
Tightly Secure Inner Product
Functional Encryption: Multi-input
and Function-Hiding Constructions

Junichi Tomida(B)

NTT, Tokyo, Japan
junichi.tomida.vw@hco.ntt.co.jp

Abstract. Tightly secure cryptographic schemes have been extensively
studied in the fields of chosen-ciphertext secure public-key encryption,
identity-based encryption, signatures and more. We extend tightly secure
cryptography to inner product functional encryption (IPFE) and present
the first tightly secure schemes related to IPFE.

We first construct a new IPFE scheme that is tightly secure in the
multi-user and multi-challenge setting. In other words, the security of our
scheme does not degrade even if an adversary obtains many ciphertexts
generated by many users. Our scheme is constructible on a pairing-free
group and secure under the matrix decisional Diffie-Hellman (MDDH)
assumption, which is the generalization of the decisional Diffie-Hellman
(DDH) assumption. Applying the known conversions by Lin (CRYPTO
2017) and Abdalla et al. (CRYPTO 2018) to our scheme, we can obtain
the first tightly secure function-hiding IPFE scheme and multi-input
IPFE (MIPFE) scheme respectively.

Our second main contribution is the proposal of a new generic con-
version from function-hiding IPFE to function-hiding MIPFE, which was
left as an open problem by Abdalla et al. (CRYPTO 2018). We obtain
the first tightly secure function-hiding MIPFE scheme by applying our
conversion to the tightly secure function-hiding IPFE scheme described
above.

Finally, the security reductions of all our schemes are fully tight, which
means that the security of our schemes is reduced to the MDDH assump-
tion with a constant security loss.

Keywords: Functional encryption · Inner product · Tight security

1 Introduction

(Multi-input) Inner Product Functional Encryption. Functional encryp-
tion (FE) [13,37] is a relatively novel cryptographic notion that has a crucially
different feature from traditional encryption schemes. Specifically, FE schemes
allow us to obtain computation results from encrypted data without revealing
any other information about the underlying data. This is in contrast to tradi-
tional encryption schemes, in which only owners of legitimate keys can learn
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 459–488, 2019.
https://doi.org/10.1007/978-3-030-34618-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-34618-8_16

460 J. Tomida

entire underlying data from ciphertexts while others can learn nothing. An FE
scheme supports a certain function class F and in which an owner of a master
secret can issue a secret key skf for any function f ∈ F . Decryption of a cipher-
text ctx of message x with skf yields the computation result f(x) and nothing
else.

Multi-input functional encryption (MIFE) [28] is a natural extension of FE,
which can handle a function class that takes multiple inputs. Roughly speaking,
an owner of skf can learn the computation result f(x1, . . . , xμ) from ciphertexts
ctx1 , . . . , ctxμ

of messages x1, . . . , xμ for some natural number μ ≥ 2.
Known (MI)FE schemes can be classified into two categories with respect to

their function classes.

General functionalities: This category consists of (MI)FE schemes for general
circuits, e.g., [8,23,24,28,39]. Although they are powerful enough to handle
all functions computable in polynomial time, known schemes are built on
quite heavy cryptographic primitives such as indistinguishability obfuscation
[23] or multi-linear maps [22]. Thus, they are captured as rather feasibility
results.

Specific functionalities: The second category covers (MI)FE schemes for spe-
cific functions such as inner product and quadratic function, e.g., [2,4,6,9].
They are aimed at obtaining more practical features, namely, efficiency and
concrete security, with sacrificing the generality. Therefore, they have simple
constructions, and their security is based on standard assumptions.

Inner product functional encryption (IPFE) [2] and multi-input IPFE
(MIPFE) [4], categorized into the latter, are FE and MIFE respectively, whose
function classes are inner product. More precisely, in an (M)IPFE scheme, a
secret key sky1,...,yμ

is associated with vectors y1, . . . ,yμ, and decrypting cipher-
texts ctx1 , . . . , ctxμ

of vectors x1, . . . ,xμ with sky1,...,yμ
reveals the summation

of the inner products
∑

i∈[μ]〈xi,yi〉. When μ = 1, the above description corre-
sponds to an IPFE scheme. Inner product is a simple but powerful functionality,
and many practical applications of IPFE have been suggested, e.g, biometric
authentication, nearest-neighbor search and statistical analysis [2,32].

Function Privacy. In (MI)FE, we can consider two types of privacy: message
privacy and function privacy. Message privacy, which is essential for standard
(MI)FE schemes, is the property that ciphertexts do not reveal any information
about underlying data. On the other hand, function privacy is an additional but
important property for (MI)FE schemes, which indicates that secret keys also
hide the information of the corresponding function. Function privacy is essential
for some applications such as delegation of sensitive computation [15]. We often
refer to (MI)FE with function privacy as function-hiding (MI)FE. Function-
hiding (MI)FE schemes have also been studied for both general functionalities
[14,15] and specific functionalities [12,18,32,38].

Tight Security. When we try to prove the security of a cryptographic scheme,
we often construct a reduction algorithm that solves a problem assumed to be
hard by utilizing a PPT adversary that breaks the security of the scheme. Then,

Tightly Secure Inner Product Functional Encryption 461

breaking the security of the scheme immediately implies solving the hard prob-
lem. It is both theoretically and practically important to evaluate how difficult
breaking the scheme is compared with solving the problem. More formally, when
the reduction algorithm equipped with an adversary that breaks the scheme with
probability ε in time t solves the underlying problem with probability ε/L in
roughly the same time t, it is important to evaluate the security loss L. This is
because we need to set the parameter size of the scheme large enough to negate
the effect of L for the security guarantee. Thus, the smaller the security loss L,
the more desirable the security reduction. We say that the security reduction is
tight if the security loss is constant, i.e., L = O(1).

When we consider public-key primitives such as public-key encryption (PKE)
or identity-based encryption (IBE), we usually prove their security in the single-
challenge setting. This is because the security of public-key primitives in the
single-challenge setting normally implies that in the multi-user and multi-
challenge setting via hybrid argument, which is more realistic setting where
an adversary can make polynomially many challenge queries against multiple
users. However, such a hybrid argument increases the security loss by the factor
of μq, where μ is the number of users and q is the maximum number of chal-
lenge queries for each users [11]. Since the numbers of users and ciphertexts are
quite large in practice, we strongly desire cryptographic schemes whose security
is guaranteed independently of those numbers.

Motivated by the above reason, (almost) tightly secure cryptographic schemes
have been extensively studied in various fields, especially on chosen-ciphertext
secure PKE (CCA-secure PKE), IBE, and signature, e.g, [7,17,25,26,29–31,33].
In spite of such a great deal of effort, tightly secure schemes in the context of
advanced encryption are known only for IBE except the very recent result on
broadcast encryption by Gay et al. [27]. Hence, it is an important and interesting
task to explore what kind of cryptographic schemes can achieve tight security.

Tight Security for IPFE. We would like to discuss the importance of tightly
secure IPFE in more detail. We consider that the most significant situation
where we need a tightly secure IPFE scheme is when a function-hiding scheme
is needed. This is because the only way that we know to realize function-hiding
IPFE schemes requires bilinear groups, which is relatively susceptible to secu-
rity loss. One solution to compensate for security loss caused by loose reduction
is to increase the parameter size of underlying primitives, e.g., bilinear groups,
which will reinforce the difficulty of underlying problems, e.g., the matrix Diffie-
Hellman problem. As observed by Abe et al. [5], however, this is not an easy
task for bilinear groups because there are many factors that involve the secu-
rity and efficiency of them such as the choice of curves, pairings, and various
parameters like embedding degrees. Hence, we typically adopt one from existing
well-studied settings, which are investigated only for standard parameters such
as 128, 192, and 256-bit security. The main problem of this fact is that there is
no intermediate instantiation among these parameters, and one have to hop to
the next standard level if stronger security is necessary. A pairing computation
is especially influenced by this hop; for instance, they state that a pairing in the

462 J. Tomida

192-bit security takes 6 to 7 times more time than in the 128-bit security on
ordinary personal computers [10,20].

Additionally, it is not unrealistic that an adversary obtains a large amount
of ciphertexts so that we need to consider the security loss of IPFE schemes. Let
us consider the case to use a function-hiding IPFE scheme for DNA analysis.
Suppose a national institution holds a database consisting of a certain part of
the human’s DNA sequence. It is rational to assume that the part consists of 213

bases and the number of the samples is 220; actually, GenBank operated by the
National Center for Biotechnology Information has more than 227 sequences [1].
Each sample is encoded to a binary vector setting as A = (1, 0, 0, 0), T = (0, 1,
0, 0), and so on, and stored in a cloud server with an encrypted form. We can
check the number of the same bases between encrypted sequences and a target
sequence by decrypting with a secret key for the target sequence. Because DNA
sequences have a correlation with phenotypes, the DNA similarity check will be
useful for genetical research, medical diagnosis, etc. We need the function-hiding
property because target sequences are also personal data and thus sensitive. In
this situation, the possibly untrusted server has q = 220 ciphertexts, large enough
to consider the security loss of the scheme. Decryption of all known schemes
involves the same number of pairings as the order of the vector length: m = 215

per one sample in our case. Thus, the choice of the security level significantly
affects the efficiency of the system, and we can conclude that tight security is a
very important concept in the context of IPFE as well as other cryptosystems.

1.1 Our Contributions

We extend the realm of tightly secure cryptography to IPFE and present a series
of the first tightly secure (M)IPFE schemes. Our first main contribution is to
construct the first tightly secure public-key IPFE scheme in the multi-user and
multi-challenge setting. Note that previous IPFE schemes are tightly reduced
to underlying assumptions in the single-challenge setting [6], which means that
their security is independent from the number of secret key queries. To our
knowledge, however, there are no results on tight security of IPFE in the multi-
user and multi-challenge setting. Our tightly secure IPFE scheme is constructible
from a pairing-free group and its security is based on the matrix decisional
Diffie-Hellman (MDDH) assumption, which is a generalization of the well-studied
decisional Diffie-Hellman (DDH) assumption, with a small constant security loss.

Our result can be easily extended to the multi-input setting. Recently,
Abdalla et al. proposed a generic conversion from an IPFE scheme into a MIPFE
scheme [3,4]. Their conversion employs parallel execution of μ instances of the
underlying IPFE scheme that is secure in the multi-challenge setting. By this
construction, their conversion incurs a security loss of O(μq) if we apply it to an
IPFE scheme that is secure in the single challenge setting, where μ is the num-
ber of slots of the converted scheme and q is the maximum number of ciphertext
queries for each slot. Interestingly, this construction is precisely compatible with
an IPFE scheme that is secure in the multi-user and multi-challenge setting.
In other words, the security of the converted MIPFE scheme is tightly reduced

Tightly Secure Inner Product Functional Encryption 463

to that of the underlying IPFE scheme if the underlying scheme is secure in
the multi-user and multi-challenge setting. Thus, we can obtain the first tightly
secure MIPFE scheme.

Another important issue is the realization of tightly secure function-hiding
(M)IPFE schemes. All previous function-hiding schemes suffer from a security
loss of L = O(qct +qsk), where qct (resp. qsk) refers to the total number of cipher-
text (resp. secret key) queries [12,18,34,38]. To achieve tight security, we utilize
Lin’s technique, who presented a simple paradigm to construct a function-hiding
(private-key) IPFE scheme from a (public-key) IPFE scheme [34]. Applying her
paradigm to our IPFE scheme, we can obtain the first tightly secure function-
hiding IPFE scheme that is based on bilinear groups. However, the naive appli-
cation of her paradigm to our scheme results in a redundant scheme. Thus, we
optimize the scheme by reducing the unnecessary part.

The final target is to construct a tightly secure function-hiding MIPFE
scheme. Unfortunately, there is no known generic technique to achieve a function-
hiding MIPFE scheme. In fact, Abdalla et al. mention that a powerful conversion
to achieve a function-hiding MIPFE scheme is a very interesting open prob-
lem [3]. Furthermore, the techniques used in the rather specific constructions
of known function-hiding MIPFE schemes [3,19] are not applicable to our case.
This is because our scheme requires the selective setting in a certain step of the
proof, if we naively try to prove the security similarly to [3,19].

Our second main contribution is overcoming this problem by solving the
open problem posed by Abdalla et al., that is, we introduce a new powerful and
generic conversion. It converts a (weakly) function-hiding IPFE scheme into a
(fully) function-hiding MIPFE scheme. Our conversion is as general as that for
constructing non-function-hiding MIPFE by Abdalla et al. [3]: the requirements
for an underlying scheme are essentially the same. Hence, if new function-hiding
IPFE schemes are proposed in the future, e.g., based on lattices, we may uti-
lize our conversion to obtain new function-hiding MIPFE schemes though some
modification will be necessary. Additionally, we can obtain (non-tightly-secure)
function-hiding MIPFE schemes in a more modular way than the previous ones
[3,19] by utilizing our conversion to function-hiding IPFE schemes, e.g., the
scheme from AGRW17 [4] + Lin17 [34]. Applying our conversion to our tightly
secure function-hiding IPFE scheme, we can finally achieve the first tightly secure
function-hiding MIPFE scheme.

Similarly to all previous IPFE schemes based on a cyclic group or bilinear
groups, the decryption algorithms of our schemes require to solve the discrete
logarithm problem on a decryption value. As pointed out in [2,32], however,
this step is not so problematic in many cases. This is mainly because decryption
values will not become exponentially large in real applications. Additionally,
although there are some IPFE schemes that allow exponentially large outputs,
they are either inefficient due to the large modulus [6] or based on a non-standard
assumption [16].

We summarize the comparison of our schemes with previous ones in Tables 1,
2, 3 and 4. In these tables, we count the numbers of elements assuming that

464 J. Tomida

a matrix distribution Dk is a uniform one over Z
(k+1)×k
p . Some readers may

be concerned about the increase of the key and ciphertext sizes, which may
slow the efficiency of the system even after the compensation of security loss.
However, we would like to emphasize that our contribution is the first step
toward more efficient tightly secure schemes. Furthermore, our schemes may
outperform previous ones in some situations. For example, when we instantiate
our function-hiding IPFE scheme from the SXDH, it takes almost 5 times more
pairings in decryption than the state-of-the-art scheme (Table 3). As discussed in
the previous subsection, the difference of security level possibly affects pairings
by the factor of 6 to 7 in practice, and thus there is a possibility that the
decryption, the most important process of IPFE, of our scheme is faster than
those of previous ones in the same security level. We leave constructing more
compact tightly secure IPFE schemes as an interesting open problem.

2 Technical Overview

2.1 Tightly Secure IPFE

Our scheme is secure in the multi-user and multi-challenge setting under the
MDDH assumption, but here we describe our scheme based on the DDH assump-
tion in the single-user and multi-challenge setting to ease the exposition. Our
starting point is the adaptively secure IPFE scheme by Agrawal et al. [6]. We
briefly describe their scheme below. Let m be a vector length in the scheme.

Setup(1λ, 1m): a
U←− Zp, W U←− Z

m×2
p , a := (a, 1), pk := ([a], [Wa]),msk := W.

Enc(pk,x): s
U←− Zp, ct := ([sa], [sWa + x]).

KeyGen(pk,msk,y): sk := (−W�y,y).
Dec(pk, ct, sk): −y�W[sa] + y�[sWa + x] = [〈x,y〉].
Next, we explain the security proof of this scheme by Abdalla et al. [4], which is
somewhat different from the original proof by Agrawal et al. and roughly goes
as follows. First, the form of the challenge ciphertext is changed from ct :=
([sa], [sWa + xβ]) to ct := ([sa + s′b], [W(sa + s′b) + xβ]), where s′ U←− Zp,

b := (1, 0), and β
U←− {0, 1}. This change is computationally indistinguishable

under the DDH assumption. At this point, we redefine W as

W := W̃ + u(x1 − x0)a⊥�
, (2.1)

where u
U←− Zp, W̃

U←− Z
m×2
p , and a⊥ := (1,−a), and note that a⊥�

b = 1. In
fact, x0 and x1 may depend on W̃ because the information of W̃ is leaked to the
adversary from the public key and queried secret keys. However, we can assume
that x0 and x1 do not depend on W̃ (and formally we use complexity leveraging
to argue that). Then, redefined W is also a random element in Z

m×2
p and we

have

Tightly Secure Inner Product Functional Encryption 465

Table 1. Comparison of adaptively secure IPFE schemes in the multi-user and multi-
challenge setting. The columns |pk| and |ct| refer to the number of group elements. The
columns |msk| and |sk| refer to the number of Zp elements. The number m refers to
the vector length. The number qct refers to the total number of ciphertext queries by
an adversary. Note that we omit the group description from |pk|.

IPFE schemes
scheme |pk| |msk| |ct| |sk| sec. loss assumption

ALS16 [6] m + 1 2m m + 2 m + 2 O(qct) DDH
AGRW17 [4] km + k2 + k (k + 1)m m + k + 1 m + k + 1 O(qct) Dk-MDDH
Ours m2 + 1 2m2 3m 3m O(1) DDH

k2m2 + k2 + k (k2 + k)m2 (k2 + k + 1)m (k2 + k + 1)m O(1) Dk-MDDH

Table 2. Comparison of MIPFE schemes based on a pairing-free group. The columns
|msk| and |sk| refer to the number of Zp elements. The column |ct| refers to the number
of group elements. The number m refers to the vector length. The number µ refers to
the number of slots. The number qct refers to the total number of ciphertext queries
for all slots by an adversary.

MIPFE schemes
scheme |msk| |ct| |sk| sec. loss assumption

ACFGU18[3] {k2 + k + (k + 1)m}μ m + k + 1 (m + k + 1)μ + 1 O(qct) Dk-MDDH
Ours (k2m + km + 1)mμ (k2 + k + 1)m (k2 + k + 1)mμ + 1 O(1) Dk-MDDH

Table 3. Comparison of fully function-hiding IPFE schemes in the standard model.
Lin17 [34] refers to the scheme obtained by applying her paradigm to the IPFE scheme
AGRW17 [4]. The column |msk| refers to the number of Zp elements. The columns |ct|
and |sk| refer to the number of group elements in G1 and G2 respectively. The number
m refers to the vector length. The numbers qct and qsk refer to the total numbers of
ciphertext queries and secret key queries by an adversary respectively.

function-hiding IPFE schemes
scheme |msk| |ct| |sk| sec. loss assumption

DDM16 [18] 8m2+12m+28 4m+8 4m+8 O(qct+qsk) SXDH
TAO16 [38] 4m2+18m+20 2m+5 2m+5 O(qct+qsk) XDLIN
Lin17 [34] (k+1)(4m+3k+1) 2m+2k+2 2m+2k+2 O(qct+qsk) Dk-MDDH
Ours 32m2 10m 10m O(1) SXDH

(4k4+8k3+12k2+8k)m2 (4k2+4k+2)m (4k2+4k+2)m O(1) Dk-MDDH

Table 4. Comparison of fully function-hiding MIPFE schemes. The column |msk| refers
to the number of Zp elements. The columns |ct| and |sk| refer to the number of group
elements in G1 and G2 respectively. The number m refers to the vector length. The
number µ refers to the number of slots. The numbers qct and qsk refer to the total
numbers of ciphertext queries for all slots and secret key queries by an adversary
respectively.

function-hiding MIPFE schemes
scheme |msk| |ct| |sk|

DOT18 [19] (2m+2k+1)2μ 2m+2k+1 (2m+2k+1)μ
ACFGU18 [3] {(k+1)(4m+5k+1) + k}μ 2m+3k+2 (2m+3k+2)μ(+|GT |)
Ours {(k4+2k3+3k2+2k)(2m+1)2+m}μ (2k2+2k+1)(2m+1) (2k2+2k+1)(2m+1)μ

scheme sec. loss assumption
DOT18 [19] O(qct+qsk) k-Lin
ACFGU18 [3] O(qct+μqsk) Dk-MDDH
Ours O(1) Dk-MDDH

466 J. Tomida

Wa = W̃a, (2.2)

W�y� = W̃�y� (� is an index for the query number), (2.3)

W(sa + s′b) + xβ = W̃(sa + s′b) + us′(x1 − x0) + xβ

= W̃(sa + s′b) + (us′ + β)(x1 − x0) + x0.
(2.4)

In the indistinguishability-based security game, we impose a query condition on
the adversary to avoid a trivial attack. That is, for all secret key queries, we
have x0y� = x1y�. Equation (2.3) follows from this condition. Finally, from Eq.
(2.4), we can argue that the information of β is hidden from the adversary by
the term us′ unless s′ = 0, because u is a fresh randomness from the viewpoint
of the adversary. Thus, the scheme is secure under the DDH assumption. In the
multi-challenge setting, however, this proof strategy needs a hybrid argument
for each challenge and incurs the security loss of O(qct), where qct is the number
of the ciphertext challenges. Intuitively, this is because the matrix W is shared
in all challenge ciphertexts and we cannot redefine W suitable for all challenge
ciphertexts simultaneously in Eq. (2.1).

The first attempt to obtain a tight reduction is setting W in Eq. (2.1) as

u1, . . . , uL
U←− Zp, W := W̃ +

∑

ι∈[L]

uιxιa⊥�
,

where L(≤ m) is the dimension of the space V spanned by x1
j − x0

j ∈ Z
m
p for all

j ∈ [qct], and {xι}ι∈[L] are a basis of V . In this case, Eqs. (2.2) and (2.3) do not
change and Eq. (2.4) becomes

W(sja + s′
jb) + xβ

j = W̃(sja + s′
jb) + s′

j

∑

ι∈[L]

uιxι + β(x1
j − x0

j) + x0
j ,

where j is the index of challenge queries. If we can say that {[s′
juι]}j∈[qct],ι∈[L]

are indistinguishable from {[rj,ι]}j∈[qct],ι∈[L], which are qctL random elements in
G, we can conclude that the term s′

j

∑
ι∈[L] uιxι hides the information of β. This

is because x1
j − x0

j ∈ V for all j ∈ [qct], and each
∑

ι∈[L] rj,ιxι is a completely
random element in V . Fortunately, it is well known that {s′

juι}j∈[qct],ι∈[L] on the
exponent forms a synthesizer [36], and they are computationally indistinguish-
able from qctL random group elements with the security loss being either qct or
L. Thus, we can prove the security of the scheme by Agrawal et al. with the
security loss of O(m), which is independent from the adversaries’ behavior.

However, the above proof contains two deficiencies. The first is that the
security reduction is still not tight. The second is that the above strategy is
useful against only selective adversaries. This is because the reduction algorithm
needs to know about V to simulate each challenge ciphertext, but V depends on
all challenge queries that the adversary makes. Thus, we have to overcome these
two problems.

Tightly Secure Inner Product Functional Encryption 467

Toward Tight Security. The solution for the first problem (and partly for the
second problem as a result) is to increase the column of the part a, which allows
us to embed more randomness into ciphertexts. That is, we modify the scheme
as

Setup(1λ, 1m):

a
U←− Zp, W U←− Z

m×2m
p , a := (a, 1),

A := Im ⊗ a =

m vectors
︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎝

a
a

. . .
a

⎞

⎟
⎟
⎟
⎠

∈ Z
2m×m
p ,

pk := ([a], [WA]), msk := W.

Enc(pk,x): s := (s1, . . . , sm) U←− Z
m
p , ct := ([As], [WAs + x]).

KeyGen(pk,msk,y): sk := (−W�y,y).
Dec(pk, ct, sk): −y�W[As] + y�[WAs + x] = [〈x,y〉].
The security proof goes as follows. First, the form of all challenge ciphertexts is
changed to

B := Im ⊗ (1, 0) ∈ Z
2m×m
p , s′

j := (s′
j,1, . . . , s

′
j,m) U←− Z

m
p , (2.5)

ct := ([Asj + Bs′
j], [W(Asj + Bs′

j) + xβ
j]).

The DDH problem is tightly reduced to the problem of distinguishing this change
by the random self-reducibility. Next, we redefine W as

u
U←− Zp, W := W̃ + u

∑

ι∈[L]

xιa⊥�
ι , (2.6)

where a⊥
ι ∈ Z

2m
p is the ι-th column of A⊥ := Im ⊗ a⊥. Then, we have

WA = W̃A,

W�y� = W̃�y�,

W(Asj + Bs′
j) + xβ

j = W̃(Asj + Bs′
j) + u

∑

ι∈[L]

s′
j,ιxι + β(x1

j − x0
j) + x0

j .

(2.7)

In this case, we can see that {[us′
j,ι]}j∈[qct],ι∈[L] are computationally indistin-

guishable from {[rj,ι]}j∈[qct],ι∈[L], which are qctL random elements in G, and this
indistinguishability is tightly reduced to the DDH assumption by the random
self-reducibility. Then, the information of β is completely hidden by the same
argument as before in the selective security model.

468 J. Tomida

Toward Adaptive Security. In this paragraph, we refer to the computational
change from Asj to Asj +Bs′

j as the first step and that from {[us′
j,ι]}j∈[qct],ι∈[L]

to {[rj,ι]}j∈[qct],ι∈[L] as the second step. The main obstacle to achieve the adaptive
security is that the reduction algorithm needs to know about the space V before
seeing all challenge queries in the second step. Our observation is that we do not
need a random element in V to hide the information of β in each ciphertext. Let
Vj be a space spanned by x1

ι − x0
ι ∈ Z

m
p for all ι ∈ [j]. Then, a random element

in Vj suffices to hide the information of β in the j-th ciphertext. Fortunately,
the reduction algorithm knows about Vj when it simulates the j-th ciphertext
because it already receives vectors that span Vj .

To do so, we modify the first step. In particular, we change the way of choos-
ing s′

j in Eq. (2.5) as

s′
j,1, . . . , s

′
j,φ(j)

U←− Zp, s′
j := (s′

j,1, . . . , s
′
j,φ(j), 0

m−φ(j)) ∈ Z
m
p ,

where φ(j) := dim Vj . Next, we modify the definition of xι as xι := x1
ρ(ι)−x0

ρ(ι) ∈
Z

m
p for all ι ∈ [L], where ρ(ι) := min φ−1(ι). It is not difficult to confirm that

{xι}ι∈[φ(j)] form a basis of Vj . Then, Eq. (2.7) is changed to

W(Asj + Bs′
j) + xβ

j = W̃(Asj + Bs′
j) + u

∑

ι∈[φ(j)]

s′
j,ιxι + β(x1

j − x0
j) + x0

j .

Observe that the reduction algorithm can compute xι for ι ∈ [φ(j)]
when it simulates the j-th ciphertext. As explained in the previous
paragraph, {[us′

j,ι]}j∈[qct],ι∈[φ(j)] are computationally indistinguishable from
{[rj,ι]}j∈[qct],ι∈[φ(j)], and the term

∑
ι∈[φ(j)] rj,ιxι hides the information of β in

the j-th ciphertext. Thus, we can achieve the adaptive security.

2.2 Conversion from Function-Hiding IPFE to Function-Hiding
MIPFE

Similarly to previous MIPFE schemes, our conversion utilizes parallel execu-
tion of an underlying function-hiding IPFE scheme. The construction of our
conversion can be seen as the combination of the non-function-hiding MIPFE
scheme by Abdalla et al. [3] and the function-hiding MIPFE scheme by Datta
et al. [19]. For simplicity, we consider the IPFE scheme over Zn for some inte-
ger n, which means that the functionality of FE is inner product over Zn. Let
m be a vector length and μ be a number of slots of the converted scheme,
and IPFE := (Setup′,Enc′,KeyGen′,Dec′) be an underlying weakly function-
hiding IPFE scheme. Then, our conversion invokes Setup′ with setting the
vector length as 2m + 1 and generates μ master secret keys msk′

1, . . . ,msk′
μ

(we omit public parameters here). In addition, it chooses μ random vectors
u1, . . . ,uμ

U←− Z
m
n and sets a master secret key of the converted scheme as

msk := (msk′
1, . . . ,msk′

μ,u1, . . . ,uμ). To encrypt a vector xi for the index i,
it encrypts x̃i := (xi +ui, 0m, 1) as ct′i ← Enc′(mski, x̃i) and outputs ct′i. To gen-
erate a secret key for {yi}i∈[μ], it first generates secret shares of −∑

i∈[μ]〈yi,ui〉

Tightly Secure Inner Product Functional Encryption 469

as r1, . . . , rμ
U←− Zn such that

∑
i∈[μ] ri = −∑

i∈[μ]〈yi,ui〉 (mod n). These
shares prevent the leakage of partial inner product values. Then, our conver-
sion generates a secret key for ỹi := (yi, 0m, ri) as sk′

i ← KeyGen′(msk′
i, ỹi)

for all i ∈ [μ] . Finally, it sets the secret key for converted scheme as sk :=
(sk′

1, . . . , sk
′
μ). The decryption algorithm simply computes

∑
i∈[μ] Dec

′(ct′i, sk
′
i)

(mod n). The correctness of the converted scheme is not difficult to confirm
because

∑
i∈[μ]〈x̃i, ỹi〉 =

∑
i∈[μ]〈xi,yi〉.

Although our conversion is as simple as that by Abdalla et al. [3], the security
proof needs a more ingenious technique. To see this, we briefly recall the proof
strategy of their conversion and show that the naive application of their strategy
to our conversion does not work. Here, we assume that the converted MIPFE
scheme is weakly function-hiding, meaning that an adversary against the con-
verted scheme has the following condition on the queries in the security game.
Let qct,i be the total number of ciphertext queries for index i and qsk be the total
number of secret key queries. Then, for all (j1, . . . , jμ) ∈ [qct,1]×· · ·× [qct,μ], and
� ∈ [qsk], we have

∑

i∈[μ]

〈x0
i,ji

,y0
i,�〉 =

∑

i∈[μ]

〈x0
i,ji

,y1
i,�〉 =

∑

i∈[μ]

〈x1
i,ji

,y1
i,�〉. (2.8)

The proof employs a series of games, and the goal is that the adversary does
not obtain any information about a random bit β in the final game. The first step
is to redefine ui := ũi + x0

i,1 − xβ
i,1, where ũi

U←− Zn. This information-theoretic
change does not affect secret keys because

∑
i∈[μ]〈x0

i,1 − xβ
i,1,y

β
i,�〉 = 0 from Eq.

(2.8). The second step is to change x̃i,ji
from (xβ

i,ji
+ ũi + x0

i,1 − xβ
i,1, 0

m, 1) to
(x0

i,ji
+ ũi, 0m, 1). This change is justified by the security of the underlying IPFE

scheme because 〈xβ
i,ji

− xβ
i,1,y

β
i,�〉 = 〈x0

i,ji
− x0

i,1,y
β
i,�〉 for all i ∈ [μ], which can

be derived from Eq. (2.8). Finally, we want to change ỹi,� from (yβ
i,�, 0

m, ri,�) to
(y0

i,�, 0
m, r′

i,�) to hide the information of β. However, we cannot make this change
in the adaptive setting. The reason is that the reduction algorithm needs to set
r′
i,� := ri,�+Δi,�, where Δi,� := 〈x0

i,ji
+ui,y

β
i,�−y0

i,�〉 = 〈x0
i,1+ui,y

β
i,�−y0

i,�〉 (the
second equality follows from Eq. (2.8)), to keep the inner product value when it
simulates the �-th secret key. If the adversary makes a secret key query before it
makes the first ciphertext query for some index i, the reduction algorithm cannot
simulate a secret key because it does not know the value 〈x0

i,1,y
β
i,� −y0

i,�〉. Hence,
this strategy does not work.

To circumvent this problem, we introduce another proof strategy. Recall that
this problem occurs in the second step, where yβ

i,� is changed to y0
i,�, whereas

the first step goes well, where xβ
i,ji

is changed to x0
i,ji

. Intuitively, our solution
for this problem is to make both changes in one-shot in the same manner as
the first step. That is, we do not take the intermediate step where the inner
product values of queried vectors are

∑
i∈[μ]〈x0

i,ji
,yβ

i,�〉, and we change the replies
such that the inner product values of queried vectors are directly changed from∑

i∈[μ]〈xβ
i,ji

,yβ
i,�〉 to

∑
i∈[μ]〈x0

i,ji
,y0

i,�〉. This means that our conversion allows

470 J. Tomida

us to directly achieve a fully function-hiding MIPFE scheme. This is possible
if we prepare 2n + 1 dimensions for the underlying scheme and use the similar
technique to that by Tomida et al. [38]. To do so, we want to create a situation
where x̃i,ji

:= (xβ
i,ji

+ũi −xβ
i,1,x

0
i,1, 1) and ỹi,� := (yβ

i,�,y
0
i,�, r

′
i,�). This is because

if we have the above situation, we can change x̃i,ji
to (ũi,x0

i,ji
−x0

i,1 +x0
i,1, 1) =

(ũi,x0
i,ji

, 1) by the security of the underlying scheme and the relation 〈xβ
i,ji

−
xβ

i,1,y
β
i,�〉 = 〈x0

i,ji
− x0

i,1,y
0
i,�〉, which also can be derived from Eq. (2.8).

To reach the situation starting from the real game, however, we need one
more trick. This is because the reduction algorithm needs to compute the value
Δi,� := 〈x0

i,1,y
0
i,�〉 to adjust inner products with the term r′

i,� when it simulates
the �-th secret key. Thus, the same problems as above occurs. To solve this
problem, we take the intermediate step where x̃i,ji

:= (xβ
i,ji

+ ui,vi, 1) and

ỹi,� := (yβ
i,�,y

0
i,�, ri,�), where vi

U←− Z
m
n is randomly chosen at the beginning of

the game. This is possible because computing Δi,� := 〈vi,y0
i,�〉 suffices for the

reduction algorithm to reach the step. After the step, we redefine ui := ũi −xβ
i,1

and vi := ṽi + x0
i,1 where ũi, ṽi

U←− Z
m
n . This change is information-theoretic

and we do not need to care about when the adversary makes the first ciphertext
query. By these steps, our proof strategy goes well since there are no steps where
reduction algorithms need to compute values related to x0

i,1 when it simulates
secret keys.

The interesting points of our technique are to crucially utilize the blank space,
namely the n + 1 to 2n-th dimensions, and directly construct a fully function-
hiding MIPFE scheme from a weakly function-hiding IPFE scheme. This is in
contrast to the function-hiding scheme in [3], where they first construct a weakly
function-hiding MIPFE scheme, setting a vector length of an underlying IPFE
scheme as almost n. Then, they convert it into a fully function-hiding scheme
by doubling the vector length of the scheme.

3 Preliminary

3.1 Notation

For a natural number n ∈ N, Zn denotes a ring Z/nZ and [n] denotes a set
{1, . . . , n}. For a set S, s

U←− S denotes that s is uniformly chosen from S. We
treat vectors as column vectors. For a vector x, ||x||∞ denotes its infinity norm.
For vectors v1,v2, . . . ,vn, (v1,v2, . . . ,vn) denotes a vector generated by the
vertical concatenation of these vectors. For matrices (including vectors) with
the same number of rows A1,A2, . . . ,An, (A1||A2|| · · · ||An) denotes a matrix
generated by the horizontal concatenation of these matrices. For a generator
gi of a cyclic group Gi of order p and a ∈ Zp, [a]i denotes ga

i . Furthermore,
for a matrix A := (aj,�)j,� over Zp, [A]i denotes a matrix over Gi whose (i, j)
entry is g

aj,�

i . For vectors x := (x1, . . . , xn) and y := (y1, . . . , yn) ∈ Z
n
p , let

e([x]1, [y]2) := e(g1, g2)〈x,y〉 be a function that computes the inner product on

Tightly Secure Inner Product Functional Encryption 471

the exponent by
∏

i∈[n] e([xi]1, [yi]2). A matrix In denotes the n × n identity
matrix. A matrix Om×n denotes the m × n zero matrix. A function f : N → R

is called negligible if f(λ) = λ−ω(1) and denotes f(λ) ≤ negl(λ). For families of
distributions X := {Xλ}λ∈N and Y := {Yλ}λ∈N, X ≈c Y means that they are
computationally indistinguishable.

3.2 Basic Tools and Assumption

Definition 3.1 (Cyclic Group). A description of a cyclic group GCG:=
(p,G, g) consists of a prime p, a cyclic group G of order p, and a generator
g. A cyclic group generator GCG(1λ) takes a security parameter 1λ and outputs
a description of a cyclic group GCG with a λ-bit prime p.

Definition 3.2 (Bilinear Groups). A description of bilinear groups
GBG:=(p,G1, G2, GT , g1, g2, e) consist of a prime p, cyclic groups G1, G2, GT of
order p, generators g1 and g2 of G1 and G2 respectively, and a bilinear map
e : G1 × G2 → GT , which has two properties.

– (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(ha
1 , h

b
2) = e(h1, h2)ab.

– (Non-degeneracy): For generators g1 and g2, gT := e(g1, g2) is a generator of
GT .

A bilinear group generator GBG(1λ) takes a security parameter 1λ and outputs
a description of bilinear groups GBG with a λ-bit prime p.

Definition 3.3 (Dk-MDDH Assumption [21]). Let Dk be a matrix distribu-
tion over full rank matrices in Z

(k+1)×k
p . We can assume that, wlog, the first k

rows of a matrix A chosen from Dk forms an invertible matrix. We consider the
following distribution:

GCG ← GCG(1λ), GBG ← GBG(1λ),

A ← Dk, v U←− Z
k
p, t0 := Av, t1

U←− Z
k+1
p .

We say that the Dk-MDDH assumption holds with respect to GCG if the advan-
tage of any PPT adversary A defined below is negligible,

AdvDk-MDDH
A,CG (λ) := |Pr[1 ← A(GCG, [A], [t0])] − Pr[1 ← A(GCG, [A], [t1])]|,

and with respect to GBG if the advantage of any PPT adversary A for both
i ∈ {1, 2} defined below is negligible,

AdvDk-MDDH
A,BG,i (λ) := |Pr[1 ← A(GBG, [A]i, [t0]i)] − Pr[1 ← A(GBG, [A]i, [t1]i)]|.

Random Self-reducibility. By the random self-reducibility, we can obtain
arbitrarily many instances of the Dk-MDDH problem without additional security
loss. For any n ∈ N, we additionally define the following distribution:

V U←− Z
k×n
p , T0 := AV, T1

U←− Z
(k+1)×n
p .

472 J. Tomida

The advantages of A against n-fold Dk-MDDH assumption with respect to GCG

and GBG are defined as:

Advn-Dk-MDDH
A,CG (λ) := |Pr[1 ← A(GCG, [A], [T0])] − Pr[1 ← A(GCG, [A], [T1])]|,

Advn-Dk-MDDH
A,BG,i (λ) := |Pr[1 ← A(GBG, [A]i, [T0]i)] − Pr[1 ← A(GBG, [A]i, [T1]i)]|.

Then, for any PPT adversaries A1,A2 and both i ∈ {1, 2}, there exist PPT
adversaries B1,B2 and we have

Advn-Dk-MDDH
A1,CG (λ) ≤ AdvDk-MDDH

B1,CG (λ) + 2−Ω(λ),

Advn-Dk-MDDH
A2,BG,i (λ) ≤ AdvDk-MDDH

B2,BG,i (λ) + 2−Ω(λ),

Time(Bj) ≈ Time(Aj) + npolyj(λ) for both j ∈ {1, 2},

where polyj(λ) is independent from Time(Aj).

3.3 Definitions of Inner Product Functional Encryption

In this paper, we treat both single-input inner product functional encryption
(IPFE) and multi-input IPFE. In both cases, the inner product functionality is
defined over Z and its domain is limited depending on the infinity norms of the
input vectors. We formally define the functionality called bonded-norm inner
product.

Definition 3.4 (Bounded-Norm Inner Product over Z). This function
family F consists of functions fX,Y

y1,...,yμ
: Zm×· · ·×Z

m → Z where m,μ,X, Y ∈ N,
yi ∈ Z

m s.t. ||yi||∞ ≤ Y . For all (x1, . . . ,xμ) ∈ (Zm)μ s.t. ∀i ∈ [μ], ||xi||∞ ≤ X,
we define the function as

fX,Y
y1,...,yμ

(x1, . . . ,xμ) :=
∑

i∈[μ]

〈xi,yi〉.

We call μ a number of slots. We refer to the function as single-input inner product
when μ = 1, and multi-input inner product when μ > 1.

With respect to single-input IPFE, there are two types of IPFE: public-key
IPFE and private-key IPFE. To achieve the function privacy, we need the private-
key setting as defined below. Roughly speaking, this is because an adversary
can learn the information of functions embedded in secret keys by decrypting
ciphetexts generated by itself with the secret keys in the public-key setting.

Definition 3.5 (Public-Key Inner Product Functional Encryption).
Let X := {Xλ}λ∈N,Y := {Yλ}λ∈N be ensembles of norm-bounds. Public-key
inner product functional encryption (Pub-IPFE) consists of five algorithms.

Par(1λ): It takes a security parameter 1λ and outputs a public parameter pp.
Setup(1m, pp): It takes a vector length 1m and pp and outputs a public key pk

and a master secret key msk.

Tightly Secure Inner Product Functional Encryption 473

Oct(β ∈ {0, 1}, i ∈ [μ], (x0,x1) ∈ (Zm)2)

cti
U←− Enc(pki,x

β)
return cti

Osk(i ∈ [μ],y ∈ Z
m)

ski
U←− KeyGen(pki,mski,y)

return ski

Fig. 1. The description of oracles in the security game for Pub-IPFE.

Enc(pk,x): It takes pk and a vector x := (x1, . . . , xm) ∈ Z
m and outputs a

ciphertext ct.
KeyGen(pk,msk,y): It takes pk,msk, and a vector y := (y1, . . . , ym) ∈ Z

m and
outputs a secret key sk.

Dec(pk, ct, sk): It takes pk, ct and sk and outputs a decrypted value d ∈ Z or a
symbol ⊥.

Correctness. Pub-IPFE is correct if it satisfies the following condition. For any
λ,m ∈ N and for any x,y ∈ Z

m s.t. ||x||∞ ≤ Xλ and ||y||∞ ≤ Yλ, we have

Pr

⎡

⎢
⎢
⎢
⎢
⎣

d = 〈x,y〉

pp ← Par(1λ)
(pk,msk) ← Setup(1m, pp)
ct ← Enc(pk,x)
sk ← KeyGen(pk,msk,y)
d := Dec(pk, ct, sk)

⎤

⎥
⎥
⎥
⎥
⎦

= 1.

Security. Let μ ∈ N be a natural number that represents the number of users.
Pub-IPFE is adaptively secure in the multi-user and multi-challenge setting if
it satisfies the following condition. That is, the advantage of A against Pub-
IPFE defined as follows is negligible in λ for any constant m,μ ∈ N, and PPT
adversary A,

AdvPub-IPFEA (λ) :=

∣
∣
∣
∣
∣
∣
2Pr

⎡

⎣β = β′
β

U←− {0, 1}, pp ← Par(1λ)
{(pki,mski)}i∈[μ] ← Setup(1m, pp)
β′ ← AOct(β,·,·),Osk(·,·)(1λ, {pki}i∈[μ])

⎤

⎦ − 1

∣
∣
∣
∣
∣
∣
.

The description of the oracles Oct and Osk is presented in Fig. 1. We refer to
queries to Oct and Osk as a ciphertext query and a secret key query respectively.
To avoid a trivial attack of A, we have the following condition on A’s queries.
Let qct,i and qsk,i be the total number of ciphertext queries and secret key queries
for index i respectively. Then, for all i ∈ [μ], ji ∈ [qct,i], and �i ∈ [qsk,i], we have

〈x0
i,ji

,yi,�i
〉 = 〈x1

i,ji
,yi,�i

〉. (3.1)

Definition 3.6 (Private-Key Inner Product Functional Encryption).
Let X := {Xλ}λ∈N,Y := {Yλ}λ∈N be ensembles of norm-bounds. Private-key
inner product functional encryption (Priv-IPFE) consists of five algorithms.

Par(1λ): It takes a security parameter 1λ and outputs a public parameter pp.

474 J. Tomida

Setup(1m, pp): It takes a vector length 1m and pp and outputs a master secret
key msk.

Enc(pp,msk,x): It takes pp, msk, and a vector x := (x1, . . . , xm) ∈ Z
m and

outputs a ciphertext ct.
KeyGen(pp,msk,y): It takes pp,msk, and a vector y := (y1, . . . , ym) ∈ Z

m and
outputs a secret key sk.

Dec(pp, ct, sk): It takes pp, ct and sk and outputs a decrypted value d ∈ Z or a
symbol ⊥.

Correctness. Priv-IPFE is correct if it satisfies the following condition. For any
λ,m ∈ N and for any x,y ∈ Z

m s.t. ||x||∞ ≤ Xλ and ||y||∞ ≤ Yλ, we have

Pr

⎡

⎢
⎢
⎢
⎢
⎣

d = 〈x,y〉

pp ← Par(1λ)
msk ← Setup(1m, pp)
ct ← Enc(pp,msk,x)
sk ← KeyGen(pp,msk,y)
d := Dec(pp, ct, sk)

⎤

⎥
⎥
⎥
⎥
⎦

= 1.

Security. Let μ ∈ N be a natural number that represents the number of users.
Priv-IPFE is fully function-hiding in the multi-user setting if it satisfies the
following condition. That is, the advantage of A against Priv-IPFE defined as
follows is negligible in λ for any constant m,μ ∈ N and any PPT adversary A,

AdvPriv-IPFEA,f-fh (λ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎣β′ = 1
pp ← Par(1λ)
{mski}i∈[μ] ← Setup(1m, pp)
β′ ← AOct(0·,·),Osk(0,·,·)(pp)

⎤

⎦

−Pr

⎡

⎣β′ = 1
pp ← Par(1λ)
{mski}i∈[μ] ← Setup(1m, pp)
β′ ← AOct(1,·,·),Osk(1,·,·)(pp)

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

It is convenient for our paper to define the advantage on Priv-IPFE as above
rather than the form like |2Pr[β = β′]−1|, and both formulations are equivalent.
The description of the oracles Oct and Osk is presented in Fig. 2. We refer to
queries to Oct and Osk as a ciphertext query and a secret key query respectively.
To avoid a trivial attack of A, we have the following condition on A’s queries. Let
qct,i and qsk,i be the total numbers of ciphertext queries and secret key queries
for index i respectively. Then, for all i ∈ [μ], ji ∈ [qct,i], and �i ∈ [qsk,i], we have

〈x0
i,ji

,y0
i,�i

〉 = 〈x1
i,ji

,y1
i,�i

〉. (3.2)

We say that Priv-IPFE is weakly function-hiding in the multi-user setting if
it satisfies the above definition except that the query condition of A is more
restricted as follows. That is, for all i ∈ [μ], ji ∈ [qct,i], and �i ∈ [qsk,i], we have

〈x0
i,ji

,y0
i,�i

〉 = 〈x1
i,ji

,y0
i,�i

〉 = 〈x1
i,ji

,y1
i,�i

〉. (3.3)

We denote the advantage of A in weakly function-hiding game in the multi-user
setting by AdvPriv-IPFEA,w-fh (λ).

Tightly Secure Inner Product Functional Encryption 475

Oct(β ∈ {0, 1}, i ∈ [μ], (x0,x1) ∈ (Zm)2)

cti
U←− Enc(pp,mski,xβ)

return cti

Osk(β ∈ {0, 1}, i ∈ [μ], (y0,y1) ∈ (Zm)2)

ski
U←− KeyGen(pp,mski,yβ)

return ski

Fig. 2. The description of oracles in the security game for Priv-IPFE.

As pointed out by Abdalla et al. [4], public-key multi-input IPFE (MIPFE) is
almost meaningless because it inherently leaks the same amount of information
as parallel execution of single-input IPFE. Therefore, following them, we only
consider private-key MIPFE in this paper.

Definition 3.7 (Multi-input Inner Product Functional Encryption).
Let X := {Xλ}λ∈N,Y := {Yλ}λ∈N be ensembles of norm-bound. Multi-input
inner product functional encryption (MIPFE) consists of four algorithms.

Setup(1λ, 1m, 1μ): It takes a security parameter 1λ, a vector length 1m, and a
number of slots 1μ. Then, it outputs a public parameter pp and a master
secret key msk.

Enc(pp,msk, i,x): It takes pp, msk, an index i ∈ [μ], and a vector x :=
(x1, . . . , xm) ∈ Z

m and outputs a ciphertext cti.
KeyGen(pp,msk, {yi}i∈[μ]): It takes pp,msk, and vectors {yi := (yi,1, . . . ,

yi,m)}i∈[μ] ∈ (Zm)μ, and outputs a secret key sk.
Dec(pp, ct1, . . . , ctμ, sk): It takes pp, ct1, . . . , ctμ and sk and outputs a decrypted

value d ∈ Z or a symbol ⊥.

Correctness. MIPFE is correct if it satisfies the following condition. For any
λ,m, μ ∈ N and for any {xi}i∈[μ], {yi}i∈[μ] ∈ (Zm)μ s.t. ∀i, ||xi||∞ ≤ Xλ and
||yi||∞ ≤ Yλ, we have

Pr

⎡

⎢
⎢
⎣d =

∑

i∈[μ]

〈xi,yi〉
pp,msk ← Setup(1λ, 1m, 1μ)
cti ← Enc(pp,msk, i,xi) for all i ∈ [μ]
sk ← KeyGen(pp,msk, {yi}i∈[μ])
d := Dec(pp, ct, sk)

⎤

⎥
⎥
⎦ = 1.

Security. MIPFE is fully function-hiding if it satisfies the following condition.
That is, the advantage of A against MIPFE defined as follows is negligible in λ
for any constant m,μ ∈ N and any PPT adversary A,

AdvMIPFE
A,f-fh (λ) :=

∣
∣
∣
∣
∣
∣
2Pr

⎡

⎣β = β′
β

U←− {0, 1},
(pp,msk) ← Setup(1λ, 1m, 1μ)
β′ ← AOct(β,·,·),Osk(β,·)(pp)

⎤

⎦ − 1

∣
∣
∣
∣
∣
∣
.

The description of the oracles Oct and Osk is presented in Fig. 3. We refer to
queries to Oct and Osk as a ciphertext query and a secret key query respectively.
To avoid a trivial attack of A, we have the following condition on A’s queries.

476 J. Tomida

Oct(β ∈ {0, 1}, i ∈ [μ], (x0,x1) ∈ (Zm)2)

cti
U←− Enc(pp,msk, i,xβ)

return cti
Osk(β ∈ {0, 1}, ({y0

i }i∈[μ], {y1
i }i∈[μ]) ∈ ((Zm)μ)2)

sk
U←− KeyGen(pp,msk, {yβ

i }i∈[μ])
return sk

Fig. 3. The description of oracles in the security game for MIPFE.

Let qct,i be the total number of ciphertext queries for index i and qsk be the total
number of secret key queries. Then, for all (j1, . . . , jμ) ∈ [qct,1]×· · ·× [qct,μ], and
� ∈ [qsk],

∑

i∈[μ]

〈x0
i,ji

,y0
i,�〉 =

∑

i∈[μ]

〈x1
i,ji

,y1
i,�〉. (3.4)

In this paper, we assume that qct,i ≥ 1 for all i ∈ [μ] and qsk ≥ 1. Note that this
condition can be easily removed by simply utilizing symmetric key encryption
[4,19].

We say that MIPFE is just adaptively secure if it satisfies the above defini-
tion except that Osk(β, ·) is replaced to KeyGen(pp,msk, ·), and y0

i,� and y1
i,� are

changed to yi,� in Eq. (3.4). This security definition captures only the message
privacy of MIPFE schemes, i.e., the scheme is non-function-hiding. We denote
the advantage of A in the adaptive-security game by AdvMIPFE

A,ad (λ). Note that we
do not explicitly use the word “adaptive” in the definitions of function-hiding
because it seems wordy, but we consider only the adaptive security for function-
hiding schemes in this paper.

4 Tightly Secure (Multi-input) Inner Product Functional
Encryption

In this section, we present our tightly secure Pub-IPFE scheme and non-function-
hiding MIPFE scheme, the latter is obtained by applying the conversion by
Abdalla et al. [3] to our IPFE scheme.

4.1 Construction

Let Dk be a matrix distribution over full rank matrices in Z
(k+1)×k
p and norm

bounds Xλ and Yλ be polynomials in λ.

Par(1λ): It takes a security parameter 1λ and outputs pp as follows.

GCG ← GCG(1λ), Ã ← Dk, pp := (GCG, [Ã])

Tightly Secure Inner Product Functional Encryption 477

Setup(1m, pp): It takes a vector length 1m and a public parameter pp. Then, it
outputs a public key pk and a master secret key msk as follows.

W U←− Z
m×k(k+1)m
p , A :=

km matrices
︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎝

Ã
Ã

. . .
Ã

⎞

⎟
⎟
⎟
⎠

∈ Z
k(k+1)m×k2m
p , (4.1)

pk := (GCG, [Ã], [WA]), msk := W.

Enc(pk,x): It takes pk and x ∈ Z
m and outputs a ciphertext ct as follows.

s U←− Z
k2m
p , c1 := As ∈ Z

k(k+1)m
p , c2 := WAs + x ∈ Z

m
p , ct := ([c1], [c2]).

KeyGen(pk,msk,y): It takes pp, msk, and y ∈ Z
m and outputs a secret key sk as

follows.

k1 := −W�y ∈ Z
k(k+1)m
p , k2 := y ∈ Z

m
p , sk := (k1,k2).

Dec(pk, ct, sk): It takes pk, ct, and sk. Then it computes [d] := [k�
1 c1 + k�

2 c2]
and searches for d exhaustively in the range of −mXλYλ to mXλYλ. If such
d is found, it outputs d. Otherwise, it outputs ⊥.

Correctness. Observe that if ct is an encryption of x and sk is a secret key
of y,

d = −y�WAs + y�WAs + y�x = 〈x,y〉.
Therefore, if ||x||∞ ≤ Xλ and ||y||∞ ≤ Yλ, the output of the decryption algo-
rithm is d = 〈x,y〉.

4.2 Security

Theorem 4.1. Assume that the Dk-MDDH assumption holds with respect to
GCG, then our Pub-IPFE scheme is adaptively secure in the multi-user and multi-
challenge setting. More formally, let μ be a number of users, qct :=

∑
i∈[μ] qct,i

be the total number of the ciphertext queries by A, qsk :=
∑

i∈[μ] qsk,i be the total
number of the secret key queries by A, and m be a vector length. Then, for any
PPT adversary A and security parameter λ, there exist PPT adversaries B1 and
B2 for the Dk-MDDH and we have

AdvPub-IPFEA (λ) ≤ 2AdvDk-MDDH
B1,CG (λ) + 2AdvDk-MDDH

B2,CG (λ) + 2−Ω(λ),

max{Time(B1),Time(B2)} ≈ Time(A) + (μ + qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

478 J. Tomida

Proof. We employ a series of games and evaluate the advantage of the adversary
in each game. In the overveiw, we used the variable i to denote the index of users
and ji (resp. �i) to denote the index of ciphertext (resp. secret key) queries for
user i. For example, a vector s in ji-th ciphertext for user i will be denoted
by si,ji

. In the security proof, however, we change the forms of ciphertexts and
secret keys for every user in the same way simultaneously. Thus, we do not need
to specify users when we consider adversary’s queries. For conciseness, we omit
the index i from (i, ji) and (i, �i), and just use j and � to denote the indices of
queries (but j and � are implicitly associated with i).

Game 0: This game is the same as the real game. Then, for all j ∈ [qct,i], the
j-th ciphertext that A obtains from the oracle corresponds to

sj
U←− Z

k2m
p , cj,1 := Asj , cj,2 := WiAsj + xβ

j .

Game 1: The reply for ciphertext queries is changed as follows. For j ∈ [qct,i],
we define xj := x1

j − x0
j ∈ Z

m
p . Let φi : [qct,i] → [m] be a map such that

φi(j) := rank(x1|| · · · ||xj). Then, for all j ∈ [qct,i], the j-th ciphertext that A
obtains from the oracle corresponds to

b U←− Z
k+1
p \span(Ã), B :=

km vectors
︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎝

b
b

. . .
b

⎞

⎟
⎟
⎟
⎠

∈ Z
k(k+1)m×km
p , (4.2)

s̃j,1, . . . , s̃j,φi(j)
U←− Z

k
p, s′

j := (s̃j,1, . . . , s̃j,φi(j), 0
k(m−φi(j))) ∈ Z

km
p ,

cj,1 := Asj + Bs′
j , cj,2 := Wi(Asj + Bs′

j) + xβ
j .

Game 2: The reply for ciphertext queries is changed as follows. Let ρi :
[φi(qct,i)] → [qct,i] be a map such that ρi(ι) := minφ−1

i (ι). In other words,
on an input ι, ρi returns the first query number j such that the rank of the
matrix (x1|| · · · ||xj) equals ι. Then, for all j ∈ [qct,i], the j-th ciphertext that
A obtains from the oracle corresponds to

u U←− Z
k
p,

cj,1 := Asj + Bs′
j , cj,2 := Wi(Asj + Bs′

j) + xβ
j +

∑

ι∈[φi(j)]

〈u, s̃j,ι〉xρi(ι) .

Note that s̃j,ι is defined in Game 1.
Game 3: The reply for ciphertext queries is changed as follows. For all j ∈ [qct,i],

the j-th ciphertext that A obtains from the oracle corresponds to

rj,1, . . . , rj,φi(j)
U←− Zp,

cj,1 := Asj + Bs′
j , cj,2 := Wi(Asj + Bs′

j) + xβ
j +

∑

ι∈[φi(j)]

rj,ιxρi(ι) .

Tightly Secure Inner Product Functional Encryption 479

Game 4: The reply for ciphertext queries is changed as follows. For all j ∈ [qct,i],
the j-th ciphertext that A obtains from the oracle corresponds to

rj,1, . . . , rj,φi(j)
U←− Zp,

cj,1 := Asj + Bs′
j , cj,2 := Wi(Asj + Bs′

j) + x0
j +

∑

ι∈[φi(j)]

rj,ιxρi(ι).

We present proofs of the indistinguishability among these games in the full ver-
sion of this paper. �

4.3 Application to Multi-input Inner Product Functional
Encryption

We can obtain an adaptively secure MIPFE scheme whose security is tightly
reduced to the Dk - MDDH assumption by applying the generic conversion by
Abdalla et al. [3] to our scheme. Let Pub-IPFE be a Pub-IPFE scheme that is
adaptively secure in the multi-user and multi-challenge setting. It is not difficult
to see that the security of the MIPFE scheme obtained by applying the conver-
sion to Pub-IPFE is reduced to that of Pub-IPFE with the security loss being 1.
Thus, we obtain the following corollary.

Corollary 4.1. Let MIPFE be the MIPFE scheme obtained by applying the con-
version in [3] to our Pub-IPFE scheme. Then MIPFE is adaptively secure. More
formally, let μ be a number of slots, qct :=

∑
i∈[μ] qct,i be the total number of

the ciphertext queries by A, qsk be the total number of the secret key queries
by A, and m be a vector length. Then, for any PPT adversary A and security
parameter λ, there exist PPT adversaries B1 and B2 for the Dk-MDDH and we
have

AdvMIPFE
A,ad (λ) ≤ 2AdvDk-MDDH

B1
(λ) + 2AdvDk-MDDH

B2
(λ) + 2−Ω(λ),

max{Time(B1),Time(B2)} ≈ Time(A) + (μ + qct + μqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

5 Function-Hiding Inner Product Functional Encryption

Lin proposed a simple framework that allows us to construct a function-hiding
IPFE scheme from a public key IPFE scheme [34]. We can apply her framework
to our scheme and obtain a tightly function-hiding IPFE scheme in the multi-
user setting. Informally, her framework is as follows.

First, we can see that a ciphertext and a secret key in our IPFE scheme consist
of vectors, and decryption involves inner product of these vectors. That is, a
ciphertext of a vector x corresponds to a vector cin := (cin,1, cin,2) := (As,WAs+

x) ∈ Z
(k2+k+1)m
p and a secret key of a vector y corresponds to a vector kin :=

480 J. Tomida

(kin,1,kin,2) := (−W�y,y) ∈ Z
(k2+k+1)m
p . Decryption just computes 〈cin,kin〉.

We call the scheme described above an inner scheme.
To ensure the confidentiality of secret keys, we “encrypt” secret keys in

the same way as ciphertexts in our IPFE scheme. That is, a secret key
of the function-hiding IPFE scheme is generated as sk := (cout,1, cout,2) :=(
Dr ∈ Z

k(k+1)(k2+k+1)m
p ,VDr + kin ∈ Z

(k2+k+1)m
p

)
, where V, D, and r cor-

respond to W, A, and s respectively in our scheme presented in Sect. 4.1.
We call the scheme utilized to encrypt secret keys an outer scheme. We
also need to transform ciphertexts to make them compatible with sk, which
can be done by “generating a secret key” of cin in the outer scheme. That
is, we define a ciphertext of the function-hiding IPFE scheme as ct :=
(kout,1,kout,2) :=

(
−V�cin ∈ Z

k(k+1)(k2+k+1)m
p , cin ∈ Z

(k2+k+1)m
p

)
. Observe that

〈ct, sk〉 = 〈cin,kin〉 = 〈x,y〉.
To achieve the security, of course we need to encode both ct and sk on the

exponent of group elements. We employ bilinear groups that allow us to compute
inner product over the group elements, which is necessary for decryption. Then,
the confidentiality of ciphertexts is assured by the inner scheme and that of
secret keys is assured by the outer scheme.

5.1 Actual Scheme and Optimization

As described above, if we directly apply Lin’s framework to our scheme, the first
components of a ciphertext and a secret key will consist of k(k+1)(k2 +k+1)m
group elements. Recall the reason we need k(k + 1)m group elements in the
first components of a ciphertext and a secret key in the original scheme. That
is, the maximum dimension of the space spanned by the vectors xj = x1

j − x0
j

is m, and this fact directly affects the number of group elements in the first
components. Because the vector length handled in the outer scheme is (k2 + k +
1)m, the first components seem to require k(k+1)(k2 +k+1)m group elements.
However, observe that the maximum dimension of the space spanned by the
vectors kout,� := k1

out,� − k0
out,� := (−W�y1

� ,y
1
�) − (−W�y0

� ,y
0
�) for all � ∈ [qsk]

is m, not (k2 + k + 1)m. Hence, we can reduce the number of group elements in
the first components to k(k + 1)m, and the resulting scheme is given as follows.

Let Dk be a matrix distribution over full rank matrices in Z
(k+1)×k
p and norm

bounds Xλ and Yλ be polynomials in λ.

Par(1λ): It takes a security parameter 1λ and outputs pp as follows.

GBG ← GBG(1λ), Ã, D̃ ← Dk, pp := (GBG, [Ã]1, [D̃]2).

Setup(1m, pp): It takes a vector length 1m and a public parameter pp. Then, it
outputs a master secret key msk as follows.

W U←− Z
m×k(k+1)m
p , V U←− Z

(k2+k+1)m×k(k+1)m
p , msk := (W,V).

Tightly Secure Inner Product Functional Encryption 481

Enc(pp,msk,x): It takes pp, msk, and x ∈ Z
m and outputs a ciphertext ct as

follows.

A :=

km matrices
︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎝

Ã
Ã

. . .
Ã

⎞

⎟
⎟
⎟
⎠

∈ Z
k(k+1)m×k2m
p ,

s U←− Z
k2m
p , cin := (As,WAs + x) ∈ Z

(k2+k+1)m
p ,

kout,1 := −V�cin ∈ Z
k(k+1)m
p , kout,2 := cin, ct := ([kout,1]1, [kout,2]1).

KeyGen(pp,msk,y): It takes pp, msk, and y ∈ Z
m and outputs a secret key sk as

follows.

D :=

km matrices
︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎝

D̃
D̃

. . .
D̃

⎞

⎟
⎟
⎟
⎠

∈ Z
k(k+1)m×k2m
p ,

r U←− Z
k2m
p , kin := (−W�y,y) ∈ Z

(k2+k+1)m
p ,

cout,1 := Dr ∈ Z
k(k+1)m
p , cout,2 := VDr + kin ∈ Z

(k2+k+1)m
p ,

sk := ([cout,1]2, [cout,2]2).

Dec(pp, ct, sk): It takes pp, ct, and sk. Then it computes [d]T := e([kout,1]1,
[cout,1]2)e([kout,2]1, [cout,2]2) and searches for d exhaustively in the range of
−mXλYλ to mXλYλ. If such d is found, it outputs d. Otherwise, it outputs ⊥.

Correctness. Observe that if ct is an encryption of x and sk is a secret key
of y,

d = −c�
inVDr + c�

inVDr + c�
inkin = 〈cin,kin〉 = 〈x,y〉.

Therefore, if ||x||∞ ≤ Xλ and ||y||∞ ≤ Yλ, the output of the decryption algo-
rithm is d = 〈x,y〉.

5.2 Security

Theorem 5.1. Assume that the Dk-MDDH assumption holds with respect to
GBG, then our Priv-IPFE scheme is weakly function-hiding in the multi-user
setting. More formally, let μ be a number of users, qct :=

∑
i∈[μ] qct,i be the total

number of the ciphertext queries by A, qsk :=
∑

i∈[μ] qsk,i be the total number
of the secret key queries by A, and m be a vector length. Then, for any PPT

482 J. Tomida

adversary A and security parameter λ, there exist PPT adversaries B1, . . . ,B4

for the Dk-MDDH, and we have

AdvPriv-IPFEA,w-fh (λ) ≤ 2
∑

ι∈{1,2}
AdvDk-MDDH

Bι,BG,1 (λ) + 2
∑

ι∈{3,4}
AdvDk-MDDH

Bι,BG,2 (λ) + 2−Ω(λ),

max
ι∈[4]

{Time(Bι)} ≈ Time(A) + (μ + qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Theorem 5.1 follows from Theorem 4.1 and Lin’s observation [34]. That is,
the following relations hold:

{{ct0j}j∈[qct,i], {sk0�}�∈[qsk,i]

}
i∈[μ]

≈c

{{ct1j}j∈[qct,i], {sk0�}�∈[qsk,i]

}
i∈[μ]

≈c

{{ct1j}j∈[qct,i], {sk1�}�∈[qsk,i]

}
i∈[μ]

.

The first indistinguishability follows from the security of the inner scheme and
Eq. (3.3), and the second indistinguishability follows from the security of the
outer scheme and Eq. (3.3). More precisely, we use the relations 〈x0

i,ji
,y0

i,�i
〉 =

〈x1
i,ji

,y0
i,�i

〉 for the inner scheme and 〈c1in,i,ji
,k0

in,i,�i
〉 = 〈c1in,i,ji

,k1
in,i,�i

〉 for the
outer scheme. Both relations can be derived from Eq. (3.3). Note that because
our scheme is adaptively secure, the above relations hold even if ciphertexts and
secret keys are queried by an adversary adaptively.

Remark 5.1. Although the above scheme is weakly function-hiding in the multi-
user setting, we can easily convert it into one that is fully function-hiding in
the multi-user setting by the conversion proposed by Lin and Vaikuntanathan
[35]. The conversion is very simple and works by only doubling vector lengths.
When encrypting x ∈ Z

m, we just encrypt (x, 0m) in the original scheme. Key
generation is also done in the same way. In addition, this conversion is tight.
That is, for any PPT adversary A and security parameter λ, there exist PPT
adversaries B1,B2,B3 and we have

AdvPriv-IPFEA,f-fh (λ) ≤
∑

ι∈[3]

AdvPriv-IPFEBι,w-fh (λ),

max
ι∈[3]

{Time(Bι)} ≈ Time(A) + (μ + qct + qsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

6 From Single to Multi-input Function-Hiding Inner
Product Functional Encryption

In this section, we present a generic conversion from weakly function-hiding
single-input IPFE to fully function-hiding multi-input IPFE. Because all known
function-hiding single-input IPFE schemes are based on bilinear groups, we
design the conversion to be compatible with group based schemes. As in [3],
however, we believe that our conversion is so generic that we can easily modify
it to be suitable to schemes based on other primitives.

Tightly Secure Inner Product Functional Encryption 483

6.1 Conversion

Property. Let Priv-IPFE := (Par,Setup,Enc,KeyGen,Dec) be a Priv-IPFE
scheme (Definition 3.6). In our conversion, we require that an underlying scheme
has the following properties.

1. Priv-IPFE is weakly function-hiding in the multi-user setting.
2. A public parameter pp defines an order n, a group G of order n with group

law ◦, and an encoding function E : Zn → G.
3. A decryption algorithm Dec can be divided into the two algorithms Dec1 and

Dec2 with the following properties. For any λ,m ∈ N, any x,y ∈ Z
m, and

any z ∈ Zn such that |z| ≤ mXλYλ, we have

Pr

⎡

⎢
⎢
⎢
⎢
⎣

d = E(〈x,y〉 mod n)

pp ← Par(1λ)
msk ← Setup(1m, pp)
ct ← Enc(pp,msk,x)
sk ← KeyGen(pp,msk,y)
d := Dec1(pp, ct, sk)

⎤

⎥
⎥
⎥
⎥
⎦

= 1,

Dec2(pp, E(z)) = z.

4. For any a, b ∈ Zn, we have E(a) ◦ E(b) = E(a + b).

Conversion. Let Priv-IPFE :=
(
Par′,Setup′,Enc′,KeyGen′,Dec′ :=(Dec′

1,Dec
′
2)

)

be a Priv-IPFE scheme with the property defined above. Let MIPFE :=
(Setup,Enc,KeyGen,Dec) be a converted MIPFE scheme. Let Xλ := X ′

λ/μ be a
norm bound of MIPFE, where X ′

λ is a norm bound of Priv-IPFE. Our conversion
is performed as follows.

Setup(1λ, 1m, 1μ): It takes a security parameter 1λ, a vector length 1m, and a
number of slots 1μ. Then, it outputs a public parameter pp and a master
secret key msk as follows.

pp′ ← Par′(1λ), {msk′
i}i∈[μ] ← Setup′(12m+1, pp′), {ui}i∈[μ]

U←− Z
m
n ,

pp := pp′, msk := ({msk′
i}i∈[μ], {ui}i∈[μ]).

Enc(pp,msk, i,x): It takes pp, msk, i ∈ [μ] and x ∈ Z
m and outputs a ciphertext

cti as follows.

x̃ := (x + ui, 0m, 1) ∈ Z
2m+1
n , ct′i ← Enc′(pp′,msk′

i, x̃), cti := ct′i.

KeyGen(pp,msk, {yi}i∈[μ]): It takes pp, msk, and {yi}i∈[μ] ∈ Z
m and outputs a

secret key sk as follows.

{ri}i∈[μ−1]
U←− Zn, rμ := −

⎛

⎝
∑

i∈[μ−1]

ri +
∑

i∈[μ]

〈yi,ui〉
⎞

⎠ ∈ Zn,

ỹi := (yi, 0m, ri) ∈ Z
2m+1
n , sk′

i ← KeyGen′(pp′,msk′
i, ỹi) for all i ∈ [μ],

sk := {sk′
i}i∈[μ].

484 J. Tomida

Dec(pp, {cti}i∈[μ], sk): It takes pp, {cti}i∈[μ], and sk. Then, it computes decryp-
tion value d as follows.

di := Dec′
1(pp

′, ct′i, sk
′
i) ∈ G for all i ∈ [μ], d := Dec′

2(pp
′, d1 ◦ · · · ◦ dμ).

Correctness. From property 3, we have

di = E(〈xi + ui,yi〉 + ri mod n).

From property 4, we have

d1◦· · ·◦dμ = E

⎛

⎝
∑

i∈[μ]

(〈xi + ui,yi〉 + ri) mod n

⎞

⎠ = E

⎛

⎝
∑

i∈[μ]

〈xi,yi〉 mod n

⎞

⎠ .

Then, from property 3 and the correctness of Priv-IPFE, we have d := Dec′
2(d1 ◦

· · · ◦ dμ) =
∑

i∈[μ]〈xi,yi〉.
Remark 6.1. Typically, we define Priv-IPFE as consisting of four algorithms
(Setup,Enc,KeyGen,Dec) and Setup outputs pp and msk when we consider Priv-
IPFE in the single-user setting. To apply our conversion to such a Priv-IPFE
scheme, just setting pp := pp′

1, . . . , pp
′
μ suffices in the setup algorithm. In the

security proof, however, we need a hybrid argument for each slot similarly to [3].
Thus, the security reduction will not become tight.

6.2 Security

Theorem 6.1. Let Priv-IPFE be a Priv-IPFE scheme that satisfies the proper-
ties described above. Then converted scheme, MIPFE, is a fully function-hiding
MIPFE scheme. More formally, let μ be a number of slots, qct :=

∑
i∈[μ] qct,i be

the total number of the ciphertext queries by A, qsk be the total number of the
secret key queries by A, and m be a vector length. Then, for any PPT adversary
A and security parameter λ, there exist PPT adversaries B1,B2 for Priv-IPFE
and we have

AdvMIPFE
A,f-fh (λ) ≤ 2

∑

ι∈[2]

AdvPriv-IPFEBι,w-fh (λ),

max
ι∈[2]

{Time(Bι)} ≈ Time(A) + (μ + qct + μqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

Proof. We employ a series of games and evaluate the advantage of the adversary
in each game. For ease of exposition, we first consider six games: Games 0 to
5, and show that the each transition of games is justified by the security of the
underlying scheme (or an information-theoretical argument). Then, we explain
that the transition from Game 0 to 2 and that from Game 3 to 5 can be done
in one-shot. We summarize forms of ciphertexts and secret keys in each game in
Table 5. Similarly to in Sect. 4.2, we omit index i from index ji and just denote
it by j. We present formal proof in the full version of this paper. �

Tightly Secure Inner Product Functional Encryption 485

Table 5. Overview of the game change.

game x̃i,j in ct ỹi,� in sk − ∑
ri,�

0 (real) (xβ
i,j + ui, 0

m, 1) (yβ
i,�, 0

m, ri,�)
∑〈yβ

i,�,ui〉
1 (xβ

i,j + ui, vi , 1) (yβ
i,�, 0

m, ri,�)
∑〈yβ

i,�,ui〉
2 (xβ

i,j + ui,vi, 1) (yβ
i,�, y0

i,� , ri,�)
∑

(〈yβ
i,�,ui〉 + 〈y0

i,�,vi〉)
3 (xβ

i,j −xβ
i,1 + ui, x0

i,1 + vi, 1) (yβ
i,�,y

0
i,�, ri,�)

∑
(〈yβ

i,�,ui〉 + 〈y0
i,�,vi〉)

4 (ui, x0
i,j + vi, 1) (yβ

i,�,y
0
i,�, ri,�)

∑
(〈yβ

i,�,ui〉 + 〈y0
i,�,vi〉)

5 (final) (ui,x
0
i,j + vi, 1) (0m ,y0

i,�, ri,�)
∑〈y0

i,�,vi〉

6.3 Application to Our Scheme

Applying the conversion to our scheme presented in Sect. 5.1, we can obtain a
tightly secure fully function-hiding MIPFE scheme. First, we confirm that our
scheme satisfies the property presented in Sect. 6.1.

1. Theorem 5.1 says that our scheme is weakly function-hiding.
2. We can define that n := p, G := GT , and E : a ∈ Zp → [a]T ∈ GT . The group

law ◦ corresponds to the multiplication over GT .
3. We can define that Dec1 computes [d]T and Dec2 searches for the discrete

logarithm of [d]T .
4. It is obvious that ga

T · gb
T = ga+b

T .

Then, from Theorems 5.1 and 6.1, we obtain the following corollary.

Corollary 6.1. Let MIPFE be the MIPFE scheme obtained by applying the
conversion in Sect. 6.1 to our weakly function-hiding Priv-IPFE scheme. Then
MIPFE is fully function-hiding. More formally, let μ be a number of slots,
qct :=

∑
i∈[μ] qct,i be the total number of the ciphertext queries by A, qsk be

the total number of the secret key queries by A, and m be a vector length. Then,
for any PPT adversary A and security parameter λ, there exist PPT adversaries
B1, . . . ,B4 for the Dk-MDDH and we have

AdvMIPFE
A,f-fh (λ) ≤ 8

∑

ι∈{1,2}
AdvDk-MDDH

Bι,BG,1 (λ) + 8
∑

ι∈{3,4}
AdvDk-MDDH

Bι,BG,2 (λ) + 2−Ω(λ),

max
ι∈[4]

{Time(Bι)} ≈ Time(A) + (μ + qct + μqsk)poly(λ,m),

where poly(λ,m) is independent from Time(A).

References

1. GenBank and WGS statistics. https://www.ncbi.nlm.nih.gov/genbank/statistics/
2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption

schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://doi.org/10.1007/978-3-662-46447-2_33

486 J. Tomida

3. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: function-hiding realizations and constructions with-
out pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS,
vol. 10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96884-1 20

4. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56620-7 21

5. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-
preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 19

6. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 12

7. Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based encryp-
tion with almost tight security. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015,
Part I. LNCS, vol. 9452, pp. 521–549. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48797-6 22

8. Badrinarayanan, S., Gupta, D., Jain, A., Sahai, A.: Multi-input functional encryp-
tion for unbounded arity functions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015, Part I. LNCS, vol. 9452, pp. 27–51. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48797-6 2

9. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67–98. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 3

10. Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F.,
Zanon, G.: Subgroup security in pairing-based cryptography. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 245–
265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 14

11. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

12. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 470–
491. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 20

13. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

14. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 852–880.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 30

15. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp.
306–324. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-
7 12

https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-662-48797-6_2
https://doi.org/10.1007/978-3-662-48797-6_2
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-319-22174-8_14
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-662-49896-5_30
https://doi.org/10.1007/978-3-662-46497-7_12
https://doi.org/10.1007/978-3-662-46497-7_12

Tightly Secure Inner Product Functional Encryption 487

16. Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted inner
product functional encryption modulo p. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018, Part II. LNCS, vol. 11273, pp. 733–764. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3 25

17. Chen, J., Wee, H.: Fully, (almost) tightly secure ibe and dual system groups. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–
460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

18. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49384-7 7

19. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner
product functional encryption from the k -linear assumption. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 245–277. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 9

20. Enge, A., Milan, J.: Implementing cryptographic pairings at standard security lev-
els. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS,
vol. 8804, pp. 28–46. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12060-7 3

21. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework
for Diffie-Hellman assumptions. J. Cryptol. 30(1), 242–288 (2017)

22. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

23. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

24. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol.
9563, pp. 480–511. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49099-0 18

25. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 1

26. Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 133–160.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 5

27. Gay, R., Kowalczyk, L., Wee, H.: Tight adaptively secure broadcast encryption
with short ciphertexts and keys. In: Catalano, D., De Prisco, R. (eds.) SCN 2018.
LNCS, vol. 11035, pp. 123–139. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98113-0 7

28. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

29. Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure
cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS,
vol. 9562, pp. 251–281. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 11

https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/978-3-319-12060-7_3
https://doi.org/10.1007/978-3-319-12060-7_3
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-319-63697-9_5
https://doi.org/10.1007/978-3-319-98113-0_7
https://doi.org/10.1007/978-3-319-98113-0_7
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-662-49096-9_11

488 J. Tomida

30. Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017, Part III. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56617-7 17

31. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

32. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.)
SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98113-0 29

33. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 681–707.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 28

34. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

35. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS,
pp. 11–20. IEEE Computer Society Press, October 2016

36. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)

37. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010). http://eprint.iacr.org/2010/556

38. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product
values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC
2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45871-7 24

39. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS,
vol. 9216, pp. 678–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 33

https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-662-48797-6_28
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
http://eprint.iacr.org/2010/556
https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-662-48000-7_33

	Tightly Secure Inner Product Functional Encryption: Multi-input and Function-Hiding Constructions
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	2.1 Tightly Secure IPFE
	2.2 Conversion from Function-Hiding IPFE to Function-Hiding MIPFE

	3 Preliminary
	3.1 Notation
	3.2 Basic Tools and Assumption
	3.3 Definitions of Inner Product Functional Encryption

	4 Tightly Secure (Multi-input) Inner Product Functional Encryption
	4.1 Construction
	4.2 Security
	4.3 Application to Multi-input Inner Product Functional Encryption

	5 Function-Hiding Inner Product Functional Encryption
	5.1 Actual Scheme and Optimization
	5.2 Security

	6 From Single to Multi-input Function-Hiding Inner Product Functional Encryption
	6.1 Conversion
	6.2 Security
	6.3 Application to Our Scheme

	References

