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Abstract. Quasi-adaptive non-interactive zero-knowledge proof (QA-
NIZK) systems and structure-preserving signature (SPS) schemes are
two powerful tools for constructing practical pairing-based cryptographic
schemes. Their efficiency directly affects the efficiency of the derived
advanced protocols.

We construct more efficient QA-NIZK and SPS schemes with tight
security reductions. Our QA-NIZK scheme is the first one that achieves
both tight simulation soundness and constant proof size (in terms of num-
ber of group elements) at the same time, while the recent scheme from
Abe et al. (ASIACRYPT 2018) achieved tight security with proof size
linearly depending on the size of the language and the witness. Assuming
the hardness of the Symmetric eXternal Diffie-Hellman (SXDH) problem,
our scheme contains only 14 elements in the proof and remains indepen-
dent of the size of the language and the witness. Moreover, our scheme
has tighter simulation soundness than the previous schemes.

Technically, we refine and extend a partitioning technique from a
recent SPS scheme (Gay et al., EUROCRYPT 2018). Furthermore, we
improve the efficiency of the tightly secure SPS schemes by using a
relaxation of NIZK proof system for OR languages, called designated-
prover NIZK system. Under the SXDH assumption, our SPS scheme
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contains 11 group elements in the signature, which is shortest among the
tight schemes and is the same as an early non-tight scheme (Abe et al.,
ASIACRYPT 2012). Compared to the shortest known non-tight scheme
(Jutla and Roy, PKC 2017), our scheme achieves tight security at the
cost of 5 additional elements.

All the schemes in this paper are proven secure based on the Matrix
Diffie-Hellman assumptions (Escala et al., CRYPTO 2013). These are
a class of assumptions which include the well-known SXDH and DLIN
assumptions and provide clean algebraic insights to our constructions. To
the best of our knowledge, our schemes achieve the best efficiency among
schemes with the same functionality and security properties. This natu-
rally leads to improvement of the efficiency of cryptosystems based on
simulation-sound QA-NIZK and SPS.

Keywords: Quasi-adaptive NIZK · simulation soundness ·
Structure-preserving signature · Tight reduction

1 Introduction

Bilinear pairing groups have enabled the construction of a plethora of rich cryp-
tographic primitives in the last two decades, starting from the seminal works
on three-party key exchange [30] and identity-based encryption (IBE) [11]. In
particular, the Groth-Sahai non-interactive zero knowledge (NIZK) proof sys-
tem [24] for proving algebraic statements over pairing groups has proven to be
a powerful tool to construct more efficient advanced cryptographic protocols,
such as group signatures [21], anonymous credentials [7], and UC-secure com-
mitment [17] schemes.

Quasi-Adaptive NIZK for Linear Subspaces. There are many applications
which require NIZK systems for proving membership in linear subspaces of group
vectors. A couple of examples are CCA2-secure public-key encryption via the
Naor-Yung paradigm [42], and publicly verifiable CCA2-secure IBE [29].

For proving linear subspace membership, the Groth-Sahai system has a proof
size linear in the dimension of the language and the subspace, in terms of num-
ber of group elements. To achieve better efficiency, Jutla and Roy proposed a
weaker notion [32] called quasi-adaptive NIZK arguments (QA-NIZK), where
the common reference string (CRS) may depend on the linear subspace and
the soundness is computationally adaptive. For computationally adaptive sound-
ness, the adversary is allowed to submit a proof for its adaptively chosen invalid
statement. Based on their work, further improvements [1,33,38] gave QA-NIZK
systems with constant proof size. This directly led to KDM-CCA2-secure PKE
and publicly verifiable CCA2-secure IBE with constant-size ciphertexts.

Structure-Preserving Signature. Structure-Preserving (SP) cryptography
[3] has evolved as an important paradigm in designing modular protocols. In
order to enable interoperability, it is required for SP primitives to support veri-
fication only by pairing product equations, which enable zero-knowledge proofs
using Groth-Sahai NIZKs.
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Structure-preserving signature (SPS) schemes are the most important build-
ing blocks in constructing anonymous credential [7], voting systems and mix-
nets [22], and privacy-preserving point collection [25]. In an SPS, all the public
keys, messages, and signatures are group elements and verification is done by
checking pairing-product equations. Constructing SPS is a very challenging task,
as traditional group-based signatures use hash functions, which are not structure-
preserving.

Tight Security. The security of a cryptographic scheme is proven by con-
structing a reduction R which uses a successful adversary A against the security
of the scheme to solve some hard problem. Concretely, this argument establishes
the relation between the success probability of A (denoted by εA) and that of
R (denoted by εR) as εA ≤ � · εR + negl(λ), where negl(λ) is negligible in the
security parameter λ. The reduction R is called tight if � is a small constant
and the running time of R is approximately the same as that of A. Most of
the recent works consider a variant notion of tight security, called almost tight
security, where the only difference is that � may linearly (or, even better, log-
arithmically) depend on the security parameter λ. It is worth mentioning that
the security loss in all our schemes is O(log Q), where Q is the number of A’s
queries. We note that Q � 2λ and thus our security loss is much less than O(λ).
In this paper, we do not distinguish tight security and almost tight security, but
we do provide the concrete security bounds.

Tightly secure schemes are more desirable than their non-tight counterparts,
since tightly secure schemes do not need to compensate much for their secu-
rity loss and allow universal key-length recommendations independent of the
envisioned size of an application. In recent years, there have been significant
efforts in developing schemes with tight security, such as PKEs [18,19,26–28],
IBEs [9,13,29], and signatures [4,8,20,28].

As discussed above, QA-NIZK and SPS are important building blocks for
advanced protocols which are embedded in larger scale settings. Designing effi-
cient QA-NIZK and SPS with tight security is very important, since non-tight
schemes can result in much larger security loss in the derived protocols.

QA-NIZK: Tight Security or Compact Proofs? Several of the aforemen-
tioned applications of QA-NIZK require a stronger security notion, called simu-
lation soundness, where an adversary can adaptively query simulated proofs for
vectors either inside or outside the linear subspace and in the end the adversary
needs to forge a proof on a vector outside the subspace. We assume that the
simulation oracle can be queried by the adversary up to Q times. If Q > 1,
we call the QA-NIZK scheme unbounded simulation-sound and if Q = 1, we
call it one-time simulation-sound. Many applications, such as multi-challenge
(KDM-)CCA2-secure PKE and CCA2-secure IBE, require unbounded simula-
tion soundness.

If we consider the tightness, CRS and proof sizes1 of previous works, we
have three different flavors of unbounded simulation-sound QA-NIZK schemes:

1 We only count numbers of group elements.
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(1) schemes with non-tight security, but compact CRS-es (which only depend
on the dimension of the subspace) and constant-size proofs [37]; (2) schemes
with tight security and constant-size proofs, but linear-size CRS-es (which are
linearly in λ) [18,29]; and (3) schemes with tight security and compact CRS-es,
but linear-size proofs (in the dimension of the language and the subspace) [5,6].

A few remarks are made for the tightly secure QA-NIZK scheme of Abe
et al. [5,6]. Its proceedings version has a bug and the authors fix it in the
ePrint version [6], but the proof size of the new scheme linearly depends on the
dimension of the language and the subspace. To be more technical, the work
of Abe et al. achieves tight simulation soundness via the (structure-preserving)
adaptive partitioning of [4,31]. Due to its use of OR proofs (cf. Fig. 1 in their
full version [6]), the QA-NIZK proof size ends up being linear in the size of the
language and the subspace (in particular, |π| = O(n1 + n2)). Thus, it remained
open and interesting to construct a tightly simulation-sound QA-NIZK with
compact CRS-es and constant-size proofs.

SPS: Tightness with Shorter Signatures. In the past few years, substan-
tial progress was made to improve the efficiency of SPS. So far the schemes with
shortest signatures have 6 signature elements with non-tight reduction [34] by
improving [36], or 12 elements with security loss 36 log(Q) [6], or 14 elements
with security loss 6 log(Q) [20], where Q is the number of signing queries. Our
goal is to construct tightly secure SPS with shorter signatures and less security
loss.

1.1 Our Contributions

To make progress on the aforementioned two questions, we construct a QA-NIZK
scheme with 14 proof elements and an SPS scheme with 11 signature elements,
based on the Symmetric eXternal Diffie-Hellman (SXDH) assumption. The secu-
rity of both schemes is proven with tight reduction to the Matrix Diffie-Hellman
(MDDH) assumption [16], which is an algebraic generalization of Diffie-Hellman
assumptions (including SXDH). The security proof gives us algebraic insights
to our constructions and furthermore our constructions can be implemented by
(possibly weaker) linear assumptions beyond SXDH.

Our QA-NIZK scheme is the first one that achieves tight simulation sound-
ness, compact CRS-es and constant-size proofs at the same time. Even among
the tightly simulation-sound schemes, our scheme has less security loss. Since it
achieves better efficiency, using our scheme immediately improves the efficiency
of the applications of QA-NIZK with unbounded simulation soundness, including
publicly verifiable CCA2-secure PKE with multiple challenge ciphertexts.

In contrast to the Abe et al. framework [5], we use a simpler and elegant
framework to achieve better efficiency. Technically, we make novel use of the
recent core lemma from [20] to construct a designated-verifier QA-NIZK (DV-
QA-NIZK) and then compile it to (publicly verifiable) QA-NIZK by using the
bilinearity of pairings. As a by-product, we achieve a tightly secure DV-QA-
NIZK, where the verifier holds a secret verification key.
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Let L[M]1 := {[y]1 ∈ G
n1
1 : ∃w ∈ Z

n2
p such that y = Mw}2 be a linear

subspace, where M ∈ Z
n1×n2
p and n1 > n2. We compare the efficiency and

security loss of QA-NIZK schemes in Table 1. Here we instantiate our schemes
(in both Tables 1 and 2) based on the SXDH assumption for a fair comparison.

Table 1. Comparison of unbounded simulation-sound QA-NIZK schemes for proving
membership in L[M]1 . |crs| and |π| denote the size of CRS-es and proofs in terms of
numbers of group elements. For asymmetric pairings, notation (x, y) means x elements
in G1 and y elements in G2. Q denotes the number of simulated proofs and λ is the
security parameter.

Scheme Type |crs| |π| Sec. los. Ass.
LPJY14 [38] QA-NIZK 2n1 + 3(n2 + λ) + 10 20 O(Q) DLIN
KW15 [37] QA-NIZK (2n2 + 6, n1 + 6) (4, 0) O(Q) SXDH
LPJY15 [39] QA-NIZK 2n1 + 3n2 + 24λ + 55 42 3λ + 7 DLIN
GHKW16 [18] DV-QA-NIZK n2 + λ 4 8λ + 2 DDH
GHKW16 [18] QA-NIZK (n2 + 6λ + 1, n1 + 2) (3, 0) 4λ + 1 SXDH
AJOR18 [5,6] QA-NIZK (3n2 + 15, n1 + 12) (n1 + 16, 2(n2 + 5)) 36 log(Q) SXDH
Ours (Sect. 3.1) DV-QA-NIZK (2n2 + 3, 4) (7, 6) 6 log(Q) SXDH
Ours (Sect. 3.2) QA-NIZK (4n2 + 4, 8 + 2n1) (8, 6) 6 log(Q) SXDH

Our second contribution is a more efficient tightly secure SPS. It contains 11
signature elements and n1 + 15 public key elements, while the scheme from [5]
contains 12 and 3n1 + 23 elements respectively, where n1 denotes the number of
group elements in a message vector. We give a comparison between our scheme
and previous ones in Table 2. Compared with GHKP18, our construction has
shorter signatures and less pairing-product equations (PPEs) with the same level
of security loss. Compared with AJOR18, our construction has shorter signature
and tighter security, but slightly more PPEs. We leave constructing an SPS with
the same signature size and security loss but less PPEs as an interesting open
problem. As an important building block of our SPS, we propose the notion of
designated-prover OR proof systems for a unilateral language, where a prover
holds a secret proving key and the language is defined in one single group. We
believe that it is of independent interest.

1.2 Our QA-NIZK: Technical Overview

The Kiltz-Wee Framework. In contrast to the work of Abe et al. [5], our
construction is motivated by the simple Kiltz-Wee framework [37], where they
implicitly constructed a simulation-sound DV-QA-NIZK and then compiled it
to a simulation-sound QA-NIZK with pairings. However, their simulation-sound
DV-QA-NIZK is not tight. In the following, we focus on constructing a tightly
simulation-sound DV-QA-NIZK. By a similar “DV-QA-NIZK → QA-NIZK tran-
sformation as in [37], we derive our QA-NIZK with shorter proofs and tighter
simulation soundness in the end.

The DV-QA-NIZK in [37] is essentially a simple hash proof system [14] for the
linear language L[M]1 : to prove that [y]1 = [Mx]1 for some x ∈ Zp, the prover

2 We follow the implicit notation of a group element. [·]s (s ∈ {1, 2, T}) denotes the
entry-wise exponentiation in Gs.
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Table 2. Comparison of structure-preserving signatures for message space Gn1 (in their
most efficient variants). “|m|”, “|σ|”, and “|vk|” denote the size of messages, signatures,
and public keys in terms of numbers of group elements. Q denotes the number of
signing queries. “# PPEs” denotes the number of pairing-product equations. “NL”
denotes the number of non-linear equations that includes signatures in both groups.
“L1” denotes the number of linear equations in G1 group. “L2” denotes the number of
linear equations in G2 group.

Scheme |m| |σ| |vk| Sec. loss Assumption # PPEs
Total NL L1 L2

HJ12 [28] 1 10� + 6 13 O(1) DLIN 6� + 3
ACDKNO16 [2] (n1, 0) (7, 4) (5, n1 + 12) O(Q) SXDH,XDLIN 5 1 2 2
LPY15 [40] (n1, 0) (10, 1) (16, 2n1 + 5) O(Q) SXDH,XDLINX 5 3 2
KPW15 [36] (n1, 0) (6, 1) (0, n1 + 6) O(Q2) SXDH 3 2 1
JR17 [34] (n1, 0) (5, 1) (0, n1 + 6) O(Q log Q) SXDH 2 1 1
AHNOP17 [4] (n1, 0) (13, 12) (18, n1 + 11) O(λ) SXDH 15 4 3 8
JOR18 [31] (n1, 0) (11, 6) (7, n1 + 16) O(λ) SXDH 8 4 2 2
GHKP18 [20] (n1, 0) (8, 6) (2, n1 + 9) 6 log(Q) SXDH 9 8 1
AJOR18 [5,6] (n1, 0) (6, 6) (n1 + 11, 2n1 + 12) 36 log(Q) SXDH 6 4 1 1
Ours(unilateral) (n1, 0) (7, 4) (2, n1 + 11) 6 log(Q) SXDH 7 6 1

outputs a proof as π := [x�p]1, where the projection [p]1 := [M�k]1 is published
in the CRS. With the vector k as the secret verification key, a designated verifier
can check whether π = [y�k]1. By using k as a simulation trapdoor, a zero-
knowledge simulator can return the simulated proof as π := [y�k]1, due to the
following equation:

x�p = x�(M�k) = y�k.

Soundness is guaranteed by the fact that the value y∗�k is uniformly random,
given M�k, if y∗ is outside the span of M.

Affine MACs and Unbounded Simulation Soundness. To achieve
unbounded simulation soundness, we need to hide the information of k in all the
Qs-many simulation queries, in particular for the information outside the span
of M�. The Kiltz-Wee solution is to blind the term y�k with a 2-universal hash
proof system. Via a non-tight reduction the hash proof system can be proved
to be a pseudorandom affine message authentication code (MAC) scheme pro-
posed by [9]. Technically, unbounded simulation soundness requires the under-
lying affine MAC to be pseudorandom against multiple challenge queries. This
notion has been formally considered in [29] later and it is stronger than the orig-
inal security in [9]. Because of that, the affine MAC based on the Naor-Reingold
PRF in [9] cannot be directly used in constructing tightly simulation-sound QA-
NIZK.

Gay et al. [18] constructed a tightly secure unbounded simulation-sound
QA-NIZK3. Essentially, their tight PCA-secure PKE against multiple challenge
ciphertexts is a pseudorandom affine MAC against multiple challenge queries.
Then they use this MAC to blind the term y�k. However, this tight solution

3 We note that the tight affine MAC in [29] can also be used to construct a DV-QA-
NIZK and a QA-NIZK with tight unbounded simulation soundness. Their efficiency
is slightly better than those in [18].
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has a large CRS, namely, the number of group elements in the CRS is linear in
the security parameter. That is because the number of Zp elements in the under-
lying affine MAC secret keys is also linear in the security parameter. These Zp

elements are later converted as group elements in the CRS of QA-NIZK. To
the best of our knowledge, current pairing-based affine MACs enjoy either tight
security and linear size secret keys or constant size secret keys but non-tight
security. Therefore, it may be more promising to develop a new method, other
than affine MACs, to hide y�k with compact CRS and tight security.

Our Solution. We solve the above dilemma by a novel use of the core lemma
from [20]. To give more details, we fix some matrices A0,A1 ∈ Z

2k×k
p , choose a

random vector k′ and consider μ := ([t]1, [u′]1, π′) that has the distribution:

t $← Span(A0) ∪ Span(A1)

u′ = t�k′ ∈ Zp

π′ : proves that t ∈ Span(A0) ∪ Span(A1)

. (1)

In a nutshell, the NIZK proof π′ guarantees that t is from the disjunction space
and, by introducing randomness in the “right” space, the core lemma shows
that [u′]1 is pseudorandom with tight reductions. The core lemma itself is not a
MAC scheme, since it does not have message inputs, although it has been used
to construct a tightly secure (non-affine) MAC in [20].

A “naive” attempt: Using the Core Lemma. To have unbounded simu-
lation soundness, our first attempt is to use the pseudorandom value [u′]1 to
directly blind the term y�k from the DV-QA-NIZK with only adaptive sound-
ness in a straightforward way. Then the resulting DV-QA-NIZK outputs the
proof ([t]1, [u]1, π′), which has the following distribution:

t $← Span(A0) ∪ Span(A1)

u = y�k + t�k′ ∈ Zp

π′ : proves that t ∈ Span(A0) ∪ Span(A1)

. (2)

In order to publicly generate a proof for a valid statement [y]1 = [Mx]1 with
witness x ∈ Z

n2
p , we publish [M�k]1, [A�

0 k′]1 and CRS for generating π′ in the
CRS of our DV-QA-NIZK. Verification is done with designated verification key
(k,k′). Zero knowledge can be proven using (k,k′).

However, when we try to prove the unbounded simulation soundness, we run
into a problem. The core lemma shows the following two distributions are tightly
indistinguishable:

REAL := {([ti]1, [t�
i k′]1, π′

i)} ≈c {([ti]1, [t�
i k′

i]1, π
′
i)} =: RAND,

where k′,k′
i

$← Z
2k
p and i = 1, ..., Q. In the proof of unbounded simulation sound-

ness, we switch from REAL to RAND and then we can argue that all our simulated
proofs are random, since y�k is blinded by the random value t�

i k′
i. Unfortu-

nately, here we cannot use an information-theoretical argument to show that an



676 M. Abe et al.

adversary cannot compute a forgery for an invalid statement: An adversary can
reuse the kj in the j-th (1 ≤ j ≤ Q) simulation query on [yj ]1 ∈ Span([M′]1)
and Span([M′]1) ∩ Span([M]1) = {[0]1} and given the additional information
M′�k from the j-th query an adversary can compute a valid proof for another
invalid statement y∗ ∈ Span(M′).

Moreover, this straightforward scheme has an attack: An adversary can ask
for a simulated proof π := ([t]1, [u]1, π′) on an invalid [y]1. Then it computes
([2t]1, [2u]1) and adapts the OR proof π′ accordingly to π̂. The proof π∗ :=
([2t]1, [2u]1, π̂) is a valid proof for an invalid statement [y∗]1 := [2y]1 /∈ Span
([M]1).

From Failure to Success via Pairwise Independence. The above prob-
lem happens due to the malleability in the “naive” attempt. We introduce non-
malleability by using a pairwise independent function in k. More precisely, let
τ ∈ Zp be a tag and our DV-QA-NIZK proof is still ([t]1, [u]1, π′) with ([t]1, π′)
as in Eq. (2) but

u := y�(k0 + τk1) + t�k′.

We assume that all the tags in the simulated proofs and forgery are distinct,
which can be achieved by using a collision-resistant hash as τ := H([y]1, [t]1, π′)
∈ Zp. Given kj the adversary can only see y�

j (k0 + τjk1) from the j-th query
and for all the other queries the random values t�

i ki (i �= j) hide the information
about k0 and k1. Given k0+τjk1 for a τj , the pairwise independence guarantees
that even for a computationally unbounded adversary it is hard to compute k0 +
τ∗k1 for any τ∗ �= τj . Thus, the unbounded simulation soundness is concluded.
Details are presented in Sect. 3.1. In a nutshell, we use the pseudorandom element
[u′]1 from the core lemma to hide [y�(k0 + τk1)]1 from a one-time simulation
sound DV-QA-NIZK.

From Designated to Public Verification. What is left to do is to convert
our DV-QA-NIZK scheme into a QA-NIZK. Intuitively, we first make u publicly
verifiable via the (tuned) Groth-Sahai proof technique, and then modify the QA-
NIZK so that we can embed the secret key of our DV-QA-NIZK into it without
changing the view of the adversary. Then we can extract a forgery for the USS
experiment of the DV-QA-NIZK from the forgery by the adversary. Similar ideas
have been used in many previous works [9,12,20,33,36,37].

1.3 Our SPS: Technical Overview

The recent SPS schemes exploit the adaptive partitioning paradigm [4,19,27] to
achieve tight security. In this paradigm, NIZK for OR languages [23,43] plays an
important role, while at the same time, it also incurs high cost. Our basic idea is
to replace the full-fledged OR proof system proposed by Gay et al. [20] with one
in the designated-prover setting, where a prover is allowed to use a secret proving
key. Intuitively, it is easier to achieve an efficient scheme in such a setting since
it suffers less restrictions. In fact, the previous SPS scheme in [5] has already
exploited the designated-prover setting to reduce the proof size. However, it only
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works for bilateral OR language (i.e., one out of two words lies in the linear span
of its corresponding space), while an OR-proof for unilateral language (i.e., a
single word lies in the linear span of either one of two spaces) is required in
the construction of [20]. Thus, some new technique is necessary for solving this
problem.

For ease of exposition, we focus on the SXDH setting now, where the following
OR-language is in consideration:

L1 := {[y]1 ∈ G
2
1 | ∃r ∈ Zp : [y]1 = [A0]1 · r ∨ [y]1 = [A1]1 · r}.

Let A1 = (a, b)�, we observe that it is equivalent to the following language.

L2 := {[y0, y1]�1 ∈ G
2
1 | ∃x, x′ ∈ Zp : [y1]1 − [y0]1 · b

a
= [x]1 ∧ [y]1 · x = [A0]1 · x′}.

Specifically, when x = 0, we have [y1]1 − [y0]1 · b
a = [0]1, i.e., [y0, y1]�1 is in the

span of A1. Otherwise, we have [y]1 = [A0]1 · x′
x , i.e., [y0, y1]�1 is in the span of

A0. Note that this language is an “AND-language” now. More importantly, a
witness consists only of 2 scalars and a statement consists only of 3 equations.
Hence, when applying the Groth-Sahai proof [15,24], the proof size will be only
7 (4 elements for committing the witness and 3 elements for equations), which
is shorter than the well-known OR proof in [43] (10 elements). However, the
statement contains b

a now, which may leak information on a witness. To avoid
this, we make b

a part of the witness and store its commitment (which consists of
2 group elements) in the common reference string. By doing this, we can ensure
that the information on b

a will not be leaked and b
a is always “fixed”, due to the

hiding and biding properties of commitments respectively. Also, notice that this
does not increase the size of proofs at all. This scheme satisfies perfect soundness,
and zero-knowledge can be tightly reduced to the SXDH assumption. Since the
prover has to use b

a to generate a witness for L2 given a witness for L1, this
scheme only works in the designated-prover setting. However, notice that when
simulating the proof, A0 and A1 are not necessary, which is a crucial property
when applying to the partitioning paradigm.

We further generalize this scheme to one under the Dk-MDDH assumptions
for a fixed k. The size of proof will become O(k3), and the zero-knowledge
property can be reduced to the Dk-MDDH assumption with almost no security
loss.

Replacing the OR-proof system of [20] with our designated-prover ones imme-
diately derives the most efficient SPS by now. We refer the reader to Table 2 for
the comparison between our scheme and the previous ones.

Additionally, we give another designated-prover OR proof scheme where the
proof size is O(k2), which is smaller than the above scheme when k > 1. As a
trade-off, it suffers a security loss of k. When k = 1, its efficiency is the same
as that of our original designated-prover OR proof scheme described above. In
symmetric groups, we adapt the designated-prover OR proof to provide the most
efficient full NIZK (i.e., one with public prover and verifier algorithms) for OR
languages based on the Dk-MDDH assumptions by now.
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2 Preliminaries

Notations. We denote an empty string as ε. We use x $← S to denote the
process of sampling an element x from set S uniformly at random. For positive
integers k > 1, η ∈ Z

+ and a matrix A ∈ Z
(k+η)×k
p , we denote the upper square

matrix of A by A ∈ Z
k×k
p and the lower η rows of A by A ∈ Z

η×k
p . Similarly,

for a column vector v ∈ Z
k+η
p , we denote the upper k elements by v ∈ Z

k
p and

the lower η elements of v by v ∈ Z
η
p. For a bit string m ∈ {0, 1}n, mi denotes

the ith bit of m (i ≤ n) and m|i denotes the first i bits of m.
All our algorithms are probabilistic polynomial time unless we stated other-

wise. If A is a probabilistic polynomial time algorithm, then we write a $← A(b)
to denote the random variable that outputted by A on input b.

Games. We follow [9] to use code-based games for defining and proving security.
A game G contains procedures Init and Finalize, and some additional proce-
dures P1, . . . ,Pn, which are defined in pseudo-code. All variables in a game are
initialized as 0, and all sets are empty (denote by ∅). An adversary A is executed
in game G (denote by GA) if it first calls Init, obtaining its output. Next, it may
make arbitrary queries to Pi (according to their specification) and obtain their
output, where the total number of queries is denoted by Q. Finally, it makes one
single call to Finalize(·) and stops. We use GA ⇒ d to denote that G outputs
d after interacting with A, and d is the output of Finalize.

2.1 Collision Resistant Hash Functions

Let H be a family of hash functions H : {0, 1}∗ → {0, 1}λ. We assume that it is
efficient to sample a function from H, which is denoted by H $← H.

Definition 1 (Collision resistance). We say a family of hash functions H is
collision-resistant (CR) if for all adversaries A

AdvcrH,A(λ) := Pr[x �= x′ ∧ H(x) = H(x′) | H $← H, (x, x′) $← A(1λ,H)]

is negligible.

2.2 Pairing Groups and Matrix Diffie-Hellman Assumptions

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ

returns a description G := (G1,G2,GT , p, P1, P2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic groups of order p for a λ-bit prime p, P1 and P2

are generators of G1 and G2, respectively, and e : G1 × G2 → GT is an efficient
computable (non-degenerated) bilinear map. Define PT := e(P1, P2), which is
a generator in GT . In this paper, we only consider Type III pairings, where
G1 �= G2 and there is no efficient homomorphism between them.

We use implicit representation of group elements as in [16]. For s ∈ {1, 2, T}
and a ∈ Zp define [a]s = aPs ∈ Gs as the implicit representation of a in Gs.
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Similarly, for a matrix A = (aij) ∈ Z
n×m
p we define [A]s as the implicit repre-

sentation of A in Gs. Span(A) := {Ar|r ∈ Z
m
p } ⊂ Z

n
p denotes the linear span

of A, and similarly Span([A]s) := {[Ar]s|r ∈ Z
m
p } ⊂ G

n
s . Note that it is efficient

to compute [AB]s given ([A]s,B) or (A, [B]s) with matching dimensions. We
define [A]1 ◦ [B]2 := e([A]1, [B]2) = [AB]T , which can be efficiently computed
given [A]1 and [B]2.

Next we recall the definition of the Matrix Decisional Diffie-Hellman (MDDH)
[16] and related assumptions [41].

Definition 2 (Matrix distribution). Let k, � ∈ N with � > k. We call D�,k

a matrix distribution if it outputs matrices in Z
�×k
p of full rank k in polynomial

time. By Dk we denote Dk+1,k.

Without loss of generality, we assume the first k rows of A $← D�,k form an
invertible matrix. For a matrix A $← D�,k, we define the set of kernel matrices
of A as

ker(A) := {a⊥ ∈ Z
(�−k)×�
p | a⊥ · A = 0 ∈ Z

(�−k)×k
p and a⊥ has rank (� − k)}.

Given a matrix A over Z
�×k
p , it is efficient to sample an a⊥ from ker(A).

The D�,k-Matrix Diffie-Hellman problem is to distinguish the two distribu-
tions ([A], [Aw]) and ([A], [u]) where A $← D�,k, w $← Z

k
p and u $← Z

�
p.

Definition 3 (D�,k-matrix decisional Diffie-Hellman assumption). Let
D�,k be a matrix distribution and s ∈ {1, 2, T}. We say that the D�,k-Matrix
Diffie-Hellman (D�,k-MDDH) is hard relative to GGen in group Gs if for all
PPT adversaries A, it holds that

Advmddh
Gs,D�,k,A(λ) := |Pr[1 $← A(G, [A]s, [Aw]s)] − Pr[1 $← A(G, [A]s, [u]s)]|

is negligible in the security parameter λ, where the probability is taken over G $←
GGen(1λ), A $← D�,k,w $← Z

k
p and u $← Z

�
p.

We define the Kernel Diffie-Hellman assumption Dk-KerMDH [41] which is a
natural search variant of the Dk-MDDH assumption.

Definition 4 (Dk-kernel Diffie-Hellman assumption, Dk-KerMDH). Let
Dk be a matrix distribution and s ∈ {1, 2}. We say that the Dk-kernel Matrix
Diffie-Hellman (Dk-KerMDH) is hard relative to GGen in group Gs if for all PPT
adversaries A, it holds that

Advkmdh
Gs,D�,k,A(λ) := Pr[c�A = 0 ∧ c �= 0|[c]3−s

$← A(G, [A]s)]

is negligible in security parameter λ, where the probability is taken over G $←
GGen(1λ), A $← Dk.

The following lemma shows that the Dk-KerMDH assumption is a relaxation
of the Dk-MDDH assumption since one can use a non-zero vector in the kernel
of A to test membership in the column space of A.
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Lemma 1 (Dk-MDDH ⇒ Dk-KerMDH [41]). For any matrix distribution Dk,
if Dk-MDDH is hard relative to GGen in group Gs, then Dk-KerMDH is hard
relative to GGen in group Gs.

For Q > 1, W $← Z
k×Q
p ,U $← Z

�×Q
p , consider the Q-fold D�,k-MDDH problem

which is distinguishing the distributions ([A], [AW]) and ([A], [U]). That is, the
Q-fold D�,k-MDDH problem contains Q independent instances of the D�,k-MDDH
problem (with the same A but different wi). The following lemma shows that
the two problems are tightly equivalent and the reduction only loses a constant
factor � − k.

Lemma 2 (Random self-reducibility [16]). For � > k and any matrix distri-
bution D�,k, D�,k-MDDH is random self-reducible. In particular, for any Q ≥ 1,
if D�,k-MDDH is hard relative to GGen in group Gs, then Q-fold D�,k-MDDH is
hard relative to GGen in group Gs, where T(B) ≈ T(A) + Q · poly(λ) and

AdvQ-mddh
Gs,D�,k,A(λ) ≤ (� − k)Advmddh

Gs,D�,k,B(λ) +
1

p − 1
.

The boosting lemma in [35] shows that the D2k,k-MDDH assumption reduces
to the Dk-MDDH assumption with a security loss of a factor of k.

2.3 Non-interactive Zero-Knowledge Proof

In this section, we follow [24,37] to recall the notion of a non-interactive zero-
knowledge proof [10] and then an instantiation for an OR-language.

Let par be the public parameter and L = {Lpar} be a family of languages
with efficiently computable witness relation RL. This definition is as follows .

Definition 5 (Non-interactive zero-knowledge proof [24]). A non-inter-
active zero-knowledge proof (NIZK) for L consists of five PPT algorithms Π =
(Gen,TGen,Prove,Ver,Sim) such that:

– Gen(par) returns a common reference string crs.
– TGen(par) returns crs and a trapdoor td.
– Prove(crs, x, w) returns a proof π.
– Ver(crs, x, π) returns 1 (accept) or 0 (reject). Here, Ver is deterministic.
– Sim(crs, td, x) returns a proof π.

Perfect completeness is satisfied if for all crs ∈ Gen (1λ, par), all x ∈ L, all
witnesses w such that RL(x,w) = 1, and all π ∈ Prove(crs, x, w), we have

Ver(crs, x, π) = 1.

Zero-knowledge is satisfied if for all PPT adversaries A we have that

AdvzkΠ,A(λ) :=
∣
∣
∣
∣
Pr[AProve(crs,·,·)(1λ, crs) = 1 | crs $← Gen(1λ, par)]

−Pr[ASim(crs,·,·)(1λ, crs) = 1 | (crs, td) $← TGen(1λ, par)]
∣
∣
∣
∣
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is negligible, where Sim(crs, x, w) returns π $← Sim(crs, td, x) if RL(x,w) = 1
and aborts otherwise.

Perfect soundness is satisified if for all crs ∈ Gen(par), for all words x /∈ L
and all proofs π it holds Ver(crs, x, π) = 0.

Notice that Gay et al. [20] adopted a stronger notion of composable zero-knowled-
ge. However, one can easily see that the standard we defined above is enough for
their constructions, as well as ours introduced later. Also, we can define perfect
zero-knowledge, which requires AdvzkΠ,A(λ) = 0, and computational soundness,
which requires that for all for all words x /∈ L,

AdvsndΠ,A =
∣
∣
∣
∣
Pr[Ver(crs, x, π) = 1 | crs $← Gen(1λ, par), π $← A(1λ, crs)]

∣
∣
∣
∣

is negligible.

NIZK for an OR-Language. Let G ← GGen(1λ), k ∈ N, A0,A1
$← D2k,k,

and par := (G, [A0]1, [A1]1). We refer the reader to the full paper for a NIZK
proof scheme, which was previously presented in [37] and also implicitly given
in [23,43], for the OR-language

L∨
A0,A1

:= {[x]1 ∈ G
2k
1 | ∃r ∈ Z

k
p : [x]1 = [A0]1 · r ∨ [x]1 = [A1]1 · r}.

It will be used as a building block of our QANIZK proof.

2.4 Quasi-Adaptive Zero-Knowledge Argument

The notion of Quasi-Adaptive Zero-Knowledge Argument (QANIZK) was pro-
posed by Jutla and Roy [32], where the common reference string CRS depends
on the specific language for which proofs are generated. In the following, we recall
the definition of QANIZK [18,37]. For simplicity, we only consider arguments for
linear subspaces.

Let par be the public parameters for QANIZK and Dpar be a probability
distribution over a collection of relations R = {R[M]1} parametrized by a matrix
[M]1 ∈ G

n1×n2
1 (n1 > n2) with associated language L[M]1 = {[t]1 : ∃w ∈

Z
t
q, s.t. [t]1 = [Mw]1}. We consider witness sampleable distributions [32] where

there is an efficiently sampleable distribution D′
par outputs M′ ∈ Z

n1×n2
q such

that [M′]1 distributes the same as [M]1. We note that the matrix distribution
in Definition 2 is sampleable.

We define the notions of QANIZK, designated-prover QANIZK (DPQANIZK),
designated-verifier QANIZK (DVQANIZK), designated-prover-verifier QANIZK
(DPVQANIZK) as follow.

Definition 6 (QANIZK). Let X ∈ {ε,DP,DV,DPV}. An XQANIZK for a lan-
guage distribution Dpar consists of four PPT algorithms Π = (Gen,Prove,Ver,
Sim).

– Gen(par, [M]1) returns a common reference string crs, a prover key prk, a
verifier key vrk and a simulation trapdoor td:
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• X = ε iff prk = vrk = ε.
• X = DP iff vrk = ε.
• X = DV iff prk = ε.
• X = DPV iff prk �= ε and vrk �= ε.

– Prove(crs, prk,[y]1,w) returns a proof π.
– Ver(crs, vrk,[y]1, π) returns 1 (accept) or 0 (reject). Here, Ver is a determin-

istic algorithm.
– Sim(crs, td,[y]1) returns a simulated proof π.

Perfect completeness is satisfied if for all λ, all [M]1, all ([y]1,w) with [y]1 =
[Mw]1, all (crs, prk, vrk, td) ∈ Gen(par, [M]1), and all π ∈ Prove(crs, prk,[y]1,w),
we have

Ver(crs, vrk, [y]1, π) = 1.

Perfect zero knowledge is satisfied if for all λ, all [M]1, all ([y]1,w) with [y]1 =
[Mw]1, and all (crs, prk, vrk, td) ∈ Gen(par, [M]1), the following two distributions
are identical:

Prove(crs, prk, [y]1,w) and Sim(crs, td, [y]1).

We define the (unbounded) simulation soundness for all types of QANIZK.

Definition 7 (Unbounded simulation soundness). Let X ∈ {ε,DP,DV,
DPV}. An XQANIZK Π := (Gen,Prove,Ver,Sim) is unbounded simulation sound
(USS) if for any adversary A,

AdvussΠ,A(λ) := Pr[USSA ⇒ 1]

is negligible, where Game USS is defined in Fig. 1.

Fig. 1. USS security game for XQANIZK.

Weak USS. We can also consider a weak notion of simulation soundness. in the
sense that it is only required that [y∗]1 /∈ Qsim.4

4 In [5], the defined security is this weak version. However, it is not sufficient for
constructing a CCA2 secure encryption scheme, since it does not prevent an adver-
sary from forging a new ciphertext for a challenge message and sending that it as a
decryption query.
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Witness-Samplable Distribution. Here we define simulation soundness for
witness-sampleable distributions, namely, Init gets M ∈ Z

n1×n2
p as input, proofs

of our DVQANIZK and QANIZK schemes do not require the explicit M over Zp.
In all the standard definitions of (simulation) soundness of QANIZK for linear
subspaces, the challenger needs information on M in Zp (not necessary the whole
matrix) to check whether the target word [y∗]1 is inside the language Span([M]1).
This information can be a non-zero kernel vector of M (either in Zp or in G2).
We can also define USS with respect to non-witness sampleable distributions
while our security proofs (with straightforward modifications) introduced later
also hold. In this case, we have to allow the challenger to use super polynomial
computational power to check whether [y∗]1 ∈ Span(M), i.e., then the USS game
becomes non-falsifiable. Otherwise, we have to assume that the attacker always
gives [y∗]1 /∈ Span(M) in USS. In fact, we note that many constructions and
applications of simulation-sound QANIZKs consider witness-sampleable distribu-
tions (c.f., [18,29,32,38]).

2.5 Structure-Preserving Signature

We now recall the notion of structure-preserving signature (SPS) [3] and unforge-
ability against chosen message attacks (UF-CMA).

Definition 8 (Signature). A signature scheme is a tuple of PPT algorithms
SIG := (Gen,Sign,Ver) such that:

– Gen(par) returns a verification/signing key pair (vk, sk).
– Sign(sk,m) returns a signature σ for m ∈ M.
– Ver(vk,m, σ) returns 1 (accept) or 0 (reject). Here Ver is deterministic.

Correctness is satisfied if for all λ ∈ N, all m ∈ M, and all (vk, sk) ∈ Gen(par),

Ver(vk,m,Sign(sk,m)) = 1.

Definition 9 (Structure-preservation). A signature scheme is said to be
structure-preserving if its verification keys, signing messages, and signatures con-
sist only of group elements and verification proceeds via only a set of pairing
product equations.

Definition 10 (UF-CMA security). For a signature scheme SIG := (Gen,
Sign,Ver) and any adversary A, we define the following experiment:

Fig. 2. UF-CMA security game for SIG.
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A signature scheme SIG is unforgeable against chosen message attacks
(UF-CMA), if for all PPT adversaries A,

Advuf-cma
SIG,A (λ) := Pr[UF-CMAA ⇒ 1]

is negligible, where Game UF-CMA is defined in Fig. 2.

3 Quasi-Adaptive NIZK

In this section, we construct a QANIZK with tight simulation soundness. As
a stepping stone, we develop a DVQANIZK based on the Matrix Diffie-Hellman
assumption. By using the Kernel Matrix Diffie-Hellman assumption and pairings,
our DVQANIZK gives us a more efficient QANIZK. All the security reductions in
this section are tight.

The Core Lemma. We recall the useful core lemma from [20], which can com-
putationally introduce randomness. More precisely, it shows that moving from
experiment Core0 to Core1 can (up to negligible terms) only increase the winning
chances of an adversary.

Fig. 3. Security games Core0 and Core1 for the core lemma. RF : Zp → Z
2k
p is a random

function. All the codes are executed in both games, except the boxed codes which are
only executed in Core1.

Lemma 3 (Core lemma). If the Dk-MDDH assumption holds in the group G2,
and Πor = (Genor,TGenor,Proveor,Veror,Simor) is a NIZK for L∨

A0,A1
with perfect

completeness, perfect soundness, and zero-knowledge, then for any adversary A
against the core lemma, there exist adversaries B, B′ with running time T (B) ≈
T (B′) ≈ T (A) + Q · poly(λ) such that

AdvcoreA (λ) := Pr[CoreA
0 ⇒ 1] − Pr[CoreA

1 ⇒ 1]

≤(4k�log Q� + 2) · Advmddh
G2,D2k,k,B(λ) + (2�log Q� + 2) · AdvzkNIZK,B′(λ)

+ �log Q� · ΔD2k,k
+

4�log Q� + 2
p − 1

+
�log Q� · Q

p
,

where ΔD2k,k
is a statistically small term for D2k,k.
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In a slight departure from [20], we include the term [A�
0 k]1 in crs. We argue

that the core lemma still holds by the following reasons (for notation, our k is
their k0):

– The main purpose of k is to introduce the constant random function F0(ε) in
the transition from G2 to G3.0 in Lemma 4 in [20]. The same argument still
holds, given [A�

0 k]1.
– The randomization of Lemma 5 in [20] is done by switching [t]1 into the right

span, and this can be done independent of k. Additionally, we note that, given
[A�

0 k]1, one cannot efficiently compute [t�k]1 without knowing s ∈ Z
k
p s.t.

t = A0s.

We give some brief intuition about the proof of the lemma here. Similar to [20],
we re-randomize k via a sequence of hybrid games. In the i-th hybrid game, we
set u = t�(k + RFi(c|i)) where RFi is a random function and c|i denotes the
first i-bit prefix of the counter c for queries to Evalcore. To proceed from the
i-th game to the (i+1)-th, we choose t ∈ Span(Aci+1) in Evalcore depending on
the (i + 1)-th bit of c. We note that the view of the adversary does not change
due to the D2k,k-MDDH assumption. Then, as in [20], we can construct RFi in
the way that it satisfies t�RFi+1(c|i+1) = t�RFi(c|i). The main difference is
that our RFi additionally satisfies A�

0 (k + RFi+1(0i+1)) = A�
0 (k + RFi(0i)),

namely, it not only re-randomizes k but also ensures that the A�
0 k part in crs is

always independent of all the u′-s generated by Evalcore. We furthermore make
consistent changes to Finalizecore as in [20]. We refer the reader to the full paper
for the full proof.

3.1 Stepping Stone: Designated-Verifier QA-NIZK

Let G ← GGen(1λ), par := G, k ∈ N, H be a collision-resistant hash function
family, and Πor := (Genor,Proveor,Veror) be a NIZK system for language L∨

A0,A1
.

Our DVQANIZK Πdv := (Gen,Prove,Ver,Sim) is defined as in Fig. 4. We note that
our scheme can be easily extended to a tag-based scheme by putting the label �
inside the hash function. Thus, our scheme can be used in all the applications
that require tag-based DVQANIZK.

Theorem 1 (Security of Πdv). Πdv is a DVQANIZK with perfect zero-knowle-
dge and (tightly) unbound simulation soundness. In particular, for any adversary
A, there exist adversaries B and B′ with T(B) ≈ T(A) and

AdvussΠdv,A(λ) ≤AdvcrH,B̂(λ) + (4k�log Q� + 2) · Advmddh
G1,D2k,k,B(λ)

+(2�log Q� + 2) · AdvzkΠor,B′(λ) + �log Q� · ΔD2k,k

+
4�log Q� + 2

p − 1
+

(�log Q� + 1) · Q + 1
p

.

Proof (of Theorem 1). Perfect completeness follows directly from the correctness
of the OR proof system and the fact that for all y = Mw, p := A�

0 k, p0 :=
M�k0, p1 := M�k1, and t = A0s, for any τ , we have



686 M. Abe et al.

Fig. 4. Construction of Πdv := (Gen,Prove,Ver, Sim).

w�(p0 + τp1) + s�p = w�(M�k0 + τM�k1) + s�A�
0 k

= y�(k0 + τk1) + t�k.

Moreover, since

w�(p0 + τp1) + s�p = w�(M�k0 + τM�k1) + s�p

= y�(k0 + τk1) + s�p,

proofs generated by Prove and Sim for the same y = Mw are identical. Hence,
perfect zero knowledge is also satisfied.

We now focus on the tight simulation soundness of Πdv. Let A be an adversary
against the unbounded simulation soundness of Πdv. We bound the advantage
of A via a sequence of games defined in Fig. 5.

G0 is the real USS experiment for DVQANIZK as defined in Definition 7.

Lemma 4 (G0). Pr[USSA ⇒ 1] = Pr[GA
0 ⇒ 1].

Lemma 5 (G0 to G1). There is an adversary B breaking the collision resistance
of H with T(B) ≈ T(A) and AdvcrH,B(λ) ≥ |Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]|.

Proof. We note that in G0 and G1 the value u is uniquely defined by y, t and πor.
Thus, if A asks Finalize with ([y∗]1, [t∗]1, π∗

or) that appears from one of the Sim

queries, then Finalize will output 0, since ([y∗]1, π∗ := ([y∗]1, [t∗]1, [u∗]1, π∗
or)) ∈

Qsim. Now if ([y∗]1, [t∗]1, π∗
or) has never appeared from one of the Sim queries,

but τ∗ = H([y∗]1, [t∗]1, π∗
or) ∈ Qtag, the we can construct a straightforward

reduction B to break the CR property of H. ��
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Fig. 5. Games G0, G1 and G2 for the proof of Theorem 1. RF : Zp → Z
2k
p is a random

function. Given M over Zp, it is efficient to check whether [y∗]1 ∈ L[M]1 .

Lemma 6 (G1 to G2). There is an adversary B breaking the core lemma (cf.
Lemma 3) with running time T(B) ≈ T(A) and AdvcoreB (λ) = Pr[GA

1 ⇒ 1] −
Pr[GA

2 ⇒ 1].

Proof. We construct the reduction B defined in Fig. 6 to break the core lemma.
Clearly, if B’s oracle access is from Core0, then B simulates G1; and if B’s oracle
access is from Core1 (which uses a random function RF), then B simulates G2.
Thus, Pr[GA

1 ⇒ 1] − Pr[GA
2 ⇒ 1] = Pr[CoreB

0 ⇒ 1] − Pr[CoreB
1 ⇒ 1] = AdvcoreB (λ),

which concludes the lemma. ��
Lemma 7 (G2). Pr[GA

2 ⇒ 1] = Q
p .

Proof. We apply the following information-theoretical arguments to show that
even a computationally unbounded adversary A can win in G2 only with negligi-
ble probability. If A wants to win in G2, then A needs to output a fresh and valid
π∗ := ([t∗]1, [u∗]1, π∗

or). According to the additional rejection rule introduced in
G2, u = y∗�(k0 + τ∗k1) + t∗�(k + RF(j∗)) must hold for some 0 ≤ j∗ ≤ Q. Fix
a j∗ ≤ Q, we show that A can compute such a u with probability at most 1/p.

The argument is based on the information leak about k0 and k1:

– For the j-th Sim query (j �= j∗), the term t�RF(j) completely blinds the
information about k0 and k1 as long as t �= 0.

– For the j∗-th Sim query, we cannot use the entropy from the term (k+RF(j∗))
to hide k0 and k1 anymore, but we make the following stronger argument.
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Fig. 6. Reduction B for the proof of Lemma 6 with oracle Initcore, Evalcore, Finalizecore

defined in Fig. 3. We highlight the oracle calls with grey.

We assume that A learns the term t�(k+RF(j∗)), and thus y�(k0 + τk1) is
also leaked to A. However, since τ∗ �= τ , the terms (k0+τ∗k1) and (k0+τk1)
are pairwise independent.

Now together with the information leaked from M�k0 and M�k1 in crs, from
A’s view, the term y∗�(k0 + τ∗k1) is distributed uniformly at random, given
y�(k0 + τk1) from the j∗-th Sim query ([y]1 may not be in L[M]1). Thus, A can
compute the random term y∗�(k0 + τ∗k1) and make Finalize output 1 with
probability at most 1/p. By the union bound, A can win in G2 with probability
at most (Q + 1)/p. ��

From Lemmata 4 to 7, we have AdvussΠdv,A(λ) := Pr[USSA] ≤ AdvcrH,B̂(λ) +

AdvcoreB′ (λ) + (Q+1)
p . By Lemma 3, we conclude Theorem 1 as

AdvussΠdv,A(λ) ≤AdvcrH,B̂(λ) + (4k�log Q� + 2) · Advmddh
G1,D2k,k,B(λ)

+(2�log Q� + 2) · AdvzkNIZK,B′(λ) + �log Q� · ΔD2k,k

+
4�log Q� + 2

p − 1
+

(�log Q� + 1) · Q + 1
p

.

��

3.2 QA-NIZK

Let G ← GGen(1λ), par := G, k ∈ N, H be a collision-resistant hash function fam-
ily, and Πor := (Genor,Proveor,Veror) be a NIZK system for language L∨

A0,A1
. Our
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(publicly verifiable) QANIZK Π := (Gen,Prove,Ver,Sim) is defined as in Fig. 7.
The main idea behind our construction is to tightly compile the DVQANIZK
Πdv from Fig. 4 by using pairings. Again we note that our scheme can be easily
extended to a tag-based scheme by putting the label � inside the hash function.
Thus, our scheme can be used in all the applications that require tag-based
QANIZK.

Fig. 7. Construction of Π.

Theorem 2 (Security of Π). Π defined in Fig. 7 is a QANIZK with perfect
zero-knowledge and (tight) unbounded simulation soundness if the Dk-KerMDH
assumption holds in G2 and the DVQANIZK Πdv in Fig. 4 is unbounded simula-
tion sound. In particular, for any adversary A, there exist adversaries B and B′

with T(B) ≈ T(B′) ≈ T(A) + Q · poly(λ), where Q is the number of queries to
Sim, poly is independent of Q and

AdvussΠ,A(λ) ≤ Advkmdh
G1,Dk,B(λ) + AdvussΠdv,B′(λ).

Proof (of Theorem 2). Perfect completeness follows directly from the complete-
ness of the OR proof system and the fact that for all P := A�

0 K, P0 := M�K0,
P1 := M�K1, C := KA, C0 := K0A, C1 := K1A, and any τ
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[w�(P0 + τP1) + s�P]1 ◦ [A]2
=[w�(M�K0 + τM�K1) + s�A�

0 K]1 ◦ [A]2
=[w�M�]1 ◦ [K0A + τK1A]2 + [s�A�

0 ]1 ◦ [KA]2
=[y�]1 ◦ [C0 + τC1]2 + [t�]1 ◦ [C]2.

Moreover, since

w�(P0 + τP1) + s�P = w�(M�K0 + τM�K1) + s�P

= y�(K0 + τK1) + s�P,

the output of Prove is identical to that of Sim for the same y = Mw. Hence,
perfect zero knowledge is also satisfied.

We now focus on the tight simulation soundness of Π. We prove it by a
sequence of games: G0 is defined as the real experiment, USS (we omit the
description here), G1 and G2 are defined as in Fig. 8.

Fig. 8. Games G1 and G2 for proving Theorem 2.



Shorter QA-NIZK and SPS with Tighter Security 691

Lemma 8 (G0). Pr[USSA ⇒ 1] = Pr[GA
0 ⇒ 1].

In G1, Finalize additionally verifies the adversarial forgery with secret keys
K, K0, and K1 as in Fig. 8.

Lemma 9 (G0 to G1). There is an adversary B breaking the Dk-KerMDH
assumption over G2 with T(B) ≈ T(A) + Q · poly(λ) and Advkmdh

G2,Dk,B(λ) ≥
|Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]|.

Proof. It is straightforward that a pair ([y∗]1, π∗) passing the Finalize in G1

always passes the Finalize in G0. We now bound the probability that A pro-
duces ([y∗]1, π∗) that passes the verification in G0 but not that in G1. For
π∗ = ([t∗]1, [u∗]1, π∗

or), the verification equation in G0 is:

[u∗]1 ◦ [A]2 = [y∗�]1 ◦ [K0A + τK1A]2 + [t�]1 ◦ [KA]2

⇔ [u∗ − y∗�(K0 + τK1) − t�K]1 ◦ [A]2 = [0]T .

One can see that for any ([t∗]1, [u∗]1, π∗
or) that passes the verification equation

in G0 but not that in G1, u∗ − y∗(K0 + τK1) − t�K is a non-zero vector in the
kernel of A.

We now construct an adversary B as follows. On receiving (G, [A]1) from the
Dk-KerMDH experiment, B samples all other parameters by itself and simulates
G0 for A. When A outputs a tuple ([t∗]1, [u∗]1, π∗

or), B outputs u∗ − y∗�(K0 +
τK1) − t�K. Since B succeeds in its experiment when A outputs a tuple such
that u∗ − y∗�(K0 + τK1) − t�K is a non-zero vector in the kernel of A, we
have Advkmdh

G1,Dk,B(λ) ≥ |Pr[GA
0 ⇒ 1] − Pr[GA

1 ⇒ 1]|, completing the proof of this
lemma. ��
Lemma 10 (G1 to G2). Pr[GA

1 ⇒ 1] = Pr[GA
2 ⇒ 1].

Proof. Now we finish the reduction to the KerMDH assumption and we can have
A over Zp. In G2, for i ∈ {0, 1} we replace Ki by K′

i + kia⊥ for a⊥ ∈ ker(A),
where K′

i
$← Z

n1×(k+1)
p , and ki

$← Z
n1
p . Furthermore, we replace K by K′ +ka⊥

for K′ $← Z
2k×(k+1)
p and k $← Z

2k
p . Since K′ and K′

i are uniformly random, K
and Ki in G2 are distributed at random and the same as in G1. Thus, G2 is
distributed the same as G1. ��
Lemma 11 (G2). There is an adversary B′ breaking the USS security of Πdv

defined in Fig. 4 with T(B′) ≈ T(A)+Q·poly(λ) and Pr[GA
2 ⇒ 1] ≤ AdvussΠdv,B′(λ).

Proof. We construct a reduction B′ in Fig. 9 to break the USS security of Πdv

defined in Fig. 4.
We note that the [p]1, [pi]1 (i = 0, 1) from Initdv have the forms, p = A�

0 k
and pi = M�ki for some random k ∈ Z

2k
p and ki ∈ Z

n1
p , and furthermore the

value [u]1 from Simdv has the form u = y�(k0 + τk1) + t�k. Hence, essentially,
B′ simulate the security game with K and Ki that are implicitly defined as
K := K′ + k · a⊥ and Ki := K′

i + ki · a⊥. The simulated Init and Sim are
identical to those in G2.
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Fig. 9. Reduction B′ for the proof of Lemma 11 with oracle access to Initdv, Simdv and
Finalizedv as defined in G0 of Fig. 5. We highlight the oracle calls with grey.

In G2, Finalize([y∗]1, π∗ := ([t∗]1, [u∗]1, π∗
or)) outputs 1 if

u∗ = y∗�(K′
0 + τ∗K′

1) + t∗�K′ + (y∗�(k0 + τ∗k1) + t∗�k
︸ ︷︷ ︸

=:v

) · a⊥

and ([y∗]1, π∗) /∈ Qsim and [y∗]1 /∈ L[M]1 and Ver(crs, [y∗]1, π∗) = 1. Thus, if A
can make Finalize([y∗]1, π∗) output 1 then B′ can extract the corresponding
[v]1 to break the USS security. We conclude the lemma. ��

To sum up, we have Pr[USSA ⇒ 1] ≤ Advkmdh
G1,Dk,B(λ) + AdvussΠdv,B′(λ) with B

and B′ as defined above. ��

3.3 Application: Tightly IND-mCCA-Secure PKE

By instantiating the labeled (enhanced) USS-QA-NIZK in the generic construc-
tion in [5] with our construction in Sect. 3.2, we immediately obtain a more
efficient publicly verifiable labeled public-key encryption (PKE) with tight IND-
CCA2 security in the multi-user, multi-challenge setting (IND-mCCA). The secu-
rity reduction is independent of the number of decryption-oracle requests of the
CCA2 adversary. We refer the reader to the full paper for the definition of labeled
IND-mCCA secure PKE and the construction.

4 Tightly Secure Structure-Preserving Signature

In this section, we present an SPS via a designated-prover NIZK for the OR-
language, whose security can be tightly reduced to the D2k,k-MDDH and Dk-
MDDH assumptions.
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4.1 Designated-Prover OR-Proof

In this section, we construct NIZKs in the designated-prover setting. In contrast
to [5], we focus on the language L∨

A0,A1
defined in Sect. 2.3, where a single word

y is required to be in the linear span of either one of two spaces given by matrices
A0 and A1.

While previous techniques [23,43] require ten group elements in a proof, our
novel solution gives a QANIZK with only seven group elements under the SXDH
hardness assumption, by leveraging the privacy of the prover CRS.
Definition. For A0,A1

$← D2k,k, we define the notion of designated-prover
OR-proof for L∨

A0,A1
.

Definition 11 (Designated-Prover OR-Proof). A designated-prover proof
system for L∨

A0,A1
is the same as that of NIZK for L∨

A0,A1
(see Sect. 2.3), except

that

– Gen takes (par,A0,A1) as input instead of (par, [A0]1, [A1]1) and outputs an
additional prover key prk.

– Prove takes prk as additional input.
– In the soundness definition, the Adversary is given oracle access to Prove with

prk instantiated by the one output by Gen.

Construction. Let G ← GGen(1λ), par := G, and k ∈ N. In Fig. 10 we present
a Designated-Prover OR-proof system for L∨

A0,A1
.

Lemma 12. If the Dk-MDDH assumption holds in the group G2, then the
proof system Πor = (Genor,TGenor,Proveor,Veror,Simor) as defined in Fig. 10
is a designated-prover or-proof system for L∨

A0,A1
with perfect completeness,

perfect soundness, and zero-knowledge. More precisely, for all adversaries A
attacking the zero-knowledge property of Πor, we obtain an adversary B with
T (B) ≈ T (A) + Q · poly(λ) and AdvzkΠor,A(λ) ≤ Advmddh

G,G2,Dk,B(λ).

We refer the reader to Introduction for the high-level idea of our construction.
We refer the reader to the full paper for the full proof.
Extensions. For larger matrices A0,A1, and under Dk-MDDH assumption for
a fixed k, we improve our proof size so that it asymptotically approaches a factor
of two. As a trade-off, it loses a factor of k.

Roughly, for some invertible matrix U, we exploit the following language
instead:

L∨
A0,A1

:= {[y]1 ∈ G
2k
1 | ∃x ∈ Z

1×k
p ,X ∈ Z

k×k
p : A0X = yx ∨ y�A⊥

1 U = x}.

One can see that it is also equal to L∨
A0,A1

, since y is in the span of A0 if x �= 0
and in the span of A1 otherwise. Instead of directly applying the Groth-Sahai
proof to it as before, we make careful adjustment on the proof for [y]�1 A⊥

1 U =
[x]1 and commitment of the information on A⊥

1 in this case. We also extend it to
an efficient OR-Proof in the symmetric pairing, which might be of independent
interest. We refer the reader to the full paper for the constructions and security
proofs.
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Fig. 10. Designated-prover OR-proof for L∨
A0,A1 .

4.2 Structure-Preserving Signature

By replacing the underlying OR-proof in the SPS in [20] with our designated-
prover one, we immediately obtain a more efficient SPS. A signature consists
only of 11 elements, which is the shortest known for tightly secure SPS-es.

Theorem 3 (Security of Σ). If Πor := (Genor,TGenor,Veror,Simor) is a non-
interactive zero-knowledge proof system for L∨

A0,A1
, the signature scheme Σ

described in Fig. 11 is UF-CMA secure under the D2k,k-MDDH and Dk-MDDH
assumptions. Namely, for any adversary A, there exist adversaries B,B′ with
running time T (B) ≈ T (B′) ≈ T (A) + Q · poly(λ), where Q is the number of
signing queries, poly is independent of Q, and
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Fig. 11. Tightly UF-CMA secure structure-preserving signature scheme Σ with message
space G

n
1 . k ∈ N and the public parameter is par = G where G ← GGen(1λ).

Advuf-cma
SPS,A ≤(4k�log Q� + 2) · Advmddh

G1,D2k,k,B

+ (2�log Q� + 3) · Advmddh
G2,Dk,B′ + �log Q� · ΔD2k,k

+
4�log Q� + 2

p − 1
+

(Q + 1)�log Q� + Q

p
+

Q

pk
.

We omit the proof of the above theorem since it is exactly the same as the
security proof of the SPS in [20] except that we adopt the notion of standard
zero knowledge instead of the composable one and the OR-proof system is a
designated-prover one now, which does not affect the validity of the proof at all.
We refer the reader to [20] for the details. Notice that in the MDDH games of
the security proof, the reduction algorithm is not allowed to see A0 and A1 so
that it cannot run the honest generation algorithm Genor(par,A0,A1). However,
it does not have to, since in all the MDDH games, common reference strings are
always switched to simulated ones, namely, the reduction algorithms only have
to run TGenor(par, [A0]1, [A1]1).

4.3 DPQANIZK and Black-Box Construction

We can also use our designated-or-proof system to construct a structure-preserv-
ing DPQANIZK with weak USS, which might be of independent interest. We
refer the reader to the full paper for the construction and security proof of it.

On the other hand, as shown in [5,6], there is an alternative approach for
constructing SPS directly from DPQANIZK. It is just mapping a message to
an invalid instance out of the language and simulating a proof with a trapdoor
behind a common reference string published as a public key. In the concrete
construction in [5,6], n0 + 1 extra elements are included in a public key so that
they are used to make sure that messages consisting of n0 elements are certainly
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mapped to invalid instances. We can take the same approach but with improved
mapping that requires only one extra element assuming the hardness of the
computational Diffie-Hellman problem. The resulting signature size is exactly
the same as that of proofs of DPQANIZK and the public-key size is that of a
common-reference string plus one element.
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