valid ciphertext that used
an unanticipated nonce, will be O(m+ a+ st). For a sharp policy we may safely
omit phase-2 and get a decryption time of O(m+a+ t+lg s) for any ciphertext.

Optimizations. For a sharp scheme, Nx = Lx, the anticipated nonces within
LNA encompass all valid nonces; a header not stored in the dictionary is neces-
sarily invalid. For such a scheme, phase-2 can be ignored. This improves effi-
ciency and allows for some natural simplifications. In addition, in this case
we never compute the inverse E−1 of the blockcipher, so there is not longer
any need for it to be a blockcipher. One can therefore replace the blockcipher
E : {0, 1}n → {0, 1}n by a PRF F : {0, 1}n → {0, 1}λ where λ is considerable
smaller than n. One or two bytes would typically suffice. After all, all that hap-
pens when a collision does occur is that one needs to perform a trial decryption
of the ciphertext body. A convenient way to construct the PRF F would be by
truncating the blockcipher E, setting FK1(x) = (EK1(x))[1..λ].

At the opposite extreme, when Lx(n) = ∅ for all n, NonceWrap does not
anticipate any nonces. In that case only the phase-2 is executed, and LNA can
be disregarded. This variant is close to standard nAE decryption, and is useful
when we need a stateless receiver.

5 NonceWrap Security

Alternative characterization of nAE. We will find it convenient to
use the following alternative formulation of nAE security, which directly mod-
els multiple keys and more precisely attends to what is possible for a given

Anonymous AE 197

expansion. Recall that the expansion of an nAE scheme E is a constant τ
such that |EN,A

K (M)| = |M | + τ . Let E and τ be an nAE scheme and its
expansion. Let T be an arbitrary nonempty set. Let InjTτ (M) be the set of
all functions f : T × M → {0, 1}∗ such that |f(T,M)| = |M | + τ for all
M ∈ {0, 1}∗ and f(T, ·) is an injection for all T ∈ T. For f ∈ InjTτ define
f−1 : T × {0, 1}∗ → M ∪ {⊥} by f−1(T, Y) = X when f(T,X) = Y for some
(unique) X ∈ M, and f−1(T, Y) = ⊥ otherwise. Now given an adversary A,
define its advantage in attacking the nae-security of E as the real number

Advnae∗
E (A) = Pr[for i ∈ N do Ki�K: AEK (·,·,·,·),DK (·,·,·,·)⇒1]

−Pr[f�InjN×N×A
τ (M): AEf (·,·,·,·),Df (··,·,·) ⇒ 1]

where the oracles behave as follows: oracle EK , on query (i,N,A,M), returns
E(Ki, N,A,M); oracle DK , on query (i,N,A,C), returns E−1(Ki, N,A,C); ora-
cle Ef , on query (i,N,A,M), returns f((i,N,A),M); and oracle Df , on query
(i,N,A,C), returns f−1((i,N,A), C). The adversary A is forbidden from asking
its first oracle any query (i,N,A,M) if it previously asked a query (i,N,A′,M ′).

It is a standard exercise, following the PRI-characterization of misuse-
resistant AE schemes [18], to show the equivalence of nae (presented in Sect. 2)
and nae∗ security.

Multi-key strong-PRP security. It’s also useful for us to define a notion of
multi-key strong PRP security, which we denote as prp∗-security. In customary
strong PRP security, like conventional PRP security, the adversary has access
to a forward direction oracle that computes a real or ideal permutation. Strong
PRP security adds a backward direction oracle that computes the inverse. To
adapt this to the multi-key setting, we treat the PRP as a length-preserving
PRI. Define InjT({0, 1}n) = InjT0 ({0, 1}n). For an adversary A, we define its
advantage in attacking the prp∗-security of an n-bit PRP E as the real number

Advprp∗
E (A) = Pr[for i ∈ N do Ki�K: AFK (·,·),GK (·,·)⇒1]

−Pr[p�InjN({0, 1}n): AFp(·,·),Gp(·,·) ⇒ 1]

where the oracles behave as follows: oracle FK , on query (i,X), returns
E(Ki,X); oracle GK , on query (i,X), returns E−1(Ki,X); oracle Fp, on query
(i,X), returns p(i,X); and oracle Gp, on query (i,X), returns p−1(i,X).

NonceWrap security. To show the security of NonceWrap, we establish that
its anae-security is good if E is prp∗-secure and E is nae∗-secure.

Theorem 1. There exists a reduction �, explicitly given in the proof of this
theorem, as follows: Let E : {0, 1}k1 × {0, 1}n → {0, 1}n be a blockcipher, let
H : {0, 1}∗ → {0, 1}β be a hash function, let E : KE × N × A × M → CE be
an nAE scheme, and let Nx: N≤d → P(N) be a nonce policy with depth d. Let
Lx be an anticipated-nonce function with the same signature as Nx such that
Lx(n) ⊆ Nx(n) for all n ∈ N≤d. Let Π = NonceWrap[E,H, E ,Lx,Nx] be a
NonceWrap scheme. Let σ be the expansion of Π and τ be the expansion of E.

198 J. Chan and P. Rogaway

Let A be an adversary that attacks Π. Then � transforms A into a pair of
adversaries (B1,B2) such that

Advanae
Π,Nx(A) ≤ Advprp∗

E (B1) +Advnae∗
E (B2)

+
q2e

2n+1
+

q2e
2τ+1

+
q2e + q2d
2σ+1

+
q4e

2n+τ+2

where qe and qd are the number of encryption and decryption queries that A
makes. The resource usage of B1 and B2 are similar to that of A.

Proof. We define a sequence of hybrid games that transition the real anae game
to the ideal anae game, where the games are using Π and Nx. The first of
these hybrids, G1 replaces the blockcipher E with a random function P from
InjN({0, 1}n). Note that P (i, ·) is an injection for all i ∈ N and is length-
preserving, so it is a permutation. We construct an adversary B1 that attacks
the blockcipher E by having it simulate these two games. Whenever A makes a
query, B1 follows the protocol defined in the real anae game. If the query requires
a blockcipher operation, B1 would query its own forward direction oracle and use
that output for the operation instead. It can use its backward direction oracle for
inverting the blockcipher. At the end, B1 outputs the same bit A returns. The
advantage of B1 is equivalent to A’s advantage in distinguishing the games it
simulates as the ciphertexts that the simulated encryption oracles would produce
would be identical with the exception of the header, which depends on whether
B1’s oracle is using P or the real blockcipher E. With that, we have:

Pr[ARealanae
Π] − Pr[AG1] ≤ Advprp∗

E (B1)

The next hybrid G2 replaces NonceWrap’s underlying nAE scheme E with a
random function F from InjN×N×A

τ (M). We construct an adversary B2 that
attacks the nAE scheme by simulating the two hybrid games. Like B1, adversary
B2 will just follow protocol except it replaces any nAE operations with its oracles.
For any blockcipher operations, it simulates P as described in the previous step.
It returns the same bit that A returns. The advantage of B2 is equivalent to A’s
advantage in distinguishing the games it simulates as the only difference between
the simulated games is how the ciphertext body is produced, which depends on
whether B2’s oracle is using F or the real nAE scheme E . With that, we have:

Pr[AG2] − Pr[AG3] ≤ Advnae∗
E (B2)

At this point we have a real anae game using a NonceWrap scheme built on ideal
primitives and we want to measure how well A can distinguish it from the ideal
anae game. For the upcoming parts, we modify the ideal game step-by-step until
it is indistinguishable from the real game.

The first hybrid, G7, makes a simple change to the decryption oracle. Refer-
ring to the code in Fig. 1, on line 251, there is a condition that the tuple in
the history must be unique. This hybrid simply removes the “unique” condition.
Instead, if there are multiple valid tuples that map to a queried ciphertext, the

Anonymous AE 199

oracle will return the lexicographically first tuple instead of returning ⊥. Clearly,
to distinguish between G7 and the ideal game, A would need to call decryption
on a ciphertext with multiple valid tuples as the former would return a tuple and
the latter would return ⊥. The probability that this occurs is upper-bounded by
the probability that two ciphertexts from encryption are the same as multiple
tuples need to be mapped to the same ciphertext in H for there to be multiple
valid tuples. Hence, the advantage A has for distinguishing between these two
games is

Pr[AIdealanae
Π] − Pr[AG7] ≤ q2e

2σ+1

The next modification only changes how ciphertexts are generated. Instead
of randomly sampling from {0, 1}|M |+τ on an encryption query, the encryption
oracle will instead use a pair of PRIs to generate a “header” and “body” to create
the ciphertext. To do this, we modify the code for the ENC oracle to use the
procedure F defined in the top half of Fig. 5. The bottom half of the figure shows
the modified encryption oracle. The procedure captures the lazy-sampling of the
forward direction of a random function or injection depending on whether the
code in grey is executed. Without the grey, the code simulates a function for
each tweak T ; With the grey, it simulates an injection for each T . Having that,
we can use F to capture the pair of PRIs: one from InjN×N×A

τ (M) for creating
the body and one from InjN({0, 1}n) for creating the header.

We can think of G7 as using two different instances of F , which we label as FE

and FE , without the grey to generate a header and body and concatenating the
two results. This is the same as generating a random string of the same length
since queries to the encryption oracle can’t be repeated, so a random header and
body is sampled each time. When we replace the random ciphertext generation
with the pair of PRIs, we use FE and FE with the grey code. We refer to the
game using F for the PRIs as G6.

To distinguish between G6 and G7, A would need to distinguish the difference
between F with and without the grey code. This is the probability that bad gets
set to true in F . For now, we don’t need to worry about F−1 as the adversary
has no way of accessing it. On the ith encryption query, the probability that bad
gets set to true is at most (i− 1)/2w. It follows that the probability bad gets set
to true is at most q2e/2w+1 for qe encryption queries. The adversary may observe
this event in either FE or FE . Thus, A’s advantage here is

Pr[AG7] − Pr[AG6] ≤ q2e
2n+1

+
q2e

2τ+1

Our next hybrid G5 changes the decryption oracle and is shown in Fig. 6. The
other oracles remain the same. Instead of identifying the SID, nonce, and AD
using H[C] right away, the oracle will search for the tuple by going through
all � ∈ L, N ∈ Nx(ND[�]), and A ∈ A[�] ∪ AD. For each of those tuples, it
will try to invert the injection on Body to recover M . Now it’s possible that the
inversion results in an M that wasn’t recorded in H since F−1 as defined in Fig. 5
can return values that weren’t given by the forward oracle. However, we check

200 J. Chan and P. Rogaway

on line 555 to make sure that the (�,N,A,M) we found is actually mapped
to C, which is something required to return a valid tuple in G6’s decryption.
The other validity conditions on �, N , and A are already accounted for since
we iterate through the sets that validate them. We also iterate through them
in lexicographic order, which guarantees that if there are multiple valid tuples,
we return the lexicographically first one. Essentially, G5 does the same as G6’s
decryption; it just does it in a roundabout way by searching for the tuple. Hence,
G5 and G6 are indistinguishable from each other to A.

Instead of looping through the permitted nonces and ADs, we can use the
header to figure out the nonce and AD. The header as generated in the previous
hybrid’s encryption contains the nonce and a hash of the AD. This is just like

procedure F (T, X)
900 if X ‖ 0w−u ∈ dom(f(t, ·)) then
901 return f(T, X)
902 Y �{0, 1}v

903 if Y ∈ range(f(T, ·)) then
904 bad ← true

905 Y �{0, 1}v \ range(f(T, ·))
906 f(T, X ‖ 0w−u) ← Y

907 return Y

procedure F −1(T, Y)
910 if Y ∈ range(f(T, ·))
911 X ′ ‖ R ← f−1(T, Y)
912 where |X ′| = u

913 if R = 0w−u then return X ′

914 return ⊥
915 X�{0, 1}w

916 if X ∈ dom(f(T, ·)) then
917 bad ← true

918 X�{0, 1}v \ dom(f(T, ·))
919 f(T, X) ← Y

91A X ′ ‖ R ← X where |X ′| = u

91B if R = 0w−u then return X ′

91C return ⊥

procedure G6.ENC(�, N, A, M)
640 if � �∈ L or N ∈ NE[�] then return ⊥
641 NE[�] ∪← {N}
642 Head ← FE(�, N ‖ 0ρ ‖ H(A))
643 Body ← FE((�, N, A), M)
644 C ← Head ‖ Body
645 H[C] ∪← {(�, N, A, M)}; return C

Fig. 5. Top. Lazy-sampling of random functions or injections in the multi-key setting.
With the code in grey, the procedures simulate a random injection for each T from u
bits to w bits. Without the code in grey, the procedures simulate a random function
for each T . Bottom. Modified encryption oracle that uses either random functions or
random injections to generate the ciphertext. Here, ρ = n−η −β where η is the length
of the nonce. The game using injections is called G6.

Anonymous AE 201

procedure G5.DEC(C)
550 Head ‖ Body C where |Head| = n

551 for � ∈ L do
552 for N ∈ Nx(ND[�]) do
553 for A ∈ A[�] ∪ AD do
554 M F −1

E ((�, N, A),Body)
555 if (�, N, A, M) ∈ H[C] then
556 ND[�]

‖
N

557 if ND[�] /∈ dom(Nx) then ND[�] tail(ND[�])
558 return (�, N, A, M)
559 return ⊥

Fig. 6. G5’s decryption oracle. This decryption oracle searches for a (�, N, A) triple
to use to recover M . It then validates the resulting quadruple by making sure that it
maps to the ciphertext in the history H.

procedure G4.ASSO(A)
420 B H(A); AD[B] ∪

A}
procedure G4.ASSO(A, �)
421 B H(A); A[�][B] ∪

A}

procedure G4.DISA(A)
430 B H(A); AD[B] �

A}
procedure G4.DISA(A, �)
431 B H(A); A[�][B] �

{

{

{

{A}

procedure G4.DEC(C) Resembles phase-2

450 Head ‖ Body C where |Head| = n

451 for � ∈ L do
452 N ‖ R ‖ B F −1

E (�,Head)
453 where |N | = η and |R| = r

454 if R �= 0ρ or N /∈ Nx(ND[�])
455 then continue
456 for A ∈ A[�][B] ∪ AD[B] do
457 M f−1

E ((�, N, A),Body)
458 if (�, N, A, M) ∈ H[C] then
459 ND[�]

‖
N

45A if ND[�] /∈ dom(Nx) then
45B ND[�] tail(ND[�])
45C return (�, N, A, M)
45D return ⊥

Fig. 7. G4’s decryption oracle. This decryption oracle resembles phase-2 of Non-
ceWrap. Functionally, it does what the ideal decryption oracle does except instead of
looking up a valid tuple in the ciphertext history it iterates through every possibility
to search for one.

in NonceWrap encryption. We make modifications to the decryption oracle to
do just this. For us to use the AD hash, we also need to modify the ASSO and
DISA oracles. The result of these modifications leaves us with hybrid G4, which
is presented in Fig. 7.

Note that decryption now resembles phase-2 of NonceWrap decryption. It’s
clear that any session it returns is active and any nonce it returns is within

202 J. Chan and P. Rogaway

the policy as the former is found through iteration and there is an explicit
check of the latter. It’s also clear that any AD that it returns is registered as
A[�][B] ∪ AD[B] is a subset of all the �’s ADs and all the global ADs.

But does G4 decryption always behave like G5’s decryption? If queried with
a C that did not come from the encryption oracle, then both of them return ⊥
as they both check to make sure (�,N,A,M) ∈ H[C] before returning a tuple.
If queried with a C that did, assuming that C was made with an active session
key, a nonce under the session’s policy, and a properly registered AD, then both
decryptions return the same tuple. It’s clear that G5 will find the first lexico-
graphic tuple due to its iteration. If there’s only one valid tuple explaining C,
then, trivially, the first tuple is returned.

But if there are multiple valid tuples, what happens? If the tuples are under
different SIDs, then we arrive at the lexicographically first SID by iteration. If
the SIDs are the same, then the header is deciphered and the nonce and AD hash
are found. This SID can only have one valid nonce mapped to this header since
the header was generated by an injection. Even though G5 doesn’t decipher the
header, it still checks the association between nonce and header since it checks
whether the tuple is in H[C]. This means that G5, for a fixed session, can only
find one nonce—the same nonce as G4—that is in H[C] even if it iterated through
the entirety of the policy. Similarly, the SID can only have one AD hash mapped
to this header for the same reason. Even though G5 iterates through all registered
ADs, the ones that it finds that are in H[C] would have their hashes associated
to the header. Since G4 lexicographically iterates through the A[�][B] ∪ AD[B]
subset of registered ADs, it would arrive at the same AD as G5. Hence, G5

and G4 always arrive at the same result for a given ciphertext, making the two
indistinguishable.

The next modification adds dictionary LNA from NonceWrap into the game.
To start, suppose that we add LNA into the ideal game without actually using
it for decryption yet. All other data structures that are needed to support LNA
are already exist in our hybrids up to this point; we already manage the active
SIDs in the set L and the nonce history of a session in ND[�]. The structures
for ADs were modified from sets into dictionaries in G4, but we can still derive
the set of all valid ADs for a session � from them. The union of all sets in
A[�].values ∪ AD.values is just that. We’ll denote this set as A�. All of these
data structures are needed to add or remove tuples from LNA. The code for this
hybrid G3 is presented in Fig. 8, but disregard the phase-1 decryption block for
now. First, we want to assert a property of LNA.

Lemma 2. Let L, ND, A, AD, and LNA be the data structures used in hybrid
game G3. Let X be the union of all sets in LNA.values. For any SID �, let A�

be the union of all sets in A[�].values ∪ AD.values. If (�,N,A) ∈ X then � ∈ L,
N ∈ Nx(ND[�]), and A ∈ A�.

Proof. Suppose there exists some (�,N,A) ∈ X such that one of the conditions
described in the lemma is false. There are two ways that this can happen: either

Anonymous AE 203

a value was added into LNA that violated one of the conditions or the condition
itself was modified, but LNA was not modified accordingly. We exhaustively
check for a case in which this can occur, specifically looking at when we add a
tuple or modify the condition.

– Case: (�,N,A) ∈ X and � /∈ L.
• When tuple is added in INIT, � ∈ L since INIT adds it to L.
• When tuple is added in ASSO(A), � ∈ L since the procedure iterates

through � to add it.
• When tuple is added in ASSO(A, �), � ∈ L by assumption.
• When tuple is added in DEC, � ∈ L since the tuple is added on successful

decryption, which happens by iterating through L and finding �.
• When � is removed from L, all tuples with � as an element are removed

from LNA.
– Case: (�,N,A) ∈ X and A /∈ A�.

• When tuple is added in INIT, A ∈ A� since the procedure iterates through
AD to get A.

• When tuple is added in ASSO(A), A ∈ A� since the procedure adds A to
AD before adding the tuple to LNA.

• When tuple added in ASSO(A, �), A ∈ A� since the procedure adds A to
A[�] before adding the tuple to LNA.

• When tuple is added in DEC, A ∈ A� since the procedure iterates through
A� to add each A.

• When A is removed in DISA(A), all tuples with A as an element are
removed from LNA.

• When A is removed in DISA(A, �), all tuples with both � and A are
removed from LNA. If a tuple containing A is still in X, then it must
have a different SID from �.

– Case: (�,N,A) ∈ X and N /∈ Nx(ND[�]).
• When tuple is added in INIT, N ∈ Nx(ND[�]) since ND[�] is initialized to

the empty list and the procedure iterates over Lx(Λ), which is a subset
of Nx(Λ).

• When tuple is added in either ASSO, N ∈ Nx(ND[�]) since the procedure
iterates through each nonce in Lx(ND[�]), which is a subset of Nx(ND[�]).

• When tuple is added in DEC, ND[�] is appended with a new nonce N ′

first. Two sets are generated here: Lx(ND[�]) and Lx(ND[�] ‖ N ′). The
former is Old and the latter is New in the pseudocode. The procedure
iterates over New\Old, which is a subset of Nx(ND[�] ‖ N ′) when adding
new tuples.

• When tuple is removed in DEC, the sets Old and New are used again. The
procedure iterates over Old \ New and removes tuples containing those
nonces from LNA. Hence, any tuple with a nonce not in Lx(ND[�] ‖ N ′)
is removed.

None of these cases provide a situation where (�,N,A) ∈ X such that � /∈ L,
N /∈ Nx(ND[�]), or A /∈ A�. The lemma follows. ��

204 J. Chan and P. Rogaway

procedure G3.INIT()
300 K K

301 � Π.Init(K)
302 K[�] K; L ∪ {�}; NE[�] ∅
303 for N ∈ Lx(Λ) do
304 for ADs ∈ AD.values do
305 for A ∈ ADs do
306 head N ‖ 0ρ ‖ H(A)
307 Head FE(�, head)
308 LNA[Head] ∪ {(�, N, A)}
309 return �

procedure G3.TERM(�)
310 for S ∈ LNA.values do
311 S

�

�} × N × A

312 L �

{
{�}

procedure G3.ASSO(A)
320 B H(A); AD[B] ∪ {A}
321 for � ∈ L do
322 for N ∈ Lx(ND[�]) do
323 Head FE(�, N ‖ 0ρ ‖ B)
324 LNA[Head] ∪ {(�, N, A)}
procedure G3.ASSO(A, �)
325 B H(A); A[�][B] ∪ {A}
326 for N ∈ Lx(ND[�]) do
323 Head FE(�, N ‖ 0ρ ‖ B)
324 LNA[Head] ∪ {(�, N, A)}

procedure G3.DISA(A)
330 B H(A); AD[B] � {A}
331 for S ∈ LNA.values do
332 S

�

L × N × {A}
procedure G3.DISA(A, �)
333 B H(A); A[�][B] �

A}
334 for S ∈ LNA.values do
335 S

�

{

{�} × N × {A}

procedure G3.DEC(C) Phase-1

350 Head ‖ Body C where |Head| = n

351 for (�, N, A) ∈ LNA[Head] do
352 M F −1

E ((�, N, A),Body)
353 if (�, N, A, M) ∈ H[C] then
354 goto 35F

355 for � ∈ L do P-2, same as G4’s

356 N ‖ R ‖ B F −1
E (�,Head)

357 where |N | = η and |R| = r

358 if R �= 0r or N /∈ Nx(ND[�])
359 then continue
35A for A ∈ A[�][B] ∪ AD[B] do
35B M F −1

E ((�, N, A),Body)
35C if (�, N, A, M) ∈ H[C] then
35D goto 35F
35E return ⊥

35F Old Lx(ND[�]) Phase-3

35G ND[�]
‖

N

35H if |ND[�]| > d then
35I ND[�] tail(ND[�])
35J New Lx(ND[�])
35K for N ′ ∈ Old \ New do
35L for S ∈ LNA.values do
35M S

� {�} × {N ′} × A

35N for N ′ ∈ New \ Old do
35O for B ∈ A[�].keys ∪ AD.keys do
35P Head FE(�, N ′ ‖ 0ρ ‖ B)
35Q for A′ ∈ A[�][B] ∪ AD[B] do
35R LNA.[Head] ∪ {(�, N ′, A′)}
35S return (�, N, A, M)

Fig. 8. Hybrid game resembling NonceWrap. Game G3 executes procedures sim-
ilar to those of NonceWrap. For decryption on a ciphertext to succeed, it follows the
ideal game. If decryption returns a tuple, then that tuple must have been used to make
the queried ciphertext. The encryption oracle is omitted as it is the same as G5’s, which
is in Fig. 6.

Anonymous AE 205

As per Lemma 2, we have that all tuples recorded in LNA satisfy the validity
conditions in ideal decryption. Now when phase-1 decryption is accounted for in
G3 we observe that any successful decryption that occurs must have happened
on a tuple in LNA, meeting the validity conditions. Here, success is defined
as executing the goto instruction on line 354, which instructs the procedure
to enter phase-3. The third phase does not modify the tuple being returned
in any way; it only does bookkeeping to update the data structures, making
sure that they are compliant to the validity conditions. So, whatever tuple was
acquired in phase-1 would be returned. If no tuple was found in phase-1, the
procedure will enter phase-2 where it iterates through every session as done in
G4’s decryption. Whether the valid tuple (�,N,A,M) being returned is found in
phase-1 or phase-2, the conditions placed on each component of the tuple remains
the same: � must be in L, N must be in Nx(ND[�]), A must be in A[�]∪AD, and
the entire tuple must be in H[C]. Thus, G3 decryption always returns a valid
tuple under the same conditions as G4.

However, in some cases, G3 does not return the lexicographically first tuple.
Suppose that the adversary makes two encryption queries with tuples T1 and T2

such that the tuples are different and their parameters are valid for decryption.
Suppose it gets back the same ciphertext C both times. Let’s say T1 is the
lexicographically first tuple, but its nonce is not within Lx(·). Let’s say T2’s nonce
is within Lx(·). When the adversary queries decryption with C, in G4, it gets
back T1. On the other hand, it gets back T2 in G3 since phase-1 decryption would
find T2 first. The probability this occurs is upper-bounded by the probability of
getting the same ciphertext from the encryption oracle, which occurs if the same
header and body are outputted by their respective injections. In regards to just
the header, the probability that any two headers is the same is 1/2n. After qe

encryption queries, any of those pairs of queries can have such a collision. There
are about q2e/2 ways to choose such a pair. Applying the same logic to the
ciphertext body, A gets a collision in both header and body and distinguishes
the two hybrids with probability

Pr[AG4] − Pr[AG3] ≤ q2e
2n+1

· q2e
2τ+1

=
q4e

2n+τ+2

Observe that G3 executes almost exactly the same as G2, which is the real
game with ideal primitives does. The only differences in code are the checks for
successful decryption. On lines 353 and 35C for G3, we verify that the tuple was
actually used in encryption. On the other hand, in G2, we move to phase-3 if
M �= ⊥. This difference can result in the two returning different values. More
precisely, if queried with a ciphertext C that was not the result of an encryption
query, G2 may return a tuple while G3 would never return a tuple. The probability
this occurs is upper-bounded by the probability that the function F−1

E on query
(T, Y) returns a non-⊥ value given that Y was not an output of FE . This is the
probability that line 91B in the top half of Fig. 5 returns. That is, the advantage
A has in distinguishing G3 and G2 is

206 J. Chan and P. Rogaway

Pr[AG3] − Pr[AG2] ≤ q2d
2σ+1

Summing up all of the bounds computed over the hybrid argument, we get
the bound in the theorem statement. ��

6 Remarks

Complexity. While we don’t find the anAE definition excessively complex,
NonceWrap decryption is quite complicated. One complicating factor is the rich
support we have provided for AD values—despite our expectation that imple-
mentations will assume the 1AD/Session restriction. Yet we have found that
building in the 1AD/Session restriction would only simplify matters modestly.
It didn’t seem worth it.

We suspect that, no matter what, decryption in anonymous-AE schemes is
going to be complicated compared to decryption under conventional nAE. The
privacy principle demands that ciphertexts contain everything the receiver needs
to decrypt, yet no adversarially worthwhile metadata. The decrypting party must
infer this metadata, and it should do so quite efficiently.

Timing side-channels. Our anAE definition does not address timing side-
channels, and NonceWrap raises several concerns with leaking identity informa-
tion through decryption times. Timing information might leak how many sessions
a header can belong to. In phase-2, nAE decryption is likely to be the operation
that takes the longest, and it is possible that an observer might learn information
on the number of sessions that produced a valid-looking header. Then there is
the timing side-channel that arises from the usage of Lx and Nx. Phase-1 only
works on headers in Lx, and is expected to be faster than phase-2, leaking infor-
mation about whether a nonce was anticipated. We leave the modeling, analysis,
and elimination of timing side-channels as an open problem.

The usage puzzle. There is an apparent paradox in the use of anonymous
AE. If used in an application-layer protocol over something like TCP/IP, then
anonymous AE would seem irrelevant because communicated packets already
reveal identity. But if used over an anonymity layer like Tor [9], then use of that
service would seem to obviate the need for privacy protection. It would seem
as though anonymous AE is pointless if the transport provides anonymity, and
that pointless if the transport does not provide anonymity.

This reasoning is specious. First, an anonymity layer like Tor only protects
a packet while it traverses the Tor network; once it leaves an exit node, the
Tor-associated encryption is gone, and end-to-end privacy may still be desired.
Second, it simply is not the case that every low-level transport completely leaks
identity. For example, while a UDP packet includes a source port, the field need
not be used.

To give a concrete example for potential use, consider how NonceWrap (and
anAE in general) might fit in with DTLS 1.3 over UDP [15]. Unlike TLS, where

Anonymous AE 207

session information is presumptively gathered from the underlying transport,
DTLS transmits with each record an explicit (sometimes partially explicit) epoch
and sequence number (SN). Since UDP itself does not use SNs, the explicit SNs
of DTLS are used for replay protection. While DTLS has a mechanism for SN
encryption in its latest draft, NonceWrap would seem to improve upon it. The
way DTLS associates a key with encrypted records is through the sender’s IP
and port number at the UDP level. Using NonceWrap, these identifiers could
be omitted. If the receiver needs to know source IP and port in order to reply,
those values can be moved to the encrypted payload.

Further features of DTLS over UDP might be facilitated by NonceWrap. It
provides a mechanism in which an invalid record can often be quickly identified,
a feature useful in DTLS. In DTLS, when an SN greater than the next expected
one is received, there is an option to either discard the message or keep it in a
queue for later. This aligns with NonceWrap’s formulation of Lx and Nx.

It is rarely straightforward to deploy encryption in an efficient, privacy-
preserving way, and anAE is no panacea. But who’s to say how privacy protocols
might evolve if one of our most basic tools, AE, is re-envisioned as something
more privacy friendly?

Acknowledgments. We thank Dan Bernstein for inspiring this work. Within the
CAESAR call, he suggested the use of “secret message numbers” in lieu of nonces; in
private communications with the second author, he asked how one might efficiently
demultiplex multiple AE communication streams without having marked them in a
privacy-compromising manner.

We thank the anonymous ASIACRYPT referees. Their comments brought home
that anonymous AE was a concern that transcended our formulation of it. They sug-
gested the name anAE.

This work was supported by NSF CNS 1717542 and NSF CNS 1314855. Many
thanks to the NSF for their years of financial support.

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). J. Cryptol. 15(2), 103–127 (2002)

2. Abed, F., Forler, C., Lucks, S.: General classification of the authenticated encryp-
tion schemes for the CAESAR competition. Comput. Sci. Rev. 22, 13–26 (2016)

3. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_33

4. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the
SSH authenticated encryption scheme: a case study of the encode-then-encrypt-
and-MAC paradigm. ACM Trans. Inf. Syst. Secur. 7(2), 206–241 (2004)

5. Bellare, M., Ng, R., Tackmann, B.: Nonces are noticed: AEAD revisited. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp.
235–265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_9

https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/978-3-030-26948-7_9

208 J. Chan and P. Rogaway

6. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3_24

7. Bernstein, D.: Cryptographic competitions: CAESAR call for submissions. Web-
page, January 2014. https://competitions.cr.yp.to/caesar-call.html

8. Boyd, C., Hale, B., Mjølsnes, S.F., Stebila, D.: From Stateless to Stateful: Generic
Authentication and Authenticated Encryption Constructions with Application to
TLS. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 55–71. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-29485-8_4

9. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: Blaze, M. (ed.) Proceedings of the 13th USENIX Security Symposium,
August 9–13, 2004, San Diego, CA, USA, pp. 303–320. USENIX (2004)

10. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44706-7_20

11. Kohno, T., Palacio, A., Black, J.: Building secure cryptographic transforms, or how
to encrypt and MAC. IACR Cryptology ePrint Archive 2003:177 (2003)

12. McGrew, D.: An interface and algorithms for authenticated encryption. IETF RFC
5116, January 2018

13. Namprempre, C., Rogaway, P., Shrimpton, T.: AE5 security notions: definitions
implicit in the CAESAR call. IACR Cryptology ePrint Archive 2013:242 (2013)

14. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5_15

15. Rescorla, E., Tschofenig, H., Modadugu, N.: The datagram transport layer secu-
rity (DTLS) protocol version 1.3. Internet-Draft draft-ietf-tls-dtls13-31, Internet
Engineering Task Force, March 2019. Work in Progress

16. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 02: 9th Conference on Computer and Communications Security, pp.
98–107. ACM Press, Washington D.C., 18–22 November 2002

17. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of oper-
ation for efficient authenticated encryption. In: ACM CCS 01: 8th Conference on
Computer and Communications Security, pp. 196–205. ACM Press, Philadelphia,
5–8 November 2001

18. Rogaway, P., Shrimpton, T.: Deterministic authenticated-encryption: a provable-
security treatment of the key-wrap problem. Cryptology ePrint Archive, Report
2006/221 (2006). http://eprint.iacr.org/2006/221

19. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_23

20. Rogaway, P., Zhang, Y.: Simplifying game-based definitions. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 3–32. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_1

https://doi.org/10.1007/3-540-44448-3_24
https://competitions.cr.yp.to/caesar-call.html
https://doi.org/10.1007/978-3-319-29485-8_4
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
http://eprint.iacr.org/2006/221
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/978-3-319-96881-0_1

Sponges Resist Leakage: The Case
of Authenticated Encryption

Jean Paul Degabriele1(B), Christian Janson2, and Patrick Struck3

1 CNS, Technische Universität Darmstadt, Darmstadt, Germany
jeanpaul.degabriele@crisp-da.de

2 Cryptoplexity, Technische Universität Darmstadt, Darmstadt, Germany
christian.janson@cryptoplexity.de

3 CDC, Technische Universität Darmstadt, Darmstadt, Germany
pstruck@cdc.informatik.tu-darmstadt.de

Abstract. In this work we advance the study of leakage-resilient
Authenticated Encryption with Associated Data (AEAD) and lay the
theoretical groundwork for building such schemes from sponges. Building
on the work of Barwell et al. (ASIACRYPT 2017), we reduce the prob-
lem of constructing leakage-resilient AEAD schemes to that of building
fixed-input-length function families that retain pseudorandomness and
unpredictability in the presence of leakage. Notably, neither property
is implied by the other in the leakage-resilient setting. We then show
that such a function family can be combined with standard primitives,
namely a pseudorandom generator and a collision-resistant hash, to yield
a nonce-based AEAD scheme. In addition, our construction is quite effi-
cient in that it requires only two calls to this leakage-resilient function
per encryption or decryption call. This construction can be instantiated
entirely from the T-sponge to yield a concrete AEAD scheme which we
call Slae. We prove this sponge-based instantiation secure in the non-
adaptive leakage setting. Slae bears many similarities and is indeed
inspired by Isap, which was proposed by Dobraunig et al. at FSE 2017.
However, while retaining most of the practical advantages of Isap, Slae
additionally benefits from a formal security treatment.

Keywords: AEAD · Leakage Resilience · Side channels · SLAE ·
ISAP

1 Introduction

The oldest and most fundamental application of cryptography is concerned with
securing the communication between two parties who already share a secret
key. The modern cryptographic construct for this application is authenticated
encryption with associated data (AEAD), which was the topic of the recent CAE-
SAR competition [6]. Most of the effort in this competition has been directed
towards exploring new designs, optimising performance, and offering robust secu-
rity guarantees. However, there has not been much progress in the development
of AEAD constructions that, by design, protect against side-channel attacks.
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 209–240, 2019.
https://doi.org/10.1007/978-3-030-34621-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_8

210 J. P. Degabriele et al.

This is a challenging problem that is likely to become a primary focus in the
area of AEAD design.

Recently, a handful of AEAD designs with this exact goal have emerged.
Each of these is based on a different approach with varying trade-offs between
complexity, efficiency, and security guarantees. One notable example is the work
of Barwell et al. [4], which proposes AEAD constructions with strong security
guarantees but pays a relatively high price in terms of complexity and efficiency.
Specifically, their constructions achieve security against adaptive leakage but
resort to elliptic-curve pairings and secret sharing in order to realise implemen-
tations of a leakage-resilient MAC and a leakage-resilient pseudorandom function
(employed in a block-wise fashion for encryption) for instantiating their scheme.
A more hands-on approach was adopted by Dobraunig et al. in the design of
their proposed AEAD scheme Isap. It was conceived with the intent to protect
against Differential Power Analysis (DPA) [10]. Isap is entirely sponge-based
and follows a fairly conventional design, augmented with a rekeying strategy.
Arguably, this simpler approach, employing readily-available symmetric prim-
itives, is more likely to lead to a pragmatic solution. However, Isap’s design
rationale is predominantly heuristic, lacking any formal security analysis to jus-
tify its claims. As such the efficacy of Isap’s approach in resisting side-channel
attacks is unclear, both qualitatively and quantitatively, curtailing any objective
comparison with the constructions from [4] and others.

In light of the practical advantages that the sponge-based approach offers,
we remedy this state of affairs as follows. We propose Slae, a derivative of Isap
which retains its main structure and benefits but includes certain modifications
to admit a formal security proof. We analyse its security in the framework of
leakage-resilient cryptography introduced by Dziembowski and Pietrzak [13],
adapted to the random transformation model. Specifically, we prove it secure
with respect to the leakage-resilient AEAD definition, put forward in [4] by
Barwell et al., in the non-adaptive leakage setting. That is, we assume a leakage
function that is fixed a priori and whose output is limited to some number of
bits λ.

Admittedly, Slae achieves qualitatively weaker security than the schemes
of Barwell et al., since it only achieves non-adaptive leakage resilience. Never-
theless, we contend that Slae strikes a more pragmatic balance by improving
on efficiency and ease of implementation while still benefiting from a provably-
secure design. Indeed, several other works [1,12,14,22,24] have settled for and
argued that non-adaptive leakage security often suffices in practice. Moreover,
as discussed in [24], the syntax of primitives like pseudorandom functions makes
adaptive-leakage security impossible to achieve. In fact Barwell et al. achieve
security against adaptive leakage by resorting to a specialised implementation of
a pseudorandom function which requires an additional random input per invo-
cation. In contrast, Slae adheres to the standard nonce-based AEAD syntax
and requires no source of randomness.

When viewed as sponge-based constructions, Slae and Isap look very simi-
lar and we do not claim any particular novelty in that respect. Nevertheless, the

Sponges Resist Leakage: The Case of Authenticated Encryption 211

rationale behind their design is rather different. Isap was conceived as augment-
ing a standard sponge-based AEAD design with a rekeying strategy, where the
rekeying function is in turn also built from sponges, followed by some optimisa-
tions. The rekeying is intended to frustrate Differential Power Analysis (which
requires several power traces on the same key but distinct inputs) by running
the AEAD scheme with a distinct session key each time its inputs change. In
turn, the session key is produced by combining a hash of the inputs and the
master key through a rekeying function. Ostensibly, the rekeying function is
itself strengthened against DPA by reducing its input data complexity through
a low sponge absorption rate. In contrast Slae is understood through a top-
down design where we gradually decompose a leakage-resilient AEAD scheme
into smaller components which we then instantiate using sponges. In particular
there is no mention of rekeying or session keys. Note that there is more to this
distinction than mere renaming. For instance, if we compare the MAC compo-
nents in Isap and Slae we notice that the same value that serves as the MAC
session key in Isap is used directly as the MAC tag in Slae.

At a more general level, the key premise made in [10] is that sponges offer
a promising and practical solution to protect against side-channel attacks. Our
work serves to provide formal justification to this claim and allows one to calcu-
late concrete parameters for a desired security level.

1.1 Contribution

Below is an outline of our contributions highlighting how we improve on prior
works and some of the challenges we face in our analysis.

A Generic Construction (FGHF
′). The composition theorem in [4] reconsid-

ers the N2 construction from [19] in the setting of leakage resilience. Specifically
they show that given a MAC that is both leakage-resilient strongly unforge-
able and a leakage-resilient pseudorandom function, together with an encryption
scheme that is leakage-resilient against augmented chosen plaintext attacks, the
N2 construction yields a leakage-resilient AEAD scheme. We extend this result,
in the non-adaptive setting, by further decomposing the MAC and the encryption
scheme into simpler lower-level primitives, ultimately giving rise to the FGHF

′

construction. In turn this constructs a leakage-resilient AEAD scheme from two
fixed-size leakage-resilient functions F and F ′, a standard pseudorandom gener-
ator G, and a collision-resistant vector hash H. The construction requires that
both F and F ′ be leakage-resilient pseudorandom functions and that F ′ addi-
tionally be a leakage-resilient unpredictable function. The latter is a notion that
we introduce.

As pointed out in [4], in the adaptive leakage setting any MAC whose verifi-
cation algorithm recomputes the tag and checks for equality with the candidate
tag, simply cannot be strongly unforgeable. They overcome this issue through
an ingenious MAC implementation. However this requires three pairing evalua-
tions per verification and a source of randomness. In the FGHF

′ construction

212 J. P. Degabriele et al.

we show that by settling for non-adaptive leakage security the canonical MAC
construction, which recomputes the tag and checks for equality, can be rescued.
Specifically, we show that any leakage-resilient unpredictable function gives rise
to a canonical MAC which is strongly unforgeable. In contrast to the leakage-free
setting, not every pseudorandom function is an unpredictable function. This has
to do with the fact that in unpredictability we give the adversary more freedom
in what it can query to its oracles, which is in turn a necessary requirement
for composition to hold. In addition, we prove that one can combine a collision-
resistant hash function with fixed-input-length leakage-resilient pseudorandom
and unpredictable functions to obtain corresponding primitives with extended
input domains.

For the encryption part, Barwell et al. use Counter Feedback Mode instanti-
ated with a leakage-resilient pseudorandom function and an additional extra call
to generate the initial vector from the nonce. Thus multiple calls to the leakage-
resilient pseudorandom function are required for each encryption call. In contrast
we show that to meet the required security notion, one can do with just one call
to the leakage-resilient pseudorandom function and a pseudorandom generator,
thereby resulting in a considerably more efficient scheme. Thus, if one is content
with non-adaptive leakage security then the FGHF

′ construction constitutes a
simpler recipe yielding a more efficient AEAD scheme.

All the results needed to prove the security of the FGHF
′ construction hold in

the general adaptive setting. The limitation to the non-adaptive leakage setting
comes from the fact that leakage-resilient unpredictable functions are unattain-
able in the adaptive-leakage setting if no further restriction is imposed on the
set of leakage functions.

Non-Adaptively Leakage-Resilient Functions from Sponges. Having
reduced the task of constructing a leakage-resilient AEAD scheme to that of
constructing suitable leakage-resilient function families, we turn our attention to
the latter problem. We instantiate both F and F ′ with the same sponge-based
construction, which we refer to as SlFunc. This construction is essentially the
rekeying function employed in Isap [10] instantiated with a random transforma-
tion (T-sponge) instead of a random permutation (P-sponge). In [10] this was
proposed without proof, instead its security was argued based on its apparent
similarity to the GGM construction [15] and the corresponding results in [14,22]
for it yielding a leakage-resilient pseudorandom function family. However, there
are clear differences between the sponge construction and the GGM construc-
tion and we do not see a way to make a direct connection between the security
of the two. In fact our proof follows a fairly different strategy from the ones
presented in [14,15,22] – which all rely on a hybrid argument whereas ours does
not. Moreover, for the overall security of Slae we need this function family to
additionally be leakage-resilient unpredictable, which, as was discussed above,
does not follow from it being leakage-resilient pseudorandom. Nevertheless, in
both cases we are able to show the intuitive claim made in [10] that λ bits of
leakage can be compensated for by increasing the capacity by λ bits.

Sponges Resist Leakage: The Case of Authenticated Encryption 213

Another technical challenge that we face here is that we cannot employ the
H-coefficient technique which is commonly used to prove the security of var-
ious sponge-based constructions. Like most other works on leakage resilience,
we resort to arguments based on min-entropy and its chain rule in order to
deal with leakage. Unfortunately, such arguments do not combine well with the
H-coefficient technique, which precludes us from using it. In turn, this renders
the security proof more challenging, as we have to deal with an adversary that
may choose its queries (not the leakage function) adaptively. In contrast, the
H-coefficient technique would automatically bypass this issue by reducing the
security proof to a counting problem.

A Concrete Sponge-Based AEAD Scheme (Slae). Finally, by instantiat-
ing the FGHF

′ construction with the above sponge-based construction for F and
F ′ and matching sponge-based constructions for G and H we obtain Slae. We
also present security proofs for the T-sponge instantiations of the pseudorandom
generator and the vector hash, which we were unable to readily find in the litera-
ture. Slae is perhaps our most practical contribution – an entirely sponge-based
leakage-resilient nonce-based AEAD scheme with provable security guarantees
that is simple to implement and reasonably efficient. The efficiency of Slae could
be further optimised using similar techniques to the ones described in [10] for
Isap. Furthermore our security proofs are conducted in the concrete security
setting thereby allowing practitioners to easily derive parameter estimates for
their desired security level.

1.2 Related Work

To the best of our knowledge, the first authenticated encryption scheme claimed
to be leakage-resilient was RCB [3], but it was broken soon after [2].

A series of works [7,8,16,20] have proposed a number of leakage-resilient
symmetric encryption schemes, message authentication codes, and authenticated
encryption schemes. These constructions assume that a subset of their compo-
nents (block cipher instances) are leakage-free and that the leakage in the other
components is simulatable, an assumption that is somewhat contentious [18,23].
Based on these assumptions, they show that the security of their encryption
schemes reduces to the security of a single-block variant of the same scheme.
However, the security of the corresponding single-block schemes remains an open
question that is implicitly assumed to hold.

Abdalla, Beläıd, and Fouque [1] construct a symmetric encryption scheme
that is non-adaptively leakage-resilient against chosen-plaintext attacks. Inter-
estingly, their scheme employs a rekeying function that is not a leakage-resilient
pseudorandom function. However their encryption scheme is not nonce-based as
it necessitates a source of randomness.

In independent and concurrent work [11] Dobraunig and Mennink analyse
the leakage resilience of the duplex sponge construction. While their leakage
model is closer to ours, they prove something different. Namely they show that

214 J. P. Degabriele et al.

the duplex is indistinguishable from an adjusted ideal extendible input func-
tion (AIXIF) which is an ideal functionality incorporating leakage. In contrast
we show that SlFunc is both a leakage-resilient PRF (LPRF) and a leakage-
resilient unpredictable function (LUF). Furthermore, while the duplex is a more
general construction than SlFunc, we prove better security bounds that allow
for a more efficient realisation for the same level of security. Essentially for λ bits
of leakage and absorption rate rr , their security bound degrades by λ(rr + 1)
whereas ours degrades by λ + rr . In addition, we leverage the leakage resilience
of SlFunc to construct the leakage-resilient AEAD scheme Slae.

Other independent and concurrent work by Guo et al. [17] proposes an
AEAD design, TETSPonge, that combines a sponge construction with two tweak-
able block cipher instances. While their work and ours share the goal of con-
structing leakage-resilient AEAD schemes, the two works adopt very different
approaches. Both the security definitions and the assumptions on which the
security of the schemes rely on are significantly different. One notable difference,
is that the leakage resilience of TETSPonge relies crucially on the tweakable block
cipher instances being leak-free, presumably due to a hardened implementation,
whereas our treatment exploits and exposes the inherent leakage resilience of the
sponge construction.

1.3 Organization of the Paper

In Sect. 2 we review the basic concepts and security definitions that we require in
the rest of the paper. This is followed by a detailed description of Slae in Sect. 3.
In Sect. 4 we cover the security analysis of the generic FGHF

′ construction. We
conclude with Sect. 5 where we cover the security of the sponge-based primitives
used to instantiate FGHF

′ and thereby obtain Slae. The full details of the
proofs can be found in the full version of this paper. We conclude in Sect. 6 with
some remarks on implementing Slae.

2 Preliminaries

We start by reviewing the basic tools and definitions that we require for our
results. We begin by establishing some notation.

2.1 Notation

For any non-negative integer n ∈ N we use [n] to denote the set {1, . . . , n}, where
[n] = ∅ when n = 0. For any two strings s1 and s2, |s1| denotes the size of s1
and s1 ‖ s2 denotes their concatenation. For a positive integer k ≤ |s1|, we use
�s1�k to denote the string obtained by truncating s1 to its leftmost k bits. The
empty string is denoted by ε, {0, 1}n denotes the set of bit strings of size n, and
{0, 1}∗ denotes the set of all strings of finite length. We write x � S to denote
the process of uniformly sampling a value from the finite set S and assigning
it to x.

Sponges Resist Leakage: The Case of Authenticated Encryption 215

We make use of the code-based game-playing framework by Bellare and
Rogaway [5], where the interaction between a game and the adversary is implicit.
In all games, the adversary is given as its input the output of the initial-
ize procedure, it has oracle access to the other procedures described in the
game, and its output is fed into the finalize procedure. The output of the
finalize procedure is the output of the game. For a game G and an adver-
sary A, GA ⇒ y denotes the event that G outputs y when interacting with
A. Similarly, AG ⇒ x denotes the event that A outputs x when interacting
with G. By convention all boolean variables Bad are initialized to false, and
for any table p[] its entries are all initialized to ⊥. When lazy-sampling a
random function with domain X and co-domain Y into a table p[], we use
inset(p) and outset(p) to denote respectively the sets of input and output values
defined up to that point. That is, inset(p) = {X : p[X]
=⊥ ∧X ∈ X} and
outset(p) = {p[X] : p[X]
=⊥ ∧X ∈ X}. If G1 and G2 are games and A is an
adversary we define the corresponding adversarial advantage as

Adv
(
AG1 ,AG2

)
= Pr[AG1 ⇒ 1] − Pr[AG2 ⇒ 1] ,

and the corresponding game advantage as

Adv
(
GA
1 ,GA

2

)
= Pr[GA

1 ⇒ true] − Pr[GA
2 ⇒ true] .

We will operate in the random transformation model, where ρ is an idealised
random transformation mapping n-bit strings to n-bit strings. For any algorithm
F that uses ρ as a subroutine, we use QF (q , μ) to denote the number of calls to
ρ required when evaluating F q times on a total of μ bits.

2.2 Syntax

Encryption. An authenticated encryption scheme with associated data Aead =
(E ,D) is a pair of efficient algorithms such that:

– The deterministic encryption algorithm E : K × N × A × M → {0, 1}∗ takes
as input a secret key K , a nonce N , associated data A, and a message M to
return a ciphertext C .

– The deterministic decryption algorithm D : K ×N ×A×{0, 1}∗ → M∪{⊥}
takes as input a secret key K , a nonce N , associated data A, and a ciphertext
C to return either a message in M or ⊥ indicating that the ciphertext is
invalid.

Sets K, N , A, and M denote respectively the key space, the nonce space,
the associated data space, and the message space associated to the scheme.
We assume throughout that E and D are never queried on inputs outside of
these sets. An authenticated encryption scheme is required to be correct and
tidy. Correctness requires that for all K ,N ,A,M if E(K ,N ,A,M) = C then
D(K ,N ,A,C) = M . Analogously, tidiness requires that for all K ,N ,A,C if
D(K ,N ,A,C) = M
= ⊥ then E(K ,N ,A,M) = C . Furthermore we demand

216 J. P. Degabriele et al.

that encryption be length regular, i.e for all K ,N ,A,M it should hold that
|E(K ,N ,A,M)| is entirely determined by |N |, |A|, and |M |.

We will use the terms authenticated encryption scheme and symmetric
encryption scheme to refer to the analogously defined encryption scheme which
does not admit associated data as part of its input. For such schemes, A is
implicitly set to the empty string in the security games.

Message Authentication. A message authentication code Mac = (T ,V) is a
pair of efficient algorithms with an associated key space K, domain X , and tag
length t such that:

– The deterministic tagging algorithm T : K × X → {0, 1}t takes as input a
key K and a value X to return a tag T of size t.

– The deterministic verification algorithm V : K × X × {0, 1}t → {�,⊥} takes
as input a key K , a value X , and a tag T to return either � indicating a
valid input or ⊥ otherwise.

We require that for any key K ∈ K and any admissible input X ∈ X , if
T ← T (K ,X), then V(K ,X ,T) = �. When X = {0, 1}∗ we end up with the
usual MAC definition, however we will also consider MACs over tuples of strings,
e.g. X = {0, 1}∗ ×{0, 1}∗ ×{0, 1}∗. Such MACs where considered in [19] and we
follow suit in referring to such MACs as vector MACs.

We say that a MAC is canonical if it is implicitly defined by T , where
V(K ,X ,T) consists of running T ′ ← T (K ,X) and returning � if T ′ = T
and ⊥ otherwise.

2.3 The Sponge Construction

The sponge construction is a versatile object that can be used to realise various
cryptographic primitives. Several variations of the sponge exist, Fig. 1 illustrates
the plain version of the sponge as originally introduced by Bertoni et al. [9]. We
give here only a brief overview of its operation and the associated nomenclature
that we will use throughout this paper.

The sponge operates iteratively on its inputs through a transformation ρ, and
generally includes an absorbing phase and a squeezing phase. The transformation
ρ maps strings of size n to strings of size n. Associated to the sponge are two
other values called the rate r and the capacity c, where n = r + c. At any
given iteration we refer to the output of the transformation as the state, which
we denote by S . Furthermore, we denote the leftmost r bits of S by S̄ and
the remaining c bits by Ŝ . We will at times refer to S̄ and Ŝ as the outer and
inner parts of the state, respectively. In the absorbing phase an input M is
“absorbed” iteratively r bits at a time. At iteration i input Mi is absorbed by
letting Yi ← (Mi ⊕ S̄i) ‖ Ŝi and setting Si+1 ← ρ(Yi). The initial value of S may
generally be set to a constant, a concatenation of a secret key and a constant, or
by applying the transformation to either of these values. Output is produced from
the sponge during the squeezing phase in one or more iterations, r bits at a time.

Sponges Resist Leakage: The Case of Authenticated Encryption 217

absorbing phase squeezing phase

0n
⊕

M1

ρY1

⊕

Mv−1

ρYv−1

⊕

Mv

ρSv Yv

Z1

ρSv+1 ρ

Z2

ρSv+2

r
/

c
/

r
/

c
/

r
/

c
/

Fig. 1. Illustration of the plain sponge construction.

At iteration i output Zj is produced by setting Zj ← S̄i and Si+1 ← ρ(Si). The
above variant is normally referred to as the T-sponge, as it employs a fixed-size
random transformation. An alternative instantiation, known as the P-sponge,
replaces this random transformation with a random permutation.

2.4 The Leakage Model

Our leakage model is based on leakage resilience as defined in [13]. This assumes
that only computation leaks, and in particular, that only the data that is accessed
during computation can leak information. It allows for continuous adaptive leak-
age, where in each query to a leakage oracle the adversary can specify a leakage
function from some predefined set L that it can chose adaptively based on prior
outputs and leakage. Throughout, we restrict ourselves to leakage functions that
are deterministic and efficiently computable. While our security definitions are
formulated in this general setting, our main results will be in the weaker granular
non-adaptive leakage setting proposed in [14]. We view the non-adaptive leakage
setting as the special case where the leakage set L is restricted to be a singleton,
fixed at the start of the game. In granular leakage, a single time step is with
respect to a single computation of some underlying primitive, in our case, the
transformation ρ. Correspondingly, in this case the adversary specifies a vector
of leakage functions and gets in return the aggregate leakage from the entire
evaluation of the higher-level construction. Note that in the granular setting
the leakage sets for each iteration can be distinct. Similarly, when studying the
leakage resilience of composite constructions we have to consider compositions
of leakage functions. For instance, if construction C is composed of primitives A
and B with associated leakage sets LA and LB , then we associate to C the Carte-
sian product of the two leakage sets, i.e. LC = LA × LB . The actual inputs that
get fed to the leakage functions are implicitly defined by the construction and
its inputs, whereas the combined output is the aggregate output of all function
evaluations.

An analysis of sponge-based constructions compels us to consider leakage
resilience in the random transformation model. A similar setting, albeit in the

218 J. P. Degabriele et al.

random oracle model, was already considered by Standaert et al. in [22]. A central
question that arises in idealised settings like this is whether the leakage function
should be given access to the ideal primitive. As in [22], we will not give this
access to the leakage function. On the one hand, providing the leakage function
with unlimited access to the random oracle gives rise to artificial attacks, such
as the “future computation attack” discussed in [22], that would not arise in
practice. On the other hand, depriving the leakage function from accessing the
ideal primitive, means that the leakage function cannot leak any bits of the ideal
primitive’s output, which may seem overly restrictive. However, for the case of
sponge-based constructions this is less problematic because from the adversary’s
perspective the full output of a transformation call is completely determined
by the input to the next transformation call. As such, information about the
output of one transformation call can leak as part of the leakage in the next
transformation call. Combined with the fact that the only restriction that we
will impose on the leakage function is to limit its output length, we think that
this leads to a fairly realistic leakage model.

We conclude our discussion on the leakage model by offering our interpre-
tation of the significance of leakage resilience security with respect to practical
side channel attacks. One might object that we model leakage by a deterministic
function whose output is of a fixed bit-length whereas in practice the leakage is
noisy. However through the leakage function we are really trying to capture the
maximum amount of information that an adversary may obtain from evaluating
the scheme on a single input. Hence, the underlying assumption is that no mat-
ter how many times the scheme is run on the same input, in order to even out
the noise, the information that the adversary can obtain is limited. Put in more
practical terms, this roughly translates to assuming that the scheme’s implemen-
tation resists Simple Power Analysis (SPA). On the other hand, if the scheme is
proven to be leakage-resilient then we are guaranteed that an adversary cannot
do much better even if it can observe and accumulate leakage on multiple other
(differing) inputs. Thus a proof of leakage resilience can be interpreted as saying
that if the scheme’s implementation is secure against SPA then, by the inherent
properties of the scheme, it is also secure against Differential Power Analysis
(DPA). However, a proof of leakage resilience is of course no guarantee that a
scheme’s implementation will be secure against SPA.

2.5 Authenticated Encryption and Leakage Resilience

Recently, Barwell et al. [4] provided a definitional framework augmenting nonce-
based authenticated encryption with leakage. Their security notions capture the
leakage resilience setting as defined in [13]. Furthermore, they prove composition
theorems analogous to [19] that additionally take leakage into account. Below we
reproduce their security definitions and composition result which we will employ
in this work, with some minor adaptations. We recast their definitions in a style
that admits code-based proofs [5]. Unlike [4] we make no distinction between a
scheme and its implementation since we are interested in proving security for
the actual scheme. When defining these security notions, we only describe the

Sponges Resist Leakage: The Case of Authenticated Encryption 219

game and the corresponding adversarial advantage. A scheme is understood to
be secure if the adversarial advantage is bounded by a sufficiently small value for
all reasonably-resourced adversaries. Our security theorems will then establish
a bound on the adversarial advantage in terms of the adversary’s resources,
without drawing judgement as to what constitutes “small” and “reasonable”
since that is a rather subjective matter.

Classifying Adversarial Queries. As usual, the adversary has to be forbidden
from making certain queries in order to avoid trivial win conditions. Following
the terminology of [4], if an adversary makes a query (N ,A,M) to an encryption
oracle that returns C , then repeating this query to one of the encryption oracles
or querying (N ,A,C) to one of the decryption oracles, is considered to be an
equivalent query. Note that any additional components of a query, such as the
leakage function, are ignored for the purpose of determining equivalence between
two queries. If an adversary makes equivalent queries across two oracles, it is said
to forward that query from one oracle to the other. Note that the two oracles
do not need to be distinct, and thus forwarded queries include repeated queries
to the same oracle.1

Let an encryption query refer to any query made to either a challenge encryp-
tion oracle or a leakage encryption oracle. Then an adversary against an (authen-
ticated) encryption scheme is said to be nonce respecting if it never repeats a
nonce in two distinct encryption queries.

Fig. 2. Game used to define IND-aCPLA security.

1 This is not really required, since contrary to [4] the challenge oracles are not forgetful
in our case. Nevertheless we conform to the original definition of forwarded queries.

220 J. P. Degabriele et al.

Chosen-Plaintext Security with Leakage. Barwell et al. introduce an aug-
mented variant of leakage-resilient chosen-plaintext security called IND-aCPLA,
that is required by their composition theorem. Here the adversary is given access
to three oracles. A challenge oracle that returns either a valid encryption of a
message or a random string of appropriate length. A leakage encryption oracle
that, upon being queried on a message and a leakage function, returns the cor-
responding ciphertext and the evaluated leakage. The adversary is not allowed
to forward queries between the two encryption oracles. In addition, it has lim-
ited access to a leakage decryption oracle which returns the decryption of the
queried ciphertext and the leakage corresponding to the queried leakage func-
tion. However, it can only query this oracle on inputs forwarded from the leakage
encryption oracle. Thus the adversary can obtain decryption leakage, but only
on ciphertexts for which it already knows the corresponding message. Below is
the formal definition.

Definition 1 (IND-aCPLA Security). Let Se = (E ,D) be a symmetric encryp-
tion scheme and the INDaCPLA game be as defined in Fig. 2. Then for any nonce-
respecting adversary A that never forwards queries to or from the Enc oracle, only
makes queries to LDec that are forwarded from LEnc, and only makes encryption
and decryption queries containing leakage functions in the respective sets LE and
LD, its corresponding IND-aCPLA advantage is given by:

Advind-acpla
Se

(A,LE ,LD) = 2Pr
[
INDaCPLAA ⇒ true

]
− 1 .

Fig. 3. Game used to define LPRF security.

Leakage-Resilient Function Families. We will distinguish among function
families based on their domain X . We will use the terms fixed-input-length func-
tion when X = {0, 1}l for some l ∈ N, variable-input-length function when

Sponges Resist Leakage: The Case of Authenticated Encryption 221

X = {0, 1}∗, and vector function when the domain is a cartesian product of
string sets, e.g. X = {0, 1}∗ × {0, 1}∗.

For such function families we will consider two security notions: leakage-
resilient pseudorandom functions (LPRF) and leakage-resilient unpredictable
functions (LUF). While LPRF security is well-established in the literature, LUF
security is new. Below are the formal definitions.

Definition 2 (LPRF Security). Let F : K ×X → {0, 1}t be a function family
over the domain X and indexed by K, and the LPRF game be as defined in Fig. 3.
Then for any adversary A that never forwards queries to or from the F oracle and
only queries leakage functions in the set LF , its corresponding LPRF advantage
is given by:

Advlprf
F (A,LF) = 2Pr

[
LPRFA ⇒ true

]
− 1 .

Fig. 4. Game used to define LUF security.

Definition 3 (LUF Security). Let F : K × X → {0, 1}t be a function family
over the domain X and indexed by K, and the LUF game be as defined in Fig. 4.
Then for any adversary A its corresponding LUF advantage is given by:

Advluf
F (A,LF) = Pr

[
LUFA ⇒ true

]
.

Unforgeability in the Presence of Leakage. For message authentication
we will require the analogue of strong unforgeability in the leakage setting
(SUF-CMLA)put forth in [4].This is essentially strongunforgeability (SUF-CMA)
formulated as a distinguishing game, with a challenge verification oracle and addi-
tional tagging and verification oracles that leak. Below is the formal definition.

222 J. P. Degabriele et al.

Fig. 5. Game used to define SUF-CMLA security.

Definition 4 (SUF-CMLA Security). Let Mac = (T ,V) be a message
authentication code and the SUFCMLA game be as defined in Fig. 5. For any
adversary A that never forwards queries from LTag to Vfy, and only queries
leakage functions to its tagging and verification oracles in the respective sets LT

and LV , its corresponding SUF-CMLA advantage is given by:

Advsuf-cmla
Mac

(A,LT ,LV) = 2Pr
[
SUFCMLAA ⇒ true

]
− 1 .

Authenticated Encryption with Leakage. For an authenticated encryption
scheme with associated data our target will be LAE security, which is a natural
extension of the classical security notion put forth by Rogaway [21] to the leakage
setting. This is defined formally below.

Definition 5 (LAE Security). Let Aead = (E ,D) be an authenticated
encryption scheme with associated data and the LAE game be as defined in Fig. 6.
Then for any adversary A that never forwards queries to or from the Enc and
Dec oracles and only makes encryption and decryption queries containing leakage
functions in the respective sets LAE and LV D, its corresponding LAE advantage
is given by:

Advlae
Aead

(A,LAE ,LV D) = 2Pr
[
LAEA ⇒ true

]
− 1 .

Generic Composition in the Leakage Setting. The N2 construction was
introduced in [19] and is depicted pictorially in Fig. 7. In [4] Barwell et al. prove
a composition theorem for this construction that holds in the leakage setting.
We will make use of this theorem and for completeness we reproduce it below,
adapted to the random transformation model.

Sponges Resist Leakage: The Case of Authenticated Encryption 223

Fig. 6. Game used to define LAE security.

Theorem 1 (LAE Security of the N2 Construction [4]). Let Se = (E ,D)
be a symmetric encryption scheme with associated leakage sets (LE ,LD) and
Mac = (T ,V) be a MAC with associated leakage sets (LT ,LV). Further let N2

be the composition of Se and Mac described in Fig. 7, with associated leakage
sets (LAE ,LV D) where LAE = LE × LT and LV D = LD × LV . Then for any
LAE adversary Aae against N2 there exist adversaries Ase, Aprf , and Amac

such that:

Advlae
N2

(Aae,LAE ,LV D) ≤ Advind-acpla
Se

(Ase,LE ,LD)

+ Advlprf
T (Aprf ,LT) + 2Advsuf-cmla

Mac
(Amac,LT ,LV) .

3 Slae: A Sponge-Based LAE Construction

Slae, pronounced “sleigh”, is a Sponge-based non-adaptive Leakage-resilient
AEAD scheme. It is based on, and is closely related to, a prior sponge-based
AEAD scheme called Isap [10]. Isap is a nonce-based AEAD scheme intended
to inherently resist side-channel attacks while simultaneously fitting the well-
established syntax of AEAD schemes. More specifically, it claims security against
Differential Power Analysis (DPA) by employing a rekeying mechanism. An
important challenge that Isap overcomes, is to avoid decrypting distinct cipher-
texts under the same key without maintaining a state. Furthermore, as noted

224 J. P. Degabriele et al.

E

T

KE

KAN

C

T

M

A

Fig. 7. Graphical representation of the N2 construction.

by Isap’s designers, the sponge construction seems markedly well-suited to pro-
tect against side-channels. Typically, the sponge employs a large state that is
continually evolving, which intuitively endows it with an intrinsic resilience to
information leakage. Thus, in contrast to other designs, Isap potentially offers
a fairly efficient LAE solution that can be instantiated with off-the-shelf primi-
tives. However, as we already noted, Isap’s biggest limitation is that its design
is not backed by any formal security analysis, not even in the absence of leakage.

Isap is composed of a symmetric encryption scheme IsapEnc and a MAC
IsapMac combined according to the N2 construction. These components were
conceived by augmenting established sponge constructs with a rekeying function.
In particular the design rationale behind IsapMac is to augment a sponge-based
suffix MAC with a rekeying function. The rekeying is such that the key fed into
the suffix MAC itself depends on the inputs being authenticated and a mas-
ter authentication key. Similarly IsapEnc is a standard sponge-based encryp-
tion scheme whose key is derived from a master encryption key and the nonce.
Throughout, the rekeying function is realised from the sponge by setting the
absorption rate to be one. Intuitively, Isap’s resistance to DPA comes from the
fact that encryption and authentication never use the same key more than once,
and the slow absorption rate employed in the rekeying function. Both of these
factors limit the so-called data complexity of computations involving secret val-
ues, which in turn encumbers DPA attacks. See [10] for more details on Isap.

Slae retains the main structure of Isap, as well as its benefits, but it includes
some changes and restrictions that facilitate its security analysis. While the
majority of these differences are conceptual, they are substantial enough, how-
ever, to invalidate any claim that our security proof applies to Isap. The design of
Slae can be understood across three different levels of abstraction. At the high-
est level, like Isap, it is the N2 composition of a symmetric encryption scheme
SlEnc and a MAC SlMac. At the second abstraction level, SlMac and SlEnc

can be viewed in terms of smaller components. Specifically, we view SlMac as
combining a collision-resistant vector hash function H and a fixed-input-length
function F ′, and we decompose SlEnc into a fixed-input-length function F
and a pseudorandom generator with variable output length G. Indeed this view

Sponges Resist Leakage: The Case of Authenticated Encryption 225

corresponds to our generic construction of a non-adaptively leakage-resilient
AEAD scheme which we refer to as the FGHF

′ construction.
Note that there is no explicit idea of rekeying in the FGHF

′ construction. The
only leakage-resilient primitives are F and F ′. For security we will require both
to be LPRF secure and F ′ to additionally be LUF secure. Thus LAE schemes
are easy to construct once we have such primitives. Moreover, F is invoked once
for encryption, and likewise F ′ is invoked once for authentication, irrespective
of the message length. Slae is obtained by instantiating the four components
in the FGHF

′ construction with T-sponges. This is the third level view. While
the design rationale behind the FGHF

′ construction is quite distinct from that
of Isap, once instantiated, Slae and Isap suddenly look very similar.

We now describe Slae in more detail and then elaborate on the differences
between Slae and Isap in Sect. 3.4.

3.1 High-Level View of Slae

As already noted, Slae = (Slae-E ,Slae-D) is a nonce-based AEAD
scheme composed from a nonce-based symmetric encryption scheme SlEnc =
(SlEnc-E ,SlEnc-D) and a MAC SlMac = (SlMac-T ,SlMac-V). These are
combined according to the N2 composition, where the key is split into an encryp-
tion key KE and an authentication key KA. During encryption, SlEnc-E takes
the nonce, message, and key KE to return a ciphertext which is then fed together
with the nonce, associated data, and key KA, to SlMac-T to produce a tag
which is then appended onto the ciphertext. Decryption proceeds by reversing
these operations in a verify-then-decrypt manner, whereby ciphertext decryption
using SlEnc-D proceeds only if tag verification under SlMac-V was successful.
The pseudocode for this composition is described in Fig. 8.

3.2 The SlMac Construction

A pseudocode description of SlMac = (SlMac-T ,SlMac-V) can be found in
Fig. 9. It is a vector MAC operating on the triple (N ,A,C), where verification
works by recomputing the tag for the given triple and checking that it is iden-
tical to the given tag. As such, the core functionality of SlMac is captured in
the tagging algorithm SlMac-T , which is additionally depicted in Fig. 10. The
tagging algorithm can be understood as being composed of a (sponge-based)
vector hash function compressing the triple (N ,A,C) into a digest of size w
bits, which is then fed to the unpredictable function SlFunc to produce a tag
of size t bits. The nonce N is required to be m bits long, whereas A and C can
be of arbitrary length. Accordingly, SlMac-T starts by padding both A and C
so that their lengths are integer multiples of the sponge rate r . Note that the
padding function, lpad, always returns at least a single bit of padding and is
always applied, even if the input string is already an integer multiple of r .

226 J. P. Degabriele et al.

Fig. 8. High-level description of Slae in terms of SlMac and SlEnc.

Fig. 9. Pseudocode description of SlMac and SlFunc.

Sponges Resist Leakage: The Case of Authenticated Encryption 227

SvHash

ρ

N

IV

⊕

A1

ρ

⊕

Au

ρ

⊕

C1

ρ

⊕

1 ‖ 0c−1

⊕

Cv

ρ

SlFunc

KA

T
m
/

r
/

c
/

r
/

c
/

r
/

c
/

r
/

c
/

w
/

H

t
/

Fig. 10. Graphical illustration of SlMac-T .

To compute the hash digest H , the internal state is initialised to ρ(N ‖ IV),
where IV is a constant string of size n − m, and the padded associated data
A and the padded ciphertext C are then absorbed block by block. An input
separation mechanism is employed in order to demarcate the boundary between
A and C. This involves XORing the string 1‖0c−1 to the inner part of the state
once A has been absorbed, and ensures that distinct pairs (A,C)
= (A,C) for
which A ‖ C = A ‖ C do not result in the same hash digest.

Once the hash digest is evaluated, it is fed into SlFunc to compute the final
tag. This is also a sponge-based construction for which a graphical representation
appears in Fig. 11. Here the state is initialised to ρ(KA ‖ IV) and the hash digest
is then absorbed at a reduced rate of rr bits. Once the complete digest has been
absorbed the left most t bits of the state are output as the tag.

ρ

KA

IV

⊕

H1

ρ

⊕

H2

ρ

⊕

Hl

ρ

T
k
/

rr
/

n-rr
/

rr
/

n-rr
/

rr
/

n-rr
/

t
/

Fig. 11. Graphical illustration of SlFunc.

3.3 The SlEnc Construction

This is the sponge-based symmetric encryption scheme SlEnc =
(SlEnc-E ,SlEnc-D) described in Fig. 12 and depicted in Fig. 13. It is easy
to see that SlEnc-D(KE ,N , ·) = SlEnc-E(KE ,N , ·), and consequently we only
describe the operation of SlEnc-E . This algorithm can be viewed as being com-
posed of a pseudorandom function SlFunc, taking as input the pair (KE ,N),
and whose output is then fed into a pseudorandom generator SPrg. The output
of SPrg is then used to encrypt the message.

228 J. P. Degabriele et al.

Fig. 12. Pseudocode description of the SlEnc encryption scheme.

SlFunc SPrg

ρ

KE

IV

⊕

N1

ρ

⊕

Nl

ρ

⊕

C1

M1

ρ

⊕

Cv−1

Mv−1

ρ

⊕

Cv

Mv

k
/

rr
/

n-rr
/

rr
/

n-rr
/

r
/

c
/

r
/

c
/

|Mv|
/

Fig. 13. Graphical illustration of SlEnc-E .

Sponges Resist Leakage: The Case of Authenticated Encryption 229

Fig. 14. Pseudocode description of SPrg.

The nonce N is required to be m bits long and we do not require any addi-
tional padding for the message. The evaluation of SlFunc proceeds by initialis-
ing the internal state to ρ(KE ‖ IV), with a constant IV of size n − k , and then
absorbing the nonce at a reduced rate of rr bits. Once the nonce is absorbed,
the output state Sl+1 serves as the seed to the pseudorandom generator SPrg.
A separate pseudocode description of SPrg can be found in Fig. 14. The first
ciphertext block is generated by XORing the outer part of this state with the
first message block. Afterwards the initial state is given as input to the random
transformation outputting a new state which is then used to derive the next
ciphertext block by simply XORing again the outer state with the next message
block. This process is repeated until the whole message has been processed. If
the last message block is smaller than r bits, we simply truncate the outer state
to the required size and XOR both parts to obtain the last ciphertext block.

3.4 Differences Between Slae and Isap

We have already described in passing some of the differences between Slae and
Isap, but for clarity, we summarise these distinctions below and discuss them in
more detail.

The most prominent difference is that Slae is based on the T-sponge whereas
Isap employs the P-sponge. In particular the security proofs of Slae rely on
treating ρ as a non-invertible transformation. Treating ρ as an invertible random
permutation would add another layer of complexity to the security analysis and
we chose not to pursue this route at this point.

The description of Isap actually specifies three distinct permutations, each
obtained from the same round function but with a varying number of rounds.
These are used in the different components of Isap as a means of optimisation.
Such heuristic optimisations could be employed in Slae as well, but in our
security analysis we instantiate Slae with the same random transformation
throughout. Indeed this is the more conservative assumption, since otherwise
we would be treating these variants as being sampled independently at random
when in fact they are intimately related.

230 J. P. Degabriele et al.

Another difference between Slae and Isap can be seen in their MAC com-
ponents SlMac and IsapMac. The design of IsapMac is based on combining
a rekeying function IsapRk with a sponge-based suffix MAC. In turn, IsapRk

takes as input a hash of the MAC inputs. As a design optimisation, it is then
noted that this hash is already being computed as part of the suffix MAC, at
which point it is extracted, fed into IsapRk, and its output (the session key) is
fed back into the last permutation of the suffix MAC to yield the MAC tag. In
contrast, in SlMac, the value corresponding to the session key in IsapMac is
output directly as the MAC tag thereby showing that the last round in IsapMac

is essentially redundant.
Finally there are some differences in the way we set parameters in Slae as

opposed to Isap. For instance, Isap sets the size of the key and the nonce to
be equal. On the other hand, our analysis indicates that the limiting factor in
the security of Slae is the key size. As such it makes sense to set the key size k
equal to the width of the sponge n while setting the nonce to be much smaller,
say between 64 and 128 bits.

4 The Security of FGHF
′

In this section we establish the security of the FGHF
′ construction which is

depicted in Fig. 15. This is an abstraction of Slae, and proving its security
brings us halfway towards proving the security of Slae. At the same time,
we believe the FGHF

′ construction to be of independent interest as it serves
as a generic blueprint for constructing efficient AEAD schemes that are non-
adaptively leakage-resilient.

The FGHF
′ construction is a refinement of the N2 construction [19] which

builds a nonce-based AEAD scheme from a nonce-based symmetric encryption
scheme and a vector MAC. Barwell et al. [4] showed that the security of this
construction extends to the setting of leakage resilience. Specifically they showed
that if the encryption component is IND-aCPLA secure and the vector MAC is
both LPRF and SUF-CMLA secure, then the composition is LAE secure. In
turn the FGHF

′ construction further breaks down the encryption component,
denoted by Se[F ,G], and the vector MAC component, denoted by Mac[H,F ′],
of N2 into smaller parts. Namely encryption is realised from a fixed-input-length
leakage-resilient PRF F and a standard PRG G, whereas the vector MAC is built
from a vector hash function H, and a fixed-input-length function F ′ that is both
leakage-resilient pseudorandom and leakage-resilient unpredictable.

Since FGHF
′ is an instance of N2 we can apply the composition theorem of

Barwell et al. [4], which we reproduced and adapted to the random transforma-
tion model in Sect. 2.5. Moreover, since we can view non-adaptive leakage as a
special case of adaptive leakage where the leakage set is a singleton, the theorem
carries over to that setting which is what we are interested in here. Thus to
prove that the FGHF

′ construction is LAE secure we only need to show that
the encryption and MAC components meet the requirements of Theorem 1.

Sponges Resist Leakage: The Case of Authenticated Encryption 231

E [F , G]

T [H, F ′]

F G ⊕

H F ′

N C

T

M
KE

KA

m
/

n
/

A

w
/

t
/

Fig. 15. Graphical representation of the FGHF
′ construction. It corresponds to the N2

composition of Se[F ,G] = (E ,D) and Mac[H,F ′] = (T ,V) which are in turn composed
of a fixed-input-length LPRF F , a PRG G, a vector hash H, and a fixed-input-length
function F ′ that is both a LUF and an LPRF.

As it turns out, we can realise an IND-aCPLA secure encryption directly from
an LPRF and a variable-output-length PRG. Here the PRG serves only to extend
the range of the LPRF in order for the encryption scheme to accommodate
variable-length messages. Surprisingly, a standard PRG without any leakage
resilience suffices. As for the vector MAC component it needs to be an LPRF
over a vector of strings and simultaneously satisfy SUF-CMLA security. Contrary
to the leakage-free setting, the latter property is not automatically implied by
the former when a MAC is constructed from an LPRF through the canonical
construction. This is because the SUFCMLA game is more permissive than the
LPRF game with respect to the adversary’s queries. Namely, the adversary can
forward queries from the LVfy to Vfy, whereas in the LPRF game the adversary is
not allowed to forward queries from LF to F. This precludes reducing SUF-CMLA
security to LPRF security due to our inability of simulating the verification
oracles via the respective LPRF oracles. Note that SUF-CMLA needs to be
defined this way for Theorem 1 to hold whereas lifting the restriction in the LPRF
game would make it unsatisfiable. We overcome this problem by noting that, in
the non-adaptive leakage setting, unpredictability suffices to achieve SUF-CMLA
security, and at the same time we can allow the adversary to forward queries
between its leakage and challenge oracles while maintaining satisfiability. This
leads to our notion of a LUF which we prove to be sufficient to yield SUF-CMLA
security. As we will see in the next section we can construct fixed-input-length
function families satisfying both notions rather easily from sponges. Given such
a function family F ′, we can turn it into the required vector MAC by composing
it with a collision-resistant vector hash function. Specifically we show that we
can extend the domain of LPRFs and LUFs, rather efficiently, by composing
them with standard collision-resistant hash functions over appropriate domains.

232 J. P. Degabriele et al.

Combining the results in this section, leads to the LAE security of the FGHF
′

construction against non-adaptive leakage. We like this construction as it strikes
a practical balance between security and efficiency. By settling for non-adaptive
leakage, which seems to suffice for many practical applications, it only requires
one call to each of the leakage-resilient primitives, F and F ′, per encryption
query. In this work we focused on Slae which is a specific sponge-based instanti-
ation of FGHF

′, but other instantiations, possibly based on different techniques,
are of course possible. Thus this construction essentially reduces the problem of
designing non-adaptively leakage-resilient AEAD schemes to that of designing
function families over small domains that are good LPRFs and LUFs, which
conceptually is a much simpler target.

4.1 Se[F ,G] is IND-aCPLA Secure

We begin by proving the security of the encryption component of FGHF
′. Note

that for this part security holds in more general setting of adaptive leakage.
Below is the formal theorem statement and its proof is presented in the full
version of this paper.

Theorem 2. Let Se[F ,G] be the encryption scheme depicted in Fig. 15, com-
posed of the function family F : K×{0, 1}m → {0, 1}n and the PRG G : {0, 1}n →
{0, 1}∗ with respective associated leakage sets LF and LG. Then for any
IND-aCPLA adversary Ase against Se[F ,G] and associated leakage sets LE =
LD = LF × LG, there exist an LPRF adversary Alprf against F and a PRG
adversary Aprg against G such that:

Advind-acpla
Se[F,G] (Ase,LE ,LD) ≤ 2Advlprf

F (Alprf ,LF) + 2Advprg
G (Aprg) .

Let q and μ be such that Ase makes at most q queries totalling μ bits to each of
its oracles Enc, LEnc, and LDec, and let qρ denote the number of queries it makes
to ρ. Then Alprf makes at most q and 2q queries to its oracles F and LF, totalling
qm and 2qm, respectively, and at most QG(2q , 2μ)+qρ to ρ. As for Aprg, it makes
at most q queries to its oracle G totalling μ bits and QF (2q , 2qm)+QG(2q , 2μ)+qρ

queries to ρ.

4.2 Mac[H,F ′] is SUF-CMLA Secure

Next we reduce the SUF-CMLA security of Mac[H,F ′] to the LUF security
of F ′ and the collision resistance of H. Towards this end, we first show that
any LUF F̂ over domain X yields a SUF-CMLA secure MAC with message
space X via the canonical construction. Then we show that such a function F̂
can be constructed from a fixed-input-length LUF F ′ and a collision-resistant
hash function with domain X . The formal theorem statements now follow. Their
proofs can be found in the full version of this paper.

Sponges Resist Leakage: The Case of Authenticated Encryption 233

Theorem 3. Let F̂ : K ×X → {0, 1}t be a function family with associated leak-
age set LF̂ , and let Mac[F̂] be the corresponding canonical MAC with associated
leakage sets LT , LV where LF̂ = LT = LV . Then for any SUF-CMLA adversary
Amac against Mac[F̂], there exists an adversary Aluf against F̂ such that:

Advsuf-cmla
Mac[F̂]

(Amac,LT ,LV) ≤ Advluf
F̂

(
Aluf ,LF̂

)
.

Let q and μ be such that Amac makes at most q queries totalling μ bits to
each of its oracles Vfy, LTag, and LVfy. Then Aluf makes at most q , 2q , and 2q
queries to F, Lkg, and Guess, totalling μ, 2μ, and 2μ bits, respectively.

Theorem 4. Let F ′ : K×{0, 1}w → {0, 1}t be a function family with associated
leakage set LF ′ , and let H : X → {0, 1}w be a hash function over any domain
X . Further let their composition F̂ be defined as

F̂(K ,X) = F ′(K ,H(X))

where X ∈ X , K ∈ K, and LF̂ = LF ′ × LH for any set of efficiently computable
functions LH . Then for any LUF adversary Aluf against F̂ , there exists a cor-
responding LUF adversary A′

luf against F ′ and an adversary Ahash against H
such that:

Advluf
F̂

(
Aluf ,LF̂

)
≤ 2Advcr

H (Ahash) + Advluf
F ′

(
A′

luf ,LF ′
)

.

Let q and μ be such that Aluf makes at most q queries totalling μ bits to each of
its oracles F, Lkg, and Guess, and let qρ denote the number of queries it makes
to ρ. Then A′

luf makes at most q queries totalling qw bits to each of its oracles
F, Lkg, and Guess, and at most QH(3q , 3μ) + qρ queries to ρ. As for Ahash, it
requires at most QF ′(3q , 3qw) +QH(3q , 3μ) queries to ρ in order to simulate F ′

and H.
Combining both theorems, we obtain the following simple corollary reducing

the SUF-CMLA security of Mac[H,F ′] to that of its building blocks H and F ′.

Corollary 1. Let Mac[H,F ′] be the MAC component depicted in Fig. 15, com-
posed of the hash function H and the function family F ′ with respective leakage
sets LH and LF ′ . Then for any SUF-CMLA adversary Amac against Mac[H,F ′]
with associated leakage sets LT = LV = LF ′ ×LH , there exists a LUF adversary
Aluf against F ′ and an adversary Ahash against H such that:

Advsuf-cmla
Mac[H,F ′] (Amac,LT ,LV) ≤ 2Advcr

H (Ahash) + Advluf
F ′ (Aluf ,LF ′) .

Suppose Amac makes at most q queries totalling at most μ bits to each of
its oracles Vfy, LTag, and LVfy, and qρ to ρ. Then Aluf makes at most 2q
queries totalling at most 2qw bits to each of the oracles in the LUF game, and
QH(6q , 6μ) + qρ queries to ρ. As for Ahash it needs at most QF ′(6q , 6qw) +
QH(6q , 6μ) queries to ρ to simulate F ′ and H.

234 J. P. Degabriele et al.

4.3 Mac[H,F ′] is LPRF Secure

The final piece needed to apply Theorem 1 is to show that Mac[H,F ′], or rather
its tagging algorithm T [H,F ′], is a leakage-resilient PRF. Since by assumption
F ′ is already an LPRF, this result is analogous to Theorem 4 in that it provides
us a with simple technique for extending the domain of an LPRF. The proof can
be found in the full version of this paper.

Theorem 5. Let F ′ : K×{0, 1}w → {0, 1}t be a function family with associated
leakage set LF ′ , and let H : X → {0, 1}w be a hash function over the domain X .
Further let their composition F̂ be defined as

F̂(K ,X) = F ′(K ,H(X))

where X ∈ X , K ∈ K, and LF̂ = LF ′ × LH for any set of efficiently computable
functions LH . Then for any LPRF adversary Alprf against F̂ , there exists a
corresponding LPRF adversary A′

lprf against F ′ and an adversary Ahash against
H such that:

Advlprf

F̂
(
Alprf ,LF̂

)
≤ 2Advcr

H (Ahash) + Advlprf
F ′

(
A′

lprf ,LF ′
)

.

Let q and μ be such that Alprf makes at most q queries totalling μ bits to each
of its oracles F and LF, and let qρ denote the number of queries it makes to ρ.
Then A′

lprf makes at most q queries totalling qw bits to each of its oracles F and
LF, and at most QH(2q , 2μ) + qρ queries to ρ. As for Ahash, it requires at most
QF ′(2q , 2qw) + QH(2q , 2μ) queries to ρ in order to simulate F ′ and H.

4.4 The FGHF
′ Composition Theorem

Collecting the results from this section and combining it with the N2 composition
theorem we get the following composition theorem for the FGHF

′ construction.

Theorem 6 (LAE Security of the FGHF
′ Construction). Let F be a fixed-

input-length LPRF, G a PRG, H a vector hash function, and F ′ be a fixed-input-
length function that is both an LUF and an LPRF with associated leakage sets
LF , LG, LH , and LF ′ , respectively. Let FGHF

′ be the composition of F , G, H,
and F ′ with associated leakage sets LAE = LV D = LF × LG × LH × LF ′ . Then
for any LAE adversary Aae against FGHF

′ there exist adversaries Alprf , A′
lprf ,

Aprg, Ahash, and Aluf such that:

Advlae
FGHF

′ (Aae,LAE ,LV D) ≤ 2Advlprf
F (Alprf ,LF) + 2Advlprf

F ′
(
A′

lprf ,LF ′
)

+ 2Advprg
G (Aprg) + 6Advcr

H (Ahash)

+ 2Advluf
F ′ (Aluf ,LF ′) .

Sponges Resist Leakage: The Case of Authenticated Encryption 235

Now suppose Aae makes at most q queries totalling at most μ bits to each of its
Enc, LEnc, Dec, and LDec oracles, and let qρ denote its number of queries to ρ.
Then, Alprf makes at most 2q queries totalling 2qm bits to each of its oracles
F and LF, and at most 2QH(2q , 2μ) + 2QF ′(2q , 2qw) + QG(2q , 2μ) queries to ρ.
Similarly, A′

lprf makes at most 2q queries totalling 2qw bits to each of its oracles
F and LF, and at most 2QF (q , qm) + 2QG(q , μ) + QH(4q , 4μ) queries to ρ. Aluf

makes at most 4q queries, totalling 4qw bits to each of its oracles F and Lkg, and
at most 2QF (2q , 2qm)+2QG(2q , 2μ)+QH(12q , 12μ) to ρ. As for Aprg, it makes
at most q queries, totalling μ bits, to its oracle G and at most 2QH(2q , 2μ) +
2QF ′(2q , 2qw) + QF (2q , 2qm) + QG(2q , 2μ) queries to ρ. Finally, Ahash requires
at most 2QF (2q , 2qm) + 2QG(2q , 2μ) + QF ′(12q , 12qw) + QH(12q , 12μ) queries
to ρ.

5 Security of Sponge-Based Primitives

We now turn our attention to instantiating the constituent blocks of the FGHF
′

construction using sponge-based primitives. Specifically we prove the security
of the vector hash function SvHash, the pseudorandom generator SPrg, and
the leakage-resilient function family SlFunc for instantiating both F and F ′.
All primitives are based on the T-sponge and this particular instantiation of
the FGHF

′ construction gives rise to Slae. The most interesting results are
Theorems 7 and 8 which substantiate our claim that sponges offer an inherent
resistance to non-adaptive leakage. Informally these two theorems state that
λ bits of leakage can be compensated for by increasing the capacity, the key,
and the output (in the case of LUF security) by λ bits. While this may seem
intuitive, and indeed this was already conjectured informally in [10], the actual
proofs are fairly involved. While sponge-based hash functions and pseudorandom
generators have been studied quite extensively, SvHash and SPrg are non-
standard constructions. Firstly, they are based on a transformation rather than
a permutation which is not common in the literature. Secondly, unlike other
constructions SPrg treats the whole initial state as the seed, and SvHash takes
a triple of strings as its input. Thus while not particularly novel, we include their
security proofs for completeness.

5.1 A Sponge-Based Leakage-Resilient Function Family

Although LPRF and LUF security are incomparable notions, it is still possible to
meet both notions simultaneously through a single primitive. Indeed the FGHF

′

construction requires that such a primitive exist since F ′ is required to satisfy
both security notions. We now show that the SlFunc construction is well-suited
for this role, and in fact that it can be used to instantiate both the F and F ′

components – as is the case in Slae. Moreover, the most extensively studied
leakage-resilient object is that of a pseudorandom function due to its versatility
in several potential applications. SlFunc yields a practical construction of this

236 J. P. Degabriele et al.

primitive against non-adaptive leakage and as such we think it may be of inde-
pendent interest. The security of SlFunc is stated formally in the following two
theorems. Their proofs can be found in the full version of this paper.

Theorem 7. Let SlFunc be the function family described in Fig. 9 taking as
input strings of size (l · rr) bits and returning t-bit strings. Then for any LPRF
adversary A against SlFunc and any vector of leakage functions [L0, . . . , Ll]
where each component maps n bits to λ bits such that Lλ = {[L0, . . . , Ll]}, it
holds that:

Advlprf
SlFunc

(A,Lλ) ≤ qT (qT + 2) + (qF + qLF)qρ

2n−rr−1
+

2qρ

2k−λ
+

2lqFqρ

2n−rr−λ
.

In the above qρ, qF, and qLF denote respectively the number of queries A makes
to its oracles ρ, F, and LF and qT = (l +1)(qLF + qF)+ qρ. Moreover it is required
that qρ + l(qF + qLF) ≤ 2k−1 and (2rr)qρ + l(qF + qLF) ≤ 2n−1.

The next Theorem shows that SlFunc is a good LUF. Its proof bears some
similarity to that of Theorem 7 as it uses similar ideas. However one important
difference lies in the leakage model that is used in this theorem. Since the Lkg
oracle returns only the leakage and no output, we add here an extra leakage
function that returns the leakage on the output of SlFunc. In the LPRF case
this was not required since in that game the leakage oracle returns the full output
anyway.

Theorem 8. Let SlFunc be the function family described in Fig. 9 taking as
input strings of size (l ·rr) bits and returning t-bit long strings. Then for any LUF
adversary A against SlFunc, and any vector of leakage functions [L0, . . . , Ll+1]
where each component maps n bits to λ bits such that Lλ = {[L0, . . . , Ll+1]}, it
holds that:

Advluf
SlFunc

(A,Lλ) ≤ qT (qT + 2)
2n−rr

+
qρ

2k−λ−1
+

lqLkgqρ

2n−λ−1
+

qGuess
2t−λ−1

.

In the above qρ, qF, qLkg and qGuess denote respectively the number of queries
A makes to its oracles ρ, F, Lkg, and Guess and qT = (l + 1)(qF + qLkg +
qGuess) + qρ. Moreover it is required that the following conditions be satisfied
qρ +(l +1)(qF + qLkg + qGuess) ≤ 2k−1, (2rr)qρ +(l +1)(qF + qLkg + qGuess) ≤ 2n−1,
and qGuess + (l + 1)(qF + qLkg + qGuess) ≤ 2n−1 .

5.2 The Security of SPrg

As explained in Sect. 3.3, SlEnc can be decomposed into the cascade of SlFunc
and SPrg, matching the encryption component of the FGHF

′ construction. A
pseudocode description of the variable-output-length pseudorandom generator
SPrg is given in Fig. 14. Decomposing SlEnc this way requires us to treat all of
SPrg’s initial state as the seed, which deviates from the more conventional ways
of constructing sponge-based pseudorandom generators. Moreover we consider a

Sponges Resist Leakage: The Case of Authenticated Encryption 237

security definition which allows the adversary to make multiple queries to the
PRG, each with differing output lengths.

The security of SPrg is stated formally in Theorem 9. Its proof follows from
a standard hybrid argument and can be found in the full version of this paper.

Theorem 9. Let SPrg be the pseudorandom generator described in Fig. 14.
Then for any PRG adversary A, it holds that:

Advprg
SPrg

(A) ≤
vmax−1∑

i=1

(
qGqρ

2c − qρ
+

qρqG + 2q2
G (vmax − i)
2n

)
+

q2
G

2n
.

In the above, A can make qρ queries to the random transformation ρ and qG
queries to the challenge oracle G of size at most Lmax, and vmax =

⌈
Lmax

r

⌉
.

5.3 A Sponge-Based Vector Hash Function

The final building block is the sponge-based vector hash function SvHash which
is graphically represented in Fig. 10. It takes as input a triple of strings, namely
a nonce, associated data and a ciphertext to return a string digest. A salient
feature of this construction is the xoring of 1 ‖ 0c−1 into the inner state in
order to separate the (padded) associated data from the (padded) ciphertext.
We prove the security of SvHash in a modular fashion, by first reducing its
security to that of a plain hash function taking a single input and then prove
the collision-resistance of this latter construction in the random transformation
model. The collision-resistance of SvHash is stated formally in the following
theorem, and the full proof details can be found in the full version of this paper.

Theorem 10. Let SvHash be the vector hash function described in Fig. 10.
Then for any adversary A making q queries to ρ, it holds that:

Advcr
SvHash

(A) ≤ q(q − 1)
2w+1

+
q(q + 2)

2c−1
.

5.4 Concrete Security of Slae

A bound for the security of Slae is directly obtained by combining Theorem 6
with Theorems 7–10. It only remains to derive concrete bounds for the expres-
sions QF ,QG ,QH,QF ′ for the specific case of Slae. Assuming a nonce size of m
bits and that the output of H is w bits long, the following expressions are easily
derived from the algorithm definitions. Namely, we have that:

QF (q , qm) = q
⌈
m + 1

rr

⌉
QF ′(q , qw) = q

⌈
w + 1

rr

⌉

QG(q , μ) =
⌈μ

r

⌉
QH(q , μ) =

⌈μ

r

⌉
+ 3q .

238 J. P. Degabriele et al.

6 Concluding Remarks

In this work we proposed the FGHF
′ construction as a template for constructing

non-adaptively leakage-resilient AEAD schemes from relatively simpler primi-
tives – requiring only two calls to the leakage-resilient functions per encryption
or decryption call. We then presented Slae as a sponge-based instantiation of
this construction, offering good performance and simplicity. Our security anal-
ysis shows that λ bits of leakage per transformation call can be compensated
for by increasing the sponge capacity by λ bits. However some care is needed in
interpreting these results. Like most treatments of leakage resilience we assume
that the leakage per evaluation is limited and does not drain the entropy in
the secret state. Thus it is implicitly assumed that an implementation is good
enough to withstand basic side-channel attacks like Simple Power Analysis (SPA)
attacks. The benefit of our leakage-resilience security proof is that resistance to
basic attacks automatically translates to resistance against more sophisticated
attacks like Differential Power Analysis (DPA).

In the FGHF
′ construction and Slae, authenticity is verified by recomputing

the MAC tag and testing for equality between the recomputed tag and the one
included in the ciphertext. While our leakage model accounts for the leakage
that may take place during the tag recomputation, equality testing is assumed
to be leak-free. Thus any implementation of Slae (or any other realisation of
the FGHF

′ construction) needs to ensure that equality testing does not leak, or
take additional measures, such as masking, to protect against leakage from this
component.

Finally the security of Slae relies on it being instantiated with a non-
invertible transformation rather than a permutation. On the other hand, most
practical schemes employ permutations, such as Keccak-p and Xoodoo-p.
While in this work we did not specify any concrete transformation, a natural
candidate is to use ρ(x) = p(x) ⊕ x for p ∈ {Keccak-p,Xoodoo-p}. Although
this construction is known to be differentiable from a random transformation
when given access to p, this should not preclude it from being a suitable candi-
date for instantiating constructions in the random transformation model. Indeed,
Keccak-p and Xoodoo-p are also differentiable from a random permutation
when given access to their underlying building blocks.

Acknowledgements. We thank Daniel Baur and Christian Schuller for initial dis-
cussions during the early stages of this project, and our anonymous reviewers for their
constructive comments. Degabriele was supported by the German Federal Ministry of
Education and Research (BMBF) as well as by the Hessian State Ministry for Higher
Education, Research and Arts (HMWK) within CRISP. Janson was co-funded by the
DFG as part of project P2 within the CRC 1119 CROSSING. Struck was funded by
the DFG as part of project P1 within the CRC 1119 CROSSING.

Sponges Resist Leakage: The Case of Authenticated Encryption 239

References

1. Abdalla, M., Beläıd, S., Fouque, P.-A.: Leakage-resilient symmetric encryption via
re-keying. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp.
471–488. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-
1 27

2. Abed, F., Berti, F., Lucks, S.: Insecurity of RCB: leakage-resilient authenticated
encryption. Cryptology ePrint Archive, Report 2016/1121 (2016). http://eprint.
iacr.org/2016/1121

3. Agrawal, M., et al.: RCB: leakage-resilient authenticated encryption via re-keying.
J. Supercomputing 74(9), 4173–4198 (2018)

4. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in the
face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 693–723. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 24

5. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 25

6. Bernstein, D.J.: CAESAR: Competition for Authenticated Encryption: Security,
Applicability, and Robustness (2014)

7. Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.-X.: Leakage-resilient
and misuse-resistant authenticated encryption. Cryptology ePrint Archive, Report
2016/996 (2016). http://eprint.iacr.org/2016/996

8. Berti, F., Pereira, O., Peters, T., Standaert, F.-X.: On leakage-resilient authenti-
cated encryption with decryption leakages. IACR Trans. Symm. Cryptol. 2017(3),
271–293 (2017)

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT Hash Workshop (2007). https://keccak.team/files/SpongeFunctions.pdf

10. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP -
towards side-channel secure authenticated encryption. IACR Trans. Symm. Cryp-
tol. 2017(1), 80–105 (2017)

11. Dobraunig, C., Mennink, B.: Leakage resilience of the duplex construction. Cryp-
tology ePrint Archive, Report 2019/225 (2019). https://eprint.iacr.org/2019/225

12. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 21–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-
7 2

13. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS, pp.
293–302. IEEE Computer Society Press, October 2008

14. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryp-
tography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp.
213–232. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-
8 13

15. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

16. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Leakage-resilient authenticated
encryption with misuse in the leveled leakage setting: definitions, separation results,
and constructions. Cryptology ePrint Archive, Report 2018/484 (2018). https://
eprint.iacr.org/2018/484

https://doi.org/10.1007/978-3-642-40349-1_27
https://doi.org/10.1007/978-3-642-40349-1_27
http://eprint.iacr.org/2016/1121
http://eprint.iacr.org/2016/1121
https://doi.org/10.1007/978-3-319-70694-8_24
https://doi.org/10.1007/978-3-319-70694-8_24
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
http://eprint.iacr.org/2016/996
https://keccak.team/files/SpongeFunctions.pdf
https://eprint.iacr.org/2019/225
https://doi.org/10.1007/978-3-642-14623-7_2
https://doi.org/10.1007/978-3-642-14623-7_2
https://doi.org/10.1007/978-3-642-33027-8_13
https://doi.org/10.1007/978-3-642-33027-8_13
https://eprint.iacr.org/2018/484
https://eprint.iacr.org/2018/484

240 J. P. Degabriele et al.

17. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Towards lightweight side-channel
security and the leakage-resilience of the duplex sponge. Cryptology ePrint Archive,
Report 2019/193 (2019). https://eprint.iacr.org/2019/193

18. Longo, J., Martin, D.P., Oswald, E., Page, D., Stam, M., Tunstall, M.J.: Sim-
ulatable leakage: analysis, pitfalls, and new constructions. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 223–242. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45611-8 12

19. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5 15

20. Pereira, O., Standaert, F.-X., Vivek, S.: Leakage-resilient authentication and
encryption from symmetric cryptographic primitives. In: Ray, I., Li, N., Kruegel,
C. (eds.) ACM CCS 2015, pp. 96–108. ACM Press, October 2015

21. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002, pp. 98–107. ACM Press, November 2002

22. Standaert, F., Pereira, O., Yu, Y., Quisquater, J., Yung, M., Oswald, E.: Leakage
resilient cryptography in practice. In: Sadeghi, A., Naccache, D. (eds.) Towards
Hardware-Intrinsic Security - Foundations and Practice. Information Security and
Cryptography, pp. 99–134. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14452-3 5

23. Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptogra-
phy under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 19

24. Yu, Y., Standaert, F.-X., Pereira, O., Yung, M.: Practical leakage-resilient pseudo-
random generators. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM
CCS 2010, pp. 141–151. ACM Press, October 2010

https://eprint.iacr.org/2019/193
https://doi.org/10.1007/978-3-662-45611-8_12
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-14452-3_5
https://doi.org/10.1007/978-3-642-14452-3_5
https://doi.org/10.1007/978-3-642-40041-4_19

Isogenies (2)

Dual Isogenies and Their Application
to Public-Key Compression

for Isogeny-Based Cryptography

Michael Naehrig1(B) and Joost Renes2

1 Microsoft Research, Redmond, WA, USA
mnaehrig@microsoft.com

2 Digital Security Group, Radboud University, Nijmegen, The Netherlands
j.renes@cs.ru.nl

Abstract. The isogeny-based protocols SIDH and SIKE have received
much attention for being post-quantum key agreement candidates that
retain relatively small keys. A recent line of work has proposed and fur-
ther improved compression of public keys, leading to the inclusion of
public-key compression in the SIKE proposal for Round 2 of the NIST
Post-Quantum Cryptography Standardization effort. We show how to
employ the dual isogeny to significantly increase performance of com-
pression techniques, reducing their overhead from 160–182% to 77–86%
for Alice’s key generation and from 98–104% to 59–61% for Bob’s across
different SIDH parameter sets. For SIKE, we reduce the overhead of (1)
key generation from 140–153% to 61–74%, (2) key encapsulation from
67–90% to 38–57%, and (3) decapsulation from 59–65% to 34–39%. This
is mostly achieved by speeding up the pairing computations, which has
until now been the main bottleneck, but we also improve (deterministic)
basis generation.

Keywords: Post-Quantum Cryptography · Public-key compression ·
Supersingular elliptic curves · Dual isogenies · Reduced Tate pairings

1 Introduction

Isogeny-based protocols are an alternative to the more mainstream proposals
for post-quantum key agreement, such as lattice-based or code-based schemes.
Beyond their reliance on a different type of hard computational problem, the
main distinguishing characteristics of isogeny-based key exchange and key encap-
sulation schemes are their small keys and low communication costs. This is for
example seen in the supersingular-isogeny Diffie–Hellman (SIDH) scheme first
proposed by Jao and De Feo [12,19], its IND-CCA secure key encapsulation
variant SIKE [17] and the more recent CSIDH proposal of Castryck, Lange,
Martindale, Panny and Renes [5].

J. Renes—Partially supported by the Technology Foundation STW (project 13499 –
TYPHOON & ASPASIA), from the Dutch government.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 243–272, 2019.
https://doi.org/10.1007/978-3-030-34621-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_9

244 M. Naehrig and J. Renes

The supersingular isogeny key encapsulation scheme SIKE—one of the 17
key encapsulation mechanisms that advanced to the second round of the NIST
standardization process for post-quantum cryptography [24]—has the advantage
of small public keys and ciphertexts, with sizes in the low hundreds of bytes. For
example, the Round 1 submission of SIKE [18] supports public keys of 378 bytes
and ciphertexts of 402 bytes at NIST security level 1. In comparison, at the
same security level the lattice-based scheme Saber [11] uses 672 byte public keys
and 736 byte ciphertexts, while Kyber [4] uses 800 byte public keys and 736 byte
ciphertexts. However, such compact keys and ciphertexts in SIKE are contrasted
by comparatively high latencies. The recent CSIDH protocol, a non-interactive
key exchange scheme and a potential candidate as a drop-in replacement for the
standard Diffie-Hellman key exchange, exhibits these characteristics in an even
more extreme fashion. It supports even smaller keys, with significantly larger
runtimes.

In a similar fashion, techniques for public-key compression for the SIDH pro-
tocol also amplify these characteristics. They allow to reduce the communication
bandwidth further, but come at the cost of a large computational overhead com-
pared to the uncompressed variant of SIDH. The same techniques apply to SIKE
and reduce its public key and ciphertext sizes. Compression has been included
in the Round 2 submission of SIKE [17] and, along with the introduction of new
parameter sets, has enabled public keys of merely 196 bytes and ciphertexts of
only 209 bytes for NIST level 1. We propose several techniques to reduce the large
computational overhead, making the use of public-key compression significantly
more interesting for practitioners.

Public-Key Compression for SIDH. Let �,m be distinct primes and e�, em

be strictly positive integers such that p = �e� · mem − 1 is prime. Let E/Fp2

be a supersingular elliptic curve such that #E(Fp2) = (p + 1)2, and let φ� :
E → E/〈R〉 be an isogeny of degree �e� such that ker φ� = 〈R〉 for some point
R ∈ E[�e�]. Similarly, let φm : E → E/〈S〉 be an isogeny of degree mem such
that kerφm = 〈S〉 for some point S ∈ E[mem]. Fix parameters P�, Q� such that
〈P�, Q�〉 = E[�e�] and Pm, Qm such that 〈Pm, Qm〉 = E[mem]. The public keys
for SIDH are encoded by the triples of x-coordinates of the form

[
xφ�(Pm), xφ�(Qm), xφ�(Pm−Qm)

]
,
[
xφm(P�), xφm(Q�), xφm(P�−Q�)

]
,

which can be represented with 6 log2 p bits each.
It is possible to further reduce the size of the public key to 4 log2 p, as first

proposed by Azarderakhsh, Jao, Kalach, Koziel, and Leonardi [1], by deter-
ministically generating points Um, Vm such that 〈Um, Vm〉 = (E/〈R〉)[mem] and
computing a0, b0, a1, b1 ∈ Z/memZ such that

[
φ�(Pm)
φ�(Qm)

]
=

[
a0 b0
a1 b1

] [
Um

Vm

]
.

Although initially believed to be orders of magnitude more expensive than
the original isogeny computation, the work of Costello, Jao, Longa, Naehrig,

Dual Isogenies and Their Application to Public-Key Compression 245

Renes, and Urbanik [7] significantly reduced the cost to a factor 2.4 slowdown,
while simultaneously compressing the public keys to 7

2 log2 p bits. Further com-
putational improvements have since been made by Zanon, Simplicio, Pereira,
Doliskani and Barreto [30]. An interesting observation by Zanon et al. [30, §2] is
that one can equivalently compute c0, d0, c1, d1 ∈ Z/memZ such that

[
Um

Vm

]
=

[
c0 d0
c1 d1

] [
φ�(Pm)
φ�(Qm)

]
, i. e.

[
a0 b0
a1 b1

]
=

[
c0 d0
c1 d1

]−1

,

which they refer to as reverse basis decomposition. Its main upside is that the
pairing value

g0 := τmem (φ�(Pm), φ�(Qm)) = τmem (Pm, Qm)�e�
,

where τmem is the order-mem reduced Tate pairing [20], solely depends on pub-
lic parameters and can therefore be precomputed. The computation of the full
compression algorithm is then typically divided into three stages.

1. (Basis generation) Compute the basis Um, Vm.
2. (Pairing computation) Compute the pairings

g1 = τmem (φ�(Pm), Um) , g2 = τmem (φ�(Pm), Vm) ,

g3 = τmem (φ�(Qm), Um) , g4 = τmem (φ�(Qm), Vm) .
(1)

3. (Discrete logarithm computation) Find c0, d0, c1, d1 ∈ Z/memZ such that

g1 = gd0
0 , g2 = gd1

0 , g3 = g−c0
0 , g4 = g−c1

0 .

The first stage is easy for m = 2, in which case an entangled basis can be
computed at extremely low cost [30, §3]. The case of m = 3 is more complicated;
the work of Costello et al. [7] proposes to use techniques related to explicit 3-
descent by Schaefer and Stoll [27] to generate points in (E/〈R〉) \ [3](E/〈R〉),
while Zanon et al. [30, §3] find that näıve generation of such points via cofactor
multiplication yields better results. We observe that the difficulty of applying the
3-descent techniques seems to lie in the fact that there are no known non-trivial
3-torsion points, requiring initial cofactor multiplications to find such points.

The most costly part of the algorithm is the second phase, in which 4 simulta-
neous pairings are computed. Although optimizations can be made by observing
that inputs are shared and by choosing an optimal curve model E/〈R〉, the large
cost remains.

Finally 4 (simultaneous) discrete logarithms need to be computed, which is
feasible due to the smoothness of the group order of points on the elliptic curve.
This can be done relatively cheaply with very little requirements on memory [7,
§5], and can be sped up through the use of precomputed tables [30, §6].

Contributions. We propose several improvements that together significantly
reduce the computational overhead imposed on SIDH and SIKE by public-key

246 M. Naehrig and J. Renes

compression. The main idea behind our optimizations is to utilize the fact that
the pairing values in Eq. (1) satisfy

g1 = τmem (Pm, φ̂�(Um)) , g2 = τmem (Pm, φ̂�(Vm)) ,

g3 = τmem (Qm, φ̂�(Um)) , g4 = τmem (Qm, φ̂�(Vm)) ,

where φ̂� denotes the (unique) dual isogeny of φ�.
Our first contribution (see Sect. 3) is to propose explicit efficient formulas for

computing duals of isogenies of degree 2, 4 and prime � > 2 between Montgomery
curves, as proposed by Costello and Hisil [6] and Renes [25]. Through the use
of optimal strategies, these can be used to compute dual isogenies of degrees
�e� for any prime �. However, the crucial observation is that the efficiency of
evaluating φ̂� increases significantly by re-using values that are obtained during
the computation of φ�. In Proposition 3 we describe the kernels of all �-isogenies
appearing in the decomposition of φ̂�, and we give details on the computation
and the values to store in Sects. 3.1 and 3.2. Having an efficient way to compute
the dual, we gain the flexibility to apply the following idea.

Instead of evaluating φ� on the basis points Pm and Qm, we pull back the
deterministically generated basis points Um and Vm through φ̂� from E/〈R〉 to
E. This has several advantages, as the starting curve is a fixed system parameter
and does not change throughout multiple executions of the protocol. As such,
the starting curve can be chosen to have special properties, leading to more
efficient operations. For example, precomputing E(Fp2)[3] leads to more efficient
basis generation (see Sect. 4.3), while E being defined over Fp and having the
basis points Pm and Qm (almost) defined over Fp has significant advantage
for the pairing computation (see Sect. 5). More specifically, we summarize our
contributions as follows.

– The main contribution is the proposal to use the dual isogeny to pull back
computations from E/〈R〉 to E. For this purpose we show how to decompose
φ̂� as a sequence of �-isogenies and how to evaluate them with very little
overhead.

– We show how to utilize the dual isogeny in the basis generation phase. First,
we adapt the entangled basis construction to an x-only setting. More impor-
tantly, we show that pulling back order and independence checking to E gives
new interest to 3-descent methods. We analyze these methods in more detail,
proving a strong relation to the reduced Tate pairing. Using this connection,
we can reduce the cofactor scalar multiplications on E to exponentiations in
Fp2 (i. e. pairings), significantly reducing the cost.

– We address the main bottleneck of public-key compression, namely the pairing
computation. In the case of � = 2 we pull back the pairing to the A = 0 curve,
on which a distortion basis for the mem-torsion is available which greatly
simplifies the pairing computation. For � > 2 and m = 2 we can pull back to
the A = 6 curve, for which we can find basis points P2 and Q2 such that [2]P2

is Fp-rational and [2]Q2 = (x, iy), where x, y ∈ Fp. This constrains many of
the field operations to Fp.

Dual Isogenies and Their Application to Public-Key Compression 247

– As the mem -torsion is a fixed parameter, we propose to use affine Weierstrass
coordinates for the pairings and to precompute all Miller line functions. This
leads to line functions that are very simple to evaluate, at the cost of a pre-
computed table. However, these tables are only several hundreds of kilobytes
large and significantly smaller than those (already) used for discrete loga-
rithms. Therefore, the memory overhead is small.

We have implemented1 our techniques on top of the C library provided in the
Round 2 submission package of SIKE, and compared our implementation to the
uncompressed and compressed versions of SIKE as submitted to NIST across
all parameter sets SIKEpXXX, where XXX ∈ {434, 503, 610, 751}. Our results show
that public-key compression for SIDH can be implemented with an induced
overhead of 77–86% (resp. 59–61%), compared to the previously best 160–182%
(resp. 98–104%) of [17,30] for Alice (resp. Bob) across the different parameter
sets (see Table 4a). Moreover, the compression techniques for SIKE induce an
overhead of 61–74% (was 140–153%) for key generation, of 38–57% (was 67–90%)
for encapsulation and 34–39% for decapsulation (was 59–65%) for the different
parameter sets (see Table 4b). Finally, our results show that we speed up the
pairing phase by a factor at least 2.97 for � = 2 and a factor at least 2.70 for
� = 3, while also increasing efficiency of basis generation and decompression for
� = 2. (see Table 2).

Remark 1. As the implementation focuses on {�,m} = {2, 3}, which seems to
be the optimal parametrization for SIKE, our descriptions often also make this
assumption for the sake of simplicity. Everything that is described in this work
naturally generalizes to other primes. In that case it should be noted that � = 2
often exhibits special behavior (e. g. the existence of an entangled basis, or a
special case for isogeny formulas [25, Proposition 1]) so we treat it separately,
but our contributions work perfectly well by selecting m to be an arbitrary odd
prime. Of course, one is also free to choose both � and m to be odd primes
without any (theoretical) problems.

Remark 2. The techniques that we describe rely on being able to evalu-
ate the dual isogeny φ̂� on a torsion basis (E/〈R〉)[mem], which is equiva-
lent to being able to evaluate φ� on E[mem]. That is, given a point U ∈
(E/〈R〉)[mem] we could (efficiently) solve the two-dimensional discrete logarithm
U = [a]φ�(Pm) + [b]φ�(Qm) for some a, b ∈ Z/memZ, from which it follows that
φ̂�(U) = [�e�a]Pm + [�e�b]Qm . Thus, computing on the points φ̂�(U) and φ̂�(V)
leaks no more information about the secret key than computing on φ�(P) and
φ�(Q) does.

On the other hand, the evaluation of the dual isogeny itself does rely on
secret data, while the intermediate points that are stored are also sensitive (as
is the case with the evaluation of φ�). We simply apply the same protections to
the dual evaluation as are applied to φ�, which in the implementation of SIKE
just means that all algorithms are constant-time (see Sect. 3).
1 The implementation is available as part of the SIDH Library v3.2, https://github.

com/microsoft/PQCrypto-SIDH.

https://github.com/microsoft/PQCrypto-SIDH
https://github.com/microsoft/PQCrypto-SIDH

248 M. Naehrig and J. Renes

2 Preliminaries and Notation

We begin by recalling the basic theory, to remind the reader of typical notions
and to establish notation for the rest of this work. As we already discussed public-
key compression techniques related to SIDH and SIKE in Sect. 1, we omit those
details here.

Elliptic Curves. Let p > 3 be prime. An elliptic curve E defined over a field k of
characteristic p is a smooth projective curve of genus 1 with specified base point
OE . Although typically defined by the Weierstrass model [29, §III.1], we shall
always assume E to be described by the (less general) Montgomery form [22]

E : y2 = x3 + Ax2 + x

for some A ∈ k such that A2 �= 4, and may write EA to emphasize the curve
coefficient. As is the case for the Weierstrass model, the base point OE is the
unique point at infinity. The points on E form an abelian group with neutral
element OE , and for any m ∈ Z we let [m]P = P + . . . + P be the sum of m
copies of P (and a negation if m is negative). For any such non-zero m ∈ Z,
we let

E[m] = {P ∈ E | [m]P = OE}
be the m-torsion subgroup and say that E is supersingular whenever #E[p] = 1.
In that case we have j(E) ∈ Fp2 [29, Theorem V.3.1], so that E is isomorphic
to a curve defined over Fp2 . The number of isomorphism classes of supersingu-
lar elliptic curves over k of characteristic p is seen to be exactly �p/12� + εp

[14, Theorem 9.11.11], where

εp =

⎧
⎪⎨

⎪⎩

0 if p ≡ 1 mod 12 ,

1 if p ≡ 5, 7 mod 12 ,

2 if p ≡ 11 mod 12 .

Indeed, in this work we only concern ourselves with Montgomery curves defined
over Fp2 for some (large) prime p.

Isogenies and Their Duals. Given any two elliptic curves E and E defined
over k, an isogeny φ : E → E is a non-constant morphism such that φ(OE) =
OE . It induces a field embedding φ∗ : k(E) → k(E), and we say that φ is
separable whenever the finite [29, Theorem II.2.4(a)] field extension k(E)/φ∗k(E)
is separable, in which case we define deg φ = [k(E) : φ∗k(E)]. The map φ
→ ker φ
defines a correspondence between separable isogenies defined over k emanating
from E and subgroups of E that are invariant under the action of Gal(k/k),
up to post-composition with an isomorphism [14, Theorem 9.6.19]. Given any
isogeny φ defined over k, there exists a unique isogeny φ̂ defined over k of the
same degree as φ such that φφ̂ = φ̂φ = [deg φ]. The isogeny φ̂ is called the dual
isogeny of φ [29, Theorem III.6.1].

Dual Isogenies and Their Application to Public-Key Compression 249

Reduced Tate Pairing. Now let k = Fq be a finite field containing the (cyclic)
group of m-th roots of unity μm. We denote by

τm : E(k)[m] × E(k)/mE(k) → μm

the reduced Tate pairing [20] of order m defined by τm(S, T) = fm,S(T)(q−1)/m,
where fm,S is a rational function with divisor m(S) − m(O). Interestingly, we
have

τm(φ(S), T ′) = τm(S, φ̂(T ′))

for any isogeny φ : E → E′ and points S ∈ E(k)[m], T ′ ∈ E′(k)/mE′(k) [3,
Theorem IX.9]. Although not generally true, in the cases of our interest we shall
always have E(Fq)/mE(Fq) ∼= E(Fq)[m], and have the additional property that
τm(S, T) = τm(T, S)−1 for any S, T ∈ E(Fq)[m].

SIDH and SIKE. First we consider the SIDH protocol, proposed in 2011 by
Jao and De Feo [19]. Let �,m be distinct primes and e�, em be strictly positive
integers such that p = �e� · mem − 1 is prime. Let E/Fp2 be a supersingular
elliptic curve such that #E(Fp2) = (p + 1)2, and let φ� : E → E/〈R〉 be an
isogeny of degree �e� such that ker φ� = 〈R〉 for some point R ∈ E[�e�]. Similarly,
let φm : E → E/〈S〉 be an isogeny of degree mem such that ker φm = 〈S〉 for
some point S ∈ E[mem]. The shared secret is then (derived from) j(E/〈R,S〉).
Notably, this is not feasibly computable from R and E/〈S〉 or from S and E/〈R〉
respectively.

Instead, we fix public parameters P�, Q� ∈ E[�e�] and Pm, Qm ∈ E[mem] and
derive the points R, S from secret keys s0, s1 ∈ Z/�e�Z and t0, t1 ∈ Z/memZ

such that
R = [s0]P� + [s1]Q� , S = [t0]Pm + [t1]Qm

have the desired order. That is, not both s0 and s1 (resp. t0 and t1) are divisible
by � (resp. m). The (näıve) public keys are then [E/〈R〉, φ�(Pm), φ�(Qm)] and
[E/〈S〉, φm(P�), φm(Q�)], observing that

(E/〈R〉) /〈[t0]φ�(Pm) + [t1]φ�(Qm)〉
∼= E/〈R,S〉
∼= (E/〈S〉) /〈[s0]φm(P�) + [s1]φm(Q�)〉 .

It was noted by Costello, Longa and Naehrig [8, §6] that the public keys can be
encoded (up to simultaneous sign) by the triples of x-coordinates

[
xφ�(Pm), xφ�(Qm), xφ�(Pm−Qm)

]
,
[
xφm(P�), xφm(Q�), xφm(P�−Q�)

]
,

which can be represented with 6 log2 p bits each.
Unfortunately, the SIDH key exchange scheme combined with static keys is

insecure as the result of an active adaptive attack by Galbraith, Petit, Shani and
Ti [15]. Consequently, one must resort to using ephemeral public keys. Alter-
natively, one can apply standard protocol transformations [13,16] to turn the

250 M. Naehrig and J. Renes

IND-CPA key exchange into an IND-CCA key encapsulation mechanism. The
resulting scheme is referred to as SIKE [17] and is currently part of the NIST
Post-Quantum Cryptography Standardization effort [24]. Although we refer
to [17] for more detail on the submission, we remark that the secret keys are
chosen such that s0 = 1 and t0 = 1, simplifying some of the treatment.

Field Operations. We denote by M and S the cost of an Fp2 field multiplica-
tion and squaring respectively, and by A a field addition or subtraction (which
are therefore assumed to have the same cost). We denote by E the cost of a
square root in Fp2 . Similarly, we write m and s for the cost of an Fp field multi-
plication and squaring respectively, while a denotes an addition or subtraction in
Fp. Reflecting the properties of the SIKE implementation, we use M = 3m+5a
and S = 2m + 3a.

3 Evaluating Dual Isogenies

In this section we consider the computation of the dual isogeny in the context
of SIDH and SIKE. That is, we look towards the case where E is a Montgomery
curve defined over some field k with char(k) �= 2 and φ� : E → E/〈R〉 a separable
isogeny of degree �e� with kernel 〈R〉 for some point R ∈ E[�e�]. In addition, we
could let p = �e� · mem − 1 be a prime, and let E be a supersingular elliptic
curve defined over k = Fp2 such that #E(Fp2) = (p+1)2. Then R lies in E(Fp2)
and, as a result, all arithmetic can be performed over Fp2 . The latter is merely
a computational advantage and not necessary for the statements below.

The first step to computing φ̂� is finding its kernel. For this we note that
φ̂�φ� = [�e�], hence ker(φ̂�φ�) = E[�e�] ∼= 〈R,S〉 for some point S ∈ E[�e�]
of order �e� . From ker φ� = 〈R〉 it is then immediate that ker φ̂� = 〈φ�(S)〉.
However, in cryptographic contexts the degree of φ� is too large for φ� to be
computed directly, while the same is true for φ̂�. Instead, φ� is decomposed as

φ� = φ
(e�−1)
� ◦ · · · ◦ φ

(0)
�

as a sequence of �-isogenies. We begin by showing (see Proposition 3) how φ̂� can
be decomposed in a similar fashion, and describe the kernel of all intermediate
�-isogenies.

Proposition 3. Let E be an elliptic curve defined over a field k and let φ� :
E → E/〈R〉 be an isogeny of degree �e� with kernel 〈R〉 for some point R ∈
E[�e�]. Let φ� = φ

(e�−1)
� ◦ · · · ◦ φ

(0)
� , where ker φ

(0)
� = 〈[�e�−1]R〉 and ker φ

(i)
� =

〈[�e�−1−i](φ(i−1)
� ◦ · · · ◦ φ

(0)
�)(R)〉 for i = 1, . . . , e� − 1. Then

φ̂� = φ̂
(0)
� ◦ · · · ◦ φ̂

(e�−1)
� , with ker φ̂

(i)
� = 〈(φ(i)

� ◦ · · · ◦ φ
(0)
�)([�e�−1]S)〉

for i = 0, . . . , e� − 1 and any S ∈ E[�e�] such that 〈R,S〉 = E[�e�].

Dual Isogenies and Their Application to Public-Key Compression 251

Proof. The first part follows by uniqueness of the dual isogeny, and since

φ̂
(0)
� ◦ · · · ◦ φ̂

(e�−1)
� ◦ φ

(e�−1)
� ◦ · · · ◦ φ

(0)
�

= φ̂
(0)
� ◦ · · · ◦ φ̂

(e�−2)
� ◦ φ

(e�−2)
� ◦ · · · ◦ φ

(0)
� ◦ [�]

...
= [�e�] .

Now observe that E[�] = 〈[�e�−1]R, [�e�−1]S〉, so by using a similar argument as
above it follows that ker φ̂

(0)
� = φ

(0)
� ([�e�−1]S). As any linear relation between the

�e�−1-torsion points φ
(0)
� (R) and φ

(0)
� ([2]S) leads to one between R and S, they

form a basis for (E/〈[�e�−1]R〉)[�e�−1]. The statement then follows by proceeding
via induction on e�. �

It is now clear how we can evaluate φ̂�. We select an arbitrary point S, linearly
independent of the kernel point R, and during the computation of φ� we evaluate
and store the intermediate evaluations of [�e�−1]S. These determine the kernels
of the �-isogenies appearing in the decomposition of φ̂�, so it remains to show
how to compute the dual of an �-isogeny (i. e. the case e� = 1). This of course
strongly depends on the choice for φ�, for which we restrict to the parameters of
SIKE. That is, we assume E and E/〈R〉 to be Montgomery curves and consider
the cases where � > 2 (Sect. 3.1) and where � = 2 (Sects. 3.2 and 3.3) separately.

Remark 4. This is especially easy in the case of SIKE, where R = P� +[s1]Q� for
some s1 ∈ Z/�e�Z. In that case we simply select S = Q� and store intermediate
evaluations of [�e�−1]Q�.

We note that we can write φ� = (f�(x), cyf ′
�(x)) for some rational function

f�(x) in k(x) [14, Theorem 9.7.5] and some c ∈ k∗, where f ′
�(x) is the for-

mal derivative df�(x)/dx of f�(x). Therefore, the isogeny φ� is determined by
f�(x) up to a possible twisting of the y-coordinate by varying c. As the only
monomial containing y in Montgomery form is y2, which has coefficient 1, it
follows that f�(x) determines φ� up to composition by [±1]. Similarly, the dual
φ̂� = (f̂�(x), ĉyf̂ ′

�(x)) is determined by f̂�(x) up to composition [±1]. As it suffices
for SIDH to compute φ� up to sign, and for our purposes it suffices to compute
φ̂� up to sign, in what follows we focus on the description of the function f̂�.

3.1 The Case � > 2

First we consider the case where � > 2 (which turns out to be the simplest)
and let R be a point of order � (i. e. e� = 1). In that case, the isogeny φ� =
(f�(x), cyf ′

�(x)) with

f�(x) = x ·
∏

T∈〈R〉\{O}

xxT − 1
x − xT

(2)

252 M. Naehrig and J. Renes

is an �-isogeny with kernel 〈R〉, see [6, Theorem 1]. The case � = 3 is used for
computations in the SIKE proposal [17] and in our implementation, but since
the more general case follows analogously we also treat it here.

Proposition 5. Let E : y2 = x3 +Ax2 +x be a Montgomery curve defined over
a field k with char(k) �= 2. Let R and S be two linearly independent points of
(prime) order � and let φ� = (f�(x), cyf ′

�(x)) with

f�(x) = x ·
∏

T∈〈R〉\{O}

xxT − 1
x − xT

be an �-isogeny of Montgomery curves with dual φ̂� = (f̂�(x), ĉyf̂ ′
�(x)). Then

f̂�(x) = x ·
∏

T∈〈φ�(S)〉\{O}

xxT − 1
x − xT

.

Proof. Let φ� = (f�(x), cyf ′
�) be an isogeny with

f�(x) = x ·
∏

T∈〈φ�(S)〉\{O}

xxT − 1
x − xT

.

It is clear that φ�(S) is a point of order � on E/〈R〉, so applying [6, Theorem 1]
to φ�(S) shows that φ� is indeed an isogeny such that ker φ�φ� = E[�]. As the
kernels are equal, φ� is equal to φ̂� up to post-composition with an isomorphism.
We finish the proof by showing that the only possible isomorphisms are [±1].

For that purpose we consider the point (1,
√

A + 2) of order 4 on E, which
satisfies [�](1,

√
A + 2) = (1,±√

A + 2) depending on the value of � mod 4. No
matter which is the case, it follows that [�] = φ̂�φ� fixes x-coordinate 1 or, in
other words, that f̂�f�(1) = 1. Similarly, considering the point (0, 0) of order 2
shows that f̂�f�(0) = 0.

Now note that indeed f�f�(1) = 1 and f�f�(0) = 0, so that any isomorphism
post-composed with φ� to obtain φ̂� must act as the identity on the x-coordinates
0 and 1. By [29, Proposition III.3.1(b)], the only such isomorphisms are [±1].
Therefore, φ� = [±1]φ̂� and the result follows. �

Interestingly, Proposition 5 shows that we can compute duals of �-isogenies
using the exact same formulas for the isogeny φ� itself. In the case of � = 3 this
(i. e. its projectivized version) can be computed at the cost of 4M + 2S + 4A
for each first evaluation, and 4M + 2S + 2A for each subsequent evaluation
[6, Appendix A].

3.2 The Case of 4-Isogenies

Now assume that � = 2 and that the point R has order 4 (i. e. e2 = 2) such that
[2]R �= (0, 0). Again, the isogeny φ2 = (f2(x), cyf ′

2(x)) can be described by an

Dual Isogenies and Their Application to Public-Key Compression 253

equation of the form (2), see [25, Proposition 1]. If S is any other point of order
4 linearly independent from R, i. e. E[4] = 〈R,S〉, then again ker φ̂2 = 〈φ2(S)〉.
However, in contrast to the case of � > 2, applying the formulas from the SIKE
proposal [17] (which are essentially those from [25, Proposition 1]) leads to a
point φ2(S) such that xφ2(S) = 1 and [2]φ2(S) = (0, 0). As a result, the dual
isogeny can not be described by the formulas of [25, Proposition 1].

Instead, the original work of De Feo–Jao–Plût [12, Eqn. (18)–(21)] describes
formulas for a 4-isogeny whose kernel is generated by a point with x-coordinate 1.
Unfortunately, unlike before, there is no reason that this isogeny has the correct
co-domain. As such, we post-compose with an appropriate isomorphism. One
option for such an isomorphism is given in [12, Eqn. (15)], but it is described
through the knowledge of a point of order 2. As such a point is not readily (or
cheaply) available in our context, one needs to compute a (typically expensive)
doubling. We show that this is much cheaper due to the assumption that R has
order 4. We summarize this in Proposition 6.

Proposition 6. Let E : y2 = x3 +Ax2 +x be a Montgomery curve defined over
a field k with char(k) �= 2. Let R be a point of order 4 such that [2]R �= (0, 0),
and let φ2 = (f2(x), cyf ′

2(x)) : E → E/〈R〉 : y2 = x3 + Âx2 + x with

f2(x) = x ·
∏

T∈〈R〉\{O}

xxT − 1
x − xT

be a 4-isogeny of Montgomery curves with dual φ̂2 = (f̂2(x), ĉyf̂ ′
2(x)). Then

f̂2(x) =
(x2

R − 1)X + (x2
R + 1)Z

2xRZ
,

where

X = (x + 1)2
(
(x + 1)2 − 4(1 − Â24)x

)
, Z = 4(1 − Â24)x(x − 1)2 ,

and Â24 = (Â + 2)/4.

Proof. Let S = (1,
√

A + 2) be a point on E, which has order 4 and is linearly
independent from R. As a result, the kernel of the dual of φ2 is generated by
φ2(S). As f2(1) = 1, the kernel of φ̂2 is generated by a point with x-coordinate
equal to 1.

The map φ4(x) (not to be confused with φ2) computed from [12, Eqn. (18)–
(21)] as the concatenation of the maps

(x, y)
→
(

(x − 1)2

x
, y

(
1 − 1

x2

))

followed by

(x, y)
→
(

1

2 − Â

(x + 4)(x + Â + 2)
x

,
y

2 − Â

(
1 − 4(2 + Â)

x2

)
)

254 M. Naehrig and J. Renes

is seen to be an isogeny of degree 4 such that the generator of its kernel has
x-coordinate 1, and satisfies φ4(x) = X/Z. Thus φ4 on E/〈R〉 determines an
isogeny equal to φ̂2 up to post-composition by an isomorphism. As ker φ̂4 is
generated by a point of x-coordinate equal to 1 [12, §4.3.2], while xR �= 1, it
follows that φ̂4 �= φ2. Taking duals on both sides, we find that φ4 �= φ̂2 [29,
Theorem III.6.2]. Instead, the isomorphism ψ−1, where

ψ : (x, y)
→
(

x − x[2]R

xR − x[2]R
,

y

xR − x[2]R

)

is the map described in [12, Eqn. (15)], maps the kernel of φ̂4 to 〈R〉 and we
conclude that φ̂2 = ψ−1φ4.

At first glance the map ψ requires the use of (the x-coordinate of) [2]R,
which is generally costly to compute. We show that this simplifies due to R
being a point of order 4. Writing ψ−1 = (h(x), yh′(x)), we note that h(1) =
xR and h(0) = x[2]R. Also, let T = ψ(0, 0) be a point of order 2 such that
(−1,

√
A − 2) = (1,

√
A + 2)+T for an appropriate choice of square roots. Then

ψ−1(−1,
√

A − 2) = ψ−1(1,
√

A + 2) + (0, 0) ,

implying that h(−1) = 1/xR. Again, by [29, Proposition III.3.1(b)] we have
h(x) = ax + b for some a, b ∈ k, for which the above restrictions imply that
b + a = xR, b − a = 1/xR and b = x[2]R. It follows that x[2]R = (xR + 1/xR)/2
and thus

h(x) = (xR − x[2]R)x + x[2]R =
(x2

R − 1)x + x2
R + 1

2xR
,

completing the proof. �
Projectivizing and writing xR = XR/ZR, x = X/Z and Â24 = â24/ĉ24, we

can compute f̂2(x) as follows. First we compute the coefficients [K0,K1,K2] =
[X2

R − Z2
R,X2

R + Z2
R, 2XRZR] through the sequence of operations

T0 ← X2
R , T1 ← Z2

R , K0 ← T0 − T1 , K1 ← T0 + T1 ,

K2 ← XR + ZR , K2 ← K2
2 , K2 ← K2 − K1 ,

that can be computed at a cost of 3S + 4A. We note that these operations
are independent of x and can therefore be shared among multiple evaluations
of f̂2(x) at distinct points. Moreover, in the context of SIDH and SIKE such
an evaluation is always preceded by an evaluation of f2 in which X2

R, X2
Z and

XR + ZR are computed. Storing those intermediate values reduces the cost to
1S+3A. We then complete the computation of f̂2(x) = X ′/Z ′ via the operations

T0 ← X + Z , T1 ← X − Z , T0 ← T 2
0 , T1 ← T 2

1 , T2 ← T0 − T1 ,

T3 ← ĉ24 − â24 , T3 ← T2 · T3 , T2 ← ĉ24 · T0 , T2 ← T2 − T3 , X ← T2 · T0 ,

Z ← T3 · T1 , X ′ ← K0 · X , T0 ← K1 · Z , X ′ ← X ′ + T0 , Z ′ ← K2 · Z ,

Dual Isogenies and Their Application to Public-Key Compression 255

at a cost of 7M+2S+6A. Summarizing, assuming having stored the intermediate
values [â24, ĉ24,X

2
R, Z2

R, 2XRZR], the first evaluation of f̂2(x) can be performed
at a cost of 7M + 3S + 9A. Any subsequent evaluation can be computed at a
cost of 7M + 2S + 6A. For comparison, the evaluation of f2 in SIKE currently
has a cost of 6M + 2S + 6A. Hence, although the dual is more expensive than
the original 4-isogeny, the difference is small.

3.3 The Case of 2-Isogenies

Finally consider � = 2 and assume that R �= (0, 0) is a point of order 2. We
note that 2-isogenies are only employed in the SIKE proposal whenever e� �≡
0 mod 4, and in that case only a single one is computed. Therefore its cost is
negligible to the overall cost of the isogeny. The 2-isogeny is computed as in [25,
Proposition 2], and we refer to Proposition 7 for the computation of its dual.

Proposition 7. Let E : y2 = x3 + Ax2 + x be a Montgomery curve defined
over a field k with char(k) �= 2. Let R �= (0, 0) be a point of order 2 and let
φ2 = (f2(x), cyf ′

2(x)) with

f2(x) = x · xxR − 1
x − xR

be a 2-isogeny of Montgomery curves with dual φ̂2 = (f̂2(x), ĉyf̂ ′
2(x)). Then

f̂2(x) =
(x + 1)2

4xRx
.

Proof. First we note that ker φ̂2 = 〈(0, 0)〉 by [25, Corollary 1]. An isogeny with
such a kernel can be computed by composing the maps

(x, y)
→
(

(x − 1)2

x
, y

(
1 − 1

x2

))

from [12, Eqn. (19)] followed by the map

(x, y)
→
(

x + Â + 2
√

Â2 − 4
,

y
√

Â2 − 4

)

,

as observed in [25, Remark 6], where Â = 2(1 − 2x2
R) [25, Proposition 2]. After

twisting the y-coordinate, this lands on the curve defined by the equation

y2 = x3 − 2Â
√

Â2 − 4
x2 + x

whose dual is again generated by (0, 0). Finally, we post-compose with an iso-
morphism ψ(x, y) = (h(x) = ax + b, yh′(x)). As noted earlier, using the fact
that taking duals acts as an involution implies that h(0) = xR and thus b = xR.

256 M. Naehrig and J. Renes

Writing out the curve equation for ψ(x, y) and noting that the coefficient of x2

is A shows that

a = −
√

Â2 − 4 (3xR + A) /
(
2Â

)
.

Composing all these maps leads to the result, for which we omit the details as
they are straightforward yet tedious. �

Letting x = X/Z and xR = XR/ZR, the following sequence of operations

T0 ← X + Z , T0 ← T 2
0 , X ′ ← ZR · T0 , T1 ← X − Z ,

T1 ← T 2
1 , T1 ← T0 − T1 , Z ′ ← XR · T1 ,

computes f̂2(x) = X ′/Z ′ at a cost of 2M + 2S + 3A.

4 Generation of Torsion Bases

As usual we let p = �e� · mem − 1 be a prime, and let E : y2 = x3 + Ax2 + x be a
supersingular elliptic curve defined over k = Fp2 such that #E(Fp2) = (p + 1)2.
Again, we let φ� : E → E/〈R〉 be a separable isogeny of degree �e� with kernel
〈R〉 for some point R ∈ E[�e�]. The aim of this section is to describe how to
compute φ̂�(Um) and φ̂�(Vm) for some deterministically generated basis points
Um and Vm such that (E/〈R〉)[mem] = 〈Um, Vm〉. This is (näıvely) done in a few
steps.2

1. Deterministically generate a first point U ∈ E/〈R〉.
2. Repeat 1–2 until Um = [�e�]U has order mem .
3. Deterministically generate a second point V ∈ E/〈R〉.
4. Repeat 3–4 until Vm = [�e�]V has order mem and (E/〈R〉)[mem] = 〈Um, Vm〉.
5. Compute φ̂�(Um) and φ̂�(Vm).

For � = 3 we do not deviate much from this, yet we remark that it is not
necessary to generate the full points U2 and V2. Instead, since the dual isogeny
computes only on x-coordinates, it suffices to compute xU2 and xV2 . In fact, it is
even enough to only obtain xU and xV , as the cofactor multiplications naturally
factor out during the pairing and discrete logarithm phase [30, §3.1]. However,
for the pairing to remain consistent we need to also deterministically compute
xU−V (without recovering yU and yV). We show how this can be done in Sect. 4.1
and how this applies to the entangled basis generation of [30, §3] in Sect. 4.2.

In the case of � = 2 we do take an alternative approach. The difference is that
checking the order of U and V has to be done through cofactor multiplications
[3e3−12e2]U and [3e3−12e2]V, both of which are very costly. We propose generat-
ing the basis in the following way, recalling that the dual isogeny is defined as
φ̂2 = (f̂2(x), ĉyf̂ ′

2).

2 Note that when considering φ� of degree �e� , we generate a basis of the mem -torsion.

Dual Isogenies and Their Application to Public-Key Compression 257

1. Deterministically generate xU for a point U ∈ E/〈R〉.
2. Compute f̂2(xU) and recover φ̂2(U).
3. Repeat 1–3 until [2e2]φ̂2(U) has order 3e3 .
4. Deterministically generate xV for a point V ∈ E/〈R〉.
5. Compute f̂2(xV) and recover φ̂2(V).
6. Repeat 4–6 until E[3e3] = 〈[2e2]φ̂2(U), [2e2]φ̂2(V)〉.
7. Deterministically generate xU−V and compute f̂2(xU−V).
8. Modify signs of φ̂2(U), φ̂2(V) so that x

̂φ2(U)−̂φ2(V) = f̂2(xU−V).

We can then obtain φ̂2(U3) = [2e2]φ̂2(U) and φ̂2(V3) = [2e2]φ̂2(V), but we show
in Sect. 4.3 that this is never explicitly necessary. This presents some trade-
offs, which we briefly discuss. Firstly, we note that more computation is wasted
when a point of the wrong order is generated (i. e. in step 3) or when it is not
independent (i. e. in step 6). That is, the evaluation of f̂2 would unfortunately
have been done for nothing. However, since E[3] ∼= Z/3Z × Z/3Z, we expect
the points to have full order with probability 8/9 and to be independent with
probability 3/4. Thus on average we require to perform steps 1–3 only 9/8 times
and step 4–6 only 3/2 times.

Moreover, we observe that we can check the order of φ̂2(U) and φ̂2(V) on E
as opposed to E/〈R〉. The main advantage is that E is a fixed public parameter,
whereas E/〈R〉 varies per choice of R. This allows pre-computation on E, and
in particular the generation of 3-torsion points to apply the 3-descent methods
of Schaefer and Stoll [27]. We further analyze this in Sect. 4.3 and show how this
leads to improved performance.

4.1 Deterministically Generating X-Coordinates

The generation of the points U (and similarly for V) is done in two steps. First,
one uses the Elligator 2 map [2] to generate an x-coordinate xU in Fp2 , after
which the y-coordinate can be recovered (which is guaranteed to lie in Fp2).
Therefore, the generation of the two points U and V requires performing two
square roots in Fp2 (although only a single one is needed for the entangled basis,
see Sect. 4.2). Evaluating the abscissa as well as the ordinate of φ̂� on U and V
is also very costly. We show how this can be done much more efficiently.

Instead, we take the approach of SIDH and only ever evaluate f̂� (i. e. the
abscissa of φ̂�) on U and V, and thus never require their y-coordinates. As usual,
we also evaluate f̂� at their difference (i. e. in step 8) for the computation to
remain consistent. This leaves us with the problems of deterministically com-
puting xU−V , and consistently recovering the signs of φ̂�(U) and φ̂�(V) from
x

̂φ�(U), x
̂φ�(V), and x

̂φ�(U−V).
For the generation of xU−V we refer to the techniques applied in the qDSA [26]

signature scheme of Renes and Smith. More specifically, in [26, Proposition 3] it
is shown that a · x2

U−V − 2b · xU−V + c = 0, where

a = (xU − xV)2 , c = (xUxV − 1)2 ,

b = (xUxV + 1) (xU + xV) + 2ÂxUxV ,

258 M. Naehrig and J. Renes

and where Â is the Montgomery curve coefficient of E/〈R〉. It follows that

xU−V =
−b ± √

b2 − 4ac

2a
,

allowing to (projectively) compute xU−V at a cost of 1E+6M+5S+15A. This
is made deterministic by fixing the choice for

√
b2 − 4ac in Fp2 . As we evaluate f̂�

projectively, there is no need for an inversion to obtain an affine representation.
Notably, the computation above does not affect decompression, which uses the
points in an x-only three-point ladder.

For the recovery of φ̂�(U) and φ̂�(V) we refer to [22, §10.3.1]. Writing

φ̂�(U) = (x1, y1) , φ̂�(V) = (x2, y2) , φ̂�(U − V) = (x3, y3) ,

we have

x3 =
(x2y1 + x1y2)2

x1x2(x1 − x2)2
=

x2
2y

2
1 + x2

1y
2
2 + 2x1x2y1y2

x1x2(x1 − x2)2
. (3)

Using the curve equation for φ̂�(V), a simple reorganization shows that

y2 =
x1x2x3(x1 − x2)2 − x2

2y
2
1 + x2

1(x
3
2 + Ax2

2 + x2)
2x1x2y1

. (4)

Therefore, it suffices to compute y1 at the cost of a single square root, after
which y2 is determined. Note that this only recovers φ̂�(U) and φ̂�(V) up to
simultaneous sign, determined by the choice of y-coordinate for φ̂�(U). As we
are only interested in subgroups generated by linear combinations of these two
points, this is not an issue. If we only want to verify that our choices of signs are
consistent, it suffices to check that Eq. (3) holds. This is what we use in step 8
above, and in Sect. 4.3.

4.2 X-only Entangled Basis Generation for � = 3

The work of Sect. 4.1 becomes especially simple in the case of � = 3, where
U and V are generated as an entangled basis [30, §3]. That is, U = (x1, y1),
where x1 = −Â/(1 + t2) is a quadratic non-residue and t ∈ Fp2 \ Fp such that
t2 ∈ Fp2\Fp, and V = (x2, y2) where x2 = −x1−Â and y2 = t·y1 [30, Theorem 1].
Writing U − V = (x3, y3), we have

x3 =
(y1 + y2)2

(x1 − x2)2
− Â − x1 − x2 =

(y1 + y2)2

(x1 − x2)2
=

(x3
1 + Âx2

1 + x1)(1 + t)2

(x1 − x2)2
,

see [22, §10.3.1] again. As done by Zanon et al. [30], we fix u0 = 1 + i and
run over t = u0 · r for r = 1, 2, . . . until we succeed. Building tables (r, v) for
r = 1, 2, . . . and v = 1/(1 + ur2) of quadratric and non-quadratric residues, we
can select x1 = −Âv, after which the values of x2 and x3 can be computed as
above. We note that this does not require the computation of y1, but merely
requires checking whether x3

1 + Âx2
1 + x1 is a square (which has a lower cost).

Dual Isogenies and Their Application to Public-Key Compression 259

Having generated xU , xV and xU−V , we evaluate the values f̂3(xU), f̂3(xV)
and f̂3(xU−V). After a square root computation to recover φ̂3(U), we use Eqn. (4)
to (consistently) recover φ̂3(V).

4.3 Basis Generation with the Reduced Tate Pairing for � = 2

The situation is more complex for � = 2, for which there is no (known) analogue
of an entangled basis. Instead, checking the order of U and V is done through
cofactor multiplications [3e3−12e2]U and [3e3−12e2]V. For that purpose, we revisit
the 3-descent techniques of Schaefer and Stoll [27].

More precisely, let T = (xT , yT) ∈ E/〈R〉 be a point of order 3, necessarily
Fp2 -rational, and let gT (x, y) = y− (λx+μ) be the function defining the tangent
line at T . Then Costello et al. [7, §3.3] observe that U ∈ [3](E/〈R〉) if and only
if gT (U) is a cube in Fp2 for all non-trivial 3-torsion points T ∈ (E/〈R〉)[3] (and
similarly for gT (V)). This method is more complicated due to the fact that 3-
torsion points are not readily available on E/〈R〉. As such, Costello et al. [7] first
find a point of order 3 (and potentially immediately find U), and only afterwards
apply the 3-descent techniques. Moreover, since only a single 3-torsion point is
found (as opposed to all of (E/〈R〉)[3]), a slightly weaker check is performed. It
was shown by Zanon et al. [30, §4] that this does not lead to better results than
näıve cofactor multiplications.

Explicit 3-Descent and the Reduced Tate Pairing. We begin our analysis
by relating the 3-descent techniques to the reduced Tate pairing τ3e3 . That is,
we note that for any T ∈ (E/〈R〉)[3] we have that gT (U) is a cube in Fp2 if and
only if gT (U)(p

2−1)/3 = 1. We observe that

gT (U)(p
2−1)/3 = τ3e3 (T,U) ,

which is easily seen by observing that the only non-trivial Miller line function
is the first one, which equals gT (x, y). By properties of the Tate pairing, it
follows that τ3e3 (T,U) = 1 if and only if [3e3−12e2]U ∈ 〈T 〉. In particular, if
U ∈ [3](E/〈R〉), then [3e3−12e2]U = O. Thus all pairings are trivial and we
recover the statement from Costello et al. (i. e. gT (U) is a cube for all 3-torsion
points T).

As #(E/〈R〉)[3] = 9, this still leaves many pairings to be computed to
test whether U ∈ [3](E/〈R〉). We can simplify the treatment by fixing a basis
for (E/〈R〉)[3e3]. Let S, T ∈ E/〈R〉 such that (E/〈R〉)[3e3] = 〈S, T 〉, and let
S = [3e3−1]S and T = [3e3−1]T form a basis for (E/〈R〉)[3]. Then it follows by
bilinearity of τ3e3 that

U ∈ [3](E/〈R〉) ⇐⇒ τ3e3 (S,U) = τ3e3 (T,U) = 1 ,

leaving only 2 pairings to be computed. Although this is a good start, we can
do a lot more.

260 M. Naehrig and J. Renes

For that purpose, we define h0 = τ3e3 (T, S) and note that h0 = τ3e3 (S, T)−1.
Then there exist (unique) a, b ∈ Z/3e3Z such that [2e2]U = [a]S + [b]T , while

τ3e3 (S,U)2
e2 = h−b

0 , τ3e3 (T,U)2
e2 = ha

0 .

As h0 has order 3 and 2e2 is invertible modulo 3, these discrete logarithms can
easily be solved to retrieve a, b mod 3. Hence, we can compute [3e3−12e2]U =
[a mod 3]S + [b mod 3]T at the cost of a single point addition (or, by simply
selecting it from a pre-computed table). In practice we can ignore the factor
2e2 mod 3, since it only changes a and b up to a simultaneous factor, while
it is enough to compute any generator of 〈[3e3−12e2]U〉 as opposed to finding
[3e3−12e2]U itself.

We can repeat the above by (deterministically) generating U ∈ E/〈R〉 until
not both a = 0 and b = 0, in which case U ∈ E/〈R〉 \ [3](E/〈R〉). Once that is
done, we repeatedly (and deterministically) generate V until

τ3e3 ([3e3−12e2]U, V) �= 1 ,

which implies that [3e3−12e2]V �∈ 〈[3e3−12e2]U〉, and in turn that (E/〈R〉)[3e3] =
〈[2e2]U, [2e2]V〉. Under the assumption that S, T , S, T and h0 are all precom-
puted, the cost of generating U is determined by the cost of the 2 pairings,
while the generation of V requires a single pairing. As before, the first needs to
be repeated 9/8 times on average, while the latter (cheaper) step needs to be
repeated 3/2 times on average.

The main drawback of this method is that S, T form a basis of (E/〈R〉)[3e3],
so to compute a basis we assume to already know one. In fact we do not know
such a basis on E/〈R〉, seemingly making this much less interesting (which is
the exact problem that Costello et al. [7] faced). However, by evaluating φ̂2 on U
and V before checking that they are independent (i. e. multiply to independent
3e3 -torsion points) and have the right order, we can apply the above to the
public parameter E where we can precompute as much as we want. This allows
us to check the independence and orders of φ̂2(U) and φ̂2(V) on E much more
efficiently than via näıve cofactor multiplication. For completeness, we provide
a full description of the method.

1. Deterministically generate xU for a point U ∈ E/〈R〉.
2. Compute f̂2(xU) and recover φ̂2(U).
3. For h0 := τ3e3 ([3e3−1]P3, Q3), compute a, b ∈ Z/3Z such that

τ3e3 ([3e3−1]P3, φ̂2(U)) = hb
0 , τ3e3 ([3e3−1]Q3, φ̂2(U)) = h−a

0 ,

and repeat 1–3 until not both a and b are zero.
4. Deterministically generate xV for a point V ∈ E/〈R〉.
5. Compute f̂2(xV) and recover φ̂2(V).
6. Repeat 4–6 until τ3e3 ([a · 3e3−1]P3 + [b · 3e3−1]Q3, φ̂2(V)) �= 1.
7. Deterministically generate xU−V and compute f̂2(xU−V).
8. Modify signs of φ̂2(U), φ̂2(V) so that x

̂φ2(U)−̂φ2(V) = f̂2(xU−V).

Dual Isogenies and Their Application to Public-Key Compression 261

As both P3 and Q3 are public parameters, the points [3e3−1]P3 and [3e3−1]Q3

can be precomputed and the above sequence of steps does not involve any scalar
multiplication on E or E/〈R〉. Although the improvement is obvious by com-
paring the number of required field operations, we simply confirm the feasibility
of our approach through our implementation in Table 1, leading to a speedup of
about 17% across the different parameter sets. Note that by including the iso
operation, we also count the overhead generated by evaluating φ̂2 as opposed to
φ2. That is, Table 1 shows that checking independence and orders on E not only
makes up for this slowdown, but even leads to a speedup. This showcases the
utility of the methods even before we arrive at the main optimization (i. e. the
pairings, see Sect. 5).

Table 1. Performance benchmarks (rounded to 103 cycles) on a 3.4 GHz Intel Core
i7-6700 (Skylake) processor, for the isogeny (iso) + basis generation (basis) operation
for � = 2. The columns labeled comp denote the results from SIKE, and the columns
labeled dual denote our results. Cycle counts are averaged over 10 000 iterations.

p434 p503 p610 p751

comp dual comp dual comp dual comp dual

iso+ basis 9 649 7 921 13 332 11 039 24 238 20 269 37 294 30 922

Remark 8. The points U and V (resp. φ̂2(U) and φ̂2(V)) that are generated are
not a basis for the 3e3 -torsion, as they do not have order 3e3 . Instead, we should
use the points U3 = [2e2]U and V3 = [2e2]V (resp. [2e2]φ̂2(U3) and [2e2]φ̂2(V3)),
and by doing so would generate the exact same basis as in the SIKE proposal [17].
However, as noted by Zanon et al. [30, §3.1] in the context of the entangled basis
for � = 3, the cofactors 2e2 naturally factor out during the pairing and discrete
logarithm phase and thus do not need to be performed explicitly.

Remark 9. For simplicity the focus of this section is limited to the SIKE param-
eters where � = 2 and m = 3. However, at no point is any restriction on m made
(except not being equal to �), so the above works equally well for any other odd
prime m.

5 Pairing Computation

We now turn to the pairing, which is the phase of the compression algorithm on
which the use of the dual isogeny has the largest effect. Recall that the reason
for computing pairings of the images φ�(Pm) and φ�(Qm) with respect to the
deterministically generated basis points Um and Vm is that in this way, we can
transfer the discrete logarithm problems that yield the basis decomposition to
the finite field Fp2 . They are then solved in the multiplicative group μmem of
mem-th roots of unity instead of in the elliptic curve group on the co-domain.

262 M. Naehrig and J. Renes

This is more efficient, even including the pairing computation, than solving the
discrete logarithm problems on the elliptic curve because field operations are
much more efficient and it is possible to precompute large tables of powers of a
fixed basis in μmem , as described in [30]. Still, the pairings constitute the main
bottleneck of the compression and we discuss how to significantly reduce their
computational cost.

5.1 Pulling Back Pairing Arguments

First, recall that we fix a generator g0 of the group of mem -th roots of unity
(and the base for the discrete logarithms) as

g0 := τmem (φ�(Pm), φ�(Qm)) = τmem (Pm, Qm)�e�
.

As noted in [30], g0 can be precomputed via the latter pairing, which only
depends on system parameters. We aim to find c0, d0, c1, d1 ∈ Z/memZ such
that

g1 = gd0
0 , g2 = gd1

0 , g3 = g−c0
0 , g4 = g−c1

0 ,

where the gi are computed as the four pairing values

g1 = τmem (φ�(Pm), Um) , g2 = τmem (φ�(Pm), Vm) ,

g3 = τmem (φ�(Qm), Um) , g4 = τmem (φ�(Qm), Vm) .

Utilizing the dual isogeny φ̂� and the torsion basis generation algorithms from the
previous section, we compute the pairings with the points φ̂�(Um) and φ̂�(Vm)
on E instead. That is, the Tate pairing satisfies the property τm(φ(S), T) =
τm(S, φ̂(T)) as stated in Sect. 2, so that the gi can be computed as

g1 = τmem (Pm, φ̂�(Um)) , g2 = τmem (Pm, φ̂�(Vm)) ,

g3 = τmem (Qm, φ̂�(Um)) , g4 = τmem (Qm, φ̂�(Vm)) .

This has the great advantage that the first arguments of all pairings are now
fixed torsion basis points on the starting curve.

To see why this is useful, we consider Miller’s algorithm [21] for comput-
ing pairings, which consists of a loop that carries out a scalar multiplication in
a double-and-add fashion of the first pairing argument. On the way, it evalu-
ates and accumulates corresponding line functions at the second argument via a
square-and-multiply approach. It was first noted by Scott [28] and further dis-
cussed by Costello and Stebila [10] that all information depending on the fixed
first argument can be precomputed and stored in a lookup table. This includes
all required multiples of the first argument as well as the coefficients of the cor-
responding line functions. The online phase of the Miller loop consequently only
needs to evaluate line functions at the second argument and accumulate them.
In particular, this setting thus favors the use of affine coordinates because all
inversions for computing the line slopes for point doublings and additions are
done as a precomputation and the line functions take a very simple form for
affine coordinates. We return to this in Sects. 5.3 and 5.4.

Dual Isogenies and Their Application to Public-Key Compression 263

5.2 Special Curves and Torsion Bases for SIKE

From now on we restrict the discussion to the specific setting of SIKE. In par-
ticular, we make use of the special starting curve with A = 6 that is used in the
SIKE proposal.

Let � = 2 and m = 3. Then we are concerned with computing the Tate
pairing τ3e3 with either P3 or Q3 as the first argument. This is a special case
since there exists a 2-isogeny χ : E0 → E6, while the endomorphism ring of
E0 contains the distortion map ψ : (x, y)
→ (−x, iy). As such, there exists a
point P ∈ E0(Fp)[3e3] (any such non-trivial point suffices) such that E0[3e3] =
〈P,ψ(P)〉, i. e. there exists a distortion basis, and we set up P3 and Q3 such that
P3 = χ(P) and Q3 = χψ(P). Finally, by duality of the Tate pairing, we observe
that

g1 = τmem (P, χ̂φ̂�(Um)) , g3 = τmem (ψ(P), χ̂φ̂�(Um)) ,

g2 = τmem (P, χ̂φ̂�(Vm)) , g4 = τmem (ψ(P), χ̂φ̂�(Vm)) .

Hence, by applying an extra (dual of a) 2-isogeny (see Sect. 3.3) we can assume
the first arguments to compose a distortion basis. The choice of this basis does
not matter, and we simply set P = [2e2](x0, y0) where x0 ∈ Fp is the smallest
(positive) integer such that P has order 3e3 . As E0 is in short Weierstrass form,
we can immediately compute with affine Weierstrass coordinates.

The situation is slightly different for � = 3 and m = 2. It is not immediately
obvious how to map to E0 since it is not 3-isogenous to E6. Also, even if we
could, it is not possible to pick a distortion basis for E0(Fp2)[2e2] according to [8,
Lemma 1]. Instead, we map to the Weierstrass curve Ea,b : y2 = x3 +ax+ b over
Fp where a = −11 and b = 14, which is isomorphic to E6 via the isomorphism
E6 → Ea,b : (x, y)
→ (x + 2, y). Since E6(Fp)[2e2] ∼= Z/2e2−1

Z × Z/2Z, the
best we can do is to pick P2 ∈ Ea,b(Fp2)[2e2] such that [2]P2 ∈ Ea,b(Fp). The
second basis point Q2 ∈ Ea,b(Fp2) can be chosen such that [2]Q2 = (x, iy), where
x, y ∈ Fp [9, §3.1].

By setting up the curves and torsion bases this way, the pairings in both the
2e2 - and the 3e3 -torsion groups can be improved by making use of the fact that
all operations depending on the first argument are essentially operations in Fp.
Furthermore, the distortion basis for the 3e3 -torsion group ensures that pairings
with first argument Q3 can use the same pre-computed table as those with first
argument P3. We explain how this works in detail for both cases.

5.3 Precomputation and the Miller Loop for � = 3

For � = 3 we compute order-2e2 pairings of the form τ2e2 (P,U), meaning that
the Miller loop consists of only doubling steps. Recall that for any point P =
(x1, y1) ∈ Ea,b(Fp2) with y1 �= 0 its double is given by [2]P = (x2, y2), where
x2 = λ2

1 − 2x1, y2 = λ1(x1 − x2) − y1 and λ1 = (3x2
1 + a)/(2y1). A Miller

doubling step with running point P and pairing value f ∈ Fp2 then updates f

264 M. Naehrig and J. Renes

by computing f ← f2 · g/v, where the tangent g and vertical line v, evaluated
at the second pairing argument U = (xU , yU) ∈ Ea,b(Fp2), are given as

g = λ1(xU − x1) + y1 − yU , v = xU − x2 .

Hence, we can precompute all doublings of the first pairing argument, and store
the point coefficients and the slopes used in the doubling formulas. We obtain
two tables in the specific setting using the basis points P2 and Q2 fixed above
as follows.

For P2 we simply create the table where

TP2 [j] = [xj+1, yj+1, λj] , for j = 0, . . . , e2 − 2 ,

denoting (xj , yj , λj) = (x[2j]P2 , y[2j]P2 , (3x2
j + a)/(2yj)). Since P2 has order 2e2

and we only carry out e2 − 1 doublings, all doubling operations are well-defined.
Note that by the choice of P2 all point coordinates xj+1 and yj+1 are in Fp,
as are the slopes computed from them, except for the first slope λ1 ∈ Fp2 \ Fp.
Therefore, there are exactly e2 − 1 triples and hence 3 · (e2 − 1) field elements in
the table. There is an additional Fp element due to the first slope being an Fp2

element, but the last triple contains a point of order 2 which has y-coordinate 0
and does not have to be stored, keeping the overall element count at 3 · (e2 − 1).

The precomputed table for the point Q2 is computed similarly. The only
difference is that the multiples of Q2 have the form (x, iy) with x, y ∈ Fp instead
of being fully defined over Fp. Since all multiples have this form, we can just store
x and y and take care of the factor i when computing the line functions in the
online phase of the algorithm. The same holds for the slope, as (3x2+a)/(2iy) =
−i · (3x2 + a)/(2y). Thus the table TQ2 is defined analogously as

TQ2 [j] = [wj+1, zj+1, κj] , for j = 0, . . . , e2 − 2 ,

writing (wj , zj , κj) = (x[2j]Q2 , y[2j]Q2 , (3w2
j +a)/(2zj)). Again, this table consists

of e2 − 1 triples of Fp elements, except for the first slope, which is in Fp2 and
the last y-coordinate, which is 0. So the table stores 3 · (e2 − 1) elements in Fp,
and the total table size for storing the precomputed values needed to compute
the four τ2e2 pairings is 6 · (e2 − 1) Fp-elements.

The first Miller iteration for each of the two functions can be computed using
2 · (3M+ S+ 8a) ≈ 2 · (11m+ 26a), after which a single Miller iteration can be
computed in 2 · (2M + 1S + 2m + 6a) ≈ 2 · (10m + 19a). For all four pairings
(we assume m ≈ s), this amounts to 40m+ 76a for each Miller iteration except
the first (which is slightly more expensive). For comparison, Zanon et al. [30]
state the cost 55m + 126a for only two pairings, or 110m + 252a for all four.
For a complete description of the algorithms we refer to the full version of the
paper [23, Algorithms 1–2].

Dual Isogenies and Their Application to Public-Key Compression 265

5.4 Precomputation and the Miller Loop for � = 2

For � = 2 we compute order-3e3 pairings of the form τ3e3 (P,U), meaning that
the Miller loop consists of only tripling steps instead. Again, for any point P =
(x1, y1) ∈ Ea,b(Fp2) with y1 �= 0 its double is given by [2]P = (x2, y2) as before,
where λ1 = 3x2

1/(2y1) (note that here a = 0). If x2 �= x1, its triple [3]P = (x3, y3)
is given by x3 = λ2

2−x2−x1, y3 = λ2(x1−x3)−y1 and λ2 = (y2−y1)/(x2−x1).
A Miller tripling step with running point P and pairing value f ∈ Fp2 then
updates f by computing f ← f3 ·g/v, where g and v are now quadratic functions
evaluated at U = (xU , yU) given by

g = (λ1(xU − x1) + y1 − yU)(λ2(xU − x1) + y1 − yU) ,

v = (xU − x2)(xU − x3) .

To compute g, we can precompute λ1, λ2, n1 = y1 − λ1x1 and n2 = y1 − λ2x1,
so that g = (λ1xU +n1 − yU)(λ2xU +n2 − yU). As for the function v, we expand
it to v = x2

U − (x2 + x3)xU + x2x3. Now we precompute x2p3 = x2 + x3 and
x23 = x2x3 and on input of U at the beginning of the loop also xU,2 = x2

U . Then
v = xU,2 + x23 − x2p3xU .

Now let P ∈ E0(Fp) be the point of order 3e3 such that {P,ψ(P)} is the
distortion basis of E0[3e3]. We denote

(x(j)
2 , y

(j)
2) = [2 · 3j]P , (x(j)

3 , y
(j)
3) = [3j+1]P , for j = 0, . . . e3 − 2 ,

and define x
(−1)
3 = x1 and y

(−1)
3 = y1. Then we define the table TP by

TP [j] =
[
λ
(j)
1 , λ

(j)
2 , n

(j)
1 , n

(j)
2 , x

(j)
2p3, x

(j)
23

]
,

where

λ
(j)
1 = 3(x(j−1)

3)2/(2y
(j−1)
3) , λ

(j)
2 = (y(j)

2 − y
(j−1)
3)/(x(j)

2 − x
(j−1)
3) ,

n
(j)
1 = y

(j−1)
3 − λ1x

(j−1)
3 , n

(j)
2 = y

(j−1)
3 − λ2x

(j−1)
3 ,

x
(j)
2p3 = x

(j)
2 + x

(j)
3 , x

(j)
23 = x

(j)
2 · x

(j)
3 .

For the last iteration of the Miller loop we append the four extra values x
(e3−2)
3 ,

y
(e3−2)
3 , λ

(e3−1)
1 and x

(e3−1)
2 . The second point in the distortion basis has the

form ψ(P) = (x1, iy1). This means that the functions g and v for pairings with
ψ(P) as the first argument are

g = (−iλ1xU + in1 − yU)(−iλ2xU + in2 − yU) ,

v = xU,2 − x23 + x2p3xU .

As a result, the same precomputed values can be used for those pairings without
changes. The different signs and factors of i can be adjusted in the online phase
of the pairing. The overall table size for all four τ3e3 pairings is thus 6·(e3−1)+4
elements in Fp.

266 M. Naehrig and J. Renes

A single Miller iteration can be computed in 2 · (8M + 2s + 6m + 18a) ≈
68m + 128a for all four pairings (we assume m ≈ s). For comparison, Zanon
et al. [30] list 104m+2s+266a for only two pairings. For a complete description
of the algorithm we refer to the full version of the paper [23, Algorithm 3].

The Final Exponentiation. The final exponentiation raises all four pairing
values to the power (p2 − 1)/mem . This is done as usual and as described in
[7]. It is split up into the easy part, i.e. the power p − 1, which is computed by
one application of the Frobenius endomorphism and one inversion per pairing
value. Here, inversions are pushed down to the subfield Fp and shared using
Montgomery’s inversion sharing trick. The hard part of the final exponentiation
is raising to the power (p + 1)/mem . As p + 1 = �e� · mem , this is performed
through a sequence of e� cyclotomic powerings by � (e. g. squarings for � = 2 and
cubings for � = 3).

Remark 10. We obtain significant speedups during the pairing computation as
the use of the dual isogeny allows us to fix the first pairing arguments as system
parameters, which benefits us for two reasons. Firstly, it allows us to pick the
basis points Pm and Qm of special form, either chosen as a distortion basis for
m = 3 or as a basis such that the coefficients of (multiples of) [2]Pm are in Fp

and the coefficients of (multiples of) Qm are of the form (x, iy) for x, y ∈ Fp for
m = 2. In this case, most point doublings, triplings and line functions can be
computed with arithmetic in Fp instead of Fp2 . When using a distortion basis,
all four pairings (as opposed to only two) share many of these computations.

Secondly, having fixed system parameters enables large precomputations.
Although it leads to very significant speedups, it does have an impact on the
memory usage. If, instead, one chooses to not use precomputation to keep the
memory footprint of the implementation small, the special characteristics of the
bases still lead to a reasonable speedup. Simply sharing operations across all four
pairings for m = 3 and replacing general Fp2 operations by subfield operations
can be implemented in the pairing algorithms as they are described by Zanon
et al. in [30, §5] using extended Jacobian coordinates and by moving back to
the starting curve. Operation counts predict savings of roughly 30% for the four
Tate pairings of order 2e2 and about 40% for the Tate pairings of order 3e3 .

6 Implementation Results

We have added all of our techniques to the software library that is part of the
SIKE proposal [17], so consider the set of primes p ∈ {p434, p503, p610, p751},
where

p434 = 2216 · 3137 − 1 , p503 = 2250 · 3159 − 1 ,

p610 = 2305 · 3192 − 1 , p751 = 2372 · 3239 − 1 ,

targeting the different security levels specified by NIST. The software is com-
piled with clang version 6.0.1 with the -O flag, and benchmarked on a 3.4 GHz

Dual Isogenies and Their Application to Public-Key Compression 267

Intel Core i7-6700 Skylake processor running Ubuntu version 16.04.3 LTS with
TurboBoost turned off. This is the exact same setting that was used for the per-
formance numbers of SIKE Round 2 [18, Table 2.1]. Although we rederive their
cycle counts for fairness of comparison, there is indeed a negligible difference
(see Table 4).

We distinguish between functions in the SIKE library without the use of
public-key compression techniques (SIKEpXXX), functions in the SIKE library
with the use of public-key compression (SIKEpXXX comp), and the functions used
in our software (SIKEpXXX dual). We begin by comparing the functions related to
public-key compression to those in the SIKE library in Table 2, showing that we
significantly improve the functions that currently bottleneck the computation,
and analyze where the remaining bottlenecks are. We consider the impact on the
key generation and exchange functions in the IND-CPA secure SIDH protocol
in Table 4a and look at the impact on SIKE in Table 4b.

6.1 Cycle Counts for Compression Functions

In this section we discuss the performance of several functions as they are used
in public-key compression. For the results we refer to Table 2.

iso. This function takes a secret key as input, and computes the isogeny φ� to
obtain the co-domain curve E/〈R〉 and potentially the images of basis points.
The original compression techniques evaluate φ� at three (x-coordinates of)
points, while we do not need to evaluate any points for � = 2. This leads to a
speedup of 18–19% for � = 2. For � = 3 we evaluate φ3 at [2e2−1]Q2 to obtain
the intermediate kernels for the dual, leading to a speedup of only 10–11%.

basis. This function starts where iso left off, and outputs Um and Vm or φ̂�(Um)
and φ̂�(Vm), respectively. For � = 2 we apply the techniques described in
Sect. 4.3, leading also to a speedup of 13–15%. For � = 3 the basis generation
does not change significantly (as described in Sect. 4.2), while there is the
added overhead of applying φ̂�. This leads to a slowdown for this function of
151–186%. However, since basis generation for � = 3 contributed only 4% of
the total cost, this is much less bad in absolute terms.

pair. We see that the pairing computation significantly bottlenecked compres-
sion for � = 3, while also being the most expensive operation for � = 2.
Applying the results from Sect. 5 leads to a speedup of at least 66% for � = 2,
and a speedup of 62–63% for � = 3. This has an impressive impact on the
efficiency of the full algorithm.

dlog. We have not made any changes to the discrete logarithm computations.
decomp. Decompression is slightly sped up due to simplifications to x-only basis

generation in Sect. 4.1 and due to the avoidance of cofactor multiplications of
the basis points. We obtain a 14–15% speedup for � = 2, and a 6–7% speedup
for � = 3.

As a result of the improvements, we note that the pairing phase is no longer
a bottleneck for public-key compression. For � = 2 it is actually significantly

268 M. Naehrig and J. Renes

cheaper than basis generation, while for � = 3 it is only moderately more expen-
sive than the basis generation and discrete logarithm phases.

Table 2. Performance benchmarks (rounded to 103 cycles) on a 3.4 GHz Intel Core i7-
6700 (Skylake) processor, for the compression operations: co-domain generation (iso),
basis generation (basis), pairing computation (pair), discrete logarithm computation
(dlog) and decompression (decomp). Cycle counts are averaged over 10 000 iterations.

� iso basis pair dlog decomp

SIKEp434 comp 2 5 811 3 838 5 821 923 2 549

SIKEp434 dual 2 4 690 3 231 1 954 923 1 910

SIKEp434 comp 3 6 464 598 4 921 1 222 1 890

SIKEp434 dual 3 5 750 1 618 1 821 1 223 1 741

SIKEp503 comp 2 8 141 5 191 8 033 1 556 3 513

SIKEp503 dual 2 6 594 4 445 2 676 1 554 2 613

SIKEp503 comp 3 9 015 844 6 716 1 532 2 551

SIKEp503 dual 3 7 992 2 219 2 486 1 535 2 380

SIKEp610 comp 2 15 430 8 808 13 458 2 351 5 868

SIKEp610 dual 2 12 778 7 491 4 525 2 349 4 403

SIKEp610 comp 3 15 490 1 340 11 365 2 685 4 365

SIKEp610 dual 3 13 747 3 750 4 214 2 685 4 039

SIKEp751 comp 2 23 133 14 161 21 908 3 529 9 434

SIKEp751 dual 2 18 898 12 024 7 348 3 528 7 135

SIKEp751 comp 3 26 133 2 125 18 224 5 030 6 914

SIKEp751 dual 3 23 316 6 081 6 727 5 055 6 489

6.2 Impact on SIDH and SIKE

Finally, we summarize the impact of improved public-key compression when
included in a cryptographic protocol. The schemes that are of interest for this
purpose are the passively secure SIDH protocol, and its actively secure variant
SIKE. Although one can of course argue about the best metric for comparison,
we believe the most interesting from an implementers perspective is the overhead
that is caused by including public-key compression. This gives a relatively clear
idea of the loss of efficiency that is to be paid for a reduction of the size of the
public keys.

In Table 4a we see that, across different SIDH parameter sets, for key gen-
eration the overhead is reduced from 160–182% to 77–86% for � = 2 and from
98–104% to 59–61% for � = 3, respectively. The overhead for the key exchange
phase is reduced by about 10–13% in both cases. For SIKE (see Table 4b), we
reduce the overhead of (1) key generation from 140–153% to 61–74%, (2) key
encapsulation from 67–90% to 38–57%, and (3) decapsulation from 59–65% to
34–39%. Following the SIKE specification [17, Table 2.1], we also provide the

Dual Isogenies and Their Application to Public-Key Compression 269

impact on the “total” cost, i. e. on the sum of the costs of encapsulation and
decapsulation. This reduces from 62–83% to an overhead of 36–48% across the
different parameter sets.

Memory Constraints. Having remarked on the memory usage before, we
provide some more detail here. The first notable consequence of our techniques
is that we need to build a table containing the kernels of all intermediate �-
isogenies appearing in the decomposition of φ̂�. For � = 2, and assuming that
e2 is even for simplicity (if not the difference is very minor), we compute a
sequence of e2/2 4-isogenies. For each such isogeny we store 5 elements (see
Sect. 3.2), resulting in a table of 5 · e2/2 Fp2 -elements or simply 5 · e2 elements
of Fp. For � = 3, for each 3-isogeny we simply store a generator of the kernel
of its dual, requiring 2 elements of Fp2 . Hence we store a table containing 4 · e3
Fp-elements. Note that these are not precomputed, but need to be temporarily
stored on the stack. However, recall from Sect. 5 that we do precompute a table
of 6 ·(e2−1) elements in Fp for � = 3 and 6 ·(e3−1)+4) for � = 2 to compute the
pairings, i. e. in contrast to the intermediate kernel information, pairing tables
are precomputed public parameters.

To aid the discrete logarithm computation, Zanon et al. [30] introduced the
use of large precomputed tables. For some fixed window w3, the discrete loga-
rithms for � = 2 use a table containing e3/w3 · 3w3 or 2 · �e3/w3� · 3w3 elements
in Fp2 when w3 | e3 or w3 � e3, respectively. Similarly, the discrete logarithms
for � = 3 use a table of size e2/w2 · 2w2 resp. �e2/w2� · 2w2+1 when w2 | e2 resp.
w2 � e2, for some window size w2. Though small windows of course lead to rela-
tively small tables, for SIKE we always have 4 ≤ w ≤ 6 and the current SIKE
submission contains very large tables for the discrete logarithms. We summarize
memory requirements in terms of the number of field elements in Fp for the
different parameters in Table 3.

Table 3. Required memory in Fp-elements for storing intermediate information used
for computing the dual isogeny (iso) and for the precomputed tables for the pairing
(pair) and discrete logarithm computation (dlog).

� iso pair dlog � iso pair dlog

SIKEp434 dual

2

1 080 820 26 244

3

548 1 290 1 728

SIKEp503 dual 1 250 952 30 132 636 1 494 3 200

SIKEp610 dual 1 525 1 150 46 656 768 1 824 3 904

SIKEp751 dual 1 860 1 432 45 684 956 2 226 2 976

Section 2.3 of the SIKE specification points out that due to the large tables,
the current compression method cannot be used in a straightforward manner on
constrained devices. Our methods add another possibility for a time-memory
trade-off. As pointed out earlier in Remark 10, the choice of special bases

270 M. Naehrig and J. Renes

Table 4. Performance benchmarks (rounded to 103 cycles) on a 3.4 GHz Intel Core i7-
6700 (Skylake) processor. Cycle counts are averaged over 10 000 iterations. The label oh
denotes the cpu overhead over the corresponding uncompressed version of the function.

(a) The SIDH operations: public key generation (isogen2 and isogen3) and key ex-
change (isoex2 and isoex3).

isogen2 isoex2 isogen3 isoex3

cyc oh cyc oh cyc oh cyc oh

SIKEp434 5 821 – 4 726 – 6 469 – 5 467 –
SIKEp434 comp 16 397 182% 5 425 15% 13 208 104% 6 825 25%
SIKEp434 dual 10 836 86% 5 298 12% 10 412 61% 6 192 13%

SIKEp503 8 154 – 6 745 – 9 002 – 7 623 –
SIKEp503 comp 22 931 181% 7 582 12% 18 107 101% 9 466 24%
SIKEp503 dual 15 310 88% 7 422 10% 14 270 59% 8 651 13%

SIKEp610 15 438 – 12 881 – 15 464 – 13 282 –
SIKEp610 comp 40 097 160% 14 458 12% 31 031 101% 16 251 22%
SIKEp610 dual 27 270 77% 14 170 10% 24 527 59% 14 796 11%

SIKEp751 23 229 – 18 961 – 26 024 – 22 255 –
SIKEp751 comp 62 998 171% 21 517 13% 51 443 98% 27 257 22%
SIKEp751 dual 41 778 80% 21 104 11% 41 298 59% 24 952 12%

(b) The SIKE operations: public key generation (KeyGen), encapsulation (Encaps), and
decapsulation (Decaps).

Size (B) KeyGen Encaps Decaps

pk ct cyc oh cyc oh cyc oh

SIKEp434 330 346 6 482 – 10 563 – 11 290 –
SIKEp434 comp 196 209 16 397 153 % 20 056 90% 18 622 65%
SIKEp434 dual 196 209 10 849 67% 16 600 57% 15 682 39%

SIKEp503 378 402 9 043 – 14 950 – 15 749 –
SIKEp503 comp 224 248 23 066 155% 27 665 85% 25 646 63%
SIKEp503 dual 224 248 15 294 69% 22 875 53% 21 841 39%

SIKEp610 462 486 15 651 – 28 346 – 28 603 –
SIKEp610 comp 273 297 40 078 156% 47 279 67% 45 536 59%
SIKEp610 dual 273 297 27 277 74% 39 238 38% 38 371 34%

SIKEp751 564 596 26 064 – 42 102 – 45 361 –
SIKEp751 comp 331 363 62 663 140% 78 895 87% 72 924 61%
SIKEp751 dual 331 363 41 909 61% 66 096 57% 62 337 37%

Dual Isogenies and Their Application to Public-Key Compression 271

already improves the performance even without precomputation. The precom-
puted tables can be adjusted in size linearly, where computation of required
values can be moved to the online phase. Given that the main bottleneck in
both [7] and [30] is clearly the pairing phase, it might be worthwhile to use
memory for the pairing tables instead of the discrete logarithm tables and find
a more space efficient trade-off than the one currently deployed in the SIKE
submission.

Acknowledgements. We thank the anonymous reviewers for their detailed remarks
and Paulo S.L.M. Barreto for valuable feedback to improve the paper.

References

1. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: AsiaPKC 2016, pp. 1–10. ACM (2016)

2. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: ACM SIGSAC 2013, pp.
967–980. ACM (2013)

3. Blake, I., Seroussi, G., Smart, N., Cassels, J.W.S.: Advances in Elliptic Curve
Cryptography. Cambridge University Press, Cambridge (2005)

4. Bos, J.W., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM.
In: EuroS&P 2018, pp. 353–367. IEEE (2018)

5. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

6. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 11

7. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient com-
pression of SIDH public keys. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56620-7 24

8. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 21

9. Costello, C., Longa, P., Naehrig, M., Renes, J., Virdia, F.: Improved classical crypt-
analysis of the computational supersingular isogeny problem. Cryptology ePrint
Archive, Report 2019/298 (2019). https://eprint.iacr.org/2019/298

10. Costello, C., Stebila, D.: Fixed argument pairings. In: Abdalla, M., Barreto,
P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 92–108. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14712-8 6

11. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://eprint.iacr.org/2019/298
https://doi.org/10.1007/978-3-642-14712-8_6
https://doi.org/10.1007/978-3-319-89339-6_16

272 M. Naehrig and J. Renes

12. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8, 209–247 (2014)

13. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

14. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, Cambridge (2012)

15. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

16. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

17. Jao, D., et al.: SIKE (2019). Submission to round 2 of [24]. http://sike.org
18. Jao, D., et al.: SIKE (2016). Submission to [24]. http://sike.org
19. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular

elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

20. Lichtenbaum, S.: Duality theorems for curves over P -adic fields. Inventiones Math-
ematicae 7, 120–136 (1969)

21. Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptol. 17(4), 235–
261 (2004)

22. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

23. Naehrig, M., Renes, J.: Dual isogenies and their application to public-key compres-
sion for isogeny-based cryptography. Cryptology ePrint Archive, Report 2019/499
(2019). https://eprint.iacr.org/2019/499

24. National Institute of Standards and Technology: Post-quantum cryptography
standardization, December 2016. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization

25. Renes, J.: Computing isogenies between Montgomery curves using the action of
(0, 0). In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp.
229–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3 11

26. Renes, J., Smith, B.: qDSA: small and secure digital signatures with curve-based
Diffie–Hellman key pairs. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10625, pp. 273–302. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70697-9 10

27. Schaefer, E., Stoll, M.: How to do a p-descent on an elliptic curve. Trans. Am.
Math. Soc. 356(3), 1209–1231 (2004)

28. Scott, M.: Implementing cryptographic pairings. In: Takagi, T., et al. (eds.) Pairing
2007, pp. 177–196. Springer, Heidelberg (2007)

29. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New
York (2009). https://doi.org/10.1007/978-0-387-09494-6

30. Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto,
P.S.L.M.: Faster key compression for isogeny-based cryptosystems. IEEE Trans.
Comput. 68(5), 688–701 (2019)

https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
http://sike.org
http://sike.org
https://doi.org/10.1007/978-3-642-25405-5_2
https://eprint.iacr.org/2019/499
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1007/978-3-319-79063-3_11
https://doi.org/10.1007/978-3-319-70697-9_10
https://doi.org/10.1007/978-3-319-70697-9_10
https://doi.org/10.1007/978-0-387-09494-6

Optimized Method for Computing
Odd-Degree Isogenies on Edwards Curves

Suhri Kim1, Kisoon Yoon2, Young-Ho Park3(B), and Seokhie Hong1

1 Center for Information Security Technologies (CIST), Korea University, Seoul,
Republic of Korea

suhrikim@gmail.com, shhong@korea.ac.kr
2 NSHC Inc., Uiwang, Republic of Korea

kisoon.yoon@gmail.com
3 Sejong Cyber University, Seoul, Republic of Korea

youngho@sjcu.ac.kr

Abstract. In this paper, we present an efficient method to compute
arbitrary odd-degree isogenies on Edwards curves. By using the w-
coordinate, we optimized the isogeny formula on Edwards curves by
Moody and Shumow. We demonstrate that Edwards curves have an addi-
tional benefit when recovering the coefficient of the image curve during
isogeny computation. For �-degree isogeny where � = 2s + 1, our isogeny
formula on Edwards curves outperforms Montgomery curves when s ≥ 2.
To better represent the performance improvements when w-coordinate
is used, we implement CSIDH using our isogeny formula. Our implemen-
tation is about 20% faster than the previous implementation. The result
of our work opens the door for the usage of Edwards curves in isogeny-
based cryptography, especially for CSIDH which requires higher degree
isogenies.

Keywords: Isogeny · Post-quantum cryptography · Montgomery
curves · Edwards curves · SIDH · CSIDH

1 Introduction

Cryptosystems based on isogenies using supersingular elliptic curves were first pro-
posed by De Feo and Jao [16]. They proposed a Diffie-Hellman type key exchange
protocol named Supersingular Isogeny Diffie-Hellman (SIDH). Instead of relying
on the discrete logarithm problems where intractability assumption of the prob-
lem is broken by Shor’s algorithm, the security relies on the problem of finding an
isogeny between two given elliptic curves over a finite field. Moreover, since the
key sizes are small compared to other post-quantum cryptography (PQC) cate-
gories, isogeny-based cryptography has positioned itself as a promising candidate
for PQC. Later, SIDH led to the development of the key encapsulation mechanism

This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2017R1A2B4011599).

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 273–292, 2019.
https://doi.org/10.1007/978-3-030-34621-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_10

274 S. Kim et al.

called Supersingular Isogeny Key Encapsulation (SIKE), which is a Round 2 can-
didate in the NIST PQC standardization project [2].

Recently, De Feo et al. proposed the improvements to the CRS scheme in
[12,23]. The CRS scheme was the first cryptosystem based on isogenies between
ordinary curves. However, the scheme was highly inefficient and the use of ordi-
nary curves makes the algorithm suffer from the subexponential attack proposed
by [8]. The scheme proposed in [13] optimized the CRS scheme, although sev-
eral minutes are still required for a single key exchange. Independent from [13],
Castryck et al. proposed CSIDH (Commutative SIDH), which also adapted the
CRS scheme, but applied it to supersingular elliptic curves [7]. Instead of work-
ing with supersingular elliptic curves over Fp2 as in SIDH/SIKE, CSIDH works
over Fp. CSIDH is a non-interactive key exchange protocol having smaller key
sizes than SIDH/SIKE.

Considering the implementation, isogeny-based cryptosystems involve com-
plicating isogeny operations in addition to the standard elliptic curve arithmetic
over a finite field. Regarding the isogeny operations, the degree of an isogeny used
in the cryptosystem depends on the prime chosen for the scheme. For SIDH or
SIKE, p is of the form p = �eA

A �eB

B f ± 1, where �A and �B are coprime to each
other. The �A and �B can be considered as the degree of isogenies dealt in the
scheme. Since the complexity of computing isogenies increases as the degree
increases, isogenies of degree 3- and 4- were mostly considered for implement-
ing SIDH or SIKE. CSIDH exploits p of the form p = 4�1�2 · · · �n − 1, where
�i are odd-primes. Similarly, as �i are degrees of isogenies used in the scheme,
demands for odd-degree isogeny formulas have increased after the proposal of
CSIDH. Regarding the elliptic curve arithmetic, it is important to select the form
of elliptic curves that can provide efficient curve operations. Until recently, only
Montgomery curves were used, as they offer fast computations on both com-
ponents – i.e. isogeny computation and curve arithmetic. The state-of-the-art
implementation proposed in [11] is also based on Montgomery curves.

Meanwhile, researches have extended to adopt other forms of elliptic curves
that yield efficient arithmetic or isogeny computation. In [9], it was mentioned
that due to the birationality between twisted Edwards curves and Montgomery
curves, there might exist savings to be gained when twisted Edwards curves
are used for SIDH/SIKE. The utilization of elliptic curve arithmetic on twisted
Edwards curves was first proposed by Meyer et al. [20]. Their method uses
twisted Edwards curves for elliptic curve arithmetic and Montgomery curves
for isogeny computation. For isogenies on Edwards curves, optimized 3- and 4-
isogeny formulas were first proposed in [17], in order to apply Edwards curves in
isogeny-based cryptosystems. In [19], they implemented CSIDH by using Mont-
gomery curves for isogenies and twisted Edwards curves for recovering the coef-
ficient of the image curve.

Currently, using Edwards curves for isogeny-based cryptosystems is not so
promising. As Bos and Friedberger [5] have demonstrated, working with twisted
Edwards curves does not provide faster elliptic curve arithmetic in the setting

Optimized Method for Computing Odd-Degree Isogenies on Edwards Curves 275

of SIDH or SIKE. The implementation results in [1,18] also show that Edwards
curves do not result in faster performance. In short, Edwards curves for imple-
menting SIDH or SIKE have one critical disadvantage – elliptic curve arithmetic
are slower on Edwards curves than on Montgomery curves in SIDH or SIKE
settings. When it comes to CSIDH, the most painstaking part is to construct
odd-degree isogenies. Although the motivation for the work in [9] is slightly
different, the proposed odd-degree isogeny formula can naturally be applied in
CSIDH when using Montgomery curves. The only generalized odd-degree isogeny
formula on Edwards curves is the formula proposed by Moody and Shumow in
[21]. Though, as stated in [19], the coordinate map of the formula is not as simple
to compute as in [9].

However, there are still some aspects to optimize the odd-degree isogeny for-
mula on Edwards curves. Until now, the optimization of isogenies on Edwards
curves was only done for small degree isogenies. In [17,18], the 3- and 4- isogeny
formula on Edwards curves were optimized by substituting the x-coordinate and
curve coefficients of Moody and Shumow’s formula to y-coordinates using divi-
sion polynomials and curve equations. As the degree goes higher, optimizing
Moody and Shumow’s formula by using the method presented in [17,18] is cum-
bersome. Additional improvements can be achieved on a higher degree isogenies
if different approaches are applied for the optimization.

The aim of this work is to construct efficient and generalized odd-degree
isogenies on Edwards curves to be suitable for isogeny-based cryptosystems.
The following list details the main contributions of this work.

– We exploit the w-coordinate proposed in [14] on Edwards curves. As men-
tioned above, the main disadvantage of using Y Z-coordinates for Edwards
curves is that the elliptic curve arithmetic is slower than on Montgomery
curves in SIDH or SIKE settings. However, the costs of doubling, tripling,
and differential addition using projective w-coordinate are the same as on
Montgomery curves, which motivates us to use the w-coordinate system on
Edwards curves.

– We present the formula for computing odd-degree isogenies using the w-
coordinate. By optimizing the isogeny formula proposed by Moody and
Shumow, the computational cost of evaluating an �-isogeny is the same as on
Montgomery curves. We also optimized the formula for obtaining the curve
coefficient of the image curve. Our formula for computing the curve coeffi-
cient does not require additional points and has benefits over Montgomery
curves when the degree is higher than 5. Derivations of our isogeny formula
and computational cost are presented in Sect. 3, and analysis of our isogeny
formula is presented in Sect. 4.

– We present the implementation result of CSIDH using Edwards w-
coordinates. The result of our implementation is about 20% faster than
the implementation proposed in [7], and 2% faster than the implementa-
tion presented in [19]. This result is natural as computing the coefficient
of the image curve is more efficient on Edwards w-coordinate than Mont-
gomery x-coordinate. Additionally, when computing elliptic curve arithmetic,

276 S. Kim et al.

the number of additions and subtractions decreases on w-coordinate Edwards
curves compare to x-coordinate Montgomery curves. As the cost of ellip-
tic curve arithmetic is inevitable, the difference in the number of additions
is accumulated and resulted in a faster speed than hybrid-CSIDH, pro-
posed in [19].

This paper is organized as follows: In Sect. 2, we review on Edwards curves
and their arithmetic using w-coordinates. Also, the description of the SIDH
and CSIDH protocol are presented. In Sect. 3, we present our optimization of a
generalized odd-degree isogeny formula on Edwards curves. The implementations
result of CSIDH using Edwards w-coordinate is presented Sect. 4. We draw our
conclusions and future work in Sect. 5.

2 Preliminaries

In this section, we provide the required background that will be used throughout
the paper. First, we review the Edwards curves and their arithmetic using the
w-coordinate. Then, we introduce the SIDH and CSIDH protocol to illustrate
the required degree of an isogeny for each protocol.

2.1 Edwards Curves and Their Arithmetic

Edwards Curves. Edwards elliptic curves over K are defined by the equation,

Ed : x2 + y2 = 1 + dx2y2, (1)

where d �= 0, 1. The Ed has singular points (1 : 0 : 0) and (0 : 1 : 0) at infinity.
In Edwards curves, the point (0, 1) is the identity element, and the point (0,−1)
has order two. The points (1, 0) and (−1, 0) have order four. The condition that
Ed always has a rational point of order four restricts the use of elliptic curves
in the Edwards model. Twisted Edwards curves are a generalization of Edwards
curves proposed by Bernstein et al. in [3], to overcome such deficiency. Twisted
Edwards curves are defined by the equation,

Ea,d : ax2 + y2 = 1 + dx2y2, (2)

for distinct nonzero elements a, d ∈ K [3]. Clearly, Ea,d is isomorphic to an
Edwards curve over K(

√
a). The j-invariant of Edwards curves is defined as

j(Ed) = 16(1 + 14d + d2)3/d(1 − d)4. For the same reason as in [11], we use pro-
jective curve coefficients on Edwards curves to avoid inversions when recovering
the coefficient of the image curves. Let (C,D) ∈ P

1(K) where C ∈ K̄× such that
d = D/C. Then Ed can be expressed as

EC:D : Cx2 + Cy2 = C + Dx2y2.

Optimized Method for Computing Odd-Degree Isogenies on Edwards Curves 277

Arithmetic on Edwards Curves. For points (x1, y1) and (x2, y2) on Edwards
curves Ed, the addition of two points is defined as below, and doubling can be
performed with exactly the same formula.

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1 − dx1x2y1y2

)
.

Generally, projective coordinates (X : Y : Z) ∈ P
2 where x = X/Z and y =

Y/Z are used for the corresponding affine point (x, y) on Ed to avoid inversions
during elliptic curve arithmetic. There are several coordinate systems relating
to Edwards curves such as inverted coordinates (X : Y : Z) which represents
the point (Z/X,Z/Y) on an Edwards curve or extended coordinates which uses
(X : Y : Z : T) with XY = ZT , for an efficient computation [4,15].

2.2 w-Coordinate on Edwards Curves

To evaluate the point addition efficiently, Farashahi and Hosseini proposed w-
coordinate system on Edwards curves, and we briefly introduce here [14]. In
[14], they proposed the rational map w as w(x, y) = dx2y2 or w(x, y) = x2/y2

for points (x, y) on an Edwards curve and presented Montgomery-like formulas
for elliptic curve arithmetic on Edwards curves. Although w(x, y) = dx2y2 and
w(x, y) = x2/y2 are different rational functions, as they yield identical formula,
we shall use the map w(x, y) = dx2y2 for the explanation.

Define the rational function w by w(x, y) = dx2y2. This function is well
defined for all affine points on an Edwards curve. For P = (x, y) on an Edwards
curve Ed, −P = (−x, y) so that w(P) = w(−P). Also, w(O) = 0. Let P1 =
(x1, y1) and P2 = (x2, y2) be the points on Ed. Let w0 = w(2P1), w3 = w(P1 +
P2), and w4 = w(P1 − P2). The addition formula on Edwards curves gives

x3(1 + dx1x2y1y2) = x1y2 + x2y1,

x4(1 − dx1x2y1y2) = x1y2 − x2y1,

y3(1 − dx1x2y1y2) = y1y2 − x1x2,

y4(1 + dx1x2y1y2) = y1y2 + x1x2,

where P1 + P2 = (x3, y3) and P1 − P2 = (x4, y4). By multiplying the above
equations and squaring both sides we have,

x2
3y

2
3x

2
4y

2
4 =

(x2
1y

2
2 − x2

2y
2
1)

2(y2
1y

2
2 − x2

1x
2
2)

2

(1 − d2x2
1x

2
2y

2
1y

2
2)4

.

Multiplying both sides by d2 of the above equation, we obtained the differen-
tial addition formula as presented in [14]. In [14], the doubling and differential
addition formulas are defined as,

w0 =
4w1((w1 + 1)2 − ew1)

(w2
1 − 1)2

, w3w4 =
(w1 − w2)2

(w1w2 − 1)2
.

278 S. Kim et al.

where e = 4/d. For the rest of the subsection, we analyze the computational cost
of doubling, tripling, and differential additions in the setting of isogeny-based
cryptosystems, using projective w-coordinates. The M and S refers to a field
multiplication and squaring, respectively, and a and s refers to a field addition
and subtraction, respectively. In the remainder of this paper, we shall consider
WZ-coordinate as projective w-coordinates. As mentioned above, although we
define w(x, y) as w(x, y) = dx2y2, computational costs are identical when w(x, y)
is defined as w(x, y) = x2/y2. Note that these elliptic curve arithmetic form the
building blocks when implementing isogeny-based cryptosystems.

Doubling. Let P = (x, y) be a point on an Edwards curve Ed defined as in
Eq. (1). Let d = D/C, w = dx2y2, and w = W/Z. For P = (W : Z) in projective
w-coordinates, the doubling of P gives [2]P = (W ′ : Z ′), where W ′ and Z ′ are
defined as

W ′ = 4WZ(D(W + Z)2 − 4CWZ),

Z ′ = D(W + Z)2(W − Z)2.

The above equation can be computed as,

t0 = (W + Z)2, t1 = (W − Z)2, t2 = D · t0,
Z ′ = t2 · t1, t0 = t0 − t1, t1 = C · t0,

W ′ = t2 − t1, W ′ = W ′ · t0.

The computational cost is 4M+2S.

Tripling. For P = (W : Z) on an Edwards curve Ed represented in projective
coordinates, the tripling of P gives [3]P = (W ′ : Z ′), where W ′ and Z ′ are
defined as

W ′ = W (D(W 2 − Z2)2 − Z2(4D(W + Z)2 − 16CWZ))2,

Z ′ = Z(−D(W 2 − Z2)2 + W 2(4D(W + Z)2 − 16CWZ))2.

The computational cost is 7M+5S.

Differential Addition. The differential addition is needed when computing
the kernel for SIDH or CSIDH. For example, SIDH starts by computing R =
[m]P + [n]Q for chosen basis P and Q and a secret key (m,n). Without loss of
generality, we may assume that m is invertible, and compute R = P +[m−1n]Q.
This can be done by using the Montgomery ladder which requires computing
differential additions as a subroutine.

Let P1 = (W1 : Z1) and P2 = (W2 : Z2) be the points on Ed. Let w0 =
w(P1 − P2) and w3 = w(P1 + P2). Let w0 = W0/Z0 and w3 = W3/Z3.

Optimized Method for Computing Odd-Degree Isogenies on Edwards Curves 279

Then,

W3 = Z0(W1Z2 − W2Z1)2,

Z3 = W0(W1W2 − Z1Z2)2.

The computational cost of differential addition and doubling on Edwards curves
is 6M+4S using affine coordinates (SIDH/SIKE settings) and 8M+4S using
projective coordinates (CSIDH setting).

2.3 Isogeny-Based Cryptosystems

We recall the SIDH and CSIDH key exchange protocol proposed in [7,16]. For
more information, please refer to [7,16] for SIDH and CSIDH, respectively. The
notations used in this section will continue to be used throughout the paper.

SIDH Protocol. Fix two coprime numbers �A and �B . Let p be a prime of the
form p = �eA

A �eB

B f ± 1 for some integer cofactor f , and eA and eB be positive
integers such that �eA

A ≈ �eB

B . Then we can easily construct a supersingular elliptic
curve E over Fp2 of order (�eA

A �eB

B f)2 [6]. We have full �e-torsion subgroup on E
over Fp2 for � ∈ {�A, �B} and e ∈ {eA, eB}. Choose basis {PA, QA} and {PB , QB}
for the �eA

A - and �eB

B -torsion subgroups, respectively.
Suppose Alice and Bob want to exchange a secret key. Let {PA, QA}

be the basis for Alice and {PB , QB} be the basis for Bob. For key gener-
ation, Alice chooses random elements mA, nA ∈ Z/�eA

A Z, not both divisi-
ble by �A, and computes the subgroup 〈RA〉 = 〈[mA]PA + [nA]QA〉. Then
using Velu’s formula, Alice computes a curve EA = E/〈RA〉 and an isogeny
φA : E → EA of degree �eA

A , where kerφA = 〈RA〉. Alice computes and sends
(EA, φA(PB), φA(QB)) to Bob. Bob repeats the same operation as Alice so that
Alice receives (EB , φB(PA), φB(QA)).

For the key establishment, Alice computes the subgroup 〈R′
A〉 =

〈[mA]φB(PA) + [nA]φB(QA)〉. By using Velu’s formula, Alice computes a curve
EAB = EB/〈R′

A〉. Bob repeats the same operation as Alice and computes a curve
EBA = EA/〈R′

B〉. The shared secret between Alice and Bob is the j-invariant
of EAB , i.e. j(EAB) = j(EBA).

CSIDH Protocol. CSIDH uses commutative group action on supersingular
elliptic curves defined over a finite field Fp. Let O be an imaginary quadratic
order. Let E��p(O) denote the set of elliptic curves defined over Fp with the
endomorphism ring O. It is well-known that the class group Cl(O) acts freely
and transitively on E��p(O). We call the group action as CM-action and denote
the action of an ideal class [a] ∈ Cl(O) on an elliptic curve E ∈ E��p(O) by [a]E.

Let p = 4�1�2 · · · �n − 1 be a prime where �1, · · · , �n are small distinct odd
primes. Let E be a supersingular elliptic curve over Fp such that Endp(E) = Z[π],
where Endp(E) is the endomorphism ring of E over Fp. Note that Endp(E)
is a commutative subring of the quaternion order End(E). Then the trace of

280 S. Kim et al.

Frobenius is zero, hence #E(Fp) = p + 1. Since π2 − 1 = 0 mod �i, the ideal
�iO splits as �iO = li l̄i, where li = (�i, π − 1) and l̄i = (�i, π + 1). The group
action [li]E (resp. [l̄i]E) is computed via isogeny φli (resp. φl̄i) over Fp (resp.
Fp2) using Velu’s formulas.

Suppose Alice and Bob want to exchange a secret key. Alice chooses a vector
(e1, · · · , en) ∈ Z

n, where ei ∈ [−m,m], for a positive integer m. The vector
represents an isogeny associated to the group action by the ideal class [a] =
[le1
1 · · · len

n], where li = (�i, π − 1). Alice computes the public key EA := [a]E and
sends EA to Bob. Bob repeats the similar operation with his secret ideal b and
sends the public key EB := [b]E to Alice. Upon receiving Bob’s public key, Alice
computes [a]EB and Bob computes [b]EA. Due to the commutativity, [a]EB and
[b]EA are isomorphic to each other so that they can derive a shared secret value
from the elliptic curves.

3 Optimized Odd-Degree Isogenies on Edwards Curve

In this section, we present the optimized method for computing odd-degree iso-
genies on Edwards curves. We used the result of Moody and Shumow as a base
formula and optimized it by using w-coordinates. We conclude that the structure
of odd-degree isogenies on Edwards curves is similar to the coordinate map on
Montgomery curves presented in [9].

3.1 Motivation

After the proposal of CSIDH, demands on a general formula for computing
odd-degree isogenies have aroused. The prime p in CSIDH is of the form p =
4�1�2 · · · �n − 1, where �i are small distinct odd primes. To implement CSIDH,
isogeny of degree �i is required for all i, 1 ≤ i ≤ n. The parameter CSIDH-512
presented in [7] uses n = 74, meaning that �1, . . . , �73 are the 73 smallest odd
primes, and �74 is a smallest prime distinct from other primes that makes p
a prime. Therefore, isogeny formulas of degrees up to at least 587 (=�74) are
required. Although the motivation of the work in [9] is independent of CSIDH
scheme, they presented an efficient and generalized odd-degree isogeny formula
on Montgomery curves so that the formula can naturally be used for CSIDH.
For Edwards curves, optimization of the Moody and Shumow’s formula must be
performed for the use in CSIDH and other isogeny-based cryptosystems.

Let G be a subgroup of the Edwards curve Ed with odd order � = 2s + 1,
and points G = {(0, 1), (±α1, β1), . . . , (±αs, βs)}. Let φ be an �-isogeny from Ed

with kernel G. The φ proposed by Moody and Shumow is given as follows, where
B =

∏s
i=1 βi [21].

φ(x, y) =

(
x

B2

s∏
i=1

β2
i x2 − α2

i y
2

1 − d2α2
i β

2
i x2y2

,
y

B2

s∏
i=1

β2
i y2 − α2

i x
2

1 − d2α2
i β

2
i x2y2

)
(3)

For optimizing 3-isogeny formula on Edwards curves, Kim et al. used the curve
equation and the division polynomial to represent the x-coordinate and the curve

Optimized Method for Computing Odd-Degree Isogenies on Edwards Curves 281

coefficient in Eq. (3), in terms of y-coordinate [17]. However, for higher degree iso-
genies, this optimization method is burdensome. On the other hand, the compu-
tational costs of elliptic curve arithmetic are the same for both curves when WZ-
coordinate and XZ-coordinate are used for Edwards curves and Montgomery
curves, respectively. This motivates us to optimize the odd-degree isogeny on
Edwards curves using the w-coordinate. For the rest of the section, we present
an odd-degree isogeny formula on Edwards curves expressed in w-coordinate.

3.2 Proposed Odd-Degree Isogeny Formula

We first present the isogeny formula using the w-coordinate, where the rational
function w is defined as w(x, y) = dx2y2 for points (x, y) on Ed.

Theorem 1. Let P be a point on the Edwards curve Ed of odd order � = 2s+1.
Let 〈P 〉 = {(0, 1), (±α1, β1), · · · , (±αs, βs)}, where P = (α1, β1). Let wi = dα2

i β
2
i

for 1 ≤ i ≤ s, and w = w(Q), where Q = (x, y) ∈ Ed. Then for �-isogeny φ from
Ed to Ed′ = Ed/〈P 〉 the evaluation of w, φ(w), is given by,

w(φ) = w

s∏
i=1

(w − wi)2

(1 − wwi)2
. (4)

Proof. The proof of Theorem 1 is as follows. From the formula proposed by
Moody and Shumow, φ is as in Eq. (3), where d′ = B8d� and B =

∏s
i=1 βi [21].

In order to use the w-coordinate, we need to express the input and output of
an isogeny function in terms of the w-coordinate. The points (x, y) ∈ Ed and
(αi, βi) ∈ Ed where 1 ≤ i ≤ s, are expressed as w = dx2y2 and wi = dα2

i β
2
i ,

in w-coordinates, respectively. Let φ(x, y) = (X,Y) be the image point. Then
w(φ(x, y)) = d′X2Y 2 so that,

d′X2Y 2 = B8d� ·
(

x

B2

s∏
i=1

β2
i x2 − α2

i y
2

1 − d2α2
i β

2
i x2y2

)2 (
y

B2

s∏
i=1

β2
i y2 − α2

i x
2

1 − d2α2
i β

2
i x2y2

)2

.

The above equation can be simplified as follows.

d′X2Y 2 = B8d� · x2

B4

y2

B4

(
s∏

i=1

β2
i x2 − α2

i y
2

1 − d2α2
i β

2
i x2y2

· β2
i y2 − α2

i x
2

1 − d2α2
i β

2
i x2y2

)2

= dx2y2
s∏

i=1

(
d(β2

i x2 − α2
i y

2)(β2
i y2 − α2

i x
2)

(1 − d2α2
i β

2
i x2y2)2

)2

.

Since wi = dα2
i β

2
i and w = dx2y2, the denominator on the inside of the product

in the above equation can be simplified as (1 − wwi)4, which gives,

d′X2Y 2 = w
s∏

i=1

(d(β2
i x2 − α2

i y
2)(β2

i y2 − α2
i x

2))2

(1 − wwi)4
. (5)

282 S. Kim et al.

Now, the numerator on the inside of the product of Eq. (5) can be simplified as
follows.

(d(β2
i x2 − α2

i y
2)(β2

i y2 − α2
i x

2))2 = (d(x2y2β4
i − α2

i β
2
i x4 − α2

i β
2
i y4 + x2y2α4

i))
2

= (w(α4
i + β4

i) − wi(x4 + y4))2

(6)
For further simplification of Eq. (6) we use the curve equation. Note that (αi, βi)
and (x, y) are on the Edwards curve Ed. Then, α2

i + β2
i = 1 + wi so that

α4
i + β4

i = (1 + wi)2 − 2α2
i β

2
i

= (1 + wi)2 − 2wi/d.

Similarly for the point (x, y), we have x4 + y4 = (1 + w)2 − 2w/d. Substituting
the result to Eq. (6), we have,

(d(β2
i x2 − α2

i y
2)(β2

i y2 − α2
ix

2))2 =

(
w

(
(1 + wi)

2 − 2wi

d

)
− wi

(
(1 + w)2 − 2w

d

))2

= ((w − wi)(1 − wwi))
2.

Now if we substitute the above equation to Eq. (5), we have

d′X2Y 2 = w

s∏
i=1

((w − wi)(1 − wwi))2

(1 − wwi)4

= w

s∏
i=1

(w − wi)2

(1 − wwi)2
.

which gives the desired result.
�
Theorem 1 shows that the evaluation of an isogeny on Edwards curves can be
expressed in w-coordinate. Now, it remains to express the coefficient of the image
curve in w-coordinates. From the formula proposed by Moody and Shumow, the
curve coefficient d′ of the image curve Ed′ is d′ = d�B8 where B =

∏s
i=1 βi.

Since (αi, βi) satisfies the curve equation, α2
i = (1 − β2

i)/(1 − dβ2
i) so that

wi = dα2
i β

2
i

= d

(
1 − β2

i

1 − dβ2
i

)
β2

i .

Solving the above equation for β2
i , we can express the curve coefficient of the

image curve in w-coordinate. However, direct change of d′ to w-coordinate is
computationally inefficient due to the square root computation. To solve this
problem, we refer to the following theorem. Let Pi = (αi, βi) ∈ 〈P 〉 for 1 ≤ i ≤ s,
where −Pi = (−αi, βi). We exploit the fact that the set of y-coordinates of [2]Pi

where 1 ≤ i ≤ s, is equal to the set of y-coordinates of Pj , where 1 ≤ j ≤ s,
up to permutations.

Optimized Method for Computing Odd-Degree Isogenies on Edwards Curves 283

Theorem 2. The curve coefficient d′ of the image curve Ed′ in Theorem1 is
equal to

d′ = d�
s∏

i=1

(wi + 1)8

44
. (7)

Proof. The proof of the Theorem2 is as follows. From the formula proposed by
Moody and Shumow, d′ = d�B8 where B =

∏s
i=1 βi. In order to use w-coordinate

system for isogeny computations, we also need to express d′ in w-coordinate. As
denoted above, converting βi directly to w-coordinate is cumbersome. The idea
is that doubling the kernel points also generates the same subgroup since we are
only dealing with odd-degree isogenies.

Let Pi = (αi, βi). Instead of computing the square of the y-coordinate (or
x-coordinate) of Pi, we shall compute the square of the y-coordinate (or x-
coordinate) of [2]Pi. Note that since P is an �-torsion point where � = 2s + 1,
[2]Pi = ±Pj for some i, j ∈ {1, . . . , s}. Then from the addition formula on
Edwards curves, we have

[2]Pi =
(

2αiβi

1 + dα2
i β

2
i

,
β2

i − α2
i

1 − dα2
i β

2
i

)
.

Squaring the x-coordinate of [2]Pi, we have
(

2αiβi

1 + dα2
i β

2
i

)2

=
4α2

i β
2
i

(1 + wi)2

=
4wi/d

(1 + wi)2
.

Since wi = dα2
i β

2
i , β2

i = wi/dα2
i . Hence, by substituting the results, we have

d′ = d�
s∏

i=1

β8
i

= d�
s∏

i=1

(wi + 1)8

44

which gives the desired result.
�

3.3 Alternate Odd-Degree Isogeny Formula

In this section, we present the isogeny formula by defining the rational function
w as w(x, y) = x2/y2 for a point (x, y) on Ed. As shown below, the cost of
evaluating isogenies is the same as the case when w(x, y) = dx2y2. Formulas for
computing the coefficient of the image curve are similar in both cases.

Theorem 3. Let P be a point on the Edwards curve Ed of odd order � = 2s+1.
Let 〈P 〉 = {(0, 1), (±α1, β1), · · · , (±αs, βs)}, where P = (α1, β1). Let wi = α2

i /β2
i

284 S. Kim et al.

for 1 ≤ i ≤ s and w = w(Q), where Q = (x, y) ∈ Ed. Then for �-isogeny φ from
Ed to Ed′ = Ed/〈P 〉 the evaluation of w, φ(w), is given by,

w(φ) = w
s∏

i=1

(w − wi)2

(1 − wwi)2
(8)

Proof. The proof of Theorem3 is similar to the proof of Theorem1. From the
formula proposed by Moody and Shumow, φ is given by Eq. (3). The points
(x, y) ∈ Ed and (αi, βi) ∈ Ed, where 1 ≤ i ≤ s, are expressed as w = x2/y2 and
wi = α2

i /β2
i in w-coordinates, respectively. Let φ(x, y) = (X,Y) be the image

point. Then φ(x, y) can be expressed in w-coordinate as,

φ(w) =
X2

Y 2
=

x2

y2

s∏
i=1

(β2
i x2 − α2

i y
2)2

(β2
i y2 − α2

i x
2)2

.

Simplifying the equation and expressing in w-coordinate, we obtain φ(w) as
in Eq. (8).
�

To obtain the coefficient of the image curve, we refer to the following theorem.

Theorem 4. The curve coefficient d′ of the image curve Ed′ in Theorem1 is
equal to

d′ = d�
s∏

i=1

44

(wi + 1)8
. (9)

Proof. Let Pi = (αi, βi) be the point of the kernel. Similar to the proof of the
Theorem 2, the Theorem 4 exploits the square of the x-coordinate of [2]Pi. From
the addition formula on Edwards curves, we have

[2]Pi =
(

2αiβi

1 + dα2
i β

2
i

,
β2

i − α2
i

1 − dα2
i β

2
i

)
.

Squaring the x-coordinate of [2]Pi and dividing both the denominator and
numerator by β4

i , we have,

4α2
i β

2
i

(1 + dα2
i β

2
i)2

=
4α2

i β
2
i

(α2
i + β2

i)2

=
4wi

(1 + wi)2
.

Optimized Method for Computing Odd-Degree Isogenies on Edwards Curves 285

Now, since wi = α2
i /β2

i , β2
i = α2

i /wi so that

d′ = d�
s∏

i=1

β8
i

= d�
s∏

i=1

(
α2

i

wi

)4

= d�
s∏

i=1

44

(wi + 1)8

which gives the desired result.
�

4 Implementation

In this section, we provide the performance result of our odd-degree isogeny for-
mula by applying to CSIDH. We first compare the computational costs between
Montgomery curves and Edwards curves. We then show the performance result
of CSIDH when w-coordinate is used.

4.1 Computational Costs

To evaluate the computational costs of the proposed formula, we first projectivize
the function into P

1 to avoid inversions. Since both rational maps induce the
similar formula, we shall explain this section by defining the rational map as
w(x, y) = x2/y2 for points (x, y) on Edwards curves. Thus, for (αi, βi) ∈ Ed,
(Wi : Zi) = (wi : 1) for i = 1, . . . , s where wi = α2

i /β2
i . Let φ be a degree �

isogeny from Ed to Ed′ . For additional input point (W : Z) on the curve Ed, the
output is expressed as (W ′ : Z ′) where (W ′ : Z ′) = φ(W : Z). Then,

W ′ = W ·
s∏

i=1

(WZi − ZWi)2,

Z ′ = Z ·
s∏

i=1

(WWi − ZZi)2.

Let Fi = (W − Z)(Wi + Zi) and Gi = (W + Z)(Wi − Zi). Then the above
equation can be rewritten as,

W ′ = W ·
s∏

i=1

(Fi − Gi)2,

Z ′ = Z ·
s∏

i=1

(Fi + Gi)2.

286 S. Kim et al.

Therefore, computation of (WZi − ZWi) and (WWi − ZZi) cost 2M+6a. For
� = 2s + 1-isogeny, evaluation of an isogeny costs (4s)M+2S. To compute the
curve coefficients, let d = D/C. Then we have,

D′ = D� ·
s∏

i=1

(2Zi)8,

C ′ = C� ·
s∏

i=1

(Wi + Zi)8,

where d′ = D′/C ′. Concluding the section, Table 1 presents the computa-
tional costs of evaluation of an isogeny as well as curve coefficient for degree
� ∈ {3, 5, 7, 9}.

As shown in Table 1, the computational costs of evaluating isogenies are iden-
tical on both curves. In Table 1, we used the 2-torsion method for Montgomery
curves to analyze the computational costs of computing the coefficients. In [9],
instead of directly computing the curve coefficients, they exploit the fact that
pushing 2-torsion points through an odd-degree isogeny preserves their order on
the image curve. When the image of the 2-torsion point is obtained, the curve
coefficient of the image curve can be recovered in 2S+5a. For the details of the
method, please refer to [10].

Table 1. Computational costs of isogenies of degree 3, 5, 7, and 9 on Montgomery
cures and Edwards curves. For computing the curve coefficients on Montgomery curve,
the 2-torsion method is used, and the table presents the combined computational cost
of evaluating image of the 2-torsion point ((4s)M+2S) and recovering curve coefficient
(2S)).

Evaluation Curve coefficient

Montgomery Edwards (This Work) Montgomery Edwards (This Work)

3 4M+2S+6a 2M+3S 4M+6S+8a

5 8M+2S+10a 8M+4S+5a 6M+6S+8a

7 12M+2S+14a 12M+4S+5a 8M+6S+8a

9 16M+2S+18a 16M+4S+5a 10M+6S+8a

Since an additional 2-torsion point is evaluated, the computational cost of
recovering the curve coefficient of the image curve is equal to (4s)M+4S, where
(4s)M+2S is for isogeny evaluation and 2S is for recovering from image points.
One drawback of the 2-torsion method is that the additional 2-torsion point must
be evaluated to recover the curve coefficient. Therefore, the computational cost
of obtaining the curve coefficient of the image curve increases as the degree of
isogeny increases. Although this is also the case on Edwards curves, an additional
2-torsion point is not required for Edwards curves.

Optimized Method for Computing Odd-Degree Isogenies on Edwards Curves 287

For Montgomery curves, curve coefficients can also be recovered using the x-
coordinates of points and the x-coordinate of their differences – i.e. x-coordinates
of the points P , Q, and Q − P on a Montgomery curve [9]. We shall call this
method as get a from diff method. Recovering the curve coefficient using this
method costs 8M+5S+11a and the cost does not increase even if the degree of
isogeny increases. In SIDH/SIKE settings, the points P , Q, and Q − P can be
seen as a public key (PA, QA, PA − QA) (or (PB , QB , PB − QB) on Bob’s side)
and are evaluated for each iteration for efficient ladder computations. Therefore,
get a from diff method are more efficient in SIDH than the 2-torsion method.

Figure 1 depicts the difference in the computational cost of recovering the
curve coefficient between Montgomery curves and Edwards curves. The hori-
zontal axis represents the degree of an isogeny and vertical axis represents the
number of multiplication used for the computation. The blue line indicates the
computational cost on Montgomery curves and the orange line indicates the
computational cost on Edwards curves. We considered 1S as 0.8M. Note that
when WZ-coordinate is used for Edwards curves and XZ-coordinate is used for
Montgomery curves, the difference in the performance purely lies on the cost
of recovering the coefficients of the image curve, because the costs of all the
remaining operations are the same. As shown in Fig. 1(a), when the 2-torsion
method is used on Montgomery curves, Edwards curves become more efficient as
the degree of isogeny increases. On the other hand, as shown in Fig. 1(b), when
get a from diff method is used for Montgomery curves, Montgomery curves
become more efficient as the degree of isogeny increases. More concretely, Mont-
gomery curves are preferred in SIDH/SIKE settings and are more efficient than
Edwards curves for s ≥ 3. In CSIDH setting, the points P , Q, and Q−P are not
evaluated so that the 2-torsion method is used for Montgomery curves. Hence
Edwards curves are preferred and are more efficient than Montgomery curves in
CSIDH for s ≥ 2.

Fig. 1. (a) Computational costs of recovering the curve coefficient of the image curve
when the 2-torsion method is used for Montgomery curves. (b) Computational costs
of recovering the curve coefficient of the image curve when get a from diff method is
used for Montgomery curves. (Color figure online)

288 S. Kim et al.

4.2 Implementation Result of CSIDH Using w-coordinate

To evaluate the performance, the algorithms are implemented in C language.
All cycle counts were obtained on one core of an Intel Core i7-6700 (Skylake)
at 3.40 GHz, running Ubuntu 16.04 LTS. For compilation, we used GNU GCC
version 5.4.0. Before we present the implementation result, we briefly introduce
the hybrid-CSIDH proposed by Meyer et al., in order to better explain the results
[19].

Hybrid-CSIDH. In [19], Meyer et al. proposed hybrid implementation of
CSIDH which uses Montgomery curves for elliptic curve arithmetic and isogeny
computation, and twisted Edwards curves for computing the coefficients of the
image curves. As stated above, computing the image curve is not as straightfor-
ward as for the point evaluations on Montgomery curves [9]. However, as pre-
sented in [21], computing the image curve is much simpler on twisted Edwards
curves. Hence, in [19] by using the fact that conversion between two models
costs only two additions, they transformed Montgomery curve to corresponding
twisted Edwards curve and computed the image curve and transformed back to
Montgomery curve.

Sampling Random Points on Edwards Curves. In order to calculate the
class group action, a random point P on a curve is sampled over Fp or Fp2 \ Fp.
For Montgomery curve, this can be done by sampling a random Fp-rational x-
coordinate, and check whether x2 + Ax2 + x is a square or not. For Edwards
curves, we sample a random Fp-rational y-coordinate, check whether correspond-
ing x-coordinate is a square or not, and convert to w-coordinate.

Note that for an Edwards curve define as in Eq. (1), x2 = (1 − y2)/(1 − dy2).
Thus, we need to check whether (1 − y2)/(1 − dy2) is a square or not. This is
equivalent to check whether (1 − y2)(1 − dy2) is a square or not. After checking
the sign, we convert the sampled point on an Edwards curve to projective w-
coordinate. For example, when w = dx2y2 is used for the implementation, the
following conversion is required.

P = (w : 1) =
(

d · 1 − y2

1 − dy2
· y2 : 1

)
= (dy2(1 − y2) : 1 − dy2)

This can be done as in Algorithm 1, which costs 3M+1S.

Optimized Method for Computing Odd-Degree Isogenies on Edwards Curves 289

Algorithm 1 Sampling random point on an Edwards curve

Require: An Edwards curve Ed

Ensure: A point P = (W : Z) on Ed in projective w-coordinate for w = dx2y2

1: Sample a random y ∈ Fp

2: Z ← y2 // Z = y2

3: t0 ← d · Z // t0 = dy2

4: t1 ← 1 − Z // t1 = 1 − y2

5: Z ← 1 − t0 // Z = 1 − dy2

6: rhs ← t1 · Z // rhs = (1 − dy2)(1 − y2)
7: W ← t1 · rhs′ // W = dy2(1 − y2)
8: Set s ← +1 if rhs is a square in Fp, else s ← −1
9: return P

Remark 1. Another method to sample random points on Edwards curves is to
use the idea proposed in [22]. In [22], Moriya et al. proposed a method to sample a
random element in Fp, directly in w-coordinate. The idea is to sample a random
element in Fp and consider it as a w-coordinate of w(P). They prove that if
w(2P) is a square, then there exist P ′ ∈ E[πp + 1] such that w(P ′) = w(2P). If
w(2P) is a non-square, then there exist P ′ ∈ E[πp − 1].

Performance of CSIDH Using Edwards Curves. We used prime field Fp

presented in [7], where p is of the form p = 4�1�2 · · · �74 − 1. The �1, · · · , �73
are the 73 smallest distinct odd primes and �74 = 587. To compare the per-
formance result with the implementation in [7,19], the field operations imple-
mented in [7] are used for the experiment. We refer to the implementation in [7]
as Montgomery-CSIDH and the implementation in [19] as hybrid-CSIDH, for the
rest of the paper. Our implementation of CSIDH using Edwards w-coordinate is
referred to as Edwards-CSIDH. We used w = dx2y2 for the implementation.

First, the base field operations were tested in order to visualize the ratio
between field operations. Each field operations were repeated 108 times.

Table 2. Cycle counts of the field operations over Fp

Addition Subtraction Multiplication

p511 29 24 201

Table 3 illustrates the computational costs of elliptic curve arithmetic and
isogeny on Hybrid-CSIDH and Edwards-CSIDH setting. The [k]P represents the
computational cost of [k]P on Montgomery curves with respect to the cost on
Edwards curves. The additional 3a on Hybrid-CSIDH comes from the curve con-
version. Since the number of calls of differential addition when computing [k]P
is equal to the bit-length of k, (log k × 4)a are additionally required when using

290 S. Kim et al.

Montgomery curves compared to Edwards curves. When computing (2s + 1)-
isogeny, 5 field additions are additionally required for Hybrid-CSIDH for trans-
forming between Montgomery and Edwards curves. However, when computing
the image curve, 8 number of field addition is additionally required in Edwards-
CSIDH.

Table 3. Computational costs of elliptic curve arithmetic and isogenies on Hybrid-
CSIDH and Edwards-CSIDH

Hybrid-CSIDH Edwards-CSIDH

Differential addition 8M+4S+7a+4s 8M+4S+3a+4s

Doubling 4M+2S+6a+2s 4M+2S+1a+3s

Addition 4M+2S+3a+3s 4M+2S+3a+3s

[k]P 3a+(log k × 4)a –

(2s + 1)-isogeny (−3)a –

As shown in Table 4, implementing CSIDH using Edwards w-coordinate is the
fastest. When comparing the result between Montgomery-CSIDH and Edwards-
CSIDH, the result is not surprising since computing the curve coefficient of the
image curve is more efficient on Edwards curves. In order to better compare the
result between Hybrid-CSIDH and Edwards-CSIDH, we analyzed the computa-
tional cost of each building blocks of CSIDH.

The table below denotes the average number of function calls and differences
in the number of field additions of Hybrid-CSIDH with respect to Edwards-
CSIDH. The number of additions is omitted as its computational costs are the
same for Hybrid-CSIDH and Edwards-CSIDH.

Summing up the result of Tables 2 and 5, although Edwards-CSIDH and
Hybrid-CSIDH have the same number of field multiplications and squarings, the
efficiency in the number of field additions and subtractions on Edwards-CSIDH
lead to the fastest result.

Table 4. Implementation results of CSIDH

Montgomery [7] Hybrid [19] Edwards (This Work)

Alice’s keygen 129,165,448 cc 105,438,581 cc 103,239,120 cc

Bob’s keygen 128,460,087 cc 105,217,108 cc 103,078,319 cc

Alice’s shared key 129,215,839 cc 105,429,541 cc 103,232,321 cc

Bob’s shared key 128,426,421 cc 105,204,672 cc 103,084,354 cc

Optimized Method for Computing Odd-Degree Isogenies on Edwards Curves 291

Table 5. Average number of function calls for CSIDH-512 and additional number of
field operations for Hybrid-CSIDH with respect to Edwards-CSIDH

Average number of calls Hybrid-CSIDH

Doubling 202 +848.4 a

[k]P 218 +75,103 a

(2s + 1)-isogeny 202 −606 a

5 Conclusion

In this paper, we proposed the optimized method for computing odd-degree iso-
genies on Edwards curves. By using the w-coordinates, we optimized the isogeny
formula proposed by Moody and Shumow. The use of the w-coordinate makes
the costs of elliptic curve arithmetic and evaluation of an isogeny identical to
that of on Montgomery curves, having efficiency when computing the coefficient
of the image curve. For �-degree isogeny where � = 2s + 1, the proposed formula
has benefit over Montgomery curves when s ≥ 2. We conclude that Montgomery
curves are efficient for implementing SIDH or SIKE and Edwards curves are
efficient for implementing CSIDH. Additionally, we implemented CSIDH using
w-coordinates. Our Edwards-CSIDH is about 20% faster than the Montgomery-
CSIDH, and 2% faster than the hybrid-CSIDH. For the future work, we plan to
implement constant-time CSIDH using w-coordinate on Edwards curves.

Acknowledgement. We thank the anonymous reviewers for their useful and con-
structive comments.

References

1. Azarderakhsh, R., Bakos Lang, E., Jao, D., Koziel, B.: EdSIDH: supersingu-
lar isogeny Diffie-Hellman key exchange on Edwards curves. In: Chattopadhyay,
A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 125–141.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6 8

2. Azarderakhsh, R., et al.: Supersingular isogeny key encapsulation. Submission to
the NIST Post-Quantum Standardization Project (2017)

3. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9 26

4. Bernstein, D.J., Lange, T.: Inverted Edwards coordinates. In: Boztaş, S., Lu, H.-
F.F. (eds.) AAECC 2007. LNCS, vol. 4851, pp. 20–27. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77224-8 4

5. Bos, J.W., Friedberger, S.J.: Arithmetic considerations for isogeny-based cryptog-
raphy. IEEE Trans. Comput. 68(7), 979–990 (2019)

6. Bröker, R.: Constructing supersingular elliptic curves. J. Comb. Number Theory
1(3), 269–273 (2009)

https://doi.org/10.1007/978-3-030-05072-6_8
https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1007/978-3-540-77224-8_4

292 S. Kim et al.

7. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: searching
through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 16

8. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

9. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 11

10. Costello, C., Longa, P., Naehrig, M.: SIDH library (2016–2018). https://github.
com/Microsoft/PQCrypto-SIDH

11. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 21

12. Couveignes, J.M.: Hard homogeneous spaces (2006). https://eprint.iacr.org/2006/
291

13. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11274, pp. 365–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03332-3 14

14. Farashahi, R.R., Hosseini, S.G.: Differential addition on twisted Edwards curves.
In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 366–378.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3 21

15. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves revis-
ited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 20

16. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

17. Kim, S., Yoon, K., Kwon, J., Hong, S., Park, Y.H.: Efficient isogeny computations
on twisted Edwards curves. Secur. Commun. Netw. 2018, 1–11 (2018)

18. Kim, S., Yoon, K., Kwon, J., Park, Y.H., Hong, S.: New hybrid method for isogeny-
based cryptosystems using Edwards curves. IEEE Trans. Inf. Theory (2019).
https://doi.org/10.1109/TIT.2019.2938984

19. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9 8

20. Meyer, M., Reith, S., Campos, F.: On hybrid SIDH schemes using Edwards and
Montgomery curve arithmetic (2017). https://eprint.iacr.org/2017/1213

21. Moody, D., Shumow, D.: Analogues of Vélu’s formulas for isogenies on alternate
models of elliptic curves. Math. Comput. 85(300), 1929–1951 (2016)

22. Moriya, T., Onuki, H., Takagi, T.: How to construct CSIDH on Edwards curves.
Cryptology ePrint Archive, Report 2019/843 (2019). https://eprint.iacr.org/2019/
843

23. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010)

https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://github.com/Microsoft/PQCrypto-SIDH
https://github.com/Microsoft/PQCrypto-SIDH
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-319-59870-3_21
https://doi.org/10.1007/978-3-540-89255-7_20
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1109/TIT.2019.2938984
https://doi.org/10.1007/978-3-030-05378-9_8
https://eprint.iacr.org/2017/1213
https://eprint.iacr.org/2019/843
https://eprint.iacr.org/2019/843

Hard Isogeny Problems over RSA Moduli
and Groups with Infeasible Inversion

Salim Ali Altuğ1(B) and Yilei Chen2

1 Boston University, Boston, USA
saaltug@bu.edu

2 Visa Research, Palo Alto, USA
yilchen@visa.com

Abstract. We initiate the study of computational problems on elliptic
curve isogeny graphs defined over RSA moduli. We conjecture that sev-
eral variants of the neighbor-search problem over these graphs are hard,
and provide a comprehensive list of cryptanalytic attempts on these prob-
lems. Moreover, based on the hardness of these problems, we provide a
construction of groups with infeasible inversion, where the underlying
groups are the ideal class groups of imaginary quadratic orders.

Recall that in a group with infeasible inversion, computing the inverse
of a group element is required to be hard, while performing the group
operation is easy. Motivated by the potential cryptographic application
of building a directed transitive signature scheme, the search for a group
with infeasible inversion was initiated in the theses of Hohenberger and
Molnar (2003). Later it was also shown to provide a broadcast encryp-
tion scheme by Irrer et al. (2004). However, to date the only case of a
group with infeasible inversion is implied by the much stronger primi-
tive of self-bilinear map constructed by Yamakawa et al. (2014) based on
the hardness of factoring and indistinguishability obfuscation (iO). Our
construction gives a candidate without using iO.

1 Introduction

Let G denote a finite group written multiplicatively. The discrete-log problem
asks to find the exponent a given g and ga ∈ G. In the groups traditionally used
in discrete-log-based cryptosystems, such as (Z/qZ)∗ [11], groups of points on
elliptic curves [22,29], and class groups [3,28], computing the inverse x−1 = g−a

given x = ga is easy. We say G is a group with infeasible inversion if computing
inverses of elements is hard, while performing the group operation is easy (i.e.
given g, ga, gb, computing ga+b is easy).

The search for a group with infeasible inversion was initiated in the theses of
Hohenberger [18] and Molnar [30], motivated with the potential cryptographic
application of constructing a directed transitive signature. It was also shown
by Irrer et al. [20] to provide a broadcast encryption scheme. The only existing
candidate of such a group, however, is implied by the much stronger primitive of
self-bilinear maps constructed by Yamakawa et al. [40], assuming the hardness
of integer factorization and indistinguishability obfuscation (iO) [2,16].
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 293–322, 2019.
https://doi.org/10.1007/978-3-030-34621-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_11

294 S. A. Altuğ and Y. Chen

In this paper we propose a candidate trapdoor group with infeasible inversion
without using iO. The underlying group is isomorphic to the ideal class group of
an imaginary quadratic order (henceforth abbreviated as “the class group”). In
the standard representation of the class group, computing the inverse of a group
element is straightforward. The representation we propose uses the volcano-like
structure of the isogeny graphs of ordinary elliptic curves. In fact, the initiation
of this work was driven by the desire to explore the computational problems on
the isogeny graphs defined over RSA moduli.

1.1 Elliptic Curve Isogenies in Cryptography

An isogeny ϕ : E1 → E2 is a morphism of elliptic curves that preserves the
identity. Given two isogenous elliptic curves E1, E2 over a finite field, finding
an explicit rational polynomial that represents an isogeny from E1 to E2 is
traditionally called the computational isogeny problem.

The best way of understanding the nature of the isogeny problem is to look
at the isogeny graphs. Fix a finite field k and a prime � different than the char-
acteristic of k. Then the isogeny graph G�(k) is defined as follows: each vertex
in G�(k) is a j-invariant of an isomorphism class of curves; two vertices are
connected by an edge if there is an isogeny of degree � over k that maps one
curve to another. The structure of the isogeny graph is described in the PhD
thesis of Kohel [23]. Roughly speaking, a connected component of an isogeny
graph containing ordinary elliptic curves looks like a volcano (termed in [15]).
The connected component containing supersingular elliptic curves, on the other
hand, has a different structure. In this article we will focus on the ordinary case.

A Closer Look at the Algorithms of Computing Isogenies. Let k be a finite field
of q elements, � be an integer such that gcd(�, q) = 1. Given the j-invariant of an
elliptic curve E, there are at least two different ways to find all the j-invariants
of the curves that are �-isogenous to E (or to a twist of E) and to find the
corresponding rational polynomials that represent the isogenies:

1. Computing kernel subgroups of E of size �, and then applying Vélu’s formulae
to obtain explicit isogenies and the j-invariants of the image curves,

2. Calculating the j-invariants of the image curves by solving the �th modular
polynomial Φ� over k, and then constructing explicit isogenies from these
j-invariants.

Both methods are able to find all the �-isogenous neighbors over k in time
poly(�, log(q)). In other words, over a finite field, one can take a stroll around
the polynomial-degree isogenous neighbors of a given elliptic curve efficiently.

However, for two random isogenous curves over a sufficiently large field, find-
ing an explicit isogeny between them seems to be hard, even for quantum com-
puters. The conjectured hardness of computing isogenies was used in a key-
exchange and a public-key cryptosystem by Couveignes [7] and independently
by Rostovtsev and Stolbunov [31]. Moreover, a hash function and a key exchange
scheme were proposed based on the hardness of computing isogenies over

Hard Isogeny Problems over RSA Moduli and GII 295

supersingular curves [4,21]. Isogeny-based cryptography is attracting attention
partially due to its conjectured post-quantum security.

1.2 Isogeny Graphs over RSA Moduli

Let p, q be primes and let N = pq. In this work we consider computational
problems related to elliptic curve isogeny graphs defined over Z/NZ, where the
prime factors p, q of N are unknown. An isogeny graph over Z/NZ is defined
first by fixing the isogeny graphs over Fp and Fq, then taking a graph tensor
product; obtaining the j-invariants in the vertices of the graph over Z/NZ by
the Chinese remainder theorem. Working over the ring Z/NZ without the factors
of N creates new sources of computational hardness from the isogeny problems.
Of course, by assuming the hardness of factorization, we immediately lose the
post-quantum privilege of the “traditional” isogeny problems. From now on all
the discussions of hardness are with respect to the polynomial time classical
algorithms.

Basic Neighbor Search Problem over Z/NZ. When the factorization of N is
unknown, it is not clear how to solve the basic problem of finding (even one
of) the �-isogenous neighbors of a given elliptic curve. The two algorithms over
finite fields we mentioned seem to fail over Z/NZ since both of them require
solving polynomials over Z/NZ, which is hard in general when the factorization
of N is unknown. In fact, we show that if it is feasible to find all the �-isogenous
neighbors of a given elliptic curve over Z/NZ, then it is feasible to factorize N .

Joint-Neighbor Search Problem over Z/NZ. Suppose we are given several j-
invariants over Z/NZ that are connected by polynomial-degree isogenies, we ask
whether it is feasible to compute their joint isogenous neighbors. For example,
in the isogeny graph on the LHS of Fig. 1, suppose we are given j0, j1, j2, and
the degrees � between j0 and j1, and m between j0 and j2 such that gcd(�,m) =
1. Then we can find j3 which is m-isogenous to j1 and �-isogenous to j2, by
computing the polynomial f(x) = gcd(Φm(j1, x), Φ�(j2, x)) over Z/NZ. When
gcd(�,m) = 1 the polynomial f(x) turns out to be linear with its only root being
j3, hence computing the (�,m) neighbor in this case is feasible.

However, not all the joint-isogenous neighbors are easy to find. As an exam-
ple, consider the following (�, �2)-joint neighbor problem illustrated on the RHS
of Fig. 1. Suppose we are given j0 and j1 that are �-isogenous, and asked to
find another j-invariant j−1 which is �-isogenous to j0 and �2-isogenous to j1.
The natural way is to take the gcd of Φ�(j0, x) and Φ�2(j1, x), but in this case
the resulting polynomial is of degree � > 1 and we are left with the problem of
finding a root of it over Z/NZ, which is believed to be computationally hard
without knowing the factors of N .

Currently we do not know if solving this problem is as hard as factoring N .
Neither do we know of an efficient algorithm of solving the (�, �2)-joint neighbor
problem. We will list our attempts in solving the (�, �2)-joint neighbor problem
in Sect. 5.2.

296 S. A. Altuğ and Y. Chen

Z/NZ

j0

j1 j2

j3

� �m m

Z/NZ

j−1 = ?

...

j0
j1

j0,1 = ?

j0,2 = ?
...

...

�

�

�

�

�

�

�

Fig. 1. Left: the (�, m)-isogenous neighbor problem where gcd(�, m) = 1. Right: the
(�, �2)-isogenous neighbor problem.

The conjectured computational hardness of the (�, �2)-joint neighbor problem
is fundamental to the infeasibility of inversion in the group we construct.

1.3 Constructing a Trapdoor Group with Infeasible Inversion

To explain the construction of the trapdoor group with infeasible inversion
(TGII), it is necessary to recall the connection of the ideal class groups and
elliptic curve isogenies. Let k be a finite field as before and let E be an elliptic
curve over k whose endomorphism ring is isomorphic to an imaginary quadratic
order O. The group of invertible O-ideals acts on the set of elliptic curves with
endomorphism ring O. The ideal class group CL(O) acts faithfully and transi-
tively on the set

EllO(k) = {j(E) : E with End(E) � O} .

In other words, there is a map

CL(O) × EllO(k) → EllO(k), (a, j) �→ a ∗ j

such that a ∗ (b ∗ j) = (ab) ∗ j for all a, b ∈ CL(O) and j ∈ EllO(k); for any
j, j′ ∈ EllO(k), there is a unique a ∈ CL(O) such that j′ = a ∗ j. The cardinality
of EllO(k) equals to the class number h(O).

We are now ready to provide an overview of the TGII construction with a
toy example in Fig. 2.

Parameter Generation. To simplify this overview let us assume that the
group CL(O) is cyclic, in which case the group G with infeasible inversion is
exactly CL(O) (in the detailed construction we usually choose a cyclic subgroup
of CL(O)). To generate the public parameter for the group CL(O), we choose
two primes p, q and curves E0,Fp

over Fp and E0,Fq
over Fq such that the endo-

morphism rings of E0,Fp
and E0,Fq

are both isomorphic to O. Let N = p · q.
Let E0 be an elliptic curve over Z/NZ as the CRT composition of E0,Fp

and
E0,Fq

. The j-invariant of E0, denoted as j0, equals to the CRT composition of

Hard Isogeny Problems over RSA Moduli and GII 297

F83

j0 = 15

j1 = 48
j2 = 23

j3 = 29

j4 = 34
j5 = 55

j6 = 71
F83

j0 = 15

j1 = 48
j2 = 23

j3 = 29

j4 = 34
j5 = 55

j6 = 71
F83

j0 = 15

j1 = 48
j2 = 23

j3 = 29

j4 = 34
j5 = 55

j6 = 71
F83

j0 = 15

j1 = 48
j2 = 23

j3 = 29

j4 = 34
j5 = 55

j6 = 71
F83

j0 = 15

j1 = 48
j2 = 23

j3 = 29

j4 = 34
j5 = 55

j6 = 71
F83

j0 = 15

j1 = 48
j2 = 23

j3 = 29

j4 = 34
j5 = 55

j6 = 71
F83

j0 = 15

j1 = 48
j2 = 23

j3 = 29

j4 = 34
j5 = 55

j6 = 71
F173

j0 = 2

j1 = 162
j2 = 36

j3 = 117

j4 = 134
j5 = 116

j6 = 167
F173

j0 = 2

j1 = 162
j2 = 36

j3 = 117

j4 = 134
j5 = 116

j6 = 167
F173

j0 = 2

j1 = 162
j2 = 36

j3 = 117

j4 = 134
j5 = 116

j6 = 167
F173

j0 = 2

j1 = 162
j2 = 36

j3 = 117

j4 = 134
j5 = 116

j6 = 167
F173

j0 = 2

j1 = 162
j2 = 36

j3 = 117

j4 = 134
j5 = 116

j6 = 167
F173

j0 = 2

j1 = 162
j2 = 36

j3 = 117

j4 = 134
j5 = 116

j6 = 167
F173

j0 = 2

j1 = 162
j2 = 36

j3 = 117

j4 = 134
j5 = 116

j6 = 167

CRT

Z14359

j0 = 12631

j1 = 7601
j2 = 1766

j3 = 4096

j4 = 7919
j5 = 2711

j6 = 1897

Z14359

j0 = 12631

j1 = 7601
j2 = 1766

j3 = 4096

j4 = 7919
j5 = 2711

j6 = 1897

Z14359

j0 = 12631

j1 = 7601
j2 = 1766

j3 = 4096

j4 = 7919
j5 = 2711

j6 = 1897

Z14359

j0 = 12631

j1 = 7601
j2 = 1766

j3 = 4096

j4 = 7919
j5 = 2711

j6 = 1897

Z14359

j0 = 12631

j1 = 7601
j2 = 1766

j3 = 4096

j4 = 7919
j5 = 2711

j6 = 1897

Z14359

j0 = 12631

j1 = 7601
j2 = 1766

j3 = 4096

j4 = 7919
j5 = 2711

j6 = 1897

Z14359

j0 = 12631

j1 = 7601
j2 = 1766

j3 = 4096

j4 = 7919
j5 = 2711

j6 = 1897

Fig. 2. A representation of CL(−251) by a 3-isogeny volcano over Z14359 of size
h(−251) = 7. The F83 part is taken from [31].

the j-invariants of E0,Fp
and E0,Fq

. The identity of CL(O) is represented by j0.
The public parameter of the group is (N, j0).

In the example of Fig. 2, we set the discriminant D of the imaginary quadratic
order O to be −251. The group order is then the class number h(O) = 7. Choose
p = 83, q = 173, N = pq = 14359. Fix a curve E0 so that j(E0,Fp

) = 15,
j(E0,Fq

) = 2, then j0 = CRT(83, 173; 15, 2) = 12631. The public parameter is
(14359, 12631).

The Encodings. We provide two types of encodings for each group element:
the canonical and composable embeddings. The canonical encoding of an ele-
ment is uniquely determined once the public parameter is fixed and it can be
directly used in the equivalence test. It, however, does not support efficient group
operations. The composable encoding of an element, on the other hand, supports
efficient group operations with the other composable encodings. Moreover, a
composable encoding can be converted to a canonical encoding by an efficient,
public extraction algorithm.

An element x ∈ CL(O) is canonically represented by the j-invariant of the
elliptic curve x ∗ E0 (once again, obtained over Fp and Fq then composed by
CRT), and we call j(x∗E0) the canonical encoding of x. Note that the canonical
encodings of all the elements are fixed once j0 and N are fixed.

To make things concrete, let a =
√−251 and consider the toy example above.

The ideal class x = [(3, a+1
2)] acting on E0 over Fp gives j(x ∗ E0,Fp

) = 48,
over Fq gives j(x ∗ E0,Fq

) = 162. The canonical encoding of x is then j1 =
CRT(83, 173; 48, 162) = 7601. Similarly, the canonical encodings of the ideal
classes [(7, a−1

2)], [(5, a+7
2)], [(5, a+3

2)], [(7, a+1
2)], [(3, a−1

2)] are 1766, 4096, 7919,
2711, 1897.

The Composable Encodings and the Composition Law. To generate a
composable encoding of x ∈ CL(O), we factorize x as x =

∏
xi∈S xei

i , where
S denotes a generating set, and both the norms N(xi) and the exponents ei

being polynomial in size. The composable encoding of x then consists of the
norms N(xi) and the j-invariants of xk

i ∗ E0, for k ∈ [ei], for i ∈ [|S|]. The
degree of a composable encoding is defined to be the product of the norms of
the ideals

∏
xi∈S N(xi)ei . Note that the degree depends on the choice of S and

the factorization of x, which is not unique.

298 S. A. Altuğ and Y. Chen

As an example let us consider the simplest situation, where the composable
encodings are just the canonical encodings themselves together with the norms
of the ideals (i.e. the degrees of the isogenies). Set the composable encoding
of x = [(3, a+1

2)] be (3, 7601), the composable encoding of y = [(7, a−1
2)] be

(7, 1766).
Let us remark an intricacy of the construction of composable encodings.

When the degrees of the composable encodings of x and y are coprime and poly-
nomially large, the composition of x and y can be done simply by concatenating
the corresponding encodings. To extract the canonical encoding of x◦y, we take
the gcd of the modular polynomials. In the example above, the canonical encod-
ing of x ◦ y can be obtained by taking the gcd of Φ7(7601, x) and Φ3(1766, x)
over Z/NZ. Since the degrees are coprime, the resulting polynomial is linear,
with the only root being 4096, which is the canonical encoding of [(5, a+7

2)].
Note, however, that if the degrees share prime factors, then the gcd algorithm

does not yield a linear polynomial, so the above algorithm for composition does
not go through. To give a concrete example to what this means let us go back to
our example: if we represent y = [(7, a−1

2)] by first factorizing y as [(3, a+1
2)]2 we

then get the composable encoding of y as (3, (7601, 1766)). In this case the gcd
of Φ32(7601, x) and Φ3(1766, x) over Z/NZ yields a degree 3 polynomial, where
it is unclear how to extract the roots. Hence, in this case we cannot calculate
the canonical embedding of x ◦ y simply by looking at the gcd.

Therefore, to facilitate the efficient compositions of the encodings of group ele-
ments, we will need to represent them as the product of pairwise co-prime ideals
with polynomially large norms. This, in particular, means the encoding algorithm
will need to keep track on the primes used in the degrees of the composable encod-
ings in the system. In other words, the encoding algorithm is stateful.

The Infeasibility of Inversion. The infeasibility of inversion amounts to the
hardness of the computation of the canonical embedding of an element x−1 ∈ G

from a composable encoding of x, and it is based on the hardness of the (�, �2)-
isogenous neighbors problem for each ideal of a composable encoding.

Going back to our example, given the composable encoding (3, 7601) of
x = [(3, a+1

2)], the canonical encoding of x−1 = [(3, a−1
2)] is a root of f(x) =

gcd(Φ32(7601, x), Φ3(12631, x)). The degree of f , however, is 3, so that it is not
clear how to extract the root efficiently over an RSA modulus.

The Difficulty of Sampling the Class Group Invariants and Its Implications. Let
us remark that the actual instantiation of TGII is more involved. A number
of challenges arise solely from working with the ideal class groups of imaginary
quadratic orders. To give a simple example of the challenges we face, efficiently
generating a class group with a known large prime class number is a well-known
open problem. Additionally, our construction requires more than the class num-
ber (namely, a short basis of the relation lattice of the class group) to support
an efficient encoding algorithm.

In our solution, we choose the discriminant D to be of size roughly λO(log λ)

and polynomially smooth, so as to make the parameter generation algorithm

Hard Isogeny Problems over RSA Moduli and GII 299

and the encoding algorithm run in polynomial time. The discriminant D (i.e.
the description of the class group CL(D)) has to be hidden to preserve the plau-
sible λO(log λ)-security of the TGII. Furthermore, even if D is hidden, there is an
λO(log λ) attack by first guessing D or the group order, then solving the discrete-
log problem given the polynomially-smooth group order. Extending the working
parameters regime seems to require the solutions of several open problems con-
cerning ideal class groups of imaginary quadratic orders.

Summary of the TGII Construction. To summarize, our construction of TGII
chooses two sets of j-invariants that correspond to elliptic curves with the same
imaginary quadratic order O over Fp and Fq, and glues the j-invariants via the
CRT composition as the canonical encodings of the group elements in CL(O).
The composable encoding of a group element x is given as several j-invariants
that represent the smooth ideals in a factorization of x. The efficiency of solv-
ing the (�,m)-joint-neighbor problem over Z/NZ facilitates the efficient group
operation over coprime degree encodings. The conjectured hardness of the (�, �2)-
joint-neighbor problem over Z/NZ is the main reason behind the hardness of
inversion, but it also stops us from composing encodings that share prime factors.

The drawbacks of our construction of TGII are as follows.

1. Composition is only feasible for coprime-degree encodings, which means in
order to publish arbitrarily polynomially many encodings, the encoding algo-
rithm has to be stateful in order to choose different polynomially large prime
factors for the degrees of the encoding (we cannot choose polynomially large
prime degrees and hope they are all different).

2. In the definition from [18,30], the composable encodings obtained during the
composition are required to be indistinguishable to a freshly sampled encod-
ing. In our construction the encodings keep growing during compositions, until
they are extracted to the canonical encoding which is a single j-invariant.

3. In addition to the (�, �2)-joint-neighbor problem, the security of the TGII
construction relies on several other heuristic assumptions. We will list our
cryptanalytic attempts in Sect. 5.3. Moreover, even if we have not missed any
attacks, the current best attack only requires λO(log λ)-time, by first guessing
the discriminant or the group order.

The Two Applications of TGII. Let us briefly mention the impact of the lim-
itation of our TGII on the applications of directed transitive signature (DTS)
[18,30] and broadcast encryption [20]. For the broadcast encryption from TGII
[20], the growth of the composable encodings do not cause a problem. For DTS,
in the direct instantiation of DTS from TGII [18,30], the signature is a compos-
able encoding, so the length of the signature keeps growing during the compo-
sition, which is an undesirable feature for a non-trivial DTS. So on top of the
basic instantiation, we provide an additional compression technique to shrink
the composed signature.

300 S. A. Altuğ and Y. Chen

Let us also remark that in the directed transitive signature [18,30], encodings
are sampled by the master signer; in the broadcast encryption scheme [20], encod-
ings are sampled by the master encrypter. At least for these two applications,
having the master signer/encrypter being stateful is not ideal but acceptable.

Organization. The rest of the paper is organized as follows. Section 2 provides the
background of imaginary quadratic fields, elliptic curves and isogenies. Section 3
defines the computational problems for isogeny graphs over composite moduli.
Section 4 provides our basic construction of a trapdoor group with infeasible
inversion. Section 5 provides a highlight of our cryptanalysis attempts.

2 Preliminaries

Notation and Terminology. Let C, R, Q, Z, N denote the set of complex numbers,
reals, rationals, integers, and positive integers respectively. For any field K we
fix an algebraic closure and denote it by K̄. For n ∈ N, let [n] := {1, . . . , n}.
For B ∈ R, an integer n is called B-smooth if all the prime factors of n are
less than or equal to B. An n-dimensional vector is written as a bold lower-case
letter, e.g. v := (v1, . . . , vn). For an index k ∈ N, distinct prime numbers pi

for i ∈ [k], and ci ∈ Z/piZ we will let CRT(p1, . . . , pk; c1, . . . , ck) to denote the
unique y ∈ Z/(

∏k
i pi)Z such that y ≡ ci (mod pi), for i ∈ [k]. Given a lattice Λ

with a basis B, let B̃ denote the Gram-Schmidt orthogonalization of B.
Let λ denote the security parameter. In theory and by default, an algorithm

is called “efficient” if it runs in probabilistic polynomial time over λ.

2.1 Ideal Class Groups of Imaginary Quadratic Orders

We recall the necessary background of ideal class groups from [5,9,28].
Let K be an imaginary quadratic field. An order O in K is a subset of K

such that (1) O is a subring of K containing 1; (2) O is a finitely generated Z-
module; (3) O contains a Q-basis of K. The ring OK of integers of K is always
an order. For any order O, we have O ⊆ OK , in other words OK is the maximal
order of K with respect to inclusion.

The ideal class group (or class group) of O is the quotient group CL(O) =
I(O)/P (O) where I(O) denotes the group of proper (i.e. invertible) fractional
O-ideals of, and P (O) is its subgroup of principal O-ideals. Let D be the discrim-
inant of O. Note that since O is quadratic imaginary we have D < 0. Sometimes
we will denote the class group CL(O) as CL(D), and the class number (the group
order of CL(O)) as h(O) or h(D).

Let D = D0 ·f2, where D0 is the fundamental discriminant and f is the con-
ductor of O (or D). The following well-known formula relates the class number
of an non-maximal order to that of the maximal one:

h(D)
w(D)

=
h(D0)
w(D0)

· f
∏

p|f

(

1 −
(
D0
p

)

p

)

, (1)

Hard Isogeny Problems over RSA Moduli and GII 301

where w(D) = 6 if D = −3, w(D) = 4 if D = −4, and w(D) = 2 if D < −4. Let
us also remark that the Brauer-Siegel theorem implies that ln(h(D)) ∼ ln(

√|D|)
as D → −∞.

Representations. An O-ideal of discriminant D can be represented by its genera-
tors, or by its binary quadratic forms. A binary quadratic form of discriminant D
is a polynomial ax2+bxy+cy2 with b2−4ac = D. We denote a binary quadratic
form by (a, b, c). The group SL2(Z) acts on the set of binary quadratic forms
and preserves the discriminant. We shall always be assuming that our forms
are positive definite, i.e. a > 0. Recall that a form (a, b, c) is called primitive if
gcd(a, b, c) = 1, and a primitive form is called reduced if −a < b ≤ a < c or
0 ≤ b ≤ a = c. Reduced forms satisfy a ≤ √|D|/3.

A fundamental fact, which goes back to Gauss, is that in each equivalence
class, there is a unique reduced form (see Corollary 5.2.6 of [5]). Given a form
(a, b, c), denote [(a, b, c)] as its equivalence class. Note that when D is fixed, we
can denote a class simply by [(a, b, ·)]. Efficient algorithms of composing forms
and computing the reduced form can be found in [28, Page 9].

2.2 Elliptic Curves and Their Isogenies

In this section we will recall some background on elliptic curves and isogenies.
All of this material is well-known and the main references for this section are
[14,23,34,35,37].

Let E be an elliptic curve defined over a finite field k of characteristic �= 2, 3
with q elements, given by its Weierstrass form y2 = x3+ax+b where a, b ∈ k. By
the Hasse bound we know that the order of the k-rational points E(k) satisfies

−2
√

q ≤ #E(k) − (q + 1) ≤ 2
√

q.

Here, t = q + 1 − #E(k) is the trace of Frobenius endomorphism π : (x, y) �→
(xq, yq). Let us also recall that Schoof’s algorithm [32] takes as inputs E and q,
computes t, and hence #E(k), in time poly(log q).

The j-invariant of E is defined as j(E) = 1728 · 4a3

4a3+27b2 . The values j = 0
or 1728 are special and we will choose to avoid these two values throughout the
paper. Two elliptic curves are isomorphic over the algebraic closure k̄ if and
only if their j-invariants are the same. Note that this isomorphism may not be
defined over the base field k, in which case the curves are called twists of each
other. It will be convenient for us to use j-invariants to represent isomorphism
classes of elliptic curves (including their twists). In many cases, with abuse of
notation, a j-invariant will be treated as the same to an elliptic curve over k in
the corresponding isomorphism class.

Isogenies. An isogeny ϕ : E1 → E2 is a morphism of elliptic curves that preserves
the identity. Every nonzero isogeny induces a surjective group homomorphism
from E1(k̄) to E2(k̄) with a finite kernel. Elliptic curves related by a nonzero

302 S. A. Altuğ and Y. Chen

isogeny are said to be isogenous. By the Tate isogeny theorem [38, pg.139] two
elliptic curves E1 and E2 are isogenous over k if and only if #E1(k) = #E2(k).

The degree of an isogeny is its degree as a rational map. An isogeny of
degree � is called an �-isogeny. When char(k) � �, the kernel of an �-isogeny has
cardinality �. Two isogenies φ and ϕ are considered equivalent if φ = ι1 ◦ ϕ ◦ ι2
for isomorphisms ι1 and ι2. Every �-isogeny ϕ : E1 → E2 has a unique dual
isogeny ϕ̂ : E2 → E1 of the same degree such that ϕ ◦ ϕ̂ = ϕ̂ ◦ ϕ = [�], where [�]
is the multiplication by � map. The kernel of the multiplication-by-� map is the
�-torsion subgroup

E[�] =
{
P ∈ E(k̄) : �P = 0

}
.

When � � char(k) we have E[�] � Z/�Z × Z/�Z. For a prime � �= char(k), there
are � + 1 cyclic subgroups in E[�] of order �, each corresponding to the kernel
of an �-isogeny ϕ from E. An isogeny from E is defined over k if and only if
its kernel subgroup G is defined over k (namely, for P ∈ G and σ ∈ Gal(k̄/k),
σ(P) ∈ G; note that this does not imply G ⊆ E(k)). If � � char(k) and j(E) �= 0
or 1728, then up to isomorphism the number of �-isogenies from E defined over
k is 0, 1, 2, or � + 1.

Modular Polynomials. Let � ∈ Z, let H denote the upper half plane H :=
{τ ∈ C : im τ > 0} and H

∗ = H ∪ Q ∪ {∞}. Let j(τ) be the classical modu-
lar function defined on H. For any τ ∈ H, the complex numbers j(τ) and j(�τ)
are the j-invariants of elliptic curves defined over C that are related by an isogeny
whose kernel is a cyclic group of order �. The minimal polynomial Φ�(y) of the
function j(�z) over the field C(j(z)) has coefficients that are polynomials in j(z)
with inter coefficients. Replacing j(z) with a variable x gives the modular poly-
nomial Φ�(x, y) ∈ Z[x, y], which is symmetric in x and y. It parameterizes pairs
of elliptic curves over C related by a cyclic �-isogeny (an isogeny is said to be
cyclic if its kernel is a cyclic group; when � is a prime every �-isogeny is cyclic).
The modular equation Φ�(x, y) = 0 is a canonical equation for the modular curve
Y0(�) = H/Γ0(�), where Γ0(�) is the congruence subgroup of SL2(Z) defined by

Γ0(�) =
{(

a b
c d

)

∈ SL2(Z)
∣
∣
∣
∣

(
a b
c d

)

≡
(∗ ∗

0 ∗
)

(mod �)
}

.

The time and space required for computing the modular polynomial Φ� are
polynomial in �, cf. [12, Sect. 3] or [5, Page 386]. In this article we will only use
{Φ� ∈ Z[x, y]}�∈poly(λ), so we might as well assume that the modular polynomials
are computed ahead of time.

2.3 Isogeny Volcanoes and the Class Groups

An isogeny from an elliptic curve E to itself is called an endomorphism. Over a
finite field k, End(E) is isomorphic to an imaginary quadratic order when E is
ordinary, or an order in a definite quaternion algebra when E is supersingular.
In this paper we will be focusing on the ordinary case.

Hard Isogeny Problems over RSA Moduli and GII 303

Isogeny Graphs. The thesis of [23] describes the graphs that capture the relation
of being �-isogenous among elliptic curves over a finite field k.

Definition 1 (�-isogeny graph). Fix a prime � and a finite field k such that
char(k) �= �. The �-isogeny graph G�(k) has vertex set k. Two vertices (j1, j2)
have a directed edge (from j1 to j2) with multiplicity equal to the multiplicity of
j2 as a root of Φ�(j1, Y). The vertices of G�(k) are j-invariants and each edge
corresponds to an (isomorphism classes of an) �-isogeny.

For j1, j2 /∈ {0, 1728}, an edge (j1, j2) occurs with the same multiplicity as (j2, j1)
and thus the subgraph of G�(k) on k \ {0, 1728} can be viewed as an undirected
graph. G�(k) has super singular and ordinary components. The ordinary com-
ponents of G�(k) look like �-volcanoes:

Definition 2 (�-volcano). Fix a prime �. An �-volcano V is a connected undi-
rected graph whose vertices are partitioned into one or more levels V0, ..., Vd

such that the following hold:

1. The subgraph on V0 (the surface, or the crater) is a regular graph of degree
at most 2.

2. For i > 0, each vertex in Vi has exactly one neighbor in level Vi−1.
3. For i < d, each vertex in Vi has degree � + 1.

Let φ : E1 → E2 by an �-isogeny of elliptic curves with endomorphism
rings O1 = End(E1) and O2 = End(E2) respectively. Then, there are three
possibilities for O1 and O2:

– If O1 = O2, then φ is called horizontal,
– If [O1 : O2] = �, then φ is called descending,
– If [O2 : O1] = �, then φ is called ascending.

Let E be an elliptic curve over k whose endomorphism ring is isomorphic to
an imaginary quadratic order O. Then, the set

EllO(k) = {j(E) ∈ k | with End(E) � O}
is naturally a CL(O)-torsor as follows: For an invertible O-ideal a the a-torsion
subgroup

E[a] =
{
P ∈ E(k̄) : α(P) = 0,∀α ∈ a

}

is the kernel of a separable isogeny φa : E → E′. If the norm N(a) = [O : a]
is not divisible by char(k), then the degree of φa is N(a). Moreover, if a and b
are two invertible O-ideals, then φab = φaφb, and if a is principal then φa is an
isomorphism. This gives a faithful and transitive action of CL(O) on EllO(k).

Remark 1 (Linking ideals and horizontal isogenies). When � splits in O we have
(�) = l · l̄. Fix an elliptic curve E(k) with End(E) � O, the two horizontal
isogenies φ1 : E → E1 and φ2 : E → E2 can be efficiently associated with the
two ideals l and l̄ when � ∈ poly(λ) (cf. [33]). To do so, factorize the characteristic
polynomial of Frobenius π as (x − μ)(x − ν) (mod �), where μ, ν ∈ Z/�Z. Given
an �-isogeny φ from E to E/G, the eigenvalue (say μ) corresponding to the
eigenspace G can be verified by picking a point P ∈ G, then check whether
π(P) = [μ]P modulo G. If so then μ corresponds to φ.

304 S. A. Altuğ and Y. Chen

3 Isogeny Graphs over Composite Moduli

Let p, q be distinct primes and set N = pq. We will be using elliptic curves over
the ring Z/NZ. We will not be needing a formal treatment of elliptic curves over
rings as such a discussion would take us too far afield. Instead, we will be defining
objects and quantities over Z/NZ by taking the CRT of the corresponding ones
over Fp and Fq, which will suffice for our purposes. This follows the treatment
given in [27].

Since the underlying rings will matter, we will denote an elliptic curve
over a ring R by E(R). If R is clear from the context we shall omit
it from the notation. To begin, let us remark that the number of points
#(E(Z/NZ)) is equal to #(E(Fp)) · #(E(Fq)), and the j-invariant of E(Z/NZ)
is CRT(p, q; j(E(Fp)), j(E(Fq))).

3.1 Isogeny Graphs over Z/NZ

Let N be as above. For every prime � � N the isogeny graph G�(Z/NZ) can be
defined naturally as the graph tensor product of G�(Fp) and G�(Fq).

Definition 3 (�-isogeny graph over Z/NZ). Let �, p, and q be distinct primes
and let N = pq. The �-isogeny graph G�(Z/NZ) has

– The vertex set of G�(Z/NZ) is Z/NZ, identified with Z/pZ × Z/qZ by CRT,
– Two vertices v1 = (v1,p, v1,q) and v2 = (v2,p, v2,q) are connected if and only

if v1,p is connected to v2,p in G�(Fp) and v1,q is connected to v2,q in G�(Fq).

Let us make a remark for future consideration. In the construction of
groups with infeasible inversion, we will be working with special subgraphs of
G�(Z/NZ), where the vertices over Fp and Fq correspond to j-invariants of curves
whose endomorphism rings are the same imaginary quadratic order O. Neverthe-
less, this is a choice we made for convenience, and it does not hurt to define the
computational problems over the largest possible graph and to study them first.

3.2 The �-isogenous Neighbors Problem over Z/NZ

Definition 4 (The �-isogenous neighbors problem). Let p, q be two distinct
primes and let N = pq. Let � be a polynomially large prime s.t. gcd(�,N) = 1.
The input of the �-isogenous neighbor problem is N and an integer j ∈ Z/NZ

such that there exists (possibly more than) one integer j′ that Φ�(j, j′) = 0 over
Z/NZ. The problem asks to find such integer(s) j′.

The following theorem shows that the problem of finding all of the �-isogenous
neighbors is at least as hard as factoring N .

Theorem 1. If there is a probabilistic polynomial time algorithm that finds all
the �-isogenous neighbors in Problem 4, then there is a probabilistic polynomial
time algorithm that solves the integer factorization problem.

Hard Isogeny Problems over RSA Moduli and GII 305

The idea behind the reduction is as follows. Suppose it is efficient to pick an
integer j over Z/NZ, let jp = j (mod p) and jq = j (mod q), such that jp has at
least two distinct neighbors in G�(Fp), and jq has at least two distinct neighbors
in G�(Fq). In this case if we are able to find all the integer solutions j′ ∈ Z/NZ

such that Φ�(j, j′) = 0 over Z/NZ, then there exist two distinct integers j′
1 and

j′
2 among the solutions such that N > gcd(j′

1 − j′
2, N) > 1. One can also show

that finding one of the integer solutions is hard using a probabilistic argument,
assuming the underlying algorithm outputs a random solution when there are
multiple ones.

In the reduction we pick the elliptic curve E randomly, so we have to make
sure that for a non-negligible fraction of the elliptic curves E over Fp, j(E) ∈
G�(Fp) has at least two neighbors. The estimate for this relies on the following
lemma:

Lemma 1 ([27] (1.9)). There exists an efficiently computable positive con-
stant c such that for each prime number p > 3, for a set of integers S ⊆{
s ∈ Z | |p + 1 − s| <

√
p
}
, we have

#′ {E | E is an elliptic curve over Fp, #E(Fp) ∈ S}/�Fp
≥ c (#S − 2)

√
p

log p
.

where #′ {E}/�Fp
denotes the number of isomorphism classes of elliptic curves

over Fp, each counted with weight (#AutE)−1.

Theorem 2. Let p, � be primes such that 6� <
√

p. The probability that for a
random elliptic curve E over Fp (i.e. a random pair (a, b) ∈ Fp × Fp such that
4a3 + 27b2 �= 0) j(E) ∈ G�(Fp) having at least two neighbors is Ω(1

log p).

Due to the page limitation we refer the readers to the full version for the
proof of Theorem 2.

Proof (Proof of Theorem 1). Suppose that there is a probabilistic polynomial
time algorithm A that finds all the �-isogenous neighbors in Problem 4 with non-
negligible probability η. We will build a probabilistic polynomial time algorithm
A′ that solves factoring. Given an integer N , A′ samples two random integers
a, b ∈ Z/NZ such that 4a3+27b2 �= 0, and computes j = 1728· 4a3

4a3+27b2 . With all
but negligible probability gcd(j,N) = 1 and j �= 0, 1728; if j happens to satisfy
1 < gcd(j,N) < N , then A′ outputs gcd(j,N).

A′ then sends N, j0 to the solver A for Problem 4 for a fixed polynomially
large prime �, gets back a set of solutions J = {ji}i∈[k], where 0 ≤ k ≤ (� + 1)2

denotes the number of solutions. With probability Ω(1
log2 N

), the curve E : y2 =
x3 + ax + b has at least two �-isogenies over both Fp and Fq due to Theorem 2.
In that case there exists j, j′ ∈ J such that 1 < gcd(j − j′, N) < N , which gives
a prime factor of N .

306 S. A. Altuğ and Y. Chen

3.3 The (�, M)-Isogenous Neighbors Problem over Z/NZ

Definition 5 (The (�,m)-isogenous neighbors problem). Let p and q be
two distinct primes. Let N := p · q. Let �, m be two polynomially large integers
s.t. gcd(�m,N) = 1. The input of the (�,m)-isogenous neighbor problem is the
j-invariants j1, j2 of two elliptic curves E1, E2 defined over Z/NZ. The problem
asks to find all the integers j′ such that Φ�(j(E1), j′) = 0, and Φm(j(E2), j′) = 0
over Z/NZ.

When gcd(�,m) = 1, applying the Euclidean algorithm on Φ�(j1, x) and
Φm(j2, x) gives a linear polynomial over x.

Lemma 2 ([13]). Let j1, j2 ∈ EllO(Fp), and let �,m �= p be distinct primes with
4�2m2 < |D|. Then the degree of f(x) := gcd(Φ�(j1, x), Φm(j2, x)) is less than
or equal to 1.

When gcd(�,m) = d > 1, applying the Euclidean algorithm on Φ�(j1, x) and
Φm(j2, x) gives a polynomial of degree at least d. We present a proof in the the
case where m = �2, which has the general idea.

Lemma 3. Let p �= 2, 3 and � �= p be primes, and let j0, j1 be such that
Φ�(j0, j1) = 0 mod p. Let Φ�(X, j0) and Φ�2(X, j1) be the modular polynomials
of levels � and �2 respectively. Then,

(X − j1) · gcd(Φ�(X, j0), Φ�2(X, j1)) = Φ�(X, j0)

in Fp[X]. In particular,

deg(gcd(Φ�(X, j0), Φ�2(X, j1))) = �

Proof. Without loss of generality we can, and we do, assume that Φ�(X, j0),
Φ�(X, j1), and Φ�2(X, j1) split over Fp (otherwise we can base change to an
extension k′/Fp, where the full �2-torsion is defined, this does not affect the
degree of the gcd).

Assume that the degree of the gcd is Ngcd. We have,

deg(Φ�(X, j0)) = � + 1, deg(Φ�2(X, j1)) = �(� + 1). (2)

Let E0, E1 denote the (isomorphism classes of) elliptic curves with j-invariants
j0 and j1 respectively, and ϕ� : E0 → E1 be the corresponding isogeny. We count
the number N�2 of cyclic �2-isogenies from E1 two ways. First, N�2 is the number
of roots of Φ�2(X, j1), which, by (2) and the assumption that �2+� < p, is �2+�.

Next, recall (cf. Corollary 6.11 of [36]) that every isogeny of degree �2 can
be decomposed as a composition of two degree � isogenies (which are necessarily
cyclic). Using this N�2 is bounded above by Ngcd+�2, where the first factor counts

the number of �2-isogenies E1 → E that are compositions E1
ϕ̂�−→ E0 → E, and

the second factor counts the isogenies that are compositions E1 → E′ → E,

where E′
� E1. Note that we are not counting compositions E1

φ−→ Ẽ
φ̂−→ E1

since these do not give rise to cyclic isogenies.

Hard Isogeny Problems over RSA Moduli and GII 307

This shows that �2 + � ≤ �2 + N�2 ⇒ Ngcd ≥ �. On the other hand, by (2)
Ngcd ≤ � since Φ�(X, j0)/(X − j0) has degree � and each root except for j1 gives
a (possibly cyclic) �2-isogeny by composition with ϕ̂�. This implies that Ngcd = �
and that all the �2-isogenies obtained this way are cyclic. In particular, we get
that the gcd is Φ�(X, j0)/(X − j1).

Discussions. Let us remark that we do not know if solving the (�, �2)-isogenous
neighbors problem is as hard as factoring. To adapt the same reduction in the
proof of Theorem 1, we need the feasibility of sampling two integers j1, j2 such
that Φ�(j1, j2) = 0 (mod N), and j1 or j2 has to have another isogenous neighbor
over Fp or Fq. However the feasibility is unclear to us in general.

From the cryptanalytic point of view, a significant difference of the (�, �2)-
isogenous neighbors problem and the �-isogenous neighbors problem is the fol-
lowing. Let � be an odd prime. Recall that an isogeny φ : E1 → E2 of degree �
can be represented by a rational polynomial

φ : E1 → E2, (x, y) �→
(

f(x)
h(x)2

,
g(x, y)
h(x)3

)

,

where h(x) is its kernel polynomial of degree �−1
2 . The roots of h(x) are the

x-coordinates of the kernel subgroup G ⊂ E1[�] such that φ : E1 → E1/G.
Given a single j-invariant j′ over Z/NZ, it is infeasible to find a rational

polynomial φ of degree � that maps from a curve E with j-invariant j′ to another
curve j′′, since otherwise j′′ is a solution to the �-isogenous neighbors problem.
However, if we are given two j-invariants j1, j2 ∈ Z/NZ such that Φ�(j1, j2) = 0
(mod N), as in the (�, �2)-isogenous neighbors problem; then it is feasible to
compute a pair of curves E1, E2 such that j(E1) = j1, j(E2) = j2, together
with an explicit rational polynomial of an �-isogeny from E1 to E2. This is
because the arithmetic operations involved in computing the kernel polynomial
h(x) mentioned in [8,12,33] works over Z/NZ by reduction mod N , and does
not require the factorization of N .

Proposition 1. Given �,N ∈ Z such that gcd(�,N) = 1, and two integers
j1, j2 ∈ Z/NZ such that Φ�(j1, j2) = 0 over Z/NZ, the elliptic curves E1, E2,
and the kernel polynomial h(x) of an isogeny φ from E1, E2 can be computed
in time polynomial in �, log(N). From the kernel polynomial h(x) of an isogeny
φ, computing f(x), g(x, y), hence the entire rational polynomial of φ, is feasible
over Z/NZ via Vélu’s formulae [39].

However, it is unclear how to utilize the rational polynomial to solve the (�, �2)-
joint neighbors problem. We postpone further discussions on the hardness and
cryptanalysis to Sect. 5.

4 Trapdoor Group with Infeasible Inversion

In this section we present the construction of the trapdoor group with infeasible
inversion. As the general construction is somewhat technical we will present it in

308 S. A. Altuğ and Y. Chen

two steps: first we will go over the basic algorithms that feature a simple encoding
and composition rule, which suffices for the instantiations of the applications;
we will then move to the general algorithms that offer potential optimization
and flexibility.

4.1 Definitions

Let us first provide the definition of a TGII, adapted from the original definition
in [18,30] to match our construction. The main differences are:

1. The trapdoor in the definition of [18,30] is only used to invert an encoded
group element, whereas we assume the trapdoor can be use to encode and
decode (which implies the ability of inverting).

2. We classify the encodings of the group elements as canonical encodings and
composable encodings, whereas the definition from [18,30] does not. In our
definition, the canonical encoding of an element is uniquely determined once
the public parameter is fixed. It can be directly used in the equivalence test,
but it does not support efficient group operations. Composable encodings of
group elements support efficient group operations. A composable encoding,
moreover, can be converted into a canonical encoding by an efficient, public
extraction algorithm.

Definition 6. Let G = (◦, 1G) be a finite multiplicative group where ◦ denotes
the group operator, and 1G denotes the identity. For x ∈ G, denote its inverse
by x−1. G is associated with the following efficient algorithms:

Parameter generation. Gen(1λ) takes as input the security parameter 1λ, out-
puts the public parameter PP and the trapdoor τ .

Private sampling. TrapSam(PP, τ, x) takes as inputs the public parameter PP,
the trapdoor τ , and a plaintext group element x ∈ G, outputs a composable
encoding enc(x).

Composition. Compose(PP, enc(x), enc(y)) takes as inputs the public parameter
PP, two composable encodings enc(x), enc(y), outputs enc(x◦y). We often use
the notation enc(x) ◦ enc(y) for Compose(PP, enc(x), enc(y)).

Extraction. Ext(PP, enc(x)) takes as inputs the public parameter PP, a com-
posable encoding enc(x) of x, outputs the canonical encoding of x as enc∗(x).

The hardness of inversion requires that it is infeasible for any efficient algo-
rithm to produce the canonical encoding of x−1 given a composable encoding of
x ∈ G.

Hardness of Inversion. For any p.p.t. algorithm A,

Pr[z = enc∗(x−1) | z ← A(PP, enc(x))] < negl(λ),

where the probability is taken over the randomness in the generation of PP,
x, enc(x), and the adversary A.

Hard Isogeny Problems over RSA Moduli and GII 309

4.2 Construction Details: Basic

In this section we provide the formal construction of the TGII with the basic
setting of algorithms. The basic setting assumes that in the application of TGII,
the encoding sampling algorithm can be stateful, and it is easy to determine
which encodings have to be pairwise composable, and which are not. Under
these assumptions, we show that we can always sample composable encodings
so that the composition always succeeds. That is, the degrees of the any two
encodings are chosen to be coprime if they will be composed in the application,
and not coprime if they will not be composed. The reader may be wondering
why we are distinguishing pairs that are composable and those that are not, as
opposed to simply assuming that every pairs of encoding are composable. The
reason is for security, meanly due to the parallelogram attack in Sect. 5.3.

The basic setting suffices for instantiating the directed transitive signature
[18,30] and the broadcast encryption schemes [20], where the master signer and
the master encrypter are stateful. We will explain how to determine which encod-
ings are pairwise composable in these two applications, so as to determine the
prime degrees of the encodings (the rest of the parameters are not application-
specific and follow the universal solution from this section).

For convenience of the reader and for further reference, we provide in Fig. 3
a summary of the parameters, with the basic constraints they should satisfy,
and whether they are public or hidden. The correctness and efficiency reasons
behind these constraints will be detailed in the coming paragraphs, whereas the
security reasons will be explained in Sect. 5.

Parameter Generation. The parameter generation algorithm Gen(1λ) takes the
security parameter 1λ as input, first chooses a non-maximal order O of an imag-
inary quadratic field as follows:

1. Select a square-free negative integer D0 ≡ 1 mod 4 as the fundamental dis-
criminant, such that D0 is polynomially large and h(D0) is a prime.

2. Choose k = O(log(λ)), and a set of distinct polynomially large prime numbers
{fi}i∈[k] such that the odd-part of

(
fi − (

D0
fi

))
is square-free and not divisible

by h(D0). Let f =
∏

i∈[k] fi.
3. Set D = f2D0. Recall from Eqn. (1) that

h(D) = 2 · h(D0)
w(D0)

∏

i∈[k]

(

fi −
(

D0

fi

))

(3)

Let CL(O)odd be the odd part of CL(O), h(D)odd be largest odd factor of h(D).
Note that due to the choices of D0 and {fi}, CL(O)odd is cyclic, and we have
|D|, h(D)odd ∈ λO(log λ). The group with infeasible inversion G is then CL(O)odd
with group order h(D)odd.

We then sample the public parameters as follows:

1. Choose two primes p, q, and elliptic curves E0,Fp
, E0,Fq

with discriminant D,
using the CM method (cf. [25] and more).

310 S. A. Altuğ and Y. Chen

?cilbuPstniartsnoccisaBsretemaraP
The modulus N N = pq, p, q are primes, |p|, |q| ∈ poly(λ) Yes
The identity j(E0) End(E0(Fp)) � End(E0(Fq)) � O Yes
#(E0(Fp)), #(E0(Fq)) not polynomially smooth No
The discriminant D of O D = D0 · f2, D ≈ λO(log λ), D is poly smooth No
The class number h(D) follows the choice of D No
A set S in an encoding: S = {Ci = [(pi, bi, ·)]}i∈[w] generates CL(D)odd See below
The number w of ideals w ∈ O(log λ) Yes
The degree pi of isogenies pi ∈ poly(λ) Yes
The basis B of ΛS ‖B̃‖ ∈ poly(λ) No

Fig. 3. Summary of the choices of parameters in the basic setting.

2. Check whether p and q are safe RSA primes (if not, then back to the previ-
ous step and restart). Also, check whether the number of points #(E0(Fp)),
#(E0(Fq)), #(Ẽ0(Fp)), #(Ẽ0(Fq)) (where Ẽ denotes the quadratic twist of E)
are polynomially smooth (if yes, then back to the previous step and restart).
p, q and the number of points should be hidden for security.

3. Set the modulus N as N := p · q and let j0 = CRT(p, q; j(E0,Fp
), j(E0,Fq

)).
Let j0 represent the identity of G.

Output (N, j0) as the public parameter PP. Keep (D, p, q) as the trapdoor τ (D
and the group order of G should be hidden for security).

The Sampling Algorithm and the Group Operation of the Composable Encodings.
Next we provide the definitions and the algorithms for the composable encoding.

Definition 7 (Composable encoding). Given a factorization of x as∏w
i=1 Cei

i , where w ∈ O(log λ); Ci = [(pi, bi, ·)] ∈ G, ei ∈ N, for i ∈ [w]. A
composable encoding of x ∈ G is represented by

enc(x) = (L;T1, ..., Tw) = ((p1, . . . , pw); (j1,1, ..., j1,e1), ..., (jw,1, ..., jw,ew
)),

where all the primes in the list L = (p1, . . . , pw) are distinct; for each i ∈ [w],
Ti ∈ (Z/NZ)ei is a list of the j-invariants such that ji,k = Ck

i ∗ j0, for k ∈ [ei].
The degree of an encoding enc(x) is defined to be d(enc(x)) :=

∏w
i=1 pei

i .

Notice that the factorization of x =
∏w

i=1 Cei
i has to satisfy ei ∈ poly(λ), for

all i ∈ [w], so as to ensure the length of enc(x) is polynomial. Looking ahead,
we also require each pi, the degree of the isogeny that represents the Ci-action,
to be polynomially large so as to ensure Algorithm 3 in the encoding sampling
algorithm and Algorithm 6 in the extraction algorithm run in polynomial time.

The composable encoding sampling algorithm requires the following
subroutine:

Algorithm 3. act(τ, j, C) takes as input the trapdoor τ = (D, p, q), a j-
invariant j ∈ Z/NZ, and an ideal class C ∈ CL(O), proceeds as follows:

Hard Isogeny Problems over RSA Moduli and GII 311

1. Let jp = j mod p, jq = j mod q.
2. Compute j′

p := C ∗ jp ∈ Fp, j′
q := C ∗ jq ∈ Fq.

3. Output j′ := CRT(p, q; j′
p, j

′
q).

Algorithm 4. (Sample a composable encoding) Given as input the pub-
lic parameter PP = (N, j0), the trapdoor τ = (D, p, q), and x ∈ G,
TrapSam(PP, τ, x) produces a composable encoding of x is sampled as follows:

1. Choose w ∈ O(log λ) and a generation set S = {Ci = [(pi, bi, ·)]}i∈[w] ⊂ G.
2. Sample a short basis B (in the sense that ‖B̃‖ ∈ poly(λ)) for the relation

lattice ΛS:

ΛS :=

⎧
⎨

⎩
y | y ∈ Z

w,
∏

i∈[w]

Cyi

i = 1G

⎫
⎬

⎭
. (4)

3. Given x, S, B, sample a short vector e ∈ {poly(λ) ∩ N}w such that x =∏
i∈[w] C

ei
i .

4. For all i ∈ [w]:
(a) Let ji,0 := j0.
(b) For k = 1 to ei: compute ji,k := act(τ, ji,k−1, Ci).
(c) Let Ti := (ji,1, . . . , ji,ei

).
5. Let L ∈ N

w be a list where the ith entry of L is pi.
6. Output the composable encoding of x as

enc(x) = (L; T1, . . . , Tw) = ((p1, . . . , pw); (j1,1, . . . , j1,e1), . . . , (jw,1, . . . , jw,ew)).

Remark 2 (Thinking of each adjacent pair of j-invariants as an isogeny). In
each Ti, each adjacent pair of the j-invariants can be thought of representing
an isogeny φ that corresponds to the ideal class Ci = [(pi, bi, ·)]. Over the finite
field, Ci can be explicitly recovered from an adjacent pair of the j-invariants and
pi (cf. Remark 1). Over Z/NZ, the rational polynomial of the isogeny φ can be
recovered from the adjacent pair of the j-invariants and pi (cf. Proposition 1),
but it is not clear how to recover bi in the binary quadratic form representation
of Ci.

Remark 3 (The only stateful step in the sampling algorithm). Recall that the
basic setting assumes the encoding algorithm is stateful, where the state records
the prime factors of the degrees used in the existing composable encodings. The
state is only used in the first step to choose the {pi} of the ideals in the generation
set S = {Ci = [(pi, bi, ·)]}i∈[w].

Group Operations. Given two composable encodings, the group operation is done
by simply concatenating the encodings if their degrees are coprime, or otherwise
outputting “failure”.

Algorithm 5. The encoding composition algorithm Compose(PP, enc(x), enc(y))
parses enc(x) = (Lx;Tx,1, . . . , Tx,wx

), enc(y) = (Ly;Ty,1, . . . , Ty,wy
), produces the

composable encoding of x ◦ y as follows:

312 S. A. Altuğ and Y. Chen

– If gcd(d(enc(x)), d(enc(y))) = 1, then output the composable encoding of
x ◦ y as

enc(x ◦ y) = (Lx||Ly;Tx,1, . . . , Tx,wx
, Ty,1, . . . , Ty,wy

).

– If gcd(d(enc(x)), d(enc(y))) > 1, output “failure”.

The canonical encoding and the extraction algorithm.

Definition 8 (Canonical Encoding). The canonical encoding of x ∈ G is
x ∗ j0 ∈ Z/NZ.

The canonical encoding of x can be computed by first obtaining a composable
encoding of x, and then converting the composable encoding into the canonical
encoding using the extraction algorithm. The extraction algorithm requires the
following subroutine.

Algorithm 6 (The “gcd” operation). The algorithm gcd.op(PP, �1, �2; j1, j2)
takes as input the public parameter PP, two degrees �1, �2 and two j-invariants
j1, j2, proceeds as follows:

– If gcd(�1, �2) = 1, then it computes f(x) = gcd(Φ�2(j1, x), Φ�1(j2, x)) over
Z/NZ, and outputs the only root of f(x);

– If gcd(�1, �2) > 1, it outputs ⊥.

Algorithm 7. Ext(PP, enc(x)) converts the composable encoding enc(x) into the
canonical encoding enc∗(x). The algorithm maintains a pair of lists (U, V), where
U stores a list of j-invariants (j1, ..., j|U |), V stores a list of degrees where the
ith entry of V is the degree of isogeny between ji and ji−1 (when i = 1, ji−1 is
the j0 in the public parameter). The lengths of U and V are always equal during
the execution of the algorithm.

The algorithm parses enc(x) = (L;T1, ..., Tw), proceeds as follows:

1. Initialization: Let U := T1, V := (L1, ..., L1) of length |T1| (i.e. copy L1 for
|T1| times).

2. For i = 2 to w:
(a) Set utemp := |U |.
(b) For k = 1 to |Ti|:

i. Let ti,k,0 be the kth j-invariant in Ti, i.e. ji,k;
ii. For h = 1 to utemp:

– If k = 1, compute ti,k,h := gcd.op(PP, Li, Vh; ti,k,h−1, Uh);
– If k > 1, compute ti,k,h := gcd.op(PP, Li, Vh; ti,k,h−1, ti,k−1,h);

iii. Append ti,k,utemp to the list U , append Li to the list V .
3. Return the last entry of U .

Example 1. Let us give a simple example for the composition and the extrac-
tion algorithms. Let �,m, n be three distinct polynomially large primes. Let
the composable encoding of an element y be enc(y) = ((�); (j1,1, j1,2, j1,3)),

Hard Isogeny Problems over RSA Moduli and GII 313

j0 j1,1 j1,2 j1,3

j2,1

j2,2

j3,1

t2,1,1 t2,1,2 t2,1,3

t2,2,1 t2,2,2 t2,2,3

t3,1,1 t3,1,2 t3,1,3

t3,1,4

t3,1,5

� � �

m

m

n

Fig. 4. An example for the composable encoding and the extraction algorithm.

based on the factorization of y = Ce1
1 = [(�, b�, ·)]3. Let the composable

encoding of an element z be enc(z) = ((m,n); (j2,1, j2,2), (j3,1)), based on
the factorization of z = Ce2

2 · Ce3
3 = [(m, bm, ·)]2 · [(n, bn, ·)]1. Then the

composable encoding of x = y ◦ z obtained from Algorithm 5 is enc(x) =
((�,m, n); (j1,1, j1,2, j1,3), (j2,1, j2,2), (j3,1)).

Next we explain how to extract the canonical encoding of x from enc(x). In
Fig. 4, the j-invariants in enc(x) are placed on the solid arrows (their positions
do not follow the relative positions on the volcano). We can think of each gcd
operation in Algorithm 6 as fulfilling a missing vertex of a parallelogram defined
by three existing vertices.

When running Ext(PP, enc(x)), the list U is initialized as (j1,1, j1,2, j1,3), the
list V is initialized as (�, �, �). Let us go through the algorithm for i = 2 and
i = 3 in the second step.

– When i = 2, utemp equals to |U | = 3. The j-invariants {t2,k,h}k∈[|T2|],h∈[utemp]

are placed on the dotted lines, computed in the order of t2,1,1, t2,1,2, t2,1,3,
t2,2,1, t2,2,2, t2,2,3. The list U is updated to (j1,1, j1,2, j1,3, t2,1,3, t2,2,3), the list
V is updated to (�, �, �,m,m)

– When i = 3, utemp equals to |U | = 5. The j-invariants {t3,1,h}h∈[utemp]
are

placed on the dashed lines, computed in the order of t3,1,1, . . . , t3,1,5. In the
end, t3,1,5 is appended to U , n is appended to V .

The canonical encoding of x is then t3,1,5.

On Correctness and Efficiency. We now verify the correctness and efficiency of
the parameter generation, encoding sampling, composition, and the extraction
algorithms.

To begin with, we verify that the canonical encoding correctly and uniquely
determines the group element in CL(O). It follows from the choices of the elliptic
curves E0(Fp) and E0(Fq) with End(E0(Fp)) � End(E0(Fq)) � O, and the
following bijection once we fix E0:

CL(O) → EllO(k), x �→ x ∗ j(E0(k)), for k ∈ {Fp, Fq}
Next, we will show that generating the parameters, i.e. the curves E0,Fp

,
E0,Fq

with a given fundamental discriminant D0 and a conductor f =
∏k

i fi,

314 S. A. Altuğ and Y. Chen

is efficient when |D0| and all the factors of f are of polynomial size. Let u be
an integer such that f | u. Choose a p and tp such that t2p − 4p = u2D0. Then,
compute the Hilbert class polynomial HD0 over Fp and find one of its roots j.
From j, descending on the volcanoes Gfi

(Fp) for every fi gives the j-invariant
for the curve with desired discriminant. The same construction works verbatim
for q.

We then show that sampling the composable encodings can be done in poly-
nomial time heuristically:

1. Given a logarithmically large set S = {Ci = [(�i, bi, ·)] ∈ CL(O)}i∈[w], a possi-
bly big basis of the relation lattice ΛS can be obtained by solving the discrete-
log problem over CL(O), which can be done in polynomial time since the
group order is polynomially smooth.

2. Suppose that the lattice ΛS satisfies the Gaussian heuristic (this is the only
heuristic we assume). That is, for all 1 ≤ i ≤ w, the ith successive minimum
of ΛS , denoted as λi, satisfies λi ≈ √

w · h(O)1/w ∈ poly(λ). Since w =
O(log(λ)), the short basis B of ΛS , produced by the LLL algorithm, satisfies
‖B‖ ≤ 2

w
2 · λw ∈ poly(λ).

3. Given a target group element x ∈ CL(O), the polynomially short basis B, we
can sample a vector e ∈ N

w such that
∏m

i=1 Cei
i = x and ‖e‖1 ∈ poly(λ) in

polynomial time using e.g. Babai’s algorithm [1]. (In Sect. 5.3, we will explain
that the GPV sampler [17] is preferred for the security purpose.)

4. The unit operation act(τ, j, C) is efficient when the ideal class C corresponds
to a polynomial degree isogeny, since it is efficient to compute polynomial
degree isogenies over the finite fields.

5. The length of the final output enc(x) is (w + ‖e‖1) · poly(λ) ∈ poly(λ).

The algorithm Compose(PP, enc(x), enc(y)) concatenates enc(x), enc(y), so it
is efficient as long as enc(x), enc(y) are of polynomial size.

The correctness of the unit operation gcd.op follows the commutativity of the
endomorphism ring O. The operation gcd.op(PP, �1, �2; j1, j2) is efficient when
gcd(�1, �2) = 1, �1, �2 ∈ poly(λ), given that solving the (�1, �2) isogenous neighbor
problem over Z/NZ is efficient under these conditions.

When applying Ext() (Algorithm 7) on a composable encoding enc(x) =
(Lx;Tx,1, . . . , Tx,wx

), it runs gcd.op for maxwx
i=1 |Txi

| · (
∑wx

i=1 |Txi
|) times. So

obtaining the canonical encoding is efficient as long as all the primes in Lx

are polynomially large, and |Tx,i| ∈ poly(λ) for all i ∈ [wx].

5 Cryptanalysis

We provide a highlight of the cryptanalytic attempts we have made and discuss
the impacts and the countermeasures. The details of our cryptanalysis attempts
can be found in the full version.

The security of our cryptosystem relies on the conjectured hardness of solving
various problems over Z/NZ without knowing the factors of N . So we start from
the feasibility of performing several individual computational tasks over Z/NZ;

Hard Isogeny Problems over RSA Moduli and GII 315

then focus on the (�, �2)-isogenous neighbor problem over Z/NZ, whose hardness
is necessary for the security of our candidate TGII; finally address all the other
attacks in the TGII construction.

5.1 The (in)feasibility of Performing Computations over Z/NZ

Factoring Polynomials over Z/NZ. The task of finding roots of polynomials
of degree d ≥ 2 over Z/NZ sits in the subroutines of many potential algorithms
we need to consider, so let us begin with a clarification on the status of this
problem. No polynomial time algorithm is known to solve this problem in general.
In a few special cases, finding at least one root is feasible. For example, if a root
of a polynomial over Z/NZ is known to be the same as the root over Q, then we
can use LLL [26]; or if a root is known to be smaller than roughly O(N1/d), then
Coppersmith-type algorithms can be used to find such a root [6]. However, these
families of polynomials only form a negligible portion of all the polynomials with
polynomially bounded degrees.

Feasible Information from a Single j -invariant. From any j ∈ Z/NZ, j �=
0, 1728, we can find the coefficients a and b of the Weierstrass form of an elliptic
curve E(Z/NZ) with j(E) = j by computing a = 3j(1728−j), b = 2j(1728−j)2.
But choosing a curve over Z/NZ with a given j-invariant together with a point
on the curve seems tricky. Nevertheless, it is always feasible to choose a curve
together with the x-coordinate of a point on it, since a random x ∈ Z/NZ is
the x-coordinate of some point on the curve with probability roughly 1

2 . It is
also known that computing the multiples of a point P over E(Z/NZ) is feasible
solely using the x-coordinate of P (cf. [10]). The implication of this is that we
should at the very least not give out the group orders of the curves involved in
the scheme. More precisely, we should avoid the j-invariants corresponding to
curves (or their twists) with polynomially smooth cardinalities over either Fp or
Fq. Otherwise Lenstra’s algorithm [27] can be used to factorize N .

In our application we also assume that the endomorphism rings of E(Fp)
and E(Fq) are isomorphic and not given out (the reason will be explained later).
Computing the discriminant of O � End(E(Fp)) � End(E(Fq)) or the number of
points of E over Z/NZ seems to be hard given only N and a j-invariant. In fact
Kunihiro and Koyama (and others) have reduced factorizing N to computing
the number of points of general elliptic curves over Z/NZ [24]. However, these
reductions are not efficient in the special case, where the endomorphism rings
of E(Fp) and E(Fq) are required to be isomorphic. So, the result of [24] can be
viewed as evidence that the polynomial time algorithms for counting points on
elliptic curves over finite fields may fail over Z/NZ without making use of the
fact that the endomorphism rings of E(Fp) and E(Fq) are isomorphic.

Let � be a prime. We will be concerned with degree � isogenies. If we are
only given a single j-invariant j1 ∈ Z/NZ, then finding an integer j2 such that
Φ�(j1, j2) = 0 (mod N) seems hard. Nevertheless, we remark that Theorem 1
does not guarantee that finding j2 is as hard as factoring when the endomorphism

316 S. A. Altuğ and Y. Chen

rings of E(Fp) and E(Fq) are isomorphic. However, as of now, we do not know
how to make use of the condition that the endomorphism rings are isomorphic
to mount an attack on the problem.

Feasible Information from More j -invariants. In the construction of a
TGII we are not only given a single j-invariant, but many j-invariants with each
neighboring pair of them satisfying the �th modular polynomial, a polynomial
degree � + 1. We will study what other information can be extracted from these
neighboring j-invariants.

In Proposition 1, we have explained that given two integers j1, j2 ∈ Z/NZ

such that Φ�(j1, j2) = 0 over Z/NZ, the elliptic curves E1, E2, and the kernel
polynomial h(x) of an isogeny φ from E1, E2 can be computed in time polynomial
in �, log(N). However, it is not clear how to use the explicit expression of φ to
break factoring or solve the inversion problem.

A natural next step is to recover a point in the kernel of φ, but it is also
not clear how to recover even the x-coordinate of a point in the kernel when
� ≥ 5. For � = 3, on the other hand, the kernel polynomial does reveal the x-
coordinate of a point P in the kernel G ⊂ E1[3] (note that h(·) is of degree 1 in
this particular case). But revealing the x-coordinate of a point P ∈ E1[3] does
not immediately break factoring, since 3P is O over both Fp and Fq. At this
moment we do not know of a full attack from a point in ker(φ). Nevertheless,
we still choose to take an additional safeguard by avoiding the use of 3-isogenies
since it reveals the x-coordinate of a point in E1[3], and many operations on
elliptic curves are feasible given the x-coordinate of a point.

5.2 Tackling the (�, �2)-Isogenous Neighbor Problem over Z/NZ

The (�, �2)-isogenous neighbor problem is essential to the hardness of inversion
in our TGII construction. In addition to Definition 5, we assume that the endo-
morphism rings of the curves in the problem are isomorphic to an imaginary
quadratic order O.

The Hilbert Class Polynomial Attack. We first note that the discrimi-
nant D of the underlying endomorphism ring O cannot be polynomially large,
otherwise we can compute the Hilbert class polynomial HD in polynomial time
and therefore solve the (�, �2)-isogenous neighbor problem. Given j0, j1 such that
Φ�(j0, j1) = 0, compute the polynomial γ(x),

γ(x) := gcd(Φ�(j0, x), Φ�2(j1, x),HD(x)) ∈ (Z/NZ)[x].

The gcd of Φ�(j0, x) and Φ�2(j1, x) gives a polynomial of degree �. The potential
root they share with HD(x) is the only one with the same endomorphism ring
with j0 and j1, which is j−1. So γ(x) is a linear function.

Hard Isogeny Problems over RSA Moduli and GII 317

Survey of the Ionica-Joux Algorithm. Among the potential solutions to the
(�, �2)-isogenous neighbor problem, finding the one corresponding to the image of
a horizontal isogeny would break our candidate group with infeasible inversion, so
it is worth investigating algorithms which find isogenies with specific directions.
However, the only known such algorithm over the finite fields, that of Ionica and
Joux [19], does not seem to work over Z/NZ. In the full version we provide a
detailed survey of this algorithm.

More About Modular Curves and Characteristic Zero Attacks. Given
j, solving Φ�(j, x) is not the only way to find the j-invariants of the �-isogenous
curves. Alternative complex analytic (i.e. characteristic zero) methods have been
discussed, for instance, in [12, Section 3]. However, these methods all involve
solving polynomials of degree ≥ 2 to get started.

As mentioned in Sect. 2.2, the curve H/Γ0(�) parameterizes pairs of elliptic
curves over C related by a cyclic �-isogeny. The (�, �2)-isogenous neighbor prob-
lem, on the other hand, concerns curves that are horizontally �-isogenous, i.e.
�-isogenous and have the same endomorphism ring. To avoid an attack through
characteristic zero techniques, we make sure that there is no immediate quotient
of H that parametrizes curves which are related with an �-isogeny and have
the same endomorphism ring. Below, we first go over the well-known moduli
description of modular curves to make sure that they don’t lead to an immediate
attack, and then show that there is indeed no quotient of H between H/SL2(Z)
and H/Γ0(�), so we don’t have to worry about possible attacks on that end.

Let Γ := SL2(Z), and let Γ (�) and Γ1(�) denote the congruence subgroups,

Γ (�) :=
{(

a b
c d

)

∈ SL2(Z)
∣
∣
∣
∣

(
a b
c d

)

≡
(

1 0
0 1

)

(mod �)
}

,

Γ1(�) :=
{(

a b
c d

)

∈ SL2(Z)
∣
∣
∣
∣

(
a b
c d

)

≡
(

1 ∗
0 1

)

(mod �)
}

.

It is well-known that the curves H/Γ1(�) and H/Γ (�) parametrize elliptic
curves with extra data on their �-torsion (cf. [23]). H/Γ1(�) parametrizes (E,P),
where P is a point on E having order exactly �, and H/Γ (�) parametrizes triples
(E,P,Q), where E[�] = 〈P,Q〉 and they have a fixed Weil pairing. These curves
carry more information than the �-isogenous relation and they are not immedi-
ately helpful for solving the (�, �2)-isogenous neighbor problem.

As for the quotients between H/SL2(Z) and H/Γ0(�), the following lemma
shows that there are indeed none.

Lemma 4. Let � be a prime. If H ≤ Γ is such that Γ0(�) ≤ H ≤ Γ , then either
H = Γ0(�) or H = Γ .

Proof. Let σ1 = (1 1
0 1), σ2 = (1 0

1 1), σ3 = σ1σ
−1
2 , and recall that SL2(Z/�Z) =

〈σ1, σ2〉 = 〈σ1, σ3〉. Recall that the natural projection π : Γ → SL2(Z/�Z) is
surjective. Assume that H �= Γ0(�). This implies that π(H) = SL2(Z/�Z) (we
shall give a proof below). Assuming this claim for the moment let g ∈ Γ\H.

318 S. A. Altuğ and Y. Chen

Since π(Γ) = π(H) there exists h ∈ H such that π(g) = π(h). Therefore,
gh−1 ∈ ker(π) = Γ (�) ⊂ H. Therefore, g ∈ H and Γ = H.

To see that π(Γ) = π(H), first note that since Γ0(�) ⊂ H we have all the
upper triangular matrices in π(H). Next, let h =

(
h1 h2
h3 h4

) ∈ H\Γ0(�) such that

π(h) =
(

h̄1 h̄2
h̄3 h̄4

)
∈ π(H)\π(Γ0(�)) (note that this difference is non-empty since

otherwise Γ0(�) = H).
We have two cases depending on h̄1 = 0 or not. If h̄1 = 0 then h̄3 �= 0 and

σ3 =
(

h̄−1
3 h̄4

0 h̄3

)
h̄−1 ∈ π(H). On the other hand, if h̄1 �= 0 multiplying on the

right by
(

h̄−1
1 −h̄2

0 h̄1

)
∈ π(H) we see that

(
1 0

h̄3h̄−1
1 1

)
∈ π(H). For any integer m,

the m’th power of this matrix is
(

1 0
mh̄3h̄−1

1 1

)
∈ π(H). Taking m ≡ h̄1h̄

−1
3 shows

that σ2 ∈ π(H). This shows that π(H) = SL2(Z/�Z).

5.3 Cryptanalysis of the Candidate Group with Infeasible Inversion

We now cryptanalyze the concrete candidate TGII. Recall the format of an
encoding of a group element x from Definition 7:

enc(x) = (Lx;Tx,1, . . . , Tx,wx
)

= ((px,1, . . . , px,wx
); (jx,1,1, . . . , jx,1,ex,1), . . . , (jx,wx,1, . . . , jx,wx,ex,wx

)).

The “exponent vector” ex ∈ Z
wx can be read from the encoding as ex =

(|Tx,1|, . . . , |Tx,wx
|).

We assume polynomially many composable encodings are published in the
applications of a TGII. In down-to-earth terms it means the adversary is pre-
sented with polynomially many j-invariants on the crater of a volcano, and
the explicit isogenies between each pair of the neighboring j-invariants (due to
Proposition 1).

We will be considering the following model on the adversary’s attacking
strategy.

Definition 9 (The GCD attack model). In the GCD attack model, the
adversary is allowed to try to find the inverse of a target group element only
by executing the unit gcd operation gcd.op(PP, �1, �2; j1, j2) given in Algorithm 6
for polynomially many steps, where �1, �2; j1, j2 are from the published encodings
or obtained from the previous executions of the gcd evaluations.

We do not know how to prove the construction of TGII is secure even if the
adversary is restricted to attack in the GCD model. Our cryptanalysis attempts
can be classified as showing (1) how to prevent the attacks that obey the GCD
evaluation law; (2) how to prevent the other attack approaches (by e.g. guessing
the class group invariants).

Preventing the Trivial Leakage of Inverses. In applications we are often
required to publish the encodings of elements that are related in some way.

Hard Isogeny Problems over RSA Moduli and GII 319

A typical case is the following: for x, y ∈ CL(O), the scheme may require pub-
lishing the encodings of x and z = y ◦ x−1 without revealing a valid encoding
of x−1. As a toy example, let x = [(px, bx, ·)], y = [(py, by, ·)], where px and py

are distinct primes. Let j0, the j-invariant of a curve E0, represent the identity
element in the public parameter. Let ((px); (jx)) be a composable encoding of x
and ((py); (jy)) be a composable encoding of y.

Naively, a composable encoding of z = y◦x−1 could be ((px, py); (jx−1), (jy)),
where jx−1 is the j-invariant of Ex−1 = x−1E0. Note, however, that ((px); (jx−1))
is a valid encoding of x−1. In other words such an encoding of y ◦ x−1 trivially
reveals the encoding of x−1.

One way of generating an encoding of z = y ◦ x−1 without trivially revealing
jx−1 is to first pick a generator set of ideals where the norms of the ideals are
coprime to px and py, then solve the discrete-log of z over these generators to
compute the composable encoding. This is the approach we take in this paper.

Parallelogram Attack. In the applications we are often required to publish the
composable encodings of group elements a, b, c such that a◦b = c. If the degrees
of the three encodings are coprime, then we can recover the encodings of a−1,
b−1, and c−1 using the following “parallelogram attack”. This is a non-trivial
attack which obeys the gcd evaluation law in Definition 9.

Let us illustrate the attack via the examples in Fig. 5, where the solid arrows
represent the isogenies that are given as the inputs (the j-invariants of the target
curves are written at the head of the arrows, their positions do not follow the
relative positions on the volcano; the degree of the isogeny is written on the
arrow); the dashed lines and the j-invariants on those lines are obtained from
the gcd evaluation law.

j0

j1

j2

j3

j4

�1

�2

�3

j0

j4

j1

j5 j2

j6

j3

j7

j8

j9

j10

j11

j12

�4

�5

�6

�1

�2

�3

Fig. 5. The parallelogram attack.

For simplicity let us first look at the example in the left figure. Let composable
encodings of a, b, c be given by (�1; (j1)), (�2; (j2)), (�3; (j3)), where �1, �2,
�3 are polynomial and pairwise coprime. A composable encoding of b−1 then
can be written as (�2; (j4)), where j4 is the root of the linear equation f(x) =
gcd(Φ�3(j1, x), Φ�2(j0, x)). This is due to the relation c ◦ b−1 = a, which, in
particular implies that j1 and j4 are connected by an isogeny of degree �3.

320 S. A. Altuğ and Y. Chen

The simple attack above uses the fact that the degrees of the entire encodings
of a, b and c are polynomial. Let us use the example in the right figure to illustrate
that even if the encodings are composed of many polynomial degree isogenies (so
that the total degrees may be super-polynomial), the attack is still effective. The
idea is to view the composition law as filling the missing edges of a parallelogram
given the j-invariants on a pair of adjacent edges. The final goal is to find the
missing corner j12 in the parallelogram j0 −j3 −j1 −j12. To arrive there we need
the j-invariants on a pair of adjacent edges to begin with, so we first have to fill
the j-invariants on, for instance, the edge j1 − j3. Therefore, as the first step, we
consider the parallelogram j0 − j2 − j3 − j1. To fill the j-invariants on the edge
j1−j3, we first compute j7 as the root of f7(x) = gcd(Φ�4(j5, x), Φ�5(j4, x)), then
compute j8 as the root of f8(x) = gcd(Φ�1(j7, x), Φ�5(j1, x)) (the polynomials f7,
f8 are linear since the degrees of enc(a) and enc(b) are coprime). In the second
step, we consider the parallelogram j0 − j3 − j1 − j12. To find j12 we use the gcd
evaluation law to find j9, j10, j11, j12 one-by-one (using the condition that the
degrees of enc(c) and enc(b) are coprime).

The parallelogram attack is very powerful, in the sense that it is not pre-
ventable when application requires to publish the composable encodings of a, b,
c such that a◦ b = c, and enc(a), enc(b), enc(c) to be pairwise composable. How-
ever, the parallelogram attack does not seem to work when 2 out of the 3 pairs
of enc(a), enc(b) and enc(c) are not composable. In the applications of directed
transitive signature and broadcast encryption, there are encodings of a, b, c such
that a ◦ b = c. Luckily, only one pair of the encodings among the three has to be
composable to provide the necessary functionalities of these applications.

Hiding the Class Group Invariants. In the applications of TGII, it is rea-
sonable to assume that the closure of the gcd-compositions of the published
j-invariants covers all the h(D) j-invariants. So inverting a group element can
be done by solving the discrete-log problem over CL(D). However, the class num-
ber h(D) is polynomially smooth, so the discrete-log problem over CL(D) can
be solved in polynomial time once h(D) is given, and h(D) can be recovered
from D or any basis of a relation lattice of CL(D). So we do need to hide the
discriminant D, the class number h(D), and any lattice Λ defined above. In the
full version, we describe the details of how to hide these class group invariants.

Let us remark that if self-composition of an encoding is feasible, then one
can efficiently guess all the polynomially smooth factors of h(D). However for
our construction self-composition is infeasible, due to the hardness of the (�, �2)-
isogenous neighbor problem. Nevertheless, one can still attack by first guessing D
or h(D), which takes λO(log λ) time according to the current setting of parameter.

Acknowledgments. The research of Salim Ali Altuğ is supported by the grant DMS-
1702176. The research of Yilei Chen was conducted at Boston University supported by
the NSF MACS project and NSF grant CNS-1422965.

Hard Isogeny Problems over RSA Moduli and GII 321

References

1. Babai, L.: On lovász’ lattice reduction and the nearest lattice point problem. Com-
binatorica 6(1), 1–13 (1986)

2. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

3. Buchmann, J.A., Williams, H.C.: A key-exchange system based on imaginary
quadratic fields. J. Cryptology 1(2), 107–118 (1988)

4. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptology 22(1), 93–113 (2009)

5. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts
in Mathematics. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-662-
02945-9

6. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

7. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006)

8. Couveignes, J.-M., Morain, F.: Schoof’s algorithm and isogeny cycles. In:
Adleman, L.M., Huang, M.-D. (eds.) ANTS 1994. LNCS, vol. 877, pp. 43–58.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58691-1 42

9. Cox, D.A.: Primes of the Form x2+ny2: Fermat, Class Field Theory, and Complex
Multiplication, vol. 34. Wiley, Hoboken (2011)

10. Demytko, N.: A new elliptic curve based analogue of RSA. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 40–49. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 4

11. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

12. Elkies, N.D., et al.: Elliptic and modular curves over finite fields and related com-
putational issues. AMS IP Stud. Adv. Math. 7, 21–76 (1998)

13. Enge, A., Sutherland, A.V.: Class invariants by the CRT method. In: Hanrot, G.,
Morain, F., Thomé, E. (eds.) ANTS 2010. LNCS, vol. 6197, pp. 142–156. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14518-6 14

14. De Feo, L.: Mathematics of isogeny based cryptography. arXiv preprint
arXiv:1711.04062 (2017)

15. Fouquet, M., Morain, F.: Isogeny volcanoes and the SEA algorithm. In: Fieker, C.,
Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 276–291. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45455-1 23

16. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49. IEEE Computer Society (2013)

17. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

18. Hohenberger, S.R.: The cryptographic impact of groups with infeasible inversion.
Master’s thesis, Massachusetts Institute of Technology (2003)

19. Ionica, S., Joux, A.: Pairing the volcano. Math. Comput. 82(281), 581–603 (2013)
20. Irrer, J., Lokam, S., Opyrchal, L., Prakash, A.: Infeasible group inversion and

broadcast encryption. University of Michigan Electrical Engineering and Computer
Science Tech Note CSE-TR-485-04 (2004)

https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/3-540-58691-1_42
https://doi.org/10.1007/3-540-48285-7_4
https://doi.org/10.1007/978-3-642-14518-6_14
http://arxiv.org/abs/1711.04062
https://doi.org/10.1007/3-540-45455-1_23

322 S. A. Altuğ and Y. Chen

21. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

22. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
23. Kohel, D.R.: Endomorphism rings of elliptic curves over finite fields. PhD thesis,

University of California, Berkeley (1996)
24. Kunihiro, N., Koyama, K.: Equivalence of counting the number of points on elliptic

curve over the ring Zn and factoring n. In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 47–58. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054116

25. Lay, G.-J., Zimmer, H.G.: Constructing elliptic curves with given group order over
large finite fields. In: Adleman, L.M., Huang, M.-D. (eds.) ANTS 1994. LNCS,
vol. 877, pp. 250–263. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58691-1 64

26. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

27. Lenstra, H.W.: Factoring integers with elliptic curves. Ann. Math. 126(3), 649–673
(1987)

28. McCurley, K.S.: Cryptographic key distribution and computation in class groups.
IBM Thomas J. Watson Research Division (1988)

29. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

30. Molnar, D.: Homomorphic signature schemes. B.s. thesis, Harvard College (2003)
31. Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on

isogenies. Cryptology ePrint Archive, Report 2006/145 (2006)
32. Schoof, R.: Elliptic curves over finite fields and the computation of square roots

mod p. Math. Comput. 44(170), 483–494 (1985)
33. Schoof, R.: Counting points on elliptic curves over finite fields. J. Théor. Nombres

Bordeaux 7(1), 219–254 (1995)
34. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New

York (2009). https://doi.org/10.1007/978-0-387-09494-6
35. Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate

Texts in Mathematics, vol. 151. Springer, New York (2013). https://doi.org/10.
1007/978-1-4612-0851-8

36. Sutherland, A.V.: Isogeny kernels and division polynomials. https://ocw.mit.edu/
courses/mathematics/18-783-elliptic-curves-spring-2017/lecture-notes/MIT18
783S17 lec6.pdf. Accessed 03 Sept 2018

37. Sutherland, A.V.: Isogeny volcanoes. Open Book Ser. 1(1), 507–530 (2013)
38. Tate, J.: Endomorphisms of abelian varieties over finite fields. Inventiones Math.

2(2), 134–144 (1966)
39. Vélu, J.: Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie des

Sciences de Paris 273, 238–241 (1971)
40. Yamakawa, T., Yamada, S., Hanaoka, G., Kunihiro, N.: Self-bilinear map on

unknown order groups from indistinguishability obfuscation and its applications.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 90–107.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 6

https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/BFb0054116
https://doi.org/10.1007/BFb0054116
https://doi.org/10.1007/3-540-58691-1_64
https://doi.org/10.1007/3-540-58691-1_64
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-1-4612-0851-8
https://doi.org/10.1007/978-1-4612-0851-8
https://ocw.mit.edu/courses/mathematics/18-783-elliptic-curves-spring-2017/lecture-notes/MIT18_783S17_lec6.pdf
https://ocw.mit.edu/courses/mathematics/18-783-elliptic-curves-spring-2017/lecture-notes/MIT18_783S17_lec6.pdf
https://ocw.mit.edu/courses/mathematics/18-783-elliptic-curves-spring-2017/lecture-notes/MIT18_783S17_lec6.pdf
https://doi.org/10.1007/978-3-662-44381-1_6

Multilinear Maps

On Kilian’s Randomization of Multilinear
Map Encodings

Jean-Sébastien Coron(B) and Hilder V. L. Pereira

University of Luxembourg, Luxembourg City, Luxembourg
jean-sebastien.coron@uni.lu

Abstract. Indistinguishability obfuscation constructions based on
matrix branching programs generally proceed in two steps: first apply
Kilian’s randomization of the matrix product computation, and then
encode the matrices using a multilinear map scheme. In this paper we
observe that by applying Kilian’s randomization after encoding, the com-
plexity of the best attacks is significantly increased for CLT13 multilin-
ear maps. This implies that much smaller parameters can be used, which
improves the efficiency of the constructions by several orders of magnitude.

As an application, we describe the first concrete implementation of mul-
tiparty non-interactive Diffie-Hellman key exchange secure against exist-
ing attacks. Key exchange was originally the most straightforward appli-
cation of multilinear maps; however it was quickly broken for the three
known families ofmultilinear maps (GGH13,CLT13 andGGH15). Herewe
describe the first implementation of key exchange that is resistant against
known attacks, based on CLT13 multilinear maps. For N = 4 users and
a medium level of security, our implementation requires 18 GB of public
parameters, and a few minutes for the derivation of a shared key.

1 Introduction

Multilinear Maps and Indistinguishability Obfuscation. Since the break-
through construction of Garg, Gentry and Halevi [GGH13a], cryptographic mul-
tilinear maps have shown amazingly powerful applications in cryptography, most
notably the first plausible construction of program obfuscation [GGH+13b]. A
multilinear map scheme encodes plaintext values {ai} into encodings {[ai]} such
that the ai’s are hidden; only a restricted class of polynomials can then be
evaluated over these encoded values; eventually one can determine whether the
evaluation is zero or not, using the zero testing procedure of the multilinear map
scheme.

The goal of program obfuscation is to hide secrets in arbitrary running
programs. The first plausible construction of general program obfuscation was
described by Garg, Gentry, Halevi, Raykova, Sahai and Waters (GGHRSW) in
[GGH+13b], based on multilinear maps; the construction has opened many new
research directions, because the notion of indistinguishability obfuscation (iO)
has tremendous applications in cryptography [SW14]. Since the publication of
the GGHRSW construction, many variants of GGHRSW have been described
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 325–355, 2019.
https://doi.org/10.1007/978-3-030-34621-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_12

326 J.-S. Coron and H. V. L. Pereira

[MSW14,AGIS14,PST14,BGK+14,BMSZ16]. Currently there are essentially
only three known candidate constructions of multilinear maps:

• GGH13. The first candidate construction of multilinear maps is based on
ideal lattices [GGH13a]. Its security relies on the difficulty of the NTRU
problem and the principal ideal problem (PIP) in certain number fields.

• CLT13. An analogous construction but over the integers was described
in [CLT13], based on the DGHV fully homomorphic encryption scheme
[DGHV10].

• GGH15. Gentry, Gorbunov and Halevi described another multilinear maps
scheme [GGH15], based on the Learning With Errors (LWE) problem with
encoding over matrices, and defined with respect to a directed acyclic graph.

However the security of multilinear maps is still poorly understood. The most
important attacks against multilinear maps are “zeroizing attacks”, which con-
sist in using linear algebra to recover the secrets of the scheme from the encod-
ings of zero. At Eurocrypt 2015, Cheon et al. described a devastating zeroizing
attack against CLT13; when CLT13 is used to implement non-interactive multi-
partite Diffie-Hellman key exchange, the attack completely breaks the protocol
[CHL+15]. The attack was also extended to encodings variants, where encodings
of zero are not directly available [CGH+15]. The key-exchange protocol based
on GGH13 was also broken by a zeroizing attack in [HJ16]. Finally, the Diffie-
Hellman key exchange protocol under GGH15 was broken in [CLLT16], using an
extension of the Cheon et al. zeroizing attack.

However, not all attacks against the above multilinear map schemes can
be applied to indistinguishability obfuscation. While multipartite key exchange
based on any of the three families of multilinear map schemes is broken, iO is not
necessarily broken by zeroizing attacks, because of the particular structure that
iO constructions induce on the computation of multilinear map encoded values.
Namely, in iO constructions, no low-level encodings of zeroes are available, and
the obfuscation of a matrix branching program can only produce zeroes at the
last level, moreover when evaluated in a very specific way. However some par-
tial attacks against iO constructions have already been described. In [CGH+15]
it was shown how to break the GGHRSW branching-program obfuscator when
instantiated using CLT13, when the branching program to be obfuscated has a
very simple structure (input partition). For GGH13, Miles, Sahai and Zhandry
introduced “annihilation attacks” [MSZ16] that can break many obfuscation
schemes based on GGH13; however, the attack does not apply to the GGHRSW
construction, because in GGHRSW the matrix program is embedded in a larger
matrix with random entries (diagonal padding). In [CGH17], the authors showed
how to break iO constructions under GGH13, using a variant of the input parti-
tioning attack; the attack applies against the GGHRSW construction with diag-
onal padding. A new tensoring technique was introduced in [CLLT17] to break
iO constructions for branching programs without the input partition structure.
Finally, an attack against iO over GGH15 was described in [CVW18] based on
computing the rank of a certain matrix.

On Kilian’s Randomization of Multilinear Map Encodings 327

Obfuscating Matrix Branching Programs. The GGHRSW construction
and its variants consist of a “core component” for obfuscating matrix branching
programs, and a bootstrapping procedure to obfuscate arbitrary programs based
on the core component, using fully homomorphic encryption and proofs of correct
computation. The core component relies on multilinear maps for evaluating a
product of encoded matrices corresponding to a branching program, without
revealing the underlying value of those matrices.

More precisely, the core component of the GGHRSW construction and its
variants proceeds in two steps: first apply Kilian’s randomization of the matrix
product computation, and then encode the matrices using a multilinear map
scheme. In this paper, our main observation is that for CLT13 multilinear maps,
the complexity of the best attacks is significantly increased when Kilian’s ran-
domization is also applied after encoding. We note that applying Kilian’s ran-
domization “on the encoding side” was already used in GGH15 multilinear maps
as an additional safeguard [GGH15, §5.1]. For CLT13 this implies that one can
use much smaller parameters (noise and encoding size), which improves the effi-
ciency of the constructions by several orders of magnitude.

More precisely, a matrix branching program BP of length n is evaluated on
input x ∈ {0, 1}� by computing:

C(x) = b0 ×
n∏

i=1

Bi,xinp(i) × bn+1 (1)

where {Bi,b}1≤i≤n,b∈{0,1} are square matrices and b0 and bn+1 are bookend vec-
tors; then BP(x) = 0 if C(x) = 0, and BP(x) = 1 otherwise. The function inp(i)
indicates which bit of x is read at step i of the product matrix computation. To
obfuscate a matrix branching program, the GGHRSW construction proceeds in
two steps. First one randomizes the matrices Bi,b as in Kilian’s protocol [Kil88]:
choose n + 1 random invertible matrices {Ri}n

i=0 and set B̃i,b = Ri−1Bi,bR
−1
i ,

with also b̃0 = b0R
−1
0 and b̃n+1 = Rnbn+1. The randomized matrix branching

program can then be evaluated by computing C(x) = b̃0 ×∏n
i=1 B̃i,xinp(i) × b̃n+1.

Namely the successive randomization matrices Ri cancel each other; therefore
the matrix product computation evaluates to the same result as in (1).

The second step in the GGHRSW construction is to encode the entries of the
matrices B̃i,b using a multilinear map scheme. Every entry of a given matrix is
encoded separately; the bookend vectors b̃0 and b̃n are also encoded similarly.
Therefore one defines the matrices and vectors B̂i,b = Encode{i+1}(B̃i,b), b̂0 =
Encode{1}(b̃0), b̂n = Encode{n+2}(b̃n+2). The matrix branching program from
(1) can then be evaluated over the encoded matrices:

Ĉ(x) = b̂0 ×
n∏

i=1

B̂i,xinp(i) × b̂n+1 (2)

Eventually one obtains an encoded Ĉ(x) over the universe set S = {1, . . . , n+2},
and one can use the zero-testing procedure of the multilinear map scheme to

328 J.-S. Coron and H. V. L. Pereira

check if C(x) = 0, thereby learning the output of the branching program BP(x),
without revealing the values of the matrices Bi,b.

(In)efficiency of iO. However, even with some efficiency improvements (as in
[AGIS14]), the main issue is that indistinguishability obfuscation is currently not
feasible to implement in practice. The first obstacle is that when converting the
input circuit to a matrix branching program using Barrington’s theorem [Bar86],
one induces an enormous cost in performance, as the length of the branching
program grows exponentially with the depth of the circuit being evaluated. The
second obstacle is that the multilinear map noise and parameters grow with
the degree of the polynomial being computed over encoded elements, which
corresponds to the length of the matrix branching program.

In this paper, we consider both issues. For the second one, we show that for
CLT13 multilinear maps, when applying Kilian’s randomization “on the encod-
ing side”, one can significantly reduce the noise and encoding size while keeping
the same level of security; this leads to major improvements of performance. For
the first issue, we craft a sequence of matrix products that only performs a mul-
tipartite DH key-exchange, rather than generating one from a circuit through
Barrington’s theorem, so that its degree becomes much more manageable. We
can then describe the first concrete implementation of multipartite DH key-
exchange based on multilinear maps that is resistant against existing attacks.

Kilian’s Randomization on the Encoding Side. As already observed in
[GGH15], Kilian’s randomization can also be applied over the encoding space,
as an additional safeguard. Namely starting from the encoded matrices B̂i,b used
to compute Ĉ(x) as in Eq. (2), one can again choose n + 1 random invertible
matrices {R̂i}n

i=0 and then randomize the matrices B̂i,b with:

B̄i,b = R̂i−1B̂i,bR̂
−1

i

with also b̄0 = b̂0R̂
−1

0 and b̄n+1 = R̂nb̂n+1. Since the matrices R̂i cancel each
other in the matrix product computation, the evaluation proceeds exactly as in
(2), with Ĉ(x) = b̄0 × ∏n

i=1 B̄i,xinp(i) × b̄n+1, and therefore the same zero-testing
procedure can be applied to Ĉ(x). Note that the R̂i matrices are applied on
the encoding side, that is on the encoded matrices B̂i,b, instead of the plaintext
matrices Bi,b as previously; obviously both randomizations (before and after
encoding) can be applied independently.

In this paper we focus on Kilian’s randomization on the encoding side in the
context of the CLT13 multilinear maps. In CLT13 the encoding space is the set
of integers modulo x0, where x0 =

∏n
j=1 pj ; therefore the matrices {R̂i}n

i=0 are
random invertible matrices modulo x0. We show that the complexity of the best
attacks against CLT13 is significantly increased thanks to Kilian’s randomization
of the encodings. One can therefore use much smaller parameters (noise size and
encoding size), which can improve the efficiency of a construction by several
orders of magnitude.

On Kilian’s Randomization of Multilinear Map Encodings 329

More precisely, the security of CLT13 is based on the hardness of the multi-
prime Approximate-GCD problem. Given x0 =

∏n
i=1 pi for random primes pi,

and polynomially many integers cj such that

cj ≡ rij (mod pi) (3)

for small integers rij ’s, the goal is to recover the secret primes pi’s. The multi-
prime Approximate-GCD problem is an extension of the single-prime problem,
with a single prime p to be recovered from encodings cj = qj ·p+rj and x0 = q0 ·p,
for small integers rj . The two main approaches for solving the Approximate-GCD
problem are the orthogonal lattice attacks and the GCD attacks.

First Contribution: Solving the Multi-prime Approximate-GCD Prob-
lem. For the single-prime Approximate-GCD problem, the classical orthogonal
lattice attack has complexity 2Ω(γ/η2), where γ is the size of x0 and η is the size
of the prime p; see [DGHV10, §5.2]. However, extending the attack to the multi-
prime case as in CLT13 is actually not straightforward; in particular, we argue
that the approach described in [CLT13] is incomplete and does not recover the
primes pi’s, except for small values of n; we note that solving the multi-prime
case was actually considered as an open problem in [GGM16].

Our first contribution is to solve this open problem with an algorithm that
proceeds in two steps. The first step is the classical orthogonal lattice attack;
it recovers a basis of the lattice generated by the vectors ri = c mod pi, where
c = (c1, . . . , ct). However, the vectors ri cannot be recovered directly; namely
by applying LLL or BKZ one recovers a basis of moderately short vectors, and
not necessarily the ri’s which are the shortest vectors in the lattice. Therefore
the approach described in [CLT13] does not work, except in low dimension.
In the second step of our algorithm, using the lattice basis obtained from the
first step, we show that by computing the eigenvalues of a well chosen matrix,
we can recover the primes pi’s, as in the Cheon et al. attack [CHL+15]. The
asymptotic complexity of the full attack is the same as in the single-prime case;
using γ = η ·n for the size of x0 as previously, where n is the number of primes pi,
the complexity is 2Ω(n/η). Therefore, as in [CLT13], one must take n = ω(η log λ)
to prevent the lattice attack, where λ is the security parameter.

Second Contribution: Extension to the Vector Approximate-GCD
Problem. When working with matrix branching programs and Kilian’s ran-
domization on the encoding side, we must actually consider a vector variant of
the Approximate-GCD problem, in which we have access to randomized vectors
of encodings instead of scalar values as in (3). Therefore, our second contribu-
tion is to extend the orthogonal lattice attack to the Vector Approximate-GCD
problem, and to show that the extended attack has complexity 2Ω(m·n/η), for
vectors of dimension m. This implies that the new condition on the number n
of primes pi in CLT13 becomes:

n = ω
(η

m
log λ

)

330 J.-S. Coron and H. V. L. Pereira

Compared to the previous condition, the number of primes n in CLT13 can
therefore be divided by a factor m, for the same level of security, where m is the
matrix dimension. This implies that the encoding size γ can also be divided by
a factor m, which provides a significant improvement in efficiency.

Third Contribution: GCD Attacks Against the Vector Approximate-
GCD Problem. The naive GCD attack against the Approximate-GCD prob-
lem with c1 = q1 ·p+ r1 and x0 = q0 ·p consists in computing gcd(c1 − r1, x0) for
all possible r1 and has complexity O(2ρ), where ρ is the bitsize of r1. At Euro-
crypt 2012, Chen and Nguyen [CN12] described an improved attack based on
multipoint polynomial evaluation, with complexity Õ(2ρ/2). The Chen-Nguyen
attack was later extended by Lee and Seo at Crypto 2014 [LS14], when the ci’s
are multiplicatively masked by a random secret z modulo x0, as it is the case in
the CLT13 scheme; their attack has the same complexity Õ(2ρ/2).

As previously, when working with matrix branching programs and Kilian’s
randomization on the encoding side, we must consider the vector variant of
the Approximate-GCD problem. Our third contribution is therefore to extend
the Lee-Seo attack to this vector variant; we obtain a complexity Õ(2m·ρ/2)
instead of Õ(2ρ/2), where m is the vector dimension. Assuming that this is the
best possible attack, one can therefore divide the noise size ρ by a factor m.
Similarly, when Kilian’s randomization is applied to a m × m matrix, we show
that the attack complexity becomes Õ(2m2·ρ/2), and therefore the noise size
ρ used to encode those matrices in CLT13 can be divided by m2. Combined
with the previous improvement, this improves the efficiency of CLT13 based
constructions by several orders of magnitude.

Fourth Contribution: Non-interactive DH Key Exchange from Multi-
linear Maps. In principle the most straightforward application of multilinear
maps is non-interactive multipartite Diffie-Hellman (DH) key exchange with N
users, a natural generalization of the DH protocol for 3 users based on the bilin-
ear pairing. This was originally described for GGH13, CLT13 and GGH15, but
was quickly broken for the three families of multilinear maps; in particular, key
exchange based on CLT13 was broken by the Cheon et al. attack [CHL+15]. The
main question is therefore:

Can we construct a practical N -way non-interactive key-exchange
protocol from candidate multilinear maps constructions?

In this paper we provide a first step in that direction. Namely our fourth
contribution is to describe the first implementation of N -way DH key exchange
resistant against known attacks. Our construction is based on CLT13 multilinear
maps and is secure against the Cheon et al. attack and its variants. Our con-
struction contains many ingredients from the GGHRSW and other similar con-
structions. Namely we express the session key as the result of a matrix product
computation, and we embed the matrices into larger randomized matrices before
encoding, together with some special “bookend” components at the start and

On Kilian’s Randomization of Multilinear Map Encodings 331

end of the computation, as in [GGH+13b]. We use the “multiplicative bundling”
technique from [GGH+13b] to prevent the adversary from combining the matri-
ces in arbitrary ways. As explained previously, we use Kilian’s randomization on
the encoding side. With no additional cost, we can also use the straddling set
systems from [BGK+14] to further constrain the attacker, and Kilian’s random-
ization at the plaintext level. Finally, we use k repetitions in order to prevent the
Cheon et al. attack against CLT13, when considering input partitioning attacks
as in [CGH+15], and its extension with the tensoring attack [CLLT17]. We argue
that the extended Cheon et al. attack has complexity Ω(m2k−1) in our scheme,
where m is the matrix dimension and k the number of repetitions.

For N = 4 users and a medium (62 bits) level of security, our implementation
requires 18 GB of public parameters, and a few minutes for the derivation of
a shared key. We note that without Kilian’s randomization of encodings our
construction would be completely unpractical, as it would require more than
100 TB of public parameters.

Related Work. In [MZ18], Ma and Zhandry described a multilinear map
scheme built on top of CLT13 that is provably resistant against zeroizing attack,
and which can be used to directly construct a non-interactive DH key-exchange.
More precisely, the authors develop a new weak multilinear map model for CLT13
to capture all known attack strategies against CLT13. The authors then con-
struct a new multilinear map scheme on top of CLT13 that is secure in this
model. The construction is based on multiplying matrices of CLT13 encodings
as in iO schemes. To prevent zeroizing attacks, the same input is read multiple
times, as in iO constructions. The input consistency is ensured by a clever use of
“enforcing” matrices based on some permutation invariant property. Finally, the
authors construct a non-interactive DH key-exchange scheme based on their new
multilinear map scheme. However, the authors do not provide implementation
results nor concrete parameters (except for multilinear map degree and number
of public encodings), so it is difficult to assess the practicality of their construc-
tion. The authors still provide the following parameters for a 4-party DH key
exchange with 80 bits of security; see Table 1. We provide our corresponding
parameters for comparison (see more details in Sect. 7).

Table 1. Comparison of parameters for 4-party DH key exchange, with 80 bits of
security.

Scheme MMap degree Public encodings Public-key size

Boneh et al. [BISW17] 4150 244

Ma-Zhandry (setting 1) 52 262

Ma-Zhandry (setting 2) 160 233

Ma-Zhandry (setting 3) 1040 219

Ma-Zhandry (setting 4) 2000 214

Our construction 266 220 1848 GB

332 J.-S. Coron and H. V. L. Pereira

The main advantage of the Ma-Zhandry construction is that it has a proof of
security in a weak multilinear map model, whereas our construction has heuris-
tic security only. It seems from Table 1 that our construction would require a
smaller multilinear map degree for the same number of public encodings. We
stress however that providing concrete parameters is actually a complex opti-
mization problem (see Sect. 7), so Table 1 should be handled with care. In any
case, the Ma-Zhandry construction can certainly benefit from our analysis, since
Kilian’s randomization on the encoding side can also be applied “for free” in
their construction.

Source Code. We provide the source code of our construction, and the source
code of the attacks, in [CP19].

2 Preliminaries

We denote by [a]n or a mod n the unique integer x ∈ (−n
2 , n

2] which is congruent
to a modulo n. The set {1, 2, . . . , n} is denoted by [n].

2.1 The CLT13 Multilinear Map

We briefly recall the (asymmetric) CLT13 multilinear map scheme; we refer to
[CLT13] for a full description. For large secret primes pi’s, let x0 =

∏n
k=1 pi,

where n is the number of primes. We denote by η the bitsize of the pi’s, and
by γ the bitsize of x0; therefore γ � n · η. The plaintext space of CLT13 is
Zg1 × Zg2 × · · · × Zgn

for secret prime integers gi’s of α bits.
The CLT13 scheme is based on CRT representations. We denote by CRT(a1,

. . . , an) or CRT(ai)i the number a ∈ Zx0 such that a ≡ ai (mod pi) for all
i ∈ [n]. An encoding of a vector m = (m1, . . . ,mn) at level set S = {j} is an
integer c ∈ Zx0 such that c = [CRT(m1 + g1r1, . . . ,mn + gnrn)/zj]x0 for integers
ri of size ρ bits, where zj is a secret mask in Zx0 uniformly chosen during the
parameters generation procedure of the multilinear map. This gives:

c ≡ mi + giri

zj
(mod pi) (4)

for all 1 ≤ i ≤ n. To support a 	-level multilinearity, one uses 	 distinct zj ’s.
It is clear that encodings from the same level can be added via addition

modulo x0. Similarly multiplication between encodings can be done by modu-
lar multiplication in Zx0 , but the encodings must be of disjoint level sets; the
resulting encoding level set is then the union of the input level sets. At the top
level set S = {1, . . . , 	}, one can zero-test an encoding by multiplication with the
zero-test parameter pzt =

(∏�
j=1 zj

)
·CRT(p∗

i hig
−1
i)i mod x0, where p∗

i = x0/pi

and the hi’s are random β-bit integers. Namely given a top-level encoding c with

On Kilian’s Randomization of Multilinear Map Encodings 333

c = CRT(mi+giri)i∏�
j=1 zj

mod x0, we obtain after multiplication by pzt:

c · pzt = CRT(hip
∗
i (mig

−1
i + ri))i =

n∑

i=1

hip
∗
i (mig

−1
i + ri) (mod x0) (5)

and therefore if mi = 0 for all 1 ≤ i ≤ n then the result will be small compared to
x0. From the previous equation the high-order bits of c ·pzt mod x0 only depend
on the mi’s; therefore from the zero-testing procedure one can extract a value
that only depends on the mi’s.

2.2 The Approximate-GCD Problem and Its Variant

The security of the CLT13 multilinear map scheme is based on the Approximate-
GCD problem. For a specific η-bit prime integer p, we use the following distri-
bution over γ-bit integers:

Dγ,ρ(p) =
{
Choose q ← Z∩ [0, 2γ/p), r ← Z∩ (−2ρ, 2ρ) : Output x = q · p+ r

}

We also consider a noise-free x0 = q0 · p where q0 is a random (γ − η)-bit prime
integer (alternatively the product of γ/η − 1 primes of size η bits each).

Definition 1 (Approximate-GCD problem with noise-free x0). For a
random η-bit prime integer p, given x0 = q0 · p and polynomially many samples
from Dγ,ρ(p), output p.

We also consider the following variant, in which instead of being given ele-
ments from Dγ,ρ(p), we get vectors of elements multiplied by a secret random
invertible matrix K modulo x0.

Definition 2 (Vector Approximate-GCD problem with noise-free x0).
For a random η-bit prime integer p, generate x0 = q0 ·p and a random invertible
m × m matrix K modulo x0. Given x0 and polynomially many samples ṽ =
v · K mod x0 where v ← (Dγ,ρ(p))m, output p.

The vector variant of the Approximate-GCD problem cannot be easier than
the original problem, since any algorithm solving the vector variant can be used
to solve the Approximate-GCD problem, simply by generating vectors ṽ = v ·K
(mod x0) for some random matrix K. However, the vector variant could be
harder to solve, so that smaller parameters could be used when dealing with
the Vector Approximate-GCD problem. We show in the next sections that the
generalizations of the attacks to the vector variant indeed have higher complexity.

In the context of the CLT13 scheme, one actually works with multiple primes
pi’s. Therefore we consider the multi-prime variant of the Approximate-GCD
problem.

Definition 3 (Multi-prime Approximate-GCD problem). For n random
η-bit prime integers pi, let x0 =

∏n
i=1 pi. Given x0 and polynomially many inte-

gers cj = CRT(rij)i where rij ← Z ∩ (−2ρ, 2ρ), output the primes pi.

334 J.-S. Coron and H. V. L. Pereira

Finally, we consider the vector variant of the multi-prime Approximate-GCD
problem.

Definition 4 (Vector multi-prime Approximate-GCD problem). For n
random η-bit prime integers pi, let x0 =

∏n
i=1 pi. Let K be a random invertible

m×m matrix modulo x0. Given x0 and polynomially many vectors ṽ = v·K mod
x0, where v = (v1, . . . , vm) and vj = CRT(rij)i where rij ← Z∩(−2ρ, 2ρ), output
the primes pi.

The two main approaches for solving the Approximate-GCD problem are
the orthogonal lattice attacks and the GCD attacks. We consider the orthogonal
lattice attacks in Sect. 3, and the GCD attacks in Sect. 4.

3 Lattice Attack Against the Approximate-GCD Problem

We first recall the lattice attack against the single-prime Approximate-GCD
problem [DGHV10, §B.1], based on the Nguyen-Stern orthogonal lattice attack
[NS01]. As mentioned in introduction, extending the attack to the multi-prime
case is actually not straightforward; in particular, we argue that the approach
described in [CLT13] is incomplete and does not recover the primes pi’s, except
for small values of n. Therefore, we describe a new algorithm for solving the
multi-prime Approximate-GCD problem, using a variant of the Cheon et al.
attack against CLT13. We then extend the algorithm to the vector variant of the
Approximate-GCD problem. Finally, we run our attacks against both the multi-
prime Approximate-GCD problem and the vector variant, in order to derive
concrete parameters for our construction. We provide the source code of our
attacks in [CP19].

3.1 The Orthogonal Lattice

We first recall the definition of the orthogonal lattice, following [NS97]. Let L
be a lattice in Z

m. The orthogonal lattice L⊥ is defined as the set of elements in
Z

m which are orthogonal to all the lattice points of L, for the usual dot product.
We define the lattice L̄ = (L⊥)⊥; it is the intersection of Zm with the Q-vector
space generated by L; we have that L ⊂ L̄ and the determinant of L̄ divides the
determinant of L. We have that dim(L) + dim(L⊥) = m and det(L⊥) = det(L̄).

From Minkowski’s bound, we expect that a reduced basis of a “random”
lattice L has short vectors of norm � (det L)1/ dimL. For a “random” lattice
L, we also expect that det(L) � det(L̄) = det(L⊥). Moreover, for a lattice L
generated by a set of d “random” vectors bi ∈ Z

m, from Hadamard inequality we
expect that det L � ∏d

i=1 ‖bi‖. In that case, we therefore expect the short vectors
of L⊥ to have norm � (det L⊥)1/(m−d) � (det L)1/(m−d) � (

∏d
i=1 ‖bi‖)1/(m−d).

3.2 The Classical Orthogonal Lattice Attack Against
the Single-Prime Approximate-GCD Problem

In this section we recall the lattice attack against the Approximate-GCD prob-
lem, based on the Nguyen-Stern orthogonal lattice attack [NS01]; see also the

On Kilian’s Randomization of Multilinear Map Encodings 335

analysis in [DGHV10, §B.1]. We consider a set of t integers xi = p · qi + ri and
x0 = p · q0, for ri ∈ (−2ρ, 2ρ) ∩ Z. We consider the lattice L of vectors u that
are orthogonal to x modulo x0, where x = (x1, . . . , xt):

L = {u ∈ Z
t | u · x ≡ 0 (mod x0) }

The lattice L is of full rank t since it contains x0Z
t. Moreover, we have detL =

[Zt : L] = x0/ gcd(x0, x1, . . . , xt) = x0. Therefore, applying lattice reduction
should yield a reduced basis (u1, . . . ,ut) with vectors of length

‖uk‖ ≤ 2ιt · (det L)1/t ≈ 2ιt+γ/t (6)

where γ is the size of x0, for some constant ι > 0 depending on the lattice
reduction algorithm, where 2ιt is the Hermite factor.

Now given a vector u ∈ L, we have u · x ≡ 0 (mod x0), which implies that
u · r ≡ 0 (mod p) where r = (r1, . . . , rt). The main observation is that if u is
short enough, the equality will hold over Z. More precisely, if ‖u‖ · ‖r‖ < p, we
get u · r = 0 in Z. From (6), this happens under the condition:

2ιt+γ/t · 2ρ < 2η. (7)

In that case, the vectors (u1, . . . ,ut−1) from the previous lattice reduction step
should be orthogonal to the vector r. One can therefore recover ±r by computing
the rank 1 lattice orthogonal to those vectors. From r one can recover p by
computing p = gcd(x0, x1 − r1).

Asymptotic Complexity. We derive a heuristic lower bound for the complex-
ity of the attack, as in [DGHV10, §5.2]. From condition (7) the attack requires
a minimal lattice dimension t > γ/η; therefore from the same condition we
must have ι < η2/γ. Achieving an Hermite factor of 2ιt heuristically requires at
least 2Ω(1/ι) time, by using BKZ reduction with block-size β = ω(1/ι) [HPS11].
Therefore, the orthogonal lattice attack has time complexity at least 2Ω(γ/η2).

3.3 Lattice Attack Against Multi-prime Approximate GCD

We consider the setting of CLT13, that is we are given a modulus x0 =
∏n

i=1 pi

and a set of integers xj ∈ Zx0 such that xj mod pi = rij for rij ∈ (−2ρ, 2ρ) ∩ Z,
and the goal is to recover the secret primes pi.

First Step: Orthogonal Lattice Attack. As previously we consider the inte-
ger vector x formed by the first t integers xj , and we consider the lattice L of
vectors u that are orthogonal to x modulo x0:

L = {u ∈ Z
t | u · x ≡ 0 (mod x0) }

Note that the lattice L is of full rank t since it contains x0Z
t. For 1 ≤ i ≤ n, let

ri = x mod pi. For any u ∈ Z
t, if u ·ri = 0 in Z for all 1 ≤ i ≤ n, then u ·x ≡ 0

336 J.-S. Coron and H. V. L. Pereira

(mod x0). Therefore, denoting by Lr the lattice generated by the vectors ri,
the lattice L contains the sublattice L⊥

r of the vectors orthogonal in Z to the n
vectors ri’s. Assuming that the n vectors ri’s are linearly independent, we have
dim L⊥

r = t − n, and we expect a reduced basis of L⊥
r to have vectors of norm

(
∏n

i=1 ‖ri‖)1/(t−n) � 2ρ·n/(t−n).
Given a vector u ∈ L, we have u · x ≡ 0 (mod x0), which implies that

u · ri ≡ 0 (mod pi) for all 1 ≤ i ≤ n. As previously, if u is short enough, the
equalities will hold over Z. More precisely, if ‖u‖ · ‖ri‖ < pi for all 1 ≤ i ≤ n, we
get u · ri = 0 in Z for all i; therefore we must have u ∈ L⊥

r under the condition
‖u‖ < (min pi)/(max ‖ri‖) � 2η−ρ. Hence, when applying lattice reduction to
the lattice L, we expect to recover the vectors from the sublattice L⊥

r if there is
a gap of at least 2ι·t between the short vectors in L⊥

r and the other vectors in
L \ L⊥

r , where 2ι·t is the Hermite factor. Since the vectors in L \ L⊥
r must have

norm at least approximately 2η−ρ, this gives the condition:

2ρ·n/(t−n) · 2ιt < 2η−ρ, (8)

In that case, applying lattice reduction to L should yield a reduced basis (u1, . . . ,
ut) where the first t − n vectors belong to the sublattice L⊥

r . By computing the
rank n lattice orthogonal to those vectors, one recovers a basis B = (b1, . . . , bn)
of the lattice L̄r = (L⊥

r)⊥, where Lr is the lattice generated by the n vectors ri,
However this does not necessarily reveal the original vectors ri. Namely even by
applying LLL or BKZ on the basis B, we do not necessarily recover the short
vectors ri’s, except possibly in low dimension; therefore the approach described
in [CLT13] only works when n is small.

However, the main observation is that since each vector bj of the basis B is
a linear combination of the vectors ri, it can play the same role as a zero-tested
value in the CLT13 scheme. More precisely, since the vectors b1, . . . , bn form a
basis of L̄r , we can write for all 1 ≤ j ≤ n:

bj =
n∑

i=1

λjiri

for unknown coefficients λji ∈ Q. The above equation is analogous to Eq. (5) on
the zero-tested value c ·pzt, which is a linear combination of the ri’s over Z when
all mi’s are zero. Therefore, we can apply a variant of the Cheon et al. attack to
recover the primes pi’s, by computing the eigenvalues of a well chosen matrix.
Since we have n vectors bj instead of a single pzt value, we only need to work
with equations of degree 2 in the xj ’s, instead of degree 3 as in [CHL+15].

Second Step: Algebraic Attack. The second step of the attack is similar to
the Cheon al. attack. Recall that we receive as input x0 =

∏n
i=1 pi and a set of

integers xj ∈ Zx0 such that xj mod pi = rij for rij ∈ (−2ρ, 2ρ) ∩ Z. Since we
must work with an equation of degree 2 in the inputs, we consider an additional
integer y ∈ Zx0 with y mod pi = si with si ∈ (−2ρ, 2ρ) ∩ Z for all 1 ≤ i ≤ n.

On Kilian’s Randomization of Multilinear Map Encodings 337

We define the column vector x =
[
x1 . . . xn

]T . Instead of running the orthog-
onal lattice attack with x, we run the orthogonal lattice attack from the previous
step with the column vector z of dimension t = 2n defined as follows:

z =
[

x
y · x

]

Letting ri = x mod pi, this gives the column vectors for 1 ≤ i ≤ n:

z mod pi =
[

ri

si · ri

]

We denote by Z the 2n × n matrix of column vectors z mod pi:

Z =
[

r1 · · · rn

s1 · r1 · · · sn · rn

]
=

[
R

R · U
]

where R is the n × n matrix of column vectors ri, and U := diag(s1, . . . , sn).
By applying the orthogonal lattice attack of the first step on the known

vector z, we obtain a basis of the lattice intersection of Z2n with the Q-vector
space generated by the n vectors z mod pi, which corresponds to the columns of
the matrix Z. Therefore we obtain two matrices W0 and W1 such that:

W0 = R · A
W1 = R · U · A

for some unknown matrix A ∈ Q
n×n. Therefore, as in the Cheon et al. attack,

we compute the matrix:

W = W1 · W0
−1 = R · U · R−1

and by computing the eigenvalues of W , one recovers the components si of the
diagonal matrix U , from which we recover the pi’s by taking gcd’s. We provide
the source code of the attack in [CP19].

Asymptotic Complexity. As previously, we derive a heuristic lower bound
for the complexity of the attack. The attack requires a lattice dimension t = 2n,
and moreover the vectors ri have norm � 22ρ instead of 2ρ; therefore condition
(8) gives 4ρ+2ιn < η which implies the condition ι < η

2n . Achieving an Hermite
factor of 2ιt heuristically requires 2Ω(1/ι) time, by using BKZ reduction with
block-size β = ω(1/ι) [HPS11]. Therefore, the orthogonal lattice attack has
time complexity at least 2Ω(n/η). Note that with γ = η · n, we get the same
time complexity lower bound 2Ω(γ/η2) as for the single-prime Approximate-GCD
problem. Finally, as shown in [CLT13], to prevent the orthogonal lattice attack,
one must take:

n = ω(η log λ) (9)

Namely, in that case there exists a function c(λ) such that n(λ) = c(λ)η(λ) log2 λ
with c(λ) → ∞ for λ → ∞. With a time complexity at least 2k·n/η for some
k > 0, the time complexity is therefore at least 2k·c(λ) log2 λ = λk·c(λ). This
implies that the attack is not polynomial time under Condition 9.

338 J.-S. Coron and H. V. L. Pereira

3.4 Lattice Attack Against the Vector Approximate-GCD Problem

In this section we extend the previous orthogonal lattice attack to the vector
variant of the Approximate-GCD problem with multiple primes pi’s. We still
consider a modulus x0 =

∏n
i=1 pi, but instead of scalar values xj , we consider t

row vectors vj , each with m components (vj)k, such that:

(vj)k = rijk (mod pi)

for all components 1 ≤ k ≤ m and all 1 ≤ i ≤ n, where rijk ∈ (−2ρ, 2ρ) ∩ Z. We
consider the t × m matrix V of row vectors vj . We don’t publish the matrix V
directly; instead we first generate a random secret m × m invertible matrix K
modulo x0 and publish the t × m matrix:

Ṽ = V · K (mod x0)

The goal is to recover the primes pi’s as in the previous attack.
Actually, we cannot solve the original multi-prime vector Approximate-GCD

problem directly, since the algebraic step of the attack requires degree 2 equations
in the inputs. Instead, we assume that we can additionally obtain two m × m
matrices:

C̃0 = K−1 · C0 · K′ (mod x0)

C̃1 = K−1 · C1 · K′ (mod x0)

for some random invertible matrix K′ modulo x0, where the components of the
matrices C0,C1 ∈ Z

m×m
x0

are small modulo each pi. This assumption is verified
in our construction of Sect. 5.

First Step: Orthogonal Lattice Attack. In our extended attack we consider
the lattice L of vectors u that are orthogonal to all columns of Ṽ modulo x0:

L = {u ∈ Z
t | u · Ṽ ≡ 0 (mod x0)}

Since the matrix K is invertible, we obtain:

L = {u ∈ Z
t | u · V ≡ 0 (mod x0)} (10)

The lattice L is of full rank t since it contains x0Z
t. Let Ri = V mod pi. As

previously, the lattice L contains the sublattice L′ of dimension t − m · n of the
vectors orthogonal in Z to the m · n column vectors in Ri for 1 ≤ i ≤ n. We
expect a reduced basis of L′ to have vectors of norm � 2ρ·m·n/(t−m·n). Therefore,
applying lattice reduction to L should yield a reduced basis (u1, . . . ,ut) where
the first t−m·n vectors belong to the sublattice L′, under the modified condition:

2ιt+ρ·m·n/(t−m·n) < 2η−ρ (11)

As previously, by computing the rank n · m lattice orthogonal to the vectors
(u1, . . . ,ut−m·n), we obtain a basis of the lattice intersection of Z

t with the
Q-vector space generated by the column vectors of the Ri’s.

On Kilian’s Randomization of Multilinear Map Encodings 339

Second Step: Algebraic Attack. The second step is similar to the second
step of the attack from Sect. 3.3 and is described in the full version of this paper
[CP18], with a lattice dimension t = 2mn.

Asymptotic Complexity. As previously, we derive a heuristic lower bound
for the complexity of the attack. Since the attack requires a lattice dimension
t = 2mn, condition (11) with noise size 2ρ instead of ρ gives 4ρ+2ιmn < η which
gives the new condition ι < η

2mn . Therefore, the orthogonal lattice attack has
time complexity at least 2Ω(n·m/η). This implies that to prevent the orthogonal
lattice attack, we must have:

n = ω
(η

m
log λ

)

Compared to the original condition of [CLT13] recalled by (9), the value of n can
therefore be divided by m. This implies that the encoding size γ = η ·n can also
be divided by m. We show in Sect. 7 that this brings a significant improvement
in practice.

3.5 Practical Experiments and Concrete Parameters

Practical Experiments. We have run our two attacks from Sects. 3.3 and 3.4
against the multi-prime approximate-GCD problem and its vector variant; we
provide the source code in [CP19]. We summarize the running times for various
values of n in Tables 2 and 3. We see that the running time of the lattice step
in the vector variant is roughly the same as in the non-vector variant, when the
number of primes n is divided by m in the vector variant. This confirms the
asymptotic analysis of the previous section.

For the algebraic step of the non-vector problem, it is significantly more
efficient to compute the matrix kernel and eigenvalues modulo some arbitrary
prime integer q of size η, instead of over the rationals. However we have not
found a similar optimization for the vector variant; we see in Table 3 that for
larger n the cost of the algebraic step becomes prohibitive (but still polynomial
time) for the vector variant. In this paper we conservatively fix our concrete
parameters by considering the lattice step only. We leave as an open problem
the derivation of a “practical” algebraic step for the vector variant.

LLL and BKZ Practical Complexity. To derive concrete parameters for
our construction from Sect. 5, we have run more experiments with LLL and
BKZ lattice reduction algorithms applied to a lattice similar to the lattice L of
the previous section. Recall that we must apply lattice reduction on the lattice:

L = {u ∈ Z
t | u · Ṽ ≡ 0 (mod x0)}

with t = 2nm. We write u = [u1,u2] with u1 ∈ Z
t−m and u2 ∈ Z

m. Similarly

we write Ṽ =
[
A
W

]
where W is a m × m matrix. With high probability W is

340 J.-S. Coron and H. V. L. Pereira

Table 2. Running time of the LLL step and the algebraic step for solving the multi-
prime approximate-GCD problem, on a 3.2 GHz Intel Core i5.

n η ρ lat. dim. Time LLL Time alg.

20 335 80 40 1.5 s 0.6 s

30 335 80 60 9 s 0.7 s

40 335 80 80 37 s 1.5 s

60 335 80 120 4min 4 s

80 335 80 160 20min 8 s

Table 3. Running time of the LLL step and the algebraic step for solving the vector
multi-prime approximate-GCD problem, on a 3.2 GHz Intel Core i5.

n m η ρ lat. dim. Time LLL Time alg.

4 5 335 80 40 1.4 s 2.3 s

6 5 335 80 60 9 s 20 s

8 5 335 80 80 32 s 27min

12 5 335 80 120 6 min –

16 5 335 80 160 12 min –

invertible modulo x0, otherwise we can partially factor x0. We obtain

u ∈ L ⇐⇒ u1A + u2W ≡ 0 (mod x0)

⇐⇒ u1AW−1 + u2 ≡ 0 (mod x0)

Therefore, a basis of L is given by the matrix of row vectors:

L =
[
It−m − AW−1

x0Im

]

For simplicity, we have performed our experiments on a simpler lattice:

L′ =
[
It−m A′

x0Im

]

where the components of A′ are randomly generated modulo x0. We expect to
obtain a reduced basis (u1, . . . ,ut) with vectors of norm:

‖uk‖ � 2ι·t(det L)1/t � 2ι·t+m·γ/t

where 2ι·t is the Hermite factor, and γ the size of x0. Experimentally, we observed
the following running time (expressed in number of clock cycles) for the LLL
lattice reduction algorithm in the Sage implementation:

TLLL(t, γ,m) � 2 · t3.3 · γ · m (12)

On Kilian’s Randomization of Multilinear Map Encodings 341

The Sage implementation also includes an implementation of BKZ 2.0 [CN11].
Experimentally we observed the following running-times (in number of clock
cycles):

TBKZ(t, β) � b(β) · t4.3 (13)

where the observed constant b(β) and the Hermite factor are given in Table 4.
However we were not able to obtain experimental results for block-sizes β > 60,
so for BKZ-80 and BKZ-100 we used extrapolated values, assuming that the
cost of BKZ sieving with blocksize β is poly(t) ·20.292β+◦(β) (see [BDGL16]). The
Hermite factors for BKZ-80 and BKZ-100 are from [CN11].

Table 4. Experimental values of running time and Hermite factor for LLL and BKZ
as a function of the blocksize β. The parameters for β = 80, 100 are extrapolated.

LLL BKZ-60 BKZ-80 BKZ-100

(Hermite factor)1/t = 2ι 1.021 1.011 1.01 1.009

Running time parameter b(β) – 103 6 · 104 3 · 106

Setting Concrete Parameters. When applying LLL or BKZ with blocksize
β on the original lattice L, we obtain an orthogonal vector u under the condition
(11), which gives with t = 2nm and vectors with noise size 2ρ instead of ρ:

ι · 2nm + 4ρ < η (14)

Therefore we must run LLL or BKZ-β with a large enough blocksize β so that ι
is small enough for condition (14) to hold. For security parameter λ, we require
that Tlat(t, γ) ≥ 2λ, with t = 2nm, where the running time (in number of clock
cycles) Tlat(t, γ) is given by (12) or (13), for γ = η · n. We use that condition to
provide concrete parameters for our scheme in Sect. 7.

4 GCD Attacks Against the Approximate-GCD Problem
and Its Variants

4.1 The Naive GCD Attack

For simplicity we first consider the single prime variant of the Approximate-
GCD problem. More precisely, we consider x0 = q0 · p and an encoding c with
c ≡ r (mod p), where r is a small integer of size ρ bits. The naive GCD attack,
which has complexity O(2ρ), consists in performing an exhaustive search of r
and computing gcd(c − r, x0) to obtain the factor p.

342 J.-S. Coron and H. V. L. Pereira

4.2 The Chen-Nguyen Attack

At Eurocrypt 2012, Chen and Nguyen described an improved attack based on
multipoint polynomial evaluation [CN12], with complexity Õ(2ρ/2). One starts
from the equation:

p = gcd

(
x0,

2ρ−1∏

i=0

(c − i) (mod x0)

)
(15)

The main observation is that the above product modulo x0 can be written as the
product of 2ρ/2 evaluations of a single polynomial of degree 2ρ/2. Using a tree
structure, it is possible to evaluate a polynomial of degree 2ρ/2 at 2ρ/2 points in
Õ(2ρ/2) time and memory, instead of O(2ρ).

More precisely, one can define the following polynomial f(x) of degree 2ρ/2,
with coefficients modulo x0; we assume for simplicity that ρ is even:

f(x) =
2ρ/2−1∏

i=0

(c − (x + i)) mod x0

One can then rewrite (15) as the product of 2ρ/2 evaluations of the polynomial
f(x):

p = gcd

⎛

⎝x0,

2ρ/2−1∏

k=0

f(2ρ/2k) (mod x0)

⎞

⎠

There are classical algorithms which can evaluate a polynomial f(x) of degree
d at d points, using at most Õ(d) operations in the coefficient ring; see for exam-
ple [Ber03]. Therefore, the Chen-Nguyen Attack has time and memory complex-
ity Õ(2ρ/2). We provide in [CP19] an implementation of the Chen-Nguyen attack
in Sage; our running time is similar to [CN12, Table 1]; see Table 5 below for
practical experiments. In practice, the running time in number of clock cycles of
the Chen-Nguyen attack with a γ-bit x0 is well approximated by:

TCN (ρ, γ) = 0.3 · ρ2 · 2ρ/2 · γ · log2 γ (16)

4.3 The Lee-Seo Attack

The Chen-Nguyen attack was later extended by Lee and Seo at Crypto 2014
[LS14], when the encodings are multiplicatively masked by a random secret z
modulo x0, as it is the case in the CLT13 scheme; their attack has the same com-
plexity Õ(2ρ/2). Namely in the asymmetric CLT13 scheme recalled in Sect. 2.1,
an encoding c at level set {i0} is such that:

c ≡ ri · gi + mi

zi0

(mod pi)

On Kilian’s Randomization of Multilinear Map Encodings 343

for some random secret zi0 modulo x0. Therefore, we consider the following
variant of the Approximate-GCD problem. Instead of being given encodings ci

with ci ≡ ri (mod p) for small ri’s, we are given encodings ci with:

ci ≡ ri · z (mod p)

for some random integer z modulo x0, where the ri’s are still ρ-bit integers. Since
c1/c2 ≡ r1/r2 (mod p), the naive GCD attack consists in guessing r1 and r2 and
computing p = gcd(c1/c2 − r1/r2 mod x0, x0), with complexity O(22ρ).

The Lee-Seo attack with complexity Õ(2ρ/2) is as follows. First, one generates
two lists L1 and L2 of such encodings, and we look for a collision modulo p
between those two lists; such collision will appear with good probability when
the size of the two lists is at least 2ρ/2. More precisely, let ci be the elements
of L1 and dj be the elements of L2, with ci ≡ ri · z (mod p) and dj = sj · z
(mod p). If ri = sj for some pair (i, j), then ci ≡ dj (mod p) and therefore:

p = gcd

⎛

⎝
∏

i,j

(ci − dj) mod x0, x0

⎞

⎠

where the product is over all ci ∈ L1 and dj ∈ L2. A naive computation of this
product would take time |L1| · |L2| = 2ρ; however, as in the Chen-Nguyen attack,
this product can be computed in time and memory Õ(2ρ/2). Namely one can
define the polynomial f(x) =

∏
i

(ci − x) mod x0 of degree |L1| = 2ρ/2 and the

previous equation can be rewritten:

p = gcd

⎛

⎝
∏

j

f(dj) mod x0, x0

⎞

⎠

This corresponds to the multipoint evaluation of the degree 2ρ/2 polynomial f(x)
at the 2ρ/2 points of the list L2; therefore, this can be computed in time and
memory Õ(2ρ/2).

As observed in [LS14], if only a small set of elements ci is available (much less
than 2ρ/2), one can still generate exponentially more ci’s by using small linear
integer combinations of the original ci’s, and the above attack still applies, with
only a slight increase in the noise ρ. We provide in [CP19] an implementation
of the Lee-Seo attack in Sage. Its running time is roughly the same as Chen-
Nguyen, except that the attack is probabilistic only; its success probability can
be increased by taking slightly larger lists L1 and L2 to improve the collision
probability.

4.4 GCD Attack Against the Vector Approximate GCD Problem

We now consider the Vector Approximate-GCD problem (Definition 2). We con-
sider a set of row vectors vi of dimension m, such that for each vector vi, all
components (vi)j of vi are small modulo p:

(vi)j = rij (mod p)

344 J.-S. Coron and H. V. L. Pereira

However, we only obtain the randomized vectors:

ṽi = vi · K (mod x0)

for some random invertible matrix K modulo x0. The goal is still to recover the
prime p.

Our attack is similar to the Lee-Seo attack recalled previously. We only con-
sider the first component ci = (ṽi)1 of each vector ṽi . We have:

ci = (ṽi)1 =
m∑

j=1

(vi)j · Kj1 =
m∑

j=1

rij · Kj1 (mod p)

We build the two lists L1 and L2 from the ci’s as in the Lee-Seo attack. Since
each ci is a linear combination modulo p of m random values rij ’s (where the
coefficients are initially generated at random modulo p), it has m·ρ bits of entropy
modulo p, instead of ρ in the Lee-Seo attack. Therefore a collision between the
two lists will occur with good probability when the lists have size at least 2m·ρ/2.
This implies that the attack has time and memory complexity Õ(2m·ρ/2). Note
that the entropy of each ci modulo p is actually upper-bounded by the bitsize η
of p. If m · ρ > η, the attack complexity becomes Õ(2η/2), which corresponds to
the complexity of the Pollard’s rho factoring algorithm. We provide in [CP19] an
implementation of the attack in Sage; see Table 5 below for practical experiments.

With an attack complexity Õ(2mρ/2) instead of Õ(2ρ/2), one can therefore
divide the size of the noise ρ by a factor m compared to the original CLT13,
which is a significant improvement. For example, it is recommended in [CLT13]
to take ρ = 89 bits for λ = 80 bits of security; with a vector dimension m = 10,
one can now take ρ = 9 for the same level of security. Note that we can take
m · ρ/2 < λ because we only require that the running time in number of clock-
cycles is at least 2λ. More precisely, the running time can be approximated by
TCN (mρ, γ) for a γ-bit x0, where TCN (ρ, γ) is given by (16), and we require
TCN (mρ, γ) ≥ 2λ.

With Matrices. The previous GCD attack can be generalized to m×m matri-
ces Vi instead of m-dimensional vectors vi . More precisely, we consider a set of
matrices Vi of dimension m × m with small components modulo p, that is:

(Vi)jk = rijk (mod p) (17)

for ρ-bit integers rijk. As previously, instead of publishing the matrices Vi , we
publish the randomized matrices

Ṽi = K · Vi · K′ (mod x0) (18)

for two random invertible m × m matrices K and K′ modulo x0. In that case,
each component of Ṽi depends on the m2 elements of the matrix Vi . This implies
that the entropy of each component of Ṽi is now m2 · ρ and therefore the GCD
attack has complexity Õ(2m2·ρ/2).

On Kilian’s Randomization of Multilinear Map Encodings 345

Formally, using the Kronecker product, we can rewrite (18) as vec(Ṽi) =
(K′T ⊗ K)vec(Vi), where vec(Vi) denotes the column vector of dimension m2

formed by stacking the columns of Vi on top of one another, and similarly for
vec(Ṽi). We can therefore apply the previous attack with vectors of dimension
m2 instead of m; the attack complexity is therefore Õ(2m2·ρ/2). This implies that
we can divide the noise size ρ by a factor m2 compared to [CLT13], where m is
the matrix dimension. We provide in [CP19] an implementation of the attack in
Sage; see Table 5 below for practical experiments.

With Multiple Primes p′
is. Instead of considering an encoding c that is small

modulo a single prime p, we consider as in CLT13 a modulus x0 =
∏n

i=1 pi and
an integer c ∈ Zx0 such that c mod pi = ri for ρ-bit integers ri. With good
probability, we have |ri| ≤ 2ρ/n for some i but not all i, and Eq. (15) from the
Chen-Nguyen attack can be rewritten:

pi| gcd

⎛

⎝x0,

	2ρ/n
∏

j=0

(c − j) (mod x0)

⎞

⎠

where the gcd is not equal to x0; therefore a sub-product of the pi’s is revealed.
Since the number of terms in the product is divided by n, the complexity of the
Chen-Nguyen attack for recovering a single pi (or a sub-product of the pi’s) is
divided by

√
n. By repeating the same attack n times in different intervals of the

ri’s, one can recover all the pi’s; the running time of the Chen-Nguyen attack is
then increased by a factor

√
n.

Similarly, in the Lee-Seo attack with multiple primes pi’s, the collision prob-
ability for recovering a single pi is multiplied by n, and therefore the attack
complexity is divided by

√
n for recovering a single pi. The same applies to our

variant attack against the Vector Approximate GCD problem and to the matrix
variant. In the later case, with noise size ρm, the running time of the attack in
number of clock cycles can therefore be approximated by

TGCD(m, γ, ρm, n) = TCN (ρ, γ)/
√

n (19)

with ρ = m2ρm. We will use that approximation to provide concrete parameters
for our scheme in Sect. 7.

Practical Experiments. We provide in Table 5 the result of practical exper-
iments against the Approximate-GCD problem and its vector variant with a
single prime p. We see that our attack against the vector variant with dimension
m and noise size ρv has roughly the same running time as the Chen-Nguyen
attack on the original problem with noise ρ = m · ρv; similarly, the running
time of our attack against m × m matrices with noise ρm has roughly the same
running time as Chen-Nguyen with noise ρ = m2 · ρm; this confirms the above
analysis. We provide the source code in [CP19].

346 J.-S. Coron and H. V. L. Pereira

5 Our Construction

5.1 Non-interactive Multipartite Diffie-Hellman Key Exchange

A multipartite key exchange protocol aims to derive a shared value between N
parties. This is achieved via a procedure in which the parties broadcast some
values and then use some secret information together with the values broadcasted
by the other parties to set up the shared key. In a non-interactive protocol,
the parties broadcast their public values only once and at the same time (or
equivalently, the values broadcasted by each party do not depend on the values
broadcasted by the others). Following the notation of [BS03], such protocol can
be described with three randomized probabilistic polynomial-time algorithms as
follows.

Table 5. Running time of the Chen-Nguyen attack against the Approximate-GCD
problem and our attack against the vector variant and matrix variants with η = 100
and x0 of size γ = 16 000, on a 3.2 GHz Intel Core i5.

AGCD: Chen-Nguyen ρ 12 16 20 24

Time (s) 0.3 2.5 15 94

m-vector AGCD: our attack (m = 4) ρv 3 4 5 6

Time (s) 1.5 9.3 53 301

m × m-matrix AGCD: our attack (m = 2) ρm 3 4 5 6

Time (s) 1.5 10 54 300

– Setup(1λ, N): This algorithm runs in polynomial time in the security parame-
ter λ ∈ N and in the number of parties N , and outputs the public parameters
params.

– Publish(params, u): Given a party u ∈ [N], this algorithm generates a pair of
keys (sku, pku). Party u broadcasts pku and keeps sku secret.

– KeyGen(params, v, skv, {pku}u�=v): Party v ∈ [N] uses its secret skv and all the
values pku broadcasted by other parties to generate a session key sv.

We say that the protocol is correct if s = s1 = s2 = · · · = sN , i.e., if all the
parties share the same value at the end. We say that the protocol is secure if no
probabilistic polynomial-time adversary can distinguish the shared value s from
a random string given the public parameters params and the broadcasted values
pk1, . . . , pkN .

5.2 Our Construction

We describe our N -party one-round key exchange protocol. We start with the
Setup procedure, which is run a single time by a trusted authority to generate
the public parameters. As illustrated in Table 6, Setup generates for each party v

two sequences of matrices (C(v)
i,b)i=1,...,� for b ∈ {0, 1}. In the KeyGen procedure,

On Kilian’s Randomization of Multilinear Map Encodings 347

each party v will use the product of the matrices C(v)
i,b on his row v to generate the

session-key. The product is computed according to the secret-key skv of Party v
and the secret-keys sku of the other parties. Therefore, in the Publish procedure,
each party u will compute and publish the partial sub-products corresponding
to his sku on the other rows v �= u, to be used by each party v on his row v.

Table 6. Public matrices for N = 3 generated during the Setup procedure.

Party 1 C
(1)
1,0 C

(1)
2,0 . . . C

(1)
�,0

C
(1)
1,1 C

(1)
2,1 . . . C

(1)
�,1

Party 2 C
(2)
1,0 C

(2)
2,0 . . . C

(2)
�,0

C
(2)
1,1 C

(2)
2,1 . . . C

(2)
�,1

Party 3 C
(3)
1,0 C

(3)
2,0 . . . C

(3)
�,0

C
(3)
1,1 C

(3)
2,1 . . . C

(3)
�,1

Setup(1λ, N): given a security parameter λ and the number of participants N ,
we set the length μ of each parties’ secret, the number of repetitions k, and
the dimension m of the matrices, with m ≡ 0 (mod 3). We then instantiate the
CLT13 multilinear map with degree of multilinearity 	 + 2 with 	 := μNk. Let
g =

∏n
i=1 gi be the integer defining the message space Zg. Let ν be the number

of high-order bits that can be extracted from a zero-tested value.
To ensure that all users 1 ≤ u ≤ N compute the same session-key, we define

A
(u)
i,b as a larger matrix embedding a matrix Bi,b that is the same for all users,

with some random block padding in the diagonal and the multiplicative bundling
scalars α

(u)
i,b to prevent the adversary from switching the corresponding bits bi’s

between the k repetitions of the secret keys:

A
(u)
i,b ∼

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

$. . . $
...

. . .
...

$. . . $
$. . . $
...

. . .
...

$. . . $
α
(u)
i,b · Bi,b

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

More precisely, we first sample 2	 random invertible matrices Bi,b in Z
m′×m′
g

where m′ = m/3, for 1 ≤ i ≤ 	 and b ∈ {0, 1}. For each u ∈ [N], we additionally
sample 2	N scalars α

(u)
i,b in Z

g and 4	N random invertible matrices S

(u)
i,b and

T
(u)
i,b in Z

m′×m′
g , for 1 ≤ i ≤ 	 and b ∈ {0, 1}. As illustrated in (20), we let

A
(u)
i,b := diag(S(u)

i,b , T
(u)
i,b , α

(u)
i,b · Bi,b) (21)

348 J.-S. Coron and H. V. L. Pereira

The scalars α
(u)
i,b must satisfy the following condition:

∀u, v ∈ [N], ∀i ∈ [Nμ], ∀b ∈ {0, 1},

k−1∏

j=0

α
(u)
j·N·μ+i−1,b =

k−1∏

j=0

α
(v)
j·N·μ+i−1,b (mod g)

In addition, we sample the vectors s∗, t∗ uniformly from Z
m′
g , and for each u ∈

[N] we define a left bookend vector

s(u) := (0, . . . , 0, $, . . . , $, s∗) ∈ Z
m
g

where the block of 0’s and the block of randoms have the same length m′ = m/3
as s∗, and similarly a right bookend vector t(u) := ($, . . . , $, 0, . . . , 0, t∗) ∈ Z

m
g .

We let Ã
(u)

i,b ∈ Z
m×m
x0

be the matrix obtained by encoding each entry of

A
(u)
i,b independently. Similarly we encode s(u) and t(u) entry-wise, obtaining s̃(u)

and t̃
(u)

. For each u ∈ [N], we sample uniformly random invertible matrices
K

(u)
i ∈ Z

m×m
x0

for 0 ≤ i ≤ 	. We then use Kilian’s randomization “on the
encoding side” and define:

C
(u)
i,b := K

(u)
i−1Ã

(u)

i,b

(
K

(u)
i

)−1

(mod x0)

Similarly, we define s̄(u) := s̃(u)
(
K

(u)
0

)−1

(mod x0) and t̄
(u) := K

(u)
� t̃

(u)
pzt

(mod x0). Note that thanks to Kilian’s randomization “on the encoding side”,
the matrices A

(u)
i,b can be encoded with denominator zj = 1 in (4) for all levels

j; namely we obtain the same distribution in the final C(u)
i,b as with random zj ’s.

Finally we output params, which is defined as the set containing all the matrices
C

(u)
i,b , the bookend vectors s̄(u) and t̄

(u), and the scalars μ, k,N, 	, x0, ν and m.

Publish(params, u): Party u samples a bit string sk(u) ∈ {0, 1}μ and for each
v ∈ [N] such that u �= v, Party u computes k products using matrices from
the row of party v. This ensures that from the extraction procedure of the
multilinear map scheme, each user u can derive the session key from his own
sk(u) by computing on his row u the partial products corresponding to his sk(u),
combined with the published partial matrix products from the other users. More
precisely, Party u computes and broadcasts the following products:

D(u→v)
r :=

μ−1∏

i=0

C
(v)

(r−1)Nμ+(u−1)μ+i,sk(u)[i]
(mod x0) (22)

for each v �= u and r ∈ [k]. The notation u → v stands for “computed by u to
be used by v”. We let pku = {D(u→v)

r : v ∈ [N], v �= u, r ∈ [k]}.

KeyGen(params, v, sk(v), {pku}u�=v): Using secret sk(v), party v computes the
products D(v→v)

r for all r ∈ [k] using (22), and then the product

z(v) := s̄(v)

(
k∏

r=1

(
N∏

u=1

D(u→v)
r

))
t̄
(v) (mod x0). (23)

On Kilian’s Randomization of Multilinear Map Encodings 349

Eventually the shared key is obtained by applying a strong randomness extractor
to the ν most-significant bits of z(v). This terminates the description of our
construction.

Correctness. It is easy to verify the correctness of our construction. Namely
defining sk as the concatenated secret-keys with the k repetitions:

sk = (sk(1), . . . , sk(N)

︸ ︷︷ ︸
First repetition

, . . . , sk(1), . . . , sk(N)

︸ ︷︷ ︸
k-th repetition

) (24)

we obtain from (22) and (23), and then from the cancellation of Kilian’s ran-
domization on the encoding side:

z(v) = s̄(v)

(
�∏

i=1

C
(v)
i,sk[i]

)
t̄
(v) = s̃(v)

(
�∏

i=1

Ã
(v)

i,sk[i]

)
t̃
(v)

pzt (mod x0).

This corresponds to a zero-tested encoding of:

vv = s(v) ·
(

�∏

i=1

A
(v)
i,sk[i]

)
· t(v) = s∗ ·

(
�∏

i=1

α
(v)
i,sk[i]

)
·
(

�∏

i=1

Bi,sk[i]

)
· t∗ (mod g)

From the condition satisfied by the α
(v)
i,b ’s, the products

∏�
i=1 α

(v)
i,sk[i] are indepen-

dent from v. Therefore, each party v will extract from z(v) the same session-key,
as required.

5.3 Additional Safeguard: Straddling Sets

As an additional safeguard one can use the straddling set systems from
[BGK+14]. Like the multiplicative bundling scalars α

(u)
i,b , this prevents the adver-

sary from switching the secret-key bits between the k repetitions. Additionally,
the straddling set system prevents the adversary from mixing the matrices Ã

(u)

i,0

and Ã
(u)

i,1 , since in that case the matrices are encoded at a different level set.

6 The Cheon et al. Attack and Its Generalization Using
Tensor Products

At Eurocrypt 2015, Cheon et al. described in [CHL+15] a total break of the basic
key-exchange protocol of CLT13. The attack was then extended and applied to
several constructions based on CLT13. In the full version of this paper [CP18],
we argue that the complexity of the Cheon et al. attack against our construction
is Ω(m2k−1), where m is the matrix dimension and k the number of repetitions.
Therefore, the Cheon et al. attack is prevented by using a large enough k.

350 J.-S. Coron and H. V. L. Pereira

7 Optimizations and Implementation

In this section we describe a few optimizations in order to obtain a concrete
implementation of our construction from Sect. 5.

7.1 Encoding of Elements

For the bookend vectors, the components are CLT13-encoded with random noise
of size ρb bits. Letting α be the size of the gi’s, for simplicity we take ρb = α.
Therefore the encoded bookend vectors have α · (2m/3)+ρb ·m = 5αm/3 bits of
entropy on each slot. For the matrices, we can use a much smaller encoding noise
thanks to the analysis from Sect. 4.4. On a single slot, the matrices A

(u)
i,b have

entropy � α ·m2/3, and when CLT13-encoded with noise ρm, the matrices Ã
(u)

i,b

have entropy � α · m2/3 + ρm · m2 on each slot; the GCD attack complexity is
therefore Õ(2m2·(ρm+α/3)/2). For the parameters from Table 7 below, it suffices
to take ρm = 2 to prevent GCD attacks.

7.2 Number of Matrices per Level

Instead of taking only two matrices A
(u)
i,0 , A(u)

i,1 for each 1 ≤ i ≤ 	, we can take
2τ matrices for each i. In that case, the secret key of each user has μ words of
τ bits, where each word selects one of the 2τ matrices; the size of the secret-key
is therefore μ · τ bits. For the same secret-key size, one can therefore divide the
total degree 	 by a factor τ , but the number of encoded matrices is multiplied
by a factor 2τ/τ . In order to minimize the size of the public parameters, we use
τ = 3.

7.3 Other Attacks

Orthogonal Lattice Attack on Zero-Tested Values. There is an orthogonal
lattice attack against the values obtained by subtracting two zero-tested last-
level encodings from two different rows. The attack is analogous to the attack
described in Sect. 3.3, and is prevented under the condition n = ω(ν2

η−ν log λ),
where ν is the number of extracted bits in the zero-tested values.

Meet-in-the-Middle Attack. Given the matrix products D(u→v)
r published

by each party u corresponding to his secret sk(u), there is a meet-in-the-
middle attack that can recover sk(u). Since each sk(u) has length μ · τ bits,
the attack’s complexity is O(2μ·τ/2). More precisely, the attack complexity is at
least M(m, γ) · 2μ·τ/2, where M(m, γ) is the time it takes to multiply m × m
matrices with entries of size γ. We ensure M(m, γ) · 2μ·τ/2 ≥ 2λ.

On Kilian’s Randomization of Multilinear Map Encodings 351

7.4 Concrete Parameters and Implementation Results

In this section we propose concrete parameters for our key-exchange construction
with N = 4 parties. These parameters are generated so that all known attacks
have running time ≥ 2λ clock cycles. In the construction the total number of
encoded matrices is 2τ · 	 · N with τ = 3, with a total degree 	 = μ · k · N .
Therefore, the total number of CLT13 encodings is NCLT13 � 2τ · 	 ·N ·m2. The
size of the secret key is τμ = 3μ bits. The size η of the primes pi is adjusted so
that we extract ν = λ bits. During the publish phase, each party must broadcast
k · (N − 1) matrices of dimension m × m and γ-bit entries. The size of those
broadcasted values along with the other parameters are shown in Table 7.

Table 7. Concrete parameters for a 4-party key-exchange.

λ η m n μ α k γ = n · η � NCLT13 params Broadcast

Small 52 1759 6 160 15 11 2 281 · 103 120 1.4 · 105 4.8GB 7.6MB

Medium 62 2602 6 294 21 12 2 764 · 103 168 1.9 · 105 18.5GB 20MB

Large 72 3761 6 1349 27 14 2 5073 · 103 216 2.5 · 105 157.8GB 137MB

High 82 5159 9 4188 33 16 2 21605 · 103 264 6.8 · 105 1848.0GB 1312MB

The main difference with the original (insecure) key-exchange protocol from
[CLT13] is that we get a much larger public parameter size; for λ = 62 bits
of security, we need 18 GB of public parameters, instead of 70 MB originally.
However our construction would be completely unpractical without Kilian’s ran-
domization on the encoding side. Namely for λ = 62 and a degree 	 = 168, one
would need primes pi of size η � (α+ρ) · 	 � 2.4 ·104 with α = 80 and ρ = 62 as
in [CLT13]. Since γ = ω(η2 log λ) in [CLT13], one would need γ � 4 · 109. With
NCLT13 = 1.9 · 105, that would require 100 TB of public parameter size. Hence
Kilian’s randomization on the encoding side provides a reduction of the public
parameter size by a factor � 104.

We have implemented the key-exchange protocol in SAGE [S+17] and exe-
cuted it on a machine with processor Intel Core i5-8600K CPU (3.60 GHz), 32 GB
of RAM, and Ubuntu 18.04.2 LTS. The execution times are shown in Table 8. We
could not run the Large and High instantiations (λ = 72 and λ = 82) because
of the huge parameter size. While the Setup time is significant, since we need to
sample all the random values and perform expensive operations like CRT and
inverting matrices, the Publish and KeyGen times remain reasonable. In fact,
each user just has to multiply m × m matrices μ · k · (N − 1) times to publish
their values and k ·(μ+N) times to derive the shared key. We provide the source
code of the key-exchange in [CP19].

352 J.-S. Coron and H. V. L. Pereira

Table 8. Timings for a 4-party key-exchange.

Setup (once) Publish (per party) KeyGen (per party)

Small 2 h 20min 45 s 19 s

Medium 12 h 23min 3min 35 s 1 min 24 s

8 Conclusion

We have shown that Kilian’s randomization “on the encoding side” can bring
orders of magnitude efficiency improvements for iO based constructions when
instantiated with CLT13 multilinear maps. As an application, we have described
the first concrete implementation of multipartite DH key exchange secure against
existing attacks. The main advantage of Kilian’s randomization is that it can be
applied essentially for free in any existing implementation; for example it could
be easily integrated in the 5Gen framework [LMA+16] for experimenting with
program obfuscation constructions.

References

[AGIS14] Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation:
avoiding Barrington’s theorem. In: ACM CCS. ACM (2014)

[Bar86] Barrington, D.A.M.: Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. In: Proceedings of the 18th
Annual ACM Symposium on Theory of Computing, Berkeley, California,
USA, 28–30 May 1986 (1986)

[BDGL16] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest
neighbor searching with applications to lattice sieving. In: Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2016, Arlington, VA, USA, 10–12 January 2016 (2016)

[Ber03] Bernstein, D.J.: Fast multiplication and its applications. Algorithmic
Number Theory 44, 325–384 (2003)

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfus-
cation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 13

[BISW17] Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and
their application to more efficient obfuscation. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56617-7 9

[BMSZ16] Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing
obfuscation: new mathematical tools, and the case of evasive circuits. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666,
pp. 764–791. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 27

[BS03] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptog-
raphy. Contemp. Math. 324, 71–90 (2003)

https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-662-49896-5_27

On Kilian’s Randomization of Multilinear Map Encodings 353

[CGH+15] Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks
and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 12

[CGH17] Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching
program obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56617-7 10

[CHL+15] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the
multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 1

[CLLT16] Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of
GGH15 multilinear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9815, pp. 607–628. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53008-5 21

[CLLT17] Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on
indistinguishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017.
LNCS, vol. 10174, pp. 41–58. Springer, Heidelberg (2017). https://doi.
org/10.1007/978-3-662-54365-8 3

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 476–493. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 26

[CN11] Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 1

[CN12] Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divi-
sors: breaking fully-homomorphic-encryption challenges over the integers.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 502–519. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 30

[CP18] Coron, J.-S., Pereira, H.V.L.: On kilian’s randomization of multilinear
map encodings. Cryptology ePrint Archive, Report 2018/1129 (2018).
https://eprint.iacr.org/2018/1129

[CP19] Coron, J.-S., Pereira, H.V.L.: Implementation of key-exchange based
on CLT13 multilinear maps (2019). https://github.com/coron/
cltexchangeimpl

[CVW18] Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation
branching programs: proofs, attacks, and candidates. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 577–607.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 20

[DGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homo-
morphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13190-5 2

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 1

https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-29011-4_30
https://doi.org/10.1007/978-3-642-29011-4_30
https://eprint.iacr.org/2018/1129
https://github.com/coron/cltexchangeimpl
https://github.com/coron/cltexchangeimpl
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1

354 J.-S. Coron and H. V. L. Pereira

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: FOCS. IEEE Computer Society (2013)

[GGH15] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps
from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 498–527. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46497-7 20

[GGM16] Galbraith, S.D., Gebregiyorgis, S.W., Murphy, S.: Algorithms for the
approximate common divisor problem. LMS J. Comput. Math. 19(A),
58–72 (2016)

[HJ16] Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 21

[HPS11] Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms
using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 447–464. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 25

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, Chicago,
Illinois, USA, 2–4 May 1988 (1988)

[LMA+16] Lewi, K., et al.: 5Gen: a framework for prototyping applications using
multilinear maps and matrix branching programs. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS 2016 (2016)

[LS14] Lee, H.T., Seo, J.H.: Security analysis of multilinear maps over the inte-
gers. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616,
pp. 224–240. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 13

[MSW14] Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic
attacks. Cryptology ePrint Archive, Report 2014/878 (2014). https://
eprint.iacr.org/2014/878

[MSZ16] Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilin-
ear maps: cryptanalysis of indistinguishability obfuscation over GGH13.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 629–658. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53008-5 22

[MZ18] Ma, F., Zhandry, M.: The MMap strikes back: obfuscation and new
multilinear maps immune to CLT13 zeroizing attacks. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 513–543.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 19

[NS97] Nguyen, P., Stern, J.: Merkle-Hellman revisited: a cryptanalysis of the
Qu-Vanstone cryptosystem based on group factorizations. In: Kaliski, B.S.
(ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 198–212. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052236

[NS01] Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In:
Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2 12

[PST14] Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from
semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2 28

https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-662-44371-2_13
https://doi.org/10.1007/978-3-662-44371-2_13
https://eprint.iacr.org/2014/878
https://eprint.iacr.org/2014/878
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-030-03810-6_19
https://doi.org/10.1007/BFb0052236
https://doi.org/10.1007/3-540-44670-2_12
https://doi.org/10.1007/978-3-662-44371-2_28

On Kilian’s Randomization of Multilinear Map Encodings 355

[S+17] Stein, W.A., et al.: Sage Mathematics Software (Version 8.0). The Sage
Development Team (2017). http://www.sagemath.org

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: Proceedings of the Forty-Sixth Annual
ACM Symposium on Theory of Computing, STOC 2014, New York, NY,
USA. ACM (2014)

http://www.sagemath.org

Cryptanalysis of CLT13 Multilinear Maps
with Independent Slots

Jean-Sébastien Coron(B) and Luca Notarnicola

University of Luxembourg, Luxembourg City, Luxembourg
{jean-sebastien.coron,luca.notarnicola}@uni.lu

Abstract. Many constructions based on multilinear maps require inde-
pendent slots in the plaintext, so that multiple computations can be per-
formed in parallel over the slots. Such constructions are usually based
on CLT13 multilinear maps, since CLT13 inherently provides a compos-
ite encoding space, with a plaintext ring

⊕n
i=1 Z/giZ for small primes

gi’s. However, a vulnerability was identified at Crypto 2014 by Gentry,
Lewko and Waters, with a lattice-based attack in dimension 2, and the
authors have suggested a simple countermeasure. In this paper, we iden-
tify an attack based on higher dimension lattice reduction that breaks the
author’s countermeasure for a wide range of parameters. Combined with
the Cheon et al. attack from Eurocrypt 2015, this leads to the recovery
of all the secret parameters of CLT13, assuming that low-level encodings
of almost zero plaintexts are available. We show how to apply our attack
against various constructions based on composite-order CLT13. For the
[FRS17] construction, our attack enables to recover the secret CLT13
plaintext ring for a certain range of parameters; however, breaking the
indistinguishability of the branching program remains an open problem.

1 Introduction

Multilinear Maps. In 2013, Garg, Gentry and Halevi described the first
plausible construction of cryptographic multilinear maps based on ideal lat-
tices [GGH13a]. Since then many amazing applications of multilinear maps have
been found in cryptography, including program obfuscation [GGH+13b]. Shortly
after the publication of GGH13, an analogous construction over the integers was
described in [CLT13], based on the DGHV fully homomorphic encryption scheme
[DGHV10]. The GGH15 scheme is the third known family of multilinear maps,
based on the LWE problem with encoding over matrices [GGH15].

In the last few years, many attacks have appeared against multilinear maps,
and the security of multilinear maps is still poorly understood. An important
class of attacks against multilinear maps are “zeroizing attacks”, which can
recover the secret parameters from encodings of zero, using linear algebra. For the
non-interactive multipartite Diffie-Hellman key exchange, the zeroizing attack
from Cheon et al. [CHL+15] recovers all secret parameters from CLT13; the
attack can also be extended to encoding variants where encodings of zero are
not directly available [CGH+15]. The zeroizing attack from [HJ16] also breaks
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 356–385, 2019.
https://doi.org/10.1007/978-3-030-34621-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_13

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 357

the Diffie-Hellman key-exchange over GGH13. Finally, the key exchange over
GGH15 was also broken in [CLLT16], using an extension of the Cheon et al.
zeroizing attack.

Even though direct multipartite key exchange protocols are broken for the
three known families of multilinear maps, more complex constructions based
on multilinear maps are not necessarily broken, in particular indistinguishability
obfuscation (iO); namely low-level encodings of zero are generally not available in
iO constructions. However the Cheon et al. attack against CLT13 was extended
in [CGH+15] to matrix branching programs where the input can be partitioned
into three independent sets. The attack was further extended in [CLLT17] to
branching programs without a simple input partition structure, using a tensor-
ing technique. For GGH13 based obfuscation, Miles, Sahai and Zhandry intro-
duced “annihilation attacks” that can break a certain class of matrix branch-
ing programs [MSZ16]; the attack was later extended in [CGH17] to break the
[GGH+13b] obfuscation under GGH13, using a variant of the input partitioning
attack. Finally, Chen, Vaikuntanathan and Wee described in [CVW18] an attack
against iO over GGH15, based on computing the rank of a well chosen matrix.
In general, the above attacks only apply against branching programs with a
simple structure, and breaking more complex constructions (such as dual-input
branching programs) is currently infeasible.

Multilinear Maps with Independent Slots. Many constructions based on
multilinear maps require independent slots in the plaintext, so that multiple
computations can be performed in parallel over the slots when evaluating the
multilinear map. For example, [GLW14] and [GLSW15] use independent slots
to obtain improved security reductions for witness encryption and obfuscation.
Multilinear maps with independent slots were also used in the circuit based
constructions of [AB15,Zim15]. The construction from [FRS17], which gives a
powerful technique for preventing zeroizing attacks against iO, is also based on
multilinear maps with independent slots.

The CLT13 multilinear map scheme inherently supports a composite integer
encoding space, with a plaintext ring Z/GZ � ⊕n

i=1 Z/giZ for small secret
primes gi’s and G = g1 · · · gn. For example, in the construction from [FRS17],
every branching program works independently modulo each gi. In that case, the
main difference with the original CLT13 is that the attacker can obtain encodings
of subring elements which are zero modulo all gi’s except one; for example, in
[FRS17] this would be done by carefully choosing the input so that all branching
programs would evaluate to zero except one. Whereas in the original CLT13
construction, one never provides encodings of subring elements; instead one uses
an “all-or-nothing” approach: either the plaintext element is zero modulo all gi’s,
or it is non-zero modulo all gi’s (with high probability).

The Attack and Countermeasure from [GLW14]. At Crypto 2014, Gentry,
Lewko and Waters observed that using CLT13 with independent slots leads to
a simple lattice attack in dimension 2, which efficiently recovers the (secret)
plaintext ring

⊕n
i=1 Z/giZ [GLW14, Appendix B]. Namely, when using CLT13

358 J.-S. Coron and L. Notarnicola

with independent slots, the attacker can obtain encodings where all slots are zero
modulo gi except one. For example, for a matrix branching program evaluation
as in [FRS17], the result of the program evaluation could have the form:

A(x) ≡
n∑

i=1

hi · (ri + mi · (g−1
i mod pi)) · x0

pi
(mod x0)

where mi = 0 for all i except mj �= 0 for some 1 ≤ j ≤ n. This implies:

gj · A(x) ≡ hj(rjgj + mj)
x0

pj
+

∑

i�=j

gjhiri
x0

pi
(mod x0)

and therefore gj · A(x) mod x0 is “small” (significantly smaller than x0). Since
gj is very small, we can then recover gj using lattice reduction in dimension 2,
while normally the gi’s are secret in CLT13. Moreover, once we know gj , we
can simply multiply the evaluation by gj to obtain a “small” result, even if the
evaluation of the branching program is non-zero modulo gj ; in particular, this
cancels the effect of the protection against input partitioning from [FRS17].

The countermeasure considered in [GLW14, Appendix B] is to give many
“buddies” to each gi, so that we do not have a plaintext element which is non-
zero modulo a single isolated gi. Then, either an encoding is 0 modulo gi and
all its prime buddies gj , or it is (with high probability) non-zero modulo all of
them. In other words, instead of using individual gi’s to define the plaintext
slots, every slot is defined modulo a product of θ prime gi’s, for some 1 ≤ θ < n.
Therefore, we obtain a total of �n/θ� plaintext slots (instead of n). While the
above attack can be extended by multiplying A(x) by the θ corresponding gi’s,
for large enough θ the right-hand side of the equation is not “small” anymore
and the attack is thwarted.

Our Contributions. In this paper we identify an attack based on higher dimen-
sion lattice reduction that breaks the countermeasure from [GLW14, Appendix
B] for a wide range of parameters, with significant impact on the security of
CLT13 multilinear maps with independent slots. More precisely, our contribu-
tions are as follows:

1. Analysis of the attack from [GLW14]. Our first contribution is to provide
a theoretical study of the above attack, in order to derive a precise bound
on θ as a function of the CLT13 parameters (there was no explicit bound in
[GLW14]), where θ is the number of primes gi’s for each plaintext slot. We
argue that, when ν denotes the number of bits that can be extracted from
zero-testing in CLT13, the 2-dimensional lattice attack requires:

αθ <
ν

2
(1)

where α is the bit size of the gi’s.

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 359

2. Breaking the countermeasure from [GLW14]. Our main contribution is
to extend the 2-dimensional attack to break the countermeasure for larger
values of θ. Our attack is based on higher dimension lattice reduction, by
using a similar orthogonal lattice attack as in [NS99] for solving the hidden
subset sum problem. In this extension, we use � encodings {cj : 1 ≤ j ≤ �}
where the corresponding plaintexts have only θ non-zero components modulo
the gi’s (instead of � = 1 in the previous attack). Using a lattice attack in
dimension � + 1, we show that our attack requires the approximate condition(
1 + 1

�

)
αθ < ν for the parameters. Therefore, for moderately large values of

�, we get the simpler condition:

αθ < ν

which improves (1) by a factor 2.
In the same vein, we show how to further improve this condition by con-

sidering products of encodings of the form cj ·dk for 1 ≤ j ≤ � and 1 ≤ k ≤ d,
where as previously, the plaintexts of the cj ’s have only θ non-zero compo-
nents modulo the gi’s. In that case, using a variant of the previous lattice
attack (this time in dimension � + d), the bound improves to:

αθ = O(ν2)

The above bound also applies when a vector of zero-testing elements is avail-
able, instead of a single pzt. While the original attack from [GLW14] recovers
the secret plaintext ring of CLT13, we additionally recover the plaintext mes-
sages {mj : 1 ≤ j ≤ �} for the encodings {cj : 1 ≤ j ≤ �}, up to a scaling
factor.

We provide in Sect. 4.5 the result of practical experiments. For the origi-
nal parameters of [CLT13], our attack takes a few seconds for θ = 40, and a
few hours for θ as large as 160, while the original attack from [GLW14] only
works for θ = 1. In summary, our attack is more powerful than the attack in
[GLW14], as it additionally recovers secret information about the plaintext
messages, moreover for much larger values of θ. Finally, we suggest a set of
secure parameters for CLT13 multilinear maps that prevents our extended
attack. For λ = 80 bits of security, we recommend to take θ ≥ 1789.

3. Recovering all the secret parameters of CLT13. For the range of param-
eters derived previously, we show how to combine our attack with the Cheon
et al. attack from [CHL+15], in order to recover all secret parameters of
CLT13. More precisely, when intermediate-level encodings of partially zero
messages are available, our approach consists in applying the lattice attack to
generate intermediate-level encodings of zero; then the Cheon et al. attack is
applied on these newly-created encodings of zero, to recover all secret param-
eters.

4. Application to CLT13-based constructions. Finally we show how our
attack affects the parameter selection of several schemes based on CLT13
multilinear maps with independent slots, namely the constructions from
[GLW14,GLSW15,Zim15] and [FRS17]. For the [FRS17] construction, our

360 J.-S. Coron and L. Notarnicola

attack enables to recover the secret CLT13 plaintext ring for a certain range
of parameters; however, breaking the indistinguishability of the branching
program remains an open problem.

Source Code. We provide in https://pastebin.com/7WEMHBE9 the source
code of our attacks in Sage [S+17].

2 The CLT13 Multilinear Map Scheme

We first recall the CLT13 multilinear map scheme over the integers [CLT13]. For
n ∈ Z≥1, the instance generation of CLT13 generates n distinct secret “large”
primes p1, . . . , pn of size η bits, and publishes the modulus x0 =

∏n
i=1 pi. We

let γ denote the bit size of x0; therefore γ � n · η. One also generates n distinct
secret “small” prime numbers g1, . . . , gn of size α bits. The plaintext ring is
composite, i.e. a plaintext is an element m = (m1, . . . , mn) of the ring Z/GZ �⊕n

i=1 Z/giZ where G =
∏n

i=1 gi. Let κ ∈ Z≥1 be the multilinearity parameter.
For k ∈ {1, . . . , κ}, an encoding at level k of the plaintext m is an integer c ∈ Z

such that
c ≡ rigi + mi

zk
(mod pi), for all 1 ≤ i ≤ n (2)

for “small” random integers ri of bit size ρ. The random mask z ∈ (Z/x0Z)× is
the same for all encodings. It is clear that two encodings at the same level can
be added, and the underlying plaintexts get added in the ring Z/GZ. Similarly,
the product of two encodings at level i and j gives an encoding of the product
plaintexts at level i + j, as long as the numerators in (2) do not grow too large,
i.e. they must remain smaller than each pi.

For an encoding at the last level κ, one defines the following zero-testing
procedure. The instance generation publishes the zero-testing parameter pzt,
defined by

pzt =
n∑

i=1

hiz
κ(g−1

i mod pi)
x0

pi
mod x0, (3)

where hi ∈ Z are “small” random integers of size nh bits. Given an encoding c
at the last level κ, we compute the integer:

ω := pzt · c mod x0 ≡
n∑

i=1

hi(ri + mi(g−1
i mod pi))

x0

pi
(mod x0) (4)

and we consider that c encodes the zero message if ω is “small” compared to x0.
Namely, if mi = 0 for all i, we obtain ω ≡ ∑n

i=1 hiri
x0
pi

(mod x0), and since the
integers hi and ri are “small”, the resulting ω will be “small” compared to x0.

More precisely, let ρf be the maximum bit size of the noise ri in the encodings.
Then the integers hirix0/pi have size roughly γ−η+nh+ρf , and therefore letting

ν = η − nh − ρf , (5)

https://pastebin.com/7WEMHBE9

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 361

the integers hirix0/pi have size roughly γ − ν bits. Therefore, when mi = 0 for
all i, the integer ω has size roughly γ − ν bits; whereas when mi �= 0 for some
i, we expect that ω is of full size modulo x0, that is γ bits. The parameter ν in
(5) corresponds to the number of bits that can be extracted from zero-testing;
namely from (4), the ν most significant bits of ω only depend on the plaintext
messages mi, and not on the noise ri. Note that to get a proper zero-testing
procedure, one needs to use a vector of n elements pzt; namely with a single pzt

there exist encodings c with mi �= 0 while pzt · c is “small” modulo x0. In the
rest of the paper, for simplicity, we mainly consider a single pzt, as it is usually
the case in constructions over CLT13 multilinear maps. We refer to [CLT13,
Section 3.1] for the setting of the parameters.

3 Basic Attack Against CLT13 with Independent Slots

Many constructions based on multilinear maps require independent slots in the
plaintext, so that multiple computations can be performed in parallel over the
slots when evaluating the multilinear map; see for example [GLW14,GLSW15]
and [AB15,Zim15,FRS17]. The CLT13 multilinear maps inherently provide inde-
pendent slots, as the plaintext ring is

⊕n
i=1 Z/giZ for small secret primes

g1, . . . , gn. Therefore we can have independent computations performed over
the n plaintext slots modulo gi; for example, in the construction from [FRS17],
every branching program works independently modulo each gi.

The Basic Attack from [GLW14]. When using CLT13 with independent slots,
the attacker can obtain encodings of plaintext elements where all slots are zero
modulo gi except one. For example, in the [FRS17] construction where each
branching program works modulo gi, the attacker can choose the input so that
the resulting evaluation is 0 modulo all gi’s except one, say g1, without loss of
generality. Let c be a level-κ encoding of a plaintext m = (m1, . . . , mn) where
mi = 0 for all 2 ≤ i ≤ n. From Eq. (4) we obtain the following zero-testing
evaluation:

ω ≡ h1 · m1 · (g−1
1 mod p1) · x0

p1
+

n∑

i=1

hi · ri · x0

pi
(mod x0)

This implies:

g1 · ω ≡ h1 · m1 · x0

p1
+

n∑

i=1

g1 · hi · ri · x0

pi
(mod x0)

and therefore g1 · ω mod x0 is significantly smaller than x0, as the integers hi

and ri are “small”. This implies that we can recover g1, and similarly the other
gi’s using lattice reduction in dimension 2, while normally the gi’s are secret
in CLT13. This eventually recovers the plaintext ring. We analyze the attack
below.

362 J.-S. Coron and L. Notarnicola

The Countermeasure from [GLW14]. The following countermeasure was
therefore suggested by the authors: instead of using individual gi’s to define
the plaintext slots, every slot is defined modulo a product of θ prime gi’s, where
2 ≤ θ < n. Therefore, a plaintext element cannot be non-zero modulo a single
prime gi; it has to be non-zero modulo at least θ primes gi’s. This gives a total
of n/θ plaintext slots (instead of n); for simplicity we assume that θ divides n.

Therefore, the original plaintext ring R = Z/g1Z×· · ·×Z/gnZ can be rewrit-
ten as R =

⊕n/θ
j=1 Rj , where for all 1 ≤ j ≤ n/θ, the subrings Rj are such that

Rj � ⊕θ
i=1 Z/g(j−1)θ+iZ. We can assume that the attacker can obtain encod-

ings of random subring plaintexts in Rj for any 1 ≤ j ≤ n/θ. In that case,
the attacker obtains an encoding c of m = (m1, . . . , mn) ∈ R where mi ≡ 0
(mod gi) for all i ∈ {1, . . . , n} \ {(j − 1)θ + 1, . . . , jθ}. In that case we will say
that m has non-zero support of length θ.

Analysis of the Basic Attack. In this section we analyze in more details the
attack from [GLW14], and we derive an explicit bound on the parameter θ, as a
function of the other CLT13 parameters. Given an integer 1 ≤ θ < n (the above
attack is obtained for θ = 1), we consider a message having non-zero support of
length θ; that is, (without loss of generality) of the form m = (m1, . . . , mn) ∈ Z

n

with 0 ≤ mi < gi such that mi = 0 for θ + 1 ≤ i ≤ n, i.e. we assume that the
non-zero support of m is located in the first slot. We consider a top level κ
encoding c of m, that is:

c ≡ rigi + mi

zκ
(mod pi), 1 ≤ i ≤ n

with integers ri of bit size ρf . From zero-testing, we obtain from (4):

ω ≡ pzt · c ≡
θ∑

i=1

hi(g−1
i mod pi)mi

x0

pi
+

n∑

i=1

hiri
x0

pi
(mod x0)

By multiplying out by g :=
∏θ

i=1 gi we obtain

gω ≡
θ∑

i=1

himi
g

gi

x0

pi
+

n∑

i=1

ghiri
x0

pi
(mod x0),

gω ≡ U (mod x0) (6)

where U =
∑θ

i=1 himi(g/gi)(x0/pi) +
∑n

i=1 ghiri(x0/pi). Since the integers hi

and ri are “small” in order to ensure correct zero-testing, the integer U is “small”
in comparison to x0. More precisely, the proposition below shows that if g · U
is a bit smaller than x0, then we can recover g and U by lattice reduction in
dimension 2.

Proposition 1. Let g, ω, U ∈ Z≥1 and x0 ∈ Z≥1 be such that gω ≡ U
(mod x0), ω ∈ (Z/x0Z)× and gcd(U, g) = 1. Assume that g · U < x0/10. Given
ω and x0 as input, one can recover g and U in polynomial time.

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 363

Proof. Without loss of generality we can assume g ≤ U , since otherwise we
can apply the algorithm with Uω−1 ≡ g (mod x0). Let B ∈ Z≥1 such that
U ≤ Bg ≤ 2U . When the bit size of g and U is unknown, such a B can be
found by exhaustive search in polynomial time. We consider the lattice L ⊆ Z

2

of vectors (Bx, y) such that xω ≡ y (mod x0). From gω ≡ U (mod x0) it follows
that L contains the vector v = (Bg,U). We show that v is a shortest non-zero
vector in L.

By Minkowski’s Theorem, we have λ1(L) ≤ √
2 det(L). From Hadamard’s

Inequality, with det(L) = Bx0, we obtain:

λ2(L) ≥ det(L)
λ1(L)

≥
√

det(L)√
2

=
√

Bx0√
2

>
√

5BgU ≥
√

5U.

Moreover, we have:
‖v‖ = ((Bg)2 + U2)1/2 ≤

√
5U.

This implies that ‖v‖ < λ2(L) and therefore v is a multiple of a shortest non-
zero vector in L: we write v = ku with ‖u‖ = λ1(L), and k ∈ Z\{0}. Letting
u = (Bu1, u2), we have g = ku1 and U = ku2. Hence k divides both g and U .
Since gcd(g, U) = 1 one has k = ±1. This shows that v is a shortest non-zero
vector of L.

By running Lagrange-Gauss reduction on the matrix of row vectors:
[
B ω
0 x0

]

one obtains in polynomial time a length-ordered basis (b1, b2) of L satisfying
‖b1‖ = λ1(L) and ‖b2‖ = λ2(L), which enables to recover g and U . �

Using the same notations as in Sect. 2, the integer g =
∏θ

i=1 gi has
approximate bit size θ · α, while the integer U has an approximate bit size
γ − η + nh + ρf + θα. From the condition g · U < x0/10 of Proposition 1, we
obtain by dropping the term log2(10), the simplified condition

γ − η + nh + ρf + θ · α + θ · α < γ.

Writing as previously ν = η−nh−ρf for the number of bits that can be extracted
during zero testing, the attack works under the condition:

2αθ < ν (7)

where α is the bit size of the gi’s. In the next section we describe a high-
dimensional lattice reduction attack with an improved bound on θ.

364 J.-S. Coron and L. Notarnicola

4 An Extended Attack Against CLT13 with Independent
Slots

Outline of Our New Attack. Our new attack improves the bound on θ
compared to the attack recalled in Sect. 3; it also enables to recover multiples
of the underlying plaintext messages, instead of only the CLT13 plaintext ring.
The main difference is that we work with several messages instead of a single
one, using high-dimensional lattice reduction instead of dimension 2.

Let � ≥ 1 be an integer. Assume that we have � level-κ encodings cj of
plaintext elements mj = (mj1, . . . , mjn) for 1 ≤ j ≤ �, where each message has
non-zero support of length θ. Without loss of generality, we can assume that
mji = 0 for all θ + 1 ≤ i ≤ n and all 1 ≤ j ≤ �. We consider the zero-testing
evaluations ωj = pzt · cj mod x0 of these encodings, which gives as previously:

ωj ≡
θ∑

i=1

hi(rji + mji(g−1
i mod pi))

x0

pi
+

n∑

i=θ+1

hirji
x0

pi
(mod x0), 1 ≤ j ≤ �

for integers rji. We can rewrite the above equation as:

ωj ≡
θ∑

i=1

αi · mji + Rj (mod x0), 1 ≤ j ≤ � (8)

for some integers αi, where for each evaluation ωj , the integer Rj is significantly
smaller than x0.

We can see Eq. (8) as an instance of a “noisy” hidden subset sum problem.
Namely in [NS99], the authors consider the following hidden subset sum problem.
Given a positive integer M , and a vector b = (b1, . . . , b�) ∈ Z

� with entries in
[0,M − 1], find integers α1, . . . , αn ∈ [0,M − 1] such that there exist vectors
x1, . . . ,xn ∈ Z

� with entries in {0, 1} satisfying:

b ≡ α1x1 + α2x2 + · · · + αnxn (mod M)

In our case, the weights α1, . . . , αn are hidden as in [NS99], but for each
equation we have an additional hidden noisy term Rj . Moreover, the weights
αi = hi · (g−1

i mod pi) · x0/pi have a special structure, instead of being random
in [NS99]. Thanks to this special structure, using a variant of the orthogonal
lattice approach from [NS99], we can recover the secret product g = g1 · · · gθ

and the plaintext elements mji up to a scaling factor.

4.1 Preliminaries on Lattices

Let L be a lattice in R
d of rank 0 < n ≤ d. We recall that Hadamard’s Inequality

gives the following upper bound on the determinant of L, for every basis B of L:

det(L) ≤
∏

b∈B
‖b‖

Based on Hadamard’s Inequality, we prove the following simple lemma.

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 365

Lemma 2. Let 1 ≤ n ≤ d be integers and let L ⊆ Z
d be a lattice of rank n. Let

x1, . . . ,xn−1 ∈ L be linearly independent. Then for every vector y ∈ L not in
the linear span of x1, . . . ,xn−1, one has ‖y‖ ≥ det(L)/

∏n−1
i=1 ‖xi‖.

Proof. Since x1, . . . ,xn−1,y ∈ L are linearly independent, they generate a rank-
n sublattice L′ of L and hence det(L) ≤ det(L′) as det(L) divides det(L′).
By Hadamard’s Inequality, det(L) ≤ det(L′) ≤ ‖y‖ · ∏n−1

i=1 ‖xi‖. The bound
follows. �

We recall that the LLL algorithm [LLL82], given an input basis of L, produces
a reduced basis of L with respect to the choice of a parameter δ ∈ (1/4, 1); we
call such a basis δ-reduced. More precisely, we will use the following theorem.

Theorem 3. Let 1 ≤ n ≤ d be integers and let L ⊆ Z
d be a lattice of rank n.

Let {bi : 1 ≤ i ≤ n} be a basis of L. Let B ∈ Z≥1 be such that ‖bi‖2 ≤ B for
1 ≤ i ≤ n. Let δ ∈ (1/4, 1). Then the LLL algorithm with reduction parameter
δ outputs a δ-reduced basis {b′

i : 1 ≤ i ≤ n} after O(n5d log3 B) operations.
Moreover, the first vector in such a basis satisfies:

‖b′
1‖ ≤ c(n−1)/2‖x‖

for every non-zero x ∈ L, and where c = 1/(δ − 1/4).

4.2 Our First Lattice-Based Attack

Setting. In this section, we describe our first attack based on a variant of the
hidden subset-sum problem. We consider plaintext elements m1, . . . ,m� ∈ Z

n

and write mji for the i-th entry of the j-th message, where 0 ≤ mji < gi for
all 1 ≤ i ≤ n and 1 ≤ j ≤ �. As previously, we assume that mji = 0 for all
θ + 1 ≤ i ≤ n. We write M for the matrix of row vectors mj for 1 ≤ j ≤ �; and
we will denote its columns by m̂i for 1 ≤ i ≤ n, that is, M =

[
m̂1 · · · m̂n

] ∈
Mat�×n(Z). By construction, the vectors m̂i for θ + 1 ≤ i ≤ n are all zero. We
also assume that for all 1 ≤ i ≤ θ, m̂i �≡ 0 (mod gi). For 1 ≤ j ≤ �, we let cj

denote an encoding of mj at the last level κ:

cj ≡ rjigi + mji

zκ
(mod pi), 1 ≤ i ≤ n

where rji ∈ Z are ρf -bit integers. Letting c = (cj)1≤j≤�, this gives a vector
equation over Z

�:

c ≡ z−κ (giri + m̂i) (mod pi), 1 ≤ i ≤ n (9)

for ri = (rji)1≤j≤�. Let pzt be the zero-testing parameter, as defined in (3).
From zero-testing we obtain the following equations:

ωj ≡ cj · pzt ≡
θ∑

i=1

himji(g−1
i mod pi)

x0

pi
+

n∑

i=1

hirji
x0

pi
(mod x0), 1 ≤ j ≤ �

366 J.-S. Coron and L. Notarnicola

which can be rewritten as ωj ≡ ∑θ
i=1 αimji + Rj (mod x0), where we use the

shorthand notations:

αi := hi(g−1
i mod pi)

x0

pi
, 1 ≤ i ≤ θ (10)

and Rj :=
∑n

i=1 hirji
x0
pi

for 1 ≤ j ≤ �. As a vector equation, this reads:

ω ≡ pzt · c ≡
θ∑

i=1

αim̂i + R (mod x0) (11)

with ω = (ωj)1≤j≤�; for 1 ≤ i ≤ θ the vectors m̂i are as above and R =
(Rj)1≤j≤� =

∑n
i=1 hi

x0
pi

ri.
In the above equation, the components of R have approximate bit size ρR =

γ − η +nh + ρf . Using, as previously, ν = η −nh − ρf as the number of bits that
can be extracted, we have therefore ρR = γ − ν. As explained above, Eq. (11)
is similar to an instance of the hidden subset sum problem, so we describe a
variant of the orthogonal lattice attack from [NS99], which recovers the secret
CLT13 plaintext ring and the hidden plaintexts {m̂i : 1 ≤ i ≤ θ}, up to a scaling
factor. For the sequel, we assume that the prime numbers g1, . . . , gθ are distinct,
and that for every 1 ≤ i ≤ θ, we have gcd(gi, hix0/pi) = 1.

The Orthogonal Lattice L. We consider the lattice L of vectors (Bu, v) ∈
Z

�+1, with u ∈ Z
� and v ∈ Z, such that (u, v) is orthogonal to (ω, 1) modulo

x0, where B ∈ Z≥1 is a scaling factor that will be determined later. Since L
contains the sublattice x0Z

�+1, it has full-rank � + 1. We note that this lattice
is known (i.e. we can construct a basis for it) since ω and x0 are given. Our
attack is based on the fact that L contains a rank-� sublattice L′, generated by
reasonably short vectors {(Bui, vi) : 1 ≤ i ≤ �} of L, which can be used to reveal
the secret product g =

∏θ
i=1 gi.

More precisely, for every (Bu, v) ∈ L, we obtain from (11):

〈u,ω〉 + v ≡
θ∑

i=1

αi〈u, m̂i〉 + 〈u,R〉 + v ≡ 0 (mod x0)

and therefore, the vector (〈u, m̂1〉, . . . , 〈u, m̂θ〉, 〈u,R〉 + v) is orthogonal mod-
ulo x0 to the vector a = (α1, . . . , αθ, 1). To obtain balanced components, we
use another scaling factor C ∈ Z≥1 and we consider the vector:

pu ,v := (C〈u, m̂1〉, . . . , C〈u, m̂θ〉, 〈u,R〉 + v)

Following the original orthogonal lattice attack from [NS99], if a vector
(Bu, v) ∈ L is short enough, then the associated vector pu ,v = (Cx, y) will
also be short, and if (x, y) becomes shorter than a shortest non-zero vector
orthogonal to a modulo x0, we must have pu ,v = 0, which implies 〈u, m̂i〉 = 0
for all 1 ≤ i ≤ θ. We will see that in our setting, because of the specific structure
of the coefficients αi’s, we only get 〈u, m̂i〉 ≡ 0 (mod gi) for all 1 ≤ i ≤ θ.

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 367

Therefore, by applying lattice reduction to L, we expect to recover the lattice
Λ⊥ of vectors u which are orthogonal to all m̂i modulo gi; since by assumption
m̂i �≡ 0 (mod gi) for all 1 ≤ i ≤ θ, the lattice Λ⊥

i = {u ∈ Z
� : 〈u, m̂i〉 ≡ 0

(mod gi)} has determinant gi, and since g1, . . . , gθ are distinct primes, the lattice
Λ⊥ = ∩θ

i=1Λ
⊥
i has determinant equal to g =

∏θ
i=1 gi. In particular, any basis for

this lattice reveals g by computing its determinant.

The Lattice A⊥. Henceforth, we must study the short vectors in the lattice of
vectors orthogonal to a modulo x0. More precisely, we consider the lattice A⊥

of vectors (Cx, y) ∈ Z
θ+1, such that (x, y) is orthogonal to a = (α1, . . . , αθ, 1)

modulo x0; therefore pu ,v ∈ A⊥. The lattice A⊥ has full-rank θ + 1 and we
have det(A⊥) = Cθx0. Namely, we have an abstract group isomorphism A⊥ �
(CZ)θ ⊕ x0Z, sending (Cx, y) to (Cx, 〈x,a〉 + y).

As mentioned previously, the coefficients αi’s in the vector a have a particular
structure. Namely, we have αi = (g−1

i mod pi)hix0/pi, and therefore

gi · αi ≡ hi · x0

pi
(mod x0)

for all 1 ≤ i ≤ θ. Therefore the lattice A⊥ contains the θ linearly independent
short vectors qi = (0, . . . , 0, Cgi, 0, . . . , 0,−si), where si = hi · x0/pi. Using
C := 2ρR−α, we get ‖qi‖ � C · 2α.

We now derive a condition on ‖pu ,v‖ so that the vector pu ,v belongs to
the sublattice of A⊥ generated by the short vectors {qi : 1 ≤ i ≤ θ}. From
Lemma 2, if ‖pu ,v‖ < det(A⊥)/

∏θ
i=1 ‖qi‖, then pu ,v must belong to the linear

span generated by the qi’s; since by assumption, the gi’s are distinct primes and
gcd(si, gi) = 1 for all 1 ≤ i ≤ θ, this implies that it must belong to the sublattice
generated by the qi’s. In that case, we have:

〈u, m̂i〉 ≡ 0 (mod gi), 1 ≤ i ≤ θ (12)

From det(A⊥) = Cθ · x0 and ‖qi‖ � C · 2α, the previous condition ‖pu ,v‖ <

det(A⊥)/
∏θ

i=1 ‖qi‖ gives the approximate condition:

‖pu ,v‖ < 2γ−α·θ (13)

Short Vectors in L. We now study the short vectors of L; more precisely, we
explain that L contains � linearly independent short vectors of norm roughly
2ρR+αθ/�. We show that these vectors can be derived from the lattice Λ⊥ of
vectors u ∈ Z

� satisfying (12), i.e. that are orthogonal to m̂i modulo gi for
every 1 ≤ i ≤ θ. This is a full-rank lattice of dimension � and determinant
g =

∏θ
i=1 gi, with g � 2αθ. Therefore, we heuristically expect that the lattice

Λ⊥ contains � linearly independent vectors of norm roughly (detΛ⊥)1/� � 2αθ/�.
We show that from any short u ∈ Λ⊥, we can generate a vector (u, v) with
small v, and orthogonal to (ω, 1) modulo x0, and consequently a short vector

368 J.-S. Coron and L. Notarnicola

(Bu, v) ∈ L. For this, we write 〈u, m̂i〉 = kigi with ki ∈ Z, and we have:

〈u,ω〉 + v ≡
θ∑

i=1

αi〈u, m̂i〉 + 〈u,R〉 + v ≡
θ∑

i=1

ki · gi · αi + 〈u,R〉 + v (mod x0)

≡
θ∑

i=1

ki · si + 〈u,R〉 + v (mod x0)

Therefore, it suffices to let v := −〈u,R〉 − ∑θ
i=1 ki · si to obtain 〈u,ω〉 + v ≡ 0

(mod x0); the vector (u, v) is then orthogonal to (ω, 1) modulo x0, and thus
(Bu, v) ∈ L. We obtain |v| � ‖u‖ · 2ρR ; therefore letting B := 2ρR , we get
‖(Bu, v)‖ � 2ρR‖u‖. In summary, the lattice L contains a sublattice L′ of rank
�, generated by � vectors of norm roughly 2ρR+αθ/�. That the recovered vectors
are indeed linearly independent is the content of the following lemma, which we
prove in AppendixA.1.

Lemma 4. Let {(Buj , vj) : 1 ≤ j ≤ �+1} be a basis of the lattice L and assume
that the vectors {puj ,vj

: 1 ≤ j ≤ �} belong to the sublattice of A⊥ generated by
the vectors {qi : 1 ≤ i ≤ θ}. Then the vectors {uj : 1 ≤ j ≤ �} are R-linearly
independent.

Recovering g =
∏θ

i=1 gi. By applying lattice reduction to the lattice L, we
expect that the first � vectors {(Buj , vj) : 1 ≤ j ≤ �} of a reduced basis belong
to the above sublattice L′ and have norm roughly:

‖(Buj , vj)‖ � 2ρR+αθ/� · 2ι(�+1), 1 ≤ j ≤ � (14)

where 2ι(�+1) is the Hermite factor for some positive constant ι depending on the
lattice reduction algorithm. With C = 2ρR−α, we have ‖pui,vi

‖ � ‖(Bui, vi)‖
for all 1 ≤ i ≤ �. From the condition given by (13), we have that ui ∈ Λ⊥

if ‖pui,vi
‖ < 2γ−α·θ; therefore combining with (14) we get the approximate

condition:
ρR +

αθ

�
+ ι(� + 1) < γ − αθ

Using ρR = γ − ν where ν is the number of bits that can be extracted from
zero-testing, this condition becomes

αθ

(

1 +
1
�

)

+ ι(� + 1) < ν. (15)

In summary, when Condition (15) is satisfied, we expect to recover a basis
{ui : 1 ≤ i ≤ �} of the lattice Λ⊥; then since det(Λ⊥) = g =

∏θ
i=1 gi, the

absolute value of the determinant of the basis matrix reveals g.
From Eq. (15), we observe that the parameter � can be kept relatively small

(say � � 10), as larger values of � would not significantly improve the bound;
this implies that the lattice dimension �+1 on which LLL is applied can be kept

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 369

relatively small. Moreover for LLL, experiments show that 2ι � 1.021 so that ι is
approximately 0.03, and therefore for such small values of �, the term ι · (� + 1)
is negligible. Thus we can use the simpler approximate bound for our attack:

αθ < ν (16)

This gives a factor 2 improvement compared to the previous bound given by (7),
following the attack of [GLW14]. In the next subsection we will see how to get
a much more significant improvement, with αθ = O(ν2).

A Proven Variant. The above algorithm is heuristic only. Below we describe
a proven variant that can recover a vector u such that 〈u, m̂i〉 ≡ 0 (mod gi) for
all 1 ≤ i ≤ θ, using the LLL reduction algorithm. Although we only recover a
single vector u instead of a lattice basis, this will be enough when combined with
the Cheon et al. attack to recover all secret parameters of CLT13 (see Sect. 5).
We provide the proof of Proposition 5 in AppendixA.2.

Proposition 5. Let �, θ ∈ Z≥1, x0 ∈ Z≥1 and let gi ∈ Z≥2 be distinct α-bit
prime numbers for 1 ≤ i ≤ θ and some α ∈ Z≥1. For 1 ≤ i ≤ θ, let αi ∈ Z such
that gi · αi ≡ si (mod x0), for si ∈ Z satisfying |si| ≤ 2ρR , for some ρR ∈ Z≥1

and assume that gcd(gi, si) = 1. For 1 ≤ i ≤ θ, let m̂i ∈ Z
� be vectors with

entries in [0, gi) ∩ Z such that m̂i �≡ 0 (mod gi), and let R ∈ Z
� such that

‖R‖∞ ≤ 2ρR . Let ω ∈ Z
� such that ω ≡ ∑θ

i=1 αim̂i + R (mod x0). Assume
that

αθ

(

1 +
1
�

)

+
� + θ

2
+ log2(�

√
� + 1 · θ) + 4 < log2(x0) − ρR. (17)

Given the integers �, θ, ρR, x0 and the vector ω, one can recover in polynomial
time a vector u ∈ Z

� such that 〈u, m̂i〉 ≡ 0 (mod gi) for all 1 ≤ i ≤ θ, satisfying
‖u‖ ≤ 2�/2

√
�(� + 1)(

∏θ
i=1 gi)1/�.

We remark that by replacing log2(x0) − ρR by γ − ρR = ν, we recover, up to
additional logarithmic terms, the approximate bound established in (15).

4.3 Extended Orthogonal Lattice Attack

In this section we describe an extended attack that significantly improves the
bound on θ established in (16). Let �, d ≥ 1 be integers. As previously, we
assume that we have encodings cj of plaintext elements mj = (mj1, . . . , mjn)
for 1 ≤ j ≤ �, where only the first θ components of each mj are non-zero, that
is, mji = 0 for θ + 1 ≤ i ≤ n. However, we assume that these encodings are
at level κ − 1, and that we also have an additional set of d level-1 encodings
{c′

k : 1 ≤ k ≤ d} of plaintext elements xk = (xk1, . . . , xkn) for 1 ≤ k ≤ d.
By computing the top-level κ product encodings, we can therefore obtain the
following zero-testing evaluations:

ωjk ≡ (cj · c′
k) · pzt ≡

θ∑

i=1

himjixki(g−1
i mod pi)

x0

pi
+

n∑

i=1

hirjki
x0

pi
(mod x0)

(18)

370 J.-S. Coron and L. Notarnicola

for some integers rjki. Since every encoding cj encodes a message with non-zero
support of length θ, the product encodings cjc

′
k maintain their zero slots. Note

that the same remains valid if the encodings cj are at even lower levels, because
they can be raised to level κ−1 without removing their zero slots. As previously,
we rewrite Eq. (18) as:

ωjk ≡
θ∑

i=1

αikmji + Rjk (mod x0)

where we let

αik = hixki(g−1
i mod pi)

x0

pi
, 1 ≤ i ≤ θ, 1 ≤ k ≤ d

and Rjk =
∑n

i=1 hirjkix0/pi for all 1 ≤ j ≤ � and 1 ≤ k ≤ d. As before,
for 1 ≤ i ≤ θ, we denote by m̂i ∈ Z

� the vector with components mji for
1 ≤ j ≤ �, and similarly ωk and Rk the corresponding vectors in Z

�. We assume
that m̂i �≡ 0 (mod gi) for all i. The previous equation can then be rewritten as:

ωk ≡
θ∑

i=1

αikm̂i + Rk (mod x0) (19)

The difference with Eq. (11) from our first lattice attack is that the vectors
{m̂i : 1 ≤ i ≤ θ} now satisfy d equations for 1 ≤ k ≤ d, instead of a single
equation, as in Subsect. 4.2. With more constraints on the vectors m̂i, we can
therefore break the countermeasure from [GLW14] for much higher values of
θ. In order to derive a condition on the parameters, we proceed as previously.
Namely, the lattices that we considered in Subsect. 4.2 now admit natural higher-
dimensional analogues.

The Orthogonal Lattice L. As previously, for a scaling factor B ∈ Z≥1, we
consider the lattice L of vectors (Bu,v) ∈ Z

�+d, with u ∈ Z
� and v ∈ Z

d, such
that (u,v) is orthogonal to the d vectors {(ωk,ek) : 1 ≤ k ≤ d} modulo x0,
where ek ∈ Z

d is the kth unit vector for 1 ≤ k ≤ d. This gives for all 1 ≤ k ≤ d
and all (Bu,v) ∈ L, writing v = (v1, . . . , vd):

〈u,ωk〉 + vk ≡
θ∑

i=1

αik〈u, m̂i〉 + 〈u,Rk〉 + vk ≡ 0 (mod x0)

and therefore the vector (〈u, m̂1〉, . . . , 〈u, m̂θ〉, 〈u,R1〉 + v1, . . . , 〈u,Rd〉 + vd)
is orthogonal modulo x0 to the d vectors ak = (α1k, . . . , αθk,ek), for 1 ≤ k ≤ d.
Again, using a scaling factor C ∈ Z≥1, we let

pu ,v = (C〈u, m̂1〉, . . . , C〈u, m̂θ〉, 〈u,R1〉 + v1, . . . , 〈u,Rd〉 + vd) .

The Lattice A⊥. In order to bound the norm of the vector pu ,v , we must
study the short vectors in the lattice of vectors orthogonal to the vectors ak

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 371

modulo x0 (instead of single vector a). As previously, we consider the lattice
A⊥ of vectors (Cx,y) ∈ Z

θ+d such that (x,y) is orthogonal to the d vectors
{ak : 1 ≤ k ≤ d} modulo x0; therefore pu ,v ∈ A⊥. The lattice A⊥ has full-rank
θ + d and determinant Cθxd

0. As previously, the coefficients αik in the vectors
ak have a special structure, since they satisfy the congruence relations

gi · αik ≡ hi · xik · x0

pi
(mod x0)

for all 1 ≤ i ≤ θ and 1 ≤ k ≤ d. Therefore letting sik = hi ·xik ·x0/pi, the lattice
A⊥ contains the θ short vectors qi = (0, . . . , 0, Cgi, 0, . . . , 0,−si1, . . . ,−sid) for
1 ≤ i ≤ θ. Using C = 2ρR−α, we get as previously ‖qi‖ � C · 2α.

We now derive a bound on ‖pu ,v‖ so that pu ,v belongs to the sublattice
generated by the θ vectors {qi : 1 ≤ i ≤ θ}. We expect a reduced basis of A⊥ to
have the first θ vectors with approximately the same norm as the vectors {qi :
1 ≤ i ≤ θ}, and to have the last d vectors with norm U satisfying (C · 2α)θ ·Ud �
det(A⊥). Using det(A⊥) = Cθxd

0, this gives U � x0/2αθ/d. This implies that,
heuristically, if ‖pu ,v‖ < U , then pu ,v must belong to the sublattice generated
by the θ vectors {qi : 1 ≤ i ≤ θ}. As previously, in that case we have that for all
1 ≤ i ≤ θ:

〈u, m̂i〉 ≡ 0 (mod gi). (20)

Short Vectors in L. We now study the short vectors of L; as previously,
we show that L contains � linearly independent short vectors of norm roughly
2ρR+αθ/�, which can be derived from the lattice Λ⊥ of vectors u ∈ Z

� satisfying
(20). Since, as previously, Λ⊥ heuristically contains � linearly independent vec-
tors of norm roughly (detΛ⊥)1/� � 2αθ/�, the lattice L contains � linearly inde-
pendent vectors of norm roughly 2ρR+αθ/�. Therefore, by applying lattice reduc-
tion to the lattice L, we expect that the first � vectors {(Bui,vi) : 1 ≤ i ≤ �} of
the basis have norm roughly:

‖(Bui,vi)‖ � B · 2αθ/� · 2ι(�+d)

where 2ι(�+d) is the Hermite factor. With B = 2ρR and C = 2ρR−α, we have
‖pui,v i

‖ � ‖(Bui ,vi)‖. From the condition ‖pui,v i
‖ < U , we get the condition:

ρR +
αθ

�
+ ι(� + d) < γ − αθ

d

which gives using ρR = γ − ν:

αθ ·
(

1
�

+
1
d

)

+ ι(� + d) < ν (21)

Remark that with d = 1 the previous bound gives Eq. (15). Since (21) is concave
and symmetric in both � and d, the optimum is to take � = d. This gives the
bound:

2αθ

�
+ 2ι� < ν (22)

372 J.-S. Coron and L. Notarnicola

Recovering g =
∏θ

i=1 gi. When the above condition is satisfied, as previously
we expect to recover a basis {ui : 1 ≤ i ≤ �} of the lattice Λ⊥. Then since
det(Λ⊥) = g =

∏θ
i=1 gi, the absolute value of the determinant of the basis

matrix reveals g. In particular, it follows that the attack requires � > 2αθ/ν,
and we must have:

ι <
ν2

4αθ

Heuristically, achieving a Hermite factor of 2ι2� requires 2Ω(1/ι) using BKZ
reduction with block-size β = ω(1/ι), [HPS11]. The attack has therefore com-
plexity 2Ω(αθ/ν2); the attack has therefore (heuristic) polynomial-time complex-
ity under the condition:

αθ = O(ν2)

which significantly improves our previous bound given by (16). Conversely, one
expects that the attack is prevented under the condition:

θ = ω

(
ν2

α
log λ

)

(23)

In Sect. 4.5 we provide concrete parameters for CLT13 multilinear maps with
independent slots. We will see that Condition (23) requires a much higher value
for θ than the condition 2θα ≥ ν for preventing the [GLW14] attack. Namely
for λ = 80 bits of security, the bound 2θα ≥ ν already holds for θ = 2, while a
concrete application of Condition (23) requires θ ≥ 1789.

Analogy of the Attacks. We remark that our extended attacks share simi-
larities with the 2-dimensional attack from Sect. 3. For �, d ∈ Z≥1, our extended
lattice attack works by reducing the (� + d)-dimensional lattice

L(�,d) = {(Bu,v) ∈ Z
� × Z

d : 〈(u,v), (ωk,ek)〉 ≡ 0 (mod x0), 1 ≤ k ≤ d},

where B ∈ Z≥1 is fixed. With this notation, the three attacks work by reducing
the lattices L(1,1), L(�,1) and L(�,d), respectively. Note that L(1,1) is the lattice
{(Bu, v) ∈ Z

2 : uω + v ≡ 0 (mod x0)}. For the extended attacks, the � × �
top-left submatrix of a reduced basis of L(�,d) (divided by B) has determinant
±g. Note that this coincides with the 2-dimensional case � = d = 1: the first
entry (divided by B) of the first vector in a reduced basis equals ±g (i.e. a
“1 × 1 submatrix” of determinant ±g). As such, our higher-dimensional attacks
are consistent generalizations of the 2-dimensional attack.

Summary. We have described a lattice-based attack, which under the condition
αθ = O(ν2), and given as input a collection of encodings (or products of encod-
ings) of messages with non-zero support of length θ, outputs the secret plaintext
ring of CLT13. More precisely, our extended lattice attack with the improved
bound αθ = O(ν2) can be described in the following three steps, with parame-
ters �, d ≥ 1. We provide in https://pastebin.com/7WEMHBE9 the source code
in Sage [S+17].

https://pastebin.com/7WEMHBE9

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 373

Input: Sets of level-κ encodings {cj · c′
k mod x0 : 1 ≤ j ≤ �, 1 ≤ k ≤ d} where

cj encodes a message of non-zero support of length θ.
Output: g =

∏θ
i=1 gi

1. For 1 ≤ k ≤ d, compute the vectors ωk ∈ Z
� with (ωk)j = cj · c′

k ·
pzt mod x0.

2. Let B = 2ρR and compute a LLL-reduced basis of the lattice L(�,d) ⊆ Z
�+d

of vectors {(Bu,v) ∈ Z
� × Z

d : 〈(u,v), (ωk,ek)〉 ≡ 0 (mod x0), 1 ≤ k ≤
d}, where ek ∈ Z

d is the kth unit vector for 1 ≤ k ≤ d. Denote by
{(Buj ,vj) : 1 ≤ j ≤ � + d} the LLL-reduced basis.

3. Form the � × � matrix P of vectors {uj : 1 ≤ j ≤ �} and compute
|det(P)| = g =

∏θ
i=1 gi.

Variant with Multiple pzt . In many concrete constructions based on compos-
ite order multilinear maps, intermediate-level encodings of almost zero plaintexts
are not necessarily available. We refer to Sect. 6 for the application of our attacks
to concrete constructions. In order to get around this assumption, we consider
a variant of the above attack, where we have multiple zero-testing elements pzt

instead of a single one. Namely, as described in [CLT13], in order to get a proper
zero-testing procedure, one needs to use a vector of n elements pzt. We denote
by pzt,k for 1 ≤ k ≤ n those zero-testing elements:

pzt,k =
n∑

i=1

hikzκ(g−1
i mod pi)

x0

pi
mod x0

for corresponding integers hik. As previously, we assume that we have encodings
cj of plaintext elements mj = (mj1, . . . , mjn) for 1 ≤ j ≤ �, where only the
first θ components of each mj are non-zero, that is, mji = 0 for θ + 1 ≤ i ≤ n.
We can now assume that these encodings are at the last level κ. Thanks to the
multiple zero-testing elements, we can therefore obtain the following zero-testing
evaluations:

ωjk ≡ cj · pzt,k ≡
θ∑

i=1

hikmji(g−1
i mod pi)

x0

pi
+

n∑

i=1

hikrjki
x0

pi
(mod x0)

for some integers rjki, which is similar to (18) with hik = hi · xki. Therefore the
same attack applies and the secret g =

∏θ
i=1 gi can be recovered in (heuristic)

polynomial-time under the condition αθ = O(ν2).

4.4 Revealing Information About the Plaintext Elements

We show that our attack not only reveals the secret CLT13 plaintext ring, but
also information about the secret plaintext elements {m̂i : 1 ≤ i ≤ θ}. Namely,
the orthogonal lattice attack not only recovers g =

∏θ
i=1 gi, but also constructs

a matrix U of rows {uj : 1 ≤ j ≤ �} orthogonal to the vectors {m̂i : 1 ≤ i ≤ θ}
modulo gi (i.e. a basis of the lattice Λ⊥, following the previous notation) and

374 J.-S. Coron and L. Notarnicola

we can use this matrix U in order to recover scalar multiples of the plaintext
vectors {m̂i : 1 ≤ i ≤ θ}.

More precisely, we show that for each 1 ≤ i ≤ θ, we can recover the one-
dimensional linear space generated by m̂i modulo gi. The first step is to factor
g =

∏θ
i=1 gi to recover the primes gi’s; this is feasible if the gi’s are small enough.1

Since we have a basis matrix U of the lattice of vectors u with 〈u, m̂i〉 ≡ 0
(mod gi) for all 1 ≤ i ≤ θ, it suffices to compute the Z/giZ-kernel of the � × �
matrix Ugi

= U mod gi; assuming that m̂i �≡ 0 (mod gi), we have that ker(Ugi
)

has dimension 1 over Z/giZ and therefore, we recover a non-trivial multiple λim̂i

of the original messages m̂i modulo gi, for 1 ≤ i ≤ θ. With the ECM [Len87]
the factorization of g =

∏θ
i=1 gi can be computed in time exp(c

√
α ln α) for

some positive constant c and where α is the bit size of the gi’s, which gives a
sub-exponential time attack.

Alternatively, to avoid the factorization of g, we can compute the integer
right kernel of the matrix [U | gI�], where I� denotes the identity matrix in
dimension �. The following proposition shows that we can recover in polynomial
time a non-trivial multiple of the vector m̂, such that m̂ ≡ m̂i (mod gi) for all
1 ≤ i ≤ θ.

Proposition 6. Let �, θ ∈ Z≥1. Let g1, . . . , gθ be distinct prime numbers. For
1 ≤ i ≤ θ, let m̂i ∈ Z

� ∩ [0, gi)� be vectors such that m̂i �≡ 0 (mod gi). Let
{uj : 1 ≤ j ≤ �} be a basis of the lattice of vectors u ∈ Z

� such that 〈u, m̂i〉 ≡ 0
(mod gi) for all 1 ≤ i ≤ θ. Then, given g =

∏θ
i=1 gi and the vectors {uj : 1 ≤

j ≤ �}, one can recover in polynomial time a vector λ · m̂ ∈ Z
� ∩ [0, g)� with

gcd(λ, g) = 1, such that m̂ ≡ m̂i (mod gi) for all 1 ≤ i ≤ θ.

Proof. By the Chinese Remainder Theorem, there exists a unique vector m̂ ∈
Z

� ∩ [0, g)� satisfying m̂ ≡ m̂i (mod gi) for all 1 ≤ i ≤ θ. Consider the composi-

tion of maps Z� π→ (Z/gZ)� φ→ Z/gZ, where π is reduction modulo g and φ sends
u to 〈u, m̂〉. By the Chinese Remainder Theorem, the map φ corresponds to
a vector of maps φ = (φ1, . . . , φθ) : (

∏
i Z/giZ)� → ∏

i Z/giZ with components
φi : (Z/giZ)� → Z/giZ for 1 ≤ i ≤ θ. Let 1 ≤ i ≤ θ; since m̂i �≡ 0 (mod gi),
the map φi is surjective with kernel ker(φi) = im(Ugi

) where Ugi
= U mod gi.

Since gi is prime, ker(φi) = im(Ugi
) is a Z/giZ-vector space of dimension � − 1.

It follows that the kernel of Ugi
has dimension 1 over Z/giZ. This holds for all

1 ≤ i ≤ θ, so by the Chinese Remainder Theorem, ker(Ug) (where Ug is the
matrix U modulo g) is a free Z/gZ-module of rank 1, generated by m̂. In partic-
ular, there exists k ∈ Z

� such that (m̂,k) belongs to the Z-kernel of the matrix
[U | gI�]. The integer kernel of this matrix can be computed in polynomial time
from g and U and the left � × � submatrix of the Hermite normal form of the
basis of the Z-kernel gives in the first row a vector λm̂ with λ ∈ (Z/gZ)×. �

1 For the concrete parameters provided in [CLT13], the gi’s are 80-bit primes; therefore
the factorization is straightforward.

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 375

4.5 Concrete Parameters and Practical Experiments

Concrete Parameters. We provide concrete parameters for CLT13 multilinear
maps with independent slots, for various values of the security parameter λ. We
start from the same concrete parameters as provided in [CLT13]; we assume that
the encoding noise is set so that the number of extracted bits is ν = 2λ + 12;
we take α = λ. We then provide the minimum value of θ that ensures the same
level of security against lattice attacks; see Table 1. As in [CLT13], the goal is to
ensure that the best attack takes at least 2λ clock cycles.

While in Table 1 the number of independent slots nslots = �n/θ� appears to
be relatively small, it is always possible to increase the number of independent
slots by increasing the value of n.

Table 1. Concrete parameters for CLT13 multilinear maps with independent slots, for
security parameter λ.

Instantiation λ n η γ = n · η ν θ nslots

Small 52 1080 1981 2.1 · 106 116 540 2

Medium 62 2364 2055 4.9 · 106 136 1182 2

Large 72 8250 2261 18.7 · 106 156 1472 5

Extra 80 26115 2438 63.7 · 106 172 1789 14

Practical Experiments. We have run our extended attack from Sect. 4.3 with
the “Extra” parameters of CLT13 from Table 1, for increasing values of θ. Note
that for such parameters, the original attack from [GLW14] only applies for θ =
1. To improve efficiency, we give as input to LLL a truncated matrix basis, where
we keep only the ν most significant bits. Table 2 shows that our attack works in
practice for much larger values of θ than the original attack from [GLW14], which
can only work for θ = 1. We provide in https://pastebin.com/7WEMHBE9 the
source code in Sage [S+17].

Table 2. Running time of our LLL-based attack, as a function of the parameter θ, for
the “Extra” parameters of CLT13. The lattice dimension is � + d = 2�.

θ α ν � = d Lat. dim. Running time

Basic attack [GLW14] 1 80 172 1 2 ε

Extended attack (Sect. 4.3) 2 80 172 2 4 ε

Extended attack (Sect. 4.3) 40 80 172 39 78 10 s

Extended attack (Sect. 4.3) 100 80 172 100 200 11 min

Extended attack (Sect. 4.3) 160 80 172 163 326 11 h

https://pastebin.com/7WEMHBE9

376 J.-S. Coron and L. Notarnicola

5 Application to the Cheon et al. Attack

In 2015, Cheon et al. published in [CHL+15] a polynomial time attack against
CLT13 resulting in a total break of the multipartite Diffie-Hellman key exchange
protocol. The attack relies on the availability of low-level encodings of zero. In
this section, we show how to adapt the Cheon et al. attack to the setting of CLT13
with independent slots: we assume that no encodings of zero are available to the
attacker (otherwise the Cheon et al. attack would apply immediately), but as
previously, the attacker can obtain low-level encodings where only θ components
of the plaintext are non-zero. In particular, this contributes to a cryptanalysis
of CLT13 multilinear maps where no encodings of zero are available beforehand;
this was considered as an open problem in [CLR15, Section 4].

5.1 The Original Cheon et al. Attack with Encodings of Zero

We first recall the basic Cheon et al. attack against CLT13. For simplicity, we
take κ = 3; the attack is easily extended to κ > 3. Consider a set A = {aj :
1 ≤ j ≤ n} of encodings of zero at level one, a pair B = {b0, b1} of encodings at
level one, and a set C = {ck : 1 ≤ k ≤ n} of encodings at level one. We write
aj ≡ aji/z (mod pi), bt ≡ bti/z (mod pi), ck ≡ cki/z (mod pi), with integers
aji ≡ 0 (mod gi), for all 1 ≤ j, i, k ≤ n and t ∈ {0, 1}. We obtain the zero-testing
evaluations:

ω
(t)
jk = ajbtckpzt mod x0 =

n∑

i=1

hi

gi
ajibticki

x0

pi

where the equality holds over Z because the products ajbtck are level-3 encodings
of 0. This can be written in matrix form as

ω
(t)
jk =

[
aj1 · · · ajn

]

⎡

⎢
⎣

bt1pzt,1

. . .
btnpzt,n

⎤

⎥
⎦

⎡

⎢
⎣

ck1

...
ckn

⎤

⎥
⎦ .

where pzt,i = (hi/gi) · x0/pi for all 1 ≤ i ≤ n. Writing out the matrices W t =
(ω(t)

jk)1≤j,k≤n for t ∈ {0, 1}, one obtains the integer matrix equalities W t =
AΔtC for t ∈ {0, 1}, where the rows of A are the vectors (aj1, · · · , ajn)j , the
columns of C are the vectors (ck1, · · · , ckn)k, and Δt is the diagonal matrix
diag(bt1pzt,1, . . . , btnpzt,n).

Provided that at least one of W 0,W 1 is invertible over Q (say W 1), one
then evaluates over Q the matrix product:

W 0 · W −1
1 = A(Δ0Δ

−1
1)A−1

The attacker can thus compute the eigenvalues of W 0W
−1
1 , by factoring the

characteristic polynomial (over Q). By similarity of these matrices, these eigen-
values coincide with those of Δ0Δ

−1
1 = diag(b01/b11, . . . , b0n/b1n), which are

{b0i/b1i : 1 ≤ i ≤ n}. These ratios are now enough to factor x0. Namely, writing

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 377

the quotients b0i/b1i = xi/yi for coprime integers xi, yi and using that bt ≡ bti/z
(mod pi), we obtain:

xib1 − yib0 ≡ (xib1i − yib0i)/z ≡ 0 (mod pi)

and therefore gcd(xib1 − yib0, x0) = pi with good probability. In summary, the
Cheon et al. attack recovers all secret pi’s in polynomial time given the low-level
encodings of zero {aj : 1 ≤ j ≤ n}.

5.2 Adaptation of the Cheon et al. Attack to Our Cryptanalysis

We now show how to adapt the Cheon et al. attack when no encodings of zero
are available, but the attacker can obtain low-level encodings where only θ com-
ponents of the underlying plaintexts are non-zero. The attack is divided in two
steps: first the attacker generates encodings of zero using the orthogonal lattice
attack from Sect. 4, and then applies the original Cheon et al. attack to reveal
the primes {pi : 1 ≤ i ≤ n}.

We consider the following setting with κ = 4. Let � ≥ 1; we consider a set
Y = {yj : 1 ≤ j ≤ �} of level-one encodings of messages m1, . . . ,m� where
only the first θ components of each mj are non-zero. Moreover, we consider as
in the previous section three sets A = {aj : 1 ≤ j ≤ n}, B = {b0, b1} and
C = {ck : 1 ≤ k ≤ n} of level-one encodings of non-zero messages.

First Step: Orthogonal Lattice Attack. We show that the orthogonal lattice
attack from Sect. 4.2 can compute a short vector u ∈ Z

� such that y′ = 〈u,y〉 is
a level-1 encoding of zero, where y = (y1, . . . , y�). We write for all 1 ≤ j ≤ �:

yj ≡ rji · gi + mji

z
(mod pi), 1 ≤ i ≤ n,

with the usual CLT13 notations, where mji = 0 for θ +1 ≤ i ≤ n. Note that our
orthogonal lattice attack from Sect. 4.2 uses level-κ encodings; therefore it can
be applied on level-κ encodings of the form:

ej = yj · a1 · b0 · c1 mod x0

for level-one encodings a1, b0, c1; we obtain:

ej ≡ r′
ji · gi + mji · xi

zκ
(mod pi), 1 ≤ i ≤ n

for some r′
ji ∈ Z and where xi is the i-th component of the plaintext correspond-

ing to the encoding a1 · b0 · c1. Clearly, since the messages {mj : 1 ≤ j ≤ �}
have non-zero support of length θ, the messages {(mji · xi)1≤i≤n : 1 ≤ j ≤ �}
have non-zero support of length at most θ. Therefore, applying the orthogo-
nal lattice attack from Sect. 4.2 on the encodings ej (i.e. on the vector ω =
pzt · (ej)1≤j≤� mod x0), we obtain a vector u ∈ Z

� such that 〈u, m̂i · xi〉 ≡ 0

378 J.-S. Coron and L. Notarnicola

(mod gi) for all 1 ≤ i ≤ θ, where the m̂i’s are the vectors (m1i, . . . , m�i) for
1 ≤ i ≤ θ. Provided that xi �≡ 0 (mod gi), this implies 〈u, m̂i〉 ≡ 0 (mod gi) for
all 1 ≤ i ≤ θ. Therefore, for all 1 ≤ i ≤ n, we can write

∑�
j=1 ujmji = kigi for

integers ki (and ki = 0 for θ + 1 ≤ i ≤ n). This gives:

y′ =
�∑

j=1

ujyj ≡ gi

⎛

⎝
�∑

j=1

ujrji + ki

⎞

⎠ · z−1 (mod pi), 1 ≤ i ≤ n

and therefore y′ is a level-1 encoding of zero, moreover with small noise since
the vector u is short. Note that we only need a single vector u; therefore the
first step of the attack is proven by Proposition 5.

Second Step: Cheon et al. attack. The second step consists in applying the
Cheon et al. attack with the three sets A′ = {y′ · aj : 1 ≤ j ≤ n}, B = {b0, b1}
and C = {ck : 1 ≤ k ≤ n}. Since y′ is an encoding of zero, all encodings in A′ are
encodings of zero, and we can apply the Cheon et al. attack on the three sets
A′, B and C to recover all secret primes pi.

Since the orthogonal lattice attack more generally provides a set of � vectors
uj ∈ Z

� (instead of a single u; and all satisfying 〈uj , m̂i〉 ≡ 0 (mod gi) for
all i), a variant of the above attack with κ = 3 consists in starting from a set
A = {aj : 1 ≤ j ≤ n} of � = n encodings where only the first θ components of
the underlying plaintexts are non-zero, and then generating a set A′ = {〈uj ,a〉 :
1 ≤ j ≤ n} of encodings of zero, with the vector of encodings a = (a1, . . . , an).
One can then apply the Cheon et al. attack as previously on the three sets A′,
B and C.

Note that the first step of the attack above (i.e. the generation of encodings
of zero) uses the orthogonal lattice attack from Sect. 4.2 with the bound αθ < ν.
The attack from Sect. 4.3 is easily adapted to reach the improved bound αθ =
O(ν2). In this case the attacker can obtain � · d level-two encodings of zero
given by {〈uj , ck〉 : 1 ≤ j ≤ �, 1 ≤ k ≤ d} where ck is the vector of encodings
(cj · c′

k)1≤j≤� with the encodings cj · c′
k considered in Sect. 4.3.

6 Application to Constructions Based on CLT13 with
Independent Slots

In this section we show that our orthogonal lattice attack from Sect. 4 can be
applied to various constructions over CLT13 multilinear maps with independent
slots.

6.1 The Multilinear Subgroup Elimination Assumption from
[GLW14,GLSW15]

The multilinear subgroup elimination assumption is used in [GLW14] for wit-
ness encryption and in [GLSW15] for constructing program obfuscation, based
on a single assumption, independent of the particular circuit to be obfuscated.

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 379

The multilinear subgroup elimination assumption is stated for a generic model
of composite-order multilinear maps. Below, we show that our attacks break this
assumption over CLT13 composite-order multilinear maps. We note that since
the GLW14 scheme also includes encodings of zeroes, it could also be broken more
directly by the Cheon et al. attack. We recall the definition from [GLSW15].

Definition 1 ((μ, ν)-multilinear subgroup elimination assumption). Let
G be a group of order N = a1 · · · aμb1 · · · bνc where a1, . . . , aμ, b1, . . . , bν , c are
μ + ν + 1 distinct primes. We give out generators xa1 , . . . , xaμ

, xb1 , . . . , xbν
for

each prime order subgroup except for the subgroup of order c. For each 1 ≤ i ≤ μ,
we also give out a group element hi sampled uniformly at random from the
subgroup of order ca1 · · · ai−1ai+1 · · · aμ. The challenge term is a group element
T ∈ G that is either sampled uniformly at random from the subgroup of order
ca1 · · · aμ or uniformly at random from the subgroup of order a1 · · · aμ. The task
is to distinguish between these two distributions of T .

For simplicity, we consider the assumption with μ = 1 and ν = 0; the gener-
alization of our attack to any (μ, ν) is straightforward. Therefore G is a group
of order a1c. The challenge T ∈ G is either generated at random from the sub-
group of order a1c, or from the subgroup of order a1. In the context of a CLT13
instantiation, we assume that a1 =

∏θ
i=1 gi and c =

∏n
i=θ+1 gi. In that case, a1

and c are not primes, but the assumption can still be considered for composite
ai’s, bi’s and c. The encoding T is then either generated from a random plaintext
m ∈ ⊕n

i=1 Z/giZ, or from a random plaintext with only the θ first components
non-zero, that is m ≡ 0 (mod gi) for θ + 1 ≤ i ≤ n. It is easy to see that our
attacks from Sects. 4.2 and 4.3 apply in this setting. Namely, when only the first
θ components of the plaintext m corresponding to the challenge T are non-zero,
our attacks recover the product a1 =

∏θ
i=1 gi, whereas the attacks will fail when

m is a random plaintext. Therefore the challenge T is easily distinguished unless
θ is large enough; more precisely, θ must satisfy the bound given by (23) to
prevent the attack.

6.2 The Zimmerman Circuit Obfuscation Scheme

At Eurocrypt 2015, Zimmerman described a technique to obfuscate programs
without matrix branching programs, based on composite-order multilinear maps
[Zim15]. A plaintext m belongs to Z/NZ for a composite modulus N = Nev ·
Nchk, and the ring Z/NZ is viewed as a direct product of an “evaluation” ring
Z/NevZ to evaluate the circuit, and a “checksum” ring Z/NchkZ to prevent the
adversary from evaluating a different circuit; those two evaluations are performed
in parallel. Using the CLT13 notations from Sect. 2, one can let Nev =

∏θ
i=1 gi

and Nchk =
∏n

i=θ+1 gi. In that case, the parameter θ must satisfy the bound
given by (23) to prevent our lattice attack.

380 J.-S. Coron and L. Notarnicola

6.3 The FRS17 Construction for Preventing Input Partitioning
Attacks

At Asiacrypt 2017, Fernando, Rasmussen and Sahai described three construc-
tions of “stamping functions” for preventing input-partitioning attacks on matrix
branching programs [FRS17]. Their third construction is based on permuta-
tion hash functions and is instantiated over CLT13 multilinear maps with inde-
pendent slots. More precisely, the permutation hash function is written as a
matrix branching program, and multiple such permutation hash functions hi

are evaluated in parallel along with the main matrix branching program; this
is to ensure that only inputs of the form x‖h(x) can be evaluated, where
h(x) = h1(x)‖ · · · ‖ht(x), which prevents input partitioning attacks.

Matrix Branching Programs. We first recall the construction of [GGH+13b]
to obfuscate matrix branching programs. A matrix branching program BP of
length np on �-bit inputs x ∈ {0, 1}� is evaluated by computing:

C(x) = b0 ·
np∏

i=1

Bi,xinp(i) · bnp+1 (24)

where {Bi,b : 1 ≤ i ≤ np, b ∈ {0, 1}} are 2np square matrices and b0 and bnp+1

are bookend vectors; then BP(x) = 0 if C(x) = 0, and BP(x) = 1 otherwise.
The integer inp(i) ∈ {1, . . . , �} indicates which bit of x is read at step i of
the product matrix computation. The matrices Bi,b are first randomized by
choosing np +1 random invertible matrices {Ri : 0 ≤ i ≤ np} and letting B̃i,b =
Ri−1Bi,bR

−1
i for 1 ≤ i ≤ np, with also b̃0 = b0R

−1
0 and b̃np+1 = Rnp

bnp+1. We
obtain a randomized matrix branching program with the same result since the
randomization matrices Ri cancel each other: C(x) = b̃0 · ∏np

i=1 B̃i,xinp(i) · b̃np+1.

The entries of the matrices B̃i,b are then independently encoded, as well as
the bookend vectors b̃0 and b̃np

. We obtain the matrices and vectors B̂i,b =
Encode{i+1}(B̃i,b), b̂0 = Encode{1}(b̃0) and b̂np+1 = Encode{np+2}(b̃np+1). Here
Encode{i}(·) denotes an encoding relative to the singleton i. The matrix branch-
ing program from (24) can then be evaluated over the encoded matrices:

Ĉ(x) = b̂0 ·
np∏

i=1

B̂i,xinp(i) · b̂np+1 (25)

The resulting Ĉ(x) is then a last-level encoding that can be zero-tested to check
if C(x) = 0, which reveals the output of the branching program BP(x), without
revealing the matrices Bi,b.

Application to the FRS17 Construction. The [FRS17] scheme constructs
a modified matrix branching program BP′ that receives as input u‖v1 . . . vt and
checks whether vi = hi(u) for all 1 ≤ i ≤ t, where the hi’s are permutation hash

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 381

functions; in that case, BP′ returns BP(u) where BP is the original branching
program; otherwise, it returns some non-zero value. As explained in [FRS17],
multiple branching programs can be evaluated in parallel with composite order
multilinear maps; with the countermeasure from [GLW14] over CLT13, each
branching program is then evaluated modulo a product of θ of the primes gi’s,
instead of a single gi in [FRS17].

It is easy to generate an input u‖v1 . . . vt such that BP(u) = 0 and vi =
hi(u) for all 1 ≤ i ≤ t except for some i = i�; in that case, only one of the
t + 1 parallel matrix branching program will evaluate to a non-zero value. The
orthogonal lattice attack from Sect. 4.2 can therefore recover the secret plaintext
ring

⊕n
i=1 Z/giZ of CLT13, under the condition αθ < ν. Alternatively, if multiple

pzt’s are available, the extended attack from Sect. 4.3 applies under the condition
αθ = O(ν2), as described at the end of Sect. 4.3.

We note however that in both cases, our attack against [FRS17] only recovers
the secret plaintext ring

⊕n
i=1 Z/giZ of CLT13, and not all secret parameters of

CLT13; we leave that as an open problem.

Acknowledgments. We would like to thank the Asiacrypt 2019 referees for their
numerous helpful comments. The second author is supported by the Luxembourg
National Research Fund through grant PRIDE15/10621687/SPsquared.

A Proofs

A.1 Proof of Lemma 4

Let B = {(Buj , vj) : 1 ≤ j ≤ � + 1} be a basis of L. We show that the vectors
{uj : 1 ≤ j ≤ �} corresponding to the first � vectors, must necessarily be
linearly independent over R. For the sake of contradiction, we assume they are
linearly dependent. For every vector (Buj , vj) (with 1 ≤ j ≤ �), we consider the
associated vector puj ,vj

. By assumption, the vectors {puj ,vj
: 1 ≤ j ≤ �} belong

to the lattice generated by the vectors {qi : 1 ≤ i ≤ θ}, so there are integers
βij ∈ Z such that puj ,vj

=
∑θ

i=1 βijqi for every 1 ≤ j ≤ �. The definition of the

vectors {qi : 1 ≤ i ≤ θ} gives puj ,vj
= (Cβ1jg1, . . . , Cβθjgθ,−

∑θ
i=1 βijsi) for

every 1 ≤ j ≤ �; and from the definition of the vector puj ,vj
, we conclude by

equalizing the components, the relations

βijgi = 〈uj , m̂i〉 (26)

and

−
θ∑

i=1

βijsi = 〈uj ,R〉 + vj (27)

for every 1 ≤ j ≤ �, 1 ≤ i ≤ θ. Combining Eqs. (26) and (27) gives

vj = −
θ∑

i=1

si

gi
〈uj , m̂i〉 − 〈uj ,R〉, 1 ≤ j ≤ �

382 J.-S. Coron and L. Notarnicola

This implies that if the vectors {uj : 1 ≤ j ≤ �} are linearly dependent over
R, then also the vectors {(Buj , vj) : 1 ≤ j ≤ �} are linearly dependent over R,
which contradicts the fact that B is a basis of L. �

A.2 Proof of Proposition 5

Let a = (α1, . . . , αθ, 1) ∈ Z
θ+1. We let C = 2ρR−α+1 and consider the lattice

A⊥ of vectors (Cx, y) ∈ Z
θ × Z such that (x, y) is orthogonal to a modulo

x0. Further, we let B = θ2ρR+2 and let L ⊆ Z
�+1 denote the lattice of vectors

(Bu, v) ∈ Z
� × Z such that the vector (u, v) is orthogonal to the vector (ω, 1)

modulo x0.
Let Λ⊥ be the lattice of vectors u ∈ Z

� such that 〈u, m̂i〉 ≡ 0 (mod gi)
for all 1 ≤ i ≤ θ. We denote by u0 a shortest non-zero vector of Λ⊥. We
write 〈u0, m̂i〉 = kigi with ki ∈ Z. To u0 we thus associate the vector
F (u0) = (Bu0,−

∑θ
i=1 kisi − 〈u0,R〉). From the definition of ω and the con-

gruence relations giαi ≡ si (mod x0), we have that (u0,−
∑θ

i=1 kisi − 〈u0,R〉)
is orthogonal to (ω, 1) modulo x0, and therefore F (u0) ∈ L.

Letting g =
∏θ

i=1 gi, we now show that F (u0) has square norm upper
bounded by

‖F (u0)‖2 ≤ (� + 1)B2‖u0‖2 ≤ �(� + 1)B2g2/�. (28)

Indeed, we write ‖F (u0)‖2 ≤ B2‖u0‖2+(
∑θ

i=1 |kisi|+‖u0‖‖R‖)2. From ‖m̂i‖ ≤√
�2α, we obtain 2α−1|ki| ≤ |ki|gi ≤ ‖u0‖‖m̂i‖ ≤ √

�2α‖u0‖; i.e. |ki| ≤ 2
√

�‖u0‖
for all i. Combined with ‖R‖ ≤ √

�‖R‖∞ ≤ √
�2ρR , this gives

θ∑

i=1

|kisi|+‖u0‖‖R‖ ≤
√

�‖u0‖·(2ρR+1θ+2ρR) ≤
√

�‖u0‖(2·2ρR+1θ) =
√

�B‖u0‖

Therefore, ‖F (u0)‖2 ≤ B2‖u0‖2 + �B2‖u0‖2 = (� + 1)B2‖u0‖2. Now, since
u0 has length λ1(Λ⊥), it follows from Minkowski’s Theorem that ‖u0‖ ≤ √

�g1/�

where g = det(Λ⊥), and (28) easily follows.
Let x1 = (Bu1, v1) be the first vector in a (3/4)-reduced basis of the lattice

L, obtained from LLL. By Theorem 3, it satisfies ‖x1‖ ≤ 2�/2‖F (u0)‖, that is,
combined with (28), ‖x1‖ ≤ 2�/2

√
�(� + 1)Bg1/�. In particular, we obtain the

bounds

‖u1‖ ≤ 2�/2
√

�(� + 1) · g1/� (29)

|v1| ≤ 2�/2B
√

�(� + 1) · g1/�. (30)

For simplicity we write K = 2�/2
√

�(� + 1)g1/�. Now, to the vector x1 ∈ L,
we associate, for C as above, the vector f(x1) = (C〈u1, m̂1〉, . . . , C〈u1,
m̂θ〉, 〈u1,R〉 + v1) ∈ A⊥. Because (Bu1, v1) ∈ L, it is a direct check that
f(x1) ∈ A⊥. Its square norm is upper bounded by

‖f(x1)‖2 ≤ C2
θ∑

i=1

‖u1‖2‖m̂i‖2 + (‖u1‖‖R‖ + v1)2.

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 383

Using once again that ‖m̂i‖ ≤ 2α
√

� and ‖R‖ ≤ 2ρR
√

�, and combining with
(29) and (30), we obtain

‖f(x1)‖2 ≤ C2K2 · θ�22α + (K
√

�2ρR + KB)2 ≤ C2K2 · θ�22α + (2K
√

�B)2

= K2�(C2θ22α + 4B2)

so that, using C2θ22α ≤ B2 = 16θ222ρR , this gives

‖f(x1)‖ ≤ 4
√

5 ·
√

� · θ · K · 2ρR . (31)

We now consider the vectors {qi : 1 ≤ i ≤ θ} defined by qi = (0, . . . 0, Cgi,
0, . . . , 0,−si) ∈ Z

θ+1. They are linearly independent; moreover, from the con-
gruence relations giαi ≡ si (mod x0) for 1 ≤ i ≤ θ we deduce that for all
i, 〈qi,a〉 ≡ 0 (mod x0); i.e. qi ∈ A⊥. Further, as |si| ≤ 2ρR , their norm
is upper bounded by ‖qi‖2 ≤ C2g2i + 22ρR ≤ C2g2i + Cg2i ≤ 2C2g2i because
Cgi ≥ 2ρR−α+1 · 2α−1 = 2ρR . Consequently,

θ∏

i=1

‖qi‖ ≤ 2θ/2Cθ
θ∏

i=1

gi = 2θ/2Cθg. (32)

Now, (17) together with g ≤ 2αθ, implies (1 + 1/�) log2(g) + (� + θ)/2 +
log2(4

√
5
√

� + 1θ�) < log2(x0) − ρR and, by raising to the power of 2, we obtain
g1+1/� · 2�/2 · 2θ/2 · 4

√
5
√

� + 1θ� < x0/2ρR . This is equivalent to

g1/� · 2�/2 · 2ρR · 4
√

5
√

� + 1 · θ� <
Cθx0

Cθ2θ/2g
. (33)

The left hand side is lower bounded by ‖f(x1)‖ by (31), and the right hand side is
upper bounded by det(A⊥)/

∏θ
i=1 ‖qi‖, by (32) together with det(A⊥) = Cθx0.

Therefore (33) implies ‖f(x1)‖ < det(A⊥)/
∏θ

i=1 ‖qi‖. It follows from Lemma 2
that f(x1) is in the linear span generated by the vectors {qi : 1 ≤ i ≤ θ}. Since
gi are distinct prime numbers and gcd(si, gi) = 1 for 1 ≤ i ≤ θ, we conclude that
f(x1) is in the sublattice generated by the vectors {qi : 1 ≤ i ≤ θ}. Consequently,
for all 1 ≤ i ≤ θ, one has 〈u1, m̂i〉 ≡ 0 (mod gi).

The rows {bj : 1 ≤ j ≤ � + 1} of the matrix
[
BI� −ωT

0 x0

]

,

where I� denotes the � × � identity matrix, form a Z-basis of L. Hence,
by running LLL on this matrix with δ = 3/4, we obtain a vector x1 of
which the first � entries, divided by B, produce a vector u = u1 satisfying
〈u1, m̂i〉 ≡ 0 (mod gi) for all i. By Theorem 3, the algorithm terminates in
polynomial time. �

384 J.-S. Coron and L. Notarnicola

References

[AB15] Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order
graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 528–556. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 21

[CGH+15] Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP
attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 247–266. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-47989-6 12

[CGH17] Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching
program obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017, Part III. LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56617-7 10

[CHL+15] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the
multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 3–12. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46800-5 1

[CLLT16] Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of
GGH15 multilinear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part II. LNCS, vol. 9815, pp. 607–628. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 21

[CLLT17] Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks
on indistinguishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC
2017, Part I. LNCS, vol. 10174, pp. 41–58. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 3

[CLR15] Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new CLT multilinear
maps. IACR Cryptology ePrint Archive, 2015:934 (2015)

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 476–493. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 26

[CVW18] Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation
branching programs: proofs, attacks, and candidates. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 577–
607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-
0 20

[DGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homo-
morphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13190-5 2

[FRS17] Fernando, R., Rasmussen, P.M.R., Sahai, A.: Preventing CLT attacks
on obfuscation with linear overhead. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 242–271. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 9

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-38348-9 1

https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-319-70700-6_9
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1

Cryptanalysis of CLT13 Multilinear Maps with Independent Slots 385

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: FOCS, pp. 40–49. IEEE Computer Society (2013)

[GGH15] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps
from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46497-7 20

[GLSW15] Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. In:
IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17–20 October, 2015, pp. 151–170
(2015)

[GLW14] Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance
independent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 426–443. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 24

[HJ16] Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 537–565.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 21

[HPS11] Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms
using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 447–464. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 25

[Len87] Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann. Math.
(2) 126(3), 649–673 (1987)

[LLL82] Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with
rational coefficients. Math. Ann. 261, 515–534 (1982)

[MSZ16] Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear
maps: cryptanalysis of indistinguishability obfuscation over GGH13. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815,
pp. 629–658. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53008-5 22

[NS99] Nguyen, P., Stern, J.: The hardness of the hidden subset sum problem
and its cryptographic implications. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 31–46. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48405-1 3

[S+17] Stein, W.A., et al.: Sage Mathematics Software (Version 8.0). The Sage
Development Team (2017). http://www.sagemath.org

[Zim15] Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp.
439–467. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 15

https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-662-44371-2_24
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/3-540-48405-1_3
https://doi.org/10.1007/3-540-48405-1_3
http://www.sagemath.org
https://doi.org/10.1007/978-3-662-46803-6_15
https://doi.org/10.1007/978-3-662-46803-6_15

Algebraic XOR-RKA-Secure
Pseudorandom Functions

from Post-Zeroizing Multilinear Maps

Michel Abdalla1,2(B) , Fabrice Benhamouda3 , and Alain Passelègue4

1 DIENS, École normale supérieure, CNRS, PSL Research University, Paris, France
michel.abdalla@ens.fr

2 Inria, Paris, France
3 Algorand Foundation, NewYork, NY, USA

fabrice.benhamouda@normalesup.org
4 Inria, ENS Lyon, Lyon, France
alain.passelegue@inria.fr

Abstract. Due to the vast number of successful related-key attacks
against existing block-ciphers, related-key security has become a com-
mon design goal for such primitives. In these attacks, the adversary is
not only capable of seeing the output of a function on inputs of its choice,
but also on related keys. At Crypto 2010, Bellare and Cash proposed the
first construction of a pseudorandom function that could provably with-
stand such attacks based on standard assumptions. Their construction,
as well as several others that appeared more recently, have in common
the fact that they only consider linear or polynomial functions of the
secret key over complex groups. In reality, however, most related-key
attacks have a simpler form, such as the XOR of the key with a known
value. To address this problem, we propose the first construction of RKA-
secure pseudorandom function for XOR relations. Our construction relies
on multilinear maps and, hence, can only be seen as a feasibility result.
Nevertheless, we remark that it can be instantiated under two of the
existing multilinear-map candidates since it does not reveal any encod-
ings of zero. To achieve this goal, we rely on several techniques that were
used in the context of program obfuscation, but we also introduce new
ones to address challenges that are specific to the related-key-security
setting.

Keywords: Pseudorandom functions · Related-key security ·
Multilinear maps · Post-zeroizing constructions

1 Introduction

Context. Most of the security models used to prove the security of crypto-
graphic schemes usually assume that an adversary has only a black-box access
to the cryptosystem. In particular, the adversary has no information about the

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 386–412, 2019.
https://doi.org/10.1007/978-3-030-34621-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_14&domain=pdf
http://orcid.org/0000-0002-2447-4329
http://orcid.org/0000-0002-8300-1820
https://doi.org/10.1007/978-3-030-34621-8_14

Algebraic XOR-RKA-Secure PRFs from Post-Zeroizing Multilinear Maps 387

secret key, nor can it modify the latter. Unfortunately, it has been shown that
this is not always true in practice. For instance, an adversary may learn infor-
mation from physical measures such as the running time of the protocol or its
energy consumption, or may also be able to inject faults in the cryptosystem.
In the specific case of fault attacks, in addition to possibly being able to learn
partial information about the key, the adversary may be able to force the cryp-
tosystem to run with a different, but related, secret key. Then, by observing the
outcomes of the cryptosystem with this new related key, an adversary may be
able to break it. Such an attack is called a related-key attack (RKA) and has
often been used against concrete blockciphers [Knu93,Bih94,BDK05,BDK+10].

Formalization of RKA Security. Following the seminal cryptanalytic works
by Biham and Knudsen, theoreticians have defined new security models in order
to capture such attacks. In 2003, Bellare and Kohno formalized the foundations
for RKA security [BK03]. Specifically, let F : K × D → R be a pseudorandom
function and let Φ ⊆ Fun(K,K) be a set of functions on the key space K, called a
class of related-key deriving (RKD) functions. We say that F is Φ-RKA secure if
it is hard to distinguish an oracle which, on input a pair (φ, x) ∈ Φ×D, outputs
F (φ(K), x), from an oracle which, on the same input pair, outputs G(φ(K), x),
where K ∈ K is a random target key and G: K × D → R is a random function.

Existing Constructions. Building provably RKA-secure pseudorandom func-
tions in non-idealized model has been a long-standing open question until the
work of Bellare and Cash in 2010 [BC10]. Their construction is adapted from
the Naor-Reingold PRF [NR97] and is obtained by applying a generic frame-
work to it. This generic framework has led to other constructions based under
different assumptions [LMR14] and been recently extended to circumvent its
limitations [ABPP14,ABP15,ABPP18]. However, despite being simple and ele-
gant, the existing frameworks crucially rely on the algebraic structure of the
pseudorandom functions and thus only allow to build RKA-secure pseudoran-
dom functions for algebraic classes of RKD functions. More precisely, existing
constructions use a key whose components are elements in Zp, and are proven
secure against an attacker that is given the capability to perform operations
(additions, multiplications, or even polynomial evaluation) modulo p, with p
super-polynomial in the security parameter for instantiations over cyclic or mul-
tilinear groups [BC10,LMR14,ABPP14,ABP15], or p polynomial but still much
larger than 2, for instantiations based on lattices [LMR14,BP14].

Unfortunately, the algebraic classes of RKD functions above are not very
natural as they seem difficult to implement from the perspective of an attacker1.
Moreover, they also do not seem to match attacks against concrete blockciphers
such as AES (e.g., [BDK05,BDK+10]). To address these shortcomings, we focus

1 In practice, laser fault attacks can be used to switch bits inside a chip, but it seems
unlikely that such a fault attack can be used to apply an operation modulo some
prime number on a register.

388 M. Abdalla et al.

in this paper on the XOR class of RKD functions, which seems more relevant
for practice, as suggested by Bellare and Kohno [BK03]. In this class, which
corresponds to the class of functions Φ⊕ = {φs: K ∈ {0, 1}k �→ K ⊕s ∈ {0, 1}k |
s ∈ {0, 1}k} with K = {0, 1}k being the keyspace, the adversary is allowed to
flip bits of the secret key.

In the context of pseudorandom functions, there have been a few proposals
for protecting against weak versions of XOR-related-key attacks. In [AW14], for
instance, Applebaum and Widder proposed several schemes that can provably
resist XOR attacks by restricting the capabilities of the adversary. In partic-
ular, they consider models where the adversary only uses a bounded number
of related keys or where it only performs random XOR operations. In [JW15],
Jafargholi and Wichs proposed constructions of pseudorandom functions based
on continuous non-malleable codes that can resist several forms of related-key
attacks, including XOR-related-key attacks. Their solutions, however, only guar-
antee pseudorandomness under the original key and not under both the original
and related keys as in standard notions of related-key security. Another advan-
tage of our construction compared to theirs is that the key in our case is just a
bit string.

In the random-oracle model, there is a straightforward construction of a pseu-
dorandom function secure against XOR-related-key attacks: F (K,x) = H(K‖x),
with H being a hash function modeled as a random oracle, and ‖ being the
string concatenation operator. However, from a theoretical perspective, having
a construction in the random-oracle model does not provide any guarantee that
the primitive can be realized under non-interactive (and falsifiable) assumptions.
To the best of our knowledge, building a pseudorandom function that provably
resists XOR-related-key attacks in non-idealized models still remains a major
open problem. Furthermore, we would like to point out that we do not know of
any construction of a pseudorandom function secure against XOR-related-key
attacks in the generic multilinear group model.

Our Contributions. In this paper, we provide the first provably secure con-
struction of an RKA-secure pseudorandom function for XOR relations. To
achieve this goal, our construction departs significantly from previous RKA-
secure pseudorandom functions in that the secret key no longer lies in an alge-
braic group. As in prior constructions (e.g., [BC10,ABPP14,ABP15,LMR14]),
our new scheme also requires public parameters, such as generators of a cyclic
group, which cannot be tampered with. However, unlike these constructions, the
secret key in our scheme is just a bit string, whose values are used to select
a subset of the common parameters which will be used in the evaluation of
the pseudorandom function.2 The evaluation is performed using an asymmetric
multilinear map [GGH13a,CLT13,GGH15].

2 Please note that these common parameters are public and can therefore be stored
in a non-secure read-only part of the memory which can potentially more easily be
made tamper-proof.

Algebraic XOR-RKA-Secure PRFs from Post-Zeroizing Multilinear Maps 389

In particular, we prove our construction under two non-interactive assump-
tions. We further prove that it is hard to come up with encodings of zero
(in the generic multilinear map model) given only the encodings revealed by
these assumptions. Therefore these assumptions are plausible under some current
instantiations of multilinear maps. To the best of our knowledge, this is the first
construction using multilinear maps with such a level of security. In [BMSZ16],
Badrinarayanan et al. were the first to take into account zeroizing attacks (i.e.,
attacks using encodings of zero) against current multilinear maps constructions
into their constructions and to propose a scheme which is proven not to reveal
encodings of zero, in the generic multilinear map model. But, contrary to us, they
did not provide a proof of their scheme under a non-interactive assumption.

Overview of Our Techniques. As mentioned above, our construction is based
on asymmetric multilinear maps [GGH13a,CLT13,GGH15]. Informally speaking,
a multilinear map is a generalization of bilinear maps. It allows to “encode”
scalars a (in some finite field Zp) into some encodings [a]S with respect to an
index set (also called an index) S ⊆ U , where S indicates the level of the
encoding [a]S and U denotes the top-level index set. We can add two elements
[a]S and [b]S belonging to the same index set S to obtain [a + b]S . We can also
multiply elements [a]S1

and [b]S2
to compute [a · b]S1∪S2

to obtain the encoding
of a · b with respect to the index set S1 ∪ S2, as long as the two index sets are
disjoint (S1 ∩ S2 = ∅). Finally, it is possible to test whether an element at level
U is an encoding of 0.

Let k and n be the lengths of the secret key K and input x, respectively,
and let U = {1, . . . , k + n}. Next, let {ai,b}i∈[k],b∈{0,1} and {cj,b}j∈[n],b∈{0,1} be
random scalars in Zp and let âi,b = [ai,b]{i} be the encoding of ai,b at index
level {i} and ĉj,b = [cj,b]{j+k} be the encoding of cj,b at index level {j + k}. The
starting point of our construction is the function

Fpp(K,x) =

⎡
⎣

k∏
i=1

ai,Ki

n∏
j=1

cj,xj

⎤
⎦
U

,

where the public parameters pp include {âi,b}i∈[k],b∈{0,1} and {ĉj,b}j∈[n],b∈{0,1}
as well as the public parameters of the multilinear map.

Since the encodings of the scalars ai,b and cj,b are included in pp, it is not
hard to see that the user in possession of the secret K can efficiently evaluate
this function at any point x by computing the multilinear map function with
the help of the encodings âi,Ki

and ĉj,xj
. To prove it secure and be able to

instantiate the scheme with existing multilinear map candidates, however, is not
straightforward as one needs to show that the adversary cannot mix too many
existing encodings and create an encoding of zero.

While a proof in the generic multilinear map model [Sho97,GGH+13b,BR14,
BGK+14,Zim15] is possible, we would like to rely on non-interactive com-
plexity assumptions over multilinear maps which are likely to hold in exist-
ing multilinear map constructions. To achieve this goal, we change the way

390 M. Abdalla et al.

in which the index sets are defined using techniques from program obfusca-
tion [GGH+13b,BGK+14,Zim15]. More precisely, we make use of the notion
of strong straddling sets [BGK+14,MSW14,Zim15,BMSZ16], which informally
allows to partition a set into two disjoint sets of subsets so that they cannot
be mixed. As in [MSW14,Zim15,BMSZ16], we first construct strong straddling
set systems over sets Si of k2 fresh symbols, for i ∈ {0, . . . , k} and use Si for
i ≥ 1 to prevent the adversary from mixing an exponential number of inputs. In
addition to that, and unlike [MSW14,Zim15,BMSZ16], we use S0 in the proof
to prevent the adversary from mixing an internal private representation of the
key (used by the reduction) with the parameters.

As we show in Sect. 4, the resulting scheme can be proven secure in the
generic multilinear map model. In particular, we are actually able to prove that
no polynomial-time adversary can construct a (non-trivial) encoding of zero.3 In
addition to that, as we show in Sect. 5, one benefit of using (strong) straddling
sets is that it allows us to prove the security of our construction under non-
interactive assumptions and avoid the use of idealized models.4 Finally, we also
prove the plausibility of these new assumptions in the full version [ABP17] by
showing that they hold in the generic multilinear map model.

We would like to stress that the security proof in Sect. 5 is a much stronger
result qualitatively than a direct proof in the generic multilinear map model since
the latter model is only used to show that our (non-interactive) assumptions are
plausible.

Concrete Instantiations. The security of our scheme relies on two new non-
interactive assumptions on multilinear maps. However, contrary to most classi-
cal assumptions (such as the Decisional Diffie-Hellman assumption for low-level
group elements) or the multilinear subgroup assumption used to construct wit-
ness encryption and indistinguishable obfuscation in [GLW14,GLSW15], our new
assumptions do not reveal any encoding of zero. More precisely, similarly to what
Badrinarayanan et al. did in [BMSZ16], we show in the ideal multilinear map
model, that given an instance for one of our assumptions, the adversary cannot
construct any encoding of zero (even at the top level). In particular, this implies
that our assumptions holds in the hybrid graded encoding model [GMM+16],
as this model just restricts the shape of the encodings of zero that the adver-
sary can construct, while we prove that the adversary cannot construct any such
encoding.

Our assumptions are therefore not broken by most of the attacks against mul-
tilinear maps [GGH13a,CHL+15,CGH+15,HJ16,CLLT16] including the annihi-
lation attacks [MSZ16,CGH17] and recent attacks such as [CLLT17,CVW18],
Hence, while the GGH13 and CLT15 multilinear map candidates [GGH13a,

3 Note that, to prove that two games are indistinguishable in the generic multilinear
map model, it suffices to prove that the adversary cannot generate encodings of zeros
in either game as it would only obtain random handles which carry no information.

4 The security result in Sect. 4 is therefore implied by the security result in Sect. 5.
Section 4 should be seen as a warm-up for Sect. 5.

Algebraic XOR-RKA-Secure PRFs from Post-Zeroizing Multilinear Maps 391

CLT15] might not be used for our construction because of recent attacks with-
out encodings of zero [CFL+16,ABD16,CJL16], our assumptions are plausi-
ble when implemented with the GGH155 or the CLT13 multilinear map can-
didates [GGH15,CLT13].

Additional Related Work. In addition to the work mentioned above, a few
other constructions of pseudorandom functions against related-key attacks for
linear and polynomial functions have been proposed in [BLMR13,LMR14]. While
their RKA-secure pseudorandom functions also require multilinear maps, their
security proofs are based on assumptions which reveal encodings of zero and
hence are subject to the multiple attacks mentioned above. Moreover, these
works do not consider XOR-related-key attacks.

Related-key security with respect to XOR relations has also been considered
in the context of Even-Mansour ciphers [CS15,FP15,Men16,WLZZ16]. Unlike
our work, which aims to prove security under well specified non-interactive com-
plexity assumptions, all these works rely on idealized models, which we want to
avoid.

In [FX15], the authors proposed efficient constructions of identity-based
encryption and key encapsulation schemes that remain secure against related-
key attacks for a large class of functions, which include XOR relations. While
their results are interesting, we remark that achieving RKA security for random-
ized primitives appears to be significantly easier than for deterministic ones, as
already noted by Bellare and Cash [BC10].

Finally, it is worth mentioning here that, due to the results of Bellare, Cash,
and Miller [BCM11], RKA security for pseudorandom functions can be trans-
ferred to several other primitives, including identity-based encryption, signatures,
and chosen-ciphertext-secure public-key encryption.

Organization. The rest of the paper is organized as follows. Section 2 presents
standard definitions of (related-key) pseudorandom functions and multilinear
maps. It also introduces the generic multilinear map model and the notion of
straddling set system. Section 3 explains our construction of XOR-RKA PRF.
Section 4 provides a first security proof of our new scheme in the generic multi-
linear map model. It also shows that is not feasible for an adversary to generate

5 The GGH15 multilinear map is defined over a graph. Index sets (and in particular
straddling set indexes) are defined independently of the graph structure of GGH15,
hence they can be implemented as on GGH13. Specifically, index sets are based
on the zi’s, as for GGH13, and not on the graph structure. More precisely, the
construction relies on distinct zi’s for every index and an encoding with index set
S depends on

∏
i∈S zi, exactly as on GGH13. This is completely independent of

the graph structure and then we can use a simple chain as a graph, as in the case
of indistinguishable obfuscation candidate. A clean exposition of how to implement
straddling sets for GGH15 is given in [Hal15, Sect. 4.2]. Note also that we consider
multilinear maps with plaintext space corresponding to a prime-order finite field.
This can be obtained using [Hal15, Sect. 4.1]. Attacks such as [CHKL18] do not
apply in this setting.

392 M. Abdalla et al.

non-trivial encodings of zero. Finally, Sect. 5 describes our main result, which
is a proof of security for our new construction under two new non-interactive
assumptions. The formal proof of security, as well as the proofs of our assump-
tions are detailed in the appendix. In particular, we prove that our assumptions
are not only secure in the generic multilinear map model, but also that it is not
feasible for an adversary to generate (non-trivial) encodings of zero. Hence, our
assumptions are plausible given some current instantiations of multilinear maps.

2 Definitions

2.1 Notation and Games

Notation. We denote by κ the security parameter. Let F : K × D → R be a
function that takes a key K ∈ K and an input x ∈ D and returns an output
F (K,x) ∈ R. The set of all functions F : K × D → R is then denoted by
Fun(K,D,R). Likewise, Fun(D,R) denotes the set of all functions mapping D to
R. If S is a set, then we denote by s

$← S the operation of picking at random s
in S. If �x is a vector then we denote by |�x| its length, so �x = (x1, . . . , x|�x|). For
a binary string x, we denote its length by |x|, xi its i-th bit, so x ∈ {0, 1}|x| and
x = x1 ‖ . . . ‖ xn.

Games [BR06]. Most of our definitions and proofs use the code-based game-
playing framework, in which a game has an Initialize procedure, procedures
to respond to adversary oracle queries, and a Finalize procedure. To execute a
game G with an adversary A , we proceed as follows. First, Initialize is executed
and its outputs become the input of A . When A executes, its oracle queries are
answered by the corresponding procedures of G. When A terminates, its outputs
become the input of Finalize. The output of the latter, denoted GA is called
the output of the game, and we let “GA ⇒ 1” denote the event that this game
output takes the value 1. The running time of an adversary by convention is the
worst case time for the execution of the adversary with any of the games defining
its security, so that the time of the called game procedures is included.

2.2 Pseudorandom Functions

Our definitions of pseudorandom functions and related-key secure pseudorandom
functions include a Setup algorithm that is used to generate public parameters.
For classical PRFs, the public parameters could actually just be included in the
key. However, to our knowledge, all the known proven RKA-secure PRFs [BC10,
ABPP14,LMR14,ABP15], use public parameters. Contrary to the key itself, the
public parameters cannot be modified by the related-key deriving function. In
our case, the Setup algorithm is specified explicitly in the construction for clarity.

PRFs [GGM86,BC10]. Consider a pseudorandom function Fpp: K × D → R
with public parameters pp. The advantage of an adversary A in attacking the
standard PRF security of a function Fpp is defined via

Advprf
Fpp

(A) = Pr
[
PRFRealAFpp

⇒ 1
]

− Pr
[
PRFRandA

Fpp
⇒ 1

]
.

Algebraic XOR-RKA-Secure PRFs from Post-Zeroizing Multilinear Maps 393

Game PRFRealFpp first runs the Setup algorithm to generate the public param-
eters pp which it outputs. It then picks K

$← K at random, and responds to
oracle query Fn(x) via Fpp(K,x). Game PRFRandFpp runs Setup and outputs
the public parameters pp. It then picks f

$← Fun(D,R) and responds to oracle
query Fn(x) via f(x).

RKA-PRFs [BK03,BC10]. Consider a pseudorandom function Fpp: K×D → R
with public parameters pp. Let Φ ⊆ Fun(K,K); the members of Φ are called RKD
(Related-Key Deriving) functions. An adversary is said to be Φ-restricted if its
oracle queries (φ, x) satisfy φ ∈ Φ. The advantage of a Φ-restricted adversary A
in attacking the RKA-PRF security of Fpp is defined via

Advprf-rka
Φ,Fpp

(A) = Pr
[
RKPRFRealAFpp

⇒ 1
]

− Pr
[
RKPRFRandA

Fpp
⇒ 1

]
.

Game RKPRFRealFpp first runs the Setup algorithm to generate the public
parameters which it outputs. It then picks a key K

$← K at random, and
responds to oracle query RKFn(φ, x) via Fpp(φ(K), x). Game RKPRFRandFpp

runs Setup to generate the public parameters pp and outputs them. It then
picks G

$← Fun(K,D,R) and K
$← K at random, and responds to oracle query

RKFn(φ, x) via G(φ(K), x). We say that Fpp is a Φ-RKA-secure PRF if for
any Φ-restricted adversary, its advantage in attacking the RKA-PRF security is
negligible.

XOR-RKA-PRFs. Let Fpp: K × D → R be a pseudorandom function with
public parameters pp and K = {0, 1}k for some integer k ≥ κ. We say that
Fpp is XOR-RKA-secure if it is a Φ⊕-RKA-secure PRF according to the above
definition, where Φ⊕ = {φs: K ∈ {0, 1}k �→ K ⊕ s ∈ {0, 1}k | s ∈ {0, 1}k}.

2.3 Multilinear Maps

We informally introduced multilinear maps in the introduction. Let us now intro-
duce formal definitions, following the notations of [Zim15].

Definition 1 (Formal Symbol). A formal symbol is a bitstring in {0, 1}∗.
Distinct variables denote distinct bitstrings, and we call a fresh formal symbol
any bitstring in {0, 1}∗ that has not already been assigned to a formal symbol.

Definition 2 (Index Sets). An index set (also called index) is a set of formal
symbols.

Definition 3 (Multilinear Map). A multilinear map is defined by a tuple
of six algorithms (MM.Setup,MM.Encode,MM.Add,MM.Mult,MM.ZeroTest,
MM.Extract) with the following properties:

– MM.Setup takes as inputs the security parameter κ in unary and an index set
U , termed the top-level index set, and generates public parameters mm.pp,
secret parameters mm.sp, and a prime number p;

394 M. Abdalla et al.

– MM.Encode takes as inputs secret parameters mm.sp, a scalar x ∈ Zp, and
an index set S ⊆ U and outputs:

MM.Encode(mm.sp, x,S) → [x]S ;

For the index set S = ∅, [x]∅ is simply the scalar x ∈ Zp.
– MM.Add takes as inputs public parameters mm.pp and two encodings with

same index set S ⊆ U and outputs:

MM.Add(mm.pp, [x]S , [y]S) → [x + y]S ;

– MM.Mult takes as inputs public parameters mm.pp and two encodings with
index sets S1,S2 ⊆ U respectively and outputs:

MM.Mult(mm.pp, [x]S1
, [y]S2

) →
{

[xy]S1∪S2
if S1 ∩ S2 = ∅

⊥ otherwise
;

– MM.ZeroTest takes as inputs public parameters mm.pp and a top-level encod-
ing (with index set U) and outputs:

MM.ZeroTest(mm.pp, [x]S) →
{
“zero” if S = U and x = 0
“non-zero” otherwise

;

– MM.Extract takes public parameters mm.pp and a top-level encoding [x]U as
inputs and outputs a canonical representation of [x]U .

Remark 4. The MM.Extract algorithm is needed for our pseudorandom func-
tion to be deterministic with all currently known instantiations of multilin-
ear maps [GGH13a,CLT13,GGH15,CLT15]. Indeed, in these instantiations, the
same group element has many different representations, and the extraction proce-
dure enables to extract a unique representation from any top-level group element
(i.e., of index U).

This extraction is necessary for our proof under non-interactive assumptions
in Sect. 5 to work. For our proof in the generic multilinear map model, this is not
required. For this reason, our generic multilinear map model does not support
extraction for the sake of simplicity. Actually, this only strengthens the result,
as before extraction, the adversary still has to possibility to add top-level group
elements while extracted values are not necessarily homomorphic.

Conventions. In order to ease the reading, we adopt the following conventions
in the rest of the paper:

– Scalars are noted with lowercase letter, e.g. a, b, . . .
– Encodings are noted either as their encoding at index set S, [a]S or simply

with a hat, when the index set is clear from the context, e.g. â, b̂, . . . In
particular, â is an encoding of the scalar a.

Algebraic XOR-RKA-Secure PRFs from Post-Zeroizing Multilinear Maps 395

– Index sets as well as formal variables are noted with uppercase letters, e.g.
X,S,S ,

– We denote by S1 · S2 or S1S2 the union of sets S1 and S2. This notation
implicitly assumes that the two sets are disjoint. If S1 is an element, then
S1 · S2 stands for {S1} · S2.

– The top-level index set is referred as U .

We also naturally extend these notations when clear from the context, so for
instance â + b̂ = MM.Add(mm.pp, â, b̂) and â · b̂ = MM.Mult(mm.pp, â, b̂).

2.4 Generic Multilinear Map Model

Our construction is proven secure under two non-interactive assumptions. One
is very classical and is a variant of DDH. The other is relatively simple but is
not classical and we prove it in the generic multilinear map model to show its
plausibility. That is why we need to introduce the generic multilinear map model,
in addition to the fact that we also prove in this model that our construction
does not enable the adversary to produce encodings of zero.

The generic multilinear map model is similar to the generic group model
[Sho97]. Roughly speaking, the adversary has only the capability to apply oper-
ations (add, multiply, and zero-test) of the multilinear map to encodings. A
scheme is secure in the generic multilinear map model if for any adversary break-
ing the real scheme, there is a generic adversary that breaks a modified scheme in
which encodings are replaced by fresh nonces, called handles, that it can supply
to a stateful oracle M , defined as follows:

Definition 5 (Generic Multilinear Map Oracle). A generic multilinear
map oracle is a stateful oracle M that responds to queries as follows:

– On a query MM.Setup(1κ,U), M generates a prime number p and parameters
mm.pp,mm.sp as fresh nonces chosen uniformly at random from {0, 1}κ. It
also initializes an internal table T ← [] that it uses to store queries and
handles. It finally returns (mm.pp,mm.sp, p) and set internal state so that
subsequent MM.Setup queries fail.

– On a query MM.Encode(z, x,S), with z ∈ {0, 1}κ and x ∈ Zp, it checks that
z = mm.sp and S ⊆ U and outputs ⊥ if the check fails, otherwise it generates
a fresh handle h

$← {0, 1}κ, adds h �→ (x,S) to T , and returns h.
– On a query MM.Add(z, h1, h2), with z, h1, h2 ∈ {0, 1}κ, it checks that z =

mm.pp, that h1 and h2 are handles in T which are mapped to values (x1,S1)
and (x2,S2) such that S1 = S2 = S ⊆ U , and returns ⊥ if the check fails. If
it passes, it generates a fresh handle h

$← {0, 1}κ, adds h �→ (x1 + x2,S) to
T , and returns h.

– On a query MM.Mult(z, h1, h2), with z, h1, h2 ∈ {0, 1}κ, it checks z = mm.pp,
that h1 and h2 are handles in T which are mapped to values (x1,S1) and
(x2,S2) such that S1∪S2 ⊆ U and S1∩S2 = ∅, and returns ⊥ if the check fails.
If it passes, it generates a fresh handle h

$← {0, 1}κ, adds h �→ (x1x2,S1 ∪S2)
to T , and returns h.

396 M. Abdalla et al.

– On a query MM.ZeroTest(z, h), with z, h ∈ {0, 1}κ, it checks z = mm.pp, that
h is a handle in T such that it is mapped to a value (x,U), and returns
⊥ if the check fails. If it passes, it returns “zero” if x = 0 and “non-zero”
otherwise.

Remark 6. In order to ease the reading, we actually use a slightly different
and more intuitive characterization of the generic multilinear map oracle in our
proofs. Informally, instead of considering encodings as nonces, we consider these
as formal polynomials (that can be computed easily), whose formal variables are
substituted with their join value distribution from the real game. In our con-
struction, formal variables are âi,b, ĉj,b, ẑi1,i2,b1,b2—please refer to the construc-
tion in Sect. 3 for details. This variant characterization follows the formalization
from [Zim15, Appendix B], please refer to this section for more formal definitions.

2.5 Actual Instantiations

While Definition 3 is a very natural definition and is what we actually would
like as a multilinear map, up to now, we still do not know any such construction.
Known constructions [GGH13a,CLT13,GGH15,CLT15] of multilinear maps are
actually “noisy” variants of our formal definition. That is, each encoding includes
a random error term, and similarly to what happens for lattice-based construc-
tions, this error term grows when performing operations (addition or multipli-
cation). Eventually, this error term becomes too big and the MM.ZeroTest can
no longer recover the correct answer. This noise implicitly restricts the number
of operations that can be performed. Intuitively, in current constructions, the
errors are added when performing an addition and multiplied when performing
a multiplication. However, the fact that current instantiations are noisy does
not pose any problem regarding our construction, as the number of operations
for evaluating our pseudorandom function is fixed and independent from the
instantiation of the multilinear map.

2.6 Straddling Sets

Our construction and its proofs use strong straddling sets [BGK+14,MSW14,
Zim15,BMSZ16], in order to prevent the adversary from mixing too many encod-
ings and creating encodings of zero. We recall their definition below. We first
recall that, for a set S , we say that {S1, . . . , Sk}, for some integer k, is a parti-
tion of S , if and only if ∪k

i=1Si = S , Si �= ∅ and Si∩Sj = ∅, for any 1 ≤ i, j ≤ k,
i �= j.

Definition 7 ((Strong) Straddling Set System). For k ∈ N, a k-straddling
set system over a set S consists of two partitions S0 = {S0,1, . . . , S0,k} and
S1 = {S1,1, . . . , S1,k} of S such that the following holds: for any T ⊆ S , if
T0, T1 are distinct subsequences of S0,1, . . . , S0,k, S1,1, . . . , S1,k such that T0 and
T1 are partitions of T , then T = S and T0 = Sb and T1 = S1−b for some
b ∈ {0, 1}.

Algebraic XOR-RKA-Secure PRFs from Post-Zeroizing Multilinear Maps 397

Moreover, we say that S0, S1 is a strong k-straddling set system if for any
1 ≤ i, j ≤ k, S0,i ∩ S1,j �= ∅.

A strong k-straddling set system is clearly also a k-straddling set system.
Intuitively, a k-straddling set system ensures that the only two solutions to
build a partition of S from combining sets in S0 or S1 are to use either every
element in S0 or every element in S1.

We are only using strong straddling set systems in this paper, for the sake of
simplicity. However, we only rely on the straddling set property in all our proofs,
except the proof of one of our non-interactive assumptions, namely the Sel-Prod
assumption. Let us now recall the construction of strong straddling set systems
from [MSW14]. For the sake of completeness, we also recall the construction of
straddling set systems from [BGK+14] in the full version [ABP17].

Construction 8 (Strong Straddling Set Systems [MSW14]). Let k be a
fixed integer and let S = {1, . . . , k2}. Then the following partitions Sb =
(Sb,1, . . . , Sb,k), for b ∈ {0, 1}, form a strong k-straddling set system over S :

S0,i = {k(i − 1) + 1, k(i − 1) + 2, . . . , ki}
S1,i = {i, k + i, 2k + i, . . . , k(k − 1) + i}.

This construction naturally extends to any set with k2 elements (see Fig. 1 for
an illustration of the case k = 5).

Fig. 1. Construction of strong 5-straddling set systems

Strong straddling set systems also satisfy the following lemma. Please refer
to [BMSZ16] for proofs of constructions and lemma.

Lemma 9. Let S0, S1 be a strong k-straddling set system over a set U . Then
for any T � U that can be written as a disjoint union of sets from S0, S1, there
is a unique b ∈ {0, 1} such that T = ∪i∈ISb,i for some I ⊆ {1, . . . , k}.

3 Our Construction

Let us now describe our construction of an XOR-RKA-secure pseudorandom
function, for security parameter κ, key set K = {0, 1}k, with k = 2κ, and domain
D = {0, 1}n for some integer n.

398 M. Abdalla et al.

3.1 Intuition

Construction Overview. The starting point of our construction is the Naor-
Reingold pseudorandom function, defined as NR : (�a, x) ∈ Z2n

p × {0, 1}n �→
g

∏n
i=1 ai,xi , where �a is the secret key. As we are interested in XOR relations, we

want the key to be a bitstring. A simple solution is to tweak this construction by
considering the function f�a,�c : (K,x) ∈ {0, 1}k × {0, 1}n �→ g

∏k
i=1 ai,Ki

·∏n
j=1 ci,xi ,

with �a ∈ Zk
p and �c ∈ Zn

p . It is easy to see that without knowing �a nor �c, the out-
puts of this function are computationally indistinguishable from random (they
correspond to NR evaluations with key (�a,�c) and on input (K,x)). However,
given a key K ∈ {0, 1}k, one needs the values �a,�c in order to be able to evaluate
this function, so these values need to be made public. Then, it becomes very
easy, even without knowing K, to distinguish this function from a random one.

That is why we use a multilinear map: this allows us to publicly reveal low-
level encodings of elements in �a and �c. These encodings let anyone evaluate
the function on any key K and any input x, while keeping the outputs of the
function computationally indistinguishable from random to an adversary that
does not know the secret key K. Formally, we let U = {1, . . . , k + n} be the set
of indices for a multilinear map, (ai,b)i∈{1,...,k},b∈{0,1} and (cj,b)j∈{1,...,n},b∈{0,1}
be random scalars in Zp and âi,b = [ai,b]{i} be an encoding of ai,b at index index
i and ĉj,b = [cj,b]{j+k} be an encoding of cj,b at index level j + k. We then
consider the function:

Fpp(K,x) =

⎡
⎣

k∏
i=1

ai,Ki

n∏
j=1

cj,xj

⎤
⎦
U

=
k∏

i=1

âi,Ki
·

n∏
j=1

ĉj,xj
,

with public parameters pp including the public parameters of the multilinear
map as well as {âi,b}i∈{1,...,k},b∈{0,1} and (ĉj,b)j∈{1,...,n},b∈{0,1}.

This construction can be easily proven to be an XOR-RKA secure pseudo-
random function in the generic multilinear map model, and it is also easy to
show that it does not let an adversary create encodings of zero. However, it
seems very hard to prove that this construction is secure under a non-interactive
assumption6. Hence, we modify this construction by using a more complex set of
indices and straddling sets. While this makes the proof in the generic multilinear
map model a bit harder, this allows us to prove the security of our construction
under non-interactive assumptions, whose hardness seems plausible even with
current instantiations of multilinear maps. In particular, we prove in the full ver-
sion [ABP17] that these assumptions are secure in the generic multilinear map
model and do not let an adversary generate (non-trivial) encodings of zero.

6 In particular, the strategy we would like to use (replacing âi,b by independent random
elements γ̂i when evaluating the function) does not work, as the adversary would
be able to distinguish between the two games by comparing âi, 0 and âi, 1 to γ̂i (by
computing the differences and applying MM.ZeroTest).

Algebraic XOR-RKA-Secure PRFs from Post-Zeroizing Multilinear Maps 399

Proof Overview. In the proof, we need to show that an oracle (s, x) �→ Fpp(K⊕
s, x) (where K is chosen secretly uniformly at random) looks indistinguishable
from a random oracle. We first remark that we can write Fpp(K ⊕ s, x) as:

Fpp(K ⊕ s, x) =
k∏

i=1

γ̂i,si
·

n∏
j=1

ĉj,xj
,

where γ̂i,b = [ai,Ki⊕b]{i} is an encoding of ai,Ki⊕b for i ∈ {1, . . . , k}. Thus, instead
of using K ∈ {0, 1}k as the key, we can use an alternative private representation:
(γ̂i,b)i∈{1,...,k}.

The main idea of our reduction is to be able to replace this private repre-
sentation of the key, by completely random group elements, independent of the
public parameters. We remark that the function

((γ̂i,b)i∈{1,...,k}, s) �→
k∏

i=1

γ̂i,si
,

is a slight variant of the Naor-Reingold pseudorandom function with
(γ̂i,b)i∈{1,...,k} being the key and s ∈ {0, 1}k the input. It is actually possible
to prove it is a pseudorandom function under a DDH-like assumption, and from
that to prove that our construction is XOR-RKA-secure.

Unfortunately, it is obviously not true that given the public parameters
(âi,b)i∈{1,...,k},b∈{0,1} (which are encodings of ai,b), the real group elements
(γ̂i,b)i∈{1,...,k} (which are encodings ai,Ki⊕b) are indistinguishable from encod-
ings of independent uniform values: it is straightforward to check that âi,b cor-
responds to the same scalar as γ̂i,b or γ̂i,1−b (depending whether Ki = 0 or
1), using MM.ZeroTest (and after multiplying these group elements by the same
group elements to get a top-level encodings). Our solution is to use more complex
index sets based on strong straddling sets to solve this issue.

The first step consists in using a first strong k-straddling set S0: we use the
indices of the first partition for âi,0 and âi,1 (for each i, âi,0 and âi,1 get the same
index), and the indices of the second partition for γ̂i,0 and γ̂i,1. This prevents
the adversary from comparing one group element âi,b with a group element γ̂i,b′

directly. But this is not sufficient, as the adversary still could check whether:

k∏
i=1

(âi,0 + âi,1) =
k∏

i=1

(γ̂i,0 + γ̂i,1),

for example. When (γ̂i,b)i∈{1,...,k} are correctly generated, the equality is satis-
fied, while otherwise, it is not with overwhelming probability. More generally,
the adversary can generate expression which contains an exponential number of
monomials when expanded. We do not know how to prove anything reasonable
on these expressions, so instead, we are using k additional strong k-straddling
sets to prevent this from happening, in a similar way as they are used in [Zim15].

400 M. Abdalla et al.

3.2 Actual Construction

Index Set. First, similarly to [Zim15], for each i ∈ {0, . . . , k}, we construct
a strong k-straddling set system over a set Si of 2k − 1 fresh formal symbols.
We denote by Si,b the two partitions forming each of this straddling set, for
b ∈ {0, 1}, and by Si,b,j their elements, for 1 ≤ j ≤ k. We also define:

BitCommiti,b = Si,b,i BitFilli1,i2,b1,b2 = Si1,b1,i2 · Si2,b2,i1

for any i, i1, i2 ∈ {1, . . . , k} and b, b1, b2 ∈ {0, 1}. Intuitively, the straddling set
systems Si for i ≥ 1 play the same role as in [Zim15] (preventing the adversary
from mixing an exponential number of inputs), while S0 is used in the proof
to prevent the adversary from mixing the private representation of the key with
the public parameters.

Let Xj be fresh formal symbols for j ∈ {1, . . . , n}. We then define the top-
level index set as follows:

U =
k∏

I=0

Si

n∏
j=1

Xj .

Setup. The algorithm Setup first generates the parameters (mm.pp,mm.sp, p)
for the multilinear map by running MM.Setup(1κ,U). Then it generates the
following elements:

ai,b
$← Zp for i ∈ {1, . . . , k} and b ∈ {0, 1}

âi,b ← [ai,b]S0,0,iBitCommiti,b
for i ∈ {1, . . . , k} and b ∈ {0, 1}

cj,b
$← Zp for j ∈ {1, . . . , n} and b ∈ {0, 1}

ĉj,b ← [cj,b]Xj
for j ∈ {1, . . . , n} and b ∈ {0, 1}

ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2
for i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
with i1 < i2,

and outputs the following parameters:

pp =
(
mm.pp, (âi,b)i,b, (ĉj,b)j,b, (ẑi1,i2,b1,b2)i1,i2,b1,b2

)
.

Intuitively, BitCommiti,b = Si,b,i is associated to the (public) encoding used
to evaluate the function if the i-th bit of the key is b. By definition of a straddling
set, the only way to reach the top-level U , which contains Si, once we have used
an encoding with index SI,b,i is to use every index Si,b,j with j �= i. These is done
by multiplying the terms ẑi,j,Ki,Kj

. Therefore, using Ki = b is like “committing”
to the partition Si,b of Si, and terms ẑi,j,Ki,Kj

are then used to “fill” this
partition.

Remark 10. For the sake of simplicity, we set ẑi1,i2,b1,b2 to be encodings of 1, but
one could also simply set it to encodings of a random value, as long as they are
all encodings of the same value.

Algebraic XOR-RKA-Secure PRFs from Post-Zeroizing Multilinear Maps 401

Evaluation. The output of the PRF on a key K ∈ {0, 1}k and an input x ∈
{0, 1}n is

Fpp(K,x) = MM.Extract

⎛
⎝

k∏
i=1

âi,Ki

n∏
j=1

ĉj,xj

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,Ki1 ,Ki2

⎞
⎠ .

We can re-write it as:

Fpp(K,x) = MM.Extract

⎛
⎝

⎡
⎣

k∏
i=1

ai,Ki

n∏
j=1

cj,xi

⎤
⎦
U

⎞
⎠ .

Extraction. As explained in Remark 4, the role of extraction (MM.Extract)
is dual. First, it ensures the correctness of the PRF, as in currently known
instantiations of multilinear maps [GGH13a,CLT13,GGH15,CLT15], a scalar
has many different encodings. Second, it is used in our proof of security under
non-interactive assumptions in Sect. 5, as in the security proof we change the
way the group element

k∏
i=1

âi,Ki

n∏
j=1

ĉj,xj

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,Ki1 ,Ki2

is computed. We indeed recall that due to the fact that a scalar has many
different encodings, any group element (as the above one) leaks information on
the exact computation used to obtain it, instead of just depending on its discrete
logarithm. The usual way to solve this issue is to randomize the resulting group
element using encodings of zero. However, in this paper, we do not want to use
any encoding of zeros, hence the requirement for this extraction. For the proof
in the generic multilinear map model in Sect. 4, this is not an issue, and we just
ignore the extraction (see Remark 4).

4 Security in the Generic Multilinear Map Model

In this section, we prove the security of our construction in the generic mul-
tilinear map model. As already explained at the end of Sect. 3, we suppose in
this section that no extraction is performed. We actually even prove that no
polynomial-time adversary can construct a (non-trivial) encoding of zero, in
any of the two experiments RKPRFReal and RKPRFRand, with non-negligible
probability. This implies, in particular, that these two experiments cannot be
distinguished by a polynomial-time adversary, in the generic multilinear map
model, as an adversary only sees handles which only leak information when two
of them correspond to the same (top-level) element.

This section is mainly a warm-up to familiarize with the model, since the
fact that we prove our construction under some assumptions that are proven

402 M. Abdalla et al.

secure in the generic multilinear map model and proven to not let an adversary
generate encodings of zero also implies the results below. However, it is very
simple to modify the proof below in order to prove the security of the simplified
construction proposed in Sect. 3.1, which is of independent interest.

We first need to formally define the notion of (non-trivial) encoding of zero.
We follow the definition of Badrinarayanan et al. [BMSZ16].

Definition 11 ((Non-trivial) encoding of zero). An adversary A in the
generic multilinear map model with multilinear map oracle M returns a (non-
trivial) encoding of zero if it returns a handle h (output by M) such that h
corresponds to the element 0 in M ’s table and the polynomial corresponding to
the handle is not identically null.

Theorem 12 (Impossibility of constructing encodings of zero). In the
generic multilinear map model with oracle M , for any adversary A making at
most qM queries to the oracle M and qRKFn queries to the oracle RKFn, we
have:

Pr
[
PRFRealAFpp

⇒ an encoding of 0
]

≤ qM

(
qRKFn

2k
+

k + n

p

)

and

Pr
[
PRFRandA

Fpp
⇒ an encoding of 0

]
≤ qM

k + n

p
.

Proof (Theorem 12). We first introduce a technical lemma, whose proof is given
in the full version [ABP17].

Lemma 13. Let k and n be two positive integers. Let U be the index defined in
Sect. 3. Let ẑi1,i2,b1,b2 = [1]BitFilli1,i2,b1,b2

for 1 ≤ i1 < i2 ≤ k and b1, b2 ∈ {0, 1}.
Let Z1 and Z2 be two subsets of {(i1, i2) | 1 ≤ i1 < i2 ≤ k} × {0, 1}2. If
t1 =

∏
(i1,i2,b1,b2)∈Z1

ẑi1,i2,b1,b2 and t2 =
∏

(i1,i2,b1,b2)∈Z2
ẑi1,i2,b1,b2 have the same

index set, then Z1 = Z2.

We need to show that the adversary cannot generate a non-trivial encoding of
zero.

RKPRFRandA
Fpp

. We start by proving it in the game RKPRFRandA
Fpp

. In this
game, except for ẑi1,i2,b1,b2 , all the handles the adversary sees correspond to
fresh new formal variables, as the oracle RKFn only returns fresh new formal
variables (of index U). The only polynomials the adversary can generate are
therefore of the form:

P =
L∑

�=1

Q�

∏
(i1,i2,b1,b2)∈Z�

ẑi1,i2,b1,b2 ,

where Q� are polynomials over all the elements except ẑi1,i2,b1,b2 , and Z� are
distinct subsets of {(i1, i2) | 1 ≤ i1 < i2 ≤ k} × {0, 1}2 (L might be exponential
in qM , but that does not matter for what follows).

Algebraic XOR-RKA-Secure PRFs from Post-Zeroizing Multilinear Maps 403

Let us now show that if P is not the zero polynomial, then when replacing
ẑi1,i2,b1,b2 by 1, the resulting polynomial is still a non-zero polynomial. From
Lemma 13, one can assume that elements

∏
(i1,i2,b1,b2)∈Z�

ẑi1,i2,b1,b2 all have dis-
tinct indices. Therefore, the polynomials Q� all have distinct indices too. No
monomial in two different Q� of the sum

∑
� Q� (when forgetting the indices)

can therefore cancel out, otherwise this would mean that the adversary can
construct two equal monomials (without ẑi,b) with two different indices. This
is impossible as, except for ẑi,b, two distinct handles correspond to two fresh
variables (or in other words, all the handles except ẑi,b are encodings of scalars
chosen uniformly and independently at random).

We therefore simulate the oracle M as follows: we do everything as normal,
but we make the zero-testing oracle always output “non-zero” except when its
input corresponds to the zero polynomial. The Schwarz-Zippel lemma ensures
that any non-zero polynomial of degree at most k + n and whose variables are
fixed to uniformly random values in Zp does not evaluate to zero, except with
probability at most (k + n)/p. In other words, the zero-testing oracle outputs
“zero” on a non-zero polynomial with probability at most (k + n)/p, as this
polynomial remains non-zero and has degree at most (k + n), when we replace
ẑi1,i2,b1,b2 by 1. As we can suppose that the zero-testing oracle is queried with
the output of the adversary without loss of generality, using at most qM hybrid
games (replacing one-by-one every output of the zero-testing oracle with “non-
zero”) we get that:

Pr
[
PRFRandA

Fpp
⇒ an encoding of 0

]
≤ qM

k + n

p
.

RKPRFRealAFpp
. Let us now look at the game RKPRFRealAFpp

. The analysis is
more complicated as the adversary has access to new formal variables

ŷs,x = Fpp(K ⊕ s, x)

returned by queries RKFn(φs, x).
We use the same simulator as in the previous case. We need to show that if a

polynomial P produced by the adversary is not zero, it remains non-zero when
ẑi1,i2,b1,b2 is replaced by 1 and ŷs,x is replaced by its value.

We first consider the case where P is not a top-level polynomial. In this case,
P cannot contain these new variables ŷs,x as these variables are top-level. Then,
as in RKPRFRandA

Fpp
, the zero-testing oracle outputs “non-zero” except with

probability at most (k + n)/p.
Let us now suppose that P is a top-level polynomial. This polynomial has

the form:

P =
L∑

�=1

Q�

k∏
i=1

âi,K′
�,i

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,K′
�,i1

,K′
�,i2

+
q′∑

j=1

λj ŷsj ,xj
,

with L being a non-negative integer (possibly exponential in qM), Q� being
non-zero polynomials in the formal variables ĉj,b, K ′

� being distinct bitstrings

404 M. Abdalla et al.

in {0, 1}k (chosen by the adversary), q′ an integer less or equal to qRKFn,
(s1, x1), . . . , (sq′ , xq′) queries to RKFn, and λj some scalar in Zp. Indeed, the
adversary can ask for an encoding of any polynomial of the form Q�

∏k
i=1 âi,K′

�,i
,

and by definition of straddling set systems, the unique way to obtain a top-
level encoding from such a polynomial is by multiplying it with an encoding of∏k

i1=1

∏k
i2=i1+1 ẑi1,i2,K′

�,i1
,K′

�,i2
.

Let us suppose that P is not zero but becomes zero when ẑi1,i2,b1,b2 is replaced
by 1 and ŷs,x is replaced by its value. In this case, in particular, the first monomial
(for any order) of the term

Q1

k∏
i=1

âi,K′
1,i

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,K′
1,i1

,K′
1,i2

necessarily needs to be canceled out by some ŷsj ,xj
. The probability over K

$←
{0, 1}k that this happens is at most:

Pr [∃j′ ∈ {1, . . . , q′}, K ′
1 = K ⊕ sj′] ≤ q′

2k
≤ qRKFn

2k
.

As before, thanks to the Schwarz-Zippel lemma, we get that the zero-testing
oracle outputs “zero”, on input a non-zero polynomial, with probability at most:

qRKFn

2k
+

k + n

p
.

This concludes the proof of Theorem 12. ��

Remark 14. We never use the properties of the straddling set system S0 in
this proof. These properties are only used in our proof under non-interactive
assumptions in Sect. 5.

We obtain the following immediate corollary.

Corollary 15 (Security in the generic multilinear map model). Let A
be an adversary in the generic multilinear map model with oracle M against the
XOR-RKA security of the PRF F defined in Sect. 3. If A makes at most qM
queries to the oracle M and qRKFn queries to the oracle RKFn, then:

Advprf-rka
Φ⊕,Fpp

(A) ≤ qM qRKFn

2k
+

2qM (k + n)
p

.

Proof (Corollary 15). We just consider an intermediate game where we simulate
everything as before except the zero-testing oracle which always outputs “non-
zero” unless its input is zero, as a polynomial. This game is indistinguishable
from both RKPRFRealAFpp

and RKPRFRandA
Fpp

according to Theorem 12 (up to
the bounds in this lemma). Corollary 15 follows. ��

Algebraic XOR-RKA-Secure PRFs from Post-Zeroizing Multilinear Maps 405

5 Security Under Non-interactive Assumptions

In this section, we show that our construction is an XOR-RKA PRF under two
non-interactive assumptions defined below.

5.1 Assumptions

We use two assumptions that we call the (k, n,X, Y)-XY-DDH assumption,
which is roughly a generalization of the standard DDH assumption, and the
(k, n)-Sel-Prod assumption. We show in the full version [ABP17] that both
these assumptions are secure in the generic multilinear map model, and even
that an adversary against these assumptions cannot generate encodings of
zero. As explained in the “concrete instantiations” paragraph of Sect. 1, con-
trary to most assumptions considered on multilinear maps (e.g., classical DDH-
like assumptions and the multilinear subgroup assumption [GLW14,GLSW15]),
these assumptions are therefore plausible at least with two current instantiations
of multilinear maps [CLT13,GGH15].

To ensure the impossibility of generating encodings of zero, in these two
assumptions, we restrict the adversary’s capabilities as follows: it is only pro-
vided parameters mm.pp, so it can only run MM.Add,MM.Mult and MM.ZeroTest
(and of course use the elements generated by the assumption), but we do not
allow the adversary to generate new encodings of a chosen scalar. In particular,
this forces us to let the assumption contain the group elements ẑi1,i2,b1,b2 . It is
straightforward to get rid of these additional elements by allowing the adver-
sary to generate any element of the multilinear map, at the cost of getting an
implausible assumption under current instantiations of multilinear maps.

Finally, our assumption implicitly contains a list L of a polynomial number
of encodings of independent uniform random values at non-zero index, index
being implicit parameters of the assumption. We could avoid this artifact with
the previous proposition as well, or by giving a sufficient number of encodings
of 0 and 1, but once again, in that case, the assumption would most likely not
hold with currently known multilinear maps instantiations. We believe this is a
small price to pay to get plausible assumptions, as the resulting assumptions are
still non-interactive.

We insist on the fact that the encodings in L are encodings of independent
uniformly random scalars. At least in the generic multilinear group model, our
assumptions hold whatever the list of indices of these encodings is. We do not
have any constraint on this list of indices.

Definition 16 ((k, n,X, Y)-XY-DDH). Let k and n be two positive integers.
Let X and Y be two non-empty and disjoint indices in the index set U of
our construction in Sect. 3. The advantage of an adversary D against the
(k, n,X, Y)-XY-DDH problem is:

Adv(k,n,X,Y)-XY-DDH(D) = Pr
[
(k, n,X, Y)-XY-DDH-LD ⇒ 1

]

−Pr
[
(k, n,X, Y)-XY-DDH-RD ⇒ 1

]
,

406 M. Abdalla et al.

where the games (k, n,X, Y)-XY-DDH-LD and (k, n,X, Y)-XY-DDH-RD are
defined in Fig. 2. The (n, k,X, Y)-XY-DDH assumption holds when this advan-
tage is negligible for any polynomial-time adversary D .

Fig. 2. Games defining the advantage of an adversary D against the XY-DDH and
Sel-Prod problems.

This assumption is very close to the classical DDH assumption with indices,
with two main differences: the presence of elements ẑi1,i2,b1,b2 which are necessary
to prove our construction and the implicit presence of encodings of random
values at non-zero indices (list L described previously) instead of a polynomial
number of encodings of 0 and 1. Without the elements ẑi1,i2,b1,b2 , the proof
of this assumption in the generic multilinear map model would be completely
straightforward. The difficulty of the proof is to deal with these elements.

Algebraic XOR-RKA-Secure PRFs from Post-Zeroizing Multilinear Maps 407

In the security proof of our construction, this assumption is used in a similar
way as the DDH assumption in the proof of the Naor-Reingold PRF.

Definition 17 ((k, n)-Sel-Prod). Let k and n be two positive integers. The
advantage of an adversary D against the (k, n,X, Y)-Sel-Prod problem is:

Adv(k,n)-Sel-Prod(D) = Pr
[
(k, n)-Sel-Prod-LD ⇒ 1

]

−Pr
[
(k, n)-Sel-Prod-RD ⇒ 1

]
,

where the games (k, n)-Sel-Prod-LD and (k, n)-Sel-Prod-RD are defined in Fig. 2.
The (n, k)-Sel-Prod assumption holds when this advantage is negligible for any
polynomial-time adversary D .

Intuitively, this assumption states that, given a low-level encodings of ai,0

and ai,1 at indices S0,i from the first partition of the straddling set S , where
i ∈ {1, . . . , k}, then it is hard to distinguish low-level encodings of γi,0 = ai,Ki

and γi,1 = ai,1−Ki
(where Ki is a random bit) at indices S1,i from encodings

of fresh random values (at the same index). The hardness of this assumption
crucially relies on two facts: First, one can only compare top-level encodings,
and thus, the only way to compare elements whose index is in the first partition
of S with elements whose index is in the second partition is to combine k such
elements to reach the same index. Second, the latter can be hard only if k, the
size of the partitions, is big. Indeed, assume k = 2, then one can just guess
K1 and K2 and check if the relation carries on between encodings of ai,b and
encodings of γi,b. Therefore, we show that if k is big enough, this assumption
holds in the generic multilinear map model.

As explained in Sect. 3.1, this assumption is used to switch from the key K
to a private independent key represented by the encodings γi,b. More precisely,
under this assumption, we can replace the encodings âi,Ki⊕si

at index from the
first partition of the straddling set S0, used in the computation of the output
with relation s, to encodings of uniformly random scalars at index from the
second partition of S0. In particular, doing this change, we no longer need to
know the key K to simulate correctly the output, but only the relations s for
each query.

Remark 18. For the sake of simplicity, we do not explicitly specify the noise level
in our assumptions. It can easily be made to work with our proof.

5.2 Security of Our Construction

In this whole section, we set S =
∏k

i=0 Si and S ′ =
∏k

i=1 Si, so S = S0 ·S ′.
Please refer to Sect. 3 for notation.

Theorem 19 (Security under non-interactive assumptions). Let A be a
polynomial-time adversary against the XOR-RKA security of the PRF F defined
in Sect. 3. We suppose that A makes at most qRKFn queries to the oracle RKFn.

408 M. Abdalla et al.

We can define an adversary D against the (k, n)-Sel-Prod problem, (k−1) adver-
saries Bi′ against the (k, n,S ′ ∏i′−1

i=1 S0,1,i, S0,1,i′)-XY-DDH problem for i′ ∈
{2, . . . , k}, and n adversaries Cj′ against the (k, n,S

∏j′−1
j=1 Xj ,Xj′)-XY-DDH

problem for j′ ∈ {1, . . . , n}, such that:

Advprf-rka
Φ⊕,Fpp

(A) ≤ Adv(k,n)-Sel-Prod(D)

+
k∑

i′=2

qRKFn · Adv(k,n,S ′ ∏i′−1
i=1 S0,1,i,S0,1,i′)-XY-DDH(Bi′)

+
n∑

j′=1

qRKFn · Adv(k,n,S
∏j′−1

j=1 Xj ,Xj′)-XY-DDH(Cj′).

Furthermore, all these adversaries run in polynomial time (their running time
is approximately the same as A).

Below, we provide a sketch of the proof. The full proof is given in the full
version [ABP17].

Sketch of Proof. The proof follows a sequence of hybrid games. The first
hybrid corresponds exactly to RKPRFRealAF , while the last game corresponds to
RKPRFRandA

F . Here is how we proceed. First, instead of computing the output
using encodings âi,b of ai,b with index S0,0,iBitCommiti,b, we use encodings γ̂i,b

of ai,Ki⊕b with index S0,1,iBitCommiti,Ki⊕b. That is, we use the second partition
S0,1 of the straddling set S0 instead of the first one (S0,0) to reach top-level
index (which contains S0). Also, we now compute the output using only the
relation s instead of the key K. More precisely, the output on a query (s, x) is
computed as:

MM.Extract

⎛
⎝

k∏
i=1

γ̂i,si

n∏
j=1

ĉj,xj

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,Ki1 ,Ki2

⎞
⎠ ,

which can be computed without knowing K. This does not change anything
regarding the output (thanks to the extraction), so these two games are indis-
tinguishable.

However, using the (k, n)-Sel-Prod assumption, we can now switch the encod-
ings γ̂i,b to encodings of fresh random scalars γi,b ∈ Zp. The rest of the proof
is very similar to the proof of the Naor-Reingold pseudorandom function. We
do k + n hybrid games, where in the j-th hybrid, we just switch products of
encodings

∏j
i=1 γ̂i,si

to encodings of uniformly fresh random values using the
XY-DDH assumption with the proper indices. These modifications are done in a
lazy fashion to obtain a polynomial-time reduction.

Acknowledgements. The first author was supported in part by the European
Research Council under the European Union’s Seventh Framework Programme

Algebraic XOR-RKA-Secure PRFs from Post-Zeroizing Multilinear Maps 409

(FP7/2007–2013 Grant Agreement 339563 – CryptoCloud). The second author was
supported in part by the Defense Advanced Research Projects Agency (DARPA) and
Army Research Office (ARO) under Contract No. W911NF-15-C-0236. Part of this
work was done while the second author was at École normale supérieure, Paris, France,
and at IBM Research, Yorktown Heights, NY, USA. Part of this work was done while
the third author was at École normale supérieure, Paris, France, and at UCLA, Los
Angeles, CA, USA.

References

[ABD16] Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched
NTRU assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53018-4 6

[ABP15] Abdalla, M., Benhamouda, F., Passelègue, A.: An algebraic framework for
pseudorandom functions and applications to related-key security. In: Gennaro,
R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 388–409. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 19

[ABP17] Abdalla, M., Benhamouda, F., Passelègue, A.: Algebraic XOR-RKA-secure
pseudorandom functions from post-zeroizing multilinear maps. Cryptology ePrint
Archive, Report 2017/500 (2017). http://eprint.iacr.org/2017/500

[ABPP14] Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key
security for pseudorandom functions beyond the linear barrier. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 77–94. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-44371-2 5

[ABPP18] Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key
security for pseudorandom functions beyond the linear barrier. J. Cryptol. 31(4),
917–964 (2018)

[AW14] Applebaum, B., Widder, E.: Related-key secure pseudorandom functions: the
case of additive attacks. Cryptology ePrint Archive, Report 2014/478 (2014).
http://eprint.iacr.org/2014/478

[BC10] Bellare, M., Cash, D.: Pseudorandom functions and permutations provably
secure against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 666–684. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14623-7 36

[BCM11] Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key
attacks and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS,
vol. 7073, pp. 486–503. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25385-0 26

[BDK05] Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle
attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 30

[BDK+10] Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.:
Key recovery attacks of practical complexity on AES-256 variants with up to 10
Rounds. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 299–319.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 15

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfusca-
tion against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-55220-5 13

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-47989-6_19
http://eprint.iacr.org/2017/500
https://doi.org/10.1007/978-3-662-44371-2_5
http://eprint.iacr.org/2014/478
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/11426639_30
https://doi.org/10.1007/978-3-642-13190-5_15
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13

410 M. Abdalla et al.

[Bih94] Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48285-7 34

[BK03] Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-39200-9 31

[BLMR13] Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomor-
phic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40041-4 23

[BMSZ16] Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfus-
cation: new mathematical tools, and the case of evasive circuits. In: Fischlin, M.,
Coron, J.S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 27

[BP14] Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudoran-
dom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 20

[BR06] Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 25

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits
via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 1

[CFL+16] Cheon, J.H., Fouque, P.A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of
the new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3 20

[CGH+15] Coron, J.S., et al.: Zeroizing without low-level zeroes: new MMAP attacks
and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 12

[CGH17] Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching pro-
gram obfuscators. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 10

[CHKL18] Cheon, J.H., Hhan, M., Kim, J., Lee, C.: Cryptanalysis on the HHSS obfus-
cation arising from absence of safeguards. IEEE Access 6, 40096–40104 (2018)

[CHL+15] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the
multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 1

[CJL16] Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and crypt-
analysis of the GGH multilinear map without a low-level encoding of zero. LMS J.
Comput. Math. 19A, 255–266 (2016)

[CLLT16] Coron, J.S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15
multilinear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 607–628. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53008-5 21

https://doi.org/10.1007/3-540-48285-7_34
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-662-49890-3_20
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-53008-5_21

Algebraic XOR-RKA-Secure PRFs from Post-Zeroizing Multilinear Maps 411

[CLLT17] Coron, J.S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indis-
tinguishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 41–58. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-
54365-8 3

[CLT13] Coron, J.S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the
integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 26

[CLT15] Coron, J.S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 13

[CS15] Cogliati, B., Seurin, Y.: On the provable security of the iterated even-mansour
cipher against related-key and chosen-key attacks. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 584–613. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 23

[CVW18] Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branch-
ing programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 20

[FP15] Farshim, P., Procter, G.: The related-key security of iterated Even-Mansour
ciphers. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 342–363. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5 17

[FX15] Fujisaki, E., Xagawa, K.: Efficient RKA-secure KEM and IBE schemes against
invertible functions. In: Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT
2015. LNCS, vol. 9230, pp. 3–20. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22174-8 1

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lat-
tices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 1

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all circuits. In:
54th Annual Symposium on Foundations of Computer Science, pp. 40–49. IEEE
Computer Society Press, October 2013

[GGH15] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from
lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
J. ACM 33(4), 792–807 (1986)

[GLSW15] Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfus-
cation from the multilinear subgroup elimination assumption. In: Guruswami, V.
(ed.) 56th Annual Symposium on Foundations of Computer Science, pp. 151–170.
IEEE Computer Society Press, October 2015

[GLW14] Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance inde-
pendent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 426–443. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 24

[GMM+16] Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.:
Secure obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53644-5 10

https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-662-47989-6_13
https://doi.org/10.1007/978-3-662-46800-5_23
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-662-48116-5_17
https://doi.org/10.1007/978-3-319-22174-8_1
https://doi.org/10.1007/978-3-319-22174-8_1
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-662-44371-2_24
https://doi.org/10.1007/978-3-662-44371-2_24
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10

412 M. Abdalla et al.

[Hal15] Halevi, S.: Graded encoding, variations on a scheme. Cryptology ePrint
Archive, Report 2015/866 (2015). http://eprint.iacr.org/2015/866

[HJ16] Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3 21

[JW15] Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable
codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–
480. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 19

[Knu93] Knudsen, L.R.: Cryptanalysis of LOKI 91. In: Seberry, J., Zheng, Y. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-57220-1 62

[LMR14] Lewi, K., Montgomery, H., Raghunathan, A.: Improved constructions
of PRFs secure against related-key attacks. In: Boureanu, I., Owesarski, P.,
Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 44–61. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07536-5 4

[Men16] Mennink, B.: XPX: generalized tweakable Even-Mansour with improved secu-
rity guarantees. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814,
pp. 64–94. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 3

[MSW14] Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic
attacks. Cryptology ePrint Archive, Report 2014/878 (2014). http://eprint.iacr.org/
2014/878

[MSZ16] Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps:
cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 22

[NR97] Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-
random functions. In: 38th Annual Symposium on Foundations of Computer Sci-
ence, pp. 458–467. IEEE Computer Society Press, October 1997

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems. In:
Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 18

[WLZZ16] Wang, P., Li, Y., Zhang, L., Zheng, K.: Related-key almost universal hash
functions: definitions, constructions and applications. In: Peyrin, T. (ed.) FSE
2016. LNCS, vol. 9783, pp. 514–532. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-52993-5 26

[Zim15] Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 15

http://eprint.iacr.org/2015/866
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/978-3-662-46494-6_19
https://doi.org/10.1007/3-540-57220-1_62
https://doi.org/10.1007/978-3-319-07536-5_4
https://doi.org/10.1007/978-3-662-53018-4_3
https://doi.org/10.1007/978-3-662-53018-4_3
http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2014/878
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-662-52993-5_26
https://doi.org/10.1007/978-3-662-52993-5_26
https://doi.org/10.1007/978-3-662-46803-6_15

Homomorphic Encryption

Numerical Method for Comparison
on Homomorphically Encrypted Numbers

Jung Hee Cheon(B), Dongwoo Kim, Duhyeong Kim, Hun Hee Lee,
and Keewoo Lee

Department of Mathematical Sciences, Seoul National University, Seoul, South Korea
{jhcheon,dwkim606,doodoo1204,hunheelee,activecondor}@snu.ac.kr

Abstract. We propose a new method to compare numbers which are
encrypted by Homomorphic Encryption (HE). Previously, comparison
and min/max functions were evaluated using Boolean functions where
input numbers are encrypted bit-wise. However, the bit-wise encryption
methods require relatively expensive computations for basic arithmetic
operations such as addition and multiplication.

In this paper, we introduce iterative algorithms that approximately
compute the min/max and comparison operations of several numbers
which are encrypted word-wise. From the concrete error analyses, we
show that our min/max and comparison algorithms have Θ(α) and
Θ(α log α) computational complexity to obtain approximate values within
an error rate 2−α, while the previous minimax polynomial approxima-
tion method requires the exponential complexity Θ(2α/2) and Θ(

√
α ·

2α/2), respectively. Our algorithms achieve (quasi-)optimality in terms
of asymptotic computational complexity among polynomial approxima-
tions for min/max and comparison operations. The comparison algorithm
is extended to several applications such as computing the top-k elements
and counting numbers over the threshold in encrypted state.

Our method enables word-wise HEs to enjoy comparable performance
in practice with bit-wise HEs for comparison operations while show-
ing much better performance on polynomial operations. Computing an
approximate maximum value of any two �-bit integers encrypted by
HEAAN, up to error 2�−10, takes only 1.14 ms in amortized running
time, which is comparable to the result based on bit-wise HEs.

Keywords: Homomorphic Encryption · Comparison · Min/Max ·
Iterative method

1 Introduction

Homomorphic Encryption (HE) is a cryptographic primitive which allows arith-
metic operations over encrypted data without any decryption process. From this
distinctive property, HE has received lots of attention in many privacy preserving
applications. The HE schemes can be classified as word-wise HEs [8,13,26,29]
and bit-wise HEs [18,23] according to the basic operations provided by them.
Basic operations of word-wise HEs are component-wise addition and multipli-
cation of an encrypted array over Zp for a positive integer p > 2 [8,26] or the
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 415–445, 2019.
https://doi.org/10.1007/978-3-030-34621-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_15

416 J. H. Cheon et al.

field C of complex numbers [13], and all other operations are built upon two
basic operations. Contrary to word-wise HEs, basic operations of bit-wise HEs
are logical gates such as NAND gate [23] and look-up table based operations
[18,19].

When input numbers are encrypted word-wise, polynomial operations consist-
ing of additions and multiplications are quite natural, but it is rather hard to
carry out non-polynomial operations such as comparison and min/max functions.
On the other hand, when each bit of �-bit integers is encrypted separately (e.g.,
a =

∑�−1
i=0 ai2i is encrypted as Enc(a0), Enc(a1), ..., Enc(a�−1)), comparing two �-

bit integers can be done by evaluating a Boolean function in Θ(�) homomorphic
multiplications with depth log � [16]. However, this bit-wise encryption method
is rather inefficient for homomorphic addition and multiplication since it requires
sequential computation of each carry bit transferred from lower-bit operations.

In this paper, we propose an efficient numerical method for comparison and
min/max functions, which can be efficiently exploited by word-wise HEs. Instead
of evaluating a Boolean function over bit-wise encrypted inputs, we homomor-
phically evaluate iterative algorithms to obtain approximate min/max values
and the comparison result over word-wise encrypted inputs.

Our method is especially effective in real-world applications which require
several min/max or comparison operations between a large amount of polynomial
operations. The statement is experimentally evidenced by a very recent work [15]
on privacy-preserving clustering analysis over word-wise encrypted data which
utilizes our comparison algorithm as one of the core building blocks. Their HE
solution shows more than 400 times faster performance than the previously best
known result [34] which encrypts data bit-wise.

1.1 Our Idea

To perform non-polynomial operations over word-wise HEs, previous works [12,
30,36] utilized general polynomial approximation methods (e.g., Taylor, least
square, minimax). To obtain the desired error bound in the given interval, they
choose an appropriate degree of an approximate polynomial. As the degree grows,
the lower error is guaranteed; however, the higher computational cost is required
which is very critical part in HE.

To obtain an approximate value within 2−α relative error through general
polynomial approximations, the approximate polynomial should have the degree
at least Θ(2α) (see Sect. 6). However, the evaluation of a general polynomial of
degree Θ(2α) requires at least exponential computational complexity Θ(2α/2)
[39]. In this respect, the general polynomial approximation methods, which
mainly consider the optimality of polynomial degree rather than computational
complexity, may not be the best solution for HE applications.

This observation leads us to utilize some well-structured polynomials which
can be evaluated much more efficiently than general polynomials. In particular,
we aim to structure approximate polynomials as compositions of some constant-
degree polynomials observing that the utilization of a composite function has
a substantial advantage in computational complexity: When a polynomial f of

Numerical Method for Comparison on HE Numbers 417

degree Θ(2α) is expressed as g ◦g ◦ · · · ◦g for some constant-degree polynomial g,
then f can be computed in a linear complexity Θ(α), not Θ(2α/2). In algorithmic
perspective, the composite polynomial g ◦g ◦ · · · ◦g essentially corresponds to an
iterative algorithm which repeatedly computes g. As a result, our goal becomes
to find iterative algorithms to compute min/max and comparison operations.

Our new iterative algorithms of min/max and comparison operations are
constructed in two steps. We first observe that min/max and comparison oper-
ations can be expressed by square root and inverse operations. To be precise,
for computing the maximum value between two numbers, we use the following
identity

max(a, b) =
a + b

2
+

|a − b|
2

=
a + b

2
+

√
(a − b)2

2
,

and this identity can be utilized to obtain the maximum value among several
numbers. To obtain the comparison result of several distinct positive numbers
as well as the maximum value, we devise another identity

lim
k→∞

ak
i

ak
1 + · · · + ak

n

=

{
1 if ai is maximal, and
0 otherwise.

.

For k = 2, the equation can be interpreted as a sigmoid approximation of the
step function which corresponds to the comparison operation (see Sect. 5). Our
second observation is that there exist efficient iterative algorithms for square
root and inverse operations and they can be utilized as core building blocks of
min/max and comparison operations. From these observations and several opti-
mization techniques to reduce the computational complexity, we finally devise
new iterative algorithms for min/max and comparison operations.

In our algorithms, the size of intermediate values such as ak
i grow exponen-

tially as k increases, so they are not easy to be computed only with additions and
multiplications in the bounded plaintext space. Instead, we remark that several
most significant bits of ak

i are sufficient for the approximate computation of our
algorithms, and they can be obtained by an efficient bit-extraction [28,32] or the
rounding-off operation [13] which is supported by the approximate HE scheme
HEAAN almost for free.

1.2 Our Result

We introduce new iterative algorithms for min/max and comparison with numer-
ical approaches, which are much more efficient than general polynomial approx-
imation methods such as Taylor, least square and minimax approximations.
Through the rigorous analysis on the error compared to the true value, we com-
pute the minimal depth and computational complexity of our algorithms, and
provide the strategies to choose the number of iterations.

Both theoretical and experimental results evidence the efficiency of our algo-
rithms. In theoretical aspect, our algorithms achieve (quasi-)optimal asymptotic
computational complexity among all possible polynomial approximations for

418 J. H. Cheon et al.

min/max and comparison operations. In experimental aspect, our algorithms
based on word-wise HE scheme HEAAN enjoy comparable performance with
the previous algorithms based on bit-wise HE in amortized running time sense.
Specific results on our algorithms are summarized as follows:

First, for min/max algorithm,

– To obtain an approximate min/max value of two �-bit integers a and b up to
error 2�−α for α > 0, our max algorithm denoted by Max requires Θ(α) depth
and complexity.

– Under the condition |a − b| ≥ c for some small c > 0, the required depth and
complexity are reduced to Θ(log α + 2 log(1/c)).

– The homomorphic evaluation of Max on 216 pairs of 32-bit integers preserving
top-10 most significant bits takes 75 s (1.14 ms as the amortized running time).

Second, for comparison algorithm,

– To obtain an approximate value of comp(a, b) = (a > b?) with error bounded
by 2−α where max(a, b)/min(a, b) ≥ c for some fixed c > 1, our comparison
algorithm denoted by Comp requires Θ(log(α/ log c) · log(α + log(α/ log c)))
depth and complexity.

– The homomorphic evaluation of Comp on 216 pairs of 32-bit integers with
14-bit precisions takes about 230 s (3.5 ms as the amortized running time).

We additionally provide some implementation results on several applications
of the comparison algorithm. For example, we can compute the index of the
maximum element among 16 encrypted 7-bit integers (where the maximum is at
least twice larger than the others) with 7-bit precisions with amortized running
time of about 75.9 ms. We also propose an efficient solution to the so-called
threshold counting problem, which aims to count the number of data exceeding
a certain value. For any 32 encrypted 7-bit integers, the amortized running time
of our solution is 135 ms.

1.3 Related Work

There are a lot of work that consider comparison-related operations in HE
schemes [5,6,10,16,19,21,24,37,43]. Most of the work deal with min/max, equal-
ity test, and sorting based on the bit-wise encryption approach. In other words,
they encrypt each bit of numbers separately to provide bit-wise access.

Chillotti et al. [19] calculate the maximum of two numbers of which each bit
is encrypted into a distinct ciphertext by a bit-wise HE scheme [18,19]. They
express the max function by controlled Mux gates via weighted finite automata
approach, and the implementation of their max algorithm on 8-bit integers took
approximately a millisecond. Some other works [16,21,37,43] implemented a
Boolean function corresponding to the comparison operation, where input num-
bers are still encrypted bit-wise. Cheon et al. [16] calculate a comparison oper-
ation over two 10-bit integers in 307 ms using the plaintext space Z214 . More
recent work of Crawford et al. [21] takes a few seconds to compute a comparison

Numerical Method for Comparison on HE Numbers 419

result of 8-bit integers. Since the comparison operation can be simultaneously
done in 1800 plaintext slots, the amortized running time becomes just a few
milliseconds. These bit-wise encryption methods show very nice performance on
comparison operations as described above, but polynomial operations including
addition and multiplication of large numbers are significantly inefficient com-
pared to word-wise encryption methods.

On the other hand, Boura et al. [5] compute absolute function and sign func-
tion, which correspond to min/max and comparison respectively, over word-wise
encrypted numbers by approximating the functions via Fourier series over a tar-
get interval. This method has an advantage on numerical stability compared
to general polynomial approximation methods: Since Fourier series is a periodic
function, the approximate function does not diverge to ∞ outside of the interval,
while approximate polynomials obtained by polynomial approximation meth-
ods diverge. The homomorphic evaluation of the sign function over wide-wise
encrypted inputs is also described in [6], which implemented the evaluation phase
of discretized neural network based on HE. It utilizes the bootstrapping tech-
nique of [18] to homomorphically extract the sign value of the input number and
bootstrap the corresponding ciphertext in the same time. Recently, there have
been proposed a method to approximate the sign function over x ∈ [−0.25, 0.25]
by a hyperbolic tangent function tanh(kx) = ekx−e−kx

ekx+e−kx for sufficiently large k > 0
[17]. To efficiently compute tanh(kx), they first approximate tanh(x) to x and
then repeatedly apply the double-angle formula tanh(2x) = 2 tanh(x)

1+tanh2(x)
where the

inverse operation was substituted by a low-degree (e.g., 1 or 3) minimax approx-
imation polynomial. Due to the low degree of the polynomial, their method is
efficient to obtain an approximate value of the sign function with low precision.

When applying min/max and comparison functions on real-world applica-
tions such as machine learning, there have been some attempts to detour these
functions by substituting them with other HE-friendly operations. For example,
Gilad-Bachrah et al. [30] expressed the maximum of positive numbers a1, ..., an

as limk→∞(
∑n

i=1 ak
i)1/k; however, they substituted the max function by the sim-

ple summation
∑n

i=1 ai due to the hardness of evaluating x1/k for large k in HE.

2 Preliminaries

2.1 Notations

All logarithms are base 2 unless otherwise indicated. Z, R and C denote the
integer ring, the real number field and complex number field, respectively. For
a real-valued function f defined over R and a domain I ⊂ R, we denote the
infinite norm of f over the domain I by ||f ||∞,I := maxx∈I |f(x)|. If I = R,
then we omit the second term of the subscript. For a power-of-two integer N ,
we define a polynomial ring R := Z[X]/(XN + 1). For an integer q ≥ 0, a
quotient polynomial ring R/qR is denoted by Rq. A positive integer d denotes
the number of iterations in inverse and square root algorithms, and d′ and t
denote the numbers of iterations in the comparison algorithm.

420 J. H. Cheon et al.

2.2 Homomorphic Encryption

Homomorphic Encryption (denoted as HE afterwards) is a cryptographic prim-
itive which allows arithmetic operations such as additions and multiplications
over encrypted data without decryption process. HE is regarded as a promising
solution which prevents private information leakage during analyses on sensi-
tive data such as biomedical data and financial data. A number of HE schemes
[4,7,8,13,18,20,22,23,26,29] have been suggested following Gentry’s blueprint
[27], and are achieving successes in various applications [5,11,14,30,35].

An HE scheme consists of the following algorithms:

• KeyGen(params). For parameters params determined by a level parameter L
and a security parameter λ, output a public key pk, a secret key sk, and an
evaluation key evk.

• Encpk(m). For a message m, output a ciphertext ct of m.
• Decsk(ct). For a ciphertext ct of m, output the message m.
• Addevk(ct1, ct2). For ciphertexts ct1 and ct2 of m1 and m2, output the cipher-

text ctadd of m1 + m2.
• Multevk(ct1, ct2). For ciphertexts ct1 and ct2 of m1 and m2, output the cipher-

text ctmult of m1 · m2.

3 Iterative Algorithms for Inverse and Square Root

In this section, we introduce approximate algorithms computing the inverse and
the square root of a real number through additions and multiplications, so that
they can be efficiently computed based on word-wise HEs. We additionally ana-
lyze the error rate of each algorithm to measure the quality of the approximation.

3.1 Inverse Algorithm

One of the most popular algorithms to compute the inverse of a (positive) real
number is Goldschmidt’s division algorithm [31]. For x ∈ (0, 2), the main idea
of Goldschmidt’s algorithm Inv(x; d) is

1
x

=
1

1 − (1 − x)
=

∞∏

i=0

(
1 + (1 − x)2

i
)

≈
d∏

i=0

(
1 + (1 − x)2

i
)

.

The value 1 + (1 − x)2
i

converges to 1 as i → ∞, so the approximation holds for
sufficiently large d > 0.

Lemma 1. For x ∈ (0, 2) and a positive integer d, the error rate of the output of
Inv(x; d) compared to 1/x is bounded by (1 − x)2

d+1
. In fact, the error is always

negative, i.e., the output of Inv(x; d) is always smaller than 1/x.

Numerical Method for Comparison on HE Numbers 421

Algorithm 1. Inv(x; d)
Input: 0 < x < 2, d ∈ N

Output: an approximate value of 1/x (refer Lemma 1)
1: a0 ← 2 − x
2: b0 ← 1 − x
3: for n ← 0 to d − 1 do
4: bn+1 ← b2n
5: an+1 ← an · (1 + bn+1)
6: end for
7: return ad

Proof. We can simply compute |ad−1/x
1/x | = 1 − x · ad = (1 − x)2

d+1
. 	

Remark 1. Lemma 1 implies that if we have tighter lower/upper bound of x,
then it guarantees an exponential convergence in the number of iteration d. For
example, assuming that x ∈ [2−n, 1) for some n ∈ N, the error rate of Inv(x; d)
is bounded by (1 − 2−n)2

d+1
which implies that only d = Θ(log α + n) number

of iterations suffice for Algorithm1 to achieve the error bound 2−α.

3.2 Square Root Algorithm

In order to compute the square root of a positive real number, we exploit a
two-variable iterative method proposed by Wilkes in 1951 [44]. The algorithm
consists of simple addition and multiplication operations for each iteration, and
it has an exponential convergence rate depending on the input value.

Algorithm 2. Sqrt(x; d)
Input: 0 ≤ x ≤ 1, d ∈ N

Output: an approximate value of
√

x (refer Lemma 2)
1: a0 ← x
2: b0 ← x − 1
3: for n ← 0 to d − 1 do
4: an+1 ← an

(
1 − bn

2

)

5: bn+1 ← b2n
(

bn−3
4

)

6: end for
7: return ad

Lemma 2. For x ∈ (0, 1) and a positive integer d, the error rate of the output
of Sqrt(x; d) compared to

√
x is bounded by (1 − x

4)2
d+1

. In fact, the error is
always negative, i.e., the output of Sqrt(x; d) is always smaller than

√
x.

422 J. H. Cheon et al.

Proof. Since −1 ≤ b0 ≤ 0, we can easily check that −1 ≤ bn ≤ 0 for all n ∈ N.
Then, |bn+1| = |bn| · | bn(bn−3)

4 | ≤ |bn| gives |bn+1| ≤ |bn|2 · (1 − x
4), and it holds

that |bd| ≤ |b0|2d · (1 − x
4)2

d−1 < (1 − x
4)2

d+1
.

From the definition of an and bn, the equality x(1+bn) = a2
n can be obtained

by a simple induction. Hence, the error rate is
∣
∣
∣
∣
an − √

x√
x

∣
∣
∣
∣ = 1 −

√
1 + bn < |bn| ,

which implies the result of the lemma. 	

Remark 2. Similarly to Remark 1, Lemma 2 implies that if we have tighter
lower/upper bound of x, it guarantees an exponential convergence rate, e.g.,
if x ∈ [2−n, 1), then d = Θ(log α + n) iterations are sufficient for Algorithm 2 to
achieve the error bound 2−α.

Absolute Value. By observing |x| =
√

x2, we can also compute the absolute
value of −1 ≤ x ≤ 1 by Sqrt(x2; d) for some sufficiently large d > 0. By Lemma 2,

the error rate compared to the true value |x| is bounded by
(
1 − x2

4

)2d+1

.

4 Approximate Min/Max Algorithms

In this section, we describe approximate algorithms for min/max operations
applying the square root algorithm described in the previous section. Our main
goal is to obtain the min/max value and the comparison result between �-bit
positive integers (or �-bit precision positive real numbers) for some given integer
� > 0. Since our inverse and square root algorithms require input value to be
contained in a prefixed interval (e.g., [0, 1]), we need to scale down the large
input values into small range. For this reason, when two inputs ā, b̄ ∈ [0, 2�) are
given, we first scale down

(a, b) ←
(

ā

2�
,

b̄

2�

)

so that a, b ∈ [0, 1). After running the algorithms we desired, we will scale up
the output value by the factor 2�. For example, after we obtain an approximate
value x of max(a, b), then we can compute 2� · x ≈ max(ā, b̄). Note that this
scaling procedure preserves the error rate compared to the true value.

4.1 Min/Max Algorithm for Two Numbers

In this subsection, we describe the Min and Max algorithms which approximately
compute the minimum and maximum values of given two inputs contained in
[0, 1), respectively. The approximate min/max algorithms, which we denote by

Numerical Method for Comparison on HE Numbers 423

Min and Max, respectively, can be directly obtained from the following observa-
tions:

min(a, b) =
a + b

2
−

√
(a − b)2

2
, max(a, b) =

a + b

2
+

√
(a − b)2

2
.

For the square root part of the formula we will use the square root algorithm
described in Sect. 3.2 as a subroutine, which leads us to the algorithms:

Min(a, b; d) =
a + b

2
− Sqrt((a − b)2; d)

2
, and

Max(a, b; d) =
a + b

2
+

Sqrt((a − b)2; d)
2

.

Algorithm 3. Min(a, b; d), Max(a, b; d)
Input: a, b ∈ [0, 1), d ∈ N

Output: an approximate value of min(a, b) and max(a, b) (refer Theorem 1,2)
1: x = a+b

2
and y = a−b

2

2: z ← Sqrt(y2; d)
3: return x − z for Min(a, b; d)

x + z for Max(a, b; d)

Assume that one would like to obtain a good enough approximate value
of min/max of a, b ∈ [0, 1). Roughly speaking, we can obtain an approximate
min/max value with an error up to 2−α in about 2α iterations.

Theorem 1. If d ≥ 2α − 3 for some α > 0, then the error of Max(a, b; d) (resp.
Min(a, b; d)) from the true value max(a, b) (resp. min(a, b)) is bounded by 2−α

for any a, b ∈ [0, 1).

Proof. By Lemma 2, we obtain
∣
∣Sqrt((a − b)2; d) − |a − b|∣∣ <

(
1 − (a−b)2

4

)2d+1

·
|a−b|. Therefore, the error of Max(a, b; d) (resp. Min(a, b; d)) from max(a, b) (resp.

min(a, b)) is bounded by 1
2 ·

(
1 − (a−b)2

4

)2d+1

· |a − b|.
Considering |a − b| as a variable x, let us find the maximal value of f(x) =

(1− x2

4)2
d+1 ·x for x ∈ [0, 1). By a simple computation, one can check that f ′(x) =

(1 − x2

4)2
d+1−1 · (1 − (

1
4 + 2d

)
x2

)
= 0 has a unique solution x0 = 1/

√
2d + 1

4 in
[0, 1) so that x0 is the maximal point of f(x). Hence, we obtain the following
inequality

(

1 − (a − b)2

4

)2d+1

· |a − b| ≤
(

1 − 1
2d+2 + 1

)2d+1

· 1
√

2d + 1
4

<
1

(
1 + 1

2d+2

)2d+1 · 2− d
2 < 2− d+1

2 ,

424 J. H. Cheon et al.

using the fact that (1 + x)1/x ≥ 2 for x ∈ [0, 1). Therefore, under the condition
d > 2α − 3, the error of Max(a, b; d) (and Min(a, b; d)) is upper bounded by 2−α. 	

By Theorem 1, we can select an appropriate parameter d depending on α,
i.e., the quality of the approximation. For example, let � = 64 so that ā and b̄
are 64-bit positive integers. If one aims to obtain exact maximum value between
ā and b̄, then one can set d = 2 · 64 − 3 = 125. But if one only aims to obtain
an approximate value within an error less than 248, i.e., obtain the top 16 bits
of the maximum value in 64-bit representation, one can set much smaller d as
d = 2 · 16 − 3 = 29. In this case, the output would be a 64-bit integer of which
top-16 bits coincide with those of the true maximum value.

Parameter Reduction over the Restricted Domain. We can improve the
condition on the parameter d in Theorem 1 from Θ(α) to Θ(log α) by adding
some conditions on a and b: |a − b| ≥ c for some constant 0 < c < 1. In
other words, d = Θ(log α) provides appropriate min/max results with probability
(1 − c)2 for uniform randomly chosen a and b from [0, 1).

Theorem 2. If d ≥ log α + 2 log(1/c) + 1 for some α > 0 and 0 < c < 1, then
the error of Max(a, b; d) (resp. Min(a, b; d)) from the true value max(a, b) (resp.
min(a, b)) is bounded by 2−α for any a, b ∈ [0, 1) satisfying |a − b| ≥ c.

Proof. We resume at the upper bound 1
2 ·

(
1 − (a−b)2

4

)2d+1

· |a − b| of the error
of Max(a, b; d) (resp. Min(a, b; d)) from max(a, b) (resp. min(a, b)) as in the proof
of Theorem 1.

Since |a − b| ≥ c, we obtain

1
2

·
(

1 − (a − b)2

4

)2d+1

· |a − b| ≤
(

1 − c2

4

)2d+1

.

Since (1 − x)1/x < 1
e < 1

2 for 0 < x < 1, if d ≥ log α + 2 log(1/c) + 1, it holds
that

(

1 − c2

4

)2d+1

=

((

1 − c2

4

)4/c2
)2(d+2 log c−1)

< 2−2(d+2 log c−1) ≤ 2−α,

which is the conclusion we wanted. 	

Note that the area of the bad region {(a, b) ∈ [0, 1) × [0, 1) : |a − b| ≤ c}, where
the theorem does not hold, is 1 − (1 − c)2 (≈2c if c is very small). Consider
a, b as a uniform random variable in [0, 1), and assume that we want to obtain
an appropriate output of Max(a, b; d) and Min(a, b; d) with probability 1 − ε for
0 < ε < 1. Then by combining the results from Theorems 1 and 2, it suffices to
set d ≈ min(2α − 3, log α + 2 log(1/c) + 1).

Depth and Complexity of Min/Max Algorithms. Since the depth of the
Sqrt(·; d) algorithm is 2d + 1, the depth of Min(·, ·; d) and Max(·, ·; d) algorithms
is also 2d + 1. Since the algorithm is iterative, the complexity is indeed Θ(d).

Numerical Method for Comparison on HE Numbers 425

4.2 Min/Max Algorithm for Several Numbers

With the basic min/max algorithm for two numbers in Sect. 4.1, we are able
to construct a min/max algorithm for several numbers. Let a1,0, a2,0, ..., an,0

be given numbers contained in [0, 1), and our aim is to obtain an approxi-
mate value of the maximum value among them. For convenience of analysis,
assume that n is a power-of-two integer. For some positive integer d > 0,
we first run Max(a2i−1,0, a2i,0; d) for 1 ≤ i ≤ n/2 and denote the outputs by
ai,1, respectively. Repeatedly, we obtain the outputs ai,2 of Max(a2i−1,1, a2i,1)
for 1 ≤ i ≤ n/4. Then, we can inductively construct a binary tree structure
{ai,j}0≤j≤log n,1≤i≤n/2j , and a1,log n would be the desired approximate maximum
value. The same argument can be applied to the case of Min algorithm.

Algorithm 4. ArrayMax(a1, a2, ..., an; d)
Input: a1, a2, ..., an ∈ [0, 1), d ∈ N

Output: an approximate value of max(a1, a2, ..., an; d) (refer Theorem 3)
1: (a1,0, a2,0, ..., an,0) ← (a1, a2, ..., an)
2: d ← n
3: for j ← 0 to �log n� do
4: if d is odd then
5: a�d/2�,j+1 ← ad,j

6: end if
7: d ← �n/2�
8: for i ← 1 to d do
9: ai,j+1 ← Max(a2i−1,j , a2i,j ; d)

10: end for
11: end for
12: return a1,�log n�

Theorem 3. Let n be a power-of-two integer. The numbers a1, a2, ..., an ∈ [0, 1)
satisfying |ai − aj | ≥ c > 0 for any 1 ≤ i < j ≤ n are given. When d ≥ log(α +
log log n) + 2 log(1/c) + 1, the error of the output of ArrayMax(a1, a2, ..., an; d)
(resp. ArrayMin(a1, a2, ..., an; d)) from the true value max(a1, a2, ..., an) (resp.
min(a1, a2, ..., an)) is bounded by 2−α. Note that the error is always negative,
i.e., the output value is always smaller than the true value.

Proof. Refer to AppendixA. 	

Theorem 2 was applied in this theorem for the good region {(ai)1≤i≤n ∈

[0, 1)n : |ai − aj | ≥ c for any 1 ≤ i < j ≤ n and some c > 0}. Note that
we can also apply Theorem 1 to obtain the worst-case analysis: In this case,
d should be set as d = 2(α + log log n) − 3. The area of the good region, is
exactly (1 − (n − 1)c)n (≈1 − n(n − 1)c when c is very small) referring to [9].
Therefore, if one want to obtain an output of ArrayMax or ArrayMin within error
2−α with probability 1 − ε for 0 < ε < 1, then by Theorem3 it suffices to set
d ≈ min(2(α + log log n) − 3, log(α + log log n) + 2 log(1/c) + 1).

426 J. H. Cheon et al.

Remark 3. We set n be a power-of-two integer for convenience of the error anal-
ysis, but the theorem still holds for a non-power-of-two integer n.

Depth and Complexity of ArrayMin/ArrayMax Algorithms. Since we con-
structed a binary tree of depth log n with the number of nodes n, the depth is
log n · (2d + 1) and the complexity is Θ(nd).

5 Approximate Comparison Algorithms

In this section, we propose approximate comparison algorithms for various pur-
poses. The core idea of algorithms starts with a simple fact that the comparison
result of two numbers a and b can be evaluated as comp(a, b) := χ(0,∞)(a − b)

where χ(0,∞) is a step function over R defined as χ(0,∞)(x) :=

{
1 if x > 0
0 otherwise

.

However, it is challenging to evaluate discontinuous functions such as χ(0,∞) in
word-wise HE. To overcome this problem, we first approximate the step func-
tion by a globally smooth function called sigmoid σ(x) = 1/(1+ e−x). The error
between the sigmoid and χ(0,∞) can be controlled by scaling the sigmoid as
σk(x) := σ(kx). Following the notation, it holds that

lim
k→∞

||χ(0,∞) − σk||∞,R−[−ε,ε] = 0

for any ε > 0. In other words, we can approximately evaluate the step function
χ(0,∞) through the scaled sigmoid function σk for sufficiently large k (Fig. 1).

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5
σ4(x)
σ16(x)
σ64(x)
χ(0,∞)

Fig. 1. Approximation of the step function χ(0,∞) by scaled sigmoid functions

Numerical Method for Comparison on HE Numbers 427

Though a scaled sigmoid function is a continuous function contrary to χ(0,∞),
σk(a − b) = eka/(eka + ekb) still requires exponential function evaluations which
cannot be easily done in HE. This obstacle can be simply overcome by tak-
ing logarithm on each input of comparison. Since the log function is a strictly
increasing function, it does not reverse the order, i.e., log a > log b if and only
if a > b. Therefore, the evaluation of χ(0,∞) on x = log a − log b also outputs
the correct comparison result of a and b. As a result, we obtain the following
approximation formula:

comp(a, b) ≈ σk(log a − log b) =
ek log a

ek log a + ek log b
=

ak

ak + bk
.

5.1 Comparison Between Two Numbers

In this subsection, we discuss how to efficiently evaluate the approximate com-
parison equation ak/(ak+bk) ≈ comp(a, b) with basic operations such as addition
and multiplication. For given two �-bit positive integers ā and b̄, we first scale
them down to a, b ∈ [

1
2 , 3

2

)
via the mapping x̄ �→ x := 1

2 + x
2� which is order-

preserving, i.e., x > y if and only if x̄ > ȳ. We may scale those �-bit integers to
[0, 1) as in min/max algorithms, but note that the range

[
1
2 , 3

2

)
is more suitable

than [0, 1) to exploit Inv algorithm.
From the observation in the beginning of Sect. 5, the followings hold:

lim
k→∞

max(a, b)k

ak + bk
= 1, and lim

k→∞
min(a, b)k

ak + bk
= 0 if a �= b, (1)

so that we obtained the approximate values if we set sufficiently large k > 0.
Our comparison algorithm denoted by Comp is described as Algorithm 5.

Algorithm 5. Comp(a, b; d, d′, t,m)
Input: distinct numbers a, b ∈ [

1
2
, 3
2

)
, d, d′, t, m ∈ N

Output: an approximate value of comp(a, b) (refer Theorem 4)
1: a0 ← a

2
· Inv (

a+b
2

; d′)

2: b0 ← 1 − a0

3: for n ← 0 to t − 1 do
4: inv ← Inv(am

n + bm
n ; d)

5: an+1 ← am
n · inv

6: bn+1 ← 1 − an+1

7: end for
8: return at

The first preparatory stage of the algorithm is to (1-norm) normalize the
given input into the new pair (a, b) with a, b ∈ [0, 1] satisfying a + b = 1. This
normalization provides lower and upper bounds 1/2k−1 ≤ ak + bk ≤ 1 so that
ak + bk can be an appropriate input of Inv algorithm. The next step is to

428 J. H. Cheon et al.

approximate the value of ak/(ak + bk). One naive approach could be to compute
ak · Inv(ak + bk; d) for some positive integer d > 0. However, since the ak + bk

could be as small as 1/2k−1, it requires too large parameter d for sufficiently
nice approximation of 1/(ak + bk) with Inv algorithm (see Remark 1).

In order to overcome this bottleneck we approximate the value of ak/(ak+bk)
by performing the operation am · Inv(am + bm; d) repeatedly for small m. The
additional parameter m, which we normally choose as a power-of-two integer,
satisfies mt = k. As an illustration, let us take the two steps of the iteration.
We first compute (a1, b1) = (am

am+bm , bm

am+bm) applying Inv(am + bm; d), and

then compute (a2, b2) = (am
1

am
1 +bm

1
,

bm
1

am
1 +bm

1
) = (a2m

a2m+b2m , b2m

a2m+b2m) again using

Inv(am
1 + bm

1 ; d). Then, in t steps we arrive at amt

amt+bmt = ak

ak+bk .
This modification requires more Inv algorithms to be used, but it allows us

to set much smaller d for Inv algorithm, because am + bm at each steps is in the
range [1/2m−1, 1] while an + bn is in the range [1/2n−1, 1]. Therefore, it makes
a trade-off between the number of iterations t and the parameter d.

Theorem 4. Let a, b ∈ [
1
2 , 3

2

)
satisfying max(a, b)/min(a, b) ≥ c for some fixed

1 < c < 3. When t ≥ 1
log m [log(α+1)− log log c], d ≥ log(α+ t+2)+m− 2, and

d′ ≥ log(α+2)−1, the error of (the vector) Comp(a, b; d, d′, t,m) compared to the
true value comp(a, b) is bounded by 2−α. Note that the error is always toward
1/2, i.e., the output value is always in between 1/2 and the true value.

Proof. Without loss of generality we may assume that a > b. Note that the
step 1 and 2 of our algorithm scales a, b to non-negative numbers a0, b0 with
a0 + b0 = 1. Let us execute the first round of iteration. Note that

∣
∣
∣
∣a

m
0 Inv(am

0 + bm
0 ; d) − am

0

am
0 + bm

0

∣
∣
∣
∣ = am

0 · |Inv(am
0 + bm

0 ; d) − (am
0 + bm

0)−1|

≤ (1 − (am
0 + bm

0)−1)2
d+1 · am

0

am
0 + bm

0

.

Since (1 − (am
0 + bm

0)−1)2
d+1

< e−2d+1/2m−1
< 2−2d−m+2

from the lower bound
estimate am

0 +bm
0 ≥ 2−m+1, we can conclude that the error rate for one iteration

is bounded by K = 2−2d−m+2
. Thus, the error rate for t iterations is bounded by

1 − (1 − K)t ≤ tK < 2tK. Since we want this bound to be smaller than 2−α−2

we get the desired lower bound for d, namely d ≥ log(α + t + 2) + m − 2.
Now we wish to bound the difference

∣
∣
∣
∣
∣
1 − amt

amt + bmt

∣
∣
∣
∣
∣
= 1 − 1

1 + (b/a)mt ≤
(

b

a

)mt

≤ c−mt

by 2−α−1, which leads us to the condition t ≥ 1
log m [log(α + 1) − log log c].

Finally, we examine the step 1 and 2 of our algorithm, whose error rate is
bounded by 2−2d′+1

. If we require this bound to be smaller than 2−α−2, we get
the condition d′ ≥ log(α + 2) − 1, which is implied by our assumption on d′.

Summing up all the error rates, we get the conclusion we wanted. 	

Numerical Method for Comparison on HE Numbers 429

Remark 4. We note that introducing the condition on the ratio of inputs with
the constant c is not unrealistic or harsh. In the case of n-bit integers, setting
the lower bound c = a/b ≥ (

1
2 + 2n−1

2n

)
/
(
1
2 + 2n−2

2n

)
allows us to compare any

two n-bit integers. Similar argument also applies to the case of real numbers,
if we consider finite precision and input bounds. To sum up, an appropriate c
generally exists in real-world applications.

Depth and Complexity of Comp Algorithm. The depth and complexity of
Comp is d′ +1+t(d+log m+2) and Θ(d′ +t(d+log m)) respectively. When we set
m = 2 which roughly gives t = log(α/ log c) and d = log(α+log(α/ log c)), those
depth and complexity are optimized as Θ(log(α/ log c) · log(α + log(α/ log c))).
For c = 1 + 2−α, it is simplified as Θ(α log α).

5.2 Max Index of Several Numbers

Given several distinct numbers a1, a2, ..., an ∈ [
1
2 , 3

2

)
, assume that we want to

obtain the index of the maximum value. This problem can be easily solved by
observing Eq. (1) with another point of view. As the exponent k increases, then
the gap between max(a, b)k and min(a, b)k becomes larger so that max(a, b)k

becomes a dominant term of ak + bk. This observation is also applicable to
the comparison of several numbers, i.e., max(a1, a2, ..., an)k is a dominant term
of

∑n
i=1 ak

i when k is large enough. As a result, Eq. (1) can be generalized as
followings:

lim
k→∞

ak
j

ak
1 + ak

2 + · · · + ak
n

= 1 ⇐⇒ aj = max(a1, ..., an),

lim
k→∞

ak
j

ak
1 + ak

2 + · · · + ak
n

= 0 ⇐⇒ aj �= max(a1, ..., an).

From these properties, we construct the algorithm MaxIdx of which the output
indicates the index of the maximum value, as a simple generalization of the
comparison algorithm Comp in the previous section.

Theorem 5. Let a1, a2, . . . , an ∈ [
1
2 , 3

2

)
be n distinct elements, and the ratio of

maximum value over the second maximum value be 1 < c < 3. If t ≥ 1
log m [log(α+

log n + 1) − log log c] and min(d, d′) ≥ log(α + t + 2) + (m − 1) log n − 1, the
error of the output of MaxIdx(a1, ..., an; d, d′,m, t) compared to the true value is
(component-wise) bounded by 2−α. Note that the error is always toward 1/2, i.e.,
the output value is always in between 1/2 and the true value.

Proof. Refer to AppendixA. 	

Depth and Complexity of MaxIdx Algorithm. The depth and complexity
of MaxIdx is d′ + 1 + t(d + log m + 2) and Θ(n + d′ + t(d + n log m)) respectively,
as that of Comp, and is again optimized when m = 2 roughly giving t = log((α+
log n)/ log c), d = log(α+log((α+log n)/ log c))+log n. Note that when log n ≤ α,
depth of MaxIdx (asymptotically) does not exceed the depth of Comp.

430 J. H. Cheon et al.

Algorithm 6. MaxIdx(a1, a2, ..., an; d, d′,m, t)
Input: n distinct numbers (a1, a2, ..., an) with ai ∈ [

1
2
, 3
2

)
, d, d′, m, t ∈ N

Output: (b1, b2, ..., bn) where bi is close to 1 if ai is the largest among aj ’s and is close
to 0 otherwise (refer Theorem 5)

1: inv ← Inv(
∑n

j=1 aj/n; d′)
2: for j ← 1 to n − 1 do
3: bj ← aj/n · inv // Initial 1-norm normalization
4: end for
5: bn ← 1 − ∑n−1

k=1 bj

6: for i ← 1 to t do
7: inv ← Inv(

∑n
j=1 bm

j ; d)
8: for j ← 0 to n − 1 do
9: bj ← bm

j · inv
10: end for
11: bn ← 1 − ∑n−1

k=1 bj

12: end for
13: return (b1, b2, ..., bn)

Remark 5. Under the same condition on d, d′, m and t with Theorem 5, we can
obtain an approximate maximal value among n distinct numbers a1, a2, ..., an by
computing

∑n
i=1 biai for (b1, b2, ..., bn) ← MaxIdx(a1, .., an; d, d′,m, t). This idea

is basically derived from the equality

lim
k→∞

ak+1
1 + ak+1

2 + · · · + ak+1
n

ak
1 + ak

2 + · · · + ak
n

= max(a1, a2, ..., an).

Let a1 be the unique maximum element without loss of generality, then 1−2−α ≤
b1 ≤ 1 and 0 ≤ bi ≤ 2−α for 2 ≤ i ≤ n. Then, the error of

∑n
i=1 biai compared to

the true value max(a1, ..., an) is bounded by 2−α · max(a1,
∑n

i=2 ai) ≤ 3n
2 · 2−α.

6 Asymptotic Optimality of Our Methods

In this section, we compare the efficiency of our min/max and comparison algo-
rithms with general polynomial approximation methods, in terms of compu-
tational complexity. As the result, we prove the (quasi-)optimality of our algo-
rithms in terms of asymptotic computational complexity among polynomial eval-
uations to obtain approximate min/max and comparison results.

There have been various approaches on dealing with non-polynomial homo-
morphic operations in many applications of word-wise HE [12,30,36], and those
works commonly use polynomial approximation. Since our algorithms are based
on addition and multiplication, they can be also viewed as polynomial eval-
uations. However, the main difference is that our polynomial evaluations are
represented as recursive algorithms so that the complexity is significantly lower
than that of general polynomial evaluation of the same degree.

Numerical Method for Comparison on HE Numbers 431

As described in Theorems 1–5, we estimated an approximation error of our
methods (Algorithms 3–6) through the infinite norm, i.e., the maximal error over
the domain. Therefore, the minimax polynomial approximation [40] which tar-
gets the (degree-)optimal polynomial approximation with respect to the error
measured by the infinite norm should be compared with our methods. The
upper bound of the error of minimax polynomial approximation is given by
Jackson’s inequality [41] which is a well-known result in approximation theory.
The inequality originally covers both algebraic and trigonometric polynomial
approximation of general functions, but it can be simplified fitting into our case
as following [38]. If a function f defined on [−1, 1] satisfies L-Lipschitz condition,
i.e., |f(x1) − f(x2)| ≤ L · |x1 − x2| for any x1, x2 ∈ [−1, 1], then it holds that

||f − pk||∞,[−1,1] ≤ Lπ

2(k + 1)
(2)

where pk is the degree-k minimax polynomial of f over the interval [−1, 1].
Namely, the maximal error between the degree-k minimax polynomial and the
original Lipschitz function is O(1/k).

6.1 Min/Max from Minimax Approximation

As described in Sect. 4, the min/max functions can be simply described with the
absolute function as

min(a, b) =
a + b

2
− |a − b|

2
, max(a, b) =

a + b

2
+

|a − b|
2

.

Since the absolute function can also be expressed as |x| = x − 2 · min(x, 0) = 2 ·
max(x, 0)−x, the evaluation of min and max functions are actually equivalent to
the evaluation of the absolute function with some additional linear factors. Hence
it suffices to consider the minimax polynomial approximation of the absolute
function f(x) = |x|. We assume that a and b are scaled numbers in [0, 1).

In the case of f(x) = |x|, it is proved that the error upper bound O(1/k) of
Jackson’s inequality is quite tight in terms of asymptotic complexity:

lim
k→∞

k · |||x| − pk||∞,[−1,1] = β

for some constant β ≈ 0.28 [3]. For more details of experimental results on the
equation above, we refer the readers to [38, p. 19]. As a result, to obtain an
approximation error at most 2−α for f(x) = |x|, it requires the degree of the
minimax polynomial to be at least Θ(2α). Since general polynomial of degree n
requires at least

√
n multiplications [39], the evaluation of the minimax polyno-

mial requires at least Θ(2α/2) multiplications. In contrast, our min/max algo-
rithms require only Θ(α) complexity by Theorem 1. Note that the depths of
minimax polynomial evaluation and our min/max algorithms are α + O(1) and
4α − 6, respectively, both of which are Θ(α).

Even without asymptotic point of view, our method outperforms the mini-
max approximation in terms of the required number of multiplications when α

432 J. H. Cheon et al.

Fig. 2. The actual number of multiplications in minimax approximation and our iter-
ative method for Max

is larger than 13. Easy computations show that the required number of multi-
plications in our iterative method and the minimax approximation method to
achieve certain error bound 2−α are 3 · (2α − 3) = 6α − 9 and (approximately)√

2β · 2α/2, respectively (refer Fig. 2). Here 2α − 3 is the minimal number of
iterations in Min/Max, and 3 is the number of multiplications in each iteration.

6.2 Comparison from Minimax Approximation

Since the comparison equation is expressed as comp(a, b) = χ(0,∞)(a − b), one
needs to find a minimax polynomial of the step function χ(0,∞). Note that the
evaluations of comp and χ(0,∞) are equivalent since the step function can also
be expressed as χ(0,∞)(x) = Comp(x, 0). Let a and b be scaled numbers contained
in

[
1
2 , 3

2

)
as discussed in Sect. 5. Then the range of (a − b) is (−1, 1), so we can

still consider the approximation over the interval [−1, 1].
Contrary to the absolute function |x|, the minimax polynomial approximation

of χ(0,∞) over an interval [−1, 1], which contains 0, never gives a nice error bound
||χ(0,∞)−pk||∞,[−1,1] since the step function is discontinuous on x = 0. Therefore,
it is inevitable to abandon a good polynomial approximation of χ(0,∞) over an
interval (−ε, ε) for some small ε > 0, and our goal should be reduced to find an
approximate polynomial p of χ(0,∞) which minimizes ||χ(0,∞) − p||∞,[−1,−ε]∪[ε,1].
Namely, we should aim to obtain a nice approximate result of comparison on a
and b satisfying |a − b| ≥ ε, not for all a, b ∈ [

1
2 , 3

2

)
.

Let us denote by qk,ε the degree-k approximate polynomial which minimizes
||χ(0,∞) − p||∞,[−1,−ε]∪[ε,1]. For the step function χ(0,∞), there exists a tighter
upper bound on the approximation error than Jackson’s inequality as following:

lim
k→∞

√
k − 1

2
·
(

1 + ε

1 − ε

) k−1
2

· ||χ(0,∞) − qk,ε||∞,[−1,−ε]∪[ε,1] =
1 − ε

2
√

πε
,

Numerical Method for Comparison on HE Numbers 433

which was proved by Eremenko and Yuditskii [25]. Assume that k is large enough

so that
√

k−1
2 ·

(
1+ε
1−ε

) k−1
2 · ||χ(0,∞) − qk,ε||∞,[−1,−ε]∪[ε,1] is sufficiently close to

the limit value. To obtain an approximation error at most 2−α for χ(0,∞) over
[−1,−ε] ∪ [ε, 1], the degree k should be chosen to satisfy

√
k − 1

2
·
(

1 + ε

1 − ε

) k−1
2

· 2
√

πε

1 − ε
> 2α.

Let us consider two cases: ε = ω(1) and ε = 2−α. In the case of ε = ω(1), i.e.,
ε is a constant with respect to α, the polynomial degree k should be at least
Θ(α). Therefore, the required depth and computational complexity of qk eval-
uation considering the Paterson-Stockmeyer method are Θ(log α) and Θ(

√
α),

respectively. In the case of ε = 2−α, the polynomial degree k should be at
least Θ(α · 2α), needing Θ(α) depth and Θ(

√
α · 2α/2) multiplications with the

Paterson-Stockmeyer method.
For a fair (conservative) comparison between the above polynomial approxi-

mation and our comparison method, we set c = 3
3−2ε where 1 < c < 3 is a constant

defined in Theorem 4 so that the domain D1 := {(a, b) ∈ [
1
2 , 3

2

)2 : |a − b| ≥ ε}
for the above polynomial approximation is completely contained in the domain
D2 := {(a, b) ∈ [

1
2 , 3

2

)2 : max(a, b)/min(a, b) ≥ c} for our method. In this set-
ting, the depth and complexity Θ(log(α/ log c) · log(α+log(α/ log c))) of our Comp
algorithm becomes Θ(log2 α) if ε = ω(1) and Θ(α log α) if ε = 2−α (Fig. 3).

Fig. 3. Regions D1 ⊂ D2 for ε = 3
2

· (
1 − 1

c

)

The comparison results on the complexity of our methods and minimax poly-
nomial approximation are summarized in Table 1. As discussed above, we set two
cases ε = ω(1) and ε = 2−α for the comparison operation.

(Quasi-)optimality of Our Methods. The comparison of computational
complexity on our method and minimax approximation method implies the

434 J. H. Cheon et al.

Table 1. Complexity of our methods and minimax approximation method

Minimax approx. Our method

min/max Θ(2α/2) Θ(α)

Comparison
ε = ω(1) Θ(

√
α) Θ

(
log2 α

)

ε = 2−α Θ
(√

α · 2α/2
)

Θ (α log α)

(quasi-)optimality of our Min/Max and Comp algorithms in terms of asymptotic
computational complexity. What Jackson’s inequality implies is that any poly-
nomial evaluation to obtain an absolute value (hence a min/max result) within
2−α error requires ω(2α) degree. Regardless of how the polynomial of degree
ω(2α) is well-structured, the complexity of the polynomial evaluation should
be at least the depth ω(α). In this respective, our Min/Max algorithm is opti-
mal in asymptotic complexity among the polynomial evaluations to obtain an
approximate min/max result. In the same manner, any polynomial evaluation
to obtain a comparison result within 2−α error requires at least ω(log α) and
ω(α) complexity for the cases ε = ω(1) and ε = 2−α, respectively. Therefore, our
Comp algorithm achieves a kind of quasi-optimal asymptotic complexity with an
additional factor log α.

Remark 6. In [5], Boura, Gama and Georgieva proposed a different approach for
evaluating the absolute function and the step function which use Fourier approx-
imation, and the evaluations can be efficiently done in HEAAN which supports
operations of complex numbers. For the fair comparison with our method, we
look into the theoretical upper bound of errors in Fourier approximation. By
Jackson’s inequality for Fourier approximation [33], the upper bound for error
of the Fourier approximation of an Lipschitz function f is given as

||f − Skf ||∞ ≤ K · log k

k

for some K > 0 where Skf(x) :=
∑k

n=−k f̂(n) · einx is the k-th Fourier approxi-
mation of f , which can be viewed as a polynomial of eix and e−ix.

We note that the upper bound of the Fourier approximation error for the
absolute function can be reduced to Θ(1/k). As a result, to make the error
upper bound less than 2−α following theoretical results, one needs at least
Θ(2α)-th (resp. Θ(α · 2α)-th) Fourier approximation for the absolute function
(resp. step function). Moreover, exponential functions eix and e−ix should be
also approximately evaluated which derives an additional error. Therefore, this
Fourier approximation approach still requires exponential computational com-
plexity with respect to α. To sum up, in asymptotic complexity sense, the Fourier
approximation approach in [5] requires more computations than our method to
obtain the result within a certain level of error.

Numerical Method for Comparison on HE Numbers 435

7 Applications of Comparison Algorithms

In this section, we exploit our comparison algorithms proposed in Sect. 5 for
several applications: Threshold Counting and Top-k Max.

7.1 Threshold Counting

In this subsection, we give a solution to the problem asked at the very beginning
of HE. In 1978, Rivest et al. [42] first proposed the concept of HE and listed
some problems to be solved with HE:

· · · This organization permits the loan company to utilize the storage facilities of
the time—sharing service, but generally makes it difficult to utilize the compu-
tational facilities without compromising the privacy of the stored data. The loan
company, however, wishes to be able to answer such questions as:

– What is the size of the average loan outstanding?
– How much income from loan payments is expected next month?
– How many loans over $5,000 have been granted?

While the first two problems can be answered with simple arithmetic operations,
the last problem requires comparison-like operation intrinsically. We propose
a solution to the third problem with our Comp algorithm. First, we abstract
the problem to “Threshold Counting” problem. The goal of threshold counting
problem is to find the number of ai’s larger than b for given (a1, a2, ..., an) and b.
The algorithm is rather simple. We compare ai’s with b and sum up the values
comp(ai, b). We can use usual packing method of HE to compare several elements
in a single operation. We remark that if ai = b then ai is counted as 1/2, not
0 or 1, but in real-world applications this error may be ignored or adjusted by
subtracting a very small constant to the threshold b.

Algorithm 7. Threshold(a1, a2, .., an; b; d, d′, t,m)
Input: n numbers (a1, a2, ..., an) with ai ∈ [0, 1), b ∈ [0, 1), d, d′, m, t ∈ N

Output: an approximate value of the number of ai’s larger than b
1: for i ← 1 to n do
2: ci ← Comp(ai, b; d, d′, m, t) // Can be done in a SIMD manner via HE.
3: end for
4: sum ← 0
5: for j ← 1 to k do
6: sum ← sum + ci

7: end for
8: return sum

436 J. H. Cheon et al.

7.2 Top-k Max

Applying the MaxIdx algorithm in Sect. 5.2 recursively, we can obtain top-k max-
imum values which we call top-k max algorithm. For given distinct numbers
a1, a2, ..., an ∈ [

1
2 , 3

2

)
and somepositive integers d, d′,m, t ≥ 0, let (b1, b2, ..., bn) ←

MaxIdx(a1, a2, ..., an; d, d′,m, t). Then as noted in Remark 5,
∑n

i=1 biai is an
approximate maximum value of a1, ..., an since bi ≈ 1 if and only if ai is the max-
imum. Now, to compute the second maximum value, let aj be the (unique) maxi-
mum value, and define ci := (1 − bi)ai for 1 ≤ i ≤ n. Then ci = (1 − bi)ai ≈ ai

for all i �= j and cj = (1 − bj)aj ≈ 0. Since we assume that ai’s are positive num-
bers, the output of MaxIdx(c1, c2, ..., cn; d, d′,m, t) indeed indicates the index of the
second maximum value. This algorithm can be generalized as following.

Algorithm 8. Top-k-Max(a1, a2, .., an; d, d′,m, t)
Input: n distinct numbers (a1, a2, ..., an) with ai ∈ [0, 1), d, d′, m, t ∈ N

Output: (m1, m2, ..., mk) where mi denotes an approximate value of the ith largest
number among {a1, a2, ..., an}

1: for i ← 1 to n do
2: ci ← ai

3: end for
4: for j ← 1 to k do
5: (b1, b2, ..., bn) ← MaxIdx(c1, c2, ..., cn; d, d′, m, t)
6: mj ← ∑n

i=1 bici

7: (c1, c2, ..., cn) ← ((1 − b1)c1, (1 − b2)c2, ..., (1 − bn)cn)
8: end for
9: return (m1, m2, ..., mk)

Theorem 6. Let a1, a2, . . . , an ∈ [1/2, 3/2] be n distinct elements, and let the
ratio of i-th maximum value over the (i + 1)-th maximum value maxi

maxi+1
> ci

for 1 ≤ i ≤ k. For some c > 1 and α > 0 satisfying 2α · (1 − 2−α)
k(k−1)

2 >

ck, assume that ci = c/(1 − 2−α)i−1 and (1−2−α)k maxk+1
2−α max1

> c. If t, d
and d′ satisfy the same conditions in Theorem 5, the output (m1, ...,mk) of
Top-k-Max(a1, ..., an; d, d′,m, t) satisfies (1 − 2−α)j maxj ≤ mj ≤ maxj for
1 ≤ j ≤ k.

Proof. Refer to Appendix A. 	

8 Experimental Results

This section illustrates some implementation results of the algorithms we
described in the previous sections based on the approximate HE scheme called
HEAAN [13]. We also propose some reasonable parameters, and show that the
algorithms can be carried out with HEAAN very well.

Numerical Method for Comparison on HE Numbers 437

We first show the performance of Max algorithm for several setups based on
HEAAN. We also implement Comp algorithm based on HEAAN and show that
it can be exploited to solve the threshold counting problem efficiently. Lastly, we
show the performance of our MaxIdx algorithm.

8.1 Approximate HE Scheme HEAAN

Cheon et al. [13] proposed an HE scheme HEAAN which supports approximate
computations of real/complex numbers. By abandoning the exact computation,
HEAAN achieves big advantages in ciphertext/plaintext ratio and speed. Since
many real-world applications require real number computations, HEAAN has a
strength in various real-world problems [11,14,15,35,36], which usually deal with
approximate computation of real numbers, compared to the other HE schemes.
For an efficiently computable (field) isomorphism τ : R[X]/(XN + 1) → C

N/2,
the basic algorithms are following:

• KeyGen(L, 1λ).
– Given the level parameter L and the security parameter λ, select power-

of-two integers N and set q� = 2� for 1 ≤ � ≤ L.
– Set the secret and error distributions χkey, χerr, χenc over R.
– Sample s ← χkey. Set the secret key as sk ← (1, s).
– Sample a ← U(RqL

) and e ← χerr. Set the public key as pk ← (b, a) ∈ R2
qL

where b ← [−a · s + e]qL
.

– Sample a′ ← U(Rq2
L
) and e′ ← χerr. Set the evaluation key as evk ←

(b′, a′) ∈ R2
q2

L
where b′ ← [−a′s + e′ + qL · s2]q2

L
.

• Encpk(m).
– For a plaintext m = (m0, ...,mN/2−1) in C

N/2 and a scaling bit p > 0,
compute a polynomial m ← �2p · τ−1(m)� ∈ R

– Sample v ← χenc and e0, e1 ← χerr. Output ct = [v · pk+ (m+ e0, e1)]qL
.

• Decsk(ct).
– For a ciphertext ct = (c0, c1) ∈ R2

q�
, compute m′ = [c0 + c1 · s]q�

.

– Output a plaintext vector m′ = 2−p · τ(m′) ∈ C
N/2.

• Add(ct, ct′). For ct, ct′ ∈ R2
q�

, output ctadd ← [ct + ct′]q�
.

• Sub(ct, ct′). For ct, ct′ ∈ R2
q�

, output ctsub ← [ct − ct′]q�
.

• Multevk(ct, ct′). For ct = (c0, c1), ct′ = (c′
0, c

′
1) ∈ R2

q�
, let (d0, d1, d2) =

(c0c′
0, c0c

′
1 + c1c

′
0, c1c

′
1). Compute ct′mult ← [(d0, d1) + �q−1

L · d2 · evk�]q�
, and

output ctmult ← [�(1/p) · ct′mult�]q�−1 .

For details on the correctness and security of the scheme, we refer the readers
to [13].

438 J. H. Cheon et al.

Table 2. HEAAN implementation of Max algorithm for several precision bits.
HEAAN parameters (log N, Q, λ) were chosen as (a)(17, 930, 192.2), (b)(17, 1170, 147.0),
(c)(17, 1410, 131.5), and (d)(17, 1890, 107.7).

Algorithm
precision bits # iterations Running time

α d Total (s) Amortized (ms)

Max

8 11 48(a) 0.73

10 14 75(b) 1.14

12 17 127(c) 1.94

16 23 237(d) 3.62

8.2 Implementations of Various Non-polynomial Operations

All experiments on our method were implemented in C++ on Linux with Intel
Xeon CPU E5-2620 v4 at 2.10 GHz processor with multi-threading (8 threads)
turned on for speed acceleration. Note that we checked the security level of
HEAAN parameters we used in our implementation through a security estima-
tor constructed by Albrecht [1,2]. More precisely, we set the level parameter L
to be the minimum required considering the depth of algorithms (without boot-
strapping), the dimension N to be the minimum ensuring the security parameter
λ ≥ 128, and the scaling bit p to be 40 or around.

In the rest of the section, we present both the actual running time and the
amortized running time considering the plaintext batching technique of HEAAN.
We note that the amortized running time is important as much as the actual
running time in various applications which require a number of same operations.
For example, even a basic task such as threshold counting can be performed
simultaneously with only a single homomorphic comparison. More seriously, k-
nearest neighbor algorithm for classification and k-means algorithm for clustering
requires substantial numbers of min/max and comparison, which can also be
parallelized in the same manner with the above threshold counting.

Max of Two Integers. We first show the performance of Algorithm 3 (Max)
which outputs an approximate value of the maximum value given two large
integers. Since HEAAN supports at most N/2 operations simultaneously in a
SIMD manner, the actual experiment is to compute max(ai, bi) for 1 ≤ i ≤ N/2.
In Table 2, minimal iteration d required for Max to achieve each bit precision
α is provided. The number of iterations are empirically chosen considering the
worst case, which is smaller than the theoretical expectation of Theorem 1. For
example, when α = 10, then d = 14 suffices while theoretical requirement is
d ≥ 17. The amortized running time is measured by dividing total running time
by the number of plaintext slots.

Numerical Method for Comparison on HE Numbers 439

Table 3. Implementation of Comp for several precision bits. HEAAN parameters
(log N, Q, λ) were chosen as (a)(17, 1600, 121, 6), and (b)(17, 1870, 108.9).

Algorithm
precision bits # iterations Running time

α (d′, d, t) Total (s) Amortized (ms)

Comp (exact)
7 (5, 5, 5) 225(a) 3.43

8 (5, 5, 6) 310(b) 4.72

Comp (c = 1.01) 14 (5, 5, 5) 230(a) 3.50

Comp (c = 1.05) 24 (5, 5, 5) 259(a) 3.94

We remark that our performance only depends on the precision α, not on the
input bitsize �. It provides us much flexibility when we need only approximate
maximum value. For example, our implementation shows that we can obtain an
approximate maximum value of any two 32-bit integers with an error up to 222

in 1.14 ms (with amortized time sense).
The performance of our Max algorithm is comparable, in amortized running

time sense, to the previous results of which input numbers are encrypted bit-
wise. For example, the max algorithm from [19] based on a bit-wise HE, which
expressed the max function by a number of logical gates via weighted finite
automata, takes about 1 ms to compute the maximum of two 8-bit integers.

Comparison of Two Integers. We also implemented our Comp algorithm
for various setups on the number of precision bits α and the lower bound c of
the ratio max(a,b)

min(a,b) . As in the previous subsection, we put integers in full N/2
plaintext slots of HEAAN ciphertext so that the Comp algorithm supports N/2
simultaneous comparison operations. For each setup, we empirically chose opti-
mal parameters m = 4, d, d′ and t. Refer to Algorithm 5 for definitions of the
parameters.

In Table 3, Comp (exact) denotes the comparison experiment considering the
worst case, i.e., comparing any of two α-bit integers scaled into

[
1
2 , 3

2

)
with α-

bit precision, which corresponds to c =
(
1
2 + 2α−1

2α

)
/
(
1
2 + 2α−2

2α

)
. For the cases

c = 1.01 and c = 1.05, we took 32-bit integers satisfying the ratio lower bound
as input.

As same as Max, our empirically chosen parameters d, d′ and t and are smaller
than the theoretical expectation from Theorem 4. For example, for 7-bit precision
of Comp (exact), it was expected to be d, d′ > 5.9 and t > 5.5 from the theorem,
but we found that a bit smaller parameters were sufficient.

The result shows that when we do not need exact comparison, i.e., when we
are given that two inputs has enough difference, we can set the parameters as
more efficient ones. For example, the same iteration (d′, d, t) = (5, 5, 5) guar-
antees 14, or 24 bit precision when c is 1.01 or 1.05, respectively, while it only
guarantees 7-bit precision if we need exact comparison. When c is 1.05, only
(d′, d, t) = (5, 4, 4) iteration suffices for 8-bit precision. Note that each result

440 J. H. Cheon et al.

Table 4. Implementation of MaxIdx and Threshold for 24 and 25 encrypted 7-bit inte-
gers, respectively. HEAAN parameters (log N, Q, λ) were chosen as (17, 1800, 111.3).

Algorithm
precision bits # iterations Running time

α (d′, d, t) Total (s) Amortized (ms)

MaxIdx 7 (3, 11, 3) 311 75.9

Threshold 6 (3, 5, 5) 278 135

shows high performance of Comp showing less than 5 ms of amortized running
time considering 216 number of plaintext slots in one ciphertext.

In [21], Crawford et al. reported some recent implementation results on the
comparison operation based on HElib, where the input integers were bit-wise
encrypted. We referred their comparison experiment on 8-bit integers which
uses the 15709-th cyclotomic polynomial, and it took about a second with 8
threads. Considering ciphertexts over 15709-th cyclotomic polynomial have 682
plaintext slots, the amortized running time is around 1.5 ms. This shows that the
performance of our word-wise comparison is comparable, in amortized running
time, to that of a bit-wise comparison which has been regarded to be one of the
most natural approaches to compare numbers.

Max Index for Several Numbers. We present an experimental evaluation of
the MaxIdx algorithm. For experiment, we compute max index of 16 encrypted 7-
bit integers. We assume that the maximum integer has non-zero most significant
bit, while other integers have most and 2nd-most significant bits zero. This
condition corresponds to the lower bound c =

(
1
2 + 26

27

)
/
(

1
2 + 25−1

27

)
= 128

95 .
The parameter chosen by considering worst-case is a little better than the

theoretical estimation (Theorem 5) which suggests t and d to satisfy t > 2 and
d > 14. Total running time is about 311 s, and we can run 216/24 = 212 number
of Max index algorithms with one ciphertext resulting amortized running time
to be only about 75 ms.

Threshold Counting. For Threshold algorithm, we assume that the threshold
b is encrypted. This is because in some scenarios the threshold could be private
information. If b is not secret, the algorithm shows a better performance since a
constant multiplication is faster than a ciphertext multiplication in HE.

For a power-of-two integer k ≤ N/2, HEAAN supports a packing method
which packs k real numbers in a single ciphertext, enabling us to perform parallel
computations over encryption. As mentioned in the Sect. 7.1, we utilize this
packing method to solve threshold counting with exactly one Comp query and
then use RotateSum to sum up the results of the Comp.

Numerical Method for Comparison on HE Numbers 441

For experimental results, we assume that given 25 number of 7-bit integers,
we want to calculate the number of elements bigger than an encrypted 7-bit
threshold. Then, we can take the lower bound c =

(
1
2 + 26−1

26

)
/
(

1
2 + 26−2

26

)
=

191
190 , and it suffices to bound error size to be smaller than 2−α = 2−6 for each
result of comparison, since we evaluate the addition of 25 comparison results,
whose true value is an integer. In Table 4, we can see that it takes about 278 s to
get the number of elements bigger than the given threshold. Since we can pack
at most 216 numbers in one ciphertext, we can manage 211 threshold counting
problems for 25 numbers with only a single ciphertext, resulting about 135 ms
of amortized running time. If we allow some errors in the final result, or we are
given that the gap between threshold and other numbers are large, we can get
more efficient result than above.

Acknowledgement. We thank Minki Hhan for suggesting a new interpretation on
the efficiency of our algorithms, and Yongsoo Song for several valuable comments. We
also thank to anonymous reviewers of ASIACRYPT 2019. This work was supported
by the National Research Foundation of Korea (NRF) Grant funded by the Korean
Government (MSIT) (No. 2017R1A5A1015626).

A Proofs

Proof of Theorem 3. By Theorem 2, the error of Max(·, ·; d) algorithm from the
true value is bounded by 2(−α−log log n) = 2−α/ log n. Note from the proof of
Lemma 2 that the output of the square root algorithm Sqrt(x; d) is always
smaller than the true value

√
x, so that the same holds for the max algorithm

Max(·, ·; d). This means that ai,1 = Max(a2i−1,0, a2i,0; d) can be written ai,1 =
max(a2i−1,0, a2i,0) − εi for 1 ≤ i ≤ n/2 with 0 ≤ εi ≤ 2−α/ log n. Now we have

max(a2i−1,1, a2i,1) = max(max(a4i−3,0, a4i−2,0) − ε2i−1,max(a4i−1,0, a4i,0) − ε2i)
≥ max(a4i−3,0, a4i−2,0, a4i−1,0, a4i,0) − max(ε2i−1, ε2i)
≥ max(a4i−3,0, a4i−2,0, a4i−1,0, a4i,0) − 2−α/ log n,

which implies that the error of ai,2 = Max(a2i−1,1, a2i,1; d) from
max(a2i−1,1, a2i,1) is bounded by 2·2−α/ log n for 1 ≤ i ≤ n/4. We can repeat the
above procedure to get the conclusion that the error of a1,log n from max(a1, ..an)
is bounded by log n · 2−α/ log n = 2−α.

For the case of min algorithm we note that the approximate values are larger
than the true values and we can apply a similar approach to the above with
reversed inequalities. 	

Proof of Theorem 5. Note that MaxIdx is a natural generalization of Comp. With-
out loss of generality, we assume that a1 is the unique maximum element, and
we only consider the error between the output b1 of MaxIdx and the real value 1.
At Step 1–4, (ai)n

i=1 is scaled to (bi)n
i=1 whose sum is 1. Moreover, every input

of Inv is bounded by n
2m since

∑n
k=1 bj is always set to be 1 before the Inv

442 J. H. Cheon et al.

algorithm. Note that each bj from the iterations is nothing but amt

j /
∑n

i=1 amt

i

with t being increased by one as the iteration go. The error of MaxIdx algorithm
is also composed of three parts as Theorem 4; an error from the convergence of
limm→∞ am

1 /
∑n

i=1 am
i = 1, and an error from the approximation of 1/(

∑n
i=1 bm

i)
by our Inv algorithm and an error coming from Steps 1–4.

Now, the error analysis is almost the same as the proof of Theorem 4 with
minor differences in the values of errors. The first part of the error is bounded by
n·(1/c)mt

since 1− aN
1∑n

i=1 bN
i

= 1− 1
1+

∑n
i=2(bi/a1)N ≤ n/cN . The second part of the

error (from the Inv algorithm) is bounded by (1−n−(m−1))2
d+1

since n−(m−1) is
the lower bound of the denominators

∑n
i=1 bm

i by Cauchy-Schwartz inequality. As
a result, we can conclude that the conditions t ≥ 1

log m [log(α+log n+1)−log log c]
and d, d′ ≥ log(α + t + 1) + (m − 1) log n − 1 suffice to make the total error of
MaxIdx less than 2−α by a similar argument as in Theorem 4. 	

Proof of Theorem 6. Without loss of generality, let ai be the ith maximum value
maxi for 1 ≤ i ≤ n.

For 1 ≤ i < k, since (1 − 2−α)iai+1 > (1 − 2−α)kak+1, we first obtain
(1−2−α)iai+1

2−αa1
> c. For j = 1, the statement holds directly by Theorem 5. After

obtaining m1, the algorithm takes (ε1a1, (1− ε2)a2, ..., (1− εn)an) as an input of
MaxIdx(· · · ; d, d′,m, t), where 0 ≤ εi ≤ 2−α. Since the following inequalities

(1 − ε2)a2 ≥ (1 − 2−α) · 2−α

1 − 2−α
· ca1 ≥ c · ε1a1, and

(1 − ε2)a2 > (1 − ε2)c2a3 ≥ ca3 ≥ c · (1 − εj)aj for 3 ≤ j ≤ n

hold, the output m2 satisfies (1 − 2−α)2a2 ≤ m2 ≤ a2 by Theorem 5.
Inductively, assume that we have obtained m1,m2, ...,mj−1 satisfying the

statement condition. After obtaining an approximate value mj−1 of the (j −1)th

maximum value aj−1, the next input of MaxIdx algorithm is (δ1a1, δ2a2, ..., δnan)
where 0 ≤ δi ≤ 2−α for i < j and (1 − 2−α)j ≤ δi ≤ 1 for otherwise. From the
following inequalities

δjaj ≥ (1 − 2−α)j · 2−α

(1 − 2−α)j
· ca1 ≥ c · δiai for 1 ≤ i < j, and

δjaj > δjcjaj+1 ≥ caj+1 ≥ c · δiai for i > j,

by Theorem 5 the output mj+1 satisfies (1 − 2−α)δjaj ≤ mj ≤ δjaj so that the
statement also holds for j. Therefore, the theorem is proved by induction. 	

References

1. Albrecht, M.R.: A sage module for estimating the concrete security of learning
with errors instances (2017). https://bitbucket.org/malb/lwe-estimator

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

https://bitbucket.org/malb/lwe-estimator

Numerical Method for Comparison on HE Numbers 443

3. Bernstein, S.: Sur la meilleure approximation de |x| par des polynomes de degrés
donnés. Acta Math. 37(1), 1–57 (1914)

4. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-45239-0 4

5. Boura, C., Gama, N., Georgieva, M.: Chimera: a unified framework for B/FV,
TFHE and HEAAN fully homomorphic encryption and predictions for deep learn-
ing. Cryptology ePrint Archive, Report 2018/758 (2018). https://eprint.iacr.org/
2018/758

6. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of
deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 17

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of ITCS, pp. 309–325. ACM
(2012)

9. Brown, K.: Probability of intersecting intervals. https://www.mathpages.com/
home/kmath580/kmath580.htm

10. Chatterjee, A., SenGupta, I.: Sorting of fully homomorphic encrypted cloud data:
can partitioning be effective? IEEE Trans. Serv. Comput. (2017)

11. Cheon, J.H., et al.: Toward a secure drone system: flying with real-time homomor-
phic authenticated encryption. IEEE Access 6, 24325–24339 (2018)

12. Cheon, J.H., Jeong, J., Lee, J., Lee, K.: Privacy-preserving computations of pre-
dictive medical models with minimax approximation and non-adjacent form. In:
Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 53–74. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 4

13. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

14. Cheon, J.H., Kim, D., Kim, Y., Song, Y.: Ensemble method for privacy-preserving
logistic regression based on homomorphic encryption. IEEE Access 6, 46938–46948
(2018)

15. Cheon, J.H., Kim, D., Park, J.H.: Towards a practical clustering analysis over
encrypted data. Cryptology ePrint Archive, Report 2019/465 (2019). https://
eprint.iacr.org/2019/465

16. Cheon, J.H., Kim, M., Kim, M.: Search-and-compute on encrypted data. In: Bren-
ner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp.
142–159. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-
9 11

17. Chialva, D., Dooms, A.: Conditionals in homomorphic encryption and machine
learning applications. Cryptology ePrint Archive, Report 2018/1032 (2018).
https://eprint.iacr.org/2018/1032

https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-45239-0_4
https://eprint.iacr.org/2018/758
https://eprint.iacr.org/2018/758
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://www.mathpages.com/home/kmath580/kmath580.htm
https://www.mathpages.com/home/kmath580/kmath580.htm
https://doi.org/10.1007/978-3-319-70278-0_4
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://eprint.iacr.org/2019/465
https://eprint.iacr.org/2019/465
https://doi.org/10.1007/978-3-662-48051-9_11
https://doi.org/10.1007/978-3-662-48051-9_11
https://eprint.iacr.org/2018/1032

444 J. H. Cheon et al.

18. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

19. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 14

20. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption
scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 19

21. Crawford, J.L., Gentry, C., Halevi, S., Platt, D., Shoup, V.: Doing real work
with FHE: the case of logistic regression. In: Proceedings of the 6th Workshop on
Encrypted Computing and Applied Homomorphic Cryptography, pp. 1–12. ACM
(2018)

22. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

23. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

24. Emmadi, N., Gauravaram, P., Narumanchi, H., Syed, H.: Updates on sorting of
fully homomorphic encrypted data. In: 2015 International Conference on Cloud
Computing Research and Innovation (ICCCRI), pp. 19–24. IEEE (2015)

25. Eremenko, A., Yuditskii, P.: Uniform approximation of sgn(x) by polynomials and
entire functions. J. d’Analyse Mathématique 101(1), 313–324 (2007)

26. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive, 2012:144 (2012)

27. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

28. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30057-8 1

29. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

30. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning (2016)

31. Goldschmidt, R.E.: Applications of division by convergence. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1964)

32. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 25

33. Jackson, D.: The Theory of Approximation, vol. 11. American Mathematical Soci-
ety (1930)

https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
http://crypto.stanford.edu/craig
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-46800-5_25

Numerical Method for Comparison on HE Numbers 445

34. Jäschke, A., Armknecht, F.: Unsupervised machine learning on encrypted data. In:
Cid, C., Jacobson Jr., M. (eds.) SAC 2018. LNCS, pp. 453–478. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-10970-7 21

35. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model train-
ing based on the approximate homomorphic encryption. BMC Med. Genomics
11(4), 83 (2018)

36. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based
on homomorphic encryption: design and evaluation. JMIR Med. Inform. 6(2), e19
(2018)

37. Kocabas, O., Soyata, T.: Utilizing homomorphic encryption to implement secure
and private medical cloud computing. In: 2015 IEEE 8th International Conference
on Cloud Computing (CLOUD), pp. 540–547. IEEE (2015)

38. Pachón, R., Trefethen, L.N.: Barycentric-Remez algorithms for best polynomial
approximation in the chebfun system. BIT Numer. Math. 49(4), 721 (2009)

39. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications nec-
essary to evaluate polynomials. SIAM J. Comput. 2(1), 60–66 (1973)

40. Phillips, G.M.: Best approximation. In: Phillips, G.M. (ed.) Interpolation and
Approximation by Polynomials. CBM, pp. 49–118. Springer, New York (2003).
https://doi.org/10.1007/0-387-21682-0 2

41. Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press,
Cambridge (1981)

42. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Found. Secur. Comput. 4(11), 169–180 (1978)

43. Togan, M., Morogan, L., Plesca, C.: Comparison-based applications for fully homo-
morphic encrypted data. In: Proceedings of the Romanian Academy-Series A:
Mathematics, Physics, Technical Sciences, Information Science, vol. 16, p. 329
(2015)

44. Wilkes, M.V.: The Preparation of Programs for an Electronic Digital Computer:
with Special Reference to the EDSAC and the Use of a Library of Subroutines.
Addison-Wesley Press (1951)

https://doi.org/10.1007/978-3-030-10970-7_21
https://doi.org/10.1007/0-387-21682-0_2

Multi-Key Homomorphic Encryption
from TFHE

Hao Chen1, Ilaria Chillotti2 , and Yongsoo Song1(B)

1 Microsoft Research, Redmond, USA
{haoche,yongsoo.song}@microsoft.com

2 imec-COSIC, KU Leuven, Leuven, Belgium
ilaria.chillotti@kuleuven.be

Abstract. In this paper, we propose a Multi-Key Homomorphic
Encryption (MKHE) scheme by generalizing the low-latency homomor-
phic encryption by Chillotti et al. (ASIACRYPT 2016). Our scheme can
evaluate a binary gate on ciphertexts encrypted under different keys fol-
lowed by a bootstrapping.

The biggest challenge to meeting the goal is to design a multiplication
between a bootstrapping key of a single party and a multi-key RLWE
ciphertext. We propose two different algorithms for this hybrid product.
Our first method improves the ciphertext extension by Mukherjee and
Wichs (EUROCRYPT 2016) to provide better performance. The other
one is a whole new approach which has advantages in storage, complex-
ity, and noise growth.

Compared to previous work, our construction is more efficient in terms
of both asymptotic and concrete complexity. The length of ciphertexts
and the computational costs of a binary gate grow linearly and quadrat-
ically on the number of parties, respectively. We provide experimental
results demonstrating the running time of a homomorphic NAND gate
with bootstrapping. To the best of our knowledge, this is the first attempt
in the literature to implement an MKHE scheme.

Keywords: Multi-Key Homomorphic Encryption · Bootstrapping

1 Introduction

Cryptographic primitives for secure computation have been actively studied
in recent years. Homomorphic Encryption (HE) and Multi-Party Computation
(MPC) are the most promising solutions with different models and performance
trade-offs. HE is useful for outsourcing the storage and computation to a public
cloud, but all data providers should agree on the same public key generated by
a secret key owner. In MPC, multiple parties can build an interactive proto-
col to evaluate a circuit without revealing an auxilarity information beyond the
computation result, but it usually suffers from a high communication and round
complexity.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 446–472, 2019.
https://doi.org/10.1007/978-3-030-34621-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_16&domain=pdf
http://orcid.org/0000-0002-0319-4707
http://orcid.org/0000-0002-0496-9789
https://doi.org/10.1007/978-3-030-34621-8_16

Multi-Key Homomorphic Encryption from TFHE 447

López-Alt et al. [28] proposed the notion of Multi-Key Homomorphic Encryp-
tion (MKHE) which is a variant of HE supporting computation on ciphertexts
encrypted under different keys. This attractive primitive can address the afore-
mentioned issues of HE and MPC, and it has many applications such as round-
efficient MPC (e.g. [2,18,24,30,33]) and spooky encryption [19]. There have been
several researches (e.g. [7,10,17,30,31]) on MKHE. However, all the previous
works were purely abstract and far from practical. In particular, the efficiency
of MKHE remained an open question for years because there has been no study
to implement or compare the MKHE schemes empirically.

Chillotti et al. [13] proposed an HE scheme (called TFHE) based on the
learning with errors (LWE) [32] assumption and its ring variant (RLWE) [29].
This HE scheme can evaluate an arbitrary binary gate on encrypted bits followed
by a bootstrapping. TFHE has advantages in running time and usability com-
pared to other HE schemes. Its bootstrapping has a low-latency and it makes
simpler the task of implementing a binary circuit without background knowledge
on HE (every gate of the plaintext circuit can be automatically replaced by its
bootstrapped homomorphic version).

The TFHE scheme supports an operation called external product, which mul-
tiplies a Ring GSW (RGSW) ciphertext to an RLWE ciphertext and returns an
RLWE ciphertext. A bootstrapping key consists of several RGSW encryptions,
and each of them is recursively multiplied to an RLWE ciphertext to refresh it.
In the multi-key case, the main difference is that we take a multi-key ciphertext
as the input of bootstrapping. Hence we should be able to multiply a bootstrap-
ping key, which is generated by a single party, to a multi-key ciphertext, which
is associated with multiple parties.

We propose an RGSW-like cryptosystem and present two methods to mul-
tiply a single-key encryption to a multi-key RLWE ciphertext. The first algo-
rithm consists of two phases: generation of a multi-key RGSW ciphertext and
multi-key external product. It is similar to previous ciphertext extension method
(firstly proposed by Clear and McGoldrick [17] and simplified by Mukherjee and
Wichs [30]), but our scheme is simpler, lighter and faster. Our second algo-
rithm for hybrid product is a completely different approach to achieve the same
functionality. A single-key ciphertext directly acts on a multi-key RLWE cipher-
text without any expensive multi-key RGSW operation. It achieves even better
asymptotic complexity and less noise growth, and thereby improves the overall
performance.

In summary, the length of ciphertext and the computational costs of a single
binary gate grow linearly and quadratically on the number of involved parties,
respectively (see Table 1 for comparison). Furthermore, our scheme is easy to
implement and compatible with existing techniques for advanced functionalities
such as the threshold decryption [3,26], circuit bootstrapping [14], and plaintext
packing [4,8].

Finally, we provide a proof-of-concept implementation with concrete param-
eter sets. For example, it took about 0.27, 1.45 and 7.16 s to evaluate a

448 H. Chen et al.

bootstrapped NAND gate when the number of parties is 2, 4 and 8, respec-
tively, on a personal computer.

Overview of Our Scheme. We adapt the formalization of (R)LWE over the
real torus T = R (mod 1) from Chillotti et al. [13]. We generalize TFHE to
support the homomorphic computation on ciphertexts encrypted under inde-
pendently generated keys. Let R = Z[X]/(XN + 1) and T = T[X]/(XN + 1) for
a power-of-two integer N . We use a gadget vector g = (B−1, . . . , B−d) ∈ Z

d for
some base B and degree d.

Each party (of index i) independently generates the LWE secret si ∈ {0, 1}n

and the RLWE secret zi ∈ R. A multi-key encryption of m ∈ {0, 1} is a vector of
the form ct = (b,a1, . . . ,ak) ∈ T

kn+1 such that b+ 〈a1, s1〉+ · · ·+ 〈ak, sk〉 ≈ 1
4m

(mod 1) where k denotes the number of involved parties and si = (si,j)1≤j≤n

are their LWE secrets. The homomorphic evaluation of a NAND gate consists
in an initial linear combination followed by a bootstrapping that takes care of
the non-linear part of the gate together with the noise reduction. In particular,
the noise reduction is performed by homomorphically computing the decryption
formula (on the exponent of X) and by selecting the correct output of the boot-
strapping encoded in a fixed test polynomial. The following three steps describe
in more detail the NAND evaluation idea: for more details on the original TFHE
bootstrapping we refer to [15].

First, we evaluate the linear combination for the NAND gate m = m1 � m2

on encrypted bits m1,m2 and return a ciphertext ct′ = (b′,a′
1, . . . ,a

′
k) satisfying

b′ +
∑k

i=1〈a′
i, si〉 ≈ 1

2m (mod 1). The evaluation is done after arranging the
entries and extending the dimension of input ciphertexts to share the same secret.

In the second step, we extract the most significant bits b̃ = �2N · b′� and
ãi = �2N · a′

i�, and initialize the accumulator c = (− 1
8X b̃ · h(X),0) ∈ T k+1 for

the testing polynomial h(X) =
∑

−N/2<d<N/2 Xd which is a multi-key RLWE
encryption with respect to the concatenated RLWE secret z = (1, z1, . . . , zk) ∈
Rk+1. Then, we evaluate Mux gates (data selector) recursively to obtain an
RLWE encryption of − 1

8X b̃+
∑k

i=1〈ãi,si〉 · h(X) using encryptions of si,j ∈ {0, 1}.
Finally, from the output of accumulator, we extract an LWE encryption

ct
∗ = (b∗,a∗

1, . . . ,a
∗
k) such that b∗ +

∑k
i=1〈a∗

i , z
∗
i 〉 ≈ 1

4m (mod 1) where z∗
i ∈

Z
N is a permuted coefficient vector of zi. Finally, we perform the multi-key-

switching procedure from (z∗
1, . . . , z

∗
k) to (s1, . . . , sk) by repeating the ordinary

key-switching procedure from z∗
i to si.

The main difference between TFHE and our multi-key variant is in the sec-
ond step. In the multi-key case, the i-th bootstrapping key (encryptions of si,j

for 1 ≤ j ≤ n) is generated by a single party but we should multiply it to a
multi-key RLWE ciphertext. We propose an RLWE-based scheme (called uni-
encryption) which supports this hybrid product. In the key generation phase,
each party takes a Common Reference String (CRS) a ∈ T d and set a pub-
lic key bi ≈ −zi · a (mod 1). A party i can uni-encrypt a plaintext μi ∈ R
into a ciphertext (di,Fi = [fi,0|fi,1]) ∈ T d × T d×2 such that di ≈ ri · a + μi · g
(mod 1) and f0+zi ·f1 ≈ ri ·g (mod 1). Our hybrid product function multiplies a

Multi-Key Homomorphic Encryption from TFHE 449

Table 1. Memory (bit-size) and computational costs (number of scalar operations) of
MKHE schemes. k denotes the number of parties and n is the dimension of the (R)LWE
assumption. PK and EVK denote the public and evaluation (or bootstrapping) keys,
respectively.

Scheme Space Time Bootstrap

Type Complexity Type Complexity

CZW17 [10] EvalKey Õ(k3n) EvalKey Gen Õ(k3n) No
Ciphertext Õ(kn) Hom Mult Õ(k3n)

PS16 #2 [31] PK Õ(kn4) Hom Mult Õ(k2.37n2.37) No
Ciphertext Õ(k2n2)

BP16 [7] PK Õ(kn3) Hom NAND poly(k, n) Yes
Ciphertext Õ(kn)

This work
(Method 1)

Eval Key Õ(k2n2) Eval Key Gen Õ(k2n2) Yes

Ciphertext Õ(kn) Hom NAND Õ(k2n2)
This work
(Method 2)

Ciphertext Õ(kn) Hom NAND Õ(k2n2) Yes

uni-encryption of μi to a multi-key RLWE encryption c ∈ T k+1 and returns a
multi-key RLWE ciphertext, i.e., the output c′ ∈ T k+1 satisfies that 〈c′, z〉 ≈
μi · 〈c, z〉 (mod 1). We propose two different algorithms to achieve this function-
ality.

Our first hybrid product algorithm is an improvement of the GSW extension
algorithm in previous work [7,17,30]. It aims to transform a uni-encryption of
μi into a multi-key RGSW encryption Di ∈ T d(k+1)×(k+1) of the same mes-
sage under the concatenated key z ∈ Rk+1 satisfying Diz ≈ μi · (Ik+1 ⊗ g) in
T d(k+1). Then, we can perform the multi-key external product between c and
Di to multiply them. Compared to previous algorithm, we reduce the dimen-
sion of ciphertexts from 2k down to (k + 1) by merging duplicated components
(1, z1, . . . , 1, zk) into z = (1, z1, . . . , zk). In addition, we observe that the uni-
encryption is not used for encrypting real messages, but only for generating
a bootstrapping key. Hence we propose a symmetric key encryption to reduce
the size of ciphertexts and complexity of extension algorithm. However, the first
method does not change the asymptotic complexity O(kd2 ·N log N) of extension
process (see Sect. 3.2 for details).

We propose a new framework in our second algorithm for hybrid product.
The previous GSW extension is done independently from the input multi-key
RLWE ciphertext c. Instead, we work on c directly to avoid expensive multi-
key RGSW operations. There are two main advantages of this approach: its
complexity O(kd · N log N) is asymptotically better and the noise variance is
reduced by a factor of O(d ·B2). For these reasons, we used the second algorithm
in our implementation.

450 H. Chen et al.

Related Works. López-Alt et al. [28] firstly proposed an MKHE scheme based
on the NTRU assumption. Clear and McGoldrick [17] introduced an LWE-
based construction, and it was significantly simplified by Mukherjee and Wichs
[30]. These schemes are single-hop for keys where the list of parties has to
be known before the computation starts. This work was improved in concur-
rent researches by Peikert-Shiehian [31] and Brakerski-Perlman [7] which design
multi-hop (dynamic for keys) MKHEs. Chen, Zhang and Wang [10] constructed
a scheme which can encrypt a ring element compared to a single bit of prior
works. Unfortunately, there have been no research with implementation results
because all previous schemes were impractical.

We summarize the performance of relatively efficient MKHE schemes in
Table 1. We only consider the second (main) one between two schemes described
in [31]. All existing schemes except [7] and [10] use variants of the GSW scheme
to encrypt plaintexts. Therefore, the size of ciphertexts grows at least quadrac-
tically on the number k of parties in the computation.

Similar to our scheme, [7] encrypts a bit in a single LWE ciphertext. However,
they proposed a purely abstract bootstrapping based on the evaluation of a
huge branching program of length L = poly(k, n) representing the NAND gate
followed by LWE decryption. A memory-complexity tradeoff was proposed to
keep a linear storage requirement on k, but even the asymptotic complexity of
bootstrapping is not analyzed in the paper.

The construction of a batched MKHE scheme is an orthogonal research issue.
Chen et al. [10] proposed a multi-key variant of BGV [6] with a larger plaintext
space. However, it is a leveled scheme so a large constant (depending on the
maximum level of a circuit to be evaluated) is hidden in the Õ(·) notation.
Moreover, the space and time complexity of homomorphic multiplication grow
rapidly as the number of parties increases. Its complexity is quasi-linear on the
security parameter, however, our scheme can be implemented using a smaller
parameter.

Since [7] and [10] use the GSW extension to generate evaluation (bootstrap-
ping) keys, our improved (compact and symmetric) method can be directly
applied to these schemes for better performance.

2 Background

2.1 Notation

All logarithms are in base two unless otherwise indicated. We denote vectors in
bold, e.g. a, and matrices in upper-case bold, e.g. A. We denote by 〈·, ·〉 the usual
dot product of two vectors. For a real number r, �r� denotes the nearest integer
to r, rounding upwards in case of a tie. We use x ← D to denote the sampling
x according to distribution D. For a finite set S, U(S) denotes the uniform
distribution on S. For a real α > 0, Dα denotes the Gaussian distribution of
variance α2. We let λ denote the security parameter throughout the paper: all
known valid attacks against the cryptographic scheme under scope should take

Multi-Key Homomorphic Encryption from TFHE 451

Ω(2λ) bit operations. For a positive integer k, [k] = {1, 2, . . . , k} denotes the
index set.

2.2 Multi-Key Homomorphic Encryption

A multi-key homomorphic encryption MKHE consists of five PPT algorithms
Setup, KeyGen, Enc, Dec, and NAND.

• pp ← MKHE.Setup(1λ): Given the security parameter λ, returns a public
parameter pp.

• (sk, pk) ← MKHE.KeyGen(pp): Generates its secret and public keys. We assume
that each party has its own ID (index) mapped to the keys.

• ct ← MKHE.Enc(m; pk): Given a bit m ∈ {0, 1}, returns a ciphertext ct ∈
{0, 1}∗. We assume that every ciphertext contains IDs of relevant parties.

• m ← MKHE.Dec(ct; {ski}i∈[k]): Given a ciphertext ct, let {ski}i∈[k] be the
sequence of secret keys of relevant parties. Decrypts the ciphertext into a bit
m ∈ {0, 1}.

• ct
′ ← MKHE.NAND(ct1, ct2, {pki}i∈[k]): Given ciphertexts ct1 and ct2, let k be

the number of parties relevant to either ct1 or ct2, and {pki}i∈[k] be the
sequence of their public keys. Evaluates the NAND gate and returns a cipher-
text ct′. The output ciphertext implicitly includes k indices of related parties.

An MKHE scheme is called secure if its encryption is semantically secure.
The output ct

′ ← MKHE.NAND(ct1, ct2, {pki}i∈[k]) of homomorphic NAND should
satisfy MKHE.Dec(ct′, {ski}i∈[k]) = m1 � m2 with an overwhelming probability if
ct1 and ct2 are encryptions of m1 and m2, respectively.

2.3 TLWE and TRLWE

The TFHE scheme, presented for the first time in [13], is based on the TLWE
(resp. TRLWE) problem, which is the torus variant of the LWE (resp. RLWE)
problem. Instead of working over Z/qZ, or over the ring Z[X]/(XN +1) modulo
q in the ring variant, in TFHE we work over the real Torus T = R mod 1 and
over T = T[X]/(XN + 1), the set of cyclotomic polynomials over T for a power-
of-two integer N . In this section and in the following one we present an overview
of the TFHE scheme: for more details we refer to [15].

We denote by R = Z[X]/(XN + 1) the set of cyclotomic polynomials over
Z. Then, we observe that T and T are modules over Z and R, respectively. This
means that they are groups with respect to the addition and they are provided
with an external product by an integer or an integer polynomial.

A TLWE sample is a pair (b,a) ∈ T
n+1, where a is sampled uniformly over

T
n and b = 〈a, s〉 + e. The secret key s and error e are sampled from a key

distribution χ on Z
n and a Gaussian with standard deviation α > 0.

By following the same path, a TRLWE sample is a pair of polynomials (b, a) ∈
T 2, where a is sampled uniformly from T and b = a · z + e (mod 1) for an error
e. The secret key z is an integer polynomial of degree N sampled from a key

452 H. Chen et al.

distribution ψ on R and the error polynomial e is sampled from a Gaussian
distribution with standard deviation β. We will set ψ as the uniform distribution
on the set of polynomials of R with binary coefficients in {0, 1}. For a, b ∈ R

(resp. T), we denote by a ≈ b (mod 1) if a = b + e (mod 1) for a small error
e ∈ R (resp. R[X]/(XN + 1)).

We can then define two problems for both TLWE and TRLWE:

– Decision problem: for a fixed TLWE secret s (resp. TRLWE secret z), distin-
guish the uniform distribution over T

n+1 (resp. T 2) from the TLWE (resp.
TRLWE) samples.

– Search problem: given arbitrarily many samples from the TLWE (resp.
TRLWE) distribution, find the secret s (resp. z).

TLWE samples can be used to encrypt Torus messages. By fixing the message
space as a discrete subset M ⊆ T, a message μ ∈ M can be encrypted by adding
the trivial TLWE sample (μ,0) to a TLWE sample generated as described in
previous paragraphs. Then, the corresponding ciphertext ct is a pair (b,a) ∈
T

n+1, with b = −〈a, s〉 + e + μ. In order to decrypt, we compute the phase ϕs of
the ciphertext ct, which is equal to ϕs(ct) = b+ 〈a, s〉, and we approximate it to
the nearest message possible in M to retrieve μ. By following the same footstep,
we can use TRLWE samples to encrypt torus polynomial messages in T .

Thanks to the Z-module structure of the torus and to the R-module structure
of T , the TLWE and TRLWE samples have additive homomorphic properties.
The external integer homomorphic multiplication can be performed thanks to
the TRGSW ciphertexts we define in the next section.

2.4 TRGSW and External Product

For a base integer B ≥ 2 and a degree d, we call g = (B−1, . . . , B−d) the gadget
vector. For an integer k ≥ 1, the gadget matrix is defined by

Gk = Ik ⊗ g =

⎡

⎢
⎢
⎢
⎣

g 0 . . . 0
0 g . . . 0
...

...
. . .

...
0 0 . . . g

⎤

⎥
⎥
⎥
⎦

∈ T
dk×k.

For any u ∈ T
k, we define its base decomposition by a dk-dimensional

vector v = G−1
k (u) with coefficients in Z ∩ (−B/2, B/2] which minimizes

‖vT · Gk − uT ‖∞. The decomposition error ‖vT · Gk − uT ‖∞ is bounded by
1
2B−1.

We identify an arbitrary element of T to the vector of its coefficients in T
N ,

and naturally extend the base decomposition G−1
k (·) to a function T k → Rdk

by applying the basic decomposition function coefficient wisely.
Then, we can define the TRGSW samples as the torus variant of RGSW

samples, in the same way as we did in previous section1. For a fixed TRLWE
1 We define only the Ring version TRGSW, since this is the only sample we need in

this paper. TGSW can be defined in the same way. For more details we refer to [15].

Multi-Key Homomorphic Encryption from TFHE 453

secret s ∈ R, we define a TRGSW sample as C = Z + μ · G2, where each line of
the matrix Z ∈ T d×2 is a TRLWE encryption of 0, G2 is the gadget matrix and
the message μ ∈ R is an integer polynomial.

TRGSW samples are homomorphic with respect to the addition and to
an internal multiplication. Furthermore, an external product, noted �, with
TRLWE can be defined as A � b = G−1

2 (b) · A, for all TRLWE samples b and
TRGSW samples A encrypted with the same secret key. In the following sections,
we define a variant of the TRGSW samples and an adapted external product.
The internal product between two TRGSW samples A and B encrypted with
the same secret key can be defined as a list of independent external products
between the cipher A and the lines composing the cipher B.

The scheme TFHE has been implemented and is publicly available at [16]. In
Sect. 5 we present some experimental results we obtained by implementing our
Multi-Key scheme on top of the TFHE library.

In the rest of the paper, in order to lighten the notations, we will abandon
the ‘T’ notation in front of LWE, RLWE and RGSW.

3 Basic Schemes

In this section, we present the LWE [32] and RGSW [20,23] schemes and describe
some extended algorithms that will be used in our MKHE scheme.

3.1 Multi-Key-Switching on LWE Ciphertexts

We first describe the standard LWE-based scheme and generalize its key-
switching algorithm to the multi-key case.

• LWE.Setup(1λ): It takes the security parameter as input and generates the
LWE dimension n, key distribution χ, error parameter α. Set the decompo-
sition base B′ and degree d′ for gadget vector g′ = (B′−1, . . . , B′−d′

). Return
the public parameter ppLWE = (n, χ, α,B′, d′).

An LWE secret s is sampled from the distribution χ. We use the key-switching
gadget vector g′ = (B′−1, . . . , B′−d′

). Recall that the base decomposition algo-
rithm with respect to g′ transforms an element a ∈ T into the d′-dimensional
vector g′−1(a) with coefficients in ZB′ which minimizes |a − 〈g′−1(a),g′〉|.

We assume that the following LWE algorithms implicitly takes ppLWE as an
input.

• LWE.KeyGen(): Sample the LWE secret s ← χ.
• LWE.Enc(m, s): This is a standard LWE encryption which takes a bit m ∈

{0, 1} as an input. It samples a ← U(Tn) and e ← Dα, and returns the
ciphertext ct = (b,a) ∈ T

n+1 where b = −〈a, s〉 + 1
4m + e (mod 1).

454 H. Chen et al.

Note that the scaling factor is 1/4, as in FHEW [20] or TFHE [13]. We
described a symmetric encryption for simplicity, but this algorithm can be
replaced by any LWE-style encryption schemes such as public key encryption
[27]. The only requirement is that the output ciphertext should be a vector
ct = (b,a) ∈ T

n+1 satisfying b + 〈a, s〉 ≈ 1
4m (mod 1).

• LWE.KSGen(t, s): Given LWE secrets t ∈ Z
N and s ∈ Z

n, it returns the key-
switching key KS = {Kj}j∈[N] ∈ (Td′×(n+1))N from t to s. For each j ∈ [N],
the j-th entry is generated by sampling Aj ← U(Td′×n) and ej ← Dd′

β , and
returning Kj = [bj |Aj] where bj = −Ajs + ej + tj · g′ (mod 1).

We can transform an LWE ciphertext corresponding to t into another LWE
encryption of the same message under the secret s using a key-switching key
KS ← LWE.KSGen(t, s).

We consider the notion of extended LWE encryption and the multi-key-
switching procedure. For k LWE secrets s1, . . . , sk ∈ Z

n, an extended cipher-
text ct = (b,a1, . . . ,ak) ∈ T

kn+1 will be called an encryption of m ∈ {0, 1}
with respect to the concatenated secret s = (s1, . . . , sk) if 〈ct, (1, s)〉 = b +
∑k

i=1〈ai, si〉 ≈ 1
2m (mod 1).

• LWE.MKSwitch(ct, {KSi}i∈[k]): Given a ciphertext ct = (b,a1, . . . ,ak) ∈
T

kN+1 and a sequence of the key-switching keys KSi = {Ki,j}j∈[N], compute
(b′

i,a
′
i) =

∑N
j=1 g′−1(ai,j) ·Ki,j (mod 1) for all i ∈ [k] and let b′ = b+

∑k
i=1 b′

i

(mod 1). Return the ciphertext ct
′ = (b′,a′

1, . . . ,a
′
k) ∈ T

kn+1.

This multi-key-switching algorithm takes as the input an extended ciphertext
ct ∈ T

kN+1 corresponding to t = (t1, . . . , tk) and a sequence of key-switching
keys from ti to si and returns an encryption of the same message under s =
(s1, . . . , sk).

Security. The j-th component Kj of a key-switching key KS = {Kj}j∈[N]

from t ∈ Z
N to s ∈ Z

n is generated by adding tj · g′ to the first column of a
matrix in T

d′×(n+1) whose rows are LWE instances under the secret s. Therefore,
KS ← LWE.KSGen(t, s) is computationally indistinguishable from the uniform dis-
tribution over (Td′×(n+1))N under the LWE assumption with parameter (n, χ, β)
if s is sampled according to χ.

Correctness. We show that if ct = (b,a1, . . . ,ak) is an LWE ciphertext
encrypted by t = (t1, . . . , tk) and {KSi}i∈[k] are key-switching keys from ti ∈ Z

N

to si ∈ Z
n, then the output ciphertext encrypts the same message under the

concatenated secret s = (s1, . . . , sk). The correctness of this algorithm is simply

Multi-Key Homomorphic Encryption from TFHE 455

shown by the following equation:

〈ct′, (1, s)〉 = b +
k∑

i=1

(b′
i + 〈a′

i, si〉)

≈ b +
k∑

i=1

N∑

j=1

〈g′−1(ai,j), ti,j · g′〉 ≈ 〈ct, (1, t)〉 (mod 1).

Therefore, KS = {KSi}i∈[k] can be considered as a key-switching key from t ∈
Z

kN to s ∈ Z
kn.

3.2 Multi-key RLWE and Hybrid Product

In this section, we present a ring-based scheme supporting two algorithms UniEnc
and Prod. First, UniEnc is a single-key symmetric encryption which can encrypt
a ring element. We can multiply a uni-encryption to a multi-key RLWE cipher-
text using the hybrid product algorithm Prod. In fact, we provide two differ-
ent methods to perform this operation. We will explain their performance and
(dis)advantages later.

• RLWE.Setup(1λ): It takes as input the secret parameter λ.
1. Set the RLWE dimension N which is a power of two.
2. Set the key distribution ψ over R and choose the error parameter α.
3. Set the base integer B ≥ 2 and the decomposition degree d for the gadget

vector g = (B−1, . . . , B−d).
4. Generate a random vector a ← U(T d).

Return the public parameter ppRLWE = (N,ψ, α,B, d,a).

Our RLWE-based scheme is based on the CRS model since the public param-
eter ppRLWE contains a CRS a ∈ T d. The parameter should be chosen appropri-
ately so that the RLWE problem with parameter (N,ψ, α) achieves at least λ-bit
security level. We assume that the following RLWE algorithms implicitly takes
ppRLWE as an input.

• RLWE.KeyGen(): Sample the secret z ← ψ and set z = (1, z). Sample an error
vector e ← Dd

α and set the public key as b = −z · a + e (mod 1). Return
(z,b) ∈ R × T d.

• RLWE.UniEnc(μ, z): For an input plaintext μ ∈ R and a secret key z, it
generates and returns the ciphertexts (d,F) ∈ T d × T d×2 as follows:
1. Sample r ← ψ and an error e1 ← Dd

α. Output the vector d = r · a + μ ·
g + e1 ∈ T d.

2. Sample f1 ← U(T d) and e2 ← Dd
α. Output the ciphertext F = [f0|f1] ∈

T d×2 where f0 = −z · f1 + r · g + e2 (mod 1).

456 H. Chen et al.

A uni-encryption consists of three polynomial vectors of dimension d, three-
fourth the size of ordinary RGSW ciphertexts in T 2d×2. The first component d
and the CRS a together form an encryption of μ under the randomness r. We
can consider F as an encryption of r under the secret z. In the following, we
describe two different algorithms for hybrid product.

• RLWE.Prod(c(di,Fi), {bj}j∈[k]): Given a multi-key RLWE ciphertext c ∈
T k+1 and the public keys of k parties associated to c, multiply a uni-
encryption (di,Fi) encrypted by the i-th party to c as follows. We use the
notation z0 = 1 and b0 = −a in this algorithm (in the context of bj ≈ −zj ·a).

Method 1. The first method consists of two steps. We first generate an extended
RGSW ciphertext Di ∈ T d(k+1)×(k+1) by combining a uni-encryption (di,Fi)
and the set of public keys {bj}j∈[k], then multiply it to c using the multi-key
external product.

Step 1. Ciphertext Extension. Di ← RLWE.Extend((di,Fi), {bj}j∈[k]): For
0 ≤ j ≤ k, compute the vectors xj ,yj ∈ Rd

Q by xj [] = 〈g−1(bj []), f0〉 and
yj [] = 〈g−1(bj []), f1〉 for all 	 ∈ [d], i.e., [xj |yj] = MjFi ∈ T d×2 where Mj ∈
Rd×d is the matrix of which 	-th row vector is g−1(bj []).

Return the expanded ciphertext

Di =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

di + x0 0 · · · y0 · · · 0
x1 di · · · y1 · · · 0
...

...
. . .

...
. . .

...
xi 0 · · · di + yi · · · 0
...

...
. . .

...
. . .

...
xk 0 · · · yk · · · di

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ T d(k+1)×(k+1).

Step 2. Multi-key GSW External Product. c′ ← c � Di: For a multi-
key RLWE ciphertext c ∈ T k+1 and a multi-key RGSW ciphertext Di ∈
T d(k+1)×(k+1), return the ciphertext c′ = G−1

k+1(c) · Di (mod 1).

Method 2. Given a multi-key RLWE ciphertext c = (c0, c1, . . . , ck) ∈ T k+1,
we first compute the following polynomials for all 0 ≤ j ≤ k:

uj = 〈g−1(cj),di〉,
vj = 〈g−1(cj),bj〉,

wj,0 = 〈g−1(vj), fi,0〉,
wj,1 = 〈g−1(vj), fi,1〉.

Multi-Key Homomorphic Encryption from TFHE 457

Then, we return the multi-key RLWE ciphertext c′ = (c′
0, . . . , c

′
k) ∈ T k+1 where

c′
0 = u0 +

∑k
j=0 wj,0 (mod 1), c′

i = ui +
∑k

j=0 wj,1 (mod 1), and c′
j = uj for

j ∈ [k]\{i}.

Security. We claim that the distribution

D0 = {(a,b,d,F) : ppRLWE ← RLWE.Setup(1λ),
(z,b) ← RLWE.KeyGen()(d,F) ← RLWE.UniEnc(μ, z)}

is computationally indistinguishable from the uniform distribution over T d×5

for any μ ∈ R under the RLWE assumption with parameter (N,ψ, α). We con-
sider the following distributions: First, we can switch (b,a) and F = [f0|f1] into
independent uniform distributions on T d×2 using the RLWE assumption of the
secret z. Hence D0 is computationally indistinguishable from

D1 = {(a,b,d,F) : a,b ← U(T d),F ← U(T d×2),

r ← ψ, e1 ← Dd
α,d = r · a + μ · g + e1 (mod 1)}.

Then, d is changed to a uniform distribution using the RLWE assumption of
secret r again. Therefore, D1 is indistinguishable from the distribution

D2 = {(a,b,d,F) : a,b,d ← U(T d),F ← U(T d×2)}.

Since D2 is independent from μ, our RLWE scheme is semantically secure.

Correctness of Method 1. Let (zj ,bj) be the RGSW key of the j-th party
for j ∈ [k]. Suppose that (di,Fi = [fi,0|fi,1]) is a uni-encryption of μi ∈ R of the
i-th party, i.e., di ≈ ri · a + μi · g (mod 1) and fi,0 + zi · fi,1 ≈ ri · g (mod 1) for
some ri ← ψ.

We call D ∈ T d(k+1)×(k+1) a multi-key RGSW encryption of μ ∈ R under
the concatenated secret z = (1, z1, . . . , zk) ∈ Rk+1 if D · z ≈ μ · Gk+1z (mod 1).
We first claim that Di ← RLWE.Extend((di,Fi), {bj}j∈[k]) is a valid RGSW
encryption of μi corresponding to z. It suffices to show that xj +zi ·yj +zj ·di ≈
μizj · g (mod 1) for all 0 ≤ j ≤ k. We can combine the following equations to
obtain the desired result:

xj + zi · yj = MjFizi ≈ Mj(r · g) ≈ ri · bj (mod 1),
zj · di ≈ rizj · a + μizj · g ≈ −ri · bj + μizj · g (mod 1).

The multi-key external product � is a natural generalization of the ordi-
nary external product between RLWE and RGSW ciphertexts to the multi-
key setting [7,13]. Let us suppose that c ∈ T k+1 is an RLWE ciphertext
and Di ∈ T d(k+1)×(k+1) is an RGSW encryption of μi with respect to the
secret z ∈ Rk+1, i.e., Diz ≈ μi · Gk+1z (mod 1). Then their external product
c′ = c�Di satisfies that 〈c′, z〉 = G−1

k+1(c)·Diz ≈ G−1
k+1(c)·μiGk+1z ≈ μi ·〈c, z〉

(mod 1), as desired.

458 H. Chen et al.

Correctness of Method 2. We note that c′ is generated by adding
∑k

j=0 wj,0

and
∑k

j=0 wj,1 to the zeroth and i-th components of (u0, . . . , uk). Hence we have

〈c′, z〉 =
∑k

j=0 uj · zj +
∑k

j=0 (wj,0 + wj,1 · zi) (mod 1).
From the definition of uj , vj , wj,0 and wj,1, we obtain

k∑

j=0

uj · zj ≈
k∑

j=0

〈g−1(cj), ri · a + μi · g〉 · zj ≈ μi · 〈c, z〉 − ri ·
k∑

j=0

vj (mod 1),

k∑

j=0

(wj,0 + wj,1zi) =
k∑

j=0

〈g−1(vj), fi,0 + zi · fi,1〉 ≈ ri ·
k∑

j=0

vj (mod 1),

and conclude that 〈c′, z〉 ≈ μi · 〈c, z〉, as desired.

Performance. In the first method, the Extend algorithm transforms a uni-
encryption (di,Fi) generated by the i-th party into a valid multi-key RGSW
ciphertext Di encrypting the same message under the concatenated secret z =
(1, z1, . . . , zk) ∈ Rk+1. It can be viewed as a variant of RGSW extension of
previous work [10,17,30]. However, we improve its performance by reducing the
dimension of extended ciphertexts by almost half from 2k down to (k + 1).
Moreover, we proposed a symmetric encryption since uni-encryption is not used
for plaintext encryption but only for generating the bootstrapping keys of our
MKHE scheme. Therefore, our uni-encryption, extension and thereby external
product algorithms are better in terms of size, complexity, and noise growth.
Our solution can be directly applied to [10] to improve its key-switching key
generation in the same context. We note that Extend requires 2(k + 1)d2 =
O(kd2) polynomial multiplications to generate xj , xj for 0 ≤ j ≤ k and we
can store an extended ciphertext using (2k + 3)d = O(kd) polynomials due to
its sparsity. In addition, the external product (Step 2) takes (3k + 1)d = O(kd)
polynomial multiplications since Di is a sparse matrix generated by the extension
algorithm.

Meanwhile, our second method updates the input multi-key RLWE cipher-
text c without generating any multi-key GSW ciphertext. It requires only
4(k + 1)d = O(kd) polynomial multiplications, and also enjoys a comparative
advantage in terms of noise growth. Roughly speaking, it computes the same
function at the plaintext level, but uses a different circuit representation.2 The
next paragraph will explain more about it in detail.

Comparison. The first method is asymptotically slower than the second
method, however, we note that the ciphertext extension depends only on (di,Fi)
and {bj}j∈[k]. The extended ciphertext Di can be pre-computed and reused in

2 For the reader who is familiar with the GSW scheme, let us cite a similar example. For
GSW ciphertexts Ci, we denote by � the multiplication between GSW ciphertexts.
Both C1 � (C2 �C3) and (C1 �C2) �C3 are computing the same function (product
of three plaintexts) but latter one introduces a much smaller error.

Multi-Key Homomorphic Encryption from TFHE 459

the multiplications with different multi-key RLWE ciphertexts. In particular,
Step 2 requires less number of polynomial multiplication than Method 2 (about
3/4 times) so one can take an advantage of complexity from this pre-processing.

On the other hand, we point out that the second method introduces a much
smaller noise. We denote by VB ≈ B2/12 the variance of a uniform distribution
on ZB . We show in AppendixA that the first method outputs a ciphertext
satisfying

〈c′, z〉 = μi · 〈c, z〉 + e (mod 1)

for some error e of variance V1 ≈ (k +1)d2 ·N2 ·V 2
B ·β2 while the second method

holds the same equation but with different error variance V2 ≈ 1
2 (kd + k + 1) ·

N2 · VB · β2 ≤ (d · VB)−1 · V1.
In summary, the first method with pre-processing can have an advantage in

complexity (by a factor of about 3/4) by making a trade-off between storage
and complexity. Meanwhile, the second method has a smaller noise growth. In
other words, one may use a smaller parameter while achieving the same level of
noise. For these reasons, the second method is more practical than the first one
in almost all aspects.

The controlled selector gate (called CMux in [15]) is one direct application
of hybrid product. It aims to securely choose cμ = (1 − μ) · c0 + μ · c1 between
two multi-key RLWE ciphertexts c0 and c1 using an encrypted bit μ ∈ {0, 1}.
The CMux gate is a core operation in the bootstrapping of our scheme.

• RLWE.CMux(c0, c1(di,Fi), {bj}j∈[k]): Given multi-key ciphertexts c0, c1 ∈
T k+1, a uni-encryption (di,Fi) (encrypting a bit μi ∈ {0, 1}) and the set
of public keys {bj}1≤j≤k, compute and return c′ ← c0 + RLWE.Prod(c1 −
c0(di,Fi), {bj}j∈[k]).

4 Multi-key Variant of TFHE

4.1 Description

In this section, we explicitly describe an MKHE scheme based on the LWE and
RGSW schemes. Our scheme can bootstrap a ciphertext after the evaluation of
a binary gate as in TFHE [13], but it requires to pre-compute the bootstrapping
key corresponding to the set of parties involved in a computation.

• MKHE.Setup(1λ):
– Run LWE.Setup(1λ) to generate the parameter ppLWE = (n, χ, α,B′, d′).
– Run RLWE.Setup(1λ) to generate the parameter ppRLWE = (N,ψ, β,B, d,a).
– Return the generated public parameters ppMKHE = (ppLWE, ppRLWE).

We assume that all other algorithms of MKHE implicitly take ppMKHE as an input.

• MKHE.KeyGen(): Each party i independently generates its keys as follows.

460 H. Chen et al.

– Sample the LWE secret by si ← LWE.KeyGen().
– Run (zi,bi) ← RLWE.KeyGen() and set the public key as PKi = bi. We write

z∗
i = (zi,0,−zi,N−1, . . . ,−zi,1) ∈ Z

N for zi = zi,0 + zi,1X + · · ·+ zi,N−1X
N−1.

– Generate (di,j ,Fi,j) ← RLWE.UniEnc(si,j , zi) for j ∈ [n] and set the boot-
strapping key as BKi = {(di,j ,Fi,j)}j∈[n].

– Generate the key-switching key KS ← LWE.KSGen(z∗
i , si).

– Return the secret key si. Publish the triple (PKi,BKi,KSi) of public, boot-
strapping, and key-switching keys.

We remark that for any a = a0 +a1X + · · ·+aN−1X
N−1 ∈ T and the vector

of its coefficients (a0, . . . , aN−1) ∈ T
N , the constant term of a · z ∈ T is equal to

〈a, z∗〉 modulo 1.

• MKHE.Enc(m): For an input bit m ∈ {0, 1}, run LWE.Enc(m) and return an LWE
encryption with the scaling factor 1/4. The output ciphertext ct = (b,a) ∈ T

n+1

satisfies b + 〈a, s〉 ≈ 1
4m (mod 1).

The dimension of a ciphertext increases after homomorphic computations.
The indices of related parties should be stored together with a ciphertext for the
correct decryption and homomorphic operations.

• MKHE.Dec(ct, {si}i∈[k]): For a ciphertext ct = (b,a1, . . . ,ak) ∈ T
kn+1 and

a tuple of secrets (s1, . . . , sk), return the bit m ∈ {0, 1} which minimizes
|b +

∑k
i=1〈ai, si〉 − 1

4m|.
• MKHE.NAND(ct1, ct2, {(PKi,BKi,KSi)}i∈[k]): Given two LWE ciphertexts ct1 ∈

T
k1n+1 and ct2 ∈ T

k2n+1, let k be the number of parties that are associated
with either ct1 or ct2. For i ∈ [k], PKi = bi, BKi = {(di,j ,Fi,j)}j∈[n] and
KSi are the public key, bootstrapping key and key-switching key of the j-th
party, respectively.

This algorithm consists of three phases. The first step expands the input
LWE ciphertexts and evaluate the NAND gate m = m1 � m2 homomorphically
on encrypted bits.

1-1. Extend ct1 and ct2 to the ciphertexts ct
′
1, ct

′
2 ∈ T

kn+1 which encrypt the
same messages under the concatenated secret key s = (s1, . . . , sk) ∈ Z

kn.
It is simply done by rearranging the components and putting zeros in the
empty slots.

1-2. Compute ct
′ = (58 ,0, . . . ,0) − ct

′
1 − ct

′
2 (mod 1).

To be precise, if an input ciphertext cti = (bi,ai,1, . . . ,ai,ki
) is an encryp-

tion corresponding to a tuple (j1, . . . , jki
) ∈ [k]k1 of indices, then (1-1) returns

ct
′
i = (bi,a′

i,1, . . . ,a
′
i,k) where a′

i,j =

{
ai,� if j = j� for some 	 ∈ [ki],
0 otherwise;

for j ∈

[k]. It is clear from the definition that 〈cti(1, sj1 , . . . , sjki
)〉 = 〈ct′i, (1, s)〉 for

s = (s1, . . . , sk).
If 〈ct′i, (1, s)〉 = 1

4mi + ei (mod 1) for some errors ei ∈ R, then the output
ciphertext satisfies that 〈ct′, (1, s)〉 = 1

2m + e′ (mod 1) for m = m1 � m2 and

Multi-Key Homomorphic Encryption from TFHE 461

e′ = ± 1
8 − e1 − e2 which is bounded by 1

4 when |ei| ≤ 1
16 . The next step,

called homomorphic accumulator [20], is to evaluate the decryption circuit of
an extended LWE ciphertext using the external product of RGSW scheme for
bootstrapping.

2-1. Let ct
′ = (b′,a′

1, . . . ,a
′
k) ∈ T

kn+1. Compute b̃ = �2N · b′� and ãi =
�2N · a′

i�. Initialize the RLWE ciphertext as c = (− 1
8h(X) · X b̃,0) ∈ T k+1

where h =
∑

− N
2 <j< N

2
Xj = 1 + X + · · · + X

N
2 −1 − X

N
2 +1 − · · · − XN−1.

2-2. Let ãi = (ãi,j)j∈[n] for i ∈ [k]. Compute

c ← RLWE.CMux(c,X ãi,j · c, (di,j ,Fi,j), {b�}�∈[k])

recursively for all i ∈ [k] and j ∈ [n].
2-3. Return c ← (18 ,0) + c (mod 1).

The accumulator c is initialized in (2-1) as the trivial RLWE encryption of
− 1

8h(X) · X b̃. The main computation is done in (2-2) using the Mux gate. In
each step, it homomorphically selects one of c and X ãi,� · c using the encryption
(di,j ,Fi,j) of si,j ∈ {0, 1}. The output is a multi-key RLWE ciphertext satisfying

〈c, z〉 ≈ −1
8
h(X) · X b̃+

∑k
i=1〈ãi,si〉

= −1
8

⎛

⎝
∑

− N
2 <j< N

2

Xj

⎞

⎠ · X b̃+
∑k

i=1〈ãi,si〉 (mod 1).

Since b̃+
∑k

i=1〈ãi, si〉 ≈ (2N) · 〈ct′, (1, s)〉 ≈ N ·m (mod 2N), the constant term
of 〈c, z〉 is approximately equal to either − 1

8 (if m = 0) or 1
8 (otherwise; m = 1),

which is 1
4m − 1

8 . Finally, the term 1
8 is cancelled out in (2–3).

We stress that we proposed two different algorithms for the underlying hybrid
product algorithm of CMux.

3-1. For c = (c0, c1, . . . , ck) ∈ T k+1, let b∗ be the constant term of c0 and a∗
i

be the coefficient vector of ci for i ∈ [k]. Construct the LWE ciphertext
ct

∗ = (b∗,a∗
1, . . . ,a

∗
k) ∈ T

kN+1.
3-2. Let KS = {KSi}i∈[k]. Run the multi-key-switching algorithm and return

the ciphertext ct
′′ ← LWE.MKSwitch(ct∗,KS).

In the last step, we transform c into an LWE ciphertext and run the multi-key-
switching algorithm. As we noted above, 〈a∗

i , z
∗
i 〉 (mod 1) is equal to the constant

term of ci · zi for i ∈ [k]. Hence, (3-1) returns an LWE ciphertext ct
∗ satisfying

〈ct∗, (1, z∗)〉 ≈ 1
4m (mod 1) for z∗ = (z∗

1, . . . , z
∗
k). Finally, (3-2) switches the

LWE key into s so the output LWE ciphertext satisfies that 〈ct, (1, s)〉 ≈ 1
4m

(mod 1), as desired.

462 H. Chen et al.

Security. Our scheme is semantically secure under the (R)LWE assumption
described in the previous section, so the parameters ppLWE and ppRLWE should be
chosen properly to achieve at least λ-bit of security level.

We note that each party publishes uni-encryptions of s1, . . . , sn encrypted
by z as well as a key-switching key from z∗ = (z0,−zN−1, . . . ,−z1) to s. Similar
to TFHE [13] and all other bootstrappable (fully) HE schemes [22] such as
[9,11,20,25], our scheme requires an additional circular security assumption.

Correctness Conditions. Our scheme should satisfy the following require-
ments to guarantee its correctness:

– In (2-1), the quantized ciphertext (b̃, ã1, . . . , ãk) ∈ Z
kn+1
2N should satisfy b̃ +

∑k
j=1〈ãj , sj〉 = N ·m+ ẽ for some ẽ ∈ Z with |ẽ| < N/2. This noise ẽ consists

of two parts ẽ = 2N · e′ + e′′ for e′ = ± 1
8 − e1 − e2 from the step (1-2) and a

rounding error e′′ = (b̃ − 2N · b′) +
∑k

j=1〈ãj − 2N · a′
j , sj〉.

– The error e ∈ R of an output LWE ciphertext ct should be small enough
for the correct decryption and further computations. It is the sum of the
constant term of an RLWE error which is accumulated from the external
products during (2–3), and the multi-key-switching error from (3-2).

We provide a rigorous noise estimation in AppendixA. We refer the reader to
Sect. 5 for a recommended parameter set.

Performance. The accumulation step (2-2) is the most expensive part of the
whole pipeline and all other algorithms including multi-key-switching are asymp-
totically faster. We run the CMux algorithm k ·n times, each of which has almost
the same complexity as the hybrid product RLWE.Prod described in Sect. 3.2. The
computing server can choose one of two proposed algorithms and inherit their
(dis)advantages. The performance of gate bootstrapping would be k · n times of
the chosen hybrid product algorithm.

If the first method is chosen, we can pre-compute the extended RGSW cipher-
texts Di,j ← RLWE.Extend((di,j ,Fi,j), {b�}�∈[k]) and set BK := {Di,j}i∈[k],j∈[n]

as a shared bootstrapping key which can be reused in the evaluation of an arbi-
trary Boolean gate on the same set of k parties. However, it requires more space
(O(k2nd) polynomials) to store BK.

4.2 Discussion

We presented a multi-key variant of the TFHE scheme. However, we can sim-
ply design some variants of this basic scheme with better functionality and
versatility.

More Bootstrapped Gates. We described only the Multi-Key bootstrapped
NAND gate in the previous section, but any arbitrary binary bootstrapped gate

Multi-Key Homomorphic Encryption from TFHE 463

(such as AND, OR, XOR, etc.) can be evaluated in the same way, as it is done
in TFHE: it is sufficient to modify the initial linear combination before boot-
strapping.

Time-Space Trade-Off. Brakerski and Perlman [7] suggested a method to
reduce down the memory requirement by generating a temporary evaluation key
in each step. Since our first method generates an expanded bootstrapping key BK
whose size grows quadratically with the number of parties, we can apply this idea
to have a linearly-growing space complexity. In this case, we lose the reusability
of a expanded bootstrapping key which is the only advantage of first method
compared to the second solution. Therefore, we do not have any motivation to
adapt this optimization technique.

Distributed Decryption. HE has some attractive applications in the con-
struction of advanced cryptographic primitives such as round-efficient MPC
[2,18,24,30,33]. In particular, the distributed property of threshold HE [3,26]
makes an important role to achieve this functionality. Any secure multi-party
protocol can be built between key owners to evaluate the decryption circuit, but
we introduce a simple example in this paragraph.

Since our MKHE scheme is based on the standard LWE encryption, the
techniques for threshold decryption such as noise smudging (a.k.a. noise flooding)
[2] can be directly applied to our scheme. The noise distribution, parametrized
by a constant γ > 0, should have a medium size which is smaller than 1 but
sufficiently larger than the error of an input ciphertext to prevent the leakage of
extra information beyond the decrypted value. See [2] for parameter choice and
security proof.

• MKHE.PartDec(ct, si): For a ciphertext ct = (b,a1, . . . ,ak) ∈ T
kn+1 and the

i-th secret si, sample an error ei ← Dγ and return the value pi = 〈ai, si〉 + ei

(mod 1).
• MKHE.Merge(b, {pj}j∈[k]): For the first entry b of an input ciphertext and

the partial decryptions {pj}j∈[k], output the bit m ∈ {0, 1} which minimizes
|b +

∑k
j=1 pj − 1

4m|.

Faster Evaluation of a Look-Up Table (LUT). There have been some
progresses in TFHE-type schemes to accelerate the evaluation of a LUT. For
example, Chillotti et al. [14] suggested a vertical packing method for TRLWE
combined with a circuit bootstrapping algorithm which gives a speed-up com-
pared to the gate-by-gate bootstrapping, while Bonnoron et al. [4] (see also [8])
suggested a method to encrypt more than one bit in a single ciphertext. It is
easy to see that these techniques are directly applicable to our MKHE scheme.

5 Experimental Results

We present a proof-of-concept implementation to convince the reader that our
scheme is practical. The implementation took a few days of coding and it is based

464 H. Chen et al.

on the TFHE library [16]. Our source code is publicly available at https://github.
com/ilachill/MK-TFHE.

Table 2. Recommended parameter sets.

Set LWE RLWE (RGSW)
n α B′ d′ N β B d

I 560 3.05 · 10−5 22 8 1024 3.72 · 10−9 29 3
II 28 4
III 26 5

In Table 2, we present three candidate parameter sets. We increase the dimen-
sions of LWE and RLWE to have a more conservative parameter.3 Our param-
eters achieve at least 110-bit security level according to the LWE Estimator [1],
which is a common reference in the domain.4

As mentioned before, we used the second hybrid product algorithm in imple-
mentation. We set the LWE/RLWE secret distributions χ and ψ as the uniform
distributions over the set of binary vectors in Z

n and over the polynomials in R
with binary coefficients, respectively.

We show in AppendixA that the standard deviation of bootstrapping error
grows linearly on the number of parties. Hence the growth of parameter with
respect to the maximal number of involved parties is very slow. We control the
noise by changing the decomposition degree and exponent which do not affect
the security level.

We adapt a space-time trade-off technique in [13,20] which reduces the com-
plexity of key-switching procedure by publishing all LWE encryptions of a·B′i ·tj
for i ∈ [d′], j ∈ [N], and a ∈ ZB′ , compared to the encryptions of B′i · tj in the
scheme description. Hence our implementation of multi-key-switching is purely
represented by a summation of LWE vectors. It does not make any change in
asymptotic complexity.

Our experimental results are summarized in Table 3. All experiments are
performed on a Intel Core i7-4910MQ at 2.90 GHz laptop, running on a single
thread, which takes 13ms to execute a gate bootstrapping of the TFHE library.
On the left sides of table, we describe the local complexity of our scheme such as
key generation timing of each party. This part is independent from k. The other
side presents the global performance corresponding to the multi-key operation.
The parameter sets I, II and III support homomorphic computation on any
number of parties up to 2, 4 and 8, respectively. A smaller parameter has a
3 In [15], the authors recommend to take more conservative parameters for the original

TFHE scheme as well. This new parameter set will affect their gate bootstrapping
timing by making it increase of a few milliseconds with respect to the original given
execution timing of about 13 ms.

4 https://bitbucket.org/malb/lwe-estimator/src/master/.

https://github.com/ilachill/MK-TFHE
https://github.com/ilachill/MK-TFHE
https://bitbucket.org/malb/lwe-estimator/src/master/

Multi-Key Homomorphic Encryption from TFHE 465

Table 3. Performance of our implementation. k denotes the number of parties in
computation.

Set KG BK KS ct k ct NAND

I 1.1 s 0.62 MB 70.1 MB 2.19 KB 2 4.38 KB 0.27 s

II 1.2 s 0.82 MB 70.1 MB 2.19 KB 2 4.38 KB 0.43 s

4 8.77 KB 1.45 s

III 1.3 s 1.03 MB 70.1 MB 2.19 KB 2 4.38 KB 0.50 s

4 8.77 KB 1.90 s

8 17.32 KB 7.16 s

better performance but a larger one makes the scheme more flexible because
more parties can join the computation dynamically. We believe that the code
has space for optimization. This, with a more accurate choice of the parameters
could produce better execution timings.

6 Conclusion

We designed a practical MKHE scheme by generalizing the gate bootstrapping
of TFHE to the multi-key case. Our main technical contribution is to establish
a new hybrid product between single-key and multi-key ciphertexts which pro-
vides better storage, computational cost and noise growth. We implemented our
scheme to present its concrete performance.

As we discussed in Sect. 4.2, one future direction is to implement advanced
functionalities of TFHE in the multi-key setting. Another direction is to design
a practical MKHE scheme from another HE system (e.g. BFV [5,21], CKKS
[12]) which has advantages in amortized complexity. Finally, one primary open
problem in this area is how to construct an MKHE scheme without the CRS
model.

Acknowledgments. The second author (I.C.) has been supported in part by ERC
Advanced Grant ERC-2015-AdG-IMPaCT and by the FWO under an Odysseus project
GOH9718N. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the
ERC or FWO.

A Noise Estimation

For the decomposition base B and degree d, let ε2 = 1/(12B2d) be the variance
of uniform distribution over the interval (− 1

2B−d, 1
2B−d]. We denote by VB ={

1
12 (B2 − 1) if B is odd,
1
12 (B2 + 2) if B is even;

the mean square of a uniform distribution over Z ∩

466 H. Chen et al.

(−B/2, B/2]. We similarly define ε′2 and VB′ based on the parameter B′ and d′

for the key-switching algorithm. We set the RGSW and LWE secret distributions
χ, ψ as uniform distributions over {0, 1}N and {0, 1}n, respectively.

The variance of a random variable e over R is denoted by Var(e). For a
random variable e over R[X]/(XN + 1), it denotes the variance of a coefficient
when all coefficients have the same variance. If e is a vector of random variables,
Var(e) denotes the maximum of its entries’ variances.

We mainly compute the variance of a noise. Our average-case analysis is based
on the heuristic assumption that a noise behaves like a Gaussian distribution,
which has been empirically shown in the previous work (Fig. 10, [15]).

Hybrid Product Method 1

Step 1: Ciphertext extension. Let us suppose that

bj = −zj · a + ej (mod 1) for j ∈ [k],
di = ri · a + μi · g + ei,1 (mod 1),
fi,0 + zi · fi,1 = ri · g + ei,2 (mod 1) for some μ ∈ R and

Di ← RLWE.Extend
(
(di,Fi), {bj}j∈[k]

)
.

We let e0 = 0 for simplicity. Then for any 0 ≤ j ≤ k, the j-th row of Di satisfies
that

xj + zi · yj = Mj · (ri · g + ei,2) = ri · bj + (ri · e′
j + Mj · ei,2) (mod 1)

for the decomposition error e′
j ∈ R

d such that e′[] = 〈g−1(bj []),g〉 − bj [] for
	 ∈ [d], and

zj · di = rizj · a + μizj · g + zj · ei,1

= − ri · bj + μizj · g + (ri · ej + zj · ei,1) (mod 1).

Therefore, the j-th row is decrypted into μizj · g + ei,j for the GSW extension
error ei,j = ri · (ej + e′

j) + zj · ei,1 + Mj · ei,2.
Its variance is bounded by

Vexp ≤ (N/2)ε2 + (1 + d · VB) · Nβ2

since Var(ri) = Var(zj) = 1/2, Var(ej) ≤ Var(ei,1) = Var(ei,2) = β2, Var(e′
j) = ε2

and Var(Mj · ei,2) = dN · VB · β2.

Step 2: Multi-key GSW external product. Let c and D be multi-key RLWE
and RGSW ciphertexts. Suppose that D satisfies Dz = μ · Gk+1z + e for a
plaintext μ ∈ R and an error vector e. We denote by VarErr(D) = Var(e). The
external product outputs an RLWE ciphertext c′ satisfying

〈c′, z〉 = G−1
k+1(c) · Dz (mod 1)

= G−1
k+1(c) · (μ · Gk+1z + e) (mod 1)

= μ · 〈c, z〉 +
(
μ · 〈e′, z〉 + G−1

k+1(c) · e)
(mod 1)

Multi-Key Homomorphic Encryption from TFHE 467

for the decomposition error e′ = G−1
k+1(c) · Gk+1 − c. Therefore, the variance of

external product error eep = μ · 〈e′, z〉 + G−1
k+1(c) · e is

Vep = μ2 · ε2(1 + kN/2) + (k + 1)dN · VB · VarErr(D)

since Var(e′) = ε2 and Var(G−1
k+1(c)) = VB .

In our case, D = Di is an extended RGSW ciphertext whose error variance
is Vexp ≤ (N/2)ε2 + (1 + d · VB) · Nβ2. As a result, our first method returns a
ciphertext whose noise variance is

V1 = μ2
i · ε2(1 + kN/2) + (k + 1)dN · VB · Vexp.

In our MKHE scheme, the decomposition error ε2 can be easily controlled.
Hence the extension error is mainly dominated by Vexp ≈ dN ·VB ·β2. Similarly,
the noise of hybrid product is dominated by V1 ≈ (k + 1)dN · VB · Vexp ≈
(k + 1)d2 · N2 · V 2

B · β2.

Hybrid Product Method 2. As shown earlier, the output c′ of the second
multiplication algorithm satisfies 〈c′, z〉 =

∑k
j=0 uj · zj +

∑k
j=0(wj,0 + wj,1 · zi).

The first term is

k∑

j=0

uj · zj =
k∑

j=0

〈
g−1(cj), ri · a + μi · g + ei,1

〉 · zj (mod 1)

= μi · 〈c, z〉 + μi · e′ + ri ·
k∑

j=0

〈g−1(cj), zj · a〉 +
k∑

j=0

〈g−1(cj), ei,1〉 · zj (mod 1)

= μi · 〈c, z〉 − ri ·
k∑

j=0

vj + μi · e′ + ri ·
k∑

j=0

〈g−1(cj), ej〉 +

〈
k∑

j=0

zj · g−1(cj), ei,1

〉

for the decomposition error e′ =
∑k

j=0

(〈g−1(cj),g〉 − cj

) · zj , while the second
term is

k∑

j=0

(wj,0 + wj,1zi) =
k∑

j=0

〈g−1(vj), fi,0 + zi · fi,1〉 (mod 1)

=
k∑

j=0

〈g−1(vj), ri · g + ei,2〉 = ri ·
k∑

j=0

vj + ri · e′′ +

〈
k∑

j=0

g−1(vj), ei,2

〉
(mod 1)

for e′′ =
∑k

j=0

(〈g−1(vj),g〉 − vj

)
. Note that Var(e′) = ε2(1 + kN/2) and

Var(e′′) = ε2(k + 1).
Therefore, the noise of c′ is

µi · e′ + ri ·
k∑

j=0

〈g−1(cj), ej〉 +

〈
k∑

j=0

zj · g−1(cj), ei,1

〉
+ ri · e′′ +

〈
k∑

j=0

g−1(vj), ei,2

〉
,

468 H. Chen et al.

and its variance

V2 = μ2
i Nε2(1 + kN/2) + (N2/2)(k + 1)VBβ2 + dN(1 + kN/2)VBβ2

+ (N/2)ε2(k + 1) + (k + 1)NVBβ2,

is dominated by V2 ≈ 1
2 (kd + k + 1) · N2 · VB · β2.

Rounding Error. In (2-2), we compute b̃ = �2N · b′� and ãi = �2N · a′
i�. We

assume that each of the rounding errors behaves like a uniform random variable
on the interval R (mod 1) = (−0.5, 0.5]. Therefore, the total rounding error
(b̃ − �2N · b′�) +

∑k
j=1〈ãj − �2N · a′

j�, sj〉 has the variance of 1
12 (1 + kn/2).

Mux Gate. Suppose that c0, c1 are RLWE ciphertexts and C is an RGSW
encryption of μ ∈ {0, 1} with error e. The mux gate is to compute c = c0 +
RLWE.Prod(c1 − c0,C) to choose cμ homomorphically:

〈c, z〉 = 〈c0, z〉 + G−1
k+1(c1 − c0) · (µ · Gk+1z + e) (mod 1)

= (1 − µ) · 〈c0, z〉 + µ · 〈c1, z〉 +
(
µ · 〈e′, z〉 + G−1

k+1(c1 − c0) · e)
(mod 1),

for the decomposition error e′ = G−1
k+1(c1 − c0) · Gk+1 − (c1 − c0). The noise

has the variance of μ2 · ε2(1 + kN/2) + (k + 1)dN · VB · VarErr(C), exactly the
same as external product.

Accumulation. The initial RLWE ciphertext has no noise. All bootstrapping
keys Ci,� have the same variance of noise VarErr(Ci,�) = (N/2)ε2 + (1 + N +
dNVB)β2 from the expansion algorithm. We recursively evaluate the mux gate k·
n times and an encrypted secret si,� is sampled uniformly from {0, 1}. Therefore,
the output of accumulator has an error of variance

1
2
kn · ε2(1 + kN/2) + (k + 1)kdnN · VB · (

(N/2)ε2 + (1 + N + dNVB)β2
)
. (1)

Multi-key Switching. Let ct = (b,a1, . . . ,ak) be an input LWE ciphertext
and ct

′ = (b′,a′
1, . . . ,a

′
k) be the output of multi-key-switching algorithm. Then,

we have

〈ct′, (1, s)〉 = b +
k∑

i=1

(b′
i + 〈a′

i, si〉) (mod 1)

= b +
k∑

i=1

N∑

j=1

〈g′−1(ai,j), ti,j · g′ + ei,j〉 (mod 1)

= 〈ct, (1, t)〉 +
k∑

i=1

N∑

j=1

(
ti,j · e′

i,j + 〈g′−1(ai,j), ei,j〉
)

(mod 1)

Multi-Key Homomorphic Encryption from TFHE 469

for the decomposition error e′
i,j = 〈g′−1(ai,j),g〉 − ai,j . As a result, the variance

of a multi-key-switching error eks =
∑k

i=1

∑N
j=1

(
ti,j · e′

i,j + 〈g′−1(ai,j), ei,j〉
)

is
obtained by

Var(eks) = kN

(
1
2
ε′2 + d′ · VB′ · α2

)

. (2)

We note that this term does not include the error of input LWE ciphertext. If
〈ct′, (1, t)〉 = 1

4m + e (mod 1) for a bit m ∈ {0, 1} and an error e ∈ R, then ct′

will be an encryption of the same message m with error e′ = e + eks.

Multi-key Switching (Modified). Different from the previous algorithm, the
key-switching key of the i-th party consists of LWE encryptions of a · B′� · ti,j
for 1 ≤ j ≤ N , 0 ≤ 	 < d′ and a ∈ ZB′ encrypted under the secret si. For an
input LWE ciphertext ct = (b,a1, . . . ,ak), the (modified) multi-key switching
algorithm computes g′−1(ai,j) = (ai,j,�)0≤�<d′ for each 1 ≤ i ≤ k and 1 ≤ j ≤ N ,
and then compute the summation of LWE encryptions of ai,j,� · B′� · ti,j for
1 ≤ i ≤ k, 1 ≤ j ≤ N and 0 ≤ 	 < d′. Therefore, the output ciphertext ct

′

satisfies that

〈ct′, (1, s)〉 = b +
k∑

i=1

N∑

j=1

d′−1∑

�=0

g′−1(ai,j)[] · B′� · ti,j + ei,j,ai,j,�
(mod 1)

= b +
k∑

i=1

N∑

j=1

(ai,j + e′
i,j) · ti,j +

k∑

i=1

N∑

j=1

d′−1∑

�=0

ei,j,ai,j,�
(mod 1)

= 〈ct, (1, t)〉 +

⎛

⎝
k∑

i=1

N∑

j=1

ti,j · e′
i,j +

k∑

i=1

N∑

j=1

d′−1∑

�=0

ei,j,ai,j,�

⎞

⎠ (mod 1),

for the decomposition error e′
i,j = 〈g′−1(ai,j),g′〉 − ai,j . As a result,

the variance of a multi-key-switching error eks =
∑k

i=1

∑N
j=1 ti,j · e′

i,j +
∑k

i=1

∑N
j=1

∑d′−1
�=0 ei,j,ai,j,�

is obtained by

Var(eks) = kN

(
1
2
ε2K + d′α2

)

, (3)

which is smaller than that of standard key-switching error (2).

Bootstrapping. The bootstrapping noise is simply the sum of the accumulation
and multi-key-switching errors so that it has the variance of (1) + (3).

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

470 H. Chen et al.

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

3. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 19

4. Bonnoron, G., Ducas, L., Fillinger, M.: Large FHE gates from tensored homo-
morphic accumulator. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT
2018. LNCS, vol. 10831, pp. 217–251. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89339-6 13

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of ITCS, pp. 309–325. ACM
(2012)

7. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 8

8. Carpov, S., Izabachène, M., Mollimard, V.: New techniques for multi-value homo-
morphic evaluation and applications. IACR Cryptology ePrint Archive, 2018:622
(2018)

9. Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE boot-
strapping. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10820, pp. 315–337. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 12

10. Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key FHE from ring-LWE
with compact ciphertext extension. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017.
LNCS, vol. 10678, pp. 597–627. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70503-3 20

11. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 14

12. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

13. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 14

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-70503-3_20
https://doi.org/10.1007/978-3-319-70503-3_20
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14

Multi-Key Homomorphic Encryption from TFHE 471

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. (2019)

16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption library, August 2016. https://tfhe.github.io/tfhe/

17. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learn-
ing with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 31

18. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

19. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–
122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 4

20. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

21. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive, 2012:144 (2012)

22. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing, STOC 2009,
pp. 169–178. ACM (2009)

23. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

24. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

25. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 25

26. Jain, A., Rasmussen, P.M.R., Sahai, A.: Threshold fully homomorphic encryption.
Cryptology ePrint Archive, Report 2017/257 (2017). https://eprint.iacr.org/2017/
257

27. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

28. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234.
ACM (2012)

29. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

https://tfhe.github.io/tfhe/
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-46800-5_25
https://eprint.iacr.org/2017/257
https://eprint.iacr.org/2017/257
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-13190-5_1

472 H. Chen et al.

30. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

31. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5 9

32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of
Computing, STOC 2005, pp. 84–93. ACM, New York (2005)

33. Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty computation
from threshold homomorphic cryptosystems. In: Malkin, T., Kolesnikov, V., Lewko,
A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 3–22. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 1

https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-53644-5_9
https://doi.org/10.1007/978-3-319-28166-7_1

Homomorphic Encryption
for Finite Automata

Nicholas Genise1(B), Craig Gentry2, Shai Halevi2, Baiyu Li3,
and Daniele Micciancio3

1 Rutgers University, Piscataway, NJ, USA
nicholasgenise@gmail.com

2 Algorand Foundation, New York, NY, USA
craigbgentry@gmail.com, shaih@alum.mit.edu

3 University of California, San Diego, La Jolla, CA, USA
{baiyu,daniele}@cs.ucsd.edu

Abstract. We describe a somewhat homomorphic GSW-like encryp-
tion scheme, natively encrypting matrices rather than just single ele-
ments. This scheme offers much better performance than existing homo-
morphic encryption schemes for evaluating encrypted (nondeterministic)
finite automata (NFAs). Differently from GSW, we do not know how to
reduce the security of this scheme from LWE, instead we reduce it from
a stronger assumption, that can be thought of as an inhomogeneous vari-
ant of the NTRU assumption. This assumption (that we term iNTRU)
may be useful and interesting in its own right, and we examine a few of
its properties. We also examine methods to encode regular expressions as
NFAs, and in particular explore a new optimization problem, motivated
by our application to encrypted NFA evaluation. In this problem, we
seek to minimize the number of states in an NFA for a given expression,
subject to the constraint on the ambiguity of the NFA.

Keywords: Finite automata · Inhomogeneous NTRU · Homomorphic
encryption · Regular expressions

1 Introduction

Homomorphic encryption (HE) [40] enables computation on encrypted data even
without knowing the secret key. Ten years after Gentry described the first scheme
capable of supporting arbitrary computations [19], we now have an arsenal of
several different schemes and variations, with various capabilities and tradeoffs
(see, e.g., [9,10,14,17,22,32,43] for a few examples).

Our original motivation for the current work is the simple example of
encrypted virus scan: consider a center that deploys many remote systems, oper-
ating in many different environments, and wants to protect them against viruses
that it knows about. The center would like to periodically send updated virus

N. Genise—This work was done when the author was at UCSD.
C. Gentry and S. Halevi—This work was done when the authors were in IBM Research.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 473–502, 2019.
https://doi.org/10.1007/978-3-030-34621-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_17&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_17

474 N. Genise et al.

signatures to all its systems, and have them scan their systems to check for
infections. The virus signatures, however, could be sensitive, perhaps because
some of them are not yet widely known and exposing the signatures could tip
the hand of the center as it develops countermeasures.

A plausible solution would have the center encrypt the virus signatures, the
remote systems could then perform the virus scan on the encrypted signatures,
and report the (encrypted) results to the center. The center could then decrypt,
and take appropriate actions when infections are detected. As virus signatures
usually take the form of many small regular expressions1, this application calls
for a homomorphic encryption scheme that can quickly test for a match against
many small regular expressions. Equivalently, it should quickly evaluate (many,
encrypted) non-deterministic finite automata (NFAs) on a given cleartext file.
Notice that this is quite different from, and incomparable to, the DFA com-
putation problem studied in previous works on homomorphic encryption, like
[15,16,18]. Specifically, nondeterminism aside, the crucial difference is that those
works consider the evaluation of a plaintext automaton on an encrypted file. In
other words, the roles of the input and the program are reversed. In our motivat-
ing application, the problem studied in [15,16,18] would correspond to searching
for arbitrary (possibly nonregular) patterns, on files described by regular lan-
guages, a very unlikely scenario.

Evaluating an encrypted NFA on a cleartext string w = w1 · · · wk can be
done by computing a product of a single vector v (representing the initial state
of the NFA) by many matrices Mwi

(representing the transition matrices of the
NFA associated to each input symbol wi). Namely the operation that we want
to support is computing

u :=

(
1∏

i=k

Mwi

)
× v,

(with operations over the integers), where the matrices Mwi
and the vector v are

encrypted.2 Most of the HE schemes from above can be used to carry out this
computation, but none of them is ideal for the job. For practical purposes, the
homomorphic schemes that offer the best performance are either the BGV-type
schemes (scale-invariant or not), or GSW-type schemes.

BGV-Type Schemes. These schemes have an advantage that they can use packed
ciphertexts, where each ciphertext encrypts not just one plaintext element but
a vector of them, and each ciphertext operation affects all the elements of the

1 For example, many ClamAV virus signatures (https://www.clamav.net/downloads)
are regular expressions of the form Σ∗K1 · · · Σ∗Kn · Σ∗ with no more than 1 K
symbols, where Σ is the alphabet and each Ki is a set of a few hex strings.

2 The initial vector v is not required to be encrypted, as it reveals no information
about the automaton. However, the intermediate vectors obtained after each matrix-
vector multiplication should be kept secret. So, we will need a scheme supporting
matrix-vector multiplication where both the matrix and the vector are encrypted.

https://www.clamav.net/downloads

Homomorphic Encryption for Finite Automata 475

vector simultaneously, cf. [42]. Moreover, they can even be made to support
efficient matrix-vector operations, as was demonstrated in [23].3

However, for BGV-type schemes it is crucial to keep the computation multi-
plicative depth to a minimum, which in our case means using a binary multipli-
cation tree. But this means that we have to use matrix-matrix multiplication4

(rather than the matrix-vector products that are computed in the sequential
procedure). This increases the total work (and hence the computation time) by
a factor equal to the dimension of these matrices—which must be substantial
for security reasons.

GSW-Type Schemes. A major advantage of GSW-like schemes is the asymmetric
noise growth, that makes it possible to handle sequential processing of products
[12]. For our purposes, it lets us evaluate the product while performing only
matrix-vector multiplications.

While “textbook GSW” can only encrypt individual elements, it is possible
to adapt the ciphertext-packing techniques from [42] also to GSW, as long as
we have a priori bound on the size of the plaintext vectors that occur in the
computation. However porting the matrix-multiplication optimizations from [23]
is far from simple, and we expect significant overhead when trying to implement
it in practice.

In [25], Hiromasa, Abe, and Okamoto proposed a GSW-like FHE scheme
that is capable of encrypting square matrices and doing homomorphic matrix
addition and multiplication. The HAO15 FHE scheme can be viewed as a matrix
extension of the standard GSW-FHE scheme, where the secret key S = [I| − S′]
consists of a random secret matrix S′. Like in GSW [22], the decryption invariant
for a ciphertext C encrypting a message M relative to the secret key S is

S × C = M × S × G + E (mod q),

where E is a low-norm error and G is the “gadget matrix” from [36]. Notice
that M and S are both matrices in the matrix-FHE case, whereas in the GSW
scheme M is a scalar and S is a vector. The GSW security reduction [22] from the
learning-with-errors (LWE) problem still applies to the HAO15 scheme, except
that an additional circular security assumption is required. Being able to encrypt
matrices in an atomic operation and support homomorphic matrix operations
makes the HAO15 scheme an interesting candidate to use in our application of
homomorphic NFA evaluation. Moreover, as we will show in Sect. 3.1, the HAO15
scheme with some modification can also encrypt vectors and homomorphically
multiply an encrypted matrix by an encrypted vector. However, the HAO15
scheme is not optimal due to overhead in the size of keys and ciphertexts. So
we seek to find a better solution that would allow us to scan longer strings with
faster execution times in practice.
3 The techniques in [23] only handle multiplication of plaintext matrices by encrypted

vectors, but many of these tools can be adapted to the case of encrypted matrices.
4 Technically, the nodes on the rightmost path of the tree can use matrix-vector mul-

tiplications, but this makes hardly any difference on the efficiency of the overall
computation.

476 N. Genise et al.

1.1 Our New HE Scheme

In this work we introduce a new scheme, that can be viewed as another GSW-
type encryption for matrices but with a different hardness assumption. (Alter-
natively, it can be viewed as a variant of the GGH15 graded encoding [20], but
with no zero-test parameter.) In addition, our scheme can also encrypt vec-
tors and natively support homomorphic matrix-vector multiplication. Similar
to the HAO15 scheme, the decryption invariant in our scheme for a ciphertext
C ← EncS(M) encrypting a matrix M is also S × C = MSG + E (mod q),
where E is a low-norm error matrix.5 Differently from the HAO15 scheme, in
our construction we assume that the key S is a square invertible matrix, and so
we can express the ciphertext as C := S−1(M× S×G+E) mod q. As a result,
both keys and ciphertexts are smaller in our scheme.

The operations of the scheme, and the analysis of the noise development are
identical to the GSW scheme, except that here we typically cannot ensure that
the plaintext size never grows, and instead must use properties of the application
to reason about the plaintext size.

When it comes to security, however, we can no longer use the GSW reduction
[22] from the LWE problem. That reduction relies heavily on the scalar M com-
muting with the vector S, which no longer holds in our case. Instead, we reduce
the security of this scheme from a stonger assumption, that can be viewed as an
inhomogeneous version of NTRU (or alternatively as an LWE instance with an
additional hint).

1.2 The iNTRU Hardness Assumption

Recall that in LWE6, we are given two matrices A,B ∈ Z
n×m
q (m > n), with A

a uniformly random matrix, and need to decide if B is also a uniformly random
matrix, or it is chosen as B = SA+E with a uniform S ∈ Z

n×n
q and a low-norm

E ∈ Z
n×m
q .

It is easy to see that this problem becomes easy if we are also given a trapdoor
for the matrix A, in this case it is even easy to recover the secret matrix S when
B = SA+E. But what if we are given a trapdoor for the matrix B instead? In
this case we do not know of any effective distinguisher, so we assume that the
decision problem is still hard and show a hardness reduction from this version of
LWE to our hardness assumption, iNTRU, in Sect. 4. We remark that this “LWE
with a trapdoor for B” assumption is not standard and it deserves further study.

Once we know a trapdoor for B, we might as well consider the case where B is
the gadget matrix G (for which everyone knows a trapdoor). Namely we assume
that the following decision problem is hard:

5 As we describe later, we use a slightly different variant to encrypt the vector v.
6 Here we refer to the multiple-secret variant of LWE, which can be reduced from the

normal LWE.

Homomorphic Encryption for Finite Automata 477

iNTRU. As in LWE, we have the parameters n,m, q, with m > n log q and
q > m. The input is a matrix A ∈ Z

n×m
q , which is either uniform in Z

n×m
q , or

is set as A := S−1(G − E) mod q (with S ∈ Z
n×n
q a random invertible matrix,

G the gadget matrix, and E a low-norm matrix). The goal is to decide which is
the case.

One can think of the above problem as an inhomogeneous version of NTRU,
over matrices, as follows. Recall that in the NTRU cryptosystem [26], the secret
key is given by two polynomials (or ring elements) with small coefficients f, g, and
the corresponding public key is the product h = f−1 · g. The NTRU cryptosys-
tem can be proved secure under the assumption that this public key h is pseudo-
random, i.e., indistinguishable from a uniformly random polynomial (or ring ele-
ment) with arbitrary coefficients. We extend this assumption as follows. First, we
replace g with a sequence of vectors g1, . . . , gk, chosen independently at random,
with small coefficients. Then, the assumption is that f−1g1, f

−1g2, . . . , f
−1gk is

pseudorandom. This is a simple syntactic extension of NTRU (that would allow,
for example, the encryption of longer messages), akin to changing some param-
eter, and not a qualitative change in the security assumption. Next, we add a
(known, constant) “shift”, replacing each gi with (2i−1 − gi), and still requir-
ing f−1(1 − g1), f−1(2 − g2), . . . , f−1(2k−1 − gk) to be indistinguishable from
uniform. We call this the “inhomogeneous” NTRU assumption. Finally, instead
of working over a ring of polynomials of degree n, we replace each f, g1, . . . , gk

with a square n × n random matrix with small entries. Intuitively, moving from
polynomial rings (which are commutative) to the ring of matrices, should only
make the assumption weaker, though we do not know how to prove a formal
relation between the two problems. This last problem is essentially equivalent
to the pseudorandomness of A = S−1(G − E), where E = [E0| . . . |Ek] is a ran-
dom matrix with small entries, and G = [0|I|2I| . . . |2k−1I] is a constant known
matrix. In fact, putting A in Hermite Normal Form [35] “cancels out” the S
matrix, and gives a sequence of square matrices −E−1

0 (2Ii−1 −Ei), correspond-
ing to the matrix version of our inhomogeneous NTRU problem7 with f = −E0

and gi = Ei.

1.3 From Regular Expression to NFAs

While our scheme directly supports the evaluation of (encrypted) NFAs, pat-
terns (e.g., virus signatures) are typically, and most conveniently, represented
by regular expressions. Since the noise growth of our homomorphic encryption
scheme depends on the details of the NFA being evaluated and its computations,
the conversion of regular expressions to NFA is a critical part of our application.
In Sect. 5 we describe a specific conversion following the method of [3,13] based
on the use of partial derivatives of regular expressions, which is both very ele-
gant and efficient. Derivatives of regular expressions [13] are themselves regular
expressions and they are defined similarly to formal derivatives of arithmetic

7 Matrix-NTRU has been used in lattice-based signatures [5], though the most efficient
versions of these lattice signatures use the standard, algebraic NTRU assumption.

478 N. Genise et al.

expressions, e.g., da(e0 + e1) = da(e0) + da(e1) for the sum (set union) opera-
tion, and da(e∗) = da(e)e∗ for exponentiation (Kleene star). Informally, when
parsing an input string according to regular expression e, the derivative da(e)
represents the part of the input to be expected after reading a first symbol “a”. A
regular expression e can be converted into an automaton with states labeled by
derivatives (modulo a natural equivalence relation on regular expressions), and
transitions of the form e

a→ da(e). A classical result of Brzozowski [13] shows
that this produces an automaton with a finite number of states, and, in fact, the
minimal DFA of the regular expression. As our homomorphic encryption scheme
supports the evaluation of nondeterministic automata, we are interested in the
conversion of regular expressions to NFAs, which are potentially much smaller
than the equivalent minimal DFA. However, optimizing NFAs in our application
is far from trivial. To start with, in stark contrast to the DFA case, minimizing
the number of states of an NFA is a PSPACE-complete problem. Moreover, due
to noise growth, minimizing the number of states may not even be the right
goal for our homomorphic encryption application. We address the first issue by
using the partial derivative construction of [3], where a partial derivative ∂a(e)
maps an expression e to a set of regular expressions (representing possible non-
deterministic choices), and in particular ∂a(e0 + e1) = ∂a(e0) ∪ ∂a(e1). This
construction results in NFAs that, while not necessarily minimal, have a very
small number of states, bounded by the number of alphabet symbols in the input
regular expression. In order to bound the noise growth, we show that a simple
optimization of the homomorphic NFA evaluation procedure8 allows to relate
the noise growth to the degree of ambiguity of the NFA, a standard quantity
studied in automata theory, which can be evaluated in polynomial time [45]. We
reduce the problem of finding an optimal noise to a variant of NFA minimization
problem with bounded ambiguity. Although solving this optimization problem is
hard in general, we use techniques of determining ambiguity in Sect. 5 to explore
some tradeoffs between automata size and degree of ambiguity/noise growth.

1.4 Implementation and Performance

We implemented our scheme in C++ using the Number Theory Library (NTL)
and describe its details in Sect. 6. Despite being a simple implementation without
optimizations, the on-line pattern matching was exceptionally fast. For example,
we could homomorphically match a 65536 bit string in 394 s on an encrypted
NFA with 1024 states of size 66 Mb. Using the same set of parameters, we esti-
mate that an HAO15 implementation can only match up to 16000 bits with a
slower execution time and a bigger program size. More performance details and
comparisons can be found in Sect. 6.

8 Namely, one can let the initial state vector v be an “errorless” encryption, because
the initial state does not reveal any information about the rest of the automaton.

Homomorphic Encryption for Finite Automata 479

1.5 Related Work

As already mentioned, the problem of homomorphically evaluating finite
automata or branching programs has been considered before [12,15,16,18], but
in a very different context, where the branching program or automaton are pub-
licly known, and the computation is performed homomorphically on an encrypted
input string. This is motivated, for example, by applications to FHE bootstrap-
ping, where the program is specified by the publicly known decryption/refreshing
procedure, and the input in the (encrypted) secret key. In our setting, the role
of the program and input are reversed, and we want the computation to be
homomorphic on the automaton, rather than the input string. In the case of
general computation, program and input are easily interchanged using a univer-
sal Turing machine. But in the case of restricted models of computation, like
finite automata, swapping the program and the input results in a completely
different problem.

On the Relation with Other Matrix-FHE Schemes. As we mentioned earlier, the
HAO15 [25] FHE scheme is also capable of encrypting square matrices and doing
homomorphic matrix addition and multiplication on ciphertexts. In the private-
key version of their scheme, the secrete key is S = [Ir| − S′] for a secret matrix
S′, and a matrix M ∈ Z

r×r is encrypted as

C =
(
S′A + E

A

)
+

(
MS
0

)
× G mod q,

where A ← Z
n×N
q , E ← χr×N for N = (n + r) �log q�.

It may be tempting to claim that our scheme is the same as the HAO15
scheme due to having the same decryption invariant SC = MSG + E. How-
ever, these two schemes are not quite identical. The relation between them is
very similar to the relation between NTRU and RLWE Regev-like schemes9,
where the difference is that the secret key S is a small square matrix for NTRU
(representing multiply-by-s in the ring), whereas the secret key is S = [I|S′] in
RLWE (where S′ represents multiply-by-s′ in the ring). Notice that, instead of
the Regev invariant, both the HAO15 scheme and our scheme use the GSW-like
invariant SC = MSG + E for a small noise matrix E.

More specifically, in our scheme the secret key S is a small square matrix
that must be invertible, while in HAO15 we have S = [I| − S′] where S′ can be
any random matrix. Consider the “leveled versions” of the HAO15 scheme and
our scheme, in which the secret key matrices S0,S1, . . . ,SL are generated such
that Si is used to encrypt the matrices in level i of the computation. In both
schemes it holds that

SiCi = MSi+1G + Ei.

9 Consider writing both NTRU and RLWE-Regev in matrix form, representing ring
elements by their matrices: In both NTRU and RLWE-Regev we have a ciphertext
matrix C encrypting a plaintext matrix M relative to the secret matrix S (and
plaintext space mod p) if SC = M + pE mod q.

480 N. Genise et al.

The security of the HAO15 scheme can be reduced from the standard LWE
assumption, while our scheme relies on the NTRU-like assumption that we intro-
duce. On the other hand, our scheme is more efficient: we encrypt a matrix
M ∈ Z

r×r
q in a ciphertext matrix of dimension max(r, λ), whereas the HAO15

scheme requires a dimension r + λ ciphertext matrix. One can view our scheme
as an NTRU-like variant of the HAO15 scheme (or perhaps an NTRU-like vari-
ant of the GSW scheme). From that viewpoint, we introduce in this work the
assumption that lets us adapt NTRU to get a GSW-like scheme.

When applied to homomorphically evaluating NFAs, the efficiency advantage
of our scheme is more significant. Note that the HAO15 scheme can be used to
do homomorphic matrix-vector multiplication as well. But, since we rely on an
NTRU-like assumption, the noise bound in our scheme is smaller than the noise
bound in the HAO15 scheme, which allows us to homomorphically evaluate
longer strings with the same lattice parameters. In terms of the complexity of
the homomorphic computation on encrypted NFAs, our scheme runs faster than
the HAO15 scheme in practice due to smaller ciphertexts. For more detailed
performance comparison, we refer the readers to Sect. 6 and Appendix C.

Recently, Wang et al. [44] proposed another matrix-FHE scheme, similar to
[9], that has smaller ciphertexts than the HAO15 scheme and can be reduced
from the standard LWE assumption. We note that it is possible to perform homo-
morphic matrix-vector multiplication in their scheme. However, their scheme
relies heavily on tensor product to perform homomorphic multiplication, so the
security and the complexity of applying their scheme to homomorphic NFA com-
putation is at least on the same level as the HAO15 scheme.

2 Preliminaries

We denote vectors by lower-case bold letters (e.g., v), and we assume they are
always in column form. We denote matrices by upper-case bold letters (e.g., M).
A distribution D over a finite set X is ε-uniform if its statistical distance from the
uniform distribution over X is at most ε, where the statistical difference between
two distributions D1,D2 over a finite domain X is 1

2

∑
x∈X |D1(x) − D2(x)|. We

denote by x ← D drawing x from the distribution D, and for a set X we denote
by x ← X drawing x uniformly at random from X.

2.1 Leftover Hash Lemma

A distribution D over X has min-entropy k if maxx∈X D(x) = 2−k. A family H
of hash functions from X to Y (with Y a finite set) is said to be 2-universal if
for all distinct x, x′ ∈ X, Prh←H[h(x) = h(x′)] = 1/|Y |.
Lemma 1. (Leftover Hash Lemma [24]). Let H be a family of 2-universal hash
functions from X to Y , and let D be a distribution over X with min-entropy k.
Suppose that h ← H and x ← D are chosen independently, then, (h, h(x)) is
(12

√|Y |/2k)-uniform over H × Y .

Homomorphic Encryption for Finite Automata 481

In this work we apply Lemma 1 to the hashing family H : Z
m
q → Z

n
q

defined by

H = {hA(v) = Av mod q}A∈Z
n×m
q

,

(which is clearly 2-universal). In particular we use the following corollary:

Corollary 1. Fix the integers k, n,m,m′, q, and let D1,D2, . . . ,Dm be indepen-
dent distributions over Z

m
q , all with min-entropy at least k. Let D be a distribu-

tion over matrices R ∈ Z
m×m′
q , where the i’th column is drawn from Di. Then

the distribution

{(A,AR mod q) : A ← Z
n×m
q ,R ← D}

is (m′
2

√
qn/2k)-uniform over Z

n×m
q × Z

n×m′
q .

2.2 Gadget Lattice Sampling

Definitions. We consider the norm of a matrix as the length of its longest col-
umn in the l2 norm. A lattice Λ is a discrete subgroup of R

n (we only con-
sider full-rank, integer lattices). It can be represented by a basis B ∈ Z

n×n

where the lattice is the set of all integer combinations of B’s columns. Let
G = [I|2I| · · · |2�−1I] ∈ Z

n×n�
q where � = �log2(q)�. The G-lattice for a fixed

modulus q is Λ⊥
q (G) = {x ∈ Z

n� : Gx mod q = 0}. The distribution sampled
over Λ⊥

q (G) and its integer cosets is the discrete gaussian, a gaussian distribution
conditioned on being in the lattice. The probability a sample equals some lattice
coset vector y is proportional to exp(−π‖y‖2/s2) where s > 0 is the width of
the gaussian (we are only concerned with 0-centered distributions). Denote a
discrete gaussian of width s on a lattice coset Λ+c as DΛ+c,s. We can efficiently
sample from DΛ⊥

q (G)+v,s for any q ≥ 2 and s ≥ √
5 ln(2n� + 4)/π (Theorem 4.1

[36] and Lemma 2.3 [11]). We denote G−1(v) as a discrete gaussian vector y
such that Gy = v mod q. Further, we assume the width is set just above twice
the smoothing parameter (defined below) of the G-lattice.

Concentration and Min-entropy. The smoothing parameter [37] of a lattice is
needed for our purposes, and it is denoted as ηε(Λ) for an ε > 0. Informally, this
is the smallest width for which a discrete gaussian shares many properties of the
continuous gaussian distribution. If B is a basis with minimum Gram-Schmidt
norm ‖B̃‖, we can bound the smoothing parameter ηε(Λ) ≤ ‖B̃‖ω(

√
log n) for

negligible ε(n) = n−ω(1) [21]. Discrete gaussian samples’ l2 norms are bounded
by their width as follows.

Lemma 2. (Lemma 1.5 [6]) Let Λ ⊂ R
n be a lattice, r ≥ ηε(Λ) for some

ε ∈ (0, 1), and c ∈ R
n. Then,

Pr(‖DΛ+c,r ≥ r
√

n‖) ≤ 2−n ·
(

1 + ε

1 − ε

)
.

482 N. Genise et al.

Therefore, we can efficiently sample a discrete gaussian G−1(·) with length
less than Õ(

√
n log q)10 with overwhelming probability, and assume G−1(·)’s sup-

port is Z
n�
q . Since we will be using the leftover hash lemma on discrete gaussian

input, we will use the following lemma on the min-entropy of a discrete gaussian.
Further, the proof of Lemma 3 is identical to the proof of [38, Lemma 2.11].

Lemma 3. (Lemma 2.11 [38]) Let Λ + v ⊂ R
n be a lattice coset, c > 0, and

s ≥ 21+cηε(Λ) for ε ∈ (0, 1). Then for any y ∈ Λ + v and for x ← DΛ+v,s,

Pr(x = y) ≤ 2−n(1+c)

(
1 + ε

1 − ε

)
.

Leftover Hash Lemma with G−1(·). Let m = n�, now we can replace the distri-
butions Di in Corollary 1 with independent discrete gaussian samples G−1(v)
(with potential repeats in the coset vector v). Let R ← G−1(X) in Corollary 1
for some X ∈ Z

n×m′
q with R’s columns sampled independently. Then by the

lemmas above, the min-entropy a column of R is at least n(1+c) log q −2 when-
ever G−1(·)’s width is just above twice ηε(Λ⊥

q (G)) for any ε ∈ (0, 1/2]. Say we
let c = logq(2) in Lemma 3. This implies the distribution

{(A,AR mod q) : A ← Z
n×m
q ,R ← G−1(X)}

is O(m′2−n/2)-uniform for any X ∈ Z
m×m′
q .

3 The Schemes

Given an NFA M of r states over a finite alphabet Σ, we denote by Mσ ∈
{0, 1}r×r the transition matrix of M for each input symbol σ ∈ Σ, where
(Mσ)j,i = 1 if and only if there is a transition from state i to state j on σ.
Let v ∈ {0, 1}r be the vector representing the initial states. To check if a string
w = w1 · · · wk ∈ Σ∗ is accepted by M, we simply check whether there are any
non-zero entries in the vector (

∏1
i=k Mwi

) × v that correspond to final states.
So we need a scheme that can compute matrix-vector multiplication homomor-
phically over encrypted matrices and vectors.

3.1 The HAO15 Matrix-FHE Scheme [25]

The FHE scheme from [25] can be extended to support homomorphic matrix-
vector multiplication. We first recall the private-key version of the HAO15
scheme, and we then slightly extend it for vector encryption and homomor-
phic matrix-vector multiplication. For a given security parameter λ, choose lat-
tice parameters n,m, q and a noise distribution χ over Zq. Let � = �log q�,
m = (n + r) log q, and N = (n + r)�. Here we describe a leveled version of
the HAO15 scheme that supports multiplication depth up to k ≥ 1. We abuse
notation and have G = [0|I|2I| · · · |2�−1I] in this subsection.

10
˜O(·) hides poly-logarithmic factors in n.

Homomorphic Encryption for Finite Automata 483

Key Generation. Same as in HAO15, the secret key for level i ≥ 0 is set to
ski := Si = [Ir| − S′

i], where S′
i ← χr×n.

Matrix Encryption. Given a plaintext matrix M ∈ {0, 1}r×r and a level i ≥ 0,
to encrypt it for the i’th level of computation, the HAO15 scheme outputs

C := HAO.MatEncski(M) =
(
S′

iA
′ + E
A′

)
+

(
MSi−1

0n×(n+r)

)
G mod q,

where A′ ← Z
n×N
q and E ← χr×N . For i = 0, we consider S−1 = [Ir|0r×n].

Notice that C ∈ Z
(r+n)×N
q . The decryption procedure is exactly the same as

in [25], but we skip it as it is not needed in our application.

Vector Encryption and Decryption. For a vector v ∈ Z
r
q, we can follow the same

idea as in the matrix encryption procedure, except that we do not multiply v
by S nor G. Since we only need to encrypt the initial state vector to evaluate
an NFA, we always encrypt a vector using the secret key for the first level:

c := HAO.VecEncsk0(v) =
(
S′
0a + e
a

)
+

(
v
0n

)
mod q,

where a ← Z
n
q and e ← χr. Note that c has dimension r + n. To decrypt a

ciphertext vector c from the i’th level of a computation, output the vector

v′ := HAO.VecDecski(c) = �Sic2 .

Homomorphic Operations. To add and multiply two ciphertext matrices C1

and C2, we follow [25]: HAO.Add(C1,C2) = C1 + C2, and HAO.Mul(C1,C2) =
C1 × G−1(C2). To multiply a ciphertext matrix C by an encrypted vector c,
output

HAO.Mul(C, c) := C × G−1(c).

The security of this extended scheme can be proved in the same way as in
[25], reducing from the standard DLWEn,m,q,χ hardness assumption. It is easy
to check that, if C is an encryption of M ∈ {0, 1}r×r for level i and c is an
encryption of v of level i − 1, then Si × (C × G−1(c)) = Mv + e′ for some low
norm error vector e′. More generally, for any Mi ∈ {0, 1}r×r for i = 1, . . . , k
and v ∈ Z

r
q, if Ci ← HAO.MatEncski(Mi) with an error matrix Ei for each i,

c0 ← HAO.VecEncsk0(v) with an error vector e, and ci ← HAO.Mul(Ci, ci−1)
for i = 1, . . . , k, then Sk × ck = (

∏1
j=k Mj)v + ek where

ek = EkG−1(ck−1) +
k∑

i=2

(
i∏

j=k

Mj)Ei−1G−1(ci−2) + (
1∏

j=k

Mj)e.

The l∞ norm of ek can be bounded by

‖ek‖∞ ≤ χN(1 + k max
1≤i≤k

‖
i∏

j=k

Mj‖∞). (1)

To successfully decrypt ck, we require ‖ek‖∞ ≤ q/8 as in [25].

484 N. Genise et al.

3.2 Our New Matrix-HE Scheme

To achieve sufficient level of security and a desired capability of homomorphic
NFA evaluation, we may need to use a large lattice dimension n in practice.
The above extension of the HAO15 scheme seems suboptimal with an over-
head n in ciphertext dimension. In this section we describe a new matrix homo-
morphic encryption scheme that supports atomic matrix and vector encryp-
tion and matrix-vector multiplication. Our scheme is more efficient in practical
applications.

Fix integer parameters n,m, q (to be determined later) and an error distri-
bution χ over Zq that outputs with high probability integers of magnitude � q.
Given any NFA with r ≤ n states, we pad its transition matrices Mσ with 0
entries such that Mσ ∈ {0, 1}n×n for all σ ∈ Σ. For our application we use two
variants of (private-key) encryption, one for matrices and the other for vectors.
Both variants share a noise-sampling procedure, that takes as input the secret
key and another vector (that comes from the plaintext) and outputs a noise
vector for use in the encryption (which may be different than just sampling from
χ). We denote this procedure by e ← NoiseSamp(sk,v), and will describe it later
in this section.

Key Generation. We draw two matrices using χ, a square matrix S ← χn×n and
a rectangular E ← χn×m (which is only used in the NoiseSamp procedure). We
insist that S is invertible, and re-sample if it is not (which happens with a small
probability ≈ 1/q). The secret key is sk := (S,E).

The NoiseSamp Procedure. To prove semantic security of our encryption method,
we need a somewhat convoluted procedure for sampling the noise. Specifically,
the procedure NoiseSamp((S,E),v) begins by sampling r ← G−1(v), then out-
puts e := E × r mod q.

Basic “Encryption” Transformation. Underlying both the vector and matrix
encryption procedure, is the following “encryption” procedure (in quotes, since it
does not have a matching decryption procedure). Given the secret key sk = (S,E)
and a vector v ∈ Z

n
q , we draw a noise vector e ← NoiseSamp(sk,v), then output

the “ciphertext”

c := Enc∗
sk(v) = S−1(v + e).

We remark that the low-order bits of v are lost in this transformation, due the
added noise. Still, the “ciphertext” satisfies the property that Sc ≈ v, up to the
low-norm noise vector e.

We provide in Sect. 4 a detailed proof that the procedure above provides
semantic security for v, under the inhomogeneous NTRU hardness assumption.

Vector Encryption and Decryption. As with Regev encryption [39], to convert
the above to real encryption we just need to multiply v by a large enough scalar
β so that ‖e‖∞ < β with high probability. Let b be an upper bound on the l∞

Homomorphic Encryption for Finite Automata 485

norm of vectors that can be dealt with (which depends on the application), we
assume that b � q and set β := �q/b.

To encrypt a vector v ∈ Z
n
b we just set c := VecEncsk(v) = Enc∗

sk(β · v). To
decrypt we set u := S × c = β · v + e (mod q), then decode each entry of u to
the nearest multiple of β. Namely, we decrypt as

v := VecDecsk(c) =
⌈

b · (S × c mod q)
q

⌋
.

Matrix Encryption and Decryption. Matrix encryption is similar, except that
instead of just multiplying by a large scalar, we use the GSW technique of
redundant encoding using G.

The “native plaintext space” consists of square matrices M ∈ Z
n×n
q . To

encrypt M we first compute M′ = M × G (mod q) and let m′
j be the j’th

column of M′ (j = 1, . . . , m). Then we set

cj := Enc∗
sk(m

′
j), and C := MatEncsk(M) = [c1|c2| . . . |cm].

Note that the ciphertext C has the form C = S−1 × (MG + E′), where E′ is
the low-norm matrix consisting of all the noise vectors that were drawn inside of
Enc∗

sk. In other words, the property that this ciphertext satisfies is S×C ≈ M×G,
up to the low-norm error matrix E′.

In our application we never need to decrypt matrices, but note that we could
compute U := S × C = MG + E′ (mod q), and then recover M from U (since
E′ is low norm and G is the gadget matrix that has a known trapdoor).

3.3 A Leveled NFA-Homomorphic Scheme

Computing a Single Product Chain. To enable homomorphic computation of a
product of k matrices by a vector, (

∏1
i=k Mi)×v, we choose k+1 secret keys as

above, ski = (Si,Ei), for i = 0, 1, . . . , k. We then encrypt the vector v under the
first key sk0, and for 1 ≤ i ≤ k we use ski to encrypt the matrix M′

i = Mi×Si−1.
In other words, we prepare the ciphertexts

c = S−1
0 × (βv + e) mod q,

and

Ci = S−1
i × (MiSi−1G + E′

i) mod q, for i = 1, . . . , k,

where the noise vectors/matrices are all low-norm. To perform the homomorphic
computation, we initialize c0 := c, and then repeatedly set

ci := Ci × G−1(ci−1) mod q,

outputting the final vector ciphertext ck. We now show (by induction) that for
every i, the vector ciphertext ci is a valid encryption of the plaintext vector
vi = (

∏1
j=i Mj) × v under the key ski. This holds by definition for v0 = v,

486 N. Genise et al.

so we now assume that it holds for i ≥ 0 and show for i + 1. By assumption we
have

ci = S−1
i × (βvi + ei),

for some low-norm noise vector ei. Hence we get

ci+1 = Ci+1 × G−1(ci) = S−1
i+1 × (Mi+1SiG + E′

i+1) × G−1(ci)

= S−1
i+1 × (

Mi+1Si × ci + E′
i+1 × G−1(ci)

)

= S−1
i+1 × (

Mi+1Si × S−1
i × (βvi + ei) + E′

i+1 × G−1(ci)
)

= S−1
i+1 × (

β Mi+1vi
︸ ︷︷ ︸

vi+1

+Mi+1ei + E′
i+1 × G−1(ci)

︸ ︷︷ ︸

ei+1

)

.

Since ei,E′
i+1, and G−1(ci) are all low norm, the noise term ei+1 will be low

norm as long as Mi+1 is. We conclude that ck = S−1
k (βvk +ek) (mod q), where

the noise term is

ek =
(1∏

j=k

Mj

)
e +

k∑
i=2

(i∏
j=k

Mj

)
E′

i−1G
−1(ci−2) + E′

kG
−1(ck−1) (mod q).

(2)
Hence as long as all the products

∏i
j=k Mj have low norm, the final noise term

ek will also have low norm. We will present a detailed analysis on the bounds of
the noise terms in relation with NFAs in Sect. 5.

Encrypting and Evaluating an NFA. To be able to evaluate this NFA on strings
of up to k symbols, we set the parameters so that β = �q/b is sufficiently
larger than maxw∈Σ≤k ‖∏1

i=|w| Mwi
‖∞, then choose k + 1 secret keys ski for

i = 0, . . . , k. We encrypt the initial state vector v under sk0, and encrypt each
of the matrices Mσ for σ ∈ Σ under all the other keys. Namely we set

c = VecEncsk0(v), andCσ,i = MatEncski(MσSi−1) for i = 1, . . . , k.

Clearly this method provides semantic security for the NFA, so long as the basic
“encryption” transformation from above is semantically secure.

To evaluate the encrypted NFA on a k-symbol string w1w2 . . . wk, we apply
the chain-product procedure from above to evaluate homomorphically the prod-
uct (

∏1
i=k Mwi

) × v. Namely we set c′
0 = c and then c′

i = Cwi,i × G−1(c′
i−1)

for i = 1, . . . , k. At the end of the evaluation, we decrypt the final ciphertext c′
k

to u = VecDecskk(c′
k) and check if the computation is accepting.

Circular Security for Better Efficiency. As usual, we can improve efficiency by
assuming circular security of the encryption. Namely, instead of choosing all
the secret keys independently, we choose just a single secret key and use it
everywhere. This means that we only need the ciphertexts

c = S−1 × (βv + e), and Cσ = S−1 × (MσSG + Eσ) for each σ ∈ Σ.

Homomorphic Encryption for Finite Automata 487

3.4 The Parameters

To determine the parameters that are needed for certain NFA (or a class of
NFAs) on k-symbol strings, we first need an upper bound on the size of the
plaintext, specifically

Bptxt ≥ max
w∈Σ≤k

‖
1∏

i=|w|
Mwi

‖∞.

(See Sect. 5 for methods of converting regular expressions to NFAs while keeping
this bound small.) Once we have the bound Bptxt, we use it on Eq. 2 to compute
a high probability bound on the expression

B∗ ≥ ‖Bptxt · e + k · Bptxt · E × G−1(c)‖,

where e,E are noise terms that are output by the NoiseSamp procedure. This
value B∗ bounds with high probability the size of the noise that we can get when
evaluating the NFA, and so we need to choose q > B∗ ·Bptxt (since our plaintext
can be as large as Bptxt).

At the same time, we need to set n large enough relative to q to ensure the
required security level (say q < 2n/λ), and m > O(n log q) (since we rely on
the leftover hash lemma). As usual with lattice-based systems, there is a weak
circular dependence between these constraints, but it is not hard to find values
that satisfy them all.

4 Security Analysis

Below we define (two variants of) the inhomogeneous NTRU problem, one over
a ring and one over integer matrices. We describe some properties of this prob-
lem, and show that hardness of the matrix variant implies the security of our
encryption scheme.

4.1 Inhomogeneous NTRU

We begin with the ring variant of our hardness assumption. Fix a ring R, a
modulus q, and an error distribution χ over R, producing with overwhelming
probability elements with norm � q and −χ = χ. Denoting � = �log q�, the
iNTRU distribution with these parameters is defined as follows:

iNTRU =

⎧⎪⎪⎨
⎪⎪⎩

draw s ← R/qR, and ei ← χ, for i = 0, . . . , �,
set a0 := e0/s mod q,
and ai := (2i−1 − ei)/s mod q for i = 1, . . . , �,

output (a0, . . . , a�−1)

⎫⎪⎪⎬
⎪⎪⎭ . (3)

The inhomogeneous NTRU problem is to distinguish between this distribution
and the uniform distribution over (R/qR)�.

488 N. Genise et al.

In the matrix variant of this assumption, the ring elements s, ei are replaced
by n-by-n integer matrices, and the ai’s are similarly replaced with matrices
A0 := −S−1 ×E0, Ai := S−1 × (2iI−Ei). In matrix notation, let m′ = n(� + 1)
and G′ be the gadget matrix11 G′ = [0|I|2I|4I| . . . |2�−1I] ∈ Z

n×m′
, and let χ be

a distribution over Z, producing with overwhelming probability integers of mag-
nitude � q. The matrix-iNTRU distribution (MiNTRU) with these parameters
is defined as follows:

MiNTRU =
{

draw S ← Z
n×n
q , and E′ ← χn×m′

,
output A′ := S−1 × (G′ − E′) mod q

}
. (4)

As before, the hardness assumption says that MiNTRU is pseudorandom, namely
that the matrix A′ is indistinguishable from a matrix uniform in Z

n×m′
q .

Small-Secret Inhomogeneous NTRU. Similarly to LWE, here too we
can prove that the inhomogeneous NTRU problem remains hard even when
the secret is chosen from the error distribution. We lose a little on param-
eters in the conversion, specifically the extra block at the beginning of G′.
With the parameters n,m′, q, χ as above, let m = n �log q� = m′ − n, and
G = [I|2I|4I| . . . |2�−1I] ∈ Z

n×m. The matrix-iNTRU distribution with small
secret (MiNTRUs) is as follows:

MiNTRUs =
{

draw S ← χn×n, and E ← χn×m,
output A := S−1 × (G − E) mod q

}
. (5)

Lemma 4. For the parameters n,m,m′, q, χ as above, if MiNTRU is pseudoran-
dom in Z

n×m′
q , then MiNTRUs is pseudorandom in Z

n×m
q .

Proof. We show that if we could distinguish MiNTRUs from uniformly random
n-by-m matrices over Zq then we could also distinguish MiNTRU from uniformly
random n-by-m′ matrices over Zq. Given a MiNTRU instance that we want to
distinguish, A′ = [A′

0|A′
1| . . . |A′

�] (with A′
i ∈ Z

n×n
q), we set

Ai = A′
0
−1 × A′

i mod q, for i = 1, . . . , �,

(aborting if A′
0 is not invertible), then run the MiNTRUs distinguisher on A =

[A1|A2| . . . |A�]. Observe that if A′ is uniformly random then so is A, and if A′

is chosen from the MiNTRU distribution then

Ai = A′
0
−1 × A′

i = −E′
0
−1 × S × S−1 × (2i−1I − E′

i) = −E′
0
−1 × (2i−1I − E′

i),

for i = 1, . . . , �, and hence A follows the MiNTRUs distribution as needed. ��

11 We use a slightly larger gadget matrix than usual, with an extra first block. The
reason will become clear when we prove Lemma 4 below.

Homomorphic Encryption for Finite Automata 489

4.2 Security Reduction

We next show that pseudorandomness of MiNTRUs (or equivalently MiNTRU)
with some error distribution χ, implies the semantic security of our scheme with
a related error distribution (but not quite the same). Specifically, let n,m, q, χ be
the parameters of the MiNTRUs distribution above. For a fixed pair of matrices
E,Y ∈ Z

n×m
q , consider the distribution

ψ[E,Y] = {R ← G−1(Y), output E × R mod q}.

In the provable version of our scheme, the secret key includes the square invertible
matrix S ← χn×n, and in addition a fixed error matrix E ← χn×m, and we
use the error distribution ψ[E,M × G] when encrypting a matrix M ∈ Z

n×n
q .

Namely we draw a sample R ← G−1(MG) ∈ Z
m×m
q , then output the ciphertext

C := S−1 × (MG−ER) mod q. Note that given a MiNTRUs sample S−1 × (G−
E), one can efficiently generate samples of the form S−1 × (MiG − ER). This
means Proposition 1 is a reduction from CPA security to distinguishing a single
MiNTRUs sample.

Proposition 1. If MiNTRUs is pseudorandom, then our encryption scheme
using the error distribution ψ[E,M × G] is semantically secure.

Proof. We use the “real-or-random” formulation of semantic security for secret-
key encryption [7]. Namely, we have a challenger that chooses a secret key sk =
(S,E), where S ← χn×n,E ← χn×m, and a bit σ ← {0, 1}, then the adversary
repeatedly chooses messages Mi ∈ Z

n×n
q for i = 1, . . . , k and sends them to the

challenger, who replies either with uniformly random matrices Ci ∈ Z
n×m
q if

σ = 0, or with ciphertexts Ci := MatEncsk(Mi) = S−1 × (MiG + Ei) if σ = 1,
where Ei ← ψ[E,MiG], for i = 1, . . . , k. The adversary eventually outputs a
guess σ′ for σ, and is considered successful if σ′ = σ with probability significantly
larger than 1/2.

We show that an adversary Adv with a noticeable advantage ε can be trans-
formed into a distinguisher between MiNTRUs and the uniform distribution
over Z

n×m
q , with an advantage close to ε. The distinguisher D receives as input

A ∈ Z
n×m
q that is either an instance of MiNTRUs or a uniformly random matrix,

and it interacts with the adversary Adv as follows:
When receiving a matrix Mi from Adv, the distinguisher D draws a sample

Ri ← G−1(MiG), and replies with the “ciphertext” Ci := ARi mod q. When
Adv eventually outputs a guess σ′, the distinguisher D outputs the same guess.
We next show that the distinguishing advantage of D is very close to ε.

If A is a uniformly random matrix in Z
n×m
q then, by the leftover hash lemma,

each Ci = A×G−1(something) mod q is statistically close to uniformly random
matrices in Z

n×m
q and independent of A. On the other hand, if A = S−1×(G−E)

is an instance of MiNTRUs, then we have

Ci = A × G−1(MiG) = S−1 × (
G × G−1(MiG) − E × G−1(MiG)

)
= S−1 × (

MiG − E × G−1(MiG)
)
,

which is identical to the distribution produced by our encryption procedure. ��

490 N. Genise et al.

4.3 Hardness of MiNTRU from LWE with a Trapdoor

Here we prove the reduction alluded to in Sect. 1.2. We define a trapdoor oracle
for an arbitrary matrix B ∈ Z

n×m
q as an oracle which takes as input B, a vector

v ∈ Z
n
q , and outputs a discrete Gaussian integer vector x ∈ Z

m conditioned on
Bx mod q = v. Repeated calls to the oracle are assumed to use independent
random coins. Further, we assume the oracle’s distribution samples above the
smoothing parameter of

Λ⊥
q (B) = {x ∈ Z

m : Bx = 0 mod q}
for a uniformly random B, for some negligible function ε(n). In general, the
smoothing parameter of Λ⊥

q (B) is just above the smoothing parameter of Zm,
for some negligible ε(n), when m > n log q, [36, Lemma 2.4].

Let n-secret LWE define the distribution

{(A,B = SA + E) : A ← Z
n×m
q ,S ← Z

n×n
q ,E ← χn×m}

for some distribution χ. Next, we show the pseudorandomness of MiNTRU follows
from the n-secret LWE distribution with a trapdoor oracle for B. Let G ∈
Z

n×m′
q be any formulation of the gadget matrix. (G = [0|I|2I| · · · |2log q−1I] ∈

Z
n×n(log q+1)
q in the MiNTRU definition.)

Proposition 2. Let n ∈ N, q < 2poly(n), χ be a distribution over Zq, m ≥
n log q, and m′ be the number of columns in the G-matrix. Further, let q =
ω(

√
m). Then, the pseudorandomness of MiNTRU with error distribution χn×m ·

B−1(G) follows from the pseudorandomness of n-secret LWE with a trapdoor
oracle for B.

Proof. We show a reduction from the n-secret LWE with a trapdoor oracle for
B to MiNTRU with error distribution χn×m · B−1(G). Given as input a pair of
matrices (A,B), we call m′ times the trapdoor oracle for B to get X ← B−1(G).
Then the reduction outputs A × X mod q. Notice when (A,B) is generated
uniformly and independently, then AX mod q is negligibly close to uniformly
random by leftover hash lemma, along with Lemmas 2 and 3. Conversely, we
have S−1 ∈ Z

n×n
q exists with high probability and A = S−1 × (B − E) mod q

when (A,B) is sampled from the n-secret LWE distribution. Therefore,

A × B−1(G) = S−1 × (G − EB−1(G)) = S−1 × (G − E′) mod q.

So AX mod q is an instance of MiNTRU with the desired error distribution. ��
Remark 1. There is an identical reduction from n-secret LWE with a trapdoor
for B with small secrets to MiNTRUs.

5 Converting Regular Expressions to Automata

In real world applications, regular languages or finite automata are often rep-
resented by regular expressions, which have a very compact form and are con-
venient to store. So it is important for our scheme to be useful when NFAs

Homomorphic Encryption for Finite Automata 491

are specified using regular expressions. In this section we present an efficient
method to convert regular expressions to NFAs of relatively small sizes, and
we discuss how to find a suitable NFA to bound the noise growth. We assume
the reader has some familiarity with regular languages, regular expressions, and
finite automata. See Appendix A for basic notation and definitions.

Partial Derivatives and NFAs. Let Σ be a finite alphabet, and RE be the set of all
regular expressions over Σ. We consider the basic operations such as union (“+”),
concatenation (“·”), and Kleene star (“∗”) on regular expressions. For any regular
expression e, the language of e is denoted by L(e). To convert a regular expression
to an NFA, we start with Antimirov’s partial derivative construction [3], which
is an elegant extension of Brzozowski’s derivative construction [13] to NFAs. For
any symbol a ∈ Σ, the partial derivative of e w.r.t. a, denoted as ∂a(e), is a set
of regular expressions defined inductively as

∂a(ε) = ∅, ∂a(e0 + e1) = ∂a(e0) ∪ ∂a(e1), ∂a(e∗) = ∂a(e)e∗

∂a(ai) =
{{ε} if ai = a

∅ otherwise ∂a(e0 · e1) =
{

∂a(e0)e1 ∪ ∂a(e1) if ε ∈ L(e0)
∂a(e0)e1 otherwise

where e, e0, e1 range over RE. The partial derivative of e w.r.t. any string is
∂ε(e) = {e} and ∂ua(e) =

⋃{∂a(f) | f ∈ ∂u(e)} where u ∈ Σ∗ and a ∈ Σ. A
regular expression e′ is a partial derivative term of e if e′ is an element of ∂w(e)
for some w ∈ Σ∗, and ∂(e) is the set of all partial derivative terms of e.

Definition 1 (Partial derivative NFA). For any regular expression e, the
partial derivative NFA of e is MPD(e) = (Q,Σ, δ,QI , QF), where Q = ∂(e),
QI = {e}, QF = {e′ ∈ ∂(e) | ε ∈ L(e′)}, and for any e′ ∈ Q and a ∈ Σ,
δ(e′, a) = ∂a(e′).

Remark 2. It was shown in [3] that ∂(e) is a finite set (with respect to syntactic
equality on regular expressions). In fact, |∂(e)| ≤ r + 1 where r is the number of
occurrences of alphabet symbols in e.

The language of e satisfies L(e) =
⋃

a∈Σ a ·∂a(e). It follows that the language
accepted by MPD(e) is exactly L(e).

Ambiguity Measure. As will be shown later, when evaluating an encrypted NFA,
the noise growth is closely related to the amount of nondeterministic choices
of the NFA. Here we describe some notions that characterize this quantity.
Let M = (Q,Σ, δ,QI , QF) be an NFA. For any string w = w1 · · · wk where
w1, . . . , wk ∈ Σ, a path of w from state s to state t is a finite sequence of states
s = si0 , si1 , . . . , sik = t such that sij ∈ δ(sij−1 , wj) for all 1 ≤ j ≤ k. A path
is accepting if s ∈ QI and t ∈ QF . The degree of ambiguity of M, denoted as
da(M, k), is the maximal number of accepting paths for a string of length k. If
da(M, k) ≤ 1 for all k > 0, then we say M is unambiguous.12 We say that M is
12 Notice that a DFA M has da(M, k) ≤ 1 for all k ≥ 0, but the converse is not

necessarily true. An NFA can have multiple nondeterministic choices at every state
but still satisfies da(M, k) ≤ 1, in such cases at most one of these choices could lead
to a final state.

492 N. Genise et al.

finitely ambiguous if sup{da(M, k) | k ≥ 0} < ∞, and M is infinitely ambiguous
otherwise. Clearly da(M, k) ≤ |Q|k+1 for any NFA. To upper bound the quantity
da(M, k) using a function of k, we can define the degree of growth of ambiguity
of M, denoted as deg(M), to be the minimal degree of a polynomial h(·) such
that da(M, k) ≤ h(k) for all k ≥ 0. If no such polynomial exists, we simply set
deg(M) = ∞. Note that M is finitely ambiguous if and only if deg(M) = 0. It
was shown in [45] that deg(M) can be computed in time O(r6|Σ|) for any NFA
M with r states.

On Optimizing NFA. For our application of evaluating encrypted NFA, an opti-
mal NFA should be such that its encryption can be correctly evaluated on as
many strings as possible. Concretely, we want to find an NFA such that the noise
term at the end of evaluation is small enough for a successful decryption. Recall
that (n, q) is the lattice parameter in our scheme, b is the maximum l∞ norm
on plaintext vectors, and χ is an error distribution from which we sample noise
terms. As we assume the first state will be the only initial state in all our NFAs,
we can encrypt the initial state vector with no noise. As a result, we obtain the
following bounds on the noise due to homomorphic evaluation of NFAs, which
can be bounded using the ambiguity measures of M.

Proposition 3. For any n ≥ 1, if M is an NFA with r ≤ n states, and w a
string of length k, the noise vector e(k) at the end of homomorphic evaluation of
encrypted M on w satisfies the following bounds:

– If M is unambiguous, then ‖e(k)‖∞ ≤ bnkχ logb q.
– If M is finitely ambiguous, then ‖e(k)‖∞ ≤ bnrkχ logb q.
– If M is infinitely ambiguous, then ‖e(k)‖∞ ≤ bnkdeg(M)+1χ logb q.

Notice that both the number of states and the degree of ambiguity contribute
to the bound on the noise growth. To find a small noise growth for the general
case of processing an arbitrary long input string, we can try to solve the following
optimization problem on NFA minimization with bounded ambiguity.

Definition 2 (NFA Minimization with Bounded Ambiguity Problem).
For a given NFA of r states and a function B : N → N, find an equivalent NFA
M with a minimal number of states such that da(M, k) ≤ B(k) for all k ≥ 1.

A closely related problem is to find a minimal NFA M with a given bound on
deg(M). Conversely, we can consider a similar minimization problem of finding
an NFA M with minimal deg(M) when given a regular expression and a bound
on the number of states. These problems seem to be hard in general as evidenced
by several exponential separation results in automata theory, and we briefly
mention a few. It was shown in [30] that, for each r > 0, there exists an NFA
of r states such that the minimal equivalent NFA M′ of bounded deg(M′) have
2r−1 states.13 With a more strict bound on the ambiguity, it was known [28] that
13 Note that deg(M′) is bounded if and only if da(M′, k) is at most a polynomial in

k for all k > 0.

Homomorphic Encryption for Finite Automata 493

there exist NFAs of r states such that the equivalent finitely ambiguous NFAs
have at least 2Ω(r1/3) states. A more tractable problem of finding a minimal
unambiguous NFA is NP-complete [8,29].

On the other hand, unambiguous NFAs can have much smaller size than
equivalent DFAs. A well-known example is the language Lr = (0+1)∗0(0+1)r−2

for any r ≥ 2: its partial derivative NFA has r states and is unambiguous, but its
minimal equivalent DFA requires 2r−1 states [34]. The exponential upper bound
2r can actually be met: it was shown in [31] that there exists a series {Mr}r≥1 of
unambiguous NFAs such that Mr has r states but the minimal equivalent DFA
of Mr has 2r states. Notice that, if the size of the given regular expression is
small, the bound on the size of the noise is dominated by the degree of ambiguity,
which is same for unambiguous NFAs and DFAs. So we can exploit the fact that
our scheme supports homomorphic encryption of NFAs and try to find a small
unambiguous NFA, which can be much more efficient than encrypting DFAs.

Some particular useful classes of regular languages are the pattern matching
languages L such that L = Σ∗KΣ∗, L = KΣ∗, or L = Σ∗K where K is a finite
set of strings. One can check using the criterion in [45] that the partial derivative
NFA for such a language is unambiguous, but its minimal equivalent DFA may
have exponentially many states. Even if K can be specified using a DFA of m
states, the minimal equivalent DFA of L may still have 2m−2 + 1 states. As our
scheme supports encryption of NFAs, pattern matching on encrypted patterns
can be much more efficient than previous approaches via DFAs.

6 Implementation and Performance

This section describes a proof of concept implementation of our scheme14

and compares its performance with the HAO15 matrix-FHE scheme [25] when
applied to homomorphic evaluation of encrypted NFAs.

Implementation. We implemented our scheme in C++ using the NTL library
(version 10.5.0) for a power of two modulus, q, and we performed experiments
on an Intel i7-2600 3.4 GHz CPU. The implementation is naive in that it only
uses NTL’s native functionality with no further optimizations. It can be done in
a few hundred lines of code and a few days’ programming effort. There are many
opportunities for optimization since the code was written for simplicity and not
efficiency. Despite this, we noticed exceptionally fast evaluation times as listed
in Table 1.

In our experiments, we set lattice parameters to n = 1024 and q = 242. We
kept the modulus both as a power of two and as a power of the maximum l∞
norm b on plaintext vectors in order to take advantage of bit-shifting instead of
multiplications and divisions modulo q. The noise matrices Ei ← χn×m

q and the
secret keys S ← χn×n

q were chosen as uniformly random binary matrices with

14 The source code of our proof-of-concept implementation can be accessed at https://
www.dropbox.com/s/10g2nocx3pmyu4t/henfa.zip.

https://www.dropbox.com/s/10g2nocx3pmyu4t/henfa.zip
https://www.dropbox.com/s/10g2nocx3pmyu4t/henfa.zip

494 N. Genise et al.

Table 1. Running times for each function along with memory for a 1024-state NFA
accepting the language (0+1)∗0(0+1)r−1 for r = 11. “NFA Enc. Time” is the time to
encrypt the NFA, “Matching” is the time to evaluate an encrypted NFA on an input
of k symbols, “Enc. NFA” is the memory storage for the encrypted NFA, and the last
column measures the total RAM used during encryption, evaluation, and decryption.
Total RAM usage was measured with the “sys/resource.h” library in unix.

Input Length (4k) NFA Enc. Time Matching Enc. NFA RAM used

256 bit S.L. 16.35 s 1.53 s 66 Mb 172 Mb

512 bit S.L. 16.66 s 3.34 s 66 Mb 172 Mb

1024 bit S.L. 16.53 s 6.63 s 66 Mb 172 Mb

16384 bit S.L. 16.76 s 98.97 s 66 Mb 172 Mb

65536 bit S.L. 16.42 s 394.47 s 66 Mb 172 Mb

the latter being invertible modulo q. We used NTL’s pseudorandom number
generator “Random ZZ” for all random matrices.

Notice that MiNTRUs can be cryptanalyzed by NTRU attacks like dimension
reduction [33] and the hybrid attack [27] for key recovery. Therefore, we use the
uSVP attack to estimate the time for a key recovery attack as in [1] and set the
LWE noise parameter as α =

√
2n/q in the on-line LWE bit security estimator15.

Rough estimates show that our scheme achieves 100 bits of security with these
parameters.

We conducted tests on r-state partial derivative NFAs accepting the pattern-
matching languages (0+1)∗0(0+1)r−1 with finite ambiguity, for some r smaller
than the lattice dimension n. Notice that the equivalent minimal DFA’s have
2r−1 states. In the experiments, we pad the transition matrices to n-dimensional
matrices by adding transitions from nonreachable states to final states to increase
ambiguity, and hence we effectively obtain n-state NFAs. The strings scanned
were randomly generated. At the end of each scan, our code checked for any
decryption errors. We observed no decryption errors nor noise overflow. The
experiment results for r = 11 are listed in Table 1, where time was measured
using C++’s “time.h” library.

Consider the worst case where the NFA has infinite ambiguity, but bounded
degree of growth of ambiguity. Then the final noise term e(k) has norm ‖e(k)‖∞ ≤
bnkdeg(M)+1χ logb q as discussed in the previous section. By setting the modu-
lus just above the error growth, we see that the bit length of the modulus is
linear in deg(M) + 1. Now as we view total memory for the encrypted NFA,
n2|Σ| log2(q) logb(q) bits, we see that efficiency is quadratic in NFA’s number of
states and quadratic in the degree of growth of ambiguity (though we have some
control over logb(q) by choosing a large base b). This gives us an exact relation
between the number of states, the NFA’s ambiguity, and performance.

15 https://bitbucket.org/malb/lwe-estimator.

https://bitbucket.org/malb/lwe-estimator

Homomorphic Encryption for Finite Automata 495

Table 2. Maximal lengths of strings can be scanned on any n-state NFA in both
schemes without decryption error. In all cases, the noise parameter is set to α =

√
2n/q.

Lattice parameters n = 1024, q = 242 n = 4096, q = 2111 n = 32768, q = 2883

Ours HAO15 Ours HAO15 Ours HAO15

Unambiguous 564918 141229 1.577e25 3.943e24 2.176e255 5.441e254

Finitely ambiguous 551 137 3.850e21 9.626e20 6.642e250 1.660e250

Infinitely ambiguous 82 65 250782489 199046193 1.295e85 1.028e85

Performance Improvement over HAO15. Now we compare the performance of
our scheme with the HAO15 matrix-FHE scheme for homomorphic evaluation
of encrypted NFAs. Let M be an NFA of r ≤ n states, where n is the lattice
dimension, and let k be the length of the string to be scanned on M. For the
HAO15 scheme, applying the NFA ambiguity analysis technique as in Proposi-
tion 3, we can rewrite Eq. 1 to obtain the following bound on the l∞ norm of
the final noise vector ek:

‖ek‖∞ ≤ χ(n + r) log q + χ(n + r) log q
k∑

l=2

da(M, l) + χda(M, k), (6)

which must be bounded away from q/4 for successful decryption of the final
ciphertext vector.

Using Proposition 3 and the bound in Eq. 6, one can determine each scheme’s
capability of homomorphic NFA evaluation. For concrete results, we consider
three cases of the ambiguity of M:

1. M is unambiguous, so da(M, l) ≤ 1;
2. M is finitely ambiguous, so da(M, l) ≤ r; and
3. M is infinitely ambiguous and its degree of growth of ambiguity is deg(M) =

2, so da(M, l) ≤ l2.

Furthermore, we consider three sets of lattice parameters for at least 100 bits
of security, and hence three different maximal sizes r for M. We list in Table 2
the maximal lengths of strings can be scanned without decryption error using
both schemes on any n-state NFA. The results show that we can almost always
evaluate twice long strings using our scheme.

For the running time, the computational complexity of k homomorphic
matrix multiplications in the HAO15 scheme, assuming naive matrix-vector mul-
tiplication of complexity O(n2), is O(k(r + n)2 log q). On the other hand, the
complexity of our homomorphic evaluation procedure is O(kn2 log q). So using
the same parameter and matrix multiplication algorithm, we expect our scheme
runs three times faster than an implementation of the HAO15 scheme.

Potential Optimizations. One potential optimization is parallelization through
the unused states. Say we must evaluate a long string (10000 bits) but only use

496 N. Genise et al.

a 100 state NFA. Then, we can evaluate ten such NFAs in parallel by setting
the transition matrix for symbol a ∈ Σ as the block diagonal matrix with the
blocks as the smaller transition matrices in the small parameter setting. The
total number of states must stay above a few hundred for this corresponds to
the lattice dimension of the underlying lattice problem.

Let G = In ⊗ gt for gt = (1, b, · · · , blogb(q)−1) as in [36]. We expect to see
smaller noise growth via a randomized bit decomposition for the decomposition
of the encrypted state vector, as used in [2]. This can be done with a simple tweak
to Babai’s nearest plane algorithm [4] on the G-matrix’s null lattice Λ⊥

q (G) =
{x ∈ Z

m : Gx = 0 mod q} and its cosets.

A Definitions on Regular Expressions and NFA

We recall some standard definitions about regular languages and finite
automata [46]. Let Σ be a finite alphabet, and Σ∗ the free monoid gener-
ated by Σ. A string w is an element of Σ∗, which can be written as a finite
sequence of symbols w = w1w2 · · · wk where w1, . . . , wk ∈ Σ, and its length is
|w| = k. The empty string is denoted by ε, which is the neutral element of Σ∗.
The concatenation of two strings u = u1 · · · um and v = v1 · · · vn is a string
uv = u1 · · · umv1 · · · vn. A language over Σ is a subset of Σ∗. For any languages
L and K, we consider the following regular operations: (union) L∪K, (product)
LK = {uv | u ∈ L, v ∈ K}, and (Kleene star) L∗ = ∪i≥0L

i, where L0 = {ε},
and Li = LLi−1 for i > 0. Regular languages are the smallest class of languages
containing the basic languages ∅, {ε}, and {ai} for all ai ∈ Σ that are closed
under regular operations.

A nondeterministic finite automaton (NFA) over Σ is a quintuple M =
(Q,Σ, δ,QI , QF), where Q = {s1, . . . , sn} is a finite set of states, δ : Q × Σ →
℘(Q) is a transition function, QI ⊆ Q is the set of initial states, and QF ⊆ Q is
the set of final states. We can extend δ to a function δ : Q × Σ∗ → ℘(Q) over
strings in the natural way. Without loss of generality, we assume that all our
NFAs have a single initial state s1. A string w ∈ Σ∗ is accepted by an NFA M
if δ(s1, w) ∩ QF �= ∅. The set of all the strings accepted by an NFA M is called
the language of M , and it is denoted by L(M). A deterministic finite automaton
(DFA) is an NFA such that δ(s, ai) is a singleton set for all s ∈ Q and ai ∈ Σ,
and |QI | = 1.

A regular expression over Σ is a formal expression generated by the following
grammar rules:

RE → ε | ai | (RE + RE) | (RE · RE) | (RE)∗,

where ai ranges over Σ. The operator ∗ takes the highest precedence, followed
by ·, and then by +. The parentheses can be omitted when there is no ambiguity.
The operator · is usually omitted as well, and concatenations can be written as

Homomorphic Encryption for Finite Automata 497

juxtapositions of regular expressions. For a regular expression e, its language
L(e) can be defined inductively as follows:

L(ε) = {ε}, L(ai) = {ai},

L(e0 + e1) = L(e0) ∪ L(e1), L(e0 · e1) = {uv | u ∈ L(e0), v ∈ L(e1)},

L(e∗) = ∪i≥0L(e)i,

where ai ranges over Σ, and e0, e1 are regular expressions. For any set R of regu-
lar expressions, let L(R) = ∪e∈RL(e). It is well known that the languages defined
by regular expressions are exactly the regular languages, which are exactly the
languages accepted by finite automata.

For any sets R, T of regular expressions, we write RT for the set of regular
expressions

RT = {e · f | e ∈ R, f ∈ T},

and we write Re = {f · e | f ∈ R} and eR = {e · f | f ∈ R}; in particular,
∅T = R∅ = ∅e = e∅ = ∅.

B Proofs

In this section we present proofs that are omitted in the main paper.

Proposition 3. For any n ≥ 1, if M is an NFA with r ≤ n states, and w a
string of length k, the noise vector e(k) at the end of homomorphic evaluation of
encrypted M on w satisfies the following bounds:

– If M is unambiguous, then ‖e(k)‖∞ ≤ bnkχ logb q.
– If M is finitely ambiguous, then ‖e(k)‖∞ ≤ bnrkχ logb q.
– If M is infinitely ambiguous, then ‖e(k)‖∞ ≤ bnkdeg(M)+1χ logb q.

Proof. Let M = (Q,Σ, δ, {s1}, QF) be an NFA with r states s1, . . . , sr, and for
each input symbol σ ∈ Σ, denote by Mσ ∈ {0, 1}n×n the transition matrix of
M on σ (padded with 0s in the extra columns and rows), where (Mσ)t,s = 1 if
t ∈ δ(s, σ), and (Mσ)t,s = 0 othewise. For any t ∈ Q let Mt = (Q,Σ, δ,Q, {t})
be the NFA obtained from M by setting all states to be initial and t the only
final state. Notice that da(Mt, l) is an upper bound on the total number of paths
in M on a string of length l from any state to t.

Let w = w1 · · · wk be the string to be scanned on M. For all 1 ≤ i ≤ k, the
encrypted state vector q(i) after reading wi is:

q(i) =

logb q
∑

j=0

Cwi,jq
(i−1)
j = βS−1Mwi · · ·Mw1v + S−1(Mwie

(i−1) +

logb q
∑

j=0

Ewi,jq
(i−1)
j),

where e(i−1) is the noise term after reading the previous symbol wi−1. As in
our assumption, s1 is always the sole initial state in M, we can set the initial

498 N. Genise et al.

noise e(0) = 0 without leaking any additional information about the NFA M.
By expanding all the noise terms, we get

e(k) =
k∑

l=2

Mwk
· · ·Mwl

logb q∑
j=0

Ewl−1,jq
(l−2)
j +

logb q∑
j=0

Ewk,jq
(k−1)
j . (7)

Notice that, for any symbol a ∈ Σ, the (t, s)’th entry of Ma is 1 if t ∈ δ(s, a)
and it is 0 otherwise. So the (t, s)’th entry of the product Mwk

· · ·Mwl
counts

the number of paths from s to t on the string wl · · · wk, where 1 ≤ l ≤ k.
Let 1 be the vector whose entries are all 1. Then the t’th entry of the vector
Mwk

· · ·Mwl
1 counts the total number of paths from an arbitrary state to t on

this string, which is at most da(Mt, k − l + 1). Thus we have

‖Mwk
· · ·Mwl

logb q∑
j=0

Ewl−1,jq
(l−2)
j ‖∞ ≤ bnχ logb q · max

t∈Q
{da(Mt, k − l + 1)}.

It follows that the final noise vector e(k) can be bounded by

‖e(k)‖∞ ≤ bnχ logb q ·
k−1∑
l=1

max
t∈Q

{da(Mt, l)} + bnχ logb q (8)

If M is unambiguous, then da(Mt, l) ≤ 1 for all t ∈ Q and l ≥ 0, so

‖e(k)‖∞ ≤ bknχ logb q.

If M is finitely ambiguous, then for all s, t ∈ Q, the number of paths of w from
s to t is at most 1 [45]. So da(Mt, l) ≤ r for all t ∈ Q and l ≥ 0, and e(k) can be
bounded by

‖e(k)‖∞ ≤ bknrχ logb q.

For the case where M is infinitely ambiguous, notice that da(Mt, l) ≤ ldeg(M)

for all l ≥ 1, and we have

‖e(k)‖∞ ≤ bχ logb q

k−1∑
l=1

ldeg(M) + bχ logb q

≤ bnkdeg(M)+1χ logb q. ��

C Performance Comparisons with HAO15

In this section we present a brief analysis of applying the matrix-FHE scheme
of HAO15 [25] to the case of homomorphic evaluation of NFA.

Homomorphic Encryption for Finite Automata 499

Fix an NFA M of r states and with an alphabet Σ, and let Mσ ∈ {0, 1}r×r

for σ ∈ Σ be its transition matrices on symbol σ. Recall the “leveled version”
of the HAO15 scheme as described in Sect. 3.1. To encrypt M for homomorphic
evaluation on any string of length at most k, we sample k + 1 secret keys ski

for i = 0, 1, . . . , k, and for each σ ∈ Σ, we encrypt Mσ with all keys ski to
get Cσ,i ← HAO.MatEncski(Mσ). We also encrypt the initial state vector v =
(1, 0, . . . , 0)t in a ciphertext c = HAO.VecEncsk0(v).

To scan w = w1 · · · wk on M, set c0 = c and ci = HAO.Mul(Cwi,i, ci−1) =
Cwi,i ×G−1(ci−1). Then each ciphertext ci satisfies Sici = (

∏1
j=i Mwj

)×v+ei

for some noise vector ei. By Eq. 1, the l∞ norm of ek can be bounded by

‖ek‖∞ ≤ χN + χN

k∑
l=2

da(M, l) + χda(M, k),

which must be bounded away from q/4.
For performance comparison, consider two cases of the ambiguity measures

of M:

– M is finitely ambiguous: We have da(M, l) ≤ r for all 1 ≤ l ≤ k, so w.h.p.

‖ek‖∞ ≤ αq(n + r)(kr + 1) log q,

where α =
√

2n/q is the LWE noise parameter. Thus, in the HAO15 scheme
we can homomorphically evaluate M on strings of length k ≤ 1

α(n+r)r log q . For
example, assuming at least 100 bit of security is needed, for an NFA of up to
1024 states on strings of length up to 275, we need n = 1024 and q = 242.
On the other hand, using our scheme we can evaluate M on strings of length
k ≤ q

b2nχr logb q . So, using our scheme with the above sets of parameters, we
can homomorphically evaluate an NFA of up to 1024 states on strings of
length up to 551.

– M is infinitely ambiguous: We have da(M, l) ≤ ldeg(M), so w.h.p.

‖ek‖∞ ≤ αq(n + r) log q · (
k∑

l=1

ldeg(M) + 1) ≤ αq(n + r) log qkdeg(M)+1

Using the same parameters as the above to achieve at least 100 bit of security,
and assuming that deg(M) = 2 for the NFA M, we can homomorphically
evaluate M on strings of length up to 65 in the HAO15 scheme, whereas we
can homomorphically evaluate M on strings of length up to 82 in our scheme.

Moreover, the computational complexity of k homomorphic matrix multi-
plications, assuming naive matrix-vector multiplication of complexity O(n2), is
O(k(r +n)2 log q). On the other hand, the complexity of our homomorphic eval-
uation procedure is O(kn2 log q).

500 N. Genise et al.

References

1. Albrecht, M.R., et al.: Estimate all the {LWE, NTRU} schemes! IACR Cryptology
ePrint Archive 2018:331 (2018)

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–
314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

3. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)

4. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

5. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Topics in Cryptology - CT-RSA 2014 - The Cryptog-
rapher’s Track at the RSA Conference 2014, San Francisco, CA, USA, February
25–28, 2014. Proceedings, pp. 28–47 (2014)

6. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Math. Ann. 296(1), 625–635 (1993)

7. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption: analysis of the DES modes of operation. In: Proceedings of
38th Annual Symposium on Foundations of Computer Science (FOCS 1997), pp.
394–403. IEEE Press (1997)

8. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J.
Comput. Syst. Sci. 78(1), 198–210 (2012)

9. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13 (2014)

11. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.)
Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA,
USA, June 1–4, 2013, pp. 575–584. ACM (2013)

12. Brakerski, Z., Vaikuntanathan.: Lattice-based FHE as secure as PKE. In: Naor,
M. (ed.) Innovations in Theoretical Computer Science, ITCS 2014, pp. 1–12. ACM
(2014)

13. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
14. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic

of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part
I. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8 15

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 1

16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 377–408. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70694-8 14

https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14

Homomorphic Encryption for Finite Automata 501

17. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. 2012, 144 (2012)

18. Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction: gen-
eralized worst-case to average-case reductions and homomorphic cryptosystems. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp.
528–558. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 19

19. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st ACM Symposium on Theory of Computing - STOC 2009, pp. 169–178.
ACM (2009)

20. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

21. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
17–20 May 2008, pp. 197–206. ACM (2008)

22. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

23. Halevi, S., Shoup, V.: Faster homomorphic linear transformations in HElib. IACR
Cryptol. ePrint Arch. 2018, 244 (2018)

24. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

25. Hiromasa, R., Abe, M., Okamoto, T.: Packing messages and optimizing bootstrap-
ping in GSW-FHE. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 699–715.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 31

26. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

27. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–
169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 9

28. Hromkovic, J., Schnitger, G.: Ambiguity and communication. Theory Comput.
Syst. 48(3), 517–534 (2011)

29. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput.
22(6), 1117–1141 (1993)

30. Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)

31. Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found.
Comput. Sci. 16(5), 975–984 (2005)

32. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234
(2012)

33. May, A., Silverman, J.H.: Dimension reduction methods for convolution modular
lattices. In: Silverman [41], pp. 110–125

34. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: 12th Annual Symposium on Switching and Automata Theory,
East Lansing, Michigan, USA, 13–15 October 1971, pp. 188–191 (1971)

https://doi.org/10.1007/978-3-662-49896-5_19
https://doi.org/10.1007/978-3-662-49896-5_19
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-46447-2_31
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-540-74143-5_9

502 N. Genise et al.

35. Micciancio, D.: Improving lattice based cryptosystems using the hermite normal
form. In: Silverman [41], pp. 126–145

36. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

37. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. In: 45th Symposium on Foundations of Computer Science (FOCS 2004),
17–19 October 2004, Rome, Italy, Proceedings, pp. 372–381. IEEE Computer Soci-
ety (2004)

38. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 8

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34 (2009)

40. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press
(1978)

41. Silverman, J.H. (ed.): CaLC 2001. LNCS, vol. 2146. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44670-2

42. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptography 71(1), 57–81 (2014). Early verion at http://eprint.iacr.org/2011/133

43. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

44. Wang, B., Wang, X., Xue, R., Huang, X.: Matrix FHE and its application in
optimizing bootstrapping. Comput. J. 61(12), 1845–1861 (2018)

45. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Com-
put. Sci. 88(2), 325–349 (1991)

46. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997). https://doi.
org/10.1007/978-3-642-59136-5 2

https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/3-540-44670-2
http://eprint.iacr.org/2011/133
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1007/978-3-642-59136-5_2

Combinatorial Cryptography

Efficient Explicit Constructions
of Multipartite Secret Sharing Schemes

Qi Chen1(B), Chunming Tang2, and Zhiqiang Lin2

1 Advanced Institute of Engineering Science for Intelligent Manufacturing,
Guangzhou University, Guangzhou 510006, China

chenqi.math@gmail.com
2 College of Mathematics and Information Science, Guangzhou University,

Guangzhou 510006, China
ctang@gzhu.edu.cn, linzhiqiang0824@163.com

Abstract. Multipartite secret sharing schemes are those having a mul-
tipartite access structure, in which the set of participants is divided into
several parts and all participants in the same part play an equivalent role.
Secret sharing schemes for multipartite access structures have received
considerable attention due to the fact that multipartite secret sharing can
be seen as a natural and useful generalization of threshold secret sharing.

This work deals with efficient and explicit constructions of ideal mul-
tipartite secret sharing schemes, while most of the known constructions
are either inefficient or randomized. Most ideal multipartite secret sharing
schemes in the literature can be classified as either hierarchical or compart-
mented. The main results are the constructions for ideal hierarchical access
structures, a family that contains every ideal hierarchical access structure
as a particular case such as the disjunctive hierarchical threshold access
structure and the conjunctive hierarchical threshold access structure, and
the constructions for compartmented access structures with upper bounds
and compartmented access structures with lower bounds, two families of
compartmented access structures.

On the basis of the relationship between multipartite secret sharing
schemes, polymatroids, and matroids, the problem of how to construct
a scheme realizing a multipartite access structure can be transformed
to the problem of how to find a representation of a matroid from a
presentation of its associated polymatroid. In this paper, we give effi-
cient algorithms to find representations of the matroids associated to the
three families of multipartite access structures. More precisely, based on
know results about integer polymatroids, for each of the three families of
access structures, we give an efficient method to find a representation of
the integer polymatroid over some finite field, and then over some finite
extension of that field, we give an efficient method to find a presenta-
tion of the matroid associated to the integer polymatroid. Finally, we
construct ideal linear schemes realizing the three families of multipartite
access structures by efficient methods.

Keywords: Secret sharing schemes · Multipartite access structures ·
Matroids · Polymatroids

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 505–536, 2019.
https://doi.org/10.1007/978-3-030-34621-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_18

506 Q. Chen et al.

1 Introduction

Secret sharing is an important cryptographic primitive, by means of which a
secret value is distributed into shares among a number of participants in such
a way that only the qualified sets of participants can recover the secret value
from their shares. A scheme is perfect if the unqualified subsets do not obtain
any information about the secret. The first proposed secret sharing schemes
[8,31] realized threshold access structures, in which the qualified subsets are
those having at least a given number of participants. In addition, these schemes
are ideal and linear. A scheme is ideal if the share of every participant has the
same length as the secret, and it is linear if the linear combination of the shares
of different secrets results in shares for the same linear combination of the secret
values. Even though there exists a linear secret sharing scheme for every access
structure [6,24], the known general constructions are not impractical because
the length of the shares grows exponentially with the number of participants.
Actually, the optimization of secret sharing schemes for general access structures
has appeared to be an extremely difficult problem and not much is known about
it. Nevertheless, secret sharing schemes have found numerous applications in
cryptography and distributed computing, such as threshold cryptography [16],
secure multiparty computations [5,11,14,15], and oblivious transfer [32,36]. In
many of the applications mentioned above, we hope to use practical schemes,
namely, the linear schemes in which the size of the share of each participant is
a polynomial of the size of the secret. In particular, we want to use the ideal
schemes since they are the most space-efficient.

Due to the difficulty of constructing an ideal liner scheme for every given
access structure, it is worthwhile to find families of access structures that admit
ideal linear schemes and have useful properties for the applications of secret shar-
ing. Several such families are formed by multipartite access structures, in which
the set of participants is divided into different parts and all participants in the
same part play an equivalent role. Weighted threshold access structures [4,31],
hierarchical access structures [18,34,35], and compartmented access structures
[9,22,37] are typical examples of such multipartite access structures. Readers
can refer to [19] for comprehensive survey on multipartite access structures. A
great deal of the ongoing research in this area is devoted to the properties of
multipartite access structures and to secret sharing schemes (especially ideal and
linear ones) that realize them.

The first class of multipartite access structures is weighted threshold access
structures which appeared in the seminal paper by Shamir [31]. Weighted thresh-
old access structures do not admit an ideal secret sharing scheme in general. Ideal
multipartite secret sharing and their access structures were initially studied by
Kothari [25] and by Simmons [34]. Kothari [25] presented some ideas to construct
ideal linear schemes with hierarchical properties. Simmons [34] introduced the
multilevel access structures (also called disjunctive hierarchical threshold access
structures (DHTASs) in [35]) and compartmented access structures, and con-
structed ideal linear schemes for some of them by geometric method [8], but
the method is inefficient. The efficient method to construct ideal linear schemes

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 507

for DHTASs was presented by Brickell [9] based on primitive polynomials over
finite fields. He also presented a more general family, that is the so-called com-
partmented access structures with lower bounds (LCASs) as a generalization of
Simmons’ compartmented access structures and offered a method to construct
ideal linear schemes realizing LCASs too. This method is efficient to construct
schemes realizing Simmons’ compartmented access structures but is inefficient
to construct the schemes realizing LCASs in general because it is required to
check (possible exponentially) many matrices for non-singularity. Tassa [35] pre-
sented conjunctive hierarchical threshold access structures (CHTASs) and offered
a method to construct ideal linear schemes realizing them based on Birkhoff
interpolation. In the case of random allocation of participant identities, this
method is probabilistic. A method is probabilistic if it produces a scheme for
the given access structure with high probability. In the probabilistic method, it
is still required to check many matrices for non-singularity. In general, we hope
to construct schemes by efficient methods. By allocating participant identities
in a monotone way, Tassa gave an efficient method to construct ideal linear
schemes for CHTASs over a sufficiently large prime field based on Birkhoff inter-
polation. Tassa and Dyn [37] presented compartmented access structures with
upper bounds (UCASs) and offered probabilistic methods to construct ideal lin-
ear schemes for UCASs, LCASs and CHTASs based on bivariate interpolation.

Another related line of work deals with the characterization of the ideal mul-
tipartite secret sharing schemes and their access structures. This line of research
was initiated by Brickell [9] and by Brickell and Davenport [10]. They introduced
the relationship between secret sharing schemes and matroids, and character-
ized the ideal secret sharing schemes by matroids. Beimel et al. [4] characterized
ideal weighted threshold secret sharing schemes by matroids. The bipartite access
structures were characterized in [29] and some partial results about the tripartite
case were presented in [13] and [22]. On the basis of the works in [9,10], Farràs
et al. [17–19] introduced integer polymatroids for the study of ideal multipar-
tite secret sharing schemes. They studied the connection of multipartite secret
sharing schemes, matroids and polymatroids, and presented many new fami-
lies of multipartite access structures such as ideal hierarchical access structures
(IHASs) and compartmented access structures with upper and lower bounds.
Their work implies the problem of how to construct a scheme realizing a mul-
tipartite access structure can be transformed to the problem of how to find a
representation of a matroid from a presentation of its associated polymatroid.
Nevertheless, Farràs et al. [17,19] pointed out it remains open whether or not
exist efficient algorithms to obtain representations of matroids from representa-
tions of their associated polymatroids in general.

1.1 Related Work

Efficient Explicit Constructions of Ideal Multipartite Secret Sharing.
The most of the known constructions of ideal multipartite secret sharing schemes
are either inefficient or randomized in the literature. Efficient methods to con-
struct ideal hierarchical secret sharing schemes were given by Brickell [9] and by

508 Q. Chen et al.

Tassa [35]. Brickell’s construction provides a representation of a matroid asso-
ciated to DHTASs over finite fields of the form Fqλ with λ ≥ mk2, where q is
a prime power, m is the number of parts that the set of participants is divided
into, and k is the rank of the matroid. An irreducible polynomial of degree λ
over Fq has to be found, but this can be done in time polynomial in q and λ
by using the algorithm given by Shoup [33]. Therefore, a representation can be
found in time polynomial in the size of the ground set. Accordingly, ideal linear
schemes realizing DHTASs can be obtained by an efficient method. Tassa [35]
offered a representation of a matroid associated to CHTASs over prime fields
Fp with p larger than 2−k+2(k − 1)(k−1)/2(k − 1)!N (k−1)(k−2)/2, where k is the
rank of the matroid and N is the maximum identity assigning to participants.
A matrix M is the representation if some of its submatrices are nonsingular.
The non-singularity of these submatrices depends on the Birkhoff interpolation.
There is an efficient algorithm to solve this kind of interpolation over the prime
fields Fp, and consequently, ideal linear schemes for CHTASs can be obtained by
an efficient method. Ball et al. [1] extended the methods in [9,35] and obtained
two different kinds of representations of biuniform matroids, one by using a
primitive element of an extension field and another one by using a large prime
field. The schemes for some bipartite access structures can be obtained based
on these representations. In addition, efficient methods to construct schemes for
some multilevel access structures with two levels and three levels were presented
in [7] and [21], respectively.

Multipartite Secret Sharing, Polymatroids and Matroids. On the basis
of the connection of multipartite secret sharing schemes, matroids and polyma-
troids, Farràs et al. [17–19] introduced a unified method based on polymatroid
techniques, which simplifies the task of determining whether a given multipar-
tite access structures is ideal or not. In particular, they characterized ideal secret
sharing schemes for hierarchical access structures in [18] by the unified method.
They defined the accurate form of IHASs and showed that every ideal hierarchi-
cal access structure is of this form or it can be obtained from a structure of this
form by removing some participants. Moreover, they presented a general method
to construct ideal linear schemes realizing multipartite access structures. Spe-
cially, to construct a secret sharing scheme realizing a given multipartite access
structure, first find an integer polymatroid associated to the access structure,
then find a representation of the integer polymatroid over some finite field, and
third find a representation of the matroid associated the access structure over
some finite extension of the finite field based on the representation of the integer
polymatroid. The result in [17] implies the matroid can be used to construct an
ideal linear scheme realizing the access structure.

1.2 Our Results

In this paper, we study how to construct secret sharing schemes realizing mul-
tipartite access structures. The main results are the constructions for IHASs,

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 509

a family that contains all ideal hierarchical access structure as a particular case
such as DHTASs and CHTASs, and the constructions for UCASs and LCASs,
two special families of compartmented access structures. We give efficient meth-
ods to explicitly construct ideal linear schemes realizing these access structures
combining the general polymatroid-based method in [17] and Brickell’s method
to construct ideal linear schemes for DHTASs in [9]. The ideal of our construction
is described as follows.

Our method to construct multipartite schemes is closely related to the rep-
resentations of the multipartite matroid associated to the given multipartite
access structure. The problem of how to obtain a representation of the multipar-
tite matroid can be transformed to find a matrix M such that its some special
submatrices are nonsingular. Thus, our main goal is that providing a polynomial
time algorithms to construct such a matrix M such that all the determinants of
those special submatrices are nonzero over some finite fields. More precisely, we
construct the matrix M with special form such that every determinant of those
submatrices can be viewed as a nonzero polynomial on x of degree at most t
over some finite field Fq. Based on such a matrix M , over Fqλ with λ > t, the
algorithm given by Shoup [33] implies a representation of the matroid associ-
ated the given access structure can be found in time polynomial in the size of
the ground set.

The idea of finding a matrix M such that the determinants of some of its
submatrices are denoted by a nonzero polynomial on x comes from Brickell [9].
This is the key to find a representation of the matroid. This is related to the
determinant function of matrix. To solve this question, we introduce approaches
to calculate two class of matrices with special form, one can be applied to the
constructions for IHASs and another one can be applied to the constructions for
UCASs and LCASs.

Specifically, based on the integer polymatroids associated to the three families
of multipartite access structures presented in [17–19], for each of the three fami-
lies of access structures, we give an efficient method to find a representation of the
integer polymatroid over some finite field, and then over some finite extension of
that field, we give an efficient method to find a presentation of the matroid asso-
ciated to the integer polymatroid. Accordingly, we construct ideal linear schemes
for these access structures. First, we construct a Fq-representation of an integer
polymatroid that is as simple as possible. In the constructions for IHASs, the
representation is constructed based on unit matrix, and in the constructions for
UCASs and LCASs, the representations are constructed based on Vandermonde
matrix. Second, based on the special representation for some access structure,
we construct the matrix M satisfied the required conditions such that every
determinant of some of its submatrices can be viewed as a nonzero polynomial
on x over Fq. Thus, a representation of the matroid associated the given access
structure can be found in time polynomial in the size of the ground set by the
algorithm in [33].

In addition, we compare our results with the efficient methods to con-
struct multipartite secret sharing schemes from [9,35] in Sect. 4.3. In particular,

510 Q. Chen et al.

we point out that our construction for DHTASs is the same as the one in [9],
but we improve the bound for the size of the ground set.

1.3 Organization of the Paper

Section 2 introduces some knowledge about access structures, secret sharing
schemes, polymatroids, matroids, and the methods to construct secret sharing
schemes by matroids and polymatroids. Section 3 introduces the approaches to
calculate the determinant functions of two classes of matrices with special form.
Section 4 gives two classes of constructions for ideal linear secret sharing schemes
realizing IHASs. Section 5 construct ideal linear secret sharing schemes realizing
UCASs and LCASs.

2 Preliminaries

We introduce here some notation that will be used all through the paper. In
particular, we recall the compact and useful representation of multipartite access
structures as in [17–19].

We use Z+ to denote the set of the non-negative integers. For every positive
integer i we use the notation [i] := {1, . . . , i} and for every i, j ∈ Z+ we use
the notation [i, j] := {i, . . . , j} with i < j. Consider a finite set J and given two
vectors u = (ui)i∈J and v = (vi)i∈J in Z

J
+, we write u ≤ v if ui ≤ vi for every

i ∈ J . The modulus |u| of a vector u ∈ Z
J
+ is defined by |u| =

∑
i∈J ui. For

every subset X ⊆ J , we notate u(X) = (ui)i∈X ∈ Z
X
+ . For every positive integer

m, we notate Jm = {1, . . . , m} and J ′
m = {0, 1, . . . ,m}. Of course the vector

notation that has been introduced here applies as well to Z
m
+ = Z

Jm
+ .

2.1 Access Structures and Secret Sharing Schemes

Let P = {p1, . . . , pn} denote the set of participants and its power set be denoted
by P(P) = {V : V ⊆ P} which contains all the subsets of P . A collection
Γ ⊆ P(P) is monotone if V ∈ Γ and V ⊆ W imply that W ∈ Γ . An access
structure is a monotone collection Γ ⊆ P(P) of nonempty subsets of P . Sets in
Γ are called authorized, and sets not in Γ are called unauthorized. An authorized
set V ∈ Γ is called a minimal authorized set if for every W � V, the set W is
unauthorized. An unauthorized set V /∈ Γ is called a maximal unauthorized set
if for every W � V, the set W is authorized. The set Γ ∗ = {V : Vc /∈ Γ} is
called the dual access structure to Γ . It is easy to see that Γ ∗ is monotone too.
In particular, an access structure is said to be connected if all participants are
in at least one minimal authorized subset.

A family Π = (Πi)i∈Jm
of subsets of P is called here a partition of P if

P =
⋃

i∈Jm
Πi and Πi ∩ Πj = ∅ whenever i �= j. For a partition Π of a set P ,

we consider the mapping Π : P(P) → Z
m
+ defined by Π(V) = (|V ∩ Πi|)i∈Jm

. We
write P = Π(P(P)) = {u ∈ Z

m
+ : u ≤ Π(P)}. For a partition Π of a set P , a

Π-permutation is a permutation σ on P such that σ(Πi) = Πi for every part Πi

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 511

of Π. An access structure on P is said to be Π-partite if every Π-permutation is
an automorphism of it.

As in [17–19], we describe a multipartite access structure in a compact way by
taking into account that its members are determined by the number of elements
they have in each part. If an access structure Γ on P is Π-partite, then V ∈ Γ if
and only if Π(V) ∈ Π(Γ). That is, Γ is completely determined by the partition
Π and set of vectors Π(Γ) ⊆ P ⊆ Z

m
+ . Moreover, the set Π(Γ) ⊆ P is monotone

increasing, that is, if u ∈ Π(Γ) and v ∈ P is such that u ≤ v, then v ∈ Π(Γ).
Therefore, Π(Γ) is univocally determined by min Π(Γ), the family of its minimal
vectors, that is, those representing the minimal qualified subsets of Γ . By an
abuse of notation, we will use Γ to denote both a Π-partite access structure on
P and the corresponding set Π(Γ) of points in P, and the same applies to min Γ .

Now, we introduce some families of multipartite access structures.

Definition 1 (Ideal hierarchical access structures). Take k̂, k ∈ Z
m
+ such

that k̂1 = 0 and k̂i ≤ k̂i+1 < ki ≤ ki+1 for i ∈ [m − 1]. The following access
structures are called ideal hierarchical access structures (IHASs)

Γ = {u ∈ P : |u([�])| ≥ k� for some � ∈ Jm and |u([i])| ≥ k̂i+1 for all i ∈ [�−1]}.
(1)

In particular, if k̂i = 0 for every i ∈ Jm and 0 < k1 < · · · < km = k,
then IHASs is the disjunctive hierarchical threshold access structures (DHTASs),
which can be denoted by

Γ = {u ∈ P : |u([i])| ≥ ki for some i ∈ Jm}, (2)

and if 0 = k̂1 < · · · < k̂m and k1 = · · · = km = k then IHASs is the conjunctive
hierarchical threshold access structures (CHTASs), which can be denoted by

Γ = {u ∈ P : |u([i])| ≥ k̃i for all i ∈ Jm}, (3)

where k̃i = k̂i+1 for i ∈ [m − 1] and k̃m = km.

Definition 2 (Compartmented access structures). Take t ∈ Z
m
+ and k ∈ N

such that k ≥ |t|. The following access structures are called compartmented
access structures with lower bounds (LCASs)

min Γ = {u ∈ P : |u| = k and u ≥ t}. (4)

Take r ∈ Z
m
+ such that r ≤ Π(P) and ri ≤ k ≤ |r| for every i ∈ Jm. The

following access structures are called compartmented access structure with upper
bound (UCASs)

min Γ = {u ∈ P : |u| = k and u ≤ r}. (5)

We next present the definition of unconditionally secure perfect secret sharing
scheme as given in [3,12]. For more information about this definition and secret
sharing in general, see [2].

512 Q. Chen et al.

Definition 3 (Secret sharing schemes). Let P = {p1, . . . , pn} be a set of
participants. A distribution scheme Σ = (Φ, μ) with domain of secrets S is a pair,
where μ is a probability distribution on some finite set R called the set of random
strings and Φ is a mapping from S × R to a set of n-tuples S1 × S2 × · · · × Sn,
where Si is called the domain of shares of pi. A dealer distributes a secret s ∈ S
according to Σ by first sampling a random string r ∈ R according μ, computing
a vector of shares Φ(s, r) = (s1, . . . , sn), and privately communicating each share
si to participant pi. For a set V ⊆ P , we denote ΦV(s, r) as the restriction of
Φ(s, r) to its V-entries (i.e., the shares of the participants in V).

Let S be a finite set of secrets, where S ≥ 2. A distribution scheme Σ = (Φ, μ)
with domain of secrets S is a secret sharing scheme realizing an access structure
Γ ⊆ P(P) if the following two requirements hold:

CORRECTNESS. The secret s can be reconstructed by any authorized set of
participants. That is, for any authorized set V ∈ Γ (where V = {pi1 , . . . , pi|V|}),
there exists a reconstruction function ReconV : Si1 × · · · × Si|V| → S such that
for every s ∈ S and every random string r ∈ R,

ReconV
(
ΦV(s, r)

)
= s.

PRIVACY. Every unauthorized set can learn nothing about the secret (in the
information theoretic sense) from their shares. Formally, for any unauthorized
set W /∈ Γ , every two secrets s, s′ ∈ S, and every possible |W|-tuple of shares
(si)ui∈W ,

Pr
[
ΦW(s, r) = (si)ui∈W

]
= Pr

[
ΦW(s′, r) = (si)ui∈W

]

when the probability is over the choice of r from R at random according to μ.

Definition 4 (Ideal linear secret sharing schemes). Let P = {p1, . . . , pn}
be a set of participants. Let Σ = (Φ, μ) be a secret sharing scheme with domain
of secrets S, where μ is a probability distribution on a set R and Φ is a mapping
from S × R to S1 × S2 × · · · × Sn, where Si is called the domain of shares of pi.
We say that Σ is an ideal linear secret sharing scheme over a finite field K if
S = S1 = · · · = Sn = K, R is a K-vector space, Φ is a K-linear mapping, and μ
is the uniform probability distribution.

This paper deals with unconditionally secure perfect ideal linear secret sharing
schemes.

2.2 Polymatroids and Matroids

In this section we introduce the definitions and some properties of polymatroids
and matroids. Most results of this section are from [17–19]. For more background
on matroids and polymatroids, see [23,28,30,38].

Definition 5. A polymatroid S is defined by a pair (J, h), where J is the finite
ground set and h : P(J) → R is the rank function that satisfies

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 513

(1) h(∅) = 0;
(2) h is monotone increasing: if X ⊆ Y ⊆ J , then h(X) ≤ h(Y);
(3) h is submodular: if X,Y ⊆ J , then h(X ∪ Y) + h(X ∩ Y) ≤ h(X) + h(Y).

An integer polymatroid Z is a polymatroid with an integer-valued rank function
h. An integer polymatroid such that h(X) ≤ |X| for any X ⊆ J is called a
matroid.

While matroids abstract some properties related to linear dependency of
collections of vectors in a vector space, integer polymatroids do the same with
collections of subspaces. Suppose (Vi)i∈J is a finite collection of subspaces of
a K-vector space V , where K is a finite field. The mapping h(X) : P(J) → Z

defined by h(X) = dim(
∑

i∈X Vi) is the rank function of an integer polymatroid
with ground set J . Integer polymatroids and, in particular, matroids that can
be defined in this way are said to be K-representable.

Following the analogy with vector spaces we make the following definitions.
For an integer polymatroid Z, the set of integer independent vectors of Z is

D = {u ∈ Z
J
+ : |u(X)| ≤ h(X) for every X ⊆ J},

in which the maximal integer independent vectors are called the integer bases
of Z. Let B or B(Z) denote the collection of all integer bases of Z. Then
all the elements of B(Z) have the identical modulus. In fact, every integer
polymatroid Z is univocally determined by B(Z) since h is determined by
h(X) = max{|u(X)| : u ∈ B(Z)}.

Given an integer polymatroid Z = (J, h) and a subset X ⊆ J , let Z|X =
(X,h) denote a new integer polymatroid restricted Z on X, and B(Z,X) = {u ∈
D : supp(u) ⊆ X and |u| = h(X)} where supp(u) = {i ∈ J : ui �= 0}. Then
there is a natural bijection between B(Z,X) and B(Z|X).

We next introduce a class of polymatroids as follows.

Definition 6 (Boolean polymatroids). Let S be a finite set and consider
a family (Si)i∈J of subsets of S. The mapping h : P(J) → Z defined by
h(X) = |

⋃
i∈X Si| is clearly the rank function of an integer polymatroid. Integer

polymatroids that can be defined in this way are called Boolean polymatroids.

Boolean polymatroids are very simple integer polymatroids that are repre-
sentable over every finite field K. If |S| = t, we can assume that S is a basis of the
vector space V = K

t. For every i ∈ J , consider the vector subspace Vi = 〈Si〉.
Obviously, these subspaces form a K-representation of Z.

2.3 Secret Sharing Schemes, Matroids and Polymatroids

In this section we review the methods to construct ideal linear secret sharing
schemes for multipartite access structures by matroids and polymatroids. Most
results of this section are from [17–19]. We first introduce the method to con-
struct ideal linear schemes by matroids.

514 Q. Chen et al.

Let P = {p1, . . . , pn} be a set of participants and p0 /∈ P be the dealer.
Suppose M is a matroid on the finite set P ′ = P ∪ {p0}, and let

Γp0(M) = {A ⊆ P : h(A ∪ {p0}) = h(A)}.

Then Γp0(M) is an access structure on P because monotonicity property is
satisfied, which is called the port of the matroid M at the point p0.

Matroid ports play a very important role in secret sharing. Brickell [9] proved
that the ports of representable matroids admit ideal secret sharing schemes
and provided a method to construct ideal schemes for ports of K-representable
matroids. These schemes are called a K-vector space secret sharing schemes. This
method was described by Massey [26,27] in terms of linear codes. Suppose M is
a k×(n+1) matrix over K. Then the columns of M determine a K-representable
matroid M with ground set P ′ such that the columns of M are in one-to-one cor-
respondence with the elements in P ′. In this situation, the matrix M is called a
K-representation of the matroid M. Moreover, M is a generator matrix of some
(n + 1, k) linear code C over K, that is, a matrix whose rows span C. A code C
of length n+1 and dimension k is called an (n+1, k) linear code over K which is
a k-dimensional subspace of K

n+1. A secret sharing scheme can be constructed
by the matrix M based the code C as follows.

Let s ∈ K be a secret value. Secret a codeword c = (c0, c1, . . . , cn) ∈ C
uniformly at random such that c0 = s, and define the share-vector as (c1, . . . , cn),
that is ci is the share of the participant pi for i ∈ [n]. Let LSSS(M) denote this
secret sharing scheme.

Theorem 1 ([26]). LSSS(M) is a perfect ideal linear scheme such that a set
V ⊂ P is qualified if and only if the first column in M is a linear combination
of the columns with indices in V.

The dual code C⊥ for a code C consists of all vectors c⊥ ∈ K
n+1 such

that 〈c⊥, c〉 = 0 for all c ∈ C, where 〈·, ·〉 denotes the standard inner product.
Suppose M and M∗ are generator matrices of some (n + 1, k) linear code C and
its dual C⊥ over K, respectively. Then LSSS(M) and LSSS(M∗) realize Γ and
Γ ∗, respectively. Sometimes it is not easy to construct an ideal linear scheme for
a given access structure Γ directly. In this case we can first construct a scheme
for Γ ∗ and then translate the scheme into an ideal linear scheme for Γ ∗ using
the explicit transformation of [20]. In Sect. 5.2, we will present the construction
for LCASs (4) by this method.

This paper deals with unconditionally secure perfect ideal linear secret shar-
ing schemes. Brickell’s method can be applied to construct such schemes. Nev-
ertheless, it is difficult to determine whether a given access structure admits an
ideal linear secret sharing scheme or not. Moreover, even for access structures
that admit such schemes, it may not be easy to construct them. Some strategies
based on matroids and polymatroids were presented in [17,19] to attack those
problems for multipartite access structures.

The relationship between ideal multipartite access structures and integer
polymatroids is summarized as follows.

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 515

Theorem 2 ([17]). Let Π = (Πi)i∈Jm
be a partition of the set P , and Z ′ =

(J ′
m, h) is an integer polymatroid such that h({0}) = 1 and h({i}) ≤ |Πi| for

every i ∈ Jm. Take Γ0(Z ′) = {X ⊆ Jm : h(X ∪ {0}) = h(X)} and

Γ0(Z ′, Π) = {u ∈ P : there exist X ∈ Γ0(Z ′) and v ∈ B(Z ′|Jm, X) such that v ≤ u}.

Then Γ = Γ0(Z ′,Π) is a Π-partite access structure on P and a matroid port.
Moreover, if Z ′ is K-representable, then Γ can be realized by some L-vector
space secret sharing scheme over every large enough finite extension L of K. In
addition, Z ′ is univocally determined by Γ if it is connected.

The general method presented by Farràs et al. [17] to construct ideal schemes
for the multipartite access structures satisfying the conditions in Theorem2 is
summarized as follows.

Let Π0 = {p0} and Π′ = (Πi)i∈J ′
m

be a partition of the set P ′ = P ∪ {p0}
such that |Πi| = ni. Given a connected Π-partite access structure Γ satisfying
the conditions in Theorem2.

Step 1. Find an integer polymatroid Z ′ such that Γ = Γ0(Z ′,Π);
Step 2. Find a representation (Vi)i∈J ′

m
of Z ′ over some finite field K;

Step 3. Over some finite extension of K, find a representation of the matroid
M such that Γ is a port of M. More precisely, construct a k × (n+1) matrix
M = (M0|M1| · · · |Mm) with the following properties:
1. k = h(J ′

m) and n =
∑m

i=1 ni;
2. Mi is a k × ni matrix whose columns are vectors in Vi;
3. Mu is nonsingular for any u ∈ B(Z ′), where Mu is the k × k submatrix

of M formed by any ui columns in every Mi.

Farràs et al. [17–19] proved that all the multipartite access structures introduced
in Sect. 2.1 are connected matroid ports. Moreover, they presented the associated
integer polymatroids and proved that they are representable. Therefore, the
results in [17–19] solve Step 1. In this paper, we will give an efficient method
to explicitly solve Steps 2 and 3, and hence to construct ideal linear schemes
for those families of access structures. Our method is based on the properties of
determinant functions.

3 Some Properties of Determinant Functions

In this section, we study determinant functions of two classes of matrices with
special form, which will be applied to the constructions of representations of
matroids associated to multipartite access structures.

3.1 The First Class of Matrices

In this Section, we introduce the approach to calculate the determinant of a
class of matrices with special form. This approach is very useful to calculate the
determinant of the matrices with some zero blocks. This class of matrices will be
applied to the construction of representable matroid associated to IHASs. We
will use the well known Laplace Expansion Theorem of determinant.

516 Q. Chen et al.

Theorem 3 (The Laplace Expansion Theorem). Take a n × n matrix A.
Let r = (r1, . . . , rk) be a list of k column indices for A such that 1 ≤ r1 < · · · <
rk < n where 1 ≤ k < n and t = (t1, . . . , tk) be a list of k row indices for A
such that 1 ≤ t1 < · · · < tk < n where 1 ≤ k < n. The submatrix obtained by
keeping the entries in the intersection of any column and row that are in the
lists is denoted by S(A : r, t). The submatrix obtained by removing the entries
in the columns and rows that are in the list is denoted by S′(A : r, t). Then the
determinant of A is

det(A) = (−1)|r |
∑

t∈T
(−1)|t| det

(
S(A : r, t)

)
det

(
S′(A : r, t)

)
,

where T denotes the set of all k-tuples t = (t1, . . . , tk) for which 1 ≤ t1 < · · · <
tk < n.

Example 1. Take a 7 × 7 matrix A = (A1|A2|A3) where A1 and A2 are 7 × 2
blocks, and A3 is a 7 × 3 block. Then the determinant of A can be calculated as
follows.

Take r1 = (r1,1, r1,2) = (1, 2) and t1 = (t1,1, t1,2). Then from Theorem 3,

det(A) = (−1)|r1|
∑

t1∈T1

(−1)|t1| det
(
S(A : r1, t1)

)
det

(
S′(A : r1, t1)

)
,

where T1 denotes the set of all 2-tuples t1 = (t1,1, t1,2) for which 1 ≤ t1,1 <
t1,2 ≤ 7. We proceed to calculate det(S′(A : r1, t1)) by Theorem 3. Take r2 =
(r2,1, r2,2) = (3, 4), r = (r1, r2) = (r1,1, r1,2, r2,1, r2,2), t2 = (t2,1, t2,2), t =
(t1, t2) = (t1,1, t1,2, t2,1, t2,2), and let T2 denote the set of all 2-tuples t2 =
(t2,1, t2,2) for which 1 ≤ t2,1 < t2,2 ≤ 7. For a given t1 = (t1,1, t1,2), let

T2(t1) = T2\{(t2,1, t2,2) : t2,1 ∈ {t1,1, t1,2} or t2,2 ∈ {t1,1, t1,2}}.

Then

det(S′(A : r1, t1)) = 1)|r2|
∑

t2∈T2(t1)

(−1)|t2|det(S(A : r2, t2)) det(S′(A : r, t)).

Hence the determinant of A can also be denoted by

det(A) = (−1)
|r | ∑

t1∈T1

∑

t2∈T2(t1)

(−1)
|t |

det
(
S(A : r1, t1)

)
det

(
S(A : r2, t2)

)
det

(
S

′
(A : r , t)

)
.

In general, we have the following result.

Proposition 1. Take a n × n matrix A = (A1| · · · |Am) where Ai is a n × ni

matrix, and take n0 = 0. For every i ∈ Jm, let ri = (ri,1, . . . , ri,ni
) = (

∑i−1
j=0 nj +

1, . . . ,
∑i

j=0 nj), and ti = (ti,1, . . . , ti,ni
) be a list of ni row indices for Ai such

that 1 ≤ ti,1 < · · · < ti,ni
≤ n. Take r = (r1, . . . , rm) and t = (t1, . . . , tm). Let

Ti denote the set of all ni-tuples ti = (ti,1, . . . , t1,ni
) for which 1 ≤ ti,1 < · · · <

t1,ni
≤ n. For a given ti = (ti,1, . . . , t1,ni

), take S(ti) = {ti,1, . . . , ti,ni
}, and for

given ti′ = (ti′,1, . . . , ti′,ni′) with i′ ∈ [i − 1], take

Ti(ti′ , i′ ∈ [i − 1]) = Ti

∖{
(ti,1, . . . , ti,ni

) : ti,j ∈
i−1⋃

i′=1

S(ti′) for some j ∈ [ni]
}
.

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 517

Then

det(A) = (−1)|r | ∑

t1∈T1

∑

t2∈T2(t1)

· · ·
∑

t m −1∈Tm−1(t i ′ ,

i′∈[m−2])

(−1)|t |
m−1∏

i=1

det
(
S(A : ri , t i)

)
det

(
S

′(A : r , t)
)
.

Proof. Theorem 3 implies

det(A) = (−1)|r1|
∑

t1∈T1

(−1)|t1| det(S(A : r1, t1)) det(S′(A : r1, t1)).

We proceed to calculate det(S′(A : r1, t1)) by Theorem 3 and the following result
can be obtained

det(S′(A : r1, t1)) = (−1)|r2| ∑

t2∈T2(t1)

(−1)|t2| det(S(A : r2, t2)) det(S
′(A : (r1, r2), (t1, t2)).

Accordingly, det(S′(A : (r1, . . . , ri), (t1, . . . , ti))) can be obtained by Theorem3
for i ∈ [2,m − 1], and the result follows. ��

Example 2. Take

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1,1 a1,2 0 0 0 0 0
a2,1 a2,2 a2,3 a2,4 0 0 0
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

0 0 a4,3 a4,4 a4,5 a4,6 a4,7

0 0 a5,3 a5,4 a5,5 a5,6 a5,7

0 0 0 0 a6,5 a6,6 a6,7

0 0 0 0 a7,5 a7,6 a7,7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then from Example 1,

det(A) = (−1)|r | ∑

t1∈T1

∑

t2∈T2(t1)

(−1)|t | det(S(A : r1, t1)) det(S(A : r2, t2)) det(S
′(A : r, t)).

Note that the T1 and T2 are different from the ones in Example 1. Here, there
are some zero blocks in A. In this case, T1 denotes the set of all 2-tuples t1 =
(t1,1, t1,2) for which 1 ≤ t1,1 < t1,2 ≤ 3 and T2 denotes the set of all 2-tuples
t2 = (t2,1, t2,2) for which 2 ≤ t2,1 < t2,2 ≤ 5.

This example implies that Proposition 1 is more suitable for calculating the
determinant function of the matrix which has more zero blocks in its submatrices
consist of some columns.

3.2 The Second Class of Matrices

In this section, we introduce the calculation approach to the determinant func-
tion of another class of matrices with special form. These matrices will be applied
to the construction of representable matroid associated to UCASs and LCASs.
Recall that the determinant function is linear in the columns of a matrix as
follows.

518 Q. Chen et al.

Proposition 2. If a and b are scalars, ᾱ and β̄ are columns vectors, and B is
some matrix, then det

(
(aᾱ + bβ̄ |B)

)
= adet

(
(ᾱ |B)

)
+ b det

(
(β̄ |B)

)
.

Example 3. Let Ai = (au,v)2×3 and Bi = (bu,v)3×2 be a 2×3 matrix and a 3×2
matrix, respectively. Then AB =

(∑3
i1=1 bi1,1āi1

∣
∣ ∑3

i2=1 bi2,2āi2

)
is a 2 × 2

matrix, where āi denotes the ith column of A. Hence, from Proposition 2,

det(AB) =
3∑

i1=1

bi1,1 det

((
āi1

∣∣∣
3∑

i2=1

bi2,2āi2

))

=
3∑

i1=1

3∑

i2=1

bi1,1bi2,2 det
(
(āi1 |āi2)

)

= b1,1b2,2 det
(
(ā1|ā2)

)
+ b1,1b3,2 det

(
(ā1|ā3)

)
+ b2,1b1,2 det

(
(ā2|ā1)

)

+ b2,1b3,2 det
(
(ā2|ā3)

)
+ b3,1b1,2 det

(
(ā3|ā1)

)
+ b3,1b2,2 det

(
(ā3|ā2)

)

=
∑

1≤j1<j2≤3

det

(
bj1,1 bj1,2
bj2,1 bj2,2

)
det

(
(āj1 |āj2)

)
.

In general, we have the following proposition.

Proposition 3. Take a k×k matrix (AB|D) where A = (au,v) is a k×r matrix,
B = (bu,v) is a r × l matrix, and k ≥ r ≥ l, and take j = (j1, . . . , jl) such that
1 ≤ j1 < · · · < jl ≤ r. Let A(j) and B(j) denote the k × l submatrix formed
by the j1th column, . . . , jlth column of A and the l × l submatrix formed by the
j1th row, . . . , jlth row of B, respectively. Then

det
(
(AB|D)

)
=

∑

j∈J
det

(
B(j)

)
det

(
(A(j)|D)

)
,

where J denotes the set of all l-tuples j = (j1, . . . , jl) for which 1 ≤ j1 < · · · <
jl ≤ r.

Proof. If there are two identical columns in a square matrix, then its determinant
equals 0. Therefore, from this and Proposition 2,

det
(
(AB|D)

)
= det

((r∑

i1=1

bi1,1āi1

∣
∣
∣ · · ·

∣
∣
∣

r∑

il=1

bil,lāil

∣
∣
∣ D

))

=
∑

iv∈[r],v∈[l]

(∏

v∈[l]

biv,v

)
det

(
(āi1 | · · · |āil

|D)
)

=
∑

i

(∏

v∈[l]

biv,v

)
det

(
(āi1 | · · · |āil

|D)
)
,

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 519

where the summation is over all l-tuples i = (i1, . . . , il) for which iv ∈ [r] and
iv �= iv′ , v �= v′ ∈ [l].

For a given j = (j1, . . . , jl) such that 1 ≤ j1 < · · · < jl ≤ r, let S(j) denote
the set of all the permutations on the set {j1, . . . , jl}. we claim that

∑

i∈S(j)

(∏

v∈[l]

biv,v

)
det

(
(āi1 | · · · |āil

|D)
)

= det
(
B(j)

)
det

(
(A(j)|D)

)

Without loss of generality, we may assume that j = (1, . . . , l), that is jv = v
with v ∈ [l]. Then

(∏

v∈[l]

biv,v

)
det

(
(āi1 | · · · |āil

|D)
)

= sgn(i)
(∏

v∈[l]

biv,v

)
det

(
(ā1| · · · |āl |D)

)
,

where sgn(i) denotes the sign of i. Note that for j = (1, . . . , l),
∑

i∈S(j)

sgn(i)
(∏

v∈[l]

biv,v

)
= det

(
B(j)

)
.

This implies the claim, and the result follows. ��

We next give a formula to calculate the determinant function of a matrix
with special form which will be used to the scheme for UCASs and LCASs.

Proposition 4. Let G = (A1B1| · · · |AmBm) be a k×k matrix such that Ai is a
k × ri block and Bi is a ri × li block, where li ≤ ri ≤ k and

∑m
i=1 li = k. For any

ji = (ji,1, . . . , ji,li) with i ∈ Jm such that 1 ≤ ji,1 < · · · < ji,li ≤ ri, let Ai(ji)
and Bi(ji) denote the k × li submatrix formed by the ji,1th column, . . . , ji,lith
column of Ai and the li × li submatrix formed by the ji,1th row, . . . , ji,li th row
of Bi, respectively. Then

det(G) =
∑

ji ,i∈[m]

(m∏

i=1

det
(
Bi(ji)

)
)

det
((

A1(j1)| · · · |Am(jm)
))

,

where the summation is over all li-tuples ji = (ji,1, . . . , ji,li) with i ∈ Jm, for
which 1 ≤ ji,1 < · · · < ji,li ≤ ri.

Proof. Let Ai := (a(i)
u,v) with u ∈ [k] and v ∈ [ri], Bi := (b(i)u,v) with u ∈ [ri] and

v ∈ [li], and ā
(i)
j denote the jth column of matrix Ai. From Proposition 3,

det(G) = det
((r1∑

i1,1=1

b
(1)
i1,1,1ā

(1)
i1,1

∣
∣
∣ · · ·

∣
∣
∣

r1∑

i1,l1=1

b
(1)
i1,l1 ,l1

ā
(1)
i1, l1

∣
∣
∣A2B2

∣
∣
∣ · · ·

∣
∣
∣AmBm

))

=
∑

j1

det
(
B1(j1)

)
det

((
A1(j1)|A2B2| · · · |AmBm

))
,

where the summation is over all l1-tuples j1 = (j1,1, . . . , j1,l1), for which 1 ≤
j1,1 < · · · < j1,l1 ≤ r1. The conclusion can be obtained by computing AiBi for
i ∈ [2,m] using the similar method to A1B1. ��

520 Q. Chen et al.

4 Secret Sharing Schemes for Ideal Hierarchical Access
Structures

In this section, we construct ideal linear secret sharing schemes realizing IHASs
by an efficient method. We will present two classes of constructions based on
the same representation of an integer polymatroid. We first present an integer
polymatroid Z ′ satisfying Theorem 2 such that the IHASs (1) are of the form
Γ0(Z ′,Π).

Given two vectors k̂, k ∈ Z
J ′

m
+ such that k̂0 = k̂1 = 0, k0 = 1, km = k, and

k̂i ≤ k̂i+1 < ki ≤ ki+1 for i ∈ [0,m − 1], consider the subsets Si = [k̂i + 1, ki]
of the set S = [k] and the Boolean polymatroid Z ′ = Z ′(k̂, k) with ground J ′

m

defined from them. The following result was presented in Section IX of [18].

Lemma 1. Let Π = (Πi)i∈Jm
be a partition of the set P with |Πi| ≥ h({i}) =

ki − k̂i. Then the IHASs (1) are of the form Γ0(Z ′,Π).

Now we introduce a linear representation of the polymatroid defined in
Lemma 1, that is a collection (Vi)i∈J ′

m
of subspaces of some vector space. Recalled

that Boolean polymatroids are representable over every finite field. Here, we give
a simple representation of Z ′ based on the unit matrix as follows.

Take a k×k unit matrix Ik, and for every i ∈ J ′
m, let Ei denote the submatrix

formed by the (k̂i +1)th column to the kith column of Ik. Consider the Fq-vector
subspace Vi ⊆ F

k
q spanned by all the columns of Ei. Let the integer polymatroid

Z ′ = (J ′
m, h) such that h(X) = dim

(∑
i∈X Vi

)
for every X ⊆ J ′

m. We have the
following result.

Proposition 5. For the integer polymatroid Z ′ defined above, the IHASs (1)
are of the form Γ0(Z ′,Π) and B(Z ′) = B1 ∪ B2, where

B1 = {u ∈ Z
J′

m
+ : |u| = k, u0 = 0 and k̂i+1 ≤ |u([i])| ≤ ki for all i ∈ [m − 1]}, (6)

B2 = {u ∈ Z
J′

m
+ : |u| = k, u0 = 1 and k̂i+1 − 1 ≤ |u([i])| ≤ ki − 1 for all i ∈ [m − 1]}.

Proof. Suppose the set S = [k] and the subsets Si = [k̂i +1, ki] for every i ∈ J ′
m.

Then for every X ⊆ J ′
m, h(X) = dim

(∑
i∈X Vi

)
= | ∪i∈X Si|. This implies Z ′ is

a linear representation of the polymatroid Z ′(k̂, k), and the first claim follows.
In addition, since Ik is nonsingular and Ei is an submatrix of Ik for every i ∈ J ′

m,
it follows that any k distinct columns vectors from Ei with i ∈ J ′

m are linearly
independent, and the second claim follows. ��

This proposition implies that the collection (Vi)i∈J ′
m

is a linear representation
of the integer polymatroid Z ′ associated to the IHASs (1). We will present two
class of constructions for ideal linear schemes realizing IHASs by representable
matroids obtained based on Z ′.

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 521

4.1 Construction for Ideal Hierarchical Access Structures

In this section, we represent a class of ideal linear scheme for IHASs, which can
be obtained by a representation of the matroid associated to IHASs.

Suppose Π0 = {p0} and let Π′ = (Πi)i∈J ′
m

and Π = (Πi)i∈Jm
be the partition

of P ′ = P ∪{p0} and P , respectively, such that |Πi| = ni. For every i ∈ Jm, take
different elements βi,v ∈ F\{0} with v ∈ [ni] and define a (ki − k̂i) × ni matrix

Bi =
(
(βi,vxm−i)u−1

)
u ∈ [ki − k̂i], v ∈ [ni].

Let a k × (n + 1) matrix be defined as

M = (M0|M1| · · · |Mm), (7)

where M0 = (1, 0, . . . , 0)T is a k-dimensional column vector and Mi = EiBi for
every i ∈ Jm. Then the secret sharing scheme LSSS(M) is as follows:

Secret Sharing Scheme.

1. Let s ∈ K be a secret value. The dealer chooses randomly a k-dimensional
vector a such that aM0 = s;

2. The share of each participant pi,j from compartment Πi is abT
i,j , where bT

i,j

denotes the jth column of Mi with i ∈ Jm and j ∈ [ni].

We proceed to show that LSSS(M) is a perfect ideal linear scheme realizing
IHASs. This can be done by proving M is a representation of the matroid asso-
ciated the IHASs (1). Obviously, M satisfies the first two conditions in Step 3
of Sect. 2.3. We will prove that it satisfies the third condition too. We first give
the following lemmas.
Lemma 2. For any u ∈ B1, (6), det(Mu) is a nonzero polynomial on x of
degree at most K where

K =
1
2

m−1∑

i=1

ki(ki − 1) −
m−1∑

i=2

(m − i)(ki − ki−1)k̂i.

Proof. For every i ∈ Jm, take

B′
i =

(
βu−1

i,v

)
u ∈ [ki − k̂i], v ∈ [ni],

and for any u ∈ B1, (6), let Bi(ui) and B′
i(ui) denote the submatrices formed

by any ui columns in Bi and B′
i, respectively.

Let us exemplify how such an event may occur. Assume, for example,
that m = 3, k = (k1, k2, k3) = (3, 5, 7), k̂ = (k̂1, k̂2, k̂3) = (0, 1, 2). Take
u = (u1, u2, u3) = (2, 2, 3) and the corresponding matrix Mu has the follow-
ing form:

Mu =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0 0 0
β1,1x

2 β1,2x
2 1 1 0 0 0

(β1,1x
2)2 (β1,2x

2)2 β2,1x β2,2x 1 1 1
0 0 (β2,1x)2 (β2,2x)2 β3,1 β3,2 β3,3

0 0 (β2,1x)3 (β2,2x)3 β2
3,1 β2

3,2 β2
3,3

0 0 0 0 β3
3,1 β3

3,2 β3
3,3

0 0 0 0 β4
3,1 β4

3,2 β4
3,3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

522 Q. Chen et al.

Suppose 1 ≤ t1,1 < t1,2 ≤ 3, 2 ≤ t2,1 < t2,2 ≤ 5, 3 ≤ t3,1 < t3,2 < t3,3 ≤ 7, and
{t1,1, t1,2, t2,1, t2,2, t3,1, t3,2, t3,3} = [7]. Let B̂1 and B̂′

1 be the blocks formed by
the t1,1th and t1,2th rows of B1(u1) and B′

1(u1), respectively, B̂2 and B̂′
2 be the

blocks formed by the t2,1th and t2,2th rows of B2(u2) and B′
2(u2), respectively,

and B̂3 and B̂′
3 be the blocks formed by the t3,1th, t3,2th and t3,3th rows of

B3(u3) and B′
3(u3), respectively. Then Proposition 1 implies that the summation

in det(Mu) can be denoted by

|atx
t| := det(B̂1) det(B̂2) det(B̂3) = det(B̂′

1) det(B̂′
2) det(B̂′

3)x
t

where t = 2(t1,1−1)+2(t1,2−1)+(t2,1−2)+(t2,2−2). Therefore, when t1,1 = 1,
t1,2 = 2, t2,1 = 3 and t2,2 = 4, t is minimal. In this case t = 5 and B̂′

i with i ∈ [3]
are all nonsingular. This implies a5 �= 0.

In addition, take u′ = (u′
1, u

′
2, u

′
3) such that u′([i]) = ki for every i ∈ [3].

Then u′ ∈ B1. In this case let t′1,1 = 1, t′1,2 = 2, t′1,3 = 3, t′2,1 = 4, t′2,2 = 5,
t′3,1 = 6 and t′3,2 = 7, then t ≤ 2

∑3
i′=1(t

′
1,i′ − 1) +

∑2
i′=1(t

′
2,i′ − 2) = 11.

Therefore, det(Mu) is a nonzero polynomial on x of degree at most 11. In fact,
by computing, we have t < 11.

In general, for any u ∈ B1, let B̂i and B̂′
i be the blocks formed by all the

ti,i′th rows of Bi(ui) and B′
i(ui), respectively, where i′ ∈ [ui] such that

k̂i + 1 ≤ ti,1 < · · · < ti,ui
≤ ki and

⋃m

i=1

{
ti,i′ : i′ ∈ [ui]

}
= [k].

Then Proposition 1 implies that the summation in det(Mu) can be denoted
by

|atx
t| =

∏m

i=1
det(B̂i) =

∏m

i=1
det(B̂′

i)x
t

where

t =
m−1∑

i=1

(
(m − i)

ui∑

i′=1

(ti,i′ − k̂i − 1)
)

=
m−1∑

j=1

(j∑

i=1

(ui∑

i′=1

(ti,i′ − k̂i − 1)
))

. (8)

For every j ∈ [m − 1], take Tj =
∑j

i=1

(∑ui

i′=1(ti,i′ − k̂i − 1)
)
. We have that

Tm−1 is minimal if
⋃m−1

i=1

{
ti,i′ : i′ ∈ [ui]

}
=

[
|u([m − 1])|

]
. In this case Tm−2

is minimal if
⋃m−2

i=1

{
ti,i′ : i′ ∈ [ui]

}
=

[
|u([m − 2])|

]
. Therefore, t is minimal if

⋃j
i=1

{
ti,i′ : i′ ∈ [ui]

}
=

[
|u([j])|

]
for all j ∈ [m − 1]. This implies that t1,i′ = i′

and ti,i′ = |u([i − 1])| + i′ for i ∈ [2,m − 1]. Hence,

t ≥ (m − 1)
u1∑

i′=1

(i′ − 1) +
m−1∑

i=2

(
(m − i)

ui∑

i′=1

(
|u([i − 1])| + i′ − k̂i − 1

))
= t0.

In this case each B̂′
i is nonsingular since it is the square submatrix formed by

the successive ui rows of B′
i(ui). This implies that at0 �= 0.

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 523

In addition, take a vector u′ ∈ Z
m
+ such that |u([i])| = ki for every i ∈ Jm.

Then u′ ∈ B1. In this case t1,i′ = i′ with i′ ∈ [k1] and t′i,i′ = ki−1 + i′ with
i ∈ [2,m − 1] and i′ ∈ [ki − ki−1]. Then

t ≤ (m − 1)

k1∑

i′=1

(i′ − 1) +

m−1∑

i=2

(
(m − i)

ki−ki−1∑

i′=1

(ki−1 + i′ − k̂i − 1)
)

= (m − 1)

k1∑

i′=1

(i′ − 1) +

m−1∑

i=2

(
(m − i)

ki−ki−1∑

i′=1

(ki−1 + i′ − 1)
)

−
m−1∑

i=2

(m − i)

ki−ki−1∑

i′=1

k̂i

=

m−1∑

i=1

(1 + 2 + · · · + (ki − 1)) −
m−1∑

i=2

(m − i)(ki − ki−1)k̂i

=
1

2

m−1∑

i=1

ki(ki − 1) −
m−1∑

i=2

(m − i)(ki − ki−1)k̂i.

(9)
This implies the conclusion.

Lemma 3. For any u ∈ B2, (6), det(Mu) is a nonzero polynomial on x of
degree at most K.

Proof. Let M ′ denote the submatrix obtained by removing the first row and the
first column of M and take k′, k̂′ ∈ Z

m
+ such that for every i ∈ Jm, k′

i = ki − 1,
and k̂′

i = k̂i if k̂i = 0 and k̂′
i = k̂i − 1 if k̂i > 0. For every i ∈ Jm, let E′

i denote
the submatrix formed by the (k̂′

i + 1)th column to the k′
ith column of Ik−1. Let

D1 and D′
1 denote the submatrices formed by the last k′

1 rows of B1 and B′
1,

respectively. For every i ∈ [2,m], if k̂i = 0, let Di and D′
i denote the submatrices

formed by the last k′
i − 1 rows of Bi and B′

i, respectively, and if k̂i > 0, let
Di = Bi and D′

i = B′
i. Then

M ′ = (M ′
1| · · · |M ′

m)

where M ′
i = E′

iDi and for any u ∈ B2, (6), det(Mu) = det
(
M ′

u(Jm)

)
. In partic-

ular, for any u ∈ B2, (6), k̂′
i+1 ≤ |u([i])| ≤ k′

i for all i ∈ [m − 1] and |u| = k − 1.
Therefore, this claim can be proved by the same method in the proof of Lemma 2.

For any u ∈ B2, (6), let D′
i(ui) denote the block formed by any ui columns in

D′
i, and let D̂′

i be the block formed by all the ti,i′th rows of D′
i(ui). Here, i′ ∈ [ui]

such that k̂′
i+1 ≤ ti,1 < · · · < ti,ui

≤ k′
i and

⋃m
i=1

{
ti,i′ : i′ ∈ [ui]

}
= [k−1]. Then

the summation in det
(
M ′

u(Jm)

)
can be denoted by |bt′xt′ | =

∏m
i=1 det(D̂′

i)x
t′
.

Similar to (8),

t′ =
m−1∑

i=1

(
(m − i)

ui∑

i′=1

(ti,i′ − k̂′
i − yi)

)

where yi = 0 if k̂′
i = 0 and yi = 1 if k̂′

i > 0. From k̂′
i = k̂i if k̂i = 0 and k̂′

i = k̂i −1
if k̂i > 0, we have

t′ =
m−1∑

i=1

(
(m − i)

ui∑

i′=1

(ti,i′ − k̂i)
)
.

524 Q. Chen et al.

Similar to the proof in Lemma2, we can obtain t′ is minimal if t1,i′ = i′ and
ti,i′ = |u([i − 1])| + i′ for i ∈ [2,m − 1], and in this case each D̂′

i is nonsingular,
thus det

(
M ′

u(Jm)

)
is a nonzero polynomial on x. In addition, take a vector

u′ ∈ Z
m
+ such that |u([i])| = k′

i for every i ∈ Jm. Then k̂′
i+1 ≤ |u′([i])| ≤ k′

i

for all i ∈ [m − 1] and |u′| = k − 1. In this case t1,i′ = i′ with i′ ∈ [k′
1] and

t′i,i′ = k′
i−1 + i′ with i ∈ [2,m − 1] and i′ ∈ [k′

i − k′
i−1]. Similar to (9),

t′ ≤ (m − 1)
k′
1∑

i′=1

i′ +
m−1∑

i=2

(
(m − i)

k′
i−k′

i−1∑

i′=1

(k′
i−1 + i′ − k̂i)

)

= (m − 1)
k1∑

i′=1

(i′ − 1) +
m−1∑

i=2

(
(m − i)

ki−ki−1∑

i′=1

(ki−1 + i′ − k̂i − 1)
)

= K

since k′
i = ki − 1 for every i ∈ Jm. This implies det

(
M ′

u(Jm)

)
is a nonzero

polynomial on x of degree at most K, and the claim follows. ��

The following result was proved by Shoup [33].

Theorem 4 ([33]). Take a finite field Fqλ where q is a prime power and λ is
a positive integer. Then there exists an element x ∈ Fqλ such that its minimal
polynomial over Fq is of degree λ which can be found in time O(q, λ).

Now, take a finite field Fqλ , where q > maxi∈Jm
{ni} is a prime power and

λ > K. Take all βi,v in the matrix (7) from Fq\{0} and take x ∈ Fqλ such that
its minimal polynomial over Fq is of degree λ. We have the following result.

Theorem 5. The matrix (7) is a representation of the matroid associated to
IHASs (1) over Fqλ for some prime power q > maxi∈Jm

{ni} and some λ > K.
Moreover, such a representation can be obtained in time O(q, λ).

Proof. Since all the entries in the matrix (7), except the powers of x, are in Fq,
and Theorem 4 implies that such an element x can be found in time O(q, λ), it
follows that for any u ∈ B(Z ′), (6), det(Mu) must be a nonzero Fq-polynomial
on x with degree smaller than λ, and consequently, the matrix Mu is nonsingular.
This implies the claim. ��

Proposition 6. Suppose M is the matrix (7). Then LSSS(M) realizes the
IHASs (1) over Fqλ defined as in Theorem5. Moreover, such a scheme can be
obtained in time O(q, λ).

Proof. Theorem 1 implies that proving this claim is equivalent to proving that
v(Jm) ∈ Γ if and only M0 is a linear combination of all the columns in Mv(Jm).

Let v(Jm) ∈ min Γ , (1), namely, v(Jm) = (v1, v2, . . . , v�, 0, . . . , 0) for some
� ∈ Jm such that k̂i+1 ≤ |v([i])| < ki for all i ∈ [� − 1] and |v([�])| = k�. Then
there must exist a vector u ∈ B1, (6), such that u ≥ v and ui = vi for every

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 525

i ∈ [�]. Note that the last k − k� rows of Mv(Jm) are all zero rows, it follows that
Mu(Jm) has the following form

Mu(Jm) =
(

M̂v(Jm) A1

O A2

)

where M̂v(Jm) is the square block formed by the first k� rows of Mv(Jm), A1 is a
(k−k�)×k� block and A2 is a (k−k�)×(k−k�) block. From Theorem 5, Mu(Jm) is
nonsingular. This with det(Mu(Jm)) = det(M̂v(Jm))·det(A2) implies that M̂v(Jm)

is nonsingular. In this case, the k�-dimensional column vector formed by the first
k� elements of M0 can be spanned by the columns of M̂v(Jm). Accordingly, M0

can be spanned by the columns in Mv(Jm) as the last k−k� elements of M0 are all
zero. Hence, M0 can be spanned by the columns in Mv(Jm) for any v(Jm) ∈ Γ .

Assume that v(Jm) /∈ Γ . We know every unauthorized subset may be com-
pleted into an authorized subset (though not necessarily minimal) by adding to
it at most k participants. Without loss of generality, we may assume that there
exists a vector v′(Jm) ∈ Γ such that v′(Jm) ≥ v(Jm) and |v′(Jm)| = |v(Jm)|+1.

First, assume that v(Jm) = (v1, v2, . . . , v�, 0, . . . , 0) for some � ∈ Jm such
that k̂i+1 − 1 ≤ |v([i])| ≤ ki − 1 for all i ∈ [� − 1] and |v([�])| = k� − 1. Then
for the vector v(J ′

m) with u0 = 1, namely, v(J ′
m) = (1, v1, v2, . . . , v�, 0, . . . , 0),

there must exist a vector u(J ′
m) ∈ B2, (6), such that u(J ′

m) ≥ v(J ′
m) and

ui = vi for every i ∈ [0, �]. From Theorem 5, Mu(J ′
m) is nonsingular. This with

v(Jm) ≤ u(Jm) implies that M0 can’t be spanned by all the columns in Mv(Jm).
Second, assume that v(Jm) = (v1, v2, . . . , vm) with |v(Jm)| ≥ k such that for

some � ∈ Jm, |v([�])| = k̂l+1 − 1, k̂i+1 − 1 ≤ |v([i])| < ki for every i ∈ [� − 1],
and vi = ni for every i ∈ [� + 1,m]. Then M0 can’t be spanned by the columns
in Mv ′(Jm) for any v′(Jm) ≤ v(Jm) if M0 can’t be spanned by the columns in
Mv(Jm). We claim that every column in Mv(Jm) can be spanned by the columns in
Mu(Jm) for any u(Jm) ≤ v(Jm) with |u(Jm)| = k−1 such that |u([i])| = |v([i])|
for every i ∈ [l] and k̂i+1 − 1 ≤ |u([i])| < ki for every i ∈ [� + 1,m − 1].

For such a vector u(Jm), if u0 = 1, then u(J ′
m) ∈ B2, (6). This implies M0

can’t be spanned by the columns in Mu(Jm). Furthermore, M0 can’t be spanned
by the columns in Mv(Jm) if the claim is true.

We proceed to prove the claim. Note that

Mu(J ′
m) =

(
Mu([0,�]) Mu([�+1,m])

)
=

(
D1 O
D2 M̄u([�+1,m])

)

where M̄u([�+1,m]) is the square block formed by the last k − k̂�+1 rows of
Mu([�+1,m]). As Mu(J ′

m) is nonsingular, thus M̄u([�+1,m]) is nonsingular. On the
other hand, Mv(Jm) =

(
Mv([�]) Mv([�+1,m])

)
, where

Mv([�+1,m]) =
(

O
M̄v([�+1,m])

)

for which M̄v([�+1,m]) is the block formed by the last k−k̂�+1 rows of Mv([�+1,m]).
Since M̄u([�+1,m]) is a submatrix of M̄v([�+1,m]) and M̄u([�+1,m]) is nonsingular,

526 Q. Chen et al.

it follows that any column in M̄v([�+1,m]) can be spanned by the columns in
M̄u([�+1,m]). Accordingly, any column in Mv([�+1,m]) is a linear combination of
the columns in Mu([�+1,m]). This with Mv([�]) = Mu([�]) implies the claim. ��

4.2 Another Construction for Ideal Hierarchical Access Structures

In this section, we give another construction of ideal linear secret sharing schemes
for IHASs using the similar technique in Sect. 4.1. The parameters of this con-
struction may be better than the construction in Sect. 4.1 in some cases.

For every i ∈ Jm, take ni different elements βi,v ∈ F\{0} and let the (ki −
k̂i) × ni matrix Bi be defined as follows:

Bi =
(
(βi,vxi−1)ki−k̂i−u

)
u ∈ [ki − k̂i], v ∈ [ni].

Take a k-dimensional column vector M0 = (1, 0, . . . , 0)T and Mi = EiBi for
every i ∈ Jm. Define a k × (n + 1) matrix as

M = (M0|M1| · · · |Mm). (10)

Similar to the case in Sect. 4.1, we will prove that LSSS(M) realizes IHASs.
First, we give an example to explain this construction as follows.

Example 4. As in Lemma 2, assume that m = 3, k = (k1, k2, k3) = (3, 5, 7), and
k̂ = (k̂1, k̂2, k̂3) = (0, 1, 2). Take u = (u1, u2, u3) = (2, 2, 3) and the matrix Mu

has the following form:

Mu =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β2
1,1 β2

1,2 0 0 0 0 0
β1,1 β1,2 (β2,1x)3 (β2,2x)3 0 0 0
1 1 (β2,1x)2 (β2,2x)2 (β3,1x

2)4 (β3,2x
2)4 (β3,3x

2)4

0 0 β2,1x β2,2x (β3,1x
2)3 (β3,2x

2)3 (β3,3x
2)3

0 0 1 1 (β3,1x
2)2 (β3,2x

2)2 (β3,3x
2)2

0 0 0 0 β3,1x
2 β3,2x

2 β3,3x
2

0 0 0 0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that Mu can be transformed to the following form by exchanging rows and
columns

M̃u =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 0 0
β3,1x

2 β3,2x
2 β3,3x

2 0 0 0 0
(β3,1x

2)2 (β3,2x
2)2 (β3,3x

2)2 1 1 0 0
(β3,1x

2)3 (β3,2x
2)3 (β3,3x

2)3 β2,1x β2,2x 0 0
(β3,1x

2)4 (β3,2x
2)4 (β3,3x

2)4 (β2,1x)2 (β2,2x)2 1 1
0 0 0 (β2,1x)3 (β2,2x)3 β1,1 β1,2

0 0 0 0 0 β2
1,1 β2

1,2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Therefore, |det(Mu)| = |det(M̃u)|.

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 527

Take κ = (κ1, κ2, κ3) = (k − k̂3, k − k̂2, k − k̂1) = (5, 6, 7), and κ̂ =
(κ̂1, κ̂2, κ̂3) = (k − k3, k − k2, k − k1) = (0, 2, 4). Then Lemma 2 implies that
det(M̃u) is a nonzero polynomial on x of degree at most L with

L =
1
2

2∑

i=1

κi(κi − 1) − (κ2 − κ1)κ̂2 = 23.

Accordingly, det(Mu) is a nonzero polynomial on x of degree at most L.

In general, we have the following lemma.

Lemma 4. For any u ∈ B(Z ′), (6), det(Mu) is a nonzero polynomial on x of
degree at most L where

L =
1
2

m∑

i=2

(k − k̂i)(k − k̂i − 1) −
m−1∑

i=2

(i − 1)(k̂i+1 − k̂i)(k − ki).

Proof. For every i ∈ Jm, take

B̃i =
(
(βm−i+1,vxm−i)u−1

)
u ∈ [km−i+1 − k̂m−i+1], v ∈ [nm−i+1]

and let Ẽi be the submatrix formed by the (k − km−i+1 + 1)th column to the
(k − k̂m−i+1)th column of Ik. Let

M̃ = (M̃0|M̃2| · · · |M̃m),

where M̃0 = (0, 0, . . . , 0, 1)T is a k-dimensional column vector and M̃i = ẼiB̃i

for every i ∈ Jm. Take Π̃0 = Π0 and Π̃i = Πm−i+1 for every i ∈ Jm. Then
Π̃ = (Π̃i)i∈J ′

m
is a partition of P ′ = P ∪ {p0} too. Moreover, take κ, κ̂ ∈ Z

J ′
m

+

such that κ0 = k, κ̂0 = k − 1, and for every i ∈ Jm, κi = k − k̂m−i+1 and
κ̂i = k − km−i+1. Then κ̂i ≤ κ̂i+1 < κi ≤ κi+1 for i ∈ [m − 1].

If u ∈ B1, (6), then for any matrix Mu , as in Example 4, by exchanging rows
and columns we can obtain the matrix M̃u such that |det(Mu)| = |det(M̃u)|.
As k̂m−i+1 ≤ |u([m − i])| ≤ km−i for every i ∈ [m − 1],

κ̂i+1 = k − km−i ≤ |u([m − i + 1,m])| ≤ k − k̂m−i+1 = κi

for every i ∈ [m − 1]. From Lemma 2, det(M̃u) is a nonzero polynomial on x of
degree at most L where

L =
1
2

m−1∑

i=1

κi(κi − 1) −
m−1∑

i=2

(m − i)(κi − κi−1)κ̂i

=
1
2

m∑

i=2

(k − k̂i)(k − k̂i − 1) −
m−1∑

i=2

(i − 1)(k̂i+1 − k̂i)(k − ki).

If u ∈ B2, (6), then for any matrix Mu , we can obtain a matrix M̃u such that
|det(Mu)| = |det(M̃u)| = |det(M̃ ′

u)|, where M̃ ′
u is the submatrix obtained by

528 Q. Chen et al.

removing the first column and the last row of M̃u . In this case k̂m−i+1 − 1 ≤
|u([m − i])| ≤ km−i − 1 for every i ∈ [m − 1], hence

κ̂i+1 = (k − 1) − (km−i − 1) ≤ |u([m − i + 1,m])| ≤ (k − 1) − (k̂m−i+1 − 1) = κi

for every i ∈ [m− 1]. Lemma 2 implies that det(M̃ ′
u) is a nonzero polynomial on

x of degree at most L too, and the claim follows. ��
Now, take a finite field Fqλ , where q > maxi∈Jm

{ni} is a prime power and
λ > L. Take all βi,v in the matrix (10) from Fq\{0} and take x ∈ Fqλ such that
its minimal polynomial over Fq is of degree λ. Using the similar method to prove
Theorem 5 and Proposition 6, we can obtain the following results.

Theorem 6. The matrix (10) is a representation of the matroid associated to
IHASs (1) over Fqλ for some prime power q > maxi∈Jm

{ni} and some λ > L.
Moreover, such a representation can be obtained in time O(q, λ).

Proposition 7. Suppose M is the matrix (10). Then LSSS(M) realizes the
IHASs (1) over Fqλ defined as in Theorem6. Moreover, such a scheme can be
obtained in time O(q, λ).

Remark 1. In some cases, Proposition 7 can give schemes for IHASs superior to
the ones given by Proposition 6. For example, Proposition 6 can give the scheme
for the DHTASs (2) over Fqλ with λ > K = 1

2

∑m−1
i=1 ki(ki − 1) since k̂1 =

· · · = k̂m = 0 and the scheme for the CHTASs (3) over Fqλ with λ > K =
1
2

∑m−1
i=1 ki(ki − 1) = 1

2 (m − 1)k(k − 1) since 0 = k̂1 < · · · < k̂m and k1 = · · · =
km = k.

On the other hand, Proposition 7 give the scheme for the DHTASs (2) over
Fqλ with λ > L = 1

2

∑m
i=2(k− k̂i)(k− k̂i −1) = 1

2 (m−1)k(k−1) and the scheme
for the DHTASs (3) over Fqλ with λ > L = 1

2

∑m−1
i=1 (k − k̃i)(k − k̃i − 1).

Therefore, Proposition 6 gives the scheme for DHTASs superior to the one
given by Proposition 7. Nevertheless, Proposition 7 gives the scheme for CHTASs
superior to the one given by Proposition 6.

4.3 Comparisons

Comparison to the Construction of Brickell. Brickell [9] presented an
efficient method to construct the ideal linear scheme for the DHTASs (2) over
Fqλ′ with q > maxi∈Jm

{ni} and λ′ ≥ mk2. Proposition 6 gives a scheme for the
DHTASs (2) too. In fact, our scheme is the same as Brickell’s scheme. Neverthe-
less, Proposition 6 implies the scheme for the DHTASs (2) can be obtained over
Fqλ with λ > K = 1

2

∑m−1
i=1 ki(ki − 1). Therefore, we improve the bound for the

field size since

1
2

m−1∑

i=1

ki(ki − 1) + 1 ≤ 1
2
(m − 1)km−1(km−1 − 1) + 1 <

1
2
(m − 1)k2

m−1 < mk2.

The reason for the improvement is that we give a relatively precise description
of det(Mu) by the formula provided in Proposition 1.

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 529

Comparison to the Construction of Tassa. Tassa [35] presented an efficient
method to construct the ideal linear scheme for the CHTAS (3) over Fp where

p > 2−k+2(k − 1)(k−1)/2(k − 1)!N (k−1)(k−2)/2 (11)

is a prime and N is the maximum identity assigning to participants. Proposition 7
gives a scheme for the CHTAS (3) over Fqλ with q > maxi∈Jm

{ni} and λ > L =
1
2

∑m−1
i=1 (k − k̃i)(k − k̃i − 1).

Since (k − 1)! ≥ 2k−2 when k ≥ 2, it follows that the right hand of (11) is
great than or equal to (k − 1)(k−1)/2N (k−1)(k−2)/2. From this with N ≥ n ≥
maxi∈Jm

{ni}, we have

qL ≤ N (k−1)(k−2)/2 < 2−k+2(k − 1)(k−1)/2(k − 1)!N (k−1)(k−2)/2

if L ≤ 1
2 (k − 1)(k − 2). In fact, maxi∈Jm

{ni} � N in general. This implies in
this case 2−k+2(k − 1)(k−1)/2(k − 1)!N (k−1)(k−2)/2 � qL, and consequently, our
result is superior to Tassa’s result. In the case of L > 1

2 (k − 1)(k − 2), it is very
possible that qL is smaller than the right hand of (11). In particular, our efficient
methods can also work for non-prime fields.

5 Secret Sharing Schemes for Compartmented Access
Structures

In this section, we study ideal linear secret sharing schemes for two families of
compartmented access structures by efficient methods.

5.1 Construction for Compartmented Access Structures with
Upper Bounds

In this section, we construct ideal linear secret sharing schemes realizing UCASs.
We first present a representation of the integer polymatroid Z ′ satisfying Theo-
rem 2 such that the UCASs (5) are of the form Γ0(Z ′,Π).

Take Π = (Πi)i∈Jm
be a partition of the set P such that |Πi| = ni. Let

r ∈ Z
J ′

m
+ and k ∈ N such that r0 = 1, r(Jm) ≤ Π(P) and ri ≤ k ≤ |r(Jm)| for

every i ∈ Jm. The following result was presented in Section 8.2 of [17].

Lemma 5. Suppose Z ′ = (J ′
m, h) is an integer polymatroid such that h(X) =

min
{
k, |r(X)|

}
for every X ⊆ J ′

m. Then the UCASs (5) are of the form
Γ0(Z ′,Π).

Now, we introduce a linear representation of the polymatroid defined in
Lemma 5. Take different elements αi,j ∈ Fq with i ∈ J ′

m and j ∈ [ri], where
q ≥ maxi∈Jm

{ni, |r(Jm)| + 1} is a prime power. For every i ∈ J ′
m, let

Ai =
(
αu−1

i,v

)
u ∈ [k], v ∈ [ri]

and consider the Fq-vector subspace Vi ⊆ F
k
q spanned by all the columns of Ai.

Let the integer polymatroid Z ′ = (J ′
m, h) such that h(X) = dim

(∑
i∈X Vi

)
for

every X ⊆ J ′
m. We have the following result.

530 Q. Chen et al.

Proposition 8. For the integer polymatroid Z ′ defined above, the UCASs (5)
are of the form Γ0(Z ′,Π) and

B(Z ′) = {u ∈ Z
J ′

m
+ : |u| = k and u ≤ r}. (12)

Proof. Let A = (A0|A1| · · · |Am). Then it is a k × (|r(Jm)| + 1) Vandermonde
matrix. Therefore, any k×k submatrix of A is nonsingular. This with dim(Vi) =
ri for every i ∈ J ′

m implies the second claim. In addition,
∣
∣
⋃

i∈X{ai,v : v ∈
[ri]}

∣
∣ = |r(X)| for every X ⊆ J ′

m where ai,v denotes the vth columns of Ai.
Hence, h(X) = min

{
k, |r(X)|

}
for every X ⊆ J ′

m, and the first claim follows. ��

This proposition implies that the collection (Vi)i∈J ′
m

is a linear representation
of the integer polymatroid Z ′ associated to the UCASs (5). We next present a
matrix M based on Z ′, which is a representation of a matroid M such that the
UCASs (5) are of the form Γp0(M).

Let Π0 = {p0} and let Π′ = (Πi)i∈J ′
m

and Π = (Πi)i∈Jm
be the partition of

P ′ = P ∪ {p0} and P , respectively, such that |Πi| = ni. For every i ∈ J ′
m, take

ni different elements βi,v ∈ Fq with v ∈ [ni] and let

Bi =
(
(βi,vx)u−1

)
u ∈ [ri], v ∈ [ni].

Let a k × (n + 1) matrix be defined as

M = (M0|M1| · · · |Mm) (13)

where Mi = AiBi. We have the following result.

Lemma 6. For any u ∈ B(Z ′), (12), det(Mu) is a nonzero polynomial on x of
degree at most k(r − 1), where r = maxi∈Jm

{ri}.

Proof. Without loss of generality, we may assume that Mu is the k×k submatrix
of M formed by the first ui columns in every Mi. For every i ∈ J ′

m, take B̄i =(
βu−1

i,v

)
with u ∈ [ri] and v ∈ [ni], and let B′

i and B̄′
i denote the submatrices

formed by the first ui columns in Bi and B̄i, respectively. In addition, for any
ji = (ji,1, . . . , ji,ui

) with i ∈ J ′
m such that 1 ≤ ji,1 < · · · < ji,ui

≤ ri, let B′
i(ji)

and B̄′
i(ji) denote the ui × ui submatrices formed by the ji,1th row, . . . , ji,ui

th
row of B′

i and B̄′
i, respectively, and let Ai(ji) denote the submatrix formed by

the first ui columns in Ai. Then

det
(
B′

i(ji)
)

= det
(
B̄′

i(ji)
)
x

∑ui
v=1(ji,v−1).

If ji,v = ri−ui+v for v ∈ [ui], then the exponent of x in det(B′
i(ji)) is maximum,

that is
ui∑

v=1

(ji,v −1) =
ui∑

v=1

(ri−ui+v−1) = ui(ri−ui)+
ui−1∑

v=1

v =
1
2
ui(2ri−ui−1). (14)

Note that in this case B̄′
i(ji) is the submatrix formed by of the last ui rows of

B̄′
i, it follows det(B̄′

i(ji)) �= 0. Hence, Proposition 4 implies that det(Mu) can be

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 531

viewed as a polynomial on x and the summation with maximum exponent of x
in it is

(m∏

i=1

det
(
B̄′

i(ji)
))

det
((

A0(j0)|A1(j1)| · · · |Am(jm)
))

xt, (15)

where for i ∈ Jm and v ∈ [ui], ji,v = ri − ui + v. As
∑m

i=1 u2
i ≥

∑m
i=1 ui and∑m

i=1 ui = k or k − 1, from (14), we have

t =
1
2

m∑

i=1

ui(2ri − ui − 1) =
m∑

i=1

uiri − 1
2

m∑

i=1

(u2
i + ui) ≤ k(r − 1). (16)

In addition, the matrix
(
A0(j0)|A1(j1)| · · · |Am(jm)

)
is nonsingular, thus

det(Mu) is a nonzero polynomial on x of degree t. Using the same method,
we can prove this claim for any u ∈ B(Z ′), (12). ��

Now, take a finite field Fqλ , where q ≥ maxi∈Jm
{ni, |r(Jm)| + 1} is a prime

power and λ > k(r − 1). Take αi,v and βi,v in the matrix (13) from Fq and take
x ∈ Fqλ such that its minimal polynomial over Fq is of degree λ. Then similar
to Theorem 5 and Proposition 6, from this lemma, we can obtain the following
result.

Theorem 7. The matrix (13) is a representation of the matroid associated to
UCASs (5) over Fqλ for some prime power q ≥ maxi∈Jm

{ni, |r(Jm)| + 1} and
some λ > k(r − 1). Moreover, such a representation can be obtained in time
O(q, λ).

Proposition 9. Suppose M is the matrix (13). Then LSSS(M) realizes the
UCASs (5) over Fqλ defined as in Theorem7. Moreover, such a scheme can be
obtained in time O(q, λ).

Proof. If u(Jm) ∈ min Γ and u0 = 0, then u(J ′
m) ∈ B(Z ′), (12). Theorem 7

implies Mu(Jm) is nonsingular. Accordingly, M0 can be spanned by the columns
in Mu(Jm) for any u(Jm) ∈ Γ . Assume that u(J) /∈ Γ . As h({(i)}) = ri for every
i ∈ Jm, thus without loss of generality, we may assume that u(Jm) ≤ r(Jm).
Furthermore, we may assume that |u(Jm)| = k − 1, since if |u(Jm)| < k − 1, we
may find a vector u′(Jm) ≥ u(Jm) such that u′(Jm) ≤ r(Jm) and |u′(Jm)| =
k − 1. In this case if u0 = 1, then u(J ′

m) ∈ B(Z ′). Theorem 7 implies Mu(J ′
m) is

nonsingular, and the claim follows. ��

5.2 Construction for Compartmented Access Structures with Lower
Bounds

In this section, we describe ideal linear secret sharing schemes realizing LCASs
based on the schemes for the dual access structures of LCASs.

The dual access structures of LCASs (4) presented in [37] are defined as

Γ ∗ = {u ∈ P : |u| ≥ l or ui ≥ τi for some i ∈ Jm} (17)

532 Q. Chen et al.

where l = |P | − k + 1, τi = |Πi| − ti + 1 for i ∈ J , and |τ | ≥ l + m − 1.

We first present a representation of the integer polymatroid Z ′ satisfying
Theorem 2 such that the access structures (17) are of the form Γ0(Z ′,Π).

Take Π = (Πi)i∈Jm
be a partition of the set P such that |Πi| = ni. Let

τ ∈ Z
J ′

m
+ and l ∈ N such that τ0 = 1, τ (Jm) ≤ Π(P) and |τ (Jm)| ≥ l + m − 1.

Take τ ′ ∈ Z
J ′

m
+ such that τ ′

0 = 1 and τ ′
i = τi − 1 for every i ∈ Jm. The following

result was presented in Section IV-D of [19].

Lemma 7. Suppose Z ′ = (J ′
m, h) is an integer polymatroid with h satisfying

(1) h({0}) = 1;
(2) h(X) = min{l, 1 + |τ ′(X)|} for every X ⊆ Jm;
(3) h(X ∪ {0}) = h(X) for every X ⊆ Jm.

Then the access structures (17) are of the form Γ0(Z ′,Π).

We next introduce a linear representation of the polymatroid defined in
Lemma 7. Take elements αi,j ∈ Fq with i ∈ J ′

m and j ∈ [τi] where q >
maxi∈Jm

{ni, |τ ′(Jm)|} is a prime power such that

• αi,1 = α0 for all i ∈ J ′
m and

• the elements α0 and αi,j with i ∈ Jm and j ∈ [2, τi] are pairwise distinct.

For every i ∈ J ′
m, let

Ai =
(
αu−1

i,v

)
u ∈ [l], v ∈ [τi]

and consider the Fq-vector subspace Vi ⊆ F
k
q spanned by all the columns of Ai.

Let the integer polymatroid Z ′ = (J ′
m, h) such that h(X) = dim

(∑
i∈X Vi

)
for

every X ⊆ J ′
m.

Proposition 10. For the integer polymatroid Z ′ defined above, the access struc-
tures (17) are of the form Γ0(Z ′,Π) and B(Z ′) = B1 ∪ B2, where

B1 = {u ∈ Z
J ′

m
+ : |u| = l, u0 = 0, ui′ ≤ τi′ for some i′ ∈ Jm

and ui ≤ τ ′
i for all i ∈ Jm\{i′}},

B2 = {u ∈ Z
J ′

m
+ : |u| = l, u0 = 1 and u(Jm) ≤ τ ′(Jm)}.

(18)

Proof. Proving the first claim is equivalent to proving that h satisfies the three
conditions in Lemma 7. First, h({0}) = 1 as dim(V0) = 1. Let A be the matrix
formed by the column A0 and the last τ ′

i columns of Ai for every i ∈ Jm.
Then it is a l × (1 + |τ ′(Jm)|) Vandermonde matrix. Accordingly, any l × l
submatrix of A is nonsingular. Since

∣
∣
⋃

i∈X{ai,v : v ∈ [τi]}
∣
∣ = 1 + |τ ′(X)|

for every X ⊆ Jm where ai,v denotes the vth columns of Ai, it follows that
h(X) = min{l, 1 + |τ ′(X)|} for every X ⊆ Jm. Moreover, V0 ⊆ Vi for every
X ⊆ Jm, Therefore, h(X ∪ {0}) = h(X) for every X ⊆ Jm.

In addition, since any l × l submatrix of A is nonsingular, on the one hand,
any l distinct columns from Ai with i ∈ Jm are linearly independent, and on
the other hand, A0 and any l − 1 columns from the last τ ′

i columns of Ai with
i ∈ Jm are linearly independent too. This implies the second claim. ��

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 533

We next present a matrix M which is a representation of a matroid M such
that the access structures (17) are of the form Γp0(M).

Suppose Π0 = {p0} and let Π′ = (Πi)i∈J ′
m

and Π = (Πi)i∈Jm
be the partition

of P ′ = P ∪ {p0} and P , respectively, such that |Πi| = ni. Take β0,1 = 0 and
for every i ∈ Jm, take ni different elements βi,v ∈ Fq with v ∈ [ni] such that
βi,v �= 0. For every i ∈ J ′

m, take

Bi =
(
(βi,vx)u−1

)
u ∈ [τi], v ∈ [ni]

and Mi = AiBi. Define a l × (n + 1) matrix as

M = (M0|M1| · · · |Mm). (19)

Lemma 8. For any u ∈ B(Z ′), (18), det(Mu) is a nonzero polynomial on x of
degree at most l(τ − 1), where τ = maxi∈Jm

{τi}.

Proof. Without loss of generality, we may assume that Mu is the l× l submatrix
of M formed by the first ui columns in every Mi. For every i ∈ J ′

m, take B̄i =(
βu−1

i,v

)
with u ∈ [τi] and v ∈ [ni], and let B̄′

i denote the submatrix formed by
the first ui columns in B̄i. Proposition 4 implies that det(Mu) can be viewed as
a polynomial on x.

In the case of u ∈ B1, let the summation with maximum exponent of x in
det(Mu) be denoted by at1x

t1 . Then similar to (15),

at1x
t1 =

(m∏

i=1

det
(
B̄′

i(ji)
))

det
((

A1(j1)| · · · |Am(jm)
))

xt1 ,

where ji = (ji,1, . . . , ji,ui
) with i ∈ Jm such that ji,v = τi −ui +v for v ∈ [ui]. In

this case the matrix
(
A1(j1)| · · · |Am(jm)

)
is nonsingular since its all columns

are pairwise distinct. From this and each B̄′
i(ji) is nonsingular, we have that

at1 �= 0. In addition, as ui ≤ τi for every i ∈ Jm, the inequality (16) implies
t1 ≤ l(τ − 1).

In the case of u ∈ B2, let the summation with maximum exponent of x in
det(Mu) be denoted by at2x

t2 . Then

at2x
t2 =

(m∏

i=1

det
(
B̄′

i(ji)
))

det
((

A0|A1(j1)| . . . |Am(jm)
))

xt2 ,

where ji = (ji,1, . . . , ji,ui
) with i ∈ Jm such that ji,v = τi − ui + v for v ∈ [ui].

In this case ui ≤ τi − 1 for every i ∈ Jm. Therefore, from the inequality (16),
t2 ≤ l(τ −1). Moreover, at2 �= 0 as B̄′

i(ji) with i ∈ J ′
m and

(
A0(j0)| · · · |Am(jm)

)

are all nonsingular. ��

Now, take a finite field Fqλ with q > maxi∈Jm
{ni, |τ ′(Jm)|} is a prime power

and λ > l(τ − 1). Take αi,v and βi,v in the matrix (19) from Fq\{0} and take
x ∈ Fqλ such that its minimal polynomial over Fq is of degree λ. Similar to
Theorem 7, we can obtain the following result.

534 Q. Chen et al.

Theorem 8. The matrix (19) is a representation of the matroid associated to
access structures (17) over Fqλ for some prime power q > maxi∈Jm

{ni, |τ ′(Jm)|}
and some λ > l(τ − 1). Moreover, such a representation can be obtained in time
O(q, λ).

Proposition 11. Suppose M is the matrix (19). Then LSSS(M) realizes the
access structures (17) over Fqλ defined as in Theorem8. Moreover, such a scheme
can be obtained in time O(q, λ).

Proof. Let u(Jm) ∈ Γ ∗, (17), be a minimal set, then |u(Jm)| = l and u(Jm) ≤
τ ′(Jm), or ui = τi for some i ∈ Jm. In the first case, Theorem 8 implies M0 is can
be spanned by all the columns in Mu(Jm). Moreover, Theorem 8 implies any τi

columns of Mi are linearly independent. From this with h({0, i}) = h({i}) = τi

for every i ∈ Jm, M0 is a linear combination of any τi columns in Mi. Hence, in
the second case M0 can be spanned by all the columns in Mu(Jm) too.

Assume that u(Jm) /∈ Γ ∗, (17). Then u(Jm) ≤ τ ′(Jm) and |u(Jm)| ≤ l − 1.
Without loss of generality, we may assume that |u(Jm)| = l−1, since if |u(Jm)| <
l − 1, we may find a vector u′(Jm) ≥ u(Jm) such that u′(Jm) ≤ τ ′(Jm) and
|u′(Jm)| = l−1. As l ≤ |τ ′(Jm)|+1, the above-described procedure is possible. In
this case if u0 = 1, then u(J ′

m) ∈ B2. Theorem 8 implies Mu(J ′
m) is nonsingular,

and the claim follows. ��

Remark 2. From the dual relationship of the access structures (17) and the
LCASs (4), we can translate the scheme in Proposition 11 into an ideal linear
scheme for the LCASs (4) using the explicit transformation of [20]. Specially, the
efficient construction of ideal linear schemes realizing LCASs (4) can be obtained
over Fqλ in time O(q, λ) for some prime power q > maxi∈Jm

{ni,
∑m

i=1(ni − ti)}
and some λ > (n − k + 1)t, where t = maxi∈Jm

{ni − ti}.

Acknowledgements. The authors would like to thank the reviewers for their helpful
comments and suggestions. This research was supported in part by the Foundation of
National Natural Science of China (No. 61772147, 61702124), Guangdong Province
Natural Science Foundation of major basic research and Cultivation project (No.
2015A030308016), Project of Ordinary University Innovation Team Construction of
Guangdong Province (No. 2015KCXTD014), Collaborative Innovation Major Projects
of Bureau of Education of Guangzhou City (No. 1201610005) and National Cryptog-
raphy Development Fund (No. MMJJ20170117).

References

1. Ball, S., Padró, C., Weiner, Z., Xing, C.: On the representability of the biuniform
matroid. SIAM J. Discrete Math. 27(3), 1482–1491 (2013)

2. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al. (eds.) IWCC
2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20901-7 2

3. Beimel, A., Chor, B.: Universally ideal secret sharing schemes. IEEE Trans. Inf.
Theory 40(3), 786–794 (1994)

https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-642-20901-7_2

Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 535

4. Beimel, A., Tassa, T., Weinreb, E.: Characterizing ideal weighted threshold secret
sharing. SIAM J. Discrete Math. 22(1), 360–397 (2008)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In: Proceedings of the 20th ACM
Symposium on the Theory of Computing, pp. 1–10 (1988)

6. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In:
Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New
York (1990). https://doi.org/10.1007/0-387-34799-2 3

7. Beutelspacher, A., Wettl, F.: On 2-level secret sharing. Des. Codes Cryptogr. 3(2),
127–134 (1993)

8. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National
Computer Conference 1979, AFIPS Proceedings, vol. 48, pp. 313–317 (1979)

9. Brickell, E.F.: Some ideal secret sharing schemes. J. Combin. Maths. Combin.
Comp. 9, 105–113 (1989)

10. Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing
schemes. J. Cryptol. 4, 123–134 (1991)

11. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp.
11–19 (1988)

12. Chor, B., Kushilevitz, E.: Secret sharing over infinite domains. J. Cryptol. 6(2),
87–96 (1993)

13. Collins, M.J.: A note on ideal tripartite access structures. Cryptology ePrint
Archive, Report 2002/193. http://eprint.iacr.org/2002/193

14. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

15. Cramer, R., et al.: On codes, matroids and secure multi-party computation from
linear secret sharing schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 327–343. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 20

16. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

17. Farràs, O., Mart́ı-Farré, J., Padró, C.: Ideal multipartite secret sharing schemes.
J. Cryptol. 25(3), 434–463 (2012)

18. Farràs, O., Padró, C.: Ideal hierarchical secret sharing schemes. IEEE Trans. Inf.
Theory 58(5), 3273–3286 (2012)

19. Farràs, O., Padró, C., Xing, C., Yang, A.: Natural generalizations of threshold
secret sharing. IEEE Trans. Inf. Theory 60(3), 1652–1664 (2014)

20. Fehr, S.: Efficient construction of the dual span program. Manuscript, May (1999)
21. Giulietti, M., Vincenti, R.: Three-level secret sharing schemes from the twisted

cubic. Discrete Math. 310(22), 3236–3240 (2010)
22. Herranz, J., Sáez, G.: New results on multipartite access structures. IEE Proc. Inf.

Secur. 153(4), 153–162 (2006)
23. Herzog, J., Hibi, T.: Discrete polymatroids. J. Algebraic Combinat. 16(3), 239–268

(2002)
24. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access

structure. In: Proceedings of the IEEE Global Telecommunication Conference,
Globecom 1987, pp. 99–102 (1987)

https://doi.org/10.1007/0-387-34799-2_3
http://eprint.iacr.org/2002/193
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/11535218_20
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28

536 Q. Chen et al.

25. Kothari, S.C.: Generalized linear threshold scheme. In: Blakley, G.R., Chaum, D.
(eds.) CRYPTO 1984. LNCS, vol. 196, pp. 231–241. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-39568-7 19

26. Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th
Joint Swedish-Russian Workshop on Information Theory, pp. 276–279 (1993)

27. Massey, J.L.: Some applications of coding theory in cryptography. Codes and
Ciphers: Cryptography and Coding IV, pp. 33–47 (1995)

28. Oxley, J.G.: Matroid Theory. Oxford Science Publications. The Clarendon Press,
Oxford University Press, New York (1992)

29. Padró, C., Sáez, G.: Secret sharing schemes with bipartite access structure. IEEE
Trans. Inf. Theory 46(7), 2596–2604 (2000)

30. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer,
Berlin (2003)

31. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
32. Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized

oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha,
S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77444-0 31

33. Shoup, V.: New algorithm for finding irreducible polynomials over finite fields.
Math. Comput. 54, 435–447 (1990)

34. Simmons, G.J.: How to (really) share a secret. In: Goldwasser, S. (ed.) CRYPTO
1988. LNCS, vol. 403, pp. 390–448. Springer, New York (1990). https://doi.org/
10.1007/0-387-34799-2 30

35. Tassa, T.: Hierarchical threshold secret sharing. J. Cryptol. 20(2), 237–264 (2007)
36. Tassa, T.: Generalized oblivious transfer by secret sharing. Des. Codes Cryptol.

58(1), 11–21 (2011)
37. Tassa, T., Dyn, N.: Multipartite secret sharing by bivariate interpolation. J. Cryp-

tol. 22(2), 227–258 (2009)
38. Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)

https://doi.org/10.1007/3-540-39568-7_19
https://doi.org/10.1007/978-3-540-77444-0_31
https://doi.org/10.1007/0-387-34799-2_30
https://doi.org/10.1007/0-387-34799-2_30

Perfectly Secure Oblivious RAM with
Sublinear Bandwidth Overhead

Michael Raskin1(B) and Mark Simkin2

1 Technical University of Munich, Munich, Germany
raskin@mccme.ru

2 Aarhus University, Aarhus, Denmark
simkin@cs.au.dk

Abstract. ObliviousRAM(ORAM)has established itself as a fundamen-
tal cryptographic building block. Understanding which bandwidth over-
heads are possible under which assumptions has been the topic of a vast
amount of previousworks. In thiswork,we focus onperfectly secureORAM
and we present the first construction with sublinear bandwidth overhead
in the worst-case. All prior constructions with perfect security require lin-
ear communication overhead in the worst-case and only achieve sublin-
ear bandwidth overheads in the amortized sense. We present a fundamen-
tally new approach for constructing ORAM and our results significantly
advance our understanding of what is possible with perfect security.

Our main construction, Lookahead ORAM, is perfectly secure, has a

worst-case bandwidth overhead of O
(√

N
)
, and a total storage cost of

O(N) on the server-side, where N is the maximum number of stored data
elements. In terms of concrete server-side storage costs, our construction
has the smallest storage overhead among all perfectly and statistically
secure ORAMs and is only a factor 3 worse than the most storage efficient
computationally secure ORAM. Assuming a client-side position map, our
construction is the first, among all ORAMs with worst-case sublinear over-
head, that allows for a O (1) online bandwidth overhead without server-
side computation. Along the way, we construct a conceptually extremely
simple statistically secure ORAM with a worst-case bandwidth overhead

of O
(√

N logN
log logN

)
, which may be of independent interest.

1 Introduction

More and more sensitive data is stored online. A basic attempt to keep data
private while storing it online on an untrusted server is to simply encrypt
each data entry. Unfortunately, this is not always sufficient. For instance, Islam
et al. [IKK12] showed that by observing the access patterns induced by encrypted
search queries over an encrypted database, an honest-but-curious server storing
the database, could learn significant amounts of information about the queries’
contents. For example, it might be undesirable to let the server know whether
the same block was accessed twice, or two different blocks have been accessed.
A more viable approach is to not only encrypt the data, but also hide the access
patterns. Oblivious RAM (ORAM) is a cryptographic primitive that allows a
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 537–563, 2019.
https://doi.org/10.1007/978-3-030-34621-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_19

538 M. Raskin and M. Simkin

client to do exactly this, at the cost of some bandwidth and storage overhead. It
enables a client to outsource his data to an untrusted server inside of an ORAM
data structure, and then read and write to his dataset without revealing the
position that was accessed or the operation that was performed. Goldreich and
Ostrovsky [Gol87,GO96] first introduced the notion of ORAM, presented the
first constructions thereof, and proved the first lower bound of Ω(log n) on the
bandwidth overhead for a certain type of constructions, where n the maximum
number of data elements stored in the data structure. Boyle and Naor [BN16]
revisit this lower bound proof and highlight that it only holds for statistically
secure ORAMS that behave in a “balls-and-bins” fashion. The same lower bound
without these restriction was recently proven by Larsen and Nielsen [LN18].

Understanding which upper bounds can be achieved in which setting has been
the topic of numerous works [OS97,GMOT11,SCSL11,DMN11,SSS12,SvS+13,
CNS18,PPRY18,AKL+18]. Most commonly, these works measure bandwidth
overhead in one of two ways. Either they consider the worst-case overhead,
meaning the largest overhead any one operation on the ORAM data structure
can incur, or they consider the amortized overhead, meaning the average over-
head per operation in a longer sequence of operations. The best known upper
bound for worst-case bandwidth overhead is due to Stefanov et al. [SvS+13],
who present a statistically secure construction with O(

log2 N
)

overhead1. The
best known upper bound for amortized bandwidth overhead is due to Asharov
et al. [AKL+18], who present a computationally secure construction with band-
width overhead of O(log N), which matches the lower of Larsen and Nielsen. The
first perfectly secure ORAM construction is due to Damg̊ard et al. [DMN11] and
has an amortized bandwidth overhead of O(

log3 N
)

and a multiplicative storage
overhead of O(log N). This was recently improved upon by Chan et al. [CNS18],
who present a perfectly secure construction with the same amortized bandwidth
overhead and a storage overhead of O (1). Given the conceptual complexity of
both these constructions it is not clear whether the de-amortization tricks of
Goodrich et al. [GMOT11] can be applied. In the multi-server setting, where the
ORAM data structure is distributed among several non-colluding servers, Chan
et al. [CKN+18] present a perfectly secure construction with worst-case band-
width overhead of O(

log2 N
)
. Since all existing perfectly secure single-server

constructions require linear worst-case bandwidth overhead, we pose the natural
question:

Can we construct a perfectly secure single-server ORAM with sublinear
worst-case bandwidth overhead?

We believe this is an important theoretical question. It is well known that
randomization and computational assumptions are powerful tools in algorithm
and protocol design. It is a common theme in research to investigate the power
of these tools for specific problems by understanding the upper bounds that
we can achieve with and without them. In this work we make a significant
1 For a larger data block size of O(

log2 N
)

they even achieve an overhead of O(logN)
data blocks.

Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead 539

step towards understanding what ORAM bandwidth overhead can be achieved
in the worst-case with perfect security and without relying on randomization2

or computational assumptions. See [CNS18] for a further discussion about the
importance of perfectly secure ORAM.

1.1 Our Contribution

We present the first construction of perfectly secure Oblivious RAM with sublin-
ear worst-case bandwidth overhead and, furthermore, we also make the following
contributions:

Novel Approach to Constructing ORAM. We present a fundamentally new
approach for constructing ORAM. Somewhat surprisingly, and despite the large
amount of research interest that ORAM has received, all existing constructions
are based on a handful of conceptually different approaches. We believe it is of
theoretical and practical interest to explore new ways to construct this primitive.
In this work, we present two new constructions.

Our first construction is conceptually extremely simple. It is statistically
secure, meaning that even a computationally unbounded adversary cannot break
the obliviousness guarantees and all operations on the data structure succeed
with an overwhelming probability. It has a worst-case bandwidth overhead of
O

(√
N c+log t+log N

log (c+log t+log N)

)
, where N is the maximum number of data blocks to

be stored, t is an upper bound on the number of accesses, and c is the correct-
ness parameter that provides an upper bound of 2−c on the failure probabil-
ity. To the best of our knowledge, it is one of the conceptually simplest known
ORAM constructions to date. The underlying logic is easy to implement and the
proof of security is straightforward. Our main construction, called Lookahead
ORAM, is loosely based on our first construction. It has a worst-case bandwidth
overhead of O

(√
N

)
and is perfectly secure, in the sense that every opera-

tion on the ORAM data structure succeeds with probability 1 and obliviousness
is guaranteed against an unbounded adversary. The hidden constants behind
the big-O notation are small and our construction is significantly faster in the
worst-case than the fastest perfectly secure single-server ORAM construction of
Chan et al. [CNS18] in the amortized case for any practical parameter range.
For instance, for N = 220 our construction has a worst-case bandwidth over-
head of less than 7 000 data blocks, whereas their construction has a amortized
bandwidth overhead of around 160 000 data blocks3.

2 Our main construction is using randomness exclusively for the sake of security, but
not for efficiency. We believe this is unavoidable.

3 Our estimate of Chan et al.’s construction is computed by instantiating it with
Batcher’s Bitonic sort [Bat68] and a hidden constant of 1. For our construction we
took the concrete parameters one obtains assuming a server-side position map.

540 M. Raskin and M. Simkin

ORAM Client storage Server Bandwidth Online Section
persistent temporary storage overhead overhead

Matrix O(N) O(1) ≈ 18N + N logN
2

O
(√

N logN
)

– 3

Matrix O(1) O(1) ≈ 142N + 2N logN O
(√

N logN
)

– 5

Lookahead O(N) O
(√

N
)

N + 2
√
N O

(√
N

)
O(1) 4

Lookahead O(1) O
(√

N
)

6N + 12
√
N O

(√
N

)
– 5

Lookahead O(1) O(1) 6N + 12
√
N O

(√
N log

√
N

)
– 5.1

Fig. 1. Overview of the different parameter settings for Matrix and Lookahead ORAM.
For Matrix ORAM we crudely estimate the parameters for c = 20 and t = 15. All
overheads are stated in data blocks and assume block size Θ(logN). Asymptotically line
3 with a client-side storage of O(N) makes little sense. From a practical perspective,
however, the O (1) online overhead is a powerful feature and the concrete client-side
storage is significantly smaller than the concrete amount of data stored on the server-
side. The asymptotical behaviour of the position map size also improves in case of
faster growth of block size.

Small Concrete Storage Overhead. Assuming a client-side position map,
Lookahead ORAM has the smallest concrete storage overhead among all exist-
ing ORAM constructions with sublinear worst-case bandwidth overhead. Our
construction only incurs an additive server-side storage overhead of

√
2N data

blocks. A small storage overhead is particularly beneficial in outsourced stor-
age settings where data owners have to pay their storage provider for the stor-
age they consume. At the cost of a slightly increased total server-side storage,
namely 6N +12

√
N , we can reduce the client-side storage of Lookahead ORAM

to O(1). In this case, our construction has the smallest storage overhead among
all statistically and perfectly secure ORAMs and is only a multiplicative fac-
tor of around 3 larger than the most storage efficient computationally secure
ORAMs [GMOT11] with sublinear worst-case bandwidth overhead. For a more
detailed discussion of the concrete server-side storage costs of Lookahead ORAM
see Sects. 4.5 and 5. Lookahead ORAM, by default, requires the client to have a
temporary client-side storage of O

(√
N

)
during each access. We show how to

reduce the temporary client-side storage to O (1) at the cost of increasing the
worst-case bandwidth overhead to O

(√
N log

√
N

)
in Sect. 5.1. We illustrate

the different parameter options and their efficiency in Fig. 1.

Constant Online Bandwidth Overhead. One approach to circumvent the
Ω (log N) lower bound on the bandwidth overhead was introduced by Boneh
et al. [BMP11] and then improved upon in [DSS14,RFK+15]. Their main idea
was to split the total bandwidth overhead into two parts. The first part, the
so called online overhead, is the amount of data that needs to be transmitted
between the client and the server to retrieve a desired data element obliviously.
The second part, the offline overhead, is the amount of data that needs to be
transmitted between the two parties to ensure obliviousness of future accesses.

Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead 541

One can think of the offline overhead as background work that, usually, moves
around encrypted data elements in the ORAM data structure to ensure the
desired obliviousness guarantees. Splitting the total bandwidth overhead this
way and then minimizing the online overhead has practical advantages. It allows
the client to efficiently retrieve data from the server without much latency during
bursts of requests and then do the background work during quieter phases.

In [BMP11], Boneh et al. presented a computationally secure construction,
for a primitive, which is strongly related to ORAM and has O(log N) online and
O

(√
N log N

)
4 worst-case overhead. In [DSS14,RFK+15] this idea of splitting

the total overhead has been further refined, and computationally secure con-
structions that achieve an online bandwidth overhead of O (1) are presented.
However, these constructions require some server-side computation during the
online phase, which renders these solutions not applicable for “raw” storage
providers that do not support these ORAM constructions explicitly. That is, our
construction works in combination with arbitrary storage providers like Dropbox
or Google Drive, whereas the constructions from [DSS14,RFK+15] only work
with storage providers that explicitly implement their given scheme.

If the client stores the position map and a small client-side storage that can
hold up to

√
2N data blocks locally, then Lookahead ORAM allows the client

to obliviously retrieve arbitrary many elements from the ORAM data structure
with no bandwidth overhead in the online phase and no server-side computation
in the online or offline phase. That is, in the online phase, the client can directly
download the desired elements from the server. Our construction is the first to
provide such a feature among all computationally, statistically, and perfectly
secure ORAMs with sublinear worst-case bandwidth overhead.

To provide a better feeling for how expensive it is to store the stash and the
position map locally, consider a 1 GB database with a block size of 1 KB. To be
able to make use of our online overhead feature, the client would need to store
a roughly 2 MB stash and a 8 MB position map locally. As mentioned before,
if the client chooses to not use the minimizing online overhead feature, it can
reduce its persistent storage to O(1).

Attack on [GMSS16]. We identify a flaw in the ORAM construction
of [GMSS16] and outline an attack that breaks the claimed obliviousness guar-
antees in Sect. A. We have contacted the authors and they have acknowledged
our attack.

1.2 Other Related Work

A vast amount of works have contributed to our current understanding of
ORAM. In this section we merely provide a high-level overview of the works
that are directly related to our work.

4 This worst-case complexity is slightly different from the original paper. The paper
has a superlinear worst-case overhead due to an expensive reshuffling phase, but
when splitting shuffling over

√
N accesses, one can achieve the stated complexity.

542 M. Raskin and M. Simkin

In order to achieve practical efficiency and overcome the Ω (log N) lower
bound, several works have looked at different refinements of the classical ORAM
notion in the client server model. Path-PIR [MBC14] uses server-side compu-
tations to achieve a practically very small, yet still poly-logarithmic bandwidth
overhead. In [AKST14], Apon et al. formally define the notion of Verifiable Obliv-
ious Storage, which generalizes the notion of ORAM by allowing the server to
perform computations, and show that the ORAM lower bound does not apply to
their setting by providing a scheme with constant overhead per access based on
Fully Homomorphic Encryption. In [DDF+16] a scheme, called Onion ORAM,
is presented that breaks the lower bound, but only relies on additively homo-
morphic encryption. In this work we will only focus on the classical notion of
ORAM that does not allow server-side computation.

Demertzis et al. [DPP18] present a computationally secure ORAM construc-
tion with worst-case bandwidth overhead O(

N1/3
)

and perfect correctness. Sev-
eral recent works cite Demertzis et al. and claim that their construction is perfectly
secure. This is not correct and this claim is not made by the authors of that paper
either. Their construction is a modification of the square-root ORAM construction
and requires the client to store a random permutation, which represents the posi-
tion map. This position map can only be stored succinctly by using a pseudoran-
dom function. Therefore, their construction is either only computationally secure,
or requires linear client-side storage, or requires linear bandwidth overhead.

Lastly, a work by Gordon et al. [GMSS16] presents an ORAM construction
that may seem superficially similar to ours. However, our work significantly
differs from theirs in terms of performance guarantees we achieve, underlying
ideas we present, and security we obtain. Their construction, called Matrix-
ORAM, arranges the data elements in a fixed number of rows. The size of each
row linearly depends on the size of the total database and each row has its
own stash. Accesses to their data structure are performed in a conceptually and
concretely different manner to ours. The authors claim a logarithmic bandwidth
overhead. In contrast, our main construction has a rectangular shape5, and has
a bandwidth overhead of O

(√
N

)
.

We discovered a flaw in their construction and present a concrete attack on
their scheme. This flaw is discussed in detail in Sect. A.

2 Preliminaries

On a high level, the ORAM security definition assumes a honest-but-curious
server and says that for any two data access sequences, the corresponding access
sequences to the ORAM data structure should be indistinguishable. The security
definition is taken from [SSS12].

Definition 1 (Security Definition). Let

−→y := ((op1, a1, data1) , . . . , (opM , aM , dataM))
5 One may even say they look matrix shaped.

Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead 543

be a data request sequence of length M , where each op� is either a read at posi-
tion a� or a write of data� at position a�. Let oram(−→y) denote the (possibly
randomized) sequence of accesses to the remote storage given the sequence of
data requests −→y . An ORAM construction is said to be secure if for any two data
request sequences −→y and −→z of the same length, their access patterns oram(−→y)
and oram(−→z) are indistinguishable and the construction is correct in the sense
that it returns on input −→y data that is consistent with −→y with probability at least
1−2−c. We call c the correctness parameter. We call an ORAM perfectly, respec-
tively statistically, secure if the two distributions above are perfectly, respectively
statistically indistinguishable.

Note that in ORAM schemes, the server holding the encoded data does not
perform any computations.

Position Map. All known ORAM schemes need to maintain a position map of
size O(N) that keeps track of the ordering of elements inside the ORAM data
structure on the server. For the sake of simplicity we will assume that the client
stores the full position map locally. From a practical point of view, this seems
to be a reasonable assumption in many client-server settings. For example, the
position map of a 1 GB database containing 1 KB blocks is only around 8 MB
large. From a theoretical point of view, to reduce the client’s persistent storage to
O(1), both of our constructions can be combined with the well-known approach
of recursively storing the position map in a sequence of smaller ORAMs, which
was first introduced in [SCSL11]. Recursively storing the position map on the
server increases the number of round-trips per access to O (log N), but it does
not change the asymptotic bandwidth overheads of our constructions. We explain
how to combine our main construction with the recursive approach in detail in
Sect. 5.

Block Size. If we want to use the recursive ORAM approach mentioned above
to store the position map on the server-side, then the data blocks need to be
Ω (log N) large. In the setting, where the client stores the position map locally,
we do not make any assumptions about the data block size. However, for the
construction to be useful, the data blocks on the server should in total be larger
than the position map that the client stores locally.

Integrity. The ORAM security definition assumes the server to be honest-but-
curious. Similar to previous works [SvS+13], our construction can, at the cost of
giving up perfect for computational security, be extended to prevent tampering
of an actively malicious server by using a Merkle Tree on top of our ORAM data
structures.

3 A Simple Matrix Bucket ORAM

In this section, we will present a very simple oblivious RAM construction with
reasonable efficiency and a simple proof of security. To the best of our knowledge

544 M. Raskin and M. Simkin

this is one of the, arguably, simplest ORAM constructions known to date. Apart
from being interesting on its own, it will also serve a stepping stone towards our
main construction by introducing some of the ideas behind our main approach.

Initially we are given an array A of length N of data elements. To initialize
our scheme, we create a empty

√
N ×√

N matrix C, in which each matrix cell is
a bucket of size w. We randomly (and independently) assign each element from
A to a bucket in C. Once all elements from A are distributed among buckets in
C, we encrypt each bucket separately, and store the matrix on the server. For
the sake of simplicity, we assume that the client stores a position map σ that
maps indices of elements from A to columns of C locally.

Fig. 2. Pseudocode of simple matrix ORAM construction

To obliviously access some element with index � in A, we need to access
column σ(�) in C. In addition, we need to pick a uniformly random bucket
(i, j) in the matrix and obtain row i. We find the element with index � in the
retrieved column and perform our desired operation (read or write). We then
remove element � from its current bucket, put it into bucket (i, j), re-encrypt
all retrieved buckets, and write back the retrieved row and column. Lastly, we
update the position map to point to the new column that stores �, i.e., set
σ(�) = j. The pseudocode implementing this construction is given in Fig. 2

3.1 Security

We prove the following theorem

Theorem 1. Let E = (gen, encrypt, decrypt) be an IND-CPA secure encryption
scheme. Then the construction in Fig. 2 is a statistically secure ORAM scheme
with O

(√
N c+log t+log N

log (c+log t+log N)

)
bandwidth overhead and a total storage cost of

O(N log N) data blocks, where N is the number of data elements, c the correct-
ness parameter, and t is the upper bound on the number of accesses.

Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead 545

Proof. The key idea of why the proposed scheme is oblivious stems from the basic
observation that every column intersects with every row. Intuitively, this means
that if we obliviously write an element into some uniformly random position in
a row, then, from an adversarial point of view, every column is equally likely a
potential candidate for reading that element in a future access. In our scheme,
whenever we read an element through a column access, we move it to a new
uniformly random bucket and, in particular, a new uniformly random column,
through a row access. Importantly, the movement of each element is completely
independent of the access history and the other elements residing in the matrix.
From these observations it is straightforward to see that the proposed scheme is
oblivious.

What remains to show is the relation between the bucket size and the cor-
rectness parameter, i.e. we want to pick our buckets sufficiently large such that
a bucket overflows with negligible (in the correctness parameter) probability.
Towards this goal, we make an observation that simplifies our analysis. Let
ExpN,t

move be the experiment of first throwing N balls into N buckets once and
then picking up a random ball from a random bucket and moving it to a new
random bucket t times. This experiment expresses the actual movement of data
during t many accesses in our oblivious ram construction. Let ExpN

throw be the
experiment of throwing N balls into N initially empty buckets of capacity w.
Let Load>w

i denote the event that bucket with index i at some point in time has
more than w many elements in it and Load>w the event that this happens to
any of the buckets. We will analyze the probability of the event of one bucket
overflowing in ExpN

throw and use the following lemma to put ExpN
throw and ExpN,t

move

into relation.

Lemma 1. Let t > 0, then

Pr[Load>w
i |ExpN,t

move] ≤ t · Pr[Load>w
i |ExpN

throw]

Proof. Given N balls and N bins, there are NN different possibilities to dis-
tribute the balls among the bins. Let us call each way to distribute the balls a
constellation. Let X be one arbitrary but fixed constellation among them and,
since all of them are equally probable, we have Pr[X|ExpN

throw] = 1
NN . Let us

now consider constellations, which are one ball move away from X. There are
exactly N2−N such constellations, because we can select any of the N balls, and
pick any of N − 1 buckets distinct from the current bucket of the selected ball.
Selecting a random ball uniformly and moving it to a random bucket yields the
original constellation with probability 1

N2 , and each of the neighbouring constel-
lations with probability 1

N2 . As all ball moves are reversible, each constellation
can be obtained from N2 − N other constellations. The probability of obtainin-
ing a constellation after a uniform selection of constellation and a single random
ball move is therefore equal to N2−N

N2
1

NN + 1
N

1
NN = 1

NN . The lemma follows by
induction over t and then applying the union bound.

Using this lemma it is sufficient to upper bound the probability of a bucket
overflowing in the experiment ExpN

throw and then apply the union bound over all
buckets. Let us first look at the probability of some single bucket i overflowing

546 M. Raskin and M. Simkin

by one element after ExpN
throw, i.e. the probability of a bucket containing (exactly)

z = w + 1 balls after throwing N balls into N buckets at random once. In the
analysis we assume N to be sufficiently large, i.e. N should be large enough
for our bucket size w to be at least 8, so that our inequalities work out. In the
following calculation we will use two inequalities. First, ∀x ≥ 0 it holds that(
1 − 1

x

)x ≤ e−1 and, secondly, ∀0 ≤ k ≤ n it holds that
(

n
k

)k ≤ (
n
k

) ≤ (
en
k

)k.

Pr[Loadz
i |ExpN

throw] =
(

N

z

)(
1
N

)z (
1 − 1

N

)N−z

≤
(

eN

z

)z

N−z

((
1 − 1

N

)N
)1− z

N

≤
(

eN

z

)z

N−ze
z
N −1

= ezz−ze
z
N e−1

= 2z(log e−log z)+log e(z
N −1)

≤ 2z(log e−log z)

≤ 2− 1
2 z log z

We can provide an upper bound on the event of a single bucket having more
than w balls after throwing N balls into N buckets using geometric series as
follows

Pr[Load>w
i |ExpN

throw] ≤
N∑

z=w+1

2− 1
2 z log z

=
N−w∑

z=1

2− 1
2 (w+z) log (w+z)

=
N−w∑

z=1

2− 1
2 (w log (w+z)+z log (w+z))

≤
N−w∑

z=1

2− 1
2 (w log w+z log z)

= 2− 1
2w log w

N−w∑

z=1

2− 1
2 z log z

≤ 2− 1
2w log w+1

Applying the union bound over all buckets and using Lemma 1 we obtain

Pr[Load>w|ExpN,t
move] ≤ 2− 1

2w log w+1tN

Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead 547

We want to bound this probability of a bad event happening by some cor-
rectness parameter c, i.e. we want this probability to be smaller than 2−c.

2− 1
2w log w+1tN ≤ 2−c

⇔ −1
2
w log w + 1 + log t + log N ≤ −c

⇔ w log w ≥ 2(c + log t + log N + 1)

Hence, the bucket size w ∈ O
(

c+log t+log N
log (c+log t+log N)

)
and therefore the total

bandwidth cost in our construction is O
(√

N c+log t+log N
log (c+log t+log N)

)
.

4 Main Construction

In this section we are going to present our main Lookahead ORAM construction.
The first difference between our Matrix Bucket ORAM and Lookahead ORAM
is that we replace all buckets by cells that can only hold single elements. As a
first try to construct a more efficient ORAM we could do the following: Initially,
randomly shuffle the data, distribute the data elements among matrix cells,
and encrypt each cell separately. To access an element, we retrieve the column
corresponding to that element and a row corresponding to a uniformly random
cell. After accessing the desired element, we swap the accessed element with the
uniformly random cell, re-encrypt both row and column, and write them back
into the matrix.

On an intuitive level, one could hope for this to be a secure ORAM con-
struction, since every element will be swapped into a new uniformly random
column at every access. Unfortunately this is not the case. The problem is that
the distribution of columns into which elements are swapped is not uniformly
random when conditioned on the observed row accesses. In particular, the dif-
ference with the simple matrix construction is that, here, the accessed element
will change the position of another element, i.e the swap partner. It turns out
that the server can infer information about the positions of accessed elements
whenever we access the same row twice.

Figure 3 illustrates why the straightforward approach of directly swapping
the accessed element with an element from a uniformly random cell fails. In this
figure, the root node depicts a 2 × 2 matrix holding four encrypted entries. Ini-
tially the server has no knowledge about the arrangement of data elements in the
matrix. Let us assume we access two different data elements. With probability
non-negligible in the security parameter the following events will occur. On the
first access the server observes the second column and second row being accessed.
Edges from the root to the first layer show the possible swaps that could have
happened, given the observed row and column accesses. a ↔ b means element
a was accessed and swapped with element b. On the second access the server

548 M. Raskin and M. Simkin

observes the first column and, again, the second row being accessed. The leaf
nodes of this tree represent all possible arrangements of elements in the matrix,
given the observed access pattern. Dashed boxes indicate the case, where the
first accessed element has changed its column. Solid boxes indicate that the first
accessed element is in its original column. Counting the leaf nodes it can be seen
that the first accessed element will more likely than not have switched columns
after the two accesses. Hence, from the server’s point of view, the elements are
not distributed uniformly at random and the approach does not provide the
desired obliviousness guarantees.

c1 c2
c3 c4

c1 c3
c2 c4

c2 c3
c1 c4

c4 c3
c2 c1

c1 c4
c3 c2

c3 c4
c1 c2

c2 c4
c3 c1

c1 c4
c3 c2

c1 c4
c2 c3

c1 c2
c3 c4

c3 c2
c1 c4

c4 c2
c3 c1

c1 c2
c3 c4

c1 c2
c4 c3

c1 c2
c4 c3

c4 c2
c1 c3

c3 c2
c4 c1

2 ↔ 3

1 ↔ 2 1 ↔ 4
2 ↔ 4

1 ↔ 3 1 ↔ 2 3 ↔ 3 3 ↔ 2

4 ↔ 4

1 ↔ 3 1 ↔ 4 3 ↔ 3 3 ↔ 4

4 ↔ 3

1 ↔ 4 1 ↔ 3

Fig. 3. Illustration of why the naive approach of swapping two random cells via a
column and a row access fails. The root node depicts a encrypted 2 × 2 matrix. The
leaf nodes depict all possible arrangements of data elements that are possible after
the observed access pattern. Dashed boxes indicate the case, where the first accessed
element has changed its column. Solid boxes indicate that the first accessed element is
in its original column.

4.1 Intuition for Lookahead ORAM

The main issue with this first approach is that the row accesses reveal too much
information. Ideally, we would like to have a swap procedure that allows us to
directly access the desired element instead of the whole column and then swap
that accessed cell with a new cell without revealing the column or row of that
new cell. Observe, that to perform a swap, we have to perform two tasks. We
have to remove the accessed element from its cell and put it into the cell of its
swap partner. Symmetrically, we have to remove the swap partner from its cell
and put it into the cell of the accessed element.

Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead 549

To realize such a swap procedure, we introduce two auxiliary stashes stashacc

and stashswap, where stashacc will be storing accessed elements and stash
stashswap will store pre-selected swap partners. From a high-level perspective,
these stashes will help us to pretend that we immediately swap accessed elements
to an unknown new location in the matrix. From the server’s point of view, the
client will always read both full stashes, and a uniformly random cell in the
matrix, since the client behaves as if accessed elements are immediately magi-
cally swapped to their new locations in the matrix. In reality, accessed elements
will go to stashacc from where they will be eventually evicted into the cell of
their respective swap partner obliviously. Swap partners will be readily waiting
in stashswap and upon accessing some element in the matrix, the swap partner
will be swapped from stashswap into the accessed cell directly. As an invariant
we have that each element is either at its expected location in the matrix or in
one of the stashes.

Two issues that need to be addressed are, how do we get swap partners into
stashswap before they are used and how to get accessed elements from stashacc

into their new cells in the matrix. To solve both these issues, we introduce
a (stateful) round-robin column access that will iterate through the columns.
Using the round-robin column access, we perform two “maintenance” tasks.

To empty stashacc, we evict all elements from it, whose destination is some-
where in the column of the current round-robin column access. Note that for a
matrix of size

√
N × √

N , the round-robin access will have accessed every cell
of the matrix in

√
N steps. This means that no element in stashacc will wait

for more than
√

N steps to be evicted. Since, we add at most one element to
the stash per access, this means that stashacc will never contain more than

√
N

elements.
The second task is to ensure that, whenever we use a swap partner from

stashswap, the content of the swap partner’s cell must already be available in
that stash. Observe, that the swap partner’s cell is a uniformly random cell in
the matrix, which does not depend on the access pattern and can be selected
upfront. Assume stashswap contains

√
N many preselected swap partners in a

queue. These swap partners are sufficient for the next
√

N accesses. Now upon
performing an access, one swap partner from the stash will be used, and we
pre-select a uniformly random cell that will be the swap partner once all other
swap partners from stashswap are used. At this point in time, the content of the
pre-selected swap partner is (likely) not in the stash. However, since we have√

N − 1 many more accesses before it will be used, we can be certain that the
round-robin column access will fetch it in time before it will be used. Since our
stashes accommodate accessed elements waiting to be evicted and swap partners
waiting to be used, the total stash size is 2

√
N .

One detail that we have swept under the rug so far, is the case, where the
element we want to access is not in the matrix, but somewhere in the stashes. To
get an intuitive feeling for the handling of these cases, it is helpful to keep in mind
that at every access, we are basically (virtually) swapping two cells in the matrix.
The stashes are just auxiliary data structures that make this process happen.

550 M. Raskin and M. Simkin

Fig. 4. Pseudocode of lookahead ORAM

Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead 551

Let (i, j) be the cell in the matrix that is expected to contain the element we are
accessing and let the next swap partner from stashswap be some data element v
originating from some cell (a, b). If the desired data element is not at position
(i, j) in the matrix, but rather in stashacc (waiting to be evicted to cell (i, j)),
then take the swap partner from stashswap and place its value v into the matrix
at position (i, j). From now on the element in stashacc that was expected to be
at (i, j) will be waiting to be evicted to (a, b). If the accessed element, expected
at location (i, j), is in stashswap, this means that (i, j) is pre-selected as a swap
partner for some future access. Therefore the contents of (i, j) are not supposed
to be in the matrix, but rather in the stashswap. In this case, we find (i, j) in
the stashswap, put the value of (i, j) into stashacc to be evicted into (a, b), and
replace the value of (i, j) in stashswap with v.

4.2 Formal Description

Given this intuition about how our construction work, we are now ready to
formally present our construction in Fig. 4. Let C be the matrix containing the
encrypted data entries and σ be the position map that maps array indices to
matrix positions in C. We implement stashswap as a queue and stashacc as an map
from positions to values. Both matrix C and the stashes are stored on the server-
side. Init(A) initializes the ORAM data structure, by permuting the elements
and storing them in an encrypted matrix C. Initially, both stashes are created
empty. stashswap, is filled up with random elements from the encrypted matrix.
To write value x or just read at position � in array A inside the ORAM data
structure, we use Access (�, x), which makes use of the ReadVirtual, WriteVirtual,
and Background subroutines. ReadVirtual (i, j) reads the stash and the matrix cell
C[i, j] to find the data element that is expected to be at position (i, j) inside
the matrix C. SwapVirtual(v, s,where) simulates a swap of accessed value v.val
at position v.pos with pre-selected swap partner s with value s.val from position
s.pos. Background() implements the round-robin column access, which takes care
of flushing elements out of stashacc and fetching elements into stashswap.

4.3 Security

Theorem 2. Let E = (gen, encrypt, decrypt) be an IND-CPA secure encryption
scheme. Then the construction in Fig. 4 is a perfectly secure ORAM scheme
with O

(√
N

)
bandwidth overhead and a total storage cost of N +O

(√
N

)
data

blocks, where N is the number of data elements.

Proof. Instead of directly arguing about the security of our proposed construc-
tion, we will rather argue about the security of an idealized version, which leaks
the same amount of information about the access pattern, but is easier to ana-
lyze. As previously explained, from a high-level perspective, our construction
directly accesses the desired element in the matrix and then swaps it with a ran-
dom cell. The swap is immediately applied to the position map and we always
directly access the cell in the matrix, which should contain a desired element

552 M. Raskin and M. Simkin

according to the position map. The stash and the round-robin column accesses
are there to enable us to (virtually) swap the accessed element into a new cell
without leaking anything about that new location.

Fig. 5. Idealized access procedures

Since both the stash and the round-robin column access are always executed
independently of the access pattern, they leak no information. Hence, instead
of analyzing our construction directly, we can now analyze a construction with
the idealized access procedure IdealizedAccess1 depicted in Fig. 5 on the left. The
initialization procedure corresponding to IdealizedAccess1 is a straightforward
adaption of our main construction and is not stated explicitly. In IdealizedAccess1,
we directly access the cell that contains our data element and, next, we retrieve
the full matrix to perform the swap operation locally. From an efficiency point
of view this is clearly a useless construction, but w.r.t. obliviousness both our
main construction and this idealized version thereof leak the same amount of
information about the access pattern. More formally, the success probability of
any distinguisher D, distinguishing two data access sequences, is the same in our
main construction and in the construction with IdealizedAccess1.

Lemma 2. Let oram be the main construction from Fig. 4 and oram∗
1 the con-

struction using the access procedure IdealizedAccess1. Then, for any distinguisher
D, for any two data request sequences −→y and −→z we have

|Pr[D(oram(−→y)] − Pr[D(oram(−→z))]|
= |Pr[D(oram∗

1(
−→y))] − Pr[D(oram∗

1(
−→z))]|

There are two components that are observable by the server in both our real
construction and the idealized access that can leak information about the access
pattern. The first component is the swap logic that moves accessed elements
to a new position. The second component is the direct accesses to the desired
elements, i.e. we need to show that conditioned on previously observed accesses,
each new access will fetch a uniformly random cell in the matrix.

Towards showing the first part, let vk for 1 ≤ k ≤ N be some arbitrary data
elements. Let ExpN,t

swap be the experiment of, initially, distributing the N data
elements vk in a matrix C with N cells uniformly at random and then for t steps
repeatedly swapping the contents of two uniformly random cells.

Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead 553

Lemma 3. Let C be a matrix of size
√

N × √
N and let vk ∈ V for 1 ≤ k ≤ N

be arbitrary values from some value space V. Then C, after running experiment
ExpN,t

swap, is a uniformly random permutation of the data elements vk.

Proof. Initially distributing the data elements vk uniformly at random in the
matrix C corresponds to a uniformly random permutation. For ExpN,1

swap, i.e. dis-
tributing the elements and then swapping two uniformly random cells once, the
statement holds, since we apply a random permutation of two elements to a
uniformly random permutation. The statement for t > 1 follows by induction
over t.

To conclude the security proof it remains to show that even conditioned
on the previously observed accesses the distribution of data elements in C is
uniformly random. Assume the server observes an access to position (i, j) in
the matrix to fetch some data element vk. The accessed element is going to
be swapped into every position in the matrix with equal probability. Since each
element is equally likely, with a probability of 1

N , to be selected as a swap partner,
every element is equally likely to end up in (i, j). From the accessed cells, no
other information about the access pattern is leaked. Hence, from the server’s
perspective all distributions of access patterns are equally likely, no matter what
the actual data access sequence is.

For the sake of clarity, let us look at the slightly modified access procedure
IdealizedAccess2 depicted in Fig. 5 on the right. In IdealizedAccess2 we do not just
swap two cells locally, but we fully reshuffle the whole matrix. Due to the full
reshuffle, each access is completely independent of the previously observed access
pattern. It is straightforward to see that IdealizedAccess2 is a secure ORAM con-
struction. Since in both IdealizedAccess1 and IdealizedAccess2 the access patterns
are distributed uniformly at random, IdealizedAccess2 leaks as much information
as IdealizedAccess1.

4.4 Online Overhead

For some practical applications it may be of interest to split the total bandwidth
overhead into an online and an offline overhead. The point of this is to minimize
the online bandwidth, which represents the amount of data that needs to be
transmitted, when a client requests an element, and then do some background
work, the offline overhead, to ensure the security of the ORAM, when no data
requests are actively pending. This way we can minimize the practical latency of
user requests despite the inherent lower bound on the overhead shown in [Gol87,
GO96].

Looking at our main construction, it is straightforward to split the total band-
width overhead into online and offline overhead. In the online phase, assuming
we download the stash once, we can directly access the desired elements in the
matrix on the server without any overhead. In the offline phase we need to do
the remaining work, i.e. perform the round-robin column access, fill up the stash
of pre-selected swap partners and flush out elements that need to go back into
the matrix.

554 M. Raskin and M. Simkin

While storing the stash locally can theoretically compromise data integrity
in case of a client device failure, the only part of the stash that cannot be
randomly reinitialized is the cache of recently accessed elements. If the server is
significantly more reliable than the client device, recently accessed elements can
be written to a separate server-side buffer of size

√
N in a round-robin manner.

Each element will be stored in this buffer for
√

N operations which is enough
for the background operations to write it to its long-term server-side storage
position.

It is also possible to allow multiple online accesses in a single burst. The
simplest way to do it increases local storage requirements by twice the size of
the maximum allowed burst length. Note that our implementation faithfully
simulates the oram∗

1 construction as long as the background work is performed
at least

√
N times between committing to a swap partner and its use, and

background work is also performed at least
√

N times between accessing the
element and evicting it from the recently accessed element stash. If there is
additional stash space of size b for the potential swap partners and the same
amount of space for the recently accessed elements, we only need to have at
least

√
N background work operations performed during every interval when

b +
√

N access operations are performed. Note that it is possible to perform
some part of the background work, handle an additional burst and then continue
the background work as long as enough background work is done to prevent
exhaustion of the swap partners or overflow of the recently accessed elements
stash.

The same analysis shows that there is a trade off between stash size and
bandwidth overhead: for example, if we have a stash twice as large as needed,
we can afford doing only half the background processing step after each access.

4.5 Trading Off Bandwidth and Storage Overhead

For our main construction, the server’s storage overhead comes from the two
auxiliary stashes that it needs to store in addition to the encrypted data elements.
For a matrix C, where the number of columns equals the number of rows, this
results in an additive storage overhead of 2

√
N . More generally, by considering

an arbitrary rectangle C with H rows and W columns, we can trade off the
concrete storage and bandwidth overhead costs of our construction. The number
of columns W affects the time it takes the round-robin column access to iterate
over the whole rectangle C and thus it also affects the stashes which have to
be of size W each. The number of rows H, affects the size of the column that
we need to download at each access. For example, by setting H = 2

√
N and

W = 1
2

√
N , we can, in comparison to a quadratically shaped matrix C, directly

reduce the additive storage overhead to
√

N and maintain a bandwidth overhead

of 3
√

N +1. By setting H =
√

2N and W =
√

N
2 , we get a bandwidth overhead

of 2
√

2
√

N + 1 and a storage overhead of
√

2N .

Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead 555

5 Constant Client-Side Storage

So far we have assumed that the full position map is stored explicitly on the
client side. Following the approach of [SCSL11], we show that our construction
can be modified to only require O(1) client-side storage at the cost of O(log N)
rounds of interaction per access between the client and the server. To store
the position map on the server side, we will create a sequence of ORAM data
structures that increase in size, which represent the position map. This means
that now the server stores a sequence of position map ORAMs and an ORAM
data structure that contains the actual data. To access an element at a certain
index, the client will use the position map ORAMs to determine, which index it
should query in the ORAM data structure that stores the actual data.

Server-side storage of the position map also requires specifying some details
of background processing of the stashes and the position map. We describe the
necessary changes.

Theorem 3. Consider an arbitrary ORAM construction with a client-side posi-
tion map used one time per access. Assume there exist such constants K and C
that for N entries with a block size of D � 4 log N , the ORAM construction has
a multiplicative bandwidth overhead of C

√
N and total storage of (N +K

√
N)D

bits.
Such an ORAM can be converted into an ORAM with a server-side position

map with a multiplicative bandwidth overhead of 2C
√

N + 4 and total storage
ND + 2KD

√
N + 2N log N bits.

Proof. The proof goes by induction over N . In the base case, for size N � 4,
we use a linear ORAM, which simply reads and writes all the blocks for each
access. This ORAM has a bandwidth overhead of 4 and no storage overhead.

For an arbitrary N , we use the induction hypothesis to replace an ORAM
with client-side position map with an ORAM that stores the position map on the
server-side. We encode 4 blocks addresses in the position map into one storage
block inside the ORAM data structure. Using a block size of 4 log N results in
an ORAM data structure that stores N

4 blocks, storing 4 addresses each. Now
we apply the induction hypothesis.

Since we want to store N
4 blocks with 4 log N bits per block, by induc-

tion hypothesis our position map ORAM has a total storage cost of N log N +

2K(4 log N)
√

N
4 + 2N

4 log N bits. Adding the storage costs of our main ORAM,
the total storage cost in bits will be

N log N + 2K(4 log N)

√
N

4
+ 2

N

4
log N + ND + KD

√
N

= ND + K(4 log N)
√

N + KD
√

N +
3
2
N log N

< ND + 2KD
√

N + 2N log N

556 M. Raskin and M. Simkin

In our construction, every access to the main ORAM requires one access to
the position map. Note that we do not need any additional position map accesses
for the background work that moves data out of the stash. The position map

access adds its bandwidth cost of 2C
√

N
4 + 4 to the main ORAM bandwidth

cost of C
√

N . The total overhead is C
√

N + 2C
√

N
4 + 4 = 2C

√
N + 4.

This completes the proof of the inductive step.

By setting the parameters as described in Sect. 4.5, we get

Corollary 1. Lookahead ORAM with a client-side position map, block size D =
4 log N , multiplicative bandwidth overhead O

(√
N

)
, and total storage of (N +√

2N)4 log N bits can be converted into an ORAM with server-side position map
and multiplicative bandwidth overhead O

(√
N

)
and total storage of log N(6N +

12
√

N) bits.

Proof. We need to show that we can implement the Lookahead ORAM with a
single position map access per main ORAM access. As a straightforward imple-
mentation of swapInPosMap would use two accesses, we describe the necessary
modification.

Each cell in the ORAM stores its array index in addition to data. This also
applies to the stashes (so each entry keeps matrix position, array index, and
data). The client downloads the entire content of stashes before reading any
data from the matrix, and if one of the stashes contains the required index,
the stash overrides the position map. If an operation changes the position map,
we also update the index entries in the stashes if necessary. When we perform
an access, the client reads the position map entry for the index being accessed,
and the updated position for this index is written to the position map. For the
swap partner, we delay the update to the position map just like we delay it for
the data block itself. During the background work stage, in addition to a single
column of the data matrix, we also scan a single line of the position map matrix
and the position map stash and perform the pending updates from the top-level
stash if applicable.

5.1 Constant Client-Side Temporary Storage

Using a recursive position map, we reduce the persistent client-side storage to
O (1). However, during any operation on the ORAM data structure, the client
still needs to temporarily store O

(√
N

)
data blocks. If desired, this can be

reduced to O(1) data blocks at the cost of increasing the bandwidth overhead
by a multiplicative factor of O

(
log

√
N

)
. We outline our solution here and leave

the details to the interested reader.

Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead 557

Recall that during each ORAM operation, we have to access one matrix cell,
one matrix column j, and the two stashes. For the sake of simplicity lets assume
that the data matrix has height and width

√
N . Upon each ORAM operation we

first process the stashes stashacc and stashswap into a temporary stashes stashacc
final

and stashswap
final, which have the following property: If either stashswap or stashacc

contains a cell (i, j′) with j′ = j, then this cell will be in the i-th position of
stashswap

final or stashacc
final respectively. For example, if stashswap contains a cell that

is associated with the second cell from the top in the current column j, then it
will be in the second position in stashswap

final. Once we have such stashes, we can
iterate over the current column j and both final stashes one cell each at a time
and perform the necessary operations. We explain the generation of stashacc

final.
The generation of stashswap

final is completely analogous:

1. Create an empty stash stashacc
final

2. Iterate over stashacc one cell at a time. If the current cell (i, j) is associated
with the current column, we append it to stashacc

final with a priority i. If it is
not relevant for the current column, then we append it to stashacc

final with a
priority of ∞.

3. We append
√

N dummy elements to stashacc
final, where dummy element i has

priority i + 1
2 . At this point stashacc

final contains 2
√

N cells.
4. We use an oblivious sorting algorithm [Bat68,AKS83] to sort stashacc

final

according to its priorities from smallest to largest.
5. We iterate over stashacc

final one data element at a time. Whenever we read a
real cell i, we set the priority of the dummy cell right after it to ∞.

6. We again obliviously sort stashacc
final.

A visual illustration of this final stash generation is depicted in Fig. 6.

(c)

(b)

(a)

1.5 2 3 4.5 ∞ ∞ ∞ ∞

1.5 2 2.5 3 3.5 4.5 ∞ ∞

∞ 3 ∞ 2 1.5 2.5 3.5 4.5

Fig. 6. Illustration of the generation of stashaccfinal with
√
N = 4. Each row represents

stashaccfinal at a certain stage in the stash generation algorithm. The squares represent
data cells and their labels represent their assigned priorities. Shaded rectangles repre-
sent dummy elements. (a) depicts stashaccfinal at the end of step 3. (b) depicts the stash
at the end of step 4. (c) depicts it after step 5.

The post-processing of the two final stashes is straightforward. Again we only
explain the post-processing of stashacc

final, since the post-processing of stashswap
final

is completely analogous. We iterate over stashacc
final and assign each real data cell

priority −∞ and each dummy element priority ∞. We use oblivious sort to sort
stashacc

final from small to large. We interpret the first
√

N as stashacc and delete
the remaining last

√
N (dummy) elements.

558 M. Raskin and M. Simkin

Fig. 7. Comparison of the storage overheads of different ORAM constructions. The
x-axis shows different amounts of data blocks. The data block size is fixed to 1024
bytes. The y-axis plots the total required storage on the server-side in MiB. For the
related works we compare ourselves to, the values are computed based on the concrete
formulas and constants that are reported in the respective papers.

Regarding the efficiency of our procedure we observe that we perform a con-
stant amount of oblivious sorts of

√
N elements per ORAM operation. This can

be done with bandwidth overhead of O
(√

N log
√

N
)

data elements with O(1)
temporary storage on the client side [AKS83].

6 Evaluation

To provide a rough idea of the practical performance of our Lookahead ORAM
construction, we implemented a prototype with a client-side position map and
evaluated it in terms of concrete bandwidth and server-side storage overhead.

We assume that each encrypted block has an extra 40-byte encryption/MAC
overhead, and every stash entry has an additional status 20-byte header with sta-
tus and position information. We assume 4-byte words are also used for denoting
the request types.

When encrypting N data blocks of size B each, the server’s total storage is
N × (B + 40). The corresponding position map is 8N , and the stash 2

√
N ×

(B + 20) bytes large. Whenever the client performs an operation on the ORAM
data structure, it needs to download 40 + (B + 40) × (

√
N + 1) and upload

80 + (B + 40) × (
√

N + 1) bytes.

Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead 559

Fig. 8. Comparison of the bandwidth overhead of Lookahead ORAM and Path-
ORAM. The x-axis shows different amounts of data blocks. The data block size is
fixed to 1024 bytes. The y-axis shows the total amount of transmitted data per access
in MiB.

During initialization of our ORAM, we fill the storage with zeros and then fill
the stash with pre-selected swap partners. During this initalization, we upload
44 + (B + 40) × N bytes to the server.

All of the above formulas have been calculated based on our theoretical con-
struction and validated empirically using our prototype implementation. In the
following, the data block size is fixed to 1024 bytes.

Storage Overhead. We compare our storage overhead on the server-side to
the overheads of the most storage efficient related works with sublinear worst-
case bandwidth overheads. For our comparison, we measure the total storage
requirements on the server-side for varying N . For the related works we com-
pare ourselves to, we computed the data points based on the formulas (including
constants) given in the respective papers. For Square-root ORAM we take the
storage value of 2N + 4

√
N . It should be noted that in [SvS+13] the authors

obtain provable security for Path-ORAM with a storage overhead of 20N , but
evaluate their scheme on smaller parameter settings. Since we are interested in
provable security and correctness guarantees, we compare our scheme to theirs
with a storage overhead of 20N . Apart from comparing ourselves to the most well
known constructions, we also provide a comparison to the parallel buffers con-
struction of Stefanov et al. [SSS12], which is claimed to be practically efficient.
We use the 3.2N storage estimate for this scheme. The results are depicted in
Fig. 7. As expected, assuming a client-side position map, Lookahead ORAM has

560 M. Raskin and M. Simkin

the smallest storage overhead among all for the tested setting. Storing the posi-
tion map on the server-side would increase the storage overhead of Lookahead
ORAM by a factor of roughly 6.

Bandwidth Overhead. We compare ourselves to Path-ORAM (with a client-
side position map), which is known to be the most efficient construction in terms
of asymptotic and practical worst-case bandwidth overhead. For our compari-
son we use their self-reported bandwidth overhead of 10 log N . For comparison
we also show the Tree ORAM bandwidth overhead of 20 log N . We have not
included the Parallel Buffers ORAM because all the concrete constants are only
provided for specific (and very large) numbers of blocks. We have not included
Square-Root ORAM since it is slower than all other depicted ORAMs in terms
of bandwidth overhead. The results of our comparison are depicted in Fig. 8. As
expected from the asymptotic behaviour of Path-ORAM and Lookahead ORAM,
we can see that Path-ORAM becomes more efficient for large values of N . How-
ever, for values of N < 3000, Lookahead ORAM is more efficient in terms of
concrete bandwidth overhead.

Acknowledgements. Michael Raskin was supported by funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 787367 (PaVeS). Mark Simkin was sup-
ported by funding from the European Research Council (ERC) under the European
Unions’s Horizon 2020 research and innovation program under grant agreement No
669255 (MPCPRO) and No 731583 (SODA).

A Attack on [GMSS16]

In a work by Gordon et al. [GMSS16] the authors present an ORAM, called
M-ORAM. Their construction has a flaw and does not provide obliviousness. In
the following, we give a high-level overview of their scheme and sketch our attack
that breaks their obliviousness claims.

The construction partitions the server-side storage into a fixed number of
rows and a number of columns that depends on the dataset’s size. Every cell in
their rectangular storage layout holds one data element. Additionally, every row
has its own separate constant-sized stash.

Initially, all data elements are present in the storage rectangle in a randomly
permuted order and the stashes are empty. Simply speaking an access is per-
formed by accessing one element in each row of their data structure. In one of
the rows the desired element is accessed and in all other rows a uniformly random
cell is selected. More precisely, the authors claim that to achieve obliviousness
not all “dummy” cells are selected uniformly at random, instead some of them
are random cells from the previous access. After retrieving one cell from each
row, the client shuffles the cells and puts one cell into each stash. The client
picks one random block from each stash and sends it back to the server as the
new content of the retrieved cells.

Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead 561

Let x1, . . . , xN be some data elements stored in the ORAM data struc-
ture, the access sequences (read(x1), read(x2), read(x1)) and (read(x1), read(x2),
read(x3)) can be distinguished with a success probability that is non-negligible
in the security parameter. From a high-level perspective, every access selects a
subset of cells from the data structure and every two subsets corresponding to
two consecutive accesses intersect at some random cells. For three accesses the
proposed approach breaks down. Looking at our first access sequence, the pro-
posed construction has a slightly higher bias of the first and third access subset
intersecting, since we are accessing the same element.

We have contacted the authors and they have acknowledged our attack.

References

AKL+18. Asharov, G., Komargodski, I., Lin, W.-K., Nayak, K., Peserico, E., Shi,
E.: Optorama: Optimal oblivious ram. Cryptology ePrint Archive, Report
2018/892 (2018). https://eprint.iacr.org/2018/892

AKS83. Ajtai, M., Komlós, J., Szemerédi, E.: An 0(n log n) sorting network. In:
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Com-
puting, STOC 1983, New York, NY, USA, pp. 1–9. ACM (1983)

AKST14. Apon, D., Katz, J., Shi, E., Thiruvengadam, A.: Verifiable oblivious storage.
In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 131–148. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 8

Bat68. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of
the April 30-May 2, 1968, Spring Joint Computer Conference, AFIPS 1968
(Spring), New York, NY, USA, pp. 307–314. ACM (1968)

BMP11. Boneh, D., Mazieres, D., Popa, R.A.: Making oblivious ram practical,
Remote oblivious storage (2011)

BN16. Boyle, E., Naor, M.: Is there an oblivious RAM lower bound? In: Sudan,
M. (ed.) ITCS 2016: 7th Conference on Innovations in Theoretical Com-
puter Science, Cambridge, MA, USA, 14–16 January 2016, pp. 357–368.
Association for Computing Machinery (2016)

CKN+18. Chan, T.-H.H., Katz, J., Nayak, K., Polychroniadou, A., Shi, E.: More is
less: perfectly secure oblivious algorithms in the multi-server setting. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol.
11274, pp. 158–188. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03332-3 7

CNS18. Chan, T.-H.H., Nayak, K., Shi, E.: Perfectly secure oblivious parallel RAM.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240,
pp. 636–668. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03810-6 23

DDF+16. Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.:
Onion ORAM: a constant bandwidth blowup oblivious RAM. In: Kushile-
vitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol. 9563, pp. 145–174.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0 6

DMN11. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM
without random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp.
144–163. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19571-6 10

https://eprint.iacr.org/2018/892
https://doi.org/10.1007/978-3-642-54631-0_8
https://doi.org/10.1007/978-3-030-03332-3_7
https://doi.org/10.1007/978-3-030-03332-3_7
https://doi.org/10.1007/978-3-030-03810-6_23
https://doi.org/10.1007/978-3-030-03810-6_23
https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1007/978-3-642-19571-6_10
https://doi.org/10.1007/978-3-642-19571-6_10

562 M. Raskin and M. Simkin

DPP18. Demertzis, I., Papadopoulos, D., Papamanthou, C.: Searchable encryption
with optimal locality: achieving sublogarithmic read efficiency. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 371–
406. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 13

DSS14. Dautrich, J., Stefanov, E., Shi, E.: Burst oram: minimizing oram response
times for bursty access patterns. In: 23rd USENIX Security Symposium
(USENIX Security 14), pp. 749–764 (2014)

GMOT11. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Oblivi-
ous ram simulation with efficient worst-case access overhead. In: Proceed-
ings of the 3rd ACM Workshop on Cloud Computing Security Workshop,
pp. 95–100. ACM (2011)

GMSS16. Gordon, S., Miyaji, A., Su, C., Sumongkayothin, K.: M-ORAM: a matrix
ORAM with log N bandwidth cost. In: Kim, H., Choi, D. (eds.) WISA
2015. LNCS, vol. 9503, pp. 3–15. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-31875-2 1

GO96. Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious rams. J. ACM (JACM) 43(3), 431–473 (1996)

Gol87. Goldreich, O.: Towards a theory of software protection and simulation by
oblivious RAMs. In: Aho, A., (ed.) 19th Annual ACM Symposium on The-
ory of Computing, New York City, NY, USA, 25–27 May 1987, pp. 182–194.
ACM Press (1987)

IKK12. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on
searchable encryption: ramification, attack and mitigation. In: ISOC Net-
work and Distributed System Security Symposium - NDSS 2012, San Diego,
CA, USA, 5–8 February 2012. The Internet Society (2012)

LN18. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound!.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol.
10992, pp. 523–542. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96881-0 18

MBC14. Mayberry, T., Blass, E.-O., Chan, A.H.: Efficient private file retrieval by
combining ORAM and PIR. In: ISOC Network and Distributed System
Security Symposium - NDSS 2014, San Diego, CA, USA, 23–26 February
2014. The Internet Society (2014)

OS97. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract).
In: 29th Annual ACM Symposium on Theory of Computing, El Paso, TX,
USA, 4–6 May 1997, pp. 294–303. ACM Press (1997)

PPRY18. Patel, S., Persiano, G., Raykova, M., Yeo, K.: PanORAMa: oblivious RAM
with logarithmic overhead. In: Thorup, M. (ed.) 59th Annual Symposium
on Foundations of Computer Science, Paris, France, 7–9 October 2018, pp.
871–882. IEEE Computer Society Press (2018)

RFK+15. Ren, L., et al.: Constants count: practical improvements to oblivious ram.
In: 24th USENIX Security Symposium (USENIX Security 15), Washington,
D.C., pp. 415–430. USENIX Association (2015)

SCSL11. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with
O((logN)3) worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 197–214. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0 11

https://doi.org/10.1007/978-3-319-96884-1_13
https://doi.org/10.1007/978-3-319-31875-2_1
https://doi.org/10.1007/978-3-319-31875-2_1
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11

Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead 563

SSS12. Stefanov, E., Shi, E., Song, D.X.: Towards practical oblivious RAM. In:
ISOC Network and Distributed System Security Symposium - NDSS 2012,
San Diego, CA, USA, February 5–8, 2012. The Internet Society (2012)

SvS+13. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM pro-
tocol. In: Sadeghi, A.-R., Gligor, V.D., Yung, M., (eds.) ACM CCS 13: 20th
Conference on Computer and Communications Security, Berlin, Germany,
4–8 November 2013, pp. 299–310. ACM Press (2013)

How to Correct
Errors in Multi-server PIR

Kaoru Kurosawa(B)

Ibaraki University, Hitachi, Japan
kaoru.kurosawa.kk@vc.ibaraki.ac.jp

Abstract. Suppose that there exist a user and � servers S1, . . . , S�. Each
server Sj holds a copy of a database x = (x1, . . . , xn) ∈ {0, 1}n, and the
user holds a secret index i0 ∈ {1, . . . , n}. A b error correcting � server
PIR (Private Information Retrieval) scheme allows a user to retrieve xi0

correctly even if and b or less servers return false answers while each
server learns no information on i0 in the information theoretic sense.
Although there exists such a scheme with the total communication cost
O(n1/(2k−1) × k� log �) where k = � − 2b, the decoding algorithm is very
inefficient.

In this paper, we show an efficient decoding algorithm for this b error
correcting � server PIR scheme. It runs in time O(�3).

Keywords: Private information retrieval · Information theoretic ·
Error correcting

1 Introduction

Private information retrieval (PIR) was introduced by Chor, Kushilevitz, Goldre-
ich and Sudan [8]. In this model, a server S holds a database x = (x1, . . . , xn) ∈
{0, 1}n, and a user holds a secret index i0 ∈ {1, . . . , n}. The user should be able
to retrieve xi0 without revealing no information on i0 to the server S. A trivial
solution is that S sends the entire x to the user. Can the user obtain xi0 with
less than n bits of communication?

Unfortunately, Chor et al. [8] showed that n bits are required in the infor-
mation theoretic setting. (In what follows, we consider information theoretic
setting.) To get around this, they considered an � server PIR scheme such that
each server Sj has a copy of the database x, where the � servers do not commu-
nicate each other. In particular, they showed a two server protocol whose total
communication cost is O(n1/3).1 The � server PIR schemes have been improved
further by [1,3,4,6,10,12,16,22].

Beimel and Stahl [5] considered what can be done if some of the servers
break down. In a (k, �) robust PIR schemes, the user can retrieve xi0 if k out of �
servers respond. Woodruff and Yekhanin [21] showed a (k, �) robust PIR scheme
whose total communication cost is

O(n1/(2k−1) × k� log �).
1 I.e., the total number of bits communicated between the user and the servers.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 564–574, 2019.
https://doi.org/10.1007/978-3-030-34621-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_20

How to Correct Errors in Multi-server PIR 565

Currently this is the best known (k, �) robust PIR scheme.
Beimel and Stahl [5] also considered what can be done if some of the servers

return false answers. A b-error correcting � server PIR scheme is an (�, �) robust
PIR scheme with the additional property such that the user can compute xi0

correctly even if b (or less) servers return false answers. They [5] showed that
a (k, �) robust PIR scheme can be used as a b error correcting � server PIR
scheme if

� ≥ k + 2b.

However, their generic decoding algorithm is very inefficient as they mentioned
in [5, page 314].

To summarize, although there exists a b error correcting � server PIR scheme
with the total communication cost O(n1/(2k−1)×k� log �) [5,21], where k = �−2b,
the decoding algorithm [5] is very inefficient.

In this paper, we show an efficient decoding algorithm for the above b error
correcting � server PIR scheme. The running time is O(�3). We achieve this
by extending Berlekamp-Welch decoding algorithm [23] for Reed-Solomon codes
to our problem. While a codeword is defined by using a polynomial f(x) in a
Reed-Solomon code, it is defined by using (f(x), f ′(x)) in the b error correcting
� server PIR scheme. This is the difficulty which we must overcome.

A � server PIR scheme is said to be t-private if any coalition of t servers
learn no information on i0. Woodruff and Yekhanin [21] showed a t-private (k, k)
robust PIR scheme with the total communication cost O(n�(2k−1)/t�×k�/t log �).
It is easily generalized to a t-private (k, �) robust PIR scheme, and the latter
can be used as a t-private b error correcting � server PIR scheme if � ≥ k + 2b
[5]. Our decoding algorithm can be applied to this scheme too.

1.1 Related Works

In the above model, the user wants one bit. What if the data is partitioned into
blocks of m bits each and the user wants an entire block. The user could invoke
a PIR scheme m times. Chor et al. [8] showed a more efficient protocol than this.
Goldberg [14] and Devet et al. [11] considered b error correcting PIR schemes in
this model.

Sun et al. [19,20] and Banawan et al. [2] considered the case where the size
of xi is very large, and hence only the download cost is of interest (but not the
upload cost).

In the computational setting, PIR has been studied by [7,9,15,17,18].
[13] is a good survey.

2 Preliminaries

2.1 PIR

In the model of (k, �) robust PIR schemes, there exist � servers S1, . . . , S� such
that each server Sj has a copy of a database x = (x1, . . . , xn) ∈ {0, 1}n.

566 K. Kurosawa

The user should be able to retrieve xi0 if k servers respond while any server
Sj should learn no information on i0 in the information theoretic sense.

Definition 1. A (k, �) robust PIR scheme consists of three algorithms (Q,A, C)
as follows.

1. The user U runs Q(n, i0) to generate � queries (q1, . . . , q�) together with an
auxiliary information aux.

2. He sends qj to server Sj for j = 1, . . . , �.
3. Each server Sj returns aj = R0(j,x, qj) to U , where x = (x1, . . . , xn) ∈

{0, 1}n is a copy of a database.
4. Upon receiving (at least) k answers aj1 , . . . , ajk from servers, U runs

C((j1, aj1), . . . , (jk, ajk), aux)

to compute xi0 . (See step 1 for aux.)

It must satisfy the following requirements.

– Correctness F
For any n, x ∈ {0, 1}n, i0 ∈ {1, . . . , n} and {j1, . . . , jk} ⊂ {1, . . . , �}, it holds
that

C((j1, aj1), . . . , (jk, ajk), aux) = xi0

if (q1, . . . , q�) and (a1, . . . , a�) are computed from n, x ∈ {0, 1}n and i0 ∈
{1, . . . , n}.

– Privacy F
Any server learns no information on i0. Formally, for any i1, i2 ∈ {1, . . . , n}, qj

generated by Q(n, i1) and qj generated by Q(n, i2) are identically distributed
for j = 1, . . . , �.

Definition 2. A b-error correcting � server PIR scheme is an (�, �) robust PIR
scheme with the additional property such that the user can compute xi0 correctly
even if b (or less) answers among (a1, . . . , a�) are false.

Definition 3. The total communication cost of a (k, �) robust PIR scheme is the
number of bits communicated between the user U and the � servers S1, . . . , S�.

The total communication cost of a b-error correcting � server PIR scheme is
defined similarly.

2.2 Technical Lemma

Woodruff and Yekhanin [21] proved the following lemma.

Lemma 1. Suppose that (yi, ui) are given for i = 1, . . . , s, where yi ∈ Fp and
ui ∈ Fp. Then there exists at most one polynomial f(λ) over Fp of degree ≤ 2s−1
such that f(i) = yi and f ′(i) = ui for i = 1, . . . , s.

How to Correct Errors in Multi-server PIR 567

3 Robust PIR of Woodruff and Yekhanin

Let
x = (x1, . . . , xn) ∈ {0, 1}n

be a database. Woodruff and Yekhanin [21] showed a (k, �) robust PIR scheme
such that the total communication cost is

O(n1/(2k−1) × k� log �).

In their (k, k)-robust PIR scheme, the user somehow obtains (f(i), f ′(i)) from
a server Si for i = 1, . . . , k, where f(λ) is a polynomial of degree 2k − 1 such
that f(0) = xi0 . He then reconstruct f(λ) from

(f(1), f ′(1)), . . . , (f(k), f ′(k)).

3.1 (k, k)-Robust PIR Scheme

For a given (n, k), consider m such that
(

m

2k − 1

)
≥ n. (1)

There exists such m which also satisfies [21]

m = O(kn1/(2k−1)). (2)

Then we can consider an injection

E : {1, . . . , n} → {0, 1}m

such that each E(i) has the Hamming weight 2k − 1.
Let p be a prime such that k < p ≤ 2k. For a database x = (x1, . . . , xn) ∈

{0, 1}n, define a function F : Fm
p → Fp by

F (z1, . . . , zm) = x1 · (
∏

E(1)j=1

zj) + . . . + xn · (
∏

E(n)j=1

zj) (3)

where E(i)j is the jth coordinate of E(i) ∈ {0, 1}m.
For example, let n = m = 4 and 2k − 1 = 3. Define E as

E(1) = (1, 1, 1, 0), E(2) = (1, 1, 0, 1), E(3) = (1, 0, 1, 1), E(4) = (0, 1, 1, 1).

Then

F (z1, . . . , z4) = x1(z1z2z3) + x2(z1z2z4) + x3(z1z3z4) + x4(z2z3z4).

(A1) The degree of F (z1, . . . , zm) is 2k − 1 because each E(i) has the Hamming
weight 2k − 1.

(A2) For each i, it holds that F (E(i)) = xi.

568 K. Kurosawa

Their (k, k)-robust PIR scheme is as follows.

1. The user chooses V = (v1, . . . , vm) ∈ F
m
p randomly.

2. For i = 1, . . . , k, he sends

Qi = E(i0) + i · V ∈ F
m
p

to a server Si, where i0 is the secret index of the user.
3. For i = 1, . . . , k, Si returns yi ∈ Fp and Bi ∈ F

m
p such that

yi = F (Qi)
Bi = (Fz1(Qi), . . . , Fzm

(Qi))

to the user, where F is defined by Eq. (3) and Fz is the partial derivative of
F by z.

Now define
f(λ) = F (E(i0) + λV). (4)

Then the degree of f(λ) is 2k − 1 from (A1). Therefore f(λ) is written as

f(λ) = a0 + a1λ + . . . + a2k−1λ
2k−1. (5)

Further it holds that

f(i) = yi, (6)
f ′(i) = Bi · VT (7)

for i = 1, . . . , k. (Eq. (7) is obtained by using the chain rule.) The above equations
give 2k linear equation in (a0, . . . , a2k−1).

The user computes (a0, . . . , a2k−1) by solving this set of equations. Finally
the user obtains xi0 from

xi0 = F (E(i0)) = f(0) = a0.

See (A2).

(Privacy). For any i, Qi = E(i0) + i · V is random because V is randomly
chosen. Therefore any sever Si learns no information on i0.

(Communication Cost). The user sends Qi ∈ F
m
p to each sever Si, and Si

returns (yi,Bi) ∈ F
m+1
p . Since m = O(kn1/(2k−1)) and p ≤ 2k, the total

communication cost is given by

O(n1/(2k−1) × k2 log k).

3.2 (k, �)-Robust PIR

Let p be a prime such that � < p ≤ 2�. Then the above scheme is easily general-
ized to a (k, �)-robust PIR scheme. In steps 2 and 3, just replace “i = 1, . . . , k”
with “i = 1, . . . , �”.

The total communication cost is given by

O(n1/(2k−1) × k� log �).

How to Correct Errors in Multi-server PIR 569

4 Error Correcting PIR of Beimel and Stahl

Beimel and Stahl [5] showed that a robust PIR scheme can be used as an error
correcting PIR.

Proposition 1. A (k, �) robust PIR scheme is also a b error correcting � server
PIR if

� ≥ k + 2b.

Their generic decoding algorithm is as follows.

1. For each subset B of servers such that |B| = k, compute xi0 by running the
(k, �) robust PIR scheme.

2. Find the largest A such that for every B ⊂ A such that |B| = k, the user
reconstructs the same value of xi0 .

3. Output this value as the value of xi0 .

This algorithm is, however, very inefficient because
(

�
k

)
is very large in gen-

eral, as Beimel and Stahl mentioned in [5, page 314].
From Proposition 1 [5], the (k, �) robust PIR scheme of Woodruff and

Yekhanin [21] is also a b error correcting � server PIR scheme if � ≥ k + 2b.
However, the decoding algorithm is very inefficient as shown above.

For this b error correcting � server PIR scheme, we can consider a variant of
the decoding algorithm as follows.

1. For each subset BAD of servers such that |BAD| = b, check if the user
reconstructs the same value of xi0 for every B ⊂ A\BAD such that |B| = k.

2. If the check succeeds, then output this value as the value of xi0 .

Still it is very inefficient because
(

�
b

)
is very large in general.

To summarize, although there exists a b error correcting � server PIR scheme
with the total communication cost O(n1/(2k−1)×k� log �) [5,21], where k = �−2b,
the decoding algorithm [5] is very inefficient.

5 Proposed Decoding Algorithm

In this section, we show an efficient decoding algorithm for the above b error
correcting � server PIR scheme. The running time is O(�3).

We achieve this by extending Berlekamp-Welch decoding algorithm [23,24]
for Reed-Solomon codes to our problem. While a codeword is defined by using a
polynomial f(x) in a Reed-Solomon code, it is defined by using (f(x), f ′(x)) in
the b error correcting � server PIR scheme. This is the difficulty which we must
overcome.

570 K. Kurosawa

5.1 Berlekamp-Welch Algorithm

Consider a Reed Solomon code of length � with dimension k over Fp. A codeword
is given by

c = (f(1), . . . , f(�))

for some polynomial f(λ) of degree at most k − 1. Let

r = (r1, . . . , r�)

be the received vector which includes at most b errors, where

� ≥ 2b + k. (8)

Note that ri = f(i) if ri has no error.
Now Berlekamp-Welch decoding algorithm [23] works as follows. Since the

number of errors is at most b, there exists a monic polynomial R1(λ) of degree
b such that R1(i) = 0 if ri �= f(i). Then it holds that

R1(i)f(i) = R1(i)ri

for i = 1, . . . , �. Let R0(λ) = R1(λ)f(λ). Then we have

R0(i) = R1(i)ri (9)

for i = 1, . . . , �. R0(λ) has b + k unknown coefficients and R1(λ) has b unknown
coefficients. Hence there are (b+k)+ b = k+2b unknowns in total. On the other
hand, Eq. (9) gives � linear equation in these unknowns.

Therefore we can obtain R0(λ) and R1(λ) by solving this set of linear equa-
tions, and can find f(λ) = R0(λ)/R1(λ).

5.2 Proposed Decoding Algorithm

We show an efficient decoding algorithm for the b error correcting � server PIR
scheme. Fix (b, �) and k such that

� ≥ k + 2b. (10)

See Proposition 1 for Eq. (10).
Consider the (k, �) robust PIR scheme of Woodruff and Yekhanin [21]. If all

servers are honest, then the user obtains

c = (c1, . . . , c�)

such that
ci = (f(i), f ′(i))

for i = 1, . . . , � from Eqs. (6) and (7), where

deg f(λ) = 2k − 1. (11)

How to Correct Errors in Multi-server PIR 571

See Sect.3.1.
Suppose that b or less servers return false answers. Then the user obtains

c′ = (c′
1, . . . , c

′
�)

which includes b or less errors. Let

c′
i = (ŷi, ûi)

for i = 1, . . . , �. Note that

(ŷi, ûi) = (f(i), f ′(i))

if c′
i has no error.
Now consider two polynomials R0(λ) and R1(λ) over Fp with the following

properties:

(P1) deg R0(λ) ≤ 2k − 1 + 2b.
(P2) R1(λ) is a monic polynomial with deg R1(λ) = 2b.
(P3) R0(i) − ŷiR1(i) = 0 for i = 1, . . . , �.
(P4) R′

0(i) − ûiR1(i) − ŷiR
′
1(i) = 0 for i = 1, . . . , �.

Theorem 1. There exist such polynomials R0(λ) and R1(λ).

Proof. Define
BAD = {i | (ŷi, ûi) �= (f(i), f ′(i))}.

Then c = |BAD| ≤ b. Let

B(z) = zb−c
∏

i∈BAD

(z − i).

Let

R1(λ) = B(λ)2,
R0(λ) = f(λ)R1(λ) = f(λ)B(λ)2.

Then it is easy to see that (P1) and (P2) are satisfied. Further

R0(i) − ŷiR1(i) = f(i)B(i)2 − ŷiB(i)2

= (f(i) − ŷi)B(i)2

= 0

because B(i) = 0 if f(i) �= ŷi. Also

R′
0(i) − ûiR1(i) − ŷiR

′
1(i)

= f ′(i)R1(i) + f(i)R′
1(i) − ûiR1(i) − ŷiR

′
1(i)

= (f ′(i) − ûi)R1(i) + (f(i) − ŷi)R′
1(i)

= (f ′(i) − ûi)B(i)2 + 2(f(i) − ŷi)B(i)B′(i)
= 0

because B(i) = 0 if (f(i), f ′(i)) �= (ŷi, ûi). Therefore (P3) and (P4) are
satisfied. �	

572 K. Kurosawa

Theorem 2. We can find R0(λ) and R1(λ) which satisfy (P1) ∼ (P4) in time
O(�3).

Proof. From (P1) and (P2), the number of unknown coefficients of R0(λ) and
R1(λ) are given by

2k + 2b + 2b = 2(k + 2b).

On the other hand, (P3) and (P4) give

2� ≥ 2(k + 2b)

linear equations involving them. (See Eq. (10).) Further there exists a solution
for this set of linear equations from Theorem 1. Hence we can find a solution in
time O(�3).

Consequently we can find R0(λ) and R1(λ) which satisfy (P1) ∼ (P4) in time
O(�3).

�	
Theorem 3. It holds that

f(λ) = R0(λ)/R1(λ)

for any R0(λ) and R1(λ) which satisfy (P1) ∼ (P4),

Proof. Let
Q(λ) = R0(λ) − f(λ)R1(λ).

Then
Q′(λ) = R′

0(λ) − f ′(λ)R1(λ) − f(λ)R′
1(λ).

Since there are at most b errors, there exist

� − b ≥ k + 2b − b = k + b(= s)

points such that ŷi = f(i) and ûi = f ′(i). For these k + b points, we have

Q(i) = R0(i) − f(i)R1(i)
= R0(i) − ŷiR1(i)
= 0

and

Q′(i) = R′
0(i) − f ′(i)R1(i) − f(i)R′

1(i)
= R′

0(i) − ûiR1(i) − ŷiR
′
1(i)

= 0

from (P3) and (P4). On the other hand,

deg Q(λ) ≤ max(deg R0(λ),deg f(λ) + deg R1(λ))
= 2(k + b) − 1(= 2s − 1)

This means that Q(λ) = 0 from Lemma 1. Therefore we have f(λ) =
R0(λ)/R1(λ). �	

How to Correct Errors in Multi-server PIR 573

Our decoding algorithm of the user is given as follows.

1. The user obtains (ŷi, ûi) from the answer of a server Si for i = 1, . . . , �.
2. He computes two polynomials R0(λ) and R1(λ) which satisfy (P1) ∼ (P4) in

time O(�3). See Theorem 2.
3. He computes f(λ) = R0(λ)/R1(λ). See Theorem 3.
4. Finally he computes xi0 = f(0).

It runs in time O(�3).

6 Extension to t-Private PIR Scheme

A � server PIR scheme is said to be t-private if any coalition of t servers learn no
information on i0. Woodruff and Yekhanin [21] showed a t-private (k, k) robust
PIR scheme with the total communication cost O(n�(2k−1)/t� × k�/t log �) such
as follows.

Let d = �(2k − 1)/t�. For a given n, consider m such that
(

m

d

)
≥ n. (12)

There exists such m which also satisfies [21]

m = O(dn1/d). (13)

1. The user chooses V1, . . . ,Vt ∈ F
m
p randomly.

2. For i = 1, . . . , k, the user sends

Qi = E(i0) + i · V1 + . . . + it · Vt

to the server Si.

The rest is the same as in Sect. 3.1. A t-private (k, �) robust PIR scheme is
obtained similarly.

Beimel and Stahl [5] showed that a t-private (k, �) robust PIR scheme can
be used as a t-private b error correcting � server PIR scheme if � ≥ k + 2b. Now
it is easy to see that our decoding algorithm can also be applied to this scheme.

References

1. Ambainis, A.: Upper bound on the communication complexity of private informa-
tion retrieval. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP
1997. LNCS, vol. 1256, pp. 401–407. Springer, Heidelberg (1997). https://doi.org/
10.1007/3-540-63165-8 196

2. Banawan, K., Ulukus, S.: Private information retrieval from Byzantine and collud-
ing databases, Allerton, pp. 1091–1098 (2017)

https://doi.org/10.1007/3-540-63165-8_196
https://doi.org/10.1007/3-540-63165-8_196

574 K. Kurosawa

3. Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: a unified
construction. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001.
LNCS, vol. 2076, pp. 912–926. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-48224-5 74

4. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the O(n1/(2k]1))
barrier for information-theoretic private information retrieval. In: FOCS f02, pp.
261–270 (2002)

5. Beimel, A., Stahl, Y.: Robust information-theoretic private information retrieval.
J. Cryptol. 20(3), 295–321 (2007)

6. Chee, Y.M., Feng, T., Ling, S., Wang, H., Zhang, L.F.: Query-efficient locally decod-
able codes of subexponential length. Comput. Complex. 22(1), 159–189 (2013)

7. Chor, B., Gilboa, N.: Comput. Private Information Retrieval, STOC (1997)
8. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.

J. ACM 45(6), 965–981 (1998)
9. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval

with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 28

10. Dvir, Z., Gopi, S.: 2-server PIR with subpolynomial communication. J. ACM 63(4),
39 (2016)

11. Devet, C., Goldberg, I., Heninger, N.: Optimally Robust Private Information
Retrieval. In: USENIX Security Symposium, pp. 269–283 (2012)

12. Efremenko, K.: 3-query locally decodable codes of subexponential length. SIAM J.
Comput. 41(6), 1694–1703 (2012)

13. Gasarch, W.: A survey on private information retrieval. http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.9.8246

14. Goldberg, I.: Improving the robustness of private information retrieval. IEEE
Symp. Secur. Priv. 131–148, 131–148 (2007)

15. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468 65

16. Itoh, T., Suzuki, Y.: Improved constructions for query-efficient locally decodable
codes of subexponential length. IEICE Trans. 93(2), 263–270 (2010)

17. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, compu-
tationally private information retrieval. In: FOCS (1997)

18. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005). https://doi.org/10.1007/11556992 23

19. Sun, H., Jafar, S.A.: The capacity of private information retrieval. IEEE Trans.
Information Theory 63(7), 4075–4088 (2017)

20. Sun, H., Jafar, S.A.: The capacity of robust private information retrieval with
colluding databases. IEEE Trans. Information Theory 64(4), 2361–2370 (2018)

21. Woodruff, D., Yekhanin, S.: A geometric approach to information-theoretic private
information retrieval. SIAM J. Comput. 37(4), 1046–1056 (2007)

22. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
J. ACM 55, 1 (2008)

23. Berlekamp-Welch algorithm. https://en.wikipedia.org/wiki/Berlekamp%E2%80
%93Welch algorithm

24. Lecture 10 Reed Solomon Codes Decoding: Berlekamp-Welch. http://people.ece.
umn.edu/∼arya/EE5583/lecture10.pdf

https://doi.org/10.1007/3-540-48224-5_74
https://doi.org/10.1007/3-540-48224-5_74
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.8246
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.8246
https://doi.org/10.1007/11523468_65
https://doi.org/10.1007/11556992_23
https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Welch_algorithm
https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Welch_algorithm
http://people.ece.umn.edu/~arya/EE5583/lecture10.pdf
http://people.ece.umn.edu/~arya/EE5583/lecture10.pdf

Multiparty Computation (2)

UC-Secure Multiparty Computation
from One-Way Functions
Using Stateless Tokens

Saikrishna Badrinarayanan1(B), Abhishek Jain2, Rafail Ostrovsky1,
and Ivan Visconti3

1 UCLA, Los Angeles, USA
{saikrishna,rafail}@cs.ucla.edu

2 JHU, Baltimore, USA
abhishek@cs.jhu.edu

3 University of Salerno, Fisciano, Italy
visconti@unisa.it

Abstract. We revisit the problem of universally composable (UC)
secure multiparty computation in the stateless hardware token model.

– We construct a three round multi-party computation protocol for
general functions based on one-way functions where each party sends
two tokens to every other party. Relaxing to the two-party case,
we also construct a two round protocol based on one-way functions
where each party sends a single token to the other party, and at the
end of the protocol, both parties learn the output.

– One of the key components in the above constructions is a new two-
round oblivious transfer protocol based on one-way functions using
only one token, which can be reused an unbounded polynomial num-
ber of times.

All prior constructions required either stronger complexity assumptions,
or larger number of rounds, or a larger number of tokens.

Keywords: Secure computation · Hardware tokens.

1 Introduction

Hardware Token Model. The seminal work of Katz [Kat07] initiated the
study of Universally Composable (UC) [Can01] protocols using tamper-proof

S. Badrinarayanan—Research supported in part by the IBM PhD Fellowship.
A. Jain—Research supported in part by NSF SaTC grant 1814919 and Darpa Safeware
grant W911NF-15-C-0213.
R. Ostrovsky—Research supported in part by NSF-BSF Grant 1619348,
DARPA/SPAWAR N66001-15-C-4065, ODNI/IARPA 2019-1902070008 US-Israel
BSF grant 2012366, JP Morgan Faculty Award, OKAWA Foundation Research
Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John Gar-
rick Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation
Research Award. The views expressed are those of the authors and do not reflect
position of the Department of Defense or the U.S. Government.
I. Visconti—Research supported in part by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 780477 (project PRIViLEDGE).

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 577–605, 2019.
https://doi.org/10.1007/978-3-030-34621-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_21

578 S. Badrinarayanan et al.

hardware tokens. In this model, each party can create hardware tokens that
compute functions of its choice such that an adversary that has access to these
tokens does not learn anything more than their input/output behavior. The main
appeal of this model is that its security relies on a physical assumption and does
not require all the players to trust a common entity. Instead each player can
construct its own tokens or rely on its own token manufacturer.

Over the years, two different versions of the hardware token model have
been studied: stateful tokens, and stateless (a.k.a. resettable) tokens. The latter
model is more realistic, and, in practice, places weaker requirements on the
token manufacturer. This makes it appealing from both theoretical and practical
viewpoints. In this work, we focus on the stateless hardware token model.

Minimizing Complexity. There are three main parameters in the study of UC
secure multiparty computation (MPC) in the stateless hardware token model:
complexity assumption, number of rounds in the protocol, and the number of
tokens. Since the introduction of the stateless hardware token model [CGS08],
several works [CGS08,GIS+10,CKS+14,DKMN15a,HPV16] have investigated
various trade-offs between these three parameters (see Sect. 1.2 for details). How-
ever, in the multiparty setting, the best known protocols based on the minimal
assumption of one-way functions1 require O(d) rounds [HPV16], where d is the
depth of the circuit being computed. This leaves open the following question
(w.r.t. any polynomial number of tokens):

Does there exist a constant round UC secure multiparty computation
protocol for general functions based on one-way functions in the stateless

hardware token model?

Token Reusability. Since tamper-proof hardware tokens can be expensive to
manufacture, it is very desirable to allow reuse of tokens across multiple sessions.
Indeed, for this reason, the reusable token model was put forth by [CKS+14],
where a set of tokens can be reused across multiple protocol executions (for
different function evaluations, on different set of inputs) between the same set of
parties, a.k.a. concurrent self composition. While the ability to reuse a setup for
concurrent self composition typically comes for free in setup models such as the
common reference string model, it is not the case for the hardware token model.
As such, it was put forth as an explicit goal by [CKS+14].

In the setting of two-party computation, [HPV16] constructed round-optimal
(i.e., two-round) protocols based on one-way functions, with unlimited token
reusability (even in the stronger Global UC model [CDPW07,CJS14]). However,
their protocol requires a polynomial number of tokens. The concurrent work of
[DKMN15a] requires only one token, but does not support unlimited token reuse.
This leaves open the following question:

1 One-way function is a necessary assumption in the stateless hardware token model
since an unbounded adversary can simply “learn” a stateless token [GIS+10].

UC-Secure Multiparty Computation from One-Way Functions 579

Does there exist a two round UC secure two-party computation protocol
for general functions based on one-way functions in the reusable stateless

token model?

In this work, we resolve both of the aforementioned questions in the
affirmative.

1.1 Our Results

We continue the study of UC secure computation in the stateless hardware token
model.

Multiparty Computation. Our first result is a three-round UC-secure multi-
party computation protocol based on the minimal assumption of one-way func-
tions. Our protocol requires each party to send two tokens to every other party.

Theorem 1 (Informal). Assuming one-way functions, there exists a three-
round UC multiparty computation protocol in the stateless hardware token model.

If we restrict our attention to the case of two parties, where the parties
communicate over simultaneous broadcast channels2, we can further reduce the
round-complexity of our protocol to two-rounds. We emphasize that at the end
of the protocol, both parties learn the output. Our protocol requires each party
to send only one token to the other party. Prior to our work, no such two-party
computation protocol was known in the literature.

Theorem 2 (Informal). Assuming one-way functions, there exists a two-
round UC two-party computation protocol over simultaneous broadcast channels,
in the stateless hardware token model.

We emphasize that the protocols in Theorems 1 and 2 allow for unlimited
token reuse across multiple sessions between the same set of parties.

Oblivious Transfer. A key component in our constructions is a new two-round
UC oblivious transfer protocol in the stateless hardware token model based on
one-way functions, and relying upon a single token. Crucially, unlike [DKMN15a]
who support an a priori bounded number of uses of the token, our protocol
supports unlimited token reuse.

Theorem 3 (Informal). Assuming one-way functions, there exists a two-
round UC oblivious transfer protocol in the reusable stateless hardware token
model, using a single token.

2 This is the standard model for multiparty computation, where in each round, every
party simultaneously broadcasts a message to the other parties. However, a rush-
ing adversary may wait to receive the honest party’s message in any round before
deciding its own message.

580 S. Badrinarayanan et al.

By combining the above theorem with the work of Ishai et al. [IKO+11], we can
obtain a two-round secure two-party computation protocol in the unidirectional-
message model based on one-way functions with one reusable token. Unlike The-
orem 2, however, only one of the two parties learns the output at the end of the
protocol.

Discussion and Future Work. The work of Hazay et al. [HPV16] puts forth
GUC security as a more desirable notion of security for protocols in the hardware
token model. Our protocols do not achieve GUC security, and it is an interesting
open problem to extend our results to the stronger model of [HPV16].

Further, unlike the work of [HPV16], who construct black-box protocols, our
protocols make non-black-box use of one-way functions due to the use of ZK
arguments. It is an interesting open problem to construct optimal black-box
protocols in the hardware token model.

1.2 Related Work

Katz established the first feasibility results for UC secure multiparty compu-
tation (MPC) using stateful hardware tokens. Subsequently, this model was
extensively explored in several directions with the purpose of improving upon
the complexity assumptions, round-complexity of protocols and the number of
required tokens [MS08,GKR08,Kol10,DKM11,DKM12].

The study of UC-secure protocols in the stateless hardware token model was
initiated by Chandran et al. [CGS08]. They constructed a polynomial round pro-
tocol for multi-commitment functionality where each party exchanges one token
with the other party, based on enhanced trapdoor permutations. Subsequent to
their work, Goyal et al. [GIS+10] constructed constant-round protocols assuming
collision-resistant hash functions (CRHFs). However, these improvements were
achieved at the cost of requiring a polynomial number of tokens. Choi et al.
[CKS+14] subsequently improved upon their result by decreasing the number of
required tokens to only one, while still using only constant rounds and CRHFs.

Recently, Hazay et al. [HPV16] constructed two rounds two-party computa-
tion protocols based on one-way functions, and three-round MPC protocols based
on oblivious transfer in the Global UC model. They also construct a multiparty
protocol from one-way functions where the round complexity is linear in the
depth of the circuit being computed. All of their protocols require a polynomial
number of tokens. In a concurrent work, Döttling et al. [DKMN15a] construct
two-round oblivious transfer from stateless tokens based on one-way functions,
but their protocol does not support unbounded token reuse. Badrinarayanan et
al. [BJOV18] constructed a non-interactive UC-secure two party computation
protocol in the stateless hardware token model based on one way functions.

Döttling et al. [DKMN15b] construct information-theoretic UC-secure proto-
cols in a model where the tokens can be reset only a bounded number of times.
In a different work, Döttling et al. [DMMN13] construct UC-secure protocols for
resettable functionalities using stateless tokens. In contrast, we focus on securely
computing general functionalities using stateless tokens in this work.

UC-Secure Multiparty Computation from One-Way Functions 581

The work of Agrawal et al. [AAG+14] proves lower bounds on the number of
token queries necessary for secure computation in the stateless hardware token
model. We do not seek to optimize the query complexity of tokens in this work.

Niles [Nil15] and Mechler et al. [MMN16] provide a new formulation for
tamper-proof hardware tokens that can be reused across different protocol exe-
cutions. Their security definition is different from GUC security studied in
[HPV16].

Recently, Hazay et al. [HPV17] constructed constant round adaptively
secure protocols in the stateless token model. In this work, we focus on static
corruptions.

2 Technical Overview

We first describe the techniques used in our new two round oblivious transfer
protocol in the next subsection. In the subsequent subsection, we describe the
techniques for the two party computation protocol. We then build upon these
techniques to construct the MPC protocol and discuss this in the final subsection.

2.1 Two-Round Oblivious Transfer (OT)

We design a new two-round OT protocol based on one-way functions where
the sender S sends a single token T to the receiver R. Our protocol combines
multiple ideas from prior works to address some standard issues that arise when
dealing with stateless tokens, together with our new ideas for improving upon
the parameters achieved in prior works. Below, we discuss our approach for the
case where the token is only used for a single execution. However, our approach
easily extends to allow for resuability of token.

Our starting approach is to divide the computation into two parts: in the
first part, the receiver R performs a random OT execution with the token T. In
the second part, R interacts with the sender S to perform standard OT using
the random OT instance. In more detail, the sender embeds two random strings
(r0, r1) in the token T and sends it to R. The receiver secret-shares its input
bit b into two parts (s, z) s.t. s ⊕ z = b, and then uses z to learn rz from T.
At the same time, R sends s = b ⊕ z to the sender S to obtain (M0,M1) s.t.
M0 = (m0 ⊕ r0), M1 = (m1 ⊕ r1) if s = 0 and M0 = (m0 ⊕ r1), M1 = (m1 ⊕ r0)
otherwise. Using the mask rz learned from the token, R appropriately unmasks
one of the two values (M0,M1) to learn mb.

The immediate problem with this naive approach is that an adversarial
receiver can simply reset the stateless token and run it two times on differ-
ent inputs to learn both r0 and r1. Using these masks, the receiver can then
recover both (m0,m1), completely breaking the security.

We address this issue in a similar manner as many prior works such as
[GIS+10,CKS+14,DKMN15a]. The basic idea is to require S to authenticate
R’s query to the token. Namely, R commits to its query z and then obtains a

582 S. Badrinarayanan et al.

signature σ on the commitment from S.3 In order to query T on z, the receiver
must provide σ and the appropriate decommitment information. The unforge-
ability of the signature scheme ensures that an adversarial receiver cannot query
the token more than once.

Input-Dependent Aborts. Unfortunately, this modification introduces a sub-
tle problem: a malicious sender can subliminally communicate s to the token by
embedding bit s into the signature value σ. This allows the token to learn the
receiver’s input bit b. It can now decide whether or not to abort based on this
input bit, which effectively signals the bit b back to the sender, breaking the
security of the protocol.

Similar to [DKMN15a], we address this problem by hiding the signature from
the token. Specifically, instead of sending σ to T, R proves knowledge of σ via
a zero-knowledge argument of knowledge. Since T is stateless, we require this
argument of knowledge to be resettably sound [BGGL01]. Recent works have
constructed such argument systems based on one-way functions [CPS13,BP13,
COPV13,COP+14,BP15,CPS16].

While this modification prevents subliminal communication from the sender
to the token, unfortunately, the protocol still remains susceptible to input-
dependent aborts. In particular, an adversarial token can simply decide to abort
or not based on the random bit z. This effectively signals z back to the sender,
who combines it with s to learn the receiver’s input b.

A natural idea to prevent such an attack is to secret-share z into two parts
and query the token on each part separately. The hope here would be that the
adversarial token can only signal back one of the two secret shares of z back to
the sender, which does not suffice for learning b. Unfortunately, this idea imme-
diately fails since an adversarial token may be stateful, and therefore have a joint
view of all the queries made by the receiver.

Leakage-Resilient Secret-Sharing. Our first step to address the problem
of input-dependent aborts is to employ leakage-resilient secret-sharing sharing.
Roughly, R secret-shares its input b into 2n random bits b1, . . . , b2n s.t. b is the
inner product of (b1, . . . , bn) with (bn+1, . . . , b2n). Each bit bi is further secret
shared into (si, zi) s.t. bi = (si ⊕ zi).

The main idea is that due to the leakage-resilient properties of inner product,
even given all of the bits (z1, . . . , z2n), an adversarial token cannot signal back
any one bit of information to S that is sufficient for learning b.

Unfortunately, however, it is not immediately clear how to integrate the above
secret-sharing scheme with the rest of the protocol. In particular, while our strat-
egy of performing OT via a random OT is compatible with the XOR-based secret
sharing, it does not seem to be compatible with inner-product based secret sharing.

3 For simplicity, here we assume a non-interactive commitment scheme. In order to
use a two-round commitment scheme based on one-way functions, we use the token
T to generate the first commitment message.

UC-Secure Multiparty Computation from One-Way Functions 583

Delegation of Computation. Towards building a solution, let us first assume
that we have a trusted third party that computes the following function G: it
takes as input the bits b1, . . . , b2n, recomputes b and then outputs one of the
two hardcoded values (m0,m1), depending upon b.

Clearly, given access to such a third party, performing OT is straightforward.
Our main idea is to implement such a party via garbled circuits. Namely, we
augment the functionality of the token T to compute a garbled circuit for G and
send it to the receiver R so that it can evaluate it on its own. In other words,
the token delegates the computation of G to R.

Note, however, that to evaluate the garbled circuit, the receiver needs to
obtain input wire labels via OT. Thus, it may seem that we come back in a full
circle and not made any progress at all.

The crucial observation is that the input wire labels for the garbled circuit
can be obtained in the same manner as earlier, without leaking any information
about b. In particular, the receiver uses the same process as described earlier
to obtain one of the two wire labels for each bit bi. Namely, it first queries the
token on a random bit zi to learn a random mask ri. At the same time, it obtains
the masked input wire labels for the ith input from S. It then uses the mask
ri to recover the wire label corresponding to bit bi. This process is repeated in
parallel for every position i.

Since the garbled circuit gets a full view of the input of the receiver, we
require the token to prove its well-formedness via a resettable zero-knowledge
argument of knowledge [CGGM00,COPV13]. This ensures that the garbled cir-
cuit cannot do an input-dependent abort and signal the bit b back to S. Note
that a similar proof could not have been given by the sender S about the phys-
ical token.

Trapdoor Mechanism. A crucial issue that arises while proving UC security of the
protocol is the following: when R is corrupted, the proof of well-formedness of
the garbled circuit given by the token T must be simulated in order to “force”
the correct output. However, the UC simulator cannot rewind the adversary,
nor does it have access to its code! To get around this issue, we implement the
following trapdoor generation mechanism that allows the simulator to recover a
trapdoor that can then be used to perform straight-line simulation. In the first
round, along with the other messages, R also sends a random string x. The sender
S then sends y = OWF(x), where OWF is a one-way function, and a signature
on y along with the other messages in the second round. Upon being queried
with y, the token proves, via a resettable witness-indistinguishable argument
of knowledge4 (RWIAOK), that either the garbled circuit is well-formed or it
knows an inverse of y. Here, we crucially rely on the asymmetry between the
simulator and the adversary: since an honest sender’s token is implemented by
the simulator, it already knows the trapdoor x that was sent by the adversarial
receiver during the protocol. In contrast, once an adversarial sender learns x in

4 Such argument systems can be constructed from one-way functions [COPV13].

584 S. Badrinarayanan et al.

the protocol execution, it has no way of signaling it to its token. At this juncture,
we remark that this trapdoor mechanism is crucially used in all our other secure
computation protocols as well.

We refer the reader to the technical sections for further details about our OT
protocol.

2.2 Two-Party Computation

A Cloning Strategy. Consider parties P1 and P2 with inputs x1 and x2 respec-
tively who wish to securely evaluate a function f in two rounds such that both
parties learn the output. The main idea at the heart of our protocol is the follow-
ing: instead of running a two-party computation protocol between remote players
that would require several rounds of interaction, we ask a player to construct a
clone of itself in the form of a stateless token that can then be remotely activated
by its creator to perform the actual two-party computation. We explain this in
more detail below.

P1 creates a clone of itself in the form of a stateless token T1 and sends it to
P2. P2 does the same thing by sending a token T2 to P1. Then, P2 can simply
execute a secure two-party computation protocol Π for f locally with T1, while
P1 can do the same with T2. An immediate problem with this idea is that since
the tokens are stateless, an adversarial P2, for example, can simply reset the
token T1 during the execution of Π, which may completely break its security.

Input Authentication. We solve this issue by allowing the sender to remotely
activate the token only for one input of the other party, in a similar manner as
in our OT protocol. We describe the strategy for P1. Upon being activated, P2’s
token first outputs a commitment to P2’s input, and proves the knowledge of
the committed value using a resettable zero-knowledge argument of knowledge
(RZKAOK). Party P1 then signs this commitment and sends it to P2. In the
course of the two-party computation with token T1, P2 proves that its behavior
is correct with respect to the input inside the signed commitment.

Implementing Two-Party Computation. We implement the actual two-
party computation between the token T1 and P2 via garbled circuits and OT.
(The two-party computation between T2 and P1 is implemented in a symmetric
manner.) In more detail, the token T1 prepares and outputs a garbled circuit
for the functionality f(x1, ·) and proves its well-formedness via a RZKAOK. In
order to evaluate this garbled circuit, P2 needs the wire labels corresponding to
its input x2, which in turn requires the use of OT.

Instead of performing OTs with the token T1, P2 runs multiple parallel exe-
cutions of OT with P1, where P2 plays the receiver and P1 plays the sender.
The role of the OT token in this protocol is played by T1. By using our new
two-round OT protocol, we are able to ensure that the communication between
P1 and P2 only requires two rounds. Barring several details concerning the secu-
rity proof (see below), this already yields a two-round two-party computation
protocol.

UC-Secure Multiparty Computation from One-Way Functions 585

We now briefly discuss some of the steps in the security proofs of the above
protocol. Consider a malicious P∗

2. The simulator can extract its input using the
non-black-box extractor of RZKAOK given by token T2. Here, the extractor
requires the code of the token T2 which is not an issue since T2 is disconnected
from its creator P∗

2 and the environment. Once it obtains the output y2 from the
ideal functionality, it can simulate the two-party computation protocol between
token T1 and P∗

2. Here, we will need to simulate the proof of the well-formedness
of the garbled circuit and we will rely on the trapdoor generation mechanism
used in the OT protocol to achieve this task.

Simulating Input Commitment. Another issue that arises is how does the
simulator generate the proofs for the input commitment? That is, in the ideal
world, consider the setting where the party P1 is corrupted. Now, the simula-
tor’s token T2 on behalf of honest party P2, while interacting with P1 will have
to prove via a RZKAOK that it indeed knows the honest party’s input inside
the commitment. In the ideal world, P2 does not know the honest party’s input
and so the commitment will be just to some random string. However, we can
not simulate the RZKAOK argument given by the token as we don’t have the
code of the environment that it is interacting with in the setting of UC secu-
rity. Neither can we use the trapdoor mechanism as the trapdoor is generated
only much later after interacting with the adversary’s token. We overcome this
issue by noting that we actually don’t need the full power of zero knowledge
here and instead, all we require is a resettable strong witness indistinguishable
argument of knowledge. That is, we just require that the input commitment
being used is changed honestly to an indistinguishable one (a commitment to
a random string) and simultaneously can change the proof to prove knowledge
of this committed value. As a result, we do the following: in the reduction, we
first simulate the RZKAOK argument. Here, we crucially use the fact that this
happens only inside the security reduction and the final UC simulator does not
need the environment’s code. We then switch the input commitment to be a
commitment of a random string by relying on the hiding property and finally,
switch the proof back to honestly prove knowledge of the committed value.

The above discussion ignores several subtleties that arise in the proof. A more
detailed explanation of our protocol and proof can be found in Sect. 5.

2.3 Multiparty Computation

We now describe the techniques used in our MPC protocol. At a high level, we
follow the same recipe as in the two party case: that is, each party creates a clone
of itself that can then be remotely activated by the creator to perform the actual
MPC. As in the two party setting, we will also use the trapdoor mechanism
described in the OT section to help simulate the resettable arguments in the
security proof. However, there are several additional challenges that arise in the
context of MPC and we describe them below.

586 S. Badrinarayanan et al.

First, lets describe the approach in more detail. Consider a set of n parties
P1, . . . ,Pn. Now, in order to offload the heavy computation of an actual MPC
protocol to remote players, we would require each party Pi to interact with
a set of (n − 1) tokens - one each from every other party, in an actual MPC
protocol. Unlike the two party setting where we essentially performed a two
party computation between a party and a token, here, the tokens can not talk
to each other! Therefore, each party Pi has to facilitate as the channel through
which the messages are exchanged between all these tokens taking party in the
MPC.

The next question is what sort of MPC protocol do we run amongst Pi and
the (n − 1) tokens? Recall that our goal is to base the security of our entire
protocol only on the existence of one way functions. In the two party setting,
we overcame this issue by running a semi-honest two party protocol based on
garbled circuits and oblivious transfer (OT) and composing it with appropriately
resettable arguments. We then used our new two round OT protocol to compute
the OTs required by the semi-honest construction. Taking a similar approach,
we would need to run a semi-honest secure MPC protocol that can be based
on just OT and one way functions. While there are several such protocols in
literature, a crucial issue that arises is that we would need to instantiate it with
an MPC protocol where all the OT executions can be made in parallel once
before the execution of the rest of the protocol. We know of protocols in the OT
hybrid model [Bea96,Kil88,IPS08,IKO+11] assuming just one way functions
that satisfy this structure and we use such an MPC protocol and use our two
round OT protocol to run the OT executions. As in the two party setting, we
perform the input authentication and trapdoor generation before running the
MPC protocol and this help facilitates the proof.

Extra Round. The description so far seems to suggest that the protocol runs in
only two rounds. However, unlike the two party setting, we need an extra round
for the following reason. Let’s recall how the actual MPC is computed. Consider
party Pi. In order to run the underlying MPC protocol, the (n − 1) tokens in
possession of Pi do act as the OT receiver in some executions of the initial parallel
OT calls. As a result, the tokens need to know the output of the OT invocations
before proceeding with the rest of the computation. However, its not at all clear
how to deliver this output to the tokens. To illustrate the issue more clearly with
an example, consider two tokens T1 and T2 in the presence of party Pi. Let’s
suppose that in some OT invocation, T1 is the sender and T2 is the receiver.
Now, clearly, the OT has to be performed “externally” via their token creators as
the respective sender and receiver and not amongst the tokens themselves using
Pi as the channel because our OT protocol is not resettably secure. Therefore,
lets suppose we perform the OT protocol amongst their respective creators P1

and P2. At the end of this OT, the party P2 only learns the output. However,
we need to transmit this to its token T2. To solve this, in the third round, we
have P2 send the OT outputs in an encrypted (and signed) form which is then
relayed to T2 via the party Pi.

UC-Secure Multiparty Computation from One-Way Functions 587

At this point, we stop and reflect why this was not an issue in the two party
setting. There, recall that the only OT to be performed involved the party Pi

as the receiver and the corresponding token (of the other party) as the sender.
Therefore, by just running the two round OT protocol, Pi learns the output and
we avoid this extra round.

Finally, to ease the exposition and simplify the proof, unlike in the two party
setting, we treat the token that computes the MPC different from the one that
takes part in the OT protocol. Hence, we require every party to send two tokens
to every other party. We refer the reader to the technical section for more details.

3 Preliminaries

UC Secure Computation. The UC framework, introduced by [Can01] offers
advanced security guarantees since it deals with the security of protocols that
may be arbitrarily composed. We include the formal definitions in the full ver-
sion.

OT. Ideal 2-choose-1 oblivious transfer (OT) is a two-party functionality that
takes two inputs m0,m1 from a sender and a bit b from a receiver. It outputs
mb to the receiver and ⊥ to the sender. We use Fot to denote this functionality.
The ideal oblivious transfer(OT) functionality Fot is formally defined in the sup-
plementary material. Given UC oblivious transfer, it is possible to obtain UC
secure two-party computation of any functionality [IPS08,IKO+11].

Token Functionality. We model a tamper-proof hardware token as an ideal
functionality FWRAP in the UC framework, following Katz [Kat07]. A formal
definition of this functionality can be found in the full version. Note that our
ideal functionality models stateful tokens. Although all our protocols use state-
less tokens, an adversarially generated token may be stateful.

Cryptographic Primitives. We use the following primitives all of which can
be constructed from one way functions: pseudorandom functions, digital sig-
natures, commitments, garbled circuits [GGM86,Yao86,Rom90,Nao91]. Addi-
tionally, we use the following advanced primitives recently constructed based
on one way functions: resettable zero knowledge argument of knowledge, reset-
tably sound zero knowledge argument of knowledge, resettable witness indistin-
guishable argument of knowledge and resettably sound witness indistinguishable
argument of knowledge [CGGM00,BGGL01,CPS13,BP13,COPV13,COP+14,
BP15,CPS16].

Interactive Proofs for a “Stateless” Player. We consider the notion of
an interactive proof system for a “stateless” prover/verifier. By “stateless”, we
mean that the verifier has no extra memory that can be used to remember the
transcript of the proof so far. Consider a stateless verifier. To get around the
issue of not knowing the transcript, the verifier signs the transcript at each step

588 S. Badrinarayanan et al.

and sends it back to the prover. In the next round, the prover is required to
send this signed transcript back to the verifier and the verifier first checks the
signature and then uses the transcript to continue with the protocol execution.
Without loss of generality, we can also include the statement to be proved as
part of the transcript. It is easy to see that such a scenario arises in our setting if
the stateless token acts as the verifier in an interactive proof with another party.

4 Oblivious Transfer

In this section, we construct a two round UC oblivious transfer protocol with
unbounded reusability based on one-way functions using only one stateless hard-
ware token. The token is sent by the OT sender to the OT receiver in an initial
token transfer phase.

We first describe our protocol for the case where the token sent by the OT
sender can only be used for a single OT protocol execution. We then describe
a modification to make the token reusable, such that it can be used to perform
an unbounded polynomial number of OT executions between the same pair of
parties, with different pairs of inputs.

Formally, we show the following theorem:

Theorem 4. Assuming one-way functions exist, there exists a two round UC
secure unbounded OT protocol in the stateless hardware token model.

Combining this with the result of Ishai et al. [IKO+11], we obtain the fol-
lowing corollary:

Corollary 5. Assuming one-way functions exist, there exists a two round UC
secure two-party computation protocol using one stateless hardware token where
only one party learns the output.

4.1 Overview

Consider a sender S with inputs (m0,m1) and a receiver R with choice bit b who
wish to run an OT protocol.

Token Transfer Phase. Initially, as part of the token transfer phase, S creates
a stateless token T that has a prf key kS and a signing key and verification key
pair (sk, vk) for a signature scheme hardwired into it. Additionally, S chooses
two random strings (r0, r1) and creates a circuit C that, given input b1, . . . , b2n,
outputs rb where b = 〈(b1, . . . , bn), (bn+1, . . . , b2n)〉. (Here, 〈x, y〉 denotes the
inner product of x and y.) The sender creates a garbled version of this circuit
C̃ and hardwires it into the token, together with the randomness used to create
the garbled circuit. S sends the token T to R.

Round 1. R picks a key kR for a pseudorandom function and sends c which is a
commitment to this key. Also, R picks 2n bits b1, . . . , b2n uniformly at random

UC-Secure Multiparty Computation from One-Way Functions 589

such that 〈B1,B2〉 = b where B1 = (b1, . . . , bn) and B2 = (bn+1, . . . , b2n). Then,
for each i ∈ [2n], R sends si = (bi ⊕ zi) where zi = PRF(kR, i).

Round 2. S computes a signature σ = Signsk(c). Also, for each i ∈ [2n], S
computes Ai,0 = PRF(kS , i, 0) and Ai,1 = PRF(kS , i, 1). Looking ahead, Ai,0 and
Ai,1 will be the token’s output when queried with zi = 0 or zi = 1 respectively.
Let the pair of labels for the ith input wire to the garbled circuit be Li,0 and
Li,1. If si = 0, S computes Zi,0 = (Li,0 ⊕ Ai,0) and Zi,1 = (Li,1 ⊕ Ai,1). On the
other hand, if si = 1, S computes Zi,0 = (Li,1 ⊕ Ai,0) and Zi,1 = (Li,0 ⊕ Ai,1).
Also, S computes α0 = (m0 ⊕ r0) and α1 = (m1 ⊕ r1). S sends (Zi,0,Zi,1) for
each i ∈ [2n] along with (α0, α1, σ).

Output Computation. First, R aborts if Verifyvk(c, σ) = 0. Now, for each
i ∈ [2n], R queries the token T using input (zi, c, i) along with a resettably
sound zero-knowledge argument of knowledge (RSZKAOK) for the following
NP statement:

There exists (kR, σ) such that c = Commit(kR),Verifyvk(c, σ) = 1 and
zi = PRF(kR, i).

T first verifies the proof. It aborts if the proof doesn’t verify. Then, T outputs
Ai,zi = PRF(kS , i, zi) and σi = Signsk(i). Now, for each i, R computes the label
value as Li,bi = Zi,zi ⊕ Ai,zi .

After this, R queries the token with the 2n signatures - σ1, . . . , σ2n and
receives a garbled circuit C̃ in response along with a resettable zero knowledge
(RZK) argument that it was generated correctly. In order to facilitate simulation
of this proof, we actually implement it via a resettable witness indistinguishable
argument of knowledge (RWIAOK) which can be proven by using a “trapdoor
witness” that is generated as follows: R, in the first round of the protocol, picks
a random x and sends it to S. In the second round, S computes y = OWF(x) and
a signature σy = Signsk(y). Now, when R queries the token to get the garbled
circuit, he also sends y and gives a RSZKAOK that he knows a signature on y
with respect to the verification key vk. The token, via the RWIAOK proves that
either the garbled circuit was correctly generated or that it knows a pre-image
of y. Using the corresponding label values, R evaluates the garbled circuit to
recover its output rb. R then uses this value along with αb to recover mb.

The correctness of the protocol follows by inspection. Below, we provide a
brief overview of the security proofs against malicious receivers and malicious
senders.

Security Against a Malicious Receiver. Consider a malicious receiver R∗. For
each i, let’s suppose R∗ queries T with (zi, c, i) and a valid RSZKAOK argument.
First, from the security of the pseudorandom function, observe that the output
of T for a query containing index i′ gives no information at all about its output
for index i �= i′. Therefore, we now need to argue that R∗ can not query the
token with (1 − zi, c

′, i) and receive a valid output. If R∗ produces a different
(c′) that would break the security of the signature scheme. Fixing (c′) = (c),

590 S. Badrinarayanan et al.

we observe that, from the statistical binding property of the commitment, there
is a unique kR and hence a unique value of zi = PRF(kR, i). Therefore, if R∗

produces a valid argument for z′
i �= zi, then that would violate the soundness of

the RSZKAOK system.
The simulation strategy in the ideal world is as follows: the simulator first

retrieves all the zi values by observing the queries to T. It then extracts the
receiver’s input b from the set of zi and si values. The simulator forwards b to
the ideal OT functionality to receive mb. It then computes a simulated garbled
circuit as output of the token. Note that by using additional signatures on each
output of the token, we force the receiver to query for the garbled circuit from
the token only after it gets all the label keys and messages from the sender. This
ensures that the simulator has enough time to extract the adversary’s input and
produce a simulated garbled circuit. Further, the simulator observes the query x
from the receiver in the first round and uses that as the witness in the RWIAOK
given by the token.

Security Against a Malicious Sender. To prove security against a malicious
sender S∗, the simulator, which receives the token’s code M from the ideal func-
tionality when the token is created, runs the code M on both zi = 0 and zi = 1
for every i by producing simulated RSZKAOK arguments as input. Note that
in order to produce simulated RSZKAOK arguments, the simulator requires the
code of the verifier which in our case is the token. Observe that this does not
violate UC security since the simulator only needs the code of the token (which it
does receive as per the model) and not the environment’s code. In its interaction
with the sender S∗, the simulator picks σi uniformly at random and not as the
output of a PRF. Using the sender’s responses Ai,0,Ai,1 along with the outputs
from the token - (Zi,0,Zi,1) on both zi = 0 and zi = 1, the simulator can com-
pute both the label values for each input wire to the garbled circuit. Further,
the simulator sends a random y as input to receive the garbled circuit C̃ and
produces a simulated RSZKAOK of the signature. Then, from the soundness of
the RWIAOK, the simulator is guaranteed that C̃ was indeed garbled correctly
using two messages (r0, r1). Finally, the simulator can extract both m0 and m1

using the garbled circuit C̃, all the labels and the messages α0, α1.5

Further, note that due to the “leakage resilience” of the inner product, S∗

doesn’t learn anything about b even if the malicious token selectively aborts.
That is, S∗ can’t learn b unless it learns all the bi values. For this, the token has
to signal information about each zi by selectively aborting to help S∗ recover the
respective bi and this can happen only with negligible probability since the zi’s
are essentially picked uniformly at random. That is, in the proof, the situation
where the simulator fails to extract both messages while the honest party doesn’t
abort happens only with negligible probability.

In the above protocol description, we treated the RSZKAOK and RWIAOK
argument systems as non-interactive protocols, but in reality they are interactive

5 An alternate proof strategy is for the simulator to directly extract the values r0 and
r1 using the extractor of the RWIAOK but we won’t delve further into that.

UC-Secure Multiparty Computation from One-Way Functions 591

proofs. This doesn’t increase the round complexity of our protocol since these
protocols are only executed between the receiver and the token. However, since
the token is stateless, it can’t “remember” anything about the proof. We fix
this by simply having the token sign the statement and transcript along with its
message in every round.

4.2 Construction

Notation. Let n denote the security parameter. Let OWF : {0, 1}n → {0, 1}2n

be a one-way function, PRF : {0, 1}n ×{0, 1}n+1 → {0, 1}n and PRF1 : {0, 1}n ×
{0, 1}n → {0, 1} be two pseudorandom functions, ,= (Commit,Decommit) be
a non-interactive 6computationally hiding and statistically binding commitment
scheme that uses n bits of randomness to commit to one bit, let (Gen,Sign,Verify)
be a signature scheme, (RSZKAOK.Prove,RSZKAOK.Verify) be a resettably-
sound zero-knowledge(RSZKAOK) argument of knowledge system for a “state-
less verifier” and (RWIAOK.Prove,RWIAOK.Verify) be a resettable witness indis-
tinguishable (RWIAOK) argument of knowledge system for a “stateless prover”
as defined in Sect. 3. Let (Garble,Eval) be a garbling scheme for poly sized cir-
cuits that take inputs of length (2n) bits and produces an output of length n
bits. Let’s say the sender S has private inputs (m0,m1) ∈ {0, 1}2n and receiver
R has private input b ∈ {0, 1}.

Note that all these primitives can be constructed assuming the existence of
one-way functions.

NP languages. We will use the following NP languages in our OT protocol.

1. NP language LOT
1 characterized by the following relation ROT

1 .
Statement : st = (z, i, c)
Witness : w = (kR, r, σ)
ROT

1 (st,w) = 1 if and only if :
– z = PRF1(kR, i) AND
– Verifyvk(c, σ) = 1
– c = Commit(kR; r)

2. NP language LOT
2 characterized by the following relation ROT

2 .
Statement : st = (y)
Witness : w = (σy)
ROT

2 (st,w) = 1 if and only if :
– Verifyvk(y, σy) = 1

3. NP language LOT
3 characterized by the following relation ROT

3 .
Statement : st = (C̃, y)
Witness : w = (C, k, r0, r1x)
ROT

3 (st,w) = 1 if and only if :
6 To ease the exposition, we use non-interactive commitments that are based on injec-

tive one-way functions. We describe later how the protocol can be modified to use
a two-round commitment scheme that relies only on one-way functions without
increasing the round complexity of the protocol.

592 S. Badrinarayanan et al.

– Either
• C̃ = Garble(C, k) (AND)
• circuit C on input (b1, . . . , b2n), outputs rb where
b = 〈(b1, . . . , bn), (bn+1, . . . , b2n)〉.

(OR)
– y = OWF(x).

OT Protocol. We now describe our two round OT protocol πOT .

– Token Exchange Phase:
S picks two random keys {kS , kV} $← {0, 1}2n for the function PRF and
computes (sk, vk) ← (Gen(n)). Then, S creates a single token TS con-
taining the codes in Figs. 1 and 2. S picks two random values r0, r1. Con-
sider a circuit C that, given input b1, . . . , b2n, outputs rb where b =
〈(b1, . . . , bn), (bn+1, . . . , b2n)〉. S creates a garbled version of this circuit -
C̃ using keys {Li,b} for all i ∈ [2n] and b ∈ {0, 1}. This is hardwired into the
token. S sends vk and TS to the receiver R.

– Oblivious Transfer Phase:
1. Round 1: R does the following:

• Choose a random key kR
$← {0, 1}n for the function PRF1 and a ran-

dom string x
$← {0, 1}n. Compute y = OWF(x).

• Compute c = Commit(kR; r) using a random string r
$← {0, 1}n2

.
• Pick 2n bits b1, . . . , b2n uniformly at random such that 〈B1,B2〉 = b

where B1 = (b1, . . . , bn) and B2 = (bn+1, . . . , b2n). Then, for each
i ∈ [2n], compute si = (bi ⊕ zi) where zi = PRF1(kR, i).

• Send c, x and {si}2n
i=1 to S.

2. Round 2: S does the following:
• Compute y = OWF(x), σ = Signsk(c; r′) and σy = Signsk(y).
• For each i ∈ [2n], compute Ai,si = PRF(kS , i, si).
• Compute α0 = (m0 ⊕ r0) and α1 = (m1 ⊕ r1).
• Send ({Ai,si}2n

i=1, σ, σy) along with (α0, α1) to R.
– Output Computation Phase: R does the following:

• Abort if Verifyvk(c, σ) = 0 or Verifyvk(y, σy) = 0.
• For each i ∈ [2n], query TS with input (zi, i, c, “prove”). Using the prover

algorithm (RSZKAOK.Prove), engage in an execution of an RSZKAOK
argument with TS (who acts as the verifier) for the statement st1 =
(zi, i, c) ∈ LOT

1 using witness w1 = (kR, r, σ). That is, as part of the
RSZKAOK, if the next message of the prover is msg, query TS with
input (zi, i, c,msg) in that round.

• Let {(Zi,zi , σi)}2n
i=1 be the outputs received from TS . For each i, compute

Li,bi = (Zi,si ⊕ Ai,si).
• Query TS with input (σ1, . . . , σ2n, y, “prove1”). Using the prover algo-

rithm (RSZKAOK.Prove), engage in an execution of an RSZKAOK argu-
ment with TS (who acts as the verifier) for statement (st2 = y) ∈ LOT

2

using witness w2 = (σy). That is, as part of the RSZKAOK, if the prover’s
next message is msg, query TS with input (σ1, . . . , σ2n, y,msg) in that
round.

UC-Secure Multiparty Computation from One-Way Functions 593

• Let (C̃, σC̃,y) be the output of TS . Using the algorithm (RWIAOK.Verify),
engage in an execution of a RWIAOK with TS (who acts as the prover)
for the statement st3 = (C̃, y) ∈ LOT

3 . As part of the RWIAOK, if the next
message of the verifier is msg, query TS with input (C̃, y, σC̃,y,msg) in that
round. Initially, query with (C̃, y, σC̃,y, “prove”). Abort if the argument
doesn’t verify.

• Using the keys {Li,bi}2n
i=1 and the garbled circuit C̃, run the algorithm

Eval to recover the value rb.
• Then, compute mb = (αb ⊕ rb)

Remarks:

1. To be more precise, we use a 2-round commitment scheme where the first
message is actually sent by the token (acting on behalf of the receiver of the
commitment) independent of the value being committed to. This has been
abstracted out as part of the commitment scheme.

2. The verification key vk can be output by the token itself instead of being sent
by S along with the token. This would then strictly imply that the token
exchange phase has no communication messages.

4.3 Token Reusability

Observe that the sender’s input messages (m0,m1) don’t appear in the token at
all. For each execution, the token just evaluates a garbled circuit C̃ generated
using a circuit C that contains two random strings (r0, r1). In the current con-
struction, the strings (r0, r1) and the garbled circuit C̃ were hardwired into the
token. Instead, we can just hardwire two PRF keys - kr and kC̃ in the token.
Then, the token can use the first key kr to generate the pair of random strings
(r0, r1) and thereby the circuit C for each execution. Similarly, the second key kC̃
can be used to generate the randomness required to garble the circuit for that
execution. Thus, the same token can be re-used to run an unbounded number
of oblivious transfer executions between the same pair of sender and receiver.

4.4 Security

We defer the formal proof of security to the full version of the paper.

5 Two Round Two-Party Computation

In this section, we study two-party computation in the simultaneous broadcast
channel using stateless hardware tokens. We first construct a two round UC
secure two-party computation protocol for general functions in this model based
on one-way functions using two tokens. Specifically, each party sends a single
token to the other party in a token exchange phase prior to the protocol com-
munication phase. Formally, we show the following theorem:

594 S. Badrinarayanan et al.

Constants: (kV , kS , vk, sk, C̃, {Li,b})
Case 1: If Input =(zi, i, c,msg):

– If msg = “prove”, the token does the following:
1. Consider a random tape defined by PRF(kV , i, 0).
2. Using the above randomness and the verifier algorithm (RSZKAOK.Verify),

initiate an execution of a RSZK argument with the querying party playing
the role of the prover for the statement st1 = (zi, i, c) ∈ LOT

1 . Output the
first message of the verifier.

– If msg �= “prove”, the token does the following:
1. Consider a random tape defined by PRF(kV , i, 0).
2. Using the above randomness and msg as the message sent by the prover, run

the verifier algorithm (RSZKAOK.Verify) to continue an execution of a RSZK
argument with the querying party playing the prover’s role for the statement
st1 = (zi, i, c) ∈ LOT

1 .
3. Compute the next message msg′ of the verifier.
4. If msg′ /∈ {accept, reject}, output msg′. If msg′ = reject, abort.
5. If msg′ = accept:

If zi = 0, compute Zi,0 = (Li,0 ⊕ Ai,0) and Zi,1 = (Li,1 ⊕ Ai,1). If zi = 1,
compute Zi,0 = (Li,1 ⊕ Ai,0) and Zi,1 = (Li,0 ⊕ Ai,1). Output (Zi,0,Zi,1, σi =
Signsk(i)).

Case 2: If Input =(σ1, . . . , σ2n, y,msg):

– Abort if Verifyvk(i, σi) = 0 for any i ∈ [2n].
– If msg = “prove”, the token does the following:

1. Consider a random tape defined by PRF(kV , 1n+1).
2. Using the above randomness and the verifier algorithm (RSZKAOK.Verify),

initiate an execution of a RSZKAOK with the querying party playing the
role of the prover for the statement st2 = y ∈ LOT

2 . Output the first message
of the verifier.

– If msg �= “prove”, the token does the following:
1. Consider a random tape defined by PRF(kV , 1n+1).
2. Using the above randomness and msg as the message sent by the prover,

run the verifier algorithm (RSZKAOK.Verify) to continue an execution of a
RSZKAOK with the querying party playing the prover’s role for the state-
ment st2 = y ∈ LOT

2 .
3. Compute the next message msg′ of the verifier.
4. If msg′ /∈ {accept, reject}, output msg′. If msg′ = reject, abort.
5. If msg′ = accept, output (C̃, σC̃,y = Signsk(C̃, y)).

Continues in Figure 2.

Fig. 1. Code of token TS

Theorem 6. Assuming one-way functions exist, there exists a two round UC-
secure two-party computation protocol over simultaneous broadcast channels for
any functionality f in the stateless hardware token model where each party sends
one token.

UC-Secure Multiparty Computation from One-Way Functions 595

Continuing from Figure 1.
Case 3: If Input =(C̃, y, σC̃,y,msg):

– Abort if Verifyvk(C̃, y, σC̃,y) = 0.
– If msg = “prove”, the token does the following:

1. Consider a random tape defined by PRF(kV , 0n+1).
2. Using the above randomness and the prover algorithm (RWIAOK.Prove),

initiate an execution of a RWIAOK with the querying party playing the role
of the verifier for the statement st3 = (C̃, y) ∈ LOT

3 using witness w3 =
(C, {Li,0, Li,1}, r0, r1, ⊥) where i ∈ [2n], b ∈ {0, 1}. Output the first message
of the prover.

– If msg �= “prove”, the token does the following:
1. Consider a random tape defined by PRF(kV , 0n+1).
2. Using the above randomness and msg as the message sent by the prover,

run the prover algorithm (RWIAOK.Prove) to continue an execution of a
RWIAOK with the querying party playing the verifier’s role for the statement
st3 ∈ LOT

3 .

Fig. 2. Continuing code of token TS

5.1 Construction

Let f be any two-party functionality. Consider two parties P1 and P2 with inputs
x1 ∈ {0, 1}n and x2 ∈ {0, 1}n respectively who wish to compute f on their joint
inputs. Below, we describe a two round protocol Π2pc for securely computing f .

Notation. Let n denote the security parameter and OWF : {0, 1}n → {0, 1}poly(n)
be a one-way function. Let PRF : {0, 1}n × {0, 1}n+1 → {0, 1}n be a pseudoran-
dom function ,= (Commit,Decommit) be a non-interactive7 statistically bind-
ing commitment scheme that uses n bits of randomness to commit to one bit
and (Gen,Sign,Verify) be a signature scheme. Let RZKAOK = (RZKAOK.Prove,
RZKAOK.Verify) be a resettable zero-knowledge argument of knowledge for a
“stateless prover”, RWIAOK = (RWIAOK.Prove,RWIAOK.Verify) be a resettable
witness indistinguishable argument of knowledge for a “stateless prover” and
RSZKAOK = (RSZKAOK.Prove,RSZKAOK.Verify) be a resettably-sound zero-
knowledge argument of knowledge for a “stateless verifier” as defined in Sect. 3.
Let (Garble,Eval) be a garbling scheme for poly sized circuits that take inputs
of length (n) bits and produces outputs of length n bits.

Let (OT1,OT2,OT3) denote the 2-message oblivious transfer protocol from
Sect. 4. That is, the algorithm OT1 is used by the receiver to compute the first
message ot1. The algorithm OT2 is used by the sender to compute the second

7 To ease the exposition, we use non-interactive commitments that are based on injec-
tive one-way functions. We describe later how the protocol can be modified to use
a two-round commitment scheme that relies only on one-way functions without
increasing the round complexity of the protocol.

596 S. Badrinarayanan et al.

message ot2 and the algorithm OT3 is used by the receiver to compute the
output.

NP languages. We will use the following NP languages in our protocol.

– Language L1 characterized by the following relation R1. Statement : st =
(b, c)
Witness : w = (a, x, r)
R1(st,w) = 1 if and only if :

• b = OWF(a) AND
• c = Commit(x; r)

– Language L2 characterized by the following relation R2:
Statement : st = (C̃, b, c)
w = (x, rc, C, k, a)
R2(st,w) = 1 if and only if :

• Either
∗ c = Commit(x; rc) AND
∗ C̃ = Garble(C, k) AND
∗ circuit C, on any input α, outputs f(x, α).

(OR)
• b = OWF(a)

– NP language L3 characterized by the following relation R3.
Statement : st = (c, vk1, b, vk2)
Witness : w = (σc, σb)
R3(st,w) = 1 if and only if :

• Verifyvk(c, σc) = 1 AND
• Verifyvk(b, σb) = 1

The Protocol. We now describe protocol Π2pc for UC secure two-party com-
putation in the stateless hardware token model. Let party P1 have input x1 and
P2 have input x2. Recall that function to be computed is denoted by f .

– Token Exchange Phase:
P1 does the following:

• Compute (skc2 , vkc2) ← Gen(n), (skb2 , vkb2) ← Gen(n), (sk1, vk1) ←
Gen(n). Pick keys {krzk

1 , krszk
1 , krwi

1 } $← {0, 1}3n for the PRF.
• Choose a random string a1 and compute b1 = OWF(a1). Also, compute

c1 = Commit(x1; rc1) using a random string rc1 .
• Consider a circuit C1 that, given an n-bit input (α), outputs f(x1, α).

Create a garbled version of this circuit - C̃1 using keys {L1i,b} for all i ∈
[n] and b ∈ {0, 1}. This is hardwired into the token. Compute σC̃1 =
Signsk1(C̃1; rC̃1) using a random string rC̃1 .

• Create a token T2pc
1 containing the codes in Figs. 3 and 4. Note that this

involves performing steps carried out in the token exchange phase of the
OT protocol in Sect. 4.

• P1 sends the token T2pc
1 to P2.

The protocol is symmetric. That is, P2 sends T2pc
2 to P1.

UC-Secure Multiparty Computation from One-Way Functions 597

– Communication Phase:
1. Round 1:

P1 does the following:
• For each i ∈ [n], compute ot1→2

1,i = OT1(x1,i) where x1,i denotes the
ith bit of xi. Here the superscript denotes that its sent from P1 to P2.

• Send (b1, c1, vkb2 , vkc2 , {ot1→2
1,i }n

i=1) to P2 where b1, c1 were computed
in the token exchange phase.

P2 performs the same operations symmetrically and sends (b2, c2,
vkb1 , vkc1 , {ot2→1

1,i }n
i=1) to P1.

2. Round 2:
P1 does the following:

• Using the verifier algorithm (RZKAOK.Verify), engage in an execution
of a RZKAOK with the token T2pc

2 (who acts as the prover) for the
statement that (st1) ∈ L1 where st2 = (b2, c2). This is done by query-
ing token T2pc

2 with input (“activate”). As part of the RZKAOK, if
the next message of the verifier is msg, query the token with input
(msg) in that round.

• Abort if the above argument doesn’t verify.
• Compute σc2 = Signskc2 (c2; rc2) and σb2 = Signskb2 (b2; rb2) using ran-

dom strings rc2 and rb2 .
• For each i ∈ [n], compute ot1→2

2,i = OT2(L1i,0, L
1
i,1, ot

2→1
1,i) where L1i,0

and L1i,1 are the labels of the garbled circuit C̃1.
• Send (σc2 , σb2 , ot

1→2
2,1 , . . . , ot1→2

2,n) to P2.
P2 symmetrically sends (σc1 , σb1 , ot

2→1
2,1 , . . . , ot2→1

2,n) to P1.
– Output Computation:
P1, does the following :

• For each i ∈ [n], run the “Output computation phase” of the OT protocol
using input x1,i and ot2→1

2,i as the messages from the sender. For any query
msg to be made to the token in the OT protocol, query token T2pc

2 using
input (“OT”, msg). Compute output L2i,x1,i for each i ∈ [n].

• Query T2pc
2 using input (c1, b1, “2pc”). Using the prover algorithm

(RSZKAOK.Prove), engage in an execution of an RSZKAOK argument
with T2pc

2 (who acts as the verifier) for statement st3 = (c1, b1, vkc1 , vkb1)
∈ L3 using witness w3 = (σc1 , σb1). That is, as part of the RSZKAOK, if
the next message of the prover is msg, query T2pc

2 with input (c1, b1,msg)
in that round.

• Let (C̃2, σC̃2) be the output of T2pc
2 . Then, using the verifier algorithm

(RWIAOK.Verify), engage in an execution of a RWIAOK with T2pc
2 (who

acts as the prover) for the statement st2 = (C̃2, b1, c1) ∈ L2. As part
of the RWIAOK, if the verifier’s next message is msg, query T2pc

2 with
input (C̃2, σC̃2 ,msg) in that round. Initially, query with (C̃2, σC̃2 , “prove”).
Abort if the argument doesn’t verify.

• Using the keys {L2i,x1,i}n
i=1, and the garbled circuit C̃2, run the algorithm

Eval to recover the output y1.
P2 performs the same operations symmetrically to receive output y2.

598 S. Badrinarayanan et al.

Note: For better understanding of the rest of the protocol, this figure actually de-
scribes the code of token T2pc

2 created by P2. The code of T2pc
1 is symmetrical.

Constants: (C̃2, σC̃2 , {L2
i,0, L

2
i,1}n

i=1, x2, c2, rx2 , a2, b2, k
rzk
2 , krszk2 , krwi

2 ,PRF
(skc1 , vkc1), (skb1 , vkb1), (sk2, vk2))

1. If input = (“OT”,msg), respond as done by the token in Section 4 using input
as msg.

2. If input = (“activate”), do the following: using a random tape defined by
PRF(krzk2 , 0n+1) and the prover algorithm (RZKAOK.Prove), initiate an execu-
tion of a RZKAOK with the querying party playing the role of the verifier for
the statement (st1) ∈ L1 where st1 = (b2, c2) using witness (a2, x2, rx2). Output
the first message of the prover.

3. If input = (msg), do the following: using a random tape defined by
PRF(krzk2 , 0n+1) and the prover algorithm (RZKAOK.Prove), continue an exe-
cution of a RZKAOK with the querying party playing the role of the verifier for
the statement (st1) ∈ L1 where st2 = (b2, c2) using witness (a2, x2, rx2). Output
the next message of the prover.

Continues in Figure 4.

Fig. 3. Code of token T2pc
2

Remark: In the above description, we were assuming non-interactive commit-
ments (which require injective one way functions) to ease the exposition. In
order to rely on just one way functions, we switch our commitment protocol to
a two-round one where the receiver sends the first message. Now, we tweak our
protocol as follows: after receiving the token, P1 receives the first round of the
commitment from the token T2 and uses that to compute c1. P2 does the same
thing symmetrically after interacting with T1.

Reusability: If we want to allow our tokens to be reused an unbounded number
of times for performing multiple two party computation protocols between the
same pair of parties, we can tweak the protocol as follows: instead of hardwiring
P1’s input x1 and the garbled circuit C̃1 inside the token T2pc

1 , we can just
hardwire an encryption key ek1 for a symmetric encryption scheme. Now, in
this setting, the tokens are exchanged apriori in an initial token exchange phase.
Then, in the first round, when P1 sends c1 = Commit(x1) and message b1 to
party P2, it also sends ct1 = encek1(x1) and σct1 = Sign(ct1). That is, it sends
an encryption of its input and a signature on this encryption. Party P2 is now
expected to also query the token with (ct1, σct1) along with c1, b1. The token
T2pc

1 verifies the signature, decrypts the message to learn the input x1 and then
proceeds to use it for the rest of the computation as before. A similar procedure is
also performed with respect to P2’s initial messages and T2pc

2 ’s token responses.

UC-Secure Multiparty Computation from One-Way Functions 599

Continuing from Figure 3.

4. If input = (c1, b1, “2pc”), do the following:
– If msg = “prove”, the token does the following: Using a random tape defined

by PRF(kRSZK2 , 1n+1) and the verifier algorithm (RSZKAOK.Verify), initiate
an execution of a RSZKAOK with the querying party playing the role of
the prover for the statement st3 = (c1, b1, vkc1 , vkb1) ∈ L3. Output the first
message of the verifier.

– If msg �= “prove”, the token does the following:
(a) Using a random tape defined by PRF(kRSZK2 , 1n+1) and msg as the mes-

sage sent by the prover, run the verifier algorithm (RSZKAOK.Verify) to
continue an execution of a RSZKAOK with the querying party playing
the prover’s role for the statement st3 = (c1, b1) ∈ L3.

(b) Compute the next message msg′ of the verifier.
(c) If msg′ /∈ {accept, reject}, output msg′. If msg′ = reject, abort.
(d) If msg′ = accept, output (C̃2, σC̃2).

5. if input = (C̃2, σC̃2 , “prove”)
– Abort if the signature σC̃2 doesn’t verify.
– using a random tape defined by PRF(krwi

2 , 0n+1) and the prover algorithm
(RWIAOK.Prove), initiate an execution of a RWIAOK with the querying
party playing the role of the verifier for the statement st2 = (C̃2, b1, c1) ∈ L2

using witness (x2, rc2 , C2, {L2
i,0, L

2
i,1}n

i=1, ⊥) .
– Output the first message of the prover.

6. If input = (C̃2, σC̃2 ,msg), do:
– Abort if the signature σC̃2 doesn’t verify.
– Using a random tape defined by PRF(krwi

2 , 0n+1) and the prover algorithm
(RWIAOK.Prove), continue an execution of a RWIAOK with the querying
party playing the role of the verifier for the statement st2 = (C̃2, b1, c1) ∈ L2

using witness (x2, rc2 , C2, {L2
i,0, L

2
i,1}n

i=1, ⊥).
– Output the next message of the prover.

Fig. 4. Code of token T2pc
2

5.2 Security

We formally prove security in the full version of the paper.

6 Three Round MPC

In this section, we use our unbounded reusable OT protocol to construct a three
round UC secure MPC protocol for general functions in the stateless hardware
token model amongst n parties based on one-way functions. In this protocol, each
party sends two tokens to every other party in a token exchange phase prior to
the protocol communication phase. Formally, we show the following theorem:

Theorem 7. Assuming one-way functions exist, there exists a three round pro-
tocol that UC-securely realizes any n-party functionality f in the stateless hard-
ware token model where each party sends two tokens to every other party.

600 S. Badrinarayanan et al.

6.1 Construction

Let f be any functionality. Consider n parties P1, . . . ,Pn with inputs inp1, . . . ,
inpn respectively who wish to compute f on their joint inputs. Below, we describe
a three round protocol Πmpc for securely computing f .

Notation. We first list some notation and the primitives used.

– Let λ denote the security parameter.
– Let OWF : {0, 1}λ → {0, 1}poly(λ) be a one-way function. Let PRF : {0, 1}λ ×

{0, 1}λ+1 → {0, 1}λ be a pseudorandom function, Com = (Commit,
Decommit) be a non-interactive statistically binding commitment scheme that
uses λ bits of randomness to commit to one bit, (Gen,Sign,Verify) be a sig-
nature scheme and (setup, enc, dec) be a private key encryption scheme.

– Let RWIAOK = (RWIAOK.Prove, RWIAOK.Verify) be a resettable wit-
ness indistinguishable argument of knowledge for a “stateless prover” and
RZKAOK = (RZKAOK.Prove,RZKAOK.Verify) be a resettable zero-knowledge
argument of knowledge for a “stateless prover” as defined in Sect. 3.

– Let (OT1,OT2,OT3) denote the 2-message oblivious transfer protocol from
Sect. 4. That is, the algorithm OT1 is used by the receiver to compute the
first message ot1. The algorithm OT2 is used by the sender to compute the
second message ot2 and the algorithm OT3 is used by the receiver to compute
the output.

– Let π denote a semi-malicious secure MPC protocol in the correlated ran-
domness model where the correlated randomness is the following: between
every pair of parties, there exists an OT channel. That is: between every pair
of parties Pi, Pj , there exists a set of tuples {s0,k, s1,k, bk}k∈[p(λ)] for some
fixed polynomial p such that Pi knows {s0,k, s1,k}k∈[poly(λ)] and Pj knows
{bk}k∈[poly(λ)]. We know that such a protocol can be constructed assuming
just the existence of one way functions [Bea96,Kil88,IPS08,IKO+11]. Lets
say its an � round protocol. Let π.Roundi denote the algorithm used by any
party to generate the message in round i and let π.Out denote the algorithm
used to compute the final output. Let Simπ denote the simulator for this pro-
tocol. We require that Simπ can generate simulated correlated randomness
without knowing the output of the protocol or the input and randomness of
the corrupted parties.

NP languages. We will use the following NP languages in our protocol.

– Language L1 characterized by the following relation R1. Statement : st =
(b, c)
Witness : w = (a, x, r)
R1(st,w) = 1 if and only if :

• b = OWF(a) AND
• c = Commit(x; r)

UC-Secure Multiparty Computation from One-Way Functions 601

– Language L2 characterized by the following relation R2:
Statement : st = (b, c,Trans,msg, i)
w = (x, rc, cor.rand, a)
R2(st,w) = 1 if and only if :

• Either
∗ c = Commit(x; rc) AND
∗ msg = π.Roundi(x,Trans, cor.rand)

(OR)
• b = OWF(a)

The Protocol. We now describe protocol Πmpc in the stateless hardware token
model. Recall that each party Pi has input inpi and the function to be computed
is denoted by f .

– Token Exchange Phase:
Each party Pi does the following:
1. For each party Pj , create token Ti→j

ot as done in Sect. 4.
2. Compute (ski, vki) ← Gen(λ), eki ← setup(λ). Pick keys {krzk

i , krwi
i } $←

{0, 1}2n for the PRF.
3. Choose a random string ai and compute bi = OWF(ai).
4. Pick a random string ri to run the MPC protocol π. Set xi = (inpi||ri).

Compute ci = Commit(xi; rci) using a random string rci .
5. For each party Pk, create a token Ti→k

mpc containing the code in Fig. 5.
6. Pi broadcasts all the tokens created above.

– OT Phase:
1. For each k ∈ [n], every pair of parties Pi and Pj with i > j perform

a set of p(λ) executions of the Oblivious Transfer protocol from Sect. 4
using the token Ti→j

ot . Here, Pi picks random inputs (s0, s1) for each
execution independently and Pj picks a random bit b in each execution
independently. This process takes two rounds.

2. In round 3, every party Pi does the following: For each k ∈ [n], for each
j ∈ [n] and each OT execution t with party Pj , do:
(a) If i > j, compute ct = enc(ek, {s0,t, s1,t}) and σct = Signsk(ct). Output

(ct, σct).
(b) If i < j, compute ct = enc(ek, {b, sb,t}) and σct = Signsk(ct). Output

(ct, σct).
– Input Commitment Phase:

1. Round 1:
Each party Pi broadcasts (bi, ci) where bi, ci were computed in the token
exchange phase.

2. Round 2:
Each party Pi does the following:

• For each j ∈ [n], using the verifier algorithm (RZKAOK.Verify), engage
in an execution of a RZKAOK with the token Tj→i

mpc (who acts as the
prover) for the statement that (stj) ∈ L1 where stj = (bj , cj). As part
of the RZKAOK, if the next message of the verifier is msg, query the
token with input (“RZKAOK”,msg) in that round.

602 S. Badrinarayanan et al.

• Abort if the above argument doesn’t verify.
• For each j ∈ [n], compute and broadcast σcj = Signsk(cj) and σbj =

Signsk(bj).
– Computation Phase:

Each party Pi does the following :
1. Run an execution of the MPC protocol π amongst itself and the (n − 1)

“MPC” tokens it received. That is, protocol π is executed amongst the
n parties T1→i

mpc, . . . ,T
(i−1)→i
mpc ,Pi,T

(i+1)→i
mpc , . . . ,Tn→i

mpc for the functionality
f where the kth party uses input inpi, randomness ri and correlated ran-
domness as the decrypted values in the set of authenticated ciphertexts ct
broadcast by party Pk in the OT phase.8 Initiate the protocol by sending
“MPC” to each token.

2. Here, Pi acts as the channel and sends the messages broadcast by any
party (aka token) to all the other parties (aka tokens). Along with each
message, to each token Tj→i

mpc, Pi also sends the following:
• The set of ct, σct broadcast by party Pj in the OT phase. This is the

encryption of the correlated randomness for the token Tj→i
mpc in the

protocol π.
• For each k ∈ [n], (bk, ck, σbk , σck) which are the authenticated input

commitments.
3. Whenever a token Tj→i

mpc sends a message msgj in round t, addition-
ally it also acts as a prover in an execution of a RWIAOK argument
with every other token Tk→i

mpc as the verifier for the statement stj,t =
(bk, cj ,Trans,msgj , t) ∈ L2 using witness wj,t = (xj , rcj , cor.rand,⊥).
Here, Trans denotes the transcript of the protocol upto round (t − 1)
and cor.rand is the decryption of all the ct it receives. Once again Pi acts
as the channel.

4. Finally, compute and output out = π.Out(xi,Trans) where Trans denotes
the transcript of the protocol.

Remark: In the above description, we were assuming non-interactive commit-
ments (which require injective one way functions) to ease the exposition. In order
to rely on just one way functions, we switch our commitment protocol to a two-
round one where the receiver sends the first message.

Reusability: If we want to allow our tokens to be reused an unbounded number
of times for performing multiple MPC protocols between the same set of parties,
we can tweak the protocol as follows: instead of hardwiring Pi’s input xi =
(inpi, ri) inside the tokens Ti→j

mpc sent by Pi, we can just hardwire an encryption
key eki for a symmetric encryption scheme. Now, in this setting, the tokens are
exchanged apriori in an initial token exchange phase. Then, in the first round,
when Pi sends ci = Commit(xi) and message bi, it also sends cti = enceki(xi) and

8 To ease the exposition, we assume that xk and rk are hardwired inside each token.
Instead, we can have each party broadcast encrypted signed versions of them which
are sent to the respective token along with the other messages.

UC-Secure Multiparty Computation from One-Way Functions 603

Note: For better understanding of the rest of the protocol, this figure actually
describes the code of token Tj→i

mpc created by party Pj and sent to Pi. The code of
Ti→j

mpc is symmetrical.

Constants: (xj , cj , rxj , aj , bj , k
rzk
j , krwi

j ,PRF, (sk, vk), ek)

1. If input = (“RZKAOK”,msg): using a random tape defined by PRF(krzkj , 0n+1)
and the prover algorithm (RZKAOK.Prove), engage in an execution of a RZKAOK
with the querying party playing the role of the verifier for the statement (stj) ∈ L1

where stj = (bj , cj) using witness (aj , xj , rcj) where msg is the next message of
the verifier in the protocol. Output the next message of the prover.

2. If input = (“MPC”, {ct, σct}, {bk, ck, σbk , σck}), do the following:
(a) If the signatures verify, engage in an execution of the MPC protocol π with

(n − 1) other parties for the functionality f using input inpj , randomness
rj and correlated randomness as the set of decryptions of {ct}. Here, the
querying party acts as the channel.

(b) In round t, if party Pk sends a message msg, also engage in an execution
of a RWIAOK argument acting as the verifier with party Pk as the prover
for the statement stk,t = (bj , ck,Trans,msg, t) ∈ L2 where Trans denotes the
transcript of the protocol upto round (t − 1).

(c) In round t, after sending a message msg, for every other party Pk, engage in
an execution of a RWIAOK argument using the prover algorithm with party
Pk acting as the verifier for the statement stj,t = (bk, cj ,Trans,msg, t) ∈ L2

using witness wj,t = (xj , rcj , cor.rand, ⊥) where Trans denotes the transcript
of the protocol upto round (t − 1) and cor.rand is the decryption of the set
of ct using the secret key ek.

Fig. 5. Code of token Tj→i
mpc

σcti = Sign(cti). That is, it sends an encryption of its input and a signature on
this encryption. Every party Pj is now expected to also query the token Ti→j

mpc

with (cti, σcti) along with ci, bi in every query. The token verifies the signature,
decrypts the message to learn the input xi and then proceeds to use it for the
rest of the computation.

6.2 Security

We formally prove security in the full version of the paper.

References

[AAG+14] Agrawal, S., Ananth, P., Goyal, V., Prabhakaran, M., Rosen, A.: Lower
bounds in the hardware token model. In: TCC (2014)

[Bea96] Beaver, D.: Correlated pseudorandomness and the complexity of private
computations. In: STOC (1996)

[BGGL01] Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound
zero-knowledge and its applications. In: FOCS (2001)

604 S. Badrinarayanan et al.

[BJOV18] Badrinarayanan, S., Jain, A., Ostrovsky, R., Visconti, I.: Non-interactive
secure computation from one-way functions. In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 118–138. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03332-3 5

[BP13] Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation
and applications to resettable cryptography. In: STOC (2013)

[BP15] Bitansky, N., Paneth, O.: On non-black-box simulation and the impos-
sibility of approximate obfuscation. SIAM J. Comput. 44, 1325–1383
(2015)

[Can01] Canetti, R.: Universally composable security: a new paradigm for cryp-
tographic protocols. In: FOCS (2001)

[CDPW07] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable secu-
rity with global setup. In: TCC (2007)

[CGGM00] Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-
knowledge (extended abstract). In: STOC (2000)

[CGS08] Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure
computation using tamper-proof hardware. In: EUROCRYPT (2008)

[CJS14] Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global
random oracle. In: CCS (2014)

[CKS+14] Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.-S.: (Effi-
cient) universally composable oblivious transfer using a minimal number
of stateless tokens. In: TCC (2014)

[COP+14] Chung, K.-M., Ostrovsky, R., Pass, R., Venkitasubramaniam, M., Vis-
conti, I.: 4-round resettably-sound zero knowledge. In: TCC (2014)

[COPV13] Chung, K.-M., Ostrovsky, R., Pass, R., Visconti, I.: Simultaneous reset-
tability from one-way functions. In: FOCS (2013)

[CPS13] Chung, K.-M., Pass, R., Seth, K.: Non-black-box simulation from one-way
functions and applications to resettable security. In: STOC (2013)

[CPS16] Chung, K.-M., Pass, R., Seth, K.: Non-black-box simulation from one-
way functions and applications to resettable security. SIAM J. Comput.
45(2), 415–458 (2016)

[DKM11] Döttling, N., Kraschewski, D., Müller-Quade, J.: Unconditional and com-
posable security using a single stateful tamper-proof hardware token. In:
TCC (2011)

[DKM12] Döttling, N., Kraschewski, D., Müller-Quade, J.: Statistically secure
linear-rate dimension extension for oblivious affine function evaluation.
In: ICITS (2012)

[DKMN15a] Döttling, N., Kraschewski, D., Müller-Quade, J., Nilges, T.: From state-
ful hardware to resettable hardware using symmetric assumptions. In:
ProvSec (2015)

[DKMN15b] Döttling, N., Kraschewski, D., Müller-Quade, J., Nilges, T.: General sta-
tistically secure computation with bounded-resettable hardware tokens.
In: TCC (2015)

[DMMN13] Döttling, N., Mie, T., Müller-Quade, J., Nilges, T.: Implementing reset-
table UC-functionalities with untrusted tamper-proof hardware-tokens.
In: TCC (2013)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33, 792–807 (1986)

[GIS+10] Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding
cryptography on tamper-proof hardware tokens. In: TCC (2010)

https://doi.org/10.1007/978-3-030-03332-3_5

UC-Secure Multiparty Computation from One-Way Functions 605

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs, In:
CRYPTO (2008)

[HPV16] Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable
security in the tamper-proof hardware model under minimal complexity.
In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 367–399.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-
4 15

[HPV17] Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Constant round
adaptively secure protocols in the tamper-proof hardware model. In: PKC
(2017)

[IKO+11] Yuval, I., Kushilevitz, E., Prabhakaran, M., Sahai, A.: Efficient non-
interactive secure computation. In: EUROCRYPT (2011)

[IPS08] Yuval, I., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivi-
ous transfer - efficiently. In: CRYPTO (2008)

[Kat07] Katz, J.: Universally composable multi-party computation using tamper-
proof hardware. In: EUROCRYPT (2007)

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: STOC (1988)
[Kol10] Kolesnikov, V.: Truly efficient string oblivious transfer using resettable

tamper-proof tokens. In: TCC (2010)
[MMN16] Mechler, J., Müller-Quade, J., Nilges, T.: Universally composable (non-

interactive) two-party computation from untrusted reusable hardware
tokens. IACR Cryptol. ePrint Archive 2016, 615 (2016)

[MS08] Moran, T., Segev, G.: David and goliath commitments: UC computation
for asymmetric parties using tamper-proof hardware. In: EUROCRYPT
(2008)

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4, 151–
158 (1991)

[Nil15] Nilges, T.: The Cryptographic Strength of Tamper-Proof Hardware. PhD
thesis, Karlsruhe Institute of Technology (2015)

[Rom90] Rompel, J.: One-way functions are necessary and sufficient for secure sig-
natures. In: Proceedings of the Twenty-Second Annual ACM Symposium
on Theory of Computing, pp. 387–394. ACM (1990)

[Yao86] Yao, A.C.C.: How to generate and exchange secrets (extended abstract).
In: FOCS (1986)

https://doi.org/10.1007/978-3-662-53641-4_15
https://doi.org/10.1007/978-3-662-53641-4_15

Efficient UC Commitment Extension
with Homomorphism for Free

(and Applications)

Ignacio Cascudo1(B), Ivan Damg̊ard2, Bernardo David3, Nico Döttling4,
Rafael Dowsley5, and Irene Giacomelli6

1 IMDEA Software Institute, Madrid, Spain
ignacio.cascudo@imdea.org

2 Aarhus University, Aarhus, Denmark
ivan@cs.au.dk

3 IT University of Copenhagen, Copenhagen, Denmark
bernardo@bmdavid.com

4 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
nico.doettling@gmail.com

5 Bar Ilan University, Tel Aviv, Israel
rafael@dowsley.net

6 Protocol Labs, Inc., Basel, Switzerland
irene@protocol.ai

Abstract. Homomorphic universally composable (UC) commitments
allow for the sender to reveal the result of additions and multiplica-
tions of values contained in commitments without revealing the values
themselves while assuring the receiver of the correctness of such com-
putation on committed values. In this work, we construct essentially
optimal additively homomorphic UC commitments from any (not neces-
sarily UC or homomorphic) extractable commitment, while the previous
best constructions require oblivious transfer. We obtain amortized linear
computational complexity in the length of the input messages and rate
1. Next, we show how to extend our scheme to also obtain multiplicative
homomorphism at the cost of asymptotic optimality but retaining low
concrete complexity for practical parameters. Moreover, our techniques
yield public coin protocols, which are compatible with the Fiat-Shamir
heuristic. These results come at the cost of realizing a restricted ver-
sion of the homomorphic commitment functionality where the sender is
allowed to perform any number of commitments and operations on com-
mitted messages but is only allowed to perform a single batch opening

I. Cascudo—This work was done while Ignacio Cascudo was with Department of Math-
ematics, Aalborg University, Denmark.
I. Damg̊ard and R. Dowsley—This project has received funding from the European
Research Council (ERC) under the European Unions’ Horizon 2020 research and inno-
vation programme under grant agreement No 669255 (MPCPRO).
B. David—This work was partially supported by DFF grant number 9040-00399B
(TrA2C).
I. Giacomelli—This work was done while Irene Giacomelli was with the ISI Foundation
(Turin, Italy) and supported by Intesa Sanapolo Innovation Center.

c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 606–635, 2019.
https://doi.org/10.1007/978-3-030-34621-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_22

Efficient UC Commitment Extension with Homomorphism 607

of a number of commitments. Although this functionality seems restric-
tive, we show that it can be used as a building block for more efficient
instantiations of recent protocols for secure multiparty computation and
zero knowledge non-interactive arguments of knowledge.

1 Introduction

A commitment scheme is the digital equivalent of a locked box containing a
committed message chosen by a prover. Once the prover gives away the box
to a verifier, the content cannot be changed, the commitment is binding. On
the other hand, the verifier cannot look into the box so the message is hidden
until the prover gives away the key to the box. Commitments are perhaps the
most fundamental building block in cryptographic protocols and despite the
conceptual simplicity of the primitive, it has far-reaching consequences and many
applications, e.g., to coin-flipping, zero-knowledge proofs and many other things.

The simplest form of commitment that only have the basic binding and hiding
properties follow from one-way functions. On the other hand, one may wish
for many other properties, such as non-malleability, security under composition
etc. The strongest form of commitments, namely UC secure commitments, has
all these properties, but on the other hand can only be implemented under
setup assumptions, such as the common reference string model. In this model,
UC commitments imply secure key exchange, so since some sort of public-key
technology seems to be required, it was believed for a long time that even if UC
commitments are the gold standard for security, they must be much less efficient
than the weaker type that only requires symmetric primitives.

However, in [19] and independently in [9,24], this was shown to be false: one
can push the use of public-key technology into a preprocessing phase that is only
needed once and for all and the cost of which does not depend on the number
of commitments to be done later. Notably, the actual commitment and opening
protocols only requires simple finite field algebra and a pseudorandom generator.
After this, a long line of research optimized this approach [17,22], culminating
in [16] where it was shown that after doing O(k + s) string OTs in the setup
phase (where s is the statistical security parameter and k is the message length)
one can commit at rate approaching 1, that is, the communication required is
k + o(1) bits, furthermore the computational complexity is linear in k1. Finally,
the commitments are additively homomorphic, i.e., one commits to vectors over
a finite field F, and if a, b ∈ F

k have been committed, prover and verifier can
compute a commitment to a + b which, if opened, would reveal only the sum.

The first construction from this line of work [19] had also a multiplicatively
homomorphic property, namely the prover can send the verifier a single message,
and this allows the verifier to compute a commitment to a ∗ b, the coordinate-
wise (Schur) product of the vectors. However, subsequent constructions did not
have this property.
1 All this holds in an amortized sense, assuming we make enough commitments so

that the cost of the setup phase is dwarfed.

608 I. Cascudo et al.

So, while this line of research has resulted in constructions that are optimal in
several respects, it still leaves some important and natural questions unanswered:

Is it overkill to use OT in the setup phase? All efficient earlier schemes
[16,17,19,22,24] use OT in the preprocessing phase, but this is in general a
stronger primitive than commitment. Even UC commitments do not always
imply OT, this depends on the setup assumption. It is therefore natural to ask
if we can make do with only commitment in the preprocessing, thus obtaining
a proper “commitment extension” result.

Can we make an efficient multi-verifier scheme? The commitments from
[16], and in fact all constructions from this line of work, can only work with
one verifier because security against a corrupt prover depends on the verifier’s
private choice of selections bits in the initial OT’s. Thus, if a prover needs
to commit towards several verifiers, the only known solution is to run many
instances of the scheme, one for each verifier and then on top of this have the
prover convince the verifiers that (s)he committed to the same message. This
seems quite far from an ideal solution.

Can we also get multiplicatively homomorphic schemes? The most effi-
cient constructions are not multiplicative, but one earlier scheme was in fact
“fully homomorphic” [19]. So it is natural to ask if we can solve the above
problems and also get multiplication at the same time.

1.1 Our Contributions

In this paper, we come up with positive answers to all of the above questions. We
present a protocol for UC secure commitments that has the well known structure
consisting of a preprocessing phase and a phase where the actual commitments
are built, computed on and opened. In addition to achieving the same asymptotic
efficiency as the former best scheme [16] in the single-verifier additive case, our
protocol supports multiple verifiers and multiplicative homomorphism.

In contrast to previous work, however, the preprocessing only makes use
of a commitment scheme (and not OT)2. Notably, however, this commitment
scheme does not need to be homomorphic, and in fact it does not even need
to be UC secure. It just needs to be extractable and hiding - here, extractable
means that the simulator can extract the committed value from a corrupt prover.
For UC full security one usually needs also equivocation (when the prover is
honest, the simulator can fake a commitment and later open it to any value).
The commitment scheme we build uses only a PRG and finite field arithmetic
after the preprocessing. It has rate 1, it is additively homomorphic, and linear
time. Security does not depend on any secret choices of the verifier, so the scheme
easily extends to multiple verifiers with no essential loss of security. Finally, we
show how to make the scheme multiplicative, the scheme is then only quasilinear,
and we get constant rate instead of rate 1.
2 The scheme of [9] can be constructed from an extractable commitment and an equiv-

ocal commitment. However, it is intrinsically incompatible with homomorphic oper-
ations.

Efficient UC Commitment Extension with Homomorphism 609

All these results come at the cost that what we implement is a slightly weaker
commitment functionality than the standard one. Namely, it allows opening of
committed values only in a final stage and after this the functionality stops
working. Equivalently, one can think of this as a functionality one can use exactly
as the standard one, except that when opening a value the prover simply tells
the verifier what the committed value is. Of course a corrupt prover can lie, but
there is a final verification stage where the prover will be caught if he lied.

We show that despite this limitation there are a wide range of applications
for the scheme. While we describe these in more detail below, it is already intu-
itively clear that our functionality is sufficient for ZK proofs, for instance: the
verifier needs to decide to accept or reject only at the end of the protocol so it is
sufficient that a cheating prover is caught at that point. As a simple example of
the power of our construction, consider that UC secure commitments are easy
to implement in the (global) random oracle model [11]: one simply inputs the
message concatenated with some randomness to the oracle and uses the output
as the commitment. Of course, a random oracle based scheme has no homo-
morphic properties: a random oracle “by definition” has no such structure. But
nevertheless, we can use it as commitment scheme in our preprocessing and get
a homomorphic scheme. In general, one can think of our protocol as a “commit-
ment extension” result. It is similar to the well known OT extension protocols,
but incomparable because we get extra homomorphic properties (and perhaps
UC security) for free, but we realize a slightly weaker functionality.

Techniques. On the technical side, our approach is best described by referring to
previous work such as [16]: the main idea there was that the prover commits to
a vector a by encoding it using a linear code C. He then additively secret shares
each coordinate in the codeword C(a) to get two shares for each position. Using
the OT’s from the preprocessing, the verifier will learn one out of the two shares
for each position, however, the prover does not know which shares the verifier
has. To open, the prover must reveal C(a) and all shares, and the verifier can
now check that the prover sent a codeword and that the shares are consistent
with C(a) and with the shares the verifier knows.

Intuitively, since the verifier has only one share of each coordinate, C(a) is
unknown to him at commit time. On the other hand, if the prover wants to open
a different value, he must change to a different codeword. However, if C has large
minimum distance, this means the prover must change many coordinates and
therefore must lie about many of the shares. Since he does not know which shares
he can change without being detected, this can only be done with negligible
success probability3.

In order to avoid having to do an OT for each codeword position and each
commitment, instead the prover chooses seeds si,j for a PRG, where i points to
a codeword position and j = 0, 1. The shares for all the commitments are then

3 This argument works, even if the prover did not choose a codeword at commit time.
If we also want to have additive homomorphism, we need to check that the prover
chose something that it at least close to a codeword. This can be done using, e.g.,
the interactive proximity testing from [16].

610 I. Cascudo et al.

constructed by running the PRG on all these seeds and for each i an OT is done
that transfers either si,0 or si,1 to the verifier.

Our key observation now is that it is actually sufficient if the prover simply
commits to the seeds in the preprocessing phase, if we are careful later. Namely,
we run the same protocol as we would have done had the OTs been used, but
at the end of the protocol, the verifier will ask the prover to reveal either si,0

or si,1 for each i. Note that, as long as a corrupt prover cannot predict which
seeds he will be asked for, he is in the exactly same position as in the original
protocol. The verifier will receive the same information as before, but cannot
verify it until the end, so hence openings can only be done, or at least can only
be verified, at the end. A corrupt verifier clearly has no advantage compared to
the OT based protocol: he learns the same information, only later.

A very nice “side effect” of this is that we can now easily have several verifiers.
They just need to receive the prover’s initial commitments (assuming, of course
that the initial commitments support this). Then at the end, they can decide,
e.g., by coin flipping which seeds to ask for.

We also extend the commitment scheme to allow for proving multiplicative
relations on committed values. For this purpose, we require the code C to have
the property that its square C∗2 is also a good code, with large minimum dis-
tance. Here C∗2 is defined to be the span of all pairwise Schur-products of words
from C. Moreover, we replace the 2-party additive secret sharing by 3-party lin-
ear secret sharing which is multiplicative: the Schur-product of sets of shares of
u, v ∈ F is (essentially) an additive secret sharing of uv. The effect of all this
is that if we multiply two commitments to a, b by multiplying corresponding
components of them, we obtain a commitment to a ∗ b of essentially the same
form as in the original protocol, except that underlying code is now C∗2. See
more details within. The new demands we place on C imply that we can only
get constant rate and not rate 1 and also that complexity will be quasilinear
rather than linear. The main motivation for this construction is that we get the
multiplicative property and at the same time have multiple verifiers and use
only commitment for preprocessing. An earlier scheme that achieves multiplica-
tive homomorphism was constructed in [19] via building first an elaborate VSS
(verifiable secret sharing) scheme. Our construction obtains similar asymptotic
complexity, but it requires less conditions on the underlying linear code. Indeed,
our multiplicatively homomorphic scheme can be constructed from any linear
code whose minimum distance and squares minimum distance are large enough.
In contrast, [19] requires in addition a code whose duals minimum distance is
large enough (i.e., equivalent to multiplicative secret sharing scheme). Thanks
to this, for fixed security parameters we can give an explicit bound for the rate
of our multiplicative commitment based on recent results on squares of cyclic
codes (details in Sect. 4).

1.2 Applications

Efficient Zero-Knowledge Arguments. A recent line of research is concerned with
the construction of practically efficient succinct non-interactive zero-knowledge

Efficient UC Commitment Extension with Homomorphism 611

arguments of knowledge (e.g. [1,10,31]) with a particular focus on optimizing
the efficiency of the prover while keeping verification complexity sub-linear.

One such approach, originally dating back to [5], compiles a public coins inter-
active proof system for a language L into a zero-knowledge proof system for the
same language. This transformation is conceptually simple: Instead of sending
its messages to the verifier in the clear, the prover provides only commitments
of his messages to the verifier. At the end of the protocol, the prover provides a
zero-knowledge proof to the verifier which asserts that the verifier of the original
proof system would accept the committed transcript. This transformation has
received renewed interest in the light of efficient P-delegation schemes [25,29].

Wahby et al. [31] observed that this approach can be implemented in a par-
ticularly efficient way if the verifier of the interactive proof system is algebraic:
In this case the zero-knowledge proof in the transformation of [5] can be imple-
mented very efficiently via homomorphic commitments.

We show that using our homomorphic commitment scheme, this transforma-
tion can be performed at a very low overhead, i.e. we can convert any public
coin interactive proof system with algebraic verifier into an honest-verifier zero-
knowledge proof system such that the communication complexity of the protocol
grows only by a small factor and both prover and verifier incur only a small con-
stant factor overhead. Using the Fiat Shamir transform [20], we can convert such
a proof system into a succinct non-interactive zero-knowledge argument.

Committed MPC. The so called “Committed MPC” protocol [21] requires a mul-
tiparty additively homomorphic commitment protocol that supports additions
of commitments generated by different senders. While a generic approach for
constructing such schemes from any two-party additively homomoprhic commit-
ments was proposed in [21], their generic construction for t parties requires t2

calls to the underlying commitment scheme. If instantiated with the previously
best two-party additively homomorphic commitment protocol of [16] using a
[n, k, s] code, this construction would require nt2 OTs plus extra communica-
tion in the order of O(nmt2) to commit to m messages of length k. We provide
a new generic construction from multi-receiver additively homomorphic com-
mitments which can be instantiated with our new protocols, requiring only nt
non-homomorphic commitments (e.g. random oracle commitments) plus extra
communication in the order of O(smt) to achieve the same.

Insured MPC. The topic of MPC with financial penalties has attracted increas-
ing attention recently [2,4,6,7,26]. The main idea is to combine MPC tech-
niques with cryptocurrencies in order to provide monetary incentives for the
participants to act honestly during the protocol execution. Insured MPC [4], the
most efficient solution to date, uses a publicly verifiable additively homomorphic
multi-receiver commitment as an important component to build the protocol.
However, the employed commitment scheme is a bottleneck in that construc-
tion as its complexity grows quadratically in the number of participants. Using
our new techniques together with an authenticated bulletin board (which is also
used in the previous construction), it is possible to dramatically improve the
performance of publicly verifiable additively homomorphic multi-receiver com-
mitment. We can obtain extremely efficient instantiations, for instance, by using

612 I. Cascudo et al.

the canonical random oracle commitment scheme. The improvement in com-
putational and communication complexity achieved for this application is very
similar to that of the Committed MPC case, since the previously best protocol
for publicly verifiable additively homomorphic multi-receiver commitments [4]
has a very similar structure to the multi-sender protocol of [21]. Thus, we basi-
cally go from quadratic to linear in the number of players.

2 Preliminaries

In this section we establish notation and introduce notions that will be used
throughout the paper. We borrow much of the notation from [16].

Notation. The set of the n first positive integers is denoted [n] = {1, 2, . . . , n}.
Given a finite set D, sampling a uniformly random element from D is denoted
r

$← D. Vectors of elements of some field are denoted by bold lower-case letters,
while matrices are denoted by bold upper-case letters. We denote finite fields by
F and write Fq for the finite field of size q. For z ∈ F

k, z[i] denotes the i’th entry
of the vector, where z[1] is the first element of z. The coordinate-wise (Schur)
product of two vectors is denoted by ∗, i.e. if a, b ∈ F

n, then a ∗ b ∈ F
n and

(a ∗ b)[i] = a[i]b[i]. If A ⊆ [n], we will use πA to denote the projection that
outputs the coordinates with index in A of a vector. For a matrix M ∈ F

n×k,
we let M[·, j] denote the j’th column of M and M[i, ·] denote the i’th row. The
row support of M is the set of indices I ⊆ {1, . . . , n} such that M[i, ·] �= 0.

We say that a function ε is negligible in n if for every positive polynomial p
there exists a constant c such that ε(n) < 1

p(n) when n > c. Two ensembles X =
{Xκ,z}κ∈N,z∈{0,1}∗ and Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random variables are
said to be statistically indistinguishable, denoted by X ≈s Y , if for all z it holds
that | Pr[D(Xκ,z) = 1]−Pr[D(Yκ,z) = 1] | is negligible in κ for every probabilistic
algorithm (distinguisher) D. In case this only holds for computationally bounded
(non-uniform probabilistic polynomial-time (PPT)) distinguishers we say that
X and Y are computationally indistinguishable and denote it by ≈c.

2.1 Coding Theory

For a vector x ∈ F
n, we denote the Hamming-weight of x by ‖x‖0 = |{i ∈ [n] :

x[i] �= 0}|. Let C ⊂ F
n be a linear subspace of Fn. We say that C is an F-linear

[n, k, d] code, if C has dimension k and it holds for every nonzero x ∈ C that
‖x‖0 ≥ d, i.e., the minimum distance of C, denoted dist(C), is at least d. The
distance dist(C,x) between C and a vector x ∈ F

n is the minimum of ‖c − x‖0
when c ∈ C. The rate of an F-linear [n, k, d] code is k

n and its relative minimum
distance is d

n .
A matrix G ∈ F

n×k is a generator matrix of C if C = {Gx : x ∈ F
k}, and we

write C(x) = Gx. The code C is systematic if it has a generator matrix G such
that the submatrix given by the top k rows of G is the identity matrix I ∈ F

k×k.
For an F-linear [n, k, d] code C, we denote by C�m the m-interleaved prod-

uct of C, which is defined by C�m = {C ∈ F
n×m : ∀i ∈ [m] : C[·, i] ∈ C}.

Efficient UC Commitment Extension with Homomorphism 613

In other words, C�m consists of all Fn×m matrices for which all columns are in C.
We can think of C�m as a linear code with symbol alphabet Fm, where we obtain
codewords by taking m arbitrary codewords of C and bundling together the com-
ponents of these codewords into symbols from F

m. For a matrix E ∈ F
n×m, ‖E‖0

is the number of nonzero rows of E, and the code C�m has minimum distance
at least d′ if all nonzero C ∈ C�m satisfy ‖C‖0 ≥ d′. With this definition, it is
easy to see that dist(C�m) = dist(C).

For an F-linear [n, k, d] code C, we denote by C∗2 the Schur square of C, which
is defined as the linear subspace of Fn generated by all the possible vectors of
the form v ∗ w with v,w ∈ C. This is an [n, k̂, d̂] code where k̂ ≥ k and d̂ ≤ d.

2.2 Interactive Proximity Testing and Linear Time Building Blocks

We will use the interactive proximity testing technique and corresponding linear
time building blocks introduced in [16]. As stated in [16], this technique consists
in the following argument: suppose we sample a function H from an almost
universal family of linear hash functions (from F

m to F
�), and we apply this to

each of the rows of a matrix X ∈ F
n×m, obtaining another matrix X′ ∈ F

n×�;
because of linearity, if X belonged to an interleaved code C�m, then X′ belongs
to the interleaved code C��. Theorem 1 states that we can test whether X is
close to C�m by testing instead if X′ is close to C�� (with high probability over
the choice of the hash function) and moreover, if these elements are close to the
respective codes, the set of rows that have to be modified in each of the matrices
in order to correct them to codewords are the same.

Definition 1 (Almost Universal Linear Hashing [16]). We say that a fam-
ily H of linear functions F

n → F
s is ε-almost universal, if it holds for every

non-zero x ∈ F
n that

Pr
H

$← H
[H(x) = 0] ≤ ε,

where H is chosen uniformly at random from the family H. We say that H is
universal, if it is |F−s|-almost universal. We will identify functions H ∈ H with
their transformation matrix and write H(x) = H · x.

Theorem 1 (Theorem 1 in [16]). Let H : Fm → F
2s+t be a family of |F|−2s-

almost universal F-linear hash functions. Further let C be an F-linear [n, k, s]
code. Then for every X ∈ F

n×m at least one of the following statements holds,
except with probability |F|−s over the choice of H $← H:

1. XH� has distance at least s from C�(2s+t)

2. For every C′ ∈ C�(2s+t) there exists a C ∈ C�m such that XH� − C′ and
X − C have the same row support

Remark 1 ([16]). If the first item in the statement of the Theorem does not
hold, the second one must hold. Then we can efficiently recover a codeword C
with distance at most s − 1 from X using erasure correction, given a codeword
C′ ∈ C�(2s+t) with distance at most s − 1 from XH�. More specifically, we
compute the row support of XH� − C′, erase the corresponding rows of X and

614 I. Cascudo et al.

recover C from X using erasure correction4. The last step is possible as the
distance between X and C is at most s − 1.

In order to achieve linear time and optimal rate (i.e., rate-1) in our construc-
tions, we will need to instantiate interactive proximity testing with a family of
linear time almost universal linear hash functions and a linear time encodable
error correcting code that achieves rate 1. Theorems 3 and 6 from [16] guarantee
that explicit constructions of such building blocks exist. The following theorem
is a strengthening of Theorem 3 of [16] in that the output of the hash functions
is guaranteed to be uniformly random given that its first l inputs are uniformly
random. The full proof is given in the full version of this paper [18].

Theorem 2. Fix a finite field F of constant size, let s ∈ N be a statistical
security parameter, let n ∈ N and let l = s + O(log(n)). Then there exists an
explicit family H : F

l+n → F
l of |F|−s-universal hash functions that can be

represented by O(s2) bits and computed in time O(n). Moreover, it holds for
any function H ∈ H that if x = (x1, . . . , xl, . . . xl+n) is such that the x1, . . . , xl

are independently uniform and xl+1, . . . , xl+n are independent of x1, . . . , xl, then
H(x) is distributed uniformly random.

2.3 Universal Composability

The protocols presented in this paper are proven secure in the Universal Com-
posability (UC) framework introduced by Canetti in [12]. We refer the reader to
the full version of this paper [18] and [12] for further details.

Adversarial Model: Our protocols will be proven secure against static and active
adversaries: the adversary may deviate from the protocol in any arbitrary way
but only corrupt parties before the protocol execution starts.

Setup Assumption: Since UC commitment protocols cannot be obtained in the
plain model [13], they need a setup assumption, i.e., a resource available to all
parties before the protocol starts. In this work, our goal is to prove security
in the FCOM-hybrid model [12,14], where the parties have access to an ideal
(non-homomorphic) commitment functionality (our constructions are described
in the FCOM-hybrid model for the sake of clarity, but they actually only need the
underlying commitments to be extractable). Functionality FCOM is described in
Fig. 1. Notice that we describe a version of FCOM that operates with a set V of
multiple receivers instead of a single receiver. However, FCOM can operate as a
standard two-party commitment functionality with a single receiver by setting
V = {V1}, in which case it can be realized in the CRS model under different
assumptions with security against static malicious adversaries by a number of
protocols such as [8,13,27].

4 Recall that erasure correction for linear codes can be performed efficiently via gaus-
sian elimination.

Efficient UC Commitment Extension with Homomorphism 615

A recent result by Camenisch et al. [11] shows that the “canonical” ran-
dom oracle commitment realizes this functionality in the Global Random Oracle
model without extra computational assumptions achieving security against static
malicious adversaries. We observe that the protocol in [11] supports multiple
receivers. In this protocol, the sender commits to a message m with randomness
r by sending to the receiver the output c of the global random oracle when
queried on (r,m) and opens by revealing (r,m), which allows the receiver to
verify by querying the global random oracle with the pair (r,m) received as
opening and checking that the response is equal to c. Given that the random
oracle functionality in this model is global, any number of receivers who have
received the commitment and the opening can trivially obtain the same result
in the verification.

Ideal Functionalities: In Sect. 3, we construct an additively homomorphic string
commitment protocol that UC-realizes functionality FAHCOM, described in
Fig. 2. Similarly to a functionality of [16], FAHCOM augments the standard multi-
ple commitments functionality FMCOM from [14] by introducing a command for
adding two previously stored commitments and an abort command in the Com-
mit Phase. Moreover, FAHCOM gives an honest sender commitments to random
messages instead of letting it submit a message as input, which can be straight-
forwardly used to commit to arbitrary messages with additive homomorphism as
shown in [16]. In order to model corruptions, functionality FAHCOM lets a cor-
rupted sender choose the messages it wants to commit to. The abort is necessary
to deal with inconsistent commitments that could be sent by a corrupted party.
However, differently from [16] or [14], this functionality can operate with a set
V of multiple receivers but only allows for a single opening of a batch of com-
mitments, after which it halts, not allowing further commitments, additions or
openings. Notice that this functionality can operate as a two-party commitment
functionality with a single receiver by setting V = {V1}. Section 4 shows how
to modify the construction of Sect. 3 to obtain a protocol that UC-realizes the
augmented functionality FMHCOM (Fig. 3), which also allows for multiplication
of committed values.

Functionality FCOM

FCOM is parameterized by commitment length λ. FCOM interacts with a sender P ,
a set of receivers V = {V1, . . . , Vt} and an adversary S and proceeds as follows:
– Commit Phase: Upon receiving a message (commit, sid, ssid, P, V,m)

from P where m ∈ {0, 1}λ

, record the tuple (ssid, P, V,m) and send
(receipt, sid, ssid, P, V) to every receiver Vi ∈ V and S. Ignore subsequent
commit messages with the same ssid.

– Open Phase: Upon receiving a message (reveal, sid, ssid) from P , if a tuple
(ssid, P, V,m) was previously recorded, then send (reveal, sid, ssid, P, V,m) to
every receiver Vi ∈ V and S. Otherwise, ignore.

Fig. 1. Functionality FCOM.

616 I. Cascudo et al.

Functionality FAHCOM

FAHCOM interacts with a sender P , a set of receivers V = {V1, . . . , Vt} and an
adversary S and proceeds as follows:
– Commit Phase: The length of the committed messages λ is fixed and known

to all parties.
• If P is honest, upon receiving a message (commit, sid, ssid, P, V) from

P , sample a random m ← {0, 1}λ, record the tuple (ssid, P, V,m),
send the message (commit, sid, ssid, P, V,m) to P and send the message
(receipt, sid, ssid, P, V) to every receiver Vi ∈ V and S. Ignore any future
commit messages with the same ssid from P to V .

• If P is corrupted, upon receiving a message (commit, sid, ssid, P, V,m) from
P , where m ∈ {0, 1}λ, record the tuple (ssid, P, V,m) and send the mes-
sage (receipt, sid, ssid, P, V) to every receiver Vi ∈ V and S. Ignore any
future commit messages with the same ssid from P to V .

• If a message (abort, sid, ssid) is received from S, the functionality halts.
– Addition: Upon receiving a message (add, sid, ssid1, ssid2, ssid3, P, V) from

P : If tuples (ssid1, P, V,m1), (ssid2, P, V,m2) were previously recorded
and ssid3 is unused, record (ssid3, P, V,m1 + m2) and send the message
(add, sid, ssid1, ssid2, ssid3, P, V, success) to P , every receiver Vi ∈ V and S.

– Open Phase: Upon receiving a message (reveal, sid, ssid1, . . . , ssido) from P ,
for every ssid ∈ {ssid1, . . . , ssido}, if a tuple (ssid, P, V,m) was previously
recorded, then send (reveal, sid, ssid, P, V,m) to every receiver Vi ∈ V and S,
if not, send nothing. Finally, halt.

Fig. 2. Functionality FAHCOM

Functionality FMHCOM

Augment the functionality FAHCOM (Figure 2) with the step:
– Multiplication: Upon receiving a message (mult, sid, ssid1, ssid2, ssid3, P, V)

from P : If tuples (ssid1, P, V,m1), (ssid2, P, V,m2) were previously recorded
and ssid3 is unused, record (ssid3, P, V,m1 ∗ m2) and send the message
(mult, sid, ssid1, ssid2, ssid3, P, V, success) to P , every receiver Vi ∈ V and S.

Fig. 3. Functionality FMHCOM

3 Rate-1 Linear Time Additively Homomorphic
Commitments

In this section, we construct a linear time additively homomorphic commitment
protocol that achieves amortized rate-1 and linear time in the length of commit-
ted messages assuming an extractable (not homomorphic) commitment and a
PRG as building blocks. Protocol ΠAHCOM realizes FAHCOM, which only allows
for commitments to random messages. Interestingly, in this case we can achieve
sublinear communication complexity in the commitment phase while maintain-
ing rate-1 in the opening phase. Even though committing to random messages is

Efficient UC Commitment Extension with Homomorphism 617

useful for a number of applications (e.g. [23]) that FAHCOM is sufficient for build-
ing a protocol ΠARBHCOM that commits to arbitrary messages achieving rate-1
and running in linear time as discussed in [16]. Essentially, Protocol ΠAHCOM

achieves the same asymptotic efficiency as the former best UC commitment
scheme [16], while supporting multiple verifiers and without requiring OT in the
preprocessing phase, resulting in better concrete efficiency.

The main idea is to use a “delayed watchlist” mechanism where the sender
first commits to seeds that will be stretched by a PRG to instantiate the watchlist
but only allows the receivers to learn the watch bits in a later point, at which
the receivers choose a random subset of the seed commitments to be opened.
Basically, the watchlist is viewed as a matrix R = R0 + R1 such that, for each
row of R, the receiver learns only a row from either R0 or R1 without revealing
to the sender which one. Instead of using a number of 1-out-of-2 random OTs
to obtain seeds that are stretched to generate each line of R0 or R1 in the
beginning of the protocol as in previous works, the receiver relies on simple
commitments to each seed sent by the sender. This scheme achieves rate-1 using
similar techniques as [16]: first having the sender adjust the bottom bits of the
watchlist matrix R so that its columns are codewords of random strings (in
the top bits of R) and then using interactive proximity testing to convince the
receiver that these columns are indeed “very close” to codewords. In order to
“open” a commitment, the sender reveals the columns from both R0 and R1

corresponding to that commitment, allowing a receiver who knows rows from
each of these matrices to check that the revealed column vector corresponds to
the watchlist with high probability. However, in our new scheme, the receiver
only chooses which commitments to seeds will be revealed after the sender has
sent this opening information. Otherwise, the sender would learn which rows of
R0 or R1 the receiver would check, being able to open commitments to arbitrary
messages. Protocol ΠAHCOM is described in Figs. 4 and 5.

In comparison to the protocol of [16], our scheme realizes a functionality with
a caveat that only one opening of a batch of commitments is allowed (after which
it terminates). However, this limited functionality is sufficient for a number of
applications that we discuss in later sections. Moreover, our protocol has two
important properties that the scheme of [16] lacks: it is public coin and supports
multiple receivers. Notice that the watch bits of the receiver (represented by a
row from either R0 or R1) are chosen at random but in public by the receiver.
Hence, given an underlying commitment that support multiple receivers (e.g.,
the canonical random oracle commitment scheme), it is sufficient to have the
receivers run a simple commit-then-open coin tossing protocol to choose the
watch bits they will learn, then have the sender publicly open his seed commit-
ments. Interestingly, having the receivers broadcast their coin tossing commit-
ments at the beginning of the protocol (before the sender broadcasts opening
information), allows the simulator to both equivocate and extract commitments
solely by extracting the underlying commitments. Notice that the simulator can
equivocate a commitment by knowing in advance the watch bits to be learned by
the receivers and extract a commitment by learning the whole watchlist, which
are fixed in the sender’s seed commitments. In order to eliminate interaction

618 I. Cascudo et al.

with the receivers, the random watch bits to be opened can be selected with the
help of a random oracle following the Fiat-Shamir heuristic.

Efficiency. We achieve the same asymptotic complexity as [16] but with a pre-
processing phase that can be instantiated with lower concrete complexity since it
only requires extractable commitments. All phases of the ΠAHCOM run in linear
time (requiring a constant number of operations per committed bit) when we
use a linear time PRG (i.e., with a constant number of operations per generated
bit [30]) a linear time encodable code C (e.g. the one from [16]) and a linear time
linear almost universal hash function H (e.g. the one from [16]). The cost of the
calls to FAHCOM is amortized over the number of commitments, which does not
need to be very large if FAHCOM is instantiated with cheap random oracle based
commitments. The commitment phase achieves sublinear communication com-
plexity when committing to random messages, since a rate-1 [n, k, s]-code C is
used and only W,T0,T1 (of size O(1)) are exchanged. Even if the trick from [16]
is used to commit to arbitrary messages, only k extra bits need to be sent per
message. In this case, our protocol achieves rate-1, meaning that the amortized
overhead per committed bit is o(1) for a sufficiently large number of commit-
ments. The opening phase as described in Fig. 5 does not achieve rate-1, since the
sender has to send both A0[·, j] A1[·, j]. However, it can be modified to achieve
rate-1 using the same technique from [16], where a batch of commitments are
opened by performing interactive proximity testing on a matrix A′ containing
the columns of A corresponding to the commitments to be opened. The receivers
can use another coin-tossing to select a hash function H, then the sender sends
A′, T0

′ = A0
′H and T1

′ = A1
′H. The receivers check that A′H = T0

′ + T1
′,

that all columns in A′ are in C and that ΔT0
′ + (I − Δ)T1

′ = B′H, where B′

contains the columns from B corresponding to the commitments being checked.
This technique can be proven secure with the same techniques used for the case
of a corrupt sender.

Security Analysis. For the sake of clarity, we will prove Protocol ΠAHCOM’s secu-
rity in the FCOM-hybrid model, i.e. assuming access to an ideal functionality for
commitments. The proof of security for Protocol ΠAHCOM is very similar to that
of the scheme of [16], with the exception that all information the simulator needs
to extract and equivocate commitments will be obtained from FCOM instead of
an OT functionality. However, our simulator will only rely on the fact that it can
extract the messages sent by the adversary to FCOM before it opens its commit-
ments. Essentially, our simulators only need an underlying commitment scheme
that is extractable, not a full blown UC commitment scheme (which would also
allow the simulator to open the underlying commitments to arbitrary messages).
The security of Protocol ΠAHCOM is formally stated in Theorem 3.

Theorem 3. Protocol ΠAHCOM UC-realizes FAHCOM in the FCOM-hybrid
model with computational security against a static adversary. Formally, there
exists a simulator S such that for every static adversary A, and any envi-
ronment Z, the environment cannot distinguish ΠAHCOM composed with
FCOM and A from S composed with FAHCOM. That is, IDEALFAHCOM,S,Z ≈c

HYBRIDFCOM
ΠAHCOM,A,Z .

Efficient UC Commitment Extension with Homomorphism 619

Protocol ΠAHCOM

Let C be a systematic binary linear [n, k, s] code, where s is the statistical security
parameter and n is k + O(s). Let H be a family of linear almost universal hash
functions H : {0, 1}m {0, 1}l. Let PRG : {0, 1}� {0, 1}m+l be a pseudoran-
dom generator. Protocol ΠAHCOM is run by a sender P and a set of receivers
V = {V1, . . . , Vt}, who interact with FCOM and proceed as follows:

Commitment Phase

1. On input (commit, sid, ssid1, . . . , ssidm, P, V), P proceeds as follows:

(a) For i ∈ [n] and j ∈ {0, 1}, sample si,j
$ {0, 1}� and send

(commit, sid, ssidi,j , P, V, si,j) to FCOM.
(b) Compute Rj[i, ·] = PRG(si,j) and set R = R0 + R1 so that R0,R1 forms

an additive secret sharing of R.
(c) Adjust the bottom n − k rows of R so that all columns are codewords in

C by constructing a matrix W with dimensions as R and 0s in the top k
rows, such that A := R + W ∈ C�m+l (recall that C is systematic). Set
A0 = R0,A1 = R1 + W and broadcast (sid, ssid1, . . . , ssidm,W) (only
sending the bottom n − k = O(s) rows).

2. Upon receiving all messages (receipt, sid, ssidi,j , P, V) from FCOM and
(sid, ssid1, . . . , ssidm,W) from P , every receiver Vi ∈ V proceeds as follows:

(a) Sample ri
$ {0, 1}n and r′

i
$ {0, 1}�, and send (commit, sid, ssid, Vi, V

′, ri)
and (commit, sid, ssid′, Vi, V

′, ri
′) to FCOM

a, where V ′ = P ∪ V \ Vi.
(b) Upon receiving (receipt, sid, ssid, Vj , V

′) and (receipt, sid, ssid′, Vj , V
′)

from FCOM for all Vj ∈ V \ Vi, send (reveal, sid, ssid′) to FCOM.
(c) Upon receiving (reveal, sid, ssid′, Vj , V

′, rj
′) from FCOM for all Vj ∈ V \Vi,

set r′ = r1
′ ⊕ . . . ⊕ rt

′.
3. Upon receiving (commit, sid, ssid, Vi, V

′) and (reveal, sid, ssid′, Vj , V
′, rj

′) from
FCOM for all Vj ∈ V , P proceeds as follows:
(a) Use r′ = r1

′ ⊕ . . . ⊕ rt
′ as a seed for a random function H ∈ H (note that

we identify the function with its matrix and all functions in H are linear).
(b) Set matrices P, P0 and P1 as the first l columns of A, A0 and A1, re-

spectively, and remove these columns from A, A0 and A1. Renumber the
remaining columns of A, A0 and A1 from 1 and associate each ssidi (com-
mitment id from step 1) with a different column index in these matrices.
Notice that P = P0 + P1.

(c) For i ∈ {0, 1}, compute Ti = AiH + Pi and broadcast
(sid, ssid1, . . . , ssidm,T0,T1). Note that AH + P = A0H + P0 + A1H +
P1 = T0 + T1, and AH + P ∈ C�l.

aWe abuse notation and assume that each receiver Vi in ΠAHCOM has access to
an instance of FCOM that takes as message with the appropriate length where it
acts as sender and where all other receivers plus sender P act as receivers.

Fig. 4. Commit phase for the protocol ΠAHCOM.

Proof. We give the proof in the full version of this paper [18]. Note that con-
structing a simulator for the case where all parties are honest is trivial. Hence,

620 I. Cascudo et al.

Protocol ΠAHCOM

Addition of Commitments

1. On input (add, sid, ssid1, ssid2, ssid3, P, V), P finds indexes i and j correspond-
ing to ssid1 and ssid2 respectively and check that ssid3 is unused. P appends
the column A[·, i] + A[·, j] to A, likewise appends to A0 and A1 the sum of
their i-th and j-th columns, and associates ssid3 with the new column index.
P broadcasts (add, sid, ssid1, ssid2, ssid3). Note that this maintains the prop-

erties A = A0+A1 and A ∈ C�m′
, where m′ is the current number of columns

(after appending columns for addition results).
2. Upon receiving (add, sid, ssid1, ssid2, ssid3), every receiver Vi ∈ V stores the

message.

Opening

1. On input (reveal, sid, ssid1, . . . , ssido), P finds the set J =
{j1, . . . , jo} of indexes associated to ssid1, . . . , ssido and broadcasts
(sid, ssid1, . . . , ssido, (A0[·, j],A1[·, j])j∈J).

2. Upon receiving message (sid, ssid1, . . . , ssido, (A0[·, j],A1[·, j])j∈J), every Vi ∈
V sends (reveal, sid, ssid) to FCOM and waits for (reveal, sid, ssid, Vj , V

′, rj)
from FCOM for all Vj ∈ V \ Vi. Vi sets r = r1 ⊕ · · · ⊕ rt and sets the diagonal
matrix Δ such that it contains r[1], . . . , r[n] in the diagonal.

3. Upon receiving (reveal, sid, ssid, Vj , V
′, rj) from FCOM for all Vj ∈ V , P sets

r = r1 ⊕ . . . ⊕ rt, sends (reveal, sid, ssidi,r[i]) to FCOM for i ∈ [n] and halts.
4. Upon receiving (reveal, sid, ssidi,r[i], P, V, si,r[i]) from FCOM for i ∈ [n], every

receiver Vj ∈ V proceeds as follows:
(a) Compute S[i, ·] = PRG(si,r[i]), obtaining a matrix S. Note that each row of

S is a row from either R0 or R1, which form an additive secret sharing of R
held by P . Set B = ΔW+S. Define the matrix Q as the first l columns of
B and remove these columns from B, renumbering the remaining columns
from 1. Note that, for A from the commitment phase, A = A0 +A1, B =
ΔA1 + (I − Δ)A0, A ∈ C�m , i.e., A initially held by P is additively
shared and for each row index, V knows either a row from A0 or from A1.

(b) Check that ΔT1 + (I − Δ)T0 = BH + Q and that T0 + T1 ∈ C�l. If any
check fails, abort. Notice that T0,T1 form an additive sharing of AH+P,
where V knows some of the shares, namely the rows of BH + Q.

(c) For every message (add, sid, ssid1, ssid2, ssid3) received from P , append
B[·, j] + B[·, i] to B, where i and j are the index corresponding to ssid1

and ssid2 respectively and associate ssid3 with the new column index. Note
that this maintains the property B = ΔA1 + (I − Δ)A0.

(d) For every j ∈ J , check that A0[·, j] + A1[·, j] ∈ C and that, for i ∈ [n],
it holds that B[i, j] = Ar[i][i, j] (recall that r[i] is the i-th entry on the
diagonal of Δ). If all checks succeed, for every j ∈ J , output the first k
positions in A0[·, j] + A1[·, j] as the opened string and halt. Otherwise,
abort by outputting (sid, ssidj , ⊥).

Fig. 5. Addition of commitments and opening phase for the protocol ΠAHCOM.

Efficient UC Commitment Extension with Homomorphism 621

the theorem follows by establishing security against an adversary that corrupts
P and all but one receiver in V or an adversary who corrupts all receivers in V .
See the full version for each of these.

4 Achieving Multiplicative Homomorphism

In this section, we modify our additively homomorphic commitment protocol
described Sect. 3 (protocol ΠAHCOM) so that it is also homomorphic for (coor-
dinatewise) multiplication of messages. That is, if we denote the scheme from
Sect. 3 by com, our goal is that given commitments com(a), com(b) the prover
can construct a commitment com(a∗b). In order to do this we need to introduce
a second auxiliary commitment scheme prodcom, also described below.

Both com and prodcom can be obtained by changing the instantiation of
two of the building blocks of protocol ΠAHCOM. Namely, at the core of the
construction of the commitment scheme in Sect. 3 (as well as in the ones from
[16,17,22]) there is a linear error correcting code C, which is used to encode the
message and which needs to have a large enough minimum distance; and there
is the 2-out-of-2 additive secret sharing scheme Add2, which is applied to each
coordinate of the encoding. Our modifications are as follows: first, we need a
linear code C such that also its (Schur) square C∗2 has a large enough minimum
distance. We will use C as the linear code in com and C∗2 as the linear code
in prodcom (with a certain caveat described below). As for the secret sharing
schemes, we will use the replicated secret sharing scheme RSS3 (described below)
for com and the additive 3-out-of-3 Add3 secret sharing scheme for prodcom.
RSS3 is the secret sharing scheme where the secret s ∈ {0, 1} is additively split
into three parts, i.e., s = r0 + r1 + r2 where r0, r1 are uniformly random and
independent, and the shares are defined to be the pairs s0 = (r0, r1), s1 = (r1, r2),
s2 = (r2, r0). RSS3 is a multiplicative secret sharing scheme, which means that
shares of s, s′ can locally be transformed into shares by Add3 of the product s ·s′.
More precisely, s · s′ = t0 + t1 + t2, where ti = rir

′
i + rir

′
i+1 + r′

iri+1 (where sums
in the indices are modulo 3) and note that all this information is contained in
the i-th shares si, s

′
i of s and s′. The rationale for the choices of codes and secret

sharing schemes is then that from the watchlists of com(a), com(b) a verifier can
compute a watchlist to a commitment prodcom(a ∗ b). Indeed, given the j-th
share (in RSS3) of the i-th coordinates (C(a))i, (C(b))i the verifier can determine
the j-th share (in Add3) of (C(a) ∗C(b))i, and note C(a) ∗C(b) is a codeword in
C∗2 having a ∗ b as the vector of its first k coordinates.

But our goal is to construct com(a ∗ b) rather than prodcom(a ∗ b). We do
that as follows: the prover constructs commitments com(y), prodcom(y) of a
random vector y with both commitment schemes, where for every coordinate
i, the verifier will later request to open the share with the same index ri in
prodcom(y) as he does for com(a), com(b), com(y) (note that for com that means
the additive shares indexed by ri and ri + 1). The sender needs to prove that
com(y), prodcom(y) are indeed commitments to the same vector, which will
be detailed later. From com(a), com(b) the prover constructs all the shares in
prodcom(a∗b) as mentioned above, and then announces all three additive shares

622 I. Cascudo et al.

of a ∗ b − y. For each coordinate i, the receiver can determine the ri-th share
of this vector from the watchlists of com(a), com(b), prodcom(y) and contrast
this with the information that the prover opens. Now assuming the verifier does
not abort, the prover and verifier can simply construct com(a ∗ b) by adding
a ∗ b − y to com(y).5 We need to address some technical details: commitments
with prodcom are to messages of length k′ (the dimension of C∗2) rather than
messages of length k and in general it can happen that k′ > k, so when we
say prodcom(y) we mean that the commitment is to a vector y||z where z is of
length k′−k. Moreover, initially we cannot choose the random vectors we commit
to since these are generated pseudorandomly from the seeds, so the prover will
need to send some correction information in order to commit to the same value
in the two schemes. In order to do that, and simultaneously prepare to prove
that com(y) and prodcom(y) are commitments to the same vector y, we define
the linear code ˜C defined as the concatenation of C and C∗2. More precisely,

˜C = {(y, c,y, c′) : (y, c) ∈ C, (y, c′) ∈ C∗2}. (1)

The prover, having used the PRGs to construct pairs of random vectors r, r′

in {0, 1}n and additive splittings of them, will concatenate the two vectors and
send correction information z ∈ {0, 1}2n so that (r||r′) − z ∈ ˜C (as before, the
first k bits of z can be taken to be 0, so the prover needs to send only 2n−k bits).
Now given a batch of supposed codewords of this form the interactive proximity
testing technique is applied so that the sender proves they are indeed codewords
in ˜C, and therefore they are associated to commitments (com(y), prodcom(y)).
Note that since the first n coordinates of the codewords in ˜C are codewords in C,
this test also guarantees all properties of the interactive proximity test for the
additive case, so we do not need to perform that one separately.

We note that ˜d = dist(˜C) ≥ dist(C∗2),6 so we need a lower bound on dist(C∗2)
to obtain the same guarantees as in the additive case. Furthermore, a difference
with the proof for the additive-only commitment scheme is that now the verifier
sees 2 out of 3 additive shares of the first n coordinates and 1 out of 3 coordinates
of the last n, which affects the cheating probabilities of a corrupt prover: we will
show that it is enough to assume that dist(C∗2) > βs, where β = 1/(log2 3−1) =
1.709... (which satisfies (2/3)β = 1/2), in order to guarantee that the cheating
prover can succeed with probability at most 2−s. Protocol ΠMHCOM is described
in Figs. 6, 7 and 8. Notice that for consistency with the notation of Sect. 3,
we describe our fully homomorphic commitment protocol for random messages.
However, a commitment to chosen messages m can be created using the protocol
ΠMHCOM simply sending c = m−a, where a = π[k](A[·, i]) is one of the random
messages that the prover gets in the commit phase of ΠMHCOM. Now, in order
5 More precisely, the last share of each coordinate of C(y) is added with the corre-

sponding (now public) coordinate of C(a ∗ b − y).
6 One may think that the tighter lower bound dist(˜C) ≥ dist(C) + dist(C∗2) holds, but

this is not necessarily true if the dimension k′ of C∗2 is larger than k, as in that case
there will be codewords of the form (0k ,0n−k ,0k , c′) where c′ �= 0n−k . Indeed take

(0k , c′) to be the encoding by C∗2 of (0k ||z) for a nonzero z ∈ {0, 1}k′−k.

Efficient UC Commitment Extension with Homomorphism 623

to allow multiplication of commitments to chosen messages it is enough that all
the players locally adjust the shares of the random messages used as OTP keys
(e.g., the prover P adds C(c) to A2[·, i] and every receiver in V adds ΔC(c) and
Δ′C(c) to B[·, i] and B′[·, i], respectively) and then execute the multiplication
step as detailed in Fig. 7.

Finally notice that for the sake of simplicity, in the commit phase of Protocol
ΠMHCOM we use the same notation and the same construction both for random
messages that are actually input to commitments (or used to construct a com-
mitment to a chosen message as explained above) and for the auxiliary random
messages that are needed in the multiplication step (i.e., y in the notation used
in the introduction of this section), so that all those messages are encoded in
columns of the big matrix Ã. However, committing with prodcom, and hence
creating and manipulating the last n rows of the matrix Ã (what we call Â),
is only necessary for the random messages used in the multiplication step, and
could be saved for the remaining random messages. On the other hand, the cur-
rent structure of the commit phase, where we do not distinguish between the two
roles for the random messages, allows us to use only a single interactive proxim-
ity test instead of two (i.e., one for C as in protocol ΠAHCOM to guarantee the
additive property and another one for ˜C and the auxiliary random messages to
guarantee that the same value y is encoded using C and C∗2).

Security Analysis. The proof of security for Protocol ΠMHCOM is similar to that
of ΠAHCOM. Indeed, the following Theorem 4 can be proved by adapting the
description of the simulators for the security proof of the additive-only construc-
tion to the new watchlist setting (i.e., three additive shares instead of two, of
which the verifier knows either two - in the base commitment given by matrix A
- or one - in the product commitment given by ̂A) and adding to both simulators
the step to simulate the multiplication command. More details are given in the
full version [18].

Theorem 4. Protocol ΠMHCOM UC realizes FMHCOM in the FCOM-hybrid
model with computational security against a static adversary. Formally, there
exists a simulator S such that for every static adversary A, and any environ-
ment Z, the environment cannot distinguish ΠMHCOM composed with FCOM

and A from S composed with FMHCOM. That is, IDEALFMHCOM,S,Z ≈c

HYBRIDFCOM
ΠMHCOM,A,Z .

Efficiency. Since we commit to every random message with both com and
prodcom, the total length of the commitment will be 2n − k + o(k) bits per
message of k bits. For chosen messages we need to add an extra k bits per mes-
sage for a total of 2n bits. If C has rate R, our commitments have then rate R/2.
Moreover, for multiplying two commitments the prover needs to have created
an additional commitment of a random message with both com and prodcom
(hence communicating 2n bits), and then communicate all shares of a related
commitment with prodcom (the wi’s in the protocol), which amounts to 3n bits.
So the communication of this step is 5n bits. The question is then what rates
we can have under our new requirements on dist(C∗2).

624 I. Cascudo et al.

Families of binary codes {Cn} with constant rate (of Cn) and constant relative
minimum distance of C∗2

n exist based on algebraic geometry [28]. For fixed values
of the security parameter s the families of cyclic codes constructed in [15] give
better rates. As an example, for s = 60, where our protocol needs dist(C∗2) ≥ 103,
Table 2 in [15] gives a [4095, 338] cyclic code with dist(C∗2) ≥ 135, which has rate
around 0.08. Hence the commitments will have rate 0.04.7 We need to send 25k
bits per k-bit message we commit to, and 62.5k bits to construct a commitment
to the product of two messages.

5 Applications to Efficient Zero-Knowledge Arguments

In this section, we outline how to use a variant of the homomorphic commitments
constructed in Sect. 3 and 4 to compile a certain class of public coin interac-
tive proof system into public coin honest-verifier zero-knowledge proof systems.
Using the Fiat-Shamir heuristic, we can convert such a zero-knowledge proof
system into a non-interactive zero-knowledge proof system. As an application,
we can improve a recent construction of zkSNARKs [31] in a certain parameter
regime. Specifically, the zkSNARK construction of [31] uses additively homomor-
phic vector commitments8 to transform a public coin interactive proof system
into a zero-knowledge protocol. The commitments in [31] are instantiated using
number-theoretic assumptions. One of the core ideas of [31] is that general alge-
braic relations between commitments can be reduced to linear relations between
vector-commitments in a way that only induces a constant additional overhead
for low-degree relations. The construction of [31] is general enough that it can
be instantiated with homomorphic commitment schemes with some additional
properties. We remark though that [31] utilizes an additional optimization which
relies on compressing homomorphic commitments, which is not available in our
setting.

Our main observation is that for this application the unveil of the commit-
ments in the protocol of [31] can be delayed until the very end of the protocol,
which makes this protocol compatible with our commitment scheme.

The notion of interactive proof system we focus on will be resettably sound
public coin interactive proofs with algebraic verifier. Such a proof system pro-
ceeds in t rounds, where in each round i the prover sends a message pi, upon
which the verifier answers with a uniformly random message vi. We require all
the messages pi and vi to be vectors over a field F. After the conversation is
over, the verifier evaluates a system of low degree polynomials F1, . . . , Fs in the
pi and vi and accepts if all Fi evaluate to 0, otherwise it rejects. At the heart of
this kind of protocol is the sum-check protocol, which lets a prover prove state-
ments of the form

∑

x∈{0,1}n P (x) = L, where P ∈ F[X1, . . . , Xn] is a low-degree
polynomial and L ∈ F.
7 And naturally from this one can also obtain a [4095 · �, 338 · �]-code with the same

minimum distance of its square, by simply applying the [4095, 338] to each block of
338 bits of the message.

8 In [31] they are referred to as multi-commitments.

Efficient UC Commitment Extension with Homomorphism 625

Protocol ΠMHCOM

Let C be a systematic binary linear [n, k] code, such that C∗2 is also systematic and
satisfies dist(C∗2) ≥ βs, where β = 1/(log2 3 − 1) and s is the statistical security

parameter. Let C̃ be the code defined in (1). Let H be a family of linear almost
universal hash functions H : {0, 1}m 0, 1}l. Let PRG : {0, 1}�{ {0, 1}m+l be
a pseudorandom generator. Protocol ΠMHCOM is run by a sender P and a set of
receivers V = {V1, . . . , Vt}, who interact with FCOM as follows:

Commitment Phase

1. On input (commit, sid, ssid1, . . . , ssidm, P, V), P proceeds as follows:

(a) For i ∈ [n] and j ∈ {0, 1, 2}, sample si,j
$

0, 1}�, ŝi,j
${ {0, 1}� and send

(commit, sid, ssidi,j , P, V, si,j), (commit, sid, ŝsidi,j , P, V, ŝi,j) to FCOM.

(b) Compute Rj[i, ·] = PRG(si,j) and R̂j[i, ·] = PRG(ŝi,j) and set R = R0 +

R1 + R2 and R̂ = R̂0 + R̂1 + R̂2.
(c) Adjust the bottom n − k rows of R so that all columns are codewords in

C by constructing a matrix W with dimensions as R and 0s in the top k
rows, such that A := R + W ∈ C�m+l (recall that C is systematic). Set
A0 = R0,A1 = R1,A2 = R2 + W.

(d) Adjust R̂ so that all columns are codewords in C∗2 and the first k rows are

the same as in A by constructing a matrix Ŵ with dimensions as R̂ such
that Â := R̂+Ŵ ∈ (C∗2)�m+l and Â[i, ·] = A[i, ·] for all i ∈ [k]. Set Â0 =

R̂0, Â1 = R̂1, Â2 = R̂2 +Ŵ and broadcast (sid, ssid1, . . . , ssidm,W,Ŵ)

(sending the bottom n − k rows of W and the entire matrix Ŵ).
2. Upon receiving all (receipt, sid, ssidi,j , P, V) from FCOM and

(sid, ssid1, . . . , ssidm,W,Ŵ) from P , every Vi ∈ V proceeds as follows:

(a) Sample ri
$
Z

n
3 , ri

′ $ {0, 1}� and send (commit, sid, ssid, Vi, V
′, ri) and

(commit, sid, ssid′, Vi, V
′, ri

′) to FCOM, where V ′ = P ∪ V \ Vi.
(b) and (c) as is the commit phase of ΠAHCOM (Figure 4).

3. Upon receiving (commit, sid, ssid, Vi, V
′) and (reveal, sid, ssid′, Vj , V

′, rj
′) from

FCOM for all Vj ∈ V , P proceeds as follows:
(a) Use r′ = r1

′ ⊕ . . . ⊕ rt
′ as a seed for a random function H ∈ H.

(b) Define the matrices Ã =

(
A
Â

)
and Ãi =

(
Ai

Âi

)
for i ∈ {0, 1, 2}. Note that

Ã ∈ C̃�m+l and Ã = Ã0 + Ã1 + Ã2. Set the matrices P̃ and P̃i as the
first l columns of Ã and Ãi, respectively, and remove these columns from
Ã, Ãi, A, Ai, Â, Âi for i ∈ {0, 1, 2}. Renumber the remaining columns
from 1 and associate each commitment ssidi (commitment id from step 1)

with a different column in these matrices. Notice that P̃ = P̃0 + P̃1+P̃2.
(c) For i ∈ {0, 1, 2}, compute the matrix T̃i = ÃiH + P̃i and broadcast

(sid, ssid1, . . . , ssidm, T̃0, T̃1, T̃2). Note that ÃH + P̃ = T̃0 + T̃1 + T̃2,

and AH + P ∈ C�l.

Fig. 6. Commit phase for the protocol ΠMHCOM.

626 I. Cascudo et al.

Protocol ΠMHCOM

Addition of Commitments

1. On input (add, sid, ssid1, ssid2, ssid3, P, V), P finds indexes i and j correspond-
ing to ssid1 and ssid2 respectively and check that ssid3 is unused. P appends
the column A[·, i] + A[·, j] to A, likewise appends to A0, A1, A2 the sum of
their i-th and j-th columns, and associates ssid3 with the new column index.
P broadcasts (add, sid, ssid1, ssid2, ssid3) to V .

2. Upon receiving (add, sid, ssid1, ssid2, ssid3), every Vi ∈ V stores the message.

Multiplication of Commitments

1. On input (mult, sid, ssid1, ssid2, ssid3, P, V), P finds indexes i and j corre-
sponding to ssid1 and ssid2 respectively and check that ssid3 is unused. Then,
P proceeds as follows:
(a) For l ∈ {0, 1, 2}, compute vl = Al[·, i] ∗ Al[·, j] + Al[·, i] ∗ Al+1[·, j] +

Al+1[·, i] ∗ Al[·, j]. Note that v0,v1,v2 are shares of A[·, i] ∗ A[·, j] in the
scheme Add3 and known to P only. Let h be the index of the first unused
column from A and Â, compute wl = vl − Âl[·, h] for l = 0, 1, 2 and
broadcast (sid, ssid, h,w0,w1,w2) to V . Note that w0,w1,w2 are shares

of A[·, i] ∗ A[·, j] − Â[·, h] in the scheme Add3 and are known to P ∪ V .
(b) Let u = π[k](w0 + w1 + w2) (i.e., u consists of the first k compo-

nents of A[·, i] ∗ A[·, j] − Â[·, h]), append the columns A[·, h] + C(u) and
A2[·, h] + C(u) to A and A2, respectively. Append the column Ai[·, h] to
Ai for i = 0, 1 and associate ssid3 with the new column index. Note that
since π[k](Â[·, h]) + π[k](A[·, h]), for l ∈ {1, . . . , k} the l-th component of
the newly appended column in A is equal to A[l, i] ∗ A[l, j]. Broadcast
(add, sid, ssid1, ssid2, ssid3) to V .

2. Upon receiving (mult, sid, ssid1, ssid2, ssid3), every Vi ∈ V stores the message.

Note that this maintains the properties A = A0 + A1 + A2 and A ∈ C�m′
, where

m′ is the current number of columns.

Opening (Part 1)

1. On input (reveal, sid, ssid1, . . . , ssido), P finds the set J =
{j1, . . . , jo} of indexes associated to ssid1, . . . , ssido and broadcasts
(sid, ssid1, . . . , ssido, (A0[·, j],A1[·, j],A2[·, j])j∈J).

2. Upon receiving message (sid, ssid1, . . . , ssido, (A0[·, j],A1[·, j],A2[·, j])j∈J),
every receiver Vi ∈ V sends (reveal, sid, ssid) to FCOM and waits for
(reveal, sid, ssid, Vj , V

′, rj) from FCOM for all Vj ∈ V \ Vi. Vi sets r =
r1 + · · · + rt (where the sum is in Z

n
3) and sets the diagonal matrices Δ,Δ′

such that the i-th element in Δ (resp. Δ′) is 1 if r[i] = 2 (resp. r[i] = 1) and
0 otherwise.

3. Upon receiving (reveal, sid, ssid, Vj , V
′, rj) from FCOM for all Vj ∈ V , P sets

r = r1 + . . . + rt, sends (reveal, sid, ssidi,r[i]), (reveal, sid, ssidi,r[i]+1) and

(reveal, sid, ŝsidi,r[i]) to FCOM for i = 1, . . . , n and halts.

Fig. 7. Addition and multiplication steps, and opening phase for the protocol ΠMHCOM.

Efficient UC Commitment Extension with Homomorphism 627

Protocol ΠMHCOM

Opening (Part 2)

4. Upon receiving the messages (reveal, sid, ssidi,r[i], P, V, si,r[i]),

(reveal, sid, ssidi,r[i]+1, P, V, si,r[i]+1) and (reveal, sid, ŝsidi,r[i], P, V, ŝi,r[i])
from FCOM for i ∈ {1, . . . , n}, every receiver Vj ∈ V proceeds as follows:

(a) Compute S[i, ·] = PRG(si,r[i]), S′[i, ·] = PRG(si,r[i]+1) and Ŝ[i, ·] =

πμ+l PRG(ŝi,r[i])
)

obtaining matrices S, S′ and Ŝ. Note for each i, the i-th

row of S, S′, Ŝ will equal the i-th row of Rr[i], Rr[i]+1, R̂r[i] respectively.

Set B = ΔW+S, B′ = Δ′W+S′ and B̂ = ΔŴ+Ŝ. Define the matricesa

Q, Q′, Q̂ as the first l columns of B, B′, B̂ and remove these columns from
the latter matrices, renumbering the remaining columns from 1.

(b) Notice that T̃0, T̃1, T̃2 form an additive sharing of ÃH + P̃, and the veri-
fiers know some of the shares, namely the rows of BH + Q and B′H + Q′

(shares for the first n rows of ÃH + P̃) and the rows of B̂H + Q̂ (shares

for the last n rows). For i ∈ {0, 1, 2}, parse T̃i as T̃i =

(
Ti

T̂i

)
. Check that

BH + Q = ΔT2 + Δ′T1 + (1 − Δ − Δ′)T0, B′H + Q′ = ΔT0 + Δ′T2 +

(1−Δ−Δ′)T1 and B̂H+ Q̂ = ΔT̂2 +Δ′T̂1 +(1−Δ−Δ′)T̂0, and that
T0 + T1 + T2 ∈ C��. If any check fails, abort.

(c) For every (add, sid, ssid1, ssid2, ssid3) received from P , append B[·, a] +
B[·, b] to B and append B′[·, a] + B′[·, b] to B′ (a, b are the index corre-
sponding to ssid1, ssid2 respectively and ssid3 is associated with the new
column index). For every (mult, sid, ssid1, ssid2, ssid3) received from P :
– given (sid, ssid, h,w0,w1,w2), check that w0 + w1 + w2 ∈ C∗2 and

wr[i] = B[·, a] ∗ B[·, b] + B[·, a] ∗ B′[·, b] + B′[·, a] ∗ B[·, b] + B̂[·, h];
– let u = π[k](w0 +w1 +w2), append the columns B[·, h] + ΔC(u) and

B′[·, h] + Δ′C(u) to B and B′, respectively.
Note that the properties detailed in footnotea are maintained.

(d) For every j ∈ J , check that A0[·, j] + A1[·, j] + A2[·, j] ∈ C and that, for
i = 1, . . . , n, it holds that B[i, j] = Ar[i][i, j] and B′[i, j] = Ar[i]+1[i, j].
If all checks succeed, for every j ∈ J , output the first k positions in
A0[·, j]+A1[·, j]+A2[·, j] as the opened string and halts. Otherwise, abort
by outputting (sid, ssidj , ⊥).

a Note that we have A = A0 +A1 +A2, B = ΔA2 +Δ′A1 +(1 −Δ−Δ′)A0

and B′ = ΔA0 +Δ′A2 +(1−Δ−Δ′)A1. This means that A held by P is shared
in the replicated secret sharing scheme RSS3 and for each row index, V knows one
share (i.e., V knows the corresponding rows from exactly two of the matrices A0,

A1, A2). Moreover, Â = Â0 + Â1 + Â2 and B̂ = ΔÂ2 +Δ′Â1 +(I−Δ−Δ′)Â0

i.e., Â held by P is shared in the additive secret sharing scheme Add3 and for each
row index, V knows one share (V knows the corresponding row from exactly one

of the matrices Â0, Â1, Â2).

Fig. 8. Opening phase (continued) for the protocol ΠMHCOM.

628 I. Cascudo et al.

While it can be shown that any constant round proof system can be imme-
diately compiled into a non-interactive argument system via the Fiat-Shamir
heuristic [20], super-constant round protocols need to fulfil a stronger soundness
property called resettable soundness for the Fiat-Shamir transform to result in
a sound protocol.

We will now outline how to compile any resettable sound public coin interac-
tive proof system into an honest-verifier zero-knowledge proof systems in a way
that only slightly increases the communication complexity and only affects the
efficiency of prover and verifier by a small constant factor.

The basic idea of the transformation is simple and follows the paradigm of
committed conversations [5]. The prover and verifier run the interactive proof
system with the modification that instead of sending its messages in the plain,
the prover sends commitments to its messages. After the protocol is over the
prover convinces the verifier that the commitment values pass the verification
equations F1, . . . , Fs. The homomorphic property of the commitments will be
used to implement this check efficiently. While our protocol ΠMHCOM does sup-
port evaluation of low degree polynomials, we will focus on linear/affine verifica-
tion equations F1, . . . , Fs and will therefore rely on the additively homomorphic
commitment scheme ΠAHCOM, with several modifications which are discussed
in the full version [18].

Instantiation. We will now discuss instantiating the hyrax protocol of [31] with
the modified version of the commitment scheme ΠAHCOM.

To prove satisfiability of an algebraic circuit of depth d, width G and
input/witness size |w|, the hyrax protocol has proof size (10d log(G) +

√|w|) · κ
assuming that a group element in a DLOG-hard group G has size κ. The verifier
runtime is O(

√|w| + d · log(G)) whereas the prover runtime is linear in the size
of the circuit C.

Replacing the DLOG-based homomorphic commitment in the hyrax protocol
with our commitment protocol ΠAHCOM as outlined above, the main optimiza-
tion which is not available is compression of the witness w. Consequently, in our
instantiation proof size will depend linearly on the size of the witness |w|.

One of the key ideas in the hyrax protocol is to reduce all algebraic rela-
tions between commitments to linear relations between vector commitments, an
idea also used in bulletproofs [10]. In this way, general algebraic relations can
be proven using a protocol which just supports linear relations between vectors.
This transformation only incurs a small constant factor additional overhead.
Omitting details, there are three main steps. In the first step reduce multiplica-
tive relations to linear relations, in the second step show that many linear rela-
tions can be compressed into a single linear relation, and in. the third step step
reduce linear relations between commitments to linear relations between vector
commitments. All three steps are implemented using a Schnorr-style protocol.
In [31] these transformations are provided for the concrete case of DLOG-based
commitments, but these ideas can be implemented using arbitrary homomorphic
vector commitments.

Efficient UC Commitment Extension with Homomorphism 629

The main improvement of our protocol over [31] is that we only rely on
simple private key primitives. On the turn side, our vector-commitments are not
compressing, which leads to the proof-size to depend linearly on the witness-size
|w| instead of

√|w|. However, the proof size does not depend multiplicatively on
the computational security parameter κ, but rather on |F|, which is a statistical
security parameter an can therefore be chosen much smaller. Consequently, we
get an advantage in terms of proof-size whenever the proof-size is dominated by
d rather than |w|.

6 Applications to Secure Multiparty Computation

6.1 Committed MPC

A recent work by Frederiksen et al. [21] has shown that additively homomor-
phic commitments can be leveraged to construct efficient preprocessed MPC.
However, their “Committed MPC” protocol requires a multiparty commitment
functionality that allows for multiple senders and for computing linear combi-
nations between commitments generated by different senders. We will show a
generic construction of such a protocol from functionality FAHCOM that can
be instantiated with Protocol ΠAHCOM, achieving significantly better efficiency
than the construction of [21].

Functionality FMSAHCOM. Our protocol will realize the multiparty additively
homomorphic commitment functionality from [21] with the difference that it
will only allow for a single batch verification of opened commitments. While it
allows for openings before verification, the validity of those will not be ensured
by FMSAHCOM, which will let the adversary choose any value to be provided
as an opening. FMSAHCOM will allow for a single verification phase where all
parties check whether the openings they have received are valid, after which the
functionality halts. This functionality is sufficient for realizing the “Committed
MPC” protocol of [21], since the parties can use the intermediate (non-verified)
openings to compute the protocol and in the end verify that the result is cor-
rect. Other small differences is that we omit the Partial Open interface used
to open a commitment to a single receiver and provide an interface for single
addition operations. Notice that our procedures for opening a commitment for
all receivers can be trivially adapted to opening towards a specific receiver by
sending the corresponding messages only to that receiver and that single addi-
tions of commitments can be trivially used for computing linear combinations
as in the functionality of [21]. We present Functionality FMSAHCOM in Fig. 9.

Protocol ΠMSAHCOM. While a generic construction of such a protocol from any
two-party additively homomorphic commitment scheme is presented in [21], we
can significantly simplify and improve the efficiency of this construction depart-
ing from a multi-receiver scheme as defined in FAHCOM. We construct a protocol
where every party acts both as sender and receiver of all commitments. In this
protocol, each party first uses FAHCOM to commit to random values towards
the others. A joint random commitment in the new multi-sender protocol is
defined as the commitment to the sum of all random messages contained in

630 I. Cascudo et al.

Functionality FMSAHCOM

FMSAHCOM is parameterized by n ∈ N. FMSAHCOM interacts with a set of parties
P = {P1, . . . , Pt} and an adversary S (who may abort at any time):
– Init Upon receiving (init, sid) from all parties in P , forward the message to S

and initialize empty lists raw and actual.
– Commit: Upon receiving (commit, sid, I) from all parties in P where I is a

set of unused identifiers, for every ssid ∈ I, sample a random xssid
$
F

k, set
raw[ssid] = xssid and send (commit − recorded, sid, I) to all parties P and S.

– Input: Upon receiving (input, sid, ssid, Pi,y) from Pi ∈ P and
(input, sid, ssid, Pi) from all other parties in P , if raw[ssid] = xssid 	=⊥, set
raw[ssid] =⊥, set actual[ssid] = y and send (input − recorded, sid, ssid, Pi) to
all parties in P and S.

– Random: Upon receiving (random, sid, ssid) from all parties in P , if
raw[ssid] = xssid 	=⊥, set actual[ssid] = xssid, set raw[ssid] =⊥ and send
(random − recorded, sid, ssid) to all parties P and S.

– Addition: Upon receiving a message (add, sid, ssid1, ssid2, ssid3) from all par-
ties in P : if actual[ssid] = xssid 	=⊥ for ssid ∈ {ssid1, ssid2} and raw[ssid3] =
actual[ssid3] =⊥, set actual[ssid3] = actual[ssid1] + actual[ssid2] and send the
message (add − recorded, sid, ssid1, ssid2, ssid3) to all P and S.

– Open: Upon receiving (open, sid, ssid) from all parties P , if
actual[ssid] = xssid 	=⊥, send (open, sid, ssid,xssid) to S. If S answers
with (open, sid, ssid,x′

ssid), send (open, sid, ssid,x′
ssid) to all parties in P .

– Verify: Upon receiving a message (verify, sid) from all parties in P ,
let ssid1, . . . , ssido be the ssids of opened commitments (i.e. for which
(open, sid, ssid,x′

ssid) messages were sent). For ssid ∈ {ssid1, . . . , ssido}, set
b = 1 if actual[ssid] = x′

ssid or b = 0 if not, and send (verify, sid, ssid, b) to
every party in P .

Fig. 9. Functionality for additively homomorphic commitments with multiple senders.

the individual commitments by each party. Linear combinations between joint
commitments can be computed by having each party (acting as a sender in the
underlying multi-receiver commitment scheme) compute the same linear combi-
nation on its own “shares” of the joint commitment. Opening a joint commitment
works by having each party open their individual commitments, allowing every-
body to compute the joint commitment as the sum of the opened messages.
Using standard tricks, these joint random commitments can be easily turned
into commitments to arbitrary messages (Fig. 10).

Security Analysis. To verify correctness, notice that ΠMSAHCOM computes a
random commitment identified by ssid as a commitment to

∑

i∈[t] raw
i[ssid],

where rawi[ssid] is supposed to be the value obtained by Pi from F i
AHCOM. In

the verification procedure, all parties obtain xj for j ∈ [t] directly from F j
AHCOM,

being able to verify that the previously opened commitments are indeed valid.
If a commitment identified by ssid is set to an arbitrary message y, the sender
Pj holding y broadcasts w = y − ∑

i∈[t] raw
i[ssid], which also allows all parties

Efficient UC Commitment Extension with Homomorphism 631

Protocol ΠMSAHCOM

Given a set of parties P = {P1, . . . , Pt}, for each party Pi ∈ P , ΠMSAHCOM uses
an instance of FAHCOM denoted as F i

AHCOM where Pi is the sender with a set of
receivers Vi = P \Pi. Parties in P = {P1, . . . , Pt} interact with each other and with
F1

AHCOM, . . . , F t
AHCOM, proceeding as follows:

1. Commit On input (commit, sid, ssid, I) where I = {ssid1, . . . , ssidγ} each
party Pi ∈ P , for ssid ∈ I, sends (commit, sid, ssid, Pi, Vi) to F i

AHCOM, receiv-
ing as answer (receipt, sid, ssid, Pi, Vi,xssid) and setting rawi[ssid] = xssid and
actuali[ssid] =⊥.

2. Input On input (input, sid, ssid,y) for Pi and input (input, sid, ssid, Pj) for
every Pj for j 	= i, parties P proceed as follows:
(a) For every j ∈ [t], j 	= i, Pj aborts if actualj [ssid] 	=⊥. Otherwise, Pj sends

(sid, ssid, rawj [ssid]) to Pi.
(b) Upon receiving (sid, ssid, rawj [ssid]) from Pj for every j ∈ [t], j 	= i, Pi

sets x =
∑

j∈[t] raw
j [ssid], w = y − x, actuali[ssid] = w and broadcasts

(sid, ssid, Pi,w).
(c) Upon receiving (sid, ssid, Pi,w), every party Pj ∈ P sets actualj [ssid] = w.

3. Random: On input (random, sid, ssid), if actuali[ssid] =⊥, each party Pi ∈ P
sets actuali[ssid] = 0k.

4. Addition: On input (add, sid, ssid1, ssid2, ssid3), if actuali[ssid1] 	=⊥,
actuali[ssid2] 	=⊥ and actuali[ssid3] =⊥, every party Pi ∈ P
sets actuali[ssid3] = actuali[ssid1] + actuali[ssid2] and sends
(add, sid, ssid1, ssid2, ssid3, Pi, Vi) to F i

AHCOM. All parties proceed after
receiving (add, sid, ssid1, ssid2, ssid3, Pi, Vi, success) from F i

AHCOM.
5. Open: On input (open, sid, ssid), each Pi ∈ P broadcasts (sid, ssid, rawi[ssid]).

Upon receiving (sid, ssid, rawj [ssid]) for j ∈ [t], j 	= i, each party Pi ∈ P
computes x′ = actuali[ssid] +

∑
j∈[t] raw

j [ssid] and outputs (sid, ssid,x′).
6. Verify: On input (verify, sid), let ssid1, . . . , ssido be the ssids of opened

commitments (i.e. for which (open, sid, ssid) inputs were received), every
Pi ∈ P sends (reveal, sid, ssid1, . . . , ssido) to F i

AHCOM. For every ssid ∈
{ssid1, . . . , ssido}, upon receiving (reveal, sid, ssid, Pj , Vj ,xj) for j ∈ [t], j 	= i,
each party Pi ∈ P sets xi = rawi[ssid], computes x = actuali[ssid]+

∑
j∈[t] xj ,

sets b = 1 if x′ = x (where x′ is the value previously opened) or b = 0 if not,
and outputs (verify, sid, ssid, b).

Fig. 10. Protocol ΠMSAHCOM

to retrieve y when values rawi[ssid] are released and to verify the correctness
of this opening when xj (corresponding to rawj [ssid]) are revealed. Notice that
addition are simply computed by adding the actuali[ssid] vectors and, since all
of these vectors are linear combinations of themselves, opening and verification
of a result addition works the same way as for the other commitments.

Theorem 5. Protocol ΠMSAHCOM UC realizes FMSAHCOM in the FAHCOM-
hybrid model with statistical security against a static adversary. Formally, there
exists a simulator S such that for every static adversary A, and any environment
Z the following holds: IDEALFMSAHCOM,S,Z ≈s HYBRID

FAHCOM
ΠMSAHCOM,A,Z .

632 I. Cascudo et al.

Proof (Sketch). Notice that ΠMSAHCOM only performs operations with random
values obtained from F i

AHCOM. Hence, upon learning the opening of any com-
mitment from FMSAHCOM, the simulator can simply cheat in the openings of
random values from the emulated F i

AHCOM in order to equivocate a commit-
ment. Similarly, if it needs to extract any commitment done in ΠMSAHCOM, the
simulator can compute it from the messages sent by the adversary in the protocol
and the messages the adversary obtains from the emulated F i

AHCOM.

Efficiency. Notice that our construction of ΠMSAHCOM using FAHCOM as a black
box actually communicates more bits than necessary. In ΠMSAHCOM’s opening
phase, all parties broadcast the messages in commitments generated by FAHCOM

and, later on, verify these openings by opening the commitments through
FAHCOM, sending the same messages again. If instantiated with ΠAHCOM, our
construction can be made more efficient by having the parties broadcast columns
A0[·, j],A1[·, j] (Step 1 of ΠAHCOM’s opening phase) during the opening phase
of ΠMSAHCOM. Later on, for verification, the parties only need to execute the
remaining steps of the opening phase of ΠAHCOM in order to verify that the
columns they have previously obtained are actually valid. In a setting with t par-
ties, our protocol only requires t individual multi-receiver commitments, where
the construction of [21] requires t2 two-party commitments. Their constructions
also require extra communication in the order of O(skt2) for generating a batch
of m commitments, where s is the security parameter and k is the message
length. Moreover, instantiating the construction of [21] with the previously best
two-party additively homomorphic commitments [16] implies a high cost of nt2

OTs for the setup phase (with an underlying [n, k, s] code) and extra communi-
cation in the order of O(nmt2) bits for generating a batch of m commitments to
random messages. On the other hand, our construction instantiated with proto-
col ΠAHCOM can do the same with nt calls to FCOM (which can be instantiated
much cheaper than an OT by calling a random oracle and sending its output)
and extra communication in the order of O(smt) bits. In the opening phase, the
construction of [21] requires communication in the order of O(nt2) bits, while our
construction only requires communication in the order of O(nt) bits, assuming
broadcast channels.

6.2 Insured MPC

Recently, Andrychowicz et al. [2] started a line of work [4,6,7,26] that deals with
the problem of fairness in multiparty computation by combining MPC protocols
with cryptocurrencies. The main idea is to provide financial incentives for the
parties to act honestly. In a nutshell, each party provides a security deposit before
the protocol execution or right before the outputs are revealed. After that, the
protocol is executed and if no problem happens, then the security deposits are
reimbursed. On the other hand, if some problem happens, the security deposit
of the parties who misbehaved/aborted is used to compensate the remaining
parties. This combination of MPC and cryptocurrency techniques also allows to
have both inputs and outputs consisting of both data and monetary assets and
distribute the funds according to the output of the computation.

Efficient UC Commitment Extension with Homomorphism 633

The most efficient solution to date, due to Baum et al. [4], uses a publicly ver-
ifiable additively homomorphic multi-receiver commitment scheme as a central
building block. By combining such commitment scheme with a smart contract,
an authenticated bulletin board, and a MPC scheme that output verifiably secret
shared outputs, they obtained an efficient MPC protocol with public detection
of cheating behavior that financially punishes misbehaving parties. Nevertheless,
the main bottleneck of their protocol is the multi-party commitment scheme, as
its complexity grows quadratically in the number of parties. With our techniques
it is possible to greatly improve the performance of publicly verifiable additively
homomorphic multi-receiver commitments.

The functionality for publicly verifiable additively homomorphic commitment
FPVHCOM is described in the full version [18] and the set of external verifiers
U is allowed to be dynamic by adding procedures for registering and deregis-
tering parties following the approach of Badertscher et al. [3]. Assuming that
the underlying commitment protocol ΠCOM used as a building block is publicly
verifiable, Protocol ΠAHCOM is trivially publicly verifiable when all the mes-
sages are posted to an authenticated bulletin board, straightforwardly realizing
functionality FPVHCOM. The “canonical” random oracle commitment scheme
(that realizes FCOM in the programmable Global Random Oracle model with-
out extra computational assumptions according to a recent result by Camenisch
et al. [11]) is a clear example of a scheme that is publicly verifiable when the
messages are posted to an authenticated bulletin board, and ΠAHCOM instan-
tiated using that commitment scheme can be used to remarkably improve the
performance of publicly verifiable additively homomorphic commitments and
consequently of the Insured MPC protocol of Baum et al. [4]. The efficiency
improvements achieved in this application are similar to those of the Committed
MPC case, since the previously best publicly verifiable multi-receiver additively
homomorphic commitment protocol of [4] has a very similar structure to the
commitment protocol of [21].

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press, Octo-
ber/November (2017)

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
pp. 443–458. IEEE Computer Society Press, May (2014)

3. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

4. Baum, C., David, B., Dowsley, R.: Insured mpc: efficient secure multiparty compu-
tation with punishable abort. Cryptology ePrint Archive, Report 2018/942 (2018).
https://eprint.iacr.org/2018/942

https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://eprint.iacr.org/2018/942

634 I. Cascudo et al.

5. Ben-Or, M., Goldreich, O., Goldwasser, S., H̊astad, J., Kilian, J., Micali, S.,
Rogaway, P.: Everything provable is provable in zero-knowledge. In: Goldwasser,
S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York (1990).
https://doi.org/10.1007/0-387-34799-2 4

6. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

7. Bentov, I., Kumaresan, R., Miller, A.: instantaneous decentralized poker. In: Tak-
agi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 410–440.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 15

8. Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Analysis and Improve-
ment of Lindell?s UC-Secure Commitment Schemes. In: Jacobson, M., Locasto,
M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 534–
551. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1 34

9. Brandão, L.T.A.N.: Very-efficient simulatable flipping of many coins into a well. In:
Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS,
vol. 9615, pp. 297–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49387-8 12

10. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press, May (2018)

11. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78381-9 11

12. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
(2001)

13. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 2

14. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May (2002)

15. Cascudo, I.: On squares of cyclic codes. IEEE Trans. Inf. Theor. 65(2), 1034–1047
(2019)

16. Cascudo, I., Damg̊ard, I., David, B., Döttling, N., Nielsen, J.B.: Rate-1, linear
time and additively homomorphic UC commitments. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 179–207. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 7

17. Cascudo, I., Damg̊ard, I., David, B., Giacomelli, I., Nielsen, J.B., Trifiletti, R.:
Additively homomorphic uc commitments with optimal amortized overhead. In:
Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 495–515. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46447-2 22

18. Cascudo, I., Damg̊ard, I., David, B., Döttling, N., Dowsley, R., Giacomelli, I.:
Efficient UC commitment extension with homomorphism for free (and applications)
[full version]. Cryptology ePrint Archive, Report 2018/983 (2018). https://eprint.
iacr.org/2018/983

https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-319-70697-9_15
https://doi.org/10.1007/978-3-642-38980-1_34
https://doi.org/10.1007/978-3-662-49387-8_12
https://doi.org/10.1007/978-3-662-49387-8_12
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-662-53015-3_7
https://doi.org/10.1007/978-3-662-46447-2_22
https://eprint.iacr.org/2018/983
https://eprint.iacr.org/2018/983

Efficient UC Commitment Extension with Homomorphism 635

19. Damg̊ard, I., David, B., Giacomelli, I., Nielsen, J.B.: Compact VSS and efficient
homomorphic UC commitments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8874, pp. 213–232. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45608-8 12

20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

21. Frederiksen, T.K., Pinkas, B., Yanai, A.: Committed MPC. In: Abdalla, M., Dahab,
R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 587–619. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5 20

22. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Trifiletti, R.: On the complexity
of additively homomorphic UC commitments. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016. LNCS, vol. 9562, pp. 542–565. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49096-9 23

23. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.:
MiniLEGO: efficient secure two-party computation from general assumptions. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–
556. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 32

24. Garay, J.A., Ishai, Y., Kumaresan, R., Wee, H.: On the complexity of UC com-
mitments. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 677–694. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 37

25. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113–
122. ACM Press, May (2008)

26. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 25

27. Lindell, Y.: Highly-efficient universally-composable commitments based on the
DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol.
6632, pp. 446–466. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-20465-4 25

28. Randriambololona, H.: Asymptotically good binary linear codes with asymptoti-
cally good self-intersection spans. IEEE Trans. Inf. Theor. 59(5), 3038–3045 (2013)

29. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC,
pp. 49–62. ACM Press, June (2016)

30. Vadhan, S.P., Zheng, C.J.: Characterizing pseudoentropy and simplifying pseu-
dorandom generator constructions. In: Karloff, H.J., Pitassi, T. (eds) 44th ACM
STOC, pp. 817–836. ACM Press, May (2012)

31. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and
Privacy, pp. 926–943. IEEE Computer Society Press, May (2018)

https://doi.org/10.1007/978-3-662-45608-8_12
https://doi.org/10.1007/978-3-662-45608-8_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-76578-5_20
https://doi.org/10.1007/978-3-662-49096-9_23
https://doi.org/10.1007/978-3-662-49096-9_23
https://doi.org/10.1007/978-3-642-38348-9_32
https://doi.org/10.1007/978-3-642-55220-5_37
https://doi.org/10.1007/978-3-642-55220-5_37
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-642-20465-4_25
https://doi.org/10.1007/978-3-642-20465-4_25

Scalable Private Set Union
from Symmetric-Key Techniques

Vladimir Kolesnikov1(B), Mike Rosulek2, Ni Trieu2, and Xiao Wang3

1 Georgia Institute of Technology, Atlanta, USA
kolesnikov@gatech.edu

2 Oregon State University, Corvallis, USA
{rosulekm,trieun}@eecs.oregonstate.edu
3 Northwestern University, Evanston, USA

wangxiao@cs.northwestern.edu

Abstract. We present a new efficient protocol for computing private
set union (PSU). Here two semi-honest parties, each holding a dataset of
known size (or of a known upper bound), wish to compute the union of
their sets without revealing anything else to either party. Our protocol
is in the OT hybrid model. Beyond OT extension, it is fully based on
symmetric-key primitives. We motivate the PSU primitive by its direct
application to network security and other areas.

At the technical core of our PSU construction is the reverse private
membership test (RPMT) protocol. In RPMT, the sender with input
x∗ interacts with a receiver holding a set X. As a result, the receiver
learns (only) the bit indicating whether x∗ ∈ X, while the sender learns
nothing about the set X. (Previous similar protocols provide output to
the opposite party, hence the term “reverse” private membership.) We
believe our RPMT abstraction and constructions may be a building block
in other applications as well.

We demonstrate the practicality of our proposed protocol with an
implementation. For input sets of size 220 and using a single thread, our
protocol requires 238 s to securely compute the set union, regardless of
the bit length of the items. Our protocol is amenable to parallelization.
Increasing the number of threads from 1 to 32, our protocol requires only
13.1 s, a factor of 18.25× improvement.

To the best of our knowledge, ours is the first protocol that reports
on large-size experiments, makes code available, and avoids extensive
use of computationally expensive public-key operations. (No PSU code
is publicly available for prior work, and the only prior symmetric-key-
based work reports on small experiments and focuses on the simpler
3-party, 1-corruption setting.) Our work improves reported PSU state of
the art by factor up to 7, 600× for large instances.

1 Introduction

Private set union (PSU) is a special case of secure two-party computation. PSU
allows two parties holding sets X and Y respectively, to compute the union X ∪ Y ,
without revealing anything else, namely what are the items in the intersection of
X and Y .
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11922, pp. 636–666, 2019.
https://doi.org/10.1007/978-3-030-34621-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-34621-8_23

Scalable Private Set Union from Symmetric-Key Techniques 637

1.1 Motivation

PSU (like the well-researched private set intersection, PSI) has numerous appli-
cations in practice, and tailored efficient solutions are highly desirable. Consider
the following use cases. (We note that these use cases cover a wide range of PSU
settings, such as multi-party or shared-output PSU. Our work does not address
all of the settings, of course, but provides a building block and a baseline for the
entire research direction.)

Cyber Risk Assessment and Management via Joint IP Blacklists and Joint Vul-
nerability Data. As noted in [28,38], organizations aim to optimize their secu-
rity updates to minimize vulnerabilities in their infrastructure. Crucial role in the
above is played by joint lists of blacklisted IP addresses, characteristic network
traces and other associated data, as well as joint lists of data points reported by
vulnerability scanners. At the same time, organizations are understandably reluc-
tant to reveal details pertaining to their current or past attacks or sensitive network
data. As convincingly argued in [28], the use of MPC in computing set unions of
the above data sets will mitigate the organizations’ concerns. [28] implements the
computation of such set union and related data aggregation as generic MPC in the
VIFF framework. As noted by the authors, the major performance bottleneck in
their work is private computation of set union. Our tailored PSU algorithms will
be applicable to this computation as the main building block.

More generally, privacy-preserving data aggregation is a well-appreciated goal
in the network security and other communities. For example, SEPIA [8] is a
library aimed to optimize generic MPC to securely and in real-time compute
event correlation and aggregation of network traffic statistics. Our PSU protocol
can potentially be helpful in that setting too.

Other Applications and Use Cases. Imagine two Internet providers considering
a merger, and they would like to calculate how efficient the resulting joint net-
work would be without revealing the information of their existing networks [7].
Another application of combining set-intersection and set-union is the follow-
ing scenario discussed in [34]. A social services organization wants to determine
the list of cancer patients who are on welfare. Some patients may have can-
cer treatment at multiple hospitals. By using a private set union protocol, the
union of each hospital’s lists of cancer patients can be computed (while removing
duplicate patients without leaking the details of the patients), then a secure set
intersection operation between the resulting union and the welfare rolls can be
performed.

More generally, PSU is an essential building block for private DB support-
ing full join. Suppose there are two tables owned by two principals, say DMV
(Department of Motor Vehicles) and SSA (Social Security Administration). With
a PSU-based implementation, a query such as

SELECT ssn, dob

FROM dmv db FULL JOIN ssa db

ON dmv db.ssn = ssa db.ssn WHERE dob ≥ Jan 1, 1980

638 V. Kolesnikov et al.

will allow the players to learn the two columns of the union, but not learn
whether the other player has the matching record.

Malicious model is of course the ultimate goal in this line of research. At
the same time, we believe semi-honest guarantee is sufficient in many scenarios.
Further, our work may serve as a stepping stone to the malicious-secure solution
where it is required. We believe that our performance improvement of four orders
of magnitude is surprising for a reasonably researched problem, and sets the
baseline for the PSU performance.

1.2 Contribution

Over the last decade, there has been a significant amount of work on private set
intersection [3,10–13,15–18,20,27,29,32,36,37,43,45–47,49,51]. However, there
has been little work on PSU, with current PSU state-of-the-art not scalable for
big data. Despite similarities between the two functionalities, many effective PSI
techniques do not directly apply to PSU. We give a brief discussion about the
unsuitability for PSU of several popular PSI techniques in Sect. 5.4 as well as
throughout the paper.

We design a truly scalable PSU protocol, building on newly developed build-
ing blocks. In detail, our contribution can be summarized as follows:

1. We identify that existing fast private membership tests, used in leading PSI
protocols are not immediately applicable for computing PSU (cf. Sect. 2.1),
and a richer PMT of [13] carries 125× performance penalty (cf. Sect. 1.3).
We propose a new building block reverse private membership test (PMT)
in Sect. 4. We present an efficient instantiation of this building block, which
serves as the basis of our symmetric-key based PSU protocol.

2. We apply the bucketing technique to further reduce the computation and
communication overhead. We identify and overcome several new challenges
unique to bucketing in the context of PSU (but not PSI). Details can be found
in Sect. 5.

3. Integrating the above two components, we build a truly scalable system for PSU
computation that is three orders of magnitude faster than the current reported
performance for large two-party PSU instances. Specifically, we are ≈7,600×
faster than [14], which is the current best reported numbers for larger sets of 1
million elements. [5] consider an easier setting with three parties and one cor-
ruption. Although our protocol works in a stronger model than [5], we are still
30× faster in terms of running time on sets of 212 elements and have 100–125×
smaller communication (cf.Table 3).Ourprotocol evaluatesPSUof twomillion-
element datasets in about a minute on WAN and 13 s on a LAN.

4. Our implementation is released on Github: https://github.com/osu-crypto/
PSU. To our knowledge, this is the first publicly available PSU implementation.

1.3 Related Work

We start by reviewing previous PSU protocols, with particular emphasis on the
semi-honest model.

https://github.com/osu-crypto/PSU
https://github.com/osu-crypto/PSU

Scalable Private Set Union from Symmetric-Key Techniques 639

Table 1. Asymptotic communication (bits) and computation costs of two-party PSU
protocols in the semi-honest setting. Pub-key: public-key operations; symm: symmetric
cryptographic operations. n is the size of the parties’ input sets. � is the bit-length item.
λ is statistical security parameters. In [5] and our protocol, κ = 128 is computational
security parameter, while κ = 2048 is the public key length in other protocols. We
ignore the pub-key cost of κ base OTs.

Protocol Comm. (bits) Comp. [#Ops symm/pub-key]

[34] O(κ3n2) O(n2) pub-key

[23] O(κn) O(n log log(n)) pub-key

[5] O(κ�n log(n)) O(n� log(n)) symm

[14] O(κλn) O(λn) pub-key

Ours O(κn log(n)) O(n log(n)) symm

Kissner and Song [34]. To our knowledge, the first PSU protocol was proposed
by Kissner and Song [34]. The PSU of [34] is based on polynomial representations
and additively homomorphic encryption (AHE). The core idea of their protocol is
that if the sets X (respectively, Y) is represented as a polynomial f (respectively,
g) whose roots are the set’s elements, then the polynomial representation of the
union X ∪ Y is f × g. An important property is that an item x is in the set
X if and only if f(x) = 0. Consequently, for each item e that appears in either
set X or Y , it holds that (f × g)(e) = f(e) × g(e) = 0. The players compute
the polynomial f × g under AHE, and figure out the set of elements based on a
procedure called “element reduction”, which can reduce the degree of the roots.

Frikken [23]. Relying on the polynomial representation, Frikken [23] proposed
a faster PSU protocol with linear communication complexity in the size of
the dataset. At the high level, it proceeds as follows. Suppose that E(f) is
an encrypted polynomial representation for the set X, a tuple of the form
(xE(f(x)), E(f(x))) achieves the specific property that this tuple will be (0; 0)
if x ∈ X. In other words, x �∈ X can be recovered from the decrypted tuple
values. Therefore, instead of computing the encrypted f × g in [34], Bob just
computes the above tuples after receiving the encrypted polynomial representa-
tion E(f) from Alice, and sends them back to Alice in random order. Alice now
decrypts the tuples and learns the value that is not in the intersection. The work
of Frikken [23] requires O(nκ) communication, where n is the size of the parties’
input sets and κ is the length of public-key/ciphertext. Computational cost of
generating each tuple is O(n), thus this protocol requires O(n2) computation.
Moreover, their protocol [23] is expensive due to the multi-point evaluation on
the encrypted polynomial, which requires the depth of the arithmetic circuit
(leveled fully homomorphic encryption) to be logarithmic of the input set size.
The authors claimed that the computation of their protocol can be reduced to
O(n log log(n)) by using the bucketing technique with minor modifications to
their protocol, but it is not clear how to modify it. Indeed, using bucketing is
quite tricky for PSU until our work. Based on the polynomial representation,

640 V. Kolesnikov et al.

Hazay and Nissim [26] extended the Frikken’s protocol in the presence of mali-
cious adversaries.

Blanton and Aguiar [5]. In 2012, Blanton and Aguiar [5] proposed a faster
PSU protocol based on oblivious sorting and generic MPC protocols. The core
idea of their protocol consists of combining the input sets into a new set, then
sorting the resulting set, and comparing adjacent items of the sorted set in order
to eliminate duplicates. They focus on constructing the circuit for PSU (and
several other set operations) and relegate its evaluation to generic protocols.
Their paper provides experimental results on small input set in a three-party
and honest majority setting for 32−bit sized elements. Their largest experiment,
n ≤ 211, runs in 25 s; our n ≤ 212 experiment on larger element sizes runs in
1.42 s. Importantly, they run the experiments in the three-party setting, where
evaluation is much faster as wire secrets can be 1-bit long.

We sketch approximate communication cost of their two-party garbled-
circuit-based protocol based on state-of-the-art OT extension and half gates [54].
Oblivious sorting of 222 elements per player involves sorting a 223 array. Con-
sidering 32-bit elements, such 2PC will require approximately 23 · (223) · (32 +
32) · 256 = 3, 161, 095, 929, 856 bits = 395 GB. Here 256 is the half-gates gar-
bled table size and 32 is the element size. Subsequent duplicate elimination will
cost approximately the same as oblivious sort, so total communication cost is
≈790 GB. Considering larger element size, say, 128 bits, results in the corre-
sponding 4× cost increase, bringing total to ≈3.1 TB. Transferring 3 TB over
a 400 Mbps WAN will take 3·8·106

400 = 60000 s = 16.67 h. For comparison, our
protocol for this size runs in 250 s, a 240× improvement.

[5] should perhaps be seen as an improvement over current public key-based
protocols. As discussed above, our tailored solution outperforms [5] by a large
factor even in the setting that is the most unfavorable for us. Because there is no
reported data on the performance of [5] on larger set sizes and no existing generic
MPC/2PC system supports large circuits generated by [5], we use calculated
numbers in our comparison to [5] in Table 3.

Davidson and Cid [14]. Recently, Davidson and Cid [14] proposed an efficient
protocol based on an encrypted Bloom filter and additively homomorphic encryp-
tion (AHE). In the [14] protocol, the receiver represents its input set Y using
Bloom Filter (BF) with k hash functions, and inverts this filter by flipping the bit
value of each entry. It then encrypts the inverted Bloom filter by using an IND-
CPA secure AHE scheme, and sends it to the sender. For each item x of its input
set X, the sender uses the k hash functions to retrieve k encrypted BF entries
corresponding to x. He then uses AHE homomorphism to sum up under encryp-
tion the k retrieved ciphertexts. Let c be the obtained (AHE-encrypted) sum.
The sender sends (AHE-encrypted) pairs {cx, c} to receiver. Receiver decrypts
them and is able to obtain x iff c �= 0. Indeed, if x ∈ Y , all k entries of x are not
set in the inverted BF, resulting in c = 0. Therefore, the receiver only obtains
X \Y , from which it computes X ∪Y . [14] requires O(κλn) communication and
O(λn) modular exponentiations, where λ is the statistical security parameters,
and κ is the length of public-key/ciphertext, which is in the range 1024–2048
due to their use of public-key primitives. In concrete terms, encrypted BF for

Scalable Private Set Union from Symmetric-Key Techniques 641

Parameters: Set sizes m and n; two parties: sender S and receiver R
Functionality:

• Wait for an input X = {x1, x2, . . . , xn} ⊆ {0, 1}∗ from sender S, and an input
Y = {y1, y2, . . . , ym} ⊆ {0, 1}∗ from receiver R

• Give output X ∪ Y to the receiver R.

Fig. 1. Private set union functionality Fm,n
psu .

Parameters: A set size n; two parties: sender S and receiver R
Functionality:

• Wait for an input x∗ ∈ {0, 1}∗ from sender S, and an input X =
{x1, x2, . . . , xn} ⊆ {0, 1}∗ from receiver R

• Give the receiver R output 1 if x∗ ∈ X and 0 otherwise.

Fig. 2. Reverse private membership test functionality Fn
rpmt.

the set size n = 220 requires 8.05 GB and 16.1 GB when using a κ = 1024 bit
and κ = 2048 bit key length, respectively.

Other Related Work. We note that recent work [13] proposed private mem-
bership test with shared output, which can be used to instantiate our reverse
private membership test. Our RPMT is much faster. For specific parameters used
in our work (bucket size 61, bit length 128), [13] requires 80 KB communication
per test while our RPMT construction only needs 0.64 KB, a 125× improvement
in terms of communication. In addition, our construction requires 140× fewer
symmetric-key operations than [13]. Because we work with small bucket sizes,
our polynomial-based RPMT is fast computationally as well.

Outsourcing PSU was considered in the work of Canetti et al. [9]. In this
problem, users outsource their encrypted data and computation to an untrusted
cloud server, while keeping their data private. The main purpose is to minimize
the computational overhead of the users by utilizing the powerful resources of
the cloud server.

Table 1 provides a brief comparison to the prior highest-performing PSU pro-
tocols in the semi-honest setting. We emphasize that public-key operations are
the workhorse of all prior work, while we do only κ = 128 such operations to
initiate OT extension. This is the main reason for 7,600× performance improve-
ment over prior work we observe. We report in detail the performance results
and comparisons in Sect. 6.

2 Overview of Our Results and Techniques

We start with a special case. Suppose that the sender has only one item y in its
set Y and the receiver holding the set X will receive the resulting union {y} ∪ X.

642 V. Kolesnikov et al.

The protocol must satisfy the following:

(1) if y �∈ X, the receiver is allowed to learn y as it is implied by the output.
The sender learns nothing.

(2) if y ∈ X, the receiver knows that y ∈ X (implied by the output), but not
allowed to learn which is the sender’s item y. Sender learns nothing.

Receiver learns which of the cases (1) or (2) occurs. Based on the case, the
sender’s item y can be conditionally sent to the receiver using a “one-sided” OT,
a version of OT that requires transfer of a single encrypted secret, rather than
the usual transfer of two encrypted secrets, exactly one of which the receiver can
decrypt.

2.1 Reverse Private Membership Test (RPMT)

We formalize the above basic functionality as the RPMT functionality (cf. Fig. 2)
and design a corresponding tailored efficient protocol, which we believe to be of
independent interest. RPMT is related to the traditional Private Membership
Test (PMT) [46], which is a two-party protocol in which the party with input y
learns whether or not its item is in the input set X of other party (who learns
nothing). In a RPMT, the output is given to the opposite party, i.e. the party
holding the set X will learn whether y ∈ X (and nothing else). We formally
describe the ideal RPMT functionality in Fig. 2.

We emphasize that, unlike PSI, use of PMT is not very natural for PSU. This
is because the PMT output receiver holds an element, and gets the answer in
plaintext whether the element belongs to a set held by the sender. This is implied
by the PSI output, and hence can be used there. However, this is extra informa-
tion in the PSU functionality. We don’t know of a natural way to efficiently use
PMT with PSU.

This seemingly simple functionality adjustment (PMT→RPMT) doesn’t
seem to be fixable by a small tweak of PMT. This is because the underlying
primitive used to implement fast PMT [36] is a variant of OT extension, and the
role of OT receiver naturally belongs to the player with a single-element input
y; it is not clear how to amend the protocol to allow (only) the other player to
receive the output.

The basic idea for our RPMT is to have the receiver represent a dataset
X as a polynomial ˜P (x) whose roots are its elements, and send the (plaintext)
coefficients of the polynomial P (x) = ˜P (x) + s to the other party, where s is a
secret value chosen at random by the receiver. The sender evaluates the received
polynomial on y and obtains P (y) = s′. It is easy to see that s′ = s if y ∈ X,
i.e. y is a root of ˜P (x). At this point, the receiver could compare s′ and s in the
clear and learn the output of RPMT. However, if y �∈ X, the value P (y) may
leak partial information about y. To prevent this, instead of the receiver sending
s to the sender, the parties perform a private equality test (PEQT) to determine
whether two strings s and s′ are equal. The PEQT guarantees that the sender
learns nothing about whether y ∈ X while the polynomial presentation allows
receiver to determine whether y ∈ X but not the value of y (beyond what is
implied by y ∈? X).

Scalable Private Set Union from Symmetric-Key Techniques 643

We note that full PEQT is actually not required, and a weaker and slightly
efficient subprotocol is sufficient. For uninterrupted flow, we return to this obser-
vation in Sect. 2.2.

This brief overview of RPMT ignores an important security issue. In par-
ticular, suppose y ∈ X, so the sender can evaluate P (y) = s. Then he/she
can compute P (·) − s: a polynomial whose roots are all of the elements of X!
To address this issue, the parties invoke oblivious PRF (OPRF) on their inputs,
and use the OPRF’s outputs for the polynomial interpolation/evaluation. Recall
that OPRF is a 2-party protocol in which the OPRF sender learns a PRF key
k and the OPRF receiver learns Fk(z), where F is a pseudorandom function
(PRF) and z is the receiver’s input. In RPMT, the RPMT sender acts as the
OPRF receiver to receive Fk(y) and the RPMT receiver acts as the OPRF sender
to obtain the PRF key k. Now, the receiver interpolates a polynomial P over
points1 {(x, s ⊕ Fk(x))} ∀x ∈ X, and sends the coefficients of this polynomial
to the other party, who evaluates it on y, and outputs P (y) ⊕ Fk(y). Thanks to
OPRF, the important properties needed for RPMT still hold: (i) Fk(y) = Fk(x)
if x = y. Therefore, the sender obtains the secret value s chosen by the receiver;
(ii) even if y ∈ X, other elements of X can no longer be inferred from P (·) and
P (y). This is intended to make finding roots of P (·)−P (y) useless to the sender.
Moreover, to learn X, the sender has to know its OPRF value Fk(x), which is
not possible because of the OPRF guarantees. A detailed overview of the RPMT
protocol is presented in Sect. 4.

We note that RPMT and OPRF are fast cryptographic tools. Recently,
Kolesnikov et al. [36] proposed an efficient protocol which performs many OPRF
or PEQT with amortized cost of 5 µs. Therefore, the main computation cost of
our RPMT is the multiplication/evaluation of the polynomial, which requires
time O(n log2(n)) using FFT or O(n2) using a more straight-forward algorithm.
This is expensive for large set size n = |X|. We avoid the need to work with
high-degree polynomials by hashing/bucketing (see below). The communication
overhead is small and is equal to O(n).

We can summarize the above gadget for the simple case of PSU (union of a
set X and a single element y) as follows: using RPMT on X and y, the receiver
learns a bit b ∈ {0, 1} indicating whether y ∈ X. Next, the parties perform
one-sided OT to allow receiver obliviously obtain y if b = 0 (i.e. y �∈ X), nothing
otherwise.

2.2 An Efficiency Optimization

Going back to the discussion of our RPMT protocol in the previous section,
while it uses a PEQT protocol to compare the output of the polynomial, this is
in fact overkill for our application to PSU.

Indeed, suppose the sender instead just sends the output of the polynomial
s′ in the clear to the receiver. Consider the two cases. First, if y ∈ X, we have
1 Of course, x ∈ {0, 1}∗ needs to be “hashed down” to an element of the field we are

working with. This can be done, e.g., by applying a collision resistant hash function.
For simplicity, here we mention, but don’t formalize this step.

644 V. Kolesnikov et al.

{A, B} ∩ {C, D} = {} {A, B, C} ∩ {C, D} = {C}

B A
⊥⊥

DC
⊥ ⊥

B A
C⊥

DC
⊥ ⊥

A 0RPMT

B 0. . .

⊥ 1. . .

⊥ 1. . .

{A, ⊥} AOT

{B, ⊥} B. . .

{⊥, ⊥} ⊥. . .

{⊥, ⊥} ⊥. . .

A 0RPMT

B 0. . .

C 1. . .

⊥ 1. . .

{A, ⊥} AOT

{B, ⊥} B. . .

{C, ⊥} ⊥. . .

{⊥, ⊥} ⊥. . .

Fig. 3. Illustration of the main idea behind our protocol: using RPMT and oblivious
transfer to perform PSU on a sample bin. The left-hand side illustrates that the sender’s
bin contains 2 real items {A, B} and the receiver’s bin contains 2 real items {C, D},
these sets are disjointed. The right-hand side shows that the sender’s bin contains 3
real items {A, B, C} and the receiver’s bin contains 2 real items {C, D}, these sets have
a common item C. An item ⊥ denotes the global item known by both parties.

s′ = s, so no information about y would be leaked, as desired. In the other
case that y �∈ X, we want (in the overall PSU protocol) the receiver to learn
y anyway! So even if s′ leaks information about y, this is fine. Hence, for the
purpose of PSU, our protocol can conclude by a plaintext comparison, where the
sender sends s′ to the receiver.

As it turns out, this optimization, while elegant, is not substantial in terms
of overall performance, providing 3–5% improvement in running time and ∼10%
improvement in communication. This can be seen by sketching relative costs of
our subprotocols, and is also supported by our experiments (See Table 5 in the
Appendix for more details). Because of this, we chose to present the paper in
terms of the more general and conceptually simpler RPMT primitive.

However, we did formalize and prove secure the improved protocol. It is pre-
sented, together with a proof of security and experimental results in Appendix A.
We feel that this presentation structure allows to focus our main presentation
on the simpler primitives, while at the same time devote sufficient attention to
an interesting optimization.

Scalable Private Set Union from Symmetric-Key Techniques 645

2.3 General Case from RPMT

We now discuss how to extend the above approach to the general case of PSU
with |Y | > 1. The idea is natural: for each item y ∈ Y simply execute the
above gadget on y and X. As a result, the receiver obliviously obtains all items
in Z ← Y \ X which directly allows him to learn the union X ∪ Y = X ∪ Z.
However, this approach requires n instances of RPMT and n instances of OT
(here, we assume that |X| = |Y | = n). This results in communication and
computation complexity of O(n2) and O(n2 log(n)), respectively. Therefore, this
PSU construction is only efficient when n is small. Our next trick is to use a
hashing technique to overcome this limitation.

At the high level, the idea is that the parties use a hashing scheme to assign
their items into bins, and then perform the quadratic-cost PSU on each bin
efficiently. By applying a balls-into-bins analysis and minimizing the overall cost,
our hashing scheme has O(n/ log n) bins, where each bin contains O(log n) items.
We review the hashing scheme in detail in Sect. 5.2. This optimization reduces
costs to O(n log n) in communication and O(n log n log log n) in computation.
However, bucketing introduces a challenge specific to the PSU – the receiver
learns additional information on the intersection items, namely, the bucket where
the match occurred/did not occur. Consider an example where the receiver’s first
bin X1 contains three items and the sender’s first bin contains y1. In our protocol,
parties perform RPMT on X1 and y1. Suppose y1 ∈ X, which means, because of
bucketing, that y1 ∈ X1. From RPMT output, the receiver learns that y1 ∈ X1,
which cannot be inferred from just the PSU output.

To address this issue, both parties add dummy items ⊥ into each of their bins
to fill them to their maximal size prior to executing RPMT on the bins. Then
even if the output of RPMT on (X1 ∪ ⊥) and y1 gives the receiver a bit b = 1
(i.e. indicating that y1 ∈ X1), the receiver will not learn any information on y1
since y1 may be the dummy item ⊥. We note that this high-level description
of the use of dummy items hides some technical nuance, which is explained in
detail in Sect. 5.

Figure 3 illustrates the main idea behind our protocol. It is easy to see from
the Fig. 3 that the receiver’s view in both important cases (two bins are disjoint or
two bins have a common item) are exactly same. As noted above, each bin must
be padded with ⊥ to the maximum number of items expected in a bin. In Fig. 3,
the maximum bin size is 4. Section 5 formally describes the full construction of
our PSU.

2.4 Efficiency

Our PSU protocol requires only O(κ) public-key operations to perform base OT
(which can run in the offline phase). In the online phase, our protocol consists
of O(n) OPRF instances, O(n) PEQT instances, and O(n) OT instances. These
building blocks are based on symmetric-key operations, and can use the same
base OTs. In terms of communication, our protocol requires O(κn log(n)), where
κ is the computational security parameter.

646 V. Kolesnikov et al.

Parameters: A PRF F , and two parties: sender and receiver

Functionality:

• Wait for input x from the receiver.
• Sample a random PRF seed k and give it to the sender. Give Fk(x) to the

receiver.

Fig. 4. OPRF ideal functionality.

Parameters: Two parties: sender and receiver

Functionality:

• Wait for input x0 ∈ {0, 1}∗ from the sender, and input x1 ∈ {0, 1}∗ from the
receiver.

• Give the receiver R output 1 if x0 = x1 and 0 otherwise.

Fig. 5. The private equality test ideal functionality Fpeqt

Our protocol is 3–4 orders of magnitude faster than previous state-of-the art.
We present detailed performance analysis and comparisons in Sect. 6.

2.5 Using Padding to Hide Input Set Sizes

If desired, it is easy to add padding to our protocol so as to hide the actual sizes
of players input sets. This is done simply by setting the protocol parameters
(number of bins, maximal bin size) based on the known upper bound of set size.
It is easy to verify that this (higher parameter values) do not cause correctness
or security violations. Intuitively, players will process more bins with higher
maximal bin sizes, but fewer actual items. However, the number of actual items
per bin is hidden by our protocol.

3 Preliminaries

3.1 Oblivious Transfer

Oblivious Transfer (OT) is a ubiquitous cryptographic primitive and is a
foundation for almost all efficient secure computation protocols. In OT, a sender
with two input strings (x0, x1) interacts with a receiver who has an input choice
bit b. The result is that the receiver learns xb without learning anything about
x1−b, while the sender learns nothing about b.

The very first OT protocol was proposed by Rabin [48]. While several OT
protocols were proposed, they all essentially relied on public key operations (nec-
essarily so, due to lower bound [31]). The OT extension protocols [4,33] went
around the lower bound by considering a batched OT evaluation. OT extension

Scalable Private Set Union from Symmetric-Key Techniques 647

protocol works by evaluating a small number (namely, computational security
parameter κ) of expensive OTs that are used as a base for performing many OTs
using only cheap symmetric-key operations. In 2013, Kolesnikov and Kumare-
san [35] proposed an optimization and generalization of the IKNP OT extension,
which achieved O(log κ) factor performance improvement in communication and
computation. In the same year, Asharov et al. [2] proposed several IKNP opti-
mizations (some overlapping with [35]) and provided optimized implementation
of OT extension. In this work, we are interested in an specific variant of OT
(one-sided OT), in which the sender has only one message to send, and which
is received by the receiver based on its choice bit. The sender remains oblivious
as to whether or not the receiver received the message. With this OT variant,
one can reduce the bandwidth requirement by sending only one secret instead
of two. As a result, we can perform many OT instances with amortized cost of
50 ns and 129 bits transmitted.

3.2 Oblivious PRF and Private Equality

Oblivious PRF: An oblivious PRF (OPRF) [21] is a 2-party protocol in which
the sender learns (or chooses) a random PRF key k and the receiver learns
Fk(x1), . . . , Fk(xt), where F is a PRF and (x1, . . . , xt) ⊆ {0, 1}∗ are inputs
chosen by the receiver. Here, we consider a slightly weaker variant of OPRF due
to [36] where the PRF keys are related. We describe the ideal functionality for
an OPRF in Fig. 4.

OPRF and BaRK-OPRF Instantiation. While many OPRF protocols exist,
we focus on the protocol (BaRK-OPRF) of Kolesnikov et al. [36]. This protocol
has the advantage of being based on oblivious-transfer (OT) extension. As a
result, it uses only inexpensive symmetric-key cryptographic operations (apart
from a constant number of initial public-key operations for base OTs). The
protocol efficiently generates a large number of OPRF instances, which makes it
a particularly good fit for our eventual PSI application that uses many OPRF
instances. Concretely, the amortized cost of each OPRF instance costs roughly
500 bits in communication and a few symmetric-key operations.

Technically speaking, the protocol of [36] achieves a slightly weaker variant of
OPRF than what we have defined in Fig. 4. In particular, (1) PRF instances are
generated with related keys, and (2) the protocol reveals slightly more than just
the PRF output Fk(q). We stress that the resulting PRF of [36] remains a secure
PRF even under these restrictions. More formally, let leak(k, q) denote the extra
information that the protocol leaks to the receiver. [36] gives a security definition
for PRF that captures the fact that outputs of F , under related keys k1, . . . , kn, are
pseudorandom even given leak(ki, qi). This guarantee is sufficient for our purpose.

For the ease of presentation and reasoning, we work with the cleaner security
definitions that capture the main spirit of BaRK-OPRF. We emphasize that,
although cumbersome, it is possible to incorporate all of the [36] relaxations
into the definitions. We stress that our eventual application of PSU is secure in
the standard sense when built from BaRK-OPRF, and we make corresponding
remarks in the proof of security outlining how security holds for BaRK-OPRF.

648 V. Kolesnikov et al.

Fig. 6. Reverse private membership test protocol Fn
rpmt.

Private Equality Test (PEQT). Fagin, Naor, and Winkler [19] introduced
one of the first PEQT protocols. PEQT is a 2-party protocol in which a receiver
who has an input string x0 interacts with a sender holding an input string x1. The
result is that the receiver learns a bit indicating whether x0 = x1 and nothing
else, whereas the sender learns nothing. We formally define the PEQT func-
tionality in Fig. 5. [19] protocol was based on public-key cryptography. A long
list of follow-up works [6,36,39,40,44,46,47] improved the efficiency of PEQT.
Some of them were introduced in the context of PSI. PEQT can be immediately
obtained from BaRK-OPRF by computing and comparing BaRK-OPRF output
in the clear, cf. [36] (i.e., one party learns Fk(x1); the other party learns k and
sends Fk(x0)). We will use the latter most efficient instantiation.

4 Reverse Private Membership Test (RPMT)

We describe our efficient construction of Reverse Private Membership Test
(RPMT), which is a semi-honest secure protocol for the functionality specified in
Fig. 2. Throughout the paper we use the notations κ, λ for the computational and
statistical security parameters, respectively. Our RPMT protocol is described in

Scalable Private Set Union from Symmetric-Key Techniques 649

Fig. 6. The formal protocol follows the intuition presented in the first part of
Sect. 2. Polynomial arithmetic is done in field F(2σ) for some appropriate σ. We
discuss using smaller field size in Sect. 5.3.

RPMT protocol is presented in Fig. 2. We next argue it computes Fn
rpmt

correctly. Afterwards, we state and prove the security properties of the protocol.

Correctness. The main observation of OPRF is that the RPMT sender (acting
as OPRF’s receiver) obtains the output q∗ which is equal to qi, if x∗ = xi. In
this case, it is not hard to see that s∗ = P (h(x∗)) ⊕ q∗ = P (h(xi)) ⊕ q∗ = s.
From the Fpeqt-functionality, the receiver outputs 1. In case x∗ /∈ X, the OPRF
functionality gives the sender q∗ which is not in {qi | i ∈ [n]}, thus s∗ �= s and
the receiver gets 0 from the Fpeqt-functionality.

We remark that our RPMT protocol is correct except in case of a collision
P (h(x∗)) = P (h(xi)) for x∗ �= xi, which occurs with probability is 2−σ. By
setting σ = λ + log(n), a union bound shows probability of collision is negligi-
ble 2−λ.

Security. We now state and prove security properties of RPMT.

Theorem 1. The construction of Fig. 6 securely implements functionality Fn
rpmt

in the semi-honest model, given the OPRF and Private Equality Test primitives
defined in Fig. 4, and Fig. 5, respectively.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S
respectively, and argue the indistinguishability of the produced transcript from
the real execution.

Corrupt Sender. SimS(x∗) simulates the view of corrupt S, which consists of
S’s randomness, input, output and received messages. SimS proceeds as follows.
It first chooses q′ ∈R {0, 1}σ, calls OPRF simulator SimSOPRF

(x∗, q′), and appends
its output to the view. We note that BaRK-OPRF is behaving the same as OPRF
with respect to the security guarantee needed for simulating this step, namely
that q∗ obtained in Step 1 is pseudorandom. This is the only direct use of BaRK-
OPRF in this protocol, and hence the rest of the argument made w.r.t. OPRF
applies to our instantiation as well.

SimS simulates Step 3 as follows. It generates random s′ ∈ {0, 1}σ, and n
random points (x′

i, q
′
i) ∈R ({0, 1}�, {0, 1}σ). SimS then interpolates polynomial

P over points {h(x′
i), s

′ ⊕ q′
i} and appends its coefficients to the generated view.

Finally, to simulate Step 5, SimS runs simulator SimPEQT on input (s′ =
P (h(x∗)) ⊕ q′) and appends the output of SimPEQT to its output of the view.

We now argue that the output of SimS is indistinguishable from the real
execution. For this, we formally show the simulation by proceeding the sequence
of hybrid transcripts T0, T1, T2, T3, where T0 is real view of S, and T3 is the
output of SimS .

650 V. Kolesnikov et al.

Hybrid 1. Let T1 be the same as T0, except that the OPRF execution is replaced
as follows. By the OPRF/BaRK-OPRF pseudorandomness guarantee and
the indistinguishability of the output of SimSOPRF

, we replace F (k, x∗) and
F (k, xi),∀i ∈ [n], with q′ and q′

i,∀i ∈ [n], respectively. We note that if x∗ = xi,
then q′ = q′

i. It is easy to see that T0 and T1 are indistinguishable.
Hybrid 2. Let T2 be the same as T1, except that the polynomial is a uniform

polynomial of degree n − 1 (sampled by interpolating over random points).
Consider two following cases:

• x∗ �∈ X: Since all values q′
i are uniformly random from the S’s point of

view, so are the s ⊕ q′
i.

• x∗ = xi (consequently, q′ = q′
i): Since other values q′

j∈[n],∀j �= i, are
uniformly random from S’s point of view, we replace these s ⊕ q′

j with
random. Then s is used only in the expression s⊕q′

i. Since s is uniform, s⊕
q′
i is also uniformly random from the S’s view even though the adversary

knows q′ = q′
i.

In summary, the polynomial from the real execution can be replaced with
polynomial P sampled over random points. T1 and T2 are indistinguishable.

Hybrid 3. Let T3 be the same as T2, except the PEQT execution is replaced
with running the simulator SimRPEQT

(s′). Because SimRPEQT
is guaranteed to

produce output indistinguishable from real, T3 and T2 are indistinguishable.

Corrupt Receiver. SimR(x1, ..., xn, out) simulates the view of corrupt R, which
consists of R’s randomness, input, output and received messages. SimR pro-
ceeds as follows. It chooses a random k′ ∈r {0, 1}κ, calls OPRF simulator
SimSOPRF

(⊥, k′), and appends its output to the view. Finally, to simulate Step 5
(Fig. 6), SimS runs simulator SimPEQT on input (k′, out) and appends the output
of SimPEQT to its output of the view.

The view generated by SimR in indistinguishable from a real view because
of the indistinguishability of the transcripts of the underlying simulators.

Communication Cost. Ignoring the fixed cost of base OTs for OT extension, the
PMT communication cost (prior to further optimizations discussed in Sect. 5.3)
includes:

• OPRF in Step 1: ρ bits, where ρ is the width of the pseudorandom code
defined in Table 2 by referencing parameters from [36].

• Sending the coefficients of P in Step 3: (n + 1)σ bits
• Fpeqt in Step 5: ρ + λ bits

Therefore, the overall communication cost of our PMT protocol is

Φ(n) = 2ρ + λ + (n + 1)σ (1)

Scalable Private Set Union from Symmetric-Key Techniques 651

5 Private Set Union

We now present our main result, an application of our RPMT to PSU. The
construction closely follows the high-level overview presented in the second part
of Sect. 2. Recall, the RPMT functionality allows the receiver to learn one-bit
output indicating whether the sender’s item is in its (receiver’s) set, while keeping
this item secret (i.e. the receiver will not know which sender’s item is among its
set). The performance of our RPMT protocol is linear in the size of the receiver’s
set, resulting in a quadratic costs for PSU.

Parameters:

• Set sizes n1 and n2, and two parties: sender S and receiver R
• A bit-length �. Let n = max(n1, n2).
• Number of bins β = β(n), and max bin size m, suitable for our hashing scheme

(Table 2)
• Ideal Frpmt primitive defined in Figure 2, and ideal OT primitive.
• A special dummy item ⊥ ∈ {0, 1}∗

Input of S: X = {x1, x2, . . . , xn1} ⊆ {0, 1}�

Input of R: Y = {y1, y2, . . . , yn2} ⊆ {0, 1}�

Protocol:

1. Randomly pick a hash function H from all hash functions with domain {0, 1}�

and range [β].
2. S and R hash elements of their sets X and Y into β bins under hash function

H. Let BS [i] and BR[i] denote the set of items in the sender’s and receiver’s
i-th bin, respectively.

3. S pads each bin BS [i] with (several copies, as needed) the special item ⊥ up
to the maximum bin size m+ 1, and randomly permutes all items in this bin.

4. R pads each bin BR[i] with one special item ⊥ and (several, as needed) dif-
ferent dummy items to the maximum bin size m + 1.

5. R initializes set Z = {}.
6. For each bin i ∈ [β], for each item xj ∈ BS [i]:

(a) S and R invoke the Frpmt-functionality:
• S acts as sender with input xj

• R acts as receiver with input set BR[i]
• R obtains bit bj .

(b) S and R invoke the OT-functionality:
• S acts as sender with pair-input {xj , ⊥}
• R acts as receiver with bit input bj

• R obtains the OT output zj and sets Z = Z ∪ zi.
7. R outputs Y ∪ Z.

Fig. 7. Private set union protocol Fn1,n2
psu .

652 V. Kolesnikov et al.

Next, in Sect. 5.1, we show how to use a hashing/bucketing technique to
overcome this limitation. At the high level, the idea is that each party maps their
items into bins using a public hash function. Each bin contains a small number
of items which allows the two parties to evaluate RPMT on the elements of each
bin separately.

Let m denote the maximum sender’s bin size when mapping n items to β
bins with no (expected) overflow. Within each bin, the protocol requires (m+1)
invocations of RPMT. Section 5.2 analyses hashing parameters to minimize the
overall cost of our PSU.

5.1 PSU Construction

As described above, in our PSU protocol we place players’ elements into β buck-
ets of maximum size m + 1 each.

We describe the main construction of PSU in Fig. 7. Correctness of our PSU
protocol follows from the fact that the RPMT functionality gives the receiver
the zero-bit output if its set does not contain the sender’s item. In Step 6b, the
receiver obliviously receives that item from OT functionality.

We now state and prove security of our PSU construction.

Theorem 2. The construction of Fig. 7 securely implements the Private Set
Union functionality Fn1,n2

psu of Fig. 1 in the semi-honest model, given the OT and
Reverse Private Equality Test primitives defined in Fig. 2.

Proof. We exhibit simulators SimS and SimR for simulating corrupt S and R
respectively, and argue the indistinguishability of the produced transcript from
the real execution.

Corrupt Sender. When employing the abstraction of the RPMT and OT func-
tionalities, simulating corrupt S is elementary. SimS(X) simulates the view of
corrupt S, which consists of S’s randomness, input, output and received mes-
sages. The simulator simulates an execution of the protocol in which S receives
nothing from the PTM and OT ideal functionality in Step 4. Thus, it is straight-
forward to see that the simulation is perfect.

Corrupt Receiver. SimR(Y,Z) simulates the view of corrupt R, which consists
of R’s randomness, input, output and received messages. We will view SimR’s
input Z as the set Z = Y \ X, i.e. the set of elements that X “brings to the
union.” SimR proceeds as follows.

SimR simulates protocol of Fig. 7 bucket-by-bucket. Consider the i-th bucket.
Let Xi (respectively Yi, Zi) be the set of elements of X (respectively, Y,Z) that
are mapped to the i-th bucket. SimR pads Yi to m + 1 elements as is done in
Step 4. Now, SimR has all the information to simulate Step 6. SimR constructs
the sequence simulating when R discovers new elements in the union. This is
an m-element sequence S, where SimR puts |Zi| elements zi at randomly chosen
slots, and fills the remaining m − |Zi| elements of the sequence with ⊥.

SimR then goes through the elements of S. Consider the j-the such element
Sj . SimR sets outj = 0 if Sj = ⊥, and otherwise sets outj = 1. SimR invokes the

Scalable Private Set Union from Symmetric-Key Techniques 653

simulator of Frpmt with input (Yi, outj), and appends the output of the simulator
to its own output. This simulates Step 6a.

SimR proceeds by simulating Step 6b, as follows. SimR invokes the simulator
of OT with input (outj , Sj). This corresponds to R providing input outj and
receiving output Sj from OT. SimR appends the output of the simulator to its
own output.

SimR proceeds simulating each of β bins and terminates. This completes the
description of the simulator.

We now argue that the output of SimR is indistinguishable from the real
execution. This is easy to see. SimR’s reconstruction of how/when the elements
of Z = Y \X are discovered by R is distributed identically to the real execution.
The remainder of the simulation refers to simulators of implementations of ideal
functionalities.

5.2 Hashing Parameters

A natural first attempt is to hash n items into n bins, where each bin will
contain O(1) items on average. If we could have O(1) items per bin in PSU, this
would result in O(n) total RPMT instances, a low cost. However, we must hide
the actual number of items in each bin, and hence all bins must be padded to
an upper bound m. Gonnet [25] showed m = ln(n)

ln ln(n) (1 + o(1)). The coefficient
of little-o is not specified in [25]; Pinkas et al. [47] empirically determined the
concrete m given the number of bins β. In our case, n bins is not an optimal
strategy. For example, hashing n = 220 elements into n bins, bin size m = 20
is required to ensure that overflow occurs with probability ≤2−40. As a result,
for n = 220 our PSU protocol performs 21n RPMT instances in total, which
requires 228 OPRF ciphertexts sent and received. We can do better.

In the following, we analyze the effect of the number of bins β and maximum
bin size m + 1 on the communication overhead of our protocol, and choose the
best parameters to minimize our cost. We recall that the overall communication
cost of our PSU protocol is equal to βmΦ(m+1)+βm(κ+σ), where Φ(m+1) is
the RPMT communication cost specified in Eq. (1). To guarantee that mapping
n items to β bins with no overflow, we compute the probability that there exists
a bin with more than m items:

Pr(∃bin with ≥ m items) ≤ β

n
∑

m+1

(

n

i

)

(1
β

)i(1 − 1
β

)n−i (2)

Bounding (2) to be negligible in the statistical security parameter λ = 240,
we obtain the required bin size m without overflow for a given n and β. To
minimize the overall communication cost, we choose β = O(n/ log n). According
to standard balls-and-bins argument, the maximum bin size is O(log(n)). To
determine the coefficients in the big “O”, we first fix the number of bins with
an initialization value β = εn = 0.01n, evaluate Eq. (2) to obtain the necessary
m, and calculate the required communication cost given β and m. In order to
find “sweet spot” for our communication cost, we increase the scale ε by 0.001

654 V. Kolesnikov et al.

after each time. We observe that our protocol yields the lowest communication
when ε is in a range [0.4, 0.6]. Figure 8 shows the result for n = 216: we choose
β = εn = 0.058n and require m = 60 to achieve 2−40 hashing failure probability.
We also report the set of our hashing parameters in Table 2.

5.3 Discussion and Optimization

In our RPMT protocol described in Fig. 6, the receiver computes a polynomial
of degree (n − 1) with the field of F(2σ), where σ = λ + log(n). With hash-to-
bin technique used in PSU, we are able to reduce the degree from (n − 1) to
O(log(n)), which avoids an expensive computation at the cost of manipulating
polynomials with high degree. However, we increase the field size by 10%−12%.

Recall that our PSU protocol requires β(m + 1) RPMT instances in total.
For each RPMT protocol, its correctness is violated when a collision event occurs:
P (h(xi)) = P (h(yj)) for xi �= yj . To yield collision probability 2λ over all bins,
which is suited for most applications, the size of qi values is σ = λ+log(β(m+1)2).
For example, for n = 220, we use the polynomial field size F(268).

Polynomials with Dummy Points. In Step 4, Fig. 7, receiver pads each bin with
one special item ⊥ and additional different dummies to the maximum bin size
m+1. This padding serves the purpose of hiding the number of items that were
mapped to a specific bin, which would leak some information about the input
set. In RPMT protocol (Step 2, Fig. 6), the receiver generates the polynomial
over points {h(yi), s ⊕ qi} where some of qi are the OPRF of the dummy items
di. Therefore, we simply replace these qi = Fk(di) by random values.

Another optimization, inspired by [37], is that the receiver computes P (x)
by first interpolating the polynomial over the non-dummy items only. That is,
receiver interpolates P0 over m′ ≤ (m + 1) points {h(yi), s ⊕ Fk(yi)}, and also
computes P1(x) =

∏m′

i=1(x − h(yi)) over m′ roots h(yi), where yi are real items.

2 3 4 5 6 7 8 9 10
135

140

145

150

155

160

165

ε

C
om

m
un

ic
at
io
n
(M

B
)

Fig. 8. Communication cost (MB) of our PSU protocol for n = 216 given the number
of bins β = 10−2εn

Scalable Private Set Union from Symmetric-Key Techniques 655

Table 2. Hashing parameters for different set sizes n, and our PSU’s communication
cost (MB). ρ is OT extension matrix width in OPRF (≈ number of bits required per
OPRF call) as reported in Table 1 [36], β is the number of bins, m + 1 is max bin
size PSU with n elements per party. Total PSU communication reported in MB and
excludes the fixed cost of base OTs for OT extension.

parameters & comm. set size n

28 210 212 214 216 218 220 222

ρ 424 432 432 440 440 448 448 448

β/n 0.043 0.055 0.05 0.053 0.058 0.052 0.06 0.051

m 63 58 63 62 60 65 61 68

Comm. cost (MB) 0.39 1.81 7.84 33.43 141.78 602.20 2544.7 10748

Then receiver chooses a random polynomial Pr(x) of degree (m − m′ + 1); and
computes P (x) = P0(x) + P1(x)Pr(x). It is easy to see that P (h(xi)) = s ⊕
Fk(xi), ∀xi ∈ X. Using hashing parameters from Table 2, the expected value
of m′ is only 18 for n = 218, while the worst-case m = 65. This optimization
reduces the cost of expensive polynomial generation (by approximately 200% in
our implementation).

Relaxing RPMT. Finally, as discussed in Sect. 2, the use of full-fledged RPMT for
PSU is slightly overkill. It would suffice to use an RPMT protocol which leaked
some information about the sender’s item (in the case that x∗ �∈ X), since the
PSU protocol will release that value anyway. In AppendixA we describe a simple
change to the RPMT protocol that remains secure in the context of our PSU
protocol. Basically, instead of using PEQT to compare polynomial outputs, the
sender just sends it polynomial output in the clear. This is safe in the context of
PSU since the PSU simulator will have access to the sender’s RPMT input x∗

whenever the polynomial output leaks information about x∗.

5.4 Discussion: Difficulties in Applying Other PSI Techniques

In addition to the optimizations mentioned above, we also explored other com-
monly used techniques developed in the context of PSI [11,22,27,36,37,44,47].
Interestingly, we found that many standard techniques for PSI do not directly
work for our PSU paradigm, despite the apparent similarity of the two prob-
lems. In the following, we will discuss PSU-specific obstacles in applying these
techniques. The reader may safely skip this section on the first reading as we
discuss here only techniques that we did not use in our protocol.

Cuckoo Hashing. This hashing scheme was introduced by Pagh and Rodler [42].
It is the standard hashing scheme in current PSI protocols. At the high level,
the receiver uses two (optionally, more) public hash functions h1, h2 to store its
item in one of the bins {h1(x), h2(x)}. The hashing process uses eviction and

656 V. Kolesnikov et al.

the choice of which of the bins is used depends on the entire set. Using the same
hash functions and simple hashing, the sender maps its item y into both bins
{h1(y), h2(y)} (i.e., item y appears twice in the hash table). Then the parties
evaluate PSI bin-by-bin. This is efficient since the receiver has only one item per
bin. This hashing scheme avoids a quadratic-cost PSI within a bin.

Unfortunately, this hashing scheme (and the corresponding performance
improvement) does not immediately fit in the PSU case. The reason is that
the receiver may learn the Cuckoo hash positions of the sender’s items, which
may reveal information about sender’s entire input. Concretely, suppose that in
our protocol the sender uses Cuckoo hashing to map its item x into bin h1(x).
If x �∈ Y , the receiver will learn which bin x is mapped to. As noted above, the
bin storing x depends on the whole input set of the sender and this leaks some
information about the party input set that cannot be simulated.

Phasing. Permutation-based hashing (phasing) was introduced by Arbitman
et al. [1] to reduce the bit length of the items that are mapped to bins (in
our PSU, this would help reduce the polynomial field size). Phasing was used in
[11,27,44,52] to improve PSI performance when input items has short bit length.
The idea is to view each item x as two parts: first log(β) bits used to define the
bin to which the item is mapped, and the last bits used as a representation to
store the item in the bin.

Concretely, the item x can be presented as x = xL|xR, where xL has log(β)
bit-length. The item x is mapped into bin xL ⊕ f(xR), where f is a random
function that maps arbitrary strings to a range of [0, β]. That bin will store xR

as a representative of x. Clearly, xR has log(β) bits shorter than the original
item x. This permutation-based hashing technique achieves significant savings,

Table 3. Comparison of total runtime (in seconds) and communication (in MB)
between our protocol, [14] and [5]. Both parties have n 128-bit elements as input,
except [5] running time is based on 32-bit elements. [14] implementation is in Go, using
8 threads. Our implementation is in C++, 8 threads. [14] and us use fast emulated LAN
(10 Gbps, 0.02 ms RTT). Cryptographic strength refers to the computational security
of the protocol, according to NIST recommendations. [5] runtime is taken from their
3-party experiments, and [5] communication is calculated by us for 2PC and 128-bit
elements. Best results are marked in bold.

Protocol Bit key Cryptographic Set size n

length strength 28 210 212 214 216 218

Time

[14] 1024 Legacy 11.78 44.73 175.7 702.4 2836.5 11341.2

2048 112 78.02 312.44 1233.59 4952.94 19881.51 79272.48

[5] 128 128 2.41 11.88 24.88 − − −
Ours 128 128 0.57 0.66 0.83 1.15 2.65 10.42

Speedup 4× 18× 30× 4306× 7502× 7607×

Comm.

[14] 1024 Legacy 2.83 11.32 45.28 181.12 724.49 2897.97

2048 112 4.06 16.25 65.01 260.04 1040.18 4160.74

[5] 128 128 75.5 369.1 1744.83 8053.06 36507.22 163208.76

Ours 128 128 0.45 2.05 8.48 34.98 144.65 652.09

Speedup 9.02× 7.92× 7.66× 7.43× 7.19× 6.38×

Scalable Private Set Union from Symmetric-Key Techniques 657

especially when the original item x has small length (e.g. 32 bits or 64 bits). For
instance, assume that the item x has 32-bit length, the set size is n = 220. Then
bin elements are only 17 bits long, instead of 32 bits. As a result, we might hope
to use the polynomial field size of only F(217) in RPMT, yielding a significant
improvement.

Unfortunately, this general phasing technique does not yield any performance
benefit in our PSU paradigm. The underlying reason is that the items in each
bin are first given as input to an OPRF for that bin, however the state-of-the-art
OPRF protocol that we use [36] is insensitive to the item length. It is only the
OPRF output length that determines the field size for polynomial interpolation.
Since the OPRF outputs are random, their length must be chosen to avoid
collisions with probability 1 − 2−λ.

6 Implementation

Our protocol requires the receiver to generate a polynomial of degree m, and
the sender to evaluate it on one point, where m + 1 is the maximum bin size.
Since the degree m = O(log(n)) of the polynomial is relatively small, we use the
straightforward Lagrange interpolation and evaluation algorithm which requires
O(m2) field operations. As parties use the bit-string output of the OPRF as input
to the polynomial operations, it is natural to interpolate and evaluate the poly-
nomial over GF (2σ). Our polynomial implementation uses the NTL library [53]
with GMP library and GF2X [24] library installed for speeding up the running
time. Inspired by Huang et al. [30], we applied pipelining optimization when
the receiver sending all polynomials to the sender. In more detail, we find that
by sending polynomial coefficients for 28 bins in a batch to the sender, we can
minimize the overall wall-clock time of the execution.

As detailed in Sect. 2, our PSU protocol builds on a specific OPRF variant [36]
and OT extension. We do κ = 128 Naor-Pinkas OTs [41]. We use the source code
(OPRF and OT) from [36,50]. Our complete implementation will freely available
on GitHub.

Table 4. Scaling of our protocol with set size and number of threads. Total running
time is in seconds. n elements per party, 128-bit length element, and threads T ∈
{1, 4, 16, 32} threads. LAN setting with 10 Gbps network bandwidth, 0.02 ms RTT.
WAN setting with 400Mbps network bandwidth, 40 ms RTT.

Setting T Set size n

28 210 212 214 216 218 220 222

LAN

1 0.66 0.86 1.42 3.54 12.41 61.34 238.88 1039.64

4 0.59 0.69 0.98 1.46 4.03 17.94 69.07 301.76

16 0.55 0.66 0.78 0.97 1.82 6.29 21.9 90.99

32 0.53 0.63 0.69 0.84 1.56 4.1 13.09 54.63

WAN

1 1.38 1.73 2.61 6.96 23.29 102.5 406.15 1679.85

4 1.33 1.56 1.99 3.29 8.58 31.05 118.79 463.51

16 1.25 1.39 1.76 2.55 5.61 18.67 70.55 280.15

32 1.22 1.33 1.57 2.4 5.02 17.08 62.96 250.97

Speedup 1.13–1.24× 1.3–1.36× 1.66–2.06× 2.9–4.22× 4.64–7.98× 6–14.9× 6.5–18.2× 6.7–19.1×

658 V. Kolesnikov et al.

We implement our protocol in C++, and run our protocol on a single Intel
Xeon with 2.30 GHz and 256 GB RAM. We emulate the network by using Linux
tc command. In the following, we compare our protocol to the state-of-the-art
PSU protocol [14] which provides empirical experiments for a larger set, and the
work of [5] which reports experimental numbers for PSU of small sets n ≤ 212).
Additionally, we demonstrate the scalability and parallelizability of our protocol
by evaluating it on sets of up to 222 128-bit items each.

All comparisons are total running time. We note that our protocols are very
amenable to pre-computation (by precomputing and pre-sending OT extension
and OPRF matrices).

6.1 Comparison with Prior Work

Since implementation of [14] and [5] are not publicly available, we use their
reported experimental numbers. We perform a comparison on the range of set
sizes n = {28, 210, 212, 214, 216, 218} to match the parameters used in [14, Tables 3
& 4] and [5, Table 3]. [14] ran experiments on Intel Xeon 3.30 GHz 256 GB RAM
and 10 Gbps LAN; we use a similar (1.32× slower) machine as reported above
and same LAN. [5] reports running on 2.4 GHz AMD Opteron.

Runtime Comparison. In the [14] protocol, a Bloom filter (BF) of 44n ele-
ments is used to yield the false-positive probability 2−30. Each element requires
expensive encryption, decryption and further manipulation under an additively-
homomorphic encryption (AHE).

We report detailed comparisons in Table 3, and here we highlight some num-
bers. Our protocol runs in 0.94 s for n = 210, while [5] requires 11.88 s, a factor
of 18× improvement; and [14] requires 312.44 s with 2048-bit key length (which
corresponds to the security level considered in our protocol), a factor of 332×
improvement. As the set size n increases, [14] runs correspondingly slower. When
increasing the set size to n = 218, [14]’s overall running time is 79, 272.48 s while
ours is only 10.42 s.

This is a 7607× improvement in running time compared to [14] (2048-bit
key length). A higher improvement factor as we move to higher set size likely
indicates that non-protocol-essential system overheads take a higher fraction of
resources in smaller set size executions in our protocol. In Sect. 6.2, we demon-
strate the scalability and parallelizability of our protocol.

Bandwidth Comparison. The receiver in [14] sends a large encrypted BF. For
n = 220, BF size is 8.05 GB and 16.1 GB when encrypted with 1024-bit and 2048-
bit key, respectively. [5] relies on generic 2PC/MPC to run their protocol. We
sketch approximate communication cost of their protocol in the two-party setting
based on state-of-the-art OT extension and half gates (cf. discussion in Sect. 1.3).
Oblivious sorting of n elements per party involves sorting an array of size 2n.
Considering 	-bit elements, this will require approximately 2n · log(2n) · 2	 · 256
bit. Here 256 is the half-gates garbled table size. The communication complexity
of the duplicate elimination [5] costs approximately the same as oblivious sort.

Scalable Private Set Union from Symmetric-Key Techniques 659

For the bandwidth comparison, we only report the [5]’s communication cost of
oblivious sorting and duplicate elimination, which is in favor of their protocol.

We compare bandwidth for the set sizes explored in [14], and summarize
their and our results in Table 3. The communication cost of our protocol is
significantly less than that of the prior work. Concretely, for n = 218, our protocol
requires 652.09 MB of communication, a 6.38× improvement. For very small set
size n = 28, our protocol requires only 0.45 MB while [14] needs 4.06 MB and [5]
requires at least 75.5 MB.

Correctness Error Probability. In [14] protocol, Bloom filter introduces a false
positive error in the output. Recall, the false positive rate (FPR) is the proba-
bility that a single element is mistakenly marked as being in the set. The [14]’s
implementation chooses FPR of 2−30. Thus, computing the set union of 2−18

items each, the probability that the entire output includes a false positive is
2−12. We use simple hashing with probability of existence of an overflowed bin
of 2−40. Thus, in our protocol, the correctness error probability 2−40 is per whole
set, not per single item.

6.2 Scalability and Parallelizability

We demonstrate the scalability and parallelizability of our protocol by evaluat-
ing it on set sizes n = {28, 210, 212, 214, 216, 218, 220, 222}. We run each party in
parallel with T ∈ {1, 4, 16, 32} threads. We report the performance of our proto-
col in Table 4, showing running time in both LAN/WAN settings: a LAN setting
with 10 Gbps network bandwidth and 0.02 ms round-trip latency; a WAN setting
with 400 Mbps network bandwidth and a simulated 40 ms round-trip latency.

Our protocol indeed scales well. Small-size problems are sub-second; medium-
size problems (n = 214) are 3.54 s and larger sizes (n = 220) is under 4 min, all
single-threaded. Increasing the number of threads runs the n = 220 instance in
13.09 s, a four orders of magnitude improvement over prior work. Benchmarking
our implementation in the WAN setting, our protocol also scales well due to the
fact that the communication cost is reasonable (for n = 218, our protocol needs
652.09 MB of communication).

Our protocol is very amenable to parallelization. Specifically, our algorithm
can be parallelized at the level of bins. For example, when increasing T from
1 to 32, our protocol shows a factor of 19× improvement as the running time
reduces from 1039.64 s to 54.63 s for an input of n = 222 elements.

Of particular interest is the last row, which presents the ratio between the
runtime of the single thread and 32 threads. Our protocol yields a better speedup
when the set size is larger. For smallest set size of n = 28, the protocol achieves
a moderate speed up of about 1.13. When considering the larger database size
n = 222, the speed up of 3.4–3.6 is obtained at 4 threads and 6.7–19.1 at 32
threads.

660 V. Kolesnikov et al.

Acknowledgments. We thank all anonymous reviewers and Brice Minaud for insight-
ful feedback.

Vladimir Kolesnikov was supported in part by Sandia National Laboratories, a mul-
timission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc.,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525. He was also supported in part by the Office of the Direc-
tor of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity
(IARPA), via 2019-1902070008. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation therein.

Mike Rosulek and Ni Trieu were partially supported by NSF awards #1617197, a
Google faculty award, and a Visa faculty award.

A RPMT Optimization

In the RPMT protocol, the receiver computes a polynomial P with special output
s. The sender computes s∗ = P (h(x∗))⊕ q∗, where q∗ is its OPRF output. Then
the parties use PEQT to securely compare s to s∗.

In the context of PSU, it is not necessary to use PEQT for this step. Instead,
the sender can simply send s∗ to the receiver. The logic is as follows: If x∗ ∈ X,
the sender should learn only this fact (and nothing about x∗). This is still the
case after the optimization because the sender will compute the same polynomial
output s∗ for any such x∗ ∈ X. If x∗ ∈ X, it means that the receiver will
eventually learn x∗ as part of the PSU output (and the sender can infer that
x∗ was contributed by the receiver). The PSU simulator will therefore have the
value x∗, and it can perfectly simulate the polynomial output s∗ = P (h(x∗))⊕q∗.

We now formalize the details of this modification. Rather than define a
weaker/leaky version of RPMT, we instead introduce a protocol for 1-vs-n PSU.
Such a functionality is quite similar to RPMT, which can be thought of as
revealing only the cardinality of |{x∗} ∪ X|, which is equivalent to revealing the
cardinality of |{x∗} \ X| (either 0 or 1).

The details of the 1-vs-n PSU protocol are given in Fig. 9. Now, using 1-vs-n
PSU as a building block instead of RPMT, our full-fledged PSU protocol can be
written as in Fig. 10.

The security proof of the full-fledged PSU protocol is essentially the same
as in the pre-optimization protocol. The security of the 1-vs-n protocol is given
below:

Theorem 3. The construction of Fig. 9 securely implements functionality F1,n
psu

in the semi-honest model, given the OPRF primitive defined in Fig. 4.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S
respectively, and argue the indistinguishability of the produced transcript from
the real execution.

Scalable Private Set Union from Symmetric-Key Techniques 661

Fig. 9. 1-vs-n PSU protocol.

Corrupt Sender. SimS(x∗) simulates the view of corrupt S, which consists of
S’s randomness, input, output and received messages. SimS proceeds as follows.
It first chooses q′ ∈R {0, 1}σ, calls OPRF simulator SimSOPRF

(x∗, q′), and appends
its output to the view.

SimS simulates Step 3 as follows. It generates random s′ ∈ {0, 1}σ, and n ran-
dom points (x′

i, q
′
i) ∈R ({0, 1}�, {0, 1}σ). SimS then interpolates the polynomial

P over these points {h(x′
i), s

′ ⊕ q′
i} and appends its coefficients to the generated

view.
We argue that the output of SimS is indistinguishable from the real execution.

For this, we formally show the simulation by proceeding the sequence of hybrid
transcripts T0, T1, T2, where T0 is real view of S, and T2 is the output of SimS .

Hybrid 1. Let T1 be the same as T0, except that the OPRF execution is replaced
as follows. By the OPRF/BaRK-OPRF pseudorandomness guarantee and
the indistinguishability of the output of SimSOPRF

, we replace F (k, x∗) and
F (k, xi),∀i ∈ [n], with q′ and q′

i,∀i ∈ [n], respectively. We note that if x∗ = xi,
then q′ = q′

i. It is easy to see that T0 and T1 are indistinguishable.
Hybrid 2. Let T2 be the same as T1, except that the polynomial is an uniform

polynomial of degree n − 1. Consider two following cases:

662 V. Kolesnikov et al.

Fig. 10. Private set union protocol Fn1,n2
psu .

• x∗ �∈ X: Since all values q′
i are uniformly random from the S’s point of

view, so are the s ⊕ q′
i.

• x∗ = xi (consequently, q′ = q′
i): Since other values q′

j∈[n],∀j �= i, are
uniformly random from S’s point of view, we replace these s ⊕ q′

j with
random. Then s is used only in the expression s ⊕ q′

i. Since s is uni-
form, s ⊕ q′

i is also uniformly random from the S’s view even though the
adversary knows q′ = q′

i.
In summary, the polynomial from the real execution can be replaced with a
polynomial P over random points. T1 and T2 are indistinguishable.

Corrupt Receiver. SimR(x1, ..., xn, out) simulates R’s view, which includes
R’s randomness, input, output and received messages. SimR proceeds as follows.

First, if out = {x1, . . . , xn, x∗} for some x∗, then the simulator knows S’s
input x∗ and can trivially simulate all of S’s actions honestly. This case of
simulation is clearly perfect.

Otherwise, SimR chooses a random k′ ∈r {0, 1}κ, calls OPRF simulator
SimSOPRF

(⊥, k′), and appends its output to the view. It simulates a message s∗ = s
from S in Step 4. Finally, to simulate Step 5, SimS runs simulator SimOT on input
(1,⊥) and appends the output of SimOT to its output of the view.

Scalable Private Set Union from Symmetric-Key Techniques 663

Table 5. Comparison of total runtime (in seconds) and communication (in MB)
between the RPMT version and the optimized version of our protocol. n elements per
party, 128-bit length element, and single thread in LAN setting with 10Gbps network
bandwidth, 0.02 ms RTT.

Our Protocol
Set size n

28 210 212 214 216 218 220 222

Time
with PEQT 0.66 0.86 1.42 3.54 12.41 61.34 238.88 1039.64

without PEQT 0.65 0.86 1.41 3.51 11.02 49.12 229.22 1015.23

Comm.
with PEQT 0.45 2.05 8.48 34.98 144.65 652.09 2693.30 11,077.83

without PEQT 0.41 1.86 7.72 31.80 131.16 600.62 2470.10 10,233.27

The view generated by SimR in indistinguishable from a real view because
of the indistinguishability of the transcripts of the underlying simulators.

References

1. Arbitman, Y., Naor, M., Segev, G.: Backyard cuckoo hashing: constant worst-
case operations with a succinct representation. In: 51st FOCS, pp. 787–796. IEEE
Computer Society Press, October 2010

2. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: Sadeghi, A.R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 2013, pp. 535–548. ACM Press, New York (2013)

3. Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) Size matters: size-hiding private
set intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19379-8 10

4. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: 28th ACM STOC, pp. 479–488. ACM Press, May 1996

5. Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations. In:
Youm, H.Y., Won, Y. (eds.) ASIACCS 2012, pp. 40–41. ACM Press, New York
(2012)

6. Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the social-
ist millionaires’ problem. Discrete Appl. Math. 111, 2001 (2001)

7. Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-
honest model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252.
Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 13

8. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: privacy-
preserving aggregation of multi-domain network events and statistics. In: Proceed-
ings of the 19th USENIX Conference on Security, USENIX Security 2010, p. 15.
USENIX Association, Berkeley (2010)

9. Canetti, R., Paneth, O., Papadopoulos, D., Triandopoulos, N.: Verifiable set oper-
ations over outsourced databases. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 113–130. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54631-0 7

https://doi.org/10.1007/978-3-642-19379-8_10
https://doi.org/10.1007/978-3-642-19379-8_10
https://doi.org/10.1007/11593447_13
https://doi.org/10.1007/978-3-642-54631-0_7
https://doi.org/10.1007/978-3-642-54631-0_7

664 V. Kolesnikov et al.

10. Cerulli, A., De Cristofaro, E., Soriente, C.: Nothing refreshes like a RePSI: reactive
private set intersection. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS,
vol. 10892, pp. 280–300. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93387-0 15

11. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017, pp. 1243–1255. ACM Press, New York (2017)

12. Cho, C., Dachman-Soled, D., Jarecki, S.: Efficient concurrent covert computation
of string equality and set intersection. In: Sako, K. (ed.) CT-RSA 2016. LNCS,
vol. 9610, pp. 164–179. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29485-8 10

13. Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-party
computation. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035,
pp. 464–482. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-
0 25

14. Davidson, A., Cid, C.: An efficient toolkit for computing private set operations.
In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017, Part II. LNCS, vol. 10343, pp.
261–278. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3 15

15. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 13

16. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 13

17. Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private contact
discovery. In: Proceedings on Privacy Enhancing Technologies (2018)

18. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 2013, pp. 789–800. ACM Press, New York (2013)

19. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Com-
mun. ACM 39, 77–85 (1996)

20. Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with linear commu-
nication from general assumptions. Cryptology ePrint Archive, Report 2018/238
(2018). https://eprint.iacr.org/2018/238

21. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

22. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

23. Frikken, K.: Privacy-preserving set union. In: Katz, J., Yung, M. (eds.) ACNS
2007. LNCS, vol. 4521, pp. 237–252. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72738-5 16

24. Gaudry, P., Brent, R., Zimmermann, P., Thomé, E.: https://gforge.inria.fr/
projects/gf2x/

25. Gonnet, G.H.: Expected length of the longest probe sequence in hash code search-
ing. J. ACM 28(2), 289–304 (1981)

26. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adver-
saries. J. Cryptol. 25(3), 383–433 (2012)

https://doi.org/10.1007/978-3-319-93387-0_15
https://doi.org/10.1007/978-3-319-93387-0_15
https://doi.org/10.1007/978-3-319-29485-8_10
https://doi.org/10.1007/978-3-319-29485-8_10
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-59870-3_15
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-14577-3_13
https://eprint.iacr.org/2018/238
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-72738-5_16
https://doi.org/10.1007/978-3-540-72738-5_16
https://gforge.inria.fr/projects/gf2x/
https://gforge.inria.fr/projects/gf2x/

Scalable Private Set Union from Symmetric-Key Techniques 665

27. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54365-8 8

28. Hogan, K., et al.: Secure multiparty computation for cooperative cyber risk assess-
ment. In: 2016 IEEE Cybersecurity Development (SecDev), pp. 75–76, November
2016

29. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS 2012. The Internet Society, February 2012

30. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security 2011 (2011)

31. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61. ACM Press, May 1989

32. Ion, M., et al.: On deploying secure computing commercially: private intersection-
sum protocols and their business applications. Cryptology ePrint Archive, Report
2019/723 (2019)

33. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

34. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 15

35. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short
secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 4

36. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 818–829. ACM
Press, New York (2016)

37. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1257–1272. ACM
Press, New York (2017)

38. Lenstra, A., Voss, T.: Information security risk assessment, aggregation, and mit-
igation. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS,
vol. 3108, pp. 391–401. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-27800-9 34

39. Lipmaa, H.: Verifiable homomorphic oblivious transfer and private equality test.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 416–433. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5 27

40. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, STOC 1999
(1999)

41. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th SODA, pp. 448–457. ACM-SIAM, January 2001

42. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
43. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set

intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 13

https://doi.org/10.1007/978-3-662-54365-8_8
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-540-27800-9_34
https://doi.org/10.1007/978-3-540-27800-9_34
https://doi.org/10.1007/978-3-540-40061-5_27
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13

666 V. Kolesnikov et al.

44. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: Proceedings of the 24th USENIX Conference
on Security Symposium, pp. 515–530. USENIX Association (2015)

45. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 5

46. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: Proceedings of the 23rd USENIX Conference on Security Sympo-
sium, pp. 797–812. USENIX Association (2014)

47. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur. 21(2) (2018)

48. Rabin, M.O.: How to exchange secrets by oblivious transfer. Aiken Computation
Laboratory, Harvard U. (1981)

49. Resende, A.C.D., Aranha, D.F.: Faster unbalanced private set intersection. In:
Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 203–221. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6 11

50. Rindal, P.: libOTe: an efficient, portable, and easy to use Oblivious Transfer
Library. https://github.com/osu-crypto/libOTe

51. Rindal, P., Rosulek, M.: Improved private set intersection against malicious adver-
saries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS,
vol. 10210, pp. 235–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 9

52. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execu-
tion. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017, pp. 1229–1242. ACM Press, New York (2017)

53. Shoup, V.: http://www.shoup.net/ntl/
54. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole: reducing data trans-

fer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-662-58387-6_11
https://github.com/osu-crypto/libOTe
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/978-3-319-56620-7_9
http://www.shoup.net/ntl/
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6_8

Author Index

Abdalla, Michel II-386, III-552
Abe, Masayuki III-669
Albrecht, Martin R. III-371
Altuğ, Salim Ali II-293
Ananth, Prabhanjan I-112
Andreeva, Elena II-153
Andrikos, Christos III-285
Au, Man Ho I-278, I-371

Badrinarayanan, Saikrishna I-342, II-577
Bai, Shi I-55
Baldimtsi, Foteini III-700
Bardeh, Navid Ghaedi III-347
Bartusek, James III-489
Batina, Lejla III-285
Bellare, Mihir III-607
Benhamouda, Fabrice II-386, III-552
Bernstein, Daniel J. III-33
Beullens, Ward I-227
Bolboceanu, Madalina II-91
Bonnetain, Xavier I-196, I-552
Boudgoust, Katharina I-55
Bourse, Florian I-679
Brakerski, Zvika II-91

Camenisch, Jan III-191
Carmer, Brent III-489
Cascudo, Ignacio II-606
Chan, John II-183
Chen, Hao II-446
Chen, Qi II-505
Chen, Yilei II-293, III-3
Cheon, Jung Hee II-415
Chillotti, Ilaria II-446
Chmielewski, Lukasz III-285
Choi, Wonseok I-175
Cid, Carlos III-371
Cojocaru, Alexandru I-615
Colisson, Léo I-615
Coron, Jean-Sébastien II-325, II-356

Dai, Wei III-607
Dakhilalian, Mohammad III-63

Damgård, Ivan II-606
Das, Dipayan I-55
David, Bernardo II-606
De Feo, Luca I-248
Debris-Alazard, Thomas I-21
Degabriele, Jean Paul II-209
Dobraunig, Christoph III-225
Döttling, Nico II-606, III-585
Dowsley, Rafael II-606
Dziembowski, Stefan III-315

Egashira, Shohei III-637

Fan, Xiong I-112
Faonio, Antonio III-159
Faust, Sebastian III-315
Fauzi, Prastudy I-649
Fernando, Rex I-342
Fiore, Dario III-159

Garg, Sanjam I-426, III-585
Gay, Romain III-552
Genise, Nicholas II-473, III-3
Gentry, Craig II-473
Giacomelli, Irene II-606
Goel, Aarushi I-426
Goldberg, Sharon III-700
González, Alonso III-728
Grassi, Lorenzo III-371
Guan, Jie III-398
Guo, Chun II-3
Guo, Qian I-82

Hajiabadi, Mohammad III-585
Halevi, Shai II-473
Herranz, Javier III-159
Hhan, Minki I-584
Hofheinz, Dennis I-311
Hong, Seokhie II-273
Hosoyamada, Akinori I-145, I-552
Hu, Bin III-398
Hülsing, Andreas III-33

Iwata, Tetsu I-145

Jain, Abhishek I-426, II-577, III-489
Janson, Christian II-209
Jin, Zhengzhong III-489
Johansson, Thomas I-82
Jutla, Charanjit S. III-669

Kashefi, Elham I-615
Khalili, Mojtaba III-63
Khovratovich, Dmitry III-371
Kim, Dongwoo II-415
Kim, Duhyeong II-415
Kim, Suhri II-273
Kirshanova, Elena I-521
Kirsten, Michael I-488
Kitagawa, Fuyuki III-97, III-128
Kleinjung, Thorsten I-227
Koch, Alexander I-488
Kolesnikov, Vladimir II-636
Koppula, Venkata I-342
Krenn, Stephan III-191
Kurosawa, Kaoru II-564
Küsters, Ralf III-191

Lai, Junzuo I-371
Lallemand, Virginie II-153
Lee, Byeonghak I-175
Lee, Changmin II-59
Lee, Hun Hee II-415
Lee, Jooyoung I-175
Lee, Keewoo II-415
Lepoint, Tancrède III-489
Lerman, Liran III-285
Li, Baiyu II-473
Li, Lucy III-607
Li, Xiangxue II-3
Libert, Benoît III-520
Lin, Zhiqiang II-505
Liu, Hanlin I-401
Liu, Kevin III-585
Lüftenegger, Reinhard III-371

Ma, Fermi III-489
Malavolta, Giulio III-585
Malkin, Tal III-489
Malozemoff, Alex J. III-489
Mårtensson, Erik I-521

Masson, Simon I-248
Matsuda, Takahiro III-97
Mavroudis, Vasilios III-285
Meiklejohn, Sarah I-649
Mennink, Bart III-225
Mercer, Rebekah I-649
Micciancio, Daniele II-473
Moulik, Subhayan Roy I-521
Mukherjee, Pratyay III-3

Naehrig, Michael II-243
Naya-Plasencia, María I-552
Nguyen, Khoa II-25
Nguyen, Ngoc Khanh II-121
Notarnicola, Luca II-356

Ohkubo, Miyako III-669
Orlandi, Claudio I-649
Ostrovsky, Rafail II-577
Oswald, Elisabeth III-256

Pan, Jiaxin III-669
Papagiannopoulos, Kostas III-285
Park, Young-Ho II-273
Passelègue, Alain II-386
Patra, Arpita I-456
Pellet-Mary, Alice II-59
Pereira, Hilder V. L. II-325
Perin, Guilherme III-285
Perlman, Renen II-91
Perrin, Léo I-196
Petit, Christophe I-248
Pointcheval, David I-679
Postlethwaite, Eamonn W. I-521
Purnal, Antoon II-153

Ràfols, Carla III-159, III-728
Raskin, Michael II-537
Rassias, Giorgos III-285
Rausch, Daniel III-191
Ravi, Divya I-456
Raykova, Mariana III-489
Rechberger, Christian III-371
Renes, Joost II-243
Reyhanitabar, Reza II-153
Reyzin, Leonid III-700
Rogaway, Phillip II-183

668 Author Index

Rønjom, Sondre III-347
Rosulek, Mike II-636
Roux-Langlois, Adeline I-55
Roy, Arnab II-153, III-669

Sagga, Omar III-700
Sahai, Amit I-342
Sanders, Olivier I-679
Sanso, Antonio I-248
Sasaki, Yu I-552
Schofnegger, Markus III-371
Schrempp, Michael I-488
Schrottenloher, André I-552
Sendrier, Nicolas I-21
Sharma, Devika II-91
Shi, Elaine I-3, I-112
Shi, Tairong III-398
Simkin, Mark II-537
Slamanig, Daniel III-63
Song, Yongsoo II-446
Sonnino, Alberto III-285
Stehlé, Damien II-59
Struck, Patrick II-209

Tanaka, Keisuke III-97, III-128, III-637
Tang, Chunming II-505
Tang, Hanh II-25
Tian, Shizhu I-196
Tian, Song I-278
Tillich, Jean-Pierre I-21
Ţiţiu, Radu III-520
Tomida, Junichi III-459
Trieu, Ni II-636

Ursu, Bogdan I-311

Vercauteren, Frederik I-227
Visconti, Ivan II-577
Vizár, Damian II-153

Wallden, Petros I-615
Wallet, Alexandre II-59
Wang, Huaxiong II-25
Wang, Kunpeng I-278
Wang, Senpeng III-398
Wang, Xiao II-636
Wang, Yuyu III-637, III-669
Waters, Brent I-342
Wen, Weiqiang I-55
Weng, Jian II-3
Whitnall, Carolyn III-256

Xagawa, Keita I-584
Xu, Qiuliang I-371
Xu, Xiu I-278
Xue, Haiyang I-278

Yamakawa, Takashi I-584
Yang, Jing I-82
Yang, Rupeng I-371
Yoon, Kisoon II-273
Yoshida, Yusuke III-128
Yu, Yu I-401, II-3
Yu, Zuoxia I-371

Żebrowski, Karol III-315
Zeng, Neng II-25
Zhang, Bin III-428
Zhang, Jiang I-401, II-3
Zhang, Kai III-398
Zhang, Zhenfei I-55
Zhao, Shuoyao I-401

Author Index 669

	Preface
	ASIACRYPT 2019 The 25th Annual International Conference on Theory and Application of Cryptology and Information Security
	Contents -- Part II
	Codes
	Collision Resistant Hashing from Sub-exponential Learning Parity with Noise
	1 Introduction
	1.1 Learning Parity with Noise
	1.2 Cryptographic Hash Functions
	1.3 The Construction of CRH from LPN

	2 Preliminaries
	3 Collision Resistant Hash Functions
	3.1 The Expand-then-Compress Construction
	3.2 The Main Framework of LPN-based CRH
	3.3 Assume Less, Shrink More and in Parallel at the Same Time

	4 Concluding Remarks
	References

	New Code-Based Privacy-Preserving Cryptographic Constructions
	1 Introduction
	2 Background
	2.1 Code-Based Collision-Resistant Hash Functions
	2.2 Zero-Knowledge Argument Systems and Stern-Like Protocols
	2.3 Previous Extending-then-Permuting Techniques

	3 Code-Based Statistically Hiding Commitments with Companion Zero-Knowledge Protocols
	3.1 Our Construction
	3.2 Techniques for Handling Well-Formed Regular Words
	3.3 ZKAoK of a Valid Opening

	4 Range Arguments for Signed Fractional Numbers
	4.1 A Treatment of Signed Fractional Numbers
	4.2 Proving Inequalities Between Committed Elements of Q"426830A f"526930B
	4.3 Range Arguments

	5 Code-Based Accumulators and Logarithmic-Size Zero-Knowledge Arguments of Set Membership
	5.1 Cryptographic Accumulators
	5.2 Hashing with Two Inputs
	5.3 Code-Based Merkle-Tree Accumulator
	5.4 Logarithmic-Size Arguments of Set Membership

	6 Applications to Ring and Group Signatures
	References

	Lattices (2)
	An LLL Algorithm for Module Lattices
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Background
	2.2 Computing over Rings
	2.3 Gram-Schmidt Orthogonalization

	3 LLL-Reduction of Module Pseudo-bases
	3.1 An LLL Algorithm for Module Lattices
	3.2 Handling Bit-Sizes
	3.3 Finding Short Vectors for the Euclidean Norm

	4 The Divide-and-Swap Algorithm
	4.1 Extending the Logarithm
	4.2 The Lattice L
	4.3 On the Distance of Relevant Vectors to the Lattice
	4.4 A ``Euclidean Division'' over R
	4.5 The Divide-and-Swap Algorithm

	References

	Order-LWE and the Hardness of Ring-LWE with Entropic Secrets
	1 Introduction
	1.1 Background
	1.2 Our Results

	2 Preliminaries
	2.1 Algebraic Number Theory
	2.2 The Ring-LWE Problem

	3 Order-LWE: Definition, Variants and Worst-Case Hardness
	3.1 Worst-Case Hardness for O-LWE and O-LWE

	4 New Worst-Case Hardness for Polynomial-LWE
	4.1 Overview
	4.2 Hardness of PLWE
	4.3 On the Existence of Small Multipliers
	4.4 Comparison

	5 Sampling Secrets from Orders
	6 RLWE Secrets from Ideals: High Entropy is Not Enough
	6.1 Insecure Instances
	6.2 Secure Instances
	6.3 A Threshold Phenomenon

	7 k-Wise Independent Secrets and Hidden Lattice BDD
	7.1 Hidden-Lattice Decision Bounded Distance Decoding
	7.2 Stating and Proving Hardness

	References

	On the Non-existence of Short Vectors in Random Module Lattices
	1 Introduction
	1.1 Our Contribution
	1.2 Applications
	1.3 Related Works

	2 Preliminaries
	2.1 Cyclotomic Rings

	3 Zeroes in the Chinese Remainder Representation
	3.1 Zero Rows
	3.2 Computing Probabilities
	3.3 Constructing Wi

	4 Applications to the Bai-Galbraith Scheme
	4.1 The Identification Protocol
	4.2 Security Analysis
	4.3 Concrete Parameteres

	References

	Authenticated Encryption
	Forkcipher: A New Primitive for Authenticated Encryption of Very Short Messages
	1 Introduction
	2 Preliminaries
	3 Forkcipher
	3.1 Syntax
	3.2 Security Definition
	3.3 Iterate-Fork-Iterate

	4 ForkSkinny
	4.1 Specification
	4.2 Design Rationale

	5 Security Analysis
	5.1 Detail of the Evaluation of Differential and Linear Attacks

	6 Tweakable Forkcipher Modes
	6.1 Syntax and Security of AEAD
	6.2 Parallel AE from a Forkcipher
	6.3 Security of PAEF
	6.4 Sequential AE from a Forkcipher
	6.5 Security of SAEF
	6.6 Reduced Parallel AE from a Forkcipher
	6.7 Security of RPAEF
	6.8 Aggressive RPAEF Instance
	6.9 Deterministic MiniAE

	7 Hardware Performance
	8 Conclusion
	References

	Anonymous AE
	1 Introduction
	2 Nonce-Based AE (nAE)
	3 Anonymous Nonce-Based AE (anAE)
	4 The NonceWrap Scheme
	5 NonceWrap Security
	6 Remarks
	References

	Sponges Resist Leakage: The Case of Authenticated Encryption
	1 Introduction
	1.1 Contribution
	1.2 Related Work
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Notation
	2.2 Syntax
	2.3 The Sponge Construction
	2.4 The Leakage Model
	2.5 Authenticated Encryption and Leakage Resilience

	3 Slae: A Sponge-Based LAE Construction
	3.1 High-Level View of Slae
	3.2 The SlMac Construction
	3.3 The SlEnc Construction
	3.4 Differences Between Slae and Isap

	4 The Security of FGHF
	4.1 Se[F, G] is IND-aCPLA Secure
	4.2 Mac[H, F] is SUF-CMLA Secure
	4.3 Mac[H, F] is LPRF Secure
	4.4 The FGHF Composition Theorem

	5 Security of Sponge-Based Primitives
	5.1 A Sponge-Based Leakage-Resilient Function Family
	5.2 The Security of SPrg
	5.3 A Sponge-Based Vector Hash Function
	5.4 Concrete Security of Slae

	6 Concluding Remarks
	References

	Isogenies (2)
	Dual Isogenies and Their Application to Public-Key Compression for Isogeny-Based Cryptography
	1 Introduction
	2 Preliminaries and Notation
	3 Evaluating Dual Isogenies
	3.1 The Case >2
	3.2 The Case of 4-Isogenies
	3.3 The Case of 2-Isogenies

	4 Generation of Torsion Bases
	4.1 Deterministically Generating X-Coordinates
	4.2 X-only Entangled Basis Generation for = 3
	4.3 Basis Generation with the Reduced Tate Pairing for =2

	5 Pairing Computation
	5.1 Pulling Back Pairing Arguments
	5.2 Special Curves and Torsion Bases for SIKE
	5.3 Precomputation and the Miller Loop for = 3
	5.4 Precomputation and the Miller Loop for = 2

	6 Implementation Results
	6.1 Cycle Counts for Compression Functions
	6.2 Impact on SIDH and SIKE

	References

	Optimized Method for Computing Odd-Degree Isogenies on Edwards Curves
	1 Introduction
	2 Preliminaries
	2.1 Edwards Curves and Their Arithmetic
	2.2 w-Coordinate on Edwards Curves
	2.3 Isogeny-Based Cryptosystems

	3 Optimized Odd-Degree Isogenies on Edwards Curve
	3.1 Motivation
	3.2 Proposed Odd-Degree Isogeny Formula
	3.3 Alternate Odd-Degree Isogeny Formula

	4 Implementation
	4.1 Computational Costs
	4.2 Implementation Result of CSIDH Using w-coordinate

	5 Conclusion
	References

	Hard Isogeny Problems over RSA Moduli and Groups with Infeasible Inversion
	1 Introduction
	1.1 Elliptic Curve Isogenies in Cryptography
	1.2 Isogeny Graphs over RSA Moduli
	1.3 Constructing a Trapdoor Group with Infeasible Inversion

	2 Preliminaries
	2.1 Ideal Class Groups of Imaginary Quadratic Orders
	2.2 Elliptic Curves and Their Isogenies
	2.3 Isogeny Volcanoes and the Class Groups

	3 Isogeny Graphs over Composite Moduli
	3.1 Isogeny Graphs over Z/NZ
	3.2 The -isogenous Neighbors Problem over Z/NZ
	3.3 The (, M)-Isogenous Neighbors Problem over Z/NZ

	4 Trapdoor Group with Infeasible Inversion
	4.1 Definitions
	4.2 Construction Details: Basic

	5 Cryptanalysis
	5.1 The (in)feasibility of Performing Computations over Z/NZ
	5.2 Tackling the (, 2)-Isogenous Neighbor Problem over Z/NZ
	5.3 Cryptanalysis of the Candidate Group with Infeasible Inversion

	References

	Multilinear Maps
	On Kilian's Randomization of Multilinear Map Encodings
	1 Introduction
	2 Preliminaries
	2.1 The CLT13 Multilinear Map
	2.2 The Approximate-GCD Problem and Its Variant

	3 Lattice Attack Against the Approximate-GCD Problem
	3.1 The Orthogonal Lattice
	3.2 The Classical Orthogonal Lattice Attack Against the Single-Prime Approximate-GCD Problem
	3.3 Lattice Attack Against Multi-prime Approximate GCD
	3.4 Lattice Attack Against the Vector Approximate-GCD Problem
	3.5 Practical Experiments and Concrete Parameters

	4 GCD Attacks Against the Approximate-GCD Problem and Its Variants
	4.1 The Naive GCD Attack
	4.2 The Chen-Nguyen Attack
	4.3 The Lee-Seo Attack
	4.4 GCD Attack Against the Vector Approximate GCD Problem

	5 Our Construction
	5.1 Non-interactive Multipartite Diffie-Hellman Key Exchange
	5.2 Our Construction
	5.3 Additional Safeguard: Straddling Sets

	6 The Cheon et al. Attack and Its Generalization Using Tensor Products
	7 Optimizations and Implementation
	7.1 Encoding of Elements
	7.2 Number of Matrices per Level
	7.3 Other Attacks
	7.4 Concrete Parameters and Implementation Results

	8 Conclusion
	References

	Cryptanalysis of CLT13 Multilinear Maps with Independent Slots
	1 Introduction
	2 The CLT13 Multilinear Map Scheme
	3 Basic Attack Against CLT13 with Independent Slots
	4 An Extended Attack Against CLT13 with Independent Slots
	4.1 Preliminaries on Lattices
	4.2 Our First Lattice-Based Attack
	4.3 Extended Orthogonal Lattice Attack
	4.4 Revealing Information About the Plaintext Elements
	4.5 Concrete Parameters and Practical Experiments

	5 Application to the Cheon et al. Attack
	5.1 The Original Cheon et al. Attack with Encodings of Zero
	5.2 Adaptation of the Cheon et al. Attack to Our Cryptanalysis

	6 Application to Constructions Based on CLT13 with Independent Slots
	6.1 The Multilinear Subgroup Elimination Assumption from glw14,glsw15
	6.2 The Zimmerman Circuit Obfuscation Scheme
	6.3 The FRS17 Construction for Preventing Input Partitioning Attacks

	A Proofs
	A.1 Proof of Lemma 4
	A.2 Proof of Proposition 5

	References

	Algebraic XOR-RKA-Secure Pseudorandom Functions from Post-Zeroizing Multilinear Maps
	1 Introduction
	2 Definitions
	2.1 Notation and Games
	2.2 Pseudorandom Functions
	2.3 Multilinear Maps
	2.4 Generic Multilinear Map Model
	2.5 Actual Instantiations
	2.6 Straddling Sets

	3 Our Construction
	3.1 Intuition
	3.2 Actual Construction

	4 Security in the Generic Multilinear Map Model
	5 Security Under Non-interactive Assumptions
	5.1 Assumptions
	5.2 Security of Our Construction

	References

	Homomorphic Encryption
	Numerical Method for Comparison on Homomorphically Encrypted Numbers
	1 Introduction
	1.1 Our Idea
	1.2 Our Result
	1.3 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Homomorphic Encryption

	3 Iterative Algorithms for Inverse and Square Root
	3.1 Inverse Algorithm
	3.2 Square Root Algorithm

	4 Approximate Min/Max Algorithms
	4.1 Min/Max Algorithm for Two Numbers
	4.2 Min/Max Algorithm for Several Numbers

	5 Approximate Comparison Algorithms
	5.1 Comparison Between Two Numbers
	5.2 Max Index of Several Numbers

	6 Asymptotic Optimality of Our Methods
	6.1 Min/Max from Minimax Approximation
	6.2 Comparison from Minimax Approximation

	7 Applications of Comparison Algorithms
	7.1 Threshold Counting
	7.2 Top-k Max

	8 Experimental Results
	8.1 Approximate HE Scheme HEAAN
	8.2 Implementations of Various Non-polynomial Operations

	A Proofs
	References

	Multi-Key Homomorphic Encryption from TFHE
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Multi-Key Homomorphic Encryption
	2.3 TLWE and TRLWE
	2.4 TRGSW and External Product

	3 Basic Schemes
	3.1 Multi-Key-Switching on LWE Ciphertexts
	3.2 Multi-key RLWE and Hybrid Product

	4 Multi-key Variant of TFHE
	4.1 Description
	4.2 Discussion

	5 Experimental Results
	6 Conclusion
	A Noise Estimation
	References

	Homomorphic Encryption for Finite Automata
	1 Introduction
	1.1 Our New HE Scheme
	1.2 The iNTRU Hardness Assumption
	1.3 From Regular Expression to NFAs
	1.4 Implementation and Performance
	1.5 Related Work

	2 Preliminaries
	2.1 Leftover Hash Lemma
	2.2 Gadget Lattice Sampling

	3 The Schemes
	3.1 The HAO15 Matrix-FHE Scheme DBLP:confspspkcspsHiromasaAO15
	3.2 Our New Matrix-HE Scheme
	3.3 A Leveled NFA-Homomorphic Scheme
	3.4 The Parameters

	4 Security Analysis
	4.1 Inhomogeneous NTRU
	4.2 Security Reduction
	4.3 Hardness of MiNTRU from LWE with a Trapdoor

	5 Converting Regular Expressions to Automata
	6 Implementation and Performance
	A Definitions on Regular Expressions and NFA
	B Proofs
	C Performance Comparisons with HAO15
	References

	Combinatorial Cryptography
	Efficient Explicit Constructions of Multipartite Secret Sharing Schemes
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Access Structures and Secret Sharing Schemes
	2.2 Polymatroids and Matroids
	2.3 Secret Sharing Schemes, Matroids and Polymatroids

	3 Some Properties of Determinant Functions
	3.1 The First Class of Matrices
	3.2 The Second Class of Matrices

	4 Secret Sharing Schemes for Ideal Hierarchical Access Structures
	4.1 Construction for Ideal Hierarchical Access Structures
	4.2 Another Construction for Ideal Hierarchical Access Structures
	4.3 Comparisons

	5 Secret Sharing Schemes for Compartmented Access Structures
	5.1 Construction for Compartmented Access Structures with Upper Bounds
	5.2 Construction for Compartmented Access Structures with Lower Bounds

	References

	Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead
	1 Introduction
	1.1 Our Contribution
	1.2 Other Related Work

	2 Preliminaries
	3 A Simple Matrix Bucket ORAM
	3.1 Security

	4 Main Construction
	4.1 Intuition for Lookahead ORAM
	4.2 Formal Description
	4.3 Security
	4.4 Online Overhead
	4.5 Trading Off Bandwidth and Storage Overhead

	5 Constant Client-Side Storage
	5.1 Constant Client-Side Temporary Storage

	6 Evaluation
	A Attack on WISA:GMSS15
	References

	How to Correct Errors in Multi-server PIR
	1 Introduction
	1.1 Related Works

	2 Preliminaries
	2.1 PIR
	2.2 Technical Lemma

	3 Robust PIR of Woodruff and Yekhanin
	3.1 (k,k)-Robust PIR Scheme
	3.2 (k,)-Robust PIR

	4 Error Correcting PIR of Beimel and Stahl
	5 Proposed Decoding Algorithm
	5.1 Berlekamp-Welch Algorithm
	5.2 Proposed Decoding Algorithm

	6 Extension to t-Private PIR Scheme
	References

	Multiparty Computation (2)
	UC-Secure Multiparty Computation from One-Way Functions Using Stateless Tokens
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Technical Overview
	2.1 Two-Round Oblivious Transfer (OT)
	2.2 Two-Party Computation
	2.3 Multiparty Computation

	3 Preliminaries
	4 Oblivious Transfer
	4.1 Overview
	4.2 Construction
	4.3 Token Reusability
	4.4 Security

	5 Two Round Two-Party Computation
	5.1 Construction
	5.2 Security

	6 Three Round MPC
	6.1 Construction
	6.2 Security

	References

	Efficient UC Commitment Extension with Homomorphism for Free (and Applications)
	1 Introduction
	1.1 Our Contributions
	1.2 Applications

	2 Preliminaries
	2.1 Coding Theory
	2.2 Interactive Proximity Testing and Linear Time Building Blocks
	2.3 Universal Composability

	3 Rate-1 Linear Time Additively Homomorphic Commitments
	4 Achieving Multiplicative Homomorphism
	5 Applications to Efficient Zero-Knowledge Arguments
	6 Applications to Secure Multiparty Computation
	6.1 Committed MPC
	6.2 Insured MPC

	References

	Scalable Private Set Union from Symmetric-Key Techniques
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Related Work

	2 Overview of Our Results and Techniques
	2.1 Reverse Private Membership Test (RPMT)
	2.2 An Efficiency Optimization
	2.3 General Case from RPMT
	2.4 Efficiency
	2.5 Using Padding to Hide Input Set Sizes

	3 Preliminaries
	3.1 Oblivious Transfer
	3.2 Oblivious PRF and Private Equality

	4 Reverse Private Membership Test (RPMT)
	5 Private Set Union
	5.1 PSU Construction
	5.2 Hashing Parameters
	5.3 Discussion and Optimization
	5.4 Discussion: Difficulties in Applying Other PSI Techniques

	6 Implementation
	6.1 Comparison with Prior Work
	6.2 Scalability and Parallelizability

	A RPMT Optimization
	References

	Author Index

